effect
stringclasses
48 values
original_source_type
stringlengths
0
23k
opens_and_abbrevs
listlengths
2
92
isa_cross_project_example
bool
1 class
source_definition
stringlengths
9
57.9k
partial_definition
stringlengths
7
23.3k
is_div
bool
2 classes
is_type
null
is_proof
bool
2 classes
completed_definiton
stringlengths
1
250k
dependencies
dict
effect_flags
sequencelengths
0
2
ideal_premises
sequencelengths
0
236
mutual_with
sequencelengths
0
11
file_context
stringlengths
0
407k
interleaved
bool
1 class
is_simply_typed
bool
2 classes
file_name
stringlengths
5
48
vconfig
dict
is_simple_lemma
null
source_type
stringlengths
10
23k
proof_features
sequencelengths
0
1
name
stringlengths
8
95
source
dict
verbose_type
stringlengths
1
7.42k
source_range
dict
Prims.Tot
val map_dec (#a #b: _) (l: list a) (f: (x: a{x << l} -> b)) : Tot (list b) (decreases l)
[ { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f
val map_dec (#a #b: _) (l: list a) (f: (x: a{x << l} -> b)) : Tot (list b) (decreases l) let rec map_dec #a #b (l: list a) (f: (x: a{x << l} -> b)) : Tot (list b) (decreases l) =
false
null
false
match l with | [] -> [] | x :: xs -> f x :: map_dec xs f
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total", "" ]
[ "Prims.list", "Prims.precedes", "Prims.Nil", "Prims.Cons", "FStar.Reflection.Typing.map_dec" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l)
false
false
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val map_dec (#a #b: _) (l: list a) (f: (x: a{x << l} -> b)) : Tot (list b) (decreases l)
[ "recursion" ]
FStar.Reflection.Typing.map_dec
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
l: Prims.list a -> f: (x: a{x << l} -> b) -> Prims.Tot (Prims.list b)
{ "end_col": 32, "end_line": 55, "start_col": 2, "start_line": 53 }
Prims.Tot
val mk_binder (pp_name: pp_name_t) (ty: term) (q: aqualv) : binder
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty}
val mk_binder (pp_name: pp_name_t) (ty: term) (q: aqualv) : binder let mk_binder (pp_name: pp_name_t) (ty: term) (q: aqualv) : binder =
false
null
false
pack_binder ({ ppname = pp_name; qual = q; attrs = []; sort = ty })
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.Typing.pp_name_t", "FStar.Reflection.Types.term", "FStar.Reflection.V2.Data.aqualv", "FStar.Reflection.V2.Builtins.pack_binder", "FStar.Reflection.V2.Data.Mkbinder_view", "Prims.Nil", "FStar.Reflection.Types.binder" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mk_binder (pp_name: pp_name_t) (ty: term) (q: aqualv) : binder
[]
FStar.Reflection.Typing.mk_binder
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
pp_name: FStar.Reflection.Typing.pp_name_t -> ty: FStar.Reflection.Types.term -> q: FStar.Reflection.V2.Data.aqualv -> FStar.Reflection.Types.binder
{ "end_col": 20, "end_line": 143, "start_col": 4, "start_line": 139 }
Prims.Tot
val make_namedv (n: nat) : namedv_view
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; }
val make_namedv (n: nat) : namedv_view let make_namedv (n: nat) : namedv_view =
false
null
false
{ ppname = pp_name_default; uniq = n; sort = sort_default }
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "Prims.nat", "FStar.Reflection.V2.Data.Mknamedv_view", "FStar.Reflection.Typing.sort_default", "FStar.Reflection.Typing.pp_name_default", "FStar.Reflection.V2.Data.namedv_view" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v)
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val make_namedv (n: nat) : namedv_view
[]
FStar.Reflection.Typing.make_namedv
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
n: Prims.nat -> FStar.Reflection.V2.Data.namedv_view
{ "end_col": 24, "end_line": 275, "start_col": 2, "start_line": 273 }
Prims.Tot
val bindings_ok_for_branch (g: env) (bs: list R.binding) (br: branch) : Type0
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bindings_ok_for_branch (g:env) (bs : list R.binding) (br : branch) : Type0 = bindings_ok_for_pat g bs (fst br)
val bindings_ok_for_branch (g: env) (bs: list R.binding) (br: branch) : Type0 let bindings_ok_for_branch (g: env) (bs: list R.binding) (br: branch) : Type0 =
false
null
false
bindings_ok_for_pat g bs (fst br)
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.Types.env", "Prims.list", "FStar.Reflection.V2.Data.binding", "FStar.Reflection.V2.Data.branch", "FStar.Reflection.Typing.bindings_ok_for_pat", "FStar.Pervasives.Native.fst", "FStar.Reflection.V2.Data.pattern", "FStar.Reflection.Types.term" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_ let ln (t:term) = ln' t (-1) let ln_comp (c:comp) = ln'_comp c (-1) // // term_ctxt is used to define the equiv relation later, // basically putting two equiv terms in a hole gives equiv terms // // The abs, arrow, refine, and let cases don't seem right here, // since to prove their equiv, we need to extend gamma for their bodies // // If this is useful only for app, then may be we should remove it, // and add app rules to the equiv relation itself [@@ no_auto_projectors] noeq type term_ctxt = | Ctxt_hole : term_ctxt | Ctxt_app_head : term_ctxt -> argv -> term_ctxt | Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt // | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt // | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt // | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt // | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt // | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt // | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt // | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt // | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt // | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt // | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt // and bv_ctxt = // | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt // and binder_ctxt = // | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt // and comp_ctxt = // | Ctxt_total : term_ctxt -> comp_ctxt // | Ctxt_gtotal : term_ctxt -> comp_ctxt let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) = match e with | Ctxt_hole -> t | Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg) | Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q)) // | Ctxt_abs_binder b body -> pack_ln (Tv_Abs (apply_binder_ctxt b t) body) // | Ctxt_abs_body b e -> pack_ln (Tv_Abs b (apply_term_ctxt e t)) // | Ctxt_arrow_binder b c -> pack_ln (Tv_Arrow (apply_binder_ctxt b t) c) // | Ctxt_arrow_comp b c -> pack_ln (Tv_Arrow b (apply_comp_ctxt c t)) // | Ctxt_refine_sort b sort phi -> pack_ln (Tv_Refine b (apply_term_ctxt sort t) phi) // | Ctxt_refine_ref b sort phi -> pack_ln (Tv_Refine b sort (apply_term_ctxt phi t)) // | Ctxt_let_sort b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv (apply_term_ctxt sort t) def body) // | Ctxt_let_def b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort (apply_term_ctxt def t) body) // | Ctxt_let_body b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort def (apply_term_ctxt body t)) // | Ctxt_match_scrutinee sc ret brs -> // pack_ln (Tv_Match (apply_term_ctxt sc t) ret brs) // and apply_binder_ctxt (b:binder_ctxt) (t:term) : Tot binder (decreases b) = // let Ctxt_binder binder_bv binder_qual binder_attrs ctxt = b in // pack_binder {binder_bv; binder_qual; binder_attrs; binder_sort=apply_term_ctxt ctxt t} // and apply_comp_ctxt (c:comp_ctxt) (t:term) : Tot comp (decreases c) = // match c with // | Ctxt_total e -> pack_comp (C_Total (apply_term_ctxt e t)) // | Ctxt_gtotal e -> pack_comp (C_GTotal (apply_term_ctxt e t)) noeq type constant_typing: vconst -> term -> Type0 = | CT_Unit: constant_typing C_Unit unit_ty | CT_True: constant_typing C_True bool_ty | CT_False: constant_typing C_False bool_ty [@@ no_auto_projectors] noeq type univ_eq : universe -> universe -> Type0 = | UN_Refl : u:universe -> univ_eq u u | UN_MaxCongL : u:universe -> u':universe -> v:universe -> univ_eq u u' -> univ_eq (u_max u v) (u_max u' v) | UN_MaxCongR : u:universe -> v:universe -> v':universe -> univ_eq v v' -> univ_eq (u_max u v) (u_max u v') | UN_MaxComm: u:universe -> v:universe -> univ_eq (u_max u v) (u_max v u) | UN_MaxLeq: u:universe -> v:universe -> univ_leq u v -> univ_eq (u_max u v) v and univ_leq : universe -> universe -> Type0 = | UNLEQ_Refl: u:universe -> univ_leq u u | UNLEQ_Succ: u:universe -> v:universe -> univ_leq u v -> univ_leq u (u_succ v) | UNLEQ_Max: u:universe -> v:universe -> univ_leq u (u_max u v) let mk_if (scrutinee then_ else_:R.term) : R.term = pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_); (Pat_Constant C_False, else_)]) // effect and type type comp_typ = T.tot_or_ghost & typ let close_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) [ ND x i ] let close_comp_typ (c:comp_typ) (x:var) = close_comp_typ' c x 0 let open_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) (open_with_var x i) let open_comp_typ (c:comp_typ) (x:var) = open_comp_typ' c x 0 let freevars_comp_typ (c:comp_typ) = freevars (snd c) let mk_comp (c:comp_typ) : R.comp = match fst c with | T.E_Total -> mk_total (snd c) | T.E_Ghost -> mk_ghost (snd c) let mk_arrow_ct ty qual (c:comp_typ) : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_comp c)) type relation = | R_Eq | R_Sub let binding = var & term let bindings = list binding let rename_bindings bs x y = FStar.List.Tot.map (fun (v, t) -> (v, rename t x y)) bs let rec extend_env_l (g:env) (bs:bindings) : env = match bs with | [] -> g | (x,t)::bs -> extend_env (extend_env_l g bs) x t // // TODO: support for erasable attribute // let is_non_informative_name (l:name) : bool = l = R.unit_lid || l = R.squash_qn || l = ["FStar"; "Ghost"; "erased"] let is_non_informative_fv (f:fv) : bool = is_non_informative_name (inspect_fv f) let rec __close_term_vs (i:nat) (vs : list var) (t : term) : Tot term (decreases vs) = match vs with | [] -> t | v::vs -> subst_term (__close_term_vs (i+1) vs t) [ND v i] let close_term_vs (vs : list var) (t : term) : term = __close_term_vs 0 vs t let close_term_bs (bs : list binding) (t : term) : term = close_term_vs (List.Tot.map fst bs) t let bindings_to_refl_bindings (bs : list binding) : list R.binding = L.map (fun (v, ty) -> {uniq=v; sort=ty; ppname = pp_name_default}) bs let refl_bindings_to_bindings (bs : list R.binding) : list binding = L.map (fun b -> b.uniq, b.sort) bs [@@ no_auto_projectors] noeq type non_informative : env -> term -> Type0 = | Non_informative_type: g:env -> u:universe -> non_informative g (pack_ln (Tv_Type u)) | Non_informative_fv: g:env -> x:fv{is_non_informative_fv x} -> non_informative g (pack_ln (Tv_FVar x)) | Non_informative_uinst: g:env -> x:fv{is_non_informative_fv x} -> us:list universe -> non_informative g (pack_ln (Tv_UInst x us)) | Non_informative_app: g:env -> t:term -> arg:argv -> non_informative g t -> non_informative g (pack_ln (Tv_App t arg)) | Non_informative_total_arrow: g:env -> t0:term -> q:aqualv -> t1:term -> non_informative g t1 -> non_informative g (mk_arrow_ct t0 q (T.E_Total, t1)) | Non_informative_ghost_arrow: g:env -> t0:term -> q:aqualv -> t1:term -> non_informative g (mk_arrow_ct t0 q (T.E_Ghost, t1)) | Non_informative_token: g:env -> t:typ -> squash (T.non_informative_token g t) -> non_informative g t val bindings_ok_for_pat : env -> list R.binding -> pattern -> Type0 val bindings_ok_pat_constant : g:env -> c:R.vconst -> Lemma (bindings_ok_for_pat g [] (Pat_Constant c))
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bindings_ok_for_branch (g: env) (bs: list R.binding) (br: branch) : Type0
[]
FStar.Reflection.Typing.bindings_ok_for_branch
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
g: FStar.Reflection.Types.env -> bs: Prims.list FStar.Reflection.V2.Data.binding -> br: FStar.Reflection.V2.Data.branch -> Type0
{ "end_col": 35, "end_line": 1109, "start_col": 2, "start_line": 1109 }
Prims.Tot
val extend_env (e: env) (x: var) (ty: term) : env
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; })
val extend_env (e: env) (x: var) (ty: term) : env let extend_env (e: env) (x: var) (ty: term) : env =
false
null
false
R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty })
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.Types.env", "FStar.Reflection.V2.Data.var", "FStar.Reflection.Types.term", "FStar.Reflection.V2.Derived.push_binding", "FStar.Reflection.V2.Data.Mkbinding", "FStar.Reflection.Typing.seal_pp_name" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty}
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val extend_env (e: env) (x: var) (ty: term) : env
[]
FStar.Reflection.Typing.extend_env
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
e: FStar.Reflection.Types.env -> x: FStar.Reflection.V2.Data.var -> ty: FStar.Reflection.Types.term -> FStar.Reflection.Types.env
{ "end_col": 4, "end_line": 157, "start_col": 2, "start_line": 153 }
Prims.Tot
val binding_to_namedv (b: R.binding) : Tot namedv
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let binding_to_namedv (b:R.binding) : Tot namedv = pack_namedv { RD.uniq = b.uniq; RD.sort = seal b.sort; RD.ppname = b.ppname; }
val binding_to_namedv (b: R.binding) : Tot namedv let binding_to_namedv (b: R.binding) : Tot namedv =
false
null
false
pack_namedv ({ RD.uniq = b.uniq; RD.sort = seal b.sort; RD.ppname = b.ppname })
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.V2.Data.binding", "FStar.Reflection.V2.Builtins.pack_namedv", "FStar.Reflection.V2.Data.Mknamedv_view", "FStar.Reflection.V2.Data.__proj__Mkbinding__item__uniq", "FStar.Sealed.seal", "FStar.Reflection.Types.typ", "FStar.Reflection.V2.Data.__proj__Mkbinding__item__sort", "FStar.Reflection.V2.Data.__proj__Mkbinding__item__ppname", "FStar.Reflection.Types.namedv" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_ let ln (t:term) = ln' t (-1) let ln_comp (c:comp) = ln'_comp c (-1) // // term_ctxt is used to define the equiv relation later, // basically putting two equiv terms in a hole gives equiv terms // // The abs, arrow, refine, and let cases don't seem right here, // since to prove their equiv, we need to extend gamma for their bodies // // If this is useful only for app, then may be we should remove it, // and add app rules to the equiv relation itself [@@ no_auto_projectors] noeq type term_ctxt = | Ctxt_hole : term_ctxt | Ctxt_app_head : term_ctxt -> argv -> term_ctxt | Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt // | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt // | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt // | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt // | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt // | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt // | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt // | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt // | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt // | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt // | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt // and bv_ctxt = // | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt // and binder_ctxt = // | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt // and comp_ctxt = // | Ctxt_total : term_ctxt -> comp_ctxt // | Ctxt_gtotal : term_ctxt -> comp_ctxt let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) = match e with | Ctxt_hole -> t | Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg) | Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q)) // | Ctxt_abs_binder b body -> pack_ln (Tv_Abs (apply_binder_ctxt b t) body) // | Ctxt_abs_body b e -> pack_ln (Tv_Abs b (apply_term_ctxt e t)) // | Ctxt_arrow_binder b c -> pack_ln (Tv_Arrow (apply_binder_ctxt b t) c) // | Ctxt_arrow_comp b c -> pack_ln (Tv_Arrow b (apply_comp_ctxt c t)) // | Ctxt_refine_sort b sort phi -> pack_ln (Tv_Refine b (apply_term_ctxt sort t) phi) // | Ctxt_refine_ref b sort phi -> pack_ln (Tv_Refine b sort (apply_term_ctxt phi t)) // | Ctxt_let_sort b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv (apply_term_ctxt sort t) def body) // | Ctxt_let_def b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort (apply_term_ctxt def t) body) // | Ctxt_let_body b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort def (apply_term_ctxt body t)) // | Ctxt_match_scrutinee sc ret brs -> // pack_ln (Tv_Match (apply_term_ctxt sc t) ret brs) // and apply_binder_ctxt (b:binder_ctxt) (t:term) : Tot binder (decreases b) = // let Ctxt_binder binder_bv binder_qual binder_attrs ctxt = b in // pack_binder {binder_bv; binder_qual; binder_attrs; binder_sort=apply_term_ctxt ctxt t} // and apply_comp_ctxt (c:comp_ctxt) (t:term) : Tot comp (decreases c) = // match c with // | Ctxt_total e -> pack_comp (C_Total (apply_term_ctxt e t)) // | Ctxt_gtotal e -> pack_comp (C_GTotal (apply_term_ctxt e t)) noeq type constant_typing: vconst -> term -> Type0 = | CT_Unit: constant_typing C_Unit unit_ty | CT_True: constant_typing C_True bool_ty | CT_False: constant_typing C_False bool_ty [@@ no_auto_projectors] noeq type univ_eq : universe -> universe -> Type0 = | UN_Refl : u:universe -> univ_eq u u | UN_MaxCongL : u:universe -> u':universe -> v:universe -> univ_eq u u' -> univ_eq (u_max u v) (u_max u' v) | UN_MaxCongR : u:universe -> v:universe -> v':universe -> univ_eq v v' -> univ_eq (u_max u v) (u_max u v') | UN_MaxComm: u:universe -> v:universe -> univ_eq (u_max u v) (u_max v u) | UN_MaxLeq: u:universe -> v:universe -> univ_leq u v -> univ_eq (u_max u v) v and univ_leq : universe -> universe -> Type0 = | UNLEQ_Refl: u:universe -> univ_leq u u | UNLEQ_Succ: u:universe -> v:universe -> univ_leq u v -> univ_leq u (u_succ v) | UNLEQ_Max: u:universe -> v:universe -> univ_leq u (u_max u v) let mk_if (scrutinee then_ else_:R.term) : R.term = pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_); (Pat_Constant C_False, else_)]) // effect and type type comp_typ = T.tot_or_ghost & typ let close_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) [ ND x i ] let close_comp_typ (c:comp_typ) (x:var) = close_comp_typ' c x 0 let open_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) (open_with_var x i) let open_comp_typ (c:comp_typ) (x:var) = open_comp_typ' c x 0 let freevars_comp_typ (c:comp_typ) = freevars (snd c) let mk_comp (c:comp_typ) : R.comp = match fst c with | T.E_Total -> mk_total (snd c) | T.E_Ghost -> mk_ghost (snd c) let mk_arrow_ct ty qual (c:comp_typ) : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_comp c)) type relation = | R_Eq | R_Sub let binding = var & term let bindings = list binding let rename_bindings bs x y = FStar.List.Tot.map (fun (v, t) -> (v, rename t x y)) bs let rec extend_env_l (g:env) (bs:bindings) : env = match bs with | [] -> g | (x,t)::bs -> extend_env (extend_env_l g bs) x t // // TODO: support for erasable attribute // let is_non_informative_name (l:name) : bool = l = R.unit_lid || l = R.squash_qn || l = ["FStar"; "Ghost"; "erased"] let is_non_informative_fv (f:fv) : bool = is_non_informative_name (inspect_fv f) let rec __close_term_vs (i:nat) (vs : list var) (t : term) : Tot term (decreases vs) = match vs with | [] -> t | v::vs -> subst_term (__close_term_vs (i+1) vs t) [ND v i] let close_term_vs (vs : list var) (t : term) : term = __close_term_vs 0 vs t let close_term_bs (bs : list binding) (t : term) : term = close_term_vs (List.Tot.map fst bs) t let bindings_to_refl_bindings (bs : list binding) : list R.binding = L.map (fun (v, ty) -> {uniq=v; sort=ty; ppname = pp_name_default}) bs let refl_bindings_to_bindings (bs : list R.binding) : list binding = L.map (fun b -> b.uniq, b.sort) bs [@@ no_auto_projectors] noeq type non_informative : env -> term -> Type0 = | Non_informative_type: g:env -> u:universe -> non_informative g (pack_ln (Tv_Type u)) | Non_informative_fv: g:env -> x:fv{is_non_informative_fv x} -> non_informative g (pack_ln (Tv_FVar x)) | Non_informative_uinst: g:env -> x:fv{is_non_informative_fv x} -> us:list universe -> non_informative g (pack_ln (Tv_UInst x us)) | Non_informative_app: g:env -> t:term -> arg:argv -> non_informative g t -> non_informative g (pack_ln (Tv_App t arg)) | Non_informative_total_arrow: g:env -> t0:term -> q:aqualv -> t1:term -> non_informative g t1 -> non_informative g (mk_arrow_ct t0 q (T.E_Total, t1)) | Non_informative_ghost_arrow: g:env -> t0:term -> q:aqualv -> t1:term -> non_informative g (mk_arrow_ct t0 q (T.E_Ghost, t1)) | Non_informative_token: g:env -> t:typ -> squash (T.non_informative_token g t) -> non_informative g t val bindings_ok_for_pat : env -> list R.binding -> pattern -> Type0 val bindings_ok_pat_constant : g:env -> c:R.vconst -> Lemma (bindings_ok_for_pat g [] (Pat_Constant c)) let bindings_ok_for_branch (g:env) (bs : list R.binding) (br : branch) : Type0 = bindings_ok_for_pat g bs (fst br) let bindings_ok_for_branch_N (g:env) (bss : list (list R.binding)) (brs : list branch) = zip2prop (bindings_ok_for_branch g) bss brs
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val binding_to_namedv (b: R.binding) : Tot namedv
[]
FStar.Reflection.Typing.binding_to_namedv
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: FStar.Reflection.V2.Data.binding -> FStar.Reflection.Types.namedv
{ "end_col": 3, "end_line": 1119, "start_col": 2, "start_line": 1115 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bindings_ok_for_branch_N (g:env) (bss : list (list R.binding)) (brs : list branch) = zip2prop (bindings_ok_for_branch g) bss brs
let bindings_ok_for_branch_N (g: env) (bss: list (list R.binding)) (brs: list branch) =
false
null
false
zip2prop (bindings_ok_for_branch g) bss brs
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.Types.env", "Prims.list", "FStar.Reflection.V2.Data.binding", "FStar.Reflection.V2.Data.branch", "FStar.Reflection.Typing.zip2prop", "FStar.Reflection.Typing.bindings_ok_for_branch" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_ let ln (t:term) = ln' t (-1) let ln_comp (c:comp) = ln'_comp c (-1) // // term_ctxt is used to define the equiv relation later, // basically putting two equiv terms in a hole gives equiv terms // // The abs, arrow, refine, and let cases don't seem right here, // since to prove their equiv, we need to extend gamma for their bodies // // If this is useful only for app, then may be we should remove it, // and add app rules to the equiv relation itself [@@ no_auto_projectors] noeq type term_ctxt = | Ctxt_hole : term_ctxt | Ctxt_app_head : term_ctxt -> argv -> term_ctxt | Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt // | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt // | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt // | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt // | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt // | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt // | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt // | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt // | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt // | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt // | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt // and bv_ctxt = // | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt // and binder_ctxt = // | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt // and comp_ctxt = // | Ctxt_total : term_ctxt -> comp_ctxt // | Ctxt_gtotal : term_ctxt -> comp_ctxt let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) = match e with | Ctxt_hole -> t | Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg) | Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q)) // | Ctxt_abs_binder b body -> pack_ln (Tv_Abs (apply_binder_ctxt b t) body) // | Ctxt_abs_body b e -> pack_ln (Tv_Abs b (apply_term_ctxt e t)) // | Ctxt_arrow_binder b c -> pack_ln (Tv_Arrow (apply_binder_ctxt b t) c) // | Ctxt_arrow_comp b c -> pack_ln (Tv_Arrow b (apply_comp_ctxt c t)) // | Ctxt_refine_sort b sort phi -> pack_ln (Tv_Refine b (apply_term_ctxt sort t) phi) // | Ctxt_refine_ref b sort phi -> pack_ln (Tv_Refine b sort (apply_term_ctxt phi t)) // | Ctxt_let_sort b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv (apply_term_ctxt sort t) def body) // | Ctxt_let_def b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort (apply_term_ctxt def t) body) // | Ctxt_let_body b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort def (apply_term_ctxt body t)) // | Ctxt_match_scrutinee sc ret brs -> // pack_ln (Tv_Match (apply_term_ctxt sc t) ret brs) // and apply_binder_ctxt (b:binder_ctxt) (t:term) : Tot binder (decreases b) = // let Ctxt_binder binder_bv binder_qual binder_attrs ctxt = b in // pack_binder {binder_bv; binder_qual; binder_attrs; binder_sort=apply_term_ctxt ctxt t} // and apply_comp_ctxt (c:comp_ctxt) (t:term) : Tot comp (decreases c) = // match c with // | Ctxt_total e -> pack_comp (C_Total (apply_term_ctxt e t)) // | Ctxt_gtotal e -> pack_comp (C_GTotal (apply_term_ctxt e t)) noeq type constant_typing: vconst -> term -> Type0 = | CT_Unit: constant_typing C_Unit unit_ty | CT_True: constant_typing C_True bool_ty | CT_False: constant_typing C_False bool_ty [@@ no_auto_projectors] noeq type univ_eq : universe -> universe -> Type0 = | UN_Refl : u:universe -> univ_eq u u | UN_MaxCongL : u:universe -> u':universe -> v:universe -> univ_eq u u' -> univ_eq (u_max u v) (u_max u' v) | UN_MaxCongR : u:universe -> v:universe -> v':universe -> univ_eq v v' -> univ_eq (u_max u v) (u_max u v') | UN_MaxComm: u:universe -> v:universe -> univ_eq (u_max u v) (u_max v u) | UN_MaxLeq: u:universe -> v:universe -> univ_leq u v -> univ_eq (u_max u v) v and univ_leq : universe -> universe -> Type0 = | UNLEQ_Refl: u:universe -> univ_leq u u | UNLEQ_Succ: u:universe -> v:universe -> univ_leq u v -> univ_leq u (u_succ v) | UNLEQ_Max: u:universe -> v:universe -> univ_leq u (u_max u v) let mk_if (scrutinee then_ else_:R.term) : R.term = pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_); (Pat_Constant C_False, else_)]) // effect and type type comp_typ = T.tot_or_ghost & typ let close_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) [ ND x i ] let close_comp_typ (c:comp_typ) (x:var) = close_comp_typ' c x 0 let open_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) (open_with_var x i) let open_comp_typ (c:comp_typ) (x:var) = open_comp_typ' c x 0 let freevars_comp_typ (c:comp_typ) = freevars (snd c) let mk_comp (c:comp_typ) : R.comp = match fst c with | T.E_Total -> mk_total (snd c) | T.E_Ghost -> mk_ghost (snd c) let mk_arrow_ct ty qual (c:comp_typ) : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_comp c)) type relation = | R_Eq | R_Sub let binding = var & term let bindings = list binding let rename_bindings bs x y = FStar.List.Tot.map (fun (v, t) -> (v, rename t x y)) bs let rec extend_env_l (g:env) (bs:bindings) : env = match bs with | [] -> g | (x,t)::bs -> extend_env (extend_env_l g bs) x t // // TODO: support for erasable attribute // let is_non_informative_name (l:name) : bool = l = R.unit_lid || l = R.squash_qn || l = ["FStar"; "Ghost"; "erased"] let is_non_informative_fv (f:fv) : bool = is_non_informative_name (inspect_fv f) let rec __close_term_vs (i:nat) (vs : list var) (t : term) : Tot term (decreases vs) = match vs with | [] -> t | v::vs -> subst_term (__close_term_vs (i+1) vs t) [ND v i] let close_term_vs (vs : list var) (t : term) : term = __close_term_vs 0 vs t let close_term_bs (bs : list binding) (t : term) : term = close_term_vs (List.Tot.map fst bs) t let bindings_to_refl_bindings (bs : list binding) : list R.binding = L.map (fun (v, ty) -> {uniq=v; sort=ty; ppname = pp_name_default}) bs let refl_bindings_to_bindings (bs : list R.binding) : list binding = L.map (fun b -> b.uniq, b.sort) bs [@@ no_auto_projectors] noeq type non_informative : env -> term -> Type0 = | Non_informative_type: g:env -> u:universe -> non_informative g (pack_ln (Tv_Type u)) | Non_informative_fv: g:env -> x:fv{is_non_informative_fv x} -> non_informative g (pack_ln (Tv_FVar x)) | Non_informative_uinst: g:env -> x:fv{is_non_informative_fv x} -> us:list universe -> non_informative g (pack_ln (Tv_UInst x us)) | Non_informative_app: g:env -> t:term -> arg:argv -> non_informative g t -> non_informative g (pack_ln (Tv_App t arg)) | Non_informative_total_arrow: g:env -> t0:term -> q:aqualv -> t1:term -> non_informative g t1 -> non_informative g (mk_arrow_ct t0 q (T.E_Total, t1)) | Non_informative_ghost_arrow: g:env -> t0:term -> q:aqualv -> t1:term -> non_informative g (mk_arrow_ct t0 q (T.E_Ghost, t1)) | Non_informative_token: g:env -> t:typ -> squash (T.non_informative_token g t) -> non_informative g t val bindings_ok_for_pat : env -> list R.binding -> pattern -> Type0 val bindings_ok_pat_constant : g:env -> c:R.vconst -> Lemma (bindings_ok_for_pat g [] (Pat_Constant c)) let bindings_ok_for_branch (g:env) (bs : list R.binding) (br : branch) : Type0 = bindings_ok_for_pat g bs (fst br)
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bindings_ok_for_branch_N : g: FStar.Reflection.Types.env -> bss: Prims.list (Prims.list FStar.Reflection.V2.Data.binding) -> brs: Prims.list FStar.Reflection.V2.Data.branch -> Type0
[]
FStar.Reflection.Typing.bindings_ok_for_branch_N
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
g: FStar.Reflection.Types.env -> bss: Prims.list (Prims.list FStar.Reflection.V2.Data.binding) -> brs: Prims.list FStar.Reflection.V2.Data.branch -> Type0
{ "end_col": 45, "end_line": 1112, "start_col": 2, "start_line": 1112 }
Prims.Tot
val make_bv_with_name (s: pp_name_t) (n: nat) : bv_view
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; }
val make_bv_with_name (s: pp_name_t) (n: nat) : bv_view let make_bv_with_name (s: pp_name_t) (n: nat) : bv_view =
false
null
false
{ ppname = s; index = n; sort = sort_default }
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.Typing.pp_name_t", "Prims.nat", "FStar.Reflection.V2.Data.Mkbv_view", "FStar.Reflection.Typing.sort_default", "FStar.Reflection.V2.Data.bv_view" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; }
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val make_bv_with_name (s: pp_name_t) (n: nat) : bv_view
[]
FStar.Reflection.Typing.make_bv_with_name
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: FStar.Reflection.Typing.pp_name_t -> n: Prims.nat -> FStar.Reflection.V2.Data.bv_view
{ "end_col": 24, "end_line": 266, "start_col": 2, "start_line": 264 }
Prims.Tot
val subst_db (bv: bv) (s: subst) : term
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv)
val subst_db (bv: bv) (s: subst) : term let subst_db (bv: bv) (s: subst) : term =
false
null
false
match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> let v:namedv = pack_namedv ({ sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k }) in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv)
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.Types.bv", "FStar.Reflection.Typing.subst", "FStar.Reflection.Typing.find_matching_subst_elt_bv", "Prims.nat", "FStar.Reflection.Types.term", "FStar.Reflection.Typing.maybe_uniq_of_term", "FStar.Reflection.V2.Data.var", "FStar.Reflection.V2.Builtins.pack_ln", "FStar.Reflection.V2.Data.Tv_Var", "FStar.Reflection.Types.namedv", "FStar.Reflection.V2.Builtins.pack_namedv", "FStar.Reflection.V2.Data.Mknamedv_view", "FStar.Reflection.V2.Data.__proj__Mkbv_view__item__sort", "FStar.Reflection.V2.Builtins.inspect_bv", "FStar.Reflection.V2.Data.__proj__Mkbv_view__item__ppname", "FStar.Pervasives.Native.option", "FStar.Reflection.Typing.subst_elt", "FStar.Reflection.V2.Data.Tv_BVar" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val subst_db (bv: bv) (s: subst) : term
[]
FStar.Reflection.Typing.subst_db
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
bv: FStar.Reflection.Types.bv -> s: FStar.Reflection.Typing.subst -> FStar.Reflection.Types.term
{ "end_col": 29, "end_line": 230, "start_col": 2, "start_line": 218 }
Prims.Tot
val find_matching_subst_elt_bv (s: subst) (bv: bv) : option subst_elt
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv
val find_matching_subst_elt_bv (s: subst) (bv: bv) : option subst_elt let rec find_matching_subst_elt_bv (s: subst) (bv: bv) : option subst_elt =
false
null
false
match s with | [] -> None | DT j t :: ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _ :: ss -> find_matching_subst_elt_bv ss bv
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.Typing.subst", "FStar.Reflection.Types.bv", "FStar.Pervasives.Native.None", "FStar.Reflection.Typing.subst_elt", "Prims.nat", "FStar.Reflection.Types.term", "Prims.list", "Prims.op_Equality", "FStar.Reflection.Typing.bv_index", "FStar.Pervasives.Native.Some", "FStar.Reflection.Typing.DT", "Prims.bool", "FStar.Reflection.Typing.find_matching_subst_elt_bv", "FStar.Pervasives.Native.option" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val find_matching_subst_elt_bv (s: subst) (bv: bv) : option subst_elt
[ "recursion" ]
FStar.Reflection.Typing.find_matching_subst_elt_bv
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: FStar.Reflection.Typing.subst -> bv: FStar.Reflection.Types.bv -> FStar.Pervasives.Native.option FStar.Reflection.Typing.subst_elt
{ "end_col": 45, "end_line": 215, "start_col": 2, "start_line": 209 }
Prims.Tot
val find_matching_subst_elt_var (s: subst) (v: namedv) : option subst_elt
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v
val find_matching_subst_elt_var (s: subst) (v: namedv) : option subst_elt let rec find_matching_subst_elt_var (s: subst) (v: namedv) : option subst_elt =
false
null
false
match s with | [] -> None | NT y _ :: rest | ND y _ :: rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _ :: rest -> find_matching_subst_elt_var rest v
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.Typing.subst", "FStar.Reflection.Types.namedv", "FStar.Pervasives.Native.None", "FStar.Reflection.Typing.subst_elt", "FStar.Reflection.V2.Data.var", "FStar.Reflection.Types.term", "Prims.list", "Prims.op_Equality", "FStar.Reflection.Typing.namedv_uniq", "FStar.Pervasives.Native.Some", "FStar.List.Tot.Base.hd", "Prims.bool", "FStar.Reflection.Typing.find_matching_subst_elt_var", "FStar.Pervasives.Native.option", "Prims.nat" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv)
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val find_matching_subst_elt_var (s: subst) (v: namedv) : option subst_elt
[ "recursion" ]
FStar.Reflection.Typing.find_matching_subst_elt_var
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: FStar.Reflection.Typing.subst -> v: FStar.Reflection.Types.namedv -> FStar.Pervasives.Native.option FStar.Reflection.Typing.subst_elt
{ "end_col": 49, "end_line": 240, "start_col": 2, "start_line": 233 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let blob = string & R.term
let blob =
false
null
false
string & R.term
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Pervasives.Native.tuple2", "Prims.string", "FStar.Reflection.Types.term" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_ let ln (t:term) = ln' t (-1) let ln_comp (c:comp) = ln'_comp c (-1) // // term_ctxt is used to define the equiv relation later, // basically putting two equiv terms in a hole gives equiv terms // // The abs, arrow, refine, and let cases don't seem right here, // since to prove their equiv, we need to extend gamma for their bodies // // If this is useful only for app, then may be we should remove it, // and add app rules to the equiv relation itself [@@ no_auto_projectors] noeq type term_ctxt = | Ctxt_hole : term_ctxt | Ctxt_app_head : term_ctxt -> argv -> term_ctxt | Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt // | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt // | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt // | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt // | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt // | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt // | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt // | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt // | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt // | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt // | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt // and bv_ctxt = // | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt // and binder_ctxt = // | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt // and comp_ctxt = // | Ctxt_total : term_ctxt -> comp_ctxt // | Ctxt_gtotal : term_ctxt -> comp_ctxt let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) = match e with | Ctxt_hole -> t | Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg) | Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q)) // | Ctxt_abs_binder b body -> pack_ln (Tv_Abs (apply_binder_ctxt b t) body) // | Ctxt_abs_body b e -> pack_ln (Tv_Abs b (apply_term_ctxt e t)) // | Ctxt_arrow_binder b c -> pack_ln (Tv_Arrow (apply_binder_ctxt b t) c) // | Ctxt_arrow_comp b c -> pack_ln (Tv_Arrow b (apply_comp_ctxt c t)) // | Ctxt_refine_sort b sort phi -> pack_ln (Tv_Refine b (apply_term_ctxt sort t) phi) // | Ctxt_refine_ref b sort phi -> pack_ln (Tv_Refine b sort (apply_term_ctxt phi t)) // | Ctxt_let_sort b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv (apply_term_ctxt sort t) def body) // | Ctxt_let_def b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort (apply_term_ctxt def t) body) // | Ctxt_let_body b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort def (apply_term_ctxt body t)) // | Ctxt_match_scrutinee sc ret brs -> // pack_ln (Tv_Match (apply_term_ctxt sc t) ret brs) // and apply_binder_ctxt (b:binder_ctxt) (t:term) : Tot binder (decreases b) = // let Ctxt_binder binder_bv binder_qual binder_attrs ctxt = b in // pack_binder {binder_bv; binder_qual; binder_attrs; binder_sort=apply_term_ctxt ctxt t} // and apply_comp_ctxt (c:comp_ctxt) (t:term) : Tot comp (decreases c) = // match c with // | Ctxt_total e -> pack_comp (C_Total (apply_term_ctxt e t)) // | Ctxt_gtotal e -> pack_comp (C_GTotal (apply_term_ctxt e t)) noeq type constant_typing: vconst -> term -> Type0 = | CT_Unit: constant_typing C_Unit unit_ty | CT_True: constant_typing C_True bool_ty | CT_False: constant_typing C_False bool_ty [@@ no_auto_projectors] noeq type univ_eq : universe -> universe -> Type0 = | UN_Refl : u:universe -> univ_eq u u | UN_MaxCongL : u:universe -> u':universe -> v:universe -> univ_eq u u' -> univ_eq (u_max u v) (u_max u' v) | UN_MaxCongR : u:universe -> v:universe -> v':universe -> univ_eq v v' -> univ_eq (u_max u v) (u_max u v') | UN_MaxComm: u:universe -> v:universe -> univ_eq (u_max u v) (u_max v u) | UN_MaxLeq: u:universe -> v:universe -> univ_leq u v -> univ_eq (u_max u v) v and univ_leq : universe -> universe -> Type0 = | UNLEQ_Refl: u:universe -> univ_leq u u | UNLEQ_Succ: u:universe -> v:universe -> univ_leq u v -> univ_leq u (u_succ v) | UNLEQ_Max: u:universe -> v:universe -> univ_leq u (u_max u v) let mk_if (scrutinee then_ else_:R.term) : R.term = pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_); (Pat_Constant C_False, else_)]) // effect and type type comp_typ = T.tot_or_ghost & typ let close_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) [ ND x i ] let close_comp_typ (c:comp_typ) (x:var) = close_comp_typ' c x 0 let open_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) (open_with_var x i) let open_comp_typ (c:comp_typ) (x:var) = open_comp_typ' c x 0 let freevars_comp_typ (c:comp_typ) = freevars (snd c) let mk_comp (c:comp_typ) : R.comp = match fst c with | T.E_Total -> mk_total (snd c) | T.E_Ghost -> mk_ghost (snd c) let mk_arrow_ct ty qual (c:comp_typ) : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_comp c)) type relation = | R_Eq | R_Sub let binding = var & term let bindings = list binding let rename_bindings bs x y = FStar.List.Tot.map (fun (v, t) -> (v, rename t x y)) bs let rec extend_env_l (g:env) (bs:bindings) : env = match bs with | [] -> g | (x,t)::bs -> extend_env (extend_env_l g bs) x t // // TODO: support for erasable attribute // let is_non_informative_name (l:name) : bool = l = R.unit_lid || l = R.squash_qn || l = ["FStar"; "Ghost"; "erased"] let is_non_informative_fv (f:fv) : bool = is_non_informative_name (inspect_fv f) let rec __close_term_vs (i:nat) (vs : list var) (t : term) : Tot term (decreases vs) = match vs with | [] -> t | v::vs -> subst_term (__close_term_vs (i+1) vs t) [ND v i] let close_term_vs (vs : list var) (t : term) : term = __close_term_vs 0 vs t let close_term_bs (bs : list binding) (t : term) : term = close_term_vs (List.Tot.map fst bs) t let bindings_to_refl_bindings (bs : list binding) : list R.binding = L.map (fun (v, ty) -> {uniq=v; sort=ty; ppname = pp_name_default}) bs let refl_bindings_to_bindings (bs : list R.binding) : list binding = L.map (fun b -> b.uniq, b.sort) bs [@@ no_auto_projectors] noeq type non_informative : env -> term -> Type0 = | Non_informative_type: g:env -> u:universe -> non_informative g (pack_ln (Tv_Type u)) | Non_informative_fv: g:env -> x:fv{is_non_informative_fv x} -> non_informative g (pack_ln (Tv_FVar x)) | Non_informative_uinst: g:env -> x:fv{is_non_informative_fv x} -> us:list universe -> non_informative g (pack_ln (Tv_UInst x us)) | Non_informative_app: g:env -> t:term -> arg:argv -> non_informative g t -> non_informative g (pack_ln (Tv_App t arg)) | Non_informative_total_arrow: g:env -> t0:term -> q:aqualv -> t1:term -> non_informative g t1 -> non_informative g (mk_arrow_ct t0 q (T.E_Total, t1)) | Non_informative_ghost_arrow: g:env -> t0:term -> q:aqualv -> t1:term -> non_informative g (mk_arrow_ct t0 q (T.E_Ghost, t1)) | Non_informative_token: g:env -> t:typ -> squash (T.non_informative_token g t) -> non_informative g t val bindings_ok_for_pat : env -> list R.binding -> pattern -> Type0 val bindings_ok_pat_constant : g:env -> c:R.vconst -> Lemma (bindings_ok_for_pat g [] (Pat_Constant c)) let bindings_ok_for_branch (g:env) (bs : list R.binding) (br : branch) : Type0 = bindings_ok_for_pat g bs (fst br) let bindings_ok_for_branch_N (g:env) (bss : list (list R.binding)) (brs : list branch) = zip2prop (bindings_ok_for_branch g) bss brs let binding_to_namedv (b:R.binding) : Tot namedv = pack_namedv { RD.uniq = b.uniq; RD.sort = seal b.sort; RD.ppname = b.ppname; } (* Elaborates the p pattern into a term, using the bs bindings for the pattern variables. The resulting term is properly scoped only on an environment which contains all of bs. See for instance the branch_typing judg. Returns an option, since this can fail if e.g. there are not enough bindings, and returns the list of unused binders as well, which should be empty if the list of binding was indeed ok. *) let rec elaborate_pat (p : pattern) (bs : list R.binding) : Tot (option (term & list R.binding)) (decreases p) = match p, bs with | Pat_Constant c, _ -> Some (pack_ln (Tv_Const c), bs) | Pat_Cons fv univs subpats, bs -> let head = pack_ln (Tv_FVar fv) in fold_left_dec (Some (head, bs)) subpats (fun st pi -> let (p,i) = pi in match st with | None -> None | Some (head, bs) -> match elaborate_pat p bs with | None -> None | Some (t, bs') -> Some (pack_ln (Tv_App head (t, (if i then Q_Implicit else Q_Explicit))), bs')) | Pat_Var _ _, b::bs -> Some (pack_ln (Tv_Var (binding_to_namedv b)), bs) | Pat_Dot_Term (Some t), _ -> Some (t, bs) | Pat_Dot_Term None, _ -> None | _ -> None [@@ no_auto_projectors] noeq type typing : env -> term -> comp_typ -> Type0 = | T_Token : g:env -> e:term -> c:comp_typ -> squash (T.typing_token g e c) -> typing g e c | T_Var : g:env -> x:namedv { Some? (lookup_bvar g (namedv_uniq x)) } -> typing g (pack_ln (Tv_Var x)) (T.E_Total, Some?.v (lookup_bvar g (namedv_uniq x))) | T_FVar : g:env -> x:fv { Some? (lookup_fvar g x) } -> typing g (pack_ln (Tv_FVar x)) (T.E_Total, Some?.v (lookup_fvar g x)) | T_UInst : g:env -> x:fv -> us:list universe { Some? (lookup_fvar_uinst g x us) } -> typing g (pack_ln (Tv_UInst x us)) (T.E_Total, Some?.v (lookup_fvar_uinst g x us)) | T_Const: g:env -> v:vconst -> t:term -> constant_typing v t -> typing g (constant_as_term v) (T.E_Total, t) | T_Abs : g:env -> x:var { None? (lookup_bvar g x) } -> ty:term -> body:term { ~(x `Set.mem` freevars body) } -> body_c:comp_typ -> u:universe -> pp_name:pp_name_t -> q:aqualv -> ty_eff:T.tot_or_ghost -> typing g ty (ty_eff, tm_type u) -> typing (extend_env g x ty) (open_term body x) body_c -> typing g (pack_ln (Tv_Abs (mk_binder pp_name ty q) body)) (T.E_Total, pack_ln (Tv_Arrow (mk_binder pp_name ty q) (mk_comp (close_comp_typ body_c x)))) | T_App : g:env -> e1:term -> e2:term -> x:binder -> t:term -> eff:T.tot_or_ghost -> typing g e1 (eff, pack_ln (Tv_Arrow x (mk_comp (eff, t)))) -> typing g e2 (eff, binder_sort x) -> typing g (pack_ln (Tv_App e1 (e2, binder_qual x))) (eff, open_with t e2) | T_Let: g:env -> x:var { None? (lookup_bvar g x) } -> e1:term -> t1:typ -> e2:term -> t2:typ -> eff:T.tot_or_ghost -> pp_name:pp_name_t -> typing g e1 (eff, t1) -> typing (extend_env g x t1) (open_term e2 x) (eff, t2) -> typing g (mk_let pp_name e1 t1 e2) (eff, open_with (close_term t2 x) e1) | T_Arrow: g:env -> x:var { None? (lookup_bvar g x) } -> t1:term -> t2:term { ~(x `Set.mem` freevars t2) } -> u1:universe -> u2:universe -> pp_name:pp_name_t -> q:aqualv -> eff:T.tot_or_ghost -> t1_eff:T.tot_or_ghost -> t2_eff:T.tot_or_ghost -> typing g t1 (t1_eff, tm_type u1) -> typing (extend_env g x t1) (open_term t2 x) (t2_eff, tm_type u2) -> typing g (pack_ln (Tv_Arrow (mk_binder pp_name t1 q) (mk_comp (eff, t2)))) (T.E_Total, tm_type (u_max u1 u2)) | T_Refine: g:env -> x:var { None? (lookup_bvar g x) } -> t:term -> e:term { ~(x `Set.mem` freevars e) } -> u1:universe -> u2:universe -> t_eff:T.tot_or_ghost -> e_eff:T.tot_or_ghost -> typing g t (t_eff, tm_type u1) -> typing (extend_env g x t) (open_term e x) (e_eff, tm_type u2) -> typing g (pack_ln (Tv_Refine (mk_simple_binder pp_name_default t) e)) (T.E_Total, tm_type u1) | T_PropIrrelevance: g:env -> e:term -> t:term -> e_eff:T.tot_or_ghost -> t_eff:T.tot_or_ghost -> typing g e (e_eff, t) -> typing g t (t_eff, tm_prop) -> typing g (`()) (T.E_Total, t) | T_Sub: g:env -> e:term -> c:comp_typ -> c':comp_typ -> typing g e c -> sub_comp g c c' -> typing g e c' | T_If: g:env -> scrutinee:term -> then_:term -> else_:term -> ty:term -> u_ty:universe -> hyp:var { None? (lookup_bvar g hyp) /\ ~(hyp `Set.mem` (freevars then_ `Set.union` freevars else_)) } -> eff:T.tot_or_ghost -> ty_eff:T.tot_or_ghost -> typing g scrutinee (eff, bool_ty) -> typing (extend_env g hyp (eq2 (pack_universe Uv_Zero) bool_ty scrutinee true_bool)) then_ (eff, ty) -> typing (extend_env g hyp (eq2 (pack_universe Uv_Zero) bool_ty scrutinee false_bool)) else_ (eff, ty) -> typing g ty (ty_eff, tm_type u_ty) -> //typedness of ty cannot rely on hyp typing g (mk_if scrutinee then_ else_) (eff, ty) | T_Match: g:env -> sc_u : universe -> sc_ty : typ -> sc : term -> ty_eff:T.tot_or_ghost -> typing g sc_ty (ty_eff, tm_type sc_u) -> eff:T.tot_or_ghost -> typing g sc (eff, sc_ty) -> branches:list branch -> ty:comp_typ -> bnds:list (list R.binding) -> complet : match_is_complete g sc sc_ty (List.Tot.map fst branches) bnds -> // complete patterns branches_typing g sc_u sc_ty sc ty branches bnds -> // each branch has proper type typing g (pack_ln (Tv_Match sc None branches)) ty and related : env -> term -> relation -> term -> Type0 = | Rel_refl: g:env -> t:term -> rel:relation -> related g t rel t | Rel_sym: g:env -> t0:term -> t1:term -> related g t0 R_Eq t1 -> related g t1 R_Eq t0 | Rel_trans: g:env -> t0:term -> t1:term -> t2:term -> rel:relation -> related g t0 rel t1 -> related g t1 rel t2 -> related g t0 rel t2 | Rel_univ: g:env -> u:universe -> v:universe -> univ_eq u v -> related g (tm_type u) R_Eq (tm_type v) | Rel_beta: g:env -> t:typ -> q:aqualv -> e:term { ln' e 0 } -> arg:term { ln arg } -> related g (R.pack_ln (R.Tv_App (mk_abs t q e) (arg, q))) R_Eq (subst_term e [ DT 0 arg ]) | Rel_eq_token: g:env -> t0:term -> t1:term -> squash (T.equiv_token g t0 t1) -> related g t0 R_Eq t1 | Rel_subtyping_token: g:env -> t0:term -> t1:term -> squash (T.subtyping_token g t0 t1) -> related g t0 R_Sub t1 | Rel_equiv: g:env -> t0:term -> t1:term -> rel:relation -> related g t0 R_Eq t1 -> related g t0 rel t1 | Rel_arrow: g:env -> t1:term -> t2:term -> q:aqualv -> c1:comp_typ -> c2:comp_typ -> rel:relation -> x:var{ None? (lookup_bvar g x) /\ ~ (x `Set.mem` (freevars_comp_typ c1 `Set.union` freevars_comp_typ c2)) } -> related g t2 rel t1 -> related_comp (extend_env g x t2) (open_comp_typ c1 x) rel (open_comp_typ c2 x) -> related g (mk_arrow_ct t1 q c1) rel (mk_arrow_ct t2 q c2) | Rel_abs: g:env -> t1:term -> t2:term -> q:aqualv -> e1:term -> e2:term -> x:var{ None? (lookup_bvar g x) /\ ~ (x `Set.mem` (freevars e1 `Set.union` freevars e2)) } -> related g t1 R_Eq t2 -> related (extend_env g x t1) (subst_term e1 (open_with_var x 0)) R_Eq (subst_term e2 (open_with_var x 0)) -> related g (mk_abs t1 q e1) R_Eq (mk_abs t2 q e2) | Rel_ctxt: g:env -> t0:term -> t1:term -> ctxt:term_ctxt -> related g t0 R_Eq t1 -> related g (apply_term_ctxt ctxt t0) R_Eq (apply_term_ctxt ctxt t1) and related_comp : env -> comp_typ -> relation -> comp_typ -> Type0 = | Relc_typ: g:env -> t0:term -> t1:term -> eff:T.tot_or_ghost -> rel:relation -> related g t0 rel t1 -> related_comp g (eff, t0) rel (eff, t1) | Relc_total_ghost: g:env -> t:term -> related_comp g (T.E_Total, t) R_Sub (T.E_Ghost, t) | Relc_ghost_total: g:env -> t:term -> non_informative g t -> related_comp g (T.E_Ghost, t) R_Sub (T.E_Total, t) and branches_typing (g:env) (sc_u:universe) (sc_ty:typ) (sc:term) (rty:comp_typ) : (brs:list branch) -> (bnds : list (list R.binding)) -> Type0 = (* This judgement only enforces that branch_typing holds for every element of brs and its respective bnds (which must have the same length). *) | BT_Nil : branches_typing g sc_u sc_ty sc rty [] [] | BT_S : br : branch -> bnds : list R.binding -> pf : branch_typing g sc_u sc_ty sc rty br bnds -> rest_br : list branch -> rest_bnds : list (list R.binding) -> rest : branches_typing g sc_u sc_ty sc rty rest_br rest_bnds -> branches_typing g sc_u sc_ty sc rty (br :: rest_br) (bnds :: rest_bnds) and branch_typing (g:env) (sc_u:universe) (sc_ty:typ) (sc:term) (rty:comp_typ) : (br : branch) -> (bnds : list R.binding) -> Type0 = | BO : pat : pattern -> bnds : list R.binding{bindings_ok_for_pat g bnds pat} -> hyp_var:var{None? (lookup_bvar (extend_env_l g (refl_bindings_to_bindings bnds)) hyp_var)} -> body:term -> _ : squash (Some? (elaborate_pat pat bnds)) -> typing (extend_env (extend_env_l g (refl_bindings_to_bindings bnds)) hyp_var (eq2 sc_u sc_ty sc (fst (Some?.v (elaborate_pat pat bnds)))) ) body rty -> branch_typing g sc_u sc_ty sc rty (pat, close_term_bs (refl_bindings_to_bindings bnds) body) bnds and match_is_complete : env -> term -> typ -> list pattern -> list (list R.binding) -> Type0 = | MC_Tok : env:_ -> sc:_ -> ty:_ -> pats:_ -> bnds:_ -> squash (T.match_complete_token env sc ty pats bnds) -> match_is_complete env sc ty pats bnds and sub_typing (g:env) (t1 t2:term) = related g t1 R_Sub t2 and sub_comp (g:env) (c1 c2:comp_typ) = related_comp g c1 R_Sub c2 and equiv (g:env) (t1 t2:term) = related g t1 R_Eq t2 type tot_typing (g:env) (e:term) (t:term) = typing g e (T.E_Total, t) type ghost_typing (g:env) (e:term) (t:term) = typing g e (T.E_Ghost, t) val subtyping_token_renaming (g:env) (bs0:bindings) (bs1:bindings) (x:var { None? (lookup_bvar (extend_env_l g (bs1@bs0)) x) }) (y:var { None? (lookup_bvar (extend_env_l g (bs1@bs0)) y) }) (t:term) (t0 t1:term) (d:T.subtyping_token (extend_env_l g (bs1@(x,t)::bs0)) t0 t1) : T.subtyping_token (extend_env_l g (rename_bindings bs1 x y@(y,t)::bs0)) (rename t0 x y) (rename t1 x y) val subtyping_token_weakening (g:env) (bs0:bindings) (bs1:bindings) (x:var { None? (lookup_bvar (extend_env_l g (bs1@bs0)) x) }) (t:term) (t0 t1:term) (d:T.subtyping_token (extend_env_l g (bs1@bs0)) t0 t1) : T.subtyping_token (extend_env_l g (bs1@(x,t)::bs0)) t0 t1 let simplify_umax (#g:R.env) (#t:R.term) (#u:R.universe) (d:typing g t (T.E_Total, tm_type (u_max u u))) : typing g t (T.E_Total, tm_type u) = let ue : univ_eq (u_max u u) u = UN_MaxLeq u u (UNLEQ_Refl u) in let du : related g (tm_type (u_max u u)) R_Eq (tm_type u) = Rel_univ g (u_max u u) u ue in let du : related g (tm_type (u_max u u)) R_Sub (tm_type u) = Rel_equiv _ _ _ _ du in T_Sub _ _ _ _ d (Relc_typ _ _ _ T.E_Total _ du) val well_typed_terms_are_ln (g:R.env) (e:R.term) (c:comp_typ) (_:typing g e c) : Lemma (ensures ln e /\ ln (snd c)) val type_correctness (g:R.env) (e:R.term) (c:comp_typ) (_:typing g e c) : GTot (u:R.universe & typing g (snd c) (T.E_Total, tm_type u)) val binder_offset_pattern_invariant (p:pattern) (ss:subst) : Lemma (binder_offset_pattern p == binder_offset_pattern (subst_pattern p ss)) val binder_offset_patterns_invariant (p:list (pattern & bool)) (ss:subst) : Lemma (binder_offset_patterns p == binder_offset_patterns (subst_patterns p ss)) val open_close_inverse' (i:nat) (t:term { ln' t (i - 1) }) (x:var) : Lemma (ensures subst_term (subst_term t [ ND x i ]) (open_with_var x i) == t) val open_close_inverse'_binder (i:nat) (b:binder { ln'_binder b (i - 1) }) (x:var) : Lemma (ensures subst_binder (subst_binder b [ ND x i ]) (open_with_var x i) == b) val open_close_inverse'_terms (i:nat) (ts:list term { ln'_terms ts (i - 1) }) (x:var) : Lemma (ensures subst_terms (subst_terms ts [ ND x i ]) (open_with_var x i) == ts) val open_close_inverse'_comp (i:nat) (c:comp { ln'_comp c (i - 1) }) (x:var) : Lemma (ensures subst_comp (subst_comp c [ ND x i ]) (open_with_var x i) == c) val open_close_inverse'_args (i:nat) (ts:list argv { ln'_args ts (i - 1) }) (x:var) : Lemma (ensures subst_args (subst_args ts [ ND x i ]) (open_with_var x i) == ts) val open_close_inverse'_patterns (i:nat) (ps:list (pattern & bool) { ln'_patterns ps (i - 1) }) (x:var) : Lemma (ensures subst_patterns (subst_patterns ps [ ND x i ]) (open_with_var x i) == ps) val open_close_inverse'_pattern (i:nat) (p:pattern{ln'_pattern p (i - 1)}) (x:var) : Lemma (ensures subst_pattern (subst_pattern p [ ND x i ]) (open_with_var x i) == p) val open_close_inverse'_branch (i:nat) (br:branch{ln'_branch br (i - 1)}) (x:var) : Lemma (ensures subst_branch (subst_branch br [ ND x i ]) (open_with_var x i) == br) val open_close_inverse'_branches (i:nat) (brs:list branch { ln'_branches brs (i - 1) }) (x:var) : Lemma (ensures subst_branches (subst_branches brs [ ND x i ]) (open_with_var x i) == brs) val open_close_inverse'_match_returns (i:nat) (m:match_returns_ascription { ln'_match_returns m (i - 1) }) (x:var) : Lemma (ensures subst_match_returns (subst_match_returns m [ ND x i ]) (open_with_var x i) == m) val open_close_inverse (e:R.term { ln e }) (x:var) : Lemma (open_term (close_term e x) x == e) val close_open_inverse' (i:nat) (t:term) (x:var { ~(x `Set.mem` freevars t) }) : Lemma (ensures subst_term (subst_term t (open_with_var x i)) [ ND x i ] == t) val close_open_inverse'_comp (i:nat) (c:comp) (x:var{ ~(x `Set.mem` freevars_comp c) }) : Lemma (ensures subst_comp (subst_comp c (open_with_var x i)) [ ND x i ] == c) val close_open_inverse'_args (i:nat) (args:list argv) (x:var{ ~(x `Set.mem` freevars_args args) }) : Lemma (ensures subst_args (subst_args args (open_with_var x i)) [ ND x i] == args) val close_open_inverse'_binder (i:nat) (b:binder) (x:var{ ~(x `Set.mem` freevars_binder b) }) : Lemma (ensures subst_binder (subst_binder b (open_with_var x i)) [ ND x i ] == b) val close_open_inverse'_terms (i:nat) (ts:list term) (x:var{ ~(x `Set.mem` freevars_terms ts) }) : Lemma (ensures subst_terms (subst_terms ts (open_with_var x i)) [ ND x i ] == ts) val close_open_inverse'_branches (i:nat) (brs:list branch) (x:var{ ~(x `Set.mem` freevars_branches brs) }) : Lemma (ensures subst_branches (subst_branches brs (open_with_var x i)) [ ND x i ] == brs) val close_open_inverse'_branch (i:nat) (br:branch) (x:var{ ~(x `Set.mem` freevars_branch br) }) : Lemma (ensures subst_branch (subst_branch br (open_with_var x i)) [ ND x i ] == br) val close_open_inverse'_pattern (i:nat) (p:pattern) (x:var{ ~(x `Set.mem` freevars_pattern p) }) : Lemma (ensures subst_pattern (subst_pattern p (open_with_var x i)) [ ND x i ] == p) val close_open_inverse'_patterns (i:nat) (ps:list (pattern & bool)) (x:var {~ (x `Set.mem` freevars_patterns ps) }) : Lemma (ensures subst_patterns (subst_patterns ps (open_with_var x i)) [ ND x i ] == ps) val close_open_inverse'_match_returns (i:nat) (m:match_returns_ascription) (x:var{ ~(x `Set.mem` freevars_match_returns m) }) : Lemma (ensures subst_match_returns (subst_match_returns m (open_with_var x i)) [ ND x i ] == m) val close_open_inverse (e:R.term) (x:var {~ (x `Set.mem` freevars e) }) : Lemma (close_term (open_term e x) x == e) // // fst has corresponding lemmas for other syntax classes // val close_with_not_free_var (t:R.term) (x:var) (i:nat) : Lemma (requires ~ (Set.mem x (freevars t))) (ensures subst_term t [ ND x i ] == t) // this also requires x to be not in freevars e1 `Set.union` freevars e2 val equiv_arrow (#g:R.env) (#e1 #e2:R.term) (ty:R.typ) (q:R.aqualv) (x:var { None? (lookup_bvar g x) }) (eq:equiv (extend_env g x ty) (subst_term e1 (open_with_var x 0)) (subst_term e2 (open_with_var x 0))) : equiv g (mk_arrow ty q e1) (mk_arrow ty q e2) // the proof for this requires e1 and e2 to be ln val equiv_abs_close (#g:R.env) (#e1 #e2:R.term) (ty:R.typ) (q:R.aqualv) (x:var{None? (lookup_bvar g x)}) (eq:equiv (extend_env g x ty) e1 e2) : equiv g (mk_abs ty q (subst_term e1 [ ND x 0 ])) (mk_abs ty q (subst_term e2 [ ND x 0 ])) val open_with_gt_ln (e:term) (i:nat) (t:term) (j:nat) : Lemma (requires ln' e i /\ i < j) (ensures subst_term e [ DT j t ] == e) [SMTPat (ln' e i); SMTPat (subst_term e [ DT j t ])] // // Type of the top-level tactic that would splice-in the definitions // let fstar_env_fvs (g:R.env) = lookup_fvar g unit_fv == Some (tm_type u_zero) /\ lookup_fvar g bool_fv == Some (tm_type u_zero) /\ lookup_fvar g b2t_fv == Some b2t_ty type fstar_env = g:R.env{fstar_env_fvs g} type fstar_top_env = g:fstar_env { forall x. None? (lookup_bvar g x ) } // // This doesn't allow for universe polymorphic definitions // // May be we can change it to: // // g:fstar_top_env -> T.tac ((us, e, t):(univ_names & term & typ){typing (push g us) e t}) // noeq type sigelt_typing : env -> sigelt -> Type0 = | ST_Let : g : env -> fv : R.fv -> ty : R.typ -> tm : R.term -> squash (typing g tm (T.E_Total, ty)) -> sigelt_typing g (pack_sigelt (Sg_Let false [pack_lb ({ lb_fv = fv; lb_us = []; lb_typ = ty; lb_def = tm })])) | ST_Let_Opaque : g : env -> fv : R.fv -> ty : R.typ -> (* no tm: only a proof of existence *) squash (exists (tm:R.term). typing g tm (T.E_Total, ty)) -> sigelt_typing g (pack_sigelt (Sg_Let false [pack_lb ({ lb_fv = fv; lb_us = []; lb_typ = ty; lb_def = (`_) })])) (** * The type of the top-level tactic that would splice-in the definitions. * It returns a list of well typed definitions, via the judgment above. * * Each definition can have a 'blob' attached with a given name. * The blob can be used later, e.g., during extraction, and passed back to the * extension to perform additional processing. *) (* * It returns either: * - Some tm, blob, typ, with a proof that `typing g tm typ` * - None, blob, typ), with a proof that `exists tm. typing g tm typ` * The blob itself is optional and can store some additional metadata that * constructed by the tactic. If present, it will be stored in the * sigmeta_extension_data field of the enclosing sigelt. *
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val blob : Type0
[]
FStar.Reflection.Typing.blob
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
Type0
{ "end_col": 26, "end_line": 1793, "start_col": 11, "start_line": 1793 }
Prims.Tot
val simplify_umax (#g: R.env) (#t: R.term) (#u: R.universe) (d: typing g t (T.E_Total, tm_type (u_max u u))) : typing g t (T.E_Total, tm_type u)
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let simplify_umax (#g:R.env) (#t:R.term) (#u:R.universe) (d:typing g t (T.E_Total, tm_type (u_max u u))) : typing g t (T.E_Total, tm_type u) = let ue : univ_eq (u_max u u) u = UN_MaxLeq u u (UNLEQ_Refl u) in let du : related g (tm_type (u_max u u)) R_Eq (tm_type u) = Rel_univ g (u_max u u) u ue in let du : related g (tm_type (u_max u u)) R_Sub (tm_type u) = Rel_equiv _ _ _ _ du in T_Sub _ _ _ _ d (Relc_typ _ _ _ T.E_Total _ du)
val simplify_umax (#g: R.env) (#t: R.term) (#u: R.universe) (d: typing g t (T.E_Total, tm_type (u_max u u))) : typing g t (T.E_Total, tm_type u) let simplify_umax (#g: R.env) (#t: R.term) (#u: R.universe) (d: typing g t (T.E_Total, tm_type (u_max u u))) : typing g t (T.E_Total, tm_type u) =
false
null
false
let ue:univ_eq (u_max u u) u = UN_MaxLeq u u (UNLEQ_Refl u) in let du:related g (tm_type (u_max u u)) R_Eq (tm_type u) = Rel_univ g (u_max u u) u ue in let du:related g (tm_type (u_max u u)) R_Sub (tm_type u) = Rel_equiv _ _ _ _ du in T_Sub _ _ _ _ d (Relc_typ _ _ _ T.E_Total _ du)
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.Types.env", "FStar.Reflection.Types.term", "FStar.Reflection.Types.universe", "FStar.Reflection.Typing.typing", "FStar.Pervasives.Native.Mktuple2", "FStar.Stubs.TypeChecker.Core.tot_or_ghost", "FStar.Reflection.Types.typ", "FStar.Stubs.TypeChecker.Core.E_Total", "FStar.Reflection.Typing.tm_type", "FStar.Reflection.Typing.u_max", "FStar.Reflection.Typing.T_Sub", "FStar.Reflection.Typing.Relc_typ", "FStar.Reflection.Typing.R_Sub", "FStar.Reflection.Typing.related", "FStar.Reflection.Typing.Rel_equiv", "FStar.Reflection.Typing.R_Eq", "FStar.Reflection.Typing.Rel_univ", "FStar.Reflection.Typing.univ_eq", "FStar.Reflection.Typing.UN_MaxLeq", "FStar.Reflection.Typing.UNLEQ_Refl" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_ let ln (t:term) = ln' t (-1) let ln_comp (c:comp) = ln'_comp c (-1) // // term_ctxt is used to define the equiv relation later, // basically putting two equiv terms in a hole gives equiv terms // // The abs, arrow, refine, and let cases don't seem right here, // since to prove their equiv, we need to extend gamma for their bodies // // If this is useful only for app, then may be we should remove it, // and add app rules to the equiv relation itself [@@ no_auto_projectors] noeq type term_ctxt = | Ctxt_hole : term_ctxt | Ctxt_app_head : term_ctxt -> argv -> term_ctxt | Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt // | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt // | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt // | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt // | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt // | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt // | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt // | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt // | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt // | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt // | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt // and bv_ctxt = // | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt // and binder_ctxt = // | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt // and comp_ctxt = // | Ctxt_total : term_ctxt -> comp_ctxt // | Ctxt_gtotal : term_ctxt -> comp_ctxt let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) = match e with | Ctxt_hole -> t | Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg) | Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q)) // | Ctxt_abs_binder b body -> pack_ln (Tv_Abs (apply_binder_ctxt b t) body) // | Ctxt_abs_body b e -> pack_ln (Tv_Abs b (apply_term_ctxt e t)) // | Ctxt_arrow_binder b c -> pack_ln (Tv_Arrow (apply_binder_ctxt b t) c) // | Ctxt_arrow_comp b c -> pack_ln (Tv_Arrow b (apply_comp_ctxt c t)) // | Ctxt_refine_sort b sort phi -> pack_ln (Tv_Refine b (apply_term_ctxt sort t) phi) // | Ctxt_refine_ref b sort phi -> pack_ln (Tv_Refine b sort (apply_term_ctxt phi t)) // | Ctxt_let_sort b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv (apply_term_ctxt sort t) def body) // | Ctxt_let_def b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort (apply_term_ctxt def t) body) // | Ctxt_let_body b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort def (apply_term_ctxt body t)) // | Ctxt_match_scrutinee sc ret brs -> // pack_ln (Tv_Match (apply_term_ctxt sc t) ret brs) // and apply_binder_ctxt (b:binder_ctxt) (t:term) : Tot binder (decreases b) = // let Ctxt_binder binder_bv binder_qual binder_attrs ctxt = b in // pack_binder {binder_bv; binder_qual; binder_attrs; binder_sort=apply_term_ctxt ctxt t} // and apply_comp_ctxt (c:comp_ctxt) (t:term) : Tot comp (decreases c) = // match c with // | Ctxt_total e -> pack_comp (C_Total (apply_term_ctxt e t)) // | Ctxt_gtotal e -> pack_comp (C_GTotal (apply_term_ctxt e t)) noeq type constant_typing: vconst -> term -> Type0 = | CT_Unit: constant_typing C_Unit unit_ty | CT_True: constant_typing C_True bool_ty | CT_False: constant_typing C_False bool_ty [@@ no_auto_projectors] noeq type univ_eq : universe -> universe -> Type0 = | UN_Refl : u:universe -> univ_eq u u | UN_MaxCongL : u:universe -> u':universe -> v:universe -> univ_eq u u' -> univ_eq (u_max u v) (u_max u' v) | UN_MaxCongR : u:universe -> v:universe -> v':universe -> univ_eq v v' -> univ_eq (u_max u v) (u_max u v') | UN_MaxComm: u:universe -> v:universe -> univ_eq (u_max u v) (u_max v u) | UN_MaxLeq: u:universe -> v:universe -> univ_leq u v -> univ_eq (u_max u v) v and univ_leq : universe -> universe -> Type0 = | UNLEQ_Refl: u:universe -> univ_leq u u | UNLEQ_Succ: u:universe -> v:universe -> univ_leq u v -> univ_leq u (u_succ v) | UNLEQ_Max: u:universe -> v:universe -> univ_leq u (u_max u v) let mk_if (scrutinee then_ else_:R.term) : R.term = pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_); (Pat_Constant C_False, else_)]) // effect and type type comp_typ = T.tot_or_ghost & typ let close_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) [ ND x i ] let close_comp_typ (c:comp_typ) (x:var) = close_comp_typ' c x 0 let open_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) (open_with_var x i) let open_comp_typ (c:comp_typ) (x:var) = open_comp_typ' c x 0 let freevars_comp_typ (c:comp_typ) = freevars (snd c) let mk_comp (c:comp_typ) : R.comp = match fst c with | T.E_Total -> mk_total (snd c) | T.E_Ghost -> mk_ghost (snd c) let mk_arrow_ct ty qual (c:comp_typ) : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_comp c)) type relation = | R_Eq | R_Sub let binding = var & term let bindings = list binding let rename_bindings bs x y = FStar.List.Tot.map (fun (v, t) -> (v, rename t x y)) bs let rec extend_env_l (g:env) (bs:bindings) : env = match bs with | [] -> g | (x,t)::bs -> extend_env (extend_env_l g bs) x t // // TODO: support for erasable attribute // let is_non_informative_name (l:name) : bool = l = R.unit_lid || l = R.squash_qn || l = ["FStar"; "Ghost"; "erased"] let is_non_informative_fv (f:fv) : bool = is_non_informative_name (inspect_fv f) let rec __close_term_vs (i:nat) (vs : list var) (t : term) : Tot term (decreases vs) = match vs with | [] -> t | v::vs -> subst_term (__close_term_vs (i+1) vs t) [ND v i] let close_term_vs (vs : list var) (t : term) : term = __close_term_vs 0 vs t let close_term_bs (bs : list binding) (t : term) : term = close_term_vs (List.Tot.map fst bs) t let bindings_to_refl_bindings (bs : list binding) : list R.binding = L.map (fun (v, ty) -> {uniq=v; sort=ty; ppname = pp_name_default}) bs let refl_bindings_to_bindings (bs : list R.binding) : list binding = L.map (fun b -> b.uniq, b.sort) bs [@@ no_auto_projectors] noeq type non_informative : env -> term -> Type0 = | Non_informative_type: g:env -> u:universe -> non_informative g (pack_ln (Tv_Type u)) | Non_informative_fv: g:env -> x:fv{is_non_informative_fv x} -> non_informative g (pack_ln (Tv_FVar x)) | Non_informative_uinst: g:env -> x:fv{is_non_informative_fv x} -> us:list universe -> non_informative g (pack_ln (Tv_UInst x us)) | Non_informative_app: g:env -> t:term -> arg:argv -> non_informative g t -> non_informative g (pack_ln (Tv_App t arg)) | Non_informative_total_arrow: g:env -> t0:term -> q:aqualv -> t1:term -> non_informative g t1 -> non_informative g (mk_arrow_ct t0 q (T.E_Total, t1)) | Non_informative_ghost_arrow: g:env -> t0:term -> q:aqualv -> t1:term -> non_informative g (mk_arrow_ct t0 q (T.E_Ghost, t1)) | Non_informative_token: g:env -> t:typ -> squash (T.non_informative_token g t) -> non_informative g t val bindings_ok_for_pat : env -> list R.binding -> pattern -> Type0 val bindings_ok_pat_constant : g:env -> c:R.vconst -> Lemma (bindings_ok_for_pat g [] (Pat_Constant c)) let bindings_ok_for_branch (g:env) (bs : list R.binding) (br : branch) : Type0 = bindings_ok_for_pat g bs (fst br) let bindings_ok_for_branch_N (g:env) (bss : list (list R.binding)) (brs : list branch) = zip2prop (bindings_ok_for_branch g) bss brs let binding_to_namedv (b:R.binding) : Tot namedv = pack_namedv { RD.uniq = b.uniq; RD.sort = seal b.sort; RD.ppname = b.ppname; } (* Elaborates the p pattern into a term, using the bs bindings for the pattern variables. The resulting term is properly scoped only on an environment which contains all of bs. See for instance the branch_typing judg. Returns an option, since this can fail if e.g. there are not enough bindings, and returns the list of unused binders as well, which should be empty if the list of binding was indeed ok. *) let rec elaborate_pat (p : pattern) (bs : list R.binding) : Tot (option (term & list R.binding)) (decreases p) = match p, bs with | Pat_Constant c, _ -> Some (pack_ln (Tv_Const c), bs) | Pat_Cons fv univs subpats, bs -> let head = pack_ln (Tv_FVar fv) in fold_left_dec (Some (head, bs)) subpats (fun st pi -> let (p,i) = pi in match st with | None -> None | Some (head, bs) -> match elaborate_pat p bs with | None -> None | Some (t, bs') -> Some (pack_ln (Tv_App head (t, (if i then Q_Implicit else Q_Explicit))), bs')) | Pat_Var _ _, b::bs -> Some (pack_ln (Tv_Var (binding_to_namedv b)), bs) | Pat_Dot_Term (Some t), _ -> Some (t, bs) | Pat_Dot_Term None, _ -> None | _ -> None [@@ no_auto_projectors] noeq type typing : env -> term -> comp_typ -> Type0 = | T_Token : g:env -> e:term -> c:comp_typ -> squash (T.typing_token g e c) -> typing g e c | T_Var : g:env -> x:namedv { Some? (lookup_bvar g (namedv_uniq x)) } -> typing g (pack_ln (Tv_Var x)) (T.E_Total, Some?.v (lookup_bvar g (namedv_uniq x))) | T_FVar : g:env -> x:fv { Some? (lookup_fvar g x) } -> typing g (pack_ln (Tv_FVar x)) (T.E_Total, Some?.v (lookup_fvar g x)) | T_UInst : g:env -> x:fv -> us:list universe { Some? (lookup_fvar_uinst g x us) } -> typing g (pack_ln (Tv_UInst x us)) (T.E_Total, Some?.v (lookup_fvar_uinst g x us)) | T_Const: g:env -> v:vconst -> t:term -> constant_typing v t -> typing g (constant_as_term v) (T.E_Total, t) | T_Abs : g:env -> x:var { None? (lookup_bvar g x) } -> ty:term -> body:term { ~(x `Set.mem` freevars body) } -> body_c:comp_typ -> u:universe -> pp_name:pp_name_t -> q:aqualv -> ty_eff:T.tot_or_ghost -> typing g ty (ty_eff, tm_type u) -> typing (extend_env g x ty) (open_term body x) body_c -> typing g (pack_ln (Tv_Abs (mk_binder pp_name ty q) body)) (T.E_Total, pack_ln (Tv_Arrow (mk_binder pp_name ty q) (mk_comp (close_comp_typ body_c x)))) | T_App : g:env -> e1:term -> e2:term -> x:binder -> t:term -> eff:T.tot_or_ghost -> typing g e1 (eff, pack_ln (Tv_Arrow x (mk_comp (eff, t)))) -> typing g e2 (eff, binder_sort x) -> typing g (pack_ln (Tv_App e1 (e2, binder_qual x))) (eff, open_with t e2) | T_Let: g:env -> x:var { None? (lookup_bvar g x) } -> e1:term -> t1:typ -> e2:term -> t2:typ -> eff:T.tot_or_ghost -> pp_name:pp_name_t -> typing g e1 (eff, t1) -> typing (extend_env g x t1) (open_term e2 x) (eff, t2) -> typing g (mk_let pp_name e1 t1 e2) (eff, open_with (close_term t2 x) e1) | T_Arrow: g:env -> x:var { None? (lookup_bvar g x) } -> t1:term -> t2:term { ~(x `Set.mem` freevars t2) } -> u1:universe -> u2:universe -> pp_name:pp_name_t -> q:aqualv -> eff:T.tot_or_ghost -> t1_eff:T.tot_or_ghost -> t2_eff:T.tot_or_ghost -> typing g t1 (t1_eff, tm_type u1) -> typing (extend_env g x t1) (open_term t2 x) (t2_eff, tm_type u2) -> typing g (pack_ln (Tv_Arrow (mk_binder pp_name t1 q) (mk_comp (eff, t2)))) (T.E_Total, tm_type (u_max u1 u2)) | T_Refine: g:env -> x:var { None? (lookup_bvar g x) } -> t:term -> e:term { ~(x `Set.mem` freevars e) } -> u1:universe -> u2:universe -> t_eff:T.tot_or_ghost -> e_eff:T.tot_or_ghost -> typing g t (t_eff, tm_type u1) -> typing (extend_env g x t) (open_term e x) (e_eff, tm_type u2) -> typing g (pack_ln (Tv_Refine (mk_simple_binder pp_name_default t) e)) (T.E_Total, tm_type u1) | T_PropIrrelevance: g:env -> e:term -> t:term -> e_eff:T.tot_or_ghost -> t_eff:T.tot_or_ghost -> typing g e (e_eff, t) -> typing g t (t_eff, tm_prop) -> typing g (`()) (T.E_Total, t) | T_Sub: g:env -> e:term -> c:comp_typ -> c':comp_typ -> typing g e c -> sub_comp g c c' -> typing g e c' | T_If: g:env -> scrutinee:term -> then_:term -> else_:term -> ty:term -> u_ty:universe -> hyp:var { None? (lookup_bvar g hyp) /\ ~(hyp `Set.mem` (freevars then_ `Set.union` freevars else_)) } -> eff:T.tot_or_ghost -> ty_eff:T.tot_or_ghost -> typing g scrutinee (eff, bool_ty) -> typing (extend_env g hyp (eq2 (pack_universe Uv_Zero) bool_ty scrutinee true_bool)) then_ (eff, ty) -> typing (extend_env g hyp (eq2 (pack_universe Uv_Zero) bool_ty scrutinee false_bool)) else_ (eff, ty) -> typing g ty (ty_eff, tm_type u_ty) -> //typedness of ty cannot rely on hyp typing g (mk_if scrutinee then_ else_) (eff, ty) | T_Match: g:env -> sc_u : universe -> sc_ty : typ -> sc : term -> ty_eff:T.tot_or_ghost -> typing g sc_ty (ty_eff, tm_type sc_u) -> eff:T.tot_or_ghost -> typing g sc (eff, sc_ty) -> branches:list branch -> ty:comp_typ -> bnds:list (list R.binding) -> complet : match_is_complete g sc sc_ty (List.Tot.map fst branches) bnds -> // complete patterns branches_typing g sc_u sc_ty sc ty branches bnds -> // each branch has proper type typing g (pack_ln (Tv_Match sc None branches)) ty and related : env -> term -> relation -> term -> Type0 = | Rel_refl: g:env -> t:term -> rel:relation -> related g t rel t | Rel_sym: g:env -> t0:term -> t1:term -> related g t0 R_Eq t1 -> related g t1 R_Eq t0 | Rel_trans: g:env -> t0:term -> t1:term -> t2:term -> rel:relation -> related g t0 rel t1 -> related g t1 rel t2 -> related g t0 rel t2 | Rel_univ: g:env -> u:universe -> v:universe -> univ_eq u v -> related g (tm_type u) R_Eq (tm_type v) | Rel_beta: g:env -> t:typ -> q:aqualv -> e:term { ln' e 0 } -> arg:term { ln arg } -> related g (R.pack_ln (R.Tv_App (mk_abs t q e) (arg, q))) R_Eq (subst_term e [ DT 0 arg ]) | Rel_eq_token: g:env -> t0:term -> t1:term -> squash (T.equiv_token g t0 t1) -> related g t0 R_Eq t1 | Rel_subtyping_token: g:env -> t0:term -> t1:term -> squash (T.subtyping_token g t0 t1) -> related g t0 R_Sub t1 | Rel_equiv: g:env -> t0:term -> t1:term -> rel:relation -> related g t0 R_Eq t1 -> related g t0 rel t1 | Rel_arrow: g:env -> t1:term -> t2:term -> q:aqualv -> c1:comp_typ -> c2:comp_typ -> rel:relation -> x:var{ None? (lookup_bvar g x) /\ ~ (x `Set.mem` (freevars_comp_typ c1 `Set.union` freevars_comp_typ c2)) } -> related g t2 rel t1 -> related_comp (extend_env g x t2) (open_comp_typ c1 x) rel (open_comp_typ c2 x) -> related g (mk_arrow_ct t1 q c1) rel (mk_arrow_ct t2 q c2) | Rel_abs: g:env -> t1:term -> t2:term -> q:aqualv -> e1:term -> e2:term -> x:var{ None? (lookup_bvar g x) /\ ~ (x `Set.mem` (freevars e1 `Set.union` freevars e2)) } -> related g t1 R_Eq t2 -> related (extend_env g x t1) (subst_term e1 (open_with_var x 0)) R_Eq (subst_term e2 (open_with_var x 0)) -> related g (mk_abs t1 q e1) R_Eq (mk_abs t2 q e2) | Rel_ctxt: g:env -> t0:term -> t1:term -> ctxt:term_ctxt -> related g t0 R_Eq t1 -> related g (apply_term_ctxt ctxt t0) R_Eq (apply_term_ctxt ctxt t1) and related_comp : env -> comp_typ -> relation -> comp_typ -> Type0 = | Relc_typ: g:env -> t0:term -> t1:term -> eff:T.tot_or_ghost -> rel:relation -> related g t0 rel t1 -> related_comp g (eff, t0) rel (eff, t1) | Relc_total_ghost: g:env -> t:term -> related_comp g (T.E_Total, t) R_Sub (T.E_Ghost, t) | Relc_ghost_total: g:env -> t:term -> non_informative g t -> related_comp g (T.E_Ghost, t) R_Sub (T.E_Total, t) and branches_typing (g:env) (sc_u:universe) (sc_ty:typ) (sc:term) (rty:comp_typ) : (brs:list branch) -> (bnds : list (list R.binding)) -> Type0 = (* This judgement only enforces that branch_typing holds for every element of brs and its respective bnds (which must have the same length). *) | BT_Nil : branches_typing g sc_u sc_ty sc rty [] [] | BT_S : br : branch -> bnds : list R.binding -> pf : branch_typing g sc_u sc_ty sc rty br bnds -> rest_br : list branch -> rest_bnds : list (list R.binding) -> rest : branches_typing g sc_u sc_ty sc rty rest_br rest_bnds -> branches_typing g sc_u sc_ty sc rty (br :: rest_br) (bnds :: rest_bnds) and branch_typing (g:env) (sc_u:universe) (sc_ty:typ) (sc:term) (rty:comp_typ) : (br : branch) -> (bnds : list R.binding) -> Type0 = | BO : pat : pattern -> bnds : list R.binding{bindings_ok_for_pat g bnds pat} -> hyp_var:var{None? (lookup_bvar (extend_env_l g (refl_bindings_to_bindings bnds)) hyp_var)} -> body:term -> _ : squash (Some? (elaborate_pat pat bnds)) -> typing (extend_env (extend_env_l g (refl_bindings_to_bindings bnds)) hyp_var (eq2 sc_u sc_ty sc (fst (Some?.v (elaborate_pat pat bnds)))) ) body rty -> branch_typing g sc_u sc_ty sc rty (pat, close_term_bs (refl_bindings_to_bindings bnds) body) bnds and match_is_complete : env -> term -> typ -> list pattern -> list (list R.binding) -> Type0 = | MC_Tok : env:_ -> sc:_ -> ty:_ -> pats:_ -> bnds:_ -> squash (T.match_complete_token env sc ty pats bnds) -> match_is_complete env sc ty pats bnds and sub_typing (g:env) (t1 t2:term) = related g t1 R_Sub t2 and sub_comp (g:env) (c1 c2:comp_typ) = related_comp g c1 R_Sub c2 and equiv (g:env) (t1 t2:term) = related g t1 R_Eq t2 type tot_typing (g:env) (e:term) (t:term) = typing g e (T.E_Total, t) type ghost_typing (g:env) (e:term) (t:term) = typing g e (T.E_Ghost, t) val subtyping_token_renaming (g:env) (bs0:bindings) (bs1:bindings) (x:var { None? (lookup_bvar (extend_env_l g (bs1@bs0)) x) }) (y:var { None? (lookup_bvar (extend_env_l g (bs1@bs0)) y) }) (t:term) (t0 t1:term) (d:T.subtyping_token (extend_env_l g (bs1@(x,t)::bs0)) t0 t1) : T.subtyping_token (extend_env_l g (rename_bindings bs1 x y@(y,t)::bs0)) (rename t0 x y) (rename t1 x y) val subtyping_token_weakening (g:env) (bs0:bindings) (bs1:bindings) (x:var { None? (lookup_bvar (extend_env_l g (bs1@bs0)) x) }) (t:term) (t0 t1:term) (d:T.subtyping_token (extend_env_l g (bs1@bs0)) t0 t1) : T.subtyping_token (extend_env_l g (bs1@(x,t)::bs0)) t0 t1 let simplify_umax (#g:R.env) (#t:R.term) (#u:R.universe) (d:typing g t (T.E_Total, tm_type (u_max u u)))
false
false
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val simplify_umax (#g: R.env) (#t: R.term) (#u: R.universe) (d: typing g t (T.E_Total, tm_type (u_max u u))) : typing g t (T.E_Total, tm_type u)
[]
FStar.Reflection.Typing.simplify_umax
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
d: FStar.Reflection.Typing.typing g t (FStar.Stubs.TypeChecker.Core.E_Total, FStar.Reflection.Typing.tm_type (FStar.Reflection.Typing.u_max u494 u494)) -> FStar.Reflection.Typing.typing g t (FStar.Stubs.TypeChecker.Core.E_Total, FStar.Reflection.Typing.tm_type u494)
{ "end_col": 52, "end_line": 1524, "start_col": 4, "start_line": 1516 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let dsl_tac_result_t (g:env) = list (sigelt_for g)
let dsl_tac_result_t (g: env) =
false
null
false
list (sigelt_for g)
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.Types.env", "Prims.list", "FStar.Reflection.Typing.sigelt_for" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_ let ln (t:term) = ln' t (-1) let ln_comp (c:comp) = ln'_comp c (-1) // // term_ctxt is used to define the equiv relation later, // basically putting two equiv terms in a hole gives equiv terms // // The abs, arrow, refine, and let cases don't seem right here, // since to prove their equiv, we need to extend gamma for their bodies // // If this is useful only for app, then may be we should remove it, // and add app rules to the equiv relation itself [@@ no_auto_projectors] noeq type term_ctxt = | Ctxt_hole : term_ctxt | Ctxt_app_head : term_ctxt -> argv -> term_ctxt | Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt // | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt // | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt // | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt // | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt // | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt // | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt // | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt // | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt // | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt // | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt // and bv_ctxt = // | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt // and binder_ctxt = // | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt // and comp_ctxt = // | Ctxt_total : term_ctxt -> comp_ctxt // | Ctxt_gtotal : term_ctxt -> comp_ctxt let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) = match e with | Ctxt_hole -> t | Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg) | Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q)) // | Ctxt_abs_binder b body -> pack_ln (Tv_Abs (apply_binder_ctxt b t) body) // | Ctxt_abs_body b e -> pack_ln (Tv_Abs b (apply_term_ctxt e t)) // | Ctxt_arrow_binder b c -> pack_ln (Tv_Arrow (apply_binder_ctxt b t) c) // | Ctxt_arrow_comp b c -> pack_ln (Tv_Arrow b (apply_comp_ctxt c t)) // | Ctxt_refine_sort b sort phi -> pack_ln (Tv_Refine b (apply_term_ctxt sort t) phi) // | Ctxt_refine_ref b sort phi -> pack_ln (Tv_Refine b sort (apply_term_ctxt phi t)) // | Ctxt_let_sort b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv (apply_term_ctxt sort t) def body) // | Ctxt_let_def b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort (apply_term_ctxt def t) body) // | Ctxt_let_body b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort def (apply_term_ctxt body t)) // | Ctxt_match_scrutinee sc ret brs -> // pack_ln (Tv_Match (apply_term_ctxt sc t) ret brs) // and apply_binder_ctxt (b:binder_ctxt) (t:term) : Tot binder (decreases b) = // let Ctxt_binder binder_bv binder_qual binder_attrs ctxt = b in // pack_binder {binder_bv; binder_qual; binder_attrs; binder_sort=apply_term_ctxt ctxt t} // and apply_comp_ctxt (c:comp_ctxt) (t:term) : Tot comp (decreases c) = // match c with // | Ctxt_total e -> pack_comp (C_Total (apply_term_ctxt e t)) // | Ctxt_gtotal e -> pack_comp (C_GTotal (apply_term_ctxt e t)) noeq type constant_typing: vconst -> term -> Type0 = | CT_Unit: constant_typing C_Unit unit_ty | CT_True: constant_typing C_True bool_ty | CT_False: constant_typing C_False bool_ty [@@ no_auto_projectors] noeq type univ_eq : universe -> universe -> Type0 = | UN_Refl : u:universe -> univ_eq u u | UN_MaxCongL : u:universe -> u':universe -> v:universe -> univ_eq u u' -> univ_eq (u_max u v) (u_max u' v) | UN_MaxCongR : u:universe -> v:universe -> v':universe -> univ_eq v v' -> univ_eq (u_max u v) (u_max u v') | UN_MaxComm: u:universe -> v:universe -> univ_eq (u_max u v) (u_max v u) | UN_MaxLeq: u:universe -> v:universe -> univ_leq u v -> univ_eq (u_max u v) v and univ_leq : universe -> universe -> Type0 = | UNLEQ_Refl: u:universe -> univ_leq u u | UNLEQ_Succ: u:universe -> v:universe -> univ_leq u v -> univ_leq u (u_succ v) | UNLEQ_Max: u:universe -> v:universe -> univ_leq u (u_max u v) let mk_if (scrutinee then_ else_:R.term) : R.term = pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_); (Pat_Constant C_False, else_)]) // effect and type type comp_typ = T.tot_or_ghost & typ let close_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) [ ND x i ] let close_comp_typ (c:comp_typ) (x:var) = close_comp_typ' c x 0 let open_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) (open_with_var x i) let open_comp_typ (c:comp_typ) (x:var) = open_comp_typ' c x 0 let freevars_comp_typ (c:comp_typ) = freevars (snd c) let mk_comp (c:comp_typ) : R.comp = match fst c with | T.E_Total -> mk_total (snd c) | T.E_Ghost -> mk_ghost (snd c) let mk_arrow_ct ty qual (c:comp_typ) : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_comp c)) type relation = | R_Eq | R_Sub let binding = var & term let bindings = list binding let rename_bindings bs x y = FStar.List.Tot.map (fun (v, t) -> (v, rename t x y)) bs let rec extend_env_l (g:env) (bs:bindings) : env = match bs with | [] -> g | (x,t)::bs -> extend_env (extend_env_l g bs) x t // // TODO: support for erasable attribute // let is_non_informative_name (l:name) : bool = l = R.unit_lid || l = R.squash_qn || l = ["FStar"; "Ghost"; "erased"] let is_non_informative_fv (f:fv) : bool = is_non_informative_name (inspect_fv f) let rec __close_term_vs (i:nat) (vs : list var) (t : term) : Tot term (decreases vs) = match vs with | [] -> t | v::vs -> subst_term (__close_term_vs (i+1) vs t) [ND v i] let close_term_vs (vs : list var) (t : term) : term = __close_term_vs 0 vs t let close_term_bs (bs : list binding) (t : term) : term = close_term_vs (List.Tot.map fst bs) t let bindings_to_refl_bindings (bs : list binding) : list R.binding = L.map (fun (v, ty) -> {uniq=v; sort=ty; ppname = pp_name_default}) bs let refl_bindings_to_bindings (bs : list R.binding) : list binding = L.map (fun b -> b.uniq, b.sort) bs [@@ no_auto_projectors] noeq type non_informative : env -> term -> Type0 = | Non_informative_type: g:env -> u:universe -> non_informative g (pack_ln (Tv_Type u)) | Non_informative_fv: g:env -> x:fv{is_non_informative_fv x} -> non_informative g (pack_ln (Tv_FVar x)) | Non_informative_uinst: g:env -> x:fv{is_non_informative_fv x} -> us:list universe -> non_informative g (pack_ln (Tv_UInst x us)) | Non_informative_app: g:env -> t:term -> arg:argv -> non_informative g t -> non_informative g (pack_ln (Tv_App t arg)) | Non_informative_total_arrow: g:env -> t0:term -> q:aqualv -> t1:term -> non_informative g t1 -> non_informative g (mk_arrow_ct t0 q (T.E_Total, t1)) | Non_informative_ghost_arrow: g:env -> t0:term -> q:aqualv -> t1:term -> non_informative g (mk_arrow_ct t0 q (T.E_Ghost, t1)) | Non_informative_token: g:env -> t:typ -> squash (T.non_informative_token g t) -> non_informative g t val bindings_ok_for_pat : env -> list R.binding -> pattern -> Type0 val bindings_ok_pat_constant : g:env -> c:R.vconst -> Lemma (bindings_ok_for_pat g [] (Pat_Constant c)) let bindings_ok_for_branch (g:env) (bs : list R.binding) (br : branch) : Type0 = bindings_ok_for_pat g bs (fst br) let bindings_ok_for_branch_N (g:env) (bss : list (list R.binding)) (brs : list branch) = zip2prop (bindings_ok_for_branch g) bss brs let binding_to_namedv (b:R.binding) : Tot namedv = pack_namedv { RD.uniq = b.uniq; RD.sort = seal b.sort; RD.ppname = b.ppname; } (* Elaborates the p pattern into a term, using the bs bindings for the pattern variables. The resulting term is properly scoped only on an environment which contains all of bs. See for instance the branch_typing judg. Returns an option, since this can fail if e.g. there are not enough bindings, and returns the list of unused binders as well, which should be empty if the list of binding was indeed ok. *) let rec elaborate_pat (p : pattern) (bs : list R.binding) : Tot (option (term & list R.binding)) (decreases p) = match p, bs with | Pat_Constant c, _ -> Some (pack_ln (Tv_Const c), bs) | Pat_Cons fv univs subpats, bs -> let head = pack_ln (Tv_FVar fv) in fold_left_dec (Some (head, bs)) subpats (fun st pi -> let (p,i) = pi in match st with | None -> None | Some (head, bs) -> match elaborate_pat p bs with | None -> None | Some (t, bs') -> Some (pack_ln (Tv_App head (t, (if i then Q_Implicit else Q_Explicit))), bs')) | Pat_Var _ _, b::bs -> Some (pack_ln (Tv_Var (binding_to_namedv b)), bs) | Pat_Dot_Term (Some t), _ -> Some (t, bs) | Pat_Dot_Term None, _ -> None | _ -> None [@@ no_auto_projectors] noeq type typing : env -> term -> comp_typ -> Type0 = | T_Token : g:env -> e:term -> c:comp_typ -> squash (T.typing_token g e c) -> typing g e c | T_Var : g:env -> x:namedv { Some? (lookup_bvar g (namedv_uniq x)) } -> typing g (pack_ln (Tv_Var x)) (T.E_Total, Some?.v (lookup_bvar g (namedv_uniq x))) | T_FVar : g:env -> x:fv { Some? (lookup_fvar g x) } -> typing g (pack_ln (Tv_FVar x)) (T.E_Total, Some?.v (lookup_fvar g x)) | T_UInst : g:env -> x:fv -> us:list universe { Some? (lookup_fvar_uinst g x us) } -> typing g (pack_ln (Tv_UInst x us)) (T.E_Total, Some?.v (lookup_fvar_uinst g x us)) | T_Const: g:env -> v:vconst -> t:term -> constant_typing v t -> typing g (constant_as_term v) (T.E_Total, t) | T_Abs : g:env -> x:var { None? (lookup_bvar g x) } -> ty:term -> body:term { ~(x `Set.mem` freevars body) } -> body_c:comp_typ -> u:universe -> pp_name:pp_name_t -> q:aqualv -> ty_eff:T.tot_or_ghost -> typing g ty (ty_eff, tm_type u) -> typing (extend_env g x ty) (open_term body x) body_c -> typing g (pack_ln (Tv_Abs (mk_binder pp_name ty q) body)) (T.E_Total, pack_ln (Tv_Arrow (mk_binder pp_name ty q) (mk_comp (close_comp_typ body_c x)))) | T_App : g:env -> e1:term -> e2:term -> x:binder -> t:term -> eff:T.tot_or_ghost -> typing g e1 (eff, pack_ln (Tv_Arrow x (mk_comp (eff, t)))) -> typing g e2 (eff, binder_sort x) -> typing g (pack_ln (Tv_App e1 (e2, binder_qual x))) (eff, open_with t e2) | T_Let: g:env -> x:var { None? (lookup_bvar g x) } -> e1:term -> t1:typ -> e2:term -> t2:typ -> eff:T.tot_or_ghost -> pp_name:pp_name_t -> typing g e1 (eff, t1) -> typing (extend_env g x t1) (open_term e2 x) (eff, t2) -> typing g (mk_let pp_name e1 t1 e2) (eff, open_with (close_term t2 x) e1) | T_Arrow: g:env -> x:var { None? (lookup_bvar g x) } -> t1:term -> t2:term { ~(x `Set.mem` freevars t2) } -> u1:universe -> u2:universe -> pp_name:pp_name_t -> q:aqualv -> eff:T.tot_or_ghost -> t1_eff:T.tot_or_ghost -> t2_eff:T.tot_or_ghost -> typing g t1 (t1_eff, tm_type u1) -> typing (extend_env g x t1) (open_term t2 x) (t2_eff, tm_type u2) -> typing g (pack_ln (Tv_Arrow (mk_binder pp_name t1 q) (mk_comp (eff, t2)))) (T.E_Total, tm_type (u_max u1 u2)) | T_Refine: g:env -> x:var { None? (lookup_bvar g x) } -> t:term -> e:term { ~(x `Set.mem` freevars e) } -> u1:universe -> u2:universe -> t_eff:T.tot_or_ghost -> e_eff:T.tot_or_ghost -> typing g t (t_eff, tm_type u1) -> typing (extend_env g x t) (open_term e x) (e_eff, tm_type u2) -> typing g (pack_ln (Tv_Refine (mk_simple_binder pp_name_default t) e)) (T.E_Total, tm_type u1) | T_PropIrrelevance: g:env -> e:term -> t:term -> e_eff:T.tot_or_ghost -> t_eff:T.tot_or_ghost -> typing g e (e_eff, t) -> typing g t (t_eff, tm_prop) -> typing g (`()) (T.E_Total, t) | T_Sub: g:env -> e:term -> c:comp_typ -> c':comp_typ -> typing g e c -> sub_comp g c c' -> typing g e c' | T_If: g:env -> scrutinee:term -> then_:term -> else_:term -> ty:term -> u_ty:universe -> hyp:var { None? (lookup_bvar g hyp) /\ ~(hyp `Set.mem` (freevars then_ `Set.union` freevars else_)) } -> eff:T.tot_or_ghost -> ty_eff:T.tot_or_ghost -> typing g scrutinee (eff, bool_ty) -> typing (extend_env g hyp (eq2 (pack_universe Uv_Zero) bool_ty scrutinee true_bool)) then_ (eff, ty) -> typing (extend_env g hyp (eq2 (pack_universe Uv_Zero) bool_ty scrutinee false_bool)) else_ (eff, ty) -> typing g ty (ty_eff, tm_type u_ty) -> //typedness of ty cannot rely on hyp typing g (mk_if scrutinee then_ else_) (eff, ty) | T_Match: g:env -> sc_u : universe -> sc_ty : typ -> sc : term -> ty_eff:T.tot_or_ghost -> typing g sc_ty (ty_eff, tm_type sc_u) -> eff:T.tot_or_ghost -> typing g sc (eff, sc_ty) -> branches:list branch -> ty:comp_typ -> bnds:list (list R.binding) -> complet : match_is_complete g sc sc_ty (List.Tot.map fst branches) bnds -> // complete patterns branches_typing g sc_u sc_ty sc ty branches bnds -> // each branch has proper type typing g (pack_ln (Tv_Match sc None branches)) ty and related : env -> term -> relation -> term -> Type0 = | Rel_refl: g:env -> t:term -> rel:relation -> related g t rel t | Rel_sym: g:env -> t0:term -> t1:term -> related g t0 R_Eq t1 -> related g t1 R_Eq t0 | Rel_trans: g:env -> t0:term -> t1:term -> t2:term -> rel:relation -> related g t0 rel t1 -> related g t1 rel t2 -> related g t0 rel t2 | Rel_univ: g:env -> u:universe -> v:universe -> univ_eq u v -> related g (tm_type u) R_Eq (tm_type v) | Rel_beta: g:env -> t:typ -> q:aqualv -> e:term { ln' e 0 } -> arg:term { ln arg } -> related g (R.pack_ln (R.Tv_App (mk_abs t q e) (arg, q))) R_Eq (subst_term e [ DT 0 arg ]) | Rel_eq_token: g:env -> t0:term -> t1:term -> squash (T.equiv_token g t0 t1) -> related g t0 R_Eq t1 | Rel_subtyping_token: g:env -> t0:term -> t1:term -> squash (T.subtyping_token g t0 t1) -> related g t0 R_Sub t1 | Rel_equiv: g:env -> t0:term -> t1:term -> rel:relation -> related g t0 R_Eq t1 -> related g t0 rel t1 | Rel_arrow: g:env -> t1:term -> t2:term -> q:aqualv -> c1:comp_typ -> c2:comp_typ -> rel:relation -> x:var{ None? (lookup_bvar g x) /\ ~ (x `Set.mem` (freevars_comp_typ c1 `Set.union` freevars_comp_typ c2)) } -> related g t2 rel t1 -> related_comp (extend_env g x t2) (open_comp_typ c1 x) rel (open_comp_typ c2 x) -> related g (mk_arrow_ct t1 q c1) rel (mk_arrow_ct t2 q c2) | Rel_abs: g:env -> t1:term -> t2:term -> q:aqualv -> e1:term -> e2:term -> x:var{ None? (lookup_bvar g x) /\ ~ (x `Set.mem` (freevars e1 `Set.union` freevars e2)) } -> related g t1 R_Eq t2 -> related (extend_env g x t1) (subst_term e1 (open_with_var x 0)) R_Eq (subst_term e2 (open_with_var x 0)) -> related g (mk_abs t1 q e1) R_Eq (mk_abs t2 q e2) | Rel_ctxt: g:env -> t0:term -> t1:term -> ctxt:term_ctxt -> related g t0 R_Eq t1 -> related g (apply_term_ctxt ctxt t0) R_Eq (apply_term_ctxt ctxt t1) and related_comp : env -> comp_typ -> relation -> comp_typ -> Type0 = | Relc_typ: g:env -> t0:term -> t1:term -> eff:T.tot_or_ghost -> rel:relation -> related g t0 rel t1 -> related_comp g (eff, t0) rel (eff, t1) | Relc_total_ghost: g:env -> t:term -> related_comp g (T.E_Total, t) R_Sub (T.E_Ghost, t) | Relc_ghost_total: g:env -> t:term -> non_informative g t -> related_comp g (T.E_Ghost, t) R_Sub (T.E_Total, t) and branches_typing (g:env) (sc_u:universe) (sc_ty:typ) (sc:term) (rty:comp_typ) : (brs:list branch) -> (bnds : list (list R.binding)) -> Type0 = (* This judgement only enforces that branch_typing holds for every element of brs and its respective bnds (which must have the same length). *) | BT_Nil : branches_typing g sc_u sc_ty sc rty [] [] | BT_S : br : branch -> bnds : list R.binding -> pf : branch_typing g sc_u sc_ty sc rty br bnds -> rest_br : list branch -> rest_bnds : list (list R.binding) -> rest : branches_typing g sc_u sc_ty sc rty rest_br rest_bnds -> branches_typing g sc_u sc_ty sc rty (br :: rest_br) (bnds :: rest_bnds) and branch_typing (g:env) (sc_u:universe) (sc_ty:typ) (sc:term) (rty:comp_typ) : (br : branch) -> (bnds : list R.binding) -> Type0 = | BO : pat : pattern -> bnds : list R.binding{bindings_ok_for_pat g bnds pat} -> hyp_var:var{None? (lookup_bvar (extend_env_l g (refl_bindings_to_bindings bnds)) hyp_var)} -> body:term -> _ : squash (Some? (elaborate_pat pat bnds)) -> typing (extend_env (extend_env_l g (refl_bindings_to_bindings bnds)) hyp_var (eq2 sc_u sc_ty sc (fst (Some?.v (elaborate_pat pat bnds)))) ) body rty -> branch_typing g sc_u sc_ty sc rty (pat, close_term_bs (refl_bindings_to_bindings bnds) body) bnds and match_is_complete : env -> term -> typ -> list pattern -> list (list R.binding) -> Type0 = | MC_Tok : env:_ -> sc:_ -> ty:_ -> pats:_ -> bnds:_ -> squash (T.match_complete_token env sc ty pats bnds) -> match_is_complete env sc ty pats bnds and sub_typing (g:env) (t1 t2:term) = related g t1 R_Sub t2 and sub_comp (g:env) (c1 c2:comp_typ) = related_comp g c1 R_Sub c2 and equiv (g:env) (t1 t2:term) = related g t1 R_Eq t2 type tot_typing (g:env) (e:term) (t:term) = typing g e (T.E_Total, t) type ghost_typing (g:env) (e:term) (t:term) = typing g e (T.E_Ghost, t) val subtyping_token_renaming (g:env) (bs0:bindings) (bs1:bindings) (x:var { None? (lookup_bvar (extend_env_l g (bs1@bs0)) x) }) (y:var { None? (lookup_bvar (extend_env_l g (bs1@bs0)) y) }) (t:term) (t0 t1:term) (d:T.subtyping_token (extend_env_l g (bs1@(x,t)::bs0)) t0 t1) : T.subtyping_token (extend_env_l g (rename_bindings bs1 x y@(y,t)::bs0)) (rename t0 x y) (rename t1 x y) val subtyping_token_weakening (g:env) (bs0:bindings) (bs1:bindings) (x:var { None? (lookup_bvar (extend_env_l g (bs1@bs0)) x) }) (t:term) (t0 t1:term) (d:T.subtyping_token (extend_env_l g (bs1@bs0)) t0 t1) : T.subtyping_token (extend_env_l g (bs1@(x,t)::bs0)) t0 t1 let simplify_umax (#g:R.env) (#t:R.term) (#u:R.universe) (d:typing g t (T.E_Total, tm_type (u_max u u))) : typing g t (T.E_Total, tm_type u) = let ue : univ_eq (u_max u u) u = UN_MaxLeq u u (UNLEQ_Refl u) in let du : related g (tm_type (u_max u u)) R_Eq (tm_type u) = Rel_univ g (u_max u u) u ue in let du : related g (tm_type (u_max u u)) R_Sub (tm_type u) = Rel_equiv _ _ _ _ du in T_Sub _ _ _ _ d (Relc_typ _ _ _ T.E_Total _ du) val well_typed_terms_are_ln (g:R.env) (e:R.term) (c:comp_typ) (_:typing g e c) : Lemma (ensures ln e /\ ln (snd c)) val type_correctness (g:R.env) (e:R.term) (c:comp_typ) (_:typing g e c) : GTot (u:R.universe & typing g (snd c) (T.E_Total, tm_type u)) val binder_offset_pattern_invariant (p:pattern) (ss:subst) : Lemma (binder_offset_pattern p == binder_offset_pattern (subst_pattern p ss)) val binder_offset_patterns_invariant (p:list (pattern & bool)) (ss:subst) : Lemma (binder_offset_patterns p == binder_offset_patterns (subst_patterns p ss)) val open_close_inverse' (i:nat) (t:term { ln' t (i - 1) }) (x:var) : Lemma (ensures subst_term (subst_term t [ ND x i ]) (open_with_var x i) == t) val open_close_inverse'_binder (i:nat) (b:binder { ln'_binder b (i - 1) }) (x:var) : Lemma (ensures subst_binder (subst_binder b [ ND x i ]) (open_with_var x i) == b) val open_close_inverse'_terms (i:nat) (ts:list term { ln'_terms ts (i - 1) }) (x:var) : Lemma (ensures subst_terms (subst_terms ts [ ND x i ]) (open_with_var x i) == ts) val open_close_inverse'_comp (i:nat) (c:comp { ln'_comp c (i - 1) }) (x:var) : Lemma (ensures subst_comp (subst_comp c [ ND x i ]) (open_with_var x i) == c) val open_close_inverse'_args (i:nat) (ts:list argv { ln'_args ts (i - 1) }) (x:var) : Lemma (ensures subst_args (subst_args ts [ ND x i ]) (open_with_var x i) == ts) val open_close_inverse'_patterns (i:nat) (ps:list (pattern & bool) { ln'_patterns ps (i - 1) }) (x:var) : Lemma (ensures subst_patterns (subst_patterns ps [ ND x i ]) (open_with_var x i) == ps) val open_close_inverse'_pattern (i:nat) (p:pattern{ln'_pattern p (i - 1)}) (x:var) : Lemma (ensures subst_pattern (subst_pattern p [ ND x i ]) (open_with_var x i) == p) val open_close_inverse'_branch (i:nat) (br:branch{ln'_branch br (i - 1)}) (x:var) : Lemma (ensures subst_branch (subst_branch br [ ND x i ]) (open_with_var x i) == br) val open_close_inverse'_branches (i:nat) (brs:list branch { ln'_branches brs (i - 1) }) (x:var) : Lemma (ensures subst_branches (subst_branches brs [ ND x i ]) (open_with_var x i) == brs) val open_close_inverse'_match_returns (i:nat) (m:match_returns_ascription { ln'_match_returns m (i - 1) }) (x:var) : Lemma (ensures subst_match_returns (subst_match_returns m [ ND x i ]) (open_with_var x i) == m) val open_close_inverse (e:R.term { ln e }) (x:var) : Lemma (open_term (close_term e x) x == e) val close_open_inverse' (i:nat) (t:term) (x:var { ~(x `Set.mem` freevars t) }) : Lemma (ensures subst_term (subst_term t (open_with_var x i)) [ ND x i ] == t) val close_open_inverse'_comp (i:nat) (c:comp) (x:var{ ~(x `Set.mem` freevars_comp c) }) : Lemma (ensures subst_comp (subst_comp c (open_with_var x i)) [ ND x i ] == c) val close_open_inverse'_args (i:nat) (args:list argv) (x:var{ ~(x `Set.mem` freevars_args args) }) : Lemma (ensures subst_args (subst_args args (open_with_var x i)) [ ND x i] == args) val close_open_inverse'_binder (i:nat) (b:binder) (x:var{ ~(x `Set.mem` freevars_binder b) }) : Lemma (ensures subst_binder (subst_binder b (open_with_var x i)) [ ND x i ] == b) val close_open_inverse'_terms (i:nat) (ts:list term) (x:var{ ~(x `Set.mem` freevars_terms ts) }) : Lemma (ensures subst_terms (subst_terms ts (open_with_var x i)) [ ND x i ] == ts) val close_open_inverse'_branches (i:nat) (brs:list branch) (x:var{ ~(x `Set.mem` freevars_branches brs) }) : Lemma (ensures subst_branches (subst_branches brs (open_with_var x i)) [ ND x i ] == brs) val close_open_inverse'_branch (i:nat) (br:branch) (x:var{ ~(x `Set.mem` freevars_branch br) }) : Lemma (ensures subst_branch (subst_branch br (open_with_var x i)) [ ND x i ] == br) val close_open_inverse'_pattern (i:nat) (p:pattern) (x:var{ ~(x `Set.mem` freevars_pattern p) }) : Lemma (ensures subst_pattern (subst_pattern p (open_with_var x i)) [ ND x i ] == p) val close_open_inverse'_patterns (i:nat) (ps:list (pattern & bool)) (x:var {~ (x `Set.mem` freevars_patterns ps) }) : Lemma (ensures subst_patterns (subst_patterns ps (open_with_var x i)) [ ND x i ] == ps) val close_open_inverse'_match_returns (i:nat) (m:match_returns_ascription) (x:var{ ~(x `Set.mem` freevars_match_returns m) }) : Lemma (ensures subst_match_returns (subst_match_returns m (open_with_var x i)) [ ND x i ] == m) val close_open_inverse (e:R.term) (x:var {~ (x `Set.mem` freevars e) }) : Lemma (close_term (open_term e x) x == e) // // fst has corresponding lemmas for other syntax classes // val close_with_not_free_var (t:R.term) (x:var) (i:nat) : Lemma (requires ~ (Set.mem x (freevars t))) (ensures subst_term t [ ND x i ] == t) // this also requires x to be not in freevars e1 `Set.union` freevars e2 val equiv_arrow (#g:R.env) (#e1 #e2:R.term) (ty:R.typ) (q:R.aqualv) (x:var { None? (lookup_bvar g x) }) (eq:equiv (extend_env g x ty) (subst_term e1 (open_with_var x 0)) (subst_term e2 (open_with_var x 0))) : equiv g (mk_arrow ty q e1) (mk_arrow ty q e2) // the proof for this requires e1 and e2 to be ln val equiv_abs_close (#g:R.env) (#e1 #e2:R.term) (ty:R.typ) (q:R.aqualv) (x:var{None? (lookup_bvar g x)}) (eq:equiv (extend_env g x ty) e1 e2) : equiv g (mk_abs ty q (subst_term e1 [ ND x 0 ])) (mk_abs ty q (subst_term e2 [ ND x 0 ])) val open_with_gt_ln (e:term) (i:nat) (t:term) (j:nat) : Lemma (requires ln' e i /\ i < j) (ensures subst_term e [ DT j t ] == e) [SMTPat (ln' e i); SMTPat (subst_term e [ DT j t ])] // // Type of the top-level tactic that would splice-in the definitions // let fstar_env_fvs (g:R.env) = lookup_fvar g unit_fv == Some (tm_type u_zero) /\ lookup_fvar g bool_fv == Some (tm_type u_zero) /\ lookup_fvar g b2t_fv == Some b2t_ty type fstar_env = g:R.env{fstar_env_fvs g} type fstar_top_env = g:fstar_env { forall x. None? (lookup_bvar g x ) } // // This doesn't allow for universe polymorphic definitions // // May be we can change it to: // // g:fstar_top_env -> T.tac ((us, e, t):(univ_names & term & typ){typing (push g us) e t}) // noeq type sigelt_typing : env -> sigelt -> Type0 = | ST_Let : g : env -> fv : R.fv -> ty : R.typ -> tm : R.term -> squash (typing g tm (T.E_Total, ty)) -> sigelt_typing g (pack_sigelt (Sg_Let false [pack_lb ({ lb_fv = fv; lb_us = []; lb_typ = ty; lb_def = tm })])) | ST_Let_Opaque : g : env -> fv : R.fv -> ty : R.typ -> (* no tm: only a proof of existence *) squash (exists (tm:R.term). typing g tm (T.E_Total, ty)) -> sigelt_typing g (pack_sigelt (Sg_Let false [pack_lb ({ lb_fv = fv; lb_us = []; lb_typ = ty; lb_def = (`_) })])) (** * The type of the top-level tactic that would splice-in the definitions. * It returns a list of well typed definitions, via the judgment above. * * Each definition can have a 'blob' attached with a given name. * The blob can be used later, e.g., during extraction, and passed back to the * extension to perform additional processing. *) (* * It returns either: * - Some tm, blob, typ, with a proof that `typing g tm typ` * - None, blob, typ), with a proof that `exists tm. typing g tm typ` * The blob itself is optional and can store some additional metadata that * constructed by the tactic. If present, it will be stored in the * sigmeta_extension_data field of the enclosing sigelt. * *) let blob = string & R.term (* If checked is true, this sigelt is properly typed for the environment. If not, we don't know and let F* re-typecheck the sigelt. *) let sigelt_for (g:env) = tup:(bool & sigelt & option blob) { let (checked, se, _) = tup in checked ==> sigelt_typing g se }
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val dsl_tac_result_t : g: FStar.Reflection.Types.env -> Type0
[]
FStar.Reflection.Typing.dsl_tac_result_t
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
g: FStar.Reflection.Types.env -> Type0
{ "end_col": 50, "end_line": 1803, "start_col": 31, "start_line": 1803 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let sigelt_for (g:env) = tup:(bool & sigelt & option blob) { let (checked, se, _) = tup in checked ==> sigelt_typing g se }
let sigelt_for (g: env) =
false
null
false
tup: (bool & sigelt & option blob) { let checked, se, _ = tup in checked ==> sigelt_typing g se }
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.Types.env", "FStar.Pervasives.Native.tuple3", "Prims.bool", "FStar.Reflection.Types.sigelt", "FStar.Pervasives.Native.option", "FStar.Reflection.Typing.blob", "Prims.l_imp", "Prims.b2t", "FStar.Reflection.Typing.sigelt_typing" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_ let ln (t:term) = ln' t (-1) let ln_comp (c:comp) = ln'_comp c (-1) // // term_ctxt is used to define the equiv relation later, // basically putting two equiv terms in a hole gives equiv terms // // The abs, arrow, refine, and let cases don't seem right here, // since to prove their equiv, we need to extend gamma for their bodies // // If this is useful only for app, then may be we should remove it, // and add app rules to the equiv relation itself [@@ no_auto_projectors] noeq type term_ctxt = | Ctxt_hole : term_ctxt | Ctxt_app_head : term_ctxt -> argv -> term_ctxt | Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt // | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt // | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt // | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt // | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt // | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt // | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt // | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt // | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt // | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt // | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt // and bv_ctxt = // | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt // and binder_ctxt = // | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt // and comp_ctxt = // | Ctxt_total : term_ctxt -> comp_ctxt // | Ctxt_gtotal : term_ctxt -> comp_ctxt let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) = match e with | Ctxt_hole -> t | Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg) | Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q)) // | Ctxt_abs_binder b body -> pack_ln (Tv_Abs (apply_binder_ctxt b t) body) // | Ctxt_abs_body b e -> pack_ln (Tv_Abs b (apply_term_ctxt e t)) // | Ctxt_arrow_binder b c -> pack_ln (Tv_Arrow (apply_binder_ctxt b t) c) // | Ctxt_arrow_comp b c -> pack_ln (Tv_Arrow b (apply_comp_ctxt c t)) // | Ctxt_refine_sort b sort phi -> pack_ln (Tv_Refine b (apply_term_ctxt sort t) phi) // | Ctxt_refine_ref b sort phi -> pack_ln (Tv_Refine b sort (apply_term_ctxt phi t)) // | Ctxt_let_sort b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv (apply_term_ctxt sort t) def body) // | Ctxt_let_def b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort (apply_term_ctxt def t) body) // | Ctxt_let_body b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort def (apply_term_ctxt body t)) // | Ctxt_match_scrutinee sc ret brs -> // pack_ln (Tv_Match (apply_term_ctxt sc t) ret brs) // and apply_binder_ctxt (b:binder_ctxt) (t:term) : Tot binder (decreases b) = // let Ctxt_binder binder_bv binder_qual binder_attrs ctxt = b in // pack_binder {binder_bv; binder_qual; binder_attrs; binder_sort=apply_term_ctxt ctxt t} // and apply_comp_ctxt (c:comp_ctxt) (t:term) : Tot comp (decreases c) = // match c with // | Ctxt_total e -> pack_comp (C_Total (apply_term_ctxt e t)) // | Ctxt_gtotal e -> pack_comp (C_GTotal (apply_term_ctxt e t)) noeq type constant_typing: vconst -> term -> Type0 = | CT_Unit: constant_typing C_Unit unit_ty | CT_True: constant_typing C_True bool_ty | CT_False: constant_typing C_False bool_ty [@@ no_auto_projectors] noeq type univ_eq : universe -> universe -> Type0 = | UN_Refl : u:universe -> univ_eq u u | UN_MaxCongL : u:universe -> u':universe -> v:universe -> univ_eq u u' -> univ_eq (u_max u v) (u_max u' v) | UN_MaxCongR : u:universe -> v:universe -> v':universe -> univ_eq v v' -> univ_eq (u_max u v) (u_max u v') | UN_MaxComm: u:universe -> v:universe -> univ_eq (u_max u v) (u_max v u) | UN_MaxLeq: u:universe -> v:universe -> univ_leq u v -> univ_eq (u_max u v) v and univ_leq : universe -> universe -> Type0 = | UNLEQ_Refl: u:universe -> univ_leq u u | UNLEQ_Succ: u:universe -> v:universe -> univ_leq u v -> univ_leq u (u_succ v) | UNLEQ_Max: u:universe -> v:universe -> univ_leq u (u_max u v) let mk_if (scrutinee then_ else_:R.term) : R.term = pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_); (Pat_Constant C_False, else_)]) // effect and type type comp_typ = T.tot_or_ghost & typ let close_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) [ ND x i ] let close_comp_typ (c:comp_typ) (x:var) = close_comp_typ' c x 0 let open_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) (open_with_var x i) let open_comp_typ (c:comp_typ) (x:var) = open_comp_typ' c x 0 let freevars_comp_typ (c:comp_typ) = freevars (snd c) let mk_comp (c:comp_typ) : R.comp = match fst c with | T.E_Total -> mk_total (snd c) | T.E_Ghost -> mk_ghost (snd c) let mk_arrow_ct ty qual (c:comp_typ) : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_comp c)) type relation = | R_Eq | R_Sub let binding = var & term let bindings = list binding let rename_bindings bs x y = FStar.List.Tot.map (fun (v, t) -> (v, rename t x y)) bs let rec extend_env_l (g:env) (bs:bindings) : env = match bs with | [] -> g | (x,t)::bs -> extend_env (extend_env_l g bs) x t // // TODO: support for erasable attribute // let is_non_informative_name (l:name) : bool = l = R.unit_lid || l = R.squash_qn || l = ["FStar"; "Ghost"; "erased"] let is_non_informative_fv (f:fv) : bool = is_non_informative_name (inspect_fv f) let rec __close_term_vs (i:nat) (vs : list var) (t : term) : Tot term (decreases vs) = match vs with | [] -> t | v::vs -> subst_term (__close_term_vs (i+1) vs t) [ND v i] let close_term_vs (vs : list var) (t : term) : term = __close_term_vs 0 vs t let close_term_bs (bs : list binding) (t : term) : term = close_term_vs (List.Tot.map fst bs) t let bindings_to_refl_bindings (bs : list binding) : list R.binding = L.map (fun (v, ty) -> {uniq=v; sort=ty; ppname = pp_name_default}) bs let refl_bindings_to_bindings (bs : list R.binding) : list binding = L.map (fun b -> b.uniq, b.sort) bs [@@ no_auto_projectors] noeq type non_informative : env -> term -> Type0 = | Non_informative_type: g:env -> u:universe -> non_informative g (pack_ln (Tv_Type u)) | Non_informative_fv: g:env -> x:fv{is_non_informative_fv x} -> non_informative g (pack_ln (Tv_FVar x)) | Non_informative_uinst: g:env -> x:fv{is_non_informative_fv x} -> us:list universe -> non_informative g (pack_ln (Tv_UInst x us)) | Non_informative_app: g:env -> t:term -> arg:argv -> non_informative g t -> non_informative g (pack_ln (Tv_App t arg)) | Non_informative_total_arrow: g:env -> t0:term -> q:aqualv -> t1:term -> non_informative g t1 -> non_informative g (mk_arrow_ct t0 q (T.E_Total, t1)) | Non_informative_ghost_arrow: g:env -> t0:term -> q:aqualv -> t1:term -> non_informative g (mk_arrow_ct t0 q (T.E_Ghost, t1)) | Non_informative_token: g:env -> t:typ -> squash (T.non_informative_token g t) -> non_informative g t val bindings_ok_for_pat : env -> list R.binding -> pattern -> Type0 val bindings_ok_pat_constant : g:env -> c:R.vconst -> Lemma (bindings_ok_for_pat g [] (Pat_Constant c)) let bindings_ok_for_branch (g:env) (bs : list R.binding) (br : branch) : Type0 = bindings_ok_for_pat g bs (fst br) let bindings_ok_for_branch_N (g:env) (bss : list (list R.binding)) (brs : list branch) = zip2prop (bindings_ok_for_branch g) bss brs let binding_to_namedv (b:R.binding) : Tot namedv = pack_namedv { RD.uniq = b.uniq; RD.sort = seal b.sort; RD.ppname = b.ppname; } (* Elaborates the p pattern into a term, using the bs bindings for the pattern variables. The resulting term is properly scoped only on an environment which contains all of bs. See for instance the branch_typing judg. Returns an option, since this can fail if e.g. there are not enough bindings, and returns the list of unused binders as well, which should be empty if the list of binding was indeed ok. *) let rec elaborate_pat (p : pattern) (bs : list R.binding) : Tot (option (term & list R.binding)) (decreases p) = match p, bs with | Pat_Constant c, _ -> Some (pack_ln (Tv_Const c), bs) | Pat_Cons fv univs subpats, bs -> let head = pack_ln (Tv_FVar fv) in fold_left_dec (Some (head, bs)) subpats (fun st pi -> let (p,i) = pi in match st with | None -> None | Some (head, bs) -> match elaborate_pat p bs with | None -> None | Some (t, bs') -> Some (pack_ln (Tv_App head (t, (if i then Q_Implicit else Q_Explicit))), bs')) | Pat_Var _ _, b::bs -> Some (pack_ln (Tv_Var (binding_to_namedv b)), bs) | Pat_Dot_Term (Some t), _ -> Some (t, bs) | Pat_Dot_Term None, _ -> None | _ -> None [@@ no_auto_projectors] noeq type typing : env -> term -> comp_typ -> Type0 = | T_Token : g:env -> e:term -> c:comp_typ -> squash (T.typing_token g e c) -> typing g e c | T_Var : g:env -> x:namedv { Some? (lookup_bvar g (namedv_uniq x)) } -> typing g (pack_ln (Tv_Var x)) (T.E_Total, Some?.v (lookup_bvar g (namedv_uniq x))) | T_FVar : g:env -> x:fv { Some? (lookup_fvar g x) } -> typing g (pack_ln (Tv_FVar x)) (T.E_Total, Some?.v (lookup_fvar g x)) | T_UInst : g:env -> x:fv -> us:list universe { Some? (lookup_fvar_uinst g x us) } -> typing g (pack_ln (Tv_UInst x us)) (T.E_Total, Some?.v (lookup_fvar_uinst g x us)) | T_Const: g:env -> v:vconst -> t:term -> constant_typing v t -> typing g (constant_as_term v) (T.E_Total, t) | T_Abs : g:env -> x:var { None? (lookup_bvar g x) } -> ty:term -> body:term { ~(x `Set.mem` freevars body) } -> body_c:comp_typ -> u:universe -> pp_name:pp_name_t -> q:aqualv -> ty_eff:T.tot_or_ghost -> typing g ty (ty_eff, tm_type u) -> typing (extend_env g x ty) (open_term body x) body_c -> typing g (pack_ln (Tv_Abs (mk_binder pp_name ty q) body)) (T.E_Total, pack_ln (Tv_Arrow (mk_binder pp_name ty q) (mk_comp (close_comp_typ body_c x)))) | T_App : g:env -> e1:term -> e2:term -> x:binder -> t:term -> eff:T.tot_or_ghost -> typing g e1 (eff, pack_ln (Tv_Arrow x (mk_comp (eff, t)))) -> typing g e2 (eff, binder_sort x) -> typing g (pack_ln (Tv_App e1 (e2, binder_qual x))) (eff, open_with t e2) | T_Let: g:env -> x:var { None? (lookup_bvar g x) } -> e1:term -> t1:typ -> e2:term -> t2:typ -> eff:T.tot_or_ghost -> pp_name:pp_name_t -> typing g e1 (eff, t1) -> typing (extend_env g x t1) (open_term e2 x) (eff, t2) -> typing g (mk_let pp_name e1 t1 e2) (eff, open_with (close_term t2 x) e1) | T_Arrow: g:env -> x:var { None? (lookup_bvar g x) } -> t1:term -> t2:term { ~(x `Set.mem` freevars t2) } -> u1:universe -> u2:universe -> pp_name:pp_name_t -> q:aqualv -> eff:T.tot_or_ghost -> t1_eff:T.tot_or_ghost -> t2_eff:T.tot_or_ghost -> typing g t1 (t1_eff, tm_type u1) -> typing (extend_env g x t1) (open_term t2 x) (t2_eff, tm_type u2) -> typing g (pack_ln (Tv_Arrow (mk_binder pp_name t1 q) (mk_comp (eff, t2)))) (T.E_Total, tm_type (u_max u1 u2)) | T_Refine: g:env -> x:var { None? (lookup_bvar g x) } -> t:term -> e:term { ~(x `Set.mem` freevars e) } -> u1:universe -> u2:universe -> t_eff:T.tot_or_ghost -> e_eff:T.tot_or_ghost -> typing g t (t_eff, tm_type u1) -> typing (extend_env g x t) (open_term e x) (e_eff, tm_type u2) -> typing g (pack_ln (Tv_Refine (mk_simple_binder pp_name_default t) e)) (T.E_Total, tm_type u1) | T_PropIrrelevance: g:env -> e:term -> t:term -> e_eff:T.tot_or_ghost -> t_eff:T.tot_or_ghost -> typing g e (e_eff, t) -> typing g t (t_eff, tm_prop) -> typing g (`()) (T.E_Total, t) | T_Sub: g:env -> e:term -> c:comp_typ -> c':comp_typ -> typing g e c -> sub_comp g c c' -> typing g e c' | T_If: g:env -> scrutinee:term -> then_:term -> else_:term -> ty:term -> u_ty:universe -> hyp:var { None? (lookup_bvar g hyp) /\ ~(hyp `Set.mem` (freevars then_ `Set.union` freevars else_)) } -> eff:T.tot_or_ghost -> ty_eff:T.tot_or_ghost -> typing g scrutinee (eff, bool_ty) -> typing (extend_env g hyp (eq2 (pack_universe Uv_Zero) bool_ty scrutinee true_bool)) then_ (eff, ty) -> typing (extend_env g hyp (eq2 (pack_universe Uv_Zero) bool_ty scrutinee false_bool)) else_ (eff, ty) -> typing g ty (ty_eff, tm_type u_ty) -> //typedness of ty cannot rely on hyp typing g (mk_if scrutinee then_ else_) (eff, ty) | T_Match: g:env -> sc_u : universe -> sc_ty : typ -> sc : term -> ty_eff:T.tot_or_ghost -> typing g sc_ty (ty_eff, tm_type sc_u) -> eff:T.tot_or_ghost -> typing g sc (eff, sc_ty) -> branches:list branch -> ty:comp_typ -> bnds:list (list R.binding) -> complet : match_is_complete g sc sc_ty (List.Tot.map fst branches) bnds -> // complete patterns branches_typing g sc_u sc_ty sc ty branches bnds -> // each branch has proper type typing g (pack_ln (Tv_Match sc None branches)) ty and related : env -> term -> relation -> term -> Type0 = | Rel_refl: g:env -> t:term -> rel:relation -> related g t rel t | Rel_sym: g:env -> t0:term -> t1:term -> related g t0 R_Eq t1 -> related g t1 R_Eq t0 | Rel_trans: g:env -> t0:term -> t1:term -> t2:term -> rel:relation -> related g t0 rel t1 -> related g t1 rel t2 -> related g t0 rel t2 | Rel_univ: g:env -> u:universe -> v:universe -> univ_eq u v -> related g (tm_type u) R_Eq (tm_type v) | Rel_beta: g:env -> t:typ -> q:aqualv -> e:term { ln' e 0 } -> arg:term { ln arg } -> related g (R.pack_ln (R.Tv_App (mk_abs t q e) (arg, q))) R_Eq (subst_term e [ DT 0 arg ]) | Rel_eq_token: g:env -> t0:term -> t1:term -> squash (T.equiv_token g t0 t1) -> related g t0 R_Eq t1 | Rel_subtyping_token: g:env -> t0:term -> t1:term -> squash (T.subtyping_token g t0 t1) -> related g t0 R_Sub t1 | Rel_equiv: g:env -> t0:term -> t1:term -> rel:relation -> related g t0 R_Eq t1 -> related g t0 rel t1 | Rel_arrow: g:env -> t1:term -> t2:term -> q:aqualv -> c1:comp_typ -> c2:comp_typ -> rel:relation -> x:var{ None? (lookup_bvar g x) /\ ~ (x `Set.mem` (freevars_comp_typ c1 `Set.union` freevars_comp_typ c2)) } -> related g t2 rel t1 -> related_comp (extend_env g x t2) (open_comp_typ c1 x) rel (open_comp_typ c2 x) -> related g (mk_arrow_ct t1 q c1) rel (mk_arrow_ct t2 q c2) | Rel_abs: g:env -> t1:term -> t2:term -> q:aqualv -> e1:term -> e2:term -> x:var{ None? (lookup_bvar g x) /\ ~ (x `Set.mem` (freevars e1 `Set.union` freevars e2)) } -> related g t1 R_Eq t2 -> related (extend_env g x t1) (subst_term e1 (open_with_var x 0)) R_Eq (subst_term e2 (open_with_var x 0)) -> related g (mk_abs t1 q e1) R_Eq (mk_abs t2 q e2) | Rel_ctxt: g:env -> t0:term -> t1:term -> ctxt:term_ctxt -> related g t0 R_Eq t1 -> related g (apply_term_ctxt ctxt t0) R_Eq (apply_term_ctxt ctxt t1) and related_comp : env -> comp_typ -> relation -> comp_typ -> Type0 = | Relc_typ: g:env -> t0:term -> t1:term -> eff:T.tot_or_ghost -> rel:relation -> related g t0 rel t1 -> related_comp g (eff, t0) rel (eff, t1) | Relc_total_ghost: g:env -> t:term -> related_comp g (T.E_Total, t) R_Sub (T.E_Ghost, t) | Relc_ghost_total: g:env -> t:term -> non_informative g t -> related_comp g (T.E_Ghost, t) R_Sub (T.E_Total, t) and branches_typing (g:env) (sc_u:universe) (sc_ty:typ) (sc:term) (rty:comp_typ) : (brs:list branch) -> (bnds : list (list R.binding)) -> Type0 = (* This judgement only enforces that branch_typing holds for every element of brs and its respective bnds (which must have the same length). *) | BT_Nil : branches_typing g sc_u sc_ty sc rty [] [] | BT_S : br : branch -> bnds : list R.binding -> pf : branch_typing g sc_u sc_ty sc rty br bnds -> rest_br : list branch -> rest_bnds : list (list R.binding) -> rest : branches_typing g sc_u sc_ty sc rty rest_br rest_bnds -> branches_typing g sc_u sc_ty sc rty (br :: rest_br) (bnds :: rest_bnds) and branch_typing (g:env) (sc_u:universe) (sc_ty:typ) (sc:term) (rty:comp_typ) : (br : branch) -> (bnds : list R.binding) -> Type0 = | BO : pat : pattern -> bnds : list R.binding{bindings_ok_for_pat g bnds pat} -> hyp_var:var{None? (lookup_bvar (extend_env_l g (refl_bindings_to_bindings bnds)) hyp_var)} -> body:term -> _ : squash (Some? (elaborate_pat pat bnds)) -> typing (extend_env (extend_env_l g (refl_bindings_to_bindings bnds)) hyp_var (eq2 sc_u sc_ty sc (fst (Some?.v (elaborate_pat pat bnds)))) ) body rty -> branch_typing g sc_u sc_ty sc rty (pat, close_term_bs (refl_bindings_to_bindings bnds) body) bnds and match_is_complete : env -> term -> typ -> list pattern -> list (list R.binding) -> Type0 = | MC_Tok : env:_ -> sc:_ -> ty:_ -> pats:_ -> bnds:_ -> squash (T.match_complete_token env sc ty pats bnds) -> match_is_complete env sc ty pats bnds and sub_typing (g:env) (t1 t2:term) = related g t1 R_Sub t2 and sub_comp (g:env) (c1 c2:comp_typ) = related_comp g c1 R_Sub c2 and equiv (g:env) (t1 t2:term) = related g t1 R_Eq t2 type tot_typing (g:env) (e:term) (t:term) = typing g e (T.E_Total, t) type ghost_typing (g:env) (e:term) (t:term) = typing g e (T.E_Ghost, t) val subtyping_token_renaming (g:env) (bs0:bindings) (bs1:bindings) (x:var { None? (lookup_bvar (extend_env_l g (bs1@bs0)) x) }) (y:var { None? (lookup_bvar (extend_env_l g (bs1@bs0)) y) }) (t:term) (t0 t1:term) (d:T.subtyping_token (extend_env_l g (bs1@(x,t)::bs0)) t0 t1) : T.subtyping_token (extend_env_l g (rename_bindings bs1 x y@(y,t)::bs0)) (rename t0 x y) (rename t1 x y) val subtyping_token_weakening (g:env) (bs0:bindings) (bs1:bindings) (x:var { None? (lookup_bvar (extend_env_l g (bs1@bs0)) x) }) (t:term) (t0 t1:term) (d:T.subtyping_token (extend_env_l g (bs1@bs0)) t0 t1) : T.subtyping_token (extend_env_l g (bs1@(x,t)::bs0)) t0 t1 let simplify_umax (#g:R.env) (#t:R.term) (#u:R.universe) (d:typing g t (T.E_Total, tm_type (u_max u u))) : typing g t (T.E_Total, tm_type u) = let ue : univ_eq (u_max u u) u = UN_MaxLeq u u (UNLEQ_Refl u) in let du : related g (tm_type (u_max u u)) R_Eq (tm_type u) = Rel_univ g (u_max u u) u ue in let du : related g (tm_type (u_max u u)) R_Sub (tm_type u) = Rel_equiv _ _ _ _ du in T_Sub _ _ _ _ d (Relc_typ _ _ _ T.E_Total _ du) val well_typed_terms_are_ln (g:R.env) (e:R.term) (c:comp_typ) (_:typing g e c) : Lemma (ensures ln e /\ ln (snd c)) val type_correctness (g:R.env) (e:R.term) (c:comp_typ) (_:typing g e c) : GTot (u:R.universe & typing g (snd c) (T.E_Total, tm_type u)) val binder_offset_pattern_invariant (p:pattern) (ss:subst) : Lemma (binder_offset_pattern p == binder_offset_pattern (subst_pattern p ss)) val binder_offset_patterns_invariant (p:list (pattern & bool)) (ss:subst) : Lemma (binder_offset_patterns p == binder_offset_patterns (subst_patterns p ss)) val open_close_inverse' (i:nat) (t:term { ln' t (i - 1) }) (x:var) : Lemma (ensures subst_term (subst_term t [ ND x i ]) (open_with_var x i) == t) val open_close_inverse'_binder (i:nat) (b:binder { ln'_binder b (i - 1) }) (x:var) : Lemma (ensures subst_binder (subst_binder b [ ND x i ]) (open_with_var x i) == b) val open_close_inverse'_terms (i:nat) (ts:list term { ln'_terms ts (i - 1) }) (x:var) : Lemma (ensures subst_terms (subst_terms ts [ ND x i ]) (open_with_var x i) == ts) val open_close_inverse'_comp (i:nat) (c:comp { ln'_comp c (i - 1) }) (x:var) : Lemma (ensures subst_comp (subst_comp c [ ND x i ]) (open_with_var x i) == c) val open_close_inverse'_args (i:nat) (ts:list argv { ln'_args ts (i - 1) }) (x:var) : Lemma (ensures subst_args (subst_args ts [ ND x i ]) (open_with_var x i) == ts) val open_close_inverse'_patterns (i:nat) (ps:list (pattern & bool) { ln'_patterns ps (i - 1) }) (x:var) : Lemma (ensures subst_patterns (subst_patterns ps [ ND x i ]) (open_with_var x i) == ps) val open_close_inverse'_pattern (i:nat) (p:pattern{ln'_pattern p (i - 1)}) (x:var) : Lemma (ensures subst_pattern (subst_pattern p [ ND x i ]) (open_with_var x i) == p) val open_close_inverse'_branch (i:nat) (br:branch{ln'_branch br (i - 1)}) (x:var) : Lemma (ensures subst_branch (subst_branch br [ ND x i ]) (open_with_var x i) == br) val open_close_inverse'_branches (i:nat) (brs:list branch { ln'_branches brs (i - 1) }) (x:var) : Lemma (ensures subst_branches (subst_branches brs [ ND x i ]) (open_with_var x i) == brs) val open_close_inverse'_match_returns (i:nat) (m:match_returns_ascription { ln'_match_returns m (i - 1) }) (x:var) : Lemma (ensures subst_match_returns (subst_match_returns m [ ND x i ]) (open_with_var x i) == m) val open_close_inverse (e:R.term { ln e }) (x:var) : Lemma (open_term (close_term e x) x == e) val close_open_inverse' (i:nat) (t:term) (x:var { ~(x `Set.mem` freevars t) }) : Lemma (ensures subst_term (subst_term t (open_with_var x i)) [ ND x i ] == t) val close_open_inverse'_comp (i:nat) (c:comp) (x:var{ ~(x `Set.mem` freevars_comp c) }) : Lemma (ensures subst_comp (subst_comp c (open_with_var x i)) [ ND x i ] == c) val close_open_inverse'_args (i:nat) (args:list argv) (x:var{ ~(x `Set.mem` freevars_args args) }) : Lemma (ensures subst_args (subst_args args (open_with_var x i)) [ ND x i] == args) val close_open_inverse'_binder (i:nat) (b:binder) (x:var{ ~(x `Set.mem` freevars_binder b) }) : Lemma (ensures subst_binder (subst_binder b (open_with_var x i)) [ ND x i ] == b) val close_open_inverse'_terms (i:nat) (ts:list term) (x:var{ ~(x `Set.mem` freevars_terms ts) }) : Lemma (ensures subst_terms (subst_terms ts (open_with_var x i)) [ ND x i ] == ts) val close_open_inverse'_branches (i:nat) (brs:list branch) (x:var{ ~(x `Set.mem` freevars_branches brs) }) : Lemma (ensures subst_branches (subst_branches brs (open_with_var x i)) [ ND x i ] == brs) val close_open_inverse'_branch (i:nat) (br:branch) (x:var{ ~(x `Set.mem` freevars_branch br) }) : Lemma (ensures subst_branch (subst_branch br (open_with_var x i)) [ ND x i ] == br) val close_open_inverse'_pattern (i:nat) (p:pattern) (x:var{ ~(x `Set.mem` freevars_pattern p) }) : Lemma (ensures subst_pattern (subst_pattern p (open_with_var x i)) [ ND x i ] == p) val close_open_inverse'_patterns (i:nat) (ps:list (pattern & bool)) (x:var {~ (x `Set.mem` freevars_patterns ps) }) : Lemma (ensures subst_patterns (subst_patterns ps (open_with_var x i)) [ ND x i ] == ps) val close_open_inverse'_match_returns (i:nat) (m:match_returns_ascription) (x:var{ ~(x `Set.mem` freevars_match_returns m) }) : Lemma (ensures subst_match_returns (subst_match_returns m (open_with_var x i)) [ ND x i ] == m) val close_open_inverse (e:R.term) (x:var {~ (x `Set.mem` freevars e) }) : Lemma (close_term (open_term e x) x == e) // // fst has corresponding lemmas for other syntax classes // val close_with_not_free_var (t:R.term) (x:var) (i:nat) : Lemma (requires ~ (Set.mem x (freevars t))) (ensures subst_term t [ ND x i ] == t) // this also requires x to be not in freevars e1 `Set.union` freevars e2 val equiv_arrow (#g:R.env) (#e1 #e2:R.term) (ty:R.typ) (q:R.aqualv) (x:var { None? (lookup_bvar g x) }) (eq:equiv (extend_env g x ty) (subst_term e1 (open_with_var x 0)) (subst_term e2 (open_with_var x 0))) : equiv g (mk_arrow ty q e1) (mk_arrow ty q e2) // the proof for this requires e1 and e2 to be ln val equiv_abs_close (#g:R.env) (#e1 #e2:R.term) (ty:R.typ) (q:R.aqualv) (x:var{None? (lookup_bvar g x)}) (eq:equiv (extend_env g x ty) e1 e2) : equiv g (mk_abs ty q (subst_term e1 [ ND x 0 ])) (mk_abs ty q (subst_term e2 [ ND x 0 ])) val open_with_gt_ln (e:term) (i:nat) (t:term) (j:nat) : Lemma (requires ln' e i /\ i < j) (ensures subst_term e [ DT j t ] == e) [SMTPat (ln' e i); SMTPat (subst_term e [ DT j t ])] // // Type of the top-level tactic that would splice-in the definitions // let fstar_env_fvs (g:R.env) = lookup_fvar g unit_fv == Some (tm_type u_zero) /\ lookup_fvar g bool_fv == Some (tm_type u_zero) /\ lookup_fvar g b2t_fv == Some b2t_ty type fstar_env = g:R.env{fstar_env_fvs g} type fstar_top_env = g:fstar_env { forall x. None? (lookup_bvar g x ) } // // This doesn't allow for universe polymorphic definitions // // May be we can change it to: // // g:fstar_top_env -> T.tac ((us, e, t):(univ_names & term & typ){typing (push g us) e t}) // noeq type sigelt_typing : env -> sigelt -> Type0 = | ST_Let : g : env -> fv : R.fv -> ty : R.typ -> tm : R.term -> squash (typing g tm (T.E_Total, ty)) -> sigelt_typing g (pack_sigelt (Sg_Let false [pack_lb ({ lb_fv = fv; lb_us = []; lb_typ = ty; lb_def = tm })])) | ST_Let_Opaque : g : env -> fv : R.fv -> ty : R.typ -> (* no tm: only a proof of existence *) squash (exists (tm:R.term). typing g tm (T.E_Total, ty)) -> sigelt_typing g (pack_sigelt (Sg_Let false [pack_lb ({ lb_fv = fv; lb_us = []; lb_typ = ty; lb_def = (`_) })])) (** * The type of the top-level tactic that would splice-in the definitions. * It returns a list of well typed definitions, via the judgment above. * * Each definition can have a 'blob' attached with a given name. * The blob can be used later, e.g., during extraction, and passed back to the * extension to perform additional processing. *) (* * It returns either: * - Some tm, blob, typ, with a proof that `typing g tm typ` * - None, blob, typ), with a proof that `exists tm. typing g tm typ` * The blob itself is optional and can store some additional metadata that * constructed by the tactic. If present, it will be stored in the * sigmeta_extension_data field of the enclosing sigelt. * *) let blob = string & R.term (* If checked is true, this sigelt is properly typed for the environment. If not, we don't know and let F* re-typecheck the sigelt. *)
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val sigelt_for : g: FStar.Reflection.Types.env -> Type0
[]
FStar.Reflection.Typing.sigelt_for
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
g: FStar.Reflection.Types.env -> Type0
{ "end_col": 3, "end_line": 1801, "start_col": 2, "start_line": 1797 }
Prims.Tot
val b2t_ty:R.term
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero)))
val b2t_ty:R.term let b2t_ty:R.term =
false
null
false
R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero)))
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.V2.Builtins.pack_ln", "FStar.Reflection.V2.Data.Tv_Arrow", "FStar.Reflection.Typing.mk_binder", "FStar.Sealed.seal", "Prims.string", "FStar.Reflection.Typing.bool_ty", "FStar.Reflection.V2.Data.Q_Explicit", "FStar.Reflection.Typing.mk_total", "FStar.Reflection.Typing.tm_type", "FStar.Reflection.Typing.u_zero" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"]
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val b2t_ty:R.term
[]
FStar.Reflection.Typing.b2t_ty
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
FStar.Reflection.Types.term
{ "end_col": 114, "end_line": 559, "start_col": 22, "start_line": 559 }
Prims.Tot
val freevars_opt (#a: Type0) (o: option a) (f: (x: a{x << o} -> FStar.Set.set var)) : FStar.Set.set var
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_
val freevars_opt (#a: Type0) (o: option a) (f: (x: a{x << o} -> FStar.Set.set var)) : FStar.Set.set var let rec freevars_opt (#a: Type0) (o: option a) (f: (x: a{x << o} -> FStar.Set.set var)) : FStar.Set.set var =
false
null
false
match o with | None -> Set.empty | Some x -> f x
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Pervasives.Native.option", "Prims.precedes", "FStar.Set.set", "FStar.Reflection.V2.Data.var", "FStar.Set.empty" ]
[ "freevars", "freevars_opt", "freevars_comp", "freevars_args", "freevars_terms", "freevars_binder", "freevars_pattern", "freevars_patterns", "freevars_branch", "freevars_branches", "freevars_match_returns" ]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var))
false
false
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val freevars_opt (#a: Type0) (o: option a) (f: (x: a{x << o} -> FStar.Set.set var)) : FStar.Set.set var
[ "mutual recursion" ]
FStar.Reflection.Typing.freevars_opt
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
o: FStar.Pervasives.Native.option a -> f: (x: a{x << o} -> FStar.Set.set FStar.Reflection.V2.Data.var) -> FStar.Set.set FStar.Reflection.V2.Data.var
{ "end_col": 19, "end_line": 620, "start_col": 4, "start_line": 618 }
Prims.Tot
val apply_term_ctxt (e: term_ctxt) (t: term) : Tot term (decreases e)
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) = match e with | Ctxt_hole -> t | Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg) | Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q))
val apply_term_ctxt (e: term_ctxt) (t: term) : Tot term (decreases e) let rec apply_term_ctxt (e: term_ctxt) (t: term) : Tot term (decreases e) =
false
null
false
match e with | Ctxt_hole -> t | Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg) | Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q))
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total", "" ]
[ "FStar.Reflection.Typing.term_ctxt", "FStar.Reflection.Types.term", "FStar.Reflection.V2.Data.argv", "FStar.Reflection.V2.Builtins.pack_ln", "FStar.Reflection.V2.Data.Tv_App", "FStar.Reflection.Typing.apply_term_ctxt", "FStar.Reflection.V2.Data.aqualv", "FStar.Pervasives.Native.Mktuple2" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_ let ln (t:term) = ln' t (-1) let ln_comp (c:comp) = ln'_comp c (-1) // // term_ctxt is used to define the equiv relation later, // basically putting two equiv terms in a hole gives equiv terms // // The abs, arrow, refine, and let cases don't seem right here, // since to prove their equiv, we need to extend gamma for their bodies // // If this is useful only for app, then may be we should remove it, // and add app rules to the equiv relation itself [@@ no_auto_projectors] noeq type term_ctxt = | Ctxt_hole : term_ctxt | Ctxt_app_head : term_ctxt -> argv -> term_ctxt | Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt // | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt // | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt // | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt // | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt // | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt // | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt // | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt // | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt // | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt // | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt // and bv_ctxt = // | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt // and binder_ctxt = // | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt // and comp_ctxt = // | Ctxt_total : term_ctxt -> comp_ctxt // | Ctxt_gtotal : term_ctxt -> comp_ctxt
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val apply_term_ctxt (e: term_ctxt) (t: term) : Tot term (decreases e)
[ "recursion" ]
FStar.Reflection.Typing.apply_term_ctxt
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
e: FStar.Reflection.Typing.term_ctxt -> t: FStar.Reflection.Types.term -> Prims.Tot FStar.Reflection.Types.term
{ "end_col": 71, "end_line": 902, "start_col": 2, "start_line": 899 }
Prims.Tot
val is_non_informative_name (l: name) : bool
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let is_non_informative_name (l:name) : bool = l = R.unit_lid || l = R.squash_qn || l = ["FStar"; "Ghost"; "erased"]
val is_non_informative_name (l: name) : bool let is_non_informative_name (l: name) : bool =
false
null
false
l = R.unit_lid || l = R.squash_qn || l = ["FStar"; "Ghost"; "erased"]
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.Types.name", "Prims.op_BarBar", "Prims.op_Equality", "Prims.list", "Prims.string", "FStar.Reflection.Const.unit_lid", "FStar.Reflection.Const.squash_qn", "Prims.Cons", "Prims.Nil", "Prims.bool" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_ let ln (t:term) = ln' t (-1) let ln_comp (c:comp) = ln'_comp c (-1) // // term_ctxt is used to define the equiv relation later, // basically putting two equiv terms in a hole gives equiv terms // // The abs, arrow, refine, and let cases don't seem right here, // since to prove their equiv, we need to extend gamma for their bodies // // If this is useful only for app, then may be we should remove it, // and add app rules to the equiv relation itself [@@ no_auto_projectors] noeq type term_ctxt = | Ctxt_hole : term_ctxt | Ctxt_app_head : term_ctxt -> argv -> term_ctxt | Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt // | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt // | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt // | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt // | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt // | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt // | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt // | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt // | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt // | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt // | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt // and bv_ctxt = // | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt // and binder_ctxt = // | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt // and comp_ctxt = // | Ctxt_total : term_ctxt -> comp_ctxt // | Ctxt_gtotal : term_ctxt -> comp_ctxt let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) = match e with | Ctxt_hole -> t | Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg) | Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q)) // | Ctxt_abs_binder b body -> pack_ln (Tv_Abs (apply_binder_ctxt b t) body) // | Ctxt_abs_body b e -> pack_ln (Tv_Abs b (apply_term_ctxt e t)) // | Ctxt_arrow_binder b c -> pack_ln (Tv_Arrow (apply_binder_ctxt b t) c) // | Ctxt_arrow_comp b c -> pack_ln (Tv_Arrow b (apply_comp_ctxt c t)) // | Ctxt_refine_sort b sort phi -> pack_ln (Tv_Refine b (apply_term_ctxt sort t) phi) // | Ctxt_refine_ref b sort phi -> pack_ln (Tv_Refine b sort (apply_term_ctxt phi t)) // | Ctxt_let_sort b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv (apply_term_ctxt sort t) def body) // | Ctxt_let_def b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort (apply_term_ctxt def t) body) // | Ctxt_let_body b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort def (apply_term_ctxt body t)) // | Ctxt_match_scrutinee sc ret brs -> // pack_ln (Tv_Match (apply_term_ctxt sc t) ret brs) // and apply_binder_ctxt (b:binder_ctxt) (t:term) : Tot binder (decreases b) = // let Ctxt_binder binder_bv binder_qual binder_attrs ctxt = b in // pack_binder {binder_bv; binder_qual; binder_attrs; binder_sort=apply_term_ctxt ctxt t} // and apply_comp_ctxt (c:comp_ctxt) (t:term) : Tot comp (decreases c) = // match c with // | Ctxt_total e -> pack_comp (C_Total (apply_term_ctxt e t)) // | Ctxt_gtotal e -> pack_comp (C_GTotal (apply_term_ctxt e t)) noeq type constant_typing: vconst -> term -> Type0 = | CT_Unit: constant_typing C_Unit unit_ty | CT_True: constant_typing C_True bool_ty | CT_False: constant_typing C_False bool_ty [@@ no_auto_projectors] noeq type univ_eq : universe -> universe -> Type0 = | UN_Refl : u:universe -> univ_eq u u | UN_MaxCongL : u:universe -> u':universe -> v:universe -> univ_eq u u' -> univ_eq (u_max u v) (u_max u' v) | UN_MaxCongR : u:universe -> v:universe -> v':universe -> univ_eq v v' -> univ_eq (u_max u v) (u_max u v') | UN_MaxComm: u:universe -> v:universe -> univ_eq (u_max u v) (u_max v u) | UN_MaxLeq: u:universe -> v:universe -> univ_leq u v -> univ_eq (u_max u v) v and univ_leq : universe -> universe -> Type0 = | UNLEQ_Refl: u:universe -> univ_leq u u | UNLEQ_Succ: u:universe -> v:universe -> univ_leq u v -> univ_leq u (u_succ v) | UNLEQ_Max: u:universe -> v:universe -> univ_leq u (u_max u v) let mk_if (scrutinee then_ else_:R.term) : R.term = pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_); (Pat_Constant C_False, else_)]) // effect and type type comp_typ = T.tot_or_ghost & typ let close_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) [ ND x i ] let close_comp_typ (c:comp_typ) (x:var) = close_comp_typ' c x 0 let open_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) (open_with_var x i) let open_comp_typ (c:comp_typ) (x:var) = open_comp_typ' c x 0 let freevars_comp_typ (c:comp_typ) = freevars (snd c) let mk_comp (c:comp_typ) : R.comp = match fst c with | T.E_Total -> mk_total (snd c) | T.E_Ghost -> mk_ghost (snd c) let mk_arrow_ct ty qual (c:comp_typ) : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_comp c)) type relation = | R_Eq | R_Sub let binding = var & term let bindings = list binding let rename_bindings bs x y = FStar.List.Tot.map (fun (v, t) -> (v, rename t x y)) bs let rec extend_env_l (g:env) (bs:bindings) : env = match bs with | [] -> g | (x,t)::bs -> extend_env (extend_env_l g bs) x t // // TODO: support for erasable attribute //
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val is_non_informative_name (l: name) : bool
[]
FStar.Reflection.Typing.is_non_informative_name
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
l: FStar.Reflection.Types.name -> Prims.bool
{ "end_col": 34, "end_line": 1033, "start_col": 2, "start_line": 1031 }
Prims.Tot
val mk_comp (c: comp_typ) : R.comp
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mk_comp (c:comp_typ) : R.comp = match fst c with | T.E_Total -> mk_total (snd c) | T.E_Ghost -> mk_ghost (snd c)
val mk_comp (c: comp_typ) : R.comp let mk_comp (c: comp_typ) : R.comp =
false
null
false
match fst c with | T.E_Total -> mk_total (snd c) | T.E_Ghost -> mk_ghost (snd c)
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "FStar.Reflection.Typing.comp_typ", "FStar.Pervasives.Native.fst", "FStar.Stubs.TypeChecker.Core.tot_or_ghost", "FStar.Reflection.Types.typ", "FStar.Reflection.Typing.mk_total", "FStar.Pervasives.Native.snd", "FStar.Reflection.Typing.mk_ghost", "FStar.Reflection.Types.comp" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_ let ln (t:term) = ln' t (-1) let ln_comp (c:comp) = ln'_comp c (-1) // // term_ctxt is used to define the equiv relation later, // basically putting two equiv terms in a hole gives equiv terms // // The abs, arrow, refine, and let cases don't seem right here, // since to prove their equiv, we need to extend gamma for their bodies // // If this is useful only for app, then may be we should remove it, // and add app rules to the equiv relation itself [@@ no_auto_projectors] noeq type term_ctxt = | Ctxt_hole : term_ctxt | Ctxt_app_head : term_ctxt -> argv -> term_ctxt | Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt // | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt // | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt // | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt // | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt // | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt // | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt // | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt // | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt // | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt // | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt // and bv_ctxt = // | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt // and binder_ctxt = // | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt // and comp_ctxt = // | Ctxt_total : term_ctxt -> comp_ctxt // | Ctxt_gtotal : term_ctxt -> comp_ctxt let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) = match e with | Ctxt_hole -> t | Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg) | Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q)) // | Ctxt_abs_binder b body -> pack_ln (Tv_Abs (apply_binder_ctxt b t) body) // | Ctxt_abs_body b e -> pack_ln (Tv_Abs b (apply_term_ctxt e t)) // | Ctxt_arrow_binder b c -> pack_ln (Tv_Arrow (apply_binder_ctxt b t) c) // | Ctxt_arrow_comp b c -> pack_ln (Tv_Arrow b (apply_comp_ctxt c t)) // | Ctxt_refine_sort b sort phi -> pack_ln (Tv_Refine b (apply_term_ctxt sort t) phi) // | Ctxt_refine_ref b sort phi -> pack_ln (Tv_Refine b sort (apply_term_ctxt phi t)) // | Ctxt_let_sort b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv (apply_term_ctxt sort t) def body) // | Ctxt_let_def b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort (apply_term_ctxt def t) body) // | Ctxt_let_body b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort def (apply_term_ctxt body t)) // | Ctxt_match_scrutinee sc ret brs -> // pack_ln (Tv_Match (apply_term_ctxt sc t) ret brs) // and apply_binder_ctxt (b:binder_ctxt) (t:term) : Tot binder (decreases b) = // let Ctxt_binder binder_bv binder_qual binder_attrs ctxt = b in // pack_binder {binder_bv; binder_qual; binder_attrs; binder_sort=apply_term_ctxt ctxt t} // and apply_comp_ctxt (c:comp_ctxt) (t:term) : Tot comp (decreases c) = // match c with // | Ctxt_total e -> pack_comp (C_Total (apply_term_ctxt e t)) // | Ctxt_gtotal e -> pack_comp (C_GTotal (apply_term_ctxt e t)) noeq type constant_typing: vconst -> term -> Type0 = | CT_Unit: constant_typing C_Unit unit_ty | CT_True: constant_typing C_True bool_ty | CT_False: constant_typing C_False bool_ty [@@ no_auto_projectors] noeq type univ_eq : universe -> universe -> Type0 = | UN_Refl : u:universe -> univ_eq u u | UN_MaxCongL : u:universe -> u':universe -> v:universe -> univ_eq u u' -> univ_eq (u_max u v) (u_max u' v) | UN_MaxCongR : u:universe -> v:universe -> v':universe -> univ_eq v v' -> univ_eq (u_max u v) (u_max u v') | UN_MaxComm: u:universe -> v:universe -> univ_eq (u_max u v) (u_max v u) | UN_MaxLeq: u:universe -> v:universe -> univ_leq u v -> univ_eq (u_max u v) v and univ_leq : universe -> universe -> Type0 = | UNLEQ_Refl: u:universe -> univ_leq u u | UNLEQ_Succ: u:universe -> v:universe -> univ_leq u v -> univ_leq u (u_succ v) | UNLEQ_Max: u:universe -> v:universe -> univ_leq u (u_max u v) let mk_if (scrutinee then_ else_:R.term) : R.term = pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_); (Pat_Constant C_False, else_)]) // effect and type type comp_typ = T.tot_or_ghost & typ let close_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) [ ND x i ] let close_comp_typ (c:comp_typ) (x:var) = close_comp_typ' c x 0 let open_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) (open_with_var x i) let open_comp_typ (c:comp_typ) (x:var) = open_comp_typ' c x 0 let freevars_comp_typ (c:comp_typ) = freevars (snd c)
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mk_comp (c: comp_typ) : R.comp
[]
FStar.Reflection.Typing.mk_comp
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
c: FStar.Reflection.Typing.comp_typ -> FStar.Reflection.Types.comp
{ "end_col": 33, "end_line": 1008, "start_col": 2, "start_line": 1006 }
Prims.Tot
val bindings_to_refl_bindings (bs: list binding) : list R.binding
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bindings_to_refl_bindings (bs : list binding) : list R.binding = L.map (fun (v, ty) -> {uniq=v; sort=ty; ppname = pp_name_default}) bs
val bindings_to_refl_bindings (bs: list binding) : list R.binding let bindings_to_refl_bindings (bs: list binding) : list R.binding =
false
null
false
L.map (fun (v, ty) -> { uniq = v; sort = ty; ppname = pp_name_default }) bs
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[ "total" ]
[ "Prims.list", "FStar.Reflection.Typing.binding", "FStar.List.Tot.Base.map", "FStar.Pervasives.Native.tuple2", "Prims.nat", "FStar.Reflection.Types.typ", "FStar.Reflection.V2.Data.binding", "FStar.Reflection.V2.Data.Mkbinding", "FStar.Reflection.Typing.pp_name_default" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_ let ln (t:term) = ln' t (-1) let ln_comp (c:comp) = ln'_comp c (-1) // // term_ctxt is used to define the equiv relation later, // basically putting two equiv terms in a hole gives equiv terms // // The abs, arrow, refine, and let cases don't seem right here, // since to prove their equiv, we need to extend gamma for their bodies // // If this is useful only for app, then may be we should remove it, // and add app rules to the equiv relation itself [@@ no_auto_projectors] noeq type term_ctxt = | Ctxt_hole : term_ctxt | Ctxt_app_head : term_ctxt -> argv -> term_ctxt | Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt // | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt // | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt // | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt // | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt // | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt // | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt // | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt // | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt // | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt // | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt // and bv_ctxt = // | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt // and binder_ctxt = // | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt // and comp_ctxt = // | Ctxt_total : term_ctxt -> comp_ctxt // | Ctxt_gtotal : term_ctxt -> comp_ctxt let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) = match e with | Ctxt_hole -> t | Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg) | Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q)) // | Ctxt_abs_binder b body -> pack_ln (Tv_Abs (apply_binder_ctxt b t) body) // | Ctxt_abs_body b e -> pack_ln (Tv_Abs b (apply_term_ctxt e t)) // | Ctxt_arrow_binder b c -> pack_ln (Tv_Arrow (apply_binder_ctxt b t) c) // | Ctxt_arrow_comp b c -> pack_ln (Tv_Arrow b (apply_comp_ctxt c t)) // | Ctxt_refine_sort b sort phi -> pack_ln (Tv_Refine b (apply_term_ctxt sort t) phi) // | Ctxt_refine_ref b sort phi -> pack_ln (Tv_Refine b sort (apply_term_ctxt phi t)) // | Ctxt_let_sort b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv (apply_term_ctxt sort t) def body) // | Ctxt_let_def b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort (apply_term_ctxt def t) body) // | Ctxt_let_body b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort def (apply_term_ctxt body t)) // | Ctxt_match_scrutinee sc ret brs -> // pack_ln (Tv_Match (apply_term_ctxt sc t) ret brs) // and apply_binder_ctxt (b:binder_ctxt) (t:term) : Tot binder (decreases b) = // let Ctxt_binder binder_bv binder_qual binder_attrs ctxt = b in // pack_binder {binder_bv; binder_qual; binder_attrs; binder_sort=apply_term_ctxt ctxt t} // and apply_comp_ctxt (c:comp_ctxt) (t:term) : Tot comp (decreases c) = // match c with // | Ctxt_total e -> pack_comp (C_Total (apply_term_ctxt e t)) // | Ctxt_gtotal e -> pack_comp (C_GTotal (apply_term_ctxt e t)) noeq type constant_typing: vconst -> term -> Type0 = | CT_Unit: constant_typing C_Unit unit_ty | CT_True: constant_typing C_True bool_ty | CT_False: constant_typing C_False bool_ty [@@ no_auto_projectors] noeq type univ_eq : universe -> universe -> Type0 = | UN_Refl : u:universe -> univ_eq u u | UN_MaxCongL : u:universe -> u':universe -> v:universe -> univ_eq u u' -> univ_eq (u_max u v) (u_max u' v) | UN_MaxCongR : u:universe -> v:universe -> v':universe -> univ_eq v v' -> univ_eq (u_max u v) (u_max u v') | UN_MaxComm: u:universe -> v:universe -> univ_eq (u_max u v) (u_max v u) | UN_MaxLeq: u:universe -> v:universe -> univ_leq u v -> univ_eq (u_max u v) v and univ_leq : universe -> universe -> Type0 = | UNLEQ_Refl: u:universe -> univ_leq u u | UNLEQ_Succ: u:universe -> v:universe -> univ_leq u v -> univ_leq u (u_succ v) | UNLEQ_Max: u:universe -> v:universe -> univ_leq u (u_max u v) let mk_if (scrutinee then_ else_:R.term) : R.term = pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_); (Pat_Constant C_False, else_)]) // effect and type type comp_typ = T.tot_or_ghost & typ let close_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) [ ND x i ] let close_comp_typ (c:comp_typ) (x:var) = close_comp_typ' c x 0 let open_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) (open_with_var x i) let open_comp_typ (c:comp_typ) (x:var) = open_comp_typ' c x 0 let freevars_comp_typ (c:comp_typ) = freevars (snd c) let mk_comp (c:comp_typ) : R.comp = match fst c with | T.E_Total -> mk_total (snd c) | T.E_Ghost -> mk_ghost (snd c) let mk_arrow_ct ty qual (c:comp_typ) : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_comp c)) type relation = | R_Eq | R_Sub let binding = var & term let bindings = list binding let rename_bindings bs x y = FStar.List.Tot.map (fun (v, t) -> (v, rename t x y)) bs let rec extend_env_l (g:env) (bs:bindings) : env = match bs with | [] -> g | (x,t)::bs -> extend_env (extend_env_l g bs) x t // // TODO: support for erasable attribute // let is_non_informative_name (l:name) : bool = l = R.unit_lid || l = R.squash_qn || l = ["FStar"; "Ghost"; "erased"] let is_non_informative_fv (f:fv) : bool = is_non_informative_name (inspect_fv f) let rec __close_term_vs (i:nat) (vs : list var) (t : term) : Tot term (decreases vs) = match vs with | [] -> t | v::vs -> subst_term (__close_term_vs (i+1) vs t) [ND v i] let close_term_vs (vs : list var) (t : term) : term = __close_term_vs 0 vs t let close_term_bs (bs : list binding) (t : term) : term = close_term_vs (List.Tot.map fst bs) t
false
true
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bindings_to_refl_bindings (bs: list binding) : list R.binding
[]
FStar.Reflection.Typing.bindings_to_refl_bindings
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
bs: Prims.list FStar.Reflection.Typing.binding -> Prims.list FStar.Reflection.V2.Data.binding
{ "end_col": 71, "end_line": 1051, "start_col": 2, "start_line": 1051 }
FStar.Tactics.Effect.Tac
val mk_checked_let (g: R.env) (nm: string) (tm: R.term) (ty: R.typ{typing g tm (T.E_Total, ty)}) : T.Tac (sigelt_for g)
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mk_checked_let (g:R.env) (nm:string) (tm:R.term) (ty:R.typ{typing g tm (T.E_Total, ty)}) : T.Tac (sigelt_for g) = let fv = pack_fv (T.cur_module () @ [nm]) in let lb = R.pack_lb ({ lb_fv = fv; lb_us = []; lb_typ = ty; lb_def = tm }) in let se = R.pack_sigelt (R.Sg_Let false [lb]) in let pf : sigelt_typing g se = ST_Let g fv ty tm () in ( true, se, None )
val mk_checked_let (g: R.env) (nm: string) (tm: R.term) (ty: R.typ{typing g tm (T.E_Total, ty)}) : T.Tac (sigelt_for g) let mk_checked_let (g: R.env) (nm: string) (tm: R.term) (ty: R.typ{typing g tm (T.E_Total, ty)}) : T.Tac (sigelt_for g) =
true
null
false
let fv = pack_fv (T.cur_module () @ [nm]) in let lb = R.pack_lb ({ lb_fv = fv; lb_us = []; lb_typ = ty; lb_def = tm }) in let se = R.pack_sigelt (R.Sg_Let false [lb]) in let pf:sigelt_typing g se = ST_Let g fv ty tm () in (true, se, None)
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[]
[ "FStar.Reflection.Types.env", "Prims.string", "FStar.Reflection.Types.term", "FStar.Reflection.Types.typ", "FStar.Reflection.Typing.typing", "FStar.Pervasives.Native.Mktuple2", "FStar.Stubs.TypeChecker.Core.tot_or_ghost", "FStar.Stubs.TypeChecker.Core.E_Total", "FStar.Pervasives.Native.Mktuple3", "Prims.bool", "FStar.Reflection.Types.sigelt", "FStar.Pervasives.Native.option", "FStar.Reflection.Typing.blob", "FStar.Pervasives.Native.None", "FStar.Reflection.Typing.sigelt_typing", "FStar.Reflection.Typing.ST_Let", "FStar.Reflection.V2.Builtins.pack_sigelt", "FStar.Reflection.V2.Data.Sg_Let", "Prims.Cons", "FStar.Reflection.Types.letbinding", "Prims.Nil", "FStar.Reflection.V2.Builtins.pack_lb", "FStar.Reflection.V2.Data.Mklb_view", "FStar.Reflection.Types.univ_name", "FStar.Reflection.Typing.sigelt_for", "FStar.Reflection.Types.fv", "FStar.Reflection.V2.Builtins.pack_fv", "FStar.Reflection.Types.name", "FStar.List.Tot.Base.op_At", "Prims.list", "FStar.Tactics.V2.Derived.cur_module" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_ let ln (t:term) = ln' t (-1) let ln_comp (c:comp) = ln'_comp c (-1) // // term_ctxt is used to define the equiv relation later, // basically putting two equiv terms in a hole gives equiv terms // // The abs, arrow, refine, and let cases don't seem right here, // since to prove their equiv, we need to extend gamma for their bodies // // If this is useful only for app, then may be we should remove it, // and add app rules to the equiv relation itself [@@ no_auto_projectors] noeq type term_ctxt = | Ctxt_hole : term_ctxt | Ctxt_app_head : term_ctxt -> argv -> term_ctxt | Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt // | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt // | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt // | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt // | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt // | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt // | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt // | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt // | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt // | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt // | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt // and bv_ctxt = // | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt // and binder_ctxt = // | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt // and comp_ctxt = // | Ctxt_total : term_ctxt -> comp_ctxt // | Ctxt_gtotal : term_ctxt -> comp_ctxt let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) = match e with | Ctxt_hole -> t | Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg) | Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q)) // | Ctxt_abs_binder b body -> pack_ln (Tv_Abs (apply_binder_ctxt b t) body) // | Ctxt_abs_body b e -> pack_ln (Tv_Abs b (apply_term_ctxt e t)) // | Ctxt_arrow_binder b c -> pack_ln (Tv_Arrow (apply_binder_ctxt b t) c) // | Ctxt_arrow_comp b c -> pack_ln (Tv_Arrow b (apply_comp_ctxt c t)) // | Ctxt_refine_sort b sort phi -> pack_ln (Tv_Refine b (apply_term_ctxt sort t) phi) // | Ctxt_refine_ref b sort phi -> pack_ln (Tv_Refine b sort (apply_term_ctxt phi t)) // | Ctxt_let_sort b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv (apply_term_ctxt sort t) def body) // | Ctxt_let_def b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort (apply_term_ctxt def t) body) // | Ctxt_let_body b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort def (apply_term_ctxt body t)) // | Ctxt_match_scrutinee sc ret brs -> // pack_ln (Tv_Match (apply_term_ctxt sc t) ret brs) // and apply_binder_ctxt (b:binder_ctxt) (t:term) : Tot binder (decreases b) = // let Ctxt_binder binder_bv binder_qual binder_attrs ctxt = b in // pack_binder {binder_bv; binder_qual; binder_attrs; binder_sort=apply_term_ctxt ctxt t} // and apply_comp_ctxt (c:comp_ctxt) (t:term) : Tot comp (decreases c) = // match c with // | Ctxt_total e -> pack_comp (C_Total (apply_term_ctxt e t)) // | Ctxt_gtotal e -> pack_comp (C_GTotal (apply_term_ctxt e t)) noeq type constant_typing: vconst -> term -> Type0 = | CT_Unit: constant_typing C_Unit unit_ty | CT_True: constant_typing C_True bool_ty | CT_False: constant_typing C_False bool_ty [@@ no_auto_projectors] noeq type univ_eq : universe -> universe -> Type0 = | UN_Refl : u:universe -> univ_eq u u | UN_MaxCongL : u:universe -> u':universe -> v:universe -> univ_eq u u' -> univ_eq (u_max u v) (u_max u' v) | UN_MaxCongR : u:universe -> v:universe -> v':universe -> univ_eq v v' -> univ_eq (u_max u v) (u_max u v') | UN_MaxComm: u:universe -> v:universe -> univ_eq (u_max u v) (u_max v u) | UN_MaxLeq: u:universe -> v:universe -> univ_leq u v -> univ_eq (u_max u v) v and univ_leq : universe -> universe -> Type0 = | UNLEQ_Refl: u:universe -> univ_leq u u | UNLEQ_Succ: u:universe -> v:universe -> univ_leq u v -> univ_leq u (u_succ v) | UNLEQ_Max: u:universe -> v:universe -> univ_leq u (u_max u v) let mk_if (scrutinee then_ else_:R.term) : R.term = pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_); (Pat_Constant C_False, else_)]) // effect and type type comp_typ = T.tot_or_ghost & typ let close_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) [ ND x i ] let close_comp_typ (c:comp_typ) (x:var) = close_comp_typ' c x 0 let open_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) (open_with_var x i) let open_comp_typ (c:comp_typ) (x:var) = open_comp_typ' c x 0 let freevars_comp_typ (c:comp_typ) = freevars (snd c) let mk_comp (c:comp_typ) : R.comp = match fst c with | T.E_Total -> mk_total (snd c) | T.E_Ghost -> mk_ghost (snd c) let mk_arrow_ct ty qual (c:comp_typ) : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_comp c)) type relation = | R_Eq | R_Sub let binding = var & term let bindings = list binding let rename_bindings bs x y = FStar.List.Tot.map (fun (v, t) -> (v, rename t x y)) bs let rec extend_env_l (g:env) (bs:bindings) : env = match bs with | [] -> g | (x,t)::bs -> extend_env (extend_env_l g bs) x t // // TODO: support for erasable attribute // let is_non_informative_name (l:name) : bool = l = R.unit_lid || l = R.squash_qn || l = ["FStar"; "Ghost"; "erased"] let is_non_informative_fv (f:fv) : bool = is_non_informative_name (inspect_fv f) let rec __close_term_vs (i:nat) (vs : list var) (t : term) : Tot term (decreases vs) = match vs with | [] -> t | v::vs -> subst_term (__close_term_vs (i+1) vs t) [ND v i] let close_term_vs (vs : list var) (t : term) : term = __close_term_vs 0 vs t let close_term_bs (bs : list binding) (t : term) : term = close_term_vs (List.Tot.map fst bs) t let bindings_to_refl_bindings (bs : list binding) : list R.binding = L.map (fun (v, ty) -> {uniq=v; sort=ty; ppname = pp_name_default}) bs let refl_bindings_to_bindings (bs : list R.binding) : list binding = L.map (fun b -> b.uniq, b.sort) bs [@@ no_auto_projectors] noeq type non_informative : env -> term -> Type0 = | Non_informative_type: g:env -> u:universe -> non_informative g (pack_ln (Tv_Type u)) | Non_informative_fv: g:env -> x:fv{is_non_informative_fv x} -> non_informative g (pack_ln (Tv_FVar x)) | Non_informative_uinst: g:env -> x:fv{is_non_informative_fv x} -> us:list universe -> non_informative g (pack_ln (Tv_UInst x us)) | Non_informative_app: g:env -> t:term -> arg:argv -> non_informative g t -> non_informative g (pack_ln (Tv_App t arg)) | Non_informative_total_arrow: g:env -> t0:term -> q:aqualv -> t1:term -> non_informative g t1 -> non_informative g (mk_arrow_ct t0 q (T.E_Total, t1)) | Non_informative_ghost_arrow: g:env -> t0:term -> q:aqualv -> t1:term -> non_informative g (mk_arrow_ct t0 q (T.E_Ghost, t1)) | Non_informative_token: g:env -> t:typ -> squash (T.non_informative_token g t) -> non_informative g t val bindings_ok_for_pat : env -> list R.binding -> pattern -> Type0 val bindings_ok_pat_constant : g:env -> c:R.vconst -> Lemma (bindings_ok_for_pat g [] (Pat_Constant c)) let bindings_ok_for_branch (g:env) (bs : list R.binding) (br : branch) : Type0 = bindings_ok_for_pat g bs (fst br) let bindings_ok_for_branch_N (g:env) (bss : list (list R.binding)) (brs : list branch) = zip2prop (bindings_ok_for_branch g) bss brs let binding_to_namedv (b:R.binding) : Tot namedv = pack_namedv { RD.uniq = b.uniq; RD.sort = seal b.sort; RD.ppname = b.ppname; } (* Elaborates the p pattern into a term, using the bs bindings for the pattern variables. The resulting term is properly scoped only on an environment which contains all of bs. See for instance the branch_typing judg. Returns an option, since this can fail if e.g. there are not enough bindings, and returns the list of unused binders as well, which should be empty if the list of binding was indeed ok. *) let rec elaborate_pat (p : pattern) (bs : list R.binding) : Tot (option (term & list R.binding)) (decreases p) = match p, bs with | Pat_Constant c, _ -> Some (pack_ln (Tv_Const c), bs) | Pat_Cons fv univs subpats, bs -> let head = pack_ln (Tv_FVar fv) in fold_left_dec (Some (head, bs)) subpats (fun st pi -> let (p,i) = pi in match st with | None -> None | Some (head, bs) -> match elaborate_pat p bs with | None -> None | Some (t, bs') -> Some (pack_ln (Tv_App head (t, (if i then Q_Implicit else Q_Explicit))), bs')) | Pat_Var _ _, b::bs -> Some (pack_ln (Tv_Var (binding_to_namedv b)), bs) | Pat_Dot_Term (Some t), _ -> Some (t, bs) | Pat_Dot_Term None, _ -> None | _ -> None [@@ no_auto_projectors] noeq type typing : env -> term -> comp_typ -> Type0 = | T_Token : g:env -> e:term -> c:comp_typ -> squash (T.typing_token g e c) -> typing g e c | T_Var : g:env -> x:namedv { Some? (lookup_bvar g (namedv_uniq x)) } -> typing g (pack_ln (Tv_Var x)) (T.E_Total, Some?.v (lookup_bvar g (namedv_uniq x))) | T_FVar : g:env -> x:fv { Some? (lookup_fvar g x) } -> typing g (pack_ln (Tv_FVar x)) (T.E_Total, Some?.v (lookup_fvar g x)) | T_UInst : g:env -> x:fv -> us:list universe { Some? (lookup_fvar_uinst g x us) } -> typing g (pack_ln (Tv_UInst x us)) (T.E_Total, Some?.v (lookup_fvar_uinst g x us)) | T_Const: g:env -> v:vconst -> t:term -> constant_typing v t -> typing g (constant_as_term v) (T.E_Total, t) | T_Abs : g:env -> x:var { None? (lookup_bvar g x) } -> ty:term -> body:term { ~(x `Set.mem` freevars body) } -> body_c:comp_typ -> u:universe -> pp_name:pp_name_t -> q:aqualv -> ty_eff:T.tot_or_ghost -> typing g ty (ty_eff, tm_type u) -> typing (extend_env g x ty) (open_term body x) body_c -> typing g (pack_ln (Tv_Abs (mk_binder pp_name ty q) body)) (T.E_Total, pack_ln (Tv_Arrow (mk_binder pp_name ty q) (mk_comp (close_comp_typ body_c x)))) | T_App : g:env -> e1:term -> e2:term -> x:binder -> t:term -> eff:T.tot_or_ghost -> typing g e1 (eff, pack_ln (Tv_Arrow x (mk_comp (eff, t)))) -> typing g e2 (eff, binder_sort x) -> typing g (pack_ln (Tv_App e1 (e2, binder_qual x))) (eff, open_with t e2) | T_Let: g:env -> x:var { None? (lookup_bvar g x) } -> e1:term -> t1:typ -> e2:term -> t2:typ -> eff:T.tot_or_ghost -> pp_name:pp_name_t -> typing g e1 (eff, t1) -> typing (extend_env g x t1) (open_term e2 x) (eff, t2) -> typing g (mk_let pp_name e1 t1 e2) (eff, open_with (close_term t2 x) e1) | T_Arrow: g:env -> x:var { None? (lookup_bvar g x) } -> t1:term -> t2:term { ~(x `Set.mem` freevars t2) } -> u1:universe -> u2:universe -> pp_name:pp_name_t -> q:aqualv -> eff:T.tot_or_ghost -> t1_eff:T.tot_or_ghost -> t2_eff:T.tot_or_ghost -> typing g t1 (t1_eff, tm_type u1) -> typing (extend_env g x t1) (open_term t2 x) (t2_eff, tm_type u2) -> typing g (pack_ln (Tv_Arrow (mk_binder pp_name t1 q) (mk_comp (eff, t2)))) (T.E_Total, tm_type (u_max u1 u2)) | T_Refine: g:env -> x:var { None? (lookup_bvar g x) } -> t:term -> e:term { ~(x `Set.mem` freevars e) } -> u1:universe -> u2:universe -> t_eff:T.tot_or_ghost -> e_eff:T.tot_or_ghost -> typing g t (t_eff, tm_type u1) -> typing (extend_env g x t) (open_term e x) (e_eff, tm_type u2) -> typing g (pack_ln (Tv_Refine (mk_simple_binder pp_name_default t) e)) (T.E_Total, tm_type u1) | T_PropIrrelevance: g:env -> e:term -> t:term -> e_eff:T.tot_or_ghost -> t_eff:T.tot_or_ghost -> typing g e (e_eff, t) -> typing g t (t_eff, tm_prop) -> typing g (`()) (T.E_Total, t) | T_Sub: g:env -> e:term -> c:comp_typ -> c':comp_typ -> typing g e c -> sub_comp g c c' -> typing g e c' | T_If: g:env -> scrutinee:term -> then_:term -> else_:term -> ty:term -> u_ty:universe -> hyp:var { None? (lookup_bvar g hyp) /\ ~(hyp `Set.mem` (freevars then_ `Set.union` freevars else_)) } -> eff:T.tot_or_ghost -> ty_eff:T.tot_or_ghost -> typing g scrutinee (eff, bool_ty) -> typing (extend_env g hyp (eq2 (pack_universe Uv_Zero) bool_ty scrutinee true_bool)) then_ (eff, ty) -> typing (extend_env g hyp (eq2 (pack_universe Uv_Zero) bool_ty scrutinee false_bool)) else_ (eff, ty) -> typing g ty (ty_eff, tm_type u_ty) -> //typedness of ty cannot rely on hyp typing g (mk_if scrutinee then_ else_) (eff, ty) | T_Match: g:env -> sc_u : universe -> sc_ty : typ -> sc : term -> ty_eff:T.tot_or_ghost -> typing g sc_ty (ty_eff, tm_type sc_u) -> eff:T.tot_or_ghost -> typing g sc (eff, sc_ty) -> branches:list branch -> ty:comp_typ -> bnds:list (list R.binding) -> complet : match_is_complete g sc sc_ty (List.Tot.map fst branches) bnds -> // complete patterns branches_typing g sc_u sc_ty sc ty branches bnds -> // each branch has proper type typing g (pack_ln (Tv_Match sc None branches)) ty and related : env -> term -> relation -> term -> Type0 = | Rel_refl: g:env -> t:term -> rel:relation -> related g t rel t | Rel_sym: g:env -> t0:term -> t1:term -> related g t0 R_Eq t1 -> related g t1 R_Eq t0 | Rel_trans: g:env -> t0:term -> t1:term -> t2:term -> rel:relation -> related g t0 rel t1 -> related g t1 rel t2 -> related g t0 rel t2 | Rel_univ: g:env -> u:universe -> v:universe -> univ_eq u v -> related g (tm_type u) R_Eq (tm_type v) | Rel_beta: g:env -> t:typ -> q:aqualv -> e:term { ln' e 0 } -> arg:term { ln arg } -> related g (R.pack_ln (R.Tv_App (mk_abs t q e) (arg, q))) R_Eq (subst_term e [ DT 0 arg ]) | Rel_eq_token: g:env -> t0:term -> t1:term -> squash (T.equiv_token g t0 t1) -> related g t0 R_Eq t1 | Rel_subtyping_token: g:env -> t0:term -> t1:term -> squash (T.subtyping_token g t0 t1) -> related g t0 R_Sub t1 | Rel_equiv: g:env -> t0:term -> t1:term -> rel:relation -> related g t0 R_Eq t1 -> related g t0 rel t1 | Rel_arrow: g:env -> t1:term -> t2:term -> q:aqualv -> c1:comp_typ -> c2:comp_typ -> rel:relation -> x:var{ None? (lookup_bvar g x) /\ ~ (x `Set.mem` (freevars_comp_typ c1 `Set.union` freevars_comp_typ c2)) } -> related g t2 rel t1 -> related_comp (extend_env g x t2) (open_comp_typ c1 x) rel (open_comp_typ c2 x) -> related g (mk_arrow_ct t1 q c1) rel (mk_arrow_ct t2 q c2) | Rel_abs: g:env -> t1:term -> t2:term -> q:aqualv -> e1:term -> e2:term -> x:var{ None? (lookup_bvar g x) /\ ~ (x `Set.mem` (freevars e1 `Set.union` freevars e2)) } -> related g t1 R_Eq t2 -> related (extend_env g x t1) (subst_term e1 (open_with_var x 0)) R_Eq (subst_term e2 (open_with_var x 0)) -> related g (mk_abs t1 q e1) R_Eq (mk_abs t2 q e2) | Rel_ctxt: g:env -> t0:term -> t1:term -> ctxt:term_ctxt -> related g t0 R_Eq t1 -> related g (apply_term_ctxt ctxt t0) R_Eq (apply_term_ctxt ctxt t1) and related_comp : env -> comp_typ -> relation -> comp_typ -> Type0 = | Relc_typ: g:env -> t0:term -> t1:term -> eff:T.tot_or_ghost -> rel:relation -> related g t0 rel t1 -> related_comp g (eff, t0) rel (eff, t1) | Relc_total_ghost: g:env -> t:term -> related_comp g (T.E_Total, t) R_Sub (T.E_Ghost, t) | Relc_ghost_total: g:env -> t:term -> non_informative g t -> related_comp g (T.E_Ghost, t) R_Sub (T.E_Total, t) and branches_typing (g:env) (sc_u:universe) (sc_ty:typ) (sc:term) (rty:comp_typ) : (brs:list branch) -> (bnds : list (list R.binding)) -> Type0 = (* This judgement only enforces that branch_typing holds for every element of brs and its respective bnds (which must have the same length). *) | BT_Nil : branches_typing g sc_u sc_ty sc rty [] [] | BT_S : br : branch -> bnds : list R.binding -> pf : branch_typing g sc_u sc_ty sc rty br bnds -> rest_br : list branch -> rest_bnds : list (list R.binding) -> rest : branches_typing g sc_u sc_ty sc rty rest_br rest_bnds -> branches_typing g sc_u sc_ty sc rty (br :: rest_br) (bnds :: rest_bnds) and branch_typing (g:env) (sc_u:universe) (sc_ty:typ) (sc:term) (rty:comp_typ) : (br : branch) -> (bnds : list R.binding) -> Type0 = | BO : pat : pattern -> bnds : list R.binding{bindings_ok_for_pat g bnds pat} -> hyp_var:var{None? (lookup_bvar (extend_env_l g (refl_bindings_to_bindings bnds)) hyp_var)} -> body:term -> _ : squash (Some? (elaborate_pat pat bnds)) -> typing (extend_env (extend_env_l g (refl_bindings_to_bindings bnds)) hyp_var (eq2 sc_u sc_ty sc (fst (Some?.v (elaborate_pat pat bnds)))) ) body rty -> branch_typing g sc_u sc_ty sc rty (pat, close_term_bs (refl_bindings_to_bindings bnds) body) bnds and match_is_complete : env -> term -> typ -> list pattern -> list (list R.binding) -> Type0 = | MC_Tok : env:_ -> sc:_ -> ty:_ -> pats:_ -> bnds:_ -> squash (T.match_complete_token env sc ty pats bnds) -> match_is_complete env sc ty pats bnds and sub_typing (g:env) (t1 t2:term) = related g t1 R_Sub t2 and sub_comp (g:env) (c1 c2:comp_typ) = related_comp g c1 R_Sub c2 and equiv (g:env) (t1 t2:term) = related g t1 R_Eq t2 type tot_typing (g:env) (e:term) (t:term) = typing g e (T.E_Total, t) type ghost_typing (g:env) (e:term) (t:term) = typing g e (T.E_Ghost, t) val subtyping_token_renaming (g:env) (bs0:bindings) (bs1:bindings) (x:var { None? (lookup_bvar (extend_env_l g (bs1@bs0)) x) }) (y:var { None? (lookup_bvar (extend_env_l g (bs1@bs0)) y) }) (t:term) (t0 t1:term) (d:T.subtyping_token (extend_env_l g (bs1@(x,t)::bs0)) t0 t1) : T.subtyping_token (extend_env_l g (rename_bindings bs1 x y@(y,t)::bs0)) (rename t0 x y) (rename t1 x y) val subtyping_token_weakening (g:env) (bs0:bindings) (bs1:bindings) (x:var { None? (lookup_bvar (extend_env_l g (bs1@bs0)) x) }) (t:term) (t0 t1:term) (d:T.subtyping_token (extend_env_l g (bs1@bs0)) t0 t1) : T.subtyping_token (extend_env_l g (bs1@(x,t)::bs0)) t0 t1 let simplify_umax (#g:R.env) (#t:R.term) (#u:R.universe) (d:typing g t (T.E_Total, tm_type (u_max u u))) : typing g t (T.E_Total, tm_type u) = let ue : univ_eq (u_max u u) u = UN_MaxLeq u u (UNLEQ_Refl u) in let du : related g (tm_type (u_max u u)) R_Eq (tm_type u) = Rel_univ g (u_max u u) u ue in let du : related g (tm_type (u_max u u)) R_Sub (tm_type u) = Rel_equiv _ _ _ _ du in T_Sub _ _ _ _ d (Relc_typ _ _ _ T.E_Total _ du) val well_typed_terms_are_ln (g:R.env) (e:R.term) (c:comp_typ) (_:typing g e c) : Lemma (ensures ln e /\ ln (snd c)) val type_correctness (g:R.env) (e:R.term) (c:comp_typ) (_:typing g e c) : GTot (u:R.universe & typing g (snd c) (T.E_Total, tm_type u)) val binder_offset_pattern_invariant (p:pattern) (ss:subst) : Lemma (binder_offset_pattern p == binder_offset_pattern (subst_pattern p ss)) val binder_offset_patterns_invariant (p:list (pattern & bool)) (ss:subst) : Lemma (binder_offset_patterns p == binder_offset_patterns (subst_patterns p ss)) val open_close_inverse' (i:nat) (t:term { ln' t (i - 1) }) (x:var) : Lemma (ensures subst_term (subst_term t [ ND x i ]) (open_with_var x i) == t) val open_close_inverse'_binder (i:nat) (b:binder { ln'_binder b (i - 1) }) (x:var) : Lemma (ensures subst_binder (subst_binder b [ ND x i ]) (open_with_var x i) == b) val open_close_inverse'_terms (i:nat) (ts:list term { ln'_terms ts (i - 1) }) (x:var) : Lemma (ensures subst_terms (subst_terms ts [ ND x i ]) (open_with_var x i) == ts) val open_close_inverse'_comp (i:nat) (c:comp { ln'_comp c (i - 1) }) (x:var) : Lemma (ensures subst_comp (subst_comp c [ ND x i ]) (open_with_var x i) == c) val open_close_inverse'_args (i:nat) (ts:list argv { ln'_args ts (i - 1) }) (x:var) : Lemma (ensures subst_args (subst_args ts [ ND x i ]) (open_with_var x i) == ts) val open_close_inverse'_patterns (i:nat) (ps:list (pattern & bool) { ln'_patterns ps (i - 1) }) (x:var) : Lemma (ensures subst_patterns (subst_patterns ps [ ND x i ]) (open_with_var x i) == ps) val open_close_inverse'_pattern (i:nat) (p:pattern{ln'_pattern p (i - 1)}) (x:var) : Lemma (ensures subst_pattern (subst_pattern p [ ND x i ]) (open_with_var x i) == p) val open_close_inverse'_branch (i:nat) (br:branch{ln'_branch br (i - 1)}) (x:var) : Lemma (ensures subst_branch (subst_branch br [ ND x i ]) (open_with_var x i) == br) val open_close_inverse'_branches (i:nat) (brs:list branch { ln'_branches brs (i - 1) }) (x:var) : Lemma (ensures subst_branches (subst_branches brs [ ND x i ]) (open_with_var x i) == brs) val open_close_inverse'_match_returns (i:nat) (m:match_returns_ascription { ln'_match_returns m (i - 1) }) (x:var) : Lemma (ensures subst_match_returns (subst_match_returns m [ ND x i ]) (open_with_var x i) == m) val open_close_inverse (e:R.term { ln e }) (x:var) : Lemma (open_term (close_term e x) x == e) val close_open_inverse' (i:nat) (t:term) (x:var { ~(x `Set.mem` freevars t) }) : Lemma (ensures subst_term (subst_term t (open_with_var x i)) [ ND x i ] == t) val close_open_inverse'_comp (i:nat) (c:comp) (x:var{ ~(x `Set.mem` freevars_comp c) }) : Lemma (ensures subst_comp (subst_comp c (open_with_var x i)) [ ND x i ] == c) val close_open_inverse'_args (i:nat) (args:list argv) (x:var{ ~(x `Set.mem` freevars_args args) }) : Lemma (ensures subst_args (subst_args args (open_with_var x i)) [ ND x i] == args) val close_open_inverse'_binder (i:nat) (b:binder) (x:var{ ~(x `Set.mem` freevars_binder b) }) : Lemma (ensures subst_binder (subst_binder b (open_with_var x i)) [ ND x i ] == b) val close_open_inverse'_terms (i:nat) (ts:list term) (x:var{ ~(x `Set.mem` freevars_terms ts) }) : Lemma (ensures subst_terms (subst_terms ts (open_with_var x i)) [ ND x i ] == ts) val close_open_inverse'_branches (i:nat) (brs:list branch) (x:var{ ~(x `Set.mem` freevars_branches brs) }) : Lemma (ensures subst_branches (subst_branches brs (open_with_var x i)) [ ND x i ] == brs) val close_open_inverse'_branch (i:nat) (br:branch) (x:var{ ~(x `Set.mem` freevars_branch br) }) : Lemma (ensures subst_branch (subst_branch br (open_with_var x i)) [ ND x i ] == br) val close_open_inverse'_pattern (i:nat) (p:pattern) (x:var{ ~(x `Set.mem` freevars_pattern p) }) : Lemma (ensures subst_pattern (subst_pattern p (open_with_var x i)) [ ND x i ] == p) val close_open_inverse'_patterns (i:nat) (ps:list (pattern & bool)) (x:var {~ (x `Set.mem` freevars_patterns ps) }) : Lemma (ensures subst_patterns (subst_patterns ps (open_with_var x i)) [ ND x i ] == ps) val close_open_inverse'_match_returns (i:nat) (m:match_returns_ascription) (x:var{ ~(x `Set.mem` freevars_match_returns m) }) : Lemma (ensures subst_match_returns (subst_match_returns m (open_with_var x i)) [ ND x i ] == m) val close_open_inverse (e:R.term) (x:var {~ (x `Set.mem` freevars e) }) : Lemma (close_term (open_term e x) x == e) // // fst has corresponding lemmas for other syntax classes // val close_with_not_free_var (t:R.term) (x:var) (i:nat) : Lemma (requires ~ (Set.mem x (freevars t))) (ensures subst_term t [ ND x i ] == t) // this also requires x to be not in freevars e1 `Set.union` freevars e2 val equiv_arrow (#g:R.env) (#e1 #e2:R.term) (ty:R.typ) (q:R.aqualv) (x:var { None? (lookup_bvar g x) }) (eq:equiv (extend_env g x ty) (subst_term e1 (open_with_var x 0)) (subst_term e2 (open_with_var x 0))) : equiv g (mk_arrow ty q e1) (mk_arrow ty q e2) // the proof for this requires e1 and e2 to be ln val equiv_abs_close (#g:R.env) (#e1 #e2:R.term) (ty:R.typ) (q:R.aqualv) (x:var{None? (lookup_bvar g x)}) (eq:equiv (extend_env g x ty) e1 e2) : equiv g (mk_abs ty q (subst_term e1 [ ND x 0 ])) (mk_abs ty q (subst_term e2 [ ND x 0 ])) val open_with_gt_ln (e:term) (i:nat) (t:term) (j:nat) : Lemma (requires ln' e i /\ i < j) (ensures subst_term e [ DT j t ] == e) [SMTPat (ln' e i); SMTPat (subst_term e [ DT j t ])] // // Type of the top-level tactic that would splice-in the definitions // let fstar_env_fvs (g:R.env) = lookup_fvar g unit_fv == Some (tm_type u_zero) /\ lookup_fvar g bool_fv == Some (tm_type u_zero) /\ lookup_fvar g b2t_fv == Some b2t_ty type fstar_env = g:R.env{fstar_env_fvs g} type fstar_top_env = g:fstar_env { forall x. None? (lookup_bvar g x ) } // // This doesn't allow for universe polymorphic definitions // // May be we can change it to: // // g:fstar_top_env -> T.tac ((us, e, t):(univ_names & term & typ){typing (push g us) e t}) // noeq type sigelt_typing : env -> sigelt -> Type0 = | ST_Let : g : env -> fv : R.fv -> ty : R.typ -> tm : R.term -> squash (typing g tm (T.E_Total, ty)) -> sigelt_typing g (pack_sigelt (Sg_Let false [pack_lb ({ lb_fv = fv; lb_us = []; lb_typ = ty; lb_def = tm })])) | ST_Let_Opaque : g : env -> fv : R.fv -> ty : R.typ -> (* no tm: only a proof of existence *) squash (exists (tm:R.term). typing g tm (T.E_Total, ty)) -> sigelt_typing g (pack_sigelt (Sg_Let false [pack_lb ({ lb_fv = fv; lb_us = []; lb_typ = ty; lb_def = (`_) })])) (** * The type of the top-level tactic that would splice-in the definitions. * It returns a list of well typed definitions, via the judgment above. * * Each definition can have a 'blob' attached with a given name. * The blob can be used later, e.g., during extraction, and passed back to the * extension to perform additional processing. *) (* * It returns either: * - Some tm, blob, typ, with a proof that `typing g tm typ` * - None, blob, typ), with a proof that `exists tm. typing g tm typ` * The blob itself is optional and can store some additional metadata that * constructed by the tactic. If present, it will be stored in the * sigmeta_extension_data field of the enclosing sigelt. * *) let blob = string & R.term (* If checked is true, this sigelt is properly typed for the environment. If not, we don't know and let F* re-typecheck the sigelt. *) let sigelt_for (g:env) = tup:(bool & sigelt & option blob) { let (checked, se, _) = tup in checked ==> sigelt_typing g se } let dsl_tac_result_t (g:env) = list (sigelt_for g) type dsl_tac_t = g:fstar_top_env -> T.Tac (dsl_tac_result_t g) val if_complete_match (g:env) (t:term) : T.match_complete_token g t bool_ty [ Pat_Constant C_True; Pat_Constant C_False; ] [[]; []] // Derived rule for if val mkif (g:fstar_env) (scrutinee:term) (then_:term) (else_:term) (ty:term) (u_ty:universe) (hyp:var { None? (lookup_bvar g hyp) /\ ~(hyp `Set.mem` (freevars then_ `Set.union` freevars else_)) }) (eff:T.tot_or_ghost) (ty_eff:T.tot_or_ghost) (ts : typing g scrutinee (eff, bool_ty)) (tt : typing (extend_env g hyp (eq2 (pack_universe Uv_Zero) bool_ty scrutinee true_bool)) then_ (eff, ty)) (te : typing (extend_env g hyp (eq2 (pack_universe Uv_Zero) bool_ty scrutinee false_bool)) else_ (eff, ty)) (tr : typing g ty (ty_eff, tm_type u_ty)) : typing g (mk_if scrutinee then_ else_) (eff, ty)
false
false
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mk_checked_let (g: R.env) (nm: string) (tm: R.term) (ty: R.typ{typing g tm (T.E_Total, ty)}) : T.Tac (sigelt_for g)
[]
FStar.Reflection.Typing.mk_checked_let
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
g: FStar.Reflection.Types.env -> nm: Prims.string -> tm: FStar.Reflection.Types.term -> ty: FStar.Reflection.Types.typ {FStar.Reflection.Typing.typing g tm (FStar.Stubs.TypeChecker.Core.E_Total, ty)} -> FStar.Tactics.Effect.Tac (FStar.Reflection.Typing.sigelt_for g)
{ "end_col": 20, "end_line": 1839, "start_col": 117, "start_line": 1832 }
FStar.Tactics.Effect.Tac
val mk_unchecked_let (g: R.env) (nm: string) (tm: R.term) (ty: R.typ) : T.Tac (sigelt_for g)
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing.Builtins", "short_module": "RTB" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.V2.Data", "short_module": "RD" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mk_unchecked_let (g:R.env) (nm:string) (tm:R.term) (ty:R.typ) : T.Tac (sigelt_for g) = let fv = pack_fv (T.cur_module () @ [nm]) in let lb = R.pack_lb ({ lb_fv = fv; lb_us = []; lb_typ = ty; lb_def = tm }) in let se = R.pack_sigelt (R.Sg_Let false [lb]) in ( false, se, None )
val mk_unchecked_let (g: R.env) (nm: string) (tm: R.term) (ty: R.typ) : T.Tac (sigelt_for g) let mk_unchecked_let (g: R.env) (nm: string) (tm: R.term) (ty: R.typ) : T.Tac (sigelt_for g) =
true
null
false
let fv = pack_fv (T.cur_module () @ [nm]) in let lb = R.pack_lb ({ lb_fv = fv; lb_us = []; lb_typ = ty; lb_def = tm }) in let se = R.pack_sigelt (R.Sg_Let false [lb]) in (false, se, None)
{ "checked_file": "FStar.Reflection.Typing.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.Typing.fsti" }
[]
[ "FStar.Reflection.Types.env", "Prims.string", "FStar.Reflection.Types.term", "FStar.Reflection.Types.typ", "FStar.Pervasives.Native.Mktuple3", "Prims.bool", "FStar.Reflection.Types.sigelt", "FStar.Pervasives.Native.option", "FStar.Reflection.Typing.blob", "FStar.Pervasives.Native.None", "FStar.Reflection.V2.Builtins.pack_sigelt", "FStar.Reflection.V2.Data.Sg_Let", "Prims.Cons", "FStar.Reflection.Types.letbinding", "Prims.Nil", "FStar.Reflection.V2.Builtins.pack_lb", "FStar.Reflection.V2.Data.Mklb_view", "FStar.Reflection.Types.univ_name", "FStar.Reflection.Typing.sigelt_for", "FStar.Reflection.Types.fv", "FStar.Reflection.V2.Builtins.pack_fv", "FStar.Reflection.Types.name", "FStar.List.Tot.Base.op_At", "Prims.list", "FStar.Tactics.V2.Derived.cur_module" ]
[]
(* Copyright 2008-2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.Typing (** This module defines a typing judgment for (parts of) the total and ghost fragment of F*. We are using it in the meta DSL framework as an official specification for the F* type system. We expect it to grow to cover more of the F* language. IT IS HIGHLY EXPERIMENTAL AND NOT YET READY TO USE. *) open FStar.List.Tot open FStar.Reflection.V2 module L = FStar.List.Tot module R = FStar.Reflection.V2 module T = FStar.Tactics.V2 module RD = FStar.Reflection.V2.Data (* MOVE to some helper module *) let rec fold_left_dec #a #b (acc : a) (l : list b) (f : a -> (x:b{x << l}) -> a) : Tot a (decreases l) = match l with | [] -> acc | x::xs -> fold_left_dec (f acc x) xs f let rec map_dec #a #b (l : list a) (f : (x:a{x << l}) -> b) : Tot (list b) (decreases l) = match l with | [] -> [] | x::xs -> f x :: map_dec xs f let rec zip2prop #a #b (f : a -> b -> Type0) (xs : list a) (ys : list b) : Type0 = match xs, ys with | [], [] -> True | x::xx, y::yy -> f x y /\ zip2prop f xx yy | _ -> False (* / MOVE *) val inspect_pack (t:R.term_view) : Lemma (ensures R.(inspect_ln (pack_ln t) == t)) [SMTPat R.(inspect_ln (pack_ln t))] val pack_inspect (t:R.term) : Lemma (requires ~(Tv_Unsupp? (inspect_ln t))) (ensures R.(pack_ln (inspect_ln t) == t)) [SMTPat R.(pack_ln (inspect_ln t))] val inspect_pack_namedv (t:R.namedv_view) : Lemma (ensures R.(inspect_namedv (pack_namedv t) == t)) [SMTPat R.(inspect_namedv (pack_namedv t))] val pack_inspect_namedv (t:R.namedv) : Lemma (ensures R.(pack_namedv (inspect_namedv t) == t)) [SMTPat R.(pack_namedv (inspect_namedv t))] val inspect_pack_bv (t:R.bv_view) : Lemma (ensures R.(inspect_bv (pack_bv t) == t)) [SMTPat R.(inspect_bv (pack_bv t))] val pack_inspect_bv (t:R.bv) : Lemma (ensures R.(pack_bv (inspect_bv t) == t)) [SMTPat R.(pack_bv (inspect_bv t))] val inspect_pack_binder (bview:R.binder_view) : Lemma (ensures R.(R.inspect_binder (R.pack_binder bview) == bview)) [SMTPat R.(inspect_binder (pack_binder bview))] val pack_inspect_binder (t:R.binder) : Lemma (ensures (R.pack_binder (R.inspect_binder t) == t)) [SMTPat (R.pack_binder (R.inspect_binder t))] val inspect_pack_comp (t:R.comp_view) : Lemma (ensures (R.inspect_comp (R.pack_comp t) == t)) [SMTPat (R.inspect_comp (R.pack_comp t))] val pack_inspect_comp (t:R.comp) : Lemma (ensures (R.pack_comp (R.inspect_comp t) == t)) [SMTPat (R.pack_comp (R.inspect_comp t))] val inspect_pack_fv (nm:R.name) : Lemma (ensures R.inspect_fv (R.pack_fv nm) == nm) [SMTPat (R.inspect_fv (R.pack_fv nm))] val pack_inspect_fv (fv:R.fv) : Lemma (ensures R.pack_fv (R.inspect_fv fv) == fv) [SMTPat (R.pack_fv (R.inspect_fv fv))] val inspect_pack_universe (u:R.universe_view) : Lemma (ensures R.inspect_universe (R.pack_universe u) == u) [SMTPat (R.inspect_universe (R.pack_universe u))] val pack_inspect_universe (u:R.universe) : Lemma (requires ~(Uv_Unk? (inspect_universe u))) (ensures R.pack_universe (R.inspect_universe u) == u) [SMTPat (R.pack_universe (R.inspect_universe u))] val lookup_bvar (e:env) (x:int) : option term val lookup_fvar_uinst (e:R.env) (x:R.fv) (us:list R.universe) : option R.term let lookup_fvar (e:env) (x:fv) : option term = lookup_fvar_uinst e x [] let pp_name_t = FStar.Sealed.Inhabited.sealed "x" let pp_name_default : pp_name_t = FStar.Sealed.Inhabited.seal "x" let seal_pp_name x : pp_name_t = FStar.Sealed.Inhabited.seal x let tun = pack_ln Tv_Unknown let sort_t = FStar.Sealed.Inhabited.sealed tun let sort_default : sort_t = FStar.Sealed.Inhabited.seal tun let seal_sort x : sort_t = FStar.Sealed.Inhabited.seal x let mk_binder (pp_name:pp_name_t) (ty:term) (q:aqualv) : binder = pack_binder { ppname = pp_name; qual = q; attrs = []; sort = ty} let mk_simple_binder (pp_name:pp_name_t) (ty:term) : simple_binder = pack_binder { ppname = pp_name; qual = Q_Explicit; attrs = []; sort = ty} let extend_env (e:env) (x:var) (ty:term) : env = R.push_binding e ({ ppname = seal_pp_name "x"; uniq = x; sort = ty; }) val lookup_bvar_extend_env (g:env) (x y:var) (ty:term) : Lemma (ensures ( if x = y then lookup_bvar (extend_env g x ty) y == Some ty else lookup_bvar (extend_env g x ty) y == lookup_bvar g y)) [SMTPat (lookup_bvar (extend_env g x ty) y)] val lookup_fvar_extend_env (g:env) (x:fv) (us:universes) (y:var) (ty:term) : Lemma (ensures lookup_fvar_uinst (extend_env g y ty) x us == lookup_fvar_uinst g x us) [SMTPat (lookup_fvar_uinst (extend_env g y ty) x us)] let bv_index (x:bv) : var = (inspect_bv x).index let namedv_uniq (x:namedv) : var = (inspect_namedv x).uniq let binder_sort (b:binder) = (inspect_binder b).sort let binder_qual (b:binder) = let { qual = q } = inspect_binder b in q noeq type subst_elt = | DT : nat -> term -> subst_elt | NT : var -> term -> subst_elt | ND : var -> nat -> subst_elt let shift_subst_elt (n:nat) = function | DT i t -> DT (i + n) t | NT x t -> NT x t | ND x i -> ND x (i + n) let subst = list subst_elt let shift_subst_n (n:nat) = L.map (shift_subst_elt n) let shift_subst = shift_subst_n 1 let maybe_uniq_of_term (x:term) = match inspect_ln x with | Tv_Var namedv -> Some (namedv_uniq namedv) | _ -> None let rec find_matching_subst_elt_bv (s:subst) (bv:bv) : option subst_elt = match s with | [] -> None | (DT j t)::ss -> if j = bv_index bv then Some (DT j t) else find_matching_subst_elt_bv ss bv | _::ss -> find_matching_subst_elt_bv ss bv let subst_db (bv:bv) (s:subst) : term = match find_matching_subst_elt_bv s bv with | Some (DT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> //if we're substituting a name j for a name k, retain the pp_name of j let v : namedv = pack_namedv { sort = (inspect_bv bv).sort; ppname = (inspect_bv bv).ppname; uniq = k; } in pack_ln (Tv_Var v)) | _ -> pack_ln (Tv_BVar bv) let rec find_matching_subst_elt_var (s:subst) (v:namedv) : option subst_elt = match s with | [] -> None | (NT y _)::rest | (ND y _)::rest -> if y = namedv_uniq v then Some (L.hd s) else find_matching_subst_elt_var rest v | _::rest -> find_matching_subst_elt_var rest v let subst_var (v:namedv) (s:subst) : term = match find_matching_subst_elt_var s v with | Some (NT _ t) -> (match maybe_uniq_of_term t with | None -> t | Some k -> pack_ln (Tv_Var (pack_namedv { inspect_namedv v with uniq = k }))) | Some (ND _ i) -> let bv = pack_bv { sort = (inspect_namedv v).sort; ppname = (inspect_namedv v).ppname; index = i; } in pack_ln (Tv_BVar bv) | _ -> pack_ln (Tv_Var v) let make_bv (n:nat) : bv_view = { ppname = pp_name_default; index = n; sort = sort_default; } let make_bv_with_name (s:pp_name_t) (n:nat) : bv_view = { ppname = s; index = n; sort = sort_default; } let var_as_bv (v:nat) = pack_bv (make_bv v) let make_namedv (n:nat) : namedv_view = { ppname = pp_name_default; uniq = n; sort = sort_default; } let make_namedv_with_name (s:pp_name_t) (n:nat) : namedv_view = { ppname = s; uniq = n; sort = sort_default; } let var_as_namedv (v:nat) : namedv = pack_namedv { uniq = v; sort = sort_default; ppname = pp_name_default; } let var_as_term (v:var) = pack_ln (Tv_Var (var_as_namedv v)) let binder_of_t_q t q = mk_binder pp_name_default t q let mk_abs ty qual t : R.term = R.pack_ln (R.Tv_Abs (binder_of_t_q ty qual) t) let mk_total t = pack_comp (C_Total t) let mk_ghost t = pack_comp (C_GTotal t) let mk_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_total t)) let mk_ghost_arrow ty qual t : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_ghost t)) let bound_var i : R.term = R.pack_ln (R.Tv_BVar (R.pack_bv (make_bv i))) let mk_let ppname (e1 t1 e2:R.term) = R.pack_ln (R.Tv_Let false [] (mk_simple_binder ppname t1) e1 e2) let open_with_var_elt (x:var) (i:nat) : subst_elt = DT i (pack_ln (Tv_Var (var_as_namedv x))) let open_with_var (x:var) (i:nat) : subst = [open_with_var_elt x i] val subst_ctx_uvar_and_subst (c:ctx_uvar_and_subst) (ss:subst) : ctx_uvar_and_subst let rec binder_offset_patterns (ps:list (pattern & bool)) : nat = match ps with | [] -> 0 | (p, b)::ps -> let n = binder_offset_pattern p in let m = binder_offset_patterns ps in n + m and binder_offset_pattern (p:pattern) : nat = match p with | Pat_Constant _ | Pat_Dot_Term _ -> 0 | Pat_Var _ _ -> 1 | Pat_Cons head univs subpats -> binder_offset_patterns subpats let rec subst_term (t:term) (ss:subst) : Tot term (decreases t) = match inspect_ln t with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unsupp | Tv_Unknown -> t | Tv_Var x -> subst_var x ss | Tv_BVar j -> subst_db j ss | Tv_App hd argv -> pack_ln (Tv_App (subst_term hd ss) (subst_term (fst argv) ss, snd argv)) | Tv_Abs b body -> let b' = subst_binder b ss in pack_ln (Tv_Abs b' (subst_term body (shift_subst ss))) | Tv_Arrow b c -> let b' = subst_binder b ss in pack_ln (Tv_Arrow b' (subst_comp c (shift_subst ss))) | Tv_Refine b f -> let b = subst_binder b ss in pack_ln (Tv_Refine b (subst_term f (shift_subst ss))) | Tv_Uvar j c -> pack_ln (Tv_Uvar j (subst_ctx_uvar_and_subst c ss)) | Tv_Let recf attrs b def body -> let b = subst_binder b ss in pack_ln (Tv_Let recf (subst_terms attrs ss) b (if recf then subst_term def (shift_subst ss) else subst_term def ss) (subst_term body (shift_subst ss))) | Tv_Match scr ret brs -> pack_ln (Tv_Match (subst_term scr ss) (match ret with | None -> None | Some m -> Some (subst_match_returns m ss)) (subst_branches brs ss)) | Tv_AscribedT e t tac b -> pack_ln (Tv_AscribedT (subst_term e ss) (subst_term t ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) | Tv_AscribedC e c tac b -> pack_ln (Tv_AscribedC (subst_term e ss) (subst_comp c ss) (match tac with | None -> None | Some tac -> Some (subst_term tac ss)) b) and subst_binder (b:binder) (ss:subst) : Tot (b':binder{binder_is_simple b ==> binder_is_simple b'}) (decreases b) = let bndr = inspect_binder b in pack_binder { ppname = bndr.ppname; qual = bndr.qual; attrs = subst_terms bndr.attrs ss; sort = subst_term bndr.sort ss } and subst_comp (c:comp) (ss:subst) : Tot comp (decreases c) = match inspect_comp c with | C_Total t -> pack_comp (C_Total (subst_term t ss)) | C_GTotal t -> pack_comp (C_GTotal (subst_term t ss)) | C_Lemma pre post pats -> pack_comp (C_Lemma (subst_term pre ss) (subst_term post ss) (subst_term pats ss)) | C_Eff us eff_name res args decrs -> pack_comp (C_Eff us eff_name (subst_term res ss) (subst_args args ss) (subst_terms decrs ss)) and subst_terms (ts:list term) (ss:subst) : Tot (ts':list term{Nil? ts ==> Nil? ts'}) // property useful for subst_binder (decreases ts) = match ts with | [] -> [] | t::ts -> subst_term t ss :: subst_terms ts ss and subst_args (ts:list argv) (ss:subst) : Tot (list argv) (decreases ts) = match ts with | [] -> [] | (t,q)::ts -> (subst_term t ss,q) :: subst_args ts ss and subst_patterns (ps:list (pattern & bool)) (ss:subst) : Tot (list (pattern & bool)) (decreases ps) = match ps with | [] -> ps | (p, b)::ps -> let n = binder_offset_pattern p in let p = subst_pattern p ss in let ps = subst_patterns ps (shift_subst_n n ss) in (p,b)::ps and subst_pattern (p:pattern) (ss:subst) : Tot pattern (decreases p) = match p with | Pat_Constant _ -> p | Pat_Cons fv us pats -> let pats = subst_patterns pats ss in Pat_Cons fv us pats | Pat_Var bv s -> Pat_Var bv s | Pat_Dot_Term topt -> Pat_Dot_Term (match topt with | None -> None | Some t -> Some (subst_term t ss)) and subst_branch (br:branch) (ss:subst) : Tot branch (decreases br) = let p, t = br in let p = subst_pattern p ss in let j = binder_offset_pattern p in let t = subst_term t (shift_subst_n j ss) in p, t and subst_branches (brs:list branch) (ss:subst) : Tot (list branch) (decreases brs) = match brs with | [] -> [] | br::brs -> subst_branch br ss :: subst_branches brs ss and subst_match_returns (m:match_returns_ascription) (ss:subst) : Tot match_returns_ascription (decreases m) = let b, (ret, as_, eq) = m in let b = subst_binder b ss in let ret = match ret with | Inl t -> Inl (subst_term t (shift_subst ss)) | Inr c -> Inr (subst_comp c (shift_subst ss)) in let as_ = match as_ with | None -> None | Some t -> Some (subst_term t (shift_subst ss)) in b, (ret, as_, eq) val open_with (t:term) (v:term) : term val open_with_spec (t v:term) : Lemma (open_with t v == subst_term t [ DT 0 v ]) val open_term (t:term) (v:var) : term val open_term_spec (t:term) (v:var) : Lemma (open_term t v == subst_term t (open_with_var v 0)) val close_term (t:term) (v:var) : term val close_term_spec (t:term) (v:var) : Lemma (close_term t v == subst_term t [ ND v 0 ]) val rename (t:term) (x y:var) : term val rename_spec (t:term) (x y:var) : Lemma (rename t x y == subst_term t [ NT x (var_as_term y)]) val bv_index_of_make_bv (n:nat) : Lemma (ensures bv_index (pack_bv (make_bv n)) == n) [SMTPat (bv_index (pack_bv (make_bv n)))] val namedv_uniq_of_make_namedv (n:nat) : Lemma (ensures namedv_uniq (pack_namedv (make_namedv n)) == n) [SMTPat (namedv_uniq (pack_namedv (make_namedv n)))] let constant_as_term (v:vconst) = pack_ln (Tv_Const v) let unit_exp = constant_as_term C_Unit let unit_fv = pack_fv unit_lid let unit_ty = pack_ln (Tv_FVar unit_fv) let bool_fv = pack_fv bool_lid let bool_ty = pack_ln (Tv_FVar bool_fv) let u_zero = pack_universe Uv_Zero let u_max u1 u2 = pack_universe (Uv_Max [u1; u2]) let u_succ u = pack_universe (Uv_Succ u) let tm_type u = pack_ln (Tv_Type u) let tm_prop = let prop_fv = R.pack_fv R.prop_qn in R.pack_ln (Tv_FVar prop_fv) let eqtype_lid : R.name = ["Prims"; "eqtype"] let true_bool = pack_ln (Tv_Const C_True) let false_bool = pack_ln (Tv_Const C_False) let eq2 (u:universe) (t v0 v1:term) : term = let eq2 = pack_fv eq2_qn in let eq2 = pack_ln (Tv_UInst eq2 [u]) in let h = pack_ln (Tv_App eq2 (t, Q_Implicit)) in let h1 = pack_ln (Tv_App h (v0, Q_Explicit)) in let h2 = pack_ln (Tv_App h1 (v1, Q_Explicit)) in h2 let b2t_lid : R.name = ["Prims"; "b2t"] let b2t_fv : R.fv = R.pack_fv b2t_lid let b2t_ty : R.term = R.pack_ln (R.Tv_Arrow (mk_binder (seal "x") bool_ty Q_Explicit) (mk_total (tm_type u_zero))) //////////////////////////////////////////////////////////////////////////////// // freevars //////////////////////////////////////////////////////////////////////////////// let rec freevars (e:term) : FStar.Set.set var = match inspect_ln e with | Tv_Uvar _ _ -> Set.complement Set.empty | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_BVar _ -> Set.empty | Tv_Var x -> Set.singleton (namedv_uniq x) | Tv_App e1 (e2, _) -> Set.union (freevars e1) (freevars e2) | Tv_Abs b body -> Set.union (freevars_binder b) (freevars body) | Tv_Arrow b c -> Set.union (freevars_binder b) (freevars_comp c) | Tv_Refine b f -> freevars (binder_sort b) `Set.union` freevars f | Tv_Let recf attrs b def body -> freevars_terms attrs `Set.union` freevars (binder_sort b) `Set.union` freevars def `Set.union` freevars body | Tv_Match scr ret brs -> freevars scr `Set.union` freevars_opt ret freevars_match_returns `Set.union` freevars_branches brs | Tv_AscribedT e t tac b -> freevars e `Set.union` freevars t `Set.union` freevars_opt tac freevars | Tv_AscribedC e c tac b -> freevars e `Set.union` freevars_comp c `Set.union` freevars_opt tac freevars and freevars_opt (#a:Type0) (o:option a) (f: (x:a { x << o } -> FStar.Set.set var)) : FStar.Set.set var = match o with | None -> Set.empty | Some x -> f x and freevars_comp (c:comp) : FStar.Set.set var = match inspect_comp c with | C_Total t | C_GTotal t -> freevars t | C_Lemma pre post pats -> freevars pre `Set.union` freevars post `Set.union` freevars pats | C_Eff us eff_name res args decrs -> freevars res `Set.union` freevars_args args `Set.union` freevars_terms decrs and freevars_args (ts:list argv) : FStar.Set.set var = match ts with | [] -> Set.empty | (t,q)::ts -> freevars t `Set.union` freevars_args ts and freevars_terms (ts:list term) : FStar.Set.set var = match ts with | [] -> Set.empty | t::ts -> freevars t `Set.union` freevars_terms ts and freevars_binder (b:binder) : Tot (Set.set var) (decreases b) = let bndr = inspect_binder b in freevars bndr.sort `Set.union` freevars_terms bndr.attrs and freevars_pattern (p:pattern) : Tot (Set.set var) (decreases p) = match p with | Pat_Constant _ -> Set.empty | Pat_Cons head univs subpats -> freevars_patterns subpats | Pat_Var bv s -> Set.empty | Pat_Dot_Term topt -> freevars_opt topt freevars and freevars_patterns (ps:list (pattern & bool)) : Tot (Set.set var) (decreases ps) = match ps with | [] -> Set.empty | (p, b)::ps -> freevars_pattern p `Set.union` freevars_patterns ps and freevars_branch (br:branch) : Tot (Set.set var) (decreases br) = let p, t = br in freevars_pattern p `Set.union` freevars t and freevars_branches (brs:list branch) : Tot (Set.set var) (decreases brs) = match brs with | [] -> Set.empty | hd::tl -> freevars_branch hd `Set.union` freevars_branches tl and freevars_match_returns (m:match_returns_ascription) : Tot (Set.set var) (decreases m) = let b, (ret, as_, eq) = m in let b = freevars_binder b in let ret = match ret with | Inl t -> freevars t | Inr c -> freevars_comp c in let as_ = freevars_opt as_ freevars in b `Set.union` ret `Set.union` as_ let rec ln' (e:term) (n:int) : Tot bool (decreases e) = match inspect_ln e with | Tv_UInst _ _ | Tv_FVar _ | Tv_Type _ | Tv_Const _ | Tv_Unknown | Tv_Unsupp | Tv_Var _ -> true | Tv_BVar m -> bv_index m <= n | Tv_App e1 (e2, _) -> ln' e1 n && ln' e2 n | Tv_Abs b body -> ln'_binder b n && ln' body (n + 1) | Tv_Arrow b c -> ln'_binder b n && ln'_comp c (n + 1) | Tv_Refine b f -> ln'_binder b n && ln' f (n + 1) | Tv_Uvar _ _ -> false | Tv_Let recf attrs b def body -> ln'_terms attrs n && ln'_binder b n && (if recf then ln' def (n + 1) else ln' def n) && ln' body (n + 1) | Tv_Match scr ret brs -> ln' scr n && (match ret with | None -> true | Some m -> ln'_match_returns m n) && ln'_branches brs n | Tv_AscribedT e t tac b -> ln' e n && ln' t n && (match tac with | None -> true | Some tac -> ln' tac n) | Tv_AscribedC e c tac b -> ln' e n && ln'_comp c n && (match tac with | None -> true | Some tac -> ln' tac n) and ln'_comp (c:comp) (i:int) : Tot bool (decreases c) = match inspect_comp c with | C_Total t | C_GTotal t -> ln' t i | C_Lemma pre post pats -> ln' pre i && ln' post i && ln' pats i | C_Eff us eff_name res args decrs -> ln' res i && ln'_args args i && ln'_terms decrs i and ln'_args (ts:list argv) (i:int) : Tot bool (decreases ts) = match ts with | [] -> true | (t,q)::ts -> ln' t i && ln'_args ts i and ln'_binder (b:binder) (n:int) : Tot bool (decreases b) = let bndr = inspect_binder b in ln' bndr.sort n && ln'_terms bndr.attrs n and ln'_terms (ts:list term) (n:int) : Tot bool (decreases ts) = match ts with | [] -> true | t::ts -> ln' t n && ln'_terms ts n and ln'_patterns (ps:list (pattern & bool)) (i:int) : Tot bool (decreases ps) = match ps with | [] -> true | (p, b)::ps -> let b0 = ln'_pattern p i in let n = binder_offset_pattern p in let b1 = ln'_patterns ps (i + n) in b0 && b1 and ln'_pattern (p:pattern) (i:int) : Tot bool (decreases p) = match p with | Pat_Constant _ -> true | Pat_Cons head univs subpats -> ln'_patterns subpats i | Pat_Var bv s -> true | Pat_Dot_Term topt -> (match topt with | None -> true | Some t -> ln' t i) and ln'_branch (br:branch) (i:int) : Tot bool (decreases br) = let p, t = br in let b = ln'_pattern p i in let j = binder_offset_pattern p in let b' = ln' t (i + j) in b&&b' and ln'_branches (brs:list branch) (i:int) : Tot bool (decreases brs) = match brs with | [] -> true | br::brs -> ln'_branch br i && ln'_branches brs i and ln'_match_returns (m:match_returns_ascription) (i:int) : Tot bool (decreases m) = let b, (ret, as_, eq) = m in let b = ln'_binder b i in let ret = match ret with | Inl t -> ln' t (i + 1) | Inr c -> ln'_comp c (i + 1) in let as_ = match as_ with | None -> true | Some t -> ln' t (i + 1) in b && ret && as_ let ln (t:term) = ln' t (-1) let ln_comp (c:comp) = ln'_comp c (-1) // // term_ctxt is used to define the equiv relation later, // basically putting two equiv terms in a hole gives equiv terms // // The abs, arrow, refine, and let cases don't seem right here, // since to prove their equiv, we need to extend gamma for their bodies // // If this is useful only for app, then may be we should remove it, // and add app rules to the equiv relation itself [@@ no_auto_projectors] noeq type term_ctxt = | Ctxt_hole : term_ctxt | Ctxt_app_head : term_ctxt -> argv -> term_ctxt | Ctxt_app_arg : term -> aqualv -> term_ctxt -> term_ctxt // | Ctxt_abs_binder : binder_ctxt -> term -> term_ctxt // | Ctxt_abs_body : binder -> term_ctxt -> term_ctxt // | Ctxt_arrow_binder : binder_ctxt -> comp -> term_ctxt // | Ctxt_arrow_comp : binder -> comp_ctxt -> term_ctxt // | Ctxt_refine_sort : bv -> term_ctxt -> term -> term_ctxt // | Ctxt_refine_ref : bv -> typ -> term_ctxt -> term_ctxt // | Ctxt_let_sort : bool -> list term -> bv -> term_ctxt -> term -> term -> term_ctxt // | Ctxt_let_def : bool -> list term -> bv -> term -> term_ctxt -> term -> term_ctxt // | Ctxt_let_body : bool -> list term -> bv -> term -> term -> term_ctxt -> term_ctxt // | Ctxt_match_scrutinee : term_ctxt -> option match_returns_ascription -> list branch -> term_ctxt // and bv_ctxt = // | Ctxt_bv : sealed string -> nat -> term_ctxt -> bv_ctxt // and binder_ctxt = // | Ctxt_binder : bv -> aqualv -> list term -> term_ctxt -> binder_ctxt // and comp_ctxt = // | Ctxt_total : term_ctxt -> comp_ctxt // | Ctxt_gtotal : term_ctxt -> comp_ctxt let rec apply_term_ctxt (e:term_ctxt) (t:term) : Tot term (decreases e) = match e with | Ctxt_hole -> t | Ctxt_app_head e arg -> pack_ln (Tv_App (apply_term_ctxt e t) arg) | Ctxt_app_arg hd q e -> pack_ln (Tv_App hd (apply_term_ctxt e t, q)) // | Ctxt_abs_binder b body -> pack_ln (Tv_Abs (apply_binder_ctxt b t) body) // | Ctxt_abs_body b e -> pack_ln (Tv_Abs b (apply_term_ctxt e t)) // | Ctxt_arrow_binder b c -> pack_ln (Tv_Arrow (apply_binder_ctxt b t) c) // | Ctxt_arrow_comp b c -> pack_ln (Tv_Arrow b (apply_comp_ctxt c t)) // | Ctxt_refine_sort b sort phi -> pack_ln (Tv_Refine b (apply_term_ctxt sort t) phi) // | Ctxt_refine_ref b sort phi -> pack_ln (Tv_Refine b sort (apply_term_ctxt phi t)) // | Ctxt_let_sort b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv (apply_term_ctxt sort t) def body) // | Ctxt_let_def b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort (apply_term_ctxt def t) body) // | Ctxt_let_body b attrs bv sort def body -> // pack_ln (Tv_Let b attrs bv sort def (apply_term_ctxt body t)) // | Ctxt_match_scrutinee sc ret brs -> // pack_ln (Tv_Match (apply_term_ctxt sc t) ret brs) // and apply_binder_ctxt (b:binder_ctxt) (t:term) : Tot binder (decreases b) = // let Ctxt_binder binder_bv binder_qual binder_attrs ctxt = b in // pack_binder {binder_bv; binder_qual; binder_attrs; binder_sort=apply_term_ctxt ctxt t} // and apply_comp_ctxt (c:comp_ctxt) (t:term) : Tot comp (decreases c) = // match c with // | Ctxt_total e -> pack_comp (C_Total (apply_term_ctxt e t)) // | Ctxt_gtotal e -> pack_comp (C_GTotal (apply_term_ctxt e t)) noeq type constant_typing: vconst -> term -> Type0 = | CT_Unit: constant_typing C_Unit unit_ty | CT_True: constant_typing C_True bool_ty | CT_False: constant_typing C_False bool_ty [@@ no_auto_projectors] noeq type univ_eq : universe -> universe -> Type0 = | UN_Refl : u:universe -> univ_eq u u | UN_MaxCongL : u:universe -> u':universe -> v:universe -> univ_eq u u' -> univ_eq (u_max u v) (u_max u' v) | UN_MaxCongR : u:universe -> v:universe -> v':universe -> univ_eq v v' -> univ_eq (u_max u v) (u_max u v') | UN_MaxComm: u:universe -> v:universe -> univ_eq (u_max u v) (u_max v u) | UN_MaxLeq: u:universe -> v:universe -> univ_leq u v -> univ_eq (u_max u v) v and univ_leq : universe -> universe -> Type0 = | UNLEQ_Refl: u:universe -> univ_leq u u | UNLEQ_Succ: u:universe -> v:universe -> univ_leq u v -> univ_leq u (u_succ v) | UNLEQ_Max: u:universe -> v:universe -> univ_leq u (u_max u v) let mk_if (scrutinee then_ else_:R.term) : R.term = pack_ln (Tv_Match scrutinee None [(Pat_Constant C_True, then_); (Pat_Constant C_False, else_)]) // effect and type type comp_typ = T.tot_or_ghost & typ let close_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) [ ND x i ] let close_comp_typ (c:comp_typ) (x:var) = close_comp_typ' c x 0 let open_comp_typ' (c:comp_typ) (x:var) (i:nat) = fst c, subst_term (snd c) (open_with_var x i) let open_comp_typ (c:comp_typ) (x:var) = open_comp_typ' c x 0 let freevars_comp_typ (c:comp_typ) = freevars (snd c) let mk_comp (c:comp_typ) : R.comp = match fst c with | T.E_Total -> mk_total (snd c) | T.E_Ghost -> mk_ghost (snd c) let mk_arrow_ct ty qual (c:comp_typ) : R.term = R.pack_ln (R.Tv_Arrow (binder_of_t_q ty qual) (mk_comp c)) type relation = | R_Eq | R_Sub let binding = var & term let bindings = list binding let rename_bindings bs x y = FStar.List.Tot.map (fun (v, t) -> (v, rename t x y)) bs let rec extend_env_l (g:env) (bs:bindings) : env = match bs with | [] -> g | (x,t)::bs -> extend_env (extend_env_l g bs) x t // // TODO: support for erasable attribute // let is_non_informative_name (l:name) : bool = l = R.unit_lid || l = R.squash_qn || l = ["FStar"; "Ghost"; "erased"] let is_non_informative_fv (f:fv) : bool = is_non_informative_name (inspect_fv f) let rec __close_term_vs (i:nat) (vs : list var) (t : term) : Tot term (decreases vs) = match vs with | [] -> t | v::vs -> subst_term (__close_term_vs (i+1) vs t) [ND v i] let close_term_vs (vs : list var) (t : term) : term = __close_term_vs 0 vs t let close_term_bs (bs : list binding) (t : term) : term = close_term_vs (List.Tot.map fst bs) t let bindings_to_refl_bindings (bs : list binding) : list R.binding = L.map (fun (v, ty) -> {uniq=v; sort=ty; ppname = pp_name_default}) bs let refl_bindings_to_bindings (bs : list R.binding) : list binding = L.map (fun b -> b.uniq, b.sort) bs [@@ no_auto_projectors] noeq type non_informative : env -> term -> Type0 = | Non_informative_type: g:env -> u:universe -> non_informative g (pack_ln (Tv_Type u)) | Non_informative_fv: g:env -> x:fv{is_non_informative_fv x} -> non_informative g (pack_ln (Tv_FVar x)) | Non_informative_uinst: g:env -> x:fv{is_non_informative_fv x} -> us:list universe -> non_informative g (pack_ln (Tv_UInst x us)) | Non_informative_app: g:env -> t:term -> arg:argv -> non_informative g t -> non_informative g (pack_ln (Tv_App t arg)) | Non_informative_total_arrow: g:env -> t0:term -> q:aqualv -> t1:term -> non_informative g t1 -> non_informative g (mk_arrow_ct t0 q (T.E_Total, t1)) | Non_informative_ghost_arrow: g:env -> t0:term -> q:aqualv -> t1:term -> non_informative g (mk_arrow_ct t0 q (T.E_Ghost, t1)) | Non_informative_token: g:env -> t:typ -> squash (T.non_informative_token g t) -> non_informative g t val bindings_ok_for_pat : env -> list R.binding -> pattern -> Type0 val bindings_ok_pat_constant : g:env -> c:R.vconst -> Lemma (bindings_ok_for_pat g [] (Pat_Constant c)) let bindings_ok_for_branch (g:env) (bs : list R.binding) (br : branch) : Type0 = bindings_ok_for_pat g bs (fst br) let bindings_ok_for_branch_N (g:env) (bss : list (list R.binding)) (brs : list branch) = zip2prop (bindings_ok_for_branch g) bss brs let binding_to_namedv (b:R.binding) : Tot namedv = pack_namedv { RD.uniq = b.uniq; RD.sort = seal b.sort; RD.ppname = b.ppname; } (* Elaborates the p pattern into a term, using the bs bindings for the pattern variables. The resulting term is properly scoped only on an environment which contains all of bs. See for instance the branch_typing judg. Returns an option, since this can fail if e.g. there are not enough bindings, and returns the list of unused binders as well, which should be empty if the list of binding was indeed ok. *) let rec elaborate_pat (p : pattern) (bs : list R.binding) : Tot (option (term & list R.binding)) (decreases p) = match p, bs with | Pat_Constant c, _ -> Some (pack_ln (Tv_Const c), bs) | Pat_Cons fv univs subpats, bs -> let head = pack_ln (Tv_FVar fv) in fold_left_dec (Some (head, bs)) subpats (fun st pi -> let (p,i) = pi in match st with | None -> None | Some (head, bs) -> match elaborate_pat p bs with | None -> None | Some (t, bs') -> Some (pack_ln (Tv_App head (t, (if i then Q_Implicit else Q_Explicit))), bs')) | Pat_Var _ _, b::bs -> Some (pack_ln (Tv_Var (binding_to_namedv b)), bs) | Pat_Dot_Term (Some t), _ -> Some (t, bs) | Pat_Dot_Term None, _ -> None | _ -> None [@@ no_auto_projectors] noeq type typing : env -> term -> comp_typ -> Type0 = | T_Token : g:env -> e:term -> c:comp_typ -> squash (T.typing_token g e c) -> typing g e c | T_Var : g:env -> x:namedv { Some? (lookup_bvar g (namedv_uniq x)) } -> typing g (pack_ln (Tv_Var x)) (T.E_Total, Some?.v (lookup_bvar g (namedv_uniq x))) | T_FVar : g:env -> x:fv { Some? (lookup_fvar g x) } -> typing g (pack_ln (Tv_FVar x)) (T.E_Total, Some?.v (lookup_fvar g x)) | T_UInst : g:env -> x:fv -> us:list universe { Some? (lookup_fvar_uinst g x us) } -> typing g (pack_ln (Tv_UInst x us)) (T.E_Total, Some?.v (lookup_fvar_uinst g x us)) | T_Const: g:env -> v:vconst -> t:term -> constant_typing v t -> typing g (constant_as_term v) (T.E_Total, t) | T_Abs : g:env -> x:var { None? (lookup_bvar g x) } -> ty:term -> body:term { ~(x `Set.mem` freevars body) } -> body_c:comp_typ -> u:universe -> pp_name:pp_name_t -> q:aqualv -> ty_eff:T.tot_or_ghost -> typing g ty (ty_eff, tm_type u) -> typing (extend_env g x ty) (open_term body x) body_c -> typing g (pack_ln (Tv_Abs (mk_binder pp_name ty q) body)) (T.E_Total, pack_ln (Tv_Arrow (mk_binder pp_name ty q) (mk_comp (close_comp_typ body_c x)))) | T_App : g:env -> e1:term -> e2:term -> x:binder -> t:term -> eff:T.tot_or_ghost -> typing g e1 (eff, pack_ln (Tv_Arrow x (mk_comp (eff, t)))) -> typing g e2 (eff, binder_sort x) -> typing g (pack_ln (Tv_App e1 (e2, binder_qual x))) (eff, open_with t e2) | T_Let: g:env -> x:var { None? (lookup_bvar g x) } -> e1:term -> t1:typ -> e2:term -> t2:typ -> eff:T.tot_or_ghost -> pp_name:pp_name_t -> typing g e1 (eff, t1) -> typing (extend_env g x t1) (open_term e2 x) (eff, t2) -> typing g (mk_let pp_name e1 t1 e2) (eff, open_with (close_term t2 x) e1) | T_Arrow: g:env -> x:var { None? (lookup_bvar g x) } -> t1:term -> t2:term { ~(x `Set.mem` freevars t2) } -> u1:universe -> u2:universe -> pp_name:pp_name_t -> q:aqualv -> eff:T.tot_or_ghost -> t1_eff:T.tot_or_ghost -> t2_eff:T.tot_or_ghost -> typing g t1 (t1_eff, tm_type u1) -> typing (extend_env g x t1) (open_term t2 x) (t2_eff, tm_type u2) -> typing g (pack_ln (Tv_Arrow (mk_binder pp_name t1 q) (mk_comp (eff, t2)))) (T.E_Total, tm_type (u_max u1 u2)) | T_Refine: g:env -> x:var { None? (lookup_bvar g x) } -> t:term -> e:term { ~(x `Set.mem` freevars e) } -> u1:universe -> u2:universe -> t_eff:T.tot_or_ghost -> e_eff:T.tot_or_ghost -> typing g t (t_eff, tm_type u1) -> typing (extend_env g x t) (open_term e x) (e_eff, tm_type u2) -> typing g (pack_ln (Tv_Refine (mk_simple_binder pp_name_default t) e)) (T.E_Total, tm_type u1) | T_PropIrrelevance: g:env -> e:term -> t:term -> e_eff:T.tot_or_ghost -> t_eff:T.tot_or_ghost -> typing g e (e_eff, t) -> typing g t (t_eff, tm_prop) -> typing g (`()) (T.E_Total, t) | T_Sub: g:env -> e:term -> c:comp_typ -> c':comp_typ -> typing g e c -> sub_comp g c c' -> typing g e c' | T_If: g:env -> scrutinee:term -> then_:term -> else_:term -> ty:term -> u_ty:universe -> hyp:var { None? (lookup_bvar g hyp) /\ ~(hyp `Set.mem` (freevars then_ `Set.union` freevars else_)) } -> eff:T.tot_or_ghost -> ty_eff:T.tot_or_ghost -> typing g scrutinee (eff, bool_ty) -> typing (extend_env g hyp (eq2 (pack_universe Uv_Zero) bool_ty scrutinee true_bool)) then_ (eff, ty) -> typing (extend_env g hyp (eq2 (pack_universe Uv_Zero) bool_ty scrutinee false_bool)) else_ (eff, ty) -> typing g ty (ty_eff, tm_type u_ty) -> //typedness of ty cannot rely on hyp typing g (mk_if scrutinee then_ else_) (eff, ty) | T_Match: g:env -> sc_u : universe -> sc_ty : typ -> sc : term -> ty_eff:T.tot_or_ghost -> typing g sc_ty (ty_eff, tm_type sc_u) -> eff:T.tot_or_ghost -> typing g sc (eff, sc_ty) -> branches:list branch -> ty:comp_typ -> bnds:list (list R.binding) -> complet : match_is_complete g sc sc_ty (List.Tot.map fst branches) bnds -> // complete patterns branches_typing g sc_u sc_ty sc ty branches bnds -> // each branch has proper type typing g (pack_ln (Tv_Match sc None branches)) ty and related : env -> term -> relation -> term -> Type0 = | Rel_refl: g:env -> t:term -> rel:relation -> related g t rel t | Rel_sym: g:env -> t0:term -> t1:term -> related g t0 R_Eq t1 -> related g t1 R_Eq t0 | Rel_trans: g:env -> t0:term -> t1:term -> t2:term -> rel:relation -> related g t0 rel t1 -> related g t1 rel t2 -> related g t0 rel t2 | Rel_univ: g:env -> u:universe -> v:universe -> univ_eq u v -> related g (tm_type u) R_Eq (tm_type v) | Rel_beta: g:env -> t:typ -> q:aqualv -> e:term { ln' e 0 } -> arg:term { ln arg } -> related g (R.pack_ln (R.Tv_App (mk_abs t q e) (arg, q))) R_Eq (subst_term e [ DT 0 arg ]) | Rel_eq_token: g:env -> t0:term -> t1:term -> squash (T.equiv_token g t0 t1) -> related g t0 R_Eq t1 | Rel_subtyping_token: g:env -> t0:term -> t1:term -> squash (T.subtyping_token g t0 t1) -> related g t0 R_Sub t1 | Rel_equiv: g:env -> t0:term -> t1:term -> rel:relation -> related g t0 R_Eq t1 -> related g t0 rel t1 | Rel_arrow: g:env -> t1:term -> t2:term -> q:aqualv -> c1:comp_typ -> c2:comp_typ -> rel:relation -> x:var{ None? (lookup_bvar g x) /\ ~ (x `Set.mem` (freevars_comp_typ c1 `Set.union` freevars_comp_typ c2)) } -> related g t2 rel t1 -> related_comp (extend_env g x t2) (open_comp_typ c1 x) rel (open_comp_typ c2 x) -> related g (mk_arrow_ct t1 q c1) rel (mk_arrow_ct t2 q c2) | Rel_abs: g:env -> t1:term -> t2:term -> q:aqualv -> e1:term -> e2:term -> x:var{ None? (lookup_bvar g x) /\ ~ (x `Set.mem` (freevars e1 `Set.union` freevars e2)) } -> related g t1 R_Eq t2 -> related (extend_env g x t1) (subst_term e1 (open_with_var x 0)) R_Eq (subst_term e2 (open_with_var x 0)) -> related g (mk_abs t1 q e1) R_Eq (mk_abs t2 q e2) | Rel_ctxt: g:env -> t0:term -> t1:term -> ctxt:term_ctxt -> related g t0 R_Eq t1 -> related g (apply_term_ctxt ctxt t0) R_Eq (apply_term_ctxt ctxt t1) and related_comp : env -> comp_typ -> relation -> comp_typ -> Type0 = | Relc_typ: g:env -> t0:term -> t1:term -> eff:T.tot_or_ghost -> rel:relation -> related g t0 rel t1 -> related_comp g (eff, t0) rel (eff, t1) | Relc_total_ghost: g:env -> t:term -> related_comp g (T.E_Total, t) R_Sub (T.E_Ghost, t) | Relc_ghost_total: g:env -> t:term -> non_informative g t -> related_comp g (T.E_Ghost, t) R_Sub (T.E_Total, t) and branches_typing (g:env) (sc_u:universe) (sc_ty:typ) (sc:term) (rty:comp_typ) : (brs:list branch) -> (bnds : list (list R.binding)) -> Type0 = (* This judgement only enforces that branch_typing holds for every element of brs and its respective bnds (which must have the same length). *) | BT_Nil : branches_typing g sc_u sc_ty sc rty [] [] | BT_S : br : branch -> bnds : list R.binding -> pf : branch_typing g sc_u sc_ty sc rty br bnds -> rest_br : list branch -> rest_bnds : list (list R.binding) -> rest : branches_typing g sc_u sc_ty sc rty rest_br rest_bnds -> branches_typing g sc_u sc_ty sc rty (br :: rest_br) (bnds :: rest_bnds) and branch_typing (g:env) (sc_u:universe) (sc_ty:typ) (sc:term) (rty:comp_typ) : (br : branch) -> (bnds : list R.binding) -> Type0 = | BO : pat : pattern -> bnds : list R.binding{bindings_ok_for_pat g bnds pat} -> hyp_var:var{None? (lookup_bvar (extend_env_l g (refl_bindings_to_bindings bnds)) hyp_var)} -> body:term -> _ : squash (Some? (elaborate_pat pat bnds)) -> typing (extend_env (extend_env_l g (refl_bindings_to_bindings bnds)) hyp_var (eq2 sc_u sc_ty sc (fst (Some?.v (elaborate_pat pat bnds)))) ) body rty -> branch_typing g sc_u sc_ty sc rty (pat, close_term_bs (refl_bindings_to_bindings bnds) body) bnds and match_is_complete : env -> term -> typ -> list pattern -> list (list R.binding) -> Type0 = | MC_Tok : env:_ -> sc:_ -> ty:_ -> pats:_ -> bnds:_ -> squash (T.match_complete_token env sc ty pats bnds) -> match_is_complete env sc ty pats bnds and sub_typing (g:env) (t1 t2:term) = related g t1 R_Sub t2 and sub_comp (g:env) (c1 c2:comp_typ) = related_comp g c1 R_Sub c2 and equiv (g:env) (t1 t2:term) = related g t1 R_Eq t2 type tot_typing (g:env) (e:term) (t:term) = typing g e (T.E_Total, t) type ghost_typing (g:env) (e:term) (t:term) = typing g e (T.E_Ghost, t) val subtyping_token_renaming (g:env) (bs0:bindings) (bs1:bindings) (x:var { None? (lookup_bvar (extend_env_l g (bs1@bs0)) x) }) (y:var { None? (lookup_bvar (extend_env_l g (bs1@bs0)) y) }) (t:term) (t0 t1:term) (d:T.subtyping_token (extend_env_l g (bs1@(x,t)::bs0)) t0 t1) : T.subtyping_token (extend_env_l g (rename_bindings bs1 x y@(y,t)::bs0)) (rename t0 x y) (rename t1 x y) val subtyping_token_weakening (g:env) (bs0:bindings) (bs1:bindings) (x:var { None? (lookup_bvar (extend_env_l g (bs1@bs0)) x) }) (t:term) (t0 t1:term) (d:T.subtyping_token (extend_env_l g (bs1@bs0)) t0 t1) : T.subtyping_token (extend_env_l g (bs1@(x,t)::bs0)) t0 t1 let simplify_umax (#g:R.env) (#t:R.term) (#u:R.universe) (d:typing g t (T.E_Total, tm_type (u_max u u))) : typing g t (T.E_Total, tm_type u) = let ue : univ_eq (u_max u u) u = UN_MaxLeq u u (UNLEQ_Refl u) in let du : related g (tm_type (u_max u u)) R_Eq (tm_type u) = Rel_univ g (u_max u u) u ue in let du : related g (tm_type (u_max u u)) R_Sub (tm_type u) = Rel_equiv _ _ _ _ du in T_Sub _ _ _ _ d (Relc_typ _ _ _ T.E_Total _ du) val well_typed_terms_are_ln (g:R.env) (e:R.term) (c:comp_typ) (_:typing g e c) : Lemma (ensures ln e /\ ln (snd c)) val type_correctness (g:R.env) (e:R.term) (c:comp_typ) (_:typing g e c) : GTot (u:R.universe & typing g (snd c) (T.E_Total, tm_type u)) val binder_offset_pattern_invariant (p:pattern) (ss:subst) : Lemma (binder_offset_pattern p == binder_offset_pattern (subst_pattern p ss)) val binder_offset_patterns_invariant (p:list (pattern & bool)) (ss:subst) : Lemma (binder_offset_patterns p == binder_offset_patterns (subst_patterns p ss)) val open_close_inverse' (i:nat) (t:term { ln' t (i - 1) }) (x:var) : Lemma (ensures subst_term (subst_term t [ ND x i ]) (open_with_var x i) == t) val open_close_inverse'_binder (i:nat) (b:binder { ln'_binder b (i - 1) }) (x:var) : Lemma (ensures subst_binder (subst_binder b [ ND x i ]) (open_with_var x i) == b) val open_close_inverse'_terms (i:nat) (ts:list term { ln'_terms ts (i - 1) }) (x:var) : Lemma (ensures subst_terms (subst_terms ts [ ND x i ]) (open_with_var x i) == ts) val open_close_inverse'_comp (i:nat) (c:comp { ln'_comp c (i - 1) }) (x:var) : Lemma (ensures subst_comp (subst_comp c [ ND x i ]) (open_with_var x i) == c) val open_close_inverse'_args (i:nat) (ts:list argv { ln'_args ts (i - 1) }) (x:var) : Lemma (ensures subst_args (subst_args ts [ ND x i ]) (open_with_var x i) == ts) val open_close_inverse'_patterns (i:nat) (ps:list (pattern & bool) { ln'_patterns ps (i - 1) }) (x:var) : Lemma (ensures subst_patterns (subst_patterns ps [ ND x i ]) (open_with_var x i) == ps) val open_close_inverse'_pattern (i:nat) (p:pattern{ln'_pattern p (i - 1)}) (x:var) : Lemma (ensures subst_pattern (subst_pattern p [ ND x i ]) (open_with_var x i) == p) val open_close_inverse'_branch (i:nat) (br:branch{ln'_branch br (i - 1)}) (x:var) : Lemma (ensures subst_branch (subst_branch br [ ND x i ]) (open_with_var x i) == br) val open_close_inverse'_branches (i:nat) (brs:list branch { ln'_branches brs (i - 1) }) (x:var) : Lemma (ensures subst_branches (subst_branches brs [ ND x i ]) (open_with_var x i) == brs) val open_close_inverse'_match_returns (i:nat) (m:match_returns_ascription { ln'_match_returns m (i - 1) }) (x:var) : Lemma (ensures subst_match_returns (subst_match_returns m [ ND x i ]) (open_with_var x i) == m) val open_close_inverse (e:R.term { ln e }) (x:var) : Lemma (open_term (close_term e x) x == e) val close_open_inverse' (i:nat) (t:term) (x:var { ~(x `Set.mem` freevars t) }) : Lemma (ensures subst_term (subst_term t (open_with_var x i)) [ ND x i ] == t) val close_open_inverse'_comp (i:nat) (c:comp) (x:var{ ~(x `Set.mem` freevars_comp c) }) : Lemma (ensures subst_comp (subst_comp c (open_with_var x i)) [ ND x i ] == c) val close_open_inverse'_args (i:nat) (args:list argv) (x:var{ ~(x `Set.mem` freevars_args args) }) : Lemma (ensures subst_args (subst_args args (open_with_var x i)) [ ND x i] == args) val close_open_inverse'_binder (i:nat) (b:binder) (x:var{ ~(x `Set.mem` freevars_binder b) }) : Lemma (ensures subst_binder (subst_binder b (open_with_var x i)) [ ND x i ] == b) val close_open_inverse'_terms (i:nat) (ts:list term) (x:var{ ~(x `Set.mem` freevars_terms ts) }) : Lemma (ensures subst_terms (subst_terms ts (open_with_var x i)) [ ND x i ] == ts) val close_open_inverse'_branches (i:nat) (brs:list branch) (x:var{ ~(x `Set.mem` freevars_branches brs) }) : Lemma (ensures subst_branches (subst_branches brs (open_with_var x i)) [ ND x i ] == brs) val close_open_inverse'_branch (i:nat) (br:branch) (x:var{ ~(x `Set.mem` freevars_branch br) }) : Lemma (ensures subst_branch (subst_branch br (open_with_var x i)) [ ND x i ] == br) val close_open_inverse'_pattern (i:nat) (p:pattern) (x:var{ ~(x `Set.mem` freevars_pattern p) }) : Lemma (ensures subst_pattern (subst_pattern p (open_with_var x i)) [ ND x i ] == p) val close_open_inverse'_patterns (i:nat) (ps:list (pattern & bool)) (x:var {~ (x `Set.mem` freevars_patterns ps) }) : Lemma (ensures subst_patterns (subst_patterns ps (open_with_var x i)) [ ND x i ] == ps) val close_open_inverse'_match_returns (i:nat) (m:match_returns_ascription) (x:var{ ~(x `Set.mem` freevars_match_returns m) }) : Lemma (ensures subst_match_returns (subst_match_returns m (open_with_var x i)) [ ND x i ] == m) val close_open_inverse (e:R.term) (x:var {~ (x `Set.mem` freevars e) }) : Lemma (close_term (open_term e x) x == e) // // fst has corresponding lemmas for other syntax classes // val close_with_not_free_var (t:R.term) (x:var) (i:nat) : Lemma (requires ~ (Set.mem x (freevars t))) (ensures subst_term t [ ND x i ] == t) // this also requires x to be not in freevars e1 `Set.union` freevars e2 val equiv_arrow (#g:R.env) (#e1 #e2:R.term) (ty:R.typ) (q:R.aqualv) (x:var { None? (lookup_bvar g x) }) (eq:equiv (extend_env g x ty) (subst_term e1 (open_with_var x 0)) (subst_term e2 (open_with_var x 0))) : equiv g (mk_arrow ty q e1) (mk_arrow ty q e2) // the proof for this requires e1 and e2 to be ln val equiv_abs_close (#g:R.env) (#e1 #e2:R.term) (ty:R.typ) (q:R.aqualv) (x:var{None? (lookup_bvar g x)}) (eq:equiv (extend_env g x ty) e1 e2) : equiv g (mk_abs ty q (subst_term e1 [ ND x 0 ])) (mk_abs ty q (subst_term e2 [ ND x 0 ])) val open_with_gt_ln (e:term) (i:nat) (t:term) (j:nat) : Lemma (requires ln' e i /\ i < j) (ensures subst_term e [ DT j t ] == e) [SMTPat (ln' e i); SMTPat (subst_term e [ DT j t ])] // // Type of the top-level tactic that would splice-in the definitions // let fstar_env_fvs (g:R.env) = lookup_fvar g unit_fv == Some (tm_type u_zero) /\ lookup_fvar g bool_fv == Some (tm_type u_zero) /\ lookup_fvar g b2t_fv == Some b2t_ty type fstar_env = g:R.env{fstar_env_fvs g} type fstar_top_env = g:fstar_env { forall x. None? (lookup_bvar g x ) } // // This doesn't allow for universe polymorphic definitions // // May be we can change it to: // // g:fstar_top_env -> T.tac ((us, e, t):(univ_names & term & typ){typing (push g us) e t}) // noeq type sigelt_typing : env -> sigelt -> Type0 = | ST_Let : g : env -> fv : R.fv -> ty : R.typ -> tm : R.term -> squash (typing g tm (T.E_Total, ty)) -> sigelt_typing g (pack_sigelt (Sg_Let false [pack_lb ({ lb_fv = fv; lb_us = []; lb_typ = ty; lb_def = tm })])) | ST_Let_Opaque : g : env -> fv : R.fv -> ty : R.typ -> (* no tm: only a proof of existence *) squash (exists (tm:R.term). typing g tm (T.E_Total, ty)) -> sigelt_typing g (pack_sigelt (Sg_Let false [pack_lb ({ lb_fv = fv; lb_us = []; lb_typ = ty; lb_def = (`_) })])) (** * The type of the top-level tactic that would splice-in the definitions. * It returns a list of well typed definitions, via the judgment above. * * Each definition can have a 'blob' attached with a given name. * The blob can be used later, e.g., during extraction, and passed back to the * extension to perform additional processing. *) (* * It returns either: * - Some tm, blob, typ, with a proof that `typing g tm typ` * - None, blob, typ), with a proof that `exists tm. typing g tm typ` * The blob itself is optional and can store some additional metadata that * constructed by the tactic. If present, it will be stored in the * sigmeta_extension_data field of the enclosing sigelt. * *) let blob = string & R.term (* If checked is true, this sigelt is properly typed for the environment. If not, we don't know and let F* re-typecheck the sigelt. *) let sigelt_for (g:env) = tup:(bool & sigelt & option blob) { let (checked, se, _) = tup in checked ==> sigelt_typing g se } let dsl_tac_result_t (g:env) = list (sigelt_for g) type dsl_tac_t = g:fstar_top_env -> T.Tac (dsl_tac_result_t g) val if_complete_match (g:env) (t:term) : T.match_complete_token g t bool_ty [ Pat_Constant C_True; Pat_Constant C_False; ] [[]; []] // Derived rule for if val mkif (g:fstar_env) (scrutinee:term) (then_:term) (else_:term) (ty:term) (u_ty:universe) (hyp:var { None? (lookup_bvar g hyp) /\ ~(hyp `Set.mem` (freevars then_ `Set.union` freevars else_)) }) (eff:T.tot_or_ghost) (ty_eff:T.tot_or_ghost) (ts : typing g scrutinee (eff, bool_ty)) (tt : typing (extend_env g hyp (eq2 (pack_universe Uv_Zero) bool_ty scrutinee true_bool)) then_ (eff, ty)) (te : typing (extend_env g hyp (eq2 (pack_universe Uv_Zero) bool_ty scrutinee false_bool)) else_ (eff, ty)) (tr : typing g ty (ty_eff, tm_type u_ty)) : typing g (mk_if scrutinee then_ else_) (eff, ty) (* Helper to return a single let definition in a splice_t tactic. *) let mk_checked_let (g:R.env) (nm:string) (tm:R.term) (ty:R.typ{typing g tm (T.E_Total, ty)}) : T.Tac (sigelt_for g) = let fv = pack_fv (T.cur_module () @ [nm]) in let lb = R.pack_lb ({ lb_fv = fv; lb_us = []; lb_typ = ty; lb_def = tm }) in let se = R.pack_sigelt (R.Sg_Let false [lb]) in let pf : sigelt_typing g se = ST_Let g fv ty tm () in ( true, se, None )
false
false
FStar.Reflection.Typing.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mk_unchecked_let (g: R.env) (nm: string) (tm: R.term) (ty: R.typ) : T.Tac (sigelt_for g)
[]
FStar.Reflection.Typing.mk_unchecked_let
{ "file_name": "ulib/experimental/FStar.Reflection.Typing.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
g: FStar.Reflection.Types.env -> nm: Prims.string -> tm: FStar.Reflection.Types.term -> ty: FStar.Reflection.Types.typ -> FStar.Tactics.Effect.Tac (FStar.Reflection.Typing.sigelt_for g)
{ "end_col": 21, "end_line": 1845, "start_col": 90, "start_line": 1841 }
Prims.Tot
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let normalize5_first_part (f0,f1,f2,f3,f4) = let (t0,t1,t2,t3,t4) = normalize_weak5 (f0,f1,f2,f3,f4) in let x, (r0,r1,r2,r3,r4) = minus_x_mul_pow2_256 (t0,t1,t2,t3,t4) in x, (r0,r1,r2,r3,r4)
let normalize5_first_part (f0, f1, f2, f3, f4) =
false
null
false
let t0, t1, t2, t3, t4 = normalize_weak5 (f0, f1, f2, f3, f4) in let x, (r0, r1, r2, r3, r4) = minus_x_mul_pow2_256 (t0, t1, t2, t3, t4) in x, (r0, r1, r2, r3, r4)
{ "checked_file": "Hacl.Spec.K256.Field52.Lemmas2.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas2.fst" }
[ "total" ]
[ "FStar.Pervasives.Native.tuple5", "Lib.IntTypes.uint64", "FStar.Pervasives.Native.Mktuple2", "FStar.Pervasives.Native.Mktuple5", "FStar.Pervasives.Native.tuple2", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Hacl.Spec.K256.Field52.Definitions.felem5", "Hacl.Spec.K256.Field52.minus_x_mul_pow2_256", "Hacl.Spec.K256.Field52.normalize_weak5" ]
[]
module Hacl.Spec.K256.Field52.Lemmas2 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" /// Normalize-weak val minus_x_mul_pow2_256_lemma: m:scale64_5 -> f:felem5 -> Lemma (requires felem_fits5 f m) (ensures (let x, r = minus_x_mul_pow2_256 f in let (r0,r1,r2,r3,r4) = r in let (m0,m1,m2,m3,m4) = m in let (t0,t1,t2,t3,t4) = f in v x < pow2 16 /\ v x = v t4 / pow2 48 /\ v r4 = v t4 % pow2 48 /\ as_nat5 r == as_nat5 f - v x * pow2 256 /\ felem_fits5 r (m0,m1,m2,m3,1))) let minus_x_mul_pow2_256_lemma m f = let (m0,m1,m2,m3,m4) = m in let (t0,t1,t2,t3,t4) = f in let x = t4 >>. 48ul in let t4' = t4 &. mask48 in LD.lemma_mask48 t4; let r = (t0,t1,t2,t3,t4') in calc (==) { // as_nat5 f v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + v t4 * pow208; (==) { Math.Lemmas.euclidean_division_definition (v t4) (pow2 48) } v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + (v t4 / pow2 48 * pow2 48 + v t4 % pow2 48) * pow208; (==) { Math.Lemmas.distributivity_add_left (v t4 / pow2 48 * pow2 48) (v t4 % pow2 48) pow208 } v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + (v t4 / pow2 48 * pow2 48) * pow208 + (v t4 % pow2 48) * pow208; (==) { } (v x * pow2 48) * pow208 + as_nat5 r; (==) { Math.Lemmas.paren_mul_right (v x) (pow2 48) pow208; Math.Lemmas.pow2_plus 48 208 } v x * pow2 256 + as_nat5 r; }; Math.Lemmas.lemma_div_lt (v t4) 64 48 val carry_round_after_last_carry_mod_prime5_lemma: m:scale64_5 -> f:felem5 -> Lemma (requires (let (m0,m1,m2,m3,m4) = m in m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ m4 = 1 /\ felem_fits5 f (m0,m1,m2,m3,1))) (ensures (let r = carry_round5 f in let (r0,r1,r2,r3,r4) = r in let (t0,t1,t2,t3,t4) = f in as_nat5 r == as_nat5 f /\ felem_fits5 r (1,1,1,1,2) /\ v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12))) let carry_round_after_last_carry_mod_prime5_lemma m f = let (m0,m1,m2,m3,m4) = m in let (t0,t1,t2,t3,t4) = f in //(m0,m1,m2,m3,1) let t1' = t1 +. (t0 >>. 52ul) in let t0' = t0 &. mask52 in LD.lemma_carry52 m1 m0 t1 t0; assert (felem_fits1 t1' (m1 + 1)); assert (felem_fits1 t0' 1); assert (v t0' = v t0 % pow2 52); assert (v t1' = v t1 + v t0 / pow2 52); let t2' = t2 +. (t1' >>. 52ul) in let t1'' = t1' &. mask52 in LD.lemma_carry52 m2 (m1 + 1) t2 t1'; assert (felem_fits1 t2' (m2 + 1)); assert (felem_fits1 t1'' 1); assert (v t1'' = v t1' % pow2 52); assert (v t2' = v t2 + v t1' / pow2 52); let t3' = t3 +. (t2' >>. 52ul) in let t2'' = t2' &. mask52 in LD.lemma_carry52 m3 (m2 + 1) t3 t2'; assert (felem_fits1 t3' (m3 + 1)); assert (felem_fits1 t2'' 1); assert (v t2'' = v t2' % pow2 52); assert (v t3' = v t3 + v t2' / pow2 52); let t4' = t4 +. (t3' >>. 52ul) in let t3'' = t3' &. mask52 in LD.lemma_carry_last52 m4 (m3 + 1) t4 t3'; assert (felem_fits_last1 t4' (m4 + 1)); assert (felem_fits1 t3'' 1); assert (v t3'' = v t3' % pow2 52); assert (v t4' = v t4 + v t3' / pow2 52); LD.carry_last_small_mod_lemma t4 t3'; ML.lemma_simplify_carry_round (v t0) (v t1) (v t2) (v t3) (v t4); let r = carry_round5 f in assert ((t0',t1'',t2'',t3'',t4') == r); assert (as_nat5 r == as_nat5 f) val plus_x_mul_pow2_256_minus_prime_lemma: m:scale64_5 -> x:uint64 -> f:felem5 -> Lemma (requires (let (m0,m1,m2,m3,m4) = m in let (t0,t1,t2,t3,t4) = f in m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ m4 = 1 /\ felem_fits5 f m /\ v x < pow2 16)) (ensures (let r = plus_x_mul_pow2_256_minus_prime x f in let (r0,r1,r2,r3,r4) = r in let (t0,t1,t2,t3,t4) = f in as_nat5 r == as_nat5 f + v x * (pow2 256 - S.prime) /\ felem_fits5 r (1,1,1,1,2) /\ v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12))) let plus_x_mul_pow2_256_minus_prime_lemma m x f = let (t0,t1,t2,t3,t4) = f in let (m0,m1,m2,m3,m4) = m in let t0' = t0 +. x *. u64 0x1000003D1 in assert (v x < pow2 16); Math.Lemmas.lemma_mult_lt_right 0x1000003D1 (v x) (pow2 16); assert_norm (pow2 16 * 0x1000003D1 < max52); assert (v t0 + v x * 0x1000003D1 < (m0 + 1) * max52); Math.Lemmas.lemma_mult_le_right max52 (m0 + 1) 4096; assert_norm (4096 * max52 < pow2 64); Math.Lemmas.small_mod (v t0 + v x * 0x1000003D1) (pow2 64); assert (v t0' = v t0 + v x * 0x1000003D1); assert (felem_fits1 t0' (m0 + 1)); let r = carry_round5 (t0',t1,t2,t3,t4) in carry_round_after_last_carry_mod_prime5_lemma (m0+1,m1,m2,m3,m4) (t0',t1,t2,t3,t4); assert (as_nat5 r == as_nat5 (t0',t1,t2,t3,t4)); LD.lemma_pow2_256_minus_prime (); assert (as_nat5 r == as_nat5 f + v x * (pow2 256 - S.prime)) val normalize_weak5_lemma: m:scale64_5 -> f:felem5 -> Lemma (requires (let (m0,m1,m2,m3,m4) = m in m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ felem_fits5 f m)) (ensures (let r = normalize_weak5 f in let (r0,r1,r2,r3,r4) = r in let (t0,t1,t2,t3,t4) = f in as_nat5 r == as_nat5 f - v t4 / pow2 48 * S.prime /\ felem_fits5 r (1,1,1,1,2) /\ v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12))) let normalize_weak5_lemma m f = let (m0,m1,m2,m3,m4) = m in let x, f1 = minus_x_mul_pow2_256 f in minus_x_mul_pow2_256_lemma m f; assert (as_nat5 f1 == as_nat5 f - v x * pow2 256); assert (felem_fits5 f1 (m0,m1,m2,m3,1)); let f2 = plus_x_mul_pow2_256_minus_prime x f1 in plus_x_mul_pow2_256_minus_prime_lemma (m0,m1,m2,m3,1) x f1; assert (as_nat5 f2 == as_nat5 f1 + v x * (pow2 256 - S.prime)); assert (felem_fits5 f2 (1,1,1,1,2)); assert (f2 == normalize_weak5 f); Math.Lemmas.distributivity_sub_right (v x) (pow2 256) S.prime; assert (as_nat5 f2 == as_nat5 f - v x * S.prime) /// Normalize #push-options "--ifuel 1" val is_felem_ge_prime5_lemma: f:felem5 -> Lemma (requires felem_fits5 f (1,1,1,1,1)) (ensures (let is_m = is_felem_ge_prime5 f in (v is_m = 0 \/ v is_m = ones_v U64) /\ (if v is_m = ones_v U64 then (as_nat5 f >= S.prime) else (as_nat5 f < S.prime)))) let is_felem_ge_prime5_lemma f = () #pop-options // let (f0,f1,f2,f3,f4) = f in // let m4 = eq_mask f4 mask48 in // eq_mask_lemma f4 mask48; // assert (if v f4 = v mask48 then v m4 = ones_v U64 else v m4 = 0); // let m3 = eq_mask f3 mask52 in // eq_mask_lemma f3 mask52; // assert (if v f3 = v mask52 then v m3 = ones_v U64 else v m3 = 0); // let m2 = eq_mask f2 mask52 in // eq_mask_lemma f2 mask52; // assert (if v f2 = v mask52 then v m2 = ones_v U64 else v m2 = 0); // let m1 = eq_mask f1 mask52 in // eq_mask_lemma f1 mask52; // assert (if v f1 = v mask52 then v m1 = ones_v U64 else v m1 = 0); // let m0 = gte_mask f0 (u64 0xffffefffffc2f) in // gte_mask_lemma f0 (u64 0xffffefffffc2f); // assert (if v f0 >= 0xffffefffffc2f then v m0 = ones_v U64 else v m0 = 0); // let m = m0 &. m1 &. m2 &. m3 &. m4 in () // if v m4 = 0 then // logand_zeros (m0 &. m1 &. m2 &. m3) // else begin // logand_ones (m0 &. m1 &. m2 &. m3) end
false
true
Hacl.Spec.K256.Field52.Lemmas2.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val normalize5_first_part : _: ((((Lib.IntTypes.uint64 * Lib.IntTypes.uint64) * Lib.IntTypes.uint64) * Lib.IntTypes.uint64) * Lib.IntTypes.uint64) -> Lib.IntTypes.uint64 * ((((Lib.IntTypes.uint64 * Lib.IntTypes.uint64) * Lib.IntTypes.uint64) * Lib.IntTypes.uint64) * Lib.IntTypes.uint64)
[]
Hacl.Spec.K256.Field52.Lemmas2.normalize5_first_part
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas2.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
_: ((((Lib.IntTypes.uint64 * Lib.IntTypes.uint64) * Lib.IntTypes.uint64) * Lib.IntTypes.uint64) * Lib.IntTypes.uint64) -> Lib.IntTypes.uint64 * ((((Lib.IntTypes.uint64 * Lib.IntTypes.uint64) * Lib.IntTypes.uint64) * Lib.IntTypes.uint64) * Lib.IntTypes.uint64)
{ "end_col": 21, "end_line": 208, "start_col": 44, "start_line": 205 }
FStar.Pervasives.Lemma
val lemma_a_minus_b_n_c_n_k (k a b c:nat) (n:pos) : Lemma (requires k < n /\ k == a - b * n - c * n) (ensures k == a % n)
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_a_minus_b_n_c_n_k k a b c n = Math.Lemmas.lemma_mod_sub (a - b * n) n c; Math.Lemmas.lemma_mod_sub a n b; Math.Lemmas.small_mod k n
val lemma_a_minus_b_n_c_n_k (k a b c:nat) (n:pos) : Lemma (requires k < n /\ k == a - b * n - c * n) (ensures k == a % n) let lemma_a_minus_b_n_c_n_k k a b c n =
false
null
true
Math.Lemmas.lemma_mod_sub (a - b * n) n c; Math.Lemmas.lemma_mod_sub a n b; Math.Lemmas.small_mod k n
{ "checked_file": "Hacl.Spec.K256.Field52.Lemmas2.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas2.fst" }
[ "lemma" ]
[ "Prims.nat", "Prims.pos", "FStar.Math.Lemmas.small_mod", "Prims.unit", "FStar.Math.Lemmas.lemma_mod_sub", "Prims.op_Subtraction", "FStar.Mul.op_Star" ]
[]
module Hacl.Spec.K256.Field52.Lemmas2 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" /// Normalize-weak val minus_x_mul_pow2_256_lemma: m:scale64_5 -> f:felem5 -> Lemma (requires felem_fits5 f m) (ensures (let x, r = minus_x_mul_pow2_256 f in let (r0,r1,r2,r3,r4) = r in let (m0,m1,m2,m3,m4) = m in let (t0,t1,t2,t3,t4) = f in v x < pow2 16 /\ v x = v t4 / pow2 48 /\ v r4 = v t4 % pow2 48 /\ as_nat5 r == as_nat5 f - v x * pow2 256 /\ felem_fits5 r (m0,m1,m2,m3,1))) let minus_x_mul_pow2_256_lemma m f = let (m0,m1,m2,m3,m4) = m in let (t0,t1,t2,t3,t4) = f in let x = t4 >>. 48ul in let t4' = t4 &. mask48 in LD.lemma_mask48 t4; let r = (t0,t1,t2,t3,t4') in calc (==) { // as_nat5 f v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + v t4 * pow208; (==) { Math.Lemmas.euclidean_division_definition (v t4) (pow2 48) } v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + (v t4 / pow2 48 * pow2 48 + v t4 % pow2 48) * pow208; (==) { Math.Lemmas.distributivity_add_left (v t4 / pow2 48 * pow2 48) (v t4 % pow2 48) pow208 } v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + (v t4 / pow2 48 * pow2 48) * pow208 + (v t4 % pow2 48) * pow208; (==) { } (v x * pow2 48) * pow208 + as_nat5 r; (==) { Math.Lemmas.paren_mul_right (v x) (pow2 48) pow208; Math.Lemmas.pow2_plus 48 208 } v x * pow2 256 + as_nat5 r; }; Math.Lemmas.lemma_div_lt (v t4) 64 48 val carry_round_after_last_carry_mod_prime5_lemma: m:scale64_5 -> f:felem5 -> Lemma (requires (let (m0,m1,m2,m3,m4) = m in m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ m4 = 1 /\ felem_fits5 f (m0,m1,m2,m3,1))) (ensures (let r = carry_round5 f in let (r0,r1,r2,r3,r4) = r in let (t0,t1,t2,t3,t4) = f in as_nat5 r == as_nat5 f /\ felem_fits5 r (1,1,1,1,2) /\ v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12))) let carry_round_after_last_carry_mod_prime5_lemma m f = let (m0,m1,m2,m3,m4) = m in let (t0,t1,t2,t3,t4) = f in //(m0,m1,m2,m3,1) let t1' = t1 +. (t0 >>. 52ul) in let t0' = t0 &. mask52 in LD.lemma_carry52 m1 m0 t1 t0; assert (felem_fits1 t1' (m1 + 1)); assert (felem_fits1 t0' 1); assert (v t0' = v t0 % pow2 52); assert (v t1' = v t1 + v t0 / pow2 52); let t2' = t2 +. (t1' >>. 52ul) in let t1'' = t1' &. mask52 in LD.lemma_carry52 m2 (m1 + 1) t2 t1'; assert (felem_fits1 t2' (m2 + 1)); assert (felem_fits1 t1'' 1); assert (v t1'' = v t1' % pow2 52); assert (v t2' = v t2 + v t1' / pow2 52); let t3' = t3 +. (t2' >>. 52ul) in let t2'' = t2' &. mask52 in LD.lemma_carry52 m3 (m2 + 1) t3 t2'; assert (felem_fits1 t3' (m3 + 1)); assert (felem_fits1 t2'' 1); assert (v t2'' = v t2' % pow2 52); assert (v t3' = v t3 + v t2' / pow2 52); let t4' = t4 +. (t3' >>. 52ul) in let t3'' = t3' &. mask52 in LD.lemma_carry_last52 m4 (m3 + 1) t4 t3'; assert (felem_fits_last1 t4' (m4 + 1)); assert (felem_fits1 t3'' 1); assert (v t3'' = v t3' % pow2 52); assert (v t4' = v t4 + v t3' / pow2 52); LD.carry_last_small_mod_lemma t4 t3'; ML.lemma_simplify_carry_round (v t0) (v t1) (v t2) (v t3) (v t4); let r = carry_round5 f in assert ((t0',t1'',t2'',t3'',t4') == r); assert (as_nat5 r == as_nat5 f) val plus_x_mul_pow2_256_minus_prime_lemma: m:scale64_5 -> x:uint64 -> f:felem5 -> Lemma (requires (let (m0,m1,m2,m3,m4) = m in let (t0,t1,t2,t3,t4) = f in m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ m4 = 1 /\ felem_fits5 f m /\ v x < pow2 16)) (ensures (let r = plus_x_mul_pow2_256_minus_prime x f in let (r0,r1,r2,r3,r4) = r in let (t0,t1,t2,t3,t4) = f in as_nat5 r == as_nat5 f + v x * (pow2 256 - S.prime) /\ felem_fits5 r (1,1,1,1,2) /\ v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12))) let plus_x_mul_pow2_256_minus_prime_lemma m x f = let (t0,t1,t2,t3,t4) = f in let (m0,m1,m2,m3,m4) = m in let t0' = t0 +. x *. u64 0x1000003D1 in assert (v x < pow2 16); Math.Lemmas.lemma_mult_lt_right 0x1000003D1 (v x) (pow2 16); assert_norm (pow2 16 * 0x1000003D1 < max52); assert (v t0 + v x * 0x1000003D1 < (m0 + 1) * max52); Math.Lemmas.lemma_mult_le_right max52 (m0 + 1) 4096; assert_norm (4096 * max52 < pow2 64); Math.Lemmas.small_mod (v t0 + v x * 0x1000003D1) (pow2 64); assert (v t0' = v t0 + v x * 0x1000003D1); assert (felem_fits1 t0' (m0 + 1)); let r = carry_round5 (t0',t1,t2,t3,t4) in carry_round_after_last_carry_mod_prime5_lemma (m0+1,m1,m2,m3,m4) (t0',t1,t2,t3,t4); assert (as_nat5 r == as_nat5 (t0',t1,t2,t3,t4)); LD.lemma_pow2_256_minus_prime (); assert (as_nat5 r == as_nat5 f + v x * (pow2 256 - S.prime)) val normalize_weak5_lemma: m:scale64_5 -> f:felem5 -> Lemma (requires (let (m0,m1,m2,m3,m4) = m in m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ felem_fits5 f m)) (ensures (let r = normalize_weak5 f in let (r0,r1,r2,r3,r4) = r in let (t0,t1,t2,t3,t4) = f in as_nat5 r == as_nat5 f - v t4 / pow2 48 * S.prime /\ felem_fits5 r (1,1,1,1,2) /\ v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12))) let normalize_weak5_lemma m f = let (m0,m1,m2,m3,m4) = m in let x, f1 = minus_x_mul_pow2_256 f in minus_x_mul_pow2_256_lemma m f; assert (as_nat5 f1 == as_nat5 f - v x * pow2 256); assert (felem_fits5 f1 (m0,m1,m2,m3,1)); let f2 = plus_x_mul_pow2_256_minus_prime x f1 in plus_x_mul_pow2_256_minus_prime_lemma (m0,m1,m2,m3,1) x f1; assert (as_nat5 f2 == as_nat5 f1 + v x * (pow2 256 - S.prime)); assert (felem_fits5 f2 (1,1,1,1,2)); assert (f2 == normalize_weak5 f); Math.Lemmas.distributivity_sub_right (v x) (pow2 256) S.prime; assert (as_nat5 f2 == as_nat5 f - v x * S.prime) /// Normalize #push-options "--ifuel 1" val is_felem_ge_prime5_lemma: f:felem5 -> Lemma (requires felem_fits5 f (1,1,1,1,1)) (ensures (let is_m = is_felem_ge_prime5 f in (v is_m = 0 \/ v is_m = ones_v U64) /\ (if v is_m = ones_v U64 then (as_nat5 f >= S.prime) else (as_nat5 f < S.prime)))) let is_felem_ge_prime5_lemma f = () #pop-options // let (f0,f1,f2,f3,f4) = f in // let m4 = eq_mask f4 mask48 in // eq_mask_lemma f4 mask48; // assert (if v f4 = v mask48 then v m4 = ones_v U64 else v m4 = 0); // let m3 = eq_mask f3 mask52 in // eq_mask_lemma f3 mask52; // assert (if v f3 = v mask52 then v m3 = ones_v U64 else v m3 = 0); // let m2 = eq_mask f2 mask52 in // eq_mask_lemma f2 mask52; // assert (if v f2 = v mask52 then v m2 = ones_v U64 else v m2 = 0); // let m1 = eq_mask f1 mask52 in // eq_mask_lemma f1 mask52; // assert (if v f1 = v mask52 then v m1 = ones_v U64 else v m1 = 0); // let m0 = gte_mask f0 (u64 0xffffefffffc2f) in // gte_mask_lemma f0 (u64 0xffffefffffc2f); // assert (if v f0 >= 0xffffefffffc2f then v m0 = ones_v U64 else v m0 = 0); // let m = m0 &. m1 &. m2 &. m3 &. m4 in () // if v m4 = 0 then // logand_zeros (m0 &. m1 &. m2 &. m3) // else begin // logand_ones (m0 &. m1 &. m2 &. m3) end noextract let normalize5_first_part (f0,f1,f2,f3,f4) = let (t0,t1,t2,t3,t4) = normalize_weak5 (f0,f1,f2,f3,f4) in let x, (r0,r1,r2,r3,r4) = minus_x_mul_pow2_256 (t0,t1,t2,t3,t4) in x, (r0,r1,r2,r3,r4) noextract let normalize5_second_part_x (x:uint64) (r0,r1,r2,r3,r4) : felem5 = let is_ge_p_m = is_felem_ge_prime5 (r0,r1,r2,r3,r4) in // as_nat r >= S.prime let m_to_one = is_ge_p_m &. u64 1 in let x1 = m_to_one |. x in let (s0,s1,s2,s3,s4) = plus_x_mul_pow2_256_minus_prime x1 (r0,r1,r2,r3,r4) in let x2, (k0,k1,k2,k3,k4) = minus_x_mul_pow2_256 (s0,s1,s2,s3,s4) in (k0,k1,k2,k3,k4) val normalize5_first_part_lemma: m:scale64_5 -> f:felem5 -> Lemma (requires (let (m0,m1,m2,m3,m4) = m in m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ felem_fits5 f m)) (ensures (let x, r = normalize5_first_part f in let (f0,f1,f2,f3,f4) = f in let (r0,r1,r2,r3,r4) = r in as_nat5 r == as_nat5 f - v f4 / pow2 48 * S.prime - v x * pow2 256 /\ felem_fits5 r (1,1,1,1,1) /\ (v x = 0 \/ (v x = 1 /\ v r4 < pow2 12)))) let normalize5_first_part_lemma m f = let (m0,m1,m2,m3,m4) = m in let (f0,f1,f2,f3,f4) = f in let t = normalize_weak5 f in let (t0,t1,t2,t3,t4) = t in normalize_weak5_lemma m f; assert (as_nat5 t == as_nat5 f - v f4 / pow2 48 * S.prime); assert (felem_fits5 t (1,1,1,1,2)); assert ((v t4 >= pow2 48 ==> v t4 % pow2 48 < pow2 12)); let x, r = minus_x_mul_pow2_256 t in let (r0,r1,r2,r3,r4) = r in minus_x_mul_pow2_256_lemma (1,1,1,1,2) t; assert (as_nat5 r == as_nat5 t - v x * pow2 256); assert (as_nat5 r == as_nat5 f - v f4 / pow2 48 * S.prime - v x * pow2 256); assert (felem_fits5 r (1,1,1,1,1)); assert (v r4 = v t4 % pow2 48 /\ v x = v t4 / pow2 48); LD.lemma_div_pow48 t4; assert (if v t4 < pow2 48 then v x = 0 else v x = 1 /\ v r4 < pow2 12) val normalize5_second_part_x_is_one_lemma: x:uint64 -> r:felem5 -> Lemma (requires (let (r0,r1,r2,r3,r4) = r in felem_fits5 r (1,1,1,1,1) /\ v x = 1 /\ v r4 < pow2 12)) (ensures (let k = normalize5_second_part_x x r in as_nat5 k == as_nat5 r + v x * pow2 256 - S.prime /\ felem_fits5 k (1,1,1,1,1) /\ as_nat5 k < S.prime)) let normalize5_second_part_x_is_one_lemma x r = LD.lemma_as_nat_bound_f4_lt_pow12 r; assert (as_nat5 r <= pow2 220 - 1); assert_norm (pow2 220 - 1 < S.prime); let is_ge_p_m = is_felem_ge_prime5 r in is_felem_ge_prime5_lemma r; assert (v is_ge_p_m = 0); let m_to_one = is_ge_p_m &. u64 1 in logand_lemma is_ge_p_m (u64 1); assert (v m_to_one = 0); let x1 = m_to_one |. x in //1 logor_spec m_to_one x; FStar.UInt.logor_commutative #64 (v m_to_one) (v x); FStar.UInt.logor_lemma_1 #64 (v x); assert (v x1 = 1); let s = plus_x_mul_pow2_256_minus_prime x1 r in // + x * (pow2 256 - S.prime) plus_x_mul_pow2_256_minus_prime_lemma (1,1,1,1,1) x1 r; assert (as_nat5 s = as_nat5 r + pow2 256 - S.prime); //(v s4 >= pow2 48 ==> v s4 % pow2 48 < pow2 12) let (s0,s1,s2,s3,s4) = s in Math.Lemmas.pow2_double_sum 12; assert (v s4 < pow2 13); let x2, k = minus_x_mul_pow2_256 s in // - s4 / pow2 48 * pow2 256 minus_x_mul_pow2_256_lemma (1,1,1,1,2) s; assert (felem_fits5 k (1,1,1,1,1)); assert (as_nat5 k = as_nat5 s - v s4 / pow2 48 * pow2 256); LD.lemma_div_pow48 s4; assert (as_nat5 k = as_nat5 s); assert (as_nat5 k < pow2 220 + pow2 256 - S.prime); assert_norm (pow2 220 + pow2 256 - S.prime < S.prime) val normalize5_second_part_x_is_zero_lemma: x:uint64 -> r:felem5 -> Lemma (requires (let (r0,r1,r2,r3,r4) = r in felem_fits5 r (1,1,1,1,1) /\ v x = 0)) (ensures (let k = normalize5_second_part_x x r in as_nat5 k == (if as_nat5 r < S.prime then as_nat5 r else as_nat5 r - S.prime) /\ felem_fits5 k (1,1,1,1,1) /\ as_nat5 k < S.prime)) let normalize5_second_part_x_is_zero_lemma x r = let is_ge_p_m = is_felem_ge_prime5 r in is_felem_ge_prime5_lemma r; assert (if v is_ge_p_m = ones_v U64 then (as_nat5 r >= S.prime) else as_nat5 r < S.prime); let m_to_one = is_ge_p_m &. u64 1 in logand_lemma is_ge_p_m (u64 1); assert (if v is_ge_p_m = ones_v U64 then v m_to_one = 1 else v m_to_one = 0); let x1 = m_to_one |. x in //1 logor_spec m_to_one x; FStar.UInt.logor_lemma_1 #64 (v m_to_one); assert (v x1 = v m_to_one); assert (if v x1 = 1 then (as_nat5 r >= S.prime) else as_nat5 r < S.prime); let s = plus_x_mul_pow2_256_minus_prime x1 r in // + x1 * (pow2 256 - S.prime) plus_x_mul_pow2_256_minus_prime_lemma (1,1,1,1,1) x1 r; assert (as_nat5 s = as_nat5 r + v x1 * (pow2 256 - S.prime)); //(v s4 >= pow2 48 ==> v s4 % pow2 48 < pow2 12) let (s0,s1,s2,s3,s4) = s in let x2, k = minus_x_mul_pow2_256 s in // - s4 / pow2 48 * pow2 256 minus_x_mul_pow2_256_lemma (1,1,1,1,2) s; assert (felem_fits5 k (1,1,1,1,1)); assert (as_nat5 k = as_nat5 s - v s4 / pow2 48 * pow2 256); if v x1 = 0 then begin assert (as_nat5 s = as_nat5 r); LD.as_nat_inj s r; assert (felem_fits_last1 s4 1); Math.Lemmas.small_div (v s4) (pow2 48); assert (as_nat5 k = as_nat5 r) end else begin assert (as_nat5 s = as_nat5 r + pow2 256 - S.prime); assert (as_nat5 s >= pow2 256); assert (v s4 >= pow2 48); LD.lemma_div_pow48 s4; assert (as_nat5 k = as_nat5 r - S.prime) end val lemma_a_minus_b_n_c_n_k (k a b c:nat) (n:pos) : Lemma (requires k < n /\ k == a - b * n - c * n) (ensures k == a % n)
false
false
Hacl.Spec.K256.Field52.Lemmas2.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_a_minus_b_n_c_n_k (k a b c:nat) (n:pos) : Lemma (requires k < n /\ k == a - b * n - c * n) (ensures k == a % n)
[]
Hacl.Spec.K256.Field52.Lemmas2.lemma_a_minus_b_n_c_n_k
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas2.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
k: Prims.nat -> a: Prims.nat -> b: Prims.nat -> c: Prims.nat -> n: Prims.pos -> FStar.Pervasives.Lemma (requires k < n /\ k == a - b * n - c * n) (ensures k == a % n)
{ "end_col": 27, "end_line": 352, "start_col": 2, "start_line": 350 }
Prims.Tot
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let normalize5_second_part_x (x:uint64) (r0,r1,r2,r3,r4) : felem5 = let is_ge_p_m = is_felem_ge_prime5 (r0,r1,r2,r3,r4) in // as_nat r >= S.prime let m_to_one = is_ge_p_m &. u64 1 in let x1 = m_to_one |. x in let (s0,s1,s2,s3,s4) = plus_x_mul_pow2_256_minus_prime x1 (r0,r1,r2,r3,r4) in let x2, (k0,k1,k2,k3,k4) = minus_x_mul_pow2_256 (s0,s1,s2,s3,s4) in (k0,k1,k2,k3,k4)
let normalize5_second_part_x (x: uint64) (r0, r1, r2, r3, r4) : felem5 =
false
null
false
let is_ge_p_m = is_felem_ge_prime5 (r0, r1, r2, r3, r4) in let m_to_one = is_ge_p_m &. u64 1 in let x1 = m_to_one |. x in let s0, s1, s2, s3, s4 = plus_x_mul_pow2_256_minus_prime x1 (r0, r1, r2, r3, r4) in let x2, (k0, k1, k2, k3, k4) = minus_x_mul_pow2_256 (s0, s1, s2, s3, s4) in (k0, k1, k2, k3, k4)
{ "checked_file": "Hacl.Spec.K256.Field52.Lemmas2.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas2.fst" }
[ "total" ]
[ "Lib.IntTypes.uint64", "FStar.Pervasives.Native.tuple5", "FStar.Pervasives.Native.Mktuple5", "Hacl.Spec.K256.Field52.Definitions.felem5", "FStar.Pervasives.Native.tuple2", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Hacl.Spec.K256.Field52.minus_x_mul_pow2_256", "Hacl.Spec.K256.Field52.plus_x_mul_pow2_256_minus_prime", "Lib.IntTypes.op_Bar_Dot", "Lib.IntTypes.op_Amp_Dot", "Lib.IntTypes.u64", "Hacl.Spec.K256.Field52.is_felem_ge_prime5" ]
[]
module Hacl.Spec.K256.Field52.Lemmas2 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" /// Normalize-weak val minus_x_mul_pow2_256_lemma: m:scale64_5 -> f:felem5 -> Lemma (requires felem_fits5 f m) (ensures (let x, r = minus_x_mul_pow2_256 f in let (r0,r1,r2,r3,r4) = r in let (m0,m1,m2,m3,m4) = m in let (t0,t1,t2,t3,t4) = f in v x < pow2 16 /\ v x = v t4 / pow2 48 /\ v r4 = v t4 % pow2 48 /\ as_nat5 r == as_nat5 f - v x * pow2 256 /\ felem_fits5 r (m0,m1,m2,m3,1))) let minus_x_mul_pow2_256_lemma m f = let (m0,m1,m2,m3,m4) = m in let (t0,t1,t2,t3,t4) = f in let x = t4 >>. 48ul in let t4' = t4 &. mask48 in LD.lemma_mask48 t4; let r = (t0,t1,t2,t3,t4') in calc (==) { // as_nat5 f v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + v t4 * pow208; (==) { Math.Lemmas.euclidean_division_definition (v t4) (pow2 48) } v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + (v t4 / pow2 48 * pow2 48 + v t4 % pow2 48) * pow208; (==) { Math.Lemmas.distributivity_add_left (v t4 / pow2 48 * pow2 48) (v t4 % pow2 48) pow208 } v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + (v t4 / pow2 48 * pow2 48) * pow208 + (v t4 % pow2 48) * pow208; (==) { } (v x * pow2 48) * pow208 + as_nat5 r; (==) { Math.Lemmas.paren_mul_right (v x) (pow2 48) pow208; Math.Lemmas.pow2_plus 48 208 } v x * pow2 256 + as_nat5 r; }; Math.Lemmas.lemma_div_lt (v t4) 64 48 val carry_round_after_last_carry_mod_prime5_lemma: m:scale64_5 -> f:felem5 -> Lemma (requires (let (m0,m1,m2,m3,m4) = m in m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ m4 = 1 /\ felem_fits5 f (m0,m1,m2,m3,1))) (ensures (let r = carry_round5 f in let (r0,r1,r2,r3,r4) = r in let (t0,t1,t2,t3,t4) = f in as_nat5 r == as_nat5 f /\ felem_fits5 r (1,1,1,1,2) /\ v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12))) let carry_round_after_last_carry_mod_prime5_lemma m f = let (m0,m1,m2,m3,m4) = m in let (t0,t1,t2,t3,t4) = f in //(m0,m1,m2,m3,1) let t1' = t1 +. (t0 >>. 52ul) in let t0' = t0 &. mask52 in LD.lemma_carry52 m1 m0 t1 t0; assert (felem_fits1 t1' (m1 + 1)); assert (felem_fits1 t0' 1); assert (v t0' = v t0 % pow2 52); assert (v t1' = v t1 + v t0 / pow2 52); let t2' = t2 +. (t1' >>. 52ul) in let t1'' = t1' &. mask52 in LD.lemma_carry52 m2 (m1 + 1) t2 t1'; assert (felem_fits1 t2' (m2 + 1)); assert (felem_fits1 t1'' 1); assert (v t1'' = v t1' % pow2 52); assert (v t2' = v t2 + v t1' / pow2 52); let t3' = t3 +. (t2' >>. 52ul) in let t2'' = t2' &. mask52 in LD.lemma_carry52 m3 (m2 + 1) t3 t2'; assert (felem_fits1 t3' (m3 + 1)); assert (felem_fits1 t2'' 1); assert (v t2'' = v t2' % pow2 52); assert (v t3' = v t3 + v t2' / pow2 52); let t4' = t4 +. (t3' >>. 52ul) in let t3'' = t3' &. mask52 in LD.lemma_carry_last52 m4 (m3 + 1) t4 t3'; assert (felem_fits_last1 t4' (m4 + 1)); assert (felem_fits1 t3'' 1); assert (v t3'' = v t3' % pow2 52); assert (v t4' = v t4 + v t3' / pow2 52); LD.carry_last_small_mod_lemma t4 t3'; ML.lemma_simplify_carry_round (v t0) (v t1) (v t2) (v t3) (v t4); let r = carry_round5 f in assert ((t0',t1'',t2'',t3'',t4') == r); assert (as_nat5 r == as_nat5 f) val plus_x_mul_pow2_256_minus_prime_lemma: m:scale64_5 -> x:uint64 -> f:felem5 -> Lemma (requires (let (m0,m1,m2,m3,m4) = m in let (t0,t1,t2,t3,t4) = f in m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ m4 = 1 /\ felem_fits5 f m /\ v x < pow2 16)) (ensures (let r = plus_x_mul_pow2_256_minus_prime x f in let (r0,r1,r2,r3,r4) = r in let (t0,t1,t2,t3,t4) = f in as_nat5 r == as_nat5 f + v x * (pow2 256 - S.prime) /\ felem_fits5 r (1,1,1,1,2) /\ v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12))) let plus_x_mul_pow2_256_minus_prime_lemma m x f = let (t0,t1,t2,t3,t4) = f in let (m0,m1,m2,m3,m4) = m in let t0' = t0 +. x *. u64 0x1000003D1 in assert (v x < pow2 16); Math.Lemmas.lemma_mult_lt_right 0x1000003D1 (v x) (pow2 16); assert_norm (pow2 16 * 0x1000003D1 < max52); assert (v t0 + v x * 0x1000003D1 < (m0 + 1) * max52); Math.Lemmas.lemma_mult_le_right max52 (m0 + 1) 4096; assert_norm (4096 * max52 < pow2 64); Math.Lemmas.small_mod (v t0 + v x * 0x1000003D1) (pow2 64); assert (v t0' = v t0 + v x * 0x1000003D1); assert (felem_fits1 t0' (m0 + 1)); let r = carry_round5 (t0',t1,t2,t3,t4) in carry_round_after_last_carry_mod_prime5_lemma (m0+1,m1,m2,m3,m4) (t0',t1,t2,t3,t4); assert (as_nat5 r == as_nat5 (t0',t1,t2,t3,t4)); LD.lemma_pow2_256_minus_prime (); assert (as_nat5 r == as_nat5 f + v x * (pow2 256 - S.prime)) val normalize_weak5_lemma: m:scale64_5 -> f:felem5 -> Lemma (requires (let (m0,m1,m2,m3,m4) = m in m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ felem_fits5 f m)) (ensures (let r = normalize_weak5 f in let (r0,r1,r2,r3,r4) = r in let (t0,t1,t2,t3,t4) = f in as_nat5 r == as_nat5 f - v t4 / pow2 48 * S.prime /\ felem_fits5 r (1,1,1,1,2) /\ v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12))) let normalize_weak5_lemma m f = let (m0,m1,m2,m3,m4) = m in let x, f1 = minus_x_mul_pow2_256 f in minus_x_mul_pow2_256_lemma m f; assert (as_nat5 f1 == as_nat5 f - v x * pow2 256); assert (felem_fits5 f1 (m0,m1,m2,m3,1)); let f2 = plus_x_mul_pow2_256_minus_prime x f1 in plus_x_mul_pow2_256_minus_prime_lemma (m0,m1,m2,m3,1) x f1; assert (as_nat5 f2 == as_nat5 f1 + v x * (pow2 256 - S.prime)); assert (felem_fits5 f2 (1,1,1,1,2)); assert (f2 == normalize_weak5 f); Math.Lemmas.distributivity_sub_right (v x) (pow2 256) S.prime; assert (as_nat5 f2 == as_nat5 f - v x * S.prime) /// Normalize #push-options "--ifuel 1" val is_felem_ge_prime5_lemma: f:felem5 -> Lemma (requires felem_fits5 f (1,1,1,1,1)) (ensures (let is_m = is_felem_ge_prime5 f in (v is_m = 0 \/ v is_m = ones_v U64) /\ (if v is_m = ones_v U64 then (as_nat5 f >= S.prime) else (as_nat5 f < S.prime)))) let is_felem_ge_prime5_lemma f = () #pop-options // let (f0,f1,f2,f3,f4) = f in // let m4 = eq_mask f4 mask48 in // eq_mask_lemma f4 mask48; // assert (if v f4 = v mask48 then v m4 = ones_v U64 else v m4 = 0); // let m3 = eq_mask f3 mask52 in // eq_mask_lemma f3 mask52; // assert (if v f3 = v mask52 then v m3 = ones_v U64 else v m3 = 0); // let m2 = eq_mask f2 mask52 in // eq_mask_lemma f2 mask52; // assert (if v f2 = v mask52 then v m2 = ones_v U64 else v m2 = 0); // let m1 = eq_mask f1 mask52 in // eq_mask_lemma f1 mask52; // assert (if v f1 = v mask52 then v m1 = ones_v U64 else v m1 = 0); // let m0 = gte_mask f0 (u64 0xffffefffffc2f) in // gte_mask_lemma f0 (u64 0xffffefffffc2f); // assert (if v f0 >= 0xffffefffffc2f then v m0 = ones_v U64 else v m0 = 0); // let m = m0 &. m1 &. m2 &. m3 &. m4 in () // if v m4 = 0 then // logand_zeros (m0 &. m1 &. m2 &. m3) // else begin // logand_ones (m0 &. m1 &. m2 &. m3) end noextract let normalize5_first_part (f0,f1,f2,f3,f4) = let (t0,t1,t2,t3,t4) = normalize_weak5 (f0,f1,f2,f3,f4) in let x, (r0,r1,r2,r3,r4) = minus_x_mul_pow2_256 (t0,t1,t2,t3,t4) in x, (r0,r1,r2,r3,r4)
false
true
Hacl.Spec.K256.Field52.Lemmas2.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val normalize5_second_part_x : x: Lib.IntTypes.uint64 -> _: ((((Lib.IntTypes.uint64 * Lib.IntTypes.uint64) * Lib.IntTypes.uint64) * Lib.IntTypes.uint64) * Lib.IntTypes.uint64) -> Hacl.Spec.K256.Field52.Definitions.felem5
[]
Hacl.Spec.K256.Field52.Lemmas2.normalize5_second_part_x
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas2.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Lib.IntTypes.uint64 -> _: ((((Lib.IntTypes.uint64 * Lib.IntTypes.uint64) * Lib.IntTypes.uint64) * Lib.IntTypes.uint64) * Lib.IntTypes.uint64) -> Hacl.Spec.K256.Field52.Definitions.felem5
{ "end_col": 18, "end_line": 217, "start_col": 67, "start_line": 211 }
FStar.Pervasives.Lemma
val normalize_weak5_lemma: m:scale64_5 -> f:felem5 -> Lemma (requires (let (m0,m1,m2,m3,m4) = m in m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ felem_fits5 f m)) (ensures (let r = normalize_weak5 f in let (r0,r1,r2,r3,r4) = r in let (t0,t1,t2,t3,t4) = f in as_nat5 r == as_nat5 f - v t4 / pow2 48 * S.prime /\ felem_fits5 r (1,1,1,1,2) /\ v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12)))
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let normalize_weak5_lemma m f = let (m0,m1,m2,m3,m4) = m in let x, f1 = minus_x_mul_pow2_256 f in minus_x_mul_pow2_256_lemma m f; assert (as_nat5 f1 == as_nat5 f - v x * pow2 256); assert (felem_fits5 f1 (m0,m1,m2,m3,1)); let f2 = plus_x_mul_pow2_256_minus_prime x f1 in plus_x_mul_pow2_256_minus_prime_lemma (m0,m1,m2,m3,1) x f1; assert (as_nat5 f2 == as_nat5 f1 + v x * (pow2 256 - S.prime)); assert (felem_fits5 f2 (1,1,1,1,2)); assert (f2 == normalize_weak5 f); Math.Lemmas.distributivity_sub_right (v x) (pow2 256) S.prime; assert (as_nat5 f2 == as_nat5 f - v x * S.prime)
val normalize_weak5_lemma: m:scale64_5 -> f:felem5 -> Lemma (requires (let (m0,m1,m2,m3,m4) = m in m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ felem_fits5 f m)) (ensures (let r = normalize_weak5 f in let (r0,r1,r2,r3,r4) = r in let (t0,t1,t2,t3,t4) = f in as_nat5 r == as_nat5 f - v t4 / pow2 48 * S.prime /\ felem_fits5 r (1,1,1,1,2) /\ v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12))) let normalize_weak5_lemma m f =
false
null
true
let m0, m1, m2, m3, m4 = m in let x, f1 = minus_x_mul_pow2_256 f in minus_x_mul_pow2_256_lemma m f; assert (as_nat5 f1 == as_nat5 f - v x * pow2 256); assert (felem_fits5 f1 (m0, m1, m2, m3, 1)); let f2 = plus_x_mul_pow2_256_minus_prime x f1 in plus_x_mul_pow2_256_minus_prime_lemma (m0, m1, m2, m3, 1) x f1; assert (as_nat5 f2 == as_nat5 f1 + v x * (pow2 256 - S.prime)); assert (felem_fits5 f2 (1, 1, 1, 1, 2)); assert (f2 == normalize_weak5 f); Math.Lemmas.distributivity_sub_right (v x) (pow2 256) S.prime; assert (as_nat5 f2 == as_nat5 f - v x * S.prime)
{ "checked_file": "Hacl.Spec.K256.Field52.Lemmas2.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas2.fst" }
[ "lemma" ]
[ "Hacl.Spec.K256.Field52.Definitions.scale64_5", "Hacl.Spec.K256.Field52.Definitions.felem5", "Prims.nat", "Lib.IntTypes.uint64", "Prims._assert", "Prims.eq2", "Prims.int", "Hacl.Spec.K256.Field52.Definitions.as_nat5", "Prims.op_Subtraction", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Spec.K256.PointOps.prime", "Prims.unit", "FStar.Math.Lemmas.distributivity_sub_right", "Prims.pow2", "Hacl.Spec.K256.Field52.normalize_weak5", "Hacl.Spec.K256.Field52.Definitions.felem_fits5", "FStar.Pervasives.Native.Mktuple5", "Prims.op_Addition", "Hacl.Spec.K256.Field52.Lemmas2.plus_x_mul_pow2_256_minus_prime_lemma", "Hacl.Spec.K256.Field52.plus_x_mul_pow2_256_minus_prime", "Hacl.Spec.K256.Field52.Lemmas2.minus_x_mul_pow2_256_lemma", "FStar.Pervasives.Native.tuple2", "Lib.IntTypes.int_t", "Hacl.Spec.K256.Field52.minus_x_mul_pow2_256" ]
[]
module Hacl.Spec.K256.Field52.Lemmas2 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" /// Normalize-weak val minus_x_mul_pow2_256_lemma: m:scale64_5 -> f:felem5 -> Lemma (requires felem_fits5 f m) (ensures (let x, r = minus_x_mul_pow2_256 f in let (r0,r1,r2,r3,r4) = r in let (m0,m1,m2,m3,m4) = m in let (t0,t1,t2,t3,t4) = f in v x < pow2 16 /\ v x = v t4 / pow2 48 /\ v r4 = v t4 % pow2 48 /\ as_nat5 r == as_nat5 f - v x * pow2 256 /\ felem_fits5 r (m0,m1,m2,m3,1))) let minus_x_mul_pow2_256_lemma m f = let (m0,m1,m2,m3,m4) = m in let (t0,t1,t2,t3,t4) = f in let x = t4 >>. 48ul in let t4' = t4 &. mask48 in LD.lemma_mask48 t4; let r = (t0,t1,t2,t3,t4') in calc (==) { // as_nat5 f v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + v t4 * pow208; (==) { Math.Lemmas.euclidean_division_definition (v t4) (pow2 48) } v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + (v t4 / pow2 48 * pow2 48 + v t4 % pow2 48) * pow208; (==) { Math.Lemmas.distributivity_add_left (v t4 / pow2 48 * pow2 48) (v t4 % pow2 48) pow208 } v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + (v t4 / pow2 48 * pow2 48) * pow208 + (v t4 % pow2 48) * pow208; (==) { } (v x * pow2 48) * pow208 + as_nat5 r; (==) { Math.Lemmas.paren_mul_right (v x) (pow2 48) pow208; Math.Lemmas.pow2_plus 48 208 } v x * pow2 256 + as_nat5 r; }; Math.Lemmas.lemma_div_lt (v t4) 64 48 val carry_round_after_last_carry_mod_prime5_lemma: m:scale64_5 -> f:felem5 -> Lemma (requires (let (m0,m1,m2,m3,m4) = m in m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ m4 = 1 /\ felem_fits5 f (m0,m1,m2,m3,1))) (ensures (let r = carry_round5 f in let (r0,r1,r2,r3,r4) = r in let (t0,t1,t2,t3,t4) = f in as_nat5 r == as_nat5 f /\ felem_fits5 r (1,1,1,1,2) /\ v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12))) let carry_round_after_last_carry_mod_prime5_lemma m f = let (m0,m1,m2,m3,m4) = m in let (t0,t1,t2,t3,t4) = f in //(m0,m1,m2,m3,1) let t1' = t1 +. (t0 >>. 52ul) in let t0' = t0 &. mask52 in LD.lemma_carry52 m1 m0 t1 t0; assert (felem_fits1 t1' (m1 + 1)); assert (felem_fits1 t0' 1); assert (v t0' = v t0 % pow2 52); assert (v t1' = v t1 + v t0 / pow2 52); let t2' = t2 +. (t1' >>. 52ul) in let t1'' = t1' &. mask52 in LD.lemma_carry52 m2 (m1 + 1) t2 t1'; assert (felem_fits1 t2' (m2 + 1)); assert (felem_fits1 t1'' 1); assert (v t1'' = v t1' % pow2 52); assert (v t2' = v t2 + v t1' / pow2 52); let t3' = t3 +. (t2' >>. 52ul) in let t2'' = t2' &. mask52 in LD.lemma_carry52 m3 (m2 + 1) t3 t2'; assert (felem_fits1 t3' (m3 + 1)); assert (felem_fits1 t2'' 1); assert (v t2'' = v t2' % pow2 52); assert (v t3' = v t3 + v t2' / pow2 52); let t4' = t4 +. (t3' >>. 52ul) in let t3'' = t3' &. mask52 in LD.lemma_carry_last52 m4 (m3 + 1) t4 t3'; assert (felem_fits_last1 t4' (m4 + 1)); assert (felem_fits1 t3'' 1); assert (v t3'' = v t3' % pow2 52); assert (v t4' = v t4 + v t3' / pow2 52); LD.carry_last_small_mod_lemma t4 t3'; ML.lemma_simplify_carry_round (v t0) (v t1) (v t2) (v t3) (v t4); let r = carry_round5 f in assert ((t0',t1'',t2'',t3'',t4') == r); assert (as_nat5 r == as_nat5 f) val plus_x_mul_pow2_256_minus_prime_lemma: m:scale64_5 -> x:uint64 -> f:felem5 -> Lemma (requires (let (m0,m1,m2,m3,m4) = m in let (t0,t1,t2,t3,t4) = f in m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ m4 = 1 /\ felem_fits5 f m /\ v x < pow2 16)) (ensures (let r = plus_x_mul_pow2_256_minus_prime x f in let (r0,r1,r2,r3,r4) = r in let (t0,t1,t2,t3,t4) = f in as_nat5 r == as_nat5 f + v x * (pow2 256 - S.prime) /\ felem_fits5 r (1,1,1,1,2) /\ v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12))) let plus_x_mul_pow2_256_minus_prime_lemma m x f = let (t0,t1,t2,t3,t4) = f in let (m0,m1,m2,m3,m4) = m in let t0' = t0 +. x *. u64 0x1000003D1 in assert (v x < pow2 16); Math.Lemmas.lemma_mult_lt_right 0x1000003D1 (v x) (pow2 16); assert_norm (pow2 16 * 0x1000003D1 < max52); assert (v t0 + v x * 0x1000003D1 < (m0 + 1) * max52); Math.Lemmas.lemma_mult_le_right max52 (m0 + 1) 4096; assert_norm (4096 * max52 < pow2 64); Math.Lemmas.small_mod (v t0 + v x * 0x1000003D1) (pow2 64); assert (v t0' = v t0 + v x * 0x1000003D1); assert (felem_fits1 t0' (m0 + 1)); let r = carry_round5 (t0',t1,t2,t3,t4) in carry_round_after_last_carry_mod_prime5_lemma (m0+1,m1,m2,m3,m4) (t0',t1,t2,t3,t4); assert (as_nat5 r == as_nat5 (t0',t1,t2,t3,t4)); LD.lemma_pow2_256_minus_prime (); assert (as_nat5 r == as_nat5 f + v x * (pow2 256 - S.prime)) val normalize_weak5_lemma: m:scale64_5 -> f:felem5 -> Lemma (requires (let (m0,m1,m2,m3,m4) = m in m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ felem_fits5 f m)) (ensures (let r = normalize_weak5 f in let (r0,r1,r2,r3,r4) = r in let (t0,t1,t2,t3,t4) = f in as_nat5 r == as_nat5 f - v t4 / pow2 48 * S.prime /\ felem_fits5 r (1,1,1,1,2) /\ v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12)))
false
false
Hacl.Spec.K256.Field52.Lemmas2.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val normalize_weak5_lemma: m:scale64_5 -> f:felem5 -> Lemma (requires (let (m0,m1,m2,m3,m4) = m in m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ felem_fits5 f m)) (ensures (let r = normalize_weak5 f in let (r0,r1,r2,r3,r4) = r in let (t0,t1,t2,t3,t4) = f in as_nat5 r == as_nat5 f - v t4 / pow2 48 * S.prime /\ felem_fits5 r (1,1,1,1,2) /\ v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12)))
[]
Hacl.Spec.K256.Field52.Lemmas2.normalize_weak5_lemma
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas2.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
m: Hacl.Spec.K256.Field52.Definitions.scale64_5 -> f: Hacl.Spec.K256.Field52.Definitions.felem5 -> FStar.Pervasives.Lemma (requires (let _ = m in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ m0 m1 m2 m3 _ = _ in m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits5 f m) <: Type0)) (ensures (let r = Hacl.Spec.K256.Field52.normalize_weak5 f in let _ = r in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ _ _ _ _ r4 = _ in let _ = f in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ _ _ _ _ t4 = _ in Hacl.Spec.K256.Field52.Definitions.as_nat5 r == Hacl.Spec.K256.Field52.Definitions.as_nat5 f - (Lib.IntTypes.v t4 / Prims.pow2 48) * Spec.K256.PointOps.prime /\ Hacl.Spec.K256.Field52.Definitions.felem_fits5 r (1, 1, 1, 1, 2) /\ Lib.IntTypes.v r4 < Lib.IntTypes.v t4 + Prims.pow2 12 /\ (Lib.IntTypes.v r4 >= Prims.pow2 48 ==> Lib.IntTypes.v r4 % Prims.pow2 48 < Prims.pow2 12)) <: Type0) <: Type0))
{ "end_col": 50, "end_line": 162, "start_col": 31, "start_line": 148 }
FStar.Pervasives.Lemma
val carry_round_after_last_carry_mod_prime5_lemma: m:scale64_5 -> f:felem5 -> Lemma (requires (let (m0,m1,m2,m3,m4) = m in m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ m4 = 1 /\ felem_fits5 f (m0,m1,m2,m3,1))) (ensures (let r = carry_round5 f in let (r0,r1,r2,r3,r4) = r in let (t0,t1,t2,t3,t4) = f in as_nat5 r == as_nat5 f /\ felem_fits5 r (1,1,1,1,2) /\ v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12)))
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let carry_round_after_last_carry_mod_prime5_lemma m f = let (m0,m1,m2,m3,m4) = m in let (t0,t1,t2,t3,t4) = f in //(m0,m1,m2,m3,1) let t1' = t1 +. (t0 >>. 52ul) in let t0' = t0 &. mask52 in LD.lemma_carry52 m1 m0 t1 t0; assert (felem_fits1 t1' (m1 + 1)); assert (felem_fits1 t0' 1); assert (v t0' = v t0 % pow2 52); assert (v t1' = v t1 + v t0 / pow2 52); let t2' = t2 +. (t1' >>. 52ul) in let t1'' = t1' &. mask52 in LD.lemma_carry52 m2 (m1 + 1) t2 t1'; assert (felem_fits1 t2' (m2 + 1)); assert (felem_fits1 t1'' 1); assert (v t1'' = v t1' % pow2 52); assert (v t2' = v t2 + v t1' / pow2 52); let t3' = t3 +. (t2' >>. 52ul) in let t2'' = t2' &. mask52 in LD.lemma_carry52 m3 (m2 + 1) t3 t2'; assert (felem_fits1 t3' (m3 + 1)); assert (felem_fits1 t2'' 1); assert (v t2'' = v t2' % pow2 52); assert (v t3' = v t3 + v t2' / pow2 52); let t4' = t4 +. (t3' >>. 52ul) in let t3'' = t3' &. mask52 in LD.lemma_carry_last52 m4 (m3 + 1) t4 t3'; assert (felem_fits_last1 t4' (m4 + 1)); assert (felem_fits1 t3'' 1); assert (v t3'' = v t3' % pow2 52); assert (v t4' = v t4 + v t3' / pow2 52); LD.carry_last_small_mod_lemma t4 t3'; ML.lemma_simplify_carry_round (v t0) (v t1) (v t2) (v t3) (v t4); let r = carry_round5 f in assert ((t0',t1'',t2'',t3'',t4') == r); assert (as_nat5 r == as_nat5 f)
val carry_round_after_last_carry_mod_prime5_lemma: m:scale64_5 -> f:felem5 -> Lemma (requires (let (m0,m1,m2,m3,m4) = m in m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ m4 = 1 /\ felem_fits5 f (m0,m1,m2,m3,1))) (ensures (let r = carry_round5 f in let (r0,r1,r2,r3,r4) = r in let (t0,t1,t2,t3,t4) = f in as_nat5 r == as_nat5 f /\ felem_fits5 r (1,1,1,1,2) /\ v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12))) let carry_round_after_last_carry_mod_prime5_lemma m f =
false
null
true
let m0, m1, m2, m3, m4 = m in let t0, t1, t2, t3, t4 = f in let t1' = t1 +. (t0 >>. 52ul) in let t0' = t0 &. mask52 in LD.lemma_carry52 m1 m0 t1 t0; assert (felem_fits1 t1' (m1 + 1)); assert (felem_fits1 t0' 1); assert (v t0' = v t0 % pow2 52); assert (v t1' = v t1 + v t0 / pow2 52); let t2' = t2 +. (t1' >>. 52ul) in let t1'' = t1' &. mask52 in LD.lemma_carry52 m2 (m1 + 1) t2 t1'; assert (felem_fits1 t2' (m2 + 1)); assert (felem_fits1 t1'' 1); assert (v t1'' = v t1' % pow2 52); assert (v t2' = v t2 + v t1' / pow2 52); let t3' = t3 +. (t2' >>. 52ul) in let t2'' = t2' &. mask52 in LD.lemma_carry52 m3 (m2 + 1) t3 t2'; assert (felem_fits1 t3' (m3 + 1)); assert (felem_fits1 t2'' 1); assert (v t2'' = v t2' % pow2 52); assert (v t3' = v t3 + v t2' / pow2 52); let t4' = t4 +. (t3' >>. 52ul) in let t3'' = t3' &. mask52 in LD.lemma_carry_last52 m4 (m3 + 1) t4 t3'; assert (felem_fits_last1 t4' (m4 + 1)); assert (felem_fits1 t3'' 1); assert (v t3'' = v t3' % pow2 52); assert (v t4' = v t4 + v t3' / pow2 52); LD.carry_last_small_mod_lemma t4 t3'; ML.lemma_simplify_carry_round (v t0) (v t1) (v t2) (v t3) (v t4); let r = carry_round5 f in assert ((t0', t1'', t2'', t3'', t4') == r); assert (as_nat5 r == as_nat5 f)
{ "checked_file": "Hacl.Spec.K256.Field52.Lemmas2.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas2.fst" }
[ "lemma" ]
[ "Hacl.Spec.K256.Field52.Definitions.scale64_5", "Hacl.Spec.K256.Field52.Definitions.felem5", "Prims.nat", "Lib.IntTypes.uint64", "Prims._assert", "Prims.eq2", "Hacl.Spec.K256.Field52.Definitions.as_nat5", "Prims.unit", "FStar.Pervasives.Native.tuple5", "FStar.Pervasives.Native.Mktuple5", "Hacl.Spec.K256.Field52.carry_round5", "Hacl.Spec.K256.MathLemmas.lemma_simplify_carry_round", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Hacl.Spec.K256.Field52.Definitions.Lemmas.carry_last_small_mod_lemma", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Prims.op_Addition", "Prims.op_Division", "Prims.pow2", "Prims.op_Modulus", "Hacl.Spec.K256.Field52.Definitions.felem_fits1", "Hacl.Spec.K256.Field52.Definitions.felem_fits_last1", "Hacl.Spec.K256.Field52.Definitions.Lemmas.lemma_carry_last52", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Amp_Dot", "Hacl.Spec.K256.Field52.Definitions.mask52", "Lib.IntTypes.op_Plus_Dot", "Lib.IntTypes.op_Greater_Greater_Dot", "FStar.UInt32.__uint_to_t", "Hacl.Spec.K256.Field52.Definitions.Lemmas.lemma_carry52" ]
[]
module Hacl.Spec.K256.Field52.Lemmas2 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" /// Normalize-weak val minus_x_mul_pow2_256_lemma: m:scale64_5 -> f:felem5 -> Lemma (requires felem_fits5 f m) (ensures (let x, r = minus_x_mul_pow2_256 f in let (r0,r1,r2,r3,r4) = r in let (m0,m1,m2,m3,m4) = m in let (t0,t1,t2,t3,t4) = f in v x < pow2 16 /\ v x = v t4 / pow2 48 /\ v r4 = v t4 % pow2 48 /\ as_nat5 r == as_nat5 f - v x * pow2 256 /\ felem_fits5 r (m0,m1,m2,m3,1))) let minus_x_mul_pow2_256_lemma m f = let (m0,m1,m2,m3,m4) = m in let (t0,t1,t2,t3,t4) = f in let x = t4 >>. 48ul in let t4' = t4 &. mask48 in LD.lemma_mask48 t4; let r = (t0,t1,t2,t3,t4') in calc (==) { // as_nat5 f v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + v t4 * pow208; (==) { Math.Lemmas.euclidean_division_definition (v t4) (pow2 48) } v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + (v t4 / pow2 48 * pow2 48 + v t4 % pow2 48) * pow208; (==) { Math.Lemmas.distributivity_add_left (v t4 / pow2 48 * pow2 48) (v t4 % pow2 48) pow208 } v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + (v t4 / pow2 48 * pow2 48) * pow208 + (v t4 % pow2 48) * pow208; (==) { } (v x * pow2 48) * pow208 + as_nat5 r; (==) { Math.Lemmas.paren_mul_right (v x) (pow2 48) pow208; Math.Lemmas.pow2_plus 48 208 } v x * pow2 256 + as_nat5 r; }; Math.Lemmas.lemma_div_lt (v t4) 64 48 val carry_round_after_last_carry_mod_prime5_lemma: m:scale64_5 -> f:felem5 -> Lemma (requires (let (m0,m1,m2,m3,m4) = m in m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ m4 = 1 /\ felem_fits5 f (m0,m1,m2,m3,1))) (ensures (let r = carry_round5 f in let (r0,r1,r2,r3,r4) = r in let (t0,t1,t2,t3,t4) = f in as_nat5 r == as_nat5 f /\ felem_fits5 r (1,1,1,1,2) /\ v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12)))
false
false
Hacl.Spec.K256.Field52.Lemmas2.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val carry_round_after_last_carry_mod_prime5_lemma: m:scale64_5 -> f:felem5 -> Lemma (requires (let (m0,m1,m2,m3,m4) = m in m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ m4 = 1 /\ felem_fits5 f (m0,m1,m2,m3,1))) (ensures (let r = carry_round5 f in let (r0,r1,r2,r3,r4) = r in let (t0,t1,t2,t3,t4) = f in as_nat5 r == as_nat5 f /\ felem_fits5 r (1,1,1,1,2) /\ v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12)))
[]
Hacl.Spec.K256.Field52.Lemmas2.carry_round_after_last_carry_mod_prime5_lemma
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas2.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
m: Hacl.Spec.K256.Field52.Definitions.scale64_5 -> f: Hacl.Spec.K256.Field52.Definitions.felem5 -> FStar.Pervasives.Lemma (requires (let _ = m in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ m0 m1 m2 m3 m4 = _ in m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ m4 = 1 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits5 f (m0, m1, m2, m3, 1)) <: Type0)) (ensures (let r = Hacl.Spec.K256.Field52.carry_round5 f in let _ = r in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ _ _ _ _ r4 = _ in let _ = f in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ _ _ _ _ t4 = _ in Hacl.Spec.K256.Field52.Definitions.as_nat5 r == Hacl.Spec.K256.Field52.Definitions.as_nat5 f /\ Hacl.Spec.K256.Field52.Definitions.felem_fits5 r (1, 1, 1, 1, 2) /\ Lib.IntTypes.v r4 < Lib.IntTypes.v t4 + Prims.pow2 12 /\ (Lib.IntTypes.v r4 >= Prims.pow2 48 ==> Lib.IntTypes.v r4 % Prims.pow2 48 < Prims.pow2 12)) <: Type0) <: Type0))
{ "end_col": 33, "end_line": 99, "start_col": 55, "start_line": 63 }
FStar.Pervasives.Lemma
val normalize5_second_part_x_is_one_lemma: x:uint64 -> r:felem5 -> Lemma (requires (let (r0,r1,r2,r3,r4) = r in felem_fits5 r (1,1,1,1,1) /\ v x = 1 /\ v r4 < pow2 12)) (ensures (let k = normalize5_second_part_x x r in as_nat5 k == as_nat5 r + v x * pow2 256 - S.prime /\ felem_fits5 k (1,1,1,1,1) /\ as_nat5 k < S.prime))
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let normalize5_second_part_x_is_one_lemma x r = LD.lemma_as_nat_bound_f4_lt_pow12 r; assert (as_nat5 r <= pow2 220 - 1); assert_norm (pow2 220 - 1 < S.prime); let is_ge_p_m = is_felem_ge_prime5 r in is_felem_ge_prime5_lemma r; assert (v is_ge_p_m = 0); let m_to_one = is_ge_p_m &. u64 1 in logand_lemma is_ge_p_m (u64 1); assert (v m_to_one = 0); let x1 = m_to_one |. x in //1 logor_spec m_to_one x; FStar.UInt.logor_commutative #64 (v m_to_one) (v x); FStar.UInt.logor_lemma_1 #64 (v x); assert (v x1 = 1); let s = plus_x_mul_pow2_256_minus_prime x1 r in // + x * (pow2 256 - S.prime) plus_x_mul_pow2_256_minus_prime_lemma (1,1,1,1,1) x1 r; assert (as_nat5 s = as_nat5 r + pow2 256 - S.prime); //(v s4 >= pow2 48 ==> v s4 % pow2 48 < pow2 12) let (s0,s1,s2,s3,s4) = s in Math.Lemmas.pow2_double_sum 12; assert (v s4 < pow2 13); let x2, k = minus_x_mul_pow2_256 s in // - s4 / pow2 48 * pow2 256 minus_x_mul_pow2_256_lemma (1,1,1,1,2) s; assert (felem_fits5 k (1,1,1,1,1)); assert (as_nat5 k = as_nat5 s - v s4 / pow2 48 * pow2 256); LD.lemma_div_pow48 s4; assert (as_nat5 k = as_nat5 s); assert (as_nat5 k < pow2 220 + pow2 256 - S.prime); assert_norm (pow2 220 + pow2 256 - S.prime < S.prime)
val normalize5_second_part_x_is_one_lemma: x:uint64 -> r:felem5 -> Lemma (requires (let (r0,r1,r2,r3,r4) = r in felem_fits5 r (1,1,1,1,1) /\ v x = 1 /\ v r4 < pow2 12)) (ensures (let k = normalize5_second_part_x x r in as_nat5 k == as_nat5 r + v x * pow2 256 - S.prime /\ felem_fits5 k (1,1,1,1,1) /\ as_nat5 k < S.prime)) let normalize5_second_part_x_is_one_lemma x r =
false
null
true
LD.lemma_as_nat_bound_f4_lt_pow12 r; assert (as_nat5 r <= pow2 220 - 1); assert_norm (pow2 220 - 1 < S.prime); let is_ge_p_m = is_felem_ge_prime5 r in is_felem_ge_prime5_lemma r; assert (v is_ge_p_m = 0); let m_to_one = is_ge_p_m &. u64 1 in logand_lemma is_ge_p_m (u64 1); assert (v m_to_one = 0); let x1 = m_to_one |. x in logor_spec m_to_one x; FStar.UInt.logor_commutative #64 (v m_to_one) (v x); FStar.UInt.logor_lemma_1 #64 (v x); assert (v x1 = 1); let s = plus_x_mul_pow2_256_minus_prime x1 r in plus_x_mul_pow2_256_minus_prime_lemma (1, 1, 1, 1, 1) x1 r; assert (as_nat5 s = as_nat5 r + pow2 256 - S.prime); let s0, s1, s2, s3, s4 = s in Math.Lemmas.pow2_double_sum 12; assert (v s4 < pow2 13); let x2, k = minus_x_mul_pow2_256 s in minus_x_mul_pow2_256_lemma (1, 1, 1, 1, 2) s; assert (felem_fits5 k (1, 1, 1, 1, 1)); assert (as_nat5 k = as_nat5 s - (v s4 / pow2 48) * pow2 256); LD.lemma_div_pow48 s4; assert (as_nat5 k = as_nat5 s); assert (as_nat5 k < pow2 220 + pow2 256 - S.prime); assert_norm (pow2 220 + pow2 256 - S.prime < S.prime)
{ "checked_file": "Hacl.Spec.K256.Field52.Lemmas2.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas2.fst" }
[ "lemma" ]
[ "Lib.IntTypes.uint64", "Hacl.Spec.K256.Field52.Definitions.felem5", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Subtraction", "Prims.op_Addition", "Prims.pow2", "Spec.K256.PointOps.prime", "Prims.unit", "Prims._assert", "Hacl.Spec.K256.Field52.Definitions.as_nat5", "Prims.op_Equality", "Prims.nat", "Hacl.Spec.K256.Field52.Definitions.Lemmas.lemma_div_pow48", "Prims.int", "FStar.Mul.op_Star", "Prims.op_Division", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Hacl.Spec.K256.Field52.Definitions.felem_fits5", "FStar.Pervasives.Native.Mktuple5", "Hacl.Spec.K256.Field52.Lemmas2.minus_x_mul_pow2_256_lemma", "FStar.Pervasives.Native.tuple2", "Lib.IntTypes.int_t", "Hacl.Spec.K256.Field52.minus_x_mul_pow2_256", "FStar.Math.Lemmas.pow2_double_sum", "Hacl.Spec.K256.Field52.Lemmas2.plus_x_mul_pow2_256_minus_prime_lemma", "Hacl.Spec.K256.Field52.plus_x_mul_pow2_256_minus_prime", "FStar.UInt.logor_lemma_1", "FStar.UInt.logor_commutative", "Lib.IntTypes.logor_spec", "Lib.IntTypes.op_Bar_Dot", "Lib.IntTypes.logand_lemma", "Lib.IntTypes.u64", "Lib.IntTypes.op_Amp_Dot", "Hacl.Spec.K256.Field52.Lemmas2.is_felem_ge_prime5_lemma", "Hacl.Spec.K256.Field52.is_felem_ge_prime5", "Prims.op_LessThanOrEqual", "Hacl.Spec.K256.Field52.Definitions.Lemmas.lemma_as_nat_bound_f4_lt_pow12" ]
[]
module Hacl.Spec.K256.Field52.Lemmas2 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" /// Normalize-weak val minus_x_mul_pow2_256_lemma: m:scale64_5 -> f:felem5 -> Lemma (requires felem_fits5 f m) (ensures (let x, r = minus_x_mul_pow2_256 f in let (r0,r1,r2,r3,r4) = r in let (m0,m1,m2,m3,m4) = m in let (t0,t1,t2,t3,t4) = f in v x < pow2 16 /\ v x = v t4 / pow2 48 /\ v r4 = v t4 % pow2 48 /\ as_nat5 r == as_nat5 f - v x * pow2 256 /\ felem_fits5 r (m0,m1,m2,m3,1))) let minus_x_mul_pow2_256_lemma m f = let (m0,m1,m2,m3,m4) = m in let (t0,t1,t2,t3,t4) = f in let x = t4 >>. 48ul in let t4' = t4 &. mask48 in LD.lemma_mask48 t4; let r = (t0,t1,t2,t3,t4') in calc (==) { // as_nat5 f v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + v t4 * pow208; (==) { Math.Lemmas.euclidean_division_definition (v t4) (pow2 48) } v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + (v t4 / pow2 48 * pow2 48 + v t4 % pow2 48) * pow208; (==) { Math.Lemmas.distributivity_add_left (v t4 / pow2 48 * pow2 48) (v t4 % pow2 48) pow208 } v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + (v t4 / pow2 48 * pow2 48) * pow208 + (v t4 % pow2 48) * pow208; (==) { } (v x * pow2 48) * pow208 + as_nat5 r; (==) { Math.Lemmas.paren_mul_right (v x) (pow2 48) pow208; Math.Lemmas.pow2_plus 48 208 } v x * pow2 256 + as_nat5 r; }; Math.Lemmas.lemma_div_lt (v t4) 64 48 val carry_round_after_last_carry_mod_prime5_lemma: m:scale64_5 -> f:felem5 -> Lemma (requires (let (m0,m1,m2,m3,m4) = m in m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ m4 = 1 /\ felem_fits5 f (m0,m1,m2,m3,1))) (ensures (let r = carry_round5 f in let (r0,r1,r2,r3,r4) = r in let (t0,t1,t2,t3,t4) = f in as_nat5 r == as_nat5 f /\ felem_fits5 r (1,1,1,1,2) /\ v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12))) let carry_round_after_last_carry_mod_prime5_lemma m f = let (m0,m1,m2,m3,m4) = m in let (t0,t1,t2,t3,t4) = f in //(m0,m1,m2,m3,1) let t1' = t1 +. (t0 >>. 52ul) in let t0' = t0 &. mask52 in LD.lemma_carry52 m1 m0 t1 t0; assert (felem_fits1 t1' (m1 + 1)); assert (felem_fits1 t0' 1); assert (v t0' = v t0 % pow2 52); assert (v t1' = v t1 + v t0 / pow2 52); let t2' = t2 +. (t1' >>. 52ul) in let t1'' = t1' &. mask52 in LD.lemma_carry52 m2 (m1 + 1) t2 t1'; assert (felem_fits1 t2' (m2 + 1)); assert (felem_fits1 t1'' 1); assert (v t1'' = v t1' % pow2 52); assert (v t2' = v t2 + v t1' / pow2 52); let t3' = t3 +. (t2' >>. 52ul) in let t2'' = t2' &. mask52 in LD.lemma_carry52 m3 (m2 + 1) t3 t2'; assert (felem_fits1 t3' (m3 + 1)); assert (felem_fits1 t2'' 1); assert (v t2'' = v t2' % pow2 52); assert (v t3' = v t3 + v t2' / pow2 52); let t4' = t4 +. (t3' >>. 52ul) in let t3'' = t3' &. mask52 in LD.lemma_carry_last52 m4 (m3 + 1) t4 t3'; assert (felem_fits_last1 t4' (m4 + 1)); assert (felem_fits1 t3'' 1); assert (v t3'' = v t3' % pow2 52); assert (v t4' = v t4 + v t3' / pow2 52); LD.carry_last_small_mod_lemma t4 t3'; ML.lemma_simplify_carry_round (v t0) (v t1) (v t2) (v t3) (v t4); let r = carry_round5 f in assert ((t0',t1'',t2'',t3'',t4') == r); assert (as_nat5 r == as_nat5 f) val plus_x_mul_pow2_256_minus_prime_lemma: m:scale64_5 -> x:uint64 -> f:felem5 -> Lemma (requires (let (m0,m1,m2,m3,m4) = m in let (t0,t1,t2,t3,t4) = f in m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ m4 = 1 /\ felem_fits5 f m /\ v x < pow2 16)) (ensures (let r = plus_x_mul_pow2_256_minus_prime x f in let (r0,r1,r2,r3,r4) = r in let (t0,t1,t2,t3,t4) = f in as_nat5 r == as_nat5 f + v x * (pow2 256 - S.prime) /\ felem_fits5 r (1,1,1,1,2) /\ v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12))) let plus_x_mul_pow2_256_minus_prime_lemma m x f = let (t0,t1,t2,t3,t4) = f in let (m0,m1,m2,m3,m4) = m in let t0' = t0 +. x *. u64 0x1000003D1 in assert (v x < pow2 16); Math.Lemmas.lemma_mult_lt_right 0x1000003D1 (v x) (pow2 16); assert_norm (pow2 16 * 0x1000003D1 < max52); assert (v t0 + v x * 0x1000003D1 < (m0 + 1) * max52); Math.Lemmas.lemma_mult_le_right max52 (m0 + 1) 4096; assert_norm (4096 * max52 < pow2 64); Math.Lemmas.small_mod (v t0 + v x * 0x1000003D1) (pow2 64); assert (v t0' = v t0 + v x * 0x1000003D1); assert (felem_fits1 t0' (m0 + 1)); let r = carry_round5 (t0',t1,t2,t3,t4) in carry_round_after_last_carry_mod_prime5_lemma (m0+1,m1,m2,m3,m4) (t0',t1,t2,t3,t4); assert (as_nat5 r == as_nat5 (t0',t1,t2,t3,t4)); LD.lemma_pow2_256_minus_prime (); assert (as_nat5 r == as_nat5 f + v x * (pow2 256 - S.prime)) val normalize_weak5_lemma: m:scale64_5 -> f:felem5 -> Lemma (requires (let (m0,m1,m2,m3,m4) = m in m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ felem_fits5 f m)) (ensures (let r = normalize_weak5 f in let (r0,r1,r2,r3,r4) = r in let (t0,t1,t2,t3,t4) = f in as_nat5 r == as_nat5 f - v t4 / pow2 48 * S.prime /\ felem_fits5 r (1,1,1,1,2) /\ v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12))) let normalize_weak5_lemma m f = let (m0,m1,m2,m3,m4) = m in let x, f1 = minus_x_mul_pow2_256 f in minus_x_mul_pow2_256_lemma m f; assert (as_nat5 f1 == as_nat5 f - v x * pow2 256); assert (felem_fits5 f1 (m0,m1,m2,m3,1)); let f2 = plus_x_mul_pow2_256_minus_prime x f1 in plus_x_mul_pow2_256_minus_prime_lemma (m0,m1,m2,m3,1) x f1; assert (as_nat5 f2 == as_nat5 f1 + v x * (pow2 256 - S.prime)); assert (felem_fits5 f2 (1,1,1,1,2)); assert (f2 == normalize_weak5 f); Math.Lemmas.distributivity_sub_right (v x) (pow2 256) S.prime; assert (as_nat5 f2 == as_nat5 f - v x * S.prime) /// Normalize #push-options "--ifuel 1" val is_felem_ge_prime5_lemma: f:felem5 -> Lemma (requires felem_fits5 f (1,1,1,1,1)) (ensures (let is_m = is_felem_ge_prime5 f in (v is_m = 0 \/ v is_m = ones_v U64) /\ (if v is_m = ones_v U64 then (as_nat5 f >= S.prime) else (as_nat5 f < S.prime)))) let is_felem_ge_prime5_lemma f = () #pop-options // let (f0,f1,f2,f3,f4) = f in // let m4 = eq_mask f4 mask48 in // eq_mask_lemma f4 mask48; // assert (if v f4 = v mask48 then v m4 = ones_v U64 else v m4 = 0); // let m3 = eq_mask f3 mask52 in // eq_mask_lemma f3 mask52; // assert (if v f3 = v mask52 then v m3 = ones_v U64 else v m3 = 0); // let m2 = eq_mask f2 mask52 in // eq_mask_lemma f2 mask52; // assert (if v f2 = v mask52 then v m2 = ones_v U64 else v m2 = 0); // let m1 = eq_mask f1 mask52 in // eq_mask_lemma f1 mask52; // assert (if v f1 = v mask52 then v m1 = ones_v U64 else v m1 = 0); // let m0 = gte_mask f0 (u64 0xffffefffffc2f) in // gte_mask_lemma f0 (u64 0xffffefffffc2f); // assert (if v f0 >= 0xffffefffffc2f then v m0 = ones_v U64 else v m0 = 0); // let m = m0 &. m1 &. m2 &. m3 &. m4 in () // if v m4 = 0 then // logand_zeros (m0 &. m1 &. m2 &. m3) // else begin // logand_ones (m0 &. m1 &. m2 &. m3) end noextract let normalize5_first_part (f0,f1,f2,f3,f4) = let (t0,t1,t2,t3,t4) = normalize_weak5 (f0,f1,f2,f3,f4) in let x, (r0,r1,r2,r3,r4) = minus_x_mul_pow2_256 (t0,t1,t2,t3,t4) in x, (r0,r1,r2,r3,r4) noextract let normalize5_second_part_x (x:uint64) (r0,r1,r2,r3,r4) : felem5 = let is_ge_p_m = is_felem_ge_prime5 (r0,r1,r2,r3,r4) in // as_nat r >= S.prime let m_to_one = is_ge_p_m &. u64 1 in let x1 = m_to_one |. x in let (s0,s1,s2,s3,s4) = plus_x_mul_pow2_256_minus_prime x1 (r0,r1,r2,r3,r4) in let x2, (k0,k1,k2,k3,k4) = minus_x_mul_pow2_256 (s0,s1,s2,s3,s4) in (k0,k1,k2,k3,k4) val normalize5_first_part_lemma: m:scale64_5 -> f:felem5 -> Lemma (requires (let (m0,m1,m2,m3,m4) = m in m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ felem_fits5 f m)) (ensures (let x, r = normalize5_first_part f in let (f0,f1,f2,f3,f4) = f in let (r0,r1,r2,r3,r4) = r in as_nat5 r == as_nat5 f - v f4 / pow2 48 * S.prime - v x * pow2 256 /\ felem_fits5 r (1,1,1,1,1) /\ (v x = 0 \/ (v x = 1 /\ v r4 < pow2 12)))) let normalize5_first_part_lemma m f = let (m0,m1,m2,m3,m4) = m in let (f0,f1,f2,f3,f4) = f in let t = normalize_weak5 f in let (t0,t1,t2,t3,t4) = t in normalize_weak5_lemma m f; assert (as_nat5 t == as_nat5 f - v f4 / pow2 48 * S.prime); assert (felem_fits5 t (1,1,1,1,2)); assert ((v t4 >= pow2 48 ==> v t4 % pow2 48 < pow2 12)); let x, r = minus_x_mul_pow2_256 t in let (r0,r1,r2,r3,r4) = r in minus_x_mul_pow2_256_lemma (1,1,1,1,2) t; assert (as_nat5 r == as_nat5 t - v x * pow2 256); assert (as_nat5 r == as_nat5 f - v f4 / pow2 48 * S.prime - v x * pow2 256); assert (felem_fits5 r (1,1,1,1,1)); assert (v r4 = v t4 % pow2 48 /\ v x = v t4 / pow2 48); LD.lemma_div_pow48 t4; assert (if v t4 < pow2 48 then v x = 0 else v x = 1 /\ v r4 < pow2 12) val normalize5_second_part_x_is_one_lemma: x:uint64 -> r:felem5 -> Lemma (requires (let (r0,r1,r2,r3,r4) = r in felem_fits5 r (1,1,1,1,1) /\ v x = 1 /\ v r4 < pow2 12)) (ensures (let k = normalize5_second_part_x x r in as_nat5 k == as_nat5 r + v x * pow2 256 - S.prime /\ felem_fits5 k (1,1,1,1,1) /\ as_nat5 k < S.prime))
false
false
Hacl.Spec.K256.Field52.Lemmas2.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val normalize5_second_part_x_is_one_lemma: x:uint64 -> r:felem5 -> Lemma (requires (let (r0,r1,r2,r3,r4) = r in felem_fits5 r (1,1,1,1,1) /\ v x = 1 /\ v r4 < pow2 12)) (ensures (let k = normalize5_second_part_x x r in as_nat5 k == as_nat5 r + v x * pow2 256 - S.prime /\ felem_fits5 k (1,1,1,1,1) /\ as_nat5 k < S.prime))
[]
Hacl.Spec.K256.Field52.Lemmas2.normalize5_second_part_x_is_one_lemma
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas2.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Lib.IntTypes.uint64 -> r: Hacl.Spec.K256.Field52.Definitions.felem5 -> FStar.Pervasives.Lemma (requires (let _ = r in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ _ _ _ _ r4 = _ in Hacl.Spec.K256.Field52.Definitions.felem_fits5 r (1, 1, 1, 1, 1) /\ Lib.IntTypes.v x = 1 /\ Lib.IntTypes.v r4 < Prims.pow2 12) <: Type0)) (ensures (let k = Hacl.Spec.K256.Field52.Lemmas2.normalize5_second_part_x x r in Hacl.Spec.K256.Field52.Definitions.as_nat5 k == Hacl.Spec.K256.Field52.Definitions.as_nat5 r + Lib.IntTypes.v x * Prims.pow2 256 - Spec.K256.PointOps.prime /\ Hacl.Spec.K256.Field52.Definitions.felem_fits5 k (1, 1, 1, 1, 1) /\ Hacl.Spec.K256.Field52.Definitions.as_nat5 k < Spec.K256.PointOps.prime))
{ "end_col": 55, "end_line": 294, "start_col": 2, "start_line": 260 }
FStar.Pervasives.Lemma
val normalize5_first_part_lemma: m:scale64_5 -> f:felem5 -> Lemma (requires (let (m0,m1,m2,m3,m4) = m in m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ felem_fits5 f m)) (ensures (let x, r = normalize5_first_part f in let (f0,f1,f2,f3,f4) = f in let (r0,r1,r2,r3,r4) = r in as_nat5 r == as_nat5 f - v f4 / pow2 48 * S.prime - v x * pow2 256 /\ felem_fits5 r (1,1,1,1,1) /\ (v x = 0 \/ (v x = 1 /\ v r4 < pow2 12))))
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let normalize5_first_part_lemma m f = let (m0,m1,m2,m3,m4) = m in let (f0,f1,f2,f3,f4) = f in let t = normalize_weak5 f in let (t0,t1,t2,t3,t4) = t in normalize_weak5_lemma m f; assert (as_nat5 t == as_nat5 f - v f4 / pow2 48 * S.prime); assert (felem_fits5 t (1,1,1,1,2)); assert ((v t4 >= pow2 48 ==> v t4 % pow2 48 < pow2 12)); let x, r = minus_x_mul_pow2_256 t in let (r0,r1,r2,r3,r4) = r in minus_x_mul_pow2_256_lemma (1,1,1,1,2) t; assert (as_nat5 r == as_nat5 t - v x * pow2 256); assert (as_nat5 r == as_nat5 f - v f4 / pow2 48 * S.prime - v x * pow2 256); assert (felem_fits5 r (1,1,1,1,1)); assert (v r4 = v t4 % pow2 48 /\ v x = v t4 / pow2 48); LD.lemma_div_pow48 t4; assert (if v t4 < pow2 48 then v x = 0 else v x = 1 /\ v r4 < pow2 12)
val normalize5_first_part_lemma: m:scale64_5 -> f:felem5 -> Lemma (requires (let (m0,m1,m2,m3,m4) = m in m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ felem_fits5 f m)) (ensures (let x, r = normalize5_first_part f in let (f0,f1,f2,f3,f4) = f in let (r0,r1,r2,r3,r4) = r in as_nat5 r == as_nat5 f - v f4 / pow2 48 * S.prime - v x * pow2 256 /\ felem_fits5 r (1,1,1,1,1) /\ (v x = 0 \/ (v x = 1 /\ v r4 < pow2 12)))) let normalize5_first_part_lemma m f =
false
null
true
let m0, m1, m2, m3, m4 = m in let f0, f1, f2, f3, f4 = f in let t = normalize_weak5 f in let t0, t1, t2, t3, t4 = t in normalize_weak5_lemma m f; assert (as_nat5 t == as_nat5 f - (v f4 / pow2 48) * S.prime); assert (felem_fits5 t (1, 1, 1, 1, 2)); assert ((v t4 >= pow2 48 ==> v t4 % pow2 48 < pow2 12)); let x, r = minus_x_mul_pow2_256 t in let r0, r1, r2, r3, r4 = r in minus_x_mul_pow2_256_lemma (1, 1, 1, 1, 2) t; assert (as_nat5 r == as_nat5 t - v x * pow2 256); assert (as_nat5 r == as_nat5 f - (v f4 / pow2 48) * S.prime - v x * pow2 256); assert (felem_fits5 r (1, 1, 1, 1, 1)); assert (v r4 = v t4 % pow2 48 /\ v x = v t4 / pow2 48); LD.lemma_div_pow48 t4; assert (if v t4 < pow2 48 then v x = 0 else v x = 1 /\ v r4 < pow2 12)
{ "checked_file": "Hacl.Spec.K256.Field52.Lemmas2.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas2.fst" }
[ "lemma" ]
[ "Hacl.Spec.K256.Field52.Definitions.scale64_5", "Hacl.Spec.K256.Field52.Definitions.felem5", "Prims.nat", "Lib.IntTypes.uint64", "Prims._assert", "Prims.op_LessThan", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Prims.pow2", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Prims.bool", "Prims.l_and", "Prims.unit", "Hacl.Spec.K256.Field52.Definitions.Lemmas.lemma_div_pow48", "Prims.op_Modulus", "Prims.op_Division", "Hacl.Spec.K256.Field52.Definitions.felem_fits5", "FStar.Pervasives.Native.Mktuple5", "Prims.eq2", "Hacl.Spec.K256.Field52.Definitions.as_nat5", "Prims.op_Subtraction", "FStar.Mul.op_Star", "Spec.K256.PointOps.prime", "Hacl.Spec.K256.Field52.Lemmas2.minus_x_mul_pow2_256_lemma", "FStar.Pervasives.Native.tuple2", "Lib.IntTypes.int_t", "Hacl.Spec.K256.Field52.minus_x_mul_pow2_256", "Prims.l_imp", "Prims.op_GreaterThanOrEqual", "Hacl.Spec.K256.Field52.Lemmas2.normalize_weak5_lemma", "Hacl.Spec.K256.Field52.normalize_weak5" ]
[]
module Hacl.Spec.K256.Field52.Lemmas2 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" /// Normalize-weak val minus_x_mul_pow2_256_lemma: m:scale64_5 -> f:felem5 -> Lemma (requires felem_fits5 f m) (ensures (let x, r = minus_x_mul_pow2_256 f in let (r0,r1,r2,r3,r4) = r in let (m0,m1,m2,m3,m4) = m in let (t0,t1,t2,t3,t4) = f in v x < pow2 16 /\ v x = v t4 / pow2 48 /\ v r4 = v t4 % pow2 48 /\ as_nat5 r == as_nat5 f - v x * pow2 256 /\ felem_fits5 r (m0,m1,m2,m3,1))) let minus_x_mul_pow2_256_lemma m f = let (m0,m1,m2,m3,m4) = m in let (t0,t1,t2,t3,t4) = f in let x = t4 >>. 48ul in let t4' = t4 &. mask48 in LD.lemma_mask48 t4; let r = (t0,t1,t2,t3,t4') in calc (==) { // as_nat5 f v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + v t4 * pow208; (==) { Math.Lemmas.euclidean_division_definition (v t4) (pow2 48) } v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + (v t4 / pow2 48 * pow2 48 + v t4 % pow2 48) * pow208; (==) { Math.Lemmas.distributivity_add_left (v t4 / pow2 48 * pow2 48) (v t4 % pow2 48) pow208 } v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + (v t4 / pow2 48 * pow2 48) * pow208 + (v t4 % pow2 48) * pow208; (==) { } (v x * pow2 48) * pow208 + as_nat5 r; (==) { Math.Lemmas.paren_mul_right (v x) (pow2 48) pow208; Math.Lemmas.pow2_plus 48 208 } v x * pow2 256 + as_nat5 r; }; Math.Lemmas.lemma_div_lt (v t4) 64 48 val carry_round_after_last_carry_mod_prime5_lemma: m:scale64_5 -> f:felem5 -> Lemma (requires (let (m0,m1,m2,m3,m4) = m in m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ m4 = 1 /\ felem_fits5 f (m0,m1,m2,m3,1))) (ensures (let r = carry_round5 f in let (r0,r1,r2,r3,r4) = r in let (t0,t1,t2,t3,t4) = f in as_nat5 r == as_nat5 f /\ felem_fits5 r (1,1,1,1,2) /\ v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12))) let carry_round_after_last_carry_mod_prime5_lemma m f = let (m0,m1,m2,m3,m4) = m in let (t0,t1,t2,t3,t4) = f in //(m0,m1,m2,m3,1) let t1' = t1 +. (t0 >>. 52ul) in let t0' = t0 &. mask52 in LD.lemma_carry52 m1 m0 t1 t0; assert (felem_fits1 t1' (m1 + 1)); assert (felem_fits1 t0' 1); assert (v t0' = v t0 % pow2 52); assert (v t1' = v t1 + v t0 / pow2 52); let t2' = t2 +. (t1' >>. 52ul) in let t1'' = t1' &. mask52 in LD.lemma_carry52 m2 (m1 + 1) t2 t1'; assert (felem_fits1 t2' (m2 + 1)); assert (felem_fits1 t1'' 1); assert (v t1'' = v t1' % pow2 52); assert (v t2' = v t2 + v t1' / pow2 52); let t3' = t3 +. (t2' >>. 52ul) in let t2'' = t2' &. mask52 in LD.lemma_carry52 m3 (m2 + 1) t3 t2'; assert (felem_fits1 t3' (m3 + 1)); assert (felem_fits1 t2'' 1); assert (v t2'' = v t2' % pow2 52); assert (v t3' = v t3 + v t2' / pow2 52); let t4' = t4 +. (t3' >>. 52ul) in let t3'' = t3' &. mask52 in LD.lemma_carry_last52 m4 (m3 + 1) t4 t3'; assert (felem_fits_last1 t4' (m4 + 1)); assert (felem_fits1 t3'' 1); assert (v t3'' = v t3' % pow2 52); assert (v t4' = v t4 + v t3' / pow2 52); LD.carry_last_small_mod_lemma t4 t3'; ML.lemma_simplify_carry_round (v t0) (v t1) (v t2) (v t3) (v t4); let r = carry_round5 f in assert ((t0',t1'',t2'',t3'',t4') == r); assert (as_nat5 r == as_nat5 f) val plus_x_mul_pow2_256_minus_prime_lemma: m:scale64_5 -> x:uint64 -> f:felem5 -> Lemma (requires (let (m0,m1,m2,m3,m4) = m in let (t0,t1,t2,t3,t4) = f in m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ m4 = 1 /\ felem_fits5 f m /\ v x < pow2 16)) (ensures (let r = plus_x_mul_pow2_256_minus_prime x f in let (r0,r1,r2,r3,r4) = r in let (t0,t1,t2,t3,t4) = f in as_nat5 r == as_nat5 f + v x * (pow2 256 - S.prime) /\ felem_fits5 r (1,1,1,1,2) /\ v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12))) let plus_x_mul_pow2_256_minus_prime_lemma m x f = let (t0,t1,t2,t3,t4) = f in let (m0,m1,m2,m3,m4) = m in let t0' = t0 +. x *. u64 0x1000003D1 in assert (v x < pow2 16); Math.Lemmas.lemma_mult_lt_right 0x1000003D1 (v x) (pow2 16); assert_norm (pow2 16 * 0x1000003D1 < max52); assert (v t0 + v x * 0x1000003D1 < (m0 + 1) * max52); Math.Lemmas.lemma_mult_le_right max52 (m0 + 1) 4096; assert_norm (4096 * max52 < pow2 64); Math.Lemmas.small_mod (v t0 + v x * 0x1000003D1) (pow2 64); assert (v t0' = v t0 + v x * 0x1000003D1); assert (felem_fits1 t0' (m0 + 1)); let r = carry_round5 (t0',t1,t2,t3,t4) in carry_round_after_last_carry_mod_prime5_lemma (m0+1,m1,m2,m3,m4) (t0',t1,t2,t3,t4); assert (as_nat5 r == as_nat5 (t0',t1,t2,t3,t4)); LD.lemma_pow2_256_minus_prime (); assert (as_nat5 r == as_nat5 f + v x * (pow2 256 - S.prime)) val normalize_weak5_lemma: m:scale64_5 -> f:felem5 -> Lemma (requires (let (m0,m1,m2,m3,m4) = m in m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ felem_fits5 f m)) (ensures (let r = normalize_weak5 f in let (r0,r1,r2,r3,r4) = r in let (t0,t1,t2,t3,t4) = f in as_nat5 r == as_nat5 f - v t4 / pow2 48 * S.prime /\ felem_fits5 r (1,1,1,1,2) /\ v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12))) let normalize_weak5_lemma m f = let (m0,m1,m2,m3,m4) = m in let x, f1 = minus_x_mul_pow2_256 f in minus_x_mul_pow2_256_lemma m f; assert (as_nat5 f1 == as_nat5 f - v x * pow2 256); assert (felem_fits5 f1 (m0,m1,m2,m3,1)); let f2 = plus_x_mul_pow2_256_minus_prime x f1 in plus_x_mul_pow2_256_minus_prime_lemma (m0,m1,m2,m3,1) x f1; assert (as_nat5 f2 == as_nat5 f1 + v x * (pow2 256 - S.prime)); assert (felem_fits5 f2 (1,1,1,1,2)); assert (f2 == normalize_weak5 f); Math.Lemmas.distributivity_sub_right (v x) (pow2 256) S.prime; assert (as_nat5 f2 == as_nat5 f - v x * S.prime) /// Normalize #push-options "--ifuel 1" val is_felem_ge_prime5_lemma: f:felem5 -> Lemma (requires felem_fits5 f (1,1,1,1,1)) (ensures (let is_m = is_felem_ge_prime5 f in (v is_m = 0 \/ v is_m = ones_v U64) /\ (if v is_m = ones_v U64 then (as_nat5 f >= S.prime) else (as_nat5 f < S.prime)))) let is_felem_ge_prime5_lemma f = () #pop-options // let (f0,f1,f2,f3,f4) = f in // let m4 = eq_mask f4 mask48 in // eq_mask_lemma f4 mask48; // assert (if v f4 = v mask48 then v m4 = ones_v U64 else v m4 = 0); // let m3 = eq_mask f3 mask52 in // eq_mask_lemma f3 mask52; // assert (if v f3 = v mask52 then v m3 = ones_v U64 else v m3 = 0); // let m2 = eq_mask f2 mask52 in // eq_mask_lemma f2 mask52; // assert (if v f2 = v mask52 then v m2 = ones_v U64 else v m2 = 0); // let m1 = eq_mask f1 mask52 in // eq_mask_lemma f1 mask52; // assert (if v f1 = v mask52 then v m1 = ones_v U64 else v m1 = 0); // let m0 = gte_mask f0 (u64 0xffffefffffc2f) in // gte_mask_lemma f0 (u64 0xffffefffffc2f); // assert (if v f0 >= 0xffffefffffc2f then v m0 = ones_v U64 else v m0 = 0); // let m = m0 &. m1 &. m2 &. m3 &. m4 in () // if v m4 = 0 then // logand_zeros (m0 &. m1 &. m2 &. m3) // else begin // logand_ones (m0 &. m1 &. m2 &. m3) end noextract let normalize5_first_part (f0,f1,f2,f3,f4) = let (t0,t1,t2,t3,t4) = normalize_weak5 (f0,f1,f2,f3,f4) in let x, (r0,r1,r2,r3,r4) = minus_x_mul_pow2_256 (t0,t1,t2,t3,t4) in x, (r0,r1,r2,r3,r4) noextract let normalize5_second_part_x (x:uint64) (r0,r1,r2,r3,r4) : felem5 = let is_ge_p_m = is_felem_ge_prime5 (r0,r1,r2,r3,r4) in // as_nat r >= S.prime let m_to_one = is_ge_p_m &. u64 1 in let x1 = m_to_one |. x in let (s0,s1,s2,s3,s4) = plus_x_mul_pow2_256_minus_prime x1 (r0,r1,r2,r3,r4) in let x2, (k0,k1,k2,k3,k4) = minus_x_mul_pow2_256 (s0,s1,s2,s3,s4) in (k0,k1,k2,k3,k4) val normalize5_first_part_lemma: m:scale64_5 -> f:felem5 -> Lemma (requires (let (m0,m1,m2,m3,m4) = m in m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ felem_fits5 f m)) (ensures (let x, r = normalize5_first_part f in let (f0,f1,f2,f3,f4) = f in let (r0,r1,r2,r3,r4) = r in as_nat5 r == as_nat5 f - v f4 / pow2 48 * S.prime - v x * pow2 256 /\ felem_fits5 r (1,1,1,1,1) /\ (v x = 0 \/ (v x = 1 /\ v r4 < pow2 12))))
false
false
Hacl.Spec.K256.Field52.Lemmas2.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val normalize5_first_part_lemma: m:scale64_5 -> f:felem5 -> Lemma (requires (let (m0,m1,m2,m3,m4) = m in m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ felem_fits5 f m)) (ensures (let x, r = normalize5_first_part f in let (f0,f1,f2,f3,f4) = f in let (r0,r1,r2,r3,r4) = r in as_nat5 r == as_nat5 f - v f4 / pow2 48 * S.prime - v x * pow2 256 /\ felem_fits5 r (1,1,1,1,1) /\ (v x = 0 \/ (v x = 1 /\ v r4 < pow2 12))))
[]
Hacl.Spec.K256.Field52.Lemmas2.normalize5_first_part_lemma
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas2.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
m: Hacl.Spec.K256.Field52.Definitions.scale64_5 -> f: Hacl.Spec.K256.Field52.Definitions.felem5 -> FStar.Pervasives.Lemma (requires (let _ = m in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ m0 m1 m2 m3 _ = _ in m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits5 f m) <: Type0)) (ensures (let _ = Hacl.Spec.K256.Field52.Lemmas2.normalize5_first_part f in (let FStar.Pervasives.Native.Mktuple2 #_ #_ x r = _ in let _ = f in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ _ _ _ _ f4 = _ in let _ = r in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ _ _ _ _ r4 = _ in Hacl.Spec.K256.Field52.Definitions.as_nat5 r == Hacl.Spec.K256.Field52.Definitions.as_nat5 f - (Lib.IntTypes.v f4 / Prims.pow2 48) * Spec.K256.PointOps.prime - Lib.IntTypes.v x * Prims.pow2 256 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits5 r (1, 1, 1, 1, 1) /\ (Lib.IntTypes.v x = 0 \/ Lib.IntTypes.v x = 1 /\ Lib.IntTypes.v r4 < Prims.pow2 12)) <: Type0) <: Type0) <: Type0))
{ "end_col": 72, "end_line": 249, "start_col": 37, "start_line": 231 }
FStar.Pervasives.Lemma
val plus_x_mul_pow2_256_minus_prime_lemma: m:scale64_5 -> x:uint64 -> f:felem5 -> Lemma (requires (let (m0,m1,m2,m3,m4) = m in let (t0,t1,t2,t3,t4) = f in m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ m4 = 1 /\ felem_fits5 f m /\ v x < pow2 16)) (ensures (let r = plus_x_mul_pow2_256_minus_prime x f in let (r0,r1,r2,r3,r4) = r in let (t0,t1,t2,t3,t4) = f in as_nat5 r == as_nat5 f + v x * (pow2 256 - S.prime) /\ felem_fits5 r (1,1,1,1,2) /\ v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12)))
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let plus_x_mul_pow2_256_minus_prime_lemma m x f = let (t0,t1,t2,t3,t4) = f in let (m0,m1,m2,m3,m4) = m in let t0' = t0 +. x *. u64 0x1000003D1 in assert (v x < pow2 16); Math.Lemmas.lemma_mult_lt_right 0x1000003D1 (v x) (pow2 16); assert_norm (pow2 16 * 0x1000003D1 < max52); assert (v t0 + v x * 0x1000003D1 < (m0 + 1) * max52); Math.Lemmas.lemma_mult_le_right max52 (m0 + 1) 4096; assert_norm (4096 * max52 < pow2 64); Math.Lemmas.small_mod (v t0 + v x * 0x1000003D1) (pow2 64); assert (v t0' = v t0 + v x * 0x1000003D1); assert (felem_fits1 t0' (m0 + 1)); let r = carry_round5 (t0',t1,t2,t3,t4) in carry_round_after_last_carry_mod_prime5_lemma (m0+1,m1,m2,m3,m4) (t0',t1,t2,t3,t4); assert (as_nat5 r == as_nat5 (t0',t1,t2,t3,t4)); LD.lemma_pow2_256_minus_prime (); assert (as_nat5 r == as_nat5 f + v x * (pow2 256 - S.prime))
val plus_x_mul_pow2_256_minus_prime_lemma: m:scale64_5 -> x:uint64 -> f:felem5 -> Lemma (requires (let (m0,m1,m2,m3,m4) = m in let (t0,t1,t2,t3,t4) = f in m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ m4 = 1 /\ felem_fits5 f m /\ v x < pow2 16)) (ensures (let r = plus_x_mul_pow2_256_minus_prime x f in let (r0,r1,r2,r3,r4) = r in let (t0,t1,t2,t3,t4) = f in as_nat5 r == as_nat5 f + v x * (pow2 256 - S.prime) /\ felem_fits5 r (1,1,1,1,2) /\ v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12))) let plus_x_mul_pow2_256_minus_prime_lemma m x f =
false
null
true
let t0, t1, t2, t3, t4 = f in let m0, m1, m2, m3, m4 = m in let t0' = t0 +. x *. u64 0x1000003D1 in assert (v x < pow2 16); Math.Lemmas.lemma_mult_lt_right 0x1000003D1 (v x) (pow2 16); assert_norm (pow2 16 * 0x1000003D1 < max52); assert (v t0 + v x * 0x1000003D1 < (m0 + 1) * max52); Math.Lemmas.lemma_mult_le_right max52 (m0 + 1) 4096; assert_norm (4096 * max52 < pow2 64); Math.Lemmas.small_mod (v t0 + v x * 0x1000003D1) (pow2 64); assert (v t0' = v t0 + v x * 0x1000003D1); assert (felem_fits1 t0' (m0 + 1)); let r = carry_round5 (t0', t1, t2, t3, t4) in carry_round_after_last_carry_mod_prime5_lemma (m0 + 1, m1, m2, m3, m4) (t0', t1, t2, t3, t4); assert (as_nat5 r == as_nat5 (t0', t1, t2, t3, t4)); LD.lemma_pow2_256_minus_prime (); assert (as_nat5 r == as_nat5 f + v x * (pow2 256 - S.prime))
{ "checked_file": "Hacl.Spec.K256.Field52.Lemmas2.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas2.fst" }
[ "lemma" ]
[ "Hacl.Spec.K256.Field52.Definitions.scale64_5", "Lib.IntTypes.uint64", "Hacl.Spec.K256.Field52.Definitions.felem5", "Prims.nat", "Prims._assert", "Prims.eq2", "Prims.int", "Hacl.Spec.K256.Field52.Definitions.as_nat5", "Prims.op_Addition", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Prims.op_Subtraction", "Prims.pow2", "Spec.K256.PointOps.prime", "Prims.unit", "Hacl.Spec.K256.Field52.Definitions.Lemmas.lemma_pow2_256_minus_prime", "FStar.Pervasives.Native.Mktuple5", "Hacl.Spec.K256.Field52.Lemmas2.carry_round_after_last_carry_mod_prime5_lemma", "Hacl.Spec.K256.Field52.carry_round5", "Prims.b2t", "Hacl.Spec.K256.Field52.Definitions.felem_fits1", "Prims.op_Equality", "FStar.Math.Lemmas.small_mod", "FStar.Pervasives.assert_norm", "Prims.op_LessThan", "Hacl.Spec.K256.Field52.Definitions.max52", "FStar.Math.Lemmas.lemma_mult_le_right", "FStar.Math.Lemmas.lemma_mult_lt_right", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Plus_Dot", "Lib.IntTypes.op_Star_Dot", "Lib.IntTypes.u64" ]
[]
module Hacl.Spec.K256.Field52.Lemmas2 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" /// Normalize-weak val minus_x_mul_pow2_256_lemma: m:scale64_5 -> f:felem5 -> Lemma (requires felem_fits5 f m) (ensures (let x, r = minus_x_mul_pow2_256 f in let (r0,r1,r2,r3,r4) = r in let (m0,m1,m2,m3,m4) = m in let (t0,t1,t2,t3,t4) = f in v x < pow2 16 /\ v x = v t4 / pow2 48 /\ v r4 = v t4 % pow2 48 /\ as_nat5 r == as_nat5 f - v x * pow2 256 /\ felem_fits5 r (m0,m1,m2,m3,1))) let minus_x_mul_pow2_256_lemma m f = let (m0,m1,m2,m3,m4) = m in let (t0,t1,t2,t3,t4) = f in let x = t4 >>. 48ul in let t4' = t4 &. mask48 in LD.lemma_mask48 t4; let r = (t0,t1,t2,t3,t4') in calc (==) { // as_nat5 f v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + v t4 * pow208; (==) { Math.Lemmas.euclidean_division_definition (v t4) (pow2 48) } v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + (v t4 / pow2 48 * pow2 48 + v t4 % pow2 48) * pow208; (==) { Math.Lemmas.distributivity_add_left (v t4 / pow2 48 * pow2 48) (v t4 % pow2 48) pow208 } v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + (v t4 / pow2 48 * pow2 48) * pow208 + (v t4 % pow2 48) * pow208; (==) { } (v x * pow2 48) * pow208 + as_nat5 r; (==) { Math.Lemmas.paren_mul_right (v x) (pow2 48) pow208; Math.Lemmas.pow2_plus 48 208 } v x * pow2 256 + as_nat5 r; }; Math.Lemmas.lemma_div_lt (v t4) 64 48 val carry_round_after_last_carry_mod_prime5_lemma: m:scale64_5 -> f:felem5 -> Lemma (requires (let (m0,m1,m2,m3,m4) = m in m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ m4 = 1 /\ felem_fits5 f (m0,m1,m2,m3,1))) (ensures (let r = carry_round5 f in let (r0,r1,r2,r3,r4) = r in let (t0,t1,t2,t3,t4) = f in as_nat5 r == as_nat5 f /\ felem_fits5 r (1,1,1,1,2) /\ v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12))) let carry_round_after_last_carry_mod_prime5_lemma m f = let (m0,m1,m2,m3,m4) = m in let (t0,t1,t2,t3,t4) = f in //(m0,m1,m2,m3,1) let t1' = t1 +. (t0 >>. 52ul) in let t0' = t0 &. mask52 in LD.lemma_carry52 m1 m0 t1 t0; assert (felem_fits1 t1' (m1 + 1)); assert (felem_fits1 t0' 1); assert (v t0' = v t0 % pow2 52); assert (v t1' = v t1 + v t0 / pow2 52); let t2' = t2 +. (t1' >>. 52ul) in let t1'' = t1' &. mask52 in LD.lemma_carry52 m2 (m1 + 1) t2 t1'; assert (felem_fits1 t2' (m2 + 1)); assert (felem_fits1 t1'' 1); assert (v t1'' = v t1' % pow2 52); assert (v t2' = v t2 + v t1' / pow2 52); let t3' = t3 +. (t2' >>. 52ul) in let t2'' = t2' &. mask52 in LD.lemma_carry52 m3 (m2 + 1) t3 t2'; assert (felem_fits1 t3' (m3 + 1)); assert (felem_fits1 t2'' 1); assert (v t2'' = v t2' % pow2 52); assert (v t3' = v t3 + v t2' / pow2 52); let t4' = t4 +. (t3' >>. 52ul) in let t3'' = t3' &. mask52 in LD.lemma_carry_last52 m4 (m3 + 1) t4 t3'; assert (felem_fits_last1 t4' (m4 + 1)); assert (felem_fits1 t3'' 1); assert (v t3'' = v t3' % pow2 52); assert (v t4' = v t4 + v t3' / pow2 52); LD.carry_last_small_mod_lemma t4 t3'; ML.lemma_simplify_carry_round (v t0) (v t1) (v t2) (v t3) (v t4); let r = carry_round5 f in assert ((t0',t1'',t2'',t3'',t4') == r); assert (as_nat5 r == as_nat5 f) val plus_x_mul_pow2_256_minus_prime_lemma: m:scale64_5 -> x:uint64 -> f:felem5 -> Lemma (requires (let (m0,m1,m2,m3,m4) = m in let (t0,t1,t2,t3,t4) = f in m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ m4 = 1 /\ felem_fits5 f m /\ v x < pow2 16)) (ensures (let r = plus_x_mul_pow2_256_minus_prime x f in let (r0,r1,r2,r3,r4) = r in let (t0,t1,t2,t3,t4) = f in as_nat5 r == as_nat5 f + v x * (pow2 256 - S.prime) /\ felem_fits5 r (1,1,1,1,2) /\ v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12)))
false
false
Hacl.Spec.K256.Field52.Lemmas2.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val plus_x_mul_pow2_256_minus_prime_lemma: m:scale64_5 -> x:uint64 -> f:felem5 -> Lemma (requires (let (m0,m1,m2,m3,m4) = m in let (t0,t1,t2,t3,t4) = f in m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ m4 = 1 /\ felem_fits5 f m /\ v x < pow2 16)) (ensures (let r = plus_x_mul_pow2_256_minus_prime x f in let (r0,r1,r2,r3,r4) = r in let (t0,t1,t2,t3,t4) = f in as_nat5 r == as_nat5 f + v x * (pow2 256 - S.prime) /\ felem_fits5 r (1,1,1,1,2) /\ v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12)))
[]
Hacl.Spec.K256.Field52.Lemmas2.plus_x_mul_pow2_256_minus_prime_lemma
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas2.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
m: Hacl.Spec.K256.Field52.Definitions.scale64_5 -> x: Lib.IntTypes.uint64 -> f: Hacl.Spec.K256.Field52.Definitions.felem5 -> FStar.Pervasives.Lemma (requires (let _ = m in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ m0 m1 m2 m3 m4 = _ in let _ = f in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ _ _ _ _ _ = _ in m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ m4 = 1 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits5 f m /\ Lib.IntTypes.v x < Prims.pow2 16 ) <: Type0) <: Type0)) (ensures (let r = Hacl.Spec.K256.Field52.plus_x_mul_pow2_256_minus_prime x f in let _ = r in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ _ _ _ _ r4 = _ in let _ = f in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ _ _ _ _ t4 = _ in Hacl.Spec.K256.Field52.Definitions.as_nat5 r == Hacl.Spec.K256.Field52.Definitions.as_nat5 f + Lib.IntTypes.v x * (Prims.pow2 256 - Spec.K256.PointOps.prime) /\ Hacl.Spec.K256.Field52.Definitions.felem_fits5 r (1, 1, 1, 1, 2) /\ Lib.IntTypes.v r4 < Lib.IntTypes.v t4 + Prims.pow2 12 /\ (Lib.IntTypes.v r4 >= Prims.pow2 48 ==> Lib.IntTypes.v r4 % Prims.pow2 48 < Prims.pow2 12)) <: Type0) <: Type0))
{ "end_col": 62, "end_line": 134, "start_col": 49, "start_line": 115 }
FStar.Pervasives.Lemma
val normalize5_lemma: m:scale64_5 -> f:felem5 -> Lemma (requires (let (m0,m1,m2,m3,m4) = m in m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ felem_fits5 f m)) (ensures (let r = normalize5 f in as_nat5 r == as_nat5 f % S.prime /\ felem_fits5 r (1,1,1,1,1)))
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let normalize5_lemma m f = let (m0,m1,m2,m3,m4) = m in let (f0,f1,f2,f3,f4) = f in let x, r = normalize5_first_part f in let k = normalize5_second_part_x x r in let (r0,r1,r2,r3,r4) = r in normalize5_first_part_lemma m f; assert (as_nat5 r == as_nat5 f - v f4 / pow2 48 * S.prime - v x * pow2 256); if v x = 1 then begin normalize5_second_part_x_is_one_lemma x r; lemma_a_minus_b_n_c_n_k (as_nat5 k) (as_nat5 f) (v f4 / pow2 48) 1 S.prime end else begin normalize5_second_part_x_is_zero_lemma x r; if as_nat5 r < S.prime then lemma_a_minus_b_n_c_n_k (as_nat5 k) (as_nat5 f) (v f4 / pow2 48) 0 S.prime else lemma_a_minus_b_n_c_n_k (as_nat5 k) (as_nat5 f) (v f4 / pow2 48) 1 S.prime end
val normalize5_lemma: m:scale64_5 -> f:felem5 -> Lemma (requires (let (m0,m1,m2,m3,m4) = m in m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ felem_fits5 f m)) (ensures (let r = normalize5 f in as_nat5 r == as_nat5 f % S.prime /\ felem_fits5 r (1,1,1,1,1))) let normalize5_lemma m f =
false
null
true
let m0, m1, m2, m3, m4 = m in let f0, f1, f2, f3, f4 = f in let x, r = normalize5_first_part f in let k = normalize5_second_part_x x r in let r0, r1, r2, r3, r4 = r in normalize5_first_part_lemma m f; assert (as_nat5 r == as_nat5 f - (v f4 / pow2 48) * S.prime - v x * pow2 256); if v x = 1 then (normalize5_second_part_x_is_one_lemma x r; lemma_a_minus_b_n_c_n_k (as_nat5 k) (as_nat5 f) (v f4 / pow2 48) 1 S.prime) else (normalize5_second_part_x_is_zero_lemma x r; if as_nat5 r < S.prime then lemma_a_minus_b_n_c_n_k (as_nat5 k) (as_nat5 f) (v f4 / pow2 48) 0 S.prime else lemma_a_minus_b_n_c_n_k (as_nat5 k) (as_nat5 f) (v f4 / pow2 48) 1 S.prime)
{ "checked_file": "Hacl.Spec.K256.Field52.Lemmas2.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas2.fst" }
[ "lemma" ]
[ "Hacl.Spec.K256.Field52.Definitions.scale64_5", "Hacl.Spec.K256.Field52.Definitions.felem5", "Prims.nat", "Lib.IntTypes.uint64", "FStar.Pervasives.Native.tuple5", "Prims.op_Equality", "Prims.int", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Hacl.Spec.K256.Field52.Lemmas2.lemma_a_minus_b_n_c_n_k", "Hacl.Spec.K256.Field52.Definitions.as_nat5", "Prims.op_Division", "Prims.pow2", "Spec.K256.PointOps.prime", "Prims.unit", "Hacl.Spec.K256.Field52.Lemmas2.normalize5_second_part_x_is_one_lemma", "Prims.bool", "Prims.op_LessThan", "Hacl.Spec.K256.Field52.Lemmas2.normalize5_second_part_x_is_zero_lemma", "Prims._assert", "Prims.eq2", "Prims.op_Subtraction", "FStar.Mul.op_Star", "Hacl.Spec.K256.Field52.Lemmas2.normalize5_first_part_lemma", "Lib.IntTypes.int_t", "Hacl.Spec.K256.Field52.Lemmas2.normalize5_second_part_x", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.K256.Field52.Lemmas2.normalize5_first_part" ]
[]
module Hacl.Spec.K256.Field52.Lemmas2 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" /// Normalize-weak val minus_x_mul_pow2_256_lemma: m:scale64_5 -> f:felem5 -> Lemma (requires felem_fits5 f m) (ensures (let x, r = minus_x_mul_pow2_256 f in let (r0,r1,r2,r3,r4) = r in let (m0,m1,m2,m3,m4) = m in let (t0,t1,t2,t3,t4) = f in v x < pow2 16 /\ v x = v t4 / pow2 48 /\ v r4 = v t4 % pow2 48 /\ as_nat5 r == as_nat5 f - v x * pow2 256 /\ felem_fits5 r (m0,m1,m2,m3,1))) let minus_x_mul_pow2_256_lemma m f = let (m0,m1,m2,m3,m4) = m in let (t0,t1,t2,t3,t4) = f in let x = t4 >>. 48ul in let t4' = t4 &. mask48 in LD.lemma_mask48 t4; let r = (t0,t1,t2,t3,t4') in calc (==) { // as_nat5 f v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + v t4 * pow208; (==) { Math.Lemmas.euclidean_division_definition (v t4) (pow2 48) } v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + (v t4 / pow2 48 * pow2 48 + v t4 % pow2 48) * pow208; (==) { Math.Lemmas.distributivity_add_left (v t4 / pow2 48 * pow2 48) (v t4 % pow2 48) pow208 } v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + (v t4 / pow2 48 * pow2 48) * pow208 + (v t4 % pow2 48) * pow208; (==) { } (v x * pow2 48) * pow208 + as_nat5 r; (==) { Math.Lemmas.paren_mul_right (v x) (pow2 48) pow208; Math.Lemmas.pow2_plus 48 208 } v x * pow2 256 + as_nat5 r; }; Math.Lemmas.lemma_div_lt (v t4) 64 48 val carry_round_after_last_carry_mod_prime5_lemma: m:scale64_5 -> f:felem5 -> Lemma (requires (let (m0,m1,m2,m3,m4) = m in m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ m4 = 1 /\ felem_fits5 f (m0,m1,m2,m3,1))) (ensures (let r = carry_round5 f in let (r0,r1,r2,r3,r4) = r in let (t0,t1,t2,t3,t4) = f in as_nat5 r == as_nat5 f /\ felem_fits5 r (1,1,1,1,2) /\ v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12))) let carry_round_after_last_carry_mod_prime5_lemma m f = let (m0,m1,m2,m3,m4) = m in let (t0,t1,t2,t3,t4) = f in //(m0,m1,m2,m3,1) let t1' = t1 +. (t0 >>. 52ul) in let t0' = t0 &. mask52 in LD.lemma_carry52 m1 m0 t1 t0; assert (felem_fits1 t1' (m1 + 1)); assert (felem_fits1 t0' 1); assert (v t0' = v t0 % pow2 52); assert (v t1' = v t1 + v t0 / pow2 52); let t2' = t2 +. (t1' >>. 52ul) in let t1'' = t1' &. mask52 in LD.lemma_carry52 m2 (m1 + 1) t2 t1'; assert (felem_fits1 t2' (m2 + 1)); assert (felem_fits1 t1'' 1); assert (v t1'' = v t1' % pow2 52); assert (v t2' = v t2 + v t1' / pow2 52); let t3' = t3 +. (t2' >>. 52ul) in let t2'' = t2' &. mask52 in LD.lemma_carry52 m3 (m2 + 1) t3 t2'; assert (felem_fits1 t3' (m3 + 1)); assert (felem_fits1 t2'' 1); assert (v t2'' = v t2' % pow2 52); assert (v t3' = v t3 + v t2' / pow2 52); let t4' = t4 +. (t3' >>. 52ul) in let t3'' = t3' &. mask52 in LD.lemma_carry_last52 m4 (m3 + 1) t4 t3'; assert (felem_fits_last1 t4' (m4 + 1)); assert (felem_fits1 t3'' 1); assert (v t3'' = v t3' % pow2 52); assert (v t4' = v t4 + v t3' / pow2 52); LD.carry_last_small_mod_lemma t4 t3'; ML.lemma_simplify_carry_round (v t0) (v t1) (v t2) (v t3) (v t4); let r = carry_round5 f in assert ((t0',t1'',t2'',t3'',t4') == r); assert (as_nat5 r == as_nat5 f) val plus_x_mul_pow2_256_minus_prime_lemma: m:scale64_5 -> x:uint64 -> f:felem5 -> Lemma (requires (let (m0,m1,m2,m3,m4) = m in let (t0,t1,t2,t3,t4) = f in m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ m4 = 1 /\ felem_fits5 f m /\ v x < pow2 16)) (ensures (let r = plus_x_mul_pow2_256_minus_prime x f in let (r0,r1,r2,r3,r4) = r in let (t0,t1,t2,t3,t4) = f in as_nat5 r == as_nat5 f + v x * (pow2 256 - S.prime) /\ felem_fits5 r (1,1,1,1,2) /\ v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12))) let plus_x_mul_pow2_256_minus_prime_lemma m x f = let (t0,t1,t2,t3,t4) = f in let (m0,m1,m2,m3,m4) = m in let t0' = t0 +. x *. u64 0x1000003D1 in assert (v x < pow2 16); Math.Lemmas.lemma_mult_lt_right 0x1000003D1 (v x) (pow2 16); assert_norm (pow2 16 * 0x1000003D1 < max52); assert (v t0 + v x * 0x1000003D1 < (m0 + 1) * max52); Math.Lemmas.lemma_mult_le_right max52 (m0 + 1) 4096; assert_norm (4096 * max52 < pow2 64); Math.Lemmas.small_mod (v t0 + v x * 0x1000003D1) (pow2 64); assert (v t0' = v t0 + v x * 0x1000003D1); assert (felem_fits1 t0' (m0 + 1)); let r = carry_round5 (t0',t1,t2,t3,t4) in carry_round_after_last_carry_mod_prime5_lemma (m0+1,m1,m2,m3,m4) (t0',t1,t2,t3,t4); assert (as_nat5 r == as_nat5 (t0',t1,t2,t3,t4)); LD.lemma_pow2_256_minus_prime (); assert (as_nat5 r == as_nat5 f + v x * (pow2 256 - S.prime)) val normalize_weak5_lemma: m:scale64_5 -> f:felem5 -> Lemma (requires (let (m0,m1,m2,m3,m4) = m in m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ felem_fits5 f m)) (ensures (let r = normalize_weak5 f in let (r0,r1,r2,r3,r4) = r in let (t0,t1,t2,t3,t4) = f in as_nat5 r == as_nat5 f - v t4 / pow2 48 * S.prime /\ felem_fits5 r (1,1,1,1,2) /\ v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12))) let normalize_weak5_lemma m f = let (m0,m1,m2,m3,m4) = m in let x, f1 = minus_x_mul_pow2_256 f in minus_x_mul_pow2_256_lemma m f; assert (as_nat5 f1 == as_nat5 f - v x * pow2 256); assert (felem_fits5 f1 (m0,m1,m2,m3,1)); let f2 = plus_x_mul_pow2_256_minus_prime x f1 in plus_x_mul_pow2_256_minus_prime_lemma (m0,m1,m2,m3,1) x f1; assert (as_nat5 f2 == as_nat5 f1 + v x * (pow2 256 - S.prime)); assert (felem_fits5 f2 (1,1,1,1,2)); assert (f2 == normalize_weak5 f); Math.Lemmas.distributivity_sub_right (v x) (pow2 256) S.prime; assert (as_nat5 f2 == as_nat5 f - v x * S.prime) /// Normalize #push-options "--ifuel 1" val is_felem_ge_prime5_lemma: f:felem5 -> Lemma (requires felem_fits5 f (1,1,1,1,1)) (ensures (let is_m = is_felem_ge_prime5 f in (v is_m = 0 \/ v is_m = ones_v U64) /\ (if v is_m = ones_v U64 then (as_nat5 f >= S.prime) else (as_nat5 f < S.prime)))) let is_felem_ge_prime5_lemma f = () #pop-options // let (f0,f1,f2,f3,f4) = f in // let m4 = eq_mask f4 mask48 in // eq_mask_lemma f4 mask48; // assert (if v f4 = v mask48 then v m4 = ones_v U64 else v m4 = 0); // let m3 = eq_mask f3 mask52 in // eq_mask_lemma f3 mask52; // assert (if v f3 = v mask52 then v m3 = ones_v U64 else v m3 = 0); // let m2 = eq_mask f2 mask52 in // eq_mask_lemma f2 mask52; // assert (if v f2 = v mask52 then v m2 = ones_v U64 else v m2 = 0); // let m1 = eq_mask f1 mask52 in // eq_mask_lemma f1 mask52; // assert (if v f1 = v mask52 then v m1 = ones_v U64 else v m1 = 0); // let m0 = gte_mask f0 (u64 0xffffefffffc2f) in // gte_mask_lemma f0 (u64 0xffffefffffc2f); // assert (if v f0 >= 0xffffefffffc2f then v m0 = ones_v U64 else v m0 = 0); // let m = m0 &. m1 &. m2 &. m3 &. m4 in () // if v m4 = 0 then // logand_zeros (m0 &. m1 &. m2 &. m3) // else begin // logand_ones (m0 &. m1 &. m2 &. m3) end noextract let normalize5_first_part (f0,f1,f2,f3,f4) = let (t0,t1,t2,t3,t4) = normalize_weak5 (f0,f1,f2,f3,f4) in let x, (r0,r1,r2,r3,r4) = minus_x_mul_pow2_256 (t0,t1,t2,t3,t4) in x, (r0,r1,r2,r3,r4) noextract let normalize5_second_part_x (x:uint64) (r0,r1,r2,r3,r4) : felem5 = let is_ge_p_m = is_felem_ge_prime5 (r0,r1,r2,r3,r4) in // as_nat r >= S.prime let m_to_one = is_ge_p_m &. u64 1 in let x1 = m_to_one |. x in let (s0,s1,s2,s3,s4) = plus_x_mul_pow2_256_minus_prime x1 (r0,r1,r2,r3,r4) in let x2, (k0,k1,k2,k3,k4) = minus_x_mul_pow2_256 (s0,s1,s2,s3,s4) in (k0,k1,k2,k3,k4) val normalize5_first_part_lemma: m:scale64_5 -> f:felem5 -> Lemma (requires (let (m0,m1,m2,m3,m4) = m in m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ felem_fits5 f m)) (ensures (let x, r = normalize5_first_part f in let (f0,f1,f2,f3,f4) = f in let (r0,r1,r2,r3,r4) = r in as_nat5 r == as_nat5 f - v f4 / pow2 48 * S.prime - v x * pow2 256 /\ felem_fits5 r (1,1,1,1,1) /\ (v x = 0 \/ (v x = 1 /\ v r4 < pow2 12)))) let normalize5_first_part_lemma m f = let (m0,m1,m2,m3,m4) = m in let (f0,f1,f2,f3,f4) = f in let t = normalize_weak5 f in let (t0,t1,t2,t3,t4) = t in normalize_weak5_lemma m f; assert (as_nat5 t == as_nat5 f - v f4 / pow2 48 * S.prime); assert (felem_fits5 t (1,1,1,1,2)); assert ((v t4 >= pow2 48 ==> v t4 % pow2 48 < pow2 12)); let x, r = minus_x_mul_pow2_256 t in let (r0,r1,r2,r3,r4) = r in minus_x_mul_pow2_256_lemma (1,1,1,1,2) t; assert (as_nat5 r == as_nat5 t - v x * pow2 256); assert (as_nat5 r == as_nat5 f - v f4 / pow2 48 * S.prime - v x * pow2 256); assert (felem_fits5 r (1,1,1,1,1)); assert (v r4 = v t4 % pow2 48 /\ v x = v t4 / pow2 48); LD.lemma_div_pow48 t4; assert (if v t4 < pow2 48 then v x = 0 else v x = 1 /\ v r4 < pow2 12) val normalize5_second_part_x_is_one_lemma: x:uint64 -> r:felem5 -> Lemma (requires (let (r0,r1,r2,r3,r4) = r in felem_fits5 r (1,1,1,1,1) /\ v x = 1 /\ v r4 < pow2 12)) (ensures (let k = normalize5_second_part_x x r in as_nat5 k == as_nat5 r + v x * pow2 256 - S.prime /\ felem_fits5 k (1,1,1,1,1) /\ as_nat5 k < S.prime)) let normalize5_second_part_x_is_one_lemma x r = LD.lemma_as_nat_bound_f4_lt_pow12 r; assert (as_nat5 r <= pow2 220 - 1); assert_norm (pow2 220 - 1 < S.prime); let is_ge_p_m = is_felem_ge_prime5 r in is_felem_ge_prime5_lemma r; assert (v is_ge_p_m = 0); let m_to_one = is_ge_p_m &. u64 1 in logand_lemma is_ge_p_m (u64 1); assert (v m_to_one = 0); let x1 = m_to_one |. x in //1 logor_spec m_to_one x; FStar.UInt.logor_commutative #64 (v m_to_one) (v x); FStar.UInt.logor_lemma_1 #64 (v x); assert (v x1 = 1); let s = plus_x_mul_pow2_256_minus_prime x1 r in // + x * (pow2 256 - S.prime) plus_x_mul_pow2_256_minus_prime_lemma (1,1,1,1,1) x1 r; assert (as_nat5 s = as_nat5 r + pow2 256 - S.prime); //(v s4 >= pow2 48 ==> v s4 % pow2 48 < pow2 12) let (s0,s1,s2,s3,s4) = s in Math.Lemmas.pow2_double_sum 12; assert (v s4 < pow2 13); let x2, k = minus_x_mul_pow2_256 s in // - s4 / pow2 48 * pow2 256 minus_x_mul_pow2_256_lemma (1,1,1,1,2) s; assert (felem_fits5 k (1,1,1,1,1)); assert (as_nat5 k = as_nat5 s - v s4 / pow2 48 * pow2 256); LD.lemma_div_pow48 s4; assert (as_nat5 k = as_nat5 s); assert (as_nat5 k < pow2 220 + pow2 256 - S.prime); assert_norm (pow2 220 + pow2 256 - S.prime < S.prime) val normalize5_second_part_x_is_zero_lemma: x:uint64 -> r:felem5 -> Lemma (requires (let (r0,r1,r2,r3,r4) = r in felem_fits5 r (1,1,1,1,1) /\ v x = 0)) (ensures (let k = normalize5_second_part_x x r in as_nat5 k == (if as_nat5 r < S.prime then as_nat5 r else as_nat5 r - S.prime) /\ felem_fits5 k (1,1,1,1,1) /\ as_nat5 k < S.prime)) let normalize5_second_part_x_is_zero_lemma x r = let is_ge_p_m = is_felem_ge_prime5 r in is_felem_ge_prime5_lemma r; assert (if v is_ge_p_m = ones_v U64 then (as_nat5 r >= S.prime) else as_nat5 r < S.prime); let m_to_one = is_ge_p_m &. u64 1 in logand_lemma is_ge_p_m (u64 1); assert (if v is_ge_p_m = ones_v U64 then v m_to_one = 1 else v m_to_one = 0); let x1 = m_to_one |. x in //1 logor_spec m_to_one x; FStar.UInt.logor_lemma_1 #64 (v m_to_one); assert (v x1 = v m_to_one); assert (if v x1 = 1 then (as_nat5 r >= S.prime) else as_nat5 r < S.prime); let s = plus_x_mul_pow2_256_minus_prime x1 r in // + x1 * (pow2 256 - S.prime) plus_x_mul_pow2_256_minus_prime_lemma (1,1,1,1,1) x1 r; assert (as_nat5 s = as_nat5 r + v x1 * (pow2 256 - S.prime)); //(v s4 >= pow2 48 ==> v s4 % pow2 48 < pow2 12) let (s0,s1,s2,s3,s4) = s in let x2, k = minus_x_mul_pow2_256 s in // - s4 / pow2 48 * pow2 256 minus_x_mul_pow2_256_lemma (1,1,1,1,2) s; assert (felem_fits5 k (1,1,1,1,1)); assert (as_nat5 k = as_nat5 s - v s4 / pow2 48 * pow2 256); if v x1 = 0 then begin assert (as_nat5 s = as_nat5 r); LD.as_nat_inj s r; assert (felem_fits_last1 s4 1); Math.Lemmas.small_div (v s4) (pow2 48); assert (as_nat5 k = as_nat5 r) end else begin assert (as_nat5 s = as_nat5 r + pow2 256 - S.prime); assert (as_nat5 s >= pow2 256); assert (v s4 >= pow2 48); LD.lemma_div_pow48 s4; assert (as_nat5 k = as_nat5 r - S.prime) end val lemma_a_minus_b_n_c_n_k (k a b c:nat) (n:pos) : Lemma (requires k < n /\ k == a - b * n - c * n) (ensures k == a % n) let lemma_a_minus_b_n_c_n_k k a b c n = Math.Lemmas.lemma_mod_sub (a - b * n) n c; Math.Lemmas.lemma_mod_sub a n b; Math.Lemmas.small_mod k n val normalize5_lemma: m:scale64_5 -> f:felem5 -> Lemma (requires (let (m0,m1,m2,m3,m4) = m in m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ felem_fits5 f m)) (ensures (let r = normalize5 f in as_nat5 r == as_nat5 f % S.prime /\ felem_fits5 r (1,1,1,1,1)))
false
false
Hacl.Spec.K256.Field52.Lemmas2.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val normalize5_lemma: m:scale64_5 -> f:felem5 -> Lemma (requires (let (m0,m1,m2,m3,m4) = m in m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ felem_fits5 f m)) (ensures (let r = normalize5 f in as_nat5 r == as_nat5 f % S.prime /\ felem_fits5 r (1,1,1,1,1)))
[]
Hacl.Spec.K256.Field52.Lemmas2.normalize5_lemma
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas2.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
m: Hacl.Spec.K256.Field52.Definitions.scale64_5 -> f: Hacl.Spec.K256.Field52.Definitions.felem5 -> FStar.Pervasives.Lemma (requires (let _ = m in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ m0 m1 m2 m3 _ = _ in m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits5 f m) <: Type0)) (ensures (let r = Hacl.Spec.K256.Field52.normalize5 f in Hacl.Spec.K256.Field52.Definitions.as_nat5 r == Hacl.Spec.K256.Field52.Definitions.as_nat5 f % Spec.K256.PointOps.prime /\ Hacl.Spec.K256.Field52.Definitions.felem_fits5 r (1, 1, 1, 1, 1)))
{ "end_col": 84, "end_line": 382, "start_col": 26, "start_line": 364 }
FStar.Pervasives.Lemma
val normalize5_second_part_x_is_zero_lemma: x:uint64 -> r:felem5 -> Lemma (requires (let (r0,r1,r2,r3,r4) = r in felem_fits5 r (1,1,1,1,1) /\ v x = 0)) (ensures (let k = normalize5_second_part_x x r in as_nat5 k == (if as_nat5 r < S.prime then as_nat5 r else as_nat5 r - S.prime) /\ felem_fits5 k (1,1,1,1,1) /\ as_nat5 k < S.prime))
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let normalize5_second_part_x_is_zero_lemma x r = let is_ge_p_m = is_felem_ge_prime5 r in is_felem_ge_prime5_lemma r; assert (if v is_ge_p_m = ones_v U64 then (as_nat5 r >= S.prime) else as_nat5 r < S.prime); let m_to_one = is_ge_p_m &. u64 1 in logand_lemma is_ge_p_m (u64 1); assert (if v is_ge_p_m = ones_v U64 then v m_to_one = 1 else v m_to_one = 0); let x1 = m_to_one |. x in //1 logor_spec m_to_one x; FStar.UInt.logor_lemma_1 #64 (v m_to_one); assert (v x1 = v m_to_one); assert (if v x1 = 1 then (as_nat5 r >= S.prime) else as_nat5 r < S.prime); let s = plus_x_mul_pow2_256_minus_prime x1 r in // + x1 * (pow2 256 - S.prime) plus_x_mul_pow2_256_minus_prime_lemma (1,1,1,1,1) x1 r; assert (as_nat5 s = as_nat5 r + v x1 * (pow2 256 - S.prime)); //(v s4 >= pow2 48 ==> v s4 % pow2 48 < pow2 12) let (s0,s1,s2,s3,s4) = s in let x2, k = minus_x_mul_pow2_256 s in // - s4 / pow2 48 * pow2 256 minus_x_mul_pow2_256_lemma (1,1,1,1,2) s; assert (felem_fits5 k (1,1,1,1,1)); assert (as_nat5 k = as_nat5 s - v s4 / pow2 48 * pow2 256); if v x1 = 0 then begin assert (as_nat5 s = as_nat5 r); LD.as_nat_inj s r; assert (felem_fits_last1 s4 1); Math.Lemmas.small_div (v s4) (pow2 48); assert (as_nat5 k = as_nat5 r) end else begin assert (as_nat5 s = as_nat5 r + pow2 256 - S.prime); assert (as_nat5 s >= pow2 256); assert (v s4 >= pow2 48); LD.lemma_div_pow48 s4; assert (as_nat5 k = as_nat5 r - S.prime) end
val normalize5_second_part_x_is_zero_lemma: x:uint64 -> r:felem5 -> Lemma (requires (let (r0,r1,r2,r3,r4) = r in felem_fits5 r (1,1,1,1,1) /\ v x = 0)) (ensures (let k = normalize5_second_part_x x r in as_nat5 k == (if as_nat5 r < S.prime then as_nat5 r else as_nat5 r - S.prime) /\ felem_fits5 k (1,1,1,1,1) /\ as_nat5 k < S.prime)) let normalize5_second_part_x_is_zero_lemma x r =
false
null
true
let is_ge_p_m = is_felem_ge_prime5 r in is_felem_ge_prime5_lemma r; assert (if v is_ge_p_m = ones_v U64 then (as_nat5 r >= S.prime) else as_nat5 r < S.prime); let m_to_one = is_ge_p_m &. u64 1 in logand_lemma is_ge_p_m (u64 1); assert (if v is_ge_p_m = ones_v U64 then v m_to_one = 1 else v m_to_one = 0); let x1 = m_to_one |. x in logor_spec m_to_one x; FStar.UInt.logor_lemma_1 #64 (v m_to_one); assert (v x1 = v m_to_one); assert (if v x1 = 1 then (as_nat5 r >= S.prime) else as_nat5 r < S.prime); let s = plus_x_mul_pow2_256_minus_prime x1 r in plus_x_mul_pow2_256_minus_prime_lemma (1, 1, 1, 1, 1) x1 r; assert (as_nat5 s = as_nat5 r + v x1 * (pow2 256 - S.prime)); let s0, s1, s2, s3, s4 = s in let x2, k = minus_x_mul_pow2_256 s in minus_x_mul_pow2_256_lemma (1, 1, 1, 1, 2) s; assert (felem_fits5 k (1, 1, 1, 1, 1)); assert (as_nat5 k = as_nat5 s - (v s4 / pow2 48) * pow2 256); if v x1 = 0 then (assert (as_nat5 s = as_nat5 r); LD.as_nat_inj s r; assert (felem_fits_last1 s4 1); Math.Lemmas.small_div (v s4) (pow2 48); assert (as_nat5 k = as_nat5 r)) else (assert (as_nat5 s = as_nat5 r + pow2 256 - S.prime); assert (as_nat5 s >= pow2 256); assert (v s4 >= pow2 48); LD.lemma_div_pow48 s4; assert (as_nat5 k = as_nat5 r - S.prime))
{ "checked_file": "Hacl.Spec.K256.Field52.Lemmas2.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas2.fst" }
[ "lemma" ]
[ "Lib.IntTypes.uint64", "Hacl.Spec.K256.Field52.Definitions.felem5", "Prims.op_Equality", "Prims.int", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Prims._assert", "Prims.b2t", "Prims.nat", "Hacl.Spec.K256.Field52.Definitions.as_nat5", "Prims.unit", "FStar.Math.Lemmas.small_div", "Prims.pow2", "Hacl.Spec.K256.Field52.Definitions.felem_fits_last1", "Hacl.Spec.K256.Field52.Definitions.Lemmas.as_nat_inj", "Prims.bool", "Prims.op_Subtraction", "Spec.K256.PointOps.prime", "Hacl.Spec.K256.Field52.Definitions.Lemmas.lemma_div_pow48", "Prims.op_GreaterThanOrEqual", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.op_Division", "Hacl.Spec.K256.Field52.Definitions.felem_fits5", "FStar.Pervasives.Native.Mktuple5", "Hacl.Spec.K256.Field52.Lemmas2.minus_x_mul_pow2_256_lemma", "FStar.Pervasives.Native.tuple2", "Lib.IntTypes.int_t", "Hacl.Spec.K256.Field52.minus_x_mul_pow2_256", "Hacl.Spec.K256.Field52.Lemmas2.plus_x_mul_pow2_256_minus_prime_lemma", "Hacl.Spec.K256.Field52.plus_x_mul_pow2_256_minus_prime", "Prims.op_LessThan", "Lib.IntTypes.range_t", "FStar.UInt.logor_lemma_1", "Lib.IntTypes.logor_spec", "Lib.IntTypes.op_Bar_Dot", "Lib.IntTypes.ones_v", "Lib.IntTypes.logand_lemma", "Lib.IntTypes.u64", "Lib.IntTypes.op_Amp_Dot", "Hacl.Spec.K256.Field52.Lemmas2.is_felem_ge_prime5_lemma", "Hacl.Spec.K256.Field52.is_felem_ge_prime5" ]
[]
module Hacl.Spec.K256.Field52.Lemmas2 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" /// Normalize-weak val minus_x_mul_pow2_256_lemma: m:scale64_5 -> f:felem5 -> Lemma (requires felem_fits5 f m) (ensures (let x, r = minus_x_mul_pow2_256 f in let (r0,r1,r2,r3,r4) = r in let (m0,m1,m2,m3,m4) = m in let (t0,t1,t2,t3,t4) = f in v x < pow2 16 /\ v x = v t4 / pow2 48 /\ v r4 = v t4 % pow2 48 /\ as_nat5 r == as_nat5 f - v x * pow2 256 /\ felem_fits5 r (m0,m1,m2,m3,1))) let minus_x_mul_pow2_256_lemma m f = let (m0,m1,m2,m3,m4) = m in let (t0,t1,t2,t3,t4) = f in let x = t4 >>. 48ul in let t4' = t4 &. mask48 in LD.lemma_mask48 t4; let r = (t0,t1,t2,t3,t4') in calc (==) { // as_nat5 f v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + v t4 * pow208; (==) { Math.Lemmas.euclidean_division_definition (v t4) (pow2 48) } v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + (v t4 / pow2 48 * pow2 48 + v t4 % pow2 48) * pow208; (==) { Math.Lemmas.distributivity_add_left (v t4 / pow2 48 * pow2 48) (v t4 % pow2 48) pow208 } v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + (v t4 / pow2 48 * pow2 48) * pow208 + (v t4 % pow2 48) * pow208; (==) { } (v x * pow2 48) * pow208 + as_nat5 r; (==) { Math.Lemmas.paren_mul_right (v x) (pow2 48) pow208; Math.Lemmas.pow2_plus 48 208 } v x * pow2 256 + as_nat5 r; }; Math.Lemmas.lemma_div_lt (v t4) 64 48 val carry_round_after_last_carry_mod_prime5_lemma: m:scale64_5 -> f:felem5 -> Lemma (requires (let (m0,m1,m2,m3,m4) = m in m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ m4 = 1 /\ felem_fits5 f (m0,m1,m2,m3,1))) (ensures (let r = carry_round5 f in let (r0,r1,r2,r3,r4) = r in let (t0,t1,t2,t3,t4) = f in as_nat5 r == as_nat5 f /\ felem_fits5 r (1,1,1,1,2) /\ v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12))) let carry_round_after_last_carry_mod_prime5_lemma m f = let (m0,m1,m2,m3,m4) = m in let (t0,t1,t2,t3,t4) = f in //(m0,m1,m2,m3,1) let t1' = t1 +. (t0 >>. 52ul) in let t0' = t0 &. mask52 in LD.lemma_carry52 m1 m0 t1 t0; assert (felem_fits1 t1' (m1 + 1)); assert (felem_fits1 t0' 1); assert (v t0' = v t0 % pow2 52); assert (v t1' = v t1 + v t0 / pow2 52); let t2' = t2 +. (t1' >>. 52ul) in let t1'' = t1' &. mask52 in LD.lemma_carry52 m2 (m1 + 1) t2 t1'; assert (felem_fits1 t2' (m2 + 1)); assert (felem_fits1 t1'' 1); assert (v t1'' = v t1' % pow2 52); assert (v t2' = v t2 + v t1' / pow2 52); let t3' = t3 +. (t2' >>. 52ul) in let t2'' = t2' &. mask52 in LD.lemma_carry52 m3 (m2 + 1) t3 t2'; assert (felem_fits1 t3' (m3 + 1)); assert (felem_fits1 t2'' 1); assert (v t2'' = v t2' % pow2 52); assert (v t3' = v t3 + v t2' / pow2 52); let t4' = t4 +. (t3' >>. 52ul) in let t3'' = t3' &. mask52 in LD.lemma_carry_last52 m4 (m3 + 1) t4 t3'; assert (felem_fits_last1 t4' (m4 + 1)); assert (felem_fits1 t3'' 1); assert (v t3'' = v t3' % pow2 52); assert (v t4' = v t4 + v t3' / pow2 52); LD.carry_last_small_mod_lemma t4 t3'; ML.lemma_simplify_carry_round (v t0) (v t1) (v t2) (v t3) (v t4); let r = carry_round5 f in assert ((t0',t1'',t2'',t3'',t4') == r); assert (as_nat5 r == as_nat5 f) val plus_x_mul_pow2_256_minus_prime_lemma: m:scale64_5 -> x:uint64 -> f:felem5 -> Lemma (requires (let (m0,m1,m2,m3,m4) = m in let (t0,t1,t2,t3,t4) = f in m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ m4 = 1 /\ felem_fits5 f m /\ v x < pow2 16)) (ensures (let r = plus_x_mul_pow2_256_minus_prime x f in let (r0,r1,r2,r3,r4) = r in let (t0,t1,t2,t3,t4) = f in as_nat5 r == as_nat5 f + v x * (pow2 256 - S.prime) /\ felem_fits5 r (1,1,1,1,2) /\ v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12))) let plus_x_mul_pow2_256_minus_prime_lemma m x f = let (t0,t1,t2,t3,t4) = f in let (m0,m1,m2,m3,m4) = m in let t0' = t0 +. x *. u64 0x1000003D1 in assert (v x < pow2 16); Math.Lemmas.lemma_mult_lt_right 0x1000003D1 (v x) (pow2 16); assert_norm (pow2 16 * 0x1000003D1 < max52); assert (v t0 + v x * 0x1000003D1 < (m0 + 1) * max52); Math.Lemmas.lemma_mult_le_right max52 (m0 + 1) 4096; assert_norm (4096 * max52 < pow2 64); Math.Lemmas.small_mod (v t0 + v x * 0x1000003D1) (pow2 64); assert (v t0' = v t0 + v x * 0x1000003D1); assert (felem_fits1 t0' (m0 + 1)); let r = carry_round5 (t0',t1,t2,t3,t4) in carry_round_after_last_carry_mod_prime5_lemma (m0+1,m1,m2,m3,m4) (t0',t1,t2,t3,t4); assert (as_nat5 r == as_nat5 (t0',t1,t2,t3,t4)); LD.lemma_pow2_256_minus_prime (); assert (as_nat5 r == as_nat5 f + v x * (pow2 256 - S.prime)) val normalize_weak5_lemma: m:scale64_5 -> f:felem5 -> Lemma (requires (let (m0,m1,m2,m3,m4) = m in m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ felem_fits5 f m)) (ensures (let r = normalize_weak5 f in let (r0,r1,r2,r3,r4) = r in let (t0,t1,t2,t3,t4) = f in as_nat5 r == as_nat5 f - v t4 / pow2 48 * S.prime /\ felem_fits5 r (1,1,1,1,2) /\ v r4 < v t4 + pow2 12 /\ (v r4 >= pow2 48 ==> v r4 % pow2 48 < pow2 12))) let normalize_weak5_lemma m f = let (m0,m1,m2,m3,m4) = m in let x, f1 = minus_x_mul_pow2_256 f in minus_x_mul_pow2_256_lemma m f; assert (as_nat5 f1 == as_nat5 f - v x * pow2 256); assert (felem_fits5 f1 (m0,m1,m2,m3,1)); let f2 = plus_x_mul_pow2_256_minus_prime x f1 in plus_x_mul_pow2_256_minus_prime_lemma (m0,m1,m2,m3,1) x f1; assert (as_nat5 f2 == as_nat5 f1 + v x * (pow2 256 - S.prime)); assert (felem_fits5 f2 (1,1,1,1,2)); assert (f2 == normalize_weak5 f); Math.Lemmas.distributivity_sub_right (v x) (pow2 256) S.prime; assert (as_nat5 f2 == as_nat5 f - v x * S.prime) /// Normalize #push-options "--ifuel 1" val is_felem_ge_prime5_lemma: f:felem5 -> Lemma (requires felem_fits5 f (1,1,1,1,1)) (ensures (let is_m = is_felem_ge_prime5 f in (v is_m = 0 \/ v is_m = ones_v U64) /\ (if v is_m = ones_v U64 then (as_nat5 f >= S.prime) else (as_nat5 f < S.prime)))) let is_felem_ge_prime5_lemma f = () #pop-options // let (f0,f1,f2,f3,f4) = f in // let m4 = eq_mask f4 mask48 in // eq_mask_lemma f4 mask48; // assert (if v f4 = v mask48 then v m4 = ones_v U64 else v m4 = 0); // let m3 = eq_mask f3 mask52 in // eq_mask_lemma f3 mask52; // assert (if v f3 = v mask52 then v m3 = ones_v U64 else v m3 = 0); // let m2 = eq_mask f2 mask52 in // eq_mask_lemma f2 mask52; // assert (if v f2 = v mask52 then v m2 = ones_v U64 else v m2 = 0); // let m1 = eq_mask f1 mask52 in // eq_mask_lemma f1 mask52; // assert (if v f1 = v mask52 then v m1 = ones_v U64 else v m1 = 0); // let m0 = gte_mask f0 (u64 0xffffefffffc2f) in // gte_mask_lemma f0 (u64 0xffffefffffc2f); // assert (if v f0 >= 0xffffefffffc2f then v m0 = ones_v U64 else v m0 = 0); // let m = m0 &. m1 &. m2 &. m3 &. m4 in () // if v m4 = 0 then // logand_zeros (m0 &. m1 &. m2 &. m3) // else begin // logand_ones (m0 &. m1 &. m2 &. m3) end noextract let normalize5_first_part (f0,f1,f2,f3,f4) = let (t0,t1,t2,t3,t4) = normalize_weak5 (f0,f1,f2,f3,f4) in let x, (r0,r1,r2,r3,r4) = minus_x_mul_pow2_256 (t0,t1,t2,t3,t4) in x, (r0,r1,r2,r3,r4) noextract let normalize5_second_part_x (x:uint64) (r0,r1,r2,r3,r4) : felem5 = let is_ge_p_m = is_felem_ge_prime5 (r0,r1,r2,r3,r4) in // as_nat r >= S.prime let m_to_one = is_ge_p_m &. u64 1 in let x1 = m_to_one |. x in let (s0,s1,s2,s3,s4) = plus_x_mul_pow2_256_minus_prime x1 (r0,r1,r2,r3,r4) in let x2, (k0,k1,k2,k3,k4) = minus_x_mul_pow2_256 (s0,s1,s2,s3,s4) in (k0,k1,k2,k3,k4) val normalize5_first_part_lemma: m:scale64_5 -> f:felem5 -> Lemma (requires (let (m0,m1,m2,m3,m4) = m in m0 + 1 <= 4096 /\ m1 + 1 <= 4096 /\ m2 + 1 <= 4096 /\ m3 + 1 <= 4096 /\ felem_fits5 f m)) (ensures (let x, r = normalize5_first_part f in let (f0,f1,f2,f3,f4) = f in let (r0,r1,r2,r3,r4) = r in as_nat5 r == as_nat5 f - v f4 / pow2 48 * S.prime - v x * pow2 256 /\ felem_fits5 r (1,1,1,1,1) /\ (v x = 0 \/ (v x = 1 /\ v r4 < pow2 12)))) let normalize5_first_part_lemma m f = let (m0,m1,m2,m3,m4) = m in let (f0,f1,f2,f3,f4) = f in let t = normalize_weak5 f in let (t0,t1,t2,t3,t4) = t in normalize_weak5_lemma m f; assert (as_nat5 t == as_nat5 f - v f4 / pow2 48 * S.prime); assert (felem_fits5 t (1,1,1,1,2)); assert ((v t4 >= pow2 48 ==> v t4 % pow2 48 < pow2 12)); let x, r = minus_x_mul_pow2_256 t in let (r0,r1,r2,r3,r4) = r in minus_x_mul_pow2_256_lemma (1,1,1,1,2) t; assert (as_nat5 r == as_nat5 t - v x * pow2 256); assert (as_nat5 r == as_nat5 f - v f4 / pow2 48 * S.prime - v x * pow2 256); assert (felem_fits5 r (1,1,1,1,1)); assert (v r4 = v t4 % pow2 48 /\ v x = v t4 / pow2 48); LD.lemma_div_pow48 t4; assert (if v t4 < pow2 48 then v x = 0 else v x = 1 /\ v r4 < pow2 12) val normalize5_second_part_x_is_one_lemma: x:uint64 -> r:felem5 -> Lemma (requires (let (r0,r1,r2,r3,r4) = r in felem_fits5 r (1,1,1,1,1) /\ v x = 1 /\ v r4 < pow2 12)) (ensures (let k = normalize5_second_part_x x r in as_nat5 k == as_nat5 r + v x * pow2 256 - S.prime /\ felem_fits5 k (1,1,1,1,1) /\ as_nat5 k < S.prime)) let normalize5_second_part_x_is_one_lemma x r = LD.lemma_as_nat_bound_f4_lt_pow12 r; assert (as_nat5 r <= pow2 220 - 1); assert_norm (pow2 220 - 1 < S.prime); let is_ge_p_m = is_felem_ge_prime5 r in is_felem_ge_prime5_lemma r; assert (v is_ge_p_m = 0); let m_to_one = is_ge_p_m &. u64 1 in logand_lemma is_ge_p_m (u64 1); assert (v m_to_one = 0); let x1 = m_to_one |. x in //1 logor_spec m_to_one x; FStar.UInt.logor_commutative #64 (v m_to_one) (v x); FStar.UInt.logor_lemma_1 #64 (v x); assert (v x1 = 1); let s = plus_x_mul_pow2_256_minus_prime x1 r in // + x * (pow2 256 - S.prime) plus_x_mul_pow2_256_minus_prime_lemma (1,1,1,1,1) x1 r; assert (as_nat5 s = as_nat5 r + pow2 256 - S.prime); //(v s4 >= pow2 48 ==> v s4 % pow2 48 < pow2 12) let (s0,s1,s2,s3,s4) = s in Math.Lemmas.pow2_double_sum 12; assert (v s4 < pow2 13); let x2, k = minus_x_mul_pow2_256 s in // - s4 / pow2 48 * pow2 256 minus_x_mul_pow2_256_lemma (1,1,1,1,2) s; assert (felem_fits5 k (1,1,1,1,1)); assert (as_nat5 k = as_nat5 s - v s4 / pow2 48 * pow2 256); LD.lemma_div_pow48 s4; assert (as_nat5 k = as_nat5 s); assert (as_nat5 k < pow2 220 + pow2 256 - S.prime); assert_norm (pow2 220 + pow2 256 - S.prime < S.prime) val normalize5_second_part_x_is_zero_lemma: x:uint64 -> r:felem5 -> Lemma (requires (let (r0,r1,r2,r3,r4) = r in felem_fits5 r (1,1,1,1,1) /\ v x = 0)) (ensures (let k = normalize5_second_part_x x r in as_nat5 k == (if as_nat5 r < S.prime then as_nat5 r else as_nat5 r - S.prime) /\ felem_fits5 k (1,1,1,1,1) /\ as_nat5 k < S.prime))
false
false
Hacl.Spec.K256.Field52.Lemmas2.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val normalize5_second_part_x_is_zero_lemma: x:uint64 -> r:felem5 -> Lemma (requires (let (r0,r1,r2,r3,r4) = r in felem_fits5 r (1,1,1,1,1) /\ v x = 0)) (ensures (let k = normalize5_second_part_x x r in as_nat5 k == (if as_nat5 r < S.prime then as_nat5 r else as_nat5 r - S.prime) /\ felem_fits5 k (1,1,1,1,1) /\ as_nat5 k < S.prime))
[]
Hacl.Spec.K256.Field52.Lemmas2.normalize5_second_part_x_is_zero_lemma
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas2.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Lib.IntTypes.uint64 -> r: Hacl.Spec.K256.Field52.Definitions.felem5 -> FStar.Pervasives.Lemma (requires (let _ = r in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ _ _ _ _ _ = _ in Hacl.Spec.K256.Field52.Definitions.felem_fits5 r (1, 1, 1, 1, 1) /\ Lib.IntTypes.v x = 0 ) <: Type0)) (ensures (let k = Hacl.Spec.K256.Field52.Lemmas2.normalize5_second_part_x x r in Hacl.Spec.K256.Field52.Definitions.as_nat5 k == (match Hacl.Spec.K256.Field52.Definitions.as_nat5 r < Spec.K256.PointOps.prime with | true -> Hacl.Spec.K256.Field52.Definitions.as_nat5 r | _ -> Hacl.Spec.K256.Field52.Definitions.as_nat5 r - Spec.K256.PointOps.prime) /\ Hacl.Spec.K256.Field52.Definitions.felem_fits5 k (1, 1, 1, 1, 1) /\ Hacl.Spec.K256.Field52.Definitions.as_nat5 k < Spec.K256.PointOps.prime))
{ "end_col": 48, "end_line": 342, "start_col": 48, "start_line": 304 }
FStar.Pervasives.Lemma
val minus_x_mul_pow2_256_lemma: m:scale64_5 -> f:felem5 -> Lemma (requires felem_fits5 f m) (ensures (let x, r = minus_x_mul_pow2_256 f in let (r0,r1,r2,r3,r4) = r in let (m0,m1,m2,m3,m4) = m in let (t0,t1,t2,t3,t4) = f in v x < pow2 16 /\ v x = v t4 / pow2 48 /\ v r4 = v t4 % pow2 48 /\ as_nat5 r == as_nat5 f - v x * pow2 256 /\ felem_fits5 r (m0,m1,m2,m3,1)))
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let minus_x_mul_pow2_256_lemma m f = let (m0,m1,m2,m3,m4) = m in let (t0,t1,t2,t3,t4) = f in let x = t4 >>. 48ul in let t4' = t4 &. mask48 in LD.lemma_mask48 t4; let r = (t0,t1,t2,t3,t4') in calc (==) { // as_nat5 f v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + v t4 * pow208; (==) { Math.Lemmas.euclidean_division_definition (v t4) (pow2 48) } v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + (v t4 / pow2 48 * pow2 48 + v t4 % pow2 48) * pow208; (==) { Math.Lemmas.distributivity_add_left (v t4 / pow2 48 * pow2 48) (v t4 % pow2 48) pow208 } v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + (v t4 / pow2 48 * pow2 48) * pow208 + (v t4 % pow2 48) * pow208; (==) { } (v x * pow2 48) * pow208 + as_nat5 r; (==) { Math.Lemmas.paren_mul_right (v x) (pow2 48) pow208; Math.Lemmas.pow2_plus 48 208 } v x * pow2 256 + as_nat5 r; }; Math.Lemmas.lemma_div_lt (v t4) 64 48
val minus_x_mul_pow2_256_lemma: m:scale64_5 -> f:felem5 -> Lemma (requires felem_fits5 f m) (ensures (let x, r = minus_x_mul_pow2_256 f in let (r0,r1,r2,r3,r4) = r in let (m0,m1,m2,m3,m4) = m in let (t0,t1,t2,t3,t4) = f in v x < pow2 16 /\ v x = v t4 / pow2 48 /\ v r4 = v t4 % pow2 48 /\ as_nat5 r == as_nat5 f - v x * pow2 256 /\ felem_fits5 r (m0,m1,m2,m3,1))) let minus_x_mul_pow2_256_lemma m f =
false
null
true
let m0, m1, m2, m3, m4 = m in let t0, t1, t2, t3, t4 = f in let x = t4 >>. 48ul in let t4' = t4 &. mask48 in LD.lemma_mask48 t4; let r = (t0, t1, t2, t3, t4') in calc ( == ) { v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + v t4 * pow208; ( == ) { Math.Lemmas.euclidean_division_definition (v t4) (pow2 48) } v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + ((v t4 / pow2 48) * pow2 48 + v t4 % pow2 48) * pow208; ( == ) { Math.Lemmas.distributivity_add_left ((v t4 / pow2 48) * pow2 48) (v t4 % pow2 48) pow208 } v t0 + v t1 * pow52 + v t2 * pow104 + v t3 * pow156 + ((v t4 / pow2 48) * pow2 48) * pow208 + (v t4 % pow2 48) * pow208; ( == ) { () } (v x * pow2 48) * pow208 + as_nat5 r; ( == ) { (Math.Lemmas.paren_mul_right (v x) (pow2 48) pow208; Math.Lemmas.pow2_plus 48 208) } v x * pow2 256 + as_nat5 r; }; Math.Lemmas.lemma_div_lt (v t4) 64 48
{ "checked_file": "Hacl.Spec.K256.Field52.Lemmas2.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas2.fst" }
[ "lemma" ]
[ "Hacl.Spec.K256.Field52.Definitions.scale64_5", "Hacl.Spec.K256.Field52.Definitions.felem5", "Prims.nat", "Lib.IntTypes.uint64", "FStar.Math.Lemmas.lemma_div_lt", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Prims.unit", "FStar.Calc.calc_finish", "Prims.int", "Prims.eq2", "Prims.op_Addition", "FStar.Mul.op_Star", "Hacl.Spec.K256.Field52.Definitions.pow52", "Hacl.Spec.K256.Field52.Definitions.pow104", "Hacl.Spec.K256.Field52.Definitions.pow156", "Hacl.Spec.K256.Field52.Definitions.pow208", "Prims.pow2", "Hacl.Spec.K256.Field52.Definitions.as_nat5", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "Prims.op_Division", "Prims.op_Modulus", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.euclidean_division_definition", "Prims.squash", "FStar.Math.Lemmas.distributivity_add_left", "FStar.Math.Lemmas.pow2_plus", "FStar.Math.Lemmas.paren_mul_right", "FStar.Pervasives.Native.tuple5", "Lib.IntTypes.int_t", "FStar.Pervasives.Native.Mktuple5", "Hacl.Spec.K256.Field52.Definitions.Lemmas.lemma_mask48", "Lib.IntTypes.op_Amp_Dot", "Hacl.Spec.K256.Field52.Definitions.mask48", "Lib.IntTypes.op_Greater_Greater_Dot", "FStar.UInt32.__uint_to_t" ]
[]
module Hacl.Spec.K256.Field52.Lemmas2 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" /// Normalize-weak val minus_x_mul_pow2_256_lemma: m:scale64_5 -> f:felem5 -> Lemma (requires felem_fits5 f m) (ensures (let x, r = minus_x_mul_pow2_256 f in let (r0,r1,r2,r3,r4) = r in let (m0,m1,m2,m3,m4) = m in let (t0,t1,t2,t3,t4) = f in v x < pow2 16 /\ v x = v t4 / pow2 48 /\ v r4 = v t4 % pow2 48 /\ as_nat5 r == as_nat5 f - v x * pow2 256 /\ felem_fits5 r (m0,m1,m2,m3,1)))
false
false
Hacl.Spec.K256.Field52.Lemmas2.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val minus_x_mul_pow2_256_lemma: m:scale64_5 -> f:felem5 -> Lemma (requires felem_fits5 f m) (ensures (let x, r = minus_x_mul_pow2_256 f in let (r0,r1,r2,r3,r4) = r in let (m0,m1,m2,m3,m4) = m in let (t0,t1,t2,t3,t4) = f in v x < pow2 16 /\ v x = v t4 / pow2 48 /\ v r4 = v t4 % pow2 48 /\ as_nat5 r == as_nat5 f - v x * pow2 256 /\ felem_fits5 r (m0,m1,m2,m3,1)))
[]
Hacl.Spec.K256.Field52.Lemmas2.minus_x_mul_pow2_256_lemma
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas2.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
m: Hacl.Spec.K256.Field52.Definitions.scale64_5 -> f: Hacl.Spec.K256.Field52.Definitions.felem5 -> FStar.Pervasives.Lemma (requires Hacl.Spec.K256.Field52.Definitions.felem_fits5 f m) (ensures (let _ = Hacl.Spec.K256.Field52.minus_x_mul_pow2_256 f in (let FStar.Pervasives.Native.Mktuple2 #_ #_ x r = _ in let _ = r in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ _ _ _ _ r4 = _ in let _ = m in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ m0 m1 m2 m3 _ = _ in let _ = f in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ _ _ _ _ t4 = _ in Lib.IntTypes.v x < Prims.pow2 16 /\ Lib.IntTypes.v x = Lib.IntTypes.v t4 / Prims.pow2 48 /\ Lib.IntTypes.v r4 = Lib.IntTypes.v t4 % Prims.pow2 48 /\ Hacl.Spec.K256.Field52.Definitions.as_nat5 r == Hacl.Spec.K256.Field52.Definitions.as_nat5 f - Lib.IntTypes.v x * Prims.pow2 256 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits5 r (m0, m1, m2, m3, 1)) <: Type0) <: Type0) <: Type0) <: Type0))
{ "end_col": 39, "end_line": 50, "start_col": 36, "start_line": 30 }
Prims.Tot
val snd (x: tuple2 'a 'b) : 'b
[ { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null } ]
false
let snd (x: tuple2 'a 'b) : 'b = Mktuple2?._2 x
val snd (x: tuple2 'a 'b) : 'b let snd (x: tuple2 'a 'b) : 'b =
false
null
false
Mktuple2?._2 x
{ "checked_file": "FStar.Pervasives.Native.fst.checked", "dependencies": [ "prims.fst.checked" ], "interface_file": false, "source_file": "FStar.Pervasives.Native.fst" }
[ "total" ]
[ "FStar.Pervasives.Native.tuple2", "FStar.Pervasives.Native.__proj__Mktuple2__item___2" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Pervasives.Native (* This is a file from the core library, dependencies must be explicit *) open Prims /// This module is implicitly opened in the scope of all other modules. /// /// It provides several basic types in F* that enjoy some special /// status in extraction. For instance, the tuple type below is /// compiled to OCaml's tuple type, rather than to a F*-defined /// inductive type. See ulib/ml/FStar_Pervasives_Native.ml /// (** [option a] represents either [Some a]-value or a non-informative [None]. *) type option (a: Type) = | None : option a | Some : v: a -> option a (**** Tuples *) /// Aside from special support in extraction, the tuple types have /// special syntax in F*. /// /// For instance, rather than [tupleN a1 ... aN], /// we usually write [a1 & ... & aN] or [a1 * ... * aN]. /// /// The latter notation is more common for those coming to F* from /// OCaml or F#. However, the [*] also clashes with the multiplication /// operator on integers define in FStar.Mul. For this reason, we now /// prefer to use the [&] notation, though there are still many uses /// of [*] remaining. /// /// Tuple values are introduced using as [a1, ..., an], rather than /// [MktupleN a1 ... aN]. /// /// We define tuples up to a fixed arity of 14. We have considered /// splitting this module into 14 different modules, one for each /// tuple type rather than eagerly including 14-tuples in the /// dependence graph of all programs. (** Pairs: [tuple2 a b] is can be written either as [a * b], for notation compatible with OCaml's. Or, better, as [a & b]. *) type tuple2 'a 'b = | Mktuple2 : _1: 'a -> _2: 'b -> tuple2 'a 'b (** The fst and snd projections on pairs are very common *)
false
false
FStar.Pervasives.Native.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val snd (x: tuple2 'a 'b) : 'b
[]
FStar.Pervasives.Native.snd
{ "file_name": "ulib/FStar.Pervasives.Native.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: ('a * 'b) -> 'b
{ "end_col": 47, "end_line": 63, "start_col": 33, "start_line": 63 }
Prims.Tot
val fst (x: tuple2 'a 'b) : 'a
[ { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null } ]
false
let fst (x: tuple2 'a 'b) : 'a = Mktuple2?._1 x
val fst (x: tuple2 'a 'b) : 'a let fst (x: tuple2 'a 'b) : 'a =
false
null
false
Mktuple2?._1 x
{ "checked_file": "FStar.Pervasives.Native.fst.checked", "dependencies": [ "prims.fst.checked" ], "interface_file": false, "source_file": "FStar.Pervasives.Native.fst" }
[ "total" ]
[ "FStar.Pervasives.Native.tuple2", "FStar.Pervasives.Native.__proj__Mktuple2__item___1" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Pervasives.Native (* This is a file from the core library, dependencies must be explicit *) open Prims /// This module is implicitly opened in the scope of all other modules. /// /// It provides several basic types in F* that enjoy some special /// status in extraction. For instance, the tuple type below is /// compiled to OCaml's tuple type, rather than to a F*-defined /// inductive type. See ulib/ml/FStar_Pervasives_Native.ml /// (** [option a] represents either [Some a]-value or a non-informative [None]. *) type option (a: Type) = | None : option a | Some : v: a -> option a (**** Tuples *) /// Aside from special support in extraction, the tuple types have /// special syntax in F*. /// /// For instance, rather than [tupleN a1 ... aN], /// we usually write [a1 & ... & aN] or [a1 * ... * aN]. /// /// The latter notation is more common for those coming to F* from /// OCaml or F#. However, the [*] also clashes with the multiplication /// operator on integers define in FStar.Mul. For this reason, we now /// prefer to use the [&] notation, though there are still many uses /// of [*] remaining. /// /// Tuple values are introduced using as [a1, ..., an], rather than /// [MktupleN a1 ... aN]. /// /// We define tuples up to a fixed arity of 14. We have considered /// splitting this module into 14 different modules, one for each /// tuple type rather than eagerly including 14-tuples in the /// dependence graph of all programs. (** Pairs: [tuple2 a b] is can be written either as [a * b], for notation compatible with OCaml's. Or, better, as [a & b]. *) type tuple2 'a 'b = | Mktuple2 : _1: 'a -> _2: 'b -> tuple2 'a 'b
false
false
FStar.Pervasives.Native.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fst (x: tuple2 'a 'b) : 'a
[]
FStar.Pervasives.Native.fst
{ "file_name": "ulib/FStar.Pervasives.Native.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: ('a * 'b) -> 'a
{ "end_col": 47, "end_line": 62, "start_col": 33, "start_line": 62 }
FStar.Pervasives.Lemma
val valid_nlist_nil_recip (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (valid (parse_nlist 0 p) h sl pos)) (ensures (valid_content_pos (parse_nlist 0 p) h sl pos [] pos))
[ { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Low.List", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.VCList", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let valid_nlist_nil_recip (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (valid (parse_nlist 0 p) h sl pos)) (ensures (valid_content_pos (parse_nlist 0 p) h sl pos [] pos)) = valid_facts (parse_nlist 0 p) h sl pos; parse_nlist_eq 0 p (bytes_of_slice_from h sl pos)
val valid_nlist_nil_recip (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (valid (parse_nlist 0 p) h sl pos)) (ensures (valid_content_pos (parse_nlist 0 p) h sl pos [] pos)) let valid_nlist_nil_recip (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (valid (parse_nlist 0 p) h sl pos)) (ensures (valid_content_pos (parse_nlist 0 p) h sl pos [] pos)) =
false
null
true
valid_facts (parse_nlist 0 p) h sl pos; parse_nlist_eq 0 p (bytes_of_slice_from h sl pos)
{ "checked_file": "LowParse.Low.VCList.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "LowParse.Spec.VCList.fsti.checked", "LowParse.Low.List.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked", "C.Loops.fst.checked" ], "interface_file": false, "source_file": "LowParse.Low.VCList.fst" }
[ "lemma" ]
[ "LowParse.Spec.Base.parser_kind", "LowParse.Spec.Base.parser", "FStar.Monotonic.HyperStack.mem", "LowParse.Slice.srel", "LowParse.Bytes.byte", "LowParse.Slice.slice", "FStar.UInt32.t", "LowParse.Spec.VCList.parse_nlist_eq", "LowParse.Slice.bytes_of_slice_from", "Prims.unit", "LowParse.Low.Base.Spec.valid_facts", "LowParse.Spec.VCList.parse_nlist_kind", "LowParse.Spec.VCList.nlist", "LowParse.Spec.VCList.parse_nlist", "LowParse.Low.Base.Spec.valid", "Prims.squash", "LowParse.Low.Base.Spec.valid_content_pos", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module LowParse.Low.VCList include LowParse.Spec.VCList include LowParse.Low.List module L = FStar.List.Tot module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module U32 = FStar.UInt32 module B = LowStar.Buffer module Cast = FStar.Int.Cast module U64 = FStar.UInt64 let valid_nlist_nil (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (live_slice h sl /\ U32.v pos <= U32.v sl.len)) (ensures (valid_content_pos (parse_nlist 0 p) h sl pos [] pos)) = valid_facts (parse_nlist 0 p) h sl pos; parse_nlist_eq 0 p (bytes_of_slice_from h sl pos) let valid_nlist_nil_recip (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (valid (parse_nlist 0 p) h sl pos))
false
false
LowParse.Low.VCList.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val valid_nlist_nil_recip (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (valid (parse_nlist 0 p) h sl pos)) (ensures (valid_content_pos (parse_nlist 0 p) h sl pos [] pos))
[]
LowParse.Low.VCList.valid_nlist_nil_recip
{ "file_name": "src/lowparse/LowParse.Low.VCList.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
p: LowParse.Spec.Base.parser k t -> h: FStar.Monotonic.HyperStack.mem -> sl: LowParse.Slice.slice rrel rel -> pos: FStar.UInt32.t -> FStar.Pervasives.Lemma (requires LowParse.Low.Base.Spec.valid (LowParse.Spec.VCList.parse_nlist 0 p) h sl pos) (ensures LowParse.Low.Base.Spec.valid_content_pos (LowParse.Spec.VCList.parse_nlist 0 p) h sl pos [] pos)
{ "end_col": 51, "end_line": 39, "start_col": 2, "start_line": 38 }
FStar.Pervasives.Lemma
val valid_nlist_nil (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (live_slice h sl /\ U32.v pos <= U32.v sl.len)) (ensures (valid_content_pos (parse_nlist 0 p) h sl pos [] pos))
[ { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Low.List", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.VCList", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let valid_nlist_nil (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (live_slice h sl /\ U32.v pos <= U32.v sl.len)) (ensures (valid_content_pos (parse_nlist 0 p) h sl pos [] pos)) = valid_facts (parse_nlist 0 p) h sl pos; parse_nlist_eq 0 p (bytes_of_slice_from h sl pos)
val valid_nlist_nil (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (live_slice h sl /\ U32.v pos <= U32.v sl.len)) (ensures (valid_content_pos (parse_nlist 0 p) h sl pos [] pos)) let valid_nlist_nil (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (live_slice h sl /\ U32.v pos <= U32.v sl.len)) (ensures (valid_content_pos (parse_nlist 0 p) h sl pos [] pos)) =
false
null
true
valid_facts (parse_nlist 0 p) h sl pos; parse_nlist_eq 0 p (bytes_of_slice_from h sl pos)
{ "checked_file": "LowParse.Low.VCList.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "LowParse.Spec.VCList.fsti.checked", "LowParse.Low.List.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked", "C.Loops.fst.checked" ], "interface_file": false, "source_file": "LowParse.Low.VCList.fst" }
[ "lemma" ]
[ "LowParse.Spec.Base.parser_kind", "LowParse.Spec.Base.parser", "FStar.Monotonic.HyperStack.mem", "LowParse.Slice.srel", "LowParse.Bytes.byte", "LowParse.Slice.slice", "FStar.UInt32.t", "LowParse.Spec.VCList.parse_nlist_eq", "LowParse.Slice.bytes_of_slice_from", "Prims.unit", "LowParse.Low.Base.Spec.valid_facts", "LowParse.Spec.VCList.parse_nlist_kind", "LowParse.Spec.VCList.nlist", "LowParse.Spec.VCList.parse_nlist", "Prims.l_and", "LowParse.Slice.live_slice", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.UInt32.v", "LowParse.Slice.__proj__Mkslice__item__len", "Prims.squash", "LowParse.Low.Base.Spec.valid_content_pos", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module LowParse.Low.VCList include LowParse.Spec.VCList include LowParse.Low.List module L = FStar.List.Tot module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module U32 = FStar.UInt32 module B = LowStar.Buffer module Cast = FStar.Int.Cast module U64 = FStar.UInt64 let valid_nlist_nil (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (live_slice h sl /\ U32.v pos <= U32.v sl.len))
false
false
LowParse.Low.VCList.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val valid_nlist_nil (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (live_slice h sl /\ U32.v pos <= U32.v sl.len)) (ensures (valid_content_pos (parse_nlist 0 p) h sl pos [] pos))
[]
LowParse.Low.VCList.valid_nlist_nil
{ "file_name": "src/lowparse/LowParse.Low.VCList.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
p: LowParse.Spec.Base.parser k t -> h: FStar.Monotonic.HyperStack.mem -> sl: LowParse.Slice.slice rrel rel -> pos: FStar.UInt32.t -> FStar.Pervasives.Lemma (requires LowParse.Slice.live_slice h sl /\ FStar.UInt32.v pos <= FStar.UInt32.v (Mkslice?.len sl)) (ensures LowParse.Low.Base.Spec.valid_content_pos (LowParse.Spec.VCList.parse_nlist 0 p) h sl pos [] pos)
{ "end_col": 51, "end_line": 25, "start_col": 2, "start_line": 24 }
FStar.Pervasives.Lemma
val valid_nlist_cons_not (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (n > 0 /\ (~(valid p h sl pos)))) (ensures (~(valid (parse_nlist n p) h sl pos)))
[ { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Low.List", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.VCList", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let valid_nlist_cons_not (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( n > 0 /\ (~ (valid p h sl pos)) )) (ensures ( ~ (valid (parse_nlist n p) h sl pos) )) = Classical.move_requires (valid_nlist_cons (n - 1) p h sl) pos; Classical.move_requires (valid_nlist_cons_recip n p h sl) pos
val valid_nlist_cons_not (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (n > 0 /\ (~(valid p h sl pos)))) (ensures (~(valid (parse_nlist n p) h sl pos))) let valid_nlist_cons_not (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (n > 0 /\ (~(valid p h sl pos)))) (ensures (~(valid (parse_nlist n p) h sl pos))) =
false
null
true
Classical.move_requires (valid_nlist_cons (n - 1) p h sl) pos; Classical.move_requires (valid_nlist_cons_recip n p h sl) pos
{ "checked_file": "LowParse.Low.VCList.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "LowParse.Spec.VCList.fsti.checked", "LowParse.Low.List.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked", "C.Loops.fst.checked" ], "interface_file": false, "source_file": "LowParse.Low.VCList.fst" }
[ "lemma" ]
[ "Prims.nat", "LowParse.Spec.Base.parser_kind", "LowParse.Spec.Base.parser", "FStar.Monotonic.HyperStack.mem", "LowParse.Slice.srel", "LowParse.Bytes.byte", "LowParse.Slice.slice", "FStar.UInt32.t", "FStar.Classical.move_requires", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThan", "LowParse.Low.Base.Spec.valid", "LowParse.Spec.VCList.parse_nlist_kind", "LowParse.Spec.VCList.nlist", "LowParse.Spec.VCList.parse_nlist", "Prims.op_Subtraction", "LowParse.Low.Base.Spec.get_valid_pos", "LowParse.Low.Base.Spec.valid_content_pos", "Prims.Cons", "LowParse.Low.Base.Spec.contents", "LowParse.Low.VCList.valid_nlist_cons_recip", "Prims.unit", "Prims.op_Addition", "LowParse.Low.VCList.valid_nlist_cons", "Prims.l_not", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module LowParse.Low.VCList include LowParse.Spec.VCList include LowParse.Low.List module L = FStar.List.Tot module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module U32 = FStar.UInt32 module B = LowStar.Buffer module Cast = FStar.Int.Cast module U64 = FStar.UInt64 let valid_nlist_nil (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (live_slice h sl /\ U32.v pos <= U32.v sl.len)) (ensures (valid_content_pos (parse_nlist 0 p) h sl pos [] pos)) = valid_facts (parse_nlist 0 p) h sl pos; parse_nlist_eq 0 p (bytes_of_slice_from h sl pos) let valid_nlist_nil_recip (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (valid (parse_nlist 0 p) h sl pos)) (ensures (valid_content_pos (parse_nlist 0 p) h sl pos [] pos)) = valid_facts (parse_nlist 0 p) h sl pos; parse_nlist_eq 0 p (bytes_of_slice_from h sl pos) #push-options "--z3rlimit 16" let valid_nlist_cons (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( valid p h sl pos /\ valid (parse_nlist n p) h sl (get_valid_pos p h sl pos) )) (ensures ( valid p h sl pos /\ valid (parse_nlist n p) h sl (get_valid_pos p h sl pos) /\ ( let pos1 = get_valid_pos p h sl pos in valid_content_pos (parse_nlist (n + 1) p) h sl pos (contents p h sl pos :: contents (parse_nlist n p) h sl pos1) (get_valid_pos (parse_nlist n p) h sl pos1) ))) = let pos1 = get_valid_pos p h sl pos in valid_facts p h sl pos; valid_facts (parse_nlist n p) h sl pos1; valid_facts (parse_nlist (n + 1) p) h sl pos; parse_nlist_eq (n + 1) p (bytes_of_slice_from h sl pos) let valid_nlist_cons_recip (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( n > 0 /\ valid (parse_nlist n p) h sl pos )) (ensures ( valid p h sl pos /\ ( let pos1 = get_valid_pos p h sl pos in valid (parse_nlist (n - 1) p) h sl (get_valid_pos p h sl pos) /\ valid_content_pos (parse_nlist n p) h sl pos (contents p h sl pos :: contents (parse_nlist (n - 1) p) h sl pos1) (get_valid_pos (parse_nlist (n - 1) p) h sl pos1) ))) = valid_facts (parse_nlist n p) h sl pos; parse_nlist_eq n p (bytes_of_slice_from h sl pos); valid_facts p h sl pos; let pos1 = get_valid_pos p h sl pos in valid_facts (parse_nlist (n - 1) p) h sl pos1 #pop-options let valid_nlist_cons' (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( n > 0 /\ valid p h sl pos )) (ensures ( let pos1 = get_valid_pos p h sl pos in (valid (parse_nlist n p) h sl pos <==> valid (parse_nlist (n - 1) p) h sl pos1) /\ ((valid (parse_nlist n p) h sl pos /\ valid (parse_nlist (n - 1) p) h sl pos1) ==> get_valid_pos (parse_nlist n p) h sl pos == get_valid_pos (parse_nlist (n - 1) p) h sl pos1) )) = Classical.move_requires (valid_nlist_cons (n - 1) p h sl) pos; Classical.move_requires (valid_nlist_cons_recip n p h sl) pos let valid_nlist_cons_not (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( n > 0 /\ (~ (valid p h sl pos)) )) (ensures ( ~ (valid (parse_nlist n p) h sl pos)
false
false
LowParse.Low.VCList.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val valid_nlist_cons_not (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (n > 0 /\ (~(valid p h sl pos)))) (ensures (~(valid (parse_nlist n p) h sl pos)))
[]
LowParse.Low.VCList.valid_nlist_cons_not
{ "file_name": "src/lowparse/LowParse.Low.VCList.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
n: Prims.nat -> p: LowParse.Spec.Base.parser k t -> h: FStar.Monotonic.HyperStack.mem -> sl: LowParse.Slice.slice rrel rel -> pos: FStar.UInt32.t -> FStar.Pervasives.Lemma (requires n > 0 /\ ~(LowParse.Low.Base.Spec.valid p h sl pos)) (ensures ~(LowParse.Low.Base.Spec.valid (LowParse.Spec.VCList.parse_nlist n p) h sl pos))
{ "end_col": 63, "end_line": 149, "start_col": 2, "start_line": 148 }
FStar.Pervasives.Lemma
val valid_list_valid_nlist (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos pos': U32.t) : Lemma (requires (valid_list p h sl pos pos')) (ensures (let x = contents_list p h sl pos pos' in valid_content_pos (parse_nlist (L.length x) p) h sl pos x pos')) (decreases (U32.v pos' - U32.v pos))
[ { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Low.List", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.VCList", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec valid_list_valid_nlist (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) (pos' : U32.t) : Lemma (requires ( valid_list p h sl pos pos' )) (ensures ( let x = contents_list p h sl pos pos' in valid_content_pos (parse_nlist (L.length x) p) h sl pos x pos' )) (decreases (U32.v pos' - U32.v pos)) = if pos = pos' then begin valid_list_nil p h sl pos; valid_nlist_nil p h sl pos end else begin valid_list_cons_recip p h sl pos pos' ; let pos1 = get_valid_pos p h sl pos in valid_list_valid_nlist p h sl pos1 pos' ; valid_nlist_cons (L.length (contents_list p h sl pos1 pos')) p h sl pos end
val valid_list_valid_nlist (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos pos': U32.t) : Lemma (requires (valid_list p h sl pos pos')) (ensures (let x = contents_list p h sl pos pos' in valid_content_pos (parse_nlist (L.length x) p) h sl pos x pos')) (decreases (U32.v pos' - U32.v pos)) let rec valid_list_valid_nlist (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos pos': U32.t) : Lemma (requires (valid_list p h sl pos pos')) (ensures (let x = contents_list p h sl pos pos' in valid_content_pos (parse_nlist (L.length x) p) h sl pos x pos')) (decreases (U32.v pos' - U32.v pos)) =
false
null
true
if pos = pos' then (valid_list_nil p h sl pos; valid_nlist_nil p h sl pos) else (valid_list_cons_recip p h sl pos pos'; let pos1 = get_valid_pos p h sl pos in valid_list_valid_nlist p h sl pos1 pos'; valid_nlist_cons (L.length (contents_list p h sl pos1 pos')) p h sl pos)
{ "checked_file": "LowParse.Low.VCList.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "LowParse.Spec.VCList.fsti.checked", "LowParse.Low.List.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked", "C.Loops.fst.checked" ], "interface_file": false, "source_file": "LowParse.Low.VCList.fst" }
[ "lemma", "" ]
[ "LowParse.Spec.Base.parser_kind", "LowParse.Spec.Base.parser", "FStar.Monotonic.HyperStack.mem", "LowParse.Slice.srel", "LowParse.Bytes.byte", "LowParse.Slice.slice", "FStar.UInt32.t", "Prims.op_Equality", "LowParse.Low.VCList.valid_nlist_nil", "Prims.unit", "LowParse.Low.Base.Spec.valid_list_nil", "Prims.bool", "LowParse.Low.VCList.valid_nlist_cons", "FStar.List.Tot.Base.length", "LowParse.Low.Base.Spec.contents_list", "LowParse.Low.VCList.valid_list_valid_nlist", "LowParse.Low.Base.Spec.get_valid_pos", "LowParse.Low.Base.Spec.valid_list_cons_recip", "LowParse.Low.Base.Spec.valid_list", "Prims.squash", "LowParse.Low.Base.Spec.valid_content_pos", "LowParse.Spec.VCList.parse_nlist_kind", "LowParse.Spec.VCList.nlist", "LowParse.Spec.VCList.parse_nlist", "Prims.list", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module LowParse.Low.VCList include LowParse.Spec.VCList include LowParse.Low.List module L = FStar.List.Tot module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module U32 = FStar.UInt32 module B = LowStar.Buffer module Cast = FStar.Int.Cast module U64 = FStar.UInt64 let valid_nlist_nil (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (live_slice h sl /\ U32.v pos <= U32.v sl.len)) (ensures (valid_content_pos (parse_nlist 0 p) h sl pos [] pos)) = valid_facts (parse_nlist 0 p) h sl pos; parse_nlist_eq 0 p (bytes_of_slice_from h sl pos) let valid_nlist_nil_recip (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (valid (parse_nlist 0 p) h sl pos)) (ensures (valid_content_pos (parse_nlist 0 p) h sl pos [] pos)) = valid_facts (parse_nlist 0 p) h sl pos; parse_nlist_eq 0 p (bytes_of_slice_from h sl pos) #push-options "--z3rlimit 16" let valid_nlist_cons (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( valid p h sl pos /\ valid (parse_nlist n p) h sl (get_valid_pos p h sl pos) )) (ensures ( valid p h sl pos /\ valid (parse_nlist n p) h sl (get_valid_pos p h sl pos) /\ ( let pos1 = get_valid_pos p h sl pos in valid_content_pos (parse_nlist (n + 1) p) h sl pos (contents p h sl pos :: contents (parse_nlist n p) h sl pos1) (get_valid_pos (parse_nlist n p) h sl pos1) ))) = let pos1 = get_valid_pos p h sl pos in valid_facts p h sl pos; valid_facts (parse_nlist n p) h sl pos1; valid_facts (parse_nlist (n + 1) p) h sl pos; parse_nlist_eq (n + 1) p (bytes_of_slice_from h sl pos) let valid_nlist_cons_recip (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( n > 0 /\ valid (parse_nlist n p) h sl pos )) (ensures ( valid p h sl pos /\ ( let pos1 = get_valid_pos p h sl pos in valid (parse_nlist (n - 1) p) h sl (get_valid_pos p h sl pos) /\ valid_content_pos (parse_nlist n p) h sl pos (contents p h sl pos :: contents (parse_nlist (n - 1) p) h sl pos1) (get_valid_pos (parse_nlist (n - 1) p) h sl pos1) ))) = valid_facts (parse_nlist n p) h sl pos; parse_nlist_eq n p (bytes_of_slice_from h sl pos); valid_facts p h sl pos; let pos1 = get_valid_pos p h sl pos in valid_facts (parse_nlist (n - 1) p) h sl pos1 #pop-options let valid_nlist_cons' (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( n > 0 /\ valid p h sl pos )) (ensures ( let pos1 = get_valid_pos p h sl pos in (valid (parse_nlist n p) h sl pos <==> valid (parse_nlist (n - 1) p) h sl pos1) /\ ((valid (parse_nlist n p) h sl pos /\ valid (parse_nlist (n - 1) p) h sl pos1) ==> get_valid_pos (parse_nlist n p) h sl pos == get_valid_pos (parse_nlist (n - 1) p) h sl pos1) )) = Classical.move_requires (valid_nlist_cons (n - 1) p h sl) pos; Classical.move_requires (valid_nlist_cons_recip n p h sl) pos let valid_nlist_cons_not (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( n > 0 /\ (~ (valid p h sl pos)) )) (ensures ( ~ (valid (parse_nlist n p) h sl pos) )) = Classical.move_requires (valid_nlist_cons (n - 1) p h sl) pos; Classical.move_requires (valid_nlist_cons_recip n p h sl) pos #push-options "--z3rlimit 32" inline_for_extraction let validate_nlist (n: U32.t) (#k: parser_kind) (#t: Type) (#p: parser k t) (v: validator p) : Tot (validator (parse_nlist (U32.v n) p)) = fun #rrel #rel input pos -> let h0 = HST.get () in HST.push_frame (); let bpos1 : B.buffer U64.t = B.alloca pos 1ul in let br = B.alloca n 1ul in let h1 = HST.get () in C.Loops.do_while (fun h stop -> B.modifies (B.loc_buffer bpos1 `B.loc_union` B.loc_buffer br) h1 h /\ ( let pos1 = B.get h bpos1 0 in let r = B.get h br 0 in U32.v r <= U32.v n /\ U64.v pos <= U64.v pos1 /\ ( if is_success pos1 then let pos1 = uint64_to_uint32 pos1 in U32.v pos1 <= U32.v input.len /\ (valid (parse_nlist (U32.v n) p) h0 input (uint64_to_uint32 pos) <==> valid (parse_nlist (U32.v r) p) h0 input pos1) /\ ((valid (parse_nlist (U32.v n) p) h0 input (uint64_to_uint32 pos) /\ valid (parse_nlist (U32.v r) p) h0 input pos1) ==> get_valid_pos (parse_nlist (U32.v n) p) h0 input (uint64_to_uint32 pos) == get_valid_pos (parse_nlist (U32.v r) p) h0 input pos1) /\ (stop == true ==> r == 0ul) else (stop == true /\ (~ (valid (parse_nlist (U32.v n) p) h0 input (uint64_to_uint32 pos)))) ))) (fun _ -> let r = B.index br 0ul in if r = 0ul then true else let pos1 = B.index bpos1 0ul in let pos2 = v input pos1 in let _ = B.upd br 0ul (r `U32.sub` 1ul) in let _ = B.upd bpos1 0ul pos2 in [@inline_let] let stop = is_error pos2 in [@inline_let] let _ = if stop then valid_nlist_cons_not (U32.v r) p h0 input (uint64_to_uint32 pos1) else valid_nlist_cons' (U32.v r) p h0 input (uint64_to_uint32 pos1) in stop ) ; let res = B.index bpos1 0ul in [@inline_let] let _ = if is_success res then valid_nlist_nil p h0 input (uint64_to_uint32 res) in HST.pop_frame (); res inline_for_extraction let jump_nlist (n: U32.t) (#k: parser_kind) (#t: Type) (#p: parser k t) (v: jumper p) : Tot (jumper (parse_nlist (U32.v n) p)) = fun #rrel #rel input pos -> let h0 = HST.get () in HST.push_frame (); let bpos1 = B.alloca pos 1ul in let br = B.alloca n 1ul in let h1 = HST.get () in C.Loops.do_while (fun h stop -> B.modifies (B.loc_buffer bpos1 `B.loc_union` B.loc_buffer br) h1 h /\ ( let pos1 = B.get h bpos1 0 in let r = B.get h br 0 in U32.v r <= U32.v n /\ U32.v pos <= U32.v pos1 /\ U32.v pos1 <= U32.v input.len /\ valid (parse_nlist (U32.v n) p) h0 input pos /\ valid (parse_nlist (U32.v r) p) h0 input pos1 /\ get_valid_pos (parse_nlist (U32.v n) p) h0 input pos == get_valid_pos (parse_nlist (U32.v r) p) h0 input pos1 /\ (stop == true ==> r == 0ul) )) (fun _ -> let r = B.index br 0ul in if r = 0ul then true else let pos1 = B.index bpos1 0ul in [@inline_let] let _ = valid_nlist_cons_recip (U32.v r) p h0 input pos1 in let pos2 = v input pos1 in let _ = B.upd br 0ul (r `U32.sub` 1ul) in let _ = B.upd bpos1 0ul pos2 in false ) ; let res = B.index bpos1 0ul in [@inline_let] let _ = valid_nlist_nil p h0 input res in HST.pop_frame (); res #pop-options let rec valid_nlist_valid_list (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( k.parser_kind_low > 0 /\ k.parser_kind_subkind == Some ParserStrong /\ valid (parse_nlist n p) h sl pos )) (ensures ( let pos' = get_valid_pos (parse_nlist n p) h sl pos in valid_list p h sl pos pos' /\ contents_list p h sl pos pos' == contents (parse_nlist n p) h sl pos )) = if n = 0 then begin valid_nlist_nil_recip p h sl pos; valid_list_nil p h sl pos end else begin valid_nlist_cons_recip n p h sl pos; let pos1 = get_valid_pos p h sl pos in let pos' = get_valid_pos (parse_nlist n p) h sl pos in valid_nlist_valid_list (n - 1) p h sl pos1; valid_list_cons p h sl pos pos' end let rec valid_list_valid_nlist (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) (pos' : U32.t) : Lemma (requires ( valid_list p h sl pos pos' )) (ensures ( let x = contents_list p h sl pos pos' in valid_content_pos (parse_nlist (L.length x) p) h sl pos x pos' ))
false
false
LowParse.Low.VCList.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val valid_list_valid_nlist (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos pos': U32.t) : Lemma (requires (valid_list p h sl pos pos')) (ensures (let x = contents_list p h sl pos pos' in valid_content_pos (parse_nlist (L.length x) p) h sl pos x pos')) (decreases (U32.v pos' - U32.v pos))
[ "recursion" ]
LowParse.Low.VCList.valid_list_valid_nlist
{ "file_name": "src/lowparse/LowParse.Low.VCList.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
p: LowParse.Spec.Base.parser k t -> h: FStar.Monotonic.HyperStack.mem -> sl: LowParse.Slice.slice rrel rel -> pos: FStar.UInt32.t -> pos': FStar.UInt32.t -> FStar.Pervasives.Lemma (requires LowParse.Low.Base.Spec.valid_list p h sl pos pos') (ensures (let x = LowParse.Low.Base.Spec.contents_list p h sl pos pos' in LowParse.Low.Base.Spec.valid_content_pos (LowParse.Spec.VCList.parse_nlist (FStar.List.Tot.Base.length x) p) h sl pos x pos')) (decreases FStar.UInt32.v pos' - FStar.UInt32.v pos)
{ "end_col": 5, "end_line": 322, "start_col": 2, "start_line": 313 }
FStar.Pervasives.Lemma
val valid_nlist_valid_list (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (k.parser_kind_low > 0 /\ k.parser_kind_subkind == Some ParserStrong /\ valid (parse_nlist n p) h sl pos)) (ensures (let pos' = get_valid_pos (parse_nlist n p) h sl pos in valid_list p h sl pos pos' /\ contents_list p h sl pos pos' == contents (parse_nlist n p) h sl pos))
[ { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Low.List", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.VCList", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec valid_nlist_valid_list (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( k.parser_kind_low > 0 /\ k.parser_kind_subkind == Some ParserStrong /\ valid (parse_nlist n p) h sl pos )) (ensures ( let pos' = get_valid_pos (parse_nlist n p) h sl pos in valid_list p h sl pos pos' /\ contents_list p h sl pos pos' == contents (parse_nlist n p) h sl pos )) = if n = 0 then begin valid_nlist_nil_recip p h sl pos; valid_list_nil p h sl pos end else begin valid_nlist_cons_recip n p h sl pos; let pos1 = get_valid_pos p h sl pos in let pos' = get_valid_pos (parse_nlist n p) h sl pos in valid_nlist_valid_list (n - 1) p h sl pos1; valid_list_cons p h sl pos pos' end
val valid_nlist_valid_list (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (k.parser_kind_low > 0 /\ k.parser_kind_subkind == Some ParserStrong /\ valid (parse_nlist n p) h sl pos)) (ensures (let pos' = get_valid_pos (parse_nlist n p) h sl pos in valid_list p h sl pos pos' /\ contents_list p h sl pos pos' == contents (parse_nlist n p) h sl pos)) let rec valid_nlist_valid_list (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (k.parser_kind_low > 0 /\ k.parser_kind_subkind == Some ParserStrong /\ valid (parse_nlist n p) h sl pos)) (ensures (let pos' = get_valid_pos (parse_nlist n p) h sl pos in valid_list p h sl pos pos' /\ contents_list p h sl pos pos' == contents (parse_nlist n p) h sl pos)) =
false
null
true
if n = 0 then (valid_nlist_nil_recip p h sl pos; valid_list_nil p h sl pos) else (valid_nlist_cons_recip n p h sl pos; let pos1 = get_valid_pos p h sl pos in let pos' = get_valid_pos (parse_nlist n p) h sl pos in valid_nlist_valid_list (n - 1) p h sl pos1; valid_list_cons p h sl pos pos')
{ "checked_file": "LowParse.Low.VCList.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "LowParse.Spec.VCList.fsti.checked", "LowParse.Low.List.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked", "C.Loops.fst.checked" ], "interface_file": false, "source_file": "LowParse.Low.VCList.fst" }
[ "lemma" ]
[ "Prims.nat", "LowParse.Spec.Base.parser_kind", "LowParse.Spec.Base.parser", "FStar.Monotonic.HyperStack.mem", "LowParse.Slice.srel", "LowParse.Bytes.byte", "LowParse.Slice.slice", "FStar.UInt32.t", "Prims.op_Equality", "Prims.int", "LowParse.Low.Base.Spec.valid_list_nil", "Prims.unit", "LowParse.Low.VCList.valid_nlist_nil_recip", "Prims.bool", "LowParse.Low.Base.Spec.valid_list_cons", "LowParse.Low.VCList.valid_nlist_valid_list", "Prims.op_Subtraction", "LowParse.Low.Base.Spec.get_valid_pos", "LowParse.Spec.VCList.parse_nlist_kind", "LowParse.Spec.VCList.nlist", "LowParse.Spec.VCList.parse_nlist", "LowParse.Low.VCList.valid_nlist_cons_recip", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThan", "LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_low", "Prims.eq2", "FStar.Pervasives.Native.option", "LowParse.Spec.Base.parser_subkind", "LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_subkind", "FStar.Pervasives.Native.Some", "LowParse.Spec.Base.ParserStrong", "LowParse.Low.Base.Spec.valid", "Prims.squash", "LowParse.Low.Base.Spec.valid_list", "Prims.list", "LowParse.Low.Base.Spec.contents_list", "LowParse.Low.Base.Spec.contents", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module LowParse.Low.VCList include LowParse.Spec.VCList include LowParse.Low.List module L = FStar.List.Tot module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module U32 = FStar.UInt32 module B = LowStar.Buffer module Cast = FStar.Int.Cast module U64 = FStar.UInt64 let valid_nlist_nil (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (live_slice h sl /\ U32.v pos <= U32.v sl.len)) (ensures (valid_content_pos (parse_nlist 0 p) h sl pos [] pos)) = valid_facts (parse_nlist 0 p) h sl pos; parse_nlist_eq 0 p (bytes_of_slice_from h sl pos) let valid_nlist_nil_recip (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (valid (parse_nlist 0 p) h sl pos)) (ensures (valid_content_pos (parse_nlist 0 p) h sl pos [] pos)) = valid_facts (parse_nlist 0 p) h sl pos; parse_nlist_eq 0 p (bytes_of_slice_from h sl pos) #push-options "--z3rlimit 16" let valid_nlist_cons (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( valid p h sl pos /\ valid (parse_nlist n p) h sl (get_valid_pos p h sl pos) )) (ensures ( valid p h sl pos /\ valid (parse_nlist n p) h sl (get_valid_pos p h sl pos) /\ ( let pos1 = get_valid_pos p h sl pos in valid_content_pos (parse_nlist (n + 1) p) h sl pos (contents p h sl pos :: contents (parse_nlist n p) h sl pos1) (get_valid_pos (parse_nlist n p) h sl pos1) ))) = let pos1 = get_valid_pos p h sl pos in valid_facts p h sl pos; valid_facts (parse_nlist n p) h sl pos1; valid_facts (parse_nlist (n + 1) p) h sl pos; parse_nlist_eq (n + 1) p (bytes_of_slice_from h sl pos) let valid_nlist_cons_recip (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( n > 0 /\ valid (parse_nlist n p) h sl pos )) (ensures ( valid p h sl pos /\ ( let pos1 = get_valid_pos p h sl pos in valid (parse_nlist (n - 1) p) h sl (get_valid_pos p h sl pos) /\ valid_content_pos (parse_nlist n p) h sl pos (contents p h sl pos :: contents (parse_nlist (n - 1) p) h sl pos1) (get_valid_pos (parse_nlist (n - 1) p) h sl pos1) ))) = valid_facts (parse_nlist n p) h sl pos; parse_nlist_eq n p (bytes_of_slice_from h sl pos); valid_facts p h sl pos; let pos1 = get_valid_pos p h sl pos in valid_facts (parse_nlist (n - 1) p) h sl pos1 #pop-options let valid_nlist_cons' (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( n > 0 /\ valid p h sl pos )) (ensures ( let pos1 = get_valid_pos p h sl pos in (valid (parse_nlist n p) h sl pos <==> valid (parse_nlist (n - 1) p) h sl pos1) /\ ((valid (parse_nlist n p) h sl pos /\ valid (parse_nlist (n - 1) p) h sl pos1) ==> get_valid_pos (parse_nlist n p) h sl pos == get_valid_pos (parse_nlist (n - 1) p) h sl pos1) )) = Classical.move_requires (valid_nlist_cons (n - 1) p h sl) pos; Classical.move_requires (valid_nlist_cons_recip n p h sl) pos let valid_nlist_cons_not (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( n > 0 /\ (~ (valid p h sl pos)) )) (ensures ( ~ (valid (parse_nlist n p) h sl pos) )) = Classical.move_requires (valid_nlist_cons (n - 1) p h sl) pos; Classical.move_requires (valid_nlist_cons_recip n p h sl) pos #push-options "--z3rlimit 32" inline_for_extraction let validate_nlist (n: U32.t) (#k: parser_kind) (#t: Type) (#p: parser k t) (v: validator p) : Tot (validator (parse_nlist (U32.v n) p)) = fun #rrel #rel input pos -> let h0 = HST.get () in HST.push_frame (); let bpos1 : B.buffer U64.t = B.alloca pos 1ul in let br = B.alloca n 1ul in let h1 = HST.get () in C.Loops.do_while (fun h stop -> B.modifies (B.loc_buffer bpos1 `B.loc_union` B.loc_buffer br) h1 h /\ ( let pos1 = B.get h bpos1 0 in let r = B.get h br 0 in U32.v r <= U32.v n /\ U64.v pos <= U64.v pos1 /\ ( if is_success pos1 then let pos1 = uint64_to_uint32 pos1 in U32.v pos1 <= U32.v input.len /\ (valid (parse_nlist (U32.v n) p) h0 input (uint64_to_uint32 pos) <==> valid (parse_nlist (U32.v r) p) h0 input pos1) /\ ((valid (parse_nlist (U32.v n) p) h0 input (uint64_to_uint32 pos) /\ valid (parse_nlist (U32.v r) p) h0 input pos1) ==> get_valid_pos (parse_nlist (U32.v n) p) h0 input (uint64_to_uint32 pos) == get_valid_pos (parse_nlist (U32.v r) p) h0 input pos1) /\ (stop == true ==> r == 0ul) else (stop == true /\ (~ (valid (parse_nlist (U32.v n) p) h0 input (uint64_to_uint32 pos)))) ))) (fun _ -> let r = B.index br 0ul in if r = 0ul then true else let pos1 = B.index bpos1 0ul in let pos2 = v input pos1 in let _ = B.upd br 0ul (r `U32.sub` 1ul) in let _ = B.upd bpos1 0ul pos2 in [@inline_let] let stop = is_error pos2 in [@inline_let] let _ = if stop then valid_nlist_cons_not (U32.v r) p h0 input (uint64_to_uint32 pos1) else valid_nlist_cons' (U32.v r) p h0 input (uint64_to_uint32 pos1) in stop ) ; let res = B.index bpos1 0ul in [@inline_let] let _ = if is_success res then valid_nlist_nil p h0 input (uint64_to_uint32 res) in HST.pop_frame (); res inline_for_extraction let jump_nlist (n: U32.t) (#k: parser_kind) (#t: Type) (#p: parser k t) (v: jumper p) : Tot (jumper (parse_nlist (U32.v n) p)) = fun #rrel #rel input pos -> let h0 = HST.get () in HST.push_frame (); let bpos1 = B.alloca pos 1ul in let br = B.alloca n 1ul in let h1 = HST.get () in C.Loops.do_while (fun h stop -> B.modifies (B.loc_buffer bpos1 `B.loc_union` B.loc_buffer br) h1 h /\ ( let pos1 = B.get h bpos1 0 in let r = B.get h br 0 in U32.v r <= U32.v n /\ U32.v pos <= U32.v pos1 /\ U32.v pos1 <= U32.v input.len /\ valid (parse_nlist (U32.v n) p) h0 input pos /\ valid (parse_nlist (U32.v r) p) h0 input pos1 /\ get_valid_pos (parse_nlist (U32.v n) p) h0 input pos == get_valid_pos (parse_nlist (U32.v r) p) h0 input pos1 /\ (stop == true ==> r == 0ul) )) (fun _ -> let r = B.index br 0ul in if r = 0ul then true else let pos1 = B.index bpos1 0ul in [@inline_let] let _ = valid_nlist_cons_recip (U32.v r) p h0 input pos1 in let pos2 = v input pos1 in let _ = B.upd br 0ul (r `U32.sub` 1ul) in let _ = B.upd bpos1 0ul pos2 in false ) ; let res = B.index bpos1 0ul in [@inline_let] let _ = valid_nlist_nil p h0 input res in HST.pop_frame (); res #pop-options let rec valid_nlist_valid_list (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( k.parser_kind_low > 0 /\ k.parser_kind_subkind == Some ParserStrong /\ valid (parse_nlist n p) h sl pos )) (ensures ( let pos' = get_valid_pos (parse_nlist n p) h sl pos in valid_list p h sl pos pos' /\ contents_list p h sl pos pos' == contents (parse_nlist n p) h sl pos
false
false
LowParse.Low.VCList.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val valid_nlist_valid_list (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (k.parser_kind_low > 0 /\ k.parser_kind_subkind == Some ParserStrong /\ valid (parse_nlist n p) h sl pos)) (ensures (let pos' = get_valid_pos (parse_nlist n p) h sl pos in valid_list p h sl pos pos' /\ contents_list p h sl pos pos' == contents (parse_nlist n p) h sl pos))
[ "recursion" ]
LowParse.Low.VCList.valid_nlist_valid_list
{ "file_name": "src/lowparse/LowParse.Low.VCList.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
n: Prims.nat -> p: LowParse.Spec.Base.parser k t -> h: FStar.Monotonic.HyperStack.mem -> sl: LowParse.Slice.slice rrel rel -> pos: FStar.UInt32.t -> FStar.Pervasives.Lemma (requires Mkparser_kind'?.parser_kind_low k > 0 /\ Mkparser_kind'?.parser_kind_subkind k == FStar.Pervasives.Native.Some LowParse.Spec.Base.ParserStrong /\ LowParse.Low.Base.Spec.valid (LowParse.Spec.VCList.parse_nlist n p) h sl pos) (ensures (let pos' = LowParse.Low.Base.Spec.get_valid_pos (LowParse.Spec.VCList.parse_nlist n p) h sl pos in LowParse.Low.Base.Spec.valid_list p h sl pos pos' /\ LowParse.Low.Base.Spec.contents_list p h sl pos pos' == LowParse.Low.Base.Spec.contents (LowParse.Spec.VCList.parse_nlist n p) h sl pos))
{ "end_col": 5, "end_line": 293, "start_col": 2, "start_line": 283 }
FStar.Pervasives.Lemma
val valid_nlist_cons' (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (n > 0 /\ valid p h sl pos)) (ensures (let pos1 = get_valid_pos p h sl pos in (valid (parse_nlist n p) h sl pos <==> valid (parse_nlist (n - 1) p) h sl pos1) /\ ((valid (parse_nlist n p) h sl pos /\ valid (parse_nlist (n - 1) p) h sl pos1) ==> get_valid_pos (parse_nlist n p) h sl pos == get_valid_pos (parse_nlist (n - 1) p) h sl pos1)))
[ { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Low.List", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.VCList", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let valid_nlist_cons' (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( n > 0 /\ valid p h sl pos )) (ensures ( let pos1 = get_valid_pos p h sl pos in (valid (parse_nlist n p) h sl pos <==> valid (parse_nlist (n - 1) p) h sl pos1) /\ ((valid (parse_nlist n p) h sl pos /\ valid (parse_nlist (n - 1) p) h sl pos1) ==> get_valid_pos (parse_nlist n p) h sl pos == get_valid_pos (parse_nlist (n - 1) p) h sl pos1) )) = Classical.move_requires (valid_nlist_cons (n - 1) p h sl) pos; Classical.move_requires (valid_nlist_cons_recip n p h sl) pos
val valid_nlist_cons' (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (n > 0 /\ valid p h sl pos)) (ensures (let pos1 = get_valid_pos p h sl pos in (valid (parse_nlist n p) h sl pos <==> valid (parse_nlist (n - 1) p) h sl pos1) /\ ((valid (parse_nlist n p) h sl pos /\ valid (parse_nlist (n - 1) p) h sl pos1) ==> get_valid_pos (parse_nlist n p) h sl pos == get_valid_pos (parse_nlist (n - 1) p) h sl pos1))) let valid_nlist_cons' (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (n > 0 /\ valid p h sl pos)) (ensures (let pos1 = get_valid_pos p h sl pos in (valid (parse_nlist n p) h sl pos <==> valid (parse_nlist (n - 1) p) h sl pos1) /\ ((valid (parse_nlist n p) h sl pos /\ valid (parse_nlist (n - 1) p) h sl pos1) ==> get_valid_pos (parse_nlist n p) h sl pos == get_valid_pos (parse_nlist (n - 1) p) h sl pos1))) =
false
null
true
Classical.move_requires (valid_nlist_cons (n - 1) p h sl) pos; Classical.move_requires (valid_nlist_cons_recip n p h sl) pos
{ "checked_file": "LowParse.Low.VCList.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "LowParse.Spec.VCList.fsti.checked", "LowParse.Low.List.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked", "C.Loops.fst.checked" ], "interface_file": false, "source_file": "LowParse.Low.VCList.fst" }
[ "lemma" ]
[ "Prims.nat", "LowParse.Spec.Base.parser_kind", "LowParse.Spec.Base.parser", "FStar.Monotonic.HyperStack.mem", "LowParse.Slice.srel", "LowParse.Bytes.byte", "LowParse.Slice.slice", "FStar.UInt32.t", "FStar.Classical.move_requires", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThan", "LowParse.Low.Base.Spec.valid", "LowParse.Spec.VCList.parse_nlist_kind", "LowParse.Spec.VCList.nlist", "LowParse.Spec.VCList.parse_nlist", "Prims.op_Subtraction", "LowParse.Low.Base.Spec.get_valid_pos", "LowParse.Low.Base.Spec.valid_content_pos", "Prims.Cons", "LowParse.Low.Base.Spec.contents", "LowParse.Low.VCList.valid_nlist_cons_recip", "Prims.unit", "Prims.op_Addition", "LowParse.Low.VCList.valid_nlist_cons", "Prims.squash", "Prims.l_iff", "Prims.l_imp", "Prims.eq2", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module LowParse.Low.VCList include LowParse.Spec.VCList include LowParse.Low.List module L = FStar.List.Tot module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module U32 = FStar.UInt32 module B = LowStar.Buffer module Cast = FStar.Int.Cast module U64 = FStar.UInt64 let valid_nlist_nil (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (live_slice h sl /\ U32.v pos <= U32.v sl.len)) (ensures (valid_content_pos (parse_nlist 0 p) h sl pos [] pos)) = valid_facts (parse_nlist 0 p) h sl pos; parse_nlist_eq 0 p (bytes_of_slice_from h sl pos) let valid_nlist_nil_recip (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (valid (parse_nlist 0 p) h sl pos)) (ensures (valid_content_pos (parse_nlist 0 p) h sl pos [] pos)) = valid_facts (parse_nlist 0 p) h sl pos; parse_nlist_eq 0 p (bytes_of_slice_from h sl pos) #push-options "--z3rlimit 16" let valid_nlist_cons (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( valid p h sl pos /\ valid (parse_nlist n p) h sl (get_valid_pos p h sl pos) )) (ensures ( valid p h sl pos /\ valid (parse_nlist n p) h sl (get_valid_pos p h sl pos) /\ ( let pos1 = get_valid_pos p h sl pos in valid_content_pos (parse_nlist (n + 1) p) h sl pos (contents p h sl pos :: contents (parse_nlist n p) h sl pos1) (get_valid_pos (parse_nlist n p) h sl pos1) ))) = let pos1 = get_valid_pos p h sl pos in valid_facts p h sl pos; valid_facts (parse_nlist n p) h sl pos1; valid_facts (parse_nlist (n + 1) p) h sl pos; parse_nlist_eq (n + 1) p (bytes_of_slice_from h sl pos) let valid_nlist_cons_recip (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( n > 0 /\ valid (parse_nlist n p) h sl pos )) (ensures ( valid p h sl pos /\ ( let pos1 = get_valid_pos p h sl pos in valid (parse_nlist (n - 1) p) h sl (get_valid_pos p h sl pos) /\ valid_content_pos (parse_nlist n p) h sl pos (contents p h sl pos :: contents (parse_nlist (n - 1) p) h sl pos1) (get_valid_pos (parse_nlist (n - 1) p) h sl pos1) ))) = valid_facts (parse_nlist n p) h sl pos; parse_nlist_eq n p (bytes_of_slice_from h sl pos); valid_facts p h sl pos; let pos1 = get_valid_pos p h sl pos in valid_facts (parse_nlist (n - 1) p) h sl pos1 #pop-options let valid_nlist_cons' (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( n > 0 /\ valid p h sl pos )) (ensures ( let pos1 = get_valid_pos p h sl pos in (valid (parse_nlist n p) h sl pos <==> valid (parse_nlist (n - 1) p) h sl pos1) /\ ((valid (parse_nlist n p) h sl pos /\ valid (parse_nlist (n - 1) p) h sl pos1) ==> get_valid_pos (parse_nlist n p) h sl pos == get_valid_pos (parse_nlist (n - 1) p) h sl pos1)
false
false
LowParse.Low.VCList.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val valid_nlist_cons' (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (n > 0 /\ valid p h sl pos)) (ensures (let pos1 = get_valid_pos p h sl pos in (valid (parse_nlist n p) h sl pos <==> valid (parse_nlist (n - 1) p) h sl pos1) /\ ((valid (parse_nlist n p) h sl pos /\ valid (parse_nlist (n - 1) p) h sl pos1) ==> get_valid_pos (parse_nlist n p) h sl pos == get_valid_pos (parse_nlist (n - 1) p) h sl pos1)))
[]
LowParse.Low.VCList.valid_nlist_cons'
{ "file_name": "src/lowparse/LowParse.Low.VCList.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
n: Prims.nat -> p: LowParse.Spec.Base.parser k t -> h: FStar.Monotonic.HyperStack.mem -> sl: LowParse.Slice.slice rrel rel -> pos: FStar.UInt32.t -> FStar.Pervasives.Lemma (requires n > 0 /\ LowParse.Low.Base.Spec.valid p h sl pos) (ensures (let pos1 = LowParse.Low.Base.Spec.get_valid_pos p h sl pos in (LowParse.Low.Base.Spec.valid (LowParse.Spec.VCList.parse_nlist n p) h sl pos <==> LowParse.Low.Base.Spec.valid (LowParse.Spec.VCList.parse_nlist (n - 1) p) h sl pos1) /\ (LowParse.Low.Base.Spec.valid (LowParse.Spec.VCList.parse_nlist n p) h sl pos /\ LowParse.Low.Base.Spec.valid (LowParse.Spec.VCList.parse_nlist (n - 1) p) h sl pos1 ==> LowParse.Low.Base.Spec.get_valid_pos (LowParse.Spec.VCList.parse_nlist n p) h sl pos == LowParse.Low.Base.Spec.get_valid_pos (LowParse.Spec.VCList.parse_nlist (n - 1) p) h sl pos1)))
{ "end_col": 63, "end_line": 129, "start_col": 2, "start_line": 128 }
FStar.Pervasives.Lemma
val valid_vclist_elim (min: nat) (max: nat{min <= max /\ max < 4294967296}) (#lk: parser_kind) (lp: parser lk U32.t {lk.parser_kind_subkind == Some ParserStrong}) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (input: slice rrel rel) (pos: U32.t) : Lemma (requires (valid (parse_vclist min max lp p) h input pos)) (ensures (valid lp h input pos /\ (let len = contents lp h input pos in let pos1 = get_valid_pos lp h input pos in let x = contents (parse_vclist min max lp p) h input pos in L.length x == U32.v len /\ valid_content_pos (parse_nlist (U32.v len) p) h input pos1 x (get_valid_pos (parse_vclist min max lp p) h input pos))))
[ { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Low.List", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.VCList", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let valid_vclist_elim (min: nat) (max: nat { min <= max /\ max < 4294967296 } ) (#lk: parser_kind) (lp: parser lk U32.t { lk.parser_kind_subkind == Some ParserStrong }) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (input: slice rrel rel) (pos: U32.t) : Lemma (requires (valid (parse_vclist min max lp p) h input pos)) (ensures ( valid lp h input pos /\ ( let len = contents lp h input pos in let pos1 = get_valid_pos lp h input pos in let x = contents (parse_vclist min max lp p) h input pos in L.length x == U32.v len /\ valid_content_pos (parse_nlist (U32.v len) p) h input pos1 x (get_valid_pos (parse_vclist min max lp p) h input pos) ))) = valid_facts (parse_vclist min max lp p) h input pos; parse_vclist_eq min max lp p (bytes_of_slice_from h input pos); valid_facts lp h input pos; let len = contents lp h input pos in let pos1 = get_valid_pos lp h input pos in valid_facts (parse_nlist (U32.v len) p) h input pos1
val valid_vclist_elim (min: nat) (max: nat{min <= max /\ max < 4294967296}) (#lk: parser_kind) (lp: parser lk U32.t {lk.parser_kind_subkind == Some ParserStrong}) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (input: slice rrel rel) (pos: U32.t) : Lemma (requires (valid (parse_vclist min max lp p) h input pos)) (ensures (valid lp h input pos /\ (let len = contents lp h input pos in let pos1 = get_valid_pos lp h input pos in let x = contents (parse_vclist min max lp p) h input pos in L.length x == U32.v len /\ valid_content_pos (parse_nlist (U32.v len) p) h input pos1 x (get_valid_pos (parse_vclist min max lp p) h input pos)))) let valid_vclist_elim (min: nat) (max: nat{min <= max /\ max < 4294967296}) (#lk: parser_kind) (lp: parser lk U32.t {lk.parser_kind_subkind == Some ParserStrong}) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (input: slice rrel rel) (pos: U32.t) : Lemma (requires (valid (parse_vclist min max lp p) h input pos)) (ensures (valid lp h input pos /\ (let len = contents lp h input pos in let pos1 = get_valid_pos lp h input pos in let x = contents (parse_vclist min max lp p) h input pos in L.length x == U32.v len /\ valid_content_pos (parse_nlist (U32.v len) p) h input pos1 x (get_valid_pos (parse_vclist min max lp p) h input pos)))) =
false
null
true
valid_facts (parse_vclist min max lp p) h input pos; parse_vclist_eq min max lp p (bytes_of_slice_from h input pos); valid_facts lp h input pos; let len = contents lp h input pos in let pos1 = get_valid_pos lp h input pos in valid_facts (parse_nlist (U32.v len) p) h input pos1
{ "checked_file": "LowParse.Low.VCList.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "LowParse.Spec.VCList.fsti.checked", "LowParse.Low.List.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked", "C.Loops.fst.checked" ], "interface_file": false, "source_file": "LowParse.Low.VCList.fst" }
[ "lemma" ]
[ "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "LowParse.Spec.Base.parser_kind", "LowParse.Spec.Base.parser", "FStar.UInt32.t", "Prims.eq2", "FStar.Pervasives.Native.option", "LowParse.Spec.Base.parser_subkind", "LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_subkind", "FStar.Pervasives.Native.Some", "LowParse.Spec.Base.ParserStrong", "FStar.Monotonic.HyperStack.mem", "LowParse.Slice.srel", "LowParse.Bytes.byte", "LowParse.Slice.slice", "LowParse.Low.Base.Spec.valid_facts", "LowParse.Spec.VCList.parse_nlist_kind", "FStar.UInt32.v", "LowParse.Spec.VCList.nlist", "LowParse.Spec.VCList.parse_nlist", "LowParse.Low.Base.Spec.get_valid_pos", "LowParse.Low.Base.Spec.contents", "Prims.unit", "LowParse.Spec.VCList.parse_vclist_eq", "LowParse.Slice.bytes_of_slice_from", "LowParse.Spec.VCList.parse_vclist_kind", "LowParse.Spec.Array.vlarray", "LowParse.Spec.VCList.parse_vclist", "LowParse.Low.Base.Spec.valid", "Prims.squash", "Prims.int", "Prims.l_or", "Prims.op_GreaterThanOrEqual", "FStar.UInt.size", "FStar.UInt32.n", "FStar.List.Tot.Base.length", "LowParse.Low.Base.Spec.valid_content_pos", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module LowParse.Low.VCList include LowParse.Spec.VCList include LowParse.Low.List module L = FStar.List.Tot module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module U32 = FStar.UInt32 module B = LowStar.Buffer module Cast = FStar.Int.Cast module U64 = FStar.UInt64 let valid_nlist_nil (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (live_slice h sl /\ U32.v pos <= U32.v sl.len)) (ensures (valid_content_pos (parse_nlist 0 p) h sl pos [] pos)) = valid_facts (parse_nlist 0 p) h sl pos; parse_nlist_eq 0 p (bytes_of_slice_from h sl pos) let valid_nlist_nil_recip (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (valid (parse_nlist 0 p) h sl pos)) (ensures (valid_content_pos (parse_nlist 0 p) h sl pos [] pos)) = valid_facts (parse_nlist 0 p) h sl pos; parse_nlist_eq 0 p (bytes_of_slice_from h sl pos) #push-options "--z3rlimit 16" let valid_nlist_cons (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( valid p h sl pos /\ valid (parse_nlist n p) h sl (get_valid_pos p h sl pos) )) (ensures ( valid p h sl pos /\ valid (parse_nlist n p) h sl (get_valid_pos p h sl pos) /\ ( let pos1 = get_valid_pos p h sl pos in valid_content_pos (parse_nlist (n + 1) p) h sl pos (contents p h sl pos :: contents (parse_nlist n p) h sl pos1) (get_valid_pos (parse_nlist n p) h sl pos1) ))) = let pos1 = get_valid_pos p h sl pos in valid_facts p h sl pos; valid_facts (parse_nlist n p) h sl pos1; valid_facts (parse_nlist (n + 1) p) h sl pos; parse_nlist_eq (n + 1) p (bytes_of_slice_from h sl pos) let valid_nlist_cons_recip (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( n > 0 /\ valid (parse_nlist n p) h sl pos )) (ensures ( valid p h sl pos /\ ( let pos1 = get_valid_pos p h sl pos in valid (parse_nlist (n - 1) p) h sl (get_valid_pos p h sl pos) /\ valid_content_pos (parse_nlist n p) h sl pos (contents p h sl pos :: contents (parse_nlist (n - 1) p) h sl pos1) (get_valid_pos (parse_nlist (n - 1) p) h sl pos1) ))) = valid_facts (parse_nlist n p) h sl pos; parse_nlist_eq n p (bytes_of_slice_from h sl pos); valid_facts p h sl pos; let pos1 = get_valid_pos p h sl pos in valid_facts (parse_nlist (n - 1) p) h sl pos1 #pop-options let valid_nlist_cons' (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( n > 0 /\ valid p h sl pos )) (ensures ( let pos1 = get_valid_pos p h sl pos in (valid (parse_nlist n p) h sl pos <==> valid (parse_nlist (n - 1) p) h sl pos1) /\ ((valid (parse_nlist n p) h sl pos /\ valid (parse_nlist (n - 1) p) h sl pos1) ==> get_valid_pos (parse_nlist n p) h sl pos == get_valid_pos (parse_nlist (n - 1) p) h sl pos1) )) = Classical.move_requires (valid_nlist_cons (n - 1) p h sl) pos; Classical.move_requires (valid_nlist_cons_recip n p h sl) pos let valid_nlist_cons_not (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( n > 0 /\ (~ (valid p h sl pos)) )) (ensures ( ~ (valid (parse_nlist n p) h sl pos) )) = Classical.move_requires (valid_nlist_cons (n - 1) p h sl) pos; Classical.move_requires (valid_nlist_cons_recip n p h sl) pos #push-options "--z3rlimit 32" inline_for_extraction let validate_nlist (n: U32.t) (#k: parser_kind) (#t: Type) (#p: parser k t) (v: validator p) : Tot (validator (parse_nlist (U32.v n) p)) = fun #rrel #rel input pos -> let h0 = HST.get () in HST.push_frame (); let bpos1 : B.buffer U64.t = B.alloca pos 1ul in let br = B.alloca n 1ul in let h1 = HST.get () in C.Loops.do_while (fun h stop -> B.modifies (B.loc_buffer bpos1 `B.loc_union` B.loc_buffer br) h1 h /\ ( let pos1 = B.get h bpos1 0 in let r = B.get h br 0 in U32.v r <= U32.v n /\ U64.v pos <= U64.v pos1 /\ ( if is_success pos1 then let pos1 = uint64_to_uint32 pos1 in U32.v pos1 <= U32.v input.len /\ (valid (parse_nlist (U32.v n) p) h0 input (uint64_to_uint32 pos) <==> valid (parse_nlist (U32.v r) p) h0 input pos1) /\ ((valid (parse_nlist (U32.v n) p) h0 input (uint64_to_uint32 pos) /\ valid (parse_nlist (U32.v r) p) h0 input pos1) ==> get_valid_pos (parse_nlist (U32.v n) p) h0 input (uint64_to_uint32 pos) == get_valid_pos (parse_nlist (U32.v r) p) h0 input pos1) /\ (stop == true ==> r == 0ul) else (stop == true /\ (~ (valid (parse_nlist (U32.v n) p) h0 input (uint64_to_uint32 pos)))) ))) (fun _ -> let r = B.index br 0ul in if r = 0ul then true else let pos1 = B.index bpos1 0ul in let pos2 = v input pos1 in let _ = B.upd br 0ul (r `U32.sub` 1ul) in let _ = B.upd bpos1 0ul pos2 in [@inline_let] let stop = is_error pos2 in [@inline_let] let _ = if stop then valid_nlist_cons_not (U32.v r) p h0 input (uint64_to_uint32 pos1) else valid_nlist_cons' (U32.v r) p h0 input (uint64_to_uint32 pos1) in stop ) ; let res = B.index bpos1 0ul in [@inline_let] let _ = if is_success res then valid_nlist_nil p h0 input (uint64_to_uint32 res) in HST.pop_frame (); res inline_for_extraction let jump_nlist (n: U32.t) (#k: parser_kind) (#t: Type) (#p: parser k t) (v: jumper p) : Tot (jumper (parse_nlist (U32.v n) p)) = fun #rrel #rel input pos -> let h0 = HST.get () in HST.push_frame (); let bpos1 = B.alloca pos 1ul in let br = B.alloca n 1ul in let h1 = HST.get () in C.Loops.do_while (fun h stop -> B.modifies (B.loc_buffer bpos1 `B.loc_union` B.loc_buffer br) h1 h /\ ( let pos1 = B.get h bpos1 0 in let r = B.get h br 0 in U32.v r <= U32.v n /\ U32.v pos <= U32.v pos1 /\ U32.v pos1 <= U32.v input.len /\ valid (parse_nlist (U32.v n) p) h0 input pos /\ valid (parse_nlist (U32.v r) p) h0 input pos1 /\ get_valid_pos (parse_nlist (U32.v n) p) h0 input pos == get_valid_pos (parse_nlist (U32.v r) p) h0 input pos1 /\ (stop == true ==> r == 0ul) )) (fun _ -> let r = B.index br 0ul in if r = 0ul then true else let pos1 = B.index bpos1 0ul in [@inline_let] let _ = valid_nlist_cons_recip (U32.v r) p h0 input pos1 in let pos2 = v input pos1 in let _ = B.upd br 0ul (r `U32.sub` 1ul) in let _ = B.upd bpos1 0ul pos2 in false ) ; let res = B.index bpos1 0ul in [@inline_let] let _ = valid_nlist_nil p h0 input res in HST.pop_frame (); res #pop-options let rec valid_nlist_valid_list (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( k.parser_kind_low > 0 /\ k.parser_kind_subkind == Some ParserStrong /\ valid (parse_nlist n p) h sl pos )) (ensures ( let pos' = get_valid_pos (parse_nlist n p) h sl pos in valid_list p h sl pos pos' /\ contents_list p h sl pos pos' == contents (parse_nlist n p) h sl pos )) = if n = 0 then begin valid_nlist_nil_recip p h sl pos; valid_list_nil p h sl pos end else begin valid_nlist_cons_recip n p h sl pos; let pos1 = get_valid_pos p h sl pos in let pos' = get_valid_pos (parse_nlist n p) h sl pos in valid_nlist_valid_list (n - 1) p h sl pos1; valid_list_cons p h sl pos pos' end let rec valid_list_valid_nlist (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) (pos' : U32.t) : Lemma (requires ( valid_list p h sl pos pos' )) (ensures ( let x = contents_list p h sl pos pos' in valid_content_pos (parse_nlist (L.length x) p) h sl pos x pos' )) (decreases (U32.v pos' - U32.v pos)) = if pos = pos' then begin valid_list_nil p h sl pos; valid_nlist_nil p h sl pos end else begin valid_list_cons_recip p h sl pos pos' ; let pos1 = get_valid_pos p h sl pos in valid_list_valid_nlist p h sl pos1 pos' ; valid_nlist_cons (L.length (contents_list p h sl pos1 pos')) p h sl pos end (* vclist *) #push-options "--z3rlimit 16" inline_for_extraction let validate_vclist (min: U32.t) (max: U32.t { U32.v min <= U32.v max } ) (#lk: parser_kind) (#lp: parser lk U32.t) (lv: validator lp) (lr: leaf_reader lp) (#k: parser_kind) (#t: Type) (#p: parser k t) (v: validator p) : Tot (validator (parse_vclist (U32.v min) (U32.v max) lp p)) = fun #rrel #rel input pos -> let h = HST.get () in [@inline_let] let _ = valid_facts (parse_vclist (U32.v min) (U32.v max) lp p) h input (uint64_to_uint32 pos); parse_vclist_eq (U32.v min) (U32.v max) lp p (bytes_of_slice_from h input (uint64_to_uint32 pos)); valid_facts lp h input (uint64_to_uint32 pos) in let pos1 = lv input pos in if is_error pos1 then pos1 // error else let n = lr input (uint64_to_uint32 pos) in if n `U32.lt` min || max `U32.lt` n then validator_error_generic else [@inline_let] let _ = valid_facts (parse_nlist (U32.v n) p) h input (uint64_to_uint32 pos1) in validate_nlist n v input pos1 inline_for_extraction let jump_vclist (min: nat) (max: nat { min <= max } ) (#lk: parser_kind) (#lp: parser lk U32.t) (lv: jumper lp) (lr: leaf_reader lp) (#k: parser_kind) (#t: Type) (#p: parser k t) (v: jumper p) : Tot (jumper (parse_vclist min max lp p)) = fun #rrel #rel input pos -> let h = HST.get () in [@inline_let] let _ = valid_facts (parse_vclist min max lp p) h input pos; parse_vclist_eq min max lp p (bytes_of_slice_from h input pos); valid_facts lp h input pos in let pos1 = lv input pos in let n = lr input pos in [@inline_let] let _ = valid_facts (parse_nlist (U32.v n) p) h input pos1 in jump_nlist n v input pos1 #pop-options let valid_vclist_elim (min: nat) (max: nat { min <= max /\ max < 4294967296 } ) (#lk: parser_kind) (lp: parser lk U32.t { lk.parser_kind_subkind == Some ParserStrong }) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (input: slice rrel rel) (pos: U32.t) : Lemma (requires (valid (parse_vclist min max lp p) h input pos)) (ensures ( valid lp h input pos /\ ( let len = contents lp h input pos in let pos1 = get_valid_pos lp h input pos in let x = contents (parse_vclist min max lp p) h input pos in L.length x == U32.v len /\ valid_content_pos (parse_nlist (U32.v len) p) h input pos1 x (get_valid_pos (parse_vclist min max lp p) h input pos)
false
false
LowParse.Low.VCList.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val valid_vclist_elim (min: nat) (max: nat{min <= max /\ max < 4294967296}) (#lk: parser_kind) (lp: parser lk U32.t {lk.parser_kind_subkind == Some ParserStrong}) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (input: slice rrel rel) (pos: U32.t) : Lemma (requires (valid (parse_vclist min max lp p) h input pos)) (ensures (valid lp h input pos /\ (let len = contents lp h input pos in let pos1 = get_valid_pos lp h input pos in let x = contents (parse_vclist min max lp p) h input pos in L.length x == U32.v len /\ valid_content_pos (parse_nlist (U32.v len) p) h input pos1 x (get_valid_pos (parse_vclist min max lp p) h input pos))))
[]
LowParse.Low.VCList.valid_vclist_elim
{ "file_name": "src/lowparse/LowParse.Low.VCList.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
min: Prims.nat -> max: Prims.nat{min <= max /\ max < 4294967296} -> lp: LowParse.Spec.Base.parser lk FStar.UInt32.t { Mkparser_kind'?.parser_kind_subkind lk == FStar.Pervasives.Native.Some LowParse.Spec.Base.ParserStrong } -> p: LowParse.Spec.Base.parser k t -> h: FStar.Monotonic.HyperStack.mem -> input: LowParse.Slice.slice rrel rel -> pos: FStar.UInt32.t -> FStar.Pervasives.Lemma (requires LowParse.Low.Base.Spec.valid (LowParse.Spec.VCList.parse_vclist min max lp p) h input pos) (ensures LowParse.Low.Base.Spec.valid lp h input pos /\ (let len = LowParse.Low.Base.Spec.contents lp h input pos in let pos1 = LowParse.Low.Base.Spec.get_valid_pos lp h input pos in let x = LowParse.Low.Base.Spec.contents (LowParse.Spec.VCList.parse_vclist min max lp p) h input pos in FStar.List.Tot.Base.length x == FStar.UInt32.v len /\ LowParse.Low.Base.Spec.valid_content_pos (LowParse.Spec.VCList.parse_nlist (FStar.UInt32.v len) p) h input pos1 x (LowParse.Low.Base.Spec.get_valid_pos (LowParse.Spec.VCList.parse_vclist min max lp p) h input pos)))
{ "end_col": 54, "end_line": 415, "start_col": 2, "start_line": 410 }
Prims.Tot
val jump_vclist (min: nat) (max: nat{min <= max}) (#lk: parser_kind) (#lp: parser lk U32.t) (lv: jumper lp) (lr: leaf_reader lp) (#k: parser_kind) (#t: Type) (#p: parser k t) (v: jumper p) : Tot (jumper (parse_vclist min max lp p))
[ { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Low.List", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.VCList", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let jump_vclist (min: nat) (max: nat { min <= max } ) (#lk: parser_kind) (#lp: parser lk U32.t) (lv: jumper lp) (lr: leaf_reader lp) (#k: parser_kind) (#t: Type) (#p: parser k t) (v: jumper p) : Tot (jumper (parse_vclist min max lp p)) = fun #rrel #rel input pos -> let h = HST.get () in [@inline_let] let _ = valid_facts (parse_vclist min max lp p) h input pos; parse_vclist_eq min max lp p (bytes_of_slice_from h input pos); valid_facts lp h input pos in let pos1 = lv input pos in let n = lr input pos in [@inline_let] let _ = valid_facts (parse_nlist (U32.v n) p) h input pos1 in jump_nlist n v input pos1
val jump_vclist (min: nat) (max: nat{min <= max}) (#lk: parser_kind) (#lp: parser lk U32.t) (lv: jumper lp) (lr: leaf_reader lp) (#k: parser_kind) (#t: Type) (#p: parser k t) (v: jumper p) : Tot (jumper (parse_vclist min max lp p)) let jump_vclist (min: nat) (max: nat{min <= max}) (#lk: parser_kind) (#lp: parser lk U32.t) (lv: jumper lp) (lr: leaf_reader lp) (#k: parser_kind) (#t: Type) (#p: parser k t) (v: jumper p) : Tot (jumper (parse_vclist min max lp p)) =
false
null
false
fun #rrel #rel input pos -> let h = HST.get () in [@@ inline_let ]let _ = valid_facts (parse_vclist min max lp p) h input pos; parse_vclist_eq min max lp p (bytes_of_slice_from h input pos); valid_facts lp h input pos in let pos1 = lv input pos in let n = lr input pos in [@@ inline_let ]let _ = valid_facts (parse_nlist (U32.v n) p) h input pos1 in jump_nlist n v input pos1
{ "checked_file": "LowParse.Low.VCList.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "LowParse.Spec.VCList.fsti.checked", "LowParse.Low.List.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked", "C.Loops.fst.checked" ], "interface_file": false, "source_file": "LowParse.Low.VCList.fst" }
[ "total" ]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "LowParse.Spec.Base.parser_kind", "LowParse.Spec.Base.parser", "FStar.UInt32.t", "LowParse.Low.Base.jumper", "LowParse.Low.Base.leaf_reader", "LowParse.Slice.srel", "LowParse.Bytes.byte", "LowParse.Slice.slice", "LowParse.Low.VCList.jump_nlist", "Prims.unit", "LowParse.Low.Base.Spec.valid_facts", "LowParse.Spec.VCList.parse_nlist_kind", "FStar.UInt32.v", "LowParse.Spec.VCList.nlist", "LowParse.Spec.VCList.parse_nlist", "LowParse.Spec.VCList.parse_vclist_eq", "LowParse.Slice.bytes_of_slice_from", "LowParse.Spec.VCList.parse_vclist_kind", "LowParse.Spec.Array.vlarray", "LowParse.Spec.VCList.parse_vclist", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get" ]
[]
module LowParse.Low.VCList include LowParse.Spec.VCList include LowParse.Low.List module L = FStar.List.Tot module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module U32 = FStar.UInt32 module B = LowStar.Buffer module Cast = FStar.Int.Cast module U64 = FStar.UInt64 let valid_nlist_nil (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (live_slice h sl /\ U32.v pos <= U32.v sl.len)) (ensures (valid_content_pos (parse_nlist 0 p) h sl pos [] pos)) = valid_facts (parse_nlist 0 p) h sl pos; parse_nlist_eq 0 p (bytes_of_slice_from h sl pos) let valid_nlist_nil_recip (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (valid (parse_nlist 0 p) h sl pos)) (ensures (valid_content_pos (parse_nlist 0 p) h sl pos [] pos)) = valid_facts (parse_nlist 0 p) h sl pos; parse_nlist_eq 0 p (bytes_of_slice_from h sl pos) #push-options "--z3rlimit 16" let valid_nlist_cons (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( valid p h sl pos /\ valid (parse_nlist n p) h sl (get_valid_pos p h sl pos) )) (ensures ( valid p h sl pos /\ valid (parse_nlist n p) h sl (get_valid_pos p h sl pos) /\ ( let pos1 = get_valid_pos p h sl pos in valid_content_pos (parse_nlist (n + 1) p) h sl pos (contents p h sl pos :: contents (parse_nlist n p) h sl pos1) (get_valid_pos (parse_nlist n p) h sl pos1) ))) = let pos1 = get_valid_pos p h sl pos in valid_facts p h sl pos; valid_facts (parse_nlist n p) h sl pos1; valid_facts (parse_nlist (n + 1) p) h sl pos; parse_nlist_eq (n + 1) p (bytes_of_slice_from h sl pos) let valid_nlist_cons_recip (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( n > 0 /\ valid (parse_nlist n p) h sl pos )) (ensures ( valid p h sl pos /\ ( let pos1 = get_valid_pos p h sl pos in valid (parse_nlist (n - 1) p) h sl (get_valid_pos p h sl pos) /\ valid_content_pos (parse_nlist n p) h sl pos (contents p h sl pos :: contents (parse_nlist (n - 1) p) h sl pos1) (get_valid_pos (parse_nlist (n - 1) p) h sl pos1) ))) = valid_facts (parse_nlist n p) h sl pos; parse_nlist_eq n p (bytes_of_slice_from h sl pos); valid_facts p h sl pos; let pos1 = get_valid_pos p h sl pos in valid_facts (parse_nlist (n - 1) p) h sl pos1 #pop-options let valid_nlist_cons' (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( n > 0 /\ valid p h sl pos )) (ensures ( let pos1 = get_valid_pos p h sl pos in (valid (parse_nlist n p) h sl pos <==> valid (parse_nlist (n - 1) p) h sl pos1) /\ ((valid (parse_nlist n p) h sl pos /\ valid (parse_nlist (n - 1) p) h sl pos1) ==> get_valid_pos (parse_nlist n p) h sl pos == get_valid_pos (parse_nlist (n - 1) p) h sl pos1) )) = Classical.move_requires (valid_nlist_cons (n - 1) p h sl) pos; Classical.move_requires (valid_nlist_cons_recip n p h sl) pos let valid_nlist_cons_not (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( n > 0 /\ (~ (valid p h sl pos)) )) (ensures ( ~ (valid (parse_nlist n p) h sl pos) )) = Classical.move_requires (valid_nlist_cons (n - 1) p h sl) pos; Classical.move_requires (valid_nlist_cons_recip n p h sl) pos #push-options "--z3rlimit 32" inline_for_extraction let validate_nlist (n: U32.t) (#k: parser_kind) (#t: Type) (#p: parser k t) (v: validator p) : Tot (validator (parse_nlist (U32.v n) p)) = fun #rrel #rel input pos -> let h0 = HST.get () in HST.push_frame (); let bpos1 : B.buffer U64.t = B.alloca pos 1ul in let br = B.alloca n 1ul in let h1 = HST.get () in C.Loops.do_while (fun h stop -> B.modifies (B.loc_buffer bpos1 `B.loc_union` B.loc_buffer br) h1 h /\ ( let pos1 = B.get h bpos1 0 in let r = B.get h br 0 in U32.v r <= U32.v n /\ U64.v pos <= U64.v pos1 /\ ( if is_success pos1 then let pos1 = uint64_to_uint32 pos1 in U32.v pos1 <= U32.v input.len /\ (valid (parse_nlist (U32.v n) p) h0 input (uint64_to_uint32 pos) <==> valid (parse_nlist (U32.v r) p) h0 input pos1) /\ ((valid (parse_nlist (U32.v n) p) h0 input (uint64_to_uint32 pos) /\ valid (parse_nlist (U32.v r) p) h0 input pos1) ==> get_valid_pos (parse_nlist (U32.v n) p) h0 input (uint64_to_uint32 pos) == get_valid_pos (parse_nlist (U32.v r) p) h0 input pos1) /\ (stop == true ==> r == 0ul) else (stop == true /\ (~ (valid (parse_nlist (U32.v n) p) h0 input (uint64_to_uint32 pos)))) ))) (fun _ -> let r = B.index br 0ul in if r = 0ul then true else let pos1 = B.index bpos1 0ul in let pos2 = v input pos1 in let _ = B.upd br 0ul (r `U32.sub` 1ul) in let _ = B.upd bpos1 0ul pos2 in [@inline_let] let stop = is_error pos2 in [@inline_let] let _ = if stop then valid_nlist_cons_not (U32.v r) p h0 input (uint64_to_uint32 pos1) else valid_nlist_cons' (U32.v r) p h0 input (uint64_to_uint32 pos1) in stop ) ; let res = B.index bpos1 0ul in [@inline_let] let _ = if is_success res then valid_nlist_nil p h0 input (uint64_to_uint32 res) in HST.pop_frame (); res inline_for_extraction let jump_nlist (n: U32.t) (#k: parser_kind) (#t: Type) (#p: parser k t) (v: jumper p) : Tot (jumper (parse_nlist (U32.v n) p)) = fun #rrel #rel input pos -> let h0 = HST.get () in HST.push_frame (); let bpos1 = B.alloca pos 1ul in let br = B.alloca n 1ul in let h1 = HST.get () in C.Loops.do_while (fun h stop -> B.modifies (B.loc_buffer bpos1 `B.loc_union` B.loc_buffer br) h1 h /\ ( let pos1 = B.get h bpos1 0 in let r = B.get h br 0 in U32.v r <= U32.v n /\ U32.v pos <= U32.v pos1 /\ U32.v pos1 <= U32.v input.len /\ valid (parse_nlist (U32.v n) p) h0 input pos /\ valid (parse_nlist (U32.v r) p) h0 input pos1 /\ get_valid_pos (parse_nlist (U32.v n) p) h0 input pos == get_valid_pos (parse_nlist (U32.v r) p) h0 input pos1 /\ (stop == true ==> r == 0ul) )) (fun _ -> let r = B.index br 0ul in if r = 0ul then true else let pos1 = B.index bpos1 0ul in [@inline_let] let _ = valid_nlist_cons_recip (U32.v r) p h0 input pos1 in let pos2 = v input pos1 in let _ = B.upd br 0ul (r `U32.sub` 1ul) in let _ = B.upd bpos1 0ul pos2 in false ) ; let res = B.index bpos1 0ul in [@inline_let] let _ = valid_nlist_nil p h0 input res in HST.pop_frame (); res #pop-options let rec valid_nlist_valid_list (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( k.parser_kind_low > 0 /\ k.parser_kind_subkind == Some ParserStrong /\ valid (parse_nlist n p) h sl pos )) (ensures ( let pos' = get_valid_pos (parse_nlist n p) h sl pos in valid_list p h sl pos pos' /\ contents_list p h sl pos pos' == contents (parse_nlist n p) h sl pos )) = if n = 0 then begin valid_nlist_nil_recip p h sl pos; valid_list_nil p h sl pos end else begin valid_nlist_cons_recip n p h sl pos; let pos1 = get_valid_pos p h sl pos in let pos' = get_valid_pos (parse_nlist n p) h sl pos in valid_nlist_valid_list (n - 1) p h sl pos1; valid_list_cons p h sl pos pos' end let rec valid_list_valid_nlist (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) (pos' : U32.t) : Lemma (requires ( valid_list p h sl pos pos' )) (ensures ( let x = contents_list p h sl pos pos' in valid_content_pos (parse_nlist (L.length x) p) h sl pos x pos' )) (decreases (U32.v pos' - U32.v pos)) = if pos = pos' then begin valid_list_nil p h sl pos; valid_nlist_nil p h sl pos end else begin valid_list_cons_recip p h sl pos pos' ; let pos1 = get_valid_pos p h sl pos in valid_list_valid_nlist p h sl pos1 pos' ; valid_nlist_cons (L.length (contents_list p h sl pos1 pos')) p h sl pos end (* vclist *) #push-options "--z3rlimit 16" inline_for_extraction let validate_vclist (min: U32.t) (max: U32.t { U32.v min <= U32.v max } ) (#lk: parser_kind) (#lp: parser lk U32.t) (lv: validator lp) (lr: leaf_reader lp) (#k: parser_kind) (#t: Type) (#p: parser k t) (v: validator p) : Tot (validator (parse_vclist (U32.v min) (U32.v max) lp p)) = fun #rrel #rel input pos -> let h = HST.get () in [@inline_let] let _ = valid_facts (parse_vclist (U32.v min) (U32.v max) lp p) h input (uint64_to_uint32 pos); parse_vclist_eq (U32.v min) (U32.v max) lp p (bytes_of_slice_from h input (uint64_to_uint32 pos)); valid_facts lp h input (uint64_to_uint32 pos) in let pos1 = lv input pos in if is_error pos1 then pos1 // error else let n = lr input (uint64_to_uint32 pos) in if n `U32.lt` min || max `U32.lt` n then validator_error_generic else [@inline_let] let _ = valid_facts (parse_nlist (U32.v n) p) h input (uint64_to_uint32 pos1) in validate_nlist n v input pos1 inline_for_extraction let jump_vclist (min: nat) (max: nat { min <= max } ) (#lk: parser_kind) (#lp: parser lk U32.t) (lv: jumper lp) (lr: leaf_reader lp) (#k: parser_kind) (#t: Type) (#p: parser k t) (v: jumper p)
false
false
LowParse.Low.VCList.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val jump_vclist (min: nat) (max: nat{min <= max}) (#lk: parser_kind) (#lp: parser lk U32.t) (lv: jumper lp) (lr: leaf_reader lp) (#k: parser_kind) (#t: Type) (#p: parser k t) (v: jumper p) : Tot (jumper (parse_vclist min max lp p))
[]
LowParse.Low.VCList.jump_vclist
{ "file_name": "src/lowparse/LowParse.Low.VCList.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
min: Prims.nat -> max: Prims.nat{min <= max} -> lv: LowParse.Low.Base.jumper lp -> lr: LowParse.Low.Base.leaf_reader lp -> v: LowParse.Low.Base.jumper p -> LowParse.Low.Base.jumper (LowParse.Spec.VCList.parse_vclist min max lp p)
{ "end_col": 27, "end_line": 384, "start_col": 2, "start_line": 373 }
FStar.Pervasives.Lemma
val valid_vclist_intro (min: nat) (max: nat{min <= max /\ max < 4294967296}) (#lk: parser_kind) (lp: parser lk U32.t {lk.parser_kind_subkind == Some ParserStrong}) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (input: slice rrel rel) (pos: U32.t) : Lemma (requires (valid lp h input pos /\ (let pos1 = get_valid_pos lp h input pos in let len = contents lp h input pos in min <= U32.v len /\ U32.v len <= max /\ valid (parse_nlist (U32.v len) p) h input pos1)) ) (ensures (let pos1 = get_valid_pos lp h input pos in let len = contents lp h input pos in valid_content_pos (parse_vclist min max lp p) h input pos (contents (parse_nlist (U32.v len) p) h input pos1) (get_valid_pos (parse_nlist (U32.v len) p) h input pos1)))
[ { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Low.List", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.VCList", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let valid_vclist_intro (min: nat) (max: nat { min <= max /\ max < 4294967296 } ) (#lk: parser_kind) (lp: parser lk U32.t { lk.parser_kind_subkind == Some ParserStrong }) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (input: slice rrel rel) (pos: U32.t) : Lemma (requires ( valid lp h input pos /\ ( let pos1 = get_valid_pos lp h input pos in let len = contents lp h input pos in min <= U32.v len /\ U32.v len <= max /\ valid (parse_nlist (U32.v len) p) h input pos1 ))) (ensures ( let pos1 = get_valid_pos lp h input pos in let len = contents lp h input pos in valid_content_pos (parse_vclist min max lp p) h input pos (contents (parse_nlist (U32.v len) p) h input pos1) (get_valid_pos (parse_nlist (U32.v len) p) h input pos1) )) = valid_facts (parse_vclist min max lp p) h input pos; parse_vclist_eq min max lp p (bytes_of_slice_from h input pos); valid_facts lp h input pos; let len = contents lp h input pos in let pos1 = get_valid_pos lp h input pos in valid_facts (parse_nlist (U32.v len) p) h input pos1
val valid_vclist_intro (min: nat) (max: nat{min <= max /\ max < 4294967296}) (#lk: parser_kind) (lp: parser lk U32.t {lk.parser_kind_subkind == Some ParserStrong}) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (input: slice rrel rel) (pos: U32.t) : Lemma (requires (valid lp h input pos /\ (let pos1 = get_valid_pos lp h input pos in let len = contents lp h input pos in min <= U32.v len /\ U32.v len <= max /\ valid (parse_nlist (U32.v len) p) h input pos1)) ) (ensures (let pos1 = get_valid_pos lp h input pos in let len = contents lp h input pos in valid_content_pos (parse_vclist min max lp p) h input pos (contents (parse_nlist (U32.v len) p) h input pos1) (get_valid_pos (parse_nlist (U32.v len) p) h input pos1))) let valid_vclist_intro (min: nat) (max: nat{min <= max /\ max < 4294967296}) (#lk: parser_kind) (lp: parser lk U32.t {lk.parser_kind_subkind == Some ParserStrong}) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (input: slice rrel rel) (pos: U32.t) : Lemma (requires (valid lp h input pos /\ (let pos1 = get_valid_pos lp h input pos in let len = contents lp h input pos in min <= U32.v len /\ U32.v len <= max /\ valid (parse_nlist (U32.v len) p) h input pos1)) ) (ensures (let pos1 = get_valid_pos lp h input pos in let len = contents lp h input pos in valid_content_pos (parse_vclist min max lp p) h input pos (contents (parse_nlist (U32.v len) p) h input pos1) (get_valid_pos (parse_nlist (U32.v len) p) h input pos1))) =
false
null
true
valid_facts (parse_vclist min max lp p) h input pos; parse_vclist_eq min max lp p (bytes_of_slice_from h input pos); valid_facts lp h input pos; let len = contents lp h input pos in let pos1 = get_valid_pos lp h input pos in valid_facts (parse_nlist (U32.v len) p) h input pos1
{ "checked_file": "LowParse.Low.VCList.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "LowParse.Spec.VCList.fsti.checked", "LowParse.Low.List.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked", "C.Loops.fst.checked" ], "interface_file": false, "source_file": "LowParse.Low.VCList.fst" }
[ "lemma" ]
[ "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "LowParse.Spec.Base.parser_kind", "LowParse.Spec.Base.parser", "FStar.UInt32.t", "Prims.eq2", "FStar.Pervasives.Native.option", "LowParse.Spec.Base.parser_subkind", "LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_subkind", "FStar.Pervasives.Native.Some", "LowParse.Spec.Base.ParserStrong", "FStar.Monotonic.HyperStack.mem", "LowParse.Slice.srel", "LowParse.Bytes.byte", "LowParse.Slice.slice", "LowParse.Low.Base.Spec.valid_facts", "LowParse.Spec.VCList.parse_nlist_kind", "FStar.UInt32.v", "LowParse.Spec.VCList.nlist", "LowParse.Spec.VCList.parse_nlist", "LowParse.Low.Base.Spec.get_valid_pos", "LowParse.Low.Base.Spec.contents", "Prims.unit", "LowParse.Spec.VCList.parse_vclist_eq", "LowParse.Slice.bytes_of_slice_from", "LowParse.Spec.VCList.parse_vclist_kind", "LowParse.Spec.Array.vlarray", "LowParse.Spec.VCList.parse_vclist", "LowParse.Low.Base.Spec.valid", "Prims.squash", "LowParse.Low.Base.Spec.valid_content_pos", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module LowParse.Low.VCList include LowParse.Spec.VCList include LowParse.Low.List module L = FStar.List.Tot module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module U32 = FStar.UInt32 module B = LowStar.Buffer module Cast = FStar.Int.Cast module U64 = FStar.UInt64 let valid_nlist_nil (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (live_slice h sl /\ U32.v pos <= U32.v sl.len)) (ensures (valid_content_pos (parse_nlist 0 p) h sl pos [] pos)) = valid_facts (parse_nlist 0 p) h sl pos; parse_nlist_eq 0 p (bytes_of_slice_from h sl pos) let valid_nlist_nil_recip (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (valid (parse_nlist 0 p) h sl pos)) (ensures (valid_content_pos (parse_nlist 0 p) h sl pos [] pos)) = valid_facts (parse_nlist 0 p) h sl pos; parse_nlist_eq 0 p (bytes_of_slice_from h sl pos) #push-options "--z3rlimit 16" let valid_nlist_cons (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( valid p h sl pos /\ valid (parse_nlist n p) h sl (get_valid_pos p h sl pos) )) (ensures ( valid p h sl pos /\ valid (parse_nlist n p) h sl (get_valid_pos p h sl pos) /\ ( let pos1 = get_valid_pos p h sl pos in valid_content_pos (parse_nlist (n + 1) p) h sl pos (contents p h sl pos :: contents (parse_nlist n p) h sl pos1) (get_valid_pos (parse_nlist n p) h sl pos1) ))) = let pos1 = get_valid_pos p h sl pos in valid_facts p h sl pos; valid_facts (parse_nlist n p) h sl pos1; valid_facts (parse_nlist (n + 1) p) h sl pos; parse_nlist_eq (n + 1) p (bytes_of_slice_from h sl pos) let valid_nlist_cons_recip (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( n > 0 /\ valid (parse_nlist n p) h sl pos )) (ensures ( valid p h sl pos /\ ( let pos1 = get_valid_pos p h sl pos in valid (parse_nlist (n - 1) p) h sl (get_valid_pos p h sl pos) /\ valid_content_pos (parse_nlist n p) h sl pos (contents p h sl pos :: contents (parse_nlist (n - 1) p) h sl pos1) (get_valid_pos (parse_nlist (n - 1) p) h sl pos1) ))) = valid_facts (parse_nlist n p) h sl pos; parse_nlist_eq n p (bytes_of_slice_from h sl pos); valid_facts p h sl pos; let pos1 = get_valid_pos p h sl pos in valid_facts (parse_nlist (n - 1) p) h sl pos1 #pop-options let valid_nlist_cons' (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( n > 0 /\ valid p h sl pos )) (ensures ( let pos1 = get_valid_pos p h sl pos in (valid (parse_nlist n p) h sl pos <==> valid (parse_nlist (n - 1) p) h sl pos1) /\ ((valid (parse_nlist n p) h sl pos /\ valid (parse_nlist (n - 1) p) h sl pos1) ==> get_valid_pos (parse_nlist n p) h sl pos == get_valid_pos (parse_nlist (n - 1) p) h sl pos1) )) = Classical.move_requires (valid_nlist_cons (n - 1) p h sl) pos; Classical.move_requires (valid_nlist_cons_recip n p h sl) pos let valid_nlist_cons_not (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( n > 0 /\ (~ (valid p h sl pos)) )) (ensures ( ~ (valid (parse_nlist n p) h sl pos) )) = Classical.move_requires (valid_nlist_cons (n - 1) p h sl) pos; Classical.move_requires (valid_nlist_cons_recip n p h sl) pos #push-options "--z3rlimit 32" inline_for_extraction let validate_nlist (n: U32.t) (#k: parser_kind) (#t: Type) (#p: parser k t) (v: validator p) : Tot (validator (parse_nlist (U32.v n) p)) = fun #rrel #rel input pos -> let h0 = HST.get () in HST.push_frame (); let bpos1 : B.buffer U64.t = B.alloca pos 1ul in let br = B.alloca n 1ul in let h1 = HST.get () in C.Loops.do_while (fun h stop -> B.modifies (B.loc_buffer bpos1 `B.loc_union` B.loc_buffer br) h1 h /\ ( let pos1 = B.get h bpos1 0 in let r = B.get h br 0 in U32.v r <= U32.v n /\ U64.v pos <= U64.v pos1 /\ ( if is_success pos1 then let pos1 = uint64_to_uint32 pos1 in U32.v pos1 <= U32.v input.len /\ (valid (parse_nlist (U32.v n) p) h0 input (uint64_to_uint32 pos) <==> valid (parse_nlist (U32.v r) p) h0 input pos1) /\ ((valid (parse_nlist (U32.v n) p) h0 input (uint64_to_uint32 pos) /\ valid (parse_nlist (U32.v r) p) h0 input pos1) ==> get_valid_pos (parse_nlist (U32.v n) p) h0 input (uint64_to_uint32 pos) == get_valid_pos (parse_nlist (U32.v r) p) h0 input pos1) /\ (stop == true ==> r == 0ul) else (stop == true /\ (~ (valid (parse_nlist (U32.v n) p) h0 input (uint64_to_uint32 pos)))) ))) (fun _ -> let r = B.index br 0ul in if r = 0ul then true else let pos1 = B.index bpos1 0ul in let pos2 = v input pos1 in let _ = B.upd br 0ul (r `U32.sub` 1ul) in let _ = B.upd bpos1 0ul pos2 in [@inline_let] let stop = is_error pos2 in [@inline_let] let _ = if stop then valid_nlist_cons_not (U32.v r) p h0 input (uint64_to_uint32 pos1) else valid_nlist_cons' (U32.v r) p h0 input (uint64_to_uint32 pos1) in stop ) ; let res = B.index bpos1 0ul in [@inline_let] let _ = if is_success res then valid_nlist_nil p h0 input (uint64_to_uint32 res) in HST.pop_frame (); res inline_for_extraction let jump_nlist (n: U32.t) (#k: parser_kind) (#t: Type) (#p: parser k t) (v: jumper p) : Tot (jumper (parse_nlist (U32.v n) p)) = fun #rrel #rel input pos -> let h0 = HST.get () in HST.push_frame (); let bpos1 = B.alloca pos 1ul in let br = B.alloca n 1ul in let h1 = HST.get () in C.Loops.do_while (fun h stop -> B.modifies (B.loc_buffer bpos1 `B.loc_union` B.loc_buffer br) h1 h /\ ( let pos1 = B.get h bpos1 0 in let r = B.get h br 0 in U32.v r <= U32.v n /\ U32.v pos <= U32.v pos1 /\ U32.v pos1 <= U32.v input.len /\ valid (parse_nlist (U32.v n) p) h0 input pos /\ valid (parse_nlist (U32.v r) p) h0 input pos1 /\ get_valid_pos (parse_nlist (U32.v n) p) h0 input pos == get_valid_pos (parse_nlist (U32.v r) p) h0 input pos1 /\ (stop == true ==> r == 0ul) )) (fun _ -> let r = B.index br 0ul in if r = 0ul then true else let pos1 = B.index bpos1 0ul in [@inline_let] let _ = valid_nlist_cons_recip (U32.v r) p h0 input pos1 in let pos2 = v input pos1 in let _ = B.upd br 0ul (r `U32.sub` 1ul) in let _ = B.upd bpos1 0ul pos2 in false ) ; let res = B.index bpos1 0ul in [@inline_let] let _ = valid_nlist_nil p h0 input res in HST.pop_frame (); res #pop-options let rec valid_nlist_valid_list (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( k.parser_kind_low > 0 /\ k.parser_kind_subkind == Some ParserStrong /\ valid (parse_nlist n p) h sl pos )) (ensures ( let pos' = get_valid_pos (parse_nlist n p) h sl pos in valid_list p h sl pos pos' /\ contents_list p h sl pos pos' == contents (parse_nlist n p) h sl pos )) = if n = 0 then begin valid_nlist_nil_recip p h sl pos; valid_list_nil p h sl pos end else begin valid_nlist_cons_recip n p h sl pos; let pos1 = get_valid_pos p h sl pos in let pos' = get_valid_pos (parse_nlist n p) h sl pos in valid_nlist_valid_list (n - 1) p h sl pos1; valid_list_cons p h sl pos pos' end let rec valid_list_valid_nlist (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) (pos' : U32.t) : Lemma (requires ( valid_list p h sl pos pos' )) (ensures ( let x = contents_list p h sl pos pos' in valid_content_pos (parse_nlist (L.length x) p) h sl pos x pos' )) (decreases (U32.v pos' - U32.v pos)) = if pos = pos' then begin valid_list_nil p h sl pos; valid_nlist_nil p h sl pos end else begin valid_list_cons_recip p h sl pos pos' ; let pos1 = get_valid_pos p h sl pos in valid_list_valid_nlist p h sl pos1 pos' ; valid_nlist_cons (L.length (contents_list p h sl pos1 pos')) p h sl pos end (* vclist *) #push-options "--z3rlimit 16" inline_for_extraction let validate_vclist (min: U32.t) (max: U32.t { U32.v min <= U32.v max } ) (#lk: parser_kind) (#lp: parser lk U32.t) (lv: validator lp) (lr: leaf_reader lp) (#k: parser_kind) (#t: Type) (#p: parser k t) (v: validator p) : Tot (validator (parse_vclist (U32.v min) (U32.v max) lp p)) = fun #rrel #rel input pos -> let h = HST.get () in [@inline_let] let _ = valid_facts (parse_vclist (U32.v min) (U32.v max) lp p) h input (uint64_to_uint32 pos); parse_vclist_eq (U32.v min) (U32.v max) lp p (bytes_of_slice_from h input (uint64_to_uint32 pos)); valid_facts lp h input (uint64_to_uint32 pos) in let pos1 = lv input pos in if is_error pos1 then pos1 // error else let n = lr input (uint64_to_uint32 pos) in if n `U32.lt` min || max `U32.lt` n then validator_error_generic else [@inline_let] let _ = valid_facts (parse_nlist (U32.v n) p) h input (uint64_to_uint32 pos1) in validate_nlist n v input pos1 inline_for_extraction let jump_vclist (min: nat) (max: nat { min <= max } ) (#lk: parser_kind) (#lp: parser lk U32.t) (lv: jumper lp) (lr: leaf_reader lp) (#k: parser_kind) (#t: Type) (#p: parser k t) (v: jumper p) : Tot (jumper (parse_vclist min max lp p)) = fun #rrel #rel input pos -> let h = HST.get () in [@inline_let] let _ = valid_facts (parse_vclist min max lp p) h input pos; parse_vclist_eq min max lp p (bytes_of_slice_from h input pos); valid_facts lp h input pos in let pos1 = lv input pos in let n = lr input pos in [@inline_let] let _ = valid_facts (parse_nlist (U32.v n) p) h input pos1 in jump_nlist n v input pos1 #pop-options let valid_vclist_elim (min: nat) (max: nat { min <= max /\ max < 4294967296 } ) (#lk: parser_kind) (lp: parser lk U32.t { lk.parser_kind_subkind == Some ParserStrong }) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (input: slice rrel rel) (pos: U32.t) : Lemma (requires (valid (parse_vclist min max lp p) h input pos)) (ensures ( valid lp h input pos /\ ( let len = contents lp h input pos in let pos1 = get_valid_pos lp h input pos in let x = contents (parse_vclist min max lp p) h input pos in L.length x == U32.v len /\ valid_content_pos (parse_nlist (U32.v len) p) h input pos1 x (get_valid_pos (parse_vclist min max lp p) h input pos) ))) = valid_facts (parse_vclist min max lp p) h input pos; parse_vclist_eq min max lp p (bytes_of_slice_from h input pos); valid_facts lp h input pos; let len = contents lp h input pos in let pos1 = get_valid_pos lp h input pos in valid_facts (parse_nlist (U32.v len) p) h input pos1 #push-options "--z3rlimit 20" let valid_vclist_intro (min: nat) (max: nat { min <= max /\ max < 4294967296 } ) (#lk: parser_kind) (lp: parser lk U32.t { lk.parser_kind_subkind == Some ParserStrong }) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (input: slice rrel rel) (pos: U32.t) : Lemma (requires ( valid lp h input pos /\ ( let pos1 = get_valid_pos lp h input pos in let len = contents lp h input pos in min <= U32.v len /\ U32.v len <= max /\ valid (parse_nlist (U32.v len) p) h input pos1 ))) (ensures ( let pos1 = get_valid_pos lp h input pos in let len = contents lp h input pos in valid_content_pos (parse_vclist min max lp p) h input pos (contents (parse_nlist (U32.v len) p) h input pos1) (get_valid_pos (parse_nlist (U32.v len) p) h input pos1)
false
false
LowParse.Low.VCList.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val valid_vclist_intro (min: nat) (max: nat{min <= max /\ max < 4294967296}) (#lk: parser_kind) (lp: parser lk U32.t {lk.parser_kind_subkind == Some ParserStrong}) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (input: slice rrel rel) (pos: U32.t) : Lemma (requires (valid lp h input pos /\ (let pos1 = get_valid_pos lp h input pos in let len = contents lp h input pos in min <= U32.v len /\ U32.v len <= max /\ valid (parse_nlist (U32.v len) p) h input pos1)) ) (ensures (let pos1 = get_valid_pos lp h input pos in let len = contents lp h input pos in valid_content_pos (parse_vclist min max lp p) h input pos (contents (parse_nlist (U32.v len) p) h input pos1) (get_valid_pos (parse_nlist (U32.v len) p) h input pos1)))
[]
LowParse.Low.VCList.valid_vclist_intro
{ "file_name": "src/lowparse/LowParse.Low.VCList.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
min: Prims.nat -> max: Prims.nat{min <= max /\ max < 4294967296} -> lp: LowParse.Spec.Base.parser lk FStar.UInt32.t { Mkparser_kind'?.parser_kind_subkind lk == FStar.Pervasives.Native.Some LowParse.Spec.Base.ParserStrong } -> p: LowParse.Spec.Base.parser k t -> h: FStar.Monotonic.HyperStack.mem -> input: LowParse.Slice.slice rrel rel -> pos: FStar.UInt32.t -> FStar.Pervasives.Lemma (requires LowParse.Low.Base.Spec.valid lp h input pos /\ (let pos1 = LowParse.Low.Base.Spec.get_valid_pos lp h input pos in let len = LowParse.Low.Base.Spec.contents lp h input pos in min <= FStar.UInt32.v len /\ FStar.UInt32.v len <= max /\ LowParse.Low.Base.Spec.valid (LowParse.Spec.VCList.parse_nlist (FStar.UInt32.v len) p) h input pos1)) (ensures (let pos1 = LowParse.Low.Base.Spec.get_valid_pos lp h input pos in let len = LowParse.Low.Base.Spec.contents lp h input pos in LowParse.Low.Base.Spec.valid_content_pos (LowParse.Spec.VCList.parse_vclist min max lp p) h input pos (LowParse.Low.Base.Spec.contents (LowParse.Spec.VCList.parse_nlist (FStar.UInt32.v len) p) h input pos1) (LowParse.Low.Base.Spec.get_valid_pos (LowParse.Spec.VCList.parse_nlist (FStar.UInt32.v len ) p) h input pos1)))
{ "end_col": 54, "end_line": 448, "start_col": 2, "start_line": 443 }
FStar.Pervasives.Lemma
val valid_nlist_cons (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (valid p h sl pos /\ valid (parse_nlist n p) h sl (get_valid_pos p h sl pos))) (ensures (valid p h sl pos /\ valid (parse_nlist n p) h sl (get_valid_pos p h sl pos) /\ (let pos1 = get_valid_pos p h sl pos in valid_content_pos (parse_nlist (n + 1) p) h sl pos (contents p h sl pos :: contents (parse_nlist n p) h sl pos1) (get_valid_pos (parse_nlist n p) h sl pos1))))
[ { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Low.List", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.VCList", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let valid_nlist_cons (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( valid p h sl pos /\ valid (parse_nlist n p) h sl (get_valid_pos p h sl pos) )) (ensures ( valid p h sl pos /\ valid (parse_nlist n p) h sl (get_valid_pos p h sl pos) /\ ( let pos1 = get_valid_pos p h sl pos in valid_content_pos (parse_nlist (n + 1) p) h sl pos (contents p h sl pos :: contents (parse_nlist n p) h sl pos1) (get_valid_pos (parse_nlist n p) h sl pos1) ))) = let pos1 = get_valid_pos p h sl pos in valid_facts p h sl pos; valid_facts (parse_nlist n p) h sl pos1; valid_facts (parse_nlist (n + 1) p) h sl pos; parse_nlist_eq (n + 1) p (bytes_of_slice_from h sl pos)
val valid_nlist_cons (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (valid p h sl pos /\ valid (parse_nlist n p) h sl (get_valid_pos p h sl pos))) (ensures (valid p h sl pos /\ valid (parse_nlist n p) h sl (get_valid_pos p h sl pos) /\ (let pos1 = get_valid_pos p h sl pos in valid_content_pos (parse_nlist (n + 1) p) h sl pos (contents p h sl pos :: contents (parse_nlist n p) h sl pos1) (get_valid_pos (parse_nlist n p) h sl pos1)))) let valid_nlist_cons (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (valid p h sl pos /\ valid (parse_nlist n p) h sl (get_valid_pos p h sl pos))) (ensures (valid p h sl pos /\ valid (parse_nlist n p) h sl (get_valid_pos p h sl pos) /\ (let pos1 = get_valid_pos p h sl pos in valid_content_pos (parse_nlist (n + 1) p) h sl pos (contents p h sl pos :: contents (parse_nlist n p) h sl pos1) (get_valid_pos (parse_nlist n p) h sl pos1)))) =
false
null
true
let pos1 = get_valid_pos p h sl pos in valid_facts p h sl pos; valid_facts (parse_nlist n p) h sl pos1; valid_facts (parse_nlist (n + 1) p) h sl pos; parse_nlist_eq (n + 1) p (bytes_of_slice_from h sl pos)
{ "checked_file": "LowParse.Low.VCList.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "LowParse.Spec.VCList.fsti.checked", "LowParse.Low.List.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked", "C.Loops.fst.checked" ], "interface_file": false, "source_file": "LowParse.Low.VCList.fst" }
[ "lemma" ]
[ "Prims.nat", "LowParse.Spec.Base.parser_kind", "LowParse.Spec.Base.parser", "FStar.Monotonic.HyperStack.mem", "LowParse.Slice.srel", "LowParse.Bytes.byte", "LowParse.Slice.slice", "FStar.UInt32.t", "LowParse.Spec.VCList.parse_nlist_eq", "Prims.op_Addition", "LowParse.Slice.bytes_of_slice_from", "Prims.unit", "LowParse.Low.Base.Spec.valid_facts", "LowParse.Spec.VCList.parse_nlist_kind", "LowParse.Spec.VCList.nlist", "LowParse.Spec.VCList.parse_nlist", "LowParse.Low.Base.Spec.get_valid_pos", "Prims.l_and", "LowParse.Low.Base.Spec.valid", "Prims.squash", "LowParse.Low.Base.Spec.valid_content_pos", "Prims.Cons", "LowParse.Low.Base.Spec.contents", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module LowParse.Low.VCList include LowParse.Spec.VCList include LowParse.Low.List module L = FStar.List.Tot module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module U32 = FStar.UInt32 module B = LowStar.Buffer module Cast = FStar.Int.Cast module U64 = FStar.UInt64 let valid_nlist_nil (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (live_slice h sl /\ U32.v pos <= U32.v sl.len)) (ensures (valid_content_pos (parse_nlist 0 p) h sl pos [] pos)) = valid_facts (parse_nlist 0 p) h sl pos; parse_nlist_eq 0 p (bytes_of_slice_from h sl pos) let valid_nlist_nil_recip (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (valid (parse_nlist 0 p) h sl pos)) (ensures (valid_content_pos (parse_nlist 0 p) h sl pos [] pos)) = valid_facts (parse_nlist 0 p) h sl pos; parse_nlist_eq 0 p (bytes_of_slice_from h sl pos) #push-options "--z3rlimit 16" let valid_nlist_cons (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( valid p h sl pos /\ valid (parse_nlist n p) h sl (get_valid_pos p h sl pos) )) (ensures ( valid p h sl pos /\ valid (parse_nlist n p) h sl (get_valid_pos p h sl pos) /\ ( let pos1 = get_valid_pos p h sl pos in valid_content_pos (parse_nlist (n + 1) p) h sl pos (contents p h sl pos :: contents (parse_nlist n p) h sl pos1) (get_valid_pos (parse_nlist n p) h sl pos1)
false
false
LowParse.Low.VCList.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val valid_nlist_cons (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (valid p h sl pos /\ valid (parse_nlist n p) h sl (get_valid_pos p h sl pos))) (ensures (valid p h sl pos /\ valid (parse_nlist n p) h sl (get_valid_pos p h sl pos) /\ (let pos1 = get_valid_pos p h sl pos in valid_content_pos (parse_nlist (n + 1) p) h sl pos (contents p h sl pos :: contents (parse_nlist n p) h sl pos1) (get_valid_pos (parse_nlist n p) h sl pos1))))
[]
LowParse.Low.VCList.valid_nlist_cons
{ "file_name": "src/lowparse/LowParse.Low.VCList.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
n: Prims.nat -> p: LowParse.Spec.Base.parser k t -> h: FStar.Monotonic.HyperStack.mem -> sl: LowParse.Slice.slice rrel rel -> pos: FStar.UInt32.t -> FStar.Pervasives.Lemma (requires LowParse.Low.Base.Spec.valid p h sl pos /\ LowParse.Low.Base.Spec.valid (LowParse.Spec.VCList.parse_nlist n p) h sl (LowParse.Low.Base.Spec.get_valid_pos p h sl pos)) (ensures LowParse.Low.Base.Spec.valid p h sl pos /\ LowParse.Low.Base.Spec.valid (LowParse.Spec.VCList.parse_nlist n p) h sl (LowParse.Low.Base.Spec.get_valid_pos p h sl pos) /\ (let pos1 = LowParse.Low.Base.Spec.get_valid_pos p h sl pos in LowParse.Low.Base.Spec.valid_content_pos (LowParse.Spec.VCList.parse_nlist (n + 1) p) h sl pos (LowParse.Low.Base.Spec.contents p h sl pos :: LowParse.Low.Base.Spec.contents (LowParse.Spec.VCList.parse_nlist n p) h sl pos1) (LowParse.Low.Base.Spec.get_valid_pos (LowParse.Spec.VCList.parse_nlist n p) h sl pos1)) )
{ "end_col": 57, "end_line": 73, "start_col": 1, "start_line": 69 }
FStar.Pervasives.Lemma
val valid_nlist_cons_recip (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (n > 0 /\ valid (parse_nlist n p) h sl pos)) (ensures (valid p h sl pos /\ (let pos1 = get_valid_pos p h sl pos in valid (parse_nlist (n - 1) p) h sl (get_valid_pos p h sl pos) /\ valid_content_pos (parse_nlist n p) h sl pos (contents p h sl pos :: contents (parse_nlist (n - 1) p) h sl pos1) (get_valid_pos (parse_nlist (n - 1) p) h sl pos1))))
[ { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Low.List", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.VCList", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let valid_nlist_cons_recip (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( n > 0 /\ valid (parse_nlist n p) h sl pos )) (ensures ( valid p h sl pos /\ ( let pos1 = get_valid_pos p h sl pos in valid (parse_nlist (n - 1) p) h sl (get_valid_pos p h sl pos) /\ valid_content_pos (parse_nlist n p) h sl pos (contents p h sl pos :: contents (parse_nlist (n - 1) p) h sl pos1) (get_valid_pos (parse_nlist (n - 1) p) h sl pos1) ))) = valid_facts (parse_nlist n p) h sl pos; parse_nlist_eq n p (bytes_of_slice_from h sl pos); valid_facts p h sl pos; let pos1 = get_valid_pos p h sl pos in valid_facts (parse_nlist (n - 1) p) h sl pos1
val valid_nlist_cons_recip (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (n > 0 /\ valid (parse_nlist n p) h sl pos)) (ensures (valid p h sl pos /\ (let pos1 = get_valid_pos p h sl pos in valid (parse_nlist (n - 1) p) h sl (get_valid_pos p h sl pos) /\ valid_content_pos (parse_nlist n p) h sl pos (contents p h sl pos :: contents (parse_nlist (n - 1) p) h sl pos1) (get_valid_pos (parse_nlist (n - 1) p) h sl pos1)))) let valid_nlist_cons_recip (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (n > 0 /\ valid (parse_nlist n p) h sl pos)) (ensures (valid p h sl pos /\ (let pos1 = get_valid_pos p h sl pos in valid (parse_nlist (n - 1) p) h sl (get_valid_pos p h sl pos) /\ valid_content_pos (parse_nlist n p) h sl pos (contents p h sl pos :: contents (parse_nlist (n - 1) p) h sl pos1) (get_valid_pos (parse_nlist (n - 1) p) h sl pos1)))) =
false
null
true
valid_facts (parse_nlist n p) h sl pos; parse_nlist_eq n p (bytes_of_slice_from h sl pos); valid_facts p h sl pos; let pos1 = get_valid_pos p h sl pos in valid_facts (parse_nlist (n - 1) p) h sl pos1
{ "checked_file": "LowParse.Low.VCList.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "LowParse.Spec.VCList.fsti.checked", "LowParse.Low.List.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked", "C.Loops.fst.checked" ], "interface_file": false, "source_file": "LowParse.Low.VCList.fst" }
[ "lemma" ]
[ "Prims.nat", "LowParse.Spec.Base.parser_kind", "LowParse.Spec.Base.parser", "FStar.Monotonic.HyperStack.mem", "LowParse.Slice.srel", "LowParse.Bytes.byte", "LowParse.Slice.slice", "FStar.UInt32.t", "LowParse.Low.Base.Spec.valid_facts", "LowParse.Spec.VCList.parse_nlist_kind", "Prims.op_Subtraction", "LowParse.Spec.VCList.nlist", "LowParse.Spec.VCList.parse_nlist", "LowParse.Low.Base.Spec.get_valid_pos", "Prims.unit", "LowParse.Spec.VCList.parse_nlist_eq", "LowParse.Slice.bytes_of_slice_from", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThan", "LowParse.Low.Base.Spec.valid", "Prims.squash", "LowParse.Low.Base.Spec.valid_content_pos", "Prims.Cons", "LowParse.Low.Base.Spec.contents", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module LowParse.Low.VCList include LowParse.Spec.VCList include LowParse.Low.List module L = FStar.List.Tot module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module U32 = FStar.UInt32 module B = LowStar.Buffer module Cast = FStar.Int.Cast module U64 = FStar.UInt64 let valid_nlist_nil (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (live_slice h sl /\ U32.v pos <= U32.v sl.len)) (ensures (valid_content_pos (parse_nlist 0 p) h sl pos [] pos)) = valid_facts (parse_nlist 0 p) h sl pos; parse_nlist_eq 0 p (bytes_of_slice_from h sl pos) let valid_nlist_nil_recip (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (valid (parse_nlist 0 p) h sl pos)) (ensures (valid_content_pos (parse_nlist 0 p) h sl pos [] pos)) = valid_facts (parse_nlist 0 p) h sl pos; parse_nlist_eq 0 p (bytes_of_slice_from h sl pos) #push-options "--z3rlimit 16" let valid_nlist_cons (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( valid p h sl pos /\ valid (parse_nlist n p) h sl (get_valid_pos p h sl pos) )) (ensures ( valid p h sl pos /\ valid (parse_nlist n p) h sl (get_valid_pos p h sl pos) /\ ( let pos1 = get_valid_pos p h sl pos in valid_content_pos (parse_nlist (n + 1) p) h sl pos (contents p h sl pos :: contents (parse_nlist n p) h sl pos1) (get_valid_pos (parse_nlist n p) h sl pos1) ))) = let pos1 = get_valid_pos p h sl pos in valid_facts p h sl pos; valid_facts (parse_nlist n p) h sl pos1; valid_facts (parse_nlist (n + 1) p) h sl pos; parse_nlist_eq (n + 1) p (bytes_of_slice_from h sl pos) let valid_nlist_cons_recip (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( n > 0 /\ valid (parse_nlist n p) h sl pos )) (ensures ( valid p h sl pos /\ ( let pos1 = get_valid_pos p h sl pos in valid (parse_nlist (n - 1) p) h sl (get_valid_pos p h sl pos) /\ valid_content_pos (parse_nlist n p) h sl pos (contents p h sl pos :: contents (parse_nlist (n - 1) p) h sl pos1) (get_valid_pos (parse_nlist (n - 1) p) h sl pos1)
false
false
LowParse.Low.VCList.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val valid_nlist_cons_recip (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (n > 0 /\ valid (parse_nlist n p) h sl pos)) (ensures (valid p h sl pos /\ (let pos1 = get_valid_pos p h sl pos in valid (parse_nlist (n - 1) p) h sl (get_valid_pos p h sl pos) /\ valid_content_pos (parse_nlist n p) h sl pos (contents p h sl pos :: contents (parse_nlist (n - 1) p) h sl pos1) (get_valid_pos (parse_nlist (n - 1) p) h sl pos1))))
[]
LowParse.Low.VCList.valid_nlist_cons_recip
{ "file_name": "src/lowparse/LowParse.Low.VCList.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
n: Prims.nat -> p: LowParse.Spec.Base.parser k t -> h: FStar.Monotonic.HyperStack.mem -> sl: LowParse.Slice.slice rrel rel -> pos: FStar.UInt32.t -> FStar.Pervasives.Lemma (requires n > 0 /\ LowParse.Low.Base.Spec.valid (LowParse.Spec.VCList.parse_nlist n p) h sl pos) (ensures LowParse.Low.Base.Spec.valid p h sl pos /\ (let pos1 = LowParse.Low.Base.Spec.get_valid_pos p h sl pos in LowParse.Low.Base.Spec.valid (LowParse.Spec.VCList.parse_nlist (n - 1) p) h sl (LowParse.Low.Base.Spec.get_valid_pos p h sl pos) /\ LowParse.Low.Base.Spec.valid_content_pos (LowParse.Spec.VCList.parse_nlist n p) h sl pos (LowParse.Low.Base.Spec.contents p h sl pos :: LowParse.Low.Base.Spec.contents (LowParse.Spec.VCList.parse_nlist (n - 1) p) h sl pos1 ) (LowParse.Low.Base.Spec.get_valid_pos (LowParse.Spec.VCList.parse_nlist (n - 1) p) h sl pos1)))
{ "end_col": 47, "end_line": 105, "start_col": 2, "start_line": 101 }
Prims.Tot
val validate_vclist (min: U32.t) (max: U32.t{U32.v min <= U32.v max}) (#lk: parser_kind) (#lp: parser lk U32.t) (lv: validator lp) (lr: leaf_reader lp) (#k: parser_kind) (#t: Type) (#p: parser k t) (v: validator p) : Tot (validator (parse_vclist (U32.v min) (U32.v max) lp p))
[ { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Low.List", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.VCList", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let validate_vclist (min: U32.t) (max: U32.t { U32.v min <= U32.v max } ) (#lk: parser_kind) (#lp: parser lk U32.t) (lv: validator lp) (lr: leaf_reader lp) (#k: parser_kind) (#t: Type) (#p: parser k t) (v: validator p) : Tot (validator (parse_vclist (U32.v min) (U32.v max) lp p)) = fun #rrel #rel input pos -> let h = HST.get () in [@inline_let] let _ = valid_facts (parse_vclist (U32.v min) (U32.v max) lp p) h input (uint64_to_uint32 pos); parse_vclist_eq (U32.v min) (U32.v max) lp p (bytes_of_slice_from h input (uint64_to_uint32 pos)); valid_facts lp h input (uint64_to_uint32 pos) in let pos1 = lv input pos in if is_error pos1 then pos1 // error else let n = lr input (uint64_to_uint32 pos) in if n `U32.lt` min || max `U32.lt` n then validator_error_generic else [@inline_let] let _ = valid_facts (parse_nlist (U32.v n) p) h input (uint64_to_uint32 pos1) in validate_nlist n v input pos1
val validate_vclist (min: U32.t) (max: U32.t{U32.v min <= U32.v max}) (#lk: parser_kind) (#lp: parser lk U32.t) (lv: validator lp) (lr: leaf_reader lp) (#k: parser_kind) (#t: Type) (#p: parser k t) (v: validator p) : Tot (validator (parse_vclist (U32.v min) (U32.v max) lp p)) let validate_vclist (min: U32.t) (max: U32.t{U32.v min <= U32.v max}) (#lk: parser_kind) (#lp: parser lk U32.t) (lv: validator lp) (lr: leaf_reader lp) (#k: parser_kind) (#t: Type) (#p: parser k t) (v: validator p) : Tot (validator (parse_vclist (U32.v min) (U32.v max) lp p)) =
false
null
false
fun #rrel #rel input pos -> let h = HST.get () in [@@ inline_let ]let _ = valid_facts (parse_vclist (U32.v min) (U32.v max) lp p) h input (uint64_to_uint32 pos); parse_vclist_eq (U32.v min) (U32.v max) lp p (bytes_of_slice_from h input (uint64_to_uint32 pos)); valid_facts lp h input (uint64_to_uint32 pos) in let pos1 = lv input pos in if is_error pos1 then pos1 else let n = lr input (uint64_to_uint32 pos) in if n `U32.lt` min || max `U32.lt` n then validator_error_generic else [@@ inline_let ]let _ = valid_facts (parse_nlist (U32.v n) p) h input (uint64_to_uint32 pos1) in validate_nlist n v input pos1
{ "checked_file": "LowParse.Low.VCList.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "LowParse.Spec.VCList.fsti.checked", "LowParse.Low.List.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked", "C.Loops.fst.checked" ], "interface_file": false, "source_file": "LowParse.Low.VCList.fst" }
[ "total" ]
[ "FStar.UInt32.t", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.UInt32.v", "LowParse.Spec.Base.parser_kind", "LowParse.Spec.Base.parser", "LowParse.Low.Base.validator", "LowParse.Low.Base.leaf_reader", "LowParse.Slice.srel", "LowParse.Bytes.byte", "LowParse.Slice.slice", "FStar.UInt64.t", "LowParse.Low.ErrorCode.is_error", "Prims.bool", "Prims.op_BarBar", "FStar.UInt32.lt", "LowParse.Low.ErrorCode.validator_error_generic", "LowParse.Low.VCList.validate_nlist", "Prims.unit", "LowParse.Low.Base.Spec.valid_facts", "LowParse.Spec.VCList.parse_nlist_kind", "LowParse.Spec.VCList.nlist", "LowParse.Spec.VCList.parse_nlist", "LowParse.Low.ErrorCode.uint64_to_uint32", "LowParse.Spec.VCList.parse_vclist_eq", "LowParse.Slice.bytes_of_slice_from", "LowParse.Spec.VCList.parse_vclist_kind", "LowParse.Spec.Array.vlarray", "LowParse.Spec.VCList.parse_vclist", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get" ]
[]
module LowParse.Low.VCList include LowParse.Spec.VCList include LowParse.Low.List module L = FStar.List.Tot module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module U32 = FStar.UInt32 module B = LowStar.Buffer module Cast = FStar.Int.Cast module U64 = FStar.UInt64 let valid_nlist_nil (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (live_slice h sl /\ U32.v pos <= U32.v sl.len)) (ensures (valid_content_pos (parse_nlist 0 p) h sl pos [] pos)) = valid_facts (parse_nlist 0 p) h sl pos; parse_nlist_eq 0 p (bytes_of_slice_from h sl pos) let valid_nlist_nil_recip (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (valid (parse_nlist 0 p) h sl pos)) (ensures (valid_content_pos (parse_nlist 0 p) h sl pos [] pos)) = valid_facts (parse_nlist 0 p) h sl pos; parse_nlist_eq 0 p (bytes_of_slice_from h sl pos) #push-options "--z3rlimit 16" let valid_nlist_cons (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( valid p h sl pos /\ valid (parse_nlist n p) h sl (get_valid_pos p h sl pos) )) (ensures ( valid p h sl pos /\ valid (parse_nlist n p) h sl (get_valid_pos p h sl pos) /\ ( let pos1 = get_valid_pos p h sl pos in valid_content_pos (parse_nlist (n + 1) p) h sl pos (contents p h sl pos :: contents (parse_nlist n p) h sl pos1) (get_valid_pos (parse_nlist n p) h sl pos1) ))) = let pos1 = get_valid_pos p h sl pos in valid_facts p h sl pos; valid_facts (parse_nlist n p) h sl pos1; valid_facts (parse_nlist (n + 1) p) h sl pos; parse_nlist_eq (n + 1) p (bytes_of_slice_from h sl pos) let valid_nlist_cons_recip (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( n > 0 /\ valid (parse_nlist n p) h sl pos )) (ensures ( valid p h sl pos /\ ( let pos1 = get_valid_pos p h sl pos in valid (parse_nlist (n - 1) p) h sl (get_valid_pos p h sl pos) /\ valid_content_pos (parse_nlist n p) h sl pos (contents p h sl pos :: contents (parse_nlist (n - 1) p) h sl pos1) (get_valid_pos (parse_nlist (n - 1) p) h sl pos1) ))) = valid_facts (parse_nlist n p) h sl pos; parse_nlist_eq n p (bytes_of_slice_from h sl pos); valid_facts p h sl pos; let pos1 = get_valid_pos p h sl pos in valid_facts (parse_nlist (n - 1) p) h sl pos1 #pop-options let valid_nlist_cons' (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( n > 0 /\ valid p h sl pos )) (ensures ( let pos1 = get_valid_pos p h sl pos in (valid (parse_nlist n p) h sl pos <==> valid (parse_nlist (n - 1) p) h sl pos1) /\ ((valid (parse_nlist n p) h sl pos /\ valid (parse_nlist (n - 1) p) h sl pos1) ==> get_valid_pos (parse_nlist n p) h sl pos == get_valid_pos (parse_nlist (n - 1) p) h sl pos1) )) = Classical.move_requires (valid_nlist_cons (n - 1) p h sl) pos; Classical.move_requires (valid_nlist_cons_recip n p h sl) pos let valid_nlist_cons_not (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( n > 0 /\ (~ (valid p h sl pos)) )) (ensures ( ~ (valid (parse_nlist n p) h sl pos) )) = Classical.move_requires (valid_nlist_cons (n - 1) p h sl) pos; Classical.move_requires (valid_nlist_cons_recip n p h sl) pos #push-options "--z3rlimit 32" inline_for_extraction let validate_nlist (n: U32.t) (#k: parser_kind) (#t: Type) (#p: parser k t) (v: validator p) : Tot (validator (parse_nlist (U32.v n) p)) = fun #rrel #rel input pos -> let h0 = HST.get () in HST.push_frame (); let bpos1 : B.buffer U64.t = B.alloca pos 1ul in let br = B.alloca n 1ul in let h1 = HST.get () in C.Loops.do_while (fun h stop -> B.modifies (B.loc_buffer bpos1 `B.loc_union` B.loc_buffer br) h1 h /\ ( let pos1 = B.get h bpos1 0 in let r = B.get h br 0 in U32.v r <= U32.v n /\ U64.v pos <= U64.v pos1 /\ ( if is_success pos1 then let pos1 = uint64_to_uint32 pos1 in U32.v pos1 <= U32.v input.len /\ (valid (parse_nlist (U32.v n) p) h0 input (uint64_to_uint32 pos) <==> valid (parse_nlist (U32.v r) p) h0 input pos1) /\ ((valid (parse_nlist (U32.v n) p) h0 input (uint64_to_uint32 pos) /\ valid (parse_nlist (U32.v r) p) h0 input pos1) ==> get_valid_pos (parse_nlist (U32.v n) p) h0 input (uint64_to_uint32 pos) == get_valid_pos (parse_nlist (U32.v r) p) h0 input pos1) /\ (stop == true ==> r == 0ul) else (stop == true /\ (~ (valid (parse_nlist (U32.v n) p) h0 input (uint64_to_uint32 pos)))) ))) (fun _ -> let r = B.index br 0ul in if r = 0ul then true else let pos1 = B.index bpos1 0ul in let pos2 = v input pos1 in let _ = B.upd br 0ul (r `U32.sub` 1ul) in let _ = B.upd bpos1 0ul pos2 in [@inline_let] let stop = is_error pos2 in [@inline_let] let _ = if stop then valid_nlist_cons_not (U32.v r) p h0 input (uint64_to_uint32 pos1) else valid_nlist_cons' (U32.v r) p h0 input (uint64_to_uint32 pos1) in stop ) ; let res = B.index bpos1 0ul in [@inline_let] let _ = if is_success res then valid_nlist_nil p h0 input (uint64_to_uint32 res) in HST.pop_frame (); res inline_for_extraction let jump_nlist (n: U32.t) (#k: parser_kind) (#t: Type) (#p: parser k t) (v: jumper p) : Tot (jumper (parse_nlist (U32.v n) p)) = fun #rrel #rel input pos -> let h0 = HST.get () in HST.push_frame (); let bpos1 = B.alloca pos 1ul in let br = B.alloca n 1ul in let h1 = HST.get () in C.Loops.do_while (fun h stop -> B.modifies (B.loc_buffer bpos1 `B.loc_union` B.loc_buffer br) h1 h /\ ( let pos1 = B.get h bpos1 0 in let r = B.get h br 0 in U32.v r <= U32.v n /\ U32.v pos <= U32.v pos1 /\ U32.v pos1 <= U32.v input.len /\ valid (parse_nlist (U32.v n) p) h0 input pos /\ valid (parse_nlist (U32.v r) p) h0 input pos1 /\ get_valid_pos (parse_nlist (U32.v n) p) h0 input pos == get_valid_pos (parse_nlist (U32.v r) p) h0 input pos1 /\ (stop == true ==> r == 0ul) )) (fun _ -> let r = B.index br 0ul in if r = 0ul then true else let pos1 = B.index bpos1 0ul in [@inline_let] let _ = valid_nlist_cons_recip (U32.v r) p h0 input pos1 in let pos2 = v input pos1 in let _ = B.upd br 0ul (r `U32.sub` 1ul) in let _ = B.upd bpos1 0ul pos2 in false ) ; let res = B.index bpos1 0ul in [@inline_let] let _ = valid_nlist_nil p h0 input res in HST.pop_frame (); res #pop-options let rec valid_nlist_valid_list (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( k.parser_kind_low > 0 /\ k.parser_kind_subkind == Some ParserStrong /\ valid (parse_nlist n p) h sl pos )) (ensures ( let pos' = get_valid_pos (parse_nlist n p) h sl pos in valid_list p h sl pos pos' /\ contents_list p h sl pos pos' == contents (parse_nlist n p) h sl pos )) = if n = 0 then begin valid_nlist_nil_recip p h sl pos; valid_list_nil p h sl pos end else begin valid_nlist_cons_recip n p h sl pos; let pos1 = get_valid_pos p h sl pos in let pos' = get_valid_pos (parse_nlist n p) h sl pos in valid_nlist_valid_list (n - 1) p h sl pos1; valid_list_cons p h sl pos pos' end let rec valid_list_valid_nlist (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) (pos' : U32.t) : Lemma (requires ( valid_list p h sl pos pos' )) (ensures ( let x = contents_list p h sl pos pos' in valid_content_pos (parse_nlist (L.length x) p) h sl pos x pos' )) (decreases (U32.v pos' - U32.v pos)) = if pos = pos' then begin valid_list_nil p h sl pos; valid_nlist_nil p h sl pos end else begin valid_list_cons_recip p h sl pos pos' ; let pos1 = get_valid_pos p h sl pos in valid_list_valid_nlist p h sl pos1 pos' ; valid_nlist_cons (L.length (contents_list p h sl pos1 pos')) p h sl pos end (* vclist *) #push-options "--z3rlimit 16" inline_for_extraction let validate_vclist (min: U32.t) (max: U32.t { U32.v min <= U32.v max } ) (#lk: parser_kind) (#lp: parser lk U32.t) (lv: validator lp) (lr: leaf_reader lp) (#k: parser_kind) (#t: Type) (#p: parser k t) (v: validator p)
false
false
LowParse.Low.VCList.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val validate_vclist (min: U32.t) (max: U32.t{U32.v min <= U32.v max}) (#lk: parser_kind) (#lp: parser lk U32.t) (lv: validator lp) (lr: leaf_reader lp) (#k: parser_kind) (#t: Type) (#p: parser k t) (v: validator p) : Tot (validator (parse_vclist (U32.v min) (U32.v max) lp p))
[]
LowParse.Low.VCList.validate_vclist
{ "file_name": "src/lowparse/LowParse.Low.VCList.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
min: FStar.UInt32.t -> max: FStar.UInt32.t{FStar.UInt32.v min <= FStar.UInt32.v max} -> lv: LowParse.Low.Base.validator lp -> lr: LowParse.Low.Base.leaf_reader lp -> v: LowParse.Low.Base.validator p -> LowParse.Low.Base.validator (LowParse.Spec.VCList.parse_vclist (FStar.UInt32.v min) (FStar.UInt32.v max) lp p)
{ "end_col": 35, "end_line": 358, "start_col": 2, "start_line": 341 }
Prims.Tot
val jump_nlist (n: U32.t) (#k: parser_kind) (#t: Type) (#p: parser k t) (v: jumper p) : Tot (jumper (parse_nlist (U32.v n) p))
[ { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Low.List", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.VCList", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let jump_nlist (n: U32.t) (#k: parser_kind) (#t: Type) (#p: parser k t) (v: jumper p) : Tot (jumper (parse_nlist (U32.v n) p)) = fun #rrel #rel input pos -> let h0 = HST.get () in HST.push_frame (); let bpos1 = B.alloca pos 1ul in let br = B.alloca n 1ul in let h1 = HST.get () in C.Loops.do_while (fun h stop -> B.modifies (B.loc_buffer bpos1 `B.loc_union` B.loc_buffer br) h1 h /\ ( let pos1 = B.get h bpos1 0 in let r = B.get h br 0 in U32.v r <= U32.v n /\ U32.v pos <= U32.v pos1 /\ U32.v pos1 <= U32.v input.len /\ valid (parse_nlist (U32.v n) p) h0 input pos /\ valid (parse_nlist (U32.v r) p) h0 input pos1 /\ get_valid_pos (parse_nlist (U32.v n) p) h0 input pos == get_valid_pos (parse_nlist (U32.v r) p) h0 input pos1 /\ (stop == true ==> r == 0ul) )) (fun _ -> let r = B.index br 0ul in if r = 0ul then true else let pos1 = B.index bpos1 0ul in [@inline_let] let _ = valid_nlist_cons_recip (U32.v r) p h0 input pos1 in let pos2 = v input pos1 in let _ = B.upd br 0ul (r `U32.sub` 1ul) in let _ = B.upd bpos1 0ul pos2 in false ) ; let res = B.index bpos1 0ul in [@inline_let] let _ = valid_nlist_nil p h0 input res in HST.pop_frame (); res
val jump_nlist (n: U32.t) (#k: parser_kind) (#t: Type) (#p: parser k t) (v: jumper p) : Tot (jumper (parse_nlist (U32.v n) p)) let jump_nlist (n: U32.t) (#k: parser_kind) (#t: Type) (#p: parser k t) (v: jumper p) : Tot (jumper (parse_nlist (U32.v n) p)) =
false
null
false
fun #rrel #rel input pos -> let h0 = HST.get () in HST.push_frame (); let bpos1 = B.alloca pos 1ul in let br = B.alloca n 1ul in let h1 = HST.get () in C.Loops.do_while (fun h stop -> B.modifies ((B.loc_buffer bpos1) `B.loc_union` (B.loc_buffer br)) h1 h /\ (let pos1 = B.get h bpos1 0 in let r = B.get h br 0 in U32.v r <= U32.v n /\ U32.v pos <= U32.v pos1 /\ U32.v pos1 <= U32.v input.len /\ valid (parse_nlist (U32.v n) p) h0 input pos /\ valid (parse_nlist (U32.v r) p) h0 input pos1 /\ get_valid_pos (parse_nlist (U32.v n) p) h0 input pos == get_valid_pos (parse_nlist (U32.v r) p) h0 input pos1 /\ (stop == true ==> r == 0ul))) (fun _ -> let r = B.index br 0ul in if r = 0ul then true else let pos1 = B.index bpos1 0ul in [@@ inline_let ]let _ = valid_nlist_cons_recip (U32.v r) p h0 input pos1 in let pos2 = v input pos1 in let _ = B.upd br 0ul (r `U32.sub` 1ul) in let _ = B.upd bpos1 0ul pos2 in false); let res = B.index bpos1 0ul in [@@ inline_let ]let _ = valid_nlist_nil p h0 input res in HST.pop_frame (); res
{ "checked_file": "LowParse.Low.VCList.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "LowParse.Spec.VCList.fsti.checked", "LowParse.Low.List.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked", "C.Loops.fst.checked" ], "interface_file": false, "source_file": "LowParse.Low.VCList.fst" }
[ "total" ]
[ "FStar.UInt32.t", "LowParse.Spec.Base.parser_kind", "LowParse.Spec.Base.parser", "LowParse.Low.Base.jumper", "LowParse.Slice.srel", "LowParse.Bytes.byte", "LowParse.Slice.slice", "Prims.unit", "FStar.HyperStack.ST.pop_frame", "LowParse.Low.VCList.valid_nlist_nil", "LowStar.Monotonic.Buffer.index", "LowStar.Buffer.trivial_preorder", "FStar.UInt32.__uint_to_t", "C.Loops.do_while", "FStar.Monotonic.HyperStack.mem", "Prims.bool", "Prims.l_and", "LowStar.Monotonic.Buffer.modifies", "LowStar.Monotonic.Buffer.loc_union", "LowStar.Monotonic.Buffer.loc_buffer", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.UInt32.v", "LowParse.Slice.__proj__Mkslice__item__len", "LowParse.Low.Base.Spec.valid", "LowParse.Spec.VCList.parse_nlist_kind", "LowParse.Spec.VCList.nlist", "LowParse.Spec.VCList.parse_nlist", "Prims.eq2", "LowParse.Low.Base.Spec.get_valid_pos", "Prims.l_imp", "LowStar.Monotonic.Buffer.get", "Prims.op_Equality", "LowStar.Monotonic.Buffer.upd", "FStar.UInt32.sub", "LowParse.Low.VCList.valid_nlist_cons_recip", "FStar.HyperStack.ST.get", "LowStar.Monotonic.Buffer.mbuffer", "Prims.nat", "LowStar.Monotonic.Buffer.length", "FStar.UInt32.uint_to_t", "Prims.op_Negation", "LowStar.Monotonic.Buffer.g_is_null", "LowStar.Buffer.alloca", "FStar.HyperStack.ST.push_frame" ]
[]
module LowParse.Low.VCList include LowParse.Spec.VCList include LowParse.Low.List module L = FStar.List.Tot module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module U32 = FStar.UInt32 module B = LowStar.Buffer module Cast = FStar.Int.Cast module U64 = FStar.UInt64 let valid_nlist_nil (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (live_slice h sl /\ U32.v pos <= U32.v sl.len)) (ensures (valid_content_pos (parse_nlist 0 p) h sl pos [] pos)) = valid_facts (parse_nlist 0 p) h sl pos; parse_nlist_eq 0 p (bytes_of_slice_from h sl pos) let valid_nlist_nil_recip (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (valid (parse_nlist 0 p) h sl pos)) (ensures (valid_content_pos (parse_nlist 0 p) h sl pos [] pos)) = valid_facts (parse_nlist 0 p) h sl pos; parse_nlist_eq 0 p (bytes_of_slice_from h sl pos) #push-options "--z3rlimit 16" let valid_nlist_cons (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( valid p h sl pos /\ valid (parse_nlist n p) h sl (get_valid_pos p h sl pos) )) (ensures ( valid p h sl pos /\ valid (parse_nlist n p) h sl (get_valid_pos p h sl pos) /\ ( let pos1 = get_valid_pos p h sl pos in valid_content_pos (parse_nlist (n + 1) p) h sl pos (contents p h sl pos :: contents (parse_nlist n p) h sl pos1) (get_valid_pos (parse_nlist n p) h sl pos1) ))) = let pos1 = get_valid_pos p h sl pos in valid_facts p h sl pos; valid_facts (parse_nlist n p) h sl pos1; valid_facts (parse_nlist (n + 1) p) h sl pos; parse_nlist_eq (n + 1) p (bytes_of_slice_from h sl pos) let valid_nlist_cons_recip (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( n > 0 /\ valid (parse_nlist n p) h sl pos )) (ensures ( valid p h sl pos /\ ( let pos1 = get_valid_pos p h sl pos in valid (parse_nlist (n - 1) p) h sl (get_valid_pos p h sl pos) /\ valid_content_pos (parse_nlist n p) h sl pos (contents p h sl pos :: contents (parse_nlist (n - 1) p) h sl pos1) (get_valid_pos (parse_nlist (n - 1) p) h sl pos1) ))) = valid_facts (parse_nlist n p) h sl pos; parse_nlist_eq n p (bytes_of_slice_from h sl pos); valid_facts p h sl pos; let pos1 = get_valid_pos p h sl pos in valid_facts (parse_nlist (n - 1) p) h sl pos1 #pop-options let valid_nlist_cons' (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( n > 0 /\ valid p h sl pos )) (ensures ( let pos1 = get_valid_pos p h sl pos in (valid (parse_nlist n p) h sl pos <==> valid (parse_nlist (n - 1) p) h sl pos1) /\ ((valid (parse_nlist n p) h sl pos /\ valid (parse_nlist (n - 1) p) h sl pos1) ==> get_valid_pos (parse_nlist n p) h sl pos == get_valid_pos (parse_nlist (n - 1) p) h sl pos1) )) = Classical.move_requires (valid_nlist_cons (n - 1) p h sl) pos; Classical.move_requires (valid_nlist_cons_recip n p h sl) pos let valid_nlist_cons_not (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( n > 0 /\ (~ (valid p h sl pos)) )) (ensures ( ~ (valid (parse_nlist n p) h sl pos) )) = Classical.move_requires (valid_nlist_cons (n - 1) p h sl) pos; Classical.move_requires (valid_nlist_cons_recip n p h sl) pos #push-options "--z3rlimit 32" inline_for_extraction let validate_nlist (n: U32.t) (#k: parser_kind) (#t: Type) (#p: parser k t) (v: validator p) : Tot (validator (parse_nlist (U32.v n) p)) = fun #rrel #rel input pos -> let h0 = HST.get () in HST.push_frame (); let bpos1 : B.buffer U64.t = B.alloca pos 1ul in let br = B.alloca n 1ul in let h1 = HST.get () in C.Loops.do_while (fun h stop -> B.modifies (B.loc_buffer bpos1 `B.loc_union` B.loc_buffer br) h1 h /\ ( let pos1 = B.get h bpos1 0 in let r = B.get h br 0 in U32.v r <= U32.v n /\ U64.v pos <= U64.v pos1 /\ ( if is_success pos1 then let pos1 = uint64_to_uint32 pos1 in U32.v pos1 <= U32.v input.len /\ (valid (parse_nlist (U32.v n) p) h0 input (uint64_to_uint32 pos) <==> valid (parse_nlist (U32.v r) p) h0 input pos1) /\ ((valid (parse_nlist (U32.v n) p) h0 input (uint64_to_uint32 pos) /\ valid (parse_nlist (U32.v r) p) h0 input pos1) ==> get_valid_pos (parse_nlist (U32.v n) p) h0 input (uint64_to_uint32 pos) == get_valid_pos (parse_nlist (U32.v r) p) h0 input pos1) /\ (stop == true ==> r == 0ul) else (stop == true /\ (~ (valid (parse_nlist (U32.v n) p) h0 input (uint64_to_uint32 pos)))) ))) (fun _ -> let r = B.index br 0ul in if r = 0ul then true else let pos1 = B.index bpos1 0ul in let pos2 = v input pos1 in let _ = B.upd br 0ul (r `U32.sub` 1ul) in let _ = B.upd bpos1 0ul pos2 in [@inline_let] let stop = is_error pos2 in [@inline_let] let _ = if stop then valid_nlist_cons_not (U32.v r) p h0 input (uint64_to_uint32 pos1) else valid_nlist_cons' (U32.v r) p h0 input (uint64_to_uint32 pos1) in stop ) ; let res = B.index bpos1 0ul in [@inline_let] let _ = if is_success res then valid_nlist_nil p h0 input (uint64_to_uint32 res) in HST.pop_frame (); res inline_for_extraction let jump_nlist (n: U32.t) (#k: parser_kind) (#t: Type) (#p: parser k t) (v: jumper p)
false
false
LowParse.Low.VCList.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val jump_nlist (n: U32.t) (#k: parser_kind) (#t: Type) (#p: parser k t) (v: jumper p) : Tot (jumper (parse_nlist (U32.v n) p))
[]
LowParse.Low.VCList.jump_nlist
{ "file_name": "src/lowparse/LowParse.Low.VCList.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
n: FStar.UInt32.t -> v: LowParse.Low.Base.jumper p -> LowParse.Low.Base.jumper (LowParse.Spec.VCList.parse_nlist (FStar.UInt32.v n) p)
{ "end_col": 5, "end_line": 259, "start_col": 2, "start_line": 220 }
Prims.Tot
val validate_nlist (n: U32.t) (#k: parser_kind) (#t: Type) (#p: parser k t) (v: validator p) : Tot (validator (parse_nlist (U32.v n) p))
[ { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Low.List", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.VCList", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let validate_nlist (n: U32.t) (#k: parser_kind) (#t: Type) (#p: parser k t) (v: validator p) : Tot (validator (parse_nlist (U32.v n) p)) = fun #rrel #rel input pos -> let h0 = HST.get () in HST.push_frame (); let bpos1 : B.buffer U64.t = B.alloca pos 1ul in let br = B.alloca n 1ul in let h1 = HST.get () in C.Loops.do_while (fun h stop -> B.modifies (B.loc_buffer bpos1 `B.loc_union` B.loc_buffer br) h1 h /\ ( let pos1 = B.get h bpos1 0 in let r = B.get h br 0 in U32.v r <= U32.v n /\ U64.v pos <= U64.v pos1 /\ ( if is_success pos1 then let pos1 = uint64_to_uint32 pos1 in U32.v pos1 <= U32.v input.len /\ (valid (parse_nlist (U32.v n) p) h0 input (uint64_to_uint32 pos) <==> valid (parse_nlist (U32.v r) p) h0 input pos1) /\ ((valid (parse_nlist (U32.v n) p) h0 input (uint64_to_uint32 pos) /\ valid (parse_nlist (U32.v r) p) h0 input pos1) ==> get_valid_pos (parse_nlist (U32.v n) p) h0 input (uint64_to_uint32 pos) == get_valid_pos (parse_nlist (U32.v r) p) h0 input pos1) /\ (stop == true ==> r == 0ul) else (stop == true /\ (~ (valid (parse_nlist (U32.v n) p) h0 input (uint64_to_uint32 pos)))) ))) (fun _ -> let r = B.index br 0ul in if r = 0ul then true else let pos1 = B.index bpos1 0ul in let pos2 = v input pos1 in let _ = B.upd br 0ul (r `U32.sub` 1ul) in let _ = B.upd bpos1 0ul pos2 in [@inline_let] let stop = is_error pos2 in [@inline_let] let _ = if stop then valid_nlist_cons_not (U32.v r) p h0 input (uint64_to_uint32 pos1) else valid_nlist_cons' (U32.v r) p h0 input (uint64_to_uint32 pos1) in stop ) ; let res = B.index bpos1 0ul in [@inline_let] let _ = if is_success res then valid_nlist_nil p h0 input (uint64_to_uint32 res) in HST.pop_frame (); res
val validate_nlist (n: U32.t) (#k: parser_kind) (#t: Type) (#p: parser k t) (v: validator p) : Tot (validator (parse_nlist (U32.v n) p)) let validate_nlist (n: U32.t) (#k: parser_kind) (#t: Type) (#p: parser k t) (v: validator p) : Tot (validator (parse_nlist (U32.v n) p)) =
false
null
false
fun #rrel #rel input pos -> let h0 = HST.get () in HST.push_frame (); let bpos1:B.buffer U64.t = B.alloca pos 1ul in let br = B.alloca n 1ul in let h1 = HST.get () in C.Loops.do_while (fun h stop -> B.modifies ((B.loc_buffer bpos1) `B.loc_union` (B.loc_buffer br)) h1 h /\ (let pos1 = B.get h bpos1 0 in let r = B.get h br 0 in U32.v r <= U32.v n /\ U64.v pos <= U64.v pos1 /\ (if is_success pos1 then let pos1 = uint64_to_uint32 pos1 in U32.v pos1 <= U32.v input.len /\ (valid (parse_nlist (U32.v n) p) h0 input (uint64_to_uint32 pos) <==> valid (parse_nlist (U32.v r) p) h0 input pos1) /\ ((valid (parse_nlist (U32.v n) p) h0 input (uint64_to_uint32 pos) /\ valid (parse_nlist (U32.v r) p) h0 input pos1) ==> get_valid_pos (parse_nlist (U32.v n) p) h0 input (uint64_to_uint32 pos) == get_valid_pos (parse_nlist (U32.v r) p) h0 input pos1) /\ (stop == true ==> r == 0ul) else (stop == true /\ (~(valid (parse_nlist (U32.v n) p) h0 input (uint64_to_uint32 pos)))) ))) (fun _ -> let r = B.index br 0ul in if r = 0ul then true else let pos1 = B.index bpos1 0ul in let pos2 = v input pos1 in let _ = B.upd br 0ul (r `U32.sub` 1ul) in let _ = B.upd bpos1 0ul pos2 in [@@ inline_let ]let stop = is_error pos2 in [@@ inline_let ]let _ = if stop then valid_nlist_cons_not (U32.v r) p h0 input (uint64_to_uint32 pos1) else valid_nlist_cons' (U32.v r) p h0 input (uint64_to_uint32 pos1) in stop); let res = B.index bpos1 0ul in [@@ inline_let ]let _ = if is_success res then valid_nlist_nil p h0 input (uint64_to_uint32 res) in HST.pop_frame (); res
{ "checked_file": "LowParse.Low.VCList.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "LowParse.Spec.VCList.fsti.checked", "LowParse.Low.List.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked", "C.Loops.fst.checked" ], "interface_file": false, "source_file": "LowParse.Low.VCList.fst" }
[ "total" ]
[ "FStar.UInt32.t", "LowParse.Spec.Base.parser_kind", "LowParse.Spec.Base.parser", "LowParse.Low.Base.validator", "LowParse.Slice.srel", "LowParse.Bytes.byte", "LowParse.Slice.slice", "FStar.UInt64.t", "Prims.unit", "FStar.HyperStack.ST.pop_frame", "LowParse.Low.ErrorCode.is_success", "LowParse.Low.VCList.valid_nlist_nil", "LowParse.Low.ErrorCode.uint64_to_uint32", "Prims.bool", "LowStar.Monotonic.Buffer.index", "LowStar.Buffer.trivial_preorder", "FStar.UInt32.__uint_to_t", "C.Loops.do_while", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "LowStar.Monotonic.Buffer.modifies", "LowStar.Monotonic.Buffer.loc_union", "LowStar.Monotonic.Buffer.loc_buffer", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.UInt32.v", "FStar.UInt64.v", "LowParse.Slice.__proj__Mkslice__item__len", "Prims.l_iff", "LowParse.Low.Base.Spec.valid", "LowParse.Spec.VCList.parse_nlist_kind", "LowParse.Spec.VCList.nlist", "LowParse.Spec.VCList.parse_nlist", "Prims.l_imp", "Prims.eq2", "LowParse.Low.Base.Spec.get_valid_pos", "Prims.int", "Prims.l_or", "FStar.UInt.size", "Prims.l_not", "Prims.logical", "LowStar.Monotonic.Buffer.get", "Prims.op_Equality", "LowParse.Low.VCList.valid_nlist_cons_not", "LowParse.Low.VCList.valid_nlist_cons'", "LowParse.Low.ErrorCode.is_error", "LowStar.Monotonic.Buffer.upd", "FStar.UInt32.sub", "FStar.HyperStack.ST.get", "LowStar.Monotonic.Buffer.mbuffer", "Prims.nat", "LowStar.Monotonic.Buffer.length", "FStar.UInt32.uint_to_t", "Prims.op_Negation", "LowStar.Monotonic.Buffer.g_is_null", "LowStar.Buffer.alloca", "LowStar.Buffer.buffer", "FStar.HyperStack.ST.push_frame" ]
[]
module LowParse.Low.VCList include LowParse.Spec.VCList include LowParse.Low.List module L = FStar.List.Tot module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module U32 = FStar.UInt32 module B = LowStar.Buffer module Cast = FStar.Int.Cast module U64 = FStar.UInt64 let valid_nlist_nil (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (live_slice h sl /\ U32.v pos <= U32.v sl.len)) (ensures (valid_content_pos (parse_nlist 0 p) h sl pos [] pos)) = valid_facts (parse_nlist 0 p) h sl pos; parse_nlist_eq 0 p (bytes_of_slice_from h sl pos) let valid_nlist_nil_recip (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (valid (parse_nlist 0 p) h sl pos)) (ensures (valid_content_pos (parse_nlist 0 p) h sl pos [] pos)) = valid_facts (parse_nlist 0 p) h sl pos; parse_nlist_eq 0 p (bytes_of_slice_from h sl pos) #push-options "--z3rlimit 16" let valid_nlist_cons (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( valid p h sl pos /\ valid (parse_nlist n p) h sl (get_valid_pos p h sl pos) )) (ensures ( valid p h sl pos /\ valid (parse_nlist n p) h sl (get_valid_pos p h sl pos) /\ ( let pos1 = get_valid_pos p h sl pos in valid_content_pos (parse_nlist (n + 1) p) h sl pos (contents p h sl pos :: contents (parse_nlist n p) h sl pos1) (get_valid_pos (parse_nlist n p) h sl pos1) ))) = let pos1 = get_valid_pos p h sl pos in valid_facts p h sl pos; valid_facts (parse_nlist n p) h sl pos1; valid_facts (parse_nlist (n + 1) p) h sl pos; parse_nlist_eq (n + 1) p (bytes_of_slice_from h sl pos) let valid_nlist_cons_recip (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( n > 0 /\ valid (parse_nlist n p) h sl pos )) (ensures ( valid p h sl pos /\ ( let pos1 = get_valid_pos p h sl pos in valid (parse_nlist (n - 1) p) h sl (get_valid_pos p h sl pos) /\ valid_content_pos (parse_nlist n p) h sl pos (contents p h sl pos :: contents (parse_nlist (n - 1) p) h sl pos1) (get_valid_pos (parse_nlist (n - 1) p) h sl pos1) ))) = valid_facts (parse_nlist n p) h sl pos; parse_nlist_eq n p (bytes_of_slice_from h sl pos); valid_facts p h sl pos; let pos1 = get_valid_pos p h sl pos in valid_facts (parse_nlist (n - 1) p) h sl pos1 #pop-options let valid_nlist_cons' (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( n > 0 /\ valid p h sl pos )) (ensures ( let pos1 = get_valid_pos p h sl pos in (valid (parse_nlist n p) h sl pos <==> valid (parse_nlist (n - 1) p) h sl pos1) /\ ((valid (parse_nlist n p) h sl pos /\ valid (parse_nlist (n - 1) p) h sl pos1) ==> get_valid_pos (parse_nlist n p) h sl pos == get_valid_pos (parse_nlist (n - 1) p) h sl pos1) )) = Classical.move_requires (valid_nlist_cons (n - 1) p h sl) pos; Classical.move_requires (valid_nlist_cons_recip n p h sl) pos let valid_nlist_cons_not (n: nat) (#k: parser_kind) (#t: Type) (p: parser k t) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( n > 0 /\ (~ (valid p h sl pos)) )) (ensures ( ~ (valid (parse_nlist n p) h sl pos) )) = Classical.move_requires (valid_nlist_cons (n - 1) p h sl) pos; Classical.move_requires (valid_nlist_cons_recip n p h sl) pos #push-options "--z3rlimit 32" inline_for_extraction let validate_nlist (n: U32.t) (#k: parser_kind) (#t: Type) (#p: parser k t) (v: validator p)
false
false
LowParse.Low.VCList.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val validate_nlist (n: U32.t) (#k: parser_kind) (#t: Type) (#p: parser k t) (v: validator p) : Tot (validator (parse_nlist (U32.v n) p))
[]
LowParse.Low.VCList.validate_nlist
{ "file_name": "src/lowparse/LowParse.Low.VCList.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
n: FStar.UInt32.t -> v: LowParse.Low.Base.validator p -> LowParse.Low.Base.validator (LowParse.Spec.VCList.parse_nlist (FStar.UInt32.v n) p)
{ "end_col": 5, "end_line": 210, "start_col": 2, "start_line": 161 }
Prims.Pure
val list_to_seq_post (#a: Type) (l: list a) (s: seq a) (n: nat) : Pure prop (requires n + List.length l == Seq.length s) (ensures fun _ -> True) (decreases l)
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec list_to_seq_post (#a:Type) (l:list a) (s:seq a) (n:nat) : Pure prop (requires n + List.length l == Seq.length s) (ensures fun _ -> True) (decreases l) = match l with | [] -> n == Seq.length s | h::t -> Seq.index s n == h /\ list_to_seq_post t s (n + 1)
val list_to_seq_post (#a: Type) (l: list a) (s: seq a) (n: nat) : Pure prop (requires n + List.length l == Seq.length s) (ensures fun _ -> True) (decreases l) let rec list_to_seq_post (#a: Type) (l: list a) (s: seq a) (n: nat) : Pure prop (requires n + List.length l == Seq.length s) (ensures fun _ -> True) (decreases l) =
false
null
false
match l with | [] -> n == Seq.length s | h :: t -> Seq.index s n == h /\ list_to_seq_post t s (n + 1)
{ "checked_file": "Vale.Lib.Seqs.fsti.checked", "dependencies": [ "Vale.Lib.Seqs_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.fst.checked" ], "interface_file": false, "source_file": "Vale.Lib.Seqs.fsti" }
[ "" ]
[ "Prims.list", "FStar.Seq.Base.seq", "Prims.nat", "Prims.eq2", "FStar.Seq.Base.length", "Prims.l_and", "FStar.Seq.Base.index", "Vale.Lib.Seqs.list_to_seq_post", "Prims.op_Addition", "Prims.prop", "Prims.int", "FStar.List.Tot.Base.length", "Prims.l_True" ]
[]
module Vale.Lib.Seqs open FStar.Mul open Vale.Lib.Seqs_s open FStar.Seq val lemma_slice_first_exactly_in_append (#a:Type) (x y:seq a) : Lemma (slice (append x y) 0 (length x) == x) val lemma_all_but_last_append (#t:Type) (a:seq t) (b:seq t{length b > 0}) : Lemma (all_but_last (append a b) == append a (all_but_last b)) val reverse_seq_append (#a:eqtype) (s:seq a) (t:seq a) : Lemma(ensures reverse_seq (append s t) == append (reverse_seq t) (reverse_seq s)) val reverse_reverse_seq (#a:Type) (s:seq a) : Lemma(ensures reverse_seq (reverse_seq s) == s) [SMTPat (reverse_seq (reverse_seq s))] val seq_map_i_indexed (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) : Tot (s':seq b { length s' == length s /\ (forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j)) }) val seq_map_i (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) : Tot (s':seq b { length s' == length s /\ (forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f j (index s j)) }) val seq_map_internal_associative (#a:Type) (#b:eqtype) (f:int->a->b) (s:seq a) (pivot:int{0 <= pivot /\ pivot < length s}) : Lemma (let left,right = split s pivot in seq_map_i f s == seq_map_i_indexed f left 0 @| seq_map_i_indexed f right pivot ) val seq_map_inverses (#a #b:Type) (f:a -> b) (g:b -> a) (s:seq a) : Lemma (requires forall x . g (f x) == x) (ensures seq_map g (seq_map f s) == s) val slice_append_adds (#a:Type) (s:seq a) (i:nat) (j:nat{ i <= j /\ j <= length s }) : Lemma (slice s 0 i @| slice s i j == slice s 0 j) val slice_seq_map_commute (#a #b:Type) (f:a -> b) (s:seq a) (i:nat) (j:nat{ i <= j /\ j <= length s }) : Lemma (slice (seq_map f s) i j == seq_map f (slice s i j)) val append_distributes_seq_map (#a #b:Type) (f:a -> b) (s1 s2:seq a) : Lemma (seq_map f (s1 @| s2) == seq_map f s1 @| seq_map f s2) val seq_map_injective (#a #b:Type) (f:a -> b) (s s':seq a) : Lemma (requires (forall (x x':a).{:pattern (f x); (f x')} f x == f x' ==> x == x') /\ seq_map f s == seq_map f s') (ensures s == s') val list_to_seq (#a:Type) (l:list a) : Pure (seq a) (requires True) (ensures fun s -> Seq.length s == List.length l) let rec list_to_seq_post (#a:Type) (l:list a) (s:seq a) (n:nat) : Pure prop (requires n + List.length l == Seq.length s) (ensures fun _ -> True) (decreases l)
false
false
Vale.Lib.Seqs.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val list_to_seq_post (#a: Type) (l: list a) (s: seq a) (n: nat) : Pure prop (requires n + List.length l == Seq.length s) (ensures fun _ -> True) (decreases l)
[ "recursion" ]
Vale.Lib.Seqs.list_to_seq_post
{ "file_name": "vale/code/lib/collections/Vale.Lib.Seqs.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
l: Prims.list a -> s: FStar.Seq.Base.seq a -> n: Prims.nat -> Prims.Pure Prims.prop
{ "end_col": 62, "end_line": 63, "start_col": 2, "start_line": 61 }
Prims.Tot
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let meta_len (t:limb_t) = len:size_t{0 < v len /\ 2 * bits t * v len <= max_size_t}
let meta_len (t: limb_t) =
false
null
false
len: size_t{0 < v len /\ (2 * bits t) * v len <= max_size_t}
{ "checked_file": "Hacl.Bignum.fsti.checked", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "FStar.Tactics.Typeclasses.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.fsti" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Lib.IntTypes.size_t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.bits", "Lib.IntTypes.max_size_t" ]
[]
module Hacl.Bignum open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Base open Hacl.Bignum.Definitions module S = Hacl.Spec.Bignum module ST = FStar.HyperStack.ST module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val bn_add1: #t:limb_t -> aLen:size_t{0 < v aLen} -> a:lbignum t aLen -> b1:limb t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_add1 (as_seq h0 a) b1 in c_out == c /\ as_seq h1 res == r)) inline_for_extraction noextract val bn_sub1: #t:limb_t -> aLen:size_t{0 < v aLen} -> a:lbignum t aLen -> b1:limb t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_sub1 (as_seq h0 a) b1 in c_out == c /\ as_seq h1 res == r)) inline_for_extraction noextract let bn_add_eq_len_st (t:limb_t) (len:size_t) = a:lbignum t len -> b:lbignum t len -> res:lbignum t len -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_add (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_add_eq_len: #t:limb_t -> len:size_t -> bn_add_eq_len_st t len inline_for_extraction noextract let bn_sub_eq_len_st (t:limb_t) (len:size_t) = a:lbignum t len -> b:lbignum t len -> res:lbignum t len -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_sub (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_sub_eq_len: #t:limb_t -> len:size_t -> bn_sub_eq_len_st t len inline_for_extraction noextract let bn_add_st (t:limb_t) = aLen:size_t -> a:lbignum t aLen -> bLen:size_t{v bLen <= v aLen} -> b:lbignum t bLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ disjoint a b /\ eq_or_disjoint a res /\ disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_add (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_add: #t:limb_t -> bn_add_st t inline_for_extraction noextract let bn_sub_st (t:limb_t) = aLen:size_t -> a:lbignum t aLen -> bLen:size_t{v bLen <= v aLen} -> b:lbignum t bLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ disjoint a b /\ eq_or_disjoint a res /\ disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_sub (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_sub: #t:limb_t -> bn_sub_st t inline_for_extraction noextract val bn_reduce_once: #t:limb_t -> aLen:size_t{v aLen > 0} -> n:lbignum t aLen -> c:carry t -> a:lbignum t aLen -> Stack unit (requires fun h -> live h a /\ live h n /\ disjoint a n) (ensures fun h0 c_out h1 -> modifies (loc a) h0 h1 /\ as_seq h1 a == S.bn_reduce_once (as_seq h0 n) c (as_seq h0 a)) inline_for_extraction noextract let bn_add_mod_n_st (t:limb_t) (len:size_t{v len > 0}) = n:lbignum t len -> a:lbignum t len -> b:lbignum t len -> res:lbignum t len -> Stack unit (requires fun h -> live h n /\ live h a /\ live h b /\ live h res /\ disjoint n a /\ disjoint n b /\ disjoint n res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_add_mod_n (as_seq h0 n) (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_add_mod_n: #t:limb_t -> len:size_t{v len > 0} -> bn_add_mod_n_st t len inline_for_extraction noextract let bn_sub_mod_n_st (t:limb_t) (len:size_t{v len > 0}) = n:lbignum t len -> a:lbignum t len -> b:lbignum t len -> res:lbignum t len -> Stack unit (requires fun h -> live h n /\ live h a /\ live h b /\ live h res /\ disjoint n a /\ disjoint n b /\ disjoint n res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_sub_mod_n (as_seq h0 n) (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_sub_mod_n: #t:limb_t -> len:size_t{v len > 0} -> bn_sub_mod_n_st t len inline_for_extraction noextract val bn_mul1: #t:limb_t -> aLen:size_t -> a:lbignum t aLen -> l:limb t -> res:lbignum t aLen -> Stack (limb t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint res a) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_mul1 (as_seq h0 a) l) inline_for_extraction noextract let bn_karatsuba_mul_st (t:limb_t) (len:size_t{0 < v len /\ 4 * v len <= max_size_t}) (a:lbignum t len) = b:lbignum t len -> res:lbignum t (len +! len) -> Stack unit (requires fun h -> live h a /\ live h b /\ live h res /\ disjoint res a /\ disjoint res b /\ eq_or_disjoint a b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_mul (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_karatsuba_mul: #t:limb_t -> len:size_t{0 < v len /\ 4 * v len <= max_size_t} -> a:lbignum t len -> bn_karatsuba_mul_st t len a inline_for_extraction noextract let bn_mul_st (t:limb_t) (aLen:size_t) (bLen:size_t{v aLen + v bLen <= max_size_t}) (a:lbignum t aLen) = b:lbignum t bLen -> res:lbignum t (aLen +! bLen) -> Stack unit (requires fun h -> live h a /\ live h b /\ live h res /\ disjoint res a /\ disjoint res b /\ eq_or_disjoint a b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_mul (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_mul: #t:limb_t -> aLen:size_t -> bLen:size_t{v aLen + v bLen <= max_size_t} -> a:lbignum t aLen -> bn_mul_st t aLen bLen a inline_for_extraction noextract let bn_karatsuba_sqr_st (t:limb_t) (len:size_t{0 < v len /\ 4 * v len <= max_size_t}) (a:lbignum t len) = res:lbignum t (len +! len) -> Stack unit (requires fun h -> live h a /\ live h res /\ disjoint res a) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_mul (as_seq h0 a) (as_seq h0 a)) inline_for_extraction noextract val bn_karatsuba_sqr: #t:limb_t -> len:size_t{0 < v len /\ 4 * v len <= max_size_t} -> a:lbignum t len -> bn_karatsuba_sqr_st t len a inline_for_extraction noextract let bn_sqr_st (t:limb_t) (len:size_t{0 < v len /\ v len + v len <= max_size_t}) (a:lbignum t len) = res:lbignum t (len +! len) -> Stack unit (requires fun h -> live h a /\ live h res /\ disjoint res a) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_mul (as_seq h0 a) (as_seq h0 a)) inline_for_extraction noextract val bn_sqr: #t:limb_t -> len:size_t{0 < v len /\ v len + v len <= max_size_t} -> a:lbignum t len -> bn_sqr_st t len a inline_for_extraction noextract val bn_mul1_lshift_add_in_place: #t:limb_t -> aLen:size_t -> a:lbignum t aLen -> b:limb t -> resLen:size_t -> j:size_t{v j + v aLen <= v resLen} -> res:lbignum t resLen -> Stack (limb t) (requires fun h -> live h a /\ live h res /\ disjoint res a) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_mul1_lshift_add (as_seq h0 a) b (v j) (as_seq h0 res)) inline_for_extraction noextract val bn_rshift: #t:limb_t -> len:size_t -> b:lbignum t len -> i:size_t{v i < v len} -> res:lbignum t (len -! i) -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_rshift (as_seq h0 b) (v i)) inline_for_extraction noextract val bn_sub_mask: #t:limb_t -> len:size_t{v len > 0} -> n:lbignum t len -> a:lbignum t len -> Stack unit (requires fun h -> live h n /\ live h a /\ disjoint n a) (ensures fun h0 _ h1 -> modifies (loc a) h0 h1 /\ as_seq h1 a == S.bn_sub_mask (as_seq h0 n) (as_seq h0 a)) /// /// Get and set i-th bit of a bignum /// inline_for_extraction noextract val bn_get_ith_bit: #t:limb_t -> len:size_t -> b:lbignum t len -> i:size_t{v i / bits t < v len} -> Stack (limb t) (requires fun h -> live h b) (ensures fun h0 r h1 -> h0 == h1 /\ r == S.bn_get_ith_bit (as_seq h0 b) (v i)) inline_for_extraction noextract val bn_get_bits: #t:limb_t -> len:size_t -> b:lbignum t len -> i:size_t -> l:size_t{v l < bits t /\ v i / bits t < v len} -> Stack (limb t) (requires fun h -> live h b) (ensures fun h0 r h1 -> h0 == h1 /\ r == S.bn_get_bits (as_seq h0 b) (v i) (v l)) inline_for_extraction noextract val bn_set_ith_bit: #t:limb_t -> len:size_t -> b:lbignum t len -> i:size_t{v i / bits t < v len} -> Stack unit (requires fun h -> live h b) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ as_seq h1 b == S.bn_set_ith_bit (as_seq h0 b) (v i)) inline_for_extraction noextract val cswap2: #t:limb_t -> len:size_t -> bit:limb t -> b1:lbignum t len -> b2:lbignum t len -> Stack unit (requires fun h -> live h b1 /\ live h b2 /\ disjoint b1 b2) (ensures fun h0 _ h1 -> modifies (loc b1 |+| loc b2) h0 h1 /\ (as_seq h1 b1, as_seq h1 b2) == S.cswap2 bit (as_seq h0 b1) (as_seq h0 b2)) /// Start of the len-based specialization infrastructure. /// /// Essentially, we wish to describe a type class of basic bignum operations /// needed to implement Montgomery reduction. This will allow us to generate /// specialized versions of modular exponentiation for a given bignum size. /// /// This is done "by hand" because the specialization pattern is more /// complicated than other pieces of code (chacha, poly, curve), meaning I don't /// (yet) know how to automate it with a tactic. So, a type class seems like the /// most efficient way to go about it. /// /// The operations of the type class were found by essentially reading the code, /// writing down which operations from Hacl.Bignum are (transitively) needed to /// implement modular exponentiation, and figuring out for each call-site /// whether they can be specialized for the bignum size, or whether they have to /// been inline-for-extraction'd.
false
true
Hacl.Bignum.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val meta_len : t: Hacl.Bignum.Definitions.limb_t -> Type0
[]
Hacl.Bignum.meta_len
{ "file_name": "code/bignum/Hacl.Bignum.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
t: Hacl.Bignum.Definitions.limb_t -> Type0
{ "end_col": 83, "end_line": 373, "start_col": 26, "start_line": 373 }
Prims.Tot
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_add_st (t:limb_t) = aLen:size_t -> a:lbignum t aLen -> bLen:size_t{v bLen <= v aLen} -> b:lbignum t bLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ disjoint a b /\ eq_or_disjoint a res /\ disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_add (as_seq h0 a) (as_seq h0 b))
let bn_add_st (t: limb_t) =
false
null
false
aLen: size_t -> a: lbignum t aLen -> bLen: size_t{v bLen <= v aLen} -> b: lbignum t bLen -> res: lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ disjoint a b /\ eq_or_disjoint a res /\ disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_add (as_seq h0 a) (as_seq h0 b) )
{ "checked_file": "Hacl.Bignum.fsti.checked", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "FStar.Tactics.Typeclasses.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.fsti" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Lib.IntTypes.size_t", "Hacl.Bignum.Definitions.lbignum", "Prims.b2t", "Prims.op_LessThanOrEqual", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Spec.Bignum.Base.carry", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "Lib.Buffer.live", "Lib.Buffer.MUT", "Hacl.Bignum.Definitions.limb", "Lib.Buffer.disjoint", "Lib.Buffer.eq_or_disjoint", "Lib.Buffer.modifies", "Lib.Buffer.loc", "Prims.eq2", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.Definitions.lbignum", "FStar.Pervasives.Native.Mktuple2", "Lib.Buffer.as_seq", "Hacl.Spec.Bignum.bn_add" ]
[]
module Hacl.Bignum open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Base open Hacl.Bignum.Definitions module S = Hacl.Spec.Bignum module ST = FStar.HyperStack.ST module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val bn_add1: #t:limb_t -> aLen:size_t{0 < v aLen} -> a:lbignum t aLen -> b1:limb t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_add1 (as_seq h0 a) b1 in c_out == c /\ as_seq h1 res == r)) inline_for_extraction noextract val bn_sub1: #t:limb_t -> aLen:size_t{0 < v aLen} -> a:lbignum t aLen -> b1:limb t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_sub1 (as_seq h0 a) b1 in c_out == c /\ as_seq h1 res == r)) inline_for_extraction noextract let bn_add_eq_len_st (t:limb_t) (len:size_t) = a:lbignum t len -> b:lbignum t len -> res:lbignum t len -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_add (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_add_eq_len: #t:limb_t -> len:size_t -> bn_add_eq_len_st t len inline_for_extraction noextract let bn_sub_eq_len_st (t:limb_t) (len:size_t) = a:lbignum t len -> b:lbignum t len -> res:lbignum t len -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_sub (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_sub_eq_len: #t:limb_t -> len:size_t -> bn_sub_eq_len_st t len inline_for_extraction noextract
false
true
Hacl.Bignum.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_add_st : t: Hacl.Bignum.Definitions.limb_t -> Type0
[]
Hacl.Bignum.bn_add_st
{ "file_name": "code/bignum/Hacl.Bignum.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
t: Hacl.Bignum.Definitions.limb_t -> Type0
{ "end_col": 67, "end_line": 96, "start_col": 4, "start_line": 86 }
Prims.Tot
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_sub_st (t:limb_t) = aLen:size_t -> a:lbignum t aLen -> bLen:size_t{v bLen <= v aLen} -> b:lbignum t bLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ disjoint a b /\ eq_or_disjoint a res /\ disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_sub (as_seq h0 a) (as_seq h0 b))
let bn_sub_st (t: limb_t) =
false
null
false
aLen: size_t -> a: lbignum t aLen -> bLen: size_t{v bLen <= v aLen} -> b: lbignum t bLen -> res: lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ disjoint a b /\ eq_or_disjoint a res /\ disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_sub (as_seq h0 a) (as_seq h0 b) )
{ "checked_file": "Hacl.Bignum.fsti.checked", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "FStar.Tactics.Typeclasses.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.fsti" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Lib.IntTypes.size_t", "Hacl.Bignum.Definitions.lbignum", "Prims.b2t", "Prims.op_LessThanOrEqual", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Spec.Bignum.Base.carry", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "Lib.Buffer.live", "Lib.Buffer.MUT", "Hacl.Bignum.Definitions.limb", "Lib.Buffer.disjoint", "Lib.Buffer.eq_or_disjoint", "Lib.Buffer.modifies", "Lib.Buffer.loc", "Prims.eq2", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.Definitions.lbignum", "FStar.Pervasives.Native.Mktuple2", "Lib.Buffer.as_seq", "Hacl.Spec.Bignum.bn_sub" ]
[]
module Hacl.Bignum open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Base open Hacl.Bignum.Definitions module S = Hacl.Spec.Bignum module ST = FStar.HyperStack.ST module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val bn_add1: #t:limb_t -> aLen:size_t{0 < v aLen} -> a:lbignum t aLen -> b1:limb t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_add1 (as_seq h0 a) b1 in c_out == c /\ as_seq h1 res == r)) inline_for_extraction noextract val bn_sub1: #t:limb_t -> aLen:size_t{0 < v aLen} -> a:lbignum t aLen -> b1:limb t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_sub1 (as_seq h0 a) b1 in c_out == c /\ as_seq h1 res == r)) inline_for_extraction noextract let bn_add_eq_len_st (t:limb_t) (len:size_t) = a:lbignum t len -> b:lbignum t len -> res:lbignum t len -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_add (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_add_eq_len: #t:limb_t -> len:size_t -> bn_add_eq_len_st t len inline_for_extraction noextract let bn_sub_eq_len_st (t:limb_t) (len:size_t) = a:lbignum t len -> b:lbignum t len -> res:lbignum t len -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_sub (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_sub_eq_len: #t:limb_t -> len:size_t -> bn_sub_eq_len_st t len inline_for_extraction noextract let bn_add_st (t:limb_t) = aLen:size_t -> a:lbignum t aLen -> bLen:size_t{v bLen <= v aLen} -> b:lbignum t bLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ disjoint a b /\ eq_or_disjoint a res /\ disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_add (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_add: #t:limb_t -> bn_add_st t inline_for_extraction noextract
false
true
Hacl.Bignum.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_sub_st : t: Hacl.Bignum.Definitions.limb_t -> Type0
[]
Hacl.Bignum.bn_sub_st
{ "file_name": "code/bignum/Hacl.Bignum.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
t: Hacl.Bignum.Definitions.limb_t -> Type0
{ "end_col": 66, "end_line": 115, "start_col": 4, "start_line": 105 }
Prims.Tot
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_add_eq_len_st (t:limb_t) (len:size_t) = a:lbignum t len -> b:lbignum t len -> res:lbignum t len -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_add (as_seq h0 a) (as_seq h0 b))
let bn_add_eq_len_st (t: limb_t) (len: size_t) =
false
null
false
a: lbignum t len -> b: lbignum t len -> res: lbignum t len -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_add (as_seq h0 a) (as_seq h0 b) )
{ "checked_file": "Hacl.Bignum.fsti.checked", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "FStar.Tactics.Typeclasses.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.fsti" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Lib.IntTypes.size_t", "Hacl.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Base.carry", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "Lib.Buffer.live", "Lib.Buffer.MUT", "Hacl.Bignum.Definitions.limb", "Lib.Buffer.eq_or_disjoint", "Lib.Buffer.modifies", "Lib.Buffer.loc", "Prims.eq2", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.Definitions.lbignum", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "FStar.Pervasives.Native.Mktuple2", "Lib.Buffer.as_seq", "Hacl.Spec.Bignum.bn_add" ]
[]
module Hacl.Bignum open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Base open Hacl.Bignum.Definitions module S = Hacl.Spec.Bignum module ST = FStar.HyperStack.ST module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val bn_add1: #t:limb_t -> aLen:size_t{0 < v aLen} -> a:lbignum t aLen -> b1:limb t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_add1 (as_seq h0 a) b1 in c_out == c /\ as_seq h1 res == r)) inline_for_extraction noextract val bn_sub1: #t:limb_t -> aLen:size_t{0 < v aLen} -> a:lbignum t aLen -> b1:limb t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_sub1 (as_seq h0 a) b1 in c_out == c /\ as_seq h1 res == r)) inline_for_extraction noextract
false
true
Hacl.Bignum.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_add_eq_len_st : t: Hacl.Bignum.Definitions.limb_t -> len: Lib.IntTypes.size_t -> Type0
[]
Hacl.Bignum.bn_add_eq_len_st
{ "file_name": "code/bignum/Hacl.Bignum.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
t: Hacl.Bignum.Definitions.limb_t -> len: Lib.IntTypes.size_t -> Type0
{ "end_col": 67, "end_line": 60, "start_col": 5, "start_line": 52 }
Prims.Tot
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_add_mod_n_st (t:limb_t) (len:size_t{v len > 0}) = n:lbignum t len -> a:lbignum t len -> b:lbignum t len -> res:lbignum t len -> Stack unit (requires fun h -> live h n /\ live h a /\ live h b /\ live h res /\ disjoint n a /\ disjoint n b /\ disjoint n res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_add_mod_n (as_seq h0 n) (as_seq h0 a) (as_seq h0 b))
let bn_add_mod_n_st (t: limb_t) (len: size_t{v len > 0}) =
false
null
false
n: lbignum t len -> a: lbignum t len -> b: lbignum t len -> res: lbignum t len -> Stack unit (requires fun h -> live h n /\ live h a /\ live h b /\ live h res /\ disjoint n a /\ disjoint n b /\ disjoint n res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_add_mod_n (as_seq h0 n) (as_seq h0 a) (as_seq h0 b))
{ "checked_file": "Hacl.Bignum.fsti.checked", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "FStar.Tactics.Typeclasses.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.fsti" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_GreaterThan", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Bignum.Definitions.lbignum", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "Lib.Buffer.live", "Lib.Buffer.MUT", "Hacl.Bignum.Definitions.limb", "Lib.Buffer.disjoint", "Lib.Buffer.eq_or_disjoint", "Lib.Buffer.modifies", "Lib.Buffer.loc", "Prims.eq2", "Lib.Sequence.lseq", "Lib.Buffer.as_seq", "Hacl.Spec.Bignum.bn_add_mod_n" ]
[]
module Hacl.Bignum open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Base open Hacl.Bignum.Definitions module S = Hacl.Spec.Bignum module ST = FStar.HyperStack.ST module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val bn_add1: #t:limb_t -> aLen:size_t{0 < v aLen} -> a:lbignum t aLen -> b1:limb t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_add1 (as_seq h0 a) b1 in c_out == c /\ as_seq h1 res == r)) inline_for_extraction noextract val bn_sub1: #t:limb_t -> aLen:size_t{0 < v aLen} -> a:lbignum t aLen -> b1:limb t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_sub1 (as_seq h0 a) b1 in c_out == c /\ as_seq h1 res == r)) inline_for_extraction noextract let bn_add_eq_len_st (t:limb_t) (len:size_t) = a:lbignum t len -> b:lbignum t len -> res:lbignum t len -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_add (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_add_eq_len: #t:limb_t -> len:size_t -> bn_add_eq_len_st t len inline_for_extraction noextract let bn_sub_eq_len_st (t:limb_t) (len:size_t) = a:lbignum t len -> b:lbignum t len -> res:lbignum t len -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_sub (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_sub_eq_len: #t:limb_t -> len:size_t -> bn_sub_eq_len_st t len inline_for_extraction noextract let bn_add_st (t:limb_t) = aLen:size_t -> a:lbignum t aLen -> bLen:size_t{v bLen <= v aLen} -> b:lbignum t bLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ disjoint a b /\ eq_or_disjoint a res /\ disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_add (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_add: #t:limb_t -> bn_add_st t inline_for_extraction noextract let bn_sub_st (t:limb_t) = aLen:size_t -> a:lbignum t aLen -> bLen:size_t{v bLen <= v aLen} -> b:lbignum t bLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ disjoint a b /\ eq_or_disjoint a res /\ disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_sub (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_sub: #t:limb_t -> bn_sub_st t inline_for_extraction noextract val bn_reduce_once: #t:limb_t -> aLen:size_t{v aLen > 0} -> n:lbignum t aLen -> c:carry t -> a:lbignum t aLen -> Stack unit (requires fun h -> live h a /\ live h n /\ disjoint a n) (ensures fun h0 c_out h1 -> modifies (loc a) h0 h1 /\ as_seq h1 a == S.bn_reduce_once (as_seq h0 n) c (as_seq h0 a)) inline_for_extraction noextract
false
false
Hacl.Bignum.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_add_mod_n_st : t: Hacl.Bignum.Definitions.limb_t -> len: Lib.IntTypes.size_t{Lib.IntTypes.v len > 0} -> Type0
[]
Hacl.Bignum.bn_add_mod_n_st
{ "file_name": "code/bignum/Hacl.Bignum.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
t: Hacl.Bignum.Definitions.limb_t -> len: Lib.IntTypes.size_t{Lib.IntTypes.v len > 0} -> Type0
{ "end_col": 78, "end_line": 147, "start_col": 4, "start_line": 137 }
Prims.Tot
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_karatsuba_mul_st (t:limb_t) (len:size_t{0 < v len /\ 4 * v len <= max_size_t}) (a:lbignum t len) = b:lbignum t len -> res:lbignum t (len +! len) -> Stack unit (requires fun h -> live h a /\ live h b /\ live h res /\ disjoint res a /\ disjoint res b /\ eq_or_disjoint a b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_mul (as_seq h0 a) (as_seq h0 b))
let bn_karatsuba_mul_st (t: limb_t) (len: size_t{0 < v len /\ 4 * v len <= max_size_t}) (a: lbignum t len) =
false
null
false
b: lbignum t len -> res: lbignum t (len +! len) -> Stack unit (requires fun h -> live h a /\ live h b /\ live h res /\ disjoint res a /\ disjoint res b /\ eq_or_disjoint a b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_mul (as_seq h0 a) (as_seq h0 b))
{ "checked_file": "Hacl.Bignum.fsti.checked", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "FStar.Tactics.Typeclasses.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.fsti" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Lib.IntTypes.size_t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.max_size_t", "Hacl.Bignum.Definitions.lbignum", "Lib.IntTypes.op_Plus_Bang", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "Lib.Buffer.live", "Lib.Buffer.MUT", "Hacl.Bignum.Definitions.limb", "Lib.Buffer.disjoint", "Lib.Buffer.eq_or_disjoint", "Lib.Buffer.modifies", "Lib.Buffer.loc", "Prims.eq2", "Lib.Sequence.seq", "Prims.l_or", "Prims.nat", "FStar.Seq.Base.length", "Hacl.Spec.Bignum.Definitions.limb", "Prims.op_Addition", "Lib.Buffer.as_seq", "Hacl.Spec.Bignum.bn_mul" ]
[]
module Hacl.Bignum open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Base open Hacl.Bignum.Definitions module S = Hacl.Spec.Bignum module ST = FStar.HyperStack.ST module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val bn_add1: #t:limb_t -> aLen:size_t{0 < v aLen} -> a:lbignum t aLen -> b1:limb t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_add1 (as_seq h0 a) b1 in c_out == c /\ as_seq h1 res == r)) inline_for_extraction noextract val bn_sub1: #t:limb_t -> aLen:size_t{0 < v aLen} -> a:lbignum t aLen -> b1:limb t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_sub1 (as_seq h0 a) b1 in c_out == c /\ as_seq h1 res == r)) inline_for_extraction noextract let bn_add_eq_len_st (t:limb_t) (len:size_t) = a:lbignum t len -> b:lbignum t len -> res:lbignum t len -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_add (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_add_eq_len: #t:limb_t -> len:size_t -> bn_add_eq_len_st t len inline_for_extraction noextract let bn_sub_eq_len_st (t:limb_t) (len:size_t) = a:lbignum t len -> b:lbignum t len -> res:lbignum t len -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_sub (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_sub_eq_len: #t:limb_t -> len:size_t -> bn_sub_eq_len_st t len inline_for_extraction noextract let bn_add_st (t:limb_t) = aLen:size_t -> a:lbignum t aLen -> bLen:size_t{v bLen <= v aLen} -> b:lbignum t bLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ disjoint a b /\ eq_or_disjoint a res /\ disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_add (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_add: #t:limb_t -> bn_add_st t inline_for_extraction noextract let bn_sub_st (t:limb_t) = aLen:size_t -> a:lbignum t aLen -> bLen:size_t{v bLen <= v aLen} -> b:lbignum t bLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ disjoint a b /\ eq_or_disjoint a res /\ disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_sub (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_sub: #t:limb_t -> bn_sub_st t inline_for_extraction noextract val bn_reduce_once: #t:limb_t -> aLen:size_t{v aLen > 0} -> n:lbignum t aLen -> c:carry t -> a:lbignum t aLen -> Stack unit (requires fun h -> live h a /\ live h n /\ disjoint a n) (ensures fun h0 c_out h1 -> modifies (loc a) h0 h1 /\ as_seq h1 a == S.bn_reduce_once (as_seq h0 n) c (as_seq h0 a)) inline_for_extraction noextract let bn_add_mod_n_st (t:limb_t) (len:size_t{v len > 0}) = n:lbignum t len -> a:lbignum t len -> b:lbignum t len -> res:lbignum t len -> Stack unit (requires fun h -> live h n /\ live h a /\ live h b /\ live h res /\ disjoint n a /\ disjoint n b /\ disjoint n res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_add_mod_n (as_seq h0 n) (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_add_mod_n: #t:limb_t -> len:size_t{v len > 0} -> bn_add_mod_n_st t len inline_for_extraction noextract let bn_sub_mod_n_st (t:limb_t) (len:size_t{v len > 0}) = n:lbignum t len -> a:lbignum t len -> b:lbignum t len -> res:lbignum t len -> Stack unit (requires fun h -> live h n /\ live h a /\ live h b /\ live h res /\ disjoint n a /\ disjoint n b /\ disjoint n res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_sub_mod_n (as_seq h0 n) (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_sub_mod_n: #t:limb_t -> len:size_t{v len > 0} -> bn_sub_mod_n_st t len inline_for_extraction noextract val bn_mul1: #t:limb_t -> aLen:size_t -> a:lbignum t aLen -> l:limb t -> res:lbignum t aLen -> Stack (limb t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint res a) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_mul1 (as_seq h0 a) l) inline_for_extraction noextract
false
false
Hacl.Bignum.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_karatsuba_mul_st : t: Hacl.Bignum.Definitions.limb_t -> len: Lib.IntTypes.size_t {0 < Lib.IntTypes.v len /\ 4 * Lib.IntTypes.v len <= Lib.IntTypes.max_size_t} -> a: Hacl.Bignum.Definitions.lbignum t len -> Type0
[]
Hacl.Bignum.bn_karatsuba_mul_st
{ "file_name": "code/bignum/Hacl.Bignum.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
t: Hacl.Bignum.Definitions.limb_t -> len: Lib.IntTypes.size_t {0 < Lib.IntTypes.v len /\ 4 * Lib.IntTypes.v len <= Lib.IntTypes.max_size_t} -> a: Hacl.Bignum.Definitions.lbignum t len -> Type0
{ "end_col": 58, "end_line": 196, "start_col": 4, "start_line": 189 }
Prims.Tot
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_sub_eq_len_st (t:limb_t) (len:size_t) = a:lbignum t len -> b:lbignum t len -> res:lbignum t len -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_sub (as_seq h0 a) (as_seq h0 b))
let bn_sub_eq_len_st (t: limb_t) (len: size_t) =
false
null
false
a: lbignum t len -> b: lbignum t len -> res: lbignum t len -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_sub (as_seq h0 a) (as_seq h0 b) )
{ "checked_file": "Hacl.Bignum.fsti.checked", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "FStar.Tactics.Typeclasses.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.fsti" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Lib.IntTypes.size_t", "Hacl.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Base.carry", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "Lib.Buffer.live", "Lib.Buffer.MUT", "Hacl.Bignum.Definitions.limb", "Lib.Buffer.eq_or_disjoint", "Lib.Buffer.modifies", "Lib.Buffer.loc", "Prims.eq2", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.Definitions.lbignum", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "FStar.Pervasives.Native.Mktuple2", "Lib.Buffer.as_seq", "Hacl.Spec.Bignum.bn_sub" ]
[]
module Hacl.Bignum open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Base open Hacl.Bignum.Definitions module S = Hacl.Spec.Bignum module ST = FStar.HyperStack.ST module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val bn_add1: #t:limb_t -> aLen:size_t{0 < v aLen} -> a:lbignum t aLen -> b1:limb t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_add1 (as_seq h0 a) b1 in c_out == c /\ as_seq h1 res == r)) inline_for_extraction noextract val bn_sub1: #t:limb_t -> aLen:size_t{0 < v aLen} -> a:lbignum t aLen -> b1:limb t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_sub1 (as_seq h0 a) b1 in c_out == c /\ as_seq h1 res == r)) inline_for_extraction noextract let bn_add_eq_len_st (t:limb_t) (len:size_t) = a:lbignum t len -> b:lbignum t len -> res:lbignum t len -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_add (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_add_eq_len: #t:limb_t -> len:size_t -> bn_add_eq_len_st t len inline_for_extraction noextract
false
true
Hacl.Bignum.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_sub_eq_len_st : t: Hacl.Bignum.Definitions.limb_t -> len: Lib.IntTypes.size_t -> Type0
[]
Hacl.Bignum.bn_sub_eq_len_st
{ "file_name": "code/bignum/Hacl.Bignum.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
t: Hacl.Bignum.Definitions.limb_t -> len: Lib.IntTypes.size_t -> Type0
{ "end_col": 66, "end_line": 77, "start_col": 5, "start_line": 69 }
Prims.Tot
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_sub_mod_n_st (t:limb_t) (len:size_t{v len > 0}) = n:lbignum t len -> a:lbignum t len -> b:lbignum t len -> res:lbignum t len -> Stack unit (requires fun h -> live h n /\ live h a /\ live h b /\ live h res /\ disjoint n a /\ disjoint n b /\ disjoint n res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_sub_mod_n (as_seq h0 n) (as_seq h0 a) (as_seq h0 b))
let bn_sub_mod_n_st (t: limb_t) (len: size_t{v len > 0}) =
false
null
false
n: lbignum t len -> a: lbignum t len -> b: lbignum t len -> res: lbignum t len -> Stack unit (requires fun h -> live h n /\ live h a /\ live h b /\ live h res /\ disjoint n a /\ disjoint n b /\ disjoint n res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_sub_mod_n (as_seq h0 n) (as_seq h0 a) (as_seq h0 b))
{ "checked_file": "Hacl.Bignum.fsti.checked", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "FStar.Tactics.Typeclasses.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.fsti" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_GreaterThan", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Bignum.Definitions.lbignum", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "Lib.Buffer.live", "Lib.Buffer.MUT", "Hacl.Bignum.Definitions.limb", "Lib.Buffer.disjoint", "Lib.Buffer.eq_or_disjoint", "Lib.Buffer.modifies", "Lib.Buffer.loc", "Prims.eq2", "Lib.Sequence.lseq", "Lib.Buffer.as_seq", "Hacl.Spec.Bignum.bn_sub_mod_n" ]
[]
module Hacl.Bignum open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Base open Hacl.Bignum.Definitions module S = Hacl.Spec.Bignum module ST = FStar.HyperStack.ST module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val bn_add1: #t:limb_t -> aLen:size_t{0 < v aLen} -> a:lbignum t aLen -> b1:limb t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_add1 (as_seq h0 a) b1 in c_out == c /\ as_seq h1 res == r)) inline_for_extraction noextract val bn_sub1: #t:limb_t -> aLen:size_t{0 < v aLen} -> a:lbignum t aLen -> b1:limb t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_sub1 (as_seq h0 a) b1 in c_out == c /\ as_seq h1 res == r)) inline_for_extraction noextract let bn_add_eq_len_st (t:limb_t) (len:size_t) = a:lbignum t len -> b:lbignum t len -> res:lbignum t len -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_add (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_add_eq_len: #t:limb_t -> len:size_t -> bn_add_eq_len_st t len inline_for_extraction noextract let bn_sub_eq_len_st (t:limb_t) (len:size_t) = a:lbignum t len -> b:lbignum t len -> res:lbignum t len -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_sub (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_sub_eq_len: #t:limb_t -> len:size_t -> bn_sub_eq_len_st t len inline_for_extraction noextract let bn_add_st (t:limb_t) = aLen:size_t -> a:lbignum t aLen -> bLen:size_t{v bLen <= v aLen} -> b:lbignum t bLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ disjoint a b /\ eq_or_disjoint a res /\ disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_add (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_add: #t:limb_t -> bn_add_st t inline_for_extraction noextract let bn_sub_st (t:limb_t) = aLen:size_t -> a:lbignum t aLen -> bLen:size_t{v bLen <= v aLen} -> b:lbignum t bLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ disjoint a b /\ eq_or_disjoint a res /\ disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_sub (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_sub: #t:limb_t -> bn_sub_st t inline_for_extraction noextract val bn_reduce_once: #t:limb_t -> aLen:size_t{v aLen > 0} -> n:lbignum t aLen -> c:carry t -> a:lbignum t aLen -> Stack unit (requires fun h -> live h a /\ live h n /\ disjoint a n) (ensures fun h0 c_out h1 -> modifies (loc a) h0 h1 /\ as_seq h1 a == S.bn_reduce_once (as_seq h0 n) c (as_seq h0 a)) inline_for_extraction noextract let bn_add_mod_n_st (t:limb_t) (len:size_t{v len > 0}) = n:lbignum t len -> a:lbignum t len -> b:lbignum t len -> res:lbignum t len -> Stack unit (requires fun h -> live h n /\ live h a /\ live h b /\ live h res /\ disjoint n a /\ disjoint n b /\ disjoint n res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_add_mod_n (as_seq h0 n) (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_add_mod_n: #t:limb_t -> len:size_t{v len > 0} -> bn_add_mod_n_st t len inline_for_extraction noextract
false
false
Hacl.Bignum.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_sub_mod_n_st : t: Hacl.Bignum.Definitions.limb_t -> len: Lib.IntTypes.size_t{Lib.IntTypes.v len > 0} -> Type0
[]
Hacl.Bignum.bn_sub_mod_n_st
{ "file_name": "code/bignum/Hacl.Bignum.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
t: Hacl.Bignum.Definitions.limb_t -> len: Lib.IntTypes.size_t{Lib.IntTypes.v len > 0} -> Type0
{ "end_col": 78, "end_line": 166, "start_col": 4, "start_line": 156 }
Prims.Tot
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_mul_st (t:limb_t) (aLen:size_t) (bLen:size_t{v aLen + v bLen <= max_size_t}) (a:lbignum t aLen) = b:lbignum t bLen -> res:lbignum t (aLen +! bLen) -> Stack unit (requires fun h -> live h a /\ live h b /\ live h res /\ disjoint res a /\ disjoint res b /\ eq_or_disjoint a b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_mul (as_seq h0 a) (as_seq h0 b))
let bn_mul_st (t: limb_t) (aLen: size_t) (bLen: size_t{v aLen + v bLen <= max_size_t}) (a: lbignum t aLen) =
false
null
false
b: lbignum t bLen -> res: lbignum t (aLen +! bLen) -> Stack unit (requires fun h -> live h a /\ live h b /\ live h res /\ disjoint res a /\ disjoint res b /\ eq_or_disjoint a b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_mul (as_seq h0 a) (as_seq h0 b))
{ "checked_file": "Hacl.Bignum.fsti.checked", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "FStar.Tactics.Typeclasses.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.fsti" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.IntTypes.max_size_t", "Hacl.Bignum.Definitions.lbignum", "Lib.IntTypes.op_Plus_Bang", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "Lib.Buffer.live", "Lib.Buffer.MUT", "Hacl.Bignum.Definitions.limb", "Lib.Buffer.disjoint", "Lib.Buffer.eq_or_disjoint", "Lib.Buffer.modifies", "Lib.Buffer.loc", "Prims.eq2", "Lib.Sequence.seq", "Prims.l_or", "Prims.nat", "FStar.Seq.Base.length", "Hacl.Spec.Bignum.Definitions.limb", "Lib.Buffer.as_seq", "Hacl.Spec.Bignum.bn_mul" ]
[]
module Hacl.Bignum open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Base open Hacl.Bignum.Definitions module S = Hacl.Spec.Bignum module ST = FStar.HyperStack.ST module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val bn_add1: #t:limb_t -> aLen:size_t{0 < v aLen} -> a:lbignum t aLen -> b1:limb t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_add1 (as_seq h0 a) b1 in c_out == c /\ as_seq h1 res == r)) inline_for_extraction noextract val bn_sub1: #t:limb_t -> aLen:size_t{0 < v aLen} -> a:lbignum t aLen -> b1:limb t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_sub1 (as_seq h0 a) b1 in c_out == c /\ as_seq h1 res == r)) inline_for_extraction noextract let bn_add_eq_len_st (t:limb_t) (len:size_t) = a:lbignum t len -> b:lbignum t len -> res:lbignum t len -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_add (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_add_eq_len: #t:limb_t -> len:size_t -> bn_add_eq_len_st t len inline_for_extraction noextract let bn_sub_eq_len_st (t:limb_t) (len:size_t) = a:lbignum t len -> b:lbignum t len -> res:lbignum t len -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_sub (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_sub_eq_len: #t:limb_t -> len:size_t -> bn_sub_eq_len_st t len inline_for_extraction noextract let bn_add_st (t:limb_t) = aLen:size_t -> a:lbignum t aLen -> bLen:size_t{v bLen <= v aLen} -> b:lbignum t bLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ disjoint a b /\ eq_or_disjoint a res /\ disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_add (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_add: #t:limb_t -> bn_add_st t inline_for_extraction noextract let bn_sub_st (t:limb_t) = aLen:size_t -> a:lbignum t aLen -> bLen:size_t{v bLen <= v aLen} -> b:lbignum t bLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ disjoint a b /\ eq_or_disjoint a res /\ disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_sub (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_sub: #t:limb_t -> bn_sub_st t inline_for_extraction noextract val bn_reduce_once: #t:limb_t -> aLen:size_t{v aLen > 0} -> n:lbignum t aLen -> c:carry t -> a:lbignum t aLen -> Stack unit (requires fun h -> live h a /\ live h n /\ disjoint a n) (ensures fun h0 c_out h1 -> modifies (loc a) h0 h1 /\ as_seq h1 a == S.bn_reduce_once (as_seq h0 n) c (as_seq h0 a)) inline_for_extraction noextract let bn_add_mod_n_st (t:limb_t) (len:size_t{v len > 0}) = n:lbignum t len -> a:lbignum t len -> b:lbignum t len -> res:lbignum t len -> Stack unit (requires fun h -> live h n /\ live h a /\ live h b /\ live h res /\ disjoint n a /\ disjoint n b /\ disjoint n res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_add_mod_n (as_seq h0 n) (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_add_mod_n: #t:limb_t -> len:size_t{v len > 0} -> bn_add_mod_n_st t len inline_for_extraction noextract let bn_sub_mod_n_st (t:limb_t) (len:size_t{v len > 0}) = n:lbignum t len -> a:lbignum t len -> b:lbignum t len -> res:lbignum t len -> Stack unit (requires fun h -> live h n /\ live h a /\ live h b /\ live h res /\ disjoint n a /\ disjoint n b /\ disjoint n res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_sub_mod_n (as_seq h0 n) (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_sub_mod_n: #t:limb_t -> len:size_t{v len > 0} -> bn_sub_mod_n_st t len inline_for_extraction noextract val bn_mul1: #t:limb_t -> aLen:size_t -> a:lbignum t aLen -> l:limb t -> res:lbignum t aLen -> Stack (limb t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint res a) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_mul1 (as_seq h0 a) l) inline_for_extraction noextract let bn_karatsuba_mul_st (t:limb_t) (len:size_t{0 < v len /\ 4 * v len <= max_size_t}) (a:lbignum t len) = b:lbignum t len -> res:lbignum t (len +! len) -> Stack unit (requires fun h -> live h a /\ live h b /\ live h res /\ disjoint res a /\ disjoint res b /\ eq_or_disjoint a b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_mul (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_karatsuba_mul: #t:limb_t -> len:size_t{0 < v len /\ 4 * v len <= max_size_t} -> a:lbignum t len -> bn_karatsuba_mul_st t len a inline_for_extraction noextract
false
false
Hacl.Bignum.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_mul_st : t: Hacl.Bignum.Definitions.limb_t -> aLen: Lib.IntTypes.size_t -> bLen: Lib.IntTypes.size_t{Lib.IntTypes.v aLen + Lib.IntTypes.v bLen <= Lib.IntTypes.max_size_t} -> a: Hacl.Bignum.Definitions.lbignum t aLen -> Type0
[]
Hacl.Bignum.bn_mul_st
{ "file_name": "code/bignum/Hacl.Bignum.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
t: Hacl.Bignum.Definitions.limb_t -> aLen: Lib.IntTypes.size_t -> bLen: Lib.IntTypes.size_t{Lib.IntTypes.v aLen + Lib.IntTypes.v bLen <= Lib.IntTypes.max_size_t} -> a: Hacl.Bignum.Definitions.lbignum t aLen -> Type0
{ "end_col": 58, "end_line": 216, "start_col": 4, "start_line": 209 }
Prims.Tot
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_karatsuba_sqr_st (t:limb_t) (len:size_t{0 < v len /\ 4 * v len <= max_size_t}) (a:lbignum t len) = res:lbignum t (len +! len) -> Stack unit (requires fun h -> live h a /\ live h res /\ disjoint res a) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_mul (as_seq h0 a) (as_seq h0 a))
let bn_karatsuba_sqr_st (t: limb_t) (len: size_t{0 < v len /\ 4 * v len <= max_size_t}) (a: lbignum t len) =
false
null
false
res: lbignum t (len +! len) -> Stack unit (requires fun h -> live h a /\ live h res /\ disjoint res a) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_mul (as_seq h0 a) (as_seq h0 a))
{ "checked_file": "Hacl.Bignum.fsti.checked", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "FStar.Tactics.Typeclasses.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.fsti" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Lib.IntTypes.size_t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.max_size_t", "Hacl.Bignum.Definitions.lbignum", "Lib.IntTypes.op_Plus_Bang", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "Lib.Buffer.live", "Lib.Buffer.MUT", "Hacl.Bignum.Definitions.limb", "Lib.Buffer.disjoint", "Lib.Buffer.modifies", "Lib.Buffer.loc", "Prims.eq2", "Lib.Sequence.seq", "Prims.l_or", "Prims.nat", "FStar.Seq.Base.length", "Hacl.Spec.Bignum.Definitions.limb", "Prims.op_Addition", "Lib.Buffer.as_seq", "Hacl.Spec.Bignum.bn_mul" ]
[]
module Hacl.Bignum open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Base open Hacl.Bignum.Definitions module S = Hacl.Spec.Bignum module ST = FStar.HyperStack.ST module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val bn_add1: #t:limb_t -> aLen:size_t{0 < v aLen} -> a:lbignum t aLen -> b1:limb t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_add1 (as_seq h0 a) b1 in c_out == c /\ as_seq h1 res == r)) inline_for_extraction noextract val bn_sub1: #t:limb_t -> aLen:size_t{0 < v aLen} -> a:lbignum t aLen -> b1:limb t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_sub1 (as_seq h0 a) b1 in c_out == c /\ as_seq h1 res == r)) inline_for_extraction noextract let bn_add_eq_len_st (t:limb_t) (len:size_t) = a:lbignum t len -> b:lbignum t len -> res:lbignum t len -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_add (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_add_eq_len: #t:limb_t -> len:size_t -> bn_add_eq_len_st t len inline_for_extraction noextract let bn_sub_eq_len_st (t:limb_t) (len:size_t) = a:lbignum t len -> b:lbignum t len -> res:lbignum t len -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_sub (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_sub_eq_len: #t:limb_t -> len:size_t -> bn_sub_eq_len_st t len inline_for_extraction noextract let bn_add_st (t:limb_t) = aLen:size_t -> a:lbignum t aLen -> bLen:size_t{v bLen <= v aLen} -> b:lbignum t bLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ disjoint a b /\ eq_or_disjoint a res /\ disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_add (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_add: #t:limb_t -> bn_add_st t inline_for_extraction noextract let bn_sub_st (t:limb_t) = aLen:size_t -> a:lbignum t aLen -> bLen:size_t{v bLen <= v aLen} -> b:lbignum t bLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ disjoint a b /\ eq_or_disjoint a res /\ disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_sub (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_sub: #t:limb_t -> bn_sub_st t inline_for_extraction noextract val bn_reduce_once: #t:limb_t -> aLen:size_t{v aLen > 0} -> n:lbignum t aLen -> c:carry t -> a:lbignum t aLen -> Stack unit (requires fun h -> live h a /\ live h n /\ disjoint a n) (ensures fun h0 c_out h1 -> modifies (loc a) h0 h1 /\ as_seq h1 a == S.bn_reduce_once (as_seq h0 n) c (as_seq h0 a)) inline_for_extraction noextract let bn_add_mod_n_st (t:limb_t) (len:size_t{v len > 0}) = n:lbignum t len -> a:lbignum t len -> b:lbignum t len -> res:lbignum t len -> Stack unit (requires fun h -> live h n /\ live h a /\ live h b /\ live h res /\ disjoint n a /\ disjoint n b /\ disjoint n res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_add_mod_n (as_seq h0 n) (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_add_mod_n: #t:limb_t -> len:size_t{v len > 0} -> bn_add_mod_n_st t len inline_for_extraction noextract let bn_sub_mod_n_st (t:limb_t) (len:size_t{v len > 0}) = n:lbignum t len -> a:lbignum t len -> b:lbignum t len -> res:lbignum t len -> Stack unit (requires fun h -> live h n /\ live h a /\ live h b /\ live h res /\ disjoint n a /\ disjoint n b /\ disjoint n res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_sub_mod_n (as_seq h0 n) (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_sub_mod_n: #t:limb_t -> len:size_t{v len > 0} -> bn_sub_mod_n_st t len inline_for_extraction noextract val bn_mul1: #t:limb_t -> aLen:size_t -> a:lbignum t aLen -> l:limb t -> res:lbignum t aLen -> Stack (limb t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint res a) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_mul1 (as_seq h0 a) l) inline_for_extraction noextract let bn_karatsuba_mul_st (t:limb_t) (len:size_t{0 < v len /\ 4 * v len <= max_size_t}) (a:lbignum t len) = b:lbignum t len -> res:lbignum t (len +! len) -> Stack unit (requires fun h -> live h a /\ live h b /\ live h res /\ disjoint res a /\ disjoint res b /\ eq_or_disjoint a b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_mul (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_karatsuba_mul: #t:limb_t -> len:size_t{0 < v len /\ 4 * v len <= max_size_t} -> a:lbignum t len -> bn_karatsuba_mul_st t len a inline_for_extraction noextract let bn_mul_st (t:limb_t) (aLen:size_t) (bLen:size_t{v aLen + v bLen <= max_size_t}) (a:lbignum t aLen) = b:lbignum t bLen -> res:lbignum t (aLen +! bLen) -> Stack unit (requires fun h -> live h a /\ live h b /\ live h res /\ disjoint res a /\ disjoint res b /\ eq_or_disjoint a b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_mul (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_mul: #t:limb_t -> aLen:size_t -> bLen:size_t{v aLen + v bLen <= max_size_t} -> a:lbignum t aLen -> bn_mul_st t aLen bLen a inline_for_extraction noextract
false
false
Hacl.Bignum.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_karatsuba_sqr_st : t: Hacl.Bignum.Definitions.limb_t -> len: Lib.IntTypes.size_t {0 < Lib.IntTypes.v len /\ 4 * Lib.IntTypes.v len <= Lib.IntTypes.max_size_t} -> a: Hacl.Bignum.Definitions.lbignum t len -> Type0
[]
Hacl.Bignum.bn_karatsuba_sqr_st
{ "file_name": "code/bignum/Hacl.Bignum.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
t: Hacl.Bignum.Definitions.limb_t -> len: Lib.IntTypes.size_t {0 < Lib.IntTypes.v len /\ 4 * Lib.IntTypes.v len <= Lib.IntTypes.max_size_t} -> a: Hacl.Bignum.Definitions.lbignum t len -> Type0
{ "end_col": 58, "end_line": 234, "start_col": 2, "start_line": 230 }
Prims.Tot
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_sqr_st (t:limb_t) (len:size_t{0 < v len /\ v len + v len <= max_size_t}) (a:lbignum t len) = res:lbignum t (len +! len) -> Stack unit (requires fun h -> live h a /\ live h res /\ disjoint res a) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_mul (as_seq h0 a) (as_seq h0 a))
let bn_sqr_st (t: limb_t) (len: size_t{0 < v len /\ v len + v len <= max_size_t}) (a: lbignum t len) =
false
null
false
res: lbignum t (len +! len) -> Stack unit (requires fun h -> live h a /\ live h res /\ disjoint res a) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_mul (as_seq h0 a) (as_seq h0 a))
{ "checked_file": "Hacl.Bignum.fsti.checked", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "FStar.Tactics.Typeclasses.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.fsti" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Lib.IntTypes.size_t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "Lib.IntTypes.max_size_t", "Hacl.Bignum.Definitions.lbignum", "Lib.IntTypes.op_Plus_Bang", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "Lib.Buffer.live", "Lib.Buffer.MUT", "Hacl.Bignum.Definitions.limb", "Lib.Buffer.disjoint", "Lib.Buffer.modifies", "Lib.Buffer.loc", "Prims.eq2", "Lib.Sequence.seq", "Prims.l_or", "Prims.nat", "FStar.Seq.Base.length", "Hacl.Spec.Bignum.Definitions.limb", "Lib.Buffer.as_seq", "Hacl.Spec.Bignum.bn_mul" ]
[]
module Hacl.Bignum open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Base open Hacl.Bignum.Definitions module S = Hacl.Spec.Bignum module ST = FStar.HyperStack.ST module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val bn_add1: #t:limb_t -> aLen:size_t{0 < v aLen} -> a:lbignum t aLen -> b1:limb t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_add1 (as_seq h0 a) b1 in c_out == c /\ as_seq h1 res == r)) inline_for_extraction noextract val bn_sub1: #t:limb_t -> aLen:size_t{0 < v aLen} -> a:lbignum t aLen -> b1:limb t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_sub1 (as_seq h0 a) b1 in c_out == c /\ as_seq h1 res == r)) inline_for_extraction noextract let bn_add_eq_len_st (t:limb_t) (len:size_t) = a:lbignum t len -> b:lbignum t len -> res:lbignum t len -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_add (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_add_eq_len: #t:limb_t -> len:size_t -> bn_add_eq_len_st t len inline_for_extraction noextract let bn_sub_eq_len_st (t:limb_t) (len:size_t) = a:lbignum t len -> b:lbignum t len -> res:lbignum t len -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_sub (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_sub_eq_len: #t:limb_t -> len:size_t -> bn_sub_eq_len_st t len inline_for_extraction noextract let bn_add_st (t:limb_t) = aLen:size_t -> a:lbignum t aLen -> bLen:size_t{v bLen <= v aLen} -> b:lbignum t bLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ disjoint a b /\ eq_or_disjoint a res /\ disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_add (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_add: #t:limb_t -> bn_add_st t inline_for_extraction noextract let bn_sub_st (t:limb_t) = aLen:size_t -> a:lbignum t aLen -> bLen:size_t{v bLen <= v aLen} -> b:lbignum t bLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ disjoint a b /\ eq_or_disjoint a res /\ disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_sub (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_sub: #t:limb_t -> bn_sub_st t inline_for_extraction noextract val bn_reduce_once: #t:limb_t -> aLen:size_t{v aLen > 0} -> n:lbignum t aLen -> c:carry t -> a:lbignum t aLen -> Stack unit (requires fun h -> live h a /\ live h n /\ disjoint a n) (ensures fun h0 c_out h1 -> modifies (loc a) h0 h1 /\ as_seq h1 a == S.bn_reduce_once (as_seq h0 n) c (as_seq h0 a)) inline_for_extraction noextract let bn_add_mod_n_st (t:limb_t) (len:size_t{v len > 0}) = n:lbignum t len -> a:lbignum t len -> b:lbignum t len -> res:lbignum t len -> Stack unit (requires fun h -> live h n /\ live h a /\ live h b /\ live h res /\ disjoint n a /\ disjoint n b /\ disjoint n res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_add_mod_n (as_seq h0 n) (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_add_mod_n: #t:limb_t -> len:size_t{v len > 0} -> bn_add_mod_n_st t len inline_for_extraction noextract let bn_sub_mod_n_st (t:limb_t) (len:size_t{v len > 0}) = n:lbignum t len -> a:lbignum t len -> b:lbignum t len -> res:lbignum t len -> Stack unit (requires fun h -> live h n /\ live h a /\ live h b /\ live h res /\ disjoint n a /\ disjoint n b /\ disjoint n res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_sub_mod_n (as_seq h0 n) (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_sub_mod_n: #t:limb_t -> len:size_t{v len > 0} -> bn_sub_mod_n_st t len inline_for_extraction noextract val bn_mul1: #t:limb_t -> aLen:size_t -> a:lbignum t aLen -> l:limb t -> res:lbignum t aLen -> Stack (limb t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint res a) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_mul1 (as_seq h0 a) l) inline_for_extraction noextract let bn_karatsuba_mul_st (t:limb_t) (len:size_t{0 < v len /\ 4 * v len <= max_size_t}) (a:lbignum t len) = b:lbignum t len -> res:lbignum t (len +! len) -> Stack unit (requires fun h -> live h a /\ live h b /\ live h res /\ disjoint res a /\ disjoint res b /\ eq_or_disjoint a b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_mul (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_karatsuba_mul: #t:limb_t -> len:size_t{0 < v len /\ 4 * v len <= max_size_t} -> a:lbignum t len -> bn_karatsuba_mul_st t len a inline_for_extraction noextract let bn_mul_st (t:limb_t) (aLen:size_t) (bLen:size_t{v aLen + v bLen <= max_size_t}) (a:lbignum t aLen) = b:lbignum t bLen -> res:lbignum t (aLen +! bLen) -> Stack unit (requires fun h -> live h a /\ live h b /\ live h res /\ disjoint res a /\ disjoint res b /\ eq_or_disjoint a b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_mul (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_mul: #t:limb_t -> aLen:size_t -> bLen:size_t{v aLen + v bLen <= max_size_t} -> a:lbignum t aLen -> bn_mul_st t aLen bLen a inline_for_extraction noextract let bn_karatsuba_sqr_st (t:limb_t) (len:size_t{0 < v len /\ 4 * v len <= max_size_t}) (a:lbignum t len) = res:lbignum t (len +! len) -> Stack unit (requires fun h -> live h a /\ live h res /\ disjoint res a) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_mul (as_seq h0 a) (as_seq h0 a)) inline_for_extraction noextract val bn_karatsuba_sqr: #t:limb_t -> len:size_t{0 < v len /\ 4 * v len <= max_size_t} -> a:lbignum t len -> bn_karatsuba_sqr_st t len a inline_for_extraction noextract
false
false
Hacl.Bignum.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_sqr_st : t: Hacl.Bignum.Definitions.limb_t -> len: Lib.IntTypes.size_t { 0 < Lib.IntTypes.v len /\ Lib.IntTypes.v len + Lib.IntTypes.v len <= Lib.IntTypes.max_size_t } -> a: Hacl.Bignum.Definitions.lbignum t len -> Type0
[]
Hacl.Bignum.bn_sqr_st
{ "file_name": "code/bignum/Hacl.Bignum.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
t: Hacl.Bignum.Definitions.limb_t -> len: Lib.IntTypes.size_t { 0 < Lib.IntTypes.v len /\ Lib.IntTypes.v len + Lib.IntTypes.v len <= Lib.IntTypes.max_size_t } -> a: Hacl.Bignum.Definitions.lbignum t len -> Type0
{ "end_col": 58, "end_line": 251, "start_col": 2, "start_line": 247 }
Prims.Tot
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_eq_mask_st (t:limb_t) (len:size_t) = a:lbignum t len -> b:lbignum t len -> Stack (limb t) (requires fun h -> live h a /\ live h b) (ensures fun h0 r h1 -> modifies0 h0 h1 /\ r == S.bn_eq_mask (as_seq h0 a) (as_seq h0 b))
let bn_eq_mask_st (t: limb_t) (len: size_t) =
false
null
false
a: lbignum t len -> b: lbignum t len -> Stack (limb t) (requires fun h -> live h a /\ live h b) (ensures fun h0 r h1 -> modifies0 h0 h1 /\ r == S.bn_eq_mask (as_seq h0 a) (as_seq h0 b))
{ "checked_file": "Hacl.Bignum.fsti.checked", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "FStar.Tactics.Typeclasses.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.fsti" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Lib.IntTypes.size_t", "Hacl.Bignum.Definitions.lbignum", "Hacl.Bignum.Definitions.limb", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "Lib.Buffer.live", "Lib.Buffer.MUT", "Lib.Buffer.modifies0", "Prims.eq2", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.bn_eq_mask", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.Buffer.as_seq" ]
[]
module Hacl.Bignum open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Base open Hacl.Bignum.Definitions module S = Hacl.Spec.Bignum module ST = FStar.HyperStack.ST module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val bn_add1: #t:limb_t -> aLen:size_t{0 < v aLen} -> a:lbignum t aLen -> b1:limb t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_add1 (as_seq h0 a) b1 in c_out == c /\ as_seq h1 res == r)) inline_for_extraction noextract val bn_sub1: #t:limb_t -> aLen:size_t{0 < v aLen} -> a:lbignum t aLen -> b1:limb t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_sub1 (as_seq h0 a) b1 in c_out == c /\ as_seq h1 res == r)) inline_for_extraction noextract let bn_add_eq_len_st (t:limb_t) (len:size_t) = a:lbignum t len -> b:lbignum t len -> res:lbignum t len -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_add (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_add_eq_len: #t:limb_t -> len:size_t -> bn_add_eq_len_st t len inline_for_extraction noextract let bn_sub_eq_len_st (t:limb_t) (len:size_t) = a:lbignum t len -> b:lbignum t len -> res:lbignum t len -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_sub (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_sub_eq_len: #t:limb_t -> len:size_t -> bn_sub_eq_len_st t len inline_for_extraction noextract let bn_add_st (t:limb_t) = aLen:size_t -> a:lbignum t aLen -> bLen:size_t{v bLen <= v aLen} -> b:lbignum t bLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ disjoint a b /\ eq_or_disjoint a res /\ disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_add (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_add: #t:limb_t -> bn_add_st t inline_for_extraction noextract let bn_sub_st (t:limb_t) = aLen:size_t -> a:lbignum t aLen -> bLen:size_t{v bLen <= v aLen} -> b:lbignum t bLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ disjoint a b /\ eq_or_disjoint a res /\ disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_sub (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_sub: #t:limb_t -> bn_sub_st t inline_for_extraction noextract val bn_reduce_once: #t:limb_t -> aLen:size_t{v aLen > 0} -> n:lbignum t aLen -> c:carry t -> a:lbignum t aLen -> Stack unit (requires fun h -> live h a /\ live h n /\ disjoint a n) (ensures fun h0 c_out h1 -> modifies (loc a) h0 h1 /\ as_seq h1 a == S.bn_reduce_once (as_seq h0 n) c (as_seq h0 a)) inline_for_extraction noextract let bn_add_mod_n_st (t:limb_t) (len:size_t{v len > 0}) = n:lbignum t len -> a:lbignum t len -> b:lbignum t len -> res:lbignum t len -> Stack unit (requires fun h -> live h n /\ live h a /\ live h b /\ live h res /\ disjoint n a /\ disjoint n b /\ disjoint n res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_add_mod_n (as_seq h0 n) (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_add_mod_n: #t:limb_t -> len:size_t{v len > 0} -> bn_add_mod_n_st t len inline_for_extraction noextract let bn_sub_mod_n_st (t:limb_t) (len:size_t{v len > 0}) = n:lbignum t len -> a:lbignum t len -> b:lbignum t len -> res:lbignum t len -> Stack unit (requires fun h -> live h n /\ live h a /\ live h b /\ live h res /\ disjoint n a /\ disjoint n b /\ disjoint n res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_sub_mod_n (as_seq h0 n) (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_sub_mod_n: #t:limb_t -> len:size_t{v len > 0} -> bn_sub_mod_n_st t len inline_for_extraction noextract val bn_mul1: #t:limb_t -> aLen:size_t -> a:lbignum t aLen -> l:limb t -> res:lbignum t aLen -> Stack (limb t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint res a) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_mul1 (as_seq h0 a) l) inline_for_extraction noextract let bn_karatsuba_mul_st (t:limb_t) (len:size_t{0 < v len /\ 4 * v len <= max_size_t}) (a:lbignum t len) = b:lbignum t len -> res:lbignum t (len +! len) -> Stack unit (requires fun h -> live h a /\ live h b /\ live h res /\ disjoint res a /\ disjoint res b /\ eq_or_disjoint a b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_mul (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_karatsuba_mul: #t:limb_t -> len:size_t{0 < v len /\ 4 * v len <= max_size_t} -> a:lbignum t len -> bn_karatsuba_mul_st t len a inline_for_extraction noextract let bn_mul_st (t:limb_t) (aLen:size_t) (bLen:size_t{v aLen + v bLen <= max_size_t}) (a:lbignum t aLen) = b:lbignum t bLen -> res:lbignum t (aLen +! bLen) -> Stack unit (requires fun h -> live h a /\ live h b /\ live h res /\ disjoint res a /\ disjoint res b /\ eq_or_disjoint a b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_mul (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_mul: #t:limb_t -> aLen:size_t -> bLen:size_t{v aLen + v bLen <= max_size_t} -> a:lbignum t aLen -> bn_mul_st t aLen bLen a inline_for_extraction noextract let bn_karatsuba_sqr_st (t:limb_t) (len:size_t{0 < v len /\ 4 * v len <= max_size_t}) (a:lbignum t len) = res:lbignum t (len +! len) -> Stack unit (requires fun h -> live h a /\ live h res /\ disjoint res a) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_mul (as_seq h0 a) (as_seq h0 a)) inline_for_extraction noextract val bn_karatsuba_sqr: #t:limb_t -> len:size_t{0 < v len /\ 4 * v len <= max_size_t} -> a:lbignum t len -> bn_karatsuba_sqr_st t len a inline_for_extraction noextract let bn_sqr_st (t:limb_t) (len:size_t{0 < v len /\ v len + v len <= max_size_t}) (a:lbignum t len) = res:lbignum t (len +! len) -> Stack unit (requires fun h -> live h a /\ live h res /\ disjoint res a) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_mul (as_seq h0 a) (as_seq h0 a)) inline_for_extraction noextract val bn_sqr: #t:limb_t -> len:size_t{0 < v len /\ v len + v len <= max_size_t} -> a:lbignum t len -> bn_sqr_st t len a inline_for_extraction noextract val bn_mul1_lshift_add_in_place: #t:limb_t -> aLen:size_t -> a:lbignum t aLen -> b:limb t -> resLen:size_t -> j:size_t{v j + v aLen <= v resLen} -> res:lbignum t resLen -> Stack (limb t) (requires fun h -> live h a /\ live h res /\ disjoint res a) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_mul1_lshift_add (as_seq h0 a) b (v j) (as_seq h0 res)) inline_for_extraction noextract val bn_rshift: #t:limb_t -> len:size_t -> b:lbignum t len -> i:size_t{v i < v len} -> res:lbignum t (len -! i) -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_rshift (as_seq h0 b) (v i)) inline_for_extraction noextract val bn_sub_mask: #t:limb_t -> len:size_t{v len > 0} -> n:lbignum t len -> a:lbignum t len -> Stack unit (requires fun h -> live h n /\ live h a /\ disjoint n a) (ensures fun h0 _ h1 -> modifies (loc a) h0 h1 /\ as_seq h1 a == S.bn_sub_mask (as_seq h0 n) (as_seq h0 a)) /// /// Get and set i-th bit of a bignum /// inline_for_extraction noextract val bn_get_ith_bit: #t:limb_t -> len:size_t -> b:lbignum t len -> i:size_t{v i / bits t < v len} -> Stack (limb t) (requires fun h -> live h b) (ensures fun h0 r h1 -> h0 == h1 /\ r == S.bn_get_ith_bit (as_seq h0 b) (v i)) inline_for_extraction noextract val bn_get_bits: #t:limb_t -> len:size_t -> b:lbignum t len -> i:size_t -> l:size_t{v l < bits t /\ v i / bits t < v len} -> Stack (limb t) (requires fun h -> live h b) (ensures fun h0 r h1 -> h0 == h1 /\ r == S.bn_get_bits (as_seq h0 b) (v i) (v l)) inline_for_extraction noextract val bn_set_ith_bit: #t:limb_t -> len:size_t -> b:lbignum t len -> i:size_t{v i / bits t < v len} -> Stack unit (requires fun h -> live h b) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ as_seq h1 b == S.bn_set_ith_bit (as_seq h0 b) (v i)) inline_for_extraction noextract val cswap2: #t:limb_t -> len:size_t -> bit:limb t -> b1:lbignum t len -> b2:lbignum t len -> Stack unit (requires fun h -> live h b1 /\ live h b2 /\ disjoint b1 b2) (ensures fun h0 _ h1 -> modifies (loc b1 |+| loc b2) h0 h1 /\ (as_seq h1 b1, as_seq h1 b2) == S.cswap2 bit (as_seq h0 b1) (as_seq h0 b2)) /// Start of the len-based specialization infrastructure. /// /// Essentially, we wish to describe a type class of basic bignum operations /// needed to implement Montgomery reduction. This will allow us to generate /// specialized versions of modular exponentiation for a given bignum size. /// /// This is done "by hand" because the specialization pattern is more /// complicated than other pieces of code (chacha, poly, curve), meaning I don't /// (yet) know how to automate it with a tactic. So, a type class seems like the /// most efficient way to go about it. /// /// The operations of the type class were found by essentially reading the code, /// writing down which operations from Hacl.Bignum are (transitively) needed to /// implement modular exponentiation, and figuring out for each call-site /// whether they can be specialized for the bignum size, or whether they have to /// been inline-for-extraction'd. inline_for_extraction noextract let meta_len (t:limb_t) = len:size_t{0 < v len /\ 2 * bits t * v len <= max_size_t} /// This type class is entirely meta-level and will not appear after partial /// evaluation in the resulting C code. Clients can take this type class as a /// parameter if they want the benefits of a function set specialized for a /// given bignum length. inline_for_extraction noextract class bn (t:limb_t) = { len: meta_len t; add: bn_add_eq_len_st t len; sub: bn_sub_eq_len_st t len; add_mod_n: bn_add_mod_n_st t len; sub_mod_n: bn_sub_mod_n_st t len; mul: a:lbignum t len -> bn_karatsuba_mul_st t len a; sqr: a:lbignum t len -> bn_karatsuba_sqr_st t len a; } inline_for_extraction noextract val mk_runtime_bn: t:limb_t -> len:meta_len t -> bn t val mk_runtime_bn_len_lemma: t:limb_t -> len:meta_len t -> Lemma ((mk_runtime_bn t len).len == len) [SMTPat (mk_runtime_bn t len)] /// /// Bignum comparison and test functions /// inline_for_extraction noextract val bn_is_odd: #t:limb_t -> len:size_t{v len > 0} -> a:lbignum t len -> Stack (limb t) (requires fun h -> live h a) (ensures fun h0 r h1 -> modifies0 h0 h1 /\ r == S.bn_is_odd (as_seq h0 a)) inline_for_extraction noextract
false
true
Hacl.Bignum.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_eq_mask_st : t: Hacl.Bignum.Definitions.limb_t -> len: Lib.IntTypes.size_t -> Type0
[]
Hacl.Bignum.bn_eq_mask_st
{ "file_name": "code/bignum/Hacl.Bignum.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
t: Hacl.Bignum.Definitions.limb_t -> len: Lib.IntTypes.size_t -> Type0
{ "end_col": 50, "end_line": 419, "start_col": 4, "start_line": 414 }
Prims.Tot
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_lt_mask_st (t:limb_t) (len:size_t) = a:lbignum t len -> b:lbignum t len -> Stack (limb t) (requires fun h -> live h a /\ live h b) (ensures fun h0 r h1 -> modifies0 h0 h1 /\ r == S.bn_lt_mask (as_seq h0 a) (as_seq h0 b))
let bn_lt_mask_st (t: limb_t) (len: size_t) =
false
null
false
a: lbignum t len -> b: lbignum t len -> Stack (limb t) (requires fun h -> live h a /\ live h b) (ensures fun h0 r h1 -> modifies0 h0 h1 /\ r == S.bn_lt_mask (as_seq h0 a) (as_seq h0 b))
{ "checked_file": "Hacl.Bignum.fsti.checked", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "FStar.Tactics.Typeclasses.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.fsti" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Lib.IntTypes.size_t", "Hacl.Bignum.Definitions.lbignum", "Hacl.Bignum.Definitions.limb", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "Lib.Buffer.live", "Lib.Buffer.MUT", "Lib.Buffer.modifies0", "Prims.eq2", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.bn_lt_mask", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.Buffer.as_seq" ]
[]
module Hacl.Bignum open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Base open Hacl.Bignum.Definitions module S = Hacl.Spec.Bignum module ST = FStar.HyperStack.ST module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val bn_add1: #t:limb_t -> aLen:size_t{0 < v aLen} -> a:lbignum t aLen -> b1:limb t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_add1 (as_seq h0 a) b1 in c_out == c /\ as_seq h1 res == r)) inline_for_extraction noextract val bn_sub1: #t:limb_t -> aLen:size_t{0 < v aLen} -> a:lbignum t aLen -> b1:limb t -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint a res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (let c, r = S.bn_sub1 (as_seq h0 a) b1 in c_out == c /\ as_seq h1 res == r)) inline_for_extraction noextract let bn_add_eq_len_st (t:limb_t) (len:size_t) = a:lbignum t len -> b:lbignum t len -> res:lbignum t len -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_add (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_add_eq_len: #t:limb_t -> len:size_t -> bn_add_eq_len_st t len inline_for_extraction noextract let bn_sub_eq_len_st (t:limb_t) (len:size_t) = a:lbignum t len -> b:lbignum t len -> res:lbignum t len -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_sub (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_sub_eq_len: #t:limb_t -> len:size_t -> bn_sub_eq_len_st t len inline_for_extraction noextract let bn_add_st (t:limb_t) = aLen:size_t -> a:lbignum t aLen -> bLen:size_t{v bLen <= v aLen} -> b:lbignum t bLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ disjoint a b /\ eq_or_disjoint a res /\ disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_add (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_add: #t:limb_t -> bn_add_st t inline_for_extraction noextract let bn_sub_st (t:limb_t) = aLen:size_t -> a:lbignum t aLen -> bLen:size_t{v bLen <= v aLen} -> b:lbignum t bLen -> res:lbignum t aLen -> Stack (carry t) (requires fun h -> live h a /\ live h b /\ live h res /\ disjoint a b /\ eq_or_disjoint a res /\ disjoint b res) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_sub (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_sub: #t:limb_t -> bn_sub_st t inline_for_extraction noextract val bn_reduce_once: #t:limb_t -> aLen:size_t{v aLen > 0} -> n:lbignum t aLen -> c:carry t -> a:lbignum t aLen -> Stack unit (requires fun h -> live h a /\ live h n /\ disjoint a n) (ensures fun h0 c_out h1 -> modifies (loc a) h0 h1 /\ as_seq h1 a == S.bn_reduce_once (as_seq h0 n) c (as_seq h0 a)) inline_for_extraction noextract let bn_add_mod_n_st (t:limb_t) (len:size_t{v len > 0}) = n:lbignum t len -> a:lbignum t len -> b:lbignum t len -> res:lbignum t len -> Stack unit (requires fun h -> live h n /\ live h a /\ live h b /\ live h res /\ disjoint n a /\ disjoint n b /\ disjoint n res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_add_mod_n (as_seq h0 n) (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_add_mod_n: #t:limb_t -> len:size_t{v len > 0} -> bn_add_mod_n_st t len inline_for_extraction noextract let bn_sub_mod_n_st (t:limb_t) (len:size_t{v len > 0}) = n:lbignum t len -> a:lbignum t len -> b:lbignum t len -> res:lbignum t len -> Stack unit (requires fun h -> live h n /\ live h a /\ live h b /\ live h res /\ disjoint n a /\ disjoint n b /\ disjoint n res /\ eq_or_disjoint a b /\ eq_or_disjoint a res /\ eq_or_disjoint b res) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_sub_mod_n (as_seq h0 n) (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_sub_mod_n: #t:limb_t -> len:size_t{v len > 0} -> bn_sub_mod_n_st t len inline_for_extraction noextract val bn_mul1: #t:limb_t -> aLen:size_t -> a:lbignum t aLen -> l:limb t -> res:lbignum t aLen -> Stack (limb t) (requires fun h -> live h a /\ live h res /\ eq_or_disjoint res a) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_mul1 (as_seq h0 a) l) inline_for_extraction noextract let bn_karatsuba_mul_st (t:limb_t) (len:size_t{0 < v len /\ 4 * v len <= max_size_t}) (a:lbignum t len) = b:lbignum t len -> res:lbignum t (len +! len) -> Stack unit (requires fun h -> live h a /\ live h b /\ live h res /\ disjoint res a /\ disjoint res b /\ eq_or_disjoint a b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_mul (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_karatsuba_mul: #t:limb_t -> len:size_t{0 < v len /\ 4 * v len <= max_size_t} -> a:lbignum t len -> bn_karatsuba_mul_st t len a inline_for_extraction noextract let bn_mul_st (t:limb_t) (aLen:size_t) (bLen:size_t{v aLen + v bLen <= max_size_t}) (a:lbignum t aLen) = b:lbignum t bLen -> res:lbignum t (aLen +! bLen) -> Stack unit (requires fun h -> live h a /\ live h b /\ live h res /\ disjoint res a /\ disjoint res b /\ eq_or_disjoint a b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_mul (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_mul: #t:limb_t -> aLen:size_t -> bLen:size_t{v aLen + v bLen <= max_size_t} -> a:lbignum t aLen -> bn_mul_st t aLen bLen a inline_for_extraction noextract let bn_karatsuba_sqr_st (t:limb_t) (len:size_t{0 < v len /\ 4 * v len <= max_size_t}) (a:lbignum t len) = res:lbignum t (len +! len) -> Stack unit (requires fun h -> live h a /\ live h res /\ disjoint res a) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_mul (as_seq h0 a) (as_seq h0 a)) inline_for_extraction noextract val bn_karatsuba_sqr: #t:limb_t -> len:size_t{0 < v len /\ 4 * v len <= max_size_t} -> a:lbignum t len -> bn_karatsuba_sqr_st t len a inline_for_extraction noextract let bn_sqr_st (t:limb_t) (len:size_t{0 < v len /\ v len + v len <= max_size_t}) (a:lbignum t len) = res:lbignum t (len +! len) -> Stack unit (requires fun h -> live h a /\ live h res /\ disjoint res a) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_mul (as_seq h0 a) (as_seq h0 a)) inline_for_extraction noextract val bn_sqr: #t:limb_t -> len:size_t{0 < v len /\ v len + v len <= max_size_t} -> a:lbignum t len -> bn_sqr_st t len a inline_for_extraction noextract val bn_mul1_lshift_add_in_place: #t:limb_t -> aLen:size_t -> a:lbignum t aLen -> b:limb t -> resLen:size_t -> j:size_t{v j + v aLen <= v resLen} -> res:lbignum t resLen -> Stack (limb t) (requires fun h -> live h a /\ live h res /\ disjoint res a) (ensures fun h0 c_out h1 -> modifies (loc res) h0 h1 /\ (c_out, as_seq h1 res) == S.bn_mul1_lshift_add (as_seq h0 a) b (v j) (as_seq h0 res)) inline_for_extraction noextract val bn_rshift: #t:limb_t -> len:size_t -> b:lbignum t len -> i:size_t{v i < v len} -> res:lbignum t (len -! i) -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_rshift (as_seq h0 b) (v i)) inline_for_extraction noextract val bn_sub_mask: #t:limb_t -> len:size_t{v len > 0} -> n:lbignum t len -> a:lbignum t len -> Stack unit (requires fun h -> live h n /\ live h a /\ disjoint n a) (ensures fun h0 _ h1 -> modifies (loc a) h0 h1 /\ as_seq h1 a == S.bn_sub_mask (as_seq h0 n) (as_seq h0 a)) /// /// Get and set i-th bit of a bignum /// inline_for_extraction noextract val bn_get_ith_bit: #t:limb_t -> len:size_t -> b:lbignum t len -> i:size_t{v i / bits t < v len} -> Stack (limb t) (requires fun h -> live h b) (ensures fun h0 r h1 -> h0 == h1 /\ r == S.bn_get_ith_bit (as_seq h0 b) (v i)) inline_for_extraction noextract val bn_get_bits: #t:limb_t -> len:size_t -> b:lbignum t len -> i:size_t -> l:size_t{v l < bits t /\ v i / bits t < v len} -> Stack (limb t) (requires fun h -> live h b) (ensures fun h0 r h1 -> h0 == h1 /\ r == S.bn_get_bits (as_seq h0 b) (v i) (v l)) inline_for_extraction noextract val bn_set_ith_bit: #t:limb_t -> len:size_t -> b:lbignum t len -> i:size_t{v i / bits t < v len} -> Stack unit (requires fun h -> live h b) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ as_seq h1 b == S.bn_set_ith_bit (as_seq h0 b) (v i)) inline_for_extraction noextract val cswap2: #t:limb_t -> len:size_t -> bit:limb t -> b1:lbignum t len -> b2:lbignum t len -> Stack unit (requires fun h -> live h b1 /\ live h b2 /\ disjoint b1 b2) (ensures fun h0 _ h1 -> modifies (loc b1 |+| loc b2) h0 h1 /\ (as_seq h1 b1, as_seq h1 b2) == S.cswap2 bit (as_seq h0 b1) (as_seq h0 b2)) /// Start of the len-based specialization infrastructure. /// /// Essentially, we wish to describe a type class of basic bignum operations /// needed to implement Montgomery reduction. This will allow us to generate /// specialized versions of modular exponentiation for a given bignum size. /// /// This is done "by hand" because the specialization pattern is more /// complicated than other pieces of code (chacha, poly, curve), meaning I don't /// (yet) know how to automate it with a tactic. So, a type class seems like the /// most efficient way to go about it. /// /// The operations of the type class were found by essentially reading the code, /// writing down which operations from Hacl.Bignum are (transitively) needed to /// implement modular exponentiation, and figuring out for each call-site /// whether they can be specialized for the bignum size, or whether they have to /// been inline-for-extraction'd. inline_for_extraction noextract let meta_len (t:limb_t) = len:size_t{0 < v len /\ 2 * bits t * v len <= max_size_t} /// This type class is entirely meta-level and will not appear after partial /// evaluation in the resulting C code. Clients can take this type class as a /// parameter if they want the benefits of a function set specialized for a /// given bignum length. inline_for_extraction noextract class bn (t:limb_t) = { len: meta_len t; add: bn_add_eq_len_st t len; sub: bn_sub_eq_len_st t len; add_mod_n: bn_add_mod_n_st t len; sub_mod_n: bn_sub_mod_n_st t len; mul: a:lbignum t len -> bn_karatsuba_mul_st t len a; sqr: a:lbignum t len -> bn_karatsuba_sqr_st t len a; } inline_for_extraction noextract val mk_runtime_bn: t:limb_t -> len:meta_len t -> bn t val mk_runtime_bn_len_lemma: t:limb_t -> len:meta_len t -> Lemma ((mk_runtime_bn t len).len == len) [SMTPat (mk_runtime_bn t len)] /// /// Bignum comparison and test functions /// inline_for_extraction noextract val bn_is_odd: #t:limb_t -> len:size_t{v len > 0} -> a:lbignum t len -> Stack (limb t) (requires fun h -> live h a) (ensures fun h0 r h1 -> modifies0 h0 h1 /\ r == S.bn_is_odd (as_seq h0 a)) inline_for_extraction noextract let bn_eq_mask_st (t:limb_t) (len:size_t) = a:lbignum t len -> b:lbignum t len -> Stack (limb t) (requires fun h -> live h a /\ live h b) (ensures fun h0 r h1 -> modifies0 h0 h1 /\ r == S.bn_eq_mask (as_seq h0 a) (as_seq h0 b)) inline_for_extraction noextract val bn_eq_mask: #t:limb_t -> len:size_t -> bn_eq_mask_st t len inline_for_extraction noextract val bn_is_zero_mask: #t:limb_t -> len:size_t{v len > 0} -> a:lbignum t len -> Stack (limb t) (requires fun h -> live h a) (ensures fun h0 r h1 -> modifies0 h0 h1 /\ r == S.bn_is_zero_mask (as_seq h0 a)) inline_for_extraction noextract
false
true
Hacl.Bignum.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_lt_mask_st : t: Hacl.Bignum.Definitions.limb_t -> len: Lib.IntTypes.size_t -> Type0
[]
Hacl.Bignum.bn_lt_mask_st
{ "file_name": "code/bignum/Hacl.Bignum.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
t: Hacl.Bignum.Definitions.limb_t -> len: Lib.IntTypes.size_t -> Type0
{ "end_col": 50, "end_line": 444, "start_col": 4, "start_line": 439 }
Prims.Tot
val ffdhe_g2:x: glbuffer pub_uint8 1ul {witnessed x S.ffdhe_g2 /\ recallable x}
[ { "abbrev": true, "full_module": "Spec.FFDHE", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.FFDHE", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.FFDHE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ffdhe_g2 :x:glbuffer pub_uint8 1ul{witnessed x S.ffdhe_g2 /\ recallable x} = createL_global S.list_ffdhe_g2
val ffdhe_g2:x: glbuffer pub_uint8 1ul {witnessed x S.ffdhe_g2 /\ recallable x} let ffdhe_g2:x: glbuffer pub_uint8 1ul {witnessed x S.ffdhe_g2 /\ recallable x} =
false
null
false
createL_global S.list_ffdhe_g2
{ "checked_file": "Hacl.Impl.FFDHE.Constants.fst.checked", "dependencies": [ "Spec.FFDHE.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.FFDHE.Constants.fst" }
[ "total" ]
[ "Lib.Buffer.createL_global", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.PUB", "Spec.FFDHE.list_ffdhe_g2", "Lib.Buffer.glbuffer", "Lib.IntTypes.size", "FStar.Pervasives.normalize_term", "Lib.IntTypes.size_nat", "FStar.List.Tot.Base.length" ]
[]
module Hacl.Impl.FFDHE.Constants open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module S = Spec.FFDHE #set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
false
false
Hacl.Impl.FFDHE.Constants.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ffdhe_g2:x: glbuffer pub_uint8 1ul {witnessed x S.ffdhe_g2 /\ recallable x}
[]
Hacl.Impl.FFDHE.Constants.ffdhe_g2
{ "file_name": "code/ffdhe/Hacl.Impl.FFDHE.Constants.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: (c: Lib.Buffer.lbuffer_t Lib.Buffer.CONST (Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.PUB) (FStar.UInt32.uint_to_t 1 <: FStar.UInt32.t) {LowStar.ConstBuffer.qual_of c == LowStar.ConstBuffer.IMMUTABLE}) {Lib.Buffer.witnessed x Spec.FFDHE.ffdhe_g2 /\ Lib.Buffer.recallable x}
{ "end_col": 32, "end_line": 16, "start_col": 2, "start_line": 16 }
Prims.Tot
val ffdhe_p2048:x: glbuffer pub_uint8 256ul {witnessed x S.ffdhe_p2048 /\ recallable x}
[ { "abbrev": true, "full_module": "Spec.FFDHE", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.FFDHE", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.FFDHE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ffdhe_p2048 :x:glbuffer pub_uint8 256ul{witnessed x S.ffdhe_p2048 /\ recallable x} = createL_global S.list_ffdhe_p2048
val ffdhe_p2048:x: glbuffer pub_uint8 256ul {witnessed x S.ffdhe_p2048 /\ recallable x} let ffdhe_p2048:x: glbuffer pub_uint8 256ul {witnessed x S.ffdhe_p2048 /\ recallable x} =
false
null
false
createL_global S.list_ffdhe_p2048
{ "checked_file": "Hacl.Impl.FFDHE.Constants.fst.checked", "dependencies": [ "Spec.FFDHE.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.FFDHE.Constants.fst" }
[ "total" ]
[ "Lib.Buffer.createL_global", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.PUB", "Spec.FFDHE.list_ffdhe_p2048", "Lib.Buffer.glbuffer", "Lib.IntTypes.size", "FStar.Pervasives.normalize_term", "Lib.IntTypes.size_nat", "FStar.List.Tot.Base.length" ]
[]
module Hacl.Impl.FFDHE.Constants open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module S = Spec.FFDHE #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let ffdhe_g2 :x:glbuffer pub_uint8 1ul{witnessed x S.ffdhe_g2 /\ recallable x} = createL_global S.list_ffdhe_g2
false
false
Hacl.Impl.FFDHE.Constants.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ffdhe_p2048:x: glbuffer pub_uint8 256ul {witnessed x S.ffdhe_p2048 /\ recallable x}
[]
Hacl.Impl.FFDHE.Constants.ffdhe_p2048
{ "file_name": "code/ffdhe/Hacl.Impl.FFDHE.Constants.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: (c: Lib.Buffer.lbuffer_t Lib.Buffer.CONST (Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.PUB) (FStar.UInt32.uint_to_t 256 <: FStar.UInt32.t) {LowStar.ConstBuffer.qual_of c == LowStar.ConstBuffer.IMMUTABLE}) {Lib.Buffer.witnessed x Spec.FFDHE.ffdhe_p2048 /\ Lib.Buffer.recallable x}
{ "end_col": 35, "end_line": 19, "start_col": 2, "start_line": 19 }
Prims.Tot
val ffdhe_p3072:x: glbuffer pub_uint8 384ul {witnessed x S.ffdhe_p3072 /\ recallable x}
[ { "abbrev": true, "full_module": "Spec.FFDHE", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.FFDHE", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.FFDHE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ffdhe_p3072 :x:glbuffer pub_uint8 384ul{witnessed x S.ffdhe_p3072 /\ recallable x} = createL_global S.list_ffdhe_p3072
val ffdhe_p3072:x: glbuffer pub_uint8 384ul {witnessed x S.ffdhe_p3072 /\ recallable x} let ffdhe_p3072:x: glbuffer pub_uint8 384ul {witnessed x S.ffdhe_p3072 /\ recallable x} =
false
null
false
createL_global S.list_ffdhe_p3072
{ "checked_file": "Hacl.Impl.FFDHE.Constants.fst.checked", "dependencies": [ "Spec.FFDHE.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.FFDHE.Constants.fst" }
[ "total" ]
[ "Lib.Buffer.createL_global", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.PUB", "Spec.FFDHE.list_ffdhe_p3072", "Lib.Buffer.glbuffer", "Lib.IntTypes.size", "FStar.Pervasives.normalize_term", "Lib.IntTypes.size_nat", "FStar.List.Tot.Base.length" ]
[]
module Hacl.Impl.FFDHE.Constants open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module S = Spec.FFDHE #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let ffdhe_g2 :x:glbuffer pub_uint8 1ul{witnessed x S.ffdhe_g2 /\ recallable x} = createL_global S.list_ffdhe_g2 let ffdhe_p2048 :x:glbuffer pub_uint8 256ul{witnessed x S.ffdhe_p2048 /\ recallable x} = createL_global S.list_ffdhe_p2048
false
false
Hacl.Impl.FFDHE.Constants.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ffdhe_p3072:x: glbuffer pub_uint8 384ul {witnessed x S.ffdhe_p3072 /\ recallable x}
[]
Hacl.Impl.FFDHE.Constants.ffdhe_p3072
{ "file_name": "code/ffdhe/Hacl.Impl.FFDHE.Constants.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: (c: Lib.Buffer.lbuffer_t Lib.Buffer.CONST (Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.PUB) (FStar.UInt32.uint_to_t 384 <: FStar.UInt32.t) {LowStar.ConstBuffer.qual_of c == LowStar.ConstBuffer.IMMUTABLE}) {Lib.Buffer.witnessed x Spec.FFDHE.ffdhe_p3072 /\ Lib.Buffer.recallable x}
{ "end_col": 35, "end_line": 22, "start_col": 2, "start_line": 22 }
Prims.Tot
val ffdhe_p4096:x: glbuffer pub_uint8 512ul {witnessed x S.ffdhe_p4096 /\ recallable x}
[ { "abbrev": true, "full_module": "Spec.FFDHE", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.FFDHE", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.FFDHE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ffdhe_p4096 :x:glbuffer pub_uint8 512ul{witnessed x S.ffdhe_p4096 /\ recallable x} = createL_global S.list_ffdhe_p4096
val ffdhe_p4096:x: glbuffer pub_uint8 512ul {witnessed x S.ffdhe_p4096 /\ recallable x} let ffdhe_p4096:x: glbuffer pub_uint8 512ul {witnessed x S.ffdhe_p4096 /\ recallable x} =
false
null
false
createL_global S.list_ffdhe_p4096
{ "checked_file": "Hacl.Impl.FFDHE.Constants.fst.checked", "dependencies": [ "Spec.FFDHE.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.FFDHE.Constants.fst" }
[ "total" ]
[ "Lib.Buffer.createL_global", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.PUB", "Spec.FFDHE.list_ffdhe_p4096", "Lib.Buffer.glbuffer", "Lib.IntTypes.size", "FStar.Pervasives.normalize_term", "Lib.IntTypes.size_nat", "FStar.List.Tot.Base.length" ]
[]
module Hacl.Impl.FFDHE.Constants open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module S = Spec.FFDHE #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let ffdhe_g2 :x:glbuffer pub_uint8 1ul{witnessed x S.ffdhe_g2 /\ recallable x} = createL_global S.list_ffdhe_g2 let ffdhe_p2048 :x:glbuffer pub_uint8 256ul{witnessed x S.ffdhe_p2048 /\ recallable x} = createL_global S.list_ffdhe_p2048 let ffdhe_p3072 :x:glbuffer pub_uint8 384ul{witnessed x S.ffdhe_p3072 /\ recallable x} = createL_global S.list_ffdhe_p3072
false
false
Hacl.Impl.FFDHE.Constants.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ffdhe_p4096:x: glbuffer pub_uint8 512ul {witnessed x S.ffdhe_p4096 /\ recallable x}
[]
Hacl.Impl.FFDHE.Constants.ffdhe_p4096
{ "file_name": "code/ffdhe/Hacl.Impl.FFDHE.Constants.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: (c: Lib.Buffer.lbuffer_t Lib.Buffer.CONST (Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.PUB) (FStar.UInt32.uint_to_t 512 <: FStar.UInt32.t) {LowStar.ConstBuffer.qual_of c == LowStar.ConstBuffer.IMMUTABLE}) {Lib.Buffer.witnessed x Spec.FFDHE.ffdhe_p4096 /\ Lib.Buffer.recallable x}
{ "end_col": 35, "end_line": 25, "start_col": 2, "start_line": 25 }
Prims.Tot
val ffdhe_p6144:x: glbuffer pub_uint8 768ul {witnessed x S.ffdhe_p6144 /\ recallable x}
[ { "abbrev": true, "full_module": "Spec.FFDHE", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.FFDHE", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.FFDHE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ffdhe_p6144 :x:glbuffer pub_uint8 768ul{witnessed x S.ffdhe_p6144 /\ recallable x} = createL_global S.list_ffdhe_p6144
val ffdhe_p6144:x: glbuffer pub_uint8 768ul {witnessed x S.ffdhe_p6144 /\ recallable x} let ffdhe_p6144:x: glbuffer pub_uint8 768ul {witnessed x S.ffdhe_p6144 /\ recallable x} =
false
null
false
createL_global S.list_ffdhe_p6144
{ "checked_file": "Hacl.Impl.FFDHE.Constants.fst.checked", "dependencies": [ "Spec.FFDHE.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.FFDHE.Constants.fst" }
[ "total" ]
[ "Lib.Buffer.createL_global", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.PUB", "Spec.FFDHE.list_ffdhe_p6144", "Lib.Buffer.glbuffer", "Lib.IntTypes.size", "FStar.Pervasives.normalize_term", "Lib.IntTypes.size_nat", "FStar.List.Tot.Base.length" ]
[]
module Hacl.Impl.FFDHE.Constants open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module S = Spec.FFDHE #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let ffdhe_g2 :x:glbuffer pub_uint8 1ul{witnessed x S.ffdhe_g2 /\ recallable x} = createL_global S.list_ffdhe_g2 let ffdhe_p2048 :x:glbuffer pub_uint8 256ul{witnessed x S.ffdhe_p2048 /\ recallable x} = createL_global S.list_ffdhe_p2048 let ffdhe_p3072 :x:glbuffer pub_uint8 384ul{witnessed x S.ffdhe_p3072 /\ recallable x} = createL_global S.list_ffdhe_p3072 let ffdhe_p4096 :x:glbuffer pub_uint8 512ul{witnessed x S.ffdhe_p4096 /\ recallable x} = createL_global S.list_ffdhe_p4096
false
false
Hacl.Impl.FFDHE.Constants.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ffdhe_p6144:x: glbuffer pub_uint8 768ul {witnessed x S.ffdhe_p6144 /\ recallable x}
[]
Hacl.Impl.FFDHE.Constants.ffdhe_p6144
{ "file_name": "code/ffdhe/Hacl.Impl.FFDHE.Constants.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: (c: Lib.Buffer.lbuffer_t Lib.Buffer.CONST (Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.PUB) (FStar.UInt32.uint_to_t 768 <: FStar.UInt32.t) {LowStar.ConstBuffer.qual_of c == LowStar.ConstBuffer.IMMUTABLE}) {Lib.Buffer.witnessed x Spec.FFDHE.ffdhe_p6144 /\ Lib.Buffer.recallable x}
{ "end_col": 35, "end_line": 28, "start_col": 2, "start_line": 28 }
Prims.Tot
val ffdhe_p8192:x: glbuffer pub_uint8 1024ul {witnessed x S.ffdhe_p8192 /\ recallable x}
[ { "abbrev": true, "full_module": "Spec.FFDHE", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.FFDHE", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.FFDHE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ffdhe_p8192 :x:glbuffer pub_uint8 1024ul{witnessed x S.ffdhe_p8192 /\ recallable x} = createL_global S.list_ffdhe_p8192
val ffdhe_p8192:x: glbuffer pub_uint8 1024ul {witnessed x S.ffdhe_p8192 /\ recallable x} let ffdhe_p8192:x: glbuffer pub_uint8 1024ul {witnessed x S.ffdhe_p8192 /\ recallable x} =
false
null
false
createL_global S.list_ffdhe_p8192
{ "checked_file": "Hacl.Impl.FFDHE.Constants.fst.checked", "dependencies": [ "Spec.FFDHE.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.FFDHE.Constants.fst" }
[ "total" ]
[ "Lib.Buffer.createL_global", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.PUB", "Spec.FFDHE.list_ffdhe_p8192", "Lib.Buffer.glbuffer", "Lib.IntTypes.size", "FStar.Pervasives.normalize_term", "Lib.IntTypes.size_nat", "FStar.List.Tot.Base.length" ]
[]
module Hacl.Impl.FFDHE.Constants open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module S = Spec.FFDHE #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let ffdhe_g2 :x:glbuffer pub_uint8 1ul{witnessed x S.ffdhe_g2 /\ recallable x} = createL_global S.list_ffdhe_g2 let ffdhe_p2048 :x:glbuffer pub_uint8 256ul{witnessed x S.ffdhe_p2048 /\ recallable x} = createL_global S.list_ffdhe_p2048 let ffdhe_p3072 :x:glbuffer pub_uint8 384ul{witnessed x S.ffdhe_p3072 /\ recallable x} = createL_global S.list_ffdhe_p3072 let ffdhe_p4096 :x:glbuffer pub_uint8 512ul{witnessed x S.ffdhe_p4096 /\ recallable x} = createL_global S.list_ffdhe_p4096 let ffdhe_p6144 :x:glbuffer pub_uint8 768ul{witnessed x S.ffdhe_p6144 /\ recallable x} = createL_global S.list_ffdhe_p6144
false
false
Hacl.Impl.FFDHE.Constants.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ffdhe_p8192:x: glbuffer pub_uint8 1024ul {witnessed x S.ffdhe_p8192 /\ recallable x}
[]
Hacl.Impl.FFDHE.Constants.ffdhe_p8192
{ "file_name": "code/ffdhe/Hacl.Impl.FFDHE.Constants.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: (c: Lib.Buffer.lbuffer_t Lib.Buffer.CONST (Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.PUB) (FStar.UInt32.uint_to_t 1024 <: FStar.UInt32.t) {LowStar.ConstBuffer.qual_of c == LowStar.ConstBuffer.IMMUTABLE}) {Lib.Buffer.witnessed x Spec.FFDHE.ffdhe_p8192 /\ Lib.Buffer.recallable x}
{ "end_col": 35, "end_line": 31, "start_col": 2, "start_line": 31 }
Prims.Tot
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": true, "full_module": "Spec.Agile.AEAD", "short_module": "AEAD" }, { "abbrev": true, "full_module": "Spec.Agile.DH", "short_module": "DH" }, { "abbrev": true, "full_module": "Spec.Agile.HPKE", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Impl.HPKE", "short_module": null }, { "abbrev": false, "full_module": "Hacl.HPKE", "short_module": null }, { "abbrev": false, "full_module": "Hacl.HPKE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let vale_p = Vale.X64.CPU_Features_s.(adx_enabled /\ bmi2_enabled)
let vale_p =
false
null
false
let open Vale.X64.CPU_Features_s in adx_enabled /\ bmi2_enabled
{ "checked_file": "Hacl.HPKE.Curve64_CP128_SHA256.fsti.checked", "dependencies": [ "Vale.X64.CPU_Features_s.fst.checked", "Spec.Agile.HPKE.fsti.checked", "Spec.Agile.Hash.fsti.checked", "Spec.Agile.DH.fst.checked", "Spec.Agile.AEAD.fsti.checked", "prims.fst.checked", "Hacl.Impl.HPKE.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Hacl.HPKE.Curve64_CP128_SHA256.fsti" }
[ "total" ]
[ "Prims.l_and", "Prims.b2t", "Vale.X64.CPU_Features_s.adx_enabled", "Vale.X64.CPU_Features_s.bmi2_enabled" ]
[]
module Hacl.HPKE.Curve64_CP128_SHA256 open Hacl.Impl.HPKE module S = Spec.Agile.HPKE module DH = Spec.Agile.DH module AEAD = Spec.Agile.AEAD module Hash = Spec.Agile.Hash noextract unfold let cs:S.ciphersuite = (DH.DH_Curve25519, Hash.SHA2_256, S.Seal AEAD.CHACHA20_POLY1305, Hash.SHA2_256)
false
true
Hacl.HPKE.Curve64_CP128_SHA256.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val vale_p : Prims.logical
[]
Hacl.HPKE.Curve64_CP128_SHA256.vale_p
{ "file_name": "code/hpke/Hacl.HPKE.Curve64_CP128_SHA256.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Prims.logical
{ "end_col": 65, "end_line": 13, "start_col": 38, "start_line": 13 }
Prims.Tot
val cs:S.ciphersuite
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": true, "full_module": "Spec.Agile.AEAD", "short_module": "AEAD" }, { "abbrev": true, "full_module": "Spec.Agile.DH", "short_module": "DH" }, { "abbrev": true, "full_module": "Spec.Agile.HPKE", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Impl.HPKE", "short_module": null }, { "abbrev": false, "full_module": "Hacl.HPKE", "short_module": null }, { "abbrev": false, "full_module": "Hacl.HPKE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let cs:S.ciphersuite = (DH.DH_Curve25519, Hash.SHA2_256, S.Seal AEAD.CHACHA20_POLY1305, Hash.SHA2_256)
val cs:S.ciphersuite let cs:S.ciphersuite =
false
null
false
(DH.DH_Curve25519, Hash.SHA2_256, S.Seal AEAD.CHACHA20_POLY1305, Hash.SHA2_256)
{ "checked_file": "Hacl.HPKE.Curve64_CP128_SHA256.fsti.checked", "dependencies": [ "Vale.X64.CPU_Features_s.fst.checked", "Spec.Agile.HPKE.fsti.checked", "Spec.Agile.Hash.fsti.checked", "Spec.Agile.DH.fst.checked", "Spec.Agile.AEAD.fsti.checked", "prims.fst.checked", "Hacl.Impl.HPKE.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Hacl.HPKE.Curve64_CP128_SHA256.fsti" }
[ "total" ]
[ "FStar.Pervasives.Native.Mktuple4", "Spec.Agile.DH.algorithm", "Spec.Agile.HPKE.hash_algorithm", "Spec.Agile.HPKE.aead", "Spec.Hash.Definitions.hash_alg", "Spec.Agile.DH.DH_Curve25519", "Spec.Hash.Definitions.SHA2_256", "Spec.Agile.HPKE.Seal", "Spec.Agile.AEAD.CHACHA20_POLY1305" ]
[]
module Hacl.HPKE.Curve64_CP128_SHA256 open Hacl.Impl.HPKE module S = Spec.Agile.HPKE module DH = Spec.Agile.DH module AEAD = Spec.Agile.AEAD module Hash = Spec.Agile.Hash
false
true
Hacl.HPKE.Curve64_CP128_SHA256.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val cs:S.ciphersuite
[]
Hacl.HPKE.Curve64_CP128_SHA256.cs
{ "file_name": "code/hpke/Hacl.HPKE.Curve64_CP128_SHA256.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Spec.Agile.HPKE.ciphersuite
{ "end_col": 102, "end_line": 10, "start_col": 23, "start_line": 10 }
Prims.Tot
val expand (a: cipher_alg) (k: key a) : xkey a
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let expand (a: cipher_alg) (k: key a): xkey a = match a with | AES128 | AES256 -> Spec.AES.aes_key_expansion (aes_alg_of_alg a) k | CHACHA20 -> k
val expand (a: cipher_alg) (k: key a) : xkey a let expand (a: cipher_alg) (k: key a) : xkey a =
false
null
false
match a with | AES128 | AES256 -> Spec.AES.aes_key_expansion (aes_alg_of_alg a) k | CHACHA20 -> k
{ "checked_file": "Spec.Agile.Cipher.fst.checked", "dependencies": [ "Spec.Chacha20.fst.checked", "Spec.AES.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Spec.Agile.Cipher.fst" }
[ "total" ]
[ "Spec.Agile.Cipher.cipher_alg", "Spec.Agile.Cipher.key", "Spec.AES.aes_key_expansion", "Spec.Agile.Cipher.aes_alg_of_alg", "Spec.Agile.Cipher.xkey" ]
[]
module Spec.Agile.Cipher open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence #reset-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 1" let force_flush_interleaving = () let aes_ctr_block_add_counter (block: lbytes 16) (incr:size_nat): Tot (lbytes 16) = let n = nat_from_bytes_be block in let n' = (n + incr) % pow2 128 in nat_to_bytes_be 16 n' let xkey (a: cipher_alg) = match a with | AES128 | AES256 -> Spec.AES.aes_xkey (aes_alg_of_alg a) | CHACHA20 -> Spec.Chacha20.key /// As specified by the NIST. Other implementations (e.g. Vale) may perform /// other steps beyond key expansion but this is an implementation detail.
false
false
Spec.Agile.Cipher.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val expand (a: cipher_alg) (k: key a) : xkey a
[]
Spec.Agile.Cipher.expand
{ "file_name": "specs/Spec.Agile.Cipher.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.Agile.Cipher.cipher_alg -> k: Spec.Agile.Cipher.key a -> Spec.Agile.Cipher.xkey a
{ "end_col": 17, "end_line": 27, "start_col": 2, "start_line": 25 }
Prims.Tot
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let xkey (a: cipher_alg) = match a with | AES128 | AES256 -> Spec.AES.aes_xkey (aes_alg_of_alg a) | CHACHA20 -> Spec.Chacha20.key
let xkey (a: cipher_alg) =
false
null
false
match a with | AES128 | AES256 -> Spec.AES.aes_xkey (aes_alg_of_alg a) | CHACHA20 -> Spec.Chacha20.key
{ "checked_file": "Spec.Agile.Cipher.fst.checked", "dependencies": [ "Spec.Chacha20.fst.checked", "Spec.AES.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Spec.Agile.Cipher.fst" }
[ "total" ]
[ "Spec.Agile.Cipher.cipher_alg", "Spec.AES.aes_xkey", "Spec.Agile.Cipher.aes_alg_of_alg", "Spec.Chacha20.key" ]
[]
module Spec.Agile.Cipher open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence #reset-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 1" let force_flush_interleaving = () let aes_ctr_block_add_counter (block: lbytes 16) (incr:size_nat): Tot (lbytes 16) = let n = nat_from_bytes_be block in let n' = (n + incr) % pow2 128 in nat_to_bytes_be 16 n'
false
true
Spec.Agile.Cipher.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val xkey : a: Spec.Agile.Cipher.cipher_alg -> Type0
[]
Spec.Agile.Cipher.xkey
{ "file_name": "specs/Spec.Agile.Cipher.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.Agile.Cipher.cipher_alg -> Type0
{ "end_col": 33, "end_line": 20, "start_col": 2, "start_line": 18 }
Prims.Tot
val ctr_block (a: cipher_alg) (k: key a) (iv: nonce a) (c: ctr): block a
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ctr_block (a: cipher_alg) (k: key a) (iv: nonce a) (c: ctr): block a = let k = expand a k in match a with | AES128 | AES256 -> let open Spec.AES in let open Lib.LoopCombinators in let block = create 16 (u8 0) in let block = repeati #(lbytes 16) (length iv) (fun i b -> b.[i] <- Seq.index iv i) block in let block = aes_ctr_block_add_counter block c in aes_encrypt_block (aes_alg_of_alg a) k block | CHACHA20 -> let open Spec.Chacha20 in let block = chacha20_init k iv c in let block' = rounds block in uints_to_bytes_le (sum_state block block')
val ctr_block (a: cipher_alg) (k: key a) (iv: nonce a) (c: ctr): block a let ctr_block (a: cipher_alg) (k: key a) (iv: nonce a) (c: ctr) : block a =
false
null
false
let k = expand a k in match a with | AES128 | AES256 -> let open Spec.AES in let open Lib.LoopCombinators in let block = create 16 (u8 0) in let block = repeati #(lbytes 16) (length iv) (fun i b -> b.[ i ] <- Seq.index iv i) block in let block = aes_ctr_block_add_counter block c in aes_encrypt_block (aes_alg_of_alg a) k block | CHACHA20 -> let open Spec.Chacha20 in let block = chacha20_init k iv c in let block' = rounds block in uints_to_bytes_le (sum_state block block')
{ "checked_file": "Spec.Agile.Cipher.fst.checked", "dependencies": [ "Spec.Chacha20.fst.checked", "Spec.AES.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Spec.Agile.Cipher.fst" }
[ "total" ]
[ "Spec.Agile.Cipher.cipher_alg", "Spec.Agile.Cipher.key", "Spec.Agile.Cipher.nonce", "Spec.Agile.Cipher.ctr", "Spec.AES.aes_encrypt_block", "Spec.Agile.Cipher.aes_alg_of_alg", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Spec.Agile.Cipher.aes_ctr_block_add_counter", "Lib.LoopCombinators.repeati", "Lib.ByteSequence.lbytes", "Lib.Sequence.length", "Lib.IntTypes.uint_t", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Lib.Sequence.op_String_Assignment", "FStar.Seq.Base.index", "Prims.l_and", "Prims.eq2", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.create", "Lib.IntTypes.mk_int", "Prims.l_Forall", "Prims.l_imp", "Lib.Sequence.index", "Lib.Sequence.create", "Lib.IntTypes.u8", "Lib.ByteSequence.uints_to_bytes_le", "Lib.IntTypes.U32", "Spec.Chacha20.sum_state", "Spec.Chacha20.state", "Spec.Chacha20.rounds", "Spec.Chacha20.chacha20_init", "Spec.Agile.Cipher.block", "Spec.Agile.Cipher.xkey", "Spec.Agile.Cipher.expand" ]
[]
module Spec.Agile.Cipher open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence #reset-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 1" let force_flush_interleaving = () let aes_ctr_block_add_counter (block: lbytes 16) (incr:size_nat): Tot (lbytes 16) = let n = nat_from_bytes_be block in let n' = (n + incr) % pow2 128 in nat_to_bytes_be 16 n' let xkey (a: cipher_alg) = match a with | AES128 | AES256 -> Spec.AES.aes_xkey (aes_alg_of_alg a) | CHACHA20 -> Spec.Chacha20.key /// As specified by the NIST. Other implementations (e.g. Vale) may perform /// other steps beyond key expansion but this is an implementation detail. let expand (a: cipher_alg) (k: key a): xkey a = match a with | AES128 | AES256 -> Spec.AES.aes_key_expansion (aes_alg_of_alg a) k | CHACHA20 -> k
false
false
Spec.Agile.Cipher.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ctr_block (a: cipher_alg) (k: key a) (iv: nonce a) (c: ctr): block a
[]
Spec.Agile.Cipher.ctr_block
{ "file_name": "specs/Spec.Agile.Cipher.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.Agile.Cipher.cipher_alg -> k: Spec.Agile.Cipher.key a -> iv: Spec.Agile.Cipher.nonce a -> c: Spec.Agile.Cipher.ctr -> Spec.Agile.Cipher.block a
{ "end_col": 48, "end_line": 45, "start_col": 74, "start_line": 30 }
Prims.Tot
val aes_ctr_block_add_counter (block: lbytes 16) (incr: size_nat) : Tot (lbytes 16)
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let aes_ctr_block_add_counter (block: lbytes 16) (incr:size_nat): Tot (lbytes 16) = let n = nat_from_bytes_be block in let n' = (n + incr) % pow2 128 in nat_to_bytes_be 16 n'
val aes_ctr_block_add_counter (block: lbytes 16) (incr: size_nat) : Tot (lbytes 16) let aes_ctr_block_add_counter (block: lbytes 16) (incr: size_nat) : Tot (lbytes 16) =
false
null
false
let n = nat_from_bytes_be block in let n' = (n + incr) % pow2 128 in nat_to_bytes_be 16 n'
{ "checked_file": "Spec.Agile.Cipher.fst.checked", "dependencies": [ "Spec.Chacha20.fst.checked", "Spec.AES.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "Spec.Agile.Cipher.fst" }
[ "total" ]
[ "Lib.ByteSequence.lbytes", "Lib.IntTypes.size_nat", "Lib.ByteSequence.nat_to_bytes_be", "Lib.IntTypes.SEC", "Prims.int", "Prims.op_Modulus", "Prims.op_Addition", "Prims.pow2", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Multiply", "Lib.Sequence.length", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.ByteSequence.nat_from_bytes_be" ]
[]
module Spec.Agile.Cipher open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence #reset-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 1" let force_flush_interleaving = ()
false
false
Spec.Agile.Cipher.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val aes_ctr_block_add_counter (block: lbytes 16) (incr: size_nat) : Tot (lbytes 16)
[]
Spec.Agile.Cipher.aes_ctr_block_add_counter
{ "file_name": "specs/Spec.Agile.Cipher.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
block: Lib.ByteSequence.lbytes 16 -> incr: Lib.IntTypes.size_nat -> Lib.ByteSequence.lbytes 16
{ "end_col": 23, "end_line": 15, "start_col": 83, "start_line": 12 }
Prims.Tot
val va_code_Add64Wrap : dst:va_operand_dst_opr64 -> src:va_operand_opr64 -> Tot va_code
[ { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "S" }, { "abbrev": true, "full_module": "Vale.X64.Instructions_s", "short_module": "I" }, { "abbrev": false, "full_module": "Vale.X64.Stack_i", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Taint_Semantics", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_code_Add64Wrap dst src = (mk_ins (make_instr (I.ins_Add64) dst src))
val va_code_Add64Wrap : dst:va_operand_dst_opr64 -> src:va_operand_opr64 -> Tot va_code let va_code_Add64Wrap dst src =
false
null
false
(mk_ins (make_instr (I.ins_Add64) dst src))
{ "checked_file": "Vale.X64.InsBasic.fst.checked", "dependencies": [ "Vale.X64.Taint_Semantics.fst.checked", "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.Stack_i.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Instructions_s.fsti.checked", "Vale.X64.InsLemmas.fsti.checked", "Vale.X64.Decls.fst.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Arch.Types.fsti.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": true, "source_file": "Vale.X64.InsBasic.fst" }
[ "total" ]
[ "Vale.X64.Decls.va_operand_dst_opr64", "Vale.X64.Decls.va_operand_opr64", "Vale.X64.Taint_Semantics.mk_ins", "Vale.X64.InsLemmas.make_instr", "Prims.Cons", "Vale.X64.Instruction_s.instr_out", "Vale.X64.Instruction_s.out", "Vale.X64.Instruction_s.opFlagsCf", "Vale.X64.Instruction_s.inOut", "Vale.X64.Instruction_s.op64", "Prims.Nil", "Vale.X64.Instruction_s.instr_operand", "Vale.X64.Instruction_s.HavocFlags", "Vale.X64.Instructions_s.ins_Add64", "Vale.X64.Decls.va_code" ]
[]
module Vale.X64.InsBasic open Vale.X64 open Vale.X64.StateLemmas open Vale.X64.InsLemmas open Vale.X64.Taint_Semantics open Vale.X64.CPU_Features_s open Vale.X64.Memory open Vale.X64.Stack_i module I = Vale.X64.Instructions_s module S = Vale.X64.Machine_Semantics_s friend Vale.X64.Decls #reset-options "--initial_fuel 5 --max_fuel 5 --max_ifuel 2 --z3rlimit 20" //-- Mov64 [@ "opaque_to_smt"] let va_code_Mov64 dst src = (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mov64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mov64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mov64) (va_code_Mov64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mov64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mov64 (va_code_Mov64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cmovc64 [@ "opaque_to_smt"] let va_code_Cmovc64 dst src = (mk_ins (make_instr (I.ins_Cmovc64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Cmovc64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cmovc64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Cmovc64) (va_code_Cmovc64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cmovc64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cmovc64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cmovc64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cmovc64 (va_code_Cmovc64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Add64 [@ "opaque_to_smt"] let va_code_Add64 dst src = (mk_ins (make_instr (I.ins_Add64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Add64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Add64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Add64) (va_code_Add64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Add64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Add64 (va_code_Add64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Add64Wrap [@ "opaque_to_smt"]
false
true
Vale.X64.InsBasic.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 5, "initial_ifuel": 0, "max_fuel": 5, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_code_Add64Wrap : dst:va_operand_dst_opr64 -> src:va_operand_opr64 -> Tot va_code
[]
Vale.X64.InsBasic.va_code_Add64Wrap
{ "file_name": "obj/Vale.X64.InsBasic.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
dst: Vale.X64.Decls.va_operand_dst_opr64 -> src: Vale.X64.Decls.va_operand_opr64 -> Vale.X64.Decls.va_code
{ "end_col": 45, "end_line": 106, "start_col": 2, "start_line": 106 }
Prims.Tot
val va_code_Mov64 : dst:va_operand_dst_opr64 -> src:va_operand_opr64 -> Tot va_code
[ { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "S" }, { "abbrev": true, "full_module": "Vale.X64.Instructions_s", "short_module": "I" }, { "abbrev": false, "full_module": "Vale.X64.Stack_i", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Taint_Semantics", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_code_Mov64 dst src = (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src))
val va_code_Mov64 : dst:va_operand_dst_opr64 -> src:va_operand_opr64 -> Tot va_code let va_code_Mov64 dst src =
false
null
false
(mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src))
{ "checked_file": "Vale.X64.InsBasic.fst.checked", "dependencies": [ "Vale.X64.Taint_Semantics.fst.checked", "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.Stack_i.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Instructions_s.fsti.checked", "Vale.X64.InsLemmas.fsti.checked", "Vale.X64.Decls.fst.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Arch.Types.fsti.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": true, "source_file": "Vale.X64.InsBasic.fst" }
[ "total" ]
[ "Vale.X64.Decls.va_operand_dst_opr64", "Vale.X64.Decls.va_operand_opr64", "Vale.X64.Taint_Semantics.mk_ins", "Vale.X64.InsLemmas.make_instr_annotate", "Prims.Cons", "Vale.X64.Instruction_s.instr_out", "Vale.X64.Instruction_s.out", "Vale.X64.Instruction_s.op64", "Prims.Nil", "Vale.X64.Instruction_s.instr_operand", "Vale.X64.Instruction_s.PreserveFlags", "Vale.X64.Instructions_s.ins_Mov64", "Vale.X64.Machine_Semantics_s.AnnotateMov64", "Vale.X64.Instruction_s.InstrTypeRecord", "Vale.X64.Decls.va_code" ]
[]
module Vale.X64.InsBasic open Vale.X64 open Vale.X64.StateLemmas open Vale.X64.InsLemmas open Vale.X64.Taint_Semantics open Vale.X64.CPU_Features_s open Vale.X64.Memory open Vale.X64.Stack_i module I = Vale.X64.Instructions_s module S = Vale.X64.Machine_Semantics_s friend Vale.X64.Decls #reset-options "--initial_fuel 5 --max_fuel 5 --max_ifuel 2 --z3rlimit 20" //-- Mov64 [@ "opaque_to_smt"]
false
true
Vale.X64.InsBasic.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 5, "initial_ifuel": 0, "max_fuel": 5, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_code_Mov64 : dst:va_operand_dst_opr64 -> src:va_operand_opr64 -> Tot va_code
[]
Vale.X64.InsBasic.va_code_Mov64
{ "file_name": "obj/Vale.X64.InsBasic.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
dst: Vale.X64.Decls.va_operand_dst_opr64 -> src: Vale.X64.Decls.va_operand_opr64 -> Vale.X64.Decls.va_code
{ "end_col": 75, "end_line": 17, "start_col": 2, "start_line": 17 }
Prims.Tot
val va_code_Cmovc64 : dst:va_operand_dst_opr64 -> src:va_operand_opr64 -> Tot va_code
[ { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "S" }, { "abbrev": true, "full_module": "Vale.X64.Instructions_s", "short_module": "I" }, { "abbrev": false, "full_module": "Vale.X64.Stack_i", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Taint_Semantics", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_code_Cmovc64 dst src = (mk_ins (make_instr (I.ins_Cmovc64) dst src))
val va_code_Cmovc64 : dst:va_operand_dst_opr64 -> src:va_operand_opr64 -> Tot va_code let va_code_Cmovc64 dst src =
false
null
false
(mk_ins (make_instr (I.ins_Cmovc64) dst src))
{ "checked_file": "Vale.X64.InsBasic.fst.checked", "dependencies": [ "Vale.X64.Taint_Semantics.fst.checked", "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.Stack_i.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Instructions_s.fsti.checked", "Vale.X64.InsLemmas.fsti.checked", "Vale.X64.Decls.fst.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Arch.Types.fsti.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": true, "source_file": "Vale.X64.InsBasic.fst" }
[ "total" ]
[ "Vale.X64.Decls.va_operand_dst_opr64", "Vale.X64.Decls.va_operand_opr64", "Vale.X64.Taint_Semantics.mk_ins", "Vale.X64.InsLemmas.make_instr", "Prims.Cons", "Vale.X64.Instruction_s.instr_out", "Vale.X64.Instruction_s.inOut", "Vale.X64.Instruction_s.op64", "Prims.Nil", "Vale.X64.Instruction_s.instr_operand", "Vale.X64.Instruction_s.opFlagsCf", "Vale.X64.Instruction_s.PreserveFlags", "Vale.X64.Instructions_s.ins_Cmovc64", "Vale.X64.Decls.va_code" ]
[]
module Vale.X64.InsBasic open Vale.X64 open Vale.X64.StateLemmas open Vale.X64.InsLemmas open Vale.X64.Taint_Semantics open Vale.X64.CPU_Features_s open Vale.X64.Memory open Vale.X64.Stack_i module I = Vale.X64.Instructions_s module S = Vale.X64.Machine_Semantics_s friend Vale.X64.Decls #reset-options "--initial_fuel 5 --max_fuel 5 --max_ifuel 2 --z3rlimit 20" //-- Mov64 [@ "opaque_to_smt"] let va_code_Mov64 dst src = (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mov64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mov64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mov64) (va_code_Mov64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mov64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mov64 (va_code_Mov64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cmovc64 [@ "opaque_to_smt"]
false
true
Vale.X64.InsBasic.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 5, "initial_ifuel": 0, "max_fuel": 5, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_code_Cmovc64 : dst:va_operand_dst_opr64 -> src:va_operand_opr64 -> Tot va_code
[]
Vale.X64.InsBasic.va_code_Cmovc64
{ "file_name": "obj/Vale.X64.InsBasic.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
dst: Vale.X64.Decls.va_operand_dst_opr64 -> src: Vale.X64.Decls.va_operand_opr64 -> Vale.X64.Decls.va_code
{ "end_col": 47, "end_line": 47, "start_col": 2, "start_line": 47 }
Prims.Tot
val va_code_And64 : dst:va_operand_dst_opr64 -> src:va_operand_opr64 -> Tot va_code
[ { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "S" }, { "abbrev": true, "full_module": "Vale.X64.Instructions_s", "short_module": "I" }, { "abbrev": false, "full_module": "Vale.X64.Stack_i", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Taint_Semantics", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_code_And64 dst src = (mk_ins (make_instr (I.ins_And64) dst src))
val va_code_And64 : dst:va_operand_dst_opr64 -> src:va_operand_opr64 -> Tot va_code let va_code_And64 dst src =
false
null
false
(mk_ins (make_instr (I.ins_And64) dst src))
{ "checked_file": "Vale.X64.InsBasic.fst.checked", "dependencies": [ "Vale.X64.Taint_Semantics.fst.checked", "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.Stack_i.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Instructions_s.fsti.checked", "Vale.X64.InsLemmas.fsti.checked", "Vale.X64.Decls.fst.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Arch.Types.fsti.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": true, "source_file": "Vale.X64.InsBasic.fst" }
[ "total" ]
[ "Vale.X64.Decls.va_operand_dst_opr64", "Vale.X64.Decls.va_operand_opr64", "Vale.X64.Taint_Semantics.mk_ins", "Vale.X64.InsLemmas.make_instr", "Prims.Cons", "Vale.X64.Instruction_s.instr_out", "Vale.X64.Instruction_s.inOut", "Vale.X64.Instruction_s.op64", "Prims.Nil", "Vale.X64.Instruction_s.instr_operand", "Vale.X64.Instruction_s.HavocFlags", "Vale.X64.Instructions_s.ins_And64", "Vale.X64.Decls.va_code" ]
[]
module Vale.X64.InsBasic open Vale.X64 open Vale.X64.StateLemmas open Vale.X64.InsLemmas open Vale.X64.Taint_Semantics open Vale.X64.CPU_Features_s open Vale.X64.Memory open Vale.X64.Stack_i module I = Vale.X64.Instructions_s module S = Vale.X64.Machine_Semantics_s friend Vale.X64.Decls #reset-options "--initial_fuel 5 --max_fuel 5 --max_ifuel 2 --z3rlimit 20" //-- Mov64 [@ "opaque_to_smt"] let va_code_Mov64 dst src = (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mov64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mov64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mov64) (va_code_Mov64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mov64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mov64 (va_code_Mov64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cmovc64 [@ "opaque_to_smt"] let va_code_Cmovc64 dst src = (mk_ins (make_instr (I.ins_Cmovc64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Cmovc64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cmovc64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Cmovc64) (va_code_Cmovc64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cmovc64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cmovc64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cmovc64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cmovc64 (va_code_Cmovc64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Add64 [@ "opaque_to_smt"] let va_code_Add64 dst src = (mk_ins (make_instr (I.ins_Add64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Add64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Add64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Add64) (va_code_Add64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Add64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Add64 (va_code_Add64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Add64Wrap [@ "opaque_to_smt"] let va_code_Add64Wrap dst src = (mk_ins (make_instr (I.ins_Add64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Add64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Add64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Add64Wrap) (va_code_Add64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Add64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Add64Wrap (va_code_Add64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- AddLea64 [@ "opaque_to_smt"] let va_code_AddLea64 dst src1 src2 = (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) [@ "opaque_to_smt"] let va_codegen_success_AddLea64 dst src1 src2 = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_AddLea64 va_b0 va_s0 dst src1 src2 = va_reveal_opaque (`%va_code_AddLea64) (va_code_AddLea64 dst src1 src2); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_AddLea64 dst src1 src2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_AddLea64 (va_code_AddLea64 dst src1 src2) va_s0 dst src1 src2 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adc64 [@ "opaque_to_smt"] let va_code_Adc64 dst src = (mk_ins (make_instr (I.ins_AddCarry64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adc64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adc64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adc64) (va_code_Adc64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adc64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adc64 (va_code_Adc64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adc64Wrap [@ "opaque_to_smt"] let va_code_Adc64Wrap dst src = (mk_ins (make_instr (I.ins_AddCarry64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adc64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adc64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adc64Wrap) (va_code_Adc64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adc64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adc64Wrap (va_code_Adc64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adcx64Wrap #push-options "--smtencoding.nl_arith_repr boxwrap" [@ "opaque_to_smt"] let va_code_Adcx64Wrap dst src = (mk_ins (make_instr (I.ins_Adcx64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adcx64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adcx64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adcx64Wrap) (va_code_Adcx64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Adcx64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Adcx64) dst src)) va_s0 in assert (Vale.Arch.Types.add_wrap64 (Vale.Arch.Types.add_wrap64 (va_eval_dst_opr64 va_old_s dst) (va_eval_opr64 va_old_s src)) (if Vale.X64.Decls.cf (va_get_flags va_old_s) then 1 else 0) == (va_eval_dst_opr64 va_old_s dst + va_eval_opr64 va_old_s src + (if Vale.X64.Decls.cf (va_get_flags va_old_s) then 1 else 0)) `op_Modulus` pow2_64); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adcx64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adcx64Wrap (va_code_Adcx64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) #pop-options //-- //-- Adox64Wrap [@ "opaque_to_smt"] let va_code_Adox64Wrap dst src = (mk_ins (make_instr (I.ins_Adox64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adox64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adox64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adox64Wrap) (va_code_Adox64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Adox64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Adox64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adox64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adox64Wrap (va_code_Adox64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Sub64 [@ "opaque_to_smt"] let va_code_Sub64 dst src = (mk_ins (make_instr (I.ins_Sub64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Sub64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Sub64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Sub64) (va_code_Sub64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Sub64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Sub64 (va_code_Sub64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Sub64Wrap [@ "opaque_to_smt"] let va_code_Sub64Wrap dst src = (mk_ins (make_instr (I.ins_Sub64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Sub64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Sub64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Sub64Wrap) (va_code_Sub64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Sub64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Sub64Wrap (va_code_Sub64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Sbb64 [@ "opaque_to_smt"] let va_code_Sbb64 dst src = (mk_ins (make_instr (I.ins_Sbb64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Sbb64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Sbb64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Sbb64) (va_code_Sbb64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Sbb64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Sbb64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Sbb64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Sbb64 (va_code_Sbb64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- #restart-solver #push-options "--max_fuel 0 --max_ifuel 0 --using_facts_from 'Prims FStar.UInt'" let lemma_fundamental_div_mod (a b:nat64) : Lemma (pow2_64 * (FStar.UInt.mul_div #64 a b) + (FStar.UInt.mul_mod #64 a b) == a * b) = FStar.Math.Lemmas.lemma_div_mod (a * b) pow2_64 #pop-options //-- lemma_fundamental_div_mod //-- //-- Mul64Wrap [@ "opaque_to_smt"] let va_code_Mul64Wrap src = (mk_ins (make_instr (I.ins_Mul64) src)) [@ "opaque_to_smt"] let va_codegen_success_Mul64Wrap src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mul64Wrap va_b0 va_s0 src = va_reveal_opaque (`%va_code_Mul64Wrap) (va_code_Mul64Wrap src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Mul64) src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Mul64) src)) va_s0 in lemma_fundamental_div_mod (va_get_reg64 rRax va_old_s) (va_eval_opr64 va_old_s src); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mul64Wrap src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mul64Wrap (va_code_Mul64Wrap src) va_s0 src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRax va_sM (va_update_flags va_sM (va_update_ok va_sM va_s0))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRax; va_Mod_flags]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mulx64 [@ "opaque_to_smt"] let va_code_Mulx64 dst_hi dst_lo src = (mk_ins (make_instr (I.ins_Mulx64) dst_hi dst_lo src)) [@ "opaque_to_smt"] let va_codegen_success_Mulx64 dst_hi dst_lo src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mulx64 va_b0 va_s0 dst_hi dst_lo src = va_reveal_opaque (`%va_code_Mulx64) (va_code_Mulx64 dst_hi dst_lo src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Mulx64) dst_hi dst_lo src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Mulx64) dst_hi dst_lo src)) va_s0 in lemma_fundamental_div_mod (va_get_reg64 rRdx va_old_s) (va_eval_opr64 va_old_s src); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mulx64 dst_hi dst_lo src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mulx64 (va_code_Mulx64 dst_hi dst_lo src) va_s0 dst_hi dst_lo src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst_lo va_sM (va_update_operand_dst_opr64 dst_hi va_sM va_s0)))); va_lemma_norm_mods ([va_mod_dst_opr64 dst_lo; va_mod_dst_opr64 dst_hi]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- lemma_mul_nat //-- //-- lemma_mul_in_bounds //-- //-- IMul64 [@ "opaque_to_smt"] let va_code_IMul64 dst src = (mk_ins (make_instr (I.ins_IMul64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_IMul64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_IMul64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_IMul64) (va_code_IMul64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_IMul64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_IMul64) dst src)) va_s0 in lemma_mul_nat (va_eval_dst_opr64 va_old_s dst) (va_eval_opr64 va_old_s src); lemma_mul_in_bounds (va_eval_dst_opr64 va_old_s dst) (va_eval_opr64 va_old_s src); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_IMul64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_IMul64 (va_code_IMul64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Xor64 [@ "opaque_to_smt"] let va_code_Xor64 dst src = (mk_ins (make_instr_annotate (I.ins_Xor64) (S.AnnotateXor64 ()) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Xor64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Xor64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Xor64) (va_code_Xor64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Xor64) (S.AnnotateXor64 ()) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Xor64) (S.AnnotateXor64 ()) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Xor64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Xor64 (va_code_Xor64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- And64 [@ "opaque_to_smt"]
false
true
Vale.X64.InsBasic.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 5, "initial_ifuel": 0, "max_fuel": 5, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_code_And64 : dst:va_operand_dst_opr64 -> src:va_operand_opr64 -> Tot va_code
[]
Vale.X64.InsBasic.va_code_And64
{ "file_name": "obj/Vale.X64.InsBasic.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
dst: Vale.X64.Decls.va_operand_dst_opr64 -> src: Vale.X64.Decls.va_operand_opr64 -> Vale.X64.Decls.va_code
{ "end_col": 45, "end_line": 519, "start_col": 2, "start_line": 519 }
Prims.Tot
val va_code_Sub64 : dst:va_operand_dst_opr64 -> src:va_operand_opr64 -> Tot va_code
[ { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "S" }, { "abbrev": true, "full_module": "Vale.X64.Instructions_s", "short_module": "I" }, { "abbrev": false, "full_module": "Vale.X64.Stack_i", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Taint_Semantics", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_code_Sub64 dst src = (mk_ins (make_instr (I.ins_Sub64) dst src))
val va_code_Sub64 : dst:va_operand_dst_opr64 -> src:va_operand_opr64 -> Tot va_code let va_code_Sub64 dst src =
false
null
false
(mk_ins (make_instr (I.ins_Sub64) dst src))
{ "checked_file": "Vale.X64.InsBasic.fst.checked", "dependencies": [ "Vale.X64.Taint_Semantics.fst.checked", "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.Stack_i.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Instructions_s.fsti.checked", "Vale.X64.InsLemmas.fsti.checked", "Vale.X64.Decls.fst.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Arch.Types.fsti.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": true, "source_file": "Vale.X64.InsBasic.fst" }
[ "total" ]
[ "Vale.X64.Decls.va_operand_dst_opr64", "Vale.X64.Decls.va_operand_opr64", "Vale.X64.Taint_Semantics.mk_ins", "Vale.X64.InsLemmas.make_instr", "Prims.Cons", "Vale.X64.Instruction_s.instr_out", "Vale.X64.Instruction_s.out", "Vale.X64.Instruction_s.opFlagsCf", "Vale.X64.Instruction_s.inOut", "Vale.X64.Instruction_s.op64", "Prims.Nil", "Vale.X64.Instruction_s.instr_operand", "Vale.X64.Instruction_s.HavocFlags", "Vale.X64.Instructions_s.ins_Sub64", "Vale.X64.Decls.va_code" ]
[]
module Vale.X64.InsBasic open Vale.X64 open Vale.X64.StateLemmas open Vale.X64.InsLemmas open Vale.X64.Taint_Semantics open Vale.X64.CPU_Features_s open Vale.X64.Memory open Vale.X64.Stack_i module I = Vale.X64.Instructions_s module S = Vale.X64.Machine_Semantics_s friend Vale.X64.Decls #reset-options "--initial_fuel 5 --max_fuel 5 --max_ifuel 2 --z3rlimit 20" //-- Mov64 [@ "opaque_to_smt"] let va_code_Mov64 dst src = (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mov64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mov64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mov64) (va_code_Mov64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mov64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mov64 (va_code_Mov64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cmovc64 [@ "opaque_to_smt"] let va_code_Cmovc64 dst src = (mk_ins (make_instr (I.ins_Cmovc64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Cmovc64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cmovc64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Cmovc64) (va_code_Cmovc64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cmovc64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cmovc64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cmovc64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cmovc64 (va_code_Cmovc64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Add64 [@ "opaque_to_smt"] let va_code_Add64 dst src = (mk_ins (make_instr (I.ins_Add64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Add64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Add64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Add64) (va_code_Add64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Add64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Add64 (va_code_Add64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Add64Wrap [@ "opaque_to_smt"] let va_code_Add64Wrap dst src = (mk_ins (make_instr (I.ins_Add64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Add64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Add64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Add64Wrap) (va_code_Add64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Add64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Add64Wrap (va_code_Add64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- AddLea64 [@ "opaque_to_smt"] let va_code_AddLea64 dst src1 src2 = (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) [@ "opaque_to_smt"] let va_codegen_success_AddLea64 dst src1 src2 = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_AddLea64 va_b0 va_s0 dst src1 src2 = va_reveal_opaque (`%va_code_AddLea64) (va_code_AddLea64 dst src1 src2); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_AddLea64 dst src1 src2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_AddLea64 (va_code_AddLea64 dst src1 src2) va_s0 dst src1 src2 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adc64 [@ "opaque_to_smt"] let va_code_Adc64 dst src = (mk_ins (make_instr (I.ins_AddCarry64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adc64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adc64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adc64) (va_code_Adc64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adc64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adc64 (va_code_Adc64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adc64Wrap [@ "opaque_to_smt"] let va_code_Adc64Wrap dst src = (mk_ins (make_instr (I.ins_AddCarry64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adc64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adc64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adc64Wrap) (va_code_Adc64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adc64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adc64Wrap (va_code_Adc64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adcx64Wrap #push-options "--smtencoding.nl_arith_repr boxwrap" [@ "opaque_to_smt"] let va_code_Adcx64Wrap dst src = (mk_ins (make_instr (I.ins_Adcx64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adcx64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adcx64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adcx64Wrap) (va_code_Adcx64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Adcx64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Adcx64) dst src)) va_s0 in assert (Vale.Arch.Types.add_wrap64 (Vale.Arch.Types.add_wrap64 (va_eval_dst_opr64 va_old_s dst) (va_eval_opr64 va_old_s src)) (if Vale.X64.Decls.cf (va_get_flags va_old_s) then 1 else 0) == (va_eval_dst_opr64 va_old_s dst + va_eval_opr64 va_old_s src + (if Vale.X64.Decls.cf (va_get_flags va_old_s) then 1 else 0)) `op_Modulus` pow2_64); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adcx64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adcx64Wrap (va_code_Adcx64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) #pop-options //-- //-- Adox64Wrap [@ "opaque_to_smt"] let va_code_Adox64Wrap dst src = (mk_ins (make_instr (I.ins_Adox64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adox64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adox64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adox64Wrap) (va_code_Adox64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Adox64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Adox64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adox64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adox64Wrap (va_code_Adox64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Sub64 [@ "opaque_to_smt"]
false
true
Vale.X64.InsBasic.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 5, "initial_ifuel": 0, "max_fuel": 5, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_code_Sub64 : dst:va_operand_dst_opr64 -> src:va_operand_opr64 -> Tot va_code
[]
Vale.X64.InsBasic.va_code_Sub64
{ "file_name": "obj/Vale.X64.InsBasic.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
dst: Vale.X64.Decls.va_operand_dst_opr64 -> src: Vale.X64.Decls.va_operand_opr64 -> Vale.X64.Decls.va_code
{ "end_col": 45, "end_line": 291, "start_col": 2, "start_line": 291 }
Prims.Tot
val va_code_Shl64 : dst:va_operand_dst_opr64 -> amt:va_operand_shift_amt64 -> Tot va_code
[ { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "S" }, { "abbrev": true, "full_module": "Vale.X64.Instructions_s", "short_module": "I" }, { "abbrev": false, "full_module": "Vale.X64.Stack_i", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Taint_Semantics", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_code_Shl64 dst amt = (mk_ins (make_instr (I.ins_Shl64) dst amt))
val va_code_Shl64 : dst:va_operand_dst_opr64 -> amt:va_operand_shift_amt64 -> Tot va_code let va_code_Shl64 dst amt =
false
null
false
(mk_ins (make_instr (I.ins_Shl64) dst amt))
{ "checked_file": "Vale.X64.InsBasic.fst.checked", "dependencies": [ "Vale.X64.Taint_Semantics.fst.checked", "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.Stack_i.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Instructions_s.fsti.checked", "Vale.X64.InsLemmas.fsti.checked", "Vale.X64.Decls.fst.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Arch.Types.fsti.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": true, "source_file": "Vale.X64.InsBasic.fst" }
[ "total" ]
[ "Vale.X64.Decls.va_operand_dst_opr64", "Vale.X64.Decls.va_operand_shift_amt64", "Vale.X64.Taint_Semantics.mk_ins", "Vale.X64.InsLemmas.make_instr", "Prims.Cons", "Vale.X64.Instruction_s.instr_out", "Vale.X64.Instruction_s.inOut", "Vale.X64.Instruction_s.op64", "Prims.Nil", "Vale.X64.Instruction_s.instr_operand", "Vale.X64.Instruction_s.HavocFlags", "Vale.X64.Instructions_s.ins_Shl64", "Vale.X64.Decls.va_code" ]
[]
module Vale.X64.InsBasic open Vale.X64 open Vale.X64.StateLemmas open Vale.X64.InsLemmas open Vale.X64.Taint_Semantics open Vale.X64.CPU_Features_s open Vale.X64.Memory open Vale.X64.Stack_i module I = Vale.X64.Instructions_s module S = Vale.X64.Machine_Semantics_s friend Vale.X64.Decls #reset-options "--initial_fuel 5 --max_fuel 5 --max_ifuel 2 --z3rlimit 20" //-- Mov64 [@ "opaque_to_smt"] let va_code_Mov64 dst src = (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mov64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mov64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mov64) (va_code_Mov64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mov64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mov64 (va_code_Mov64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cmovc64 [@ "opaque_to_smt"] let va_code_Cmovc64 dst src = (mk_ins (make_instr (I.ins_Cmovc64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Cmovc64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cmovc64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Cmovc64) (va_code_Cmovc64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cmovc64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cmovc64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cmovc64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cmovc64 (va_code_Cmovc64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Add64 [@ "opaque_to_smt"] let va_code_Add64 dst src = (mk_ins (make_instr (I.ins_Add64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Add64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Add64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Add64) (va_code_Add64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Add64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Add64 (va_code_Add64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Add64Wrap [@ "opaque_to_smt"] let va_code_Add64Wrap dst src = (mk_ins (make_instr (I.ins_Add64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Add64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Add64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Add64Wrap) (va_code_Add64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Add64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Add64Wrap (va_code_Add64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- AddLea64 [@ "opaque_to_smt"] let va_code_AddLea64 dst src1 src2 = (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) [@ "opaque_to_smt"] let va_codegen_success_AddLea64 dst src1 src2 = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_AddLea64 va_b0 va_s0 dst src1 src2 = va_reveal_opaque (`%va_code_AddLea64) (va_code_AddLea64 dst src1 src2); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_AddLea64 dst src1 src2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_AddLea64 (va_code_AddLea64 dst src1 src2) va_s0 dst src1 src2 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adc64 [@ "opaque_to_smt"] let va_code_Adc64 dst src = (mk_ins (make_instr (I.ins_AddCarry64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adc64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adc64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adc64) (va_code_Adc64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adc64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adc64 (va_code_Adc64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adc64Wrap [@ "opaque_to_smt"] let va_code_Adc64Wrap dst src = (mk_ins (make_instr (I.ins_AddCarry64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adc64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adc64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adc64Wrap) (va_code_Adc64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adc64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adc64Wrap (va_code_Adc64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adcx64Wrap #push-options "--smtencoding.nl_arith_repr boxwrap" [@ "opaque_to_smt"] let va_code_Adcx64Wrap dst src = (mk_ins (make_instr (I.ins_Adcx64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adcx64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adcx64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adcx64Wrap) (va_code_Adcx64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Adcx64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Adcx64) dst src)) va_s0 in assert (Vale.Arch.Types.add_wrap64 (Vale.Arch.Types.add_wrap64 (va_eval_dst_opr64 va_old_s dst) (va_eval_opr64 va_old_s src)) (if Vale.X64.Decls.cf (va_get_flags va_old_s) then 1 else 0) == (va_eval_dst_opr64 va_old_s dst + va_eval_opr64 va_old_s src + (if Vale.X64.Decls.cf (va_get_flags va_old_s) then 1 else 0)) `op_Modulus` pow2_64); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adcx64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adcx64Wrap (va_code_Adcx64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) #pop-options //-- //-- Adox64Wrap [@ "opaque_to_smt"] let va_code_Adox64Wrap dst src = (mk_ins (make_instr (I.ins_Adox64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adox64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adox64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adox64Wrap) (va_code_Adox64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Adox64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Adox64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adox64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adox64Wrap (va_code_Adox64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Sub64 [@ "opaque_to_smt"] let va_code_Sub64 dst src = (mk_ins (make_instr (I.ins_Sub64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Sub64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Sub64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Sub64) (va_code_Sub64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Sub64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Sub64 (va_code_Sub64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Sub64Wrap [@ "opaque_to_smt"] let va_code_Sub64Wrap dst src = (mk_ins (make_instr (I.ins_Sub64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Sub64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Sub64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Sub64Wrap) (va_code_Sub64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Sub64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Sub64Wrap (va_code_Sub64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Sbb64 [@ "opaque_to_smt"] let va_code_Sbb64 dst src = (mk_ins (make_instr (I.ins_Sbb64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Sbb64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Sbb64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Sbb64) (va_code_Sbb64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Sbb64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Sbb64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Sbb64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Sbb64 (va_code_Sbb64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- #restart-solver #push-options "--max_fuel 0 --max_ifuel 0 --using_facts_from 'Prims FStar.UInt'" let lemma_fundamental_div_mod (a b:nat64) : Lemma (pow2_64 * (FStar.UInt.mul_div #64 a b) + (FStar.UInt.mul_mod #64 a b) == a * b) = FStar.Math.Lemmas.lemma_div_mod (a * b) pow2_64 #pop-options //-- lemma_fundamental_div_mod //-- //-- Mul64Wrap [@ "opaque_to_smt"] let va_code_Mul64Wrap src = (mk_ins (make_instr (I.ins_Mul64) src)) [@ "opaque_to_smt"] let va_codegen_success_Mul64Wrap src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mul64Wrap va_b0 va_s0 src = va_reveal_opaque (`%va_code_Mul64Wrap) (va_code_Mul64Wrap src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Mul64) src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Mul64) src)) va_s0 in lemma_fundamental_div_mod (va_get_reg64 rRax va_old_s) (va_eval_opr64 va_old_s src); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mul64Wrap src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mul64Wrap (va_code_Mul64Wrap src) va_s0 src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRax va_sM (va_update_flags va_sM (va_update_ok va_sM va_s0))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRax; va_Mod_flags]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mulx64 [@ "opaque_to_smt"] let va_code_Mulx64 dst_hi dst_lo src = (mk_ins (make_instr (I.ins_Mulx64) dst_hi dst_lo src)) [@ "opaque_to_smt"] let va_codegen_success_Mulx64 dst_hi dst_lo src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mulx64 va_b0 va_s0 dst_hi dst_lo src = va_reveal_opaque (`%va_code_Mulx64) (va_code_Mulx64 dst_hi dst_lo src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Mulx64) dst_hi dst_lo src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Mulx64) dst_hi dst_lo src)) va_s0 in lemma_fundamental_div_mod (va_get_reg64 rRdx va_old_s) (va_eval_opr64 va_old_s src); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mulx64 dst_hi dst_lo src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mulx64 (va_code_Mulx64 dst_hi dst_lo src) va_s0 dst_hi dst_lo src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst_lo va_sM (va_update_operand_dst_opr64 dst_hi va_sM va_s0)))); va_lemma_norm_mods ([va_mod_dst_opr64 dst_lo; va_mod_dst_opr64 dst_hi]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- lemma_mul_nat //-- //-- lemma_mul_in_bounds //-- //-- IMul64 [@ "opaque_to_smt"] let va_code_IMul64 dst src = (mk_ins (make_instr (I.ins_IMul64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_IMul64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_IMul64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_IMul64) (va_code_IMul64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_IMul64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_IMul64) dst src)) va_s0 in lemma_mul_nat (va_eval_dst_opr64 va_old_s dst) (va_eval_opr64 va_old_s src); lemma_mul_in_bounds (va_eval_dst_opr64 va_old_s dst) (va_eval_opr64 va_old_s src); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_IMul64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_IMul64 (va_code_IMul64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Xor64 [@ "opaque_to_smt"] let va_code_Xor64 dst src = (mk_ins (make_instr_annotate (I.ins_Xor64) (S.AnnotateXor64 ()) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Xor64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Xor64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Xor64) (va_code_Xor64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Xor64) (S.AnnotateXor64 ()) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Xor64) (S.AnnotateXor64 ()) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Xor64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Xor64 (va_code_Xor64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- And64 [@ "opaque_to_smt"] let va_code_And64 dst src = (mk_ins (make_instr (I.ins_And64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_And64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_And64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_And64) (va_code_And64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_And64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_And64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_And64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_And64 (va_code_And64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Shl64 [@ "opaque_to_smt"]
false
true
Vale.X64.InsBasic.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 5, "initial_ifuel": 0, "max_fuel": 5, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_code_Shl64 : dst:va_operand_dst_opr64 -> amt:va_operand_shift_amt64 -> Tot va_code
[]
Vale.X64.InsBasic.va_code_Shl64
{ "file_name": "obj/Vale.X64.InsBasic.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
dst: Vale.X64.Decls.va_operand_dst_opr64 -> amt: Vale.X64.Decls.va_operand_shift_amt64 -> Vale.X64.Decls.va_code
{ "end_col": 45, "end_line": 549, "start_col": 2, "start_line": 549 }
Prims.Tot
val va_codegen_success_Mulx64 : dst_hi:va_operand_dst_opr64 -> dst_lo:va_operand_dst_opr64 -> src:va_operand_opr64 -> Tot va_pbool
[ { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "S" }, { "abbrev": true, "full_module": "Vale.X64.Instructions_s", "short_module": "I" }, { "abbrev": false, "full_module": "Vale.X64.Stack_i", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Taint_Semantics", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_codegen_success_Mulx64 dst_hi dst_lo src = (va_ttrue ())
val va_codegen_success_Mulx64 : dst_hi:va_operand_dst_opr64 -> dst_lo:va_operand_dst_opr64 -> src:va_operand_opr64 -> Tot va_pbool let va_codegen_success_Mulx64 dst_hi dst_lo src =
false
null
false
(va_ttrue ())
{ "checked_file": "Vale.X64.InsBasic.fst.checked", "dependencies": [ "Vale.X64.Taint_Semantics.fst.checked", "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.Stack_i.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Instructions_s.fsti.checked", "Vale.X64.InsLemmas.fsti.checked", "Vale.X64.Decls.fst.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Arch.Types.fsti.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": true, "source_file": "Vale.X64.InsBasic.fst" }
[ "total" ]
[ "Vale.X64.Decls.va_operand_dst_opr64", "Vale.X64.Decls.va_operand_opr64", "Vale.X64.Decls.va_ttrue", "Vale.X64.Decls.va_pbool" ]
[]
module Vale.X64.InsBasic open Vale.X64 open Vale.X64.StateLemmas open Vale.X64.InsLemmas open Vale.X64.Taint_Semantics open Vale.X64.CPU_Features_s open Vale.X64.Memory open Vale.X64.Stack_i module I = Vale.X64.Instructions_s module S = Vale.X64.Machine_Semantics_s friend Vale.X64.Decls #reset-options "--initial_fuel 5 --max_fuel 5 --max_ifuel 2 --z3rlimit 20" //-- Mov64 [@ "opaque_to_smt"] let va_code_Mov64 dst src = (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mov64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mov64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mov64) (va_code_Mov64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mov64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mov64 (va_code_Mov64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cmovc64 [@ "opaque_to_smt"] let va_code_Cmovc64 dst src = (mk_ins (make_instr (I.ins_Cmovc64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Cmovc64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cmovc64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Cmovc64) (va_code_Cmovc64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cmovc64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cmovc64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cmovc64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cmovc64 (va_code_Cmovc64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Add64 [@ "opaque_to_smt"] let va_code_Add64 dst src = (mk_ins (make_instr (I.ins_Add64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Add64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Add64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Add64) (va_code_Add64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Add64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Add64 (va_code_Add64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Add64Wrap [@ "opaque_to_smt"] let va_code_Add64Wrap dst src = (mk_ins (make_instr (I.ins_Add64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Add64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Add64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Add64Wrap) (va_code_Add64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Add64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Add64Wrap (va_code_Add64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- AddLea64 [@ "opaque_to_smt"] let va_code_AddLea64 dst src1 src2 = (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) [@ "opaque_to_smt"] let va_codegen_success_AddLea64 dst src1 src2 = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_AddLea64 va_b0 va_s0 dst src1 src2 = va_reveal_opaque (`%va_code_AddLea64) (va_code_AddLea64 dst src1 src2); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_AddLea64 dst src1 src2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_AddLea64 (va_code_AddLea64 dst src1 src2) va_s0 dst src1 src2 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adc64 [@ "opaque_to_smt"] let va_code_Adc64 dst src = (mk_ins (make_instr (I.ins_AddCarry64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adc64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adc64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adc64) (va_code_Adc64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adc64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adc64 (va_code_Adc64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adc64Wrap [@ "opaque_to_smt"] let va_code_Adc64Wrap dst src = (mk_ins (make_instr (I.ins_AddCarry64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adc64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adc64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adc64Wrap) (va_code_Adc64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adc64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adc64Wrap (va_code_Adc64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adcx64Wrap #push-options "--smtencoding.nl_arith_repr boxwrap" [@ "opaque_to_smt"] let va_code_Adcx64Wrap dst src = (mk_ins (make_instr (I.ins_Adcx64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adcx64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adcx64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adcx64Wrap) (va_code_Adcx64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Adcx64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Adcx64) dst src)) va_s0 in assert (Vale.Arch.Types.add_wrap64 (Vale.Arch.Types.add_wrap64 (va_eval_dst_opr64 va_old_s dst) (va_eval_opr64 va_old_s src)) (if Vale.X64.Decls.cf (va_get_flags va_old_s) then 1 else 0) == (va_eval_dst_opr64 va_old_s dst + va_eval_opr64 va_old_s src + (if Vale.X64.Decls.cf (va_get_flags va_old_s) then 1 else 0)) `op_Modulus` pow2_64); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adcx64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adcx64Wrap (va_code_Adcx64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) #pop-options //-- //-- Adox64Wrap [@ "opaque_to_smt"] let va_code_Adox64Wrap dst src = (mk_ins (make_instr (I.ins_Adox64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adox64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adox64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adox64Wrap) (va_code_Adox64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Adox64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Adox64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adox64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adox64Wrap (va_code_Adox64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Sub64 [@ "opaque_to_smt"] let va_code_Sub64 dst src = (mk_ins (make_instr (I.ins_Sub64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Sub64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Sub64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Sub64) (va_code_Sub64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Sub64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Sub64 (va_code_Sub64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Sub64Wrap [@ "opaque_to_smt"] let va_code_Sub64Wrap dst src = (mk_ins (make_instr (I.ins_Sub64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Sub64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Sub64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Sub64Wrap) (va_code_Sub64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Sub64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Sub64Wrap (va_code_Sub64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Sbb64 [@ "opaque_to_smt"] let va_code_Sbb64 dst src = (mk_ins (make_instr (I.ins_Sbb64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Sbb64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Sbb64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Sbb64) (va_code_Sbb64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Sbb64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Sbb64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Sbb64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Sbb64 (va_code_Sbb64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- #restart-solver #push-options "--max_fuel 0 --max_ifuel 0 --using_facts_from 'Prims FStar.UInt'" let lemma_fundamental_div_mod (a b:nat64) : Lemma (pow2_64 * (FStar.UInt.mul_div #64 a b) + (FStar.UInt.mul_mod #64 a b) == a * b) = FStar.Math.Lemmas.lemma_div_mod (a * b) pow2_64 #pop-options //-- lemma_fundamental_div_mod //-- //-- Mul64Wrap [@ "opaque_to_smt"] let va_code_Mul64Wrap src = (mk_ins (make_instr (I.ins_Mul64) src)) [@ "opaque_to_smt"] let va_codegen_success_Mul64Wrap src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mul64Wrap va_b0 va_s0 src = va_reveal_opaque (`%va_code_Mul64Wrap) (va_code_Mul64Wrap src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Mul64) src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Mul64) src)) va_s0 in lemma_fundamental_div_mod (va_get_reg64 rRax va_old_s) (va_eval_opr64 va_old_s src); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mul64Wrap src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mul64Wrap (va_code_Mul64Wrap src) va_s0 src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRax va_sM (va_update_flags va_sM (va_update_ok va_sM va_s0))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRax; va_Mod_flags]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mulx64 [@ "opaque_to_smt"] let va_code_Mulx64 dst_hi dst_lo src = (mk_ins (make_instr (I.ins_Mulx64) dst_hi dst_lo src)) [@ "opaque_to_smt"]
false
true
Vale.X64.InsBasic.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 5, "initial_ifuel": 0, "max_fuel": 5, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_codegen_success_Mulx64 : dst_hi:va_operand_dst_opr64 -> dst_lo:va_operand_dst_opr64 -> src:va_operand_opr64 -> Tot va_pbool
[]
Vale.X64.InsBasic.va_codegen_success_Mulx64
{ "file_name": "obj/Vale.X64.InsBasic.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
dst_hi: Vale.X64.Decls.va_operand_dst_opr64 -> dst_lo: Vale.X64.Decls.va_operand_dst_opr64 -> src: Vale.X64.Decls.va_operand_opr64 -> Vale.X64.Decls.va_pbool
{ "end_col": 15, "end_line": 425, "start_col": 2, "start_line": 425 }
Prims.Tot
val va_code_Cpuid_Sha : va_dummy:unit -> Tot va_code
[ { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "S" }, { "abbrev": true, "full_module": "Vale.X64.Instructions_s", "short_module": "I" }, { "abbrev": false, "full_module": "Vale.X64.Stack_i", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Taint_Semantics", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_code_Cpuid_Sha () = (mk_ins (make_instr (I.ins_Cpuid)))
val va_code_Cpuid_Sha : va_dummy:unit -> Tot va_code let va_code_Cpuid_Sha () =
false
null
false
(mk_ins (make_instr (I.ins_Cpuid)))
{ "checked_file": "Vale.X64.InsBasic.fst.checked", "dependencies": [ "Vale.X64.Taint_Semantics.fst.checked", "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.Stack_i.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Instructions_s.fsti.checked", "Vale.X64.InsLemmas.fsti.checked", "Vale.X64.Decls.fst.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Arch.Types.fsti.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": true, "source_file": "Vale.X64.InsBasic.fst" }
[ "total" ]
[ "Prims.unit", "Vale.X64.Taint_Semantics.mk_ins", "Vale.X64.InsLemmas.make_instr", "Prims.Cons", "Vale.X64.Instruction_s.instr_out", "Vale.X64.Instruction_s.inOut", "Vale.X64.Instruction_s.one64Reg", "Vale.X64.Machine_s.rRax", "Vale.X64.Instruction_s.out", "Vale.X64.Machine_s.rRbx", "Vale.X64.Machine_s.rRcx", "Vale.X64.Machine_s.rRdx", "Prims.Nil", "Vale.X64.Instruction_s.instr_operand", "Vale.X64.Instruction_s.PreserveFlags", "Vale.X64.Instructions_s.ins_Cpuid", "Vale.X64.Decls.va_code" ]
[]
module Vale.X64.InsBasic open Vale.X64 open Vale.X64.StateLemmas open Vale.X64.InsLemmas open Vale.X64.Taint_Semantics open Vale.X64.CPU_Features_s open Vale.X64.Memory open Vale.X64.Stack_i module I = Vale.X64.Instructions_s module S = Vale.X64.Machine_Semantics_s friend Vale.X64.Decls #reset-options "--initial_fuel 5 --max_fuel 5 --max_ifuel 2 --z3rlimit 20" //-- Mov64 [@ "opaque_to_smt"] let va_code_Mov64 dst src = (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mov64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mov64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mov64) (va_code_Mov64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mov64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mov64 (va_code_Mov64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cmovc64 [@ "opaque_to_smt"] let va_code_Cmovc64 dst src = (mk_ins (make_instr (I.ins_Cmovc64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Cmovc64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cmovc64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Cmovc64) (va_code_Cmovc64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cmovc64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cmovc64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cmovc64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cmovc64 (va_code_Cmovc64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Add64 [@ "opaque_to_smt"] let va_code_Add64 dst src = (mk_ins (make_instr (I.ins_Add64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Add64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Add64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Add64) (va_code_Add64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Add64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Add64 (va_code_Add64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Add64Wrap [@ "opaque_to_smt"] let va_code_Add64Wrap dst src = (mk_ins (make_instr (I.ins_Add64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Add64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Add64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Add64Wrap) (va_code_Add64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Add64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Add64Wrap (va_code_Add64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- AddLea64 [@ "opaque_to_smt"] let va_code_AddLea64 dst src1 src2 = (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) [@ "opaque_to_smt"] let va_codegen_success_AddLea64 dst src1 src2 = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_AddLea64 va_b0 va_s0 dst src1 src2 = va_reveal_opaque (`%va_code_AddLea64) (va_code_AddLea64 dst src1 src2); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_AddLea64 dst src1 src2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_AddLea64 (va_code_AddLea64 dst src1 src2) va_s0 dst src1 src2 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adc64 [@ "opaque_to_smt"] let va_code_Adc64 dst src = (mk_ins (make_instr (I.ins_AddCarry64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adc64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adc64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adc64) (va_code_Adc64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adc64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adc64 (va_code_Adc64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adc64Wrap [@ "opaque_to_smt"] let va_code_Adc64Wrap dst src = (mk_ins (make_instr (I.ins_AddCarry64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adc64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adc64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adc64Wrap) (va_code_Adc64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adc64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adc64Wrap (va_code_Adc64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adcx64Wrap #push-options "--smtencoding.nl_arith_repr boxwrap" [@ "opaque_to_smt"] let va_code_Adcx64Wrap dst src = (mk_ins (make_instr (I.ins_Adcx64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adcx64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adcx64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adcx64Wrap) (va_code_Adcx64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Adcx64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Adcx64) dst src)) va_s0 in assert (Vale.Arch.Types.add_wrap64 (Vale.Arch.Types.add_wrap64 (va_eval_dst_opr64 va_old_s dst) (va_eval_opr64 va_old_s src)) (if Vale.X64.Decls.cf (va_get_flags va_old_s) then 1 else 0) == (va_eval_dst_opr64 va_old_s dst + va_eval_opr64 va_old_s src + (if Vale.X64.Decls.cf (va_get_flags va_old_s) then 1 else 0)) `op_Modulus` pow2_64); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adcx64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adcx64Wrap (va_code_Adcx64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) #pop-options //-- //-- Adox64Wrap [@ "opaque_to_smt"] let va_code_Adox64Wrap dst src = (mk_ins (make_instr (I.ins_Adox64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adox64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adox64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adox64Wrap) (va_code_Adox64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Adox64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Adox64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adox64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adox64Wrap (va_code_Adox64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Sub64 [@ "opaque_to_smt"] let va_code_Sub64 dst src = (mk_ins (make_instr (I.ins_Sub64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Sub64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Sub64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Sub64) (va_code_Sub64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Sub64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Sub64 (va_code_Sub64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Sub64Wrap [@ "opaque_to_smt"] let va_code_Sub64Wrap dst src = (mk_ins (make_instr (I.ins_Sub64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Sub64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Sub64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Sub64Wrap) (va_code_Sub64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Sub64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Sub64Wrap (va_code_Sub64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Sbb64 [@ "opaque_to_smt"] let va_code_Sbb64 dst src = (mk_ins (make_instr (I.ins_Sbb64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Sbb64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Sbb64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Sbb64) (va_code_Sbb64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Sbb64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Sbb64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Sbb64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Sbb64 (va_code_Sbb64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- #restart-solver #push-options "--max_fuel 0 --max_ifuel 0 --using_facts_from 'Prims FStar.UInt'" let lemma_fundamental_div_mod (a b:nat64) : Lemma (pow2_64 * (FStar.UInt.mul_div #64 a b) + (FStar.UInt.mul_mod #64 a b) == a * b) = FStar.Math.Lemmas.lemma_div_mod (a * b) pow2_64 #pop-options //-- lemma_fundamental_div_mod //-- //-- Mul64Wrap [@ "opaque_to_smt"] let va_code_Mul64Wrap src = (mk_ins (make_instr (I.ins_Mul64) src)) [@ "opaque_to_smt"] let va_codegen_success_Mul64Wrap src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mul64Wrap va_b0 va_s0 src = va_reveal_opaque (`%va_code_Mul64Wrap) (va_code_Mul64Wrap src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Mul64) src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Mul64) src)) va_s0 in lemma_fundamental_div_mod (va_get_reg64 rRax va_old_s) (va_eval_opr64 va_old_s src); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mul64Wrap src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mul64Wrap (va_code_Mul64Wrap src) va_s0 src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRax va_sM (va_update_flags va_sM (va_update_ok va_sM va_s0))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRax; va_Mod_flags]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mulx64 [@ "opaque_to_smt"] let va_code_Mulx64 dst_hi dst_lo src = (mk_ins (make_instr (I.ins_Mulx64) dst_hi dst_lo src)) [@ "opaque_to_smt"] let va_codegen_success_Mulx64 dst_hi dst_lo src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mulx64 va_b0 va_s0 dst_hi dst_lo src = va_reveal_opaque (`%va_code_Mulx64) (va_code_Mulx64 dst_hi dst_lo src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Mulx64) dst_hi dst_lo src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Mulx64) dst_hi dst_lo src)) va_s0 in lemma_fundamental_div_mod (va_get_reg64 rRdx va_old_s) (va_eval_opr64 va_old_s src); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mulx64 dst_hi dst_lo src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mulx64 (va_code_Mulx64 dst_hi dst_lo src) va_s0 dst_hi dst_lo src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst_lo va_sM (va_update_operand_dst_opr64 dst_hi va_sM va_s0)))); va_lemma_norm_mods ([va_mod_dst_opr64 dst_lo; va_mod_dst_opr64 dst_hi]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- lemma_mul_nat //-- //-- lemma_mul_in_bounds //-- //-- IMul64 [@ "opaque_to_smt"] let va_code_IMul64 dst src = (mk_ins (make_instr (I.ins_IMul64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_IMul64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_IMul64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_IMul64) (va_code_IMul64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_IMul64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_IMul64) dst src)) va_s0 in lemma_mul_nat (va_eval_dst_opr64 va_old_s dst) (va_eval_opr64 va_old_s src); lemma_mul_in_bounds (va_eval_dst_opr64 va_old_s dst) (va_eval_opr64 va_old_s src); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_IMul64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_IMul64 (va_code_IMul64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Xor64 [@ "opaque_to_smt"] let va_code_Xor64 dst src = (mk_ins (make_instr_annotate (I.ins_Xor64) (S.AnnotateXor64 ()) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Xor64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Xor64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Xor64) (va_code_Xor64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Xor64) (S.AnnotateXor64 ()) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Xor64) (S.AnnotateXor64 ()) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Xor64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Xor64 (va_code_Xor64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- And64 [@ "opaque_to_smt"] let va_code_And64 dst src = (mk_ins (make_instr (I.ins_And64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_And64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_And64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_And64) (va_code_And64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_And64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_And64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_And64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_And64 (va_code_And64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Shl64 [@ "opaque_to_smt"] let va_code_Shl64 dst amt = (mk_ins (make_instr (I.ins_Shl64) dst amt)) [@ "opaque_to_smt"] let va_codegen_success_Shl64 dst amt = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Shl64 va_b0 va_s0 dst amt = va_reveal_opaque (`%va_code_Shl64) (va_code_Shl64 dst amt); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Shl64) dst amt)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Shl64) dst amt)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Shl64 dst amt va_s0 va_k = let (va_sM, va_f0) = va_lemma_Shl64 (va_code_Shl64 dst amt) va_s0 dst amt in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Shr64 [@ "opaque_to_smt"] let va_code_Shr64 dst amt = (mk_ins (make_instr (I.ins_Shr64) dst amt)) [@ "opaque_to_smt"] let va_codegen_success_Shr64 dst amt = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Shr64 va_b0 va_s0 dst amt = va_reveal_opaque (`%va_code_Shr64) (va_code_Shr64 dst amt); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Shr64) dst amt)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Shr64) dst amt)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Shr64 dst amt va_s0 va_k = let (va_sM, va_f0) = va_lemma_Shr64 (va_code_Shr64 dst amt) va_s0 dst amt in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_AES [@ "opaque_to_smt"] let va_code_Cpuid_AES () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_AES () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_AES va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_AES) (va_code_Cpuid_AES ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_AES va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_AES (va_code_Cpuid_AES ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Sha [@ "opaque_to_smt"]
false
true
Vale.X64.InsBasic.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 5, "initial_ifuel": 0, "max_fuel": 5, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_code_Cpuid_Sha : va_dummy:unit -> Tot va_code
[]
Vale.X64.InsBasic.va_code_Cpuid_Sha
{ "file_name": "obj/Vale.X64.InsBasic.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
va_dummy: Prims.unit -> Vale.X64.Decls.va_code
{ "end_col": 37, "end_line": 641, "start_col": 2, "start_line": 641 }
Prims.Tot
val va_codegen_success_Cpuid_Sha : va_dummy:unit -> Tot va_pbool
[ { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "S" }, { "abbrev": true, "full_module": "Vale.X64.Instructions_s", "short_module": "I" }, { "abbrev": false, "full_module": "Vale.X64.Stack_i", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Taint_Semantics", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_codegen_success_Cpuid_Sha () = (va_ttrue ())
val va_codegen_success_Cpuid_Sha : va_dummy:unit -> Tot va_pbool let va_codegen_success_Cpuid_Sha () =
false
null
false
(va_ttrue ())
{ "checked_file": "Vale.X64.InsBasic.fst.checked", "dependencies": [ "Vale.X64.Taint_Semantics.fst.checked", "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.Stack_i.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Instructions_s.fsti.checked", "Vale.X64.InsLemmas.fsti.checked", "Vale.X64.Decls.fst.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Arch.Types.fsti.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": true, "source_file": "Vale.X64.InsBasic.fst" }
[ "total" ]
[ "Prims.unit", "Vale.X64.Decls.va_ttrue", "Vale.X64.Decls.va_pbool" ]
[]
module Vale.X64.InsBasic open Vale.X64 open Vale.X64.StateLemmas open Vale.X64.InsLemmas open Vale.X64.Taint_Semantics open Vale.X64.CPU_Features_s open Vale.X64.Memory open Vale.X64.Stack_i module I = Vale.X64.Instructions_s module S = Vale.X64.Machine_Semantics_s friend Vale.X64.Decls #reset-options "--initial_fuel 5 --max_fuel 5 --max_ifuel 2 --z3rlimit 20" //-- Mov64 [@ "opaque_to_smt"] let va_code_Mov64 dst src = (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mov64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mov64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mov64) (va_code_Mov64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mov64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mov64 (va_code_Mov64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cmovc64 [@ "opaque_to_smt"] let va_code_Cmovc64 dst src = (mk_ins (make_instr (I.ins_Cmovc64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Cmovc64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cmovc64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Cmovc64) (va_code_Cmovc64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cmovc64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cmovc64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cmovc64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cmovc64 (va_code_Cmovc64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Add64 [@ "opaque_to_smt"] let va_code_Add64 dst src = (mk_ins (make_instr (I.ins_Add64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Add64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Add64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Add64) (va_code_Add64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Add64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Add64 (va_code_Add64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Add64Wrap [@ "opaque_to_smt"] let va_code_Add64Wrap dst src = (mk_ins (make_instr (I.ins_Add64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Add64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Add64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Add64Wrap) (va_code_Add64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Add64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Add64Wrap (va_code_Add64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- AddLea64 [@ "opaque_to_smt"] let va_code_AddLea64 dst src1 src2 = (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) [@ "opaque_to_smt"] let va_codegen_success_AddLea64 dst src1 src2 = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_AddLea64 va_b0 va_s0 dst src1 src2 = va_reveal_opaque (`%va_code_AddLea64) (va_code_AddLea64 dst src1 src2); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_AddLea64 dst src1 src2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_AddLea64 (va_code_AddLea64 dst src1 src2) va_s0 dst src1 src2 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adc64 [@ "opaque_to_smt"] let va_code_Adc64 dst src = (mk_ins (make_instr (I.ins_AddCarry64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adc64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adc64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adc64) (va_code_Adc64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adc64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adc64 (va_code_Adc64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adc64Wrap [@ "opaque_to_smt"] let va_code_Adc64Wrap dst src = (mk_ins (make_instr (I.ins_AddCarry64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adc64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adc64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adc64Wrap) (va_code_Adc64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adc64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adc64Wrap (va_code_Adc64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adcx64Wrap #push-options "--smtencoding.nl_arith_repr boxwrap" [@ "opaque_to_smt"] let va_code_Adcx64Wrap dst src = (mk_ins (make_instr (I.ins_Adcx64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adcx64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adcx64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adcx64Wrap) (va_code_Adcx64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Adcx64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Adcx64) dst src)) va_s0 in assert (Vale.Arch.Types.add_wrap64 (Vale.Arch.Types.add_wrap64 (va_eval_dst_opr64 va_old_s dst) (va_eval_opr64 va_old_s src)) (if Vale.X64.Decls.cf (va_get_flags va_old_s) then 1 else 0) == (va_eval_dst_opr64 va_old_s dst + va_eval_opr64 va_old_s src + (if Vale.X64.Decls.cf (va_get_flags va_old_s) then 1 else 0)) `op_Modulus` pow2_64); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adcx64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adcx64Wrap (va_code_Adcx64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) #pop-options //-- //-- Adox64Wrap [@ "opaque_to_smt"] let va_code_Adox64Wrap dst src = (mk_ins (make_instr (I.ins_Adox64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adox64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adox64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adox64Wrap) (va_code_Adox64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Adox64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Adox64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adox64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adox64Wrap (va_code_Adox64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Sub64 [@ "opaque_to_smt"] let va_code_Sub64 dst src = (mk_ins (make_instr (I.ins_Sub64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Sub64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Sub64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Sub64) (va_code_Sub64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Sub64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Sub64 (va_code_Sub64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Sub64Wrap [@ "opaque_to_smt"] let va_code_Sub64Wrap dst src = (mk_ins (make_instr (I.ins_Sub64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Sub64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Sub64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Sub64Wrap) (va_code_Sub64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Sub64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Sub64Wrap (va_code_Sub64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Sbb64 [@ "opaque_to_smt"] let va_code_Sbb64 dst src = (mk_ins (make_instr (I.ins_Sbb64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Sbb64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Sbb64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Sbb64) (va_code_Sbb64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Sbb64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Sbb64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Sbb64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Sbb64 (va_code_Sbb64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- #restart-solver #push-options "--max_fuel 0 --max_ifuel 0 --using_facts_from 'Prims FStar.UInt'" let lemma_fundamental_div_mod (a b:nat64) : Lemma (pow2_64 * (FStar.UInt.mul_div #64 a b) + (FStar.UInt.mul_mod #64 a b) == a * b) = FStar.Math.Lemmas.lemma_div_mod (a * b) pow2_64 #pop-options //-- lemma_fundamental_div_mod //-- //-- Mul64Wrap [@ "opaque_to_smt"] let va_code_Mul64Wrap src = (mk_ins (make_instr (I.ins_Mul64) src)) [@ "opaque_to_smt"] let va_codegen_success_Mul64Wrap src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mul64Wrap va_b0 va_s0 src = va_reveal_opaque (`%va_code_Mul64Wrap) (va_code_Mul64Wrap src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Mul64) src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Mul64) src)) va_s0 in lemma_fundamental_div_mod (va_get_reg64 rRax va_old_s) (va_eval_opr64 va_old_s src); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mul64Wrap src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mul64Wrap (va_code_Mul64Wrap src) va_s0 src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRax va_sM (va_update_flags va_sM (va_update_ok va_sM va_s0))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRax; va_Mod_flags]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mulx64 [@ "opaque_to_smt"] let va_code_Mulx64 dst_hi dst_lo src = (mk_ins (make_instr (I.ins_Mulx64) dst_hi dst_lo src)) [@ "opaque_to_smt"] let va_codegen_success_Mulx64 dst_hi dst_lo src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mulx64 va_b0 va_s0 dst_hi dst_lo src = va_reveal_opaque (`%va_code_Mulx64) (va_code_Mulx64 dst_hi dst_lo src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Mulx64) dst_hi dst_lo src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Mulx64) dst_hi dst_lo src)) va_s0 in lemma_fundamental_div_mod (va_get_reg64 rRdx va_old_s) (va_eval_opr64 va_old_s src); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mulx64 dst_hi dst_lo src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mulx64 (va_code_Mulx64 dst_hi dst_lo src) va_s0 dst_hi dst_lo src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst_lo va_sM (va_update_operand_dst_opr64 dst_hi va_sM va_s0)))); va_lemma_norm_mods ([va_mod_dst_opr64 dst_lo; va_mod_dst_opr64 dst_hi]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- lemma_mul_nat //-- //-- lemma_mul_in_bounds //-- //-- IMul64 [@ "opaque_to_smt"] let va_code_IMul64 dst src = (mk_ins (make_instr (I.ins_IMul64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_IMul64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_IMul64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_IMul64) (va_code_IMul64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_IMul64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_IMul64) dst src)) va_s0 in lemma_mul_nat (va_eval_dst_opr64 va_old_s dst) (va_eval_opr64 va_old_s src); lemma_mul_in_bounds (va_eval_dst_opr64 va_old_s dst) (va_eval_opr64 va_old_s src); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_IMul64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_IMul64 (va_code_IMul64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Xor64 [@ "opaque_to_smt"] let va_code_Xor64 dst src = (mk_ins (make_instr_annotate (I.ins_Xor64) (S.AnnotateXor64 ()) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Xor64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Xor64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Xor64) (va_code_Xor64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Xor64) (S.AnnotateXor64 ()) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Xor64) (S.AnnotateXor64 ()) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Xor64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Xor64 (va_code_Xor64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- And64 [@ "opaque_to_smt"] let va_code_And64 dst src = (mk_ins (make_instr (I.ins_And64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_And64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_And64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_And64) (va_code_And64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_And64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_And64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_And64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_And64 (va_code_And64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Shl64 [@ "opaque_to_smt"] let va_code_Shl64 dst amt = (mk_ins (make_instr (I.ins_Shl64) dst amt)) [@ "opaque_to_smt"] let va_codegen_success_Shl64 dst amt = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Shl64 va_b0 va_s0 dst amt = va_reveal_opaque (`%va_code_Shl64) (va_code_Shl64 dst amt); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Shl64) dst amt)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Shl64) dst amt)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Shl64 dst amt va_s0 va_k = let (va_sM, va_f0) = va_lemma_Shl64 (va_code_Shl64 dst amt) va_s0 dst amt in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Shr64 [@ "opaque_to_smt"] let va_code_Shr64 dst amt = (mk_ins (make_instr (I.ins_Shr64) dst amt)) [@ "opaque_to_smt"] let va_codegen_success_Shr64 dst amt = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Shr64 va_b0 va_s0 dst amt = va_reveal_opaque (`%va_code_Shr64) (va_code_Shr64 dst amt); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Shr64) dst amt)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Shr64) dst amt)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Shr64 dst amt va_s0 va_k = let (va_sM, va_f0) = va_lemma_Shr64 (va_code_Shr64 dst amt) va_s0 dst amt in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_AES [@ "opaque_to_smt"] let va_code_Cpuid_AES () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_AES () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_AES va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_AES) (va_code_Cpuid_AES ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_AES va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_AES (va_code_Cpuid_AES ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Sha [@ "opaque_to_smt"] let va_code_Cpuid_Sha () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"]
false
true
Vale.X64.InsBasic.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 5, "initial_ifuel": 0, "max_fuel": 5, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_codegen_success_Cpuid_Sha : va_dummy:unit -> Tot va_pbool
[]
Vale.X64.InsBasic.va_codegen_success_Cpuid_Sha
{ "file_name": "obj/Vale.X64.InsBasic.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
va_dummy: Prims.unit -> Vale.X64.Decls.va_pbool
{ "end_col": 15, "end_line": 645, "start_col": 2, "start_line": 645 }
Prims.Tot
val va_codegen_success_Cpuid_Avx2 : va_dummy:unit -> Tot va_pbool
[ { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "S" }, { "abbrev": true, "full_module": "Vale.X64.Instructions_s", "short_module": "I" }, { "abbrev": false, "full_module": "Vale.X64.Stack_i", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Taint_Semantics", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_codegen_success_Cpuid_Avx2 () = (va_ttrue ())
val va_codegen_success_Cpuid_Avx2 : va_dummy:unit -> Tot va_pbool let va_codegen_success_Cpuid_Avx2 () =
false
null
false
(va_ttrue ())
{ "checked_file": "Vale.X64.InsBasic.fst.checked", "dependencies": [ "Vale.X64.Taint_Semantics.fst.checked", "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.Stack_i.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Instructions_s.fsti.checked", "Vale.X64.InsLemmas.fsti.checked", "Vale.X64.Decls.fst.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Arch.Types.fsti.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": true, "source_file": "Vale.X64.InsBasic.fst" }
[ "total" ]
[ "Prims.unit", "Vale.X64.Decls.va_ttrue", "Vale.X64.Decls.va_pbool" ]
[]
module Vale.X64.InsBasic open Vale.X64 open Vale.X64.StateLemmas open Vale.X64.InsLemmas open Vale.X64.Taint_Semantics open Vale.X64.CPU_Features_s open Vale.X64.Memory open Vale.X64.Stack_i module I = Vale.X64.Instructions_s module S = Vale.X64.Machine_Semantics_s friend Vale.X64.Decls #reset-options "--initial_fuel 5 --max_fuel 5 --max_ifuel 2 --z3rlimit 20" //-- Mov64 [@ "opaque_to_smt"] let va_code_Mov64 dst src = (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mov64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mov64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mov64) (va_code_Mov64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mov64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mov64 (va_code_Mov64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cmovc64 [@ "opaque_to_smt"] let va_code_Cmovc64 dst src = (mk_ins (make_instr (I.ins_Cmovc64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Cmovc64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cmovc64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Cmovc64) (va_code_Cmovc64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cmovc64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cmovc64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cmovc64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cmovc64 (va_code_Cmovc64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Add64 [@ "opaque_to_smt"] let va_code_Add64 dst src = (mk_ins (make_instr (I.ins_Add64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Add64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Add64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Add64) (va_code_Add64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Add64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Add64 (va_code_Add64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Add64Wrap [@ "opaque_to_smt"] let va_code_Add64Wrap dst src = (mk_ins (make_instr (I.ins_Add64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Add64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Add64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Add64Wrap) (va_code_Add64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Add64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Add64Wrap (va_code_Add64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- AddLea64 [@ "opaque_to_smt"] let va_code_AddLea64 dst src1 src2 = (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) [@ "opaque_to_smt"] let va_codegen_success_AddLea64 dst src1 src2 = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_AddLea64 va_b0 va_s0 dst src1 src2 = va_reveal_opaque (`%va_code_AddLea64) (va_code_AddLea64 dst src1 src2); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_AddLea64 dst src1 src2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_AddLea64 (va_code_AddLea64 dst src1 src2) va_s0 dst src1 src2 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adc64 [@ "opaque_to_smt"] let va_code_Adc64 dst src = (mk_ins (make_instr (I.ins_AddCarry64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adc64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adc64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adc64) (va_code_Adc64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adc64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adc64 (va_code_Adc64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adc64Wrap [@ "opaque_to_smt"] let va_code_Adc64Wrap dst src = (mk_ins (make_instr (I.ins_AddCarry64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adc64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adc64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adc64Wrap) (va_code_Adc64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adc64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adc64Wrap (va_code_Adc64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adcx64Wrap #push-options "--smtencoding.nl_arith_repr boxwrap" [@ "opaque_to_smt"] let va_code_Adcx64Wrap dst src = (mk_ins (make_instr (I.ins_Adcx64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adcx64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adcx64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adcx64Wrap) (va_code_Adcx64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Adcx64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Adcx64) dst src)) va_s0 in assert (Vale.Arch.Types.add_wrap64 (Vale.Arch.Types.add_wrap64 (va_eval_dst_opr64 va_old_s dst) (va_eval_opr64 va_old_s src)) (if Vale.X64.Decls.cf (va_get_flags va_old_s) then 1 else 0) == (va_eval_dst_opr64 va_old_s dst + va_eval_opr64 va_old_s src + (if Vale.X64.Decls.cf (va_get_flags va_old_s) then 1 else 0)) `op_Modulus` pow2_64); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adcx64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adcx64Wrap (va_code_Adcx64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) #pop-options //-- //-- Adox64Wrap [@ "opaque_to_smt"] let va_code_Adox64Wrap dst src = (mk_ins (make_instr (I.ins_Adox64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adox64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adox64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adox64Wrap) (va_code_Adox64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Adox64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Adox64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adox64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adox64Wrap (va_code_Adox64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Sub64 [@ "opaque_to_smt"] let va_code_Sub64 dst src = (mk_ins (make_instr (I.ins_Sub64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Sub64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Sub64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Sub64) (va_code_Sub64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Sub64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Sub64 (va_code_Sub64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Sub64Wrap [@ "opaque_to_smt"] let va_code_Sub64Wrap dst src = (mk_ins (make_instr (I.ins_Sub64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Sub64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Sub64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Sub64Wrap) (va_code_Sub64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Sub64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Sub64Wrap (va_code_Sub64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Sbb64 [@ "opaque_to_smt"] let va_code_Sbb64 dst src = (mk_ins (make_instr (I.ins_Sbb64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Sbb64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Sbb64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Sbb64) (va_code_Sbb64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Sbb64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Sbb64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Sbb64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Sbb64 (va_code_Sbb64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- #restart-solver #push-options "--max_fuel 0 --max_ifuel 0 --using_facts_from 'Prims FStar.UInt'" let lemma_fundamental_div_mod (a b:nat64) : Lemma (pow2_64 * (FStar.UInt.mul_div #64 a b) + (FStar.UInt.mul_mod #64 a b) == a * b) = FStar.Math.Lemmas.lemma_div_mod (a * b) pow2_64 #pop-options //-- lemma_fundamental_div_mod //-- //-- Mul64Wrap [@ "opaque_to_smt"] let va_code_Mul64Wrap src = (mk_ins (make_instr (I.ins_Mul64) src)) [@ "opaque_to_smt"] let va_codegen_success_Mul64Wrap src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mul64Wrap va_b0 va_s0 src = va_reveal_opaque (`%va_code_Mul64Wrap) (va_code_Mul64Wrap src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Mul64) src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Mul64) src)) va_s0 in lemma_fundamental_div_mod (va_get_reg64 rRax va_old_s) (va_eval_opr64 va_old_s src); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mul64Wrap src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mul64Wrap (va_code_Mul64Wrap src) va_s0 src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRax va_sM (va_update_flags va_sM (va_update_ok va_sM va_s0))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRax; va_Mod_flags]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mulx64 [@ "opaque_to_smt"] let va_code_Mulx64 dst_hi dst_lo src = (mk_ins (make_instr (I.ins_Mulx64) dst_hi dst_lo src)) [@ "opaque_to_smt"] let va_codegen_success_Mulx64 dst_hi dst_lo src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mulx64 va_b0 va_s0 dst_hi dst_lo src = va_reveal_opaque (`%va_code_Mulx64) (va_code_Mulx64 dst_hi dst_lo src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Mulx64) dst_hi dst_lo src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Mulx64) dst_hi dst_lo src)) va_s0 in lemma_fundamental_div_mod (va_get_reg64 rRdx va_old_s) (va_eval_opr64 va_old_s src); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mulx64 dst_hi dst_lo src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mulx64 (va_code_Mulx64 dst_hi dst_lo src) va_s0 dst_hi dst_lo src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst_lo va_sM (va_update_operand_dst_opr64 dst_hi va_sM va_s0)))); va_lemma_norm_mods ([va_mod_dst_opr64 dst_lo; va_mod_dst_opr64 dst_hi]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- lemma_mul_nat //-- //-- lemma_mul_in_bounds //-- //-- IMul64 [@ "opaque_to_smt"] let va_code_IMul64 dst src = (mk_ins (make_instr (I.ins_IMul64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_IMul64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_IMul64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_IMul64) (va_code_IMul64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_IMul64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_IMul64) dst src)) va_s0 in lemma_mul_nat (va_eval_dst_opr64 va_old_s dst) (va_eval_opr64 va_old_s src); lemma_mul_in_bounds (va_eval_dst_opr64 va_old_s dst) (va_eval_opr64 va_old_s src); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_IMul64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_IMul64 (va_code_IMul64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Xor64 [@ "opaque_to_smt"] let va_code_Xor64 dst src = (mk_ins (make_instr_annotate (I.ins_Xor64) (S.AnnotateXor64 ()) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Xor64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Xor64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Xor64) (va_code_Xor64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Xor64) (S.AnnotateXor64 ()) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Xor64) (S.AnnotateXor64 ()) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Xor64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Xor64 (va_code_Xor64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- And64 [@ "opaque_to_smt"] let va_code_And64 dst src = (mk_ins (make_instr (I.ins_And64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_And64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_And64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_And64) (va_code_And64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_And64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_And64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_And64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_And64 (va_code_And64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Shl64 [@ "opaque_to_smt"] let va_code_Shl64 dst amt = (mk_ins (make_instr (I.ins_Shl64) dst amt)) [@ "opaque_to_smt"] let va_codegen_success_Shl64 dst amt = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Shl64 va_b0 va_s0 dst amt = va_reveal_opaque (`%va_code_Shl64) (va_code_Shl64 dst amt); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Shl64) dst amt)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Shl64) dst amt)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Shl64 dst amt va_s0 va_k = let (va_sM, va_f0) = va_lemma_Shl64 (va_code_Shl64 dst amt) va_s0 dst amt in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Shr64 [@ "opaque_to_smt"] let va_code_Shr64 dst amt = (mk_ins (make_instr (I.ins_Shr64) dst amt)) [@ "opaque_to_smt"] let va_codegen_success_Shr64 dst amt = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Shr64 va_b0 va_s0 dst amt = va_reveal_opaque (`%va_code_Shr64) (va_code_Shr64 dst amt); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Shr64) dst amt)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Shr64) dst amt)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Shr64 dst amt va_s0 va_k = let (va_sM, va_f0) = va_lemma_Shr64 (va_code_Shr64 dst amt) va_s0 dst amt in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_AES [@ "opaque_to_smt"] let va_code_Cpuid_AES () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_AES () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_AES va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_AES) (va_code_Cpuid_AES ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_AES va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_AES (va_code_Cpuid_AES ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Sha [@ "opaque_to_smt"] let va_code_Cpuid_Sha () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Sha () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Sha va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Sha) (va_code_Cpuid_Sha ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Sha va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Sha (va_code_Cpuid_Sha ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Adx_Bmi2 [@ "opaque_to_smt"] let va_code_Cpuid_Adx_Bmi2 () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Adx_Bmi2 () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Adx_Bmi2 va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Adx_Bmi2) (va_code_Cpuid_Adx_Bmi2 ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Adx_Bmi2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Adx_Bmi2 (va_code_Cpuid_Adx_Bmi2 ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Avx [@ "opaque_to_smt"] let va_code_Cpuid_Avx () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Avx () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Avx va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Avx) (va_code_Cpuid_Avx ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Avx va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Avx (va_code_Cpuid_Avx ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Avx2 [@ "opaque_to_smt"] let va_code_Cpuid_Avx2 () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"]
false
true
Vale.X64.InsBasic.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 5, "initial_ifuel": 0, "max_fuel": 5, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_codegen_success_Cpuid_Avx2 : va_dummy:unit -> Tot va_pbool
[]
Vale.X64.InsBasic.va_codegen_success_Cpuid_Avx2
{ "file_name": "obj/Vale.X64.InsBasic.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
va_dummy: Prims.unit -> Vale.X64.Decls.va_pbool
{ "end_col": 15, "end_line": 741, "start_col": 2, "start_line": 741 }
Prims.Tot
val va_codegen_success_And64 : dst:va_operand_dst_opr64 -> src:va_operand_opr64 -> Tot va_pbool
[ { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "S" }, { "abbrev": true, "full_module": "Vale.X64.Instructions_s", "short_module": "I" }, { "abbrev": false, "full_module": "Vale.X64.Stack_i", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Taint_Semantics", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_codegen_success_And64 dst src = (va_ttrue ())
val va_codegen_success_And64 : dst:va_operand_dst_opr64 -> src:va_operand_opr64 -> Tot va_pbool let va_codegen_success_And64 dst src =
false
null
false
(va_ttrue ())
{ "checked_file": "Vale.X64.InsBasic.fst.checked", "dependencies": [ "Vale.X64.Taint_Semantics.fst.checked", "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.Stack_i.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Instructions_s.fsti.checked", "Vale.X64.InsLemmas.fsti.checked", "Vale.X64.Decls.fst.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Arch.Types.fsti.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": true, "source_file": "Vale.X64.InsBasic.fst" }
[ "total" ]
[ "Vale.X64.Decls.va_operand_dst_opr64", "Vale.X64.Decls.va_operand_opr64", "Vale.X64.Decls.va_ttrue", "Vale.X64.Decls.va_pbool" ]
[]
module Vale.X64.InsBasic open Vale.X64 open Vale.X64.StateLemmas open Vale.X64.InsLemmas open Vale.X64.Taint_Semantics open Vale.X64.CPU_Features_s open Vale.X64.Memory open Vale.X64.Stack_i module I = Vale.X64.Instructions_s module S = Vale.X64.Machine_Semantics_s friend Vale.X64.Decls #reset-options "--initial_fuel 5 --max_fuel 5 --max_ifuel 2 --z3rlimit 20" //-- Mov64 [@ "opaque_to_smt"] let va_code_Mov64 dst src = (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mov64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mov64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mov64) (va_code_Mov64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mov64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mov64 (va_code_Mov64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cmovc64 [@ "opaque_to_smt"] let va_code_Cmovc64 dst src = (mk_ins (make_instr (I.ins_Cmovc64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Cmovc64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cmovc64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Cmovc64) (va_code_Cmovc64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cmovc64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cmovc64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cmovc64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cmovc64 (va_code_Cmovc64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Add64 [@ "opaque_to_smt"] let va_code_Add64 dst src = (mk_ins (make_instr (I.ins_Add64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Add64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Add64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Add64) (va_code_Add64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Add64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Add64 (va_code_Add64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Add64Wrap [@ "opaque_to_smt"] let va_code_Add64Wrap dst src = (mk_ins (make_instr (I.ins_Add64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Add64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Add64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Add64Wrap) (va_code_Add64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Add64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Add64Wrap (va_code_Add64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- AddLea64 [@ "opaque_to_smt"] let va_code_AddLea64 dst src1 src2 = (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) [@ "opaque_to_smt"] let va_codegen_success_AddLea64 dst src1 src2 = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_AddLea64 va_b0 va_s0 dst src1 src2 = va_reveal_opaque (`%va_code_AddLea64) (va_code_AddLea64 dst src1 src2); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_AddLea64 dst src1 src2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_AddLea64 (va_code_AddLea64 dst src1 src2) va_s0 dst src1 src2 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adc64 [@ "opaque_to_smt"] let va_code_Adc64 dst src = (mk_ins (make_instr (I.ins_AddCarry64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adc64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adc64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adc64) (va_code_Adc64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adc64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adc64 (va_code_Adc64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adc64Wrap [@ "opaque_to_smt"] let va_code_Adc64Wrap dst src = (mk_ins (make_instr (I.ins_AddCarry64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adc64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adc64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adc64Wrap) (va_code_Adc64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adc64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adc64Wrap (va_code_Adc64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adcx64Wrap #push-options "--smtencoding.nl_arith_repr boxwrap" [@ "opaque_to_smt"] let va_code_Adcx64Wrap dst src = (mk_ins (make_instr (I.ins_Adcx64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adcx64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adcx64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adcx64Wrap) (va_code_Adcx64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Adcx64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Adcx64) dst src)) va_s0 in assert (Vale.Arch.Types.add_wrap64 (Vale.Arch.Types.add_wrap64 (va_eval_dst_opr64 va_old_s dst) (va_eval_opr64 va_old_s src)) (if Vale.X64.Decls.cf (va_get_flags va_old_s) then 1 else 0) == (va_eval_dst_opr64 va_old_s dst + va_eval_opr64 va_old_s src + (if Vale.X64.Decls.cf (va_get_flags va_old_s) then 1 else 0)) `op_Modulus` pow2_64); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adcx64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adcx64Wrap (va_code_Adcx64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) #pop-options //-- //-- Adox64Wrap [@ "opaque_to_smt"] let va_code_Adox64Wrap dst src = (mk_ins (make_instr (I.ins_Adox64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adox64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adox64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adox64Wrap) (va_code_Adox64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Adox64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Adox64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adox64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adox64Wrap (va_code_Adox64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Sub64 [@ "opaque_to_smt"] let va_code_Sub64 dst src = (mk_ins (make_instr (I.ins_Sub64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Sub64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Sub64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Sub64) (va_code_Sub64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Sub64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Sub64 (va_code_Sub64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Sub64Wrap [@ "opaque_to_smt"] let va_code_Sub64Wrap dst src = (mk_ins (make_instr (I.ins_Sub64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Sub64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Sub64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Sub64Wrap) (va_code_Sub64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Sub64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Sub64Wrap (va_code_Sub64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Sbb64 [@ "opaque_to_smt"] let va_code_Sbb64 dst src = (mk_ins (make_instr (I.ins_Sbb64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Sbb64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Sbb64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Sbb64) (va_code_Sbb64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Sbb64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Sbb64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Sbb64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Sbb64 (va_code_Sbb64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- #restart-solver #push-options "--max_fuel 0 --max_ifuel 0 --using_facts_from 'Prims FStar.UInt'" let lemma_fundamental_div_mod (a b:nat64) : Lemma (pow2_64 * (FStar.UInt.mul_div #64 a b) + (FStar.UInt.mul_mod #64 a b) == a * b) = FStar.Math.Lemmas.lemma_div_mod (a * b) pow2_64 #pop-options //-- lemma_fundamental_div_mod //-- //-- Mul64Wrap [@ "opaque_to_smt"] let va_code_Mul64Wrap src = (mk_ins (make_instr (I.ins_Mul64) src)) [@ "opaque_to_smt"] let va_codegen_success_Mul64Wrap src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mul64Wrap va_b0 va_s0 src = va_reveal_opaque (`%va_code_Mul64Wrap) (va_code_Mul64Wrap src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Mul64) src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Mul64) src)) va_s0 in lemma_fundamental_div_mod (va_get_reg64 rRax va_old_s) (va_eval_opr64 va_old_s src); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mul64Wrap src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mul64Wrap (va_code_Mul64Wrap src) va_s0 src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRax va_sM (va_update_flags va_sM (va_update_ok va_sM va_s0))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRax; va_Mod_flags]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mulx64 [@ "opaque_to_smt"] let va_code_Mulx64 dst_hi dst_lo src = (mk_ins (make_instr (I.ins_Mulx64) dst_hi dst_lo src)) [@ "opaque_to_smt"] let va_codegen_success_Mulx64 dst_hi dst_lo src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mulx64 va_b0 va_s0 dst_hi dst_lo src = va_reveal_opaque (`%va_code_Mulx64) (va_code_Mulx64 dst_hi dst_lo src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Mulx64) dst_hi dst_lo src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Mulx64) dst_hi dst_lo src)) va_s0 in lemma_fundamental_div_mod (va_get_reg64 rRdx va_old_s) (va_eval_opr64 va_old_s src); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mulx64 dst_hi dst_lo src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mulx64 (va_code_Mulx64 dst_hi dst_lo src) va_s0 dst_hi dst_lo src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst_lo va_sM (va_update_operand_dst_opr64 dst_hi va_sM va_s0)))); va_lemma_norm_mods ([va_mod_dst_opr64 dst_lo; va_mod_dst_opr64 dst_hi]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- lemma_mul_nat //-- //-- lemma_mul_in_bounds //-- //-- IMul64 [@ "opaque_to_smt"] let va_code_IMul64 dst src = (mk_ins (make_instr (I.ins_IMul64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_IMul64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_IMul64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_IMul64) (va_code_IMul64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_IMul64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_IMul64) dst src)) va_s0 in lemma_mul_nat (va_eval_dst_opr64 va_old_s dst) (va_eval_opr64 va_old_s src); lemma_mul_in_bounds (va_eval_dst_opr64 va_old_s dst) (va_eval_opr64 va_old_s src); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_IMul64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_IMul64 (va_code_IMul64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Xor64 [@ "opaque_to_smt"] let va_code_Xor64 dst src = (mk_ins (make_instr_annotate (I.ins_Xor64) (S.AnnotateXor64 ()) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Xor64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Xor64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Xor64) (va_code_Xor64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Xor64) (S.AnnotateXor64 ()) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Xor64) (S.AnnotateXor64 ()) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Xor64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Xor64 (va_code_Xor64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- And64 [@ "opaque_to_smt"] let va_code_And64 dst src = (mk_ins (make_instr (I.ins_And64) dst src)) [@ "opaque_to_smt"]
false
true
Vale.X64.InsBasic.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 5, "initial_ifuel": 0, "max_fuel": 5, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_codegen_success_And64 : dst:va_operand_dst_opr64 -> src:va_operand_opr64 -> Tot va_pbool
[]
Vale.X64.InsBasic.va_codegen_success_And64
{ "file_name": "obj/Vale.X64.InsBasic.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
dst: Vale.X64.Decls.va_operand_dst_opr64 -> src: Vale.X64.Decls.va_operand_opr64 -> Vale.X64.Decls.va_pbool
{ "end_col": 15, "end_line": 523, "start_col": 2, "start_line": 523 }
Prims.Tot
val va_code_Shr64 : dst:va_operand_dst_opr64 -> amt:va_operand_shift_amt64 -> Tot va_code
[ { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "S" }, { "abbrev": true, "full_module": "Vale.X64.Instructions_s", "short_module": "I" }, { "abbrev": false, "full_module": "Vale.X64.Stack_i", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Taint_Semantics", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_code_Shr64 dst amt = (mk_ins (make_instr (I.ins_Shr64) dst amt))
val va_code_Shr64 : dst:va_operand_dst_opr64 -> amt:va_operand_shift_amt64 -> Tot va_code let va_code_Shr64 dst amt =
false
null
false
(mk_ins (make_instr (I.ins_Shr64) dst amt))
{ "checked_file": "Vale.X64.InsBasic.fst.checked", "dependencies": [ "Vale.X64.Taint_Semantics.fst.checked", "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.Stack_i.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Instructions_s.fsti.checked", "Vale.X64.InsLemmas.fsti.checked", "Vale.X64.Decls.fst.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Arch.Types.fsti.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": true, "source_file": "Vale.X64.InsBasic.fst" }
[ "total" ]
[ "Vale.X64.Decls.va_operand_dst_opr64", "Vale.X64.Decls.va_operand_shift_amt64", "Vale.X64.Taint_Semantics.mk_ins", "Vale.X64.InsLemmas.make_instr", "Prims.Cons", "Vale.X64.Instruction_s.instr_out", "Vale.X64.Instruction_s.inOut", "Vale.X64.Instruction_s.op64", "Prims.Nil", "Vale.X64.Instruction_s.instr_operand", "Vale.X64.Instruction_s.HavocFlags", "Vale.X64.Instructions_s.ins_Shr64", "Vale.X64.Decls.va_code" ]
[]
module Vale.X64.InsBasic open Vale.X64 open Vale.X64.StateLemmas open Vale.X64.InsLemmas open Vale.X64.Taint_Semantics open Vale.X64.CPU_Features_s open Vale.X64.Memory open Vale.X64.Stack_i module I = Vale.X64.Instructions_s module S = Vale.X64.Machine_Semantics_s friend Vale.X64.Decls #reset-options "--initial_fuel 5 --max_fuel 5 --max_ifuel 2 --z3rlimit 20" //-- Mov64 [@ "opaque_to_smt"] let va_code_Mov64 dst src = (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mov64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mov64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mov64) (va_code_Mov64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mov64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mov64 (va_code_Mov64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cmovc64 [@ "opaque_to_smt"] let va_code_Cmovc64 dst src = (mk_ins (make_instr (I.ins_Cmovc64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Cmovc64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cmovc64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Cmovc64) (va_code_Cmovc64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cmovc64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cmovc64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cmovc64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cmovc64 (va_code_Cmovc64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Add64 [@ "opaque_to_smt"] let va_code_Add64 dst src = (mk_ins (make_instr (I.ins_Add64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Add64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Add64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Add64) (va_code_Add64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Add64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Add64 (va_code_Add64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Add64Wrap [@ "opaque_to_smt"] let va_code_Add64Wrap dst src = (mk_ins (make_instr (I.ins_Add64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Add64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Add64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Add64Wrap) (va_code_Add64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Add64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Add64Wrap (va_code_Add64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- AddLea64 [@ "opaque_to_smt"] let va_code_AddLea64 dst src1 src2 = (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) [@ "opaque_to_smt"] let va_codegen_success_AddLea64 dst src1 src2 = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_AddLea64 va_b0 va_s0 dst src1 src2 = va_reveal_opaque (`%va_code_AddLea64) (va_code_AddLea64 dst src1 src2); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_AddLea64 dst src1 src2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_AddLea64 (va_code_AddLea64 dst src1 src2) va_s0 dst src1 src2 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adc64 [@ "opaque_to_smt"] let va_code_Adc64 dst src = (mk_ins (make_instr (I.ins_AddCarry64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adc64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adc64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adc64) (va_code_Adc64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adc64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adc64 (va_code_Adc64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adc64Wrap [@ "opaque_to_smt"] let va_code_Adc64Wrap dst src = (mk_ins (make_instr (I.ins_AddCarry64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adc64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adc64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adc64Wrap) (va_code_Adc64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adc64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adc64Wrap (va_code_Adc64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adcx64Wrap #push-options "--smtencoding.nl_arith_repr boxwrap" [@ "opaque_to_smt"] let va_code_Adcx64Wrap dst src = (mk_ins (make_instr (I.ins_Adcx64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adcx64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adcx64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adcx64Wrap) (va_code_Adcx64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Adcx64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Adcx64) dst src)) va_s0 in assert (Vale.Arch.Types.add_wrap64 (Vale.Arch.Types.add_wrap64 (va_eval_dst_opr64 va_old_s dst) (va_eval_opr64 va_old_s src)) (if Vale.X64.Decls.cf (va_get_flags va_old_s) then 1 else 0) == (va_eval_dst_opr64 va_old_s dst + va_eval_opr64 va_old_s src + (if Vale.X64.Decls.cf (va_get_flags va_old_s) then 1 else 0)) `op_Modulus` pow2_64); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adcx64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adcx64Wrap (va_code_Adcx64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) #pop-options //-- //-- Adox64Wrap [@ "opaque_to_smt"] let va_code_Adox64Wrap dst src = (mk_ins (make_instr (I.ins_Adox64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adox64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adox64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adox64Wrap) (va_code_Adox64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Adox64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Adox64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adox64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adox64Wrap (va_code_Adox64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Sub64 [@ "opaque_to_smt"] let va_code_Sub64 dst src = (mk_ins (make_instr (I.ins_Sub64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Sub64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Sub64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Sub64) (va_code_Sub64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Sub64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Sub64 (va_code_Sub64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Sub64Wrap [@ "opaque_to_smt"] let va_code_Sub64Wrap dst src = (mk_ins (make_instr (I.ins_Sub64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Sub64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Sub64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Sub64Wrap) (va_code_Sub64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Sub64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Sub64Wrap (va_code_Sub64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Sbb64 [@ "opaque_to_smt"] let va_code_Sbb64 dst src = (mk_ins (make_instr (I.ins_Sbb64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Sbb64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Sbb64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Sbb64) (va_code_Sbb64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Sbb64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Sbb64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Sbb64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Sbb64 (va_code_Sbb64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- #restart-solver #push-options "--max_fuel 0 --max_ifuel 0 --using_facts_from 'Prims FStar.UInt'" let lemma_fundamental_div_mod (a b:nat64) : Lemma (pow2_64 * (FStar.UInt.mul_div #64 a b) + (FStar.UInt.mul_mod #64 a b) == a * b) = FStar.Math.Lemmas.lemma_div_mod (a * b) pow2_64 #pop-options //-- lemma_fundamental_div_mod //-- //-- Mul64Wrap [@ "opaque_to_smt"] let va_code_Mul64Wrap src = (mk_ins (make_instr (I.ins_Mul64) src)) [@ "opaque_to_smt"] let va_codegen_success_Mul64Wrap src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mul64Wrap va_b0 va_s0 src = va_reveal_opaque (`%va_code_Mul64Wrap) (va_code_Mul64Wrap src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Mul64) src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Mul64) src)) va_s0 in lemma_fundamental_div_mod (va_get_reg64 rRax va_old_s) (va_eval_opr64 va_old_s src); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mul64Wrap src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mul64Wrap (va_code_Mul64Wrap src) va_s0 src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRax va_sM (va_update_flags va_sM (va_update_ok va_sM va_s0))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRax; va_Mod_flags]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mulx64 [@ "opaque_to_smt"] let va_code_Mulx64 dst_hi dst_lo src = (mk_ins (make_instr (I.ins_Mulx64) dst_hi dst_lo src)) [@ "opaque_to_smt"] let va_codegen_success_Mulx64 dst_hi dst_lo src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mulx64 va_b0 va_s0 dst_hi dst_lo src = va_reveal_opaque (`%va_code_Mulx64) (va_code_Mulx64 dst_hi dst_lo src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Mulx64) dst_hi dst_lo src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Mulx64) dst_hi dst_lo src)) va_s0 in lemma_fundamental_div_mod (va_get_reg64 rRdx va_old_s) (va_eval_opr64 va_old_s src); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mulx64 dst_hi dst_lo src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mulx64 (va_code_Mulx64 dst_hi dst_lo src) va_s0 dst_hi dst_lo src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst_lo va_sM (va_update_operand_dst_opr64 dst_hi va_sM va_s0)))); va_lemma_norm_mods ([va_mod_dst_opr64 dst_lo; va_mod_dst_opr64 dst_hi]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- lemma_mul_nat //-- //-- lemma_mul_in_bounds //-- //-- IMul64 [@ "opaque_to_smt"] let va_code_IMul64 dst src = (mk_ins (make_instr (I.ins_IMul64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_IMul64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_IMul64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_IMul64) (va_code_IMul64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_IMul64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_IMul64) dst src)) va_s0 in lemma_mul_nat (va_eval_dst_opr64 va_old_s dst) (va_eval_opr64 va_old_s src); lemma_mul_in_bounds (va_eval_dst_opr64 va_old_s dst) (va_eval_opr64 va_old_s src); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_IMul64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_IMul64 (va_code_IMul64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Xor64 [@ "opaque_to_smt"] let va_code_Xor64 dst src = (mk_ins (make_instr_annotate (I.ins_Xor64) (S.AnnotateXor64 ()) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Xor64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Xor64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Xor64) (va_code_Xor64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Xor64) (S.AnnotateXor64 ()) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Xor64) (S.AnnotateXor64 ()) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Xor64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Xor64 (va_code_Xor64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- And64 [@ "opaque_to_smt"] let va_code_And64 dst src = (mk_ins (make_instr (I.ins_And64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_And64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_And64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_And64) (va_code_And64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_And64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_And64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_And64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_And64 (va_code_And64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Shl64 [@ "opaque_to_smt"] let va_code_Shl64 dst amt = (mk_ins (make_instr (I.ins_Shl64) dst amt)) [@ "opaque_to_smt"] let va_codegen_success_Shl64 dst amt = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Shl64 va_b0 va_s0 dst amt = va_reveal_opaque (`%va_code_Shl64) (va_code_Shl64 dst amt); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Shl64) dst amt)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Shl64) dst amt)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Shl64 dst amt va_s0 va_k = let (va_sM, va_f0) = va_lemma_Shl64 (va_code_Shl64 dst amt) va_s0 dst amt in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Shr64 [@ "opaque_to_smt"]
false
true
Vale.X64.InsBasic.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 5, "initial_ifuel": 0, "max_fuel": 5, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_code_Shr64 : dst:va_operand_dst_opr64 -> amt:va_operand_shift_amt64 -> Tot va_code
[]
Vale.X64.InsBasic.va_code_Shr64
{ "file_name": "obj/Vale.X64.InsBasic.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
dst: Vale.X64.Decls.va_operand_dst_opr64 -> amt: Vale.X64.Decls.va_operand_shift_amt64 -> Vale.X64.Decls.va_code
{ "end_col": 45, "end_line": 579, "start_col": 2, "start_line": 579 }
Prims.Tot
val va_codegen_success_Cpuid_Avx : va_dummy:unit -> Tot va_pbool
[ { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "S" }, { "abbrev": true, "full_module": "Vale.X64.Instructions_s", "short_module": "I" }, { "abbrev": false, "full_module": "Vale.X64.Stack_i", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Taint_Semantics", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_codegen_success_Cpuid_Avx () = (va_ttrue ())
val va_codegen_success_Cpuid_Avx : va_dummy:unit -> Tot va_pbool let va_codegen_success_Cpuid_Avx () =
false
null
false
(va_ttrue ())
{ "checked_file": "Vale.X64.InsBasic.fst.checked", "dependencies": [ "Vale.X64.Taint_Semantics.fst.checked", "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.Stack_i.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Instructions_s.fsti.checked", "Vale.X64.InsLemmas.fsti.checked", "Vale.X64.Decls.fst.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Arch.Types.fsti.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": true, "source_file": "Vale.X64.InsBasic.fst" }
[ "total" ]
[ "Prims.unit", "Vale.X64.Decls.va_ttrue", "Vale.X64.Decls.va_pbool" ]
[]
module Vale.X64.InsBasic open Vale.X64 open Vale.X64.StateLemmas open Vale.X64.InsLemmas open Vale.X64.Taint_Semantics open Vale.X64.CPU_Features_s open Vale.X64.Memory open Vale.X64.Stack_i module I = Vale.X64.Instructions_s module S = Vale.X64.Machine_Semantics_s friend Vale.X64.Decls #reset-options "--initial_fuel 5 --max_fuel 5 --max_ifuel 2 --z3rlimit 20" //-- Mov64 [@ "opaque_to_smt"] let va_code_Mov64 dst src = (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mov64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mov64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mov64) (va_code_Mov64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mov64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mov64 (va_code_Mov64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cmovc64 [@ "opaque_to_smt"] let va_code_Cmovc64 dst src = (mk_ins (make_instr (I.ins_Cmovc64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Cmovc64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cmovc64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Cmovc64) (va_code_Cmovc64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cmovc64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cmovc64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cmovc64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cmovc64 (va_code_Cmovc64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Add64 [@ "opaque_to_smt"] let va_code_Add64 dst src = (mk_ins (make_instr (I.ins_Add64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Add64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Add64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Add64) (va_code_Add64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Add64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Add64 (va_code_Add64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Add64Wrap [@ "opaque_to_smt"] let va_code_Add64Wrap dst src = (mk_ins (make_instr (I.ins_Add64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Add64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Add64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Add64Wrap) (va_code_Add64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Add64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Add64Wrap (va_code_Add64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- AddLea64 [@ "opaque_to_smt"] let va_code_AddLea64 dst src1 src2 = (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) [@ "opaque_to_smt"] let va_codegen_success_AddLea64 dst src1 src2 = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_AddLea64 va_b0 va_s0 dst src1 src2 = va_reveal_opaque (`%va_code_AddLea64) (va_code_AddLea64 dst src1 src2); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_AddLea64 dst src1 src2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_AddLea64 (va_code_AddLea64 dst src1 src2) va_s0 dst src1 src2 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adc64 [@ "opaque_to_smt"] let va_code_Adc64 dst src = (mk_ins (make_instr (I.ins_AddCarry64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adc64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adc64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adc64) (va_code_Adc64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adc64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adc64 (va_code_Adc64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adc64Wrap [@ "opaque_to_smt"] let va_code_Adc64Wrap dst src = (mk_ins (make_instr (I.ins_AddCarry64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adc64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adc64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adc64Wrap) (va_code_Adc64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adc64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adc64Wrap (va_code_Adc64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adcx64Wrap #push-options "--smtencoding.nl_arith_repr boxwrap" [@ "opaque_to_smt"] let va_code_Adcx64Wrap dst src = (mk_ins (make_instr (I.ins_Adcx64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adcx64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adcx64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adcx64Wrap) (va_code_Adcx64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Adcx64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Adcx64) dst src)) va_s0 in assert (Vale.Arch.Types.add_wrap64 (Vale.Arch.Types.add_wrap64 (va_eval_dst_opr64 va_old_s dst) (va_eval_opr64 va_old_s src)) (if Vale.X64.Decls.cf (va_get_flags va_old_s) then 1 else 0) == (va_eval_dst_opr64 va_old_s dst + va_eval_opr64 va_old_s src + (if Vale.X64.Decls.cf (va_get_flags va_old_s) then 1 else 0)) `op_Modulus` pow2_64); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adcx64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adcx64Wrap (va_code_Adcx64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) #pop-options //-- //-- Adox64Wrap [@ "opaque_to_smt"] let va_code_Adox64Wrap dst src = (mk_ins (make_instr (I.ins_Adox64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adox64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adox64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adox64Wrap) (va_code_Adox64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Adox64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Adox64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adox64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adox64Wrap (va_code_Adox64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Sub64 [@ "opaque_to_smt"] let va_code_Sub64 dst src = (mk_ins (make_instr (I.ins_Sub64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Sub64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Sub64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Sub64) (va_code_Sub64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Sub64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Sub64 (va_code_Sub64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Sub64Wrap [@ "opaque_to_smt"] let va_code_Sub64Wrap dst src = (mk_ins (make_instr (I.ins_Sub64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Sub64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Sub64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Sub64Wrap) (va_code_Sub64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Sub64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Sub64Wrap (va_code_Sub64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Sbb64 [@ "opaque_to_smt"] let va_code_Sbb64 dst src = (mk_ins (make_instr (I.ins_Sbb64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Sbb64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Sbb64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Sbb64) (va_code_Sbb64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Sbb64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Sbb64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Sbb64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Sbb64 (va_code_Sbb64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- #restart-solver #push-options "--max_fuel 0 --max_ifuel 0 --using_facts_from 'Prims FStar.UInt'" let lemma_fundamental_div_mod (a b:nat64) : Lemma (pow2_64 * (FStar.UInt.mul_div #64 a b) + (FStar.UInt.mul_mod #64 a b) == a * b) = FStar.Math.Lemmas.lemma_div_mod (a * b) pow2_64 #pop-options //-- lemma_fundamental_div_mod //-- //-- Mul64Wrap [@ "opaque_to_smt"] let va_code_Mul64Wrap src = (mk_ins (make_instr (I.ins_Mul64) src)) [@ "opaque_to_smt"] let va_codegen_success_Mul64Wrap src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mul64Wrap va_b0 va_s0 src = va_reveal_opaque (`%va_code_Mul64Wrap) (va_code_Mul64Wrap src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Mul64) src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Mul64) src)) va_s0 in lemma_fundamental_div_mod (va_get_reg64 rRax va_old_s) (va_eval_opr64 va_old_s src); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mul64Wrap src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mul64Wrap (va_code_Mul64Wrap src) va_s0 src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRax va_sM (va_update_flags va_sM (va_update_ok va_sM va_s0))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRax; va_Mod_flags]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mulx64 [@ "opaque_to_smt"] let va_code_Mulx64 dst_hi dst_lo src = (mk_ins (make_instr (I.ins_Mulx64) dst_hi dst_lo src)) [@ "opaque_to_smt"] let va_codegen_success_Mulx64 dst_hi dst_lo src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mulx64 va_b0 va_s0 dst_hi dst_lo src = va_reveal_opaque (`%va_code_Mulx64) (va_code_Mulx64 dst_hi dst_lo src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Mulx64) dst_hi dst_lo src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Mulx64) dst_hi dst_lo src)) va_s0 in lemma_fundamental_div_mod (va_get_reg64 rRdx va_old_s) (va_eval_opr64 va_old_s src); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mulx64 dst_hi dst_lo src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mulx64 (va_code_Mulx64 dst_hi dst_lo src) va_s0 dst_hi dst_lo src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst_lo va_sM (va_update_operand_dst_opr64 dst_hi va_sM va_s0)))); va_lemma_norm_mods ([va_mod_dst_opr64 dst_lo; va_mod_dst_opr64 dst_hi]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- lemma_mul_nat //-- //-- lemma_mul_in_bounds //-- //-- IMul64 [@ "opaque_to_smt"] let va_code_IMul64 dst src = (mk_ins (make_instr (I.ins_IMul64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_IMul64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_IMul64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_IMul64) (va_code_IMul64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_IMul64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_IMul64) dst src)) va_s0 in lemma_mul_nat (va_eval_dst_opr64 va_old_s dst) (va_eval_opr64 va_old_s src); lemma_mul_in_bounds (va_eval_dst_opr64 va_old_s dst) (va_eval_opr64 va_old_s src); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_IMul64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_IMul64 (va_code_IMul64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Xor64 [@ "opaque_to_smt"] let va_code_Xor64 dst src = (mk_ins (make_instr_annotate (I.ins_Xor64) (S.AnnotateXor64 ()) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Xor64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Xor64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Xor64) (va_code_Xor64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Xor64) (S.AnnotateXor64 ()) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Xor64) (S.AnnotateXor64 ()) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Xor64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Xor64 (va_code_Xor64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- And64 [@ "opaque_to_smt"] let va_code_And64 dst src = (mk_ins (make_instr (I.ins_And64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_And64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_And64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_And64) (va_code_And64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_And64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_And64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_And64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_And64 (va_code_And64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Shl64 [@ "opaque_to_smt"] let va_code_Shl64 dst amt = (mk_ins (make_instr (I.ins_Shl64) dst amt)) [@ "opaque_to_smt"] let va_codegen_success_Shl64 dst amt = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Shl64 va_b0 va_s0 dst amt = va_reveal_opaque (`%va_code_Shl64) (va_code_Shl64 dst amt); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Shl64) dst amt)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Shl64) dst amt)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Shl64 dst amt va_s0 va_k = let (va_sM, va_f0) = va_lemma_Shl64 (va_code_Shl64 dst amt) va_s0 dst amt in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Shr64 [@ "opaque_to_smt"] let va_code_Shr64 dst amt = (mk_ins (make_instr (I.ins_Shr64) dst amt)) [@ "opaque_to_smt"] let va_codegen_success_Shr64 dst amt = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Shr64 va_b0 va_s0 dst amt = va_reveal_opaque (`%va_code_Shr64) (va_code_Shr64 dst amt); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Shr64) dst amt)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Shr64) dst amt)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Shr64 dst amt va_s0 va_k = let (va_sM, va_f0) = va_lemma_Shr64 (va_code_Shr64 dst amt) va_s0 dst amt in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_AES [@ "opaque_to_smt"] let va_code_Cpuid_AES () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_AES () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_AES va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_AES) (va_code_Cpuid_AES ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_AES va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_AES (va_code_Cpuid_AES ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Sha [@ "opaque_to_smt"] let va_code_Cpuid_Sha () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Sha () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Sha va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Sha) (va_code_Cpuid_Sha ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Sha va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Sha (va_code_Cpuid_Sha ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Adx_Bmi2 [@ "opaque_to_smt"] let va_code_Cpuid_Adx_Bmi2 () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Adx_Bmi2 () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Adx_Bmi2 va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Adx_Bmi2) (va_code_Cpuid_Adx_Bmi2 ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Adx_Bmi2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Adx_Bmi2 (va_code_Cpuid_Adx_Bmi2 ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Avx [@ "opaque_to_smt"] let va_code_Cpuid_Avx () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"]
false
true
Vale.X64.InsBasic.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 5, "initial_ifuel": 0, "max_fuel": 5, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_codegen_success_Cpuid_Avx : va_dummy:unit -> Tot va_pbool
[]
Vale.X64.InsBasic.va_codegen_success_Cpuid_Avx
{ "file_name": "obj/Vale.X64.InsBasic.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
va_dummy: Prims.unit -> Vale.X64.Decls.va_pbool
{ "end_col": 15, "end_line": 709, "start_col": 2, "start_line": 709 }
Prims.Tot
val va_code_Cpuid_Avx512 : va_dummy:unit -> Tot va_code
[ { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "S" }, { "abbrev": true, "full_module": "Vale.X64.Instructions_s", "short_module": "I" }, { "abbrev": false, "full_module": "Vale.X64.Stack_i", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Taint_Semantics", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_code_Cpuid_Avx512 () = (mk_ins (make_instr (I.ins_Cpuid)))
val va_code_Cpuid_Avx512 : va_dummy:unit -> Tot va_code let va_code_Cpuid_Avx512 () =
false
null
false
(mk_ins (make_instr (I.ins_Cpuid)))
{ "checked_file": "Vale.X64.InsBasic.fst.checked", "dependencies": [ "Vale.X64.Taint_Semantics.fst.checked", "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.Stack_i.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Instructions_s.fsti.checked", "Vale.X64.InsLemmas.fsti.checked", "Vale.X64.Decls.fst.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Arch.Types.fsti.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": true, "source_file": "Vale.X64.InsBasic.fst" }
[ "total" ]
[ "Prims.unit", "Vale.X64.Taint_Semantics.mk_ins", "Vale.X64.InsLemmas.make_instr", "Prims.Cons", "Vale.X64.Instruction_s.instr_out", "Vale.X64.Instruction_s.inOut", "Vale.X64.Instruction_s.one64Reg", "Vale.X64.Machine_s.rRax", "Vale.X64.Instruction_s.out", "Vale.X64.Machine_s.rRbx", "Vale.X64.Machine_s.rRcx", "Vale.X64.Machine_s.rRdx", "Prims.Nil", "Vale.X64.Instruction_s.instr_operand", "Vale.X64.Instruction_s.PreserveFlags", "Vale.X64.Instructions_s.ins_Cpuid", "Vale.X64.Decls.va_code" ]
[]
module Vale.X64.InsBasic open Vale.X64 open Vale.X64.StateLemmas open Vale.X64.InsLemmas open Vale.X64.Taint_Semantics open Vale.X64.CPU_Features_s open Vale.X64.Memory open Vale.X64.Stack_i module I = Vale.X64.Instructions_s module S = Vale.X64.Machine_Semantics_s friend Vale.X64.Decls #reset-options "--initial_fuel 5 --max_fuel 5 --max_ifuel 2 --z3rlimit 20" //-- Mov64 [@ "opaque_to_smt"] let va_code_Mov64 dst src = (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mov64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mov64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mov64) (va_code_Mov64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mov64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mov64 (va_code_Mov64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cmovc64 [@ "opaque_to_smt"] let va_code_Cmovc64 dst src = (mk_ins (make_instr (I.ins_Cmovc64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Cmovc64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cmovc64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Cmovc64) (va_code_Cmovc64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cmovc64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cmovc64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cmovc64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cmovc64 (va_code_Cmovc64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Add64 [@ "opaque_to_smt"] let va_code_Add64 dst src = (mk_ins (make_instr (I.ins_Add64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Add64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Add64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Add64) (va_code_Add64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Add64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Add64 (va_code_Add64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Add64Wrap [@ "opaque_to_smt"] let va_code_Add64Wrap dst src = (mk_ins (make_instr (I.ins_Add64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Add64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Add64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Add64Wrap) (va_code_Add64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Add64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Add64Wrap (va_code_Add64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- AddLea64 [@ "opaque_to_smt"] let va_code_AddLea64 dst src1 src2 = (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) [@ "opaque_to_smt"] let va_codegen_success_AddLea64 dst src1 src2 = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_AddLea64 va_b0 va_s0 dst src1 src2 = va_reveal_opaque (`%va_code_AddLea64) (va_code_AddLea64 dst src1 src2); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_AddLea64 dst src1 src2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_AddLea64 (va_code_AddLea64 dst src1 src2) va_s0 dst src1 src2 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adc64 [@ "opaque_to_smt"] let va_code_Adc64 dst src = (mk_ins (make_instr (I.ins_AddCarry64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adc64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adc64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adc64) (va_code_Adc64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adc64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adc64 (va_code_Adc64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adc64Wrap [@ "opaque_to_smt"] let va_code_Adc64Wrap dst src = (mk_ins (make_instr (I.ins_AddCarry64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adc64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adc64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adc64Wrap) (va_code_Adc64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adc64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adc64Wrap (va_code_Adc64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adcx64Wrap #push-options "--smtencoding.nl_arith_repr boxwrap" [@ "opaque_to_smt"] let va_code_Adcx64Wrap dst src = (mk_ins (make_instr (I.ins_Adcx64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adcx64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adcx64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adcx64Wrap) (va_code_Adcx64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Adcx64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Adcx64) dst src)) va_s0 in assert (Vale.Arch.Types.add_wrap64 (Vale.Arch.Types.add_wrap64 (va_eval_dst_opr64 va_old_s dst) (va_eval_opr64 va_old_s src)) (if Vale.X64.Decls.cf (va_get_flags va_old_s) then 1 else 0) == (va_eval_dst_opr64 va_old_s dst + va_eval_opr64 va_old_s src + (if Vale.X64.Decls.cf (va_get_flags va_old_s) then 1 else 0)) `op_Modulus` pow2_64); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adcx64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adcx64Wrap (va_code_Adcx64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) #pop-options //-- //-- Adox64Wrap [@ "opaque_to_smt"] let va_code_Adox64Wrap dst src = (mk_ins (make_instr (I.ins_Adox64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adox64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adox64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adox64Wrap) (va_code_Adox64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Adox64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Adox64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adox64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adox64Wrap (va_code_Adox64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Sub64 [@ "opaque_to_smt"] let va_code_Sub64 dst src = (mk_ins (make_instr (I.ins_Sub64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Sub64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Sub64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Sub64) (va_code_Sub64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Sub64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Sub64 (va_code_Sub64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Sub64Wrap [@ "opaque_to_smt"] let va_code_Sub64Wrap dst src = (mk_ins (make_instr (I.ins_Sub64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Sub64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Sub64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Sub64Wrap) (va_code_Sub64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Sub64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Sub64Wrap (va_code_Sub64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Sbb64 [@ "opaque_to_smt"] let va_code_Sbb64 dst src = (mk_ins (make_instr (I.ins_Sbb64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Sbb64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Sbb64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Sbb64) (va_code_Sbb64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Sbb64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Sbb64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Sbb64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Sbb64 (va_code_Sbb64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- #restart-solver #push-options "--max_fuel 0 --max_ifuel 0 --using_facts_from 'Prims FStar.UInt'" let lemma_fundamental_div_mod (a b:nat64) : Lemma (pow2_64 * (FStar.UInt.mul_div #64 a b) + (FStar.UInt.mul_mod #64 a b) == a * b) = FStar.Math.Lemmas.lemma_div_mod (a * b) pow2_64 #pop-options //-- lemma_fundamental_div_mod //-- //-- Mul64Wrap [@ "opaque_to_smt"] let va_code_Mul64Wrap src = (mk_ins (make_instr (I.ins_Mul64) src)) [@ "opaque_to_smt"] let va_codegen_success_Mul64Wrap src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mul64Wrap va_b0 va_s0 src = va_reveal_opaque (`%va_code_Mul64Wrap) (va_code_Mul64Wrap src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Mul64) src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Mul64) src)) va_s0 in lemma_fundamental_div_mod (va_get_reg64 rRax va_old_s) (va_eval_opr64 va_old_s src); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mul64Wrap src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mul64Wrap (va_code_Mul64Wrap src) va_s0 src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRax va_sM (va_update_flags va_sM (va_update_ok va_sM va_s0))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRax; va_Mod_flags]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mulx64 [@ "opaque_to_smt"] let va_code_Mulx64 dst_hi dst_lo src = (mk_ins (make_instr (I.ins_Mulx64) dst_hi dst_lo src)) [@ "opaque_to_smt"] let va_codegen_success_Mulx64 dst_hi dst_lo src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mulx64 va_b0 va_s0 dst_hi dst_lo src = va_reveal_opaque (`%va_code_Mulx64) (va_code_Mulx64 dst_hi dst_lo src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Mulx64) dst_hi dst_lo src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Mulx64) dst_hi dst_lo src)) va_s0 in lemma_fundamental_div_mod (va_get_reg64 rRdx va_old_s) (va_eval_opr64 va_old_s src); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mulx64 dst_hi dst_lo src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mulx64 (va_code_Mulx64 dst_hi dst_lo src) va_s0 dst_hi dst_lo src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst_lo va_sM (va_update_operand_dst_opr64 dst_hi va_sM va_s0)))); va_lemma_norm_mods ([va_mod_dst_opr64 dst_lo; va_mod_dst_opr64 dst_hi]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- lemma_mul_nat //-- //-- lemma_mul_in_bounds //-- //-- IMul64 [@ "opaque_to_smt"] let va_code_IMul64 dst src = (mk_ins (make_instr (I.ins_IMul64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_IMul64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_IMul64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_IMul64) (va_code_IMul64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_IMul64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_IMul64) dst src)) va_s0 in lemma_mul_nat (va_eval_dst_opr64 va_old_s dst) (va_eval_opr64 va_old_s src); lemma_mul_in_bounds (va_eval_dst_opr64 va_old_s dst) (va_eval_opr64 va_old_s src); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_IMul64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_IMul64 (va_code_IMul64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Xor64 [@ "opaque_to_smt"] let va_code_Xor64 dst src = (mk_ins (make_instr_annotate (I.ins_Xor64) (S.AnnotateXor64 ()) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Xor64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Xor64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Xor64) (va_code_Xor64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Xor64) (S.AnnotateXor64 ()) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Xor64) (S.AnnotateXor64 ()) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Xor64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Xor64 (va_code_Xor64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- And64 [@ "opaque_to_smt"] let va_code_And64 dst src = (mk_ins (make_instr (I.ins_And64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_And64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_And64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_And64) (va_code_And64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_And64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_And64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_And64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_And64 (va_code_And64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Shl64 [@ "opaque_to_smt"] let va_code_Shl64 dst amt = (mk_ins (make_instr (I.ins_Shl64) dst amt)) [@ "opaque_to_smt"] let va_codegen_success_Shl64 dst amt = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Shl64 va_b0 va_s0 dst amt = va_reveal_opaque (`%va_code_Shl64) (va_code_Shl64 dst amt); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Shl64) dst amt)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Shl64) dst amt)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Shl64 dst amt va_s0 va_k = let (va_sM, va_f0) = va_lemma_Shl64 (va_code_Shl64 dst amt) va_s0 dst amt in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Shr64 [@ "opaque_to_smt"] let va_code_Shr64 dst amt = (mk_ins (make_instr (I.ins_Shr64) dst amt)) [@ "opaque_to_smt"] let va_codegen_success_Shr64 dst amt = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Shr64 va_b0 va_s0 dst amt = va_reveal_opaque (`%va_code_Shr64) (va_code_Shr64 dst amt); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Shr64) dst amt)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Shr64) dst amt)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Shr64 dst amt va_s0 va_k = let (va_sM, va_f0) = va_lemma_Shr64 (va_code_Shr64 dst amt) va_s0 dst amt in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_AES [@ "opaque_to_smt"] let va_code_Cpuid_AES () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_AES () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_AES va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_AES) (va_code_Cpuid_AES ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_AES va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_AES (va_code_Cpuid_AES ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Sha [@ "opaque_to_smt"] let va_code_Cpuid_Sha () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Sha () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Sha va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Sha) (va_code_Cpuid_Sha ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Sha va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Sha (va_code_Cpuid_Sha ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Adx_Bmi2 [@ "opaque_to_smt"] let va_code_Cpuid_Adx_Bmi2 () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Adx_Bmi2 () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Adx_Bmi2 va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Adx_Bmi2) (va_code_Cpuid_Adx_Bmi2 ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Adx_Bmi2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Adx_Bmi2 (va_code_Cpuid_Adx_Bmi2 ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Avx [@ "opaque_to_smt"] let va_code_Cpuid_Avx () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Avx () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Avx va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Avx) (va_code_Cpuid_Avx ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Avx va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Avx (va_code_Cpuid_Avx ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Avx2 [@ "opaque_to_smt"] let va_code_Cpuid_Avx2 () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Avx2 () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Avx2 va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Avx2) (va_code_Cpuid_Avx2 ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Avx2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Avx2 (va_code_Cpuid_Avx2 ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Sse [@ "opaque_to_smt"] let va_code_Cpuid_Sse () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Sse () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Sse va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Sse) (va_code_Cpuid_Sse ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Sse va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Sse (va_code_Cpuid_Sse ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Movbe [@ "opaque_to_smt"] let va_code_Cpuid_Movbe () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Movbe () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Movbe va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Movbe) (va_code_Cpuid_Movbe ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Movbe va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Movbe (va_code_Cpuid_Movbe ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Rdrand [@ "opaque_to_smt"] let va_code_Cpuid_Rdrand () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Rdrand () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Rdrand va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Rdrand) (va_code_Cpuid_Rdrand ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Rdrand va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Rdrand (va_code_Cpuid_Rdrand ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Avx512 [@ "opaque_to_smt"]
false
true
Vale.X64.InsBasic.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 5, "initial_ifuel": 0, "max_fuel": 5, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_code_Cpuid_Avx512 : va_dummy:unit -> Tot va_code
[]
Vale.X64.InsBasic.va_code_Cpuid_Avx512
{ "file_name": "obj/Vale.X64.InsBasic.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
va_dummy: Prims.unit -> Vale.X64.Decls.va_code
{ "end_col": 37, "end_line": 865, "start_col": 2, "start_line": 865 }
Prims.Tot
val va_code_Xgetbv_Avx512 : va_dummy:unit -> Tot va_code
[ { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "S" }, { "abbrev": true, "full_module": "Vale.X64.Instructions_s", "short_module": "I" }, { "abbrev": false, "full_module": "Vale.X64.Stack_i", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Taint_Semantics", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_code_Xgetbv_Avx512 () = (mk_ins (make_instr (I.ins_Xgetbv)))
val va_code_Xgetbv_Avx512 : va_dummy:unit -> Tot va_code let va_code_Xgetbv_Avx512 () =
false
null
false
(mk_ins (make_instr (I.ins_Xgetbv)))
{ "checked_file": "Vale.X64.InsBasic.fst.checked", "dependencies": [ "Vale.X64.Taint_Semantics.fst.checked", "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.Stack_i.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Instructions_s.fsti.checked", "Vale.X64.InsLemmas.fsti.checked", "Vale.X64.Decls.fst.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Arch.Types.fsti.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": true, "source_file": "Vale.X64.InsBasic.fst" }
[ "total" ]
[ "Prims.unit", "Vale.X64.Taint_Semantics.mk_ins", "Vale.X64.InsLemmas.make_instr", "Prims.Cons", "Vale.X64.Instruction_s.instr_out", "Vale.X64.Instruction_s.out", "Vale.X64.Instruction_s.one64Reg", "Vale.X64.Machine_s.rRax", "Vale.X64.Machine_s.rRdx", "Prims.Nil", "Vale.X64.Instruction_s.instr_operand", "Vale.X64.Machine_s.rRcx", "Vale.X64.Instruction_s.PreserveFlags", "Vale.X64.Instructions_s.ins_Xgetbv", "Vale.X64.Decls.va_code" ]
[]
module Vale.X64.InsBasic open Vale.X64 open Vale.X64.StateLemmas open Vale.X64.InsLemmas open Vale.X64.Taint_Semantics open Vale.X64.CPU_Features_s open Vale.X64.Memory open Vale.X64.Stack_i module I = Vale.X64.Instructions_s module S = Vale.X64.Machine_Semantics_s friend Vale.X64.Decls #reset-options "--initial_fuel 5 --max_fuel 5 --max_ifuel 2 --z3rlimit 20" //-- Mov64 [@ "opaque_to_smt"] let va_code_Mov64 dst src = (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mov64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mov64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mov64) (va_code_Mov64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mov64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mov64 (va_code_Mov64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cmovc64 [@ "opaque_to_smt"] let va_code_Cmovc64 dst src = (mk_ins (make_instr (I.ins_Cmovc64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Cmovc64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cmovc64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Cmovc64) (va_code_Cmovc64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cmovc64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cmovc64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cmovc64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cmovc64 (va_code_Cmovc64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Add64 [@ "opaque_to_smt"] let va_code_Add64 dst src = (mk_ins (make_instr (I.ins_Add64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Add64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Add64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Add64) (va_code_Add64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Add64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Add64 (va_code_Add64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Add64Wrap [@ "opaque_to_smt"] let va_code_Add64Wrap dst src = (mk_ins (make_instr (I.ins_Add64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Add64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Add64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Add64Wrap) (va_code_Add64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Add64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Add64Wrap (va_code_Add64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- AddLea64 [@ "opaque_to_smt"] let va_code_AddLea64 dst src1 src2 = (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) [@ "opaque_to_smt"] let va_codegen_success_AddLea64 dst src1 src2 = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_AddLea64 va_b0 va_s0 dst src1 src2 = va_reveal_opaque (`%va_code_AddLea64) (va_code_AddLea64 dst src1 src2); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_AddLea64 dst src1 src2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_AddLea64 (va_code_AddLea64 dst src1 src2) va_s0 dst src1 src2 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adc64 [@ "opaque_to_smt"] let va_code_Adc64 dst src = (mk_ins (make_instr (I.ins_AddCarry64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adc64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adc64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adc64) (va_code_Adc64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adc64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adc64 (va_code_Adc64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adc64Wrap [@ "opaque_to_smt"] let va_code_Adc64Wrap dst src = (mk_ins (make_instr (I.ins_AddCarry64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adc64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adc64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adc64Wrap) (va_code_Adc64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adc64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adc64Wrap (va_code_Adc64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adcx64Wrap #push-options "--smtencoding.nl_arith_repr boxwrap" [@ "opaque_to_smt"] let va_code_Adcx64Wrap dst src = (mk_ins (make_instr (I.ins_Adcx64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adcx64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adcx64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adcx64Wrap) (va_code_Adcx64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Adcx64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Adcx64) dst src)) va_s0 in assert (Vale.Arch.Types.add_wrap64 (Vale.Arch.Types.add_wrap64 (va_eval_dst_opr64 va_old_s dst) (va_eval_opr64 va_old_s src)) (if Vale.X64.Decls.cf (va_get_flags va_old_s) then 1 else 0) == (va_eval_dst_opr64 va_old_s dst + va_eval_opr64 va_old_s src + (if Vale.X64.Decls.cf (va_get_flags va_old_s) then 1 else 0)) `op_Modulus` pow2_64); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adcx64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adcx64Wrap (va_code_Adcx64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) #pop-options //-- //-- Adox64Wrap [@ "opaque_to_smt"] let va_code_Adox64Wrap dst src = (mk_ins (make_instr (I.ins_Adox64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adox64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adox64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adox64Wrap) (va_code_Adox64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Adox64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Adox64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adox64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adox64Wrap (va_code_Adox64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Sub64 [@ "opaque_to_smt"] let va_code_Sub64 dst src = (mk_ins (make_instr (I.ins_Sub64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Sub64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Sub64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Sub64) (va_code_Sub64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Sub64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Sub64 (va_code_Sub64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Sub64Wrap [@ "opaque_to_smt"] let va_code_Sub64Wrap dst src = (mk_ins (make_instr (I.ins_Sub64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Sub64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Sub64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Sub64Wrap) (va_code_Sub64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Sub64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Sub64Wrap (va_code_Sub64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Sbb64 [@ "opaque_to_smt"] let va_code_Sbb64 dst src = (mk_ins (make_instr (I.ins_Sbb64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Sbb64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Sbb64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Sbb64) (va_code_Sbb64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Sbb64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Sbb64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Sbb64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Sbb64 (va_code_Sbb64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- #restart-solver #push-options "--max_fuel 0 --max_ifuel 0 --using_facts_from 'Prims FStar.UInt'" let lemma_fundamental_div_mod (a b:nat64) : Lemma (pow2_64 * (FStar.UInt.mul_div #64 a b) + (FStar.UInt.mul_mod #64 a b) == a * b) = FStar.Math.Lemmas.lemma_div_mod (a * b) pow2_64 #pop-options //-- lemma_fundamental_div_mod //-- //-- Mul64Wrap [@ "opaque_to_smt"] let va_code_Mul64Wrap src = (mk_ins (make_instr (I.ins_Mul64) src)) [@ "opaque_to_smt"] let va_codegen_success_Mul64Wrap src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mul64Wrap va_b0 va_s0 src = va_reveal_opaque (`%va_code_Mul64Wrap) (va_code_Mul64Wrap src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Mul64) src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Mul64) src)) va_s0 in lemma_fundamental_div_mod (va_get_reg64 rRax va_old_s) (va_eval_opr64 va_old_s src); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mul64Wrap src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mul64Wrap (va_code_Mul64Wrap src) va_s0 src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRax va_sM (va_update_flags va_sM (va_update_ok va_sM va_s0))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRax; va_Mod_flags]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mulx64 [@ "opaque_to_smt"] let va_code_Mulx64 dst_hi dst_lo src = (mk_ins (make_instr (I.ins_Mulx64) dst_hi dst_lo src)) [@ "opaque_to_smt"] let va_codegen_success_Mulx64 dst_hi dst_lo src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mulx64 va_b0 va_s0 dst_hi dst_lo src = va_reveal_opaque (`%va_code_Mulx64) (va_code_Mulx64 dst_hi dst_lo src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Mulx64) dst_hi dst_lo src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Mulx64) dst_hi dst_lo src)) va_s0 in lemma_fundamental_div_mod (va_get_reg64 rRdx va_old_s) (va_eval_opr64 va_old_s src); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mulx64 dst_hi dst_lo src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mulx64 (va_code_Mulx64 dst_hi dst_lo src) va_s0 dst_hi dst_lo src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst_lo va_sM (va_update_operand_dst_opr64 dst_hi va_sM va_s0)))); va_lemma_norm_mods ([va_mod_dst_opr64 dst_lo; va_mod_dst_opr64 dst_hi]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- lemma_mul_nat //-- //-- lemma_mul_in_bounds //-- //-- IMul64 [@ "opaque_to_smt"] let va_code_IMul64 dst src = (mk_ins (make_instr (I.ins_IMul64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_IMul64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_IMul64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_IMul64) (va_code_IMul64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_IMul64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_IMul64) dst src)) va_s0 in lemma_mul_nat (va_eval_dst_opr64 va_old_s dst) (va_eval_opr64 va_old_s src); lemma_mul_in_bounds (va_eval_dst_opr64 va_old_s dst) (va_eval_opr64 va_old_s src); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_IMul64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_IMul64 (va_code_IMul64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Xor64 [@ "opaque_to_smt"] let va_code_Xor64 dst src = (mk_ins (make_instr_annotate (I.ins_Xor64) (S.AnnotateXor64 ()) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Xor64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Xor64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Xor64) (va_code_Xor64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Xor64) (S.AnnotateXor64 ()) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Xor64) (S.AnnotateXor64 ()) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Xor64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Xor64 (va_code_Xor64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- And64 [@ "opaque_to_smt"] let va_code_And64 dst src = (mk_ins (make_instr (I.ins_And64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_And64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_And64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_And64) (va_code_And64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_And64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_And64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_And64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_And64 (va_code_And64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Shl64 [@ "opaque_to_smt"] let va_code_Shl64 dst amt = (mk_ins (make_instr (I.ins_Shl64) dst amt)) [@ "opaque_to_smt"] let va_codegen_success_Shl64 dst amt = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Shl64 va_b0 va_s0 dst amt = va_reveal_opaque (`%va_code_Shl64) (va_code_Shl64 dst amt); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Shl64) dst amt)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Shl64) dst amt)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Shl64 dst amt va_s0 va_k = let (va_sM, va_f0) = va_lemma_Shl64 (va_code_Shl64 dst amt) va_s0 dst amt in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Shr64 [@ "opaque_to_smt"] let va_code_Shr64 dst amt = (mk_ins (make_instr (I.ins_Shr64) dst amt)) [@ "opaque_to_smt"] let va_codegen_success_Shr64 dst amt = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Shr64 va_b0 va_s0 dst amt = va_reveal_opaque (`%va_code_Shr64) (va_code_Shr64 dst amt); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Shr64) dst amt)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Shr64) dst amt)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Shr64 dst amt va_s0 va_k = let (va_sM, va_f0) = va_lemma_Shr64 (va_code_Shr64 dst amt) va_s0 dst amt in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_AES [@ "opaque_to_smt"] let va_code_Cpuid_AES () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_AES () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_AES va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_AES) (va_code_Cpuid_AES ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_AES va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_AES (va_code_Cpuid_AES ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Sha [@ "opaque_to_smt"] let va_code_Cpuid_Sha () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Sha () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Sha va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Sha) (va_code_Cpuid_Sha ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Sha va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Sha (va_code_Cpuid_Sha ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Adx_Bmi2 [@ "opaque_to_smt"] let va_code_Cpuid_Adx_Bmi2 () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Adx_Bmi2 () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Adx_Bmi2 va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Adx_Bmi2) (va_code_Cpuid_Adx_Bmi2 ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Adx_Bmi2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Adx_Bmi2 (va_code_Cpuid_Adx_Bmi2 ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Avx [@ "opaque_to_smt"] let va_code_Cpuid_Avx () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Avx () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Avx va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Avx) (va_code_Cpuid_Avx ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Avx va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Avx (va_code_Cpuid_Avx ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Avx2 [@ "opaque_to_smt"] let va_code_Cpuid_Avx2 () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Avx2 () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Avx2 va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Avx2) (va_code_Cpuid_Avx2 ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Avx2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Avx2 (va_code_Cpuid_Avx2 ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Sse [@ "opaque_to_smt"] let va_code_Cpuid_Sse () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Sse () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Sse va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Sse) (va_code_Cpuid_Sse ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Sse va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Sse (va_code_Cpuid_Sse ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Movbe [@ "opaque_to_smt"] let va_code_Cpuid_Movbe () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Movbe () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Movbe va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Movbe) (va_code_Cpuid_Movbe ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Movbe va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Movbe (va_code_Cpuid_Movbe ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Rdrand [@ "opaque_to_smt"] let va_code_Cpuid_Rdrand () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Rdrand () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Rdrand va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Rdrand) (va_code_Cpuid_Rdrand ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Rdrand va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Rdrand (va_code_Cpuid_Rdrand ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Avx512 [@ "opaque_to_smt"] let va_code_Cpuid_Avx512 () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Avx512 () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Avx512 va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Avx512) (va_code_Cpuid_Avx512 ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Avx512 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Avx512 (va_code_Cpuid_Avx512 ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Osxsave [@ "opaque_to_smt"] let va_code_Cpuid_Osxsave () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Osxsave () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Osxsave va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Osxsave) (va_code_Cpuid_Osxsave ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Osxsave va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Osxsave (va_code_Cpuid_Osxsave ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Xgetbv_Avx [@ "opaque_to_smt"] let va_code_Xgetbv_Avx () = (mk_ins (make_instr (I.ins_Xgetbv))) [@ "opaque_to_smt"] let va_codegen_success_Xgetbv_Avx () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Xgetbv_Avx va_b0 va_s0 = va_reveal_opaque (`%va_code_Xgetbv_Avx) (va_code_Xgetbv_Avx ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Xgetbv))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Xgetbv))) va_s0 in Vale.X64.CPU_Features_s.xgetbv_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Xgetbv_Avx va_s0 va_k = let (va_sM, va_f0) = va_lemma_Xgetbv_Avx (va_code_Xgetbv_Avx ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Xgetbv_Avx512 [@ "opaque_to_smt"]
false
true
Vale.X64.InsBasic.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 5, "initial_ifuel": 0, "max_fuel": 5, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_code_Xgetbv_Avx512 : va_dummy:unit -> Tot va_code
[]
Vale.X64.InsBasic.va_code_Xgetbv_Avx512
{ "file_name": "obj/Vale.X64.InsBasic.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
va_dummy: Prims.unit -> Vale.X64.Decls.va_code
{ "end_col": 38, "end_line": 960, "start_col": 2, "start_line": 960 }
Prims.Tot
val va_code_Cpuid_Osxsave : va_dummy:unit -> Tot va_code
[ { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "S" }, { "abbrev": true, "full_module": "Vale.X64.Instructions_s", "short_module": "I" }, { "abbrev": false, "full_module": "Vale.X64.Stack_i", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Taint_Semantics", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_code_Cpuid_Osxsave () = (mk_ins (make_instr (I.ins_Cpuid)))
val va_code_Cpuid_Osxsave : va_dummy:unit -> Tot va_code let va_code_Cpuid_Osxsave () =
false
null
false
(mk_ins (make_instr (I.ins_Cpuid)))
{ "checked_file": "Vale.X64.InsBasic.fst.checked", "dependencies": [ "Vale.X64.Taint_Semantics.fst.checked", "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.Stack_i.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Instructions_s.fsti.checked", "Vale.X64.InsLemmas.fsti.checked", "Vale.X64.Decls.fst.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Arch.Types.fsti.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": true, "source_file": "Vale.X64.InsBasic.fst" }
[ "total" ]
[ "Prims.unit", "Vale.X64.Taint_Semantics.mk_ins", "Vale.X64.InsLemmas.make_instr", "Prims.Cons", "Vale.X64.Instruction_s.instr_out", "Vale.X64.Instruction_s.inOut", "Vale.X64.Instruction_s.one64Reg", "Vale.X64.Machine_s.rRax", "Vale.X64.Instruction_s.out", "Vale.X64.Machine_s.rRbx", "Vale.X64.Machine_s.rRcx", "Vale.X64.Machine_s.rRdx", "Prims.Nil", "Vale.X64.Instruction_s.instr_operand", "Vale.X64.Instruction_s.PreserveFlags", "Vale.X64.Instructions_s.ins_Cpuid", "Vale.X64.Decls.va_code" ]
[]
module Vale.X64.InsBasic open Vale.X64 open Vale.X64.StateLemmas open Vale.X64.InsLemmas open Vale.X64.Taint_Semantics open Vale.X64.CPU_Features_s open Vale.X64.Memory open Vale.X64.Stack_i module I = Vale.X64.Instructions_s module S = Vale.X64.Machine_Semantics_s friend Vale.X64.Decls #reset-options "--initial_fuel 5 --max_fuel 5 --max_ifuel 2 --z3rlimit 20" //-- Mov64 [@ "opaque_to_smt"] let va_code_Mov64 dst src = (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mov64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mov64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mov64) (va_code_Mov64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mov64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mov64 (va_code_Mov64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cmovc64 [@ "opaque_to_smt"] let va_code_Cmovc64 dst src = (mk_ins (make_instr (I.ins_Cmovc64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Cmovc64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cmovc64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Cmovc64) (va_code_Cmovc64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cmovc64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cmovc64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cmovc64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cmovc64 (va_code_Cmovc64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Add64 [@ "opaque_to_smt"] let va_code_Add64 dst src = (mk_ins (make_instr (I.ins_Add64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Add64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Add64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Add64) (va_code_Add64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Add64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Add64 (va_code_Add64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Add64Wrap [@ "opaque_to_smt"] let va_code_Add64Wrap dst src = (mk_ins (make_instr (I.ins_Add64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Add64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Add64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Add64Wrap) (va_code_Add64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Add64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Add64Wrap (va_code_Add64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- AddLea64 [@ "opaque_to_smt"] let va_code_AddLea64 dst src1 src2 = (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) [@ "opaque_to_smt"] let va_codegen_success_AddLea64 dst src1 src2 = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_AddLea64 va_b0 va_s0 dst src1 src2 = va_reveal_opaque (`%va_code_AddLea64) (va_code_AddLea64 dst src1 src2); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_AddLea64 dst src1 src2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_AddLea64 (va_code_AddLea64 dst src1 src2) va_s0 dst src1 src2 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adc64 [@ "opaque_to_smt"] let va_code_Adc64 dst src = (mk_ins (make_instr (I.ins_AddCarry64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adc64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adc64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adc64) (va_code_Adc64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adc64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adc64 (va_code_Adc64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adc64Wrap [@ "opaque_to_smt"] let va_code_Adc64Wrap dst src = (mk_ins (make_instr (I.ins_AddCarry64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adc64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adc64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adc64Wrap) (va_code_Adc64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adc64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adc64Wrap (va_code_Adc64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adcx64Wrap #push-options "--smtencoding.nl_arith_repr boxwrap" [@ "opaque_to_smt"] let va_code_Adcx64Wrap dst src = (mk_ins (make_instr (I.ins_Adcx64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adcx64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adcx64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adcx64Wrap) (va_code_Adcx64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Adcx64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Adcx64) dst src)) va_s0 in assert (Vale.Arch.Types.add_wrap64 (Vale.Arch.Types.add_wrap64 (va_eval_dst_opr64 va_old_s dst) (va_eval_opr64 va_old_s src)) (if Vale.X64.Decls.cf (va_get_flags va_old_s) then 1 else 0) == (va_eval_dst_opr64 va_old_s dst + va_eval_opr64 va_old_s src + (if Vale.X64.Decls.cf (va_get_flags va_old_s) then 1 else 0)) `op_Modulus` pow2_64); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adcx64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adcx64Wrap (va_code_Adcx64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) #pop-options //-- //-- Adox64Wrap [@ "opaque_to_smt"] let va_code_Adox64Wrap dst src = (mk_ins (make_instr (I.ins_Adox64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adox64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adox64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adox64Wrap) (va_code_Adox64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Adox64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Adox64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adox64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adox64Wrap (va_code_Adox64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Sub64 [@ "opaque_to_smt"] let va_code_Sub64 dst src = (mk_ins (make_instr (I.ins_Sub64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Sub64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Sub64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Sub64) (va_code_Sub64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Sub64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Sub64 (va_code_Sub64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Sub64Wrap [@ "opaque_to_smt"] let va_code_Sub64Wrap dst src = (mk_ins (make_instr (I.ins_Sub64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Sub64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Sub64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Sub64Wrap) (va_code_Sub64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Sub64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Sub64Wrap (va_code_Sub64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Sbb64 [@ "opaque_to_smt"] let va_code_Sbb64 dst src = (mk_ins (make_instr (I.ins_Sbb64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Sbb64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Sbb64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Sbb64) (va_code_Sbb64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Sbb64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Sbb64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Sbb64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Sbb64 (va_code_Sbb64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- #restart-solver #push-options "--max_fuel 0 --max_ifuel 0 --using_facts_from 'Prims FStar.UInt'" let lemma_fundamental_div_mod (a b:nat64) : Lemma (pow2_64 * (FStar.UInt.mul_div #64 a b) + (FStar.UInt.mul_mod #64 a b) == a * b) = FStar.Math.Lemmas.lemma_div_mod (a * b) pow2_64 #pop-options //-- lemma_fundamental_div_mod //-- //-- Mul64Wrap [@ "opaque_to_smt"] let va_code_Mul64Wrap src = (mk_ins (make_instr (I.ins_Mul64) src)) [@ "opaque_to_smt"] let va_codegen_success_Mul64Wrap src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mul64Wrap va_b0 va_s0 src = va_reveal_opaque (`%va_code_Mul64Wrap) (va_code_Mul64Wrap src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Mul64) src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Mul64) src)) va_s0 in lemma_fundamental_div_mod (va_get_reg64 rRax va_old_s) (va_eval_opr64 va_old_s src); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mul64Wrap src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mul64Wrap (va_code_Mul64Wrap src) va_s0 src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRax va_sM (va_update_flags va_sM (va_update_ok va_sM va_s0))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRax; va_Mod_flags]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mulx64 [@ "opaque_to_smt"] let va_code_Mulx64 dst_hi dst_lo src = (mk_ins (make_instr (I.ins_Mulx64) dst_hi dst_lo src)) [@ "opaque_to_smt"] let va_codegen_success_Mulx64 dst_hi dst_lo src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mulx64 va_b0 va_s0 dst_hi dst_lo src = va_reveal_opaque (`%va_code_Mulx64) (va_code_Mulx64 dst_hi dst_lo src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Mulx64) dst_hi dst_lo src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Mulx64) dst_hi dst_lo src)) va_s0 in lemma_fundamental_div_mod (va_get_reg64 rRdx va_old_s) (va_eval_opr64 va_old_s src); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mulx64 dst_hi dst_lo src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mulx64 (va_code_Mulx64 dst_hi dst_lo src) va_s0 dst_hi dst_lo src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst_lo va_sM (va_update_operand_dst_opr64 dst_hi va_sM va_s0)))); va_lemma_norm_mods ([va_mod_dst_opr64 dst_lo; va_mod_dst_opr64 dst_hi]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- lemma_mul_nat //-- //-- lemma_mul_in_bounds //-- //-- IMul64 [@ "opaque_to_smt"] let va_code_IMul64 dst src = (mk_ins (make_instr (I.ins_IMul64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_IMul64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_IMul64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_IMul64) (va_code_IMul64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_IMul64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_IMul64) dst src)) va_s0 in lemma_mul_nat (va_eval_dst_opr64 va_old_s dst) (va_eval_opr64 va_old_s src); lemma_mul_in_bounds (va_eval_dst_opr64 va_old_s dst) (va_eval_opr64 va_old_s src); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_IMul64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_IMul64 (va_code_IMul64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Xor64 [@ "opaque_to_smt"] let va_code_Xor64 dst src = (mk_ins (make_instr_annotate (I.ins_Xor64) (S.AnnotateXor64 ()) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Xor64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Xor64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Xor64) (va_code_Xor64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Xor64) (S.AnnotateXor64 ()) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Xor64) (S.AnnotateXor64 ()) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Xor64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Xor64 (va_code_Xor64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- And64 [@ "opaque_to_smt"] let va_code_And64 dst src = (mk_ins (make_instr (I.ins_And64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_And64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_And64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_And64) (va_code_And64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_And64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_And64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_And64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_And64 (va_code_And64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Shl64 [@ "opaque_to_smt"] let va_code_Shl64 dst amt = (mk_ins (make_instr (I.ins_Shl64) dst amt)) [@ "opaque_to_smt"] let va_codegen_success_Shl64 dst amt = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Shl64 va_b0 va_s0 dst amt = va_reveal_opaque (`%va_code_Shl64) (va_code_Shl64 dst amt); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Shl64) dst amt)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Shl64) dst amt)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Shl64 dst amt va_s0 va_k = let (va_sM, va_f0) = va_lemma_Shl64 (va_code_Shl64 dst amt) va_s0 dst amt in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Shr64 [@ "opaque_to_smt"] let va_code_Shr64 dst amt = (mk_ins (make_instr (I.ins_Shr64) dst amt)) [@ "opaque_to_smt"] let va_codegen_success_Shr64 dst amt = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Shr64 va_b0 va_s0 dst amt = va_reveal_opaque (`%va_code_Shr64) (va_code_Shr64 dst amt); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Shr64) dst amt)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Shr64) dst amt)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Shr64 dst amt va_s0 va_k = let (va_sM, va_f0) = va_lemma_Shr64 (va_code_Shr64 dst amt) va_s0 dst amt in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_AES [@ "opaque_to_smt"] let va_code_Cpuid_AES () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_AES () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_AES va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_AES) (va_code_Cpuid_AES ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_AES va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_AES (va_code_Cpuid_AES ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Sha [@ "opaque_to_smt"] let va_code_Cpuid_Sha () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Sha () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Sha va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Sha) (va_code_Cpuid_Sha ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Sha va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Sha (va_code_Cpuid_Sha ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Adx_Bmi2 [@ "opaque_to_smt"] let va_code_Cpuid_Adx_Bmi2 () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Adx_Bmi2 () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Adx_Bmi2 va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Adx_Bmi2) (va_code_Cpuid_Adx_Bmi2 ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Adx_Bmi2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Adx_Bmi2 (va_code_Cpuid_Adx_Bmi2 ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Avx [@ "opaque_to_smt"] let va_code_Cpuid_Avx () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Avx () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Avx va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Avx) (va_code_Cpuid_Avx ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Avx va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Avx (va_code_Cpuid_Avx ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Avx2 [@ "opaque_to_smt"] let va_code_Cpuid_Avx2 () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Avx2 () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Avx2 va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Avx2) (va_code_Cpuid_Avx2 ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Avx2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Avx2 (va_code_Cpuid_Avx2 ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Sse [@ "opaque_to_smt"] let va_code_Cpuid_Sse () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Sse () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Sse va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Sse) (va_code_Cpuid_Sse ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Sse va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Sse (va_code_Cpuid_Sse ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Movbe [@ "opaque_to_smt"] let va_code_Cpuid_Movbe () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Movbe () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Movbe va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Movbe) (va_code_Cpuid_Movbe ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Movbe va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Movbe (va_code_Cpuid_Movbe ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Rdrand [@ "opaque_to_smt"] let va_code_Cpuid_Rdrand () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Rdrand () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Rdrand va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Rdrand) (va_code_Cpuid_Rdrand ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Rdrand va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Rdrand (va_code_Cpuid_Rdrand ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Avx512 [@ "opaque_to_smt"] let va_code_Cpuid_Avx512 () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Avx512 () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Avx512 va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Avx512) (va_code_Cpuid_Avx512 ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Avx512 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Avx512 (va_code_Cpuid_Avx512 ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Osxsave [@ "opaque_to_smt"]
false
true
Vale.X64.InsBasic.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 5, "initial_ifuel": 0, "max_fuel": 5, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_code_Cpuid_Osxsave : va_dummy:unit -> Tot va_code
[]
Vale.X64.InsBasic.va_code_Cpuid_Osxsave
{ "file_name": "obj/Vale.X64.InsBasic.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
va_dummy: Prims.unit -> Vale.X64.Decls.va_code
{ "end_col": 37, "end_line": 897, "start_col": 2, "start_line": 897 }
Prims.Tot
val va_code_Comment : c:string -> Tot va_code
[ { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "S" }, { "abbrev": true, "full_module": "Vale.X64.Instructions_s", "short_module": "I" }, { "abbrev": false, "full_module": "Vale.X64.Stack_i", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Taint_Semantics", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_code_Comment c = (mk_ins (make_instr_annotate (I.ins_Comment c) (S.AnnotateComment c)))
val va_code_Comment : c:string -> Tot va_code let va_code_Comment c =
false
null
false
(mk_ins (make_instr_annotate (I.ins_Comment c) (S.AnnotateComment c)))
{ "checked_file": "Vale.X64.InsBasic.fst.checked", "dependencies": [ "Vale.X64.Taint_Semantics.fst.checked", "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.Stack_i.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Instructions_s.fsti.checked", "Vale.X64.InsLemmas.fsti.checked", "Vale.X64.Decls.fst.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Arch.Types.fsti.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": true, "source_file": "Vale.X64.InsBasic.fst" }
[ "total" ]
[ "Prims.string", "Vale.X64.Taint_Semantics.mk_ins", "Vale.X64.InsLemmas.make_instr_annotate", "Prims.Nil", "Vale.X64.Instruction_s.instr_out", "Vale.X64.Instruction_s.instr_operand", "Vale.X64.Instruction_s.PreserveFlags", "Vale.X64.Instructions_s.ins_Comment", "Vale.X64.Machine_Semantics_s.AnnotateComment", "Vale.X64.Instruction_s.InstrTypeRecord", "Vale.X64.Decls.va_code" ]
[]
module Vale.X64.InsBasic open Vale.X64 open Vale.X64.StateLemmas open Vale.X64.InsLemmas open Vale.X64.Taint_Semantics open Vale.X64.CPU_Features_s open Vale.X64.Memory open Vale.X64.Stack_i module I = Vale.X64.Instructions_s module S = Vale.X64.Machine_Semantics_s friend Vale.X64.Decls #reset-options "--initial_fuel 5 --max_fuel 5 --max_ifuel 2 --z3rlimit 20" //-- Mov64 [@ "opaque_to_smt"] let va_code_Mov64 dst src = (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mov64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mov64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mov64) (va_code_Mov64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mov64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mov64 (va_code_Mov64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cmovc64 [@ "opaque_to_smt"] let va_code_Cmovc64 dst src = (mk_ins (make_instr (I.ins_Cmovc64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Cmovc64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cmovc64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Cmovc64) (va_code_Cmovc64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cmovc64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cmovc64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cmovc64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cmovc64 (va_code_Cmovc64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Add64 [@ "opaque_to_smt"] let va_code_Add64 dst src = (mk_ins (make_instr (I.ins_Add64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Add64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Add64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Add64) (va_code_Add64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Add64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Add64 (va_code_Add64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Add64Wrap [@ "opaque_to_smt"] let va_code_Add64Wrap dst src = (mk_ins (make_instr (I.ins_Add64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Add64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Add64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Add64Wrap) (va_code_Add64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Add64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Add64Wrap (va_code_Add64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- AddLea64 [@ "opaque_to_smt"] let va_code_AddLea64 dst src1 src2 = (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) [@ "opaque_to_smt"] let va_codegen_success_AddLea64 dst src1 src2 = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_AddLea64 va_b0 va_s0 dst src1 src2 = va_reveal_opaque (`%va_code_AddLea64) (va_code_AddLea64 dst src1 src2); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_AddLea64 dst src1 src2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_AddLea64 (va_code_AddLea64 dst src1 src2) va_s0 dst src1 src2 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adc64 [@ "opaque_to_smt"] let va_code_Adc64 dst src = (mk_ins (make_instr (I.ins_AddCarry64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adc64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adc64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adc64) (va_code_Adc64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adc64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adc64 (va_code_Adc64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adc64Wrap [@ "opaque_to_smt"] let va_code_Adc64Wrap dst src = (mk_ins (make_instr (I.ins_AddCarry64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adc64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adc64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adc64Wrap) (va_code_Adc64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adc64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adc64Wrap (va_code_Adc64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adcx64Wrap #push-options "--smtencoding.nl_arith_repr boxwrap" [@ "opaque_to_smt"] let va_code_Adcx64Wrap dst src = (mk_ins (make_instr (I.ins_Adcx64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adcx64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adcx64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adcx64Wrap) (va_code_Adcx64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Adcx64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Adcx64) dst src)) va_s0 in assert (Vale.Arch.Types.add_wrap64 (Vale.Arch.Types.add_wrap64 (va_eval_dst_opr64 va_old_s dst) (va_eval_opr64 va_old_s src)) (if Vale.X64.Decls.cf (va_get_flags va_old_s) then 1 else 0) == (va_eval_dst_opr64 va_old_s dst + va_eval_opr64 va_old_s src + (if Vale.X64.Decls.cf (va_get_flags va_old_s) then 1 else 0)) `op_Modulus` pow2_64); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adcx64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adcx64Wrap (va_code_Adcx64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) #pop-options //-- //-- Adox64Wrap [@ "opaque_to_smt"] let va_code_Adox64Wrap dst src = (mk_ins (make_instr (I.ins_Adox64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adox64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adox64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adox64Wrap) (va_code_Adox64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Adox64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Adox64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adox64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adox64Wrap (va_code_Adox64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Sub64 [@ "opaque_to_smt"] let va_code_Sub64 dst src = (mk_ins (make_instr (I.ins_Sub64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Sub64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Sub64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Sub64) (va_code_Sub64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Sub64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Sub64 (va_code_Sub64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Sub64Wrap [@ "opaque_to_smt"] let va_code_Sub64Wrap dst src = (mk_ins (make_instr (I.ins_Sub64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Sub64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Sub64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Sub64Wrap) (va_code_Sub64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Sub64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Sub64Wrap (va_code_Sub64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Sbb64 [@ "opaque_to_smt"] let va_code_Sbb64 dst src = (mk_ins (make_instr (I.ins_Sbb64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Sbb64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Sbb64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Sbb64) (va_code_Sbb64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Sbb64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Sbb64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Sbb64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Sbb64 (va_code_Sbb64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- #restart-solver #push-options "--max_fuel 0 --max_ifuel 0 --using_facts_from 'Prims FStar.UInt'" let lemma_fundamental_div_mod (a b:nat64) : Lemma (pow2_64 * (FStar.UInt.mul_div #64 a b) + (FStar.UInt.mul_mod #64 a b) == a * b) = FStar.Math.Lemmas.lemma_div_mod (a * b) pow2_64 #pop-options //-- lemma_fundamental_div_mod //-- //-- Mul64Wrap [@ "opaque_to_smt"] let va_code_Mul64Wrap src = (mk_ins (make_instr (I.ins_Mul64) src)) [@ "opaque_to_smt"] let va_codegen_success_Mul64Wrap src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mul64Wrap va_b0 va_s0 src = va_reveal_opaque (`%va_code_Mul64Wrap) (va_code_Mul64Wrap src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Mul64) src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Mul64) src)) va_s0 in lemma_fundamental_div_mod (va_get_reg64 rRax va_old_s) (va_eval_opr64 va_old_s src); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mul64Wrap src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mul64Wrap (va_code_Mul64Wrap src) va_s0 src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRax va_sM (va_update_flags va_sM (va_update_ok va_sM va_s0))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRax; va_Mod_flags]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mulx64 [@ "opaque_to_smt"] let va_code_Mulx64 dst_hi dst_lo src = (mk_ins (make_instr (I.ins_Mulx64) dst_hi dst_lo src)) [@ "opaque_to_smt"] let va_codegen_success_Mulx64 dst_hi dst_lo src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mulx64 va_b0 va_s0 dst_hi dst_lo src = va_reveal_opaque (`%va_code_Mulx64) (va_code_Mulx64 dst_hi dst_lo src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Mulx64) dst_hi dst_lo src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Mulx64) dst_hi dst_lo src)) va_s0 in lemma_fundamental_div_mod (va_get_reg64 rRdx va_old_s) (va_eval_opr64 va_old_s src); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mulx64 dst_hi dst_lo src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mulx64 (va_code_Mulx64 dst_hi dst_lo src) va_s0 dst_hi dst_lo src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst_lo va_sM (va_update_operand_dst_opr64 dst_hi va_sM va_s0)))); va_lemma_norm_mods ([va_mod_dst_opr64 dst_lo; va_mod_dst_opr64 dst_hi]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- lemma_mul_nat //-- //-- lemma_mul_in_bounds //-- //-- IMul64 [@ "opaque_to_smt"] let va_code_IMul64 dst src = (mk_ins (make_instr (I.ins_IMul64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_IMul64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_IMul64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_IMul64) (va_code_IMul64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_IMul64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_IMul64) dst src)) va_s0 in lemma_mul_nat (va_eval_dst_opr64 va_old_s dst) (va_eval_opr64 va_old_s src); lemma_mul_in_bounds (va_eval_dst_opr64 va_old_s dst) (va_eval_opr64 va_old_s src); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_IMul64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_IMul64 (va_code_IMul64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Xor64 [@ "opaque_to_smt"] let va_code_Xor64 dst src = (mk_ins (make_instr_annotate (I.ins_Xor64) (S.AnnotateXor64 ()) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Xor64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Xor64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Xor64) (va_code_Xor64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Xor64) (S.AnnotateXor64 ()) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Xor64) (S.AnnotateXor64 ()) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Xor64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Xor64 (va_code_Xor64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- And64 [@ "opaque_to_smt"] let va_code_And64 dst src = (mk_ins (make_instr (I.ins_And64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_And64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_And64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_And64) (va_code_And64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_And64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_And64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_And64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_And64 (va_code_And64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Shl64 [@ "opaque_to_smt"] let va_code_Shl64 dst amt = (mk_ins (make_instr (I.ins_Shl64) dst amt)) [@ "opaque_to_smt"] let va_codegen_success_Shl64 dst amt = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Shl64 va_b0 va_s0 dst amt = va_reveal_opaque (`%va_code_Shl64) (va_code_Shl64 dst amt); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Shl64) dst amt)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Shl64) dst amt)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Shl64 dst amt va_s0 va_k = let (va_sM, va_f0) = va_lemma_Shl64 (va_code_Shl64 dst amt) va_s0 dst amt in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Shr64 [@ "opaque_to_smt"] let va_code_Shr64 dst amt = (mk_ins (make_instr (I.ins_Shr64) dst amt)) [@ "opaque_to_smt"] let va_codegen_success_Shr64 dst amt = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Shr64 va_b0 va_s0 dst amt = va_reveal_opaque (`%va_code_Shr64) (va_code_Shr64 dst amt); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Shr64) dst amt)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Shr64) dst amt)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Shr64 dst amt va_s0 va_k = let (va_sM, va_f0) = va_lemma_Shr64 (va_code_Shr64 dst amt) va_s0 dst amt in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_AES [@ "opaque_to_smt"] let va_code_Cpuid_AES () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_AES () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_AES va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_AES) (va_code_Cpuid_AES ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_AES va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_AES (va_code_Cpuid_AES ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Sha [@ "opaque_to_smt"] let va_code_Cpuid_Sha () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Sha () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Sha va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Sha) (va_code_Cpuid_Sha ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Sha va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Sha (va_code_Cpuid_Sha ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Adx_Bmi2 [@ "opaque_to_smt"] let va_code_Cpuid_Adx_Bmi2 () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Adx_Bmi2 () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Adx_Bmi2 va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Adx_Bmi2) (va_code_Cpuid_Adx_Bmi2 ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Adx_Bmi2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Adx_Bmi2 (va_code_Cpuid_Adx_Bmi2 ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Avx [@ "opaque_to_smt"] let va_code_Cpuid_Avx () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Avx () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Avx va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Avx) (va_code_Cpuid_Avx ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Avx va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Avx (va_code_Cpuid_Avx ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Avx2 [@ "opaque_to_smt"] let va_code_Cpuid_Avx2 () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Avx2 () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Avx2 va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Avx2) (va_code_Cpuid_Avx2 ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Avx2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Avx2 (va_code_Cpuid_Avx2 ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Sse [@ "opaque_to_smt"] let va_code_Cpuid_Sse () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Sse () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Sse va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Sse) (va_code_Cpuid_Sse ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Sse va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Sse (va_code_Cpuid_Sse ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Movbe [@ "opaque_to_smt"] let va_code_Cpuid_Movbe () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Movbe () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Movbe va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Movbe) (va_code_Cpuid_Movbe ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Movbe va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Movbe (va_code_Cpuid_Movbe ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Rdrand [@ "opaque_to_smt"] let va_code_Cpuid_Rdrand () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Rdrand () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Rdrand va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Rdrand) (va_code_Cpuid_Rdrand ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Rdrand va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Rdrand (va_code_Cpuid_Rdrand ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Avx512 [@ "opaque_to_smt"] let va_code_Cpuid_Avx512 () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Avx512 () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Avx512 va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Avx512) (va_code_Cpuid_Avx512 ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Avx512 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Avx512 (va_code_Cpuid_Avx512 ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Osxsave [@ "opaque_to_smt"] let va_code_Cpuid_Osxsave () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Osxsave () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Osxsave va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Osxsave) (va_code_Cpuid_Osxsave ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Osxsave va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Osxsave (va_code_Cpuid_Osxsave ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Xgetbv_Avx [@ "opaque_to_smt"] let va_code_Xgetbv_Avx () = (mk_ins (make_instr (I.ins_Xgetbv))) [@ "opaque_to_smt"] let va_codegen_success_Xgetbv_Avx () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Xgetbv_Avx va_b0 va_s0 = va_reveal_opaque (`%va_code_Xgetbv_Avx) (va_code_Xgetbv_Avx ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Xgetbv))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Xgetbv))) va_s0 in Vale.X64.CPU_Features_s.xgetbv_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Xgetbv_Avx va_s0 va_k = let (va_sM, va_f0) = va_lemma_Xgetbv_Avx (va_code_Xgetbv_Avx ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Xgetbv_Avx512 [@ "opaque_to_smt"] let va_code_Xgetbv_Avx512 () = (mk_ins (make_instr (I.ins_Xgetbv))) [@ "opaque_to_smt"] let va_codegen_success_Xgetbv_Avx512 () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Xgetbv_Avx512 va_b0 va_s0 = va_reveal_opaque (`%va_code_Xgetbv_Avx512) (va_code_Xgetbv_Avx512 ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Xgetbv))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Xgetbv))) va_s0 in Vale.X64.CPU_Features_s.xgetbv_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Xgetbv_Avx512 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Xgetbv_Avx512 (va_code_Xgetbv_Avx512 ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Nat64Equal [@ "opaque_to_smt"] let va_code_Nat64Equal dst src = (va_Block (va_CCons (va_code_Sub64Wrap (va_coerce_reg_opr64_to_dst_opr64 src) (va_const_opr64 18446744073709551615)) (va_CCons (va_code_Mov64 (va_coerce_reg_opr64_to_dst_opr64 dst) (va_const_opr64 0)) (va_CCons (va_code_Adc64 (va_coerce_reg_opr64_to_dst_opr64 dst) (va_const_opr64 0)) (va_CNil ()))))) [@ "opaque_to_smt"] let va_codegen_success_Nat64Equal dst src = (va_pbool_and (va_codegen_success_Sub64Wrap (va_coerce_reg_opr64_to_dst_opr64 src) (va_const_opr64 18446744073709551615)) (va_pbool_and (va_codegen_success_Mov64 (va_coerce_reg_opr64_to_dst_opr64 dst) (va_const_opr64 0)) (va_pbool_and (va_codegen_success_Adc64 (va_coerce_reg_opr64_to_dst_opr64 dst) (va_const_opr64 0)) (va_ttrue ())))) [@"opaque_to_smt"] let va_lemma_Nat64Equal va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Nat64Equal) (va_code_Nat64Equal dst src); let (va_old_s:va_state) = va_s0 in let (va_b1:va_codes) = va_get_block va_b0 in let (va_s2, va_fc2) = va_lemma_Sub64Wrap (va_hd va_b1) va_s0 (va_coerce_reg_opr64_to_dst_opr64 src) (va_const_opr64 18446744073709551615) in let va_b2 = va_tl va_b1 in let (va_s3, va_fc3) = va_lemma_Mov64 (va_hd va_b2) va_s2 (va_coerce_reg_opr64_to_dst_opr64 dst) (va_const_opr64 0) in let va_b3 = va_tl va_b2 in let (va_s4, va_fc4) = va_lemma_Adc64 (va_hd va_b3) va_s3 (va_coerce_reg_opr64_to_dst_opr64 dst) (va_const_opr64 0) in let va_b4 = va_tl va_b3 in let (va_sM, va_f4) = va_lemma_empty_total va_s4 va_b4 in let va_f3 = va_lemma_merge_total va_b3 va_s3 va_fc4 va_s4 va_f4 va_sM in let va_f2 = va_lemma_merge_total va_b2 va_s2 va_fc3 va_s3 va_f3 va_sM in let va_fM = va_lemma_merge_total va_b1 va_s0 va_fc2 va_s2 va_f2 va_sM in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Nat64Equal dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Nat64Equal (va_code_Nat64Equal dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_reg_opr64 src va_sM (va_update_operand_reg_opr64 dst va_sM va_s0))))); va_lemma_norm_mods ([va_Mod_flags; va_mod_reg_opr64 src; va_mod_reg_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Comment [@ "opaque_to_smt"]
false
true
Vale.X64.InsBasic.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 5, "initial_ifuel": 0, "max_fuel": 5, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_code_Comment : c:string -> Tot va_code
[]
Vale.X64.InsBasic.va_code_Comment
{ "file_name": "obj/Vale.X64.InsBasic.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
c: Prims.string -> Vale.X64.Decls.va_code
{ "end_col": 72, "end_line": 1040, "start_col": 2, "start_line": 1040 }
Prims.Tot
val va_code_Newline : va_dummy:unit -> Tot va_code
[ { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "S" }, { "abbrev": true, "full_module": "Vale.X64.Instructions_s", "short_module": "I" }, { "abbrev": false, "full_module": "Vale.X64.Stack_i", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Taint_Semantics", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_code_Newline () = (mk_ins (make_instr_annotate (I.ins_Newline) (S.AnnotateNewline ())))
val va_code_Newline : va_dummy:unit -> Tot va_code let va_code_Newline () =
false
null
false
(mk_ins (make_instr_annotate (I.ins_Newline) (S.AnnotateNewline ())))
{ "checked_file": "Vale.X64.InsBasic.fst.checked", "dependencies": [ "Vale.X64.Taint_Semantics.fst.checked", "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.Stack_i.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Instructions_s.fsti.checked", "Vale.X64.InsLemmas.fsti.checked", "Vale.X64.Decls.fst.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Arch.Types.fsti.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": true, "source_file": "Vale.X64.InsBasic.fst" }
[ "total" ]
[ "Prims.unit", "Vale.X64.Taint_Semantics.mk_ins", "Vale.X64.InsLemmas.make_instr_annotate", "Prims.Nil", "Vale.X64.Instruction_s.instr_out", "Vale.X64.Instruction_s.instr_operand", "Vale.X64.Instruction_s.PreserveFlags", "Vale.X64.Instructions_s.ins_Newline", "Vale.X64.Machine_Semantics_s.AnnotateNewline", "Vale.X64.Instruction_s.InstrTypeRecord", "Vale.X64.Decls.va_code" ]
[]
module Vale.X64.InsBasic open Vale.X64 open Vale.X64.StateLemmas open Vale.X64.InsLemmas open Vale.X64.Taint_Semantics open Vale.X64.CPU_Features_s open Vale.X64.Memory open Vale.X64.Stack_i module I = Vale.X64.Instructions_s module S = Vale.X64.Machine_Semantics_s friend Vale.X64.Decls #reset-options "--initial_fuel 5 --max_fuel 5 --max_ifuel 2 --z3rlimit 20" //-- Mov64 [@ "opaque_to_smt"] let va_code_Mov64 dst src = (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mov64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mov64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mov64) (va_code_Mov64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mov64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mov64 (va_code_Mov64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cmovc64 [@ "opaque_to_smt"] let va_code_Cmovc64 dst src = (mk_ins (make_instr (I.ins_Cmovc64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Cmovc64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cmovc64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Cmovc64) (va_code_Cmovc64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cmovc64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cmovc64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cmovc64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cmovc64 (va_code_Cmovc64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Add64 [@ "opaque_to_smt"] let va_code_Add64 dst src = (mk_ins (make_instr (I.ins_Add64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Add64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Add64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Add64) (va_code_Add64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Add64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Add64 (va_code_Add64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Add64Wrap [@ "opaque_to_smt"] let va_code_Add64Wrap dst src = (mk_ins (make_instr (I.ins_Add64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Add64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Add64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Add64Wrap) (va_code_Add64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Add64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Add64Wrap (va_code_Add64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- AddLea64 [@ "opaque_to_smt"] let va_code_AddLea64 dst src1 src2 = (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) [@ "opaque_to_smt"] let va_codegen_success_AddLea64 dst src1 src2 = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_AddLea64 va_b0 va_s0 dst src1 src2 = va_reveal_opaque (`%va_code_AddLea64) (va_code_AddLea64 dst src1 src2); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_AddLea64 dst src1 src2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_AddLea64 (va_code_AddLea64 dst src1 src2) va_s0 dst src1 src2 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adc64 [@ "opaque_to_smt"] let va_code_Adc64 dst src = (mk_ins (make_instr (I.ins_AddCarry64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adc64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adc64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adc64) (va_code_Adc64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adc64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adc64 (va_code_Adc64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adc64Wrap [@ "opaque_to_smt"] let va_code_Adc64Wrap dst src = (mk_ins (make_instr (I.ins_AddCarry64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adc64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adc64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adc64Wrap) (va_code_Adc64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adc64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adc64Wrap (va_code_Adc64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adcx64Wrap #push-options "--smtencoding.nl_arith_repr boxwrap" [@ "opaque_to_smt"] let va_code_Adcx64Wrap dst src = (mk_ins (make_instr (I.ins_Adcx64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adcx64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adcx64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adcx64Wrap) (va_code_Adcx64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Adcx64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Adcx64) dst src)) va_s0 in assert (Vale.Arch.Types.add_wrap64 (Vale.Arch.Types.add_wrap64 (va_eval_dst_opr64 va_old_s dst) (va_eval_opr64 va_old_s src)) (if Vale.X64.Decls.cf (va_get_flags va_old_s) then 1 else 0) == (va_eval_dst_opr64 va_old_s dst + va_eval_opr64 va_old_s src + (if Vale.X64.Decls.cf (va_get_flags va_old_s) then 1 else 0)) `op_Modulus` pow2_64); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adcx64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adcx64Wrap (va_code_Adcx64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) #pop-options //-- //-- Adox64Wrap [@ "opaque_to_smt"] let va_code_Adox64Wrap dst src = (mk_ins (make_instr (I.ins_Adox64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adox64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adox64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adox64Wrap) (va_code_Adox64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Adox64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Adox64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adox64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adox64Wrap (va_code_Adox64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Sub64 [@ "opaque_to_smt"] let va_code_Sub64 dst src = (mk_ins (make_instr (I.ins_Sub64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Sub64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Sub64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Sub64) (va_code_Sub64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Sub64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Sub64 (va_code_Sub64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Sub64Wrap [@ "opaque_to_smt"] let va_code_Sub64Wrap dst src = (mk_ins (make_instr (I.ins_Sub64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Sub64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Sub64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Sub64Wrap) (va_code_Sub64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Sub64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Sub64Wrap (va_code_Sub64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Sbb64 [@ "opaque_to_smt"] let va_code_Sbb64 dst src = (mk_ins (make_instr (I.ins_Sbb64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Sbb64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Sbb64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Sbb64) (va_code_Sbb64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Sbb64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Sbb64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Sbb64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Sbb64 (va_code_Sbb64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- #restart-solver #push-options "--max_fuel 0 --max_ifuel 0 --using_facts_from 'Prims FStar.UInt'" let lemma_fundamental_div_mod (a b:nat64) : Lemma (pow2_64 * (FStar.UInt.mul_div #64 a b) + (FStar.UInt.mul_mod #64 a b) == a * b) = FStar.Math.Lemmas.lemma_div_mod (a * b) pow2_64 #pop-options //-- lemma_fundamental_div_mod //-- //-- Mul64Wrap [@ "opaque_to_smt"] let va_code_Mul64Wrap src = (mk_ins (make_instr (I.ins_Mul64) src)) [@ "opaque_to_smt"] let va_codegen_success_Mul64Wrap src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mul64Wrap va_b0 va_s0 src = va_reveal_opaque (`%va_code_Mul64Wrap) (va_code_Mul64Wrap src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Mul64) src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Mul64) src)) va_s0 in lemma_fundamental_div_mod (va_get_reg64 rRax va_old_s) (va_eval_opr64 va_old_s src); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mul64Wrap src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mul64Wrap (va_code_Mul64Wrap src) va_s0 src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRax va_sM (va_update_flags va_sM (va_update_ok va_sM va_s0))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRax; va_Mod_flags]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mulx64 [@ "opaque_to_smt"] let va_code_Mulx64 dst_hi dst_lo src = (mk_ins (make_instr (I.ins_Mulx64) dst_hi dst_lo src)) [@ "opaque_to_smt"] let va_codegen_success_Mulx64 dst_hi dst_lo src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mulx64 va_b0 va_s0 dst_hi dst_lo src = va_reveal_opaque (`%va_code_Mulx64) (va_code_Mulx64 dst_hi dst_lo src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Mulx64) dst_hi dst_lo src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Mulx64) dst_hi dst_lo src)) va_s0 in lemma_fundamental_div_mod (va_get_reg64 rRdx va_old_s) (va_eval_opr64 va_old_s src); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mulx64 dst_hi dst_lo src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mulx64 (va_code_Mulx64 dst_hi dst_lo src) va_s0 dst_hi dst_lo src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst_lo va_sM (va_update_operand_dst_opr64 dst_hi va_sM va_s0)))); va_lemma_norm_mods ([va_mod_dst_opr64 dst_lo; va_mod_dst_opr64 dst_hi]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- lemma_mul_nat //-- //-- lemma_mul_in_bounds //-- //-- IMul64 [@ "opaque_to_smt"] let va_code_IMul64 dst src = (mk_ins (make_instr (I.ins_IMul64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_IMul64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_IMul64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_IMul64) (va_code_IMul64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_IMul64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_IMul64) dst src)) va_s0 in lemma_mul_nat (va_eval_dst_opr64 va_old_s dst) (va_eval_opr64 va_old_s src); lemma_mul_in_bounds (va_eval_dst_opr64 va_old_s dst) (va_eval_opr64 va_old_s src); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_IMul64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_IMul64 (va_code_IMul64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Xor64 [@ "opaque_to_smt"] let va_code_Xor64 dst src = (mk_ins (make_instr_annotate (I.ins_Xor64) (S.AnnotateXor64 ()) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Xor64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Xor64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Xor64) (va_code_Xor64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Xor64) (S.AnnotateXor64 ()) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Xor64) (S.AnnotateXor64 ()) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Xor64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Xor64 (va_code_Xor64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- And64 [@ "opaque_to_smt"] let va_code_And64 dst src = (mk_ins (make_instr (I.ins_And64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_And64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_And64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_And64) (va_code_And64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_And64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_And64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_And64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_And64 (va_code_And64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Shl64 [@ "opaque_to_smt"] let va_code_Shl64 dst amt = (mk_ins (make_instr (I.ins_Shl64) dst amt)) [@ "opaque_to_smt"] let va_codegen_success_Shl64 dst amt = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Shl64 va_b0 va_s0 dst amt = va_reveal_opaque (`%va_code_Shl64) (va_code_Shl64 dst amt); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Shl64) dst amt)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Shl64) dst amt)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Shl64 dst amt va_s0 va_k = let (va_sM, va_f0) = va_lemma_Shl64 (va_code_Shl64 dst amt) va_s0 dst amt in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Shr64 [@ "opaque_to_smt"] let va_code_Shr64 dst amt = (mk_ins (make_instr (I.ins_Shr64) dst amt)) [@ "opaque_to_smt"] let va_codegen_success_Shr64 dst amt = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Shr64 va_b0 va_s0 dst amt = va_reveal_opaque (`%va_code_Shr64) (va_code_Shr64 dst amt); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Shr64) dst amt)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Shr64) dst amt)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Shr64 dst amt va_s0 va_k = let (va_sM, va_f0) = va_lemma_Shr64 (va_code_Shr64 dst amt) va_s0 dst amt in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_AES [@ "opaque_to_smt"] let va_code_Cpuid_AES () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_AES () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_AES va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_AES) (va_code_Cpuid_AES ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_AES va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_AES (va_code_Cpuid_AES ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Sha [@ "opaque_to_smt"] let va_code_Cpuid_Sha () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Sha () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Sha va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Sha) (va_code_Cpuid_Sha ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Sha va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Sha (va_code_Cpuid_Sha ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Adx_Bmi2 [@ "opaque_to_smt"] let va_code_Cpuid_Adx_Bmi2 () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Adx_Bmi2 () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Adx_Bmi2 va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Adx_Bmi2) (va_code_Cpuid_Adx_Bmi2 ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Adx_Bmi2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Adx_Bmi2 (va_code_Cpuid_Adx_Bmi2 ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Avx [@ "opaque_to_smt"] let va_code_Cpuid_Avx () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Avx () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Avx va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Avx) (va_code_Cpuid_Avx ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Avx va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Avx (va_code_Cpuid_Avx ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Avx2 [@ "opaque_to_smt"] let va_code_Cpuid_Avx2 () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Avx2 () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Avx2 va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Avx2) (va_code_Cpuid_Avx2 ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Avx2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Avx2 (va_code_Cpuid_Avx2 ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Sse [@ "opaque_to_smt"] let va_code_Cpuid_Sse () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Sse () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Sse va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Sse) (va_code_Cpuid_Sse ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Sse va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Sse (va_code_Cpuid_Sse ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Movbe [@ "opaque_to_smt"] let va_code_Cpuid_Movbe () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Movbe () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Movbe va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Movbe) (va_code_Cpuid_Movbe ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Movbe va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Movbe (va_code_Cpuid_Movbe ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Rdrand [@ "opaque_to_smt"] let va_code_Cpuid_Rdrand () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Rdrand () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Rdrand va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Rdrand) (va_code_Cpuid_Rdrand ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Rdrand va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Rdrand (va_code_Cpuid_Rdrand ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Avx512 [@ "opaque_to_smt"] let va_code_Cpuid_Avx512 () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Avx512 () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Avx512 va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Avx512) (va_code_Cpuid_Avx512 ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Avx512 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Avx512 (va_code_Cpuid_Avx512 ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Osxsave [@ "opaque_to_smt"] let va_code_Cpuid_Osxsave () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Osxsave () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Osxsave va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Osxsave) (va_code_Cpuid_Osxsave ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Osxsave va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Osxsave (va_code_Cpuid_Osxsave ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Xgetbv_Avx [@ "opaque_to_smt"] let va_code_Xgetbv_Avx () = (mk_ins (make_instr (I.ins_Xgetbv))) [@ "opaque_to_smt"] let va_codegen_success_Xgetbv_Avx () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Xgetbv_Avx va_b0 va_s0 = va_reveal_opaque (`%va_code_Xgetbv_Avx) (va_code_Xgetbv_Avx ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Xgetbv))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Xgetbv))) va_s0 in Vale.X64.CPU_Features_s.xgetbv_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Xgetbv_Avx va_s0 va_k = let (va_sM, va_f0) = va_lemma_Xgetbv_Avx (va_code_Xgetbv_Avx ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Xgetbv_Avx512 [@ "opaque_to_smt"] let va_code_Xgetbv_Avx512 () = (mk_ins (make_instr (I.ins_Xgetbv))) [@ "opaque_to_smt"] let va_codegen_success_Xgetbv_Avx512 () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Xgetbv_Avx512 va_b0 va_s0 = va_reveal_opaque (`%va_code_Xgetbv_Avx512) (va_code_Xgetbv_Avx512 ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Xgetbv))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Xgetbv))) va_s0 in Vale.X64.CPU_Features_s.xgetbv_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Xgetbv_Avx512 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Xgetbv_Avx512 (va_code_Xgetbv_Avx512 ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Nat64Equal [@ "opaque_to_smt"] let va_code_Nat64Equal dst src = (va_Block (va_CCons (va_code_Sub64Wrap (va_coerce_reg_opr64_to_dst_opr64 src) (va_const_opr64 18446744073709551615)) (va_CCons (va_code_Mov64 (va_coerce_reg_opr64_to_dst_opr64 dst) (va_const_opr64 0)) (va_CCons (va_code_Adc64 (va_coerce_reg_opr64_to_dst_opr64 dst) (va_const_opr64 0)) (va_CNil ()))))) [@ "opaque_to_smt"] let va_codegen_success_Nat64Equal dst src = (va_pbool_and (va_codegen_success_Sub64Wrap (va_coerce_reg_opr64_to_dst_opr64 src) (va_const_opr64 18446744073709551615)) (va_pbool_and (va_codegen_success_Mov64 (va_coerce_reg_opr64_to_dst_opr64 dst) (va_const_opr64 0)) (va_pbool_and (va_codegen_success_Adc64 (va_coerce_reg_opr64_to_dst_opr64 dst) (va_const_opr64 0)) (va_ttrue ())))) [@"opaque_to_smt"] let va_lemma_Nat64Equal va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Nat64Equal) (va_code_Nat64Equal dst src); let (va_old_s:va_state) = va_s0 in let (va_b1:va_codes) = va_get_block va_b0 in let (va_s2, va_fc2) = va_lemma_Sub64Wrap (va_hd va_b1) va_s0 (va_coerce_reg_opr64_to_dst_opr64 src) (va_const_opr64 18446744073709551615) in let va_b2 = va_tl va_b1 in let (va_s3, va_fc3) = va_lemma_Mov64 (va_hd va_b2) va_s2 (va_coerce_reg_opr64_to_dst_opr64 dst) (va_const_opr64 0) in let va_b3 = va_tl va_b2 in let (va_s4, va_fc4) = va_lemma_Adc64 (va_hd va_b3) va_s3 (va_coerce_reg_opr64_to_dst_opr64 dst) (va_const_opr64 0) in let va_b4 = va_tl va_b3 in let (va_sM, va_f4) = va_lemma_empty_total va_s4 va_b4 in let va_f3 = va_lemma_merge_total va_b3 va_s3 va_fc4 va_s4 va_f4 va_sM in let va_f2 = va_lemma_merge_total va_b2 va_s2 va_fc3 va_s3 va_f3 va_sM in let va_fM = va_lemma_merge_total va_b1 va_s0 va_fc2 va_s2 va_f2 va_sM in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Nat64Equal dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Nat64Equal (va_code_Nat64Equal dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_reg_opr64 src va_sM (va_update_operand_reg_opr64 dst va_sM va_s0))))); va_lemma_norm_mods ([va_Mod_flags; va_mod_reg_opr64 src; va_mod_reg_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Comment [@ "opaque_to_smt"] let va_code_Comment c = (mk_ins (make_instr_annotate (I.ins_Comment c) (S.AnnotateComment c))) [@ "opaque_to_smt"] let va_codegen_success_Comment c = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Comment va_b0 va_s0 c = va_reveal_opaque (`%va_code_Comment) (va_code_Comment c); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Comment c) (S.AnnotateComment c))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Comment c) (S.AnnotateComment c))) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Comment c va_s0 va_k = let (va_sM, va_f0) = va_lemma_Comment (va_code_Comment c) va_s0 c in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM va_s0)); va_lemma_norm_mods ([]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- LargeComment [@ "opaque_to_smt"] let va_code_LargeComment c = (mk_ins (make_instr_annotate (I.ins_LargeComment c) (S.AnnotateLargeComment c))) [@ "opaque_to_smt"] let va_codegen_success_LargeComment c = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_LargeComment va_b0 va_s0 c = va_reveal_opaque (`%va_code_LargeComment) (va_code_LargeComment c); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr_annotate (I.ins_LargeComment c) (S.AnnotateLargeComment c))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_LargeComment c) (S.AnnotateLargeComment c))) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_LargeComment c va_s0 va_k = let (va_sM, va_f0) = va_lemma_LargeComment (va_code_LargeComment c) va_s0 c in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM va_s0)); va_lemma_norm_mods ([]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- NoNewline [@ "opaque_to_smt"] let va_code_NoNewline () = (mk_ins (make_instr_annotate (I.ins_Space 0) (S.AnnotateSpace 0))) [@ "opaque_to_smt"] let va_codegen_success_NoNewline () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_NoNewline va_b0 va_s0 = va_reveal_opaque (`%va_code_NoNewline) (va_code_NoNewline ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Space 0) (S.AnnotateSpace 0))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Space 0) (S.AnnotateSpace 0))) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_NoNewline va_s0 va_k = let (va_sM, va_f0) = va_lemma_NoNewline (va_code_NoNewline ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM va_s0)); va_lemma_norm_mods ([]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Newline [@ "opaque_to_smt"]
false
true
Vale.X64.InsBasic.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 5, "initial_ifuel": 0, "max_fuel": 5, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_code_Newline : va_dummy:unit -> Tot va_code
[]
Vale.X64.InsBasic.va_code_Newline
{ "file_name": "obj/Vale.X64.InsBasic.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
va_dummy: Prims.unit -> Vale.X64.Decls.va_code
{ "end_col": 71, "end_line": 1131, "start_col": 2, "start_line": 1131 }
Prims.Tot
val va_code_Xgetbv_Avx : va_dummy:unit -> Tot va_code
[ { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "S" }, { "abbrev": true, "full_module": "Vale.X64.Instructions_s", "short_module": "I" }, { "abbrev": false, "full_module": "Vale.X64.Stack_i", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Taint_Semantics", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_code_Xgetbv_Avx () = (mk_ins (make_instr (I.ins_Xgetbv)))
val va_code_Xgetbv_Avx : va_dummy:unit -> Tot va_code let va_code_Xgetbv_Avx () =
false
null
false
(mk_ins (make_instr (I.ins_Xgetbv)))
{ "checked_file": "Vale.X64.InsBasic.fst.checked", "dependencies": [ "Vale.X64.Taint_Semantics.fst.checked", "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.Stack_i.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Instructions_s.fsti.checked", "Vale.X64.InsLemmas.fsti.checked", "Vale.X64.Decls.fst.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Arch.Types.fsti.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": true, "source_file": "Vale.X64.InsBasic.fst" }
[ "total" ]
[ "Prims.unit", "Vale.X64.Taint_Semantics.mk_ins", "Vale.X64.InsLemmas.make_instr", "Prims.Cons", "Vale.X64.Instruction_s.instr_out", "Vale.X64.Instruction_s.out", "Vale.X64.Instruction_s.one64Reg", "Vale.X64.Machine_s.rRax", "Vale.X64.Machine_s.rRdx", "Prims.Nil", "Vale.X64.Instruction_s.instr_operand", "Vale.X64.Machine_s.rRcx", "Vale.X64.Instruction_s.PreserveFlags", "Vale.X64.Instructions_s.ins_Xgetbv", "Vale.X64.Decls.va_code" ]
[]
module Vale.X64.InsBasic open Vale.X64 open Vale.X64.StateLemmas open Vale.X64.InsLemmas open Vale.X64.Taint_Semantics open Vale.X64.CPU_Features_s open Vale.X64.Memory open Vale.X64.Stack_i module I = Vale.X64.Instructions_s module S = Vale.X64.Machine_Semantics_s friend Vale.X64.Decls #reset-options "--initial_fuel 5 --max_fuel 5 --max_ifuel 2 --z3rlimit 20" //-- Mov64 [@ "opaque_to_smt"] let va_code_Mov64 dst src = (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mov64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mov64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mov64) (va_code_Mov64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mov64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mov64 (va_code_Mov64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cmovc64 [@ "opaque_to_smt"] let va_code_Cmovc64 dst src = (mk_ins (make_instr (I.ins_Cmovc64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Cmovc64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cmovc64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Cmovc64) (va_code_Cmovc64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cmovc64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cmovc64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cmovc64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cmovc64 (va_code_Cmovc64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Add64 [@ "opaque_to_smt"] let va_code_Add64 dst src = (mk_ins (make_instr (I.ins_Add64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Add64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Add64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Add64) (va_code_Add64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Add64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Add64 (va_code_Add64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Add64Wrap [@ "opaque_to_smt"] let va_code_Add64Wrap dst src = (mk_ins (make_instr (I.ins_Add64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Add64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Add64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Add64Wrap) (va_code_Add64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Add64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Add64Wrap (va_code_Add64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- AddLea64 [@ "opaque_to_smt"] let va_code_AddLea64 dst src1 src2 = (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) [@ "opaque_to_smt"] let va_codegen_success_AddLea64 dst src1 src2 = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_AddLea64 va_b0 va_s0 dst src1 src2 = va_reveal_opaque (`%va_code_AddLea64) (va_code_AddLea64 dst src1 src2); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_AddLea64 dst src1 src2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_AddLea64 (va_code_AddLea64 dst src1 src2) va_s0 dst src1 src2 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adc64 [@ "opaque_to_smt"] let va_code_Adc64 dst src = (mk_ins (make_instr (I.ins_AddCarry64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adc64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adc64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adc64) (va_code_Adc64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adc64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adc64 (va_code_Adc64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adc64Wrap [@ "opaque_to_smt"] let va_code_Adc64Wrap dst src = (mk_ins (make_instr (I.ins_AddCarry64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adc64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adc64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adc64Wrap) (va_code_Adc64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adc64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adc64Wrap (va_code_Adc64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adcx64Wrap #push-options "--smtencoding.nl_arith_repr boxwrap" [@ "opaque_to_smt"] let va_code_Adcx64Wrap dst src = (mk_ins (make_instr (I.ins_Adcx64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adcx64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adcx64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adcx64Wrap) (va_code_Adcx64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Adcx64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Adcx64) dst src)) va_s0 in assert (Vale.Arch.Types.add_wrap64 (Vale.Arch.Types.add_wrap64 (va_eval_dst_opr64 va_old_s dst) (va_eval_opr64 va_old_s src)) (if Vale.X64.Decls.cf (va_get_flags va_old_s) then 1 else 0) == (va_eval_dst_opr64 va_old_s dst + va_eval_opr64 va_old_s src + (if Vale.X64.Decls.cf (va_get_flags va_old_s) then 1 else 0)) `op_Modulus` pow2_64); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adcx64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adcx64Wrap (va_code_Adcx64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) #pop-options //-- //-- Adox64Wrap [@ "opaque_to_smt"] let va_code_Adox64Wrap dst src = (mk_ins (make_instr (I.ins_Adox64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adox64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adox64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adox64Wrap) (va_code_Adox64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Adox64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Adox64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adox64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adox64Wrap (va_code_Adox64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Sub64 [@ "opaque_to_smt"] let va_code_Sub64 dst src = (mk_ins (make_instr (I.ins_Sub64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Sub64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Sub64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Sub64) (va_code_Sub64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Sub64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Sub64 (va_code_Sub64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Sub64Wrap [@ "opaque_to_smt"] let va_code_Sub64Wrap dst src = (mk_ins (make_instr (I.ins_Sub64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Sub64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Sub64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Sub64Wrap) (va_code_Sub64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Sub64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Sub64Wrap (va_code_Sub64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Sbb64 [@ "opaque_to_smt"] let va_code_Sbb64 dst src = (mk_ins (make_instr (I.ins_Sbb64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Sbb64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Sbb64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Sbb64) (va_code_Sbb64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Sbb64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Sbb64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Sbb64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Sbb64 (va_code_Sbb64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- #restart-solver #push-options "--max_fuel 0 --max_ifuel 0 --using_facts_from 'Prims FStar.UInt'" let lemma_fundamental_div_mod (a b:nat64) : Lemma (pow2_64 * (FStar.UInt.mul_div #64 a b) + (FStar.UInt.mul_mod #64 a b) == a * b) = FStar.Math.Lemmas.lemma_div_mod (a * b) pow2_64 #pop-options //-- lemma_fundamental_div_mod //-- //-- Mul64Wrap [@ "opaque_to_smt"] let va_code_Mul64Wrap src = (mk_ins (make_instr (I.ins_Mul64) src)) [@ "opaque_to_smt"] let va_codegen_success_Mul64Wrap src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mul64Wrap va_b0 va_s0 src = va_reveal_opaque (`%va_code_Mul64Wrap) (va_code_Mul64Wrap src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Mul64) src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Mul64) src)) va_s0 in lemma_fundamental_div_mod (va_get_reg64 rRax va_old_s) (va_eval_opr64 va_old_s src); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mul64Wrap src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mul64Wrap (va_code_Mul64Wrap src) va_s0 src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRax va_sM (va_update_flags va_sM (va_update_ok va_sM va_s0))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRax; va_Mod_flags]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mulx64 [@ "opaque_to_smt"] let va_code_Mulx64 dst_hi dst_lo src = (mk_ins (make_instr (I.ins_Mulx64) dst_hi dst_lo src)) [@ "opaque_to_smt"] let va_codegen_success_Mulx64 dst_hi dst_lo src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mulx64 va_b0 va_s0 dst_hi dst_lo src = va_reveal_opaque (`%va_code_Mulx64) (va_code_Mulx64 dst_hi dst_lo src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Mulx64) dst_hi dst_lo src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Mulx64) dst_hi dst_lo src)) va_s0 in lemma_fundamental_div_mod (va_get_reg64 rRdx va_old_s) (va_eval_opr64 va_old_s src); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mulx64 dst_hi dst_lo src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mulx64 (va_code_Mulx64 dst_hi dst_lo src) va_s0 dst_hi dst_lo src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst_lo va_sM (va_update_operand_dst_opr64 dst_hi va_sM va_s0)))); va_lemma_norm_mods ([va_mod_dst_opr64 dst_lo; va_mod_dst_opr64 dst_hi]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- lemma_mul_nat //-- //-- lemma_mul_in_bounds //-- //-- IMul64 [@ "opaque_to_smt"] let va_code_IMul64 dst src = (mk_ins (make_instr (I.ins_IMul64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_IMul64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_IMul64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_IMul64) (va_code_IMul64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_IMul64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_IMul64) dst src)) va_s0 in lemma_mul_nat (va_eval_dst_opr64 va_old_s dst) (va_eval_opr64 va_old_s src); lemma_mul_in_bounds (va_eval_dst_opr64 va_old_s dst) (va_eval_opr64 va_old_s src); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_IMul64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_IMul64 (va_code_IMul64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Xor64 [@ "opaque_to_smt"] let va_code_Xor64 dst src = (mk_ins (make_instr_annotate (I.ins_Xor64) (S.AnnotateXor64 ()) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Xor64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Xor64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Xor64) (va_code_Xor64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Xor64) (S.AnnotateXor64 ()) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Xor64) (S.AnnotateXor64 ()) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Xor64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Xor64 (va_code_Xor64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- And64 [@ "opaque_to_smt"] let va_code_And64 dst src = (mk_ins (make_instr (I.ins_And64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_And64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_And64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_And64) (va_code_And64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_And64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_And64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_And64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_And64 (va_code_And64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Shl64 [@ "opaque_to_smt"] let va_code_Shl64 dst amt = (mk_ins (make_instr (I.ins_Shl64) dst amt)) [@ "opaque_to_smt"] let va_codegen_success_Shl64 dst amt = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Shl64 va_b0 va_s0 dst amt = va_reveal_opaque (`%va_code_Shl64) (va_code_Shl64 dst amt); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Shl64) dst amt)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Shl64) dst amt)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Shl64 dst amt va_s0 va_k = let (va_sM, va_f0) = va_lemma_Shl64 (va_code_Shl64 dst amt) va_s0 dst amt in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Shr64 [@ "opaque_to_smt"] let va_code_Shr64 dst amt = (mk_ins (make_instr (I.ins_Shr64) dst amt)) [@ "opaque_to_smt"] let va_codegen_success_Shr64 dst amt = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Shr64 va_b0 va_s0 dst amt = va_reveal_opaque (`%va_code_Shr64) (va_code_Shr64 dst amt); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Shr64) dst amt)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Shr64) dst amt)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Shr64 dst amt va_s0 va_k = let (va_sM, va_f0) = va_lemma_Shr64 (va_code_Shr64 dst amt) va_s0 dst amt in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_AES [@ "opaque_to_smt"] let va_code_Cpuid_AES () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_AES () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_AES va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_AES) (va_code_Cpuid_AES ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_AES va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_AES (va_code_Cpuid_AES ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Sha [@ "opaque_to_smt"] let va_code_Cpuid_Sha () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Sha () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Sha va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Sha) (va_code_Cpuid_Sha ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Sha va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Sha (va_code_Cpuid_Sha ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Adx_Bmi2 [@ "opaque_to_smt"] let va_code_Cpuid_Adx_Bmi2 () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Adx_Bmi2 () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Adx_Bmi2 va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Adx_Bmi2) (va_code_Cpuid_Adx_Bmi2 ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Adx_Bmi2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Adx_Bmi2 (va_code_Cpuid_Adx_Bmi2 ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Avx [@ "opaque_to_smt"] let va_code_Cpuid_Avx () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Avx () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Avx va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Avx) (va_code_Cpuid_Avx ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Avx va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Avx (va_code_Cpuid_Avx ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Avx2 [@ "opaque_to_smt"] let va_code_Cpuid_Avx2 () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Avx2 () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Avx2 va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Avx2) (va_code_Cpuid_Avx2 ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Avx2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Avx2 (va_code_Cpuid_Avx2 ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Sse [@ "opaque_to_smt"] let va_code_Cpuid_Sse () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Sse () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Sse va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Sse) (va_code_Cpuid_Sse ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Sse va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Sse (va_code_Cpuid_Sse ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Movbe [@ "opaque_to_smt"] let va_code_Cpuid_Movbe () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Movbe () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Movbe va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Movbe) (va_code_Cpuid_Movbe ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Movbe va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Movbe (va_code_Cpuid_Movbe ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Rdrand [@ "opaque_to_smt"] let va_code_Cpuid_Rdrand () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Rdrand () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Rdrand va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Rdrand) (va_code_Cpuid_Rdrand ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Rdrand va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Rdrand (va_code_Cpuid_Rdrand ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Avx512 [@ "opaque_to_smt"] let va_code_Cpuid_Avx512 () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Avx512 () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Avx512 va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Avx512) (va_code_Cpuid_Avx512 ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Avx512 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Avx512 (va_code_Cpuid_Avx512 ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Osxsave [@ "opaque_to_smt"] let va_code_Cpuid_Osxsave () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Osxsave () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Osxsave va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Osxsave) (va_code_Cpuid_Osxsave ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Osxsave va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Osxsave (va_code_Cpuid_Osxsave ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Xgetbv_Avx [@ "opaque_to_smt"]
false
true
Vale.X64.InsBasic.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 5, "initial_ifuel": 0, "max_fuel": 5, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_code_Xgetbv_Avx : va_dummy:unit -> Tot va_code
[]
Vale.X64.InsBasic.va_code_Xgetbv_Avx
{ "file_name": "obj/Vale.X64.InsBasic.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
va_dummy: Prims.unit -> Vale.X64.Decls.va_code
{ "end_col": 38, "end_line": 929, "start_col": 2, "start_line": 929 }
Prims.Tot
val va_code_Nat64Equal : dst:va_operand_reg_opr64 -> src:va_operand_reg_opr64 -> Tot va_code
[ { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "S" }, { "abbrev": true, "full_module": "Vale.X64.Instructions_s", "short_module": "I" }, { "abbrev": false, "full_module": "Vale.X64.Stack_i", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Taint_Semantics", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_code_Nat64Equal dst src = (va_Block (va_CCons (va_code_Sub64Wrap (va_coerce_reg_opr64_to_dst_opr64 src) (va_const_opr64 18446744073709551615)) (va_CCons (va_code_Mov64 (va_coerce_reg_opr64_to_dst_opr64 dst) (va_const_opr64 0)) (va_CCons (va_code_Adc64 (va_coerce_reg_opr64_to_dst_opr64 dst) (va_const_opr64 0)) (va_CNil ())))))
val va_code_Nat64Equal : dst:va_operand_reg_opr64 -> src:va_operand_reg_opr64 -> Tot va_code let va_code_Nat64Equal dst src =
false
null
false
(va_Block (va_CCons (va_code_Sub64Wrap (va_coerce_reg_opr64_to_dst_opr64 src) (va_const_opr64 18446744073709551615)) (va_CCons (va_code_Mov64 (va_coerce_reg_opr64_to_dst_opr64 dst) (va_const_opr64 0)) (va_CCons (va_code_Adc64 (va_coerce_reg_opr64_to_dst_opr64 dst) (va_const_opr64 0)) (va_CNil ())))))
{ "checked_file": "Vale.X64.InsBasic.fst.checked", "dependencies": [ "Vale.X64.Taint_Semantics.fst.checked", "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.Stack_i.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Instructions_s.fsti.checked", "Vale.X64.InsLemmas.fsti.checked", "Vale.X64.Decls.fst.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Arch.Types.fsti.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": true, "source_file": "Vale.X64.InsBasic.fst" }
[ "total" ]
[ "Vale.X64.Decls.va_operand_reg_opr64", "Vale.X64.Decls.va_Block", "Vale.X64.Decls.va_CCons", "Vale.X64.InsBasic.va_code_Sub64Wrap", "Vale.X64.Decls.va_coerce_reg_opr64_to_dst_opr64", "Vale.X64.Decls.va_const_opr64", "Vale.X64.InsBasic.va_code_Mov64", "Vale.X64.InsBasic.va_code_Adc64", "Vale.X64.Decls.va_CNil", "Vale.X64.Decls.va_code" ]
[]
module Vale.X64.InsBasic open Vale.X64 open Vale.X64.StateLemmas open Vale.X64.InsLemmas open Vale.X64.Taint_Semantics open Vale.X64.CPU_Features_s open Vale.X64.Memory open Vale.X64.Stack_i module I = Vale.X64.Instructions_s module S = Vale.X64.Machine_Semantics_s friend Vale.X64.Decls #reset-options "--initial_fuel 5 --max_fuel 5 --max_ifuel 2 --z3rlimit 20" //-- Mov64 [@ "opaque_to_smt"] let va_code_Mov64 dst src = (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mov64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mov64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mov64) (va_code_Mov64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mov64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mov64 (va_code_Mov64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cmovc64 [@ "opaque_to_smt"] let va_code_Cmovc64 dst src = (mk_ins (make_instr (I.ins_Cmovc64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Cmovc64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cmovc64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Cmovc64) (va_code_Cmovc64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cmovc64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cmovc64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cmovc64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cmovc64 (va_code_Cmovc64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Add64 [@ "opaque_to_smt"] let va_code_Add64 dst src = (mk_ins (make_instr (I.ins_Add64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Add64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Add64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Add64) (va_code_Add64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Add64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Add64 (va_code_Add64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Add64Wrap [@ "opaque_to_smt"] let va_code_Add64Wrap dst src = (mk_ins (make_instr (I.ins_Add64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Add64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Add64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Add64Wrap) (va_code_Add64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Add64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Add64Wrap (va_code_Add64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- AddLea64 [@ "opaque_to_smt"] let va_code_AddLea64 dst src1 src2 = (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) [@ "opaque_to_smt"] let va_codegen_success_AddLea64 dst src1 src2 = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_AddLea64 va_b0 va_s0 dst src1 src2 = va_reveal_opaque (`%va_code_AddLea64) (va_code_AddLea64 dst src1 src2); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_AddLea64 dst src1 src2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_AddLea64 (va_code_AddLea64 dst src1 src2) va_s0 dst src1 src2 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adc64 [@ "opaque_to_smt"] let va_code_Adc64 dst src = (mk_ins (make_instr (I.ins_AddCarry64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adc64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adc64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adc64) (va_code_Adc64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adc64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adc64 (va_code_Adc64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adc64Wrap [@ "opaque_to_smt"] let va_code_Adc64Wrap dst src = (mk_ins (make_instr (I.ins_AddCarry64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adc64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adc64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adc64Wrap) (va_code_Adc64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adc64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adc64Wrap (va_code_Adc64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adcx64Wrap #push-options "--smtencoding.nl_arith_repr boxwrap" [@ "opaque_to_smt"] let va_code_Adcx64Wrap dst src = (mk_ins (make_instr (I.ins_Adcx64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adcx64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adcx64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adcx64Wrap) (va_code_Adcx64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Adcx64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Adcx64) dst src)) va_s0 in assert (Vale.Arch.Types.add_wrap64 (Vale.Arch.Types.add_wrap64 (va_eval_dst_opr64 va_old_s dst) (va_eval_opr64 va_old_s src)) (if Vale.X64.Decls.cf (va_get_flags va_old_s) then 1 else 0) == (va_eval_dst_opr64 va_old_s dst + va_eval_opr64 va_old_s src + (if Vale.X64.Decls.cf (va_get_flags va_old_s) then 1 else 0)) `op_Modulus` pow2_64); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adcx64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adcx64Wrap (va_code_Adcx64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) #pop-options //-- //-- Adox64Wrap [@ "opaque_to_smt"] let va_code_Adox64Wrap dst src = (mk_ins (make_instr (I.ins_Adox64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adox64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adox64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adox64Wrap) (va_code_Adox64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Adox64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Adox64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adox64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adox64Wrap (va_code_Adox64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Sub64 [@ "opaque_to_smt"] let va_code_Sub64 dst src = (mk_ins (make_instr (I.ins_Sub64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Sub64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Sub64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Sub64) (va_code_Sub64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Sub64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Sub64 (va_code_Sub64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Sub64Wrap [@ "opaque_to_smt"] let va_code_Sub64Wrap dst src = (mk_ins (make_instr (I.ins_Sub64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Sub64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Sub64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Sub64Wrap) (va_code_Sub64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Sub64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Sub64Wrap (va_code_Sub64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Sbb64 [@ "opaque_to_smt"] let va_code_Sbb64 dst src = (mk_ins (make_instr (I.ins_Sbb64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Sbb64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Sbb64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Sbb64) (va_code_Sbb64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Sbb64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Sbb64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Sbb64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Sbb64 (va_code_Sbb64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- #restart-solver #push-options "--max_fuel 0 --max_ifuel 0 --using_facts_from 'Prims FStar.UInt'" let lemma_fundamental_div_mod (a b:nat64) : Lemma (pow2_64 * (FStar.UInt.mul_div #64 a b) + (FStar.UInt.mul_mod #64 a b) == a * b) = FStar.Math.Lemmas.lemma_div_mod (a * b) pow2_64 #pop-options //-- lemma_fundamental_div_mod //-- //-- Mul64Wrap [@ "opaque_to_smt"] let va_code_Mul64Wrap src = (mk_ins (make_instr (I.ins_Mul64) src)) [@ "opaque_to_smt"] let va_codegen_success_Mul64Wrap src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mul64Wrap va_b0 va_s0 src = va_reveal_opaque (`%va_code_Mul64Wrap) (va_code_Mul64Wrap src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Mul64) src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Mul64) src)) va_s0 in lemma_fundamental_div_mod (va_get_reg64 rRax va_old_s) (va_eval_opr64 va_old_s src); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mul64Wrap src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mul64Wrap (va_code_Mul64Wrap src) va_s0 src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRax va_sM (va_update_flags va_sM (va_update_ok va_sM va_s0))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRax; va_Mod_flags]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mulx64 [@ "opaque_to_smt"] let va_code_Mulx64 dst_hi dst_lo src = (mk_ins (make_instr (I.ins_Mulx64) dst_hi dst_lo src)) [@ "opaque_to_smt"] let va_codegen_success_Mulx64 dst_hi dst_lo src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mulx64 va_b0 va_s0 dst_hi dst_lo src = va_reveal_opaque (`%va_code_Mulx64) (va_code_Mulx64 dst_hi dst_lo src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Mulx64) dst_hi dst_lo src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Mulx64) dst_hi dst_lo src)) va_s0 in lemma_fundamental_div_mod (va_get_reg64 rRdx va_old_s) (va_eval_opr64 va_old_s src); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mulx64 dst_hi dst_lo src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mulx64 (va_code_Mulx64 dst_hi dst_lo src) va_s0 dst_hi dst_lo src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst_lo va_sM (va_update_operand_dst_opr64 dst_hi va_sM va_s0)))); va_lemma_norm_mods ([va_mod_dst_opr64 dst_lo; va_mod_dst_opr64 dst_hi]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- lemma_mul_nat //-- //-- lemma_mul_in_bounds //-- //-- IMul64 [@ "opaque_to_smt"] let va_code_IMul64 dst src = (mk_ins (make_instr (I.ins_IMul64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_IMul64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_IMul64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_IMul64) (va_code_IMul64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_IMul64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_IMul64) dst src)) va_s0 in lemma_mul_nat (va_eval_dst_opr64 va_old_s dst) (va_eval_opr64 va_old_s src); lemma_mul_in_bounds (va_eval_dst_opr64 va_old_s dst) (va_eval_opr64 va_old_s src); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_IMul64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_IMul64 (va_code_IMul64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Xor64 [@ "opaque_to_smt"] let va_code_Xor64 dst src = (mk_ins (make_instr_annotate (I.ins_Xor64) (S.AnnotateXor64 ()) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Xor64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Xor64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Xor64) (va_code_Xor64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Xor64) (S.AnnotateXor64 ()) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Xor64) (S.AnnotateXor64 ()) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Xor64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Xor64 (va_code_Xor64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- And64 [@ "opaque_to_smt"] let va_code_And64 dst src = (mk_ins (make_instr (I.ins_And64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_And64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_And64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_And64) (va_code_And64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_And64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_And64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_And64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_And64 (va_code_And64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Shl64 [@ "opaque_to_smt"] let va_code_Shl64 dst amt = (mk_ins (make_instr (I.ins_Shl64) dst amt)) [@ "opaque_to_smt"] let va_codegen_success_Shl64 dst amt = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Shl64 va_b0 va_s0 dst amt = va_reveal_opaque (`%va_code_Shl64) (va_code_Shl64 dst amt); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Shl64) dst amt)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Shl64) dst amt)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Shl64 dst amt va_s0 va_k = let (va_sM, va_f0) = va_lemma_Shl64 (va_code_Shl64 dst amt) va_s0 dst amt in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Shr64 [@ "opaque_to_smt"] let va_code_Shr64 dst amt = (mk_ins (make_instr (I.ins_Shr64) dst amt)) [@ "opaque_to_smt"] let va_codegen_success_Shr64 dst amt = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Shr64 va_b0 va_s0 dst amt = va_reveal_opaque (`%va_code_Shr64) (va_code_Shr64 dst amt); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Shr64) dst amt)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Shr64) dst amt)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Shr64 dst amt va_s0 va_k = let (va_sM, va_f0) = va_lemma_Shr64 (va_code_Shr64 dst amt) va_s0 dst amt in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_AES [@ "opaque_to_smt"] let va_code_Cpuid_AES () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_AES () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_AES va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_AES) (va_code_Cpuid_AES ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_AES va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_AES (va_code_Cpuid_AES ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Sha [@ "opaque_to_smt"] let va_code_Cpuid_Sha () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Sha () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Sha va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Sha) (va_code_Cpuid_Sha ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Sha va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Sha (va_code_Cpuid_Sha ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Adx_Bmi2 [@ "opaque_to_smt"] let va_code_Cpuid_Adx_Bmi2 () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Adx_Bmi2 () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Adx_Bmi2 va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Adx_Bmi2) (va_code_Cpuid_Adx_Bmi2 ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Adx_Bmi2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Adx_Bmi2 (va_code_Cpuid_Adx_Bmi2 ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Avx [@ "opaque_to_smt"] let va_code_Cpuid_Avx () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Avx () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Avx va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Avx) (va_code_Cpuid_Avx ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Avx va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Avx (va_code_Cpuid_Avx ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Avx2 [@ "opaque_to_smt"] let va_code_Cpuid_Avx2 () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Avx2 () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Avx2 va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Avx2) (va_code_Cpuid_Avx2 ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Avx2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Avx2 (va_code_Cpuid_Avx2 ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Sse [@ "opaque_to_smt"] let va_code_Cpuid_Sse () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Sse () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Sse va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Sse) (va_code_Cpuid_Sse ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Sse va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Sse (va_code_Cpuid_Sse ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Movbe [@ "opaque_to_smt"] let va_code_Cpuid_Movbe () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Movbe () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Movbe va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Movbe) (va_code_Cpuid_Movbe ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Movbe va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Movbe (va_code_Cpuid_Movbe ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Rdrand [@ "opaque_to_smt"] let va_code_Cpuid_Rdrand () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Rdrand () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Rdrand va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Rdrand) (va_code_Cpuid_Rdrand ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Rdrand va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Rdrand (va_code_Cpuid_Rdrand ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Avx512 [@ "opaque_to_smt"] let va_code_Cpuid_Avx512 () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Avx512 () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Avx512 va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Avx512) (va_code_Cpuid_Avx512 ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Avx512 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Avx512 (va_code_Cpuid_Avx512 ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Osxsave [@ "opaque_to_smt"] let va_code_Cpuid_Osxsave () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Osxsave () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Osxsave va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Osxsave) (va_code_Cpuid_Osxsave ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Osxsave va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Osxsave (va_code_Cpuid_Osxsave ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Xgetbv_Avx [@ "opaque_to_smt"] let va_code_Xgetbv_Avx () = (mk_ins (make_instr (I.ins_Xgetbv))) [@ "opaque_to_smt"] let va_codegen_success_Xgetbv_Avx () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Xgetbv_Avx va_b0 va_s0 = va_reveal_opaque (`%va_code_Xgetbv_Avx) (va_code_Xgetbv_Avx ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Xgetbv))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Xgetbv))) va_s0 in Vale.X64.CPU_Features_s.xgetbv_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Xgetbv_Avx va_s0 va_k = let (va_sM, va_f0) = va_lemma_Xgetbv_Avx (va_code_Xgetbv_Avx ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Xgetbv_Avx512 [@ "opaque_to_smt"] let va_code_Xgetbv_Avx512 () = (mk_ins (make_instr (I.ins_Xgetbv))) [@ "opaque_to_smt"] let va_codegen_success_Xgetbv_Avx512 () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Xgetbv_Avx512 va_b0 va_s0 = va_reveal_opaque (`%va_code_Xgetbv_Avx512) (va_code_Xgetbv_Avx512 ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Xgetbv))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Xgetbv))) va_s0 in Vale.X64.CPU_Features_s.xgetbv_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Xgetbv_Avx512 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Xgetbv_Avx512 (va_code_Xgetbv_Avx512 ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Nat64Equal [@ "opaque_to_smt"]
false
true
Vale.X64.InsBasic.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 5, "initial_ifuel": 0, "max_fuel": 5, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_code_Nat64Equal : dst:va_operand_reg_opr64 -> src:va_operand_reg_opr64 -> Tot va_code
[]
Vale.X64.InsBasic.va_code_Nat64Equal
{ "file_name": "obj/Vale.X64.InsBasic.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
dst: Vale.X64.Decls.va_operand_reg_opr64 -> src: Vale.X64.Decls.va_operand_reg_opr64 -> Vale.X64.Decls.va_code
{ "end_col": 40, "end_line": 994, "start_col": 2, "start_line": 991 }
Prims.Tot
val va_code_Cpuid_Movbe : va_dummy:unit -> Tot va_code
[ { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "S" }, { "abbrev": true, "full_module": "Vale.X64.Instructions_s", "short_module": "I" }, { "abbrev": false, "full_module": "Vale.X64.Stack_i", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Taint_Semantics", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_code_Cpuid_Movbe () = (mk_ins (make_instr (I.ins_Cpuid)))
val va_code_Cpuid_Movbe : va_dummy:unit -> Tot va_code let va_code_Cpuid_Movbe () =
false
null
false
(mk_ins (make_instr (I.ins_Cpuid)))
{ "checked_file": "Vale.X64.InsBasic.fst.checked", "dependencies": [ "Vale.X64.Taint_Semantics.fst.checked", "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.Stack_i.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Instructions_s.fsti.checked", "Vale.X64.InsLemmas.fsti.checked", "Vale.X64.Decls.fst.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Arch.Types.fsti.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": true, "source_file": "Vale.X64.InsBasic.fst" }
[ "total" ]
[ "Prims.unit", "Vale.X64.Taint_Semantics.mk_ins", "Vale.X64.InsLemmas.make_instr", "Prims.Cons", "Vale.X64.Instruction_s.instr_out", "Vale.X64.Instruction_s.inOut", "Vale.X64.Instruction_s.one64Reg", "Vale.X64.Machine_s.rRax", "Vale.X64.Instruction_s.out", "Vale.X64.Machine_s.rRbx", "Vale.X64.Machine_s.rRcx", "Vale.X64.Machine_s.rRdx", "Prims.Nil", "Vale.X64.Instruction_s.instr_operand", "Vale.X64.Instruction_s.PreserveFlags", "Vale.X64.Instructions_s.ins_Cpuid", "Vale.X64.Decls.va_code" ]
[]
module Vale.X64.InsBasic open Vale.X64 open Vale.X64.StateLemmas open Vale.X64.InsLemmas open Vale.X64.Taint_Semantics open Vale.X64.CPU_Features_s open Vale.X64.Memory open Vale.X64.Stack_i module I = Vale.X64.Instructions_s module S = Vale.X64.Machine_Semantics_s friend Vale.X64.Decls #reset-options "--initial_fuel 5 --max_fuel 5 --max_ifuel 2 --z3rlimit 20" //-- Mov64 [@ "opaque_to_smt"] let va_code_Mov64 dst src = (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mov64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mov64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mov64) (va_code_Mov64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mov64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mov64 (va_code_Mov64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cmovc64 [@ "opaque_to_smt"] let va_code_Cmovc64 dst src = (mk_ins (make_instr (I.ins_Cmovc64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Cmovc64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cmovc64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Cmovc64) (va_code_Cmovc64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cmovc64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cmovc64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cmovc64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cmovc64 (va_code_Cmovc64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Add64 [@ "opaque_to_smt"] let va_code_Add64 dst src = (mk_ins (make_instr (I.ins_Add64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Add64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Add64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Add64) (va_code_Add64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Add64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Add64 (va_code_Add64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Add64Wrap [@ "opaque_to_smt"] let va_code_Add64Wrap dst src = (mk_ins (make_instr (I.ins_Add64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Add64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Add64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Add64Wrap) (va_code_Add64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Add64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Add64Wrap (va_code_Add64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- AddLea64 [@ "opaque_to_smt"] let va_code_AddLea64 dst src1 src2 = (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) [@ "opaque_to_smt"] let va_codegen_success_AddLea64 dst src1 src2 = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_AddLea64 va_b0 va_s0 dst src1 src2 = va_reveal_opaque (`%va_code_AddLea64) (va_code_AddLea64 dst src1 src2); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_AddLea64 dst src1 src2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_AddLea64 (va_code_AddLea64 dst src1 src2) va_s0 dst src1 src2 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adc64 [@ "opaque_to_smt"] let va_code_Adc64 dst src = (mk_ins (make_instr (I.ins_AddCarry64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adc64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adc64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adc64) (va_code_Adc64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adc64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adc64 (va_code_Adc64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adc64Wrap [@ "opaque_to_smt"] let va_code_Adc64Wrap dst src = (mk_ins (make_instr (I.ins_AddCarry64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adc64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adc64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adc64Wrap) (va_code_Adc64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adc64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adc64Wrap (va_code_Adc64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adcx64Wrap #push-options "--smtencoding.nl_arith_repr boxwrap" [@ "opaque_to_smt"] let va_code_Adcx64Wrap dst src = (mk_ins (make_instr (I.ins_Adcx64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adcx64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adcx64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adcx64Wrap) (va_code_Adcx64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Adcx64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Adcx64) dst src)) va_s0 in assert (Vale.Arch.Types.add_wrap64 (Vale.Arch.Types.add_wrap64 (va_eval_dst_opr64 va_old_s dst) (va_eval_opr64 va_old_s src)) (if Vale.X64.Decls.cf (va_get_flags va_old_s) then 1 else 0) == (va_eval_dst_opr64 va_old_s dst + va_eval_opr64 va_old_s src + (if Vale.X64.Decls.cf (va_get_flags va_old_s) then 1 else 0)) `op_Modulus` pow2_64); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adcx64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adcx64Wrap (va_code_Adcx64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) #pop-options //-- //-- Adox64Wrap [@ "opaque_to_smt"] let va_code_Adox64Wrap dst src = (mk_ins (make_instr (I.ins_Adox64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adox64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adox64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adox64Wrap) (va_code_Adox64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Adox64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Adox64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adox64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adox64Wrap (va_code_Adox64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Sub64 [@ "opaque_to_smt"] let va_code_Sub64 dst src = (mk_ins (make_instr (I.ins_Sub64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Sub64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Sub64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Sub64) (va_code_Sub64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Sub64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Sub64 (va_code_Sub64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Sub64Wrap [@ "opaque_to_smt"] let va_code_Sub64Wrap dst src = (mk_ins (make_instr (I.ins_Sub64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Sub64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Sub64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Sub64Wrap) (va_code_Sub64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Sub64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Sub64Wrap (va_code_Sub64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Sbb64 [@ "opaque_to_smt"] let va_code_Sbb64 dst src = (mk_ins (make_instr (I.ins_Sbb64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Sbb64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Sbb64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Sbb64) (va_code_Sbb64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Sbb64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Sbb64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Sbb64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Sbb64 (va_code_Sbb64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- #restart-solver #push-options "--max_fuel 0 --max_ifuel 0 --using_facts_from 'Prims FStar.UInt'" let lemma_fundamental_div_mod (a b:nat64) : Lemma (pow2_64 * (FStar.UInt.mul_div #64 a b) + (FStar.UInt.mul_mod #64 a b) == a * b) = FStar.Math.Lemmas.lemma_div_mod (a * b) pow2_64 #pop-options //-- lemma_fundamental_div_mod //-- //-- Mul64Wrap [@ "opaque_to_smt"] let va_code_Mul64Wrap src = (mk_ins (make_instr (I.ins_Mul64) src)) [@ "opaque_to_smt"] let va_codegen_success_Mul64Wrap src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mul64Wrap va_b0 va_s0 src = va_reveal_opaque (`%va_code_Mul64Wrap) (va_code_Mul64Wrap src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Mul64) src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Mul64) src)) va_s0 in lemma_fundamental_div_mod (va_get_reg64 rRax va_old_s) (va_eval_opr64 va_old_s src); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mul64Wrap src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mul64Wrap (va_code_Mul64Wrap src) va_s0 src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRax va_sM (va_update_flags va_sM (va_update_ok va_sM va_s0))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRax; va_Mod_flags]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mulx64 [@ "opaque_to_smt"] let va_code_Mulx64 dst_hi dst_lo src = (mk_ins (make_instr (I.ins_Mulx64) dst_hi dst_lo src)) [@ "opaque_to_smt"] let va_codegen_success_Mulx64 dst_hi dst_lo src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mulx64 va_b0 va_s0 dst_hi dst_lo src = va_reveal_opaque (`%va_code_Mulx64) (va_code_Mulx64 dst_hi dst_lo src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Mulx64) dst_hi dst_lo src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Mulx64) dst_hi dst_lo src)) va_s0 in lemma_fundamental_div_mod (va_get_reg64 rRdx va_old_s) (va_eval_opr64 va_old_s src); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mulx64 dst_hi dst_lo src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mulx64 (va_code_Mulx64 dst_hi dst_lo src) va_s0 dst_hi dst_lo src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst_lo va_sM (va_update_operand_dst_opr64 dst_hi va_sM va_s0)))); va_lemma_norm_mods ([va_mod_dst_opr64 dst_lo; va_mod_dst_opr64 dst_hi]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- lemma_mul_nat //-- //-- lemma_mul_in_bounds //-- //-- IMul64 [@ "opaque_to_smt"] let va_code_IMul64 dst src = (mk_ins (make_instr (I.ins_IMul64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_IMul64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_IMul64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_IMul64) (va_code_IMul64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_IMul64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_IMul64) dst src)) va_s0 in lemma_mul_nat (va_eval_dst_opr64 va_old_s dst) (va_eval_opr64 va_old_s src); lemma_mul_in_bounds (va_eval_dst_opr64 va_old_s dst) (va_eval_opr64 va_old_s src); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_IMul64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_IMul64 (va_code_IMul64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Xor64 [@ "opaque_to_smt"] let va_code_Xor64 dst src = (mk_ins (make_instr_annotate (I.ins_Xor64) (S.AnnotateXor64 ()) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Xor64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Xor64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Xor64) (va_code_Xor64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Xor64) (S.AnnotateXor64 ()) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Xor64) (S.AnnotateXor64 ()) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Xor64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Xor64 (va_code_Xor64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- And64 [@ "opaque_to_smt"] let va_code_And64 dst src = (mk_ins (make_instr (I.ins_And64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_And64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_And64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_And64) (va_code_And64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_And64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_And64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_And64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_And64 (va_code_And64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Shl64 [@ "opaque_to_smt"] let va_code_Shl64 dst amt = (mk_ins (make_instr (I.ins_Shl64) dst amt)) [@ "opaque_to_smt"] let va_codegen_success_Shl64 dst amt = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Shl64 va_b0 va_s0 dst amt = va_reveal_opaque (`%va_code_Shl64) (va_code_Shl64 dst amt); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Shl64) dst amt)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Shl64) dst amt)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Shl64 dst amt va_s0 va_k = let (va_sM, va_f0) = va_lemma_Shl64 (va_code_Shl64 dst amt) va_s0 dst amt in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Shr64 [@ "opaque_to_smt"] let va_code_Shr64 dst amt = (mk_ins (make_instr (I.ins_Shr64) dst amt)) [@ "opaque_to_smt"] let va_codegen_success_Shr64 dst amt = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Shr64 va_b0 va_s0 dst amt = va_reveal_opaque (`%va_code_Shr64) (va_code_Shr64 dst amt); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Shr64) dst amt)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Shr64) dst amt)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Shr64 dst amt va_s0 va_k = let (va_sM, va_f0) = va_lemma_Shr64 (va_code_Shr64 dst amt) va_s0 dst amt in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_AES [@ "opaque_to_smt"] let va_code_Cpuid_AES () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_AES () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_AES va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_AES) (va_code_Cpuid_AES ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_AES va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_AES (va_code_Cpuid_AES ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Sha [@ "opaque_to_smt"] let va_code_Cpuid_Sha () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Sha () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Sha va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Sha) (va_code_Cpuid_Sha ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Sha va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Sha (va_code_Cpuid_Sha ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Adx_Bmi2 [@ "opaque_to_smt"] let va_code_Cpuid_Adx_Bmi2 () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Adx_Bmi2 () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Adx_Bmi2 va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Adx_Bmi2) (va_code_Cpuid_Adx_Bmi2 ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Adx_Bmi2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Adx_Bmi2 (va_code_Cpuid_Adx_Bmi2 ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Avx [@ "opaque_to_smt"] let va_code_Cpuid_Avx () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Avx () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Avx va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Avx) (va_code_Cpuid_Avx ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Avx va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Avx (va_code_Cpuid_Avx ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Avx2 [@ "opaque_to_smt"] let va_code_Cpuid_Avx2 () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Avx2 () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Avx2 va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Avx2) (va_code_Cpuid_Avx2 ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Avx2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Avx2 (va_code_Cpuid_Avx2 ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Sse [@ "opaque_to_smt"] let va_code_Cpuid_Sse () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Sse () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Sse va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Sse) (va_code_Cpuid_Sse ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Sse va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Sse (va_code_Cpuid_Sse ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Movbe [@ "opaque_to_smt"]
false
true
Vale.X64.InsBasic.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 5, "initial_ifuel": 0, "max_fuel": 5, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_code_Cpuid_Movbe : va_dummy:unit -> Tot va_code
[]
Vale.X64.InsBasic.va_code_Cpuid_Movbe
{ "file_name": "obj/Vale.X64.InsBasic.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
va_dummy: Prims.unit -> Vale.X64.Decls.va_code
{ "end_col": 37, "end_line": 801, "start_col": 2, "start_line": 801 }
Prims.Tot
val va_codegen_success_Newline : va_dummy:unit -> Tot va_pbool
[ { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "S" }, { "abbrev": true, "full_module": "Vale.X64.Instructions_s", "short_module": "I" }, { "abbrev": false, "full_module": "Vale.X64.Stack_i", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Taint_Semantics", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_codegen_success_Newline () = (va_ttrue ())
val va_codegen_success_Newline : va_dummy:unit -> Tot va_pbool let va_codegen_success_Newline () =
false
null
false
(va_ttrue ())
{ "checked_file": "Vale.X64.InsBasic.fst.checked", "dependencies": [ "Vale.X64.Taint_Semantics.fst.checked", "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.Stack_i.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Instructions_s.fsti.checked", "Vale.X64.InsLemmas.fsti.checked", "Vale.X64.Decls.fst.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Arch.Types.fsti.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": true, "source_file": "Vale.X64.InsBasic.fst" }
[ "total" ]
[ "Prims.unit", "Vale.X64.Decls.va_ttrue", "Vale.X64.Decls.va_pbool" ]
[]
module Vale.X64.InsBasic open Vale.X64 open Vale.X64.StateLemmas open Vale.X64.InsLemmas open Vale.X64.Taint_Semantics open Vale.X64.CPU_Features_s open Vale.X64.Memory open Vale.X64.Stack_i module I = Vale.X64.Instructions_s module S = Vale.X64.Machine_Semantics_s friend Vale.X64.Decls #reset-options "--initial_fuel 5 --max_fuel 5 --max_ifuel 2 --z3rlimit 20" //-- Mov64 [@ "opaque_to_smt"] let va_code_Mov64 dst src = (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mov64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mov64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mov64) (va_code_Mov64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mov64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mov64 (va_code_Mov64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cmovc64 [@ "opaque_to_smt"] let va_code_Cmovc64 dst src = (mk_ins (make_instr (I.ins_Cmovc64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Cmovc64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cmovc64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Cmovc64) (va_code_Cmovc64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cmovc64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cmovc64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cmovc64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cmovc64 (va_code_Cmovc64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Add64 [@ "opaque_to_smt"] let va_code_Add64 dst src = (mk_ins (make_instr (I.ins_Add64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Add64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Add64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Add64) (va_code_Add64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Add64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Add64 (va_code_Add64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Add64Wrap [@ "opaque_to_smt"] let va_code_Add64Wrap dst src = (mk_ins (make_instr (I.ins_Add64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Add64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Add64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Add64Wrap) (va_code_Add64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Add64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Add64Wrap (va_code_Add64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- AddLea64 [@ "opaque_to_smt"] let va_code_AddLea64 dst src1 src2 = (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) [@ "opaque_to_smt"] let va_codegen_success_AddLea64 dst src1 src2 = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_AddLea64 va_b0 va_s0 dst src1 src2 = va_reveal_opaque (`%va_code_AddLea64) (va_code_AddLea64 dst src1 src2); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_AddLea64 dst src1 src2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_AddLea64 (va_code_AddLea64 dst src1 src2) va_s0 dst src1 src2 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adc64 [@ "opaque_to_smt"] let va_code_Adc64 dst src = (mk_ins (make_instr (I.ins_AddCarry64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adc64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adc64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adc64) (va_code_Adc64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adc64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adc64 (va_code_Adc64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adc64Wrap [@ "opaque_to_smt"] let va_code_Adc64Wrap dst src = (mk_ins (make_instr (I.ins_AddCarry64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adc64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adc64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adc64Wrap) (va_code_Adc64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adc64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adc64Wrap (va_code_Adc64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adcx64Wrap #push-options "--smtencoding.nl_arith_repr boxwrap" [@ "opaque_to_smt"] let va_code_Adcx64Wrap dst src = (mk_ins (make_instr (I.ins_Adcx64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adcx64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adcx64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adcx64Wrap) (va_code_Adcx64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Adcx64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Adcx64) dst src)) va_s0 in assert (Vale.Arch.Types.add_wrap64 (Vale.Arch.Types.add_wrap64 (va_eval_dst_opr64 va_old_s dst) (va_eval_opr64 va_old_s src)) (if Vale.X64.Decls.cf (va_get_flags va_old_s) then 1 else 0) == (va_eval_dst_opr64 va_old_s dst + va_eval_opr64 va_old_s src + (if Vale.X64.Decls.cf (va_get_flags va_old_s) then 1 else 0)) `op_Modulus` pow2_64); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adcx64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adcx64Wrap (va_code_Adcx64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) #pop-options //-- //-- Adox64Wrap [@ "opaque_to_smt"] let va_code_Adox64Wrap dst src = (mk_ins (make_instr (I.ins_Adox64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adox64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adox64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adox64Wrap) (va_code_Adox64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Adox64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Adox64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adox64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adox64Wrap (va_code_Adox64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Sub64 [@ "opaque_to_smt"] let va_code_Sub64 dst src = (mk_ins (make_instr (I.ins_Sub64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Sub64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Sub64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Sub64) (va_code_Sub64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Sub64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Sub64 (va_code_Sub64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Sub64Wrap [@ "opaque_to_smt"] let va_code_Sub64Wrap dst src = (mk_ins (make_instr (I.ins_Sub64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Sub64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Sub64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Sub64Wrap) (va_code_Sub64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Sub64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Sub64Wrap (va_code_Sub64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Sbb64 [@ "opaque_to_smt"] let va_code_Sbb64 dst src = (mk_ins (make_instr (I.ins_Sbb64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Sbb64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Sbb64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Sbb64) (va_code_Sbb64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Sbb64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Sbb64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Sbb64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Sbb64 (va_code_Sbb64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- #restart-solver #push-options "--max_fuel 0 --max_ifuel 0 --using_facts_from 'Prims FStar.UInt'" let lemma_fundamental_div_mod (a b:nat64) : Lemma (pow2_64 * (FStar.UInt.mul_div #64 a b) + (FStar.UInt.mul_mod #64 a b) == a * b) = FStar.Math.Lemmas.lemma_div_mod (a * b) pow2_64 #pop-options //-- lemma_fundamental_div_mod //-- //-- Mul64Wrap [@ "opaque_to_smt"] let va_code_Mul64Wrap src = (mk_ins (make_instr (I.ins_Mul64) src)) [@ "opaque_to_smt"] let va_codegen_success_Mul64Wrap src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mul64Wrap va_b0 va_s0 src = va_reveal_opaque (`%va_code_Mul64Wrap) (va_code_Mul64Wrap src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Mul64) src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Mul64) src)) va_s0 in lemma_fundamental_div_mod (va_get_reg64 rRax va_old_s) (va_eval_opr64 va_old_s src); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mul64Wrap src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mul64Wrap (va_code_Mul64Wrap src) va_s0 src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRax va_sM (va_update_flags va_sM (va_update_ok va_sM va_s0))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRax; va_Mod_flags]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mulx64 [@ "opaque_to_smt"] let va_code_Mulx64 dst_hi dst_lo src = (mk_ins (make_instr (I.ins_Mulx64) dst_hi dst_lo src)) [@ "opaque_to_smt"] let va_codegen_success_Mulx64 dst_hi dst_lo src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mulx64 va_b0 va_s0 dst_hi dst_lo src = va_reveal_opaque (`%va_code_Mulx64) (va_code_Mulx64 dst_hi dst_lo src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Mulx64) dst_hi dst_lo src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Mulx64) dst_hi dst_lo src)) va_s0 in lemma_fundamental_div_mod (va_get_reg64 rRdx va_old_s) (va_eval_opr64 va_old_s src); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mulx64 dst_hi dst_lo src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mulx64 (va_code_Mulx64 dst_hi dst_lo src) va_s0 dst_hi dst_lo src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst_lo va_sM (va_update_operand_dst_opr64 dst_hi va_sM va_s0)))); va_lemma_norm_mods ([va_mod_dst_opr64 dst_lo; va_mod_dst_opr64 dst_hi]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- lemma_mul_nat //-- //-- lemma_mul_in_bounds //-- //-- IMul64 [@ "opaque_to_smt"] let va_code_IMul64 dst src = (mk_ins (make_instr (I.ins_IMul64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_IMul64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_IMul64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_IMul64) (va_code_IMul64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_IMul64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_IMul64) dst src)) va_s0 in lemma_mul_nat (va_eval_dst_opr64 va_old_s dst) (va_eval_opr64 va_old_s src); lemma_mul_in_bounds (va_eval_dst_opr64 va_old_s dst) (va_eval_opr64 va_old_s src); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_IMul64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_IMul64 (va_code_IMul64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Xor64 [@ "opaque_to_smt"] let va_code_Xor64 dst src = (mk_ins (make_instr_annotate (I.ins_Xor64) (S.AnnotateXor64 ()) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Xor64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Xor64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Xor64) (va_code_Xor64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Xor64) (S.AnnotateXor64 ()) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Xor64) (S.AnnotateXor64 ()) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Xor64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Xor64 (va_code_Xor64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- And64 [@ "opaque_to_smt"] let va_code_And64 dst src = (mk_ins (make_instr (I.ins_And64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_And64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_And64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_And64) (va_code_And64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_And64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_And64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_And64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_And64 (va_code_And64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Shl64 [@ "opaque_to_smt"] let va_code_Shl64 dst amt = (mk_ins (make_instr (I.ins_Shl64) dst amt)) [@ "opaque_to_smt"] let va_codegen_success_Shl64 dst amt = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Shl64 va_b0 va_s0 dst amt = va_reveal_opaque (`%va_code_Shl64) (va_code_Shl64 dst amt); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Shl64) dst amt)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Shl64) dst amt)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Shl64 dst amt va_s0 va_k = let (va_sM, va_f0) = va_lemma_Shl64 (va_code_Shl64 dst amt) va_s0 dst amt in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Shr64 [@ "opaque_to_smt"] let va_code_Shr64 dst amt = (mk_ins (make_instr (I.ins_Shr64) dst amt)) [@ "opaque_to_smt"] let va_codegen_success_Shr64 dst amt = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Shr64 va_b0 va_s0 dst amt = va_reveal_opaque (`%va_code_Shr64) (va_code_Shr64 dst amt); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Shr64) dst amt)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Shr64) dst amt)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Shr64 dst amt va_s0 va_k = let (va_sM, va_f0) = va_lemma_Shr64 (va_code_Shr64 dst amt) va_s0 dst amt in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_AES [@ "opaque_to_smt"] let va_code_Cpuid_AES () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_AES () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_AES va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_AES) (va_code_Cpuid_AES ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_AES va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_AES (va_code_Cpuid_AES ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Sha [@ "opaque_to_smt"] let va_code_Cpuid_Sha () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Sha () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Sha va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Sha) (va_code_Cpuid_Sha ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Sha va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Sha (va_code_Cpuid_Sha ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Adx_Bmi2 [@ "opaque_to_smt"] let va_code_Cpuid_Adx_Bmi2 () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Adx_Bmi2 () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Adx_Bmi2 va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Adx_Bmi2) (va_code_Cpuid_Adx_Bmi2 ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Adx_Bmi2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Adx_Bmi2 (va_code_Cpuid_Adx_Bmi2 ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Avx [@ "opaque_to_smt"] let va_code_Cpuid_Avx () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Avx () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Avx va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Avx) (va_code_Cpuid_Avx ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Avx va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Avx (va_code_Cpuid_Avx ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Avx2 [@ "opaque_to_smt"] let va_code_Cpuid_Avx2 () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Avx2 () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Avx2 va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Avx2) (va_code_Cpuid_Avx2 ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Avx2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Avx2 (va_code_Cpuid_Avx2 ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Sse [@ "opaque_to_smt"] let va_code_Cpuid_Sse () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Sse () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Sse va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Sse) (va_code_Cpuid_Sse ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Sse va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Sse (va_code_Cpuid_Sse ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Movbe [@ "opaque_to_smt"] let va_code_Cpuid_Movbe () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Movbe () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Movbe va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Movbe) (va_code_Cpuid_Movbe ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Movbe va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Movbe (va_code_Cpuid_Movbe ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Rdrand [@ "opaque_to_smt"] let va_code_Cpuid_Rdrand () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Rdrand () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Rdrand va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Rdrand) (va_code_Cpuid_Rdrand ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Rdrand va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Rdrand (va_code_Cpuid_Rdrand ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Avx512 [@ "opaque_to_smt"] let va_code_Cpuid_Avx512 () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Avx512 () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Avx512 va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Avx512) (va_code_Cpuid_Avx512 ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Avx512 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Avx512 (va_code_Cpuid_Avx512 ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Osxsave [@ "opaque_to_smt"] let va_code_Cpuid_Osxsave () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Osxsave () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Osxsave va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Osxsave) (va_code_Cpuid_Osxsave ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Osxsave va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Osxsave (va_code_Cpuid_Osxsave ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Xgetbv_Avx [@ "opaque_to_smt"] let va_code_Xgetbv_Avx () = (mk_ins (make_instr (I.ins_Xgetbv))) [@ "opaque_to_smt"] let va_codegen_success_Xgetbv_Avx () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Xgetbv_Avx va_b0 va_s0 = va_reveal_opaque (`%va_code_Xgetbv_Avx) (va_code_Xgetbv_Avx ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Xgetbv))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Xgetbv))) va_s0 in Vale.X64.CPU_Features_s.xgetbv_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Xgetbv_Avx va_s0 va_k = let (va_sM, va_f0) = va_lemma_Xgetbv_Avx (va_code_Xgetbv_Avx ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Xgetbv_Avx512 [@ "opaque_to_smt"] let va_code_Xgetbv_Avx512 () = (mk_ins (make_instr (I.ins_Xgetbv))) [@ "opaque_to_smt"] let va_codegen_success_Xgetbv_Avx512 () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Xgetbv_Avx512 va_b0 va_s0 = va_reveal_opaque (`%va_code_Xgetbv_Avx512) (va_code_Xgetbv_Avx512 ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Xgetbv))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Xgetbv))) va_s0 in Vale.X64.CPU_Features_s.xgetbv_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Xgetbv_Avx512 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Xgetbv_Avx512 (va_code_Xgetbv_Avx512 ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Nat64Equal [@ "opaque_to_smt"] let va_code_Nat64Equal dst src = (va_Block (va_CCons (va_code_Sub64Wrap (va_coerce_reg_opr64_to_dst_opr64 src) (va_const_opr64 18446744073709551615)) (va_CCons (va_code_Mov64 (va_coerce_reg_opr64_to_dst_opr64 dst) (va_const_opr64 0)) (va_CCons (va_code_Adc64 (va_coerce_reg_opr64_to_dst_opr64 dst) (va_const_opr64 0)) (va_CNil ()))))) [@ "opaque_to_smt"] let va_codegen_success_Nat64Equal dst src = (va_pbool_and (va_codegen_success_Sub64Wrap (va_coerce_reg_opr64_to_dst_opr64 src) (va_const_opr64 18446744073709551615)) (va_pbool_and (va_codegen_success_Mov64 (va_coerce_reg_opr64_to_dst_opr64 dst) (va_const_opr64 0)) (va_pbool_and (va_codegen_success_Adc64 (va_coerce_reg_opr64_to_dst_opr64 dst) (va_const_opr64 0)) (va_ttrue ())))) [@"opaque_to_smt"] let va_lemma_Nat64Equal va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Nat64Equal) (va_code_Nat64Equal dst src); let (va_old_s:va_state) = va_s0 in let (va_b1:va_codes) = va_get_block va_b0 in let (va_s2, va_fc2) = va_lemma_Sub64Wrap (va_hd va_b1) va_s0 (va_coerce_reg_opr64_to_dst_opr64 src) (va_const_opr64 18446744073709551615) in let va_b2 = va_tl va_b1 in let (va_s3, va_fc3) = va_lemma_Mov64 (va_hd va_b2) va_s2 (va_coerce_reg_opr64_to_dst_opr64 dst) (va_const_opr64 0) in let va_b3 = va_tl va_b2 in let (va_s4, va_fc4) = va_lemma_Adc64 (va_hd va_b3) va_s3 (va_coerce_reg_opr64_to_dst_opr64 dst) (va_const_opr64 0) in let va_b4 = va_tl va_b3 in let (va_sM, va_f4) = va_lemma_empty_total va_s4 va_b4 in let va_f3 = va_lemma_merge_total va_b3 va_s3 va_fc4 va_s4 va_f4 va_sM in let va_f2 = va_lemma_merge_total va_b2 va_s2 va_fc3 va_s3 va_f3 va_sM in let va_fM = va_lemma_merge_total va_b1 va_s0 va_fc2 va_s2 va_f2 va_sM in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Nat64Equal dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Nat64Equal (va_code_Nat64Equal dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_reg_opr64 src va_sM (va_update_operand_reg_opr64 dst va_sM va_s0))))); va_lemma_norm_mods ([va_Mod_flags; va_mod_reg_opr64 src; va_mod_reg_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Comment [@ "opaque_to_smt"] let va_code_Comment c = (mk_ins (make_instr_annotate (I.ins_Comment c) (S.AnnotateComment c))) [@ "opaque_to_smt"] let va_codegen_success_Comment c = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Comment va_b0 va_s0 c = va_reveal_opaque (`%va_code_Comment) (va_code_Comment c); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Comment c) (S.AnnotateComment c))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Comment c) (S.AnnotateComment c))) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Comment c va_s0 va_k = let (va_sM, va_f0) = va_lemma_Comment (va_code_Comment c) va_s0 c in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM va_s0)); va_lemma_norm_mods ([]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- LargeComment [@ "opaque_to_smt"] let va_code_LargeComment c = (mk_ins (make_instr_annotate (I.ins_LargeComment c) (S.AnnotateLargeComment c))) [@ "opaque_to_smt"] let va_codegen_success_LargeComment c = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_LargeComment va_b0 va_s0 c = va_reveal_opaque (`%va_code_LargeComment) (va_code_LargeComment c); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr_annotate (I.ins_LargeComment c) (S.AnnotateLargeComment c))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_LargeComment c) (S.AnnotateLargeComment c))) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_LargeComment c va_s0 va_k = let (va_sM, va_f0) = va_lemma_LargeComment (va_code_LargeComment c) va_s0 c in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM va_s0)); va_lemma_norm_mods ([]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- NoNewline [@ "opaque_to_smt"] let va_code_NoNewline () = (mk_ins (make_instr_annotate (I.ins_Space 0) (S.AnnotateSpace 0))) [@ "opaque_to_smt"] let va_codegen_success_NoNewline () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_NoNewline va_b0 va_s0 = va_reveal_opaque (`%va_code_NoNewline) (va_code_NoNewline ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Space 0) (S.AnnotateSpace 0))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Space 0) (S.AnnotateSpace 0))) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_NoNewline va_s0 va_k = let (va_sM, va_f0) = va_lemma_NoNewline (va_code_NoNewline ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM va_s0)); va_lemma_norm_mods ([]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Newline [@ "opaque_to_smt"] let va_code_Newline () = (mk_ins (make_instr_annotate (I.ins_Newline) (S.AnnotateNewline ()))) [@ "opaque_to_smt"]
false
true
Vale.X64.InsBasic.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 5, "initial_ifuel": 0, "max_fuel": 5, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_codegen_success_Newline : va_dummy:unit -> Tot va_pbool
[]
Vale.X64.InsBasic.va_codegen_success_Newline
{ "file_name": "obj/Vale.X64.InsBasic.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
va_dummy: Prims.unit -> Vale.X64.Decls.va_pbool
{ "end_col": 15, "end_line": 1135, "start_col": 2, "start_line": 1135 }
Prims.Tot
val va_code_Prefetchnta : v:va_operand_opr64 -> Tot va_code
[ { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "S" }, { "abbrev": true, "full_module": "Vale.X64.Instructions_s", "short_module": "I" }, { "abbrev": false, "full_module": "Vale.X64.Stack_i", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Taint_Semantics", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_code_Prefetchnta v = (mk_ins (make_instr_annotate (I.ins_Prefetchnta) (S.AnnotatePrefetchnta ()) v))
val va_code_Prefetchnta : v:va_operand_opr64 -> Tot va_code let va_code_Prefetchnta v =
false
null
false
(mk_ins (make_instr_annotate (I.ins_Prefetchnta) (S.AnnotatePrefetchnta ()) v))
{ "checked_file": "Vale.X64.InsBasic.fst.checked", "dependencies": [ "Vale.X64.Taint_Semantics.fst.checked", "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.Stack_i.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Instructions_s.fsti.checked", "Vale.X64.InsLemmas.fsti.checked", "Vale.X64.Decls.fst.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Arch.Types.fsti.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": true, "source_file": "Vale.X64.InsBasic.fst" }
[ "total" ]
[ "Vale.X64.Decls.va_operand_opr64", "Vale.X64.Taint_Semantics.mk_ins", "Vale.X64.InsLemmas.make_instr_annotate", "Prims.Nil", "Vale.X64.Instruction_s.instr_out", "Prims.Cons", "Vale.X64.Instruction_s.instr_operand", "Vale.X64.Instruction_s.op64", "Vale.X64.Instruction_s.PreserveFlags", "Vale.X64.Instructions_s.ins_Prefetchnta", "Vale.X64.Machine_Semantics_s.AnnotatePrefetchnta", "Vale.X64.Instruction_s.InstrTypeRecord", "Vale.X64.Decls.va_code" ]
[]
module Vale.X64.InsBasic open Vale.X64 open Vale.X64.StateLemmas open Vale.X64.InsLemmas open Vale.X64.Taint_Semantics open Vale.X64.CPU_Features_s open Vale.X64.Memory open Vale.X64.Stack_i module I = Vale.X64.Instructions_s module S = Vale.X64.Machine_Semantics_s friend Vale.X64.Decls #reset-options "--initial_fuel 5 --max_fuel 5 --max_ifuel 2 --z3rlimit 20" //-- Mov64 [@ "opaque_to_smt"] let va_code_Mov64 dst src = (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Mov64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mov64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Mov64) (va_code_Mov64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mov64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mov64 (va_code_Mov64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cmovc64 [@ "opaque_to_smt"] let va_code_Cmovc64 dst src = (mk_ins (make_instr (I.ins_Cmovc64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Cmovc64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cmovc64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Cmovc64) (va_code_Cmovc64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cmovc64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cmovc64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cmovc64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cmovc64 (va_code_Cmovc64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Add64 [@ "opaque_to_smt"] let va_code_Add64 dst src = (mk_ins (make_instr (I.ins_Add64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Add64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Add64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Add64) (va_code_Add64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Add64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Add64 (va_code_Add64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Add64Wrap [@ "opaque_to_smt"] let va_code_Add64Wrap dst src = (mk_ins (make_instr (I.ins_Add64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Add64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Add64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Add64Wrap) (va_code_Add64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Add64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Add64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Add64Wrap (va_code_Add64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- AddLea64 [@ "opaque_to_smt"] let va_code_AddLea64 dst src1 src2 = (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) [@ "opaque_to_smt"] let va_codegen_success_AddLea64 dst src1 src2 = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_AddLea64 va_b0 va_s0 dst src1 src2 = va_reveal_opaque (`%va_code_AddLea64) (va_code_AddLea64 dst src1 src2); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddLea64) dst src1 src2)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_AddLea64 dst src1 src2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_AddLea64 (va_code_AddLea64 dst src1 src2) va_s0 dst src1 src2 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0))); va_lemma_norm_mods ([va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adc64 [@ "opaque_to_smt"] let va_code_Adc64 dst src = (mk_ins (make_instr (I.ins_AddCarry64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adc64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adc64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adc64) (va_code_Adc64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adc64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adc64 (va_code_Adc64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adc64Wrap [@ "opaque_to_smt"] let va_code_Adc64Wrap dst src = (mk_ins (make_instr (I.ins_AddCarry64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adc64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adc64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adc64Wrap) (va_code_Adc64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_AddCarry64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adc64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adc64Wrap (va_code_Adc64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Adcx64Wrap #push-options "--smtencoding.nl_arith_repr boxwrap" [@ "opaque_to_smt"] let va_code_Adcx64Wrap dst src = (mk_ins (make_instr (I.ins_Adcx64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adcx64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adcx64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adcx64Wrap) (va_code_Adcx64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Adcx64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Adcx64) dst src)) va_s0 in assert (Vale.Arch.Types.add_wrap64 (Vale.Arch.Types.add_wrap64 (va_eval_dst_opr64 va_old_s dst) (va_eval_opr64 va_old_s src)) (if Vale.X64.Decls.cf (va_get_flags va_old_s) then 1 else 0) == (va_eval_dst_opr64 va_old_s dst + va_eval_opr64 va_old_s src + (if Vale.X64.Decls.cf (va_get_flags va_old_s) then 1 else 0)) `op_Modulus` pow2_64); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adcx64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adcx64Wrap (va_code_Adcx64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) #pop-options //-- //-- Adox64Wrap [@ "opaque_to_smt"] let va_code_Adox64Wrap dst src = (mk_ins (make_instr (I.ins_Adox64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Adox64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Adox64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Adox64Wrap) (va_code_Adox64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Adox64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Adox64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Adox64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Adox64Wrap (va_code_Adox64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Sub64 [@ "opaque_to_smt"] let va_code_Sub64 dst src = (mk_ins (make_instr (I.ins_Sub64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Sub64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Sub64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Sub64) (va_code_Sub64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Sub64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Sub64 (va_code_Sub64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Sub64Wrap [@ "opaque_to_smt"] let va_code_Sub64Wrap dst src = (mk_ins (make_instr (I.ins_Sub64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Sub64Wrap dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Sub64Wrap va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Sub64Wrap) (va_code_Sub64Wrap dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Sub64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Sub64Wrap dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Sub64Wrap (va_code_Sub64Wrap dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Sbb64 [@ "opaque_to_smt"] let va_code_Sbb64 dst src = (mk_ins (make_instr (I.ins_Sbb64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Sbb64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Sbb64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Sbb64) (va_code_Sbb64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Sbb64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Sbb64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Sbb64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Sbb64 (va_code_Sbb64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- #restart-solver #push-options "--max_fuel 0 --max_ifuel 0 --using_facts_from 'Prims FStar.UInt'" let lemma_fundamental_div_mod (a b:nat64) : Lemma (pow2_64 * (FStar.UInt.mul_div #64 a b) + (FStar.UInt.mul_mod #64 a b) == a * b) = FStar.Math.Lemmas.lemma_div_mod (a * b) pow2_64 #pop-options //-- lemma_fundamental_div_mod //-- //-- Mul64Wrap [@ "opaque_to_smt"] let va_code_Mul64Wrap src = (mk_ins (make_instr (I.ins_Mul64) src)) [@ "opaque_to_smt"] let va_codegen_success_Mul64Wrap src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mul64Wrap va_b0 va_s0 src = va_reveal_opaque (`%va_code_Mul64Wrap) (va_code_Mul64Wrap src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Mul64) src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Mul64) src)) va_s0 in lemma_fundamental_div_mod (va_get_reg64 rRax va_old_s) (va_eval_opr64 va_old_s src); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mul64Wrap src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mul64Wrap (va_code_Mul64Wrap src) va_s0 src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRax va_sM (va_update_flags va_sM (va_update_ok va_sM va_s0))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRax; va_Mod_flags]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Mulx64 [@ "opaque_to_smt"] let va_code_Mulx64 dst_hi dst_lo src = (mk_ins (make_instr (I.ins_Mulx64) dst_hi dst_lo src)) [@ "opaque_to_smt"] let va_codegen_success_Mulx64 dst_hi dst_lo src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Mulx64 va_b0 va_s0 dst_hi dst_lo src = va_reveal_opaque (`%va_code_Mulx64) (va_code_Mulx64 dst_hi dst_lo src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Mulx64) dst_hi dst_lo src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Mulx64) dst_hi dst_lo src)) va_s0 in lemma_fundamental_div_mod (va_get_reg64 rRdx va_old_s) (va_eval_opr64 va_old_s src); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Mulx64 dst_hi dst_lo src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Mulx64 (va_code_Mulx64 dst_hi dst_lo src) va_s0 dst_hi dst_lo src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst_lo va_sM (va_update_operand_dst_opr64 dst_hi va_sM va_s0)))); va_lemma_norm_mods ([va_mod_dst_opr64 dst_lo; va_mod_dst_opr64 dst_hi]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- lemma_mul_nat //-- //-- lemma_mul_in_bounds //-- //-- IMul64 [@ "opaque_to_smt"] let va_code_IMul64 dst src = (mk_ins (make_instr (I.ins_IMul64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_IMul64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_IMul64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_IMul64) (va_code_IMul64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_IMul64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_IMul64) dst src)) va_s0 in lemma_mul_nat (va_eval_dst_opr64 va_old_s dst) (va_eval_opr64 va_old_s src); lemma_mul_in_bounds (va_eval_dst_opr64 va_old_s dst) (va_eval_opr64 va_old_s src); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_IMul64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_IMul64 (va_code_IMul64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Xor64 [@ "opaque_to_smt"] let va_code_Xor64 dst src = (mk_ins (make_instr_annotate (I.ins_Xor64) (S.AnnotateXor64 ()) dst src)) [@ "opaque_to_smt"] let va_codegen_success_Xor64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Xor64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Xor64) (va_code_Xor64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Xor64) (S.AnnotateXor64 ()) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Xor64) (S.AnnotateXor64 ()) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Xor64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Xor64 (va_code_Xor64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- And64 [@ "opaque_to_smt"] let va_code_And64 dst src = (mk_ins (make_instr (I.ins_And64) dst src)) [@ "opaque_to_smt"] let va_codegen_success_And64 dst src = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_And64 va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_And64) (va_code_And64 dst src); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_And64) dst src)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_And64) dst src)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_And64 dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_And64 (va_code_And64 dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Shl64 [@ "opaque_to_smt"] let va_code_Shl64 dst amt = (mk_ins (make_instr (I.ins_Shl64) dst amt)) [@ "opaque_to_smt"] let va_codegen_success_Shl64 dst amt = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Shl64 va_b0 va_s0 dst amt = va_reveal_opaque (`%va_code_Shl64) (va_code_Shl64 dst amt); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Shl64) dst amt)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Shl64) dst amt)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Shl64 dst amt va_s0 va_k = let (va_sM, va_f0) = va_lemma_Shl64 (va_code_Shl64 dst amt) va_s0 dst amt in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Shr64 [@ "opaque_to_smt"] let va_code_Shr64 dst amt = (mk_ins (make_instr (I.ins_Shr64) dst amt)) [@ "opaque_to_smt"] let va_codegen_success_Shr64 dst amt = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Shr64 va_b0 va_s0 dst amt = va_reveal_opaque (`%va_code_Shr64) (va_code_Shr64 dst amt); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Shr64) dst amt)) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Shr64) dst amt)) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Shr64 dst amt va_s0 va_k = let (va_sM, va_f0) = va_lemma_Shr64 (va_code_Shr64 dst amt) va_s0 dst amt in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_dst_opr64 dst va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_flags; va_mod_dst_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_AES [@ "opaque_to_smt"] let va_code_Cpuid_AES () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_AES () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_AES va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_AES) (va_code_Cpuid_AES ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_AES va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_AES (va_code_Cpuid_AES ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Sha [@ "opaque_to_smt"] let va_code_Cpuid_Sha () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Sha () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Sha va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Sha) (va_code_Cpuid_Sha ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Sha va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Sha (va_code_Cpuid_Sha ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Adx_Bmi2 [@ "opaque_to_smt"] let va_code_Cpuid_Adx_Bmi2 () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Adx_Bmi2 () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Adx_Bmi2 va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Adx_Bmi2) (va_code_Cpuid_Adx_Bmi2 ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Adx_Bmi2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Adx_Bmi2 (va_code_Cpuid_Adx_Bmi2 ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Avx [@ "opaque_to_smt"] let va_code_Cpuid_Avx () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Avx () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Avx va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Avx) (va_code_Cpuid_Avx ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Avx va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Avx (va_code_Cpuid_Avx ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Avx2 [@ "opaque_to_smt"] let va_code_Cpuid_Avx2 () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Avx2 () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Avx2 va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Avx2) (va_code_Cpuid_Avx2 ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Avx2 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Avx2 (va_code_Cpuid_Avx2 ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Sse [@ "opaque_to_smt"] let va_code_Cpuid_Sse () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Sse () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Sse va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Sse) (va_code_Cpuid_Sse ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Sse va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Sse (va_code_Cpuid_Sse ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Movbe [@ "opaque_to_smt"] let va_code_Cpuid_Movbe () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Movbe () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Movbe va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Movbe) (va_code_Cpuid_Movbe ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Movbe va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Movbe (va_code_Cpuid_Movbe ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Rdrand [@ "opaque_to_smt"] let va_code_Cpuid_Rdrand () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Rdrand () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Rdrand va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Rdrand) (va_code_Cpuid_Rdrand ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Rdrand va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Rdrand (va_code_Cpuid_Rdrand ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Avx512 [@ "opaque_to_smt"] let va_code_Cpuid_Avx512 () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Avx512 () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Avx512 va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Avx512) (va_code_Cpuid_Avx512 ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Avx512 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Avx512 (va_code_Cpuid_Avx512 ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Cpuid_Osxsave [@ "opaque_to_smt"] let va_code_Cpuid_Osxsave () = (mk_ins (make_instr (I.ins_Cpuid))) [@ "opaque_to_smt"] let va_codegen_success_Cpuid_Osxsave () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Cpuid_Osxsave va_b0 va_s0 = va_reveal_opaque (`%va_code_Cpuid_Osxsave) (va_code_Cpuid_Osxsave ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Cpuid))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Cpuid))) va_s0 in Vale.X64.CPU_Features_s.cpuid_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Cpuid_Osxsave va_s0 va_k = let (va_sM, va_f0) = va_lemma_Cpuid_Osxsave (va_code_Cpuid_Osxsave ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Xgetbv_Avx [@ "opaque_to_smt"] let va_code_Xgetbv_Avx () = (mk_ins (make_instr (I.ins_Xgetbv))) [@ "opaque_to_smt"] let va_codegen_success_Xgetbv_Avx () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Xgetbv_Avx va_b0 va_s0 = va_reveal_opaque (`%va_code_Xgetbv_Avx) (va_code_Xgetbv_Avx ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Xgetbv))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Xgetbv))) va_s0 in Vale.X64.CPU_Features_s.xgetbv_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Xgetbv_Avx va_s0 va_k = let (va_sM, va_f0) = va_lemma_Xgetbv_Avx (va_code_Xgetbv_Avx ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Xgetbv_Avx512 [@ "opaque_to_smt"] let va_code_Xgetbv_Avx512 () = (mk_ins (make_instr (I.ins_Xgetbv))) [@ "opaque_to_smt"] let va_codegen_success_Xgetbv_Avx512 () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Xgetbv_Avx512 va_b0 va_s0 = va_reveal_opaque (`%va_code_Xgetbv_Avx512) (va_code_Xgetbv_Avx512 ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr (I.ins_Xgetbv))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr (I.ins_Xgetbv))) va_s0 in Vale.X64.CPU_Features_s.xgetbv_features (); (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Xgetbv_Avx512 va_s0 va_k = let (va_sM, va_f0) = va_lemma_Xgetbv_Avx512 (va_code_Xgetbv_Avx512 ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))); va_lemma_norm_mods ([va_Mod_reg64 rRdx; va_Mod_reg64 rRax]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Nat64Equal [@ "opaque_to_smt"] let va_code_Nat64Equal dst src = (va_Block (va_CCons (va_code_Sub64Wrap (va_coerce_reg_opr64_to_dst_opr64 src) (va_const_opr64 18446744073709551615)) (va_CCons (va_code_Mov64 (va_coerce_reg_opr64_to_dst_opr64 dst) (va_const_opr64 0)) (va_CCons (va_code_Adc64 (va_coerce_reg_opr64_to_dst_opr64 dst) (va_const_opr64 0)) (va_CNil ()))))) [@ "opaque_to_smt"] let va_codegen_success_Nat64Equal dst src = (va_pbool_and (va_codegen_success_Sub64Wrap (va_coerce_reg_opr64_to_dst_opr64 src) (va_const_opr64 18446744073709551615)) (va_pbool_and (va_codegen_success_Mov64 (va_coerce_reg_opr64_to_dst_opr64 dst) (va_const_opr64 0)) (va_pbool_and (va_codegen_success_Adc64 (va_coerce_reg_opr64_to_dst_opr64 dst) (va_const_opr64 0)) (va_ttrue ())))) [@"opaque_to_smt"] let va_lemma_Nat64Equal va_b0 va_s0 dst src = va_reveal_opaque (`%va_code_Nat64Equal) (va_code_Nat64Equal dst src); let (va_old_s:va_state) = va_s0 in let (va_b1:va_codes) = va_get_block va_b0 in let (va_s2, va_fc2) = va_lemma_Sub64Wrap (va_hd va_b1) va_s0 (va_coerce_reg_opr64_to_dst_opr64 src) (va_const_opr64 18446744073709551615) in let va_b2 = va_tl va_b1 in let (va_s3, va_fc3) = va_lemma_Mov64 (va_hd va_b2) va_s2 (va_coerce_reg_opr64_to_dst_opr64 dst) (va_const_opr64 0) in let va_b3 = va_tl va_b2 in let (va_s4, va_fc4) = va_lemma_Adc64 (va_hd va_b3) va_s3 (va_coerce_reg_opr64_to_dst_opr64 dst) (va_const_opr64 0) in let va_b4 = va_tl va_b3 in let (va_sM, va_f4) = va_lemma_empty_total va_s4 va_b4 in let va_f3 = va_lemma_merge_total va_b3 va_s3 va_fc4 va_s4 va_f4 va_sM in let va_f2 = va_lemma_merge_total va_b2 va_s2 va_fc3 va_s3 va_f3 va_sM in let va_fM = va_lemma_merge_total va_b1 va_s0 va_fc2 va_s2 va_f2 va_sM in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Nat64Equal dst src va_s0 va_k = let (va_sM, va_f0) = va_lemma_Nat64Equal (va_code_Nat64Equal dst src) va_s0 dst src in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_ok va_sM (va_update_operand_reg_opr64 src va_sM (va_update_operand_reg_opr64 dst va_sM va_s0))))); va_lemma_norm_mods ([va_Mod_flags; va_mod_reg_opr64 src; va_mod_reg_opr64 dst]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Comment [@ "opaque_to_smt"] let va_code_Comment c = (mk_ins (make_instr_annotate (I.ins_Comment c) (S.AnnotateComment c))) [@ "opaque_to_smt"] let va_codegen_success_Comment c = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Comment va_b0 va_s0 c = va_reveal_opaque (`%va_code_Comment) (va_code_Comment c); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Comment c) (S.AnnotateComment c))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Comment c) (S.AnnotateComment c))) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Comment c va_s0 va_k = let (va_sM, va_f0) = va_lemma_Comment (va_code_Comment c) va_s0 c in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM va_s0)); va_lemma_norm_mods ([]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- LargeComment [@ "opaque_to_smt"] let va_code_LargeComment c = (mk_ins (make_instr_annotate (I.ins_LargeComment c) (S.AnnotateLargeComment c))) [@ "opaque_to_smt"] let va_codegen_success_LargeComment c = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_LargeComment va_b0 va_s0 c = va_reveal_opaque (`%va_code_LargeComment) (va_code_LargeComment c); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr_annotate (I.ins_LargeComment c) (S.AnnotateLargeComment c))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_LargeComment c) (S.AnnotateLargeComment c))) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_LargeComment c va_s0 va_k = let (va_sM, va_f0) = va_lemma_LargeComment (va_code_LargeComment c) va_s0 c in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM va_s0)); va_lemma_norm_mods ([]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- NoNewline [@ "opaque_to_smt"] let va_code_NoNewline () = (mk_ins (make_instr_annotate (I.ins_Space 0) (S.AnnotateSpace 0))) [@ "opaque_to_smt"] let va_codegen_success_NoNewline () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_NoNewline va_b0 va_s0 = va_reveal_opaque (`%va_code_NoNewline) (va_code_NoNewline ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Space 0) (S.AnnotateSpace 0))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Space 0) (S.AnnotateSpace 0))) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_NoNewline va_s0 va_k = let (va_sM, va_f0) = va_lemma_NoNewline (va_code_NoNewline ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM va_s0)); va_lemma_norm_mods ([]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Newline [@ "opaque_to_smt"] let va_code_Newline () = (mk_ins (make_instr_annotate (I.ins_Newline) (S.AnnotateNewline ()))) [@ "opaque_to_smt"] let va_codegen_success_Newline () = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Newline va_b0 va_s0 = va_reveal_opaque (`%va_code_Newline) (va_code_Newline ()); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Newline) (S.AnnotateNewline ()))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Newline) (S.AnnotateNewline ()))) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Newline va_s0 va_k = let (va_sM, va_f0) = va_lemma_Newline (va_code_Newline ()) va_s0 in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM va_s0)); va_lemma_norm_mods ([]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Space [@ "opaque_to_smt"] let va_code_Space n = (mk_ins (make_instr_annotate (I.ins_Space n) (S.AnnotateSpace n))) [@ "opaque_to_smt"] let va_codegen_success_Space n = (va_ttrue ()) [@"opaque_to_smt"] let va_lemma_Space va_b0 va_s0 n = va_reveal_opaque (`%va_code_Space) (va_code_Space n); let (va_old_s:va_state) = va_s0 in va_ins_lemma (mk_ins (make_instr_annotate (I.ins_Space n) (S.AnnotateSpace n))) va_s0; let (va_sM, va_fM) = va_eval_ins (mk_ins (make_instr_annotate (I.ins_Space n) (S.AnnotateSpace n))) va_s0 in (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_Space n va_s0 va_k = let (va_sM, va_f0) = va_lemma_Space (va_code_Space n) va_s0 n in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_ok va_sM va_s0)); va_lemma_norm_mods ([]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- Prefetchnta [@ "opaque_to_smt"]
false
true
Vale.X64.InsBasic.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 5, "initial_ifuel": 0, "max_fuel": 5, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_code_Prefetchnta : v:va_operand_opr64 -> Tot va_code
[]
Vale.X64.InsBasic.va_code_Prefetchnta
{ "file_name": "obj/Vale.X64.InsBasic.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
v: Vale.X64.Decls.va_operand_opr64 -> Vale.X64.Decls.va_code
{ "end_col": 81, "end_line": 1191, "start_col": 2, "start_line": 1191 }
Prims.Tot
val va_codegen_success_Mov64 : dst:va_operand_dst_opr64 -> src:va_operand_opr64 -> Tot va_pbool
[ { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "S" }, { "abbrev": true, "full_module": "Vale.X64.Instructions_s", "short_module": "I" }, { "abbrev": false, "full_module": "Vale.X64.Stack_i", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Taint_Semantics", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_codegen_success_Mov64 dst src = (va_ttrue ())
val va_codegen_success_Mov64 : dst:va_operand_dst_opr64 -> src:va_operand_opr64 -> Tot va_pbool let va_codegen_success_Mov64 dst src =
false
null
false
(va_ttrue ())
{ "checked_file": "Vale.X64.InsBasic.fst.checked", "dependencies": [ "Vale.X64.Taint_Semantics.fst.checked", "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.Stack_i.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Instructions_s.fsti.checked", "Vale.X64.InsLemmas.fsti.checked", "Vale.X64.Decls.fst.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Arch.Types.fsti.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": true, "source_file": "Vale.X64.InsBasic.fst" }
[ "total" ]
[ "Vale.X64.Decls.va_operand_dst_opr64", "Vale.X64.Decls.va_operand_opr64", "Vale.X64.Decls.va_ttrue", "Vale.X64.Decls.va_pbool" ]
[]
module Vale.X64.InsBasic open Vale.X64 open Vale.X64.StateLemmas open Vale.X64.InsLemmas open Vale.X64.Taint_Semantics open Vale.X64.CPU_Features_s open Vale.X64.Memory open Vale.X64.Stack_i module I = Vale.X64.Instructions_s module S = Vale.X64.Machine_Semantics_s friend Vale.X64.Decls #reset-options "--initial_fuel 5 --max_fuel 5 --max_ifuel 2 --z3rlimit 20" //-- Mov64 [@ "opaque_to_smt"] let va_code_Mov64 dst src = (mk_ins (make_instr_annotate (I.ins_Mov64) (S.AnnotateMov64 ()) dst src)) [@ "opaque_to_smt"]
false
true
Vale.X64.InsBasic.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 5, "initial_ifuel": 0, "max_fuel": 5, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_codegen_success_Mov64 : dst:va_operand_dst_opr64 -> src:va_operand_opr64 -> Tot va_pbool
[]
Vale.X64.InsBasic.va_codegen_success_Mov64
{ "file_name": "obj/Vale.X64.InsBasic.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
dst: Vale.X64.Decls.va_operand_dst_opr64 -> src: Vale.X64.Decls.va_operand_opr64 -> Vale.X64.Decls.va_pbool
{ "end_col": 15, "end_line": 21, "start_col": 2, "start_line": 21 }