effect
stringclasses
48 values
original_source_type
stringlengths
0
23k
opens_and_abbrevs
listlengths
2
92
isa_cross_project_example
bool
1 class
source_definition
stringlengths
9
57.9k
partial_definition
stringlengths
7
23.3k
is_div
bool
2 classes
is_type
null
is_proof
bool
2 classes
completed_definiton
stringlengths
1
250k
dependencies
dict
effect_flags
sequencelengths
0
2
ideal_premises
sequencelengths
0
236
mutual_with
sequencelengths
0
11
file_context
stringlengths
0
407k
interleaved
bool
1 class
is_simply_typed
bool
2 classes
file_name
stringlengths
5
48
vconfig
dict
is_simple_lemma
null
source_type
stringlengths
10
23k
proof_features
sequencelengths
0
1
name
stringlengths
8
95
source
dict
verbose_type
stringlengths
1
7.42k
source_range
dict
Prims.Tot
val va_quick_Keyhash_init (win: bool) (alg: algorithm) (key: (seq nat32)) (roundkeys_b hkeys_b: buffer128) : (va_quickCode unit (va_code_Keyhash_init win alg))
[ { "abbrev": false, "full_module": "Vale.AES.OptPublic", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GF128_Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.PolyOps", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES256_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_quick_Keyhash_init (win:bool) (alg:algorithm) (key:(seq nat32)) (roundkeys_b:buffer128) (hkeys_b:buffer128) : (va_quickCode unit (va_code_Keyhash_init win alg)) = (va_QProc (va_code_Keyhash_init win alg) ([va_Mod_flags; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_mem_layout; va_Mod_mem_heaplet 1; va_Mod_reg64 rR12; va_Mod_reg64 rR8; va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRax; va_Mod_mem]) (va_wp_Keyhash_init win alg key roundkeys_b hkeys_b) (va_wpProof_Keyhash_init win alg key roundkeys_b hkeys_b))
val va_quick_Keyhash_init (win: bool) (alg: algorithm) (key: (seq nat32)) (roundkeys_b hkeys_b: buffer128) : (va_quickCode unit (va_code_Keyhash_init win alg)) let va_quick_Keyhash_init (win: bool) (alg: algorithm) (key: (seq nat32)) (roundkeys_b hkeys_b: buffer128) : (va_quickCode unit (va_code_Keyhash_init win alg)) =
false
null
false
(va_QProc (va_code_Keyhash_init win alg) ([ va_Mod_flags; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_mem_layout; va_Mod_mem_heaplet 1; va_Mod_reg64 rR12; va_Mod_reg64 rR8; va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRax; va_Mod_mem ]) (va_wp_Keyhash_init win alg key roundkeys_b hkeys_b) (va_wpProof_Keyhash_init win alg key roundkeys_b hkeys_b))
{ "checked_file": "Vale.AES.X64.GF128_Init.fsti.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Math.Poly2_s.fsti.checked", "Vale.Math.Poly2.Lemmas.fsti.checked", "Vale.Math.Poly2.Bits_s.fsti.checked", "Vale.Math.Poly2.Bits.fsti.checked", "Vale.Math.Poly2.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Arch.Types.fsti.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.AES.X64.PolyOps.fsti.checked", "Vale.AES.X64.GF128_Mul.fsti.checked", "Vale.AES.X64.AES.fsti.checked", "Vale.AES.OptPublic.fsti.checked", "Vale.AES.GHash.fsti.checked", "Vale.AES.GF128_s.fsti.checked", "Vale.AES.GF128.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES_common_s.fst.checked", "Vale.AES.AES256_helpers.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.X64.GF128_Init.fsti" }
[ "total" ]
[ "Prims.bool", "Vale.AES.AES_common_s.algorithm", "FStar.Seq.Base.seq", "Vale.X64.Memory.nat32", "Vale.X64.Memory.buffer128", "Vale.X64.QuickCode.va_QProc", "Prims.unit", "Vale.AES.X64.GF128_Init.va_code_Keyhash_init", "Prims.Cons", "Vale.X64.QuickCode.mod_t", "Vale.X64.QuickCode.va_Mod_flags", "Vale.X64.QuickCode.va_Mod_xmm", "Vale.X64.QuickCode.va_Mod_mem_layout", "Vale.X64.QuickCode.va_Mod_mem_heaplet", "Vale.X64.QuickCode.va_Mod_reg64", "Vale.X64.Machine_s.rR12", "Vale.X64.Machine_s.rR8", "Vale.X64.Machine_s.rRdx", "Vale.X64.Machine_s.rRcx", "Vale.X64.Machine_s.rRax", "Vale.X64.QuickCode.va_Mod_mem", "Prims.Nil", "Vale.AES.X64.GF128_Init.va_wp_Keyhash_init", "Vale.AES.X64.GF128_Init.va_wpProof_Keyhash_init", "Vale.X64.QuickCode.va_quickCode" ]
[]
module Vale.AES.X64.GF128_Init open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Types_s open FStar.Seq open Vale.Arch.Types open Vale.Arch.HeapImpl open Vale.Math.Poly2_s open Vale.Math.Poly2 open Vale.Math.Poly2.Bits_s open Vale.Math.Poly2.Bits open Vale.Math.Poly2.Lemmas open Vale.AES.GF128_s open Vale.AES.GF128 open Vale.AES.GHash open Vale.AES.AES_s open Vale.AES.AES256_helpers open Vale.AES.X64.AES open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.X64.CPU_Features_s open Vale.AES.X64.PolyOps open Vale.AES.X64.GF128_Mul open Vale.AES.GHash open Vale.AES.OptPublic //-- Keyhash_init val va_code_Keyhash_init : win:bool -> alg:algorithm -> Tot va_code val va_codegen_success_Keyhash_init : win:bool -> alg:algorithm -> Tot va_pbool let va_req_Keyhash_init (va_b0:va_code) (va_s0:va_state) (win:bool) (alg:algorithm) (key:(seq nat32)) (roundkeys_b:buffer128) (hkeys_b:buffer128) : prop = (va_require_total va_b0 (va_code_Keyhash_init win alg) va_s0 /\ va_get_ok va_s0 /\ (let (round_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (hkey_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in Vale.X64.Memory.is_initial_heap (va_get_mem_layout va_s0) (va_get_mem va_s0) /\ (aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\ sse_enabled) /\ (alg = AES_128 \/ alg = AES_256) /\ Vale.X64.Decls.buffers_disjoint128 roundkeys_b hkeys_b /\ Vale.AES.AES_s.is_aes_key_LE alg key /\ Vale.X64.Decls.buffer128_as_seq (va_get_mem va_s0) roundkeys_b == Vale.AES.AES_s.key_to_round_keys_LE alg key /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) round_ptr roundkeys_b (Vale.AES.AES_common_s.nr alg + 1) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) hkey_ptr hkeys_b 8 (va_get_mem_layout va_s0) Secret)) let va_ens_Keyhash_init (va_b0:va_code) (va_s0:va_state) (win:bool) (alg:algorithm) (key:(seq nat32)) (roundkeys_b:buffer128) (hkeys_b:buffer128) (va_sM:va_state) (va_fM:va_fuel) : prop = (va_req_Keyhash_init va_b0 va_s0 win alg key roundkeys_b hkeys_b /\ va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (round_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (hkey_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in Vale.X64.Decls.modifies_buffer128 hkeys_b (va_get_mem va_s0) (va_get_mem va_sM) /\ Vale.AES.OptPublic.hkeys_reqs_pub (Vale.X64.Decls.s128 (va_get_mem va_sM) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0))) /\ va_get_xmm 6 va_sM == va_get_xmm 6 va_s0 /\ va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_mem_layout va_sM (va_update_mem_heaplet 1 va_sM (va_update_reg64 rR12 va_sM (va_update_reg64 rR8 va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0)))))))))))))))))) val va_lemma_Keyhash_init : va_b0:va_code -> va_s0:va_state -> win:bool -> alg:algorithm -> key:(seq nat32) -> roundkeys_b:buffer128 -> hkeys_b:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Keyhash_init win alg) va_s0 /\ va_get_ok va_s0 /\ (let (round_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (hkey_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in Vale.X64.Memory.is_initial_heap (va_get_mem_layout va_s0) (va_get_mem va_s0) /\ (aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\ sse_enabled) /\ (alg = AES_128 \/ alg = AES_256) /\ Vale.X64.Decls.buffers_disjoint128 roundkeys_b hkeys_b /\ Vale.AES.AES_s.is_aes_key_LE alg key /\ Vale.X64.Decls.buffer128_as_seq (va_get_mem va_s0) roundkeys_b == Vale.AES.AES_s.key_to_round_keys_LE alg key /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) round_ptr roundkeys_b (Vale.AES.AES_common_s.nr alg + 1) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) hkey_ptr hkeys_b 8 (va_get_mem_layout va_s0) Secret))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (round_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (hkey_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in Vale.X64.Decls.modifies_buffer128 hkeys_b (va_get_mem va_s0) (va_get_mem va_sM) /\ Vale.AES.OptPublic.hkeys_reqs_pub (Vale.X64.Decls.s128 (va_get_mem va_sM) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0))) /\ va_get_xmm 6 va_sM == va_get_xmm 6 va_s0 /\ va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_mem_layout va_sM (va_update_mem_heaplet 1 va_sM (va_update_reg64 rR12 va_sM (va_update_reg64 rR8 va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0))))))))))))))))))) [@ va_qattr] let va_wp_Keyhash_init (win:bool) (alg:algorithm) (key:(seq nat32)) (roundkeys_b:buffer128) (hkeys_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (let (round_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (hkey_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in Vale.X64.Memory.is_initial_heap (va_get_mem_layout va_s0) (va_get_mem va_s0) /\ (aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\ sse_enabled) /\ (alg = AES_128 \/ alg = AES_256) /\ Vale.X64.Decls.buffers_disjoint128 roundkeys_b hkeys_b /\ Vale.AES.AES_s.is_aes_key_LE alg key /\ Vale.X64.Decls.buffer128_as_seq (va_get_mem va_s0) roundkeys_b == Vale.AES.AES_s.key_to_round_keys_LE alg key /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) round_ptr roundkeys_b (Vale.AES.AES_common_s.nr alg + 1) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) hkey_ptr hkeys_b 8 (va_get_mem_layout va_s0) Secret) /\ (forall (va_x_mem:vale_heap) (va_x_rax:nat64) (va_x_rcx:nat64) (va_x_rdx:nat64) (va_x_r8:nat64) (va_x_r12:nat64) (va_x_heap1:vale_heap) (va_x_memLayout:vale_heap_layout) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_mem_layout va_x_memLayout (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_reg64 rR12 va_x_r12 (va_upd_reg64 rR8 va_x_r8 (va_upd_reg64 rRdx va_x_rdx (va_upd_reg64 rRcx va_x_rcx (va_upd_reg64 rRax va_x_rax (va_upd_mem va_x_mem va_s0))))))))))))))) in va_get_ok va_sM /\ (let (round_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (hkey_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in Vale.X64.Decls.modifies_buffer128 hkeys_b (va_get_mem va_s0) (va_get_mem va_sM) /\ Vale.AES.OptPublic.hkeys_reqs_pub (Vale.X64.Decls.s128 (va_get_mem va_sM) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0))) /\ va_get_xmm 6 va_sM == va_get_xmm 6 va_s0 /\ va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) ==> va_k va_sM (()))) val va_wpProof_Keyhash_init : win:bool -> alg:algorithm -> key:(seq nat32) -> roundkeys_b:buffer128 -> hkeys_b:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Keyhash_init win alg key roundkeys_b hkeys_b va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Keyhash_init win alg) ([va_Mod_flags; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_mem_layout; va_Mod_mem_heaplet 1; va_Mod_reg64 rR12; va_Mod_reg64 rR8; va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRax; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Keyhash_init (win:bool) (alg:algorithm) (key:(seq nat32)) (roundkeys_b:buffer128)
false
false
Vale.AES.X64.GF128_Init.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_quick_Keyhash_init (win: bool) (alg: algorithm) (key: (seq nat32)) (roundkeys_b hkeys_b: buffer128) : (va_quickCode unit (va_code_Keyhash_init win alg))
[]
Vale.AES.X64.GF128_Init.va_quick_Keyhash_init
{ "file_name": "obj/Vale.AES.X64.GF128_Init.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
win: Prims.bool -> alg: Vale.AES.AES_common_s.algorithm -> key: FStar.Seq.Base.seq Vale.X64.Memory.nat32 -> roundkeys_b: Vale.X64.Memory.buffer128 -> hkeys_b: Vale.X64.Memory.buffer128 -> Vale.X64.QuickCode.va_quickCode Prims.unit (Vale.AES.X64.GF128_Init.va_code_Keyhash_init win alg)
{ "end_col": 62, "end_line": 146, "start_col": 2, "start_line": 142 }
Prims.Tot
val va_wp_Keyhash_init (win: bool) (alg: algorithm) (key: (seq nat32)) (roundkeys_b hkeys_b: buffer128) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0
[ { "abbrev": false, "full_module": "Vale.AES.OptPublic", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GF128_Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.PolyOps", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES256_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_wp_Keyhash_init (win:bool) (alg:algorithm) (key:(seq nat32)) (roundkeys_b:buffer128) (hkeys_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (let (round_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (hkey_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in Vale.X64.Memory.is_initial_heap (va_get_mem_layout va_s0) (va_get_mem va_s0) /\ (aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\ sse_enabled) /\ (alg = AES_128 \/ alg = AES_256) /\ Vale.X64.Decls.buffers_disjoint128 roundkeys_b hkeys_b /\ Vale.AES.AES_s.is_aes_key_LE alg key /\ Vale.X64.Decls.buffer128_as_seq (va_get_mem va_s0) roundkeys_b == Vale.AES.AES_s.key_to_round_keys_LE alg key /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) round_ptr roundkeys_b (Vale.AES.AES_common_s.nr alg + 1) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) hkey_ptr hkeys_b 8 (va_get_mem_layout va_s0) Secret) /\ (forall (va_x_mem:vale_heap) (va_x_rax:nat64) (va_x_rcx:nat64) (va_x_rdx:nat64) (va_x_r8:nat64) (va_x_r12:nat64) (va_x_heap1:vale_heap) (va_x_memLayout:vale_heap_layout) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_mem_layout va_x_memLayout (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_reg64 rR12 va_x_r12 (va_upd_reg64 rR8 va_x_r8 (va_upd_reg64 rRdx va_x_rdx (va_upd_reg64 rRcx va_x_rcx (va_upd_reg64 rRax va_x_rax (va_upd_mem va_x_mem va_s0))))))))))))))) in va_get_ok va_sM /\ (let (round_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (hkey_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in Vale.X64.Decls.modifies_buffer128 hkeys_b (va_get_mem va_s0) (va_get_mem va_sM) /\ Vale.AES.OptPublic.hkeys_reqs_pub (Vale.X64.Decls.s128 (va_get_mem va_sM) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0))) /\ va_get_xmm 6 va_sM == va_get_xmm 6 va_s0 /\ va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) ==> va_k va_sM (())))
val va_wp_Keyhash_init (win: bool) (alg: algorithm) (key: (seq nat32)) (roundkeys_b hkeys_b: buffer128) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0 let va_wp_Keyhash_init (win: bool) (alg: algorithm) (key: (seq nat32)) (roundkeys_b hkeys_b: buffer128) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0 =
false
null
false
(va_get_ok va_s0 /\ (let round_ptr:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let hkey_ptr:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in Vale.X64.Memory.is_initial_heap (va_get_mem_layout va_s0) (va_get_mem va_s0) /\ (aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\ sse_enabled) /\ (alg = AES_128 \/ alg = AES_256) /\ Vale.X64.Decls.buffers_disjoint128 roundkeys_b hkeys_b /\ Vale.AES.AES_s.is_aes_key_LE alg key /\ Vale.X64.Decls.buffer128_as_seq (va_get_mem va_s0) roundkeys_b == Vale.AES.AES_s.key_to_round_keys_LE alg key /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) round_ptr roundkeys_b (Vale.AES.AES_common_s.nr alg + 1) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) hkey_ptr hkeys_b 8 (va_get_mem_layout va_s0) Secret) /\ (forall (va_x_mem: vale_heap) (va_x_rax: nat64) (va_x_rcx: nat64) (va_x_rdx: nat64) (va_x_r8: nat64) (va_x_r12: nat64) (va_x_heap1: vale_heap) (va_x_memLayout: vale_heap_layout) (va_x_xmm0: quad32) (va_x_xmm1: quad32) (va_x_xmm2: quad32) (va_x_xmm3: quad32) (va_x_xmm4: quad32) (va_x_xmm5: quad32) (va_x_xmm6: quad32) (va_x_efl: Vale.X64.Flags.t). let va_sM = va_upd_flags va_x_efl (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_mem_layout va_x_memLayout (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_reg64 rR12 va_x_r12 (va_upd_reg64 rR8 va_x_r8 (va_upd_reg64 rRdx va_x_rdx (va_upd_reg64 rRcx va_x_rcx (va_upd_reg64 rRax va_x_rax (va_upd_mem va_x_mem va_s0)))))))) ))))))) in va_get_ok va_sM /\ (let round_ptr:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let hkey_ptr:(va_int_range 0 18446744073709551615) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in Vale.X64.Decls.modifies_buffer128 hkeys_b (va_get_mem va_s0) (va_get_mem va_sM) /\ Vale.AES.OptPublic.hkeys_reqs_pub (Vale.X64.Decls.s128 (va_get_mem va_sM) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0))) /\ va_get_xmm 6 va_sM == va_get_xmm 6 va_s0 /\ va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) ==> va_k va_sM (())))
{ "checked_file": "Vale.AES.X64.GF128_Init.fsti.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Math.Poly2_s.fsti.checked", "Vale.Math.Poly2.Lemmas.fsti.checked", "Vale.Math.Poly2.Bits_s.fsti.checked", "Vale.Math.Poly2.Bits.fsti.checked", "Vale.Math.Poly2.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Arch.Types.fsti.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.AES.X64.PolyOps.fsti.checked", "Vale.AES.X64.GF128_Mul.fsti.checked", "Vale.AES.X64.AES.fsti.checked", "Vale.AES.OptPublic.fsti.checked", "Vale.AES.GHash.fsti.checked", "Vale.AES.GF128_s.fsti.checked", "Vale.AES.GF128.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES_common_s.fst.checked", "Vale.AES.AES256_helpers.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.X64.GF128_Init.fsti" }
[ "total" ]
[ "Prims.bool", "Vale.AES.AES_common_s.algorithm", "FStar.Seq.Base.seq", "Vale.X64.Memory.nat32", "Vale.X64.Memory.buffer128", "Vale.X64.Decls.va_state", "Prims.unit", "Prims.l_and", "Prims.b2t", "Vale.X64.Decls.va_get_ok", "Vale.X64.Memory.is_initial_heap", "Vale.X64.Decls.va_get_mem_layout", "Vale.X64.Decls.va_get_mem", "Vale.X64.CPU_Features_s.aesni_enabled", "Vale.X64.CPU_Features_s.pclmulqdq_enabled", "Vale.X64.CPU_Features_s.avx_enabled", "Vale.X64.CPU_Features_s.sse_enabled", "Prims.l_or", "Prims.op_Equality", "Vale.AES.AES_common_s.AES_128", "Vale.AES.AES_common_s.AES_256", "Vale.X64.Decls.buffers_disjoint128", "Vale.AES.AES_s.is_aes_key_LE", "Prims.eq2", "Vale.Def.Types_s.quad32", "Vale.X64.Decls.buffer128_as_seq", "Vale.AES.AES_s.key_to_round_keys_LE", "Vale.X64.Decls.validSrcAddrs128", "Prims.op_Addition", "Vale.AES.AES_common_s.nr", "Vale.Arch.HeapTypes_s.Secret", "Vale.X64.Decls.validDstAddrs128", "Vale.X64.Decls.va_int_range", "Vale.X64.Decls.va_if", "Vale.Def.Types_s.nat64", "Vale.X64.Decls.va_get_reg64", "Vale.X64.Machine_s.rRdx", "Prims.l_not", "Vale.X64.Machine_s.rRsi", "Vale.X64.Machine_s.rRcx", "Vale.X64.Machine_s.rRdi", "Prims.l_Forall", "Vale.X64.InsBasic.vale_heap", "Vale.X64.Memory.nat64", "Vale.Arch.HeapImpl.vale_heap_layout", "Vale.X64.Decls.quad32", "Vale.X64.Flags.t", "Prims.l_imp", "Vale.X64.Decls.modifies_buffer128", "Vale.AES.OptPublic.hkeys_reqs_pub", "Vale.X64.Decls.s128", "Vale.Def.Types_s.reverse_bytes_quad32", "Vale.AES.AES_s.aes_encrypt_LE", "Vale.Def.Words_s.Mkfour", "Vale.Def.Types_s.nat32", "Vale.X64.Decls.va_get_xmm", "Vale.X64.Machine_s.rR12", "Vale.X64.State.vale_state", "Vale.X64.Decls.va_upd_flags", "Vale.X64.Decls.va_upd_xmm", "Vale.X64.Decls.va_upd_mem_layout", "Vale.X64.Decls.va_upd_mem_heaplet", "Vale.X64.Decls.va_upd_reg64", "Vale.X64.Machine_s.rR8", "Vale.X64.Machine_s.rRax", "Vale.X64.Decls.va_upd_mem" ]
[]
module Vale.AES.X64.GF128_Init open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Types_s open FStar.Seq open Vale.Arch.Types open Vale.Arch.HeapImpl open Vale.Math.Poly2_s open Vale.Math.Poly2 open Vale.Math.Poly2.Bits_s open Vale.Math.Poly2.Bits open Vale.Math.Poly2.Lemmas open Vale.AES.GF128_s open Vale.AES.GF128 open Vale.AES.GHash open Vale.AES.AES_s open Vale.AES.AES256_helpers open Vale.AES.X64.AES open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.X64.CPU_Features_s open Vale.AES.X64.PolyOps open Vale.AES.X64.GF128_Mul open Vale.AES.GHash open Vale.AES.OptPublic //-- Keyhash_init val va_code_Keyhash_init : win:bool -> alg:algorithm -> Tot va_code val va_codegen_success_Keyhash_init : win:bool -> alg:algorithm -> Tot va_pbool let va_req_Keyhash_init (va_b0:va_code) (va_s0:va_state) (win:bool) (alg:algorithm) (key:(seq nat32)) (roundkeys_b:buffer128) (hkeys_b:buffer128) : prop = (va_require_total va_b0 (va_code_Keyhash_init win alg) va_s0 /\ va_get_ok va_s0 /\ (let (round_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (hkey_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in Vale.X64.Memory.is_initial_heap (va_get_mem_layout va_s0) (va_get_mem va_s0) /\ (aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\ sse_enabled) /\ (alg = AES_128 \/ alg = AES_256) /\ Vale.X64.Decls.buffers_disjoint128 roundkeys_b hkeys_b /\ Vale.AES.AES_s.is_aes_key_LE alg key /\ Vale.X64.Decls.buffer128_as_seq (va_get_mem va_s0) roundkeys_b == Vale.AES.AES_s.key_to_round_keys_LE alg key /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) round_ptr roundkeys_b (Vale.AES.AES_common_s.nr alg + 1) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) hkey_ptr hkeys_b 8 (va_get_mem_layout va_s0) Secret)) let va_ens_Keyhash_init (va_b0:va_code) (va_s0:va_state) (win:bool) (alg:algorithm) (key:(seq nat32)) (roundkeys_b:buffer128) (hkeys_b:buffer128) (va_sM:va_state) (va_fM:va_fuel) : prop = (va_req_Keyhash_init va_b0 va_s0 win alg key roundkeys_b hkeys_b /\ va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (round_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (hkey_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in Vale.X64.Decls.modifies_buffer128 hkeys_b (va_get_mem va_s0) (va_get_mem va_sM) /\ Vale.AES.OptPublic.hkeys_reqs_pub (Vale.X64.Decls.s128 (va_get_mem va_sM) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0))) /\ va_get_xmm 6 va_sM == va_get_xmm 6 va_s0 /\ va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_mem_layout va_sM (va_update_mem_heaplet 1 va_sM (va_update_reg64 rR12 va_sM (va_update_reg64 rR8 va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0)))))))))))))))))) val va_lemma_Keyhash_init : va_b0:va_code -> va_s0:va_state -> win:bool -> alg:algorithm -> key:(seq nat32) -> roundkeys_b:buffer128 -> hkeys_b:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Keyhash_init win alg) va_s0 /\ va_get_ok va_s0 /\ (let (round_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (hkey_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in Vale.X64.Memory.is_initial_heap (va_get_mem_layout va_s0) (va_get_mem va_s0) /\ (aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\ sse_enabled) /\ (alg = AES_128 \/ alg = AES_256) /\ Vale.X64.Decls.buffers_disjoint128 roundkeys_b hkeys_b /\ Vale.AES.AES_s.is_aes_key_LE alg key /\ Vale.X64.Decls.buffer128_as_seq (va_get_mem va_s0) roundkeys_b == Vale.AES.AES_s.key_to_round_keys_LE alg key /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0) round_ptr roundkeys_b (Vale.AES.AES_common_s.nr alg + 1) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) hkey_ptr hkeys_b 8 (va_get_mem_layout va_s0) Secret))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let (round_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (hkey_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in Vale.X64.Decls.modifies_buffer128 hkeys_b (va_get_mem va_s0) (va_get_mem va_sM) /\ Vale.AES.OptPublic.hkeys_reqs_pub (Vale.X64.Decls.s128 (va_get_mem va_sM) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0))) /\ va_get_xmm 6 va_sM == va_get_xmm 6 va_s0 /\ va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_mem_layout va_sM (va_update_mem_heaplet 1 va_sM (va_update_reg64 rR12 va_sM (va_update_reg64 rR8 va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0))))))))))))))))))) [@ va_qattr] let va_wp_Keyhash_init (win:bool) (alg:algorithm) (key:(seq nat32)) (roundkeys_b:buffer128)
false
true
Vale.AES.X64.GF128_Init.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_wp_Keyhash_init (win: bool) (alg: algorithm) (key: (seq nat32)) (roundkeys_b hkeys_b: buffer128) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0
[]
Vale.AES.X64.GF128_Init.va_wp_Keyhash_init
{ "file_name": "obj/Vale.AES.X64.GF128_Init.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
win: Prims.bool -> alg: Vale.AES.AES_common_s.algorithm -> key: FStar.Seq.Base.seq Vale.X64.Memory.nat32 -> roundkeys_b: Vale.X64.Memory.buffer128 -> hkeys_b: Vale.X64.Memory.buffer128 -> va_s0: Vale.X64.Decls.va_state -> va_k: (_: Vale.X64.Decls.va_state -> _: Prims.unit -> Type0) -> Type0
{ "end_col": 88, "end_line": 129, "start_col": 2, "start_line": 102 }
Prims.Tot
val bn_mul1_add_in_place_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> i:size_nat{i < aLen} -> c:limb t -> limb t & limb t
[ { "abbrev": false, "full_module": "Hacl.Spec.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_mul1_add_in_place_f #t #aLen a l acc i c = mul_wide_add2 a.[i] l c acc.[i]
val bn_mul1_add_in_place_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> i:size_nat{i < aLen} -> c:limb t -> limb t & limb t let bn_mul1_add_in_place_f #t #aLen a l acc i c =
false
null
false
mul_wide_add2 a.[ i ] l c acc.[ i ]
{ "checked_file": "Hacl.Spec.Bignum.Multiplication.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Multiplication.fst" }
[ "total" ]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Definitions.limb", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.Bignum.Base.mul_wide_add2", "Lib.Sequence.op_String_Access", "FStar.Pervasives.Native.tuple2" ]
[]
module Hacl.Spec.Bignum.Multiplication open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.LoopCombinators open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum.Base open Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_mul1_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> i:size_nat{i < aLen} -> c:limb t -> limb t & limb t // carry & out let bn_mul1_f #t #aLen a l i c = mul_wide_add a.[i] l c val bn_mul1: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> limb t & lbignum t aLen let bn_mul1 #t #aLen a l = generate_elems aLen aLen (bn_mul1_f a l) (uint #t 0) val bn_mul1_add_in_place_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> i:size_nat{i < aLen} -> c:limb t -> limb t & limb t // carry & out
false
false
Hacl.Spec.Bignum.Multiplication.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_mul1_add_in_place_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> i:size_nat{i < aLen} -> c:limb t -> limb t & limb t
[]
Hacl.Spec.Bignum.Multiplication.bn_mul1_add_in_place_f
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Multiplication.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> l: Hacl.Spec.Bignum.Definitions.limb t -> acc: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> i: Lib.IntTypes.size_nat{i < aLen} -> c: Hacl.Spec.Bignum.Definitions.limb t -> Hacl.Spec.Bignum.Definitions.limb t * Hacl.Spec.Bignum.Definitions.limb t
{ "end_col": 33, "end_line": 51, "start_col": 2, "start_line": 51 }
Prims.Tot
val bn_mul1_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> i:size_nat{i < aLen} -> c:limb t -> limb t & limb t
[ { "abbrev": false, "full_module": "Hacl.Spec.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_mul1_f #t #aLen a l i c = mul_wide_add a.[i] l c
val bn_mul1_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> i:size_nat{i < aLen} -> c:limb t -> limb t & limb t let bn_mul1_f #t #aLen a l i c =
false
null
false
mul_wide_add a.[ i ] l c
{ "checked_file": "Hacl.Spec.Bignum.Multiplication.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Multiplication.fst" }
[ "total" ]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Definitions.limb", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.Bignum.Base.mul_wide_add", "Lib.Sequence.op_String_Access", "FStar.Pervasives.Native.tuple2" ]
[]
module Hacl.Spec.Bignum.Multiplication open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.LoopCombinators open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum.Base open Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_mul1_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> i:size_nat{i < aLen} -> c:limb t -> limb t & limb t // carry & out
false
false
Hacl.Spec.Bignum.Multiplication.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_mul1_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> i:size_nat{i < aLen} -> c:limb t -> limb t & limb t
[]
Hacl.Spec.Bignum.Multiplication.bn_mul1_f
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Multiplication.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> l: Hacl.Spec.Bignum.Definitions.limb t -> i: Lib.IntTypes.size_nat{i < aLen} -> c: Hacl.Spec.Bignum.Definitions.limb t -> Hacl.Spec.Bignum.Definitions.limb t * Hacl.Spec.Bignum.Definitions.limb t
{ "end_col": 24, "end_line": 26, "start_col": 2, "start_line": 26 }
Prims.Tot
val bn_mul1_add_in_place: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> limb t & lbignum t aLen
[ { "abbrev": false, "full_module": "Hacl.Spec.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_mul1_add_in_place #t #aLen a l acc = generate_elems aLen aLen (bn_mul1_add_in_place_f a l acc) (uint #t 0)
val bn_mul1_add_in_place: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> limb t & lbignum t aLen let bn_mul1_add_in_place #t #aLen a l acc =
false
null
false
generate_elems aLen aLen (bn_mul1_add_in_place_f a l acc) (uint #t 0)
{ "checked_file": "Hacl.Spec.Bignum.Multiplication.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Multiplication.fst" }
[ "total" ]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Lib.generate_elems", "Hacl.Spec.Bignum.Multiplication.bn_mul1_add_in_place_f", "Lib.IntTypes.uint", "Lib.IntTypes.SEC", "FStar.Pervasives.Native.tuple2" ]
[]
module Hacl.Spec.Bignum.Multiplication open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.LoopCombinators open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum.Base open Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_mul1_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> i:size_nat{i < aLen} -> c:limb t -> limb t & limb t // carry & out let bn_mul1_f #t #aLen a l i c = mul_wide_add a.[i] l c val bn_mul1: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> limb t & lbignum t aLen let bn_mul1 #t #aLen a l = generate_elems aLen aLen (bn_mul1_f a l) (uint #t 0) val bn_mul1_add_in_place_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> i:size_nat{i < aLen} -> c:limb t -> limb t & limb t // carry & out let bn_mul1_add_in_place_f #t #aLen a l acc i c = mul_wide_add2 a.[i] l c acc.[i] val bn_mul1_add_in_place: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> limb t & lbignum t aLen
false
false
Hacl.Spec.Bignum.Multiplication.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_mul1_add_in_place: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> limb t & lbignum t aLen
[]
Hacl.Spec.Bignum.Multiplication.bn_mul1_add_in_place
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Multiplication.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> l: Hacl.Spec.Bignum.Definitions.limb t -> acc: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> Hacl.Spec.Bignum.Definitions.limb t * Hacl.Spec.Bignum.Definitions.lbignum t aLen
{ "end_col": 71, "end_line": 63, "start_col": 2, "start_line": 63 }
Prims.Tot
val bn_mul1: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> limb t & lbignum t aLen
[ { "abbrev": false, "full_module": "Hacl.Spec.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_mul1 #t #aLen a l = generate_elems aLen aLen (bn_mul1_f a l) (uint #t 0)
val bn_mul1: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> limb t & lbignum t aLen let bn_mul1 #t #aLen a l =
false
null
false
generate_elems aLen aLen (bn_mul1_f a l) (uint #t 0)
{ "checked_file": "Hacl.Spec.Bignum.Multiplication.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Multiplication.fst" }
[ "total" ]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Lib.generate_elems", "Hacl.Spec.Bignum.Multiplication.bn_mul1_f", "Lib.IntTypes.uint", "Lib.IntTypes.SEC", "FStar.Pervasives.Native.tuple2" ]
[]
module Hacl.Spec.Bignum.Multiplication open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.LoopCombinators open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum.Base open Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_mul1_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> i:size_nat{i < aLen} -> c:limb t -> limb t & limb t // carry & out let bn_mul1_f #t #aLen a l i c = mul_wide_add a.[i] l c val bn_mul1: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> limb t & lbignum t aLen
false
false
Hacl.Spec.Bignum.Multiplication.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_mul1: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> limb t & lbignum t aLen
[]
Hacl.Spec.Bignum.Multiplication.bn_mul1
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Multiplication.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> l: Hacl.Spec.Bignum.Definitions.limb t -> Hacl.Spec.Bignum.Definitions.limb t * Hacl.Spec.Bignum.Definitions.lbignum t aLen
{ "end_col": 54, "end_line": 37, "start_col": 2, "start_line": 37 }
Prims.Tot
val bn_mul1_lshift_add: #t:limb_t -> #aLen:size_nat -> #resLen:size_nat -> a:lbignum t aLen -> b_j:limb t -> j:size_nat{j + aLen <= resLen} -> res:lbignum t resLen -> limb t & lbignum t resLen
[ { "abbrev": false, "full_module": "Hacl.Spec.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_mul1_lshift_add #t #aLen #resLen a b_j j res = let res' = sub res j aLen in let c, res' = bn_mul1_add_in_place a b_j res' in let res = update_sub res j aLen res' in c, res
val bn_mul1_lshift_add: #t:limb_t -> #aLen:size_nat -> #resLen:size_nat -> a:lbignum t aLen -> b_j:limb t -> j:size_nat{j + aLen <= resLen} -> res:lbignum t resLen -> limb t & lbignum t resLen let bn_mul1_lshift_add #t #aLen #resLen a b_j j res =
false
null
false
let res' = sub res j aLen in let c, res' = bn_mul1_add_in_place a b_j res' in let res = update_sub res j aLen res' in c, res
{ "checked_file": "Hacl.Spec.Bignum.Multiplication.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Multiplication.fst" }
[ "total" ]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Definitions.limb", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "FStar.Pervasives.Native.Mktuple2", "Lib.Sequence.lseq", "Prims.l_and", "Prims.eq2", "Lib.Sequence.sub", "Prims.l_Forall", "Prims.nat", "Prims.l_or", "Prims.op_LessThan", "FStar.Seq.Base.index", "Lib.Sequence.to_seq", "Lib.Sequence.index", "Lib.Sequence.update_sub", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.Multiplication.bn_mul1_add_in_place", "FStar.Seq.Base.seq", "FStar.Seq.Base.slice" ]
[]
module Hacl.Spec.Bignum.Multiplication open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.LoopCombinators open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum.Base open Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_mul1_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> i:size_nat{i < aLen} -> c:limb t -> limb t & limb t // carry & out let bn_mul1_f #t #aLen a l i c = mul_wide_add a.[i] l c val bn_mul1: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> limb t & lbignum t aLen let bn_mul1 #t #aLen a l = generate_elems aLen aLen (bn_mul1_f a l) (uint #t 0) val bn_mul1_add_in_place_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> i:size_nat{i < aLen} -> c:limb t -> limb t & limb t // carry & out let bn_mul1_add_in_place_f #t #aLen a l acc i c = mul_wide_add2 a.[i] l c acc.[i] val bn_mul1_add_in_place: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> limb t & lbignum t aLen let bn_mul1_add_in_place #t #aLen a l acc = generate_elems aLen aLen (bn_mul1_add_in_place_f a l acc) (uint #t 0) val bn_mul1_lshift_add: #t:limb_t -> #aLen:size_nat -> #resLen:size_nat -> a:lbignum t aLen -> b_j:limb t -> j:size_nat{j + aLen <= resLen} -> res:lbignum t resLen -> limb t & lbignum t resLen
false
false
Hacl.Spec.Bignum.Multiplication.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_mul1_lshift_add: #t:limb_t -> #aLen:size_nat -> #resLen:size_nat -> a:lbignum t aLen -> b_j:limb t -> j:size_nat{j + aLen <= resLen} -> res:lbignum t resLen -> limb t & lbignum t resLen
[]
Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Multiplication.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> b_j: Hacl.Spec.Bignum.Definitions.limb t -> j: Lib.IntTypes.size_nat{j + aLen <= resLen} -> res: Hacl.Spec.Bignum.Definitions.lbignum t resLen -> Hacl.Spec.Bignum.Definitions.limb t * Hacl.Spec.Bignum.Definitions.lbignum t resLen
{ "end_col": 8, "end_line": 80, "start_col": 53, "start_line": 76 }
FStar.Pervasives.Lemma
val bn_mul_lemma: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{aLen + bLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t bLen -> Lemma (bn_v (bn_mul a b) == bn_v a * bn_v b)
[ { "abbrev": false, "full_module": "Hacl.Spec.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_mul_lemma #t #aLen #bLen a b = bn_mul_loop_lemma a b bLen
val bn_mul_lemma: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{aLen + bLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t bLen -> Lemma (bn_v (bn_mul a b) == bn_v a * bn_v b) let bn_mul_lemma #t #aLen #bLen a b =
false
null
true
bn_mul_loop_lemma a b bLen
{ "checked_file": "Hacl.Spec.Bignum.Multiplication.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Multiplication.fst" }
[ "lemma" ]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "Lib.IntTypes.max_size_t", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Multiplication.bn_mul_loop_lemma", "Prims.unit" ]
[]
module Hacl.Spec.Bignum.Multiplication open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.LoopCombinators open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum.Base open Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_mul1_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> i:size_nat{i < aLen} -> c:limb t -> limb t & limb t // carry & out let bn_mul1_f #t #aLen a l i c = mul_wide_add a.[i] l c val bn_mul1: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> limb t & lbignum t aLen let bn_mul1 #t #aLen a l = generate_elems aLen aLen (bn_mul1_f a l) (uint #t 0) val bn_mul1_add_in_place_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> i:size_nat{i < aLen} -> c:limb t -> limb t & limb t // carry & out let bn_mul1_add_in_place_f #t #aLen a l acc i c = mul_wide_add2 a.[i] l c acc.[i] val bn_mul1_add_in_place: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> limb t & lbignum t aLen let bn_mul1_add_in_place #t #aLen a l acc = generate_elems aLen aLen (bn_mul1_add_in_place_f a l acc) (uint #t 0) val bn_mul1_lshift_add: #t:limb_t -> #aLen:size_nat -> #resLen:size_nat -> a:lbignum t aLen -> b_j:limb t -> j:size_nat{j + aLen <= resLen} -> res:lbignum t resLen -> limb t & lbignum t resLen let bn_mul1_lshift_add #t #aLen #resLen a b_j j res = let res' = sub res j aLen in let c, res' = bn_mul1_add_in_place a b_j res' in let res = update_sub res j aLen res' in c, res val bn_mul_: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{aLen + bLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t bLen -> j:size_nat{j < bLen} -> res:lbignum t (aLen + bLen) -> lbignum t (aLen + bLen) let bn_mul_ #t #aLen #bLen a b j res = let c, res = bn_mul1_lshift_add a b.[j] j res in res.[aLen + j] <- c val bn_mul: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{aLen + bLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t bLen -> lbignum t (aLen + bLen) let bn_mul #t #aLen #bLen a b = let res = create (aLen + bLen) (uint #t 0) in repeati bLen (bn_mul_ a b) res val bn_mul1_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (limb t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) * v l)) (ensures (let (c1, res1) = c1_res1 in let (c, res) = generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i * v l)) let bn_mul1_lemma_loop_step #t #aLen a l i (c1, res1) = let pbits = bits t in let b1 = pow2 (pbits * (i - 1)) in let b2 = pow2 (pbits * i) in let (c, res) = generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1) in let c, e = mul_wide_add a.[i - 1] l c1 in assert (v e + v c * pow2 pbits == v a.[i - 1] * v l + v c1); calc (==) { v c * b2 + bn_v #t #i res; (==) { bn_eval_snoc #t #(i - 1) res1 e } v c * b2 + bn_v #t #(i - 1) res1 + v e * b1; (==) { } v c * b2 + eval_ aLen a (i - 1) * v l -(v e + v c * pow2 pbits - v a.[i - 1] * v l) * b1 + v e * b1; (==) { Math.Lemmas.distributivity_add_left (v e) (v c * pow2 pbits - v a.[i - 1] * v l) b1 } v c * b2 + eval_ aLen a (i - 1) * v l - (v c * pow2 pbits - v a.[i - 1] * v l) * b1; (==) { Math.Lemmas.distributivity_sub_left (v c * pow2 pbits) (v a.[i - 1] * v l) b1 } v c * b2 + eval_ aLen a (i - 1) * v l - v c * pow2 pbits * b1 + v a.[i - 1] * v l * b1; (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) b1; Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen a (i - 1) * v l + v a.[i - 1] * v l * b1; (==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) (v l) b1 } eval_ aLen a (i - 1) * v l + v a.[i - 1] * (b1 * v l); (==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) b1 (v l) } eval_ aLen a (i - 1) * v l + v a.[i - 1] * b1 * v l; (==) { Math.Lemmas.distributivity_add_left (eval_ aLen a (i - 1)) (v a.[i - 1] * b1) (v l) } (eval_ aLen a (i - 1) + v a.[i - 1] * b1) * v l; (==) { bn_eval_unfold_i a i } eval_ aLen a i * v l; }; assert (v c * b2 + bn_v #t #i res == eval_ aLen a i * v l) val bn_mul1_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> i:nat{i <= aLen} -> Lemma (let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_f a l) (uint #t 0) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i * v l) let rec bn_mul1_lemma_loop #t #aLen a l i = let pbits = bits t in let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_f a l) (uint #t 0) in if i = 0 then begin eq_generate_elems0 aLen i (bn_mul1_f a l) (uint #t 0); assert (c == uint #t 0 /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; () end else begin let (c1, res1) : generate_elem_a (limb t) (limb t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_mul1_f a l) (uint #t 0) in generate_elems_unfold aLen i (bn_mul1_f a l) (uint #t 0) (i - 1); assert (generate_elems aLen i (bn_mul1_f a l) (uint #t 0) == generate_elem_f aLen (bn_mul1_f a l) (i - 1) (generate_elems aLen (i - 1) (bn_mul1_f a l) (uint #t 0))); assert ((c, res) == generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1)); bn_mul1_lemma_loop a l (i - 1); assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) * v l); bn_mul1_lemma_loop_step a l i (c1, res1); assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i * v l); () end val bn_mul1_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> Lemma (let (c, res) = bn_mul1 a l in v c * pow2 (bits t * aLen) + bn_v res == bn_v a * v l) let bn_mul1_lemma #t #aLen a l = let (c, res) = bn_mul1 a l in bn_mul1_lemma_loop a l aLen #push-options "--z3rlimit 150" val bn_mul1_add_in_place_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (limb t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l)) (ensures (let (c1, res1) = c1_res1 in let (c, res) = generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (c1, res1) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l)) let bn_mul1_add_in_place_lemma_loop_step #t #aLen a l acc i (c1, res1) = let pbits = bits t in let b1 = pow2 (pbits * (i - 1)) in let b2 = pow2 (pbits * i) in let (c, res) = generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (c1, res1) in let c, e = mul_wide_add2 a.[i - 1] l c1 acc.[i - 1] in assert (v e + v c * pow2 pbits == v a.[i - 1] * v l + v c1 + v acc.[i - 1]); calc (==) { v c * b2 + bn_v #t #i res; (==) { bn_eval_snoc #t #(i - 1) res1 e } v c * b2 + bn_v #t #(i - 1) res1 + v e * b1; (==) { } v c * b2 + eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l - (v e + v c * pow2 pbits - v a.[i - 1] * v l - v acc.[i - 1]) * b1 + v e * b1; (==) { Math.Lemmas.distributivity_add_left (v e) (v c * pow2 pbits - v a.[i - 1] * v l - v acc.[i - 1]) b1 } v c * b2 + eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l - (v c * pow2 pbits - v a.[i - 1] * v l - v acc.[i - 1]) * b1; (==) { Math.Lemmas.distributivity_sub_left (v c * pow2 pbits) (v a.[i - 1] * v l + v acc.[i - 1]) b1 } v c * b2 + eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l - (v c * pow2 pbits) * b1 + (v a.[i - 1] * v l + v acc.[i - 1]) * b1; (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) b1; Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l + (v a.[i - 1] * v l + v acc.[i - 1]) * b1; (==) { Math.Lemmas.distributivity_add_left (v a.[i - 1] * v l) (v acc.[i - 1]) b1 } eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l + v a.[i - 1] * v l * b1 + v acc.[i - 1] * b1; (==) { bn_eval_unfold_i acc i } eval_ aLen acc i + eval_ aLen a (i - 1) * v l + v a.[i - 1] * v l * b1; (==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) (v l) b1 } eval_ aLen acc i + eval_ aLen a (i - 1) * v l + v a.[i - 1] * (b1 * v l); (==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) b1 (v l) } eval_ aLen acc i + eval_ aLen a (i - 1) * v l + v a.[i - 1] * b1 * v l; (==) { Math.Lemmas.distributivity_add_left (eval_ aLen a (i - 1)) (v a.[i - 1] * b1) (v l) } eval_ aLen acc i + (eval_ aLen a (i - 1) + v a.[i - 1] * b1) * v l; (==) { bn_eval_unfold_i a i } eval_ aLen acc i + eval_ aLen a i * v l; }; assert (v c * b2 + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l) #pop-options val bn_mul1_add_in_place_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> i:nat{i <= aLen} -> Lemma (let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l) let rec bn_mul1_add_in_place_lemma_loop #t #aLen a l acc i = let pbits = bits t in let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) in if i = 0 then begin eq_generate_elems0 aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0); assert (c == uint #t 0 /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; bn_eval0 acc; () end else begin let (c1, res1) : generate_elem_a (limb t) (limb t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_mul1_add_in_place_f a l acc) (uint #t 0) in generate_elems_unfold aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) (i - 1); assert (generate_elems aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) == generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (generate_elems aLen (i - 1) (bn_mul1_add_in_place_f a l acc) (uint #t 0))); assert ((c, res) == generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (c1, res1)); bn_mul1_add_in_place_lemma_loop a l acc (i - 1); assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l); bn_mul1_add_in_place_lemma_loop_step a l acc i (c1, res1); assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l); () end val bn_mul1_add_in_place_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> Lemma (let (c, res) = bn_mul1_add_in_place a l acc in v c * pow2 (bits t * aLen) + bn_v res == bn_v acc + bn_v a * v l) let bn_mul1_add_in_place_lemma #t #aLen a l acc = let (c, res) = bn_mul1_add_in_place a l acc in bn_mul1_add_in_place_lemma_loop a l acc aLen val bn_mul1_lshift_add_lemma: #t:limb_t -> #aLen:size_nat -> #resLen:size_nat -> a:lbignum t aLen -> b_j:limb t -> j:size_nat{j + aLen <= resLen} -> acc:lbignum t resLen -> Lemma (let (c, res) = bn_mul1_lshift_add a b_j j acc in v c * pow2 (bits t * (aLen + j)) + eval_ resLen res (aLen + j) == eval_ resLen acc (aLen + j) + bn_v a * v b_j * pow2 (bits t * j) /\ slice res (aLen + j) resLen == slice acc (aLen + j) resLen) let bn_mul1_lshift_add_lemma #t #aLen #resLen a b_j j acc = let pbits = bits t in let res1 = sub acc j aLen in let c, res2 = bn_mul1_add_in_place a b_j res1 in bn_mul1_add_in_place_lemma a b_j res1; assert (v c * pow2 (pbits * aLen) + bn_v res2 == bn_v res1 + bn_v a * v b_j); let res = update_sub acc j aLen res2 in bn_eval_split_i (sub res 0 (j + aLen)) j; bn_eval_extensionality_j res (sub res 0 (j + aLen)) (j + aLen); assert (eval_ resLen res (j + aLen) == bn_v #t #j (sub res 0 j) + pow2 (pbits * j) * bn_v res2); eq_intro (sub res 0 j) (sub acc 0 j); assert (bn_v #t #j (sub res 0 j) == bn_v #t #j (sub acc 0 j)); bn_eval_split_i (sub acc 0 (j + aLen)) j; bn_eval_extensionality_j acc (sub acc 0 (j + aLen)) (j + aLen); assert (eval_ resLen acc (j + aLen) == bn_v #t #j (sub acc 0 j) + pow2 (pbits * j) * bn_v res1); calc (==) { v c * pow2 (pbits * (aLen + j)) + eval_ resLen res (aLen + j); (==) { Math.Lemmas.pow2_plus (pbits * aLen) (pbits * j) } v c * (pow2 (pbits * aLen) * pow2 (pbits * j)) + eval_ resLen res (aLen + j); (==) { Math.Lemmas.paren_mul_right (v c) (pow2 (pbits * aLen)) (pow2 (pbits * j)) } v c * pow2 (pbits * aLen) * pow2 (pbits * j) + eval_ resLen res (aLen + j); (==) { } (bn_v res1 + bn_v a * v b_j - bn_v res2) * pow2 (pbits * j) + eval_ resLen res (aLen + j); (==) { } (bn_v res1 + bn_v a * v b_j - bn_v res2) * pow2 (pbits * j) + eval_ resLen acc (j + aLen) - pow2 (pbits * j) * bn_v res1 + pow2 (pbits * j) * bn_v res2; (==) { Math.Lemmas.distributivity_add_right (pow2 (pbits * j)) (bn_v res1) (bn_v a * v b_j - bn_v res2) } pow2 (pbits * j) * (bn_v a * v b_j - bn_v res2) + eval_ resLen acc (j + aLen) + pow2 (pbits * j) * bn_v res2; (==) { Math.Lemmas.distributivity_sub_right (pow2 (pbits * j)) (bn_v a * v b_j) (bn_v res2) } pow2 (pbits * j) * (bn_v a * v b_j) + eval_ resLen acc (j + aLen); }; assert (v c * pow2 (pbits * (aLen + j)) + eval_ resLen res (aLen + j) == eval_ resLen acc (aLen + j) + bn_v a * v b_j * pow2 (pbits * j)); eq_intro (slice res (aLen + j) resLen) (slice acc (aLen + j) resLen) val bn_mul_lemma_: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{aLen + bLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t bLen -> j:size_nat{j < bLen} -> acc:lbignum t (aLen + bLen) -> Lemma (let res = bn_mul_ a b j acc in v res.[aLen + j] * pow2 (bits t * (aLen + j)) + eval_ (aLen + bLen) res (aLen + j) == eval_ (aLen + bLen) acc (aLen + j) + bn_v a * v b.[j] * pow2 (bits t * j)) let bn_mul_lemma_ #t #aLen #bLen a b j acc = let c, res = bn_mul1_lshift_add a b.[j] j acc in bn_mul1_lshift_add_lemma a b.[j] j acc; let res1 = res.[aLen + j] <- c in bn_eval_extensionality_j res res1 (aLen + j) val bn_mul_loop_lemma_step: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{aLen + bLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t bLen -> i:pos{i <= bLen} -> resi1:lbignum t (aLen + bLen) -> Lemma (requires eval_ (aLen + bLen) resi1 (aLen + i - 1) == bn_v a * eval_ bLen b (i - 1)) (ensures (let resi = bn_mul_ a b (i - 1) resi1 in eval_ (aLen + bLen) resi (aLen + i) == bn_v a * eval_ bLen b i)) let bn_mul_loop_lemma_step #t #aLen #bLen a b i resi1 = let pbits = bits t in let resi = bn_mul_ a b (i - 1) resi1 in bn_mul_lemma_ a b (i - 1) resi1; assert (v resi.[aLen + i - 1] * pow2 (pbits * (aLen + i - 1)) + eval_ (aLen + bLen) resi (aLen + i - 1) == eval_ (aLen + bLen) resi1 (aLen + i - 1) + bn_v a * v b.[i - 1] * (pow2 (pbits * (i - 1)))); calc (==) { eval_ (aLen + bLen) resi (aLen + i); (==) { bn_eval_unfold_i resi (aLen + i) } eval_ (aLen + bLen) resi (aLen + i - 1) + v resi.[aLen + i - 1] * pow2 (pbits * (aLen + i - 1)); (==) { } eval_ (aLen + bLen) resi1 (aLen + i - 1) + bn_v a * v b.[i - 1] * (pow2 (pbits * (i - 1))); (==) { } bn_v a * eval_ bLen b (i - 1) + bn_v a * v b.[i - 1] * (pow2 (pbits * (i - 1))); (==) { Math.Lemmas.paren_mul_right (bn_v a) (v b.[i - 1]) (pow2 (pbits * (i - 1))) } bn_v a * eval_ bLen b (i - 1) + bn_v a * (v b.[i - 1] * (pow2 (pbits * (i - 1)))); (==) { Math.Lemmas.distributivity_add_right (bn_v a) (eval_ bLen b (i - 1)) (v b.[i - 1] * (pow2 (pbits * (i - 1)))) } bn_v a * (eval_ bLen b (i - 1) + v b.[i - 1] * (pow2 (pbits * (i - 1)))); (==) { bn_eval_unfold_i b i } bn_v a * eval_ bLen b i; }; assert (eval_ (aLen + bLen) resi (aLen + i) == bn_v a * eval_ bLen b i) val bn_mul_loop_lemma: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{aLen + bLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t bLen -> i:nat{i <= bLen} -> Lemma (let res = create (aLen + bLen) (uint #t 0) in let resi = repeati i (bn_mul_ a b) res in eval_ (aLen + bLen) resi (aLen + i) == bn_v a * eval_ bLen b i) let rec bn_mul_loop_lemma #t #aLen #bLen a b i = let res = create (aLen + bLen) (uint #t 0) in let resi = repeati i (bn_mul_ a b) res in if i = 0 then begin eq_repeati0 i (bn_mul_ a b) res; bn_eval0 b; bn_eval_zeroes #t (aLen + bLen) (aLen + i); () end else begin unfold_repeati i (bn_mul_ a b) res (i - 1); let resi1 = repeati (i - 1) (bn_mul_ a b) res in assert (resi == bn_mul_ a b (i - 1) resi1); bn_mul_loop_lemma a b (i - 1); assert (eval_ (aLen + bLen) resi1 (aLen + i - 1) == bn_v a * eval_ bLen b (i - 1)); bn_mul_loop_lemma_step a b i resi1; assert (eval_ (aLen + bLen) resi (aLen + i) == bn_v a * eval_ bLen b i); () end val bn_mul_lemma: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{aLen + bLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t bLen -> Lemma (bn_v (bn_mul a b) == bn_v a * bn_v b)
false
false
Hacl.Spec.Bignum.Multiplication.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_mul_lemma: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{aLen + bLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t bLen -> Lemma (bn_v (bn_mul a b) == bn_v a * bn_v b)
[]
Hacl.Spec.Bignum.Multiplication.bn_mul_lemma
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Multiplication.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> b: Hacl.Spec.Bignum.Definitions.lbignum t bLen -> FStar.Pervasives.Lemma (ensures Hacl.Spec.Bignum.Definitions.bn_v (Hacl.Spec.Bignum.Multiplication.bn_mul a b) == Hacl.Spec.Bignum.Definitions.bn_v a * Hacl.Spec.Bignum.Definitions.bn_v b)
{ "end_col": 28, "end_line": 457, "start_col": 2, "start_line": 457 }
FStar.Pervasives.Lemma
val bn_mul1_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> Lemma (let (c, res) = bn_mul1 a l in v c * pow2 (bits t * aLen) + bn_v res == bn_v a * v l)
[ { "abbrev": false, "full_module": "Hacl.Spec.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_mul1_lemma #t #aLen a l = let (c, res) = bn_mul1 a l in bn_mul1_lemma_loop a l aLen
val bn_mul1_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> Lemma (let (c, res) = bn_mul1 a l in v c * pow2 (bits t * aLen) + bn_v res == bn_v a * v l) let bn_mul1_lemma #t #aLen a l =
false
null
true
let c, res = bn_mul1 a l in bn_mul1_lemma_loop a l aLen
{ "checked_file": "Hacl.Spec.Bignum.Multiplication.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Multiplication.fst" }
[ "lemma" ]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.Multiplication.bn_mul1_lemma_loop", "Prims.unit", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.Multiplication.bn_mul1" ]
[]
module Hacl.Spec.Bignum.Multiplication open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.LoopCombinators open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum.Base open Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_mul1_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> i:size_nat{i < aLen} -> c:limb t -> limb t & limb t // carry & out let bn_mul1_f #t #aLen a l i c = mul_wide_add a.[i] l c val bn_mul1: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> limb t & lbignum t aLen let bn_mul1 #t #aLen a l = generate_elems aLen aLen (bn_mul1_f a l) (uint #t 0) val bn_mul1_add_in_place_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> i:size_nat{i < aLen} -> c:limb t -> limb t & limb t // carry & out let bn_mul1_add_in_place_f #t #aLen a l acc i c = mul_wide_add2 a.[i] l c acc.[i] val bn_mul1_add_in_place: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> limb t & lbignum t aLen let bn_mul1_add_in_place #t #aLen a l acc = generate_elems aLen aLen (bn_mul1_add_in_place_f a l acc) (uint #t 0) val bn_mul1_lshift_add: #t:limb_t -> #aLen:size_nat -> #resLen:size_nat -> a:lbignum t aLen -> b_j:limb t -> j:size_nat{j + aLen <= resLen} -> res:lbignum t resLen -> limb t & lbignum t resLen let bn_mul1_lshift_add #t #aLen #resLen a b_j j res = let res' = sub res j aLen in let c, res' = bn_mul1_add_in_place a b_j res' in let res = update_sub res j aLen res' in c, res val bn_mul_: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{aLen + bLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t bLen -> j:size_nat{j < bLen} -> res:lbignum t (aLen + bLen) -> lbignum t (aLen + bLen) let bn_mul_ #t #aLen #bLen a b j res = let c, res = bn_mul1_lshift_add a b.[j] j res in res.[aLen + j] <- c val bn_mul: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{aLen + bLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t bLen -> lbignum t (aLen + bLen) let bn_mul #t #aLen #bLen a b = let res = create (aLen + bLen) (uint #t 0) in repeati bLen (bn_mul_ a b) res val bn_mul1_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (limb t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) * v l)) (ensures (let (c1, res1) = c1_res1 in let (c, res) = generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i * v l)) let bn_mul1_lemma_loop_step #t #aLen a l i (c1, res1) = let pbits = bits t in let b1 = pow2 (pbits * (i - 1)) in let b2 = pow2 (pbits * i) in let (c, res) = generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1) in let c, e = mul_wide_add a.[i - 1] l c1 in assert (v e + v c * pow2 pbits == v a.[i - 1] * v l + v c1); calc (==) { v c * b2 + bn_v #t #i res; (==) { bn_eval_snoc #t #(i - 1) res1 e } v c * b2 + bn_v #t #(i - 1) res1 + v e * b1; (==) { } v c * b2 + eval_ aLen a (i - 1) * v l -(v e + v c * pow2 pbits - v a.[i - 1] * v l) * b1 + v e * b1; (==) { Math.Lemmas.distributivity_add_left (v e) (v c * pow2 pbits - v a.[i - 1] * v l) b1 } v c * b2 + eval_ aLen a (i - 1) * v l - (v c * pow2 pbits - v a.[i - 1] * v l) * b1; (==) { Math.Lemmas.distributivity_sub_left (v c * pow2 pbits) (v a.[i - 1] * v l) b1 } v c * b2 + eval_ aLen a (i - 1) * v l - v c * pow2 pbits * b1 + v a.[i - 1] * v l * b1; (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) b1; Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen a (i - 1) * v l + v a.[i - 1] * v l * b1; (==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) (v l) b1 } eval_ aLen a (i - 1) * v l + v a.[i - 1] * (b1 * v l); (==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) b1 (v l) } eval_ aLen a (i - 1) * v l + v a.[i - 1] * b1 * v l; (==) { Math.Lemmas.distributivity_add_left (eval_ aLen a (i - 1)) (v a.[i - 1] * b1) (v l) } (eval_ aLen a (i - 1) + v a.[i - 1] * b1) * v l; (==) { bn_eval_unfold_i a i } eval_ aLen a i * v l; }; assert (v c * b2 + bn_v #t #i res == eval_ aLen a i * v l) val bn_mul1_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> i:nat{i <= aLen} -> Lemma (let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_f a l) (uint #t 0) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i * v l) let rec bn_mul1_lemma_loop #t #aLen a l i = let pbits = bits t in let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_f a l) (uint #t 0) in if i = 0 then begin eq_generate_elems0 aLen i (bn_mul1_f a l) (uint #t 0); assert (c == uint #t 0 /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; () end else begin let (c1, res1) : generate_elem_a (limb t) (limb t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_mul1_f a l) (uint #t 0) in generate_elems_unfold aLen i (bn_mul1_f a l) (uint #t 0) (i - 1); assert (generate_elems aLen i (bn_mul1_f a l) (uint #t 0) == generate_elem_f aLen (bn_mul1_f a l) (i - 1) (generate_elems aLen (i - 1) (bn_mul1_f a l) (uint #t 0))); assert ((c, res) == generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1)); bn_mul1_lemma_loop a l (i - 1); assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) * v l); bn_mul1_lemma_loop_step a l i (c1, res1); assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i * v l); () end val bn_mul1_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> Lemma (let (c, res) = bn_mul1 a l in v c * pow2 (bits t * aLen) + bn_v res == bn_v a * v l)
false
false
Hacl.Spec.Bignum.Multiplication.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_mul1_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> Lemma (let (c, res) = bn_mul1 a l in v c * pow2 (bits t * aLen) + bn_v res == bn_v a * v l)
[]
Hacl.Spec.Bignum.Multiplication.bn_mul1_lemma
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Multiplication.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> l: Hacl.Spec.Bignum.Definitions.limb t -> FStar.Pervasives.Lemma (ensures (let _ = Hacl.Spec.Bignum.Multiplication.bn_mul1 a l in (let FStar.Pervasives.Native.Mktuple2 #_ #_ c res = _ in Lib.IntTypes.v c * Prims.pow2 (Lib.IntTypes.bits t * aLen) + Hacl.Spec.Bignum.Definitions.bn_v res == Hacl.Spec.Bignum.Definitions.bn_v a * Lib.IntTypes.v l) <: Type0))
{ "end_col": 29, "end_line": 202, "start_col": 32, "start_line": 200 }
Prims.Tot
val bn_mul: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{aLen + bLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t bLen -> lbignum t (aLen + bLen)
[ { "abbrev": false, "full_module": "Hacl.Spec.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_mul #t #aLen #bLen a b = let res = create (aLen + bLen) (uint #t 0) in repeati bLen (bn_mul_ a b) res
val bn_mul: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{aLen + bLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t bLen -> lbignum t (aLen + bLen) let bn_mul #t #aLen #bLen a b =
false
null
false
let res = create (aLen + bLen) (uint #t 0) in repeati bLen (bn_mul_ a b) res
{ "checked_file": "Hacl.Spec.Bignum.Multiplication.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Multiplication.fst" }
[ "total" ]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "Lib.IntTypes.max_size_t", "Hacl.Spec.Bignum.Definitions.lbignum", "Lib.LoopCombinators.repeati", "Hacl.Spec.Bignum.Multiplication.bn_mul_", "Lib.Sequence.lseq", "Hacl.Spec.Bignum.Definitions.limb", "Prims.l_and", "Prims.eq2", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.create", "Lib.IntTypes.mk_int", "Lib.IntTypes.SEC", "Prims.l_Forall", "Prims.nat", "Prims.l_imp", "Prims.op_LessThan", "Lib.Sequence.index", "Lib.Sequence.create", "Lib.IntTypes.uint" ]
[]
module Hacl.Spec.Bignum.Multiplication open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.LoopCombinators open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum.Base open Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_mul1_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> i:size_nat{i < aLen} -> c:limb t -> limb t & limb t // carry & out let bn_mul1_f #t #aLen a l i c = mul_wide_add a.[i] l c val bn_mul1: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> limb t & lbignum t aLen let bn_mul1 #t #aLen a l = generate_elems aLen aLen (bn_mul1_f a l) (uint #t 0) val bn_mul1_add_in_place_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> i:size_nat{i < aLen} -> c:limb t -> limb t & limb t // carry & out let bn_mul1_add_in_place_f #t #aLen a l acc i c = mul_wide_add2 a.[i] l c acc.[i] val bn_mul1_add_in_place: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> limb t & lbignum t aLen let bn_mul1_add_in_place #t #aLen a l acc = generate_elems aLen aLen (bn_mul1_add_in_place_f a l acc) (uint #t 0) val bn_mul1_lshift_add: #t:limb_t -> #aLen:size_nat -> #resLen:size_nat -> a:lbignum t aLen -> b_j:limb t -> j:size_nat{j + aLen <= resLen} -> res:lbignum t resLen -> limb t & lbignum t resLen let bn_mul1_lshift_add #t #aLen #resLen a b_j j res = let res' = sub res j aLen in let c, res' = bn_mul1_add_in_place a b_j res' in let res = update_sub res j aLen res' in c, res val bn_mul_: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{aLen + bLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t bLen -> j:size_nat{j < bLen} -> res:lbignum t (aLen + bLen) -> lbignum t (aLen + bLen) let bn_mul_ #t #aLen #bLen a b j res = let c, res = bn_mul1_lshift_add a b.[j] j res in res.[aLen + j] <- c val bn_mul: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{aLen + bLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t bLen -> lbignum t (aLen + bLen)
false
false
Hacl.Spec.Bignum.Multiplication.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_mul: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{aLen + bLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t bLen -> lbignum t (aLen + bLen)
[]
Hacl.Spec.Bignum.Multiplication.bn_mul
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Multiplication.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> b: Hacl.Spec.Bignum.Definitions.lbignum t bLen -> Hacl.Spec.Bignum.Definitions.lbignum t (aLen + bLen)
{ "end_col": 32, "end_line": 108, "start_col": 31, "start_line": 106 }
FStar.Pervasives.Lemma
val bn_mul1_add_in_place_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> Lemma (let (c, res) = bn_mul1_add_in_place a l acc in v c * pow2 (bits t * aLen) + bn_v res == bn_v acc + bn_v a * v l)
[ { "abbrev": false, "full_module": "Hacl.Spec.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_mul1_add_in_place_lemma #t #aLen a l acc = let (c, res) = bn_mul1_add_in_place a l acc in bn_mul1_add_in_place_lemma_loop a l acc aLen
val bn_mul1_add_in_place_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> Lemma (let (c, res) = bn_mul1_add_in_place a l acc in v c * pow2 (bits t * aLen) + bn_v res == bn_v acc + bn_v a * v l) let bn_mul1_add_in_place_lemma #t #aLen a l acc =
false
null
true
let c, res = bn_mul1_add_in_place a l acc in bn_mul1_add_in_place_lemma_loop a l acc aLen
{ "checked_file": "Hacl.Spec.Bignum.Multiplication.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Multiplication.fst" }
[ "lemma" ]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.Multiplication.bn_mul1_add_in_place_lemma_loop", "Prims.unit", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.Multiplication.bn_mul1_add_in_place" ]
[]
module Hacl.Spec.Bignum.Multiplication open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.LoopCombinators open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum.Base open Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_mul1_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> i:size_nat{i < aLen} -> c:limb t -> limb t & limb t // carry & out let bn_mul1_f #t #aLen a l i c = mul_wide_add a.[i] l c val bn_mul1: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> limb t & lbignum t aLen let bn_mul1 #t #aLen a l = generate_elems aLen aLen (bn_mul1_f a l) (uint #t 0) val bn_mul1_add_in_place_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> i:size_nat{i < aLen} -> c:limb t -> limb t & limb t // carry & out let bn_mul1_add_in_place_f #t #aLen a l acc i c = mul_wide_add2 a.[i] l c acc.[i] val bn_mul1_add_in_place: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> limb t & lbignum t aLen let bn_mul1_add_in_place #t #aLen a l acc = generate_elems aLen aLen (bn_mul1_add_in_place_f a l acc) (uint #t 0) val bn_mul1_lshift_add: #t:limb_t -> #aLen:size_nat -> #resLen:size_nat -> a:lbignum t aLen -> b_j:limb t -> j:size_nat{j + aLen <= resLen} -> res:lbignum t resLen -> limb t & lbignum t resLen let bn_mul1_lshift_add #t #aLen #resLen a b_j j res = let res' = sub res j aLen in let c, res' = bn_mul1_add_in_place a b_j res' in let res = update_sub res j aLen res' in c, res val bn_mul_: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{aLen + bLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t bLen -> j:size_nat{j < bLen} -> res:lbignum t (aLen + bLen) -> lbignum t (aLen + bLen) let bn_mul_ #t #aLen #bLen a b j res = let c, res = bn_mul1_lshift_add a b.[j] j res in res.[aLen + j] <- c val bn_mul: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{aLen + bLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t bLen -> lbignum t (aLen + bLen) let bn_mul #t #aLen #bLen a b = let res = create (aLen + bLen) (uint #t 0) in repeati bLen (bn_mul_ a b) res val bn_mul1_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (limb t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) * v l)) (ensures (let (c1, res1) = c1_res1 in let (c, res) = generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i * v l)) let bn_mul1_lemma_loop_step #t #aLen a l i (c1, res1) = let pbits = bits t in let b1 = pow2 (pbits * (i - 1)) in let b2 = pow2 (pbits * i) in let (c, res) = generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1) in let c, e = mul_wide_add a.[i - 1] l c1 in assert (v e + v c * pow2 pbits == v a.[i - 1] * v l + v c1); calc (==) { v c * b2 + bn_v #t #i res; (==) { bn_eval_snoc #t #(i - 1) res1 e } v c * b2 + bn_v #t #(i - 1) res1 + v e * b1; (==) { } v c * b2 + eval_ aLen a (i - 1) * v l -(v e + v c * pow2 pbits - v a.[i - 1] * v l) * b1 + v e * b1; (==) { Math.Lemmas.distributivity_add_left (v e) (v c * pow2 pbits - v a.[i - 1] * v l) b1 } v c * b2 + eval_ aLen a (i - 1) * v l - (v c * pow2 pbits - v a.[i - 1] * v l) * b1; (==) { Math.Lemmas.distributivity_sub_left (v c * pow2 pbits) (v a.[i - 1] * v l) b1 } v c * b2 + eval_ aLen a (i - 1) * v l - v c * pow2 pbits * b1 + v a.[i - 1] * v l * b1; (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) b1; Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen a (i - 1) * v l + v a.[i - 1] * v l * b1; (==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) (v l) b1 } eval_ aLen a (i - 1) * v l + v a.[i - 1] * (b1 * v l); (==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) b1 (v l) } eval_ aLen a (i - 1) * v l + v a.[i - 1] * b1 * v l; (==) { Math.Lemmas.distributivity_add_left (eval_ aLen a (i - 1)) (v a.[i - 1] * b1) (v l) } (eval_ aLen a (i - 1) + v a.[i - 1] * b1) * v l; (==) { bn_eval_unfold_i a i } eval_ aLen a i * v l; }; assert (v c * b2 + bn_v #t #i res == eval_ aLen a i * v l) val bn_mul1_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> i:nat{i <= aLen} -> Lemma (let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_f a l) (uint #t 0) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i * v l) let rec bn_mul1_lemma_loop #t #aLen a l i = let pbits = bits t in let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_f a l) (uint #t 0) in if i = 0 then begin eq_generate_elems0 aLen i (bn_mul1_f a l) (uint #t 0); assert (c == uint #t 0 /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; () end else begin let (c1, res1) : generate_elem_a (limb t) (limb t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_mul1_f a l) (uint #t 0) in generate_elems_unfold aLen i (bn_mul1_f a l) (uint #t 0) (i - 1); assert (generate_elems aLen i (bn_mul1_f a l) (uint #t 0) == generate_elem_f aLen (bn_mul1_f a l) (i - 1) (generate_elems aLen (i - 1) (bn_mul1_f a l) (uint #t 0))); assert ((c, res) == generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1)); bn_mul1_lemma_loop a l (i - 1); assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) * v l); bn_mul1_lemma_loop_step a l i (c1, res1); assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i * v l); () end val bn_mul1_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> Lemma (let (c, res) = bn_mul1 a l in v c * pow2 (bits t * aLen) + bn_v res == bn_v a * v l) let bn_mul1_lemma #t #aLen a l = let (c, res) = bn_mul1 a l in bn_mul1_lemma_loop a l aLen #push-options "--z3rlimit 150" val bn_mul1_add_in_place_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (limb t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l)) (ensures (let (c1, res1) = c1_res1 in let (c, res) = generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (c1, res1) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l)) let bn_mul1_add_in_place_lemma_loop_step #t #aLen a l acc i (c1, res1) = let pbits = bits t in let b1 = pow2 (pbits * (i - 1)) in let b2 = pow2 (pbits * i) in let (c, res) = generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (c1, res1) in let c, e = mul_wide_add2 a.[i - 1] l c1 acc.[i - 1] in assert (v e + v c * pow2 pbits == v a.[i - 1] * v l + v c1 + v acc.[i - 1]); calc (==) { v c * b2 + bn_v #t #i res; (==) { bn_eval_snoc #t #(i - 1) res1 e } v c * b2 + bn_v #t #(i - 1) res1 + v e * b1; (==) { } v c * b2 + eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l - (v e + v c * pow2 pbits - v a.[i - 1] * v l - v acc.[i - 1]) * b1 + v e * b1; (==) { Math.Lemmas.distributivity_add_left (v e) (v c * pow2 pbits - v a.[i - 1] * v l - v acc.[i - 1]) b1 } v c * b2 + eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l - (v c * pow2 pbits - v a.[i - 1] * v l - v acc.[i - 1]) * b1; (==) { Math.Lemmas.distributivity_sub_left (v c * pow2 pbits) (v a.[i - 1] * v l + v acc.[i - 1]) b1 } v c * b2 + eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l - (v c * pow2 pbits) * b1 + (v a.[i - 1] * v l + v acc.[i - 1]) * b1; (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) b1; Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l + (v a.[i - 1] * v l + v acc.[i - 1]) * b1; (==) { Math.Lemmas.distributivity_add_left (v a.[i - 1] * v l) (v acc.[i - 1]) b1 } eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l + v a.[i - 1] * v l * b1 + v acc.[i - 1] * b1; (==) { bn_eval_unfold_i acc i } eval_ aLen acc i + eval_ aLen a (i - 1) * v l + v a.[i - 1] * v l * b1; (==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) (v l) b1 } eval_ aLen acc i + eval_ aLen a (i - 1) * v l + v a.[i - 1] * (b1 * v l); (==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) b1 (v l) } eval_ aLen acc i + eval_ aLen a (i - 1) * v l + v a.[i - 1] * b1 * v l; (==) { Math.Lemmas.distributivity_add_left (eval_ aLen a (i - 1)) (v a.[i - 1] * b1) (v l) } eval_ aLen acc i + (eval_ aLen a (i - 1) + v a.[i - 1] * b1) * v l; (==) { bn_eval_unfold_i a i } eval_ aLen acc i + eval_ aLen a i * v l; }; assert (v c * b2 + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l) #pop-options val bn_mul1_add_in_place_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> i:nat{i <= aLen} -> Lemma (let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l) let rec bn_mul1_add_in_place_lemma_loop #t #aLen a l acc i = let pbits = bits t in let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) in if i = 0 then begin eq_generate_elems0 aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0); assert (c == uint #t 0 /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; bn_eval0 acc; () end else begin let (c1, res1) : generate_elem_a (limb t) (limb t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_mul1_add_in_place_f a l acc) (uint #t 0) in generate_elems_unfold aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) (i - 1); assert (generate_elems aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) == generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (generate_elems aLen (i - 1) (bn_mul1_add_in_place_f a l acc) (uint #t 0))); assert ((c, res) == generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (c1, res1)); bn_mul1_add_in_place_lemma_loop a l acc (i - 1); assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l); bn_mul1_add_in_place_lemma_loop_step a l acc i (c1, res1); assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l); () end val bn_mul1_add_in_place_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> Lemma (let (c, res) = bn_mul1_add_in_place a l acc in v c * pow2 (bits t * aLen) + bn_v res == bn_v acc + bn_v a * v l)
false
false
Hacl.Spec.Bignum.Multiplication.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_mul1_add_in_place_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> Lemma (let (c, res) = bn_mul1_add_in_place a l acc in v c * pow2 (bits t * aLen) + bn_v res == bn_v acc + bn_v a * v l)
[]
Hacl.Spec.Bignum.Multiplication.bn_mul1_add_in_place_lemma
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Multiplication.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> l: Hacl.Spec.Bignum.Definitions.limb t -> acc: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> FStar.Pervasives.Lemma (ensures (let _ = Hacl.Spec.Bignum.Multiplication.bn_mul1_add_in_place a l acc in (let FStar.Pervasives.Native.Mktuple2 #_ #_ c res = _ in Lib.IntTypes.v c * Prims.pow2 (Lib.IntTypes.bits t * aLen) + Hacl.Spec.Bignum.Definitions.bn_v res == Hacl.Spec.Bignum.Definitions.bn_v acc + Hacl.Spec.Bignum.Definitions.bn_v a * Lib.IntTypes.v l) <: Type0))
{ "end_col": 46, "end_line": 307, "start_col": 49, "start_line": 305 }
Prims.Tot
val bn_mul_: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{aLen + bLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t bLen -> j:size_nat{j < bLen} -> res:lbignum t (aLen + bLen) -> lbignum t (aLen + bLen)
[ { "abbrev": false, "full_module": "Hacl.Spec.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_mul_ #t #aLen #bLen a b j res = let c, res = bn_mul1_lshift_add a b.[j] j res in res.[aLen + j] <- c
val bn_mul_: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{aLen + bLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t bLen -> j:size_nat{j < bLen} -> res:lbignum t (aLen + bLen) -> lbignum t (aLen + bLen) let bn_mul_ #t #aLen #bLen a b j res =
false
null
false
let c, res = bn_mul1_lshift_add a b.[ j ] j res in res.[ aLen + j ] <- c
{ "checked_file": "Hacl.Spec.Bignum.Multiplication.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Multiplication.fst" }
[ "total" ]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "Lib.IntTypes.max_size_t", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.op_LessThan", "Hacl.Spec.Bignum.Definitions.limb", "Lib.Sequence.op_String_Assignment", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add", "Lib.Sequence.op_String_Access" ]
[]
module Hacl.Spec.Bignum.Multiplication open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.LoopCombinators open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum.Base open Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_mul1_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> i:size_nat{i < aLen} -> c:limb t -> limb t & limb t // carry & out let bn_mul1_f #t #aLen a l i c = mul_wide_add a.[i] l c val bn_mul1: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> limb t & lbignum t aLen let bn_mul1 #t #aLen a l = generate_elems aLen aLen (bn_mul1_f a l) (uint #t 0) val bn_mul1_add_in_place_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> i:size_nat{i < aLen} -> c:limb t -> limb t & limb t // carry & out let bn_mul1_add_in_place_f #t #aLen a l acc i c = mul_wide_add2 a.[i] l c acc.[i] val bn_mul1_add_in_place: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> limb t & lbignum t aLen let bn_mul1_add_in_place #t #aLen a l acc = generate_elems aLen aLen (bn_mul1_add_in_place_f a l acc) (uint #t 0) val bn_mul1_lshift_add: #t:limb_t -> #aLen:size_nat -> #resLen:size_nat -> a:lbignum t aLen -> b_j:limb t -> j:size_nat{j + aLen <= resLen} -> res:lbignum t resLen -> limb t & lbignum t resLen let bn_mul1_lshift_add #t #aLen #resLen a b_j j res = let res' = sub res j aLen in let c, res' = bn_mul1_add_in_place a b_j res' in let res = update_sub res j aLen res' in c, res val bn_mul_: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{aLen + bLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t bLen -> j:size_nat{j < bLen} -> res:lbignum t (aLen + bLen) -> lbignum t (aLen + bLen)
false
false
Hacl.Spec.Bignum.Multiplication.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_mul_: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{aLen + bLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t bLen -> j:size_nat{j < bLen} -> res:lbignum t (aLen + bLen) -> lbignum t (aLen + bLen)
[]
Hacl.Spec.Bignum.Multiplication.bn_mul_
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Multiplication.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> b: Hacl.Spec.Bignum.Definitions.lbignum t bLen -> j: Lib.IntTypes.size_nat{j < bLen} -> res: Hacl.Spec.Bignum.Definitions.lbignum t (aLen + bLen) -> Hacl.Spec.Bignum.Definitions.lbignum t (aLen + bLen)
{ "end_col": 21, "end_line": 95, "start_col": 38, "start_line": 93 }
FStar.Pervasives.Lemma
val bn_mul_lemma_: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{aLen + bLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t bLen -> j:size_nat{j < bLen} -> acc:lbignum t (aLen + bLen) -> Lemma (let res = bn_mul_ a b j acc in v res.[aLen + j] * pow2 (bits t * (aLen + j)) + eval_ (aLen + bLen) res (aLen + j) == eval_ (aLen + bLen) acc (aLen + j) + bn_v a * v b.[j] * pow2 (bits t * j))
[ { "abbrev": false, "full_module": "Hacl.Spec.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_mul_lemma_ #t #aLen #bLen a b j acc = let c, res = bn_mul1_lshift_add a b.[j] j acc in bn_mul1_lshift_add_lemma a b.[j] j acc; let res1 = res.[aLen + j] <- c in bn_eval_extensionality_j res res1 (aLen + j)
val bn_mul_lemma_: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{aLen + bLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t bLen -> j:size_nat{j < bLen} -> acc:lbignum t (aLen + bLen) -> Lemma (let res = bn_mul_ a b j acc in v res.[aLen + j] * pow2 (bits t * (aLen + j)) + eval_ (aLen + bLen) res (aLen + j) == eval_ (aLen + bLen) acc (aLen + j) + bn_v a * v b.[j] * pow2 (bits t * j)) let bn_mul_lemma_ #t #aLen #bLen a b j acc =
false
null
true
let c, res = bn_mul1_lshift_add a b.[ j ] j acc in bn_mul1_lshift_add_lemma a b.[ j ] j acc; let res1 = res.[ aLen + j ] <- c in bn_eval_extensionality_j res res1 (aLen + j)
{ "checked_file": "Hacl.Spec.Bignum.Multiplication.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Multiplication.fst" }
[ "lemma" ]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "Lib.IntTypes.max_size_t", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.op_LessThan", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.Definitions.bn_eval_extensionality_j", "Lib.Sequence.lseq", "Prims.l_and", "Prims.eq2", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.upd", "Lib.Sequence.index", "Prims.l_Forall", "Prims.nat", "Prims.op_Subtraction", "Prims.pow2", "Prims.l_imp", "Prims.op_disEquality", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.op_String_Assignment", "Prims.unit", "Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add_lemma", "Lib.Sequence.op_String_Access", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add" ]
[]
module Hacl.Spec.Bignum.Multiplication open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.LoopCombinators open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum.Base open Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_mul1_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> i:size_nat{i < aLen} -> c:limb t -> limb t & limb t // carry & out let bn_mul1_f #t #aLen a l i c = mul_wide_add a.[i] l c val bn_mul1: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> limb t & lbignum t aLen let bn_mul1 #t #aLen a l = generate_elems aLen aLen (bn_mul1_f a l) (uint #t 0) val bn_mul1_add_in_place_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> i:size_nat{i < aLen} -> c:limb t -> limb t & limb t // carry & out let bn_mul1_add_in_place_f #t #aLen a l acc i c = mul_wide_add2 a.[i] l c acc.[i] val bn_mul1_add_in_place: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> limb t & lbignum t aLen let bn_mul1_add_in_place #t #aLen a l acc = generate_elems aLen aLen (bn_mul1_add_in_place_f a l acc) (uint #t 0) val bn_mul1_lshift_add: #t:limb_t -> #aLen:size_nat -> #resLen:size_nat -> a:lbignum t aLen -> b_j:limb t -> j:size_nat{j + aLen <= resLen} -> res:lbignum t resLen -> limb t & lbignum t resLen let bn_mul1_lshift_add #t #aLen #resLen a b_j j res = let res' = sub res j aLen in let c, res' = bn_mul1_add_in_place a b_j res' in let res = update_sub res j aLen res' in c, res val bn_mul_: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{aLen + bLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t bLen -> j:size_nat{j < bLen} -> res:lbignum t (aLen + bLen) -> lbignum t (aLen + bLen) let bn_mul_ #t #aLen #bLen a b j res = let c, res = bn_mul1_lshift_add a b.[j] j res in res.[aLen + j] <- c val bn_mul: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{aLen + bLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t bLen -> lbignum t (aLen + bLen) let bn_mul #t #aLen #bLen a b = let res = create (aLen + bLen) (uint #t 0) in repeati bLen (bn_mul_ a b) res val bn_mul1_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (limb t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) * v l)) (ensures (let (c1, res1) = c1_res1 in let (c, res) = generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i * v l)) let bn_mul1_lemma_loop_step #t #aLen a l i (c1, res1) = let pbits = bits t in let b1 = pow2 (pbits * (i - 1)) in let b2 = pow2 (pbits * i) in let (c, res) = generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1) in let c, e = mul_wide_add a.[i - 1] l c1 in assert (v e + v c * pow2 pbits == v a.[i - 1] * v l + v c1); calc (==) { v c * b2 + bn_v #t #i res; (==) { bn_eval_snoc #t #(i - 1) res1 e } v c * b2 + bn_v #t #(i - 1) res1 + v e * b1; (==) { } v c * b2 + eval_ aLen a (i - 1) * v l -(v e + v c * pow2 pbits - v a.[i - 1] * v l) * b1 + v e * b1; (==) { Math.Lemmas.distributivity_add_left (v e) (v c * pow2 pbits - v a.[i - 1] * v l) b1 } v c * b2 + eval_ aLen a (i - 1) * v l - (v c * pow2 pbits - v a.[i - 1] * v l) * b1; (==) { Math.Lemmas.distributivity_sub_left (v c * pow2 pbits) (v a.[i - 1] * v l) b1 } v c * b2 + eval_ aLen a (i - 1) * v l - v c * pow2 pbits * b1 + v a.[i - 1] * v l * b1; (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) b1; Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen a (i - 1) * v l + v a.[i - 1] * v l * b1; (==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) (v l) b1 } eval_ aLen a (i - 1) * v l + v a.[i - 1] * (b1 * v l); (==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) b1 (v l) } eval_ aLen a (i - 1) * v l + v a.[i - 1] * b1 * v l; (==) { Math.Lemmas.distributivity_add_left (eval_ aLen a (i - 1)) (v a.[i - 1] * b1) (v l) } (eval_ aLen a (i - 1) + v a.[i - 1] * b1) * v l; (==) { bn_eval_unfold_i a i } eval_ aLen a i * v l; }; assert (v c * b2 + bn_v #t #i res == eval_ aLen a i * v l) val bn_mul1_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> i:nat{i <= aLen} -> Lemma (let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_f a l) (uint #t 0) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i * v l) let rec bn_mul1_lemma_loop #t #aLen a l i = let pbits = bits t in let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_f a l) (uint #t 0) in if i = 0 then begin eq_generate_elems0 aLen i (bn_mul1_f a l) (uint #t 0); assert (c == uint #t 0 /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; () end else begin let (c1, res1) : generate_elem_a (limb t) (limb t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_mul1_f a l) (uint #t 0) in generate_elems_unfold aLen i (bn_mul1_f a l) (uint #t 0) (i - 1); assert (generate_elems aLen i (bn_mul1_f a l) (uint #t 0) == generate_elem_f aLen (bn_mul1_f a l) (i - 1) (generate_elems aLen (i - 1) (bn_mul1_f a l) (uint #t 0))); assert ((c, res) == generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1)); bn_mul1_lemma_loop a l (i - 1); assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) * v l); bn_mul1_lemma_loop_step a l i (c1, res1); assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i * v l); () end val bn_mul1_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> Lemma (let (c, res) = bn_mul1 a l in v c * pow2 (bits t * aLen) + bn_v res == bn_v a * v l) let bn_mul1_lemma #t #aLen a l = let (c, res) = bn_mul1 a l in bn_mul1_lemma_loop a l aLen #push-options "--z3rlimit 150" val bn_mul1_add_in_place_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (limb t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l)) (ensures (let (c1, res1) = c1_res1 in let (c, res) = generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (c1, res1) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l)) let bn_mul1_add_in_place_lemma_loop_step #t #aLen a l acc i (c1, res1) = let pbits = bits t in let b1 = pow2 (pbits * (i - 1)) in let b2 = pow2 (pbits * i) in let (c, res) = generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (c1, res1) in let c, e = mul_wide_add2 a.[i - 1] l c1 acc.[i - 1] in assert (v e + v c * pow2 pbits == v a.[i - 1] * v l + v c1 + v acc.[i - 1]); calc (==) { v c * b2 + bn_v #t #i res; (==) { bn_eval_snoc #t #(i - 1) res1 e } v c * b2 + bn_v #t #(i - 1) res1 + v e * b1; (==) { } v c * b2 + eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l - (v e + v c * pow2 pbits - v a.[i - 1] * v l - v acc.[i - 1]) * b1 + v e * b1; (==) { Math.Lemmas.distributivity_add_left (v e) (v c * pow2 pbits - v a.[i - 1] * v l - v acc.[i - 1]) b1 } v c * b2 + eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l - (v c * pow2 pbits - v a.[i - 1] * v l - v acc.[i - 1]) * b1; (==) { Math.Lemmas.distributivity_sub_left (v c * pow2 pbits) (v a.[i - 1] * v l + v acc.[i - 1]) b1 } v c * b2 + eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l - (v c * pow2 pbits) * b1 + (v a.[i - 1] * v l + v acc.[i - 1]) * b1; (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) b1; Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l + (v a.[i - 1] * v l + v acc.[i - 1]) * b1; (==) { Math.Lemmas.distributivity_add_left (v a.[i - 1] * v l) (v acc.[i - 1]) b1 } eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l + v a.[i - 1] * v l * b1 + v acc.[i - 1] * b1; (==) { bn_eval_unfold_i acc i } eval_ aLen acc i + eval_ aLen a (i - 1) * v l + v a.[i - 1] * v l * b1; (==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) (v l) b1 } eval_ aLen acc i + eval_ aLen a (i - 1) * v l + v a.[i - 1] * (b1 * v l); (==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) b1 (v l) } eval_ aLen acc i + eval_ aLen a (i - 1) * v l + v a.[i - 1] * b1 * v l; (==) { Math.Lemmas.distributivity_add_left (eval_ aLen a (i - 1)) (v a.[i - 1] * b1) (v l) } eval_ aLen acc i + (eval_ aLen a (i - 1) + v a.[i - 1] * b1) * v l; (==) { bn_eval_unfold_i a i } eval_ aLen acc i + eval_ aLen a i * v l; }; assert (v c * b2 + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l) #pop-options val bn_mul1_add_in_place_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> i:nat{i <= aLen} -> Lemma (let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l) let rec bn_mul1_add_in_place_lemma_loop #t #aLen a l acc i = let pbits = bits t in let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) in if i = 0 then begin eq_generate_elems0 aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0); assert (c == uint #t 0 /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; bn_eval0 acc; () end else begin let (c1, res1) : generate_elem_a (limb t) (limb t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_mul1_add_in_place_f a l acc) (uint #t 0) in generate_elems_unfold aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) (i - 1); assert (generate_elems aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) == generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (generate_elems aLen (i - 1) (bn_mul1_add_in_place_f a l acc) (uint #t 0))); assert ((c, res) == generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (c1, res1)); bn_mul1_add_in_place_lemma_loop a l acc (i - 1); assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l); bn_mul1_add_in_place_lemma_loop_step a l acc i (c1, res1); assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l); () end val bn_mul1_add_in_place_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> Lemma (let (c, res) = bn_mul1_add_in_place a l acc in v c * pow2 (bits t * aLen) + bn_v res == bn_v acc + bn_v a * v l) let bn_mul1_add_in_place_lemma #t #aLen a l acc = let (c, res) = bn_mul1_add_in_place a l acc in bn_mul1_add_in_place_lemma_loop a l acc aLen val bn_mul1_lshift_add_lemma: #t:limb_t -> #aLen:size_nat -> #resLen:size_nat -> a:lbignum t aLen -> b_j:limb t -> j:size_nat{j + aLen <= resLen} -> acc:lbignum t resLen -> Lemma (let (c, res) = bn_mul1_lshift_add a b_j j acc in v c * pow2 (bits t * (aLen + j)) + eval_ resLen res (aLen + j) == eval_ resLen acc (aLen + j) + bn_v a * v b_j * pow2 (bits t * j) /\ slice res (aLen + j) resLen == slice acc (aLen + j) resLen) let bn_mul1_lshift_add_lemma #t #aLen #resLen a b_j j acc = let pbits = bits t in let res1 = sub acc j aLen in let c, res2 = bn_mul1_add_in_place a b_j res1 in bn_mul1_add_in_place_lemma a b_j res1; assert (v c * pow2 (pbits * aLen) + bn_v res2 == bn_v res1 + bn_v a * v b_j); let res = update_sub acc j aLen res2 in bn_eval_split_i (sub res 0 (j + aLen)) j; bn_eval_extensionality_j res (sub res 0 (j + aLen)) (j + aLen); assert (eval_ resLen res (j + aLen) == bn_v #t #j (sub res 0 j) + pow2 (pbits * j) * bn_v res2); eq_intro (sub res 0 j) (sub acc 0 j); assert (bn_v #t #j (sub res 0 j) == bn_v #t #j (sub acc 0 j)); bn_eval_split_i (sub acc 0 (j + aLen)) j; bn_eval_extensionality_j acc (sub acc 0 (j + aLen)) (j + aLen); assert (eval_ resLen acc (j + aLen) == bn_v #t #j (sub acc 0 j) + pow2 (pbits * j) * bn_v res1); calc (==) { v c * pow2 (pbits * (aLen + j)) + eval_ resLen res (aLen + j); (==) { Math.Lemmas.pow2_plus (pbits * aLen) (pbits * j) } v c * (pow2 (pbits * aLen) * pow2 (pbits * j)) + eval_ resLen res (aLen + j); (==) { Math.Lemmas.paren_mul_right (v c) (pow2 (pbits * aLen)) (pow2 (pbits * j)) } v c * pow2 (pbits * aLen) * pow2 (pbits * j) + eval_ resLen res (aLen + j); (==) { } (bn_v res1 + bn_v a * v b_j - bn_v res2) * pow2 (pbits * j) + eval_ resLen res (aLen + j); (==) { } (bn_v res1 + bn_v a * v b_j - bn_v res2) * pow2 (pbits * j) + eval_ resLen acc (j + aLen) - pow2 (pbits * j) * bn_v res1 + pow2 (pbits * j) * bn_v res2; (==) { Math.Lemmas.distributivity_add_right (pow2 (pbits * j)) (bn_v res1) (bn_v a * v b_j - bn_v res2) } pow2 (pbits * j) * (bn_v a * v b_j - bn_v res2) + eval_ resLen acc (j + aLen) + pow2 (pbits * j) * bn_v res2; (==) { Math.Lemmas.distributivity_sub_right (pow2 (pbits * j)) (bn_v a * v b_j) (bn_v res2) } pow2 (pbits * j) * (bn_v a * v b_j) + eval_ resLen acc (j + aLen); }; assert (v c * pow2 (pbits * (aLen + j)) + eval_ resLen res (aLen + j) == eval_ resLen acc (aLen + j) + bn_v a * v b_j * pow2 (pbits * j)); eq_intro (slice res (aLen + j) resLen) (slice acc (aLen + j) resLen) val bn_mul_lemma_: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{aLen + bLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t bLen -> j:size_nat{j < bLen} -> acc:lbignum t (aLen + bLen) -> Lemma (let res = bn_mul_ a b j acc in v res.[aLen + j] * pow2 (bits t * (aLen + j)) + eval_ (aLen + bLen) res (aLen + j) == eval_ (aLen + bLen) acc (aLen + j) + bn_v a * v b.[j] * pow2 (bits t * j))
false
false
Hacl.Spec.Bignum.Multiplication.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_mul_lemma_: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{aLen + bLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t bLen -> j:size_nat{j < bLen} -> acc:lbignum t (aLen + bLen) -> Lemma (let res = bn_mul_ a b j acc in v res.[aLen + j] * pow2 (bits t * (aLen + j)) + eval_ (aLen + bLen) res (aLen + j) == eval_ (aLen + bLen) acc (aLen + j) + bn_v a * v b.[j] * pow2 (bits t * j))
[]
Hacl.Spec.Bignum.Multiplication.bn_mul_lemma_
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Multiplication.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> b: Hacl.Spec.Bignum.Definitions.lbignum t bLen -> j: Lib.IntTypes.size_nat{j < bLen} -> acc: Hacl.Spec.Bignum.Definitions.lbignum t (aLen + bLen) -> FStar.Pervasives.Lemma (ensures (let res = Hacl.Spec.Bignum.Multiplication.bn_mul_ a b j acc in Lib.IntTypes.v res.[ aLen + j ] * Prims.pow2 (Lib.IntTypes.bits t * (aLen + j)) + Hacl.Spec.Bignum.Definitions.eval_ (aLen + bLen) res (aLen + j) == Hacl.Spec.Bignum.Definitions.eval_ (aLen + bLen) acc (aLen + j) + (Hacl.Spec.Bignum.Definitions.bn_v a * Lib.IntTypes.v b.[ j ]) * Prims.pow2 (Lib.IntTypes.bits t * j)))
{ "end_col": 46, "end_line": 376, "start_col": 44, "start_line": 371 }
FStar.Pervasives.Lemma
val bn_mul_loop_lemma: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{aLen + bLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t bLen -> i:nat{i <= bLen} -> Lemma (let res = create (aLen + bLen) (uint #t 0) in let resi = repeati i (bn_mul_ a b) res in eval_ (aLen + bLen) resi (aLen + i) == bn_v a * eval_ bLen b i)
[ { "abbrev": false, "full_module": "Hacl.Spec.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec bn_mul_loop_lemma #t #aLen #bLen a b i = let res = create (aLen + bLen) (uint #t 0) in let resi = repeati i (bn_mul_ a b) res in if i = 0 then begin eq_repeati0 i (bn_mul_ a b) res; bn_eval0 b; bn_eval_zeroes #t (aLen + bLen) (aLen + i); () end else begin unfold_repeati i (bn_mul_ a b) res (i - 1); let resi1 = repeati (i - 1) (bn_mul_ a b) res in assert (resi == bn_mul_ a b (i - 1) resi1); bn_mul_loop_lemma a b (i - 1); assert (eval_ (aLen + bLen) resi1 (aLen + i - 1) == bn_v a * eval_ bLen b (i - 1)); bn_mul_loop_lemma_step a b i resi1; assert (eval_ (aLen + bLen) resi (aLen + i) == bn_v a * eval_ bLen b i); () end
val bn_mul_loop_lemma: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{aLen + bLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t bLen -> i:nat{i <= bLen} -> Lemma (let res = create (aLen + bLen) (uint #t 0) in let resi = repeati i (bn_mul_ a b) res in eval_ (aLen + bLen) resi (aLen + i) == bn_v a * eval_ bLen b i) let rec bn_mul_loop_lemma #t #aLen #bLen a b i =
false
null
true
let res = create (aLen + bLen) (uint #t 0) in let resi = repeati i (bn_mul_ a b) res in if i = 0 then (eq_repeati0 i (bn_mul_ a b) res; bn_eval0 b; bn_eval_zeroes #t (aLen + bLen) (aLen + i); ()) else (unfold_repeati i (bn_mul_ a b) res (i - 1); let resi1 = repeati (i - 1) (bn_mul_ a b) res in assert (resi == bn_mul_ a b (i - 1) resi1); bn_mul_loop_lemma a b (i - 1); assert (eval_ (aLen + bLen) resi1 (aLen + i - 1) == bn_v a * eval_ bLen b (i - 1)); bn_mul_loop_lemma_step a b i resi1; assert (eval_ (aLen + bLen) resi (aLen + i) == bn_v a * eval_ bLen b i); ())
{ "checked_file": "Hacl.Spec.Bignum.Multiplication.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Multiplication.fst" }
[ "lemma" ]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "Lib.IntTypes.max_size_t", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.nat", "Prims.op_Equality", "Prims.int", "Prims.unit", "Hacl.Spec.Bignum.Definitions.bn_eval_zeroes", "Hacl.Spec.Bignum.Definitions.bn_eval0", "Lib.LoopCombinators.eq_repeati0", "Hacl.Spec.Bignum.Multiplication.bn_mul_", "Prims.bool", "Prims._assert", "Prims.eq2", "Hacl.Spec.Bignum.Definitions.eval_", "FStar.Mul.op_Star", "Hacl.Spec.Bignum.Definitions.bn_v", "Hacl.Spec.Bignum.Multiplication.bn_mul_loop_lemma_step", "Prims.op_Subtraction", "Hacl.Spec.Bignum.Multiplication.bn_mul_loop_lemma", "Lib.LoopCombinators.repeati", "Lib.LoopCombinators.unfold_repeati", "Lib.Sequence.lseq", "Hacl.Spec.Bignum.Definitions.limb", "Prims.l_and", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.create", "Lib.IntTypes.mk_int", "Lib.IntTypes.SEC", "Prims.l_Forall", "Prims.l_imp", "Prims.op_LessThan", "Lib.Sequence.index", "Lib.Sequence.create", "Lib.IntTypes.uint" ]
[]
module Hacl.Spec.Bignum.Multiplication open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.LoopCombinators open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum.Base open Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_mul1_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> i:size_nat{i < aLen} -> c:limb t -> limb t & limb t // carry & out let bn_mul1_f #t #aLen a l i c = mul_wide_add a.[i] l c val bn_mul1: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> limb t & lbignum t aLen let bn_mul1 #t #aLen a l = generate_elems aLen aLen (bn_mul1_f a l) (uint #t 0) val bn_mul1_add_in_place_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> i:size_nat{i < aLen} -> c:limb t -> limb t & limb t // carry & out let bn_mul1_add_in_place_f #t #aLen a l acc i c = mul_wide_add2 a.[i] l c acc.[i] val bn_mul1_add_in_place: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> limb t & lbignum t aLen let bn_mul1_add_in_place #t #aLen a l acc = generate_elems aLen aLen (bn_mul1_add_in_place_f a l acc) (uint #t 0) val bn_mul1_lshift_add: #t:limb_t -> #aLen:size_nat -> #resLen:size_nat -> a:lbignum t aLen -> b_j:limb t -> j:size_nat{j + aLen <= resLen} -> res:lbignum t resLen -> limb t & lbignum t resLen let bn_mul1_lshift_add #t #aLen #resLen a b_j j res = let res' = sub res j aLen in let c, res' = bn_mul1_add_in_place a b_j res' in let res = update_sub res j aLen res' in c, res val bn_mul_: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{aLen + bLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t bLen -> j:size_nat{j < bLen} -> res:lbignum t (aLen + bLen) -> lbignum t (aLen + bLen) let bn_mul_ #t #aLen #bLen a b j res = let c, res = bn_mul1_lshift_add a b.[j] j res in res.[aLen + j] <- c val bn_mul: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{aLen + bLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t bLen -> lbignum t (aLen + bLen) let bn_mul #t #aLen #bLen a b = let res = create (aLen + bLen) (uint #t 0) in repeati bLen (bn_mul_ a b) res val bn_mul1_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (limb t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) * v l)) (ensures (let (c1, res1) = c1_res1 in let (c, res) = generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i * v l)) let bn_mul1_lemma_loop_step #t #aLen a l i (c1, res1) = let pbits = bits t in let b1 = pow2 (pbits * (i - 1)) in let b2 = pow2 (pbits * i) in let (c, res) = generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1) in let c, e = mul_wide_add a.[i - 1] l c1 in assert (v e + v c * pow2 pbits == v a.[i - 1] * v l + v c1); calc (==) { v c * b2 + bn_v #t #i res; (==) { bn_eval_snoc #t #(i - 1) res1 e } v c * b2 + bn_v #t #(i - 1) res1 + v e * b1; (==) { } v c * b2 + eval_ aLen a (i - 1) * v l -(v e + v c * pow2 pbits - v a.[i - 1] * v l) * b1 + v e * b1; (==) { Math.Lemmas.distributivity_add_left (v e) (v c * pow2 pbits - v a.[i - 1] * v l) b1 } v c * b2 + eval_ aLen a (i - 1) * v l - (v c * pow2 pbits - v a.[i - 1] * v l) * b1; (==) { Math.Lemmas.distributivity_sub_left (v c * pow2 pbits) (v a.[i - 1] * v l) b1 } v c * b2 + eval_ aLen a (i - 1) * v l - v c * pow2 pbits * b1 + v a.[i - 1] * v l * b1; (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) b1; Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen a (i - 1) * v l + v a.[i - 1] * v l * b1; (==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) (v l) b1 } eval_ aLen a (i - 1) * v l + v a.[i - 1] * (b1 * v l); (==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) b1 (v l) } eval_ aLen a (i - 1) * v l + v a.[i - 1] * b1 * v l; (==) { Math.Lemmas.distributivity_add_left (eval_ aLen a (i - 1)) (v a.[i - 1] * b1) (v l) } (eval_ aLen a (i - 1) + v a.[i - 1] * b1) * v l; (==) { bn_eval_unfold_i a i } eval_ aLen a i * v l; }; assert (v c * b2 + bn_v #t #i res == eval_ aLen a i * v l) val bn_mul1_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> i:nat{i <= aLen} -> Lemma (let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_f a l) (uint #t 0) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i * v l) let rec bn_mul1_lemma_loop #t #aLen a l i = let pbits = bits t in let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_f a l) (uint #t 0) in if i = 0 then begin eq_generate_elems0 aLen i (bn_mul1_f a l) (uint #t 0); assert (c == uint #t 0 /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; () end else begin let (c1, res1) : generate_elem_a (limb t) (limb t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_mul1_f a l) (uint #t 0) in generate_elems_unfold aLen i (bn_mul1_f a l) (uint #t 0) (i - 1); assert (generate_elems aLen i (bn_mul1_f a l) (uint #t 0) == generate_elem_f aLen (bn_mul1_f a l) (i - 1) (generate_elems aLen (i - 1) (bn_mul1_f a l) (uint #t 0))); assert ((c, res) == generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1)); bn_mul1_lemma_loop a l (i - 1); assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) * v l); bn_mul1_lemma_loop_step a l i (c1, res1); assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i * v l); () end val bn_mul1_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> Lemma (let (c, res) = bn_mul1 a l in v c * pow2 (bits t * aLen) + bn_v res == bn_v a * v l) let bn_mul1_lemma #t #aLen a l = let (c, res) = bn_mul1 a l in bn_mul1_lemma_loop a l aLen #push-options "--z3rlimit 150" val bn_mul1_add_in_place_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (limb t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l)) (ensures (let (c1, res1) = c1_res1 in let (c, res) = generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (c1, res1) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l)) let bn_mul1_add_in_place_lemma_loop_step #t #aLen a l acc i (c1, res1) = let pbits = bits t in let b1 = pow2 (pbits * (i - 1)) in let b2 = pow2 (pbits * i) in let (c, res) = generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (c1, res1) in let c, e = mul_wide_add2 a.[i - 1] l c1 acc.[i - 1] in assert (v e + v c * pow2 pbits == v a.[i - 1] * v l + v c1 + v acc.[i - 1]); calc (==) { v c * b2 + bn_v #t #i res; (==) { bn_eval_snoc #t #(i - 1) res1 e } v c * b2 + bn_v #t #(i - 1) res1 + v e * b1; (==) { } v c * b2 + eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l - (v e + v c * pow2 pbits - v a.[i - 1] * v l - v acc.[i - 1]) * b1 + v e * b1; (==) { Math.Lemmas.distributivity_add_left (v e) (v c * pow2 pbits - v a.[i - 1] * v l - v acc.[i - 1]) b1 } v c * b2 + eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l - (v c * pow2 pbits - v a.[i - 1] * v l - v acc.[i - 1]) * b1; (==) { Math.Lemmas.distributivity_sub_left (v c * pow2 pbits) (v a.[i - 1] * v l + v acc.[i - 1]) b1 } v c * b2 + eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l - (v c * pow2 pbits) * b1 + (v a.[i - 1] * v l + v acc.[i - 1]) * b1; (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) b1; Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l + (v a.[i - 1] * v l + v acc.[i - 1]) * b1; (==) { Math.Lemmas.distributivity_add_left (v a.[i - 1] * v l) (v acc.[i - 1]) b1 } eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l + v a.[i - 1] * v l * b1 + v acc.[i - 1] * b1; (==) { bn_eval_unfold_i acc i } eval_ aLen acc i + eval_ aLen a (i - 1) * v l + v a.[i - 1] * v l * b1; (==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) (v l) b1 } eval_ aLen acc i + eval_ aLen a (i - 1) * v l + v a.[i - 1] * (b1 * v l); (==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) b1 (v l) } eval_ aLen acc i + eval_ aLen a (i - 1) * v l + v a.[i - 1] * b1 * v l; (==) { Math.Lemmas.distributivity_add_left (eval_ aLen a (i - 1)) (v a.[i - 1] * b1) (v l) } eval_ aLen acc i + (eval_ aLen a (i - 1) + v a.[i - 1] * b1) * v l; (==) { bn_eval_unfold_i a i } eval_ aLen acc i + eval_ aLen a i * v l; }; assert (v c * b2 + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l) #pop-options val bn_mul1_add_in_place_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> i:nat{i <= aLen} -> Lemma (let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l) let rec bn_mul1_add_in_place_lemma_loop #t #aLen a l acc i = let pbits = bits t in let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) in if i = 0 then begin eq_generate_elems0 aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0); assert (c == uint #t 0 /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; bn_eval0 acc; () end else begin let (c1, res1) : generate_elem_a (limb t) (limb t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_mul1_add_in_place_f a l acc) (uint #t 0) in generate_elems_unfold aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) (i - 1); assert (generate_elems aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) == generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (generate_elems aLen (i - 1) (bn_mul1_add_in_place_f a l acc) (uint #t 0))); assert ((c, res) == generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (c1, res1)); bn_mul1_add_in_place_lemma_loop a l acc (i - 1); assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l); bn_mul1_add_in_place_lemma_loop_step a l acc i (c1, res1); assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l); () end val bn_mul1_add_in_place_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> Lemma (let (c, res) = bn_mul1_add_in_place a l acc in v c * pow2 (bits t * aLen) + bn_v res == bn_v acc + bn_v a * v l) let bn_mul1_add_in_place_lemma #t #aLen a l acc = let (c, res) = bn_mul1_add_in_place a l acc in bn_mul1_add_in_place_lemma_loop a l acc aLen val bn_mul1_lshift_add_lemma: #t:limb_t -> #aLen:size_nat -> #resLen:size_nat -> a:lbignum t aLen -> b_j:limb t -> j:size_nat{j + aLen <= resLen} -> acc:lbignum t resLen -> Lemma (let (c, res) = bn_mul1_lshift_add a b_j j acc in v c * pow2 (bits t * (aLen + j)) + eval_ resLen res (aLen + j) == eval_ resLen acc (aLen + j) + bn_v a * v b_j * pow2 (bits t * j) /\ slice res (aLen + j) resLen == slice acc (aLen + j) resLen) let bn_mul1_lshift_add_lemma #t #aLen #resLen a b_j j acc = let pbits = bits t in let res1 = sub acc j aLen in let c, res2 = bn_mul1_add_in_place a b_j res1 in bn_mul1_add_in_place_lemma a b_j res1; assert (v c * pow2 (pbits * aLen) + bn_v res2 == bn_v res1 + bn_v a * v b_j); let res = update_sub acc j aLen res2 in bn_eval_split_i (sub res 0 (j + aLen)) j; bn_eval_extensionality_j res (sub res 0 (j + aLen)) (j + aLen); assert (eval_ resLen res (j + aLen) == bn_v #t #j (sub res 0 j) + pow2 (pbits * j) * bn_v res2); eq_intro (sub res 0 j) (sub acc 0 j); assert (bn_v #t #j (sub res 0 j) == bn_v #t #j (sub acc 0 j)); bn_eval_split_i (sub acc 0 (j + aLen)) j; bn_eval_extensionality_j acc (sub acc 0 (j + aLen)) (j + aLen); assert (eval_ resLen acc (j + aLen) == bn_v #t #j (sub acc 0 j) + pow2 (pbits * j) * bn_v res1); calc (==) { v c * pow2 (pbits * (aLen + j)) + eval_ resLen res (aLen + j); (==) { Math.Lemmas.pow2_plus (pbits * aLen) (pbits * j) } v c * (pow2 (pbits * aLen) * pow2 (pbits * j)) + eval_ resLen res (aLen + j); (==) { Math.Lemmas.paren_mul_right (v c) (pow2 (pbits * aLen)) (pow2 (pbits * j)) } v c * pow2 (pbits * aLen) * pow2 (pbits * j) + eval_ resLen res (aLen + j); (==) { } (bn_v res1 + bn_v a * v b_j - bn_v res2) * pow2 (pbits * j) + eval_ resLen res (aLen + j); (==) { } (bn_v res1 + bn_v a * v b_j - bn_v res2) * pow2 (pbits * j) + eval_ resLen acc (j + aLen) - pow2 (pbits * j) * bn_v res1 + pow2 (pbits * j) * bn_v res2; (==) { Math.Lemmas.distributivity_add_right (pow2 (pbits * j)) (bn_v res1) (bn_v a * v b_j - bn_v res2) } pow2 (pbits * j) * (bn_v a * v b_j - bn_v res2) + eval_ resLen acc (j + aLen) + pow2 (pbits * j) * bn_v res2; (==) { Math.Lemmas.distributivity_sub_right (pow2 (pbits * j)) (bn_v a * v b_j) (bn_v res2) } pow2 (pbits * j) * (bn_v a * v b_j) + eval_ resLen acc (j + aLen); }; assert (v c * pow2 (pbits * (aLen + j)) + eval_ resLen res (aLen + j) == eval_ resLen acc (aLen + j) + bn_v a * v b_j * pow2 (pbits * j)); eq_intro (slice res (aLen + j) resLen) (slice acc (aLen + j) resLen) val bn_mul_lemma_: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{aLen + bLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t bLen -> j:size_nat{j < bLen} -> acc:lbignum t (aLen + bLen) -> Lemma (let res = bn_mul_ a b j acc in v res.[aLen + j] * pow2 (bits t * (aLen + j)) + eval_ (aLen + bLen) res (aLen + j) == eval_ (aLen + bLen) acc (aLen + j) + bn_v a * v b.[j] * pow2 (bits t * j)) let bn_mul_lemma_ #t #aLen #bLen a b j acc = let c, res = bn_mul1_lshift_add a b.[j] j acc in bn_mul1_lshift_add_lemma a b.[j] j acc; let res1 = res.[aLen + j] <- c in bn_eval_extensionality_j res res1 (aLen + j) val bn_mul_loop_lemma_step: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{aLen + bLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t bLen -> i:pos{i <= bLen} -> resi1:lbignum t (aLen + bLen) -> Lemma (requires eval_ (aLen + bLen) resi1 (aLen + i - 1) == bn_v a * eval_ bLen b (i - 1)) (ensures (let resi = bn_mul_ a b (i - 1) resi1 in eval_ (aLen + bLen) resi (aLen + i) == bn_v a * eval_ bLen b i)) let bn_mul_loop_lemma_step #t #aLen #bLen a b i resi1 = let pbits = bits t in let resi = bn_mul_ a b (i - 1) resi1 in bn_mul_lemma_ a b (i - 1) resi1; assert (v resi.[aLen + i - 1] * pow2 (pbits * (aLen + i - 1)) + eval_ (aLen + bLen) resi (aLen + i - 1) == eval_ (aLen + bLen) resi1 (aLen + i - 1) + bn_v a * v b.[i - 1] * (pow2 (pbits * (i - 1)))); calc (==) { eval_ (aLen + bLen) resi (aLen + i); (==) { bn_eval_unfold_i resi (aLen + i) } eval_ (aLen + bLen) resi (aLen + i - 1) + v resi.[aLen + i - 1] * pow2 (pbits * (aLen + i - 1)); (==) { } eval_ (aLen + bLen) resi1 (aLen + i - 1) + bn_v a * v b.[i - 1] * (pow2 (pbits * (i - 1))); (==) { } bn_v a * eval_ bLen b (i - 1) + bn_v a * v b.[i - 1] * (pow2 (pbits * (i - 1))); (==) { Math.Lemmas.paren_mul_right (bn_v a) (v b.[i - 1]) (pow2 (pbits * (i - 1))) } bn_v a * eval_ bLen b (i - 1) + bn_v a * (v b.[i - 1] * (pow2 (pbits * (i - 1)))); (==) { Math.Lemmas.distributivity_add_right (bn_v a) (eval_ bLen b (i - 1)) (v b.[i - 1] * (pow2 (pbits * (i - 1)))) } bn_v a * (eval_ bLen b (i - 1) + v b.[i - 1] * (pow2 (pbits * (i - 1)))); (==) { bn_eval_unfold_i b i } bn_v a * eval_ bLen b i; }; assert (eval_ (aLen + bLen) resi (aLen + i) == bn_v a * eval_ bLen b i) val bn_mul_loop_lemma: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{aLen + bLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t bLen -> i:nat{i <= bLen} -> Lemma (let res = create (aLen + bLen) (uint #t 0) in let resi = repeati i (bn_mul_ a b) res in eval_ (aLen + bLen) resi (aLen + i) == bn_v a * eval_ bLen b i)
false
false
Hacl.Spec.Bignum.Multiplication.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_mul_loop_lemma: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{aLen + bLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t bLen -> i:nat{i <= bLen} -> Lemma (let res = create (aLen + bLen) (uint #t 0) in let resi = repeati i (bn_mul_ a b) res in eval_ (aLen + bLen) resi (aLen + i) == bn_v a * eval_ bLen b i)
[ "recursion" ]
Hacl.Spec.Bignum.Multiplication.bn_mul_loop_lemma
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Multiplication.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> b: Hacl.Spec.Bignum.Definitions.lbignum t bLen -> i: Prims.nat{i <= bLen} -> FStar.Pervasives.Lemma (ensures (let res = Lib.Sequence.create (aLen + bLen) (Lib.IntTypes.uint 0) in let resi = Lib.LoopCombinators.repeati i (Hacl.Spec.Bignum.Multiplication.bn_mul_ a b) res in Hacl.Spec.Bignum.Definitions.eval_ (aLen + bLen) resi (aLen + i) == Hacl.Spec.Bignum.Definitions.bn_v a * Hacl.Spec.Bignum.Definitions.eval_ bLen b i))
{ "end_col": 10, "end_line": 445, "start_col": 48, "start_line": 429 }
FStar.Pervasives.Lemma
val bn_mul1_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> i:nat{i <= aLen} -> Lemma (let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_f a l) (uint #t 0) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i * v l)
[ { "abbrev": false, "full_module": "Hacl.Spec.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec bn_mul1_lemma_loop #t #aLen a l i = let pbits = bits t in let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_f a l) (uint #t 0) in if i = 0 then begin eq_generate_elems0 aLen i (bn_mul1_f a l) (uint #t 0); assert (c == uint #t 0 /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; () end else begin let (c1, res1) : generate_elem_a (limb t) (limb t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_mul1_f a l) (uint #t 0) in generate_elems_unfold aLen i (bn_mul1_f a l) (uint #t 0) (i - 1); assert (generate_elems aLen i (bn_mul1_f a l) (uint #t 0) == generate_elem_f aLen (bn_mul1_f a l) (i - 1) (generate_elems aLen (i - 1) (bn_mul1_f a l) (uint #t 0))); assert ((c, res) == generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1)); bn_mul1_lemma_loop a l (i - 1); assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) * v l); bn_mul1_lemma_loop_step a l i (c1, res1); assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i * v l); () end
val bn_mul1_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> i:nat{i <= aLen} -> Lemma (let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_f a l) (uint #t 0) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i * v l) let rec bn_mul1_lemma_loop #t #aLen a l i =
false
null
true
let pbits = bits t in let c, res:generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_f a l) (uint #t 0) in if i = 0 then (eq_generate_elems0 aLen i (bn_mul1_f a l) (uint #t 0); assert (c == uint #t 0 /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; ()) else let c1, res1:generate_elem_a (limb t) (limb t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_mul1_f a l) (uint #t 0) in generate_elems_unfold aLen i (bn_mul1_f a l) (uint #t 0) (i - 1); assert (generate_elems aLen i (bn_mul1_f a l) (uint #t 0) == generate_elem_f aLen (bn_mul1_f a l) (i - 1) (generate_elems aLen (i - 1) (bn_mul1_f a l) (uint #t 0))); assert ((c, res) == generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1)); bn_mul1_lemma_loop a l (i - 1); assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) * v l); bn_mul1_lemma_loop_step a l i (c1, res1); assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i * v l); ()
{ "checked_file": "Hacl.Spec.Bignum.Multiplication.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Multiplication.fst" }
[ "lemma" ]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Definitions.limb", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Lib.Sequence.seq", "Prims.eq2", "Lib.Sequence.length", "Prims.op_Equality", "Prims.int", "Prims.unit", "Hacl.Spec.Bignum.Definitions.bn_eval0", "FStar.Pervasives.assert_norm", "Prims.pow2", "Prims._assert", "Prims.l_and", "Lib.IntTypes.int_t", "Lib.IntTypes.SEC", "Lib.IntTypes.uint", "FStar.Seq.Base.seq", "Prims.l_or", "FStar.Seq.Base.length", "FStar.Seq.Base.empty", "Hacl.Spec.Lib.eq_generate_elems0", "Hacl.Spec.Bignum.Multiplication.bn_mul1_f", "Prims.bool", "Prims.op_Subtraction", "Prims.op_Addition", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Hacl.Spec.Bignum.Definitions.bn_v", "Hacl.Spec.Bignum.Definitions.eval_", "Hacl.Spec.Bignum.Multiplication.bn_mul1_lemma_loop_step", "FStar.Pervasives.Native.Mktuple2", "Hacl.Spec.Bignum.Multiplication.bn_mul1_lemma_loop", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Lib.generate_elem_f", "Hacl.Spec.Lib.generate_elems", "Hacl.Spec.Lib.generate_elems_unfold", "Hacl.Spec.Lib.generate_elem_a", "Lib.IntTypes.bits" ]
[]
module Hacl.Spec.Bignum.Multiplication open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.LoopCombinators open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum.Base open Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_mul1_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> i:size_nat{i < aLen} -> c:limb t -> limb t & limb t // carry & out let bn_mul1_f #t #aLen a l i c = mul_wide_add a.[i] l c val bn_mul1: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> limb t & lbignum t aLen let bn_mul1 #t #aLen a l = generate_elems aLen aLen (bn_mul1_f a l) (uint #t 0) val bn_mul1_add_in_place_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> i:size_nat{i < aLen} -> c:limb t -> limb t & limb t // carry & out let bn_mul1_add_in_place_f #t #aLen a l acc i c = mul_wide_add2 a.[i] l c acc.[i] val bn_mul1_add_in_place: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> limb t & lbignum t aLen let bn_mul1_add_in_place #t #aLen a l acc = generate_elems aLen aLen (bn_mul1_add_in_place_f a l acc) (uint #t 0) val bn_mul1_lshift_add: #t:limb_t -> #aLen:size_nat -> #resLen:size_nat -> a:lbignum t aLen -> b_j:limb t -> j:size_nat{j + aLen <= resLen} -> res:lbignum t resLen -> limb t & lbignum t resLen let bn_mul1_lshift_add #t #aLen #resLen a b_j j res = let res' = sub res j aLen in let c, res' = bn_mul1_add_in_place a b_j res' in let res = update_sub res j aLen res' in c, res val bn_mul_: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{aLen + bLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t bLen -> j:size_nat{j < bLen} -> res:lbignum t (aLen + bLen) -> lbignum t (aLen + bLen) let bn_mul_ #t #aLen #bLen a b j res = let c, res = bn_mul1_lshift_add a b.[j] j res in res.[aLen + j] <- c val bn_mul: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{aLen + bLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t bLen -> lbignum t (aLen + bLen) let bn_mul #t #aLen #bLen a b = let res = create (aLen + bLen) (uint #t 0) in repeati bLen (bn_mul_ a b) res val bn_mul1_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (limb t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) * v l)) (ensures (let (c1, res1) = c1_res1 in let (c, res) = generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i * v l)) let bn_mul1_lemma_loop_step #t #aLen a l i (c1, res1) = let pbits = bits t in let b1 = pow2 (pbits * (i - 1)) in let b2 = pow2 (pbits * i) in let (c, res) = generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1) in let c, e = mul_wide_add a.[i - 1] l c1 in assert (v e + v c * pow2 pbits == v a.[i - 1] * v l + v c1); calc (==) { v c * b2 + bn_v #t #i res; (==) { bn_eval_snoc #t #(i - 1) res1 e } v c * b2 + bn_v #t #(i - 1) res1 + v e * b1; (==) { } v c * b2 + eval_ aLen a (i - 1) * v l -(v e + v c * pow2 pbits - v a.[i - 1] * v l) * b1 + v e * b1; (==) { Math.Lemmas.distributivity_add_left (v e) (v c * pow2 pbits - v a.[i - 1] * v l) b1 } v c * b2 + eval_ aLen a (i - 1) * v l - (v c * pow2 pbits - v a.[i - 1] * v l) * b1; (==) { Math.Lemmas.distributivity_sub_left (v c * pow2 pbits) (v a.[i - 1] * v l) b1 } v c * b2 + eval_ aLen a (i - 1) * v l - v c * pow2 pbits * b1 + v a.[i - 1] * v l * b1; (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) b1; Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen a (i - 1) * v l + v a.[i - 1] * v l * b1; (==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) (v l) b1 } eval_ aLen a (i - 1) * v l + v a.[i - 1] * (b1 * v l); (==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) b1 (v l) } eval_ aLen a (i - 1) * v l + v a.[i - 1] * b1 * v l; (==) { Math.Lemmas.distributivity_add_left (eval_ aLen a (i - 1)) (v a.[i - 1] * b1) (v l) } (eval_ aLen a (i - 1) + v a.[i - 1] * b1) * v l; (==) { bn_eval_unfold_i a i } eval_ aLen a i * v l; }; assert (v c * b2 + bn_v #t #i res == eval_ aLen a i * v l) val bn_mul1_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> i:nat{i <= aLen} -> Lemma (let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_f a l) (uint #t 0) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i * v l)
false
false
Hacl.Spec.Bignum.Multiplication.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_mul1_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> i:nat{i <= aLen} -> Lemma (let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_f a l) (uint #t 0) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i * v l)
[ "recursion" ]
Hacl.Spec.Bignum.Multiplication.bn_mul1_lemma_loop
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Multiplication.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> l: Hacl.Spec.Bignum.Definitions.limb t -> i: Prims.nat{i <= aLen} -> FStar.Pervasives.Lemma (ensures (let _ = Hacl.Spec.Lib.generate_elems aLen i (Hacl.Spec.Bignum.Multiplication.bn_mul1_f a l) (Lib.IntTypes.uint 0) in (let FStar.Pervasives.Native.Mktuple2 #_ #_ c res = _ in let _ = _ in Lib.IntTypes.v c * Prims.pow2 (Lib.IntTypes.bits t * i) + Hacl.Spec.Bignum.Definitions.bn_v res == Hacl.Spec.Bignum.Definitions.eval_ aLen a i * Lib.IntTypes.v l) <: Type0))
{ "end_col": 10, "end_line": 189, "start_col": 43, "start_line": 169 }
FStar.Pervasives.Lemma
val bn_mul1_add_in_place_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> i:nat{i <= aLen} -> Lemma (let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l)
[ { "abbrev": false, "full_module": "Hacl.Spec.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec bn_mul1_add_in_place_lemma_loop #t #aLen a l acc i = let pbits = bits t in let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) in if i = 0 then begin eq_generate_elems0 aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0); assert (c == uint #t 0 /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; bn_eval0 acc; () end else begin let (c1, res1) : generate_elem_a (limb t) (limb t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_mul1_add_in_place_f a l acc) (uint #t 0) in generate_elems_unfold aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) (i - 1); assert (generate_elems aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) == generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (generate_elems aLen (i - 1) (bn_mul1_add_in_place_f a l acc) (uint #t 0))); assert ((c, res) == generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (c1, res1)); bn_mul1_add_in_place_lemma_loop a l acc (i - 1); assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l); bn_mul1_add_in_place_lemma_loop_step a l acc i (c1, res1); assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l); () end
val bn_mul1_add_in_place_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> i:nat{i <= aLen} -> Lemma (let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l) let rec bn_mul1_add_in_place_lemma_loop #t #aLen a l acc i =
false
null
true
let pbits = bits t in let c, res:generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) in if i = 0 then (eq_generate_elems0 aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0); assert (c == uint #t 0 /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; bn_eval0 acc; ()) else let c1, res1:generate_elem_a (limb t) (limb t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_mul1_add_in_place_f a l acc) (uint #t 0) in generate_elems_unfold aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) (i - 1); assert (generate_elems aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) == generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (generate_elems aLen (i - 1) (bn_mul1_add_in_place_f a l acc) (uint #t 0))); assert ((c, res) == generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (c1, res1)); bn_mul1_add_in_place_lemma_loop a l acc (i - 1); assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l); bn_mul1_add_in_place_lemma_loop_step a l acc i (c1, res1); assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l); ()
{ "checked_file": "Hacl.Spec.Bignum.Multiplication.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Multiplication.fst" }
[ "lemma" ]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Definitions.limb", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Lib.Sequence.seq", "Prims.eq2", "Lib.Sequence.length", "Prims.op_Equality", "Prims.int", "Prims.unit", "Hacl.Spec.Bignum.Definitions.bn_eval0", "FStar.Pervasives.assert_norm", "Prims.pow2", "Prims._assert", "Prims.l_and", "Lib.IntTypes.int_t", "Lib.IntTypes.SEC", "Lib.IntTypes.uint", "FStar.Seq.Base.seq", "Prims.l_or", "FStar.Seq.Base.length", "FStar.Seq.Base.empty", "Hacl.Spec.Lib.eq_generate_elems0", "Hacl.Spec.Bignum.Multiplication.bn_mul1_add_in_place_f", "Prims.bool", "Prims.op_Subtraction", "Prims.op_Addition", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Hacl.Spec.Bignum.Definitions.bn_v", "Hacl.Spec.Bignum.Definitions.eval_", "Hacl.Spec.Bignum.Multiplication.bn_mul1_add_in_place_lemma_loop_step", "FStar.Pervasives.Native.Mktuple2", "Hacl.Spec.Bignum.Multiplication.bn_mul1_add_in_place_lemma_loop", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Lib.generate_elem_f", "Hacl.Spec.Lib.generate_elems", "Hacl.Spec.Lib.generate_elems_unfold", "Hacl.Spec.Lib.generate_elem_a", "Lib.IntTypes.bits" ]
[]
module Hacl.Spec.Bignum.Multiplication open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.LoopCombinators open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum.Base open Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_mul1_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> i:size_nat{i < aLen} -> c:limb t -> limb t & limb t // carry & out let bn_mul1_f #t #aLen a l i c = mul_wide_add a.[i] l c val bn_mul1: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> limb t & lbignum t aLen let bn_mul1 #t #aLen a l = generate_elems aLen aLen (bn_mul1_f a l) (uint #t 0) val bn_mul1_add_in_place_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> i:size_nat{i < aLen} -> c:limb t -> limb t & limb t // carry & out let bn_mul1_add_in_place_f #t #aLen a l acc i c = mul_wide_add2 a.[i] l c acc.[i] val bn_mul1_add_in_place: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> limb t & lbignum t aLen let bn_mul1_add_in_place #t #aLen a l acc = generate_elems aLen aLen (bn_mul1_add_in_place_f a l acc) (uint #t 0) val bn_mul1_lshift_add: #t:limb_t -> #aLen:size_nat -> #resLen:size_nat -> a:lbignum t aLen -> b_j:limb t -> j:size_nat{j + aLen <= resLen} -> res:lbignum t resLen -> limb t & lbignum t resLen let bn_mul1_lshift_add #t #aLen #resLen a b_j j res = let res' = sub res j aLen in let c, res' = bn_mul1_add_in_place a b_j res' in let res = update_sub res j aLen res' in c, res val bn_mul_: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{aLen + bLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t bLen -> j:size_nat{j < bLen} -> res:lbignum t (aLen + bLen) -> lbignum t (aLen + bLen) let bn_mul_ #t #aLen #bLen a b j res = let c, res = bn_mul1_lshift_add a b.[j] j res in res.[aLen + j] <- c val bn_mul: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{aLen + bLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t bLen -> lbignum t (aLen + bLen) let bn_mul #t #aLen #bLen a b = let res = create (aLen + bLen) (uint #t 0) in repeati bLen (bn_mul_ a b) res val bn_mul1_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (limb t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) * v l)) (ensures (let (c1, res1) = c1_res1 in let (c, res) = generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i * v l)) let bn_mul1_lemma_loop_step #t #aLen a l i (c1, res1) = let pbits = bits t in let b1 = pow2 (pbits * (i - 1)) in let b2 = pow2 (pbits * i) in let (c, res) = generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1) in let c, e = mul_wide_add a.[i - 1] l c1 in assert (v e + v c * pow2 pbits == v a.[i - 1] * v l + v c1); calc (==) { v c * b2 + bn_v #t #i res; (==) { bn_eval_snoc #t #(i - 1) res1 e } v c * b2 + bn_v #t #(i - 1) res1 + v e * b1; (==) { } v c * b2 + eval_ aLen a (i - 1) * v l -(v e + v c * pow2 pbits - v a.[i - 1] * v l) * b1 + v e * b1; (==) { Math.Lemmas.distributivity_add_left (v e) (v c * pow2 pbits - v a.[i - 1] * v l) b1 } v c * b2 + eval_ aLen a (i - 1) * v l - (v c * pow2 pbits - v a.[i - 1] * v l) * b1; (==) { Math.Lemmas.distributivity_sub_left (v c * pow2 pbits) (v a.[i - 1] * v l) b1 } v c * b2 + eval_ aLen a (i - 1) * v l - v c * pow2 pbits * b1 + v a.[i - 1] * v l * b1; (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) b1; Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen a (i - 1) * v l + v a.[i - 1] * v l * b1; (==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) (v l) b1 } eval_ aLen a (i - 1) * v l + v a.[i - 1] * (b1 * v l); (==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) b1 (v l) } eval_ aLen a (i - 1) * v l + v a.[i - 1] * b1 * v l; (==) { Math.Lemmas.distributivity_add_left (eval_ aLen a (i - 1)) (v a.[i - 1] * b1) (v l) } (eval_ aLen a (i - 1) + v a.[i - 1] * b1) * v l; (==) { bn_eval_unfold_i a i } eval_ aLen a i * v l; }; assert (v c * b2 + bn_v #t #i res == eval_ aLen a i * v l) val bn_mul1_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> i:nat{i <= aLen} -> Lemma (let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_f a l) (uint #t 0) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i * v l) let rec bn_mul1_lemma_loop #t #aLen a l i = let pbits = bits t in let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_f a l) (uint #t 0) in if i = 0 then begin eq_generate_elems0 aLen i (bn_mul1_f a l) (uint #t 0); assert (c == uint #t 0 /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; () end else begin let (c1, res1) : generate_elem_a (limb t) (limb t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_mul1_f a l) (uint #t 0) in generate_elems_unfold aLen i (bn_mul1_f a l) (uint #t 0) (i - 1); assert (generate_elems aLen i (bn_mul1_f a l) (uint #t 0) == generate_elem_f aLen (bn_mul1_f a l) (i - 1) (generate_elems aLen (i - 1) (bn_mul1_f a l) (uint #t 0))); assert ((c, res) == generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1)); bn_mul1_lemma_loop a l (i - 1); assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) * v l); bn_mul1_lemma_loop_step a l i (c1, res1); assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i * v l); () end val bn_mul1_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> Lemma (let (c, res) = bn_mul1 a l in v c * pow2 (bits t * aLen) + bn_v res == bn_v a * v l) let bn_mul1_lemma #t #aLen a l = let (c, res) = bn_mul1 a l in bn_mul1_lemma_loop a l aLen #push-options "--z3rlimit 150" val bn_mul1_add_in_place_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (limb t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l)) (ensures (let (c1, res1) = c1_res1 in let (c, res) = generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (c1, res1) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l)) let bn_mul1_add_in_place_lemma_loop_step #t #aLen a l acc i (c1, res1) = let pbits = bits t in let b1 = pow2 (pbits * (i - 1)) in let b2 = pow2 (pbits * i) in let (c, res) = generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (c1, res1) in let c, e = mul_wide_add2 a.[i - 1] l c1 acc.[i - 1] in assert (v e + v c * pow2 pbits == v a.[i - 1] * v l + v c1 + v acc.[i - 1]); calc (==) { v c * b2 + bn_v #t #i res; (==) { bn_eval_snoc #t #(i - 1) res1 e } v c * b2 + bn_v #t #(i - 1) res1 + v e * b1; (==) { } v c * b2 + eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l - (v e + v c * pow2 pbits - v a.[i - 1] * v l - v acc.[i - 1]) * b1 + v e * b1; (==) { Math.Lemmas.distributivity_add_left (v e) (v c * pow2 pbits - v a.[i - 1] * v l - v acc.[i - 1]) b1 } v c * b2 + eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l - (v c * pow2 pbits - v a.[i - 1] * v l - v acc.[i - 1]) * b1; (==) { Math.Lemmas.distributivity_sub_left (v c * pow2 pbits) (v a.[i - 1] * v l + v acc.[i - 1]) b1 } v c * b2 + eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l - (v c * pow2 pbits) * b1 + (v a.[i - 1] * v l + v acc.[i - 1]) * b1; (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) b1; Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l + (v a.[i - 1] * v l + v acc.[i - 1]) * b1; (==) { Math.Lemmas.distributivity_add_left (v a.[i - 1] * v l) (v acc.[i - 1]) b1 } eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l + v a.[i - 1] * v l * b1 + v acc.[i - 1] * b1; (==) { bn_eval_unfold_i acc i } eval_ aLen acc i + eval_ aLen a (i - 1) * v l + v a.[i - 1] * v l * b1; (==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) (v l) b1 } eval_ aLen acc i + eval_ aLen a (i - 1) * v l + v a.[i - 1] * (b1 * v l); (==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) b1 (v l) } eval_ aLen acc i + eval_ aLen a (i - 1) * v l + v a.[i - 1] * b1 * v l; (==) { Math.Lemmas.distributivity_add_left (eval_ aLen a (i - 1)) (v a.[i - 1] * b1) (v l) } eval_ aLen acc i + (eval_ aLen a (i - 1) + v a.[i - 1] * b1) * v l; (==) { bn_eval_unfold_i a i } eval_ aLen acc i + eval_ aLen a i * v l; }; assert (v c * b2 + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l) #pop-options val bn_mul1_add_in_place_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> i:nat{i <= aLen} -> Lemma (let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l)
false
false
Hacl.Spec.Bignum.Multiplication.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_mul1_add_in_place_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> i:nat{i <= aLen} -> Lemma (let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l)
[ "recursion" ]
Hacl.Spec.Bignum.Multiplication.bn_mul1_add_in_place_lemma_loop
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Multiplication.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> l: Hacl.Spec.Bignum.Definitions.limb t -> acc: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> i: Prims.nat{i <= aLen} -> FStar.Pervasives.Lemma (ensures (let _ = Hacl.Spec.Lib.generate_elems aLen i (Hacl.Spec.Bignum.Multiplication.bn_mul1_add_in_place_f a l acc) (Lib.IntTypes.uint 0) in (let FStar.Pervasives.Native.Mktuple2 #_ #_ c res = _ in let _ = _ in Lib.IntTypes.v c * Prims.pow2 (Lib.IntTypes.bits t * i) + Hacl.Spec.Bignum.Definitions.bn_v res == Hacl.Spec.Bignum.Definitions.eval_ aLen acc i + Hacl.Spec.Bignum.Definitions.eval_ aLen a i * Lib.IntTypes.v l) <: Type0))
{ "end_col": 10, "end_line": 293, "start_col": 60, "start_line": 272 }
FStar.Pervasives.Lemma
val bn_mul_loop_lemma_step: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{aLen + bLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t bLen -> i:pos{i <= bLen} -> resi1:lbignum t (aLen + bLen) -> Lemma (requires eval_ (aLen + bLen) resi1 (aLen + i - 1) == bn_v a * eval_ bLen b (i - 1)) (ensures (let resi = bn_mul_ a b (i - 1) resi1 in eval_ (aLen + bLen) resi (aLen + i) == bn_v a * eval_ bLen b i))
[ { "abbrev": false, "full_module": "Hacl.Spec.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_mul_loop_lemma_step #t #aLen #bLen a b i resi1 = let pbits = bits t in let resi = bn_mul_ a b (i - 1) resi1 in bn_mul_lemma_ a b (i - 1) resi1; assert (v resi.[aLen + i - 1] * pow2 (pbits * (aLen + i - 1)) + eval_ (aLen + bLen) resi (aLen + i - 1) == eval_ (aLen + bLen) resi1 (aLen + i - 1) + bn_v a * v b.[i - 1] * (pow2 (pbits * (i - 1)))); calc (==) { eval_ (aLen + bLen) resi (aLen + i); (==) { bn_eval_unfold_i resi (aLen + i) } eval_ (aLen + bLen) resi (aLen + i - 1) + v resi.[aLen + i - 1] * pow2 (pbits * (aLen + i - 1)); (==) { } eval_ (aLen + bLen) resi1 (aLen + i - 1) + bn_v a * v b.[i - 1] * (pow2 (pbits * (i - 1))); (==) { } bn_v a * eval_ bLen b (i - 1) + bn_v a * v b.[i - 1] * (pow2 (pbits * (i - 1))); (==) { Math.Lemmas.paren_mul_right (bn_v a) (v b.[i - 1]) (pow2 (pbits * (i - 1))) } bn_v a * eval_ bLen b (i - 1) + bn_v a * (v b.[i - 1] * (pow2 (pbits * (i - 1)))); (==) { Math.Lemmas.distributivity_add_right (bn_v a) (eval_ bLen b (i - 1)) (v b.[i - 1] * (pow2 (pbits * (i - 1)))) } bn_v a * (eval_ bLen b (i - 1) + v b.[i - 1] * (pow2 (pbits * (i - 1)))); (==) { bn_eval_unfold_i b i } bn_v a * eval_ bLen b i; }; assert (eval_ (aLen + bLen) resi (aLen + i) == bn_v a * eval_ bLen b i)
val bn_mul_loop_lemma_step: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{aLen + bLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t bLen -> i:pos{i <= bLen} -> resi1:lbignum t (aLen + bLen) -> Lemma (requires eval_ (aLen + bLen) resi1 (aLen + i - 1) == bn_v a * eval_ bLen b (i - 1)) (ensures (let resi = bn_mul_ a b (i - 1) resi1 in eval_ (aLen + bLen) resi (aLen + i) == bn_v a * eval_ bLen b i)) let bn_mul_loop_lemma_step #t #aLen #bLen a b i resi1 =
false
null
true
let pbits = bits t in let resi = bn_mul_ a b (i - 1) resi1 in bn_mul_lemma_ a b (i - 1) resi1; assert (v resi.[ aLen + i - 1 ] * pow2 (pbits * (aLen + i - 1)) + eval_ (aLen + bLen) resi (aLen + i - 1) == eval_ (aLen + bLen) resi1 (aLen + i - 1) + (bn_v a * v b.[ i - 1 ]) * (pow2 (pbits * (i - 1)))); calc ( == ) { eval_ (aLen + bLen) resi (aLen + i); ( == ) { bn_eval_unfold_i resi (aLen + i) } eval_ (aLen + bLen) resi (aLen + i - 1) + v resi.[ aLen + i - 1 ] * pow2 (pbits * (aLen + i - 1)); ( == ) { () } eval_ (aLen + bLen) resi1 (aLen + i - 1) + (bn_v a * v b.[ i - 1 ]) * (pow2 (pbits * (i - 1))); ( == ) { () } bn_v a * eval_ bLen b (i - 1) + (bn_v a * v b.[ i - 1 ]) * (pow2 (pbits * (i - 1))); ( == ) { Math.Lemmas.paren_mul_right (bn_v a) (v b.[ i - 1 ]) (pow2 (pbits * (i - 1))) } bn_v a * eval_ bLen b (i - 1) + bn_v a * (v b.[ i - 1 ] * (pow2 (pbits * (i - 1)))); ( == ) { Math.Lemmas.distributivity_add_right (bn_v a) (eval_ bLen b (i - 1)) (v b.[ i - 1 ] * (pow2 (pbits * (i - 1)))) } bn_v a * (eval_ bLen b (i - 1) + v b.[ i - 1 ] * (pow2 (pbits * (i - 1)))); ( == ) { bn_eval_unfold_i b i } bn_v a * eval_ bLen b i; }; assert (eval_ (aLen + bLen) resi (aLen + i) == bn_v a * eval_ bLen b i)
{ "checked_file": "Hacl.Spec.Bignum.Multiplication.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Multiplication.fst" }
[ "lemma" ]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "Lib.IntTypes.max_size_t", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.pos", "Prims._assert", "Prims.eq2", "Prims.int", "Hacl.Spec.Bignum.Definitions.eval_", "FStar.Mul.op_Star", "Hacl.Spec.Bignum.Definitions.bn_v", "Prims.unit", "FStar.Calc.calc_finish", "Prims.nat", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "Prims.op_Subtraction", "Lib.IntTypes.v", "Lib.IntTypes.SEC", "Lib.Sequence.op_String_Access", "Hacl.Spec.Bignum.Definitions.limb", "Prims.pow2", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Hacl.Spec.Bignum.Definitions.bn_eval_unfold_i", "Prims.squash", "FStar.Math.Lemmas.paren_mul_right", "FStar.Math.Lemmas.distributivity_add_right", "Hacl.Spec.Bignum.Multiplication.bn_mul_lemma_", "Hacl.Spec.Bignum.Multiplication.bn_mul_", "Lib.IntTypes.bits" ]
[]
module Hacl.Spec.Bignum.Multiplication open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.LoopCombinators open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum.Base open Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_mul1_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> i:size_nat{i < aLen} -> c:limb t -> limb t & limb t // carry & out let bn_mul1_f #t #aLen a l i c = mul_wide_add a.[i] l c val bn_mul1: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> limb t & lbignum t aLen let bn_mul1 #t #aLen a l = generate_elems aLen aLen (bn_mul1_f a l) (uint #t 0) val bn_mul1_add_in_place_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> i:size_nat{i < aLen} -> c:limb t -> limb t & limb t // carry & out let bn_mul1_add_in_place_f #t #aLen a l acc i c = mul_wide_add2 a.[i] l c acc.[i] val bn_mul1_add_in_place: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> limb t & lbignum t aLen let bn_mul1_add_in_place #t #aLen a l acc = generate_elems aLen aLen (bn_mul1_add_in_place_f a l acc) (uint #t 0) val bn_mul1_lshift_add: #t:limb_t -> #aLen:size_nat -> #resLen:size_nat -> a:lbignum t aLen -> b_j:limb t -> j:size_nat{j + aLen <= resLen} -> res:lbignum t resLen -> limb t & lbignum t resLen let bn_mul1_lshift_add #t #aLen #resLen a b_j j res = let res' = sub res j aLen in let c, res' = bn_mul1_add_in_place a b_j res' in let res = update_sub res j aLen res' in c, res val bn_mul_: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{aLen + bLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t bLen -> j:size_nat{j < bLen} -> res:lbignum t (aLen + bLen) -> lbignum t (aLen + bLen) let bn_mul_ #t #aLen #bLen a b j res = let c, res = bn_mul1_lshift_add a b.[j] j res in res.[aLen + j] <- c val bn_mul: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{aLen + bLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t bLen -> lbignum t (aLen + bLen) let bn_mul #t #aLen #bLen a b = let res = create (aLen + bLen) (uint #t 0) in repeati bLen (bn_mul_ a b) res val bn_mul1_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (limb t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) * v l)) (ensures (let (c1, res1) = c1_res1 in let (c, res) = generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i * v l)) let bn_mul1_lemma_loop_step #t #aLen a l i (c1, res1) = let pbits = bits t in let b1 = pow2 (pbits * (i - 1)) in let b2 = pow2 (pbits * i) in let (c, res) = generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1) in let c, e = mul_wide_add a.[i - 1] l c1 in assert (v e + v c * pow2 pbits == v a.[i - 1] * v l + v c1); calc (==) { v c * b2 + bn_v #t #i res; (==) { bn_eval_snoc #t #(i - 1) res1 e } v c * b2 + bn_v #t #(i - 1) res1 + v e * b1; (==) { } v c * b2 + eval_ aLen a (i - 1) * v l -(v e + v c * pow2 pbits - v a.[i - 1] * v l) * b1 + v e * b1; (==) { Math.Lemmas.distributivity_add_left (v e) (v c * pow2 pbits - v a.[i - 1] * v l) b1 } v c * b2 + eval_ aLen a (i - 1) * v l - (v c * pow2 pbits - v a.[i - 1] * v l) * b1; (==) { Math.Lemmas.distributivity_sub_left (v c * pow2 pbits) (v a.[i - 1] * v l) b1 } v c * b2 + eval_ aLen a (i - 1) * v l - v c * pow2 pbits * b1 + v a.[i - 1] * v l * b1; (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) b1; Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen a (i - 1) * v l + v a.[i - 1] * v l * b1; (==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) (v l) b1 } eval_ aLen a (i - 1) * v l + v a.[i - 1] * (b1 * v l); (==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) b1 (v l) } eval_ aLen a (i - 1) * v l + v a.[i - 1] * b1 * v l; (==) { Math.Lemmas.distributivity_add_left (eval_ aLen a (i - 1)) (v a.[i - 1] * b1) (v l) } (eval_ aLen a (i - 1) + v a.[i - 1] * b1) * v l; (==) { bn_eval_unfold_i a i } eval_ aLen a i * v l; }; assert (v c * b2 + bn_v #t #i res == eval_ aLen a i * v l) val bn_mul1_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> i:nat{i <= aLen} -> Lemma (let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_f a l) (uint #t 0) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i * v l) let rec bn_mul1_lemma_loop #t #aLen a l i = let pbits = bits t in let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_f a l) (uint #t 0) in if i = 0 then begin eq_generate_elems0 aLen i (bn_mul1_f a l) (uint #t 0); assert (c == uint #t 0 /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; () end else begin let (c1, res1) : generate_elem_a (limb t) (limb t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_mul1_f a l) (uint #t 0) in generate_elems_unfold aLen i (bn_mul1_f a l) (uint #t 0) (i - 1); assert (generate_elems aLen i (bn_mul1_f a l) (uint #t 0) == generate_elem_f aLen (bn_mul1_f a l) (i - 1) (generate_elems aLen (i - 1) (bn_mul1_f a l) (uint #t 0))); assert ((c, res) == generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1)); bn_mul1_lemma_loop a l (i - 1); assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) * v l); bn_mul1_lemma_loop_step a l i (c1, res1); assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i * v l); () end val bn_mul1_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> Lemma (let (c, res) = bn_mul1 a l in v c * pow2 (bits t * aLen) + bn_v res == bn_v a * v l) let bn_mul1_lemma #t #aLen a l = let (c, res) = bn_mul1 a l in bn_mul1_lemma_loop a l aLen #push-options "--z3rlimit 150" val bn_mul1_add_in_place_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (limb t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l)) (ensures (let (c1, res1) = c1_res1 in let (c, res) = generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (c1, res1) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l)) let bn_mul1_add_in_place_lemma_loop_step #t #aLen a l acc i (c1, res1) = let pbits = bits t in let b1 = pow2 (pbits * (i - 1)) in let b2 = pow2 (pbits * i) in let (c, res) = generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (c1, res1) in let c, e = mul_wide_add2 a.[i - 1] l c1 acc.[i - 1] in assert (v e + v c * pow2 pbits == v a.[i - 1] * v l + v c1 + v acc.[i - 1]); calc (==) { v c * b2 + bn_v #t #i res; (==) { bn_eval_snoc #t #(i - 1) res1 e } v c * b2 + bn_v #t #(i - 1) res1 + v e * b1; (==) { } v c * b2 + eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l - (v e + v c * pow2 pbits - v a.[i - 1] * v l - v acc.[i - 1]) * b1 + v e * b1; (==) { Math.Lemmas.distributivity_add_left (v e) (v c * pow2 pbits - v a.[i - 1] * v l - v acc.[i - 1]) b1 } v c * b2 + eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l - (v c * pow2 pbits - v a.[i - 1] * v l - v acc.[i - 1]) * b1; (==) { Math.Lemmas.distributivity_sub_left (v c * pow2 pbits) (v a.[i - 1] * v l + v acc.[i - 1]) b1 } v c * b2 + eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l - (v c * pow2 pbits) * b1 + (v a.[i - 1] * v l + v acc.[i - 1]) * b1; (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) b1; Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l + (v a.[i - 1] * v l + v acc.[i - 1]) * b1; (==) { Math.Lemmas.distributivity_add_left (v a.[i - 1] * v l) (v acc.[i - 1]) b1 } eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l + v a.[i - 1] * v l * b1 + v acc.[i - 1] * b1; (==) { bn_eval_unfold_i acc i } eval_ aLen acc i + eval_ aLen a (i - 1) * v l + v a.[i - 1] * v l * b1; (==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) (v l) b1 } eval_ aLen acc i + eval_ aLen a (i - 1) * v l + v a.[i - 1] * (b1 * v l); (==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) b1 (v l) } eval_ aLen acc i + eval_ aLen a (i - 1) * v l + v a.[i - 1] * b1 * v l; (==) { Math.Lemmas.distributivity_add_left (eval_ aLen a (i - 1)) (v a.[i - 1] * b1) (v l) } eval_ aLen acc i + (eval_ aLen a (i - 1) + v a.[i - 1] * b1) * v l; (==) { bn_eval_unfold_i a i } eval_ aLen acc i + eval_ aLen a i * v l; }; assert (v c * b2 + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l) #pop-options val bn_mul1_add_in_place_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> i:nat{i <= aLen} -> Lemma (let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l) let rec bn_mul1_add_in_place_lemma_loop #t #aLen a l acc i = let pbits = bits t in let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) in if i = 0 then begin eq_generate_elems0 aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0); assert (c == uint #t 0 /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; bn_eval0 acc; () end else begin let (c1, res1) : generate_elem_a (limb t) (limb t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_mul1_add_in_place_f a l acc) (uint #t 0) in generate_elems_unfold aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) (i - 1); assert (generate_elems aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) == generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (generate_elems aLen (i - 1) (bn_mul1_add_in_place_f a l acc) (uint #t 0))); assert ((c, res) == generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (c1, res1)); bn_mul1_add_in_place_lemma_loop a l acc (i - 1); assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l); bn_mul1_add_in_place_lemma_loop_step a l acc i (c1, res1); assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l); () end val bn_mul1_add_in_place_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> Lemma (let (c, res) = bn_mul1_add_in_place a l acc in v c * pow2 (bits t * aLen) + bn_v res == bn_v acc + bn_v a * v l) let bn_mul1_add_in_place_lemma #t #aLen a l acc = let (c, res) = bn_mul1_add_in_place a l acc in bn_mul1_add_in_place_lemma_loop a l acc aLen val bn_mul1_lshift_add_lemma: #t:limb_t -> #aLen:size_nat -> #resLen:size_nat -> a:lbignum t aLen -> b_j:limb t -> j:size_nat{j + aLen <= resLen} -> acc:lbignum t resLen -> Lemma (let (c, res) = bn_mul1_lshift_add a b_j j acc in v c * pow2 (bits t * (aLen + j)) + eval_ resLen res (aLen + j) == eval_ resLen acc (aLen + j) + bn_v a * v b_j * pow2 (bits t * j) /\ slice res (aLen + j) resLen == slice acc (aLen + j) resLen) let bn_mul1_lshift_add_lemma #t #aLen #resLen a b_j j acc = let pbits = bits t in let res1 = sub acc j aLen in let c, res2 = bn_mul1_add_in_place a b_j res1 in bn_mul1_add_in_place_lemma a b_j res1; assert (v c * pow2 (pbits * aLen) + bn_v res2 == bn_v res1 + bn_v a * v b_j); let res = update_sub acc j aLen res2 in bn_eval_split_i (sub res 0 (j + aLen)) j; bn_eval_extensionality_j res (sub res 0 (j + aLen)) (j + aLen); assert (eval_ resLen res (j + aLen) == bn_v #t #j (sub res 0 j) + pow2 (pbits * j) * bn_v res2); eq_intro (sub res 0 j) (sub acc 0 j); assert (bn_v #t #j (sub res 0 j) == bn_v #t #j (sub acc 0 j)); bn_eval_split_i (sub acc 0 (j + aLen)) j; bn_eval_extensionality_j acc (sub acc 0 (j + aLen)) (j + aLen); assert (eval_ resLen acc (j + aLen) == bn_v #t #j (sub acc 0 j) + pow2 (pbits * j) * bn_v res1); calc (==) { v c * pow2 (pbits * (aLen + j)) + eval_ resLen res (aLen + j); (==) { Math.Lemmas.pow2_plus (pbits * aLen) (pbits * j) } v c * (pow2 (pbits * aLen) * pow2 (pbits * j)) + eval_ resLen res (aLen + j); (==) { Math.Lemmas.paren_mul_right (v c) (pow2 (pbits * aLen)) (pow2 (pbits * j)) } v c * pow2 (pbits * aLen) * pow2 (pbits * j) + eval_ resLen res (aLen + j); (==) { } (bn_v res1 + bn_v a * v b_j - bn_v res2) * pow2 (pbits * j) + eval_ resLen res (aLen + j); (==) { } (bn_v res1 + bn_v a * v b_j - bn_v res2) * pow2 (pbits * j) + eval_ resLen acc (j + aLen) - pow2 (pbits * j) * bn_v res1 + pow2 (pbits * j) * bn_v res2; (==) { Math.Lemmas.distributivity_add_right (pow2 (pbits * j)) (bn_v res1) (bn_v a * v b_j - bn_v res2) } pow2 (pbits * j) * (bn_v a * v b_j - bn_v res2) + eval_ resLen acc (j + aLen) + pow2 (pbits * j) * bn_v res2; (==) { Math.Lemmas.distributivity_sub_right (pow2 (pbits * j)) (bn_v a * v b_j) (bn_v res2) } pow2 (pbits * j) * (bn_v a * v b_j) + eval_ resLen acc (j + aLen); }; assert (v c * pow2 (pbits * (aLen + j)) + eval_ resLen res (aLen + j) == eval_ resLen acc (aLen + j) + bn_v a * v b_j * pow2 (pbits * j)); eq_intro (slice res (aLen + j) resLen) (slice acc (aLen + j) resLen) val bn_mul_lemma_: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{aLen + bLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t bLen -> j:size_nat{j < bLen} -> acc:lbignum t (aLen + bLen) -> Lemma (let res = bn_mul_ a b j acc in v res.[aLen + j] * pow2 (bits t * (aLen + j)) + eval_ (aLen + bLen) res (aLen + j) == eval_ (aLen + bLen) acc (aLen + j) + bn_v a * v b.[j] * pow2 (bits t * j)) let bn_mul_lemma_ #t #aLen #bLen a b j acc = let c, res = bn_mul1_lshift_add a b.[j] j acc in bn_mul1_lshift_add_lemma a b.[j] j acc; let res1 = res.[aLen + j] <- c in bn_eval_extensionality_j res res1 (aLen + j) val bn_mul_loop_lemma_step: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{aLen + bLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t bLen -> i:pos{i <= bLen} -> resi1:lbignum t (aLen + bLen) -> Lemma (requires eval_ (aLen + bLen) resi1 (aLen + i - 1) == bn_v a * eval_ bLen b (i - 1)) (ensures (let resi = bn_mul_ a b (i - 1) resi1 in eval_ (aLen + bLen) resi (aLen + i) == bn_v a * eval_ bLen b i))
false
false
Hacl.Spec.Bignum.Multiplication.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_mul_loop_lemma_step: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{aLen + bLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t bLen -> i:pos{i <= bLen} -> resi1:lbignum t (aLen + bLen) -> Lemma (requires eval_ (aLen + bLen) resi1 (aLen + i - 1) == bn_v a * eval_ bLen b (i - 1)) (ensures (let resi = bn_mul_ a b (i - 1) resi1 in eval_ (aLen + bLen) resi (aLen + i) == bn_v a * eval_ bLen b i))
[]
Hacl.Spec.Bignum.Multiplication.bn_mul_loop_lemma_step
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Multiplication.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> b: Hacl.Spec.Bignum.Definitions.lbignum t bLen -> i: Prims.pos{i <= bLen} -> resi1: Hacl.Spec.Bignum.Definitions.lbignum t (aLen + bLen) -> FStar.Pervasives.Lemma (requires Hacl.Spec.Bignum.Definitions.eval_ (aLen + bLen) resi1 (aLen + i - 1) == Hacl.Spec.Bignum.Definitions.bn_v a * Hacl.Spec.Bignum.Definitions.eval_ bLen b (i - 1)) (ensures (let resi = Hacl.Spec.Bignum.Multiplication.bn_mul_ a b (i - 1) resi1 in Hacl.Spec.Bignum.Definitions.eval_ (aLen + bLen) resi (aLen + i) == Hacl.Spec.Bignum.Definitions.bn_v a * Hacl.Spec.Bignum.Definitions.eval_ bLen b i))
{ "end_col": 73, "end_line": 415, "start_col": 55, "start_line": 392 }
FStar.Pervasives.Lemma
val bn_mul1_lshift_add_lemma: #t:limb_t -> #aLen:size_nat -> #resLen:size_nat -> a:lbignum t aLen -> b_j:limb t -> j:size_nat{j + aLen <= resLen} -> acc:lbignum t resLen -> Lemma (let (c, res) = bn_mul1_lshift_add a b_j j acc in v c * pow2 (bits t * (aLen + j)) + eval_ resLen res (aLen + j) == eval_ resLen acc (aLen + j) + bn_v a * v b_j * pow2 (bits t * j) /\ slice res (aLen + j) resLen == slice acc (aLen + j) resLen)
[ { "abbrev": false, "full_module": "Hacl.Spec.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_mul1_lshift_add_lemma #t #aLen #resLen a b_j j acc = let pbits = bits t in let res1 = sub acc j aLen in let c, res2 = bn_mul1_add_in_place a b_j res1 in bn_mul1_add_in_place_lemma a b_j res1; assert (v c * pow2 (pbits * aLen) + bn_v res2 == bn_v res1 + bn_v a * v b_j); let res = update_sub acc j aLen res2 in bn_eval_split_i (sub res 0 (j + aLen)) j; bn_eval_extensionality_j res (sub res 0 (j + aLen)) (j + aLen); assert (eval_ resLen res (j + aLen) == bn_v #t #j (sub res 0 j) + pow2 (pbits * j) * bn_v res2); eq_intro (sub res 0 j) (sub acc 0 j); assert (bn_v #t #j (sub res 0 j) == bn_v #t #j (sub acc 0 j)); bn_eval_split_i (sub acc 0 (j + aLen)) j; bn_eval_extensionality_j acc (sub acc 0 (j + aLen)) (j + aLen); assert (eval_ resLen acc (j + aLen) == bn_v #t #j (sub acc 0 j) + pow2 (pbits * j) * bn_v res1); calc (==) { v c * pow2 (pbits * (aLen + j)) + eval_ resLen res (aLen + j); (==) { Math.Lemmas.pow2_plus (pbits * aLen) (pbits * j) } v c * (pow2 (pbits * aLen) * pow2 (pbits * j)) + eval_ resLen res (aLen + j); (==) { Math.Lemmas.paren_mul_right (v c) (pow2 (pbits * aLen)) (pow2 (pbits * j)) } v c * pow2 (pbits * aLen) * pow2 (pbits * j) + eval_ resLen res (aLen + j); (==) { } (bn_v res1 + bn_v a * v b_j - bn_v res2) * pow2 (pbits * j) + eval_ resLen res (aLen + j); (==) { } (bn_v res1 + bn_v a * v b_j - bn_v res2) * pow2 (pbits * j) + eval_ resLen acc (j + aLen) - pow2 (pbits * j) * bn_v res1 + pow2 (pbits * j) * bn_v res2; (==) { Math.Lemmas.distributivity_add_right (pow2 (pbits * j)) (bn_v res1) (bn_v a * v b_j - bn_v res2) } pow2 (pbits * j) * (bn_v a * v b_j - bn_v res2) + eval_ resLen acc (j + aLen) + pow2 (pbits * j) * bn_v res2; (==) { Math.Lemmas.distributivity_sub_right (pow2 (pbits * j)) (bn_v a * v b_j) (bn_v res2) } pow2 (pbits * j) * (bn_v a * v b_j) + eval_ resLen acc (j + aLen); }; assert (v c * pow2 (pbits * (aLen + j)) + eval_ resLen res (aLen + j) == eval_ resLen acc (aLen + j) + bn_v a * v b_j * pow2 (pbits * j)); eq_intro (slice res (aLen + j) resLen) (slice acc (aLen + j) resLen)
val bn_mul1_lshift_add_lemma: #t:limb_t -> #aLen:size_nat -> #resLen:size_nat -> a:lbignum t aLen -> b_j:limb t -> j:size_nat{j + aLen <= resLen} -> acc:lbignum t resLen -> Lemma (let (c, res) = bn_mul1_lshift_add a b_j j acc in v c * pow2 (bits t * (aLen + j)) + eval_ resLen res (aLen + j) == eval_ resLen acc (aLen + j) + bn_v a * v b_j * pow2 (bits t * j) /\ slice res (aLen + j) resLen == slice acc (aLen + j) resLen) let bn_mul1_lshift_add_lemma #t #aLen #resLen a b_j j acc =
false
null
true
let pbits = bits t in let res1 = sub acc j aLen in let c, res2 = bn_mul1_add_in_place a b_j res1 in bn_mul1_add_in_place_lemma a b_j res1; assert (v c * pow2 (pbits * aLen) + bn_v res2 == bn_v res1 + bn_v a * v b_j); let res = update_sub acc j aLen res2 in bn_eval_split_i (sub res 0 (j + aLen)) j; bn_eval_extensionality_j res (sub res 0 (j + aLen)) (j + aLen); assert (eval_ resLen res (j + aLen) == bn_v #t #j (sub res 0 j) + pow2 (pbits * j) * bn_v res2); eq_intro (sub res 0 j) (sub acc 0 j); assert (bn_v #t #j (sub res 0 j) == bn_v #t #j (sub acc 0 j)); bn_eval_split_i (sub acc 0 (j + aLen)) j; bn_eval_extensionality_j acc (sub acc 0 (j + aLen)) (j + aLen); assert (eval_ resLen acc (j + aLen) == bn_v #t #j (sub acc 0 j) + pow2 (pbits * j) * bn_v res1); calc ( == ) { v c * pow2 (pbits * (aLen + j)) + eval_ resLen res (aLen + j); ( == ) { Math.Lemmas.pow2_plus (pbits * aLen) (pbits * j) } v c * (pow2 (pbits * aLen) * pow2 (pbits * j)) + eval_ resLen res (aLen + j); ( == ) { Math.Lemmas.paren_mul_right (v c) (pow2 (pbits * aLen)) (pow2 (pbits * j)) } (v c * pow2 (pbits * aLen)) * pow2 (pbits * j) + eval_ resLen res (aLen + j); ( == ) { () } (bn_v res1 + bn_v a * v b_j - bn_v res2) * pow2 (pbits * j) + eval_ resLen res (aLen + j); ( == ) { () } (bn_v res1 + bn_v a * v b_j - bn_v res2) * pow2 (pbits * j) + eval_ resLen acc (j + aLen) - pow2 (pbits * j) * bn_v res1 + pow2 (pbits * j) * bn_v res2; ( == ) { Math.Lemmas.distributivity_add_right (pow2 (pbits * j)) (bn_v res1) (bn_v a * v b_j - bn_v res2) } pow2 (pbits * j) * (bn_v a * v b_j - bn_v res2) + eval_ resLen acc (j + aLen) + pow2 (pbits * j) * bn_v res2; ( == ) { Math.Lemmas.distributivity_sub_right (pow2 (pbits * j)) (bn_v a * v b_j) (bn_v res2) } pow2 (pbits * j) * (bn_v a * v b_j) + eval_ resLen acc (j + aLen); }; assert (v c * pow2 (pbits * (aLen + j)) + eval_ resLen res (aLen + j) == eval_ resLen acc (aLen + j) + (bn_v a * v b_j) * pow2 (pbits * j)); eq_intro (slice res (aLen + j) resLen) (slice acc (aLen + j) resLen)
{ "checked_file": "Hacl.Spec.Bignum.Multiplication.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Multiplication.fst" }
[ "lemma" ]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Definitions.limb", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "Lib.Sequence.eq_intro", "Prims.op_Subtraction", "Lib.Sequence.slice", "Prims.unit", "Prims._assert", "Prims.eq2", "Prims.int", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.SEC", "Prims.pow2", "Hacl.Spec.Bignum.Definitions.eval_", "Hacl.Spec.Bignum.Definitions.bn_v", "FStar.Calc.calc_finish", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.pow2_plus", "Prims.squash", "FStar.Math.Lemmas.paren_mul_right", "FStar.Math.Lemmas.distributivity_add_right", "FStar.Math.Lemmas.distributivity_sub_right", "Lib.Sequence.sub", "Hacl.Spec.Bignum.Definitions.bn_eval_extensionality_j", "Hacl.Spec.Bignum.Definitions.bn_eval_split_i", "Prims.nat", "Lib.Sequence.lseq", "Prims.l_and", "Prims.l_Forall", "Prims.l_or", "Prims.op_LessThan", "FStar.Seq.Base.index", "Lib.Sequence.to_seq", "Lib.Sequence.index", "Lib.Sequence.update_sub", "Hacl.Spec.Bignum.Multiplication.bn_mul1_add_in_place_lemma", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.Multiplication.bn_mul1_add_in_place", "FStar.Seq.Base.seq", "FStar.Seq.Base.slice", "Lib.IntTypes.bits" ]
[]
module Hacl.Spec.Bignum.Multiplication open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.LoopCombinators open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum.Base open Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_mul1_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> i:size_nat{i < aLen} -> c:limb t -> limb t & limb t // carry & out let bn_mul1_f #t #aLen a l i c = mul_wide_add a.[i] l c val bn_mul1: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> limb t & lbignum t aLen let bn_mul1 #t #aLen a l = generate_elems aLen aLen (bn_mul1_f a l) (uint #t 0) val bn_mul1_add_in_place_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> i:size_nat{i < aLen} -> c:limb t -> limb t & limb t // carry & out let bn_mul1_add_in_place_f #t #aLen a l acc i c = mul_wide_add2 a.[i] l c acc.[i] val bn_mul1_add_in_place: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> limb t & lbignum t aLen let bn_mul1_add_in_place #t #aLen a l acc = generate_elems aLen aLen (bn_mul1_add_in_place_f a l acc) (uint #t 0) val bn_mul1_lshift_add: #t:limb_t -> #aLen:size_nat -> #resLen:size_nat -> a:lbignum t aLen -> b_j:limb t -> j:size_nat{j + aLen <= resLen} -> res:lbignum t resLen -> limb t & lbignum t resLen let bn_mul1_lshift_add #t #aLen #resLen a b_j j res = let res' = sub res j aLen in let c, res' = bn_mul1_add_in_place a b_j res' in let res = update_sub res j aLen res' in c, res val bn_mul_: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{aLen + bLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t bLen -> j:size_nat{j < bLen} -> res:lbignum t (aLen + bLen) -> lbignum t (aLen + bLen) let bn_mul_ #t #aLen #bLen a b j res = let c, res = bn_mul1_lshift_add a b.[j] j res in res.[aLen + j] <- c val bn_mul: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{aLen + bLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t bLen -> lbignum t (aLen + bLen) let bn_mul #t #aLen #bLen a b = let res = create (aLen + bLen) (uint #t 0) in repeati bLen (bn_mul_ a b) res val bn_mul1_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (limb t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) * v l)) (ensures (let (c1, res1) = c1_res1 in let (c, res) = generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i * v l)) let bn_mul1_lemma_loop_step #t #aLen a l i (c1, res1) = let pbits = bits t in let b1 = pow2 (pbits * (i - 1)) in let b2 = pow2 (pbits * i) in let (c, res) = generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1) in let c, e = mul_wide_add a.[i - 1] l c1 in assert (v e + v c * pow2 pbits == v a.[i - 1] * v l + v c1); calc (==) { v c * b2 + bn_v #t #i res; (==) { bn_eval_snoc #t #(i - 1) res1 e } v c * b2 + bn_v #t #(i - 1) res1 + v e * b1; (==) { } v c * b2 + eval_ aLen a (i - 1) * v l -(v e + v c * pow2 pbits - v a.[i - 1] * v l) * b1 + v e * b1; (==) { Math.Lemmas.distributivity_add_left (v e) (v c * pow2 pbits - v a.[i - 1] * v l) b1 } v c * b2 + eval_ aLen a (i - 1) * v l - (v c * pow2 pbits - v a.[i - 1] * v l) * b1; (==) { Math.Lemmas.distributivity_sub_left (v c * pow2 pbits) (v a.[i - 1] * v l) b1 } v c * b2 + eval_ aLen a (i - 1) * v l - v c * pow2 pbits * b1 + v a.[i - 1] * v l * b1; (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) b1; Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen a (i - 1) * v l + v a.[i - 1] * v l * b1; (==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) (v l) b1 } eval_ aLen a (i - 1) * v l + v a.[i - 1] * (b1 * v l); (==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) b1 (v l) } eval_ aLen a (i - 1) * v l + v a.[i - 1] * b1 * v l; (==) { Math.Lemmas.distributivity_add_left (eval_ aLen a (i - 1)) (v a.[i - 1] * b1) (v l) } (eval_ aLen a (i - 1) + v a.[i - 1] * b1) * v l; (==) { bn_eval_unfold_i a i } eval_ aLen a i * v l; }; assert (v c * b2 + bn_v #t #i res == eval_ aLen a i * v l) val bn_mul1_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> i:nat{i <= aLen} -> Lemma (let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_f a l) (uint #t 0) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i * v l) let rec bn_mul1_lemma_loop #t #aLen a l i = let pbits = bits t in let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_f a l) (uint #t 0) in if i = 0 then begin eq_generate_elems0 aLen i (bn_mul1_f a l) (uint #t 0); assert (c == uint #t 0 /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; () end else begin let (c1, res1) : generate_elem_a (limb t) (limb t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_mul1_f a l) (uint #t 0) in generate_elems_unfold aLen i (bn_mul1_f a l) (uint #t 0) (i - 1); assert (generate_elems aLen i (bn_mul1_f a l) (uint #t 0) == generate_elem_f aLen (bn_mul1_f a l) (i - 1) (generate_elems aLen (i - 1) (bn_mul1_f a l) (uint #t 0))); assert ((c, res) == generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1)); bn_mul1_lemma_loop a l (i - 1); assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) * v l); bn_mul1_lemma_loop_step a l i (c1, res1); assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i * v l); () end val bn_mul1_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> Lemma (let (c, res) = bn_mul1 a l in v c * pow2 (bits t * aLen) + bn_v res == bn_v a * v l) let bn_mul1_lemma #t #aLen a l = let (c, res) = bn_mul1 a l in bn_mul1_lemma_loop a l aLen #push-options "--z3rlimit 150" val bn_mul1_add_in_place_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (limb t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l)) (ensures (let (c1, res1) = c1_res1 in let (c, res) = generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (c1, res1) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l)) let bn_mul1_add_in_place_lemma_loop_step #t #aLen a l acc i (c1, res1) = let pbits = bits t in let b1 = pow2 (pbits * (i - 1)) in let b2 = pow2 (pbits * i) in let (c, res) = generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (c1, res1) in let c, e = mul_wide_add2 a.[i - 1] l c1 acc.[i - 1] in assert (v e + v c * pow2 pbits == v a.[i - 1] * v l + v c1 + v acc.[i - 1]); calc (==) { v c * b2 + bn_v #t #i res; (==) { bn_eval_snoc #t #(i - 1) res1 e } v c * b2 + bn_v #t #(i - 1) res1 + v e * b1; (==) { } v c * b2 + eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l - (v e + v c * pow2 pbits - v a.[i - 1] * v l - v acc.[i - 1]) * b1 + v e * b1; (==) { Math.Lemmas.distributivity_add_left (v e) (v c * pow2 pbits - v a.[i - 1] * v l - v acc.[i - 1]) b1 } v c * b2 + eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l - (v c * pow2 pbits - v a.[i - 1] * v l - v acc.[i - 1]) * b1; (==) { Math.Lemmas.distributivity_sub_left (v c * pow2 pbits) (v a.[i - 1] * v l + v acc.[i - 1]) b1 } v c * b2 + eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l - (v c * pow2 pbits) * b1 + (v a.[i - 1] * v l + v acc.[i - 1]) * b1; (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) b1; Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l + (v a.[i - 1] * v l + v acc.[i - 1]) * b1; (==) { Math.Lemmas.distributivity_add_left (v a.[i - 1] * v l) (v acc.[i - 1]) b1 } eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l + v a.[i - 1] * v l * b1 + v acc.[i - 1] * b1; (==) { bn_eval_unfold_i acc i } eval_ aLen acc i + eval_ aLen a (i - 1) * v l + v a.[i - 1] * v l * b1; (==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) (v l) b1 } eval_ aLen acc i + eval_ aLen a (i - 1) * v l + v a.[i - 1] * (b1 * v l); (==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) b1 (v l) } eval_ aLen acc i + eval_ aLen a (i - 1) * v l + v a.[i - 1] * b1 * v l; (==) { Math.Lemmas.distributivity_add_left (eval_ aLen a (i - 1)) (v a.[i - 1] * b1) (v l) } eval_ aLen acc i + (eval_ aLen a (i - 1) + v a.[i - 1] * b1) * v l; (==) { bn_eval_unfold_i a i } eval_ aLen acc i + eval_ aLen a i * v l; }; assert (v c * b2 + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l) #pop-options val bn_mul1_add_in_place_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> i:nat{i <= aLen} -> Lemma (let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l) let rec bn_mul1_add_in_place_lemma_loop #t #aLen a l acc i = let pbits = bits t in let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) in if i = 0 then begin eq_generate_elems0 aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0); assert (c == uint #t 0 /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; bn_eval0 acc; () end else begin let (c1, res1) : generate_elem_a (limb t) (limb t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_mul1_add_in_place_f a l acc) (uint #t 0) in generate_elems_unfold aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) (i - 1); assert (generate_elems aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) == generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (generate_elems aLen (i - 1) (bn_mul1_add_in_place_f a l acc) (uint #t 0))); assert ((c, res) == generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (c1, res1)); bn_mul1_add_in_place_lemma_loop a l acc (i - 1); assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l); bn_mul1_add_in_place_lemma_loop_step a l acc i (c1, res1); assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l); () end val bn_mul1_add_in_place_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> Lemma (let (c, res) = bn_mul1_add_in_place a l acc in v c * pow2 (bits t * aLen) + bn_v res == bn_v acc + bn_v a * v l) let bn_mul1_add_in_place_lemma #t #aLen a l acc = let (c, res) = bn_mul1_add_in_place a l acc in bn_mul1_add_in_place_lemma_loop a l acc aLen val bn_mul1_lshift_add_lemma: #t:limb_t -> #aLen:size_nat -> #resLen:size_nat -> a:lbignum t aLen -> b_j:limb t -> j:size_nat{j + aLen <= resLen} -> acc:lbignum t resLen -> Lemma (let (c, res) = bn_mul1_lshift_add a b_j j acc in v c * pow2 (bits t * (aLen + j)) + eval_ resLen res (aLen + j) == eval_ resLen acc (aLen + j) + bn_v a * v b_j * pow2 (bits t * j) /\ slice res (aLen + j) resLen == slice acc (aLen + j) resLen)
false
false
Hacl.Spec.Bignum.Multiplication.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_mul1_lshift_add_lemma: #t:limb_t -> #aLen:size_nat -> #resLen:size_nat -> a:lbignum t aLen -> b_j:limb t -> j:size_nat{j + aLen <= resLen} -> acc:lbignum t resLen -> Lemma (let (c, res) = bn_mul1_lshift_add a b_j j acc in v c * pow2 (bits t * (aLen + j)) + eval_ resLen res (aLen + j) == eval_ resLen acc (aLen + j) + bn_v a * v b_j * pow2 (bits t * j) /\ slice res (aLen + j) resLen == slice acc (aLen + j) resLen)
[]
Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add_lemma
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Multiplication.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> b_j: Hacl.Spec.Bignum.Definitions.limb t -> j: Lib.IntTypes.size_nat{j + aLen <= resLen} -> acc: Hacl.Spec.Bignum.Definitions.lbignum t resLen -> FStar.Pervasives.Lemma (ensures (let _ = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add a b_j j acc in (let FStar.Pervasives.Native.Mktuple2 #_ #_ c res = _ in Lib.IntTypes.v c * Prims.pow2 (Lib.IntTypes.bits t * (aLen + j)) + Hacl.Spec.Bignum.Definitions.eval_ resLen res (aLen + j) == Hacl.Spec.Bignum.Definitions.eval_ resLen acc (aLen + j) + (Hacl.Spec.Bignum.Definitions.bn_v a * Lib.IntTypes.v b_j) * Prims.pow2 (Lib.IntTypes.bits t * j) /\ Lib.Sequence.slice res (aLen + j) resLen == Lib.Sequence.slice acc (aLen + j) resLen) <: Type0))
{ "end_col": 70, "end_line": 356, "start_col": 59, "start_line": 323 }
FStar.Pervasives.Lemma
val bn_mul1_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (limb t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) * v l)) (ensures (let (c1, res1) = c1_res1 in let (c, res) = generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i * v l))
[ { "abbrev": false, "full_module": "Hacl.Spec.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_mul1_lemma_loop_step #t #aLen a l i (c1, res1) = let pbits = bits t in let b1 = pow2 (pbits * (i - 1)) in let b2 = pow2 (pbits * i) in let (c, res) = generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1) in let c, e = mul_wide_add a.[i - 1] l c1 in assert (v e + v c * pow2 pbits == v a.[i - 1] * v l + v c1); calc (==) { v c * b2 + bn_v #t #i res; (==) { bn_eval_snoc #t #(i - 1) res1 e } v c * b2 + bn_v #t #(i - 1) res1 + v e * b1; (==) { } v c * b2 + eval_ aLen a (i - 1) * v l -(v e + v c * pow2 pbits - v a.[i - 1] * v l) * b1 + v e * b1; (==) { Math.Lemmas.distributivity_add_left (v e) (v c * pow2 pbits - v a.[i - 1] * v l) b1 } v c * b2 + eval_ aLen a (i - 1) * v l - (v c * pow2 pbits - v a.[i - 1] * v l) * b1; (==) { Math.Lemmas.distributivity_sub_left (v c * pow2 pbits) (v a.[i - 1] * v l) b1 } v c * b2 + eval_ aLen a (i - 1) * v l - v c * pow2 pbits * b1 + v a.[i - 1] * v l * b1; (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) b1; Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen a (i - 1) * v l + v a.[i - 1] * v l * b1; (==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) (v l) b1 } eval_ aLen a (i - 1) * v l + v a.[i - 1] * (b1 * v l); (==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) b1 (v l) } eval_ aLen a (i - 1) * v l + v a.[i - 1] * b1 * v l; (==) { Math.Lemmas.distributivity_add_left (eval_ aLen a (i - 1)) (v a.[i - 1] * b1) (v l) } (eval_ aLen a (i - 1) + v a.[i - 1] * b1) * v l; (==) { bn_eval_unfold_i a i } eval_ aLen a i * v l; }; assert (v c * b2 + bn_v #t #i res == eval_ aLen a i * v l)
val bn_mul1_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (limb t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) * v l)) (ensures (let (c1, res1) = c1_res1 in let (c, res) = generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i * v l)) let bn_mul1_lemma_loop_step #t #aLen a l i (c1, res1) =
false
null
true
let pbits = bits t in let b1 = pow2 (pbits * (i - 1)) in let b2 = pow2 (pbits * i) in let c, res = generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1) in let c, e = mul_wide_add a.[ i - 1 ] l c1 in assert (v e + v c * pow2 pbits == v a.[ i - 1 ] * v l + v c1); calc ( == ) { v c * b2 + bn_v #t #i res; ( == ) { bn_eval_snoc #t #(i - 1) res1 e } v c * b2 + bn_v #t #(i - 1) res1 + v e * b1; ( == ) { () } v c * b2 + eval_ aLen a (i - 1) * v l - (v e + v c * pow2 pbits - v a.[ i - 1 ] * v l) * b1 + v e * b1; ( == ) { Math.Lemmas.distributivity_add_left (v e) (v c * pow2 pbits - v a.[ i - 1 ] * v l) b1 } v c * b2 + eval_ aLen a (i - 1) * v l - (v c * pow2 pbits - v a.[ i - 1 ] * v l) * b1; ( == ) { Math.Lemmas.distributivity_sub_left (v c * pow2 pbits) (v a.[ i - 1 ] * v l) b1 } v c * b2 + eval_ aLen a (i - 1) * v l - (v c * pow2 pbits) * b1 + (v a.[ i - 1 ] * v l) * b1; ( == ) { (Math.Lemmas.paren_mul_right (v c) (pow2 pbits) b1; Math.Lemmas.pow2_plus pbits (pbits * (i - 1))) } eval_ aLen a (i - 1) * v l + (v a.[ i - 1 ] * v l) * b1; ( == ) { Math.Lemmas.paren_mul_right (v a.[ i - 1 ]) (v l) b1 } eval_ aLen a (i - 1) * v l + v a.[ i - 1 ] * (b1 * v l); ( == ) { Math.Lemmas.paren_mul_right (v a.[ i - 1 ]) b1 (v l) } eval_ aLen a (i - 1) * v l + (v a.[ i - 1 ] * b1) * v l; ( == ) { Math.Lemmas.distributivity_add_left (eval_ aLen a (i - 1)) (v a.[ i - 1 ] * b1) (v l) } (eval_ aLen a (i - 1) + v a.[ i - 1 ] * b1) * v l; ( == ) { bn_eval_unfold_i a i } eval_ aLen a i * v l; }; assert (v c * b2 + bn_v #t #i res == eval_ aLen a i * v l)
{ "checked_file": "Hacl.Spec.Bignum.Multiplication.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Multiplication.fst" }
[ "lemma" ]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Definitions.limb", "Prims.pos", "Prims.b2t", "Prims.op_LessThanOrEqual", "Hacl.Spec.Lib.generate_elem_a", "Prims.op_Subtraction", "Lib.Sequence.seq", "Prims.eq2", "Prims.nat", "Lib.Sequence.length", "Prims.op_Addition", "Prims._assert", "Prims.int", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.SEC", "Hacl.Spec.Bignum.Definitions.bn_v", "Hacl.Spec.Bignum.Definitions.eval_", "Prims.unit", "FStar.Calc.calc_finish", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "Lib.Sequence.op_String_Access", "Prims.pow2", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Hacl.Spec.Bignum.Definitions.bn_eval_snoc", "Prims.squash", "FStar.Math.Lemmas.distributivity_add_left", "FStar.Math.Lemmas.distributivity_sub_left", "FStar.Math.Lemmas.pow2_plus", "FStar.Math.Lemmas.paren_mul_right", "Hacl.Spec.Bignum.Definitions.bn_eval_unfold_i", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.Base.mul_wide_add", "Hacl.Spec.Lib.generate_elem_f", "Hacl.Spec.Bignum.Multiplication.bn_mul1_f", "FStar.Pervasives.Native.Mktuple2", "Lib.IntTypes.bits" ]
[]
module Hacl.Spec.Bignum.Multiplication open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.LoopCombinators open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum.Base open Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_mul1_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> i:size_nat{i < aLen} -> c:limb t -> limb t & limb t // carry & out let bn_mul1_f #t #aLen a l i c = mul_wide_add a.[i] l c val bn_mul1: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> limb t & lbignum t aLen let bn_mul1 #t #aLen a l = generate_elems aLen aLen (bn_mul1_f a l) (uint #t 0) val bn_mul1_add_in_place_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> i:size_nat{i < aLen} -> c:limb t -> limb t & limb t // carry & out let bn_mul1_add_in_place_f #t #aLen a l acc i c = mul_wide_add2 a.[i] l c acc.[i] val bn_mul1_add_in_place: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> limb t & lbignum t aLen let bn_mul1_add_in_place #t #aLen a l acc = generate_elems aLen aLen (bn_mul1_add_in_place_f a l acc) (uint #t 0) val bn_mul1_lshift_add: #t:limb_t -> #aLen:size_nat -> #resLen:size_nat -> a:lbignum t aLen -> b_j:limb t -> j:size_nat{j + aLen <= resLen} -> res:lbignum t resLen -> limb t & lbignum t resLen let bn_mul1_lshift_add #t #aLen #resLen a b_j j res = let res' = sub res j aLen in let c, res' = bn_mul1_add_in_place a b_j res' in let res = update_sub res j aLen res' in c, res val bn_mul_: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{aLen + bLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t bLen -> j:size_nat{j < bLen} -> res:lbignum t (aLen + bLen) -> lbignum t (aLen + bLen) let bn_mul_ #t #aLen #bLen a b j res = let c, res = bn_mul1_lshift_add a b.[j] j res in res.[aLen + j] <- c val bn_mul: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{aLen + bLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t bLen -> lbignum t (aLen + bLen) let bn_mul #t #aLen #bLen a b = let res = create (aLen + bLen) (uint #t 0) in repeati bLen (bn_mul_ a b) res val bn_mul1_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (limb t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) * v l)) (ensures (let (c1, res1) = c1_res1 in let (c, res) = generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i * v l))
false
false
Hacl.Spec.Bignum.Multiplication.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_mul1_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (limb t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) * v l)) (ensures (let (c1, res1) = c1_res1 in let (c, res) = generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i * v l))
[]
Hacl.Spec.Bignum.Multiplication.bn_mul1_lemma_loop_step
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Multiplication.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> l: Hacl.Spec.Bignum.Definitions.limb t -> i: Prims.pos{i <= aLen} -> c1_res1: Hacl.Spec.Lib.generate_elem_a (Hacl.Spec.Bignum.Definitions.limb t) (Hacl.Spec.Bignum.Definitions.limb t) aLen (i - 1) -> FStar.Pervasives.Lemma (requires (let _ = c1_res1 in (let FStar.Pervasives.Native.Mktuple2 #_ #_ c1 res1 = _ in Lib.IntTypes.v c1 * Prims.pow2 (Lib.IntTypes.bits t * (i - 1)) + Hacl.Spec.Bignum.Definitions.bn_v res1 == Hacl.Spec.Bignum.Definitions.eval_ aLen a (i - 1) * Lib.IntTypes.v l) <: Type0)) (ensures (let _ = c1_res1 in (let FStar.Pervasives.Native.Mktuple2 #_ #_ c1 res1 = _ in let _ = Hacl.Spec.Lib.generate_elem_f aLen (Hacl.Spec.Bignum.Multiplication.bn_mul1_f a l) (i - 1) (c1, res1) in (let FStar.Pervasives.Native.Mktuple2 #_ #_ c res = _ in Lib.IntTypes.v c * Prims.pow2 (Lib.IntTypes.bits t * i) + Hacl.Spec.Bignum.Definitions.bn_v res == Hacl.Spec.Bignum.Definitions.eval_ aLen a i * Lib.IntTypes.v l) <: Type0) <: Type0))
{ "end_col": 60, "end_line": 157, "start_col": 55, "start_line": 127 }
FStar.Pervasives.Lemma
val bn_mul1_add_in_place_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (limb t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l)) (ensures (let (c1, res1) = c1_res1 in let (c, res) = generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (c1, res1) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l))
[ { "abbrev": false, "full_module": "Hacl.Spec.Lib", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_mul1_add_in_place_lemma_loop_step #t #aLen a l acc i (c1, res1) = let pbits = bits t in let b1 = pow2 (pbits * (i - 1)) in let b2 = pow2 (pbits * i) in let (c, res) = generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (c1, res1) in let c, e = mul_wide_add2 a.[i - 1] l c1 acc.[i - 1] in assert (v e + v c * pow2 pbits == v a.[i - 1] * v l + v c1 + v acc.[i - 1]); calc (==) { v c * b2 + bn_v #t #i res; (==) { bn_eval_snoc #t #(i - 1) res1 e } v c * b2 + bn_v #t #(i - 1) res1 + v e * b1; (==) { } v c * b2 + eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l - (v e + v c * pow2 pbits - v a.[i - 1] * v l - v acc.[i - 1]) * b1 + v e * b1; (==) { Math.Lemmas.distributivity_add_left (v e) (v c * pow2 pbits - v a.[i - 1] * v l - v acc.[i - 1]) b1 } v c * b2 + eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l - (v c * pow2 pbits - v a.[i - 1] * v l - v acc.[i - 1]) * b1; (==) { Math.Lemmas.distributivity_sub_left (v c * pow2 pbits) (v a.[i - 1] * v l + v acc.[i - 1]) b1 } v c * b2 + eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l - (v c * pow2 pbits) * b1 + (v a.[i - 1] * v l + v acc.[i - 1]) * b1; (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) b1; Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l + (v a.[i - 1] * v l + v acc.[i - 1]) * b1; (==) { Math.Lemmas.distributivity_add_left (v a.[i - 1] * v l) (v acc.[i - 1]) b1 } eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l + v a.[i - 1] * v l * b1 + v acc.[i - 1] * b1; (==) { bn_eval_unfold_i acc i } eval_ aLen acc i + eval_ aLen a (i - 1) * v l + v a.[i - 1] * v l * b1; (==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) (v l) b1 } eval_ aLen acc i + eval_ aLen a (i - 1) * v l + v a.[i - 1] * (b1 * v l); (==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) b1 (v l) } eval_ aLen acc i + eval_ aLen a (i - 1) * v l + v a.[i - 1] * b1 * v l; (==) { Math.Lemmas.distributivity_add_left (eval_ aLen a (i - 1)) (v a.[i - 1] * b1) (v l) } eval_ aLen acc i + (eval_ aLen a (i - 1) + v a.[i - 1] * b1) * v l; (==) { bn_eval_unfold_i a i } eval_ aLen acc i + eval_ aLen a i * v l; }; assert (v c * b2 + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l)
val bn_mul1_add_in_place_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (limb t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l)) (ensures (let (c1, res1) = c1_res1 in let (c, res) = generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (c1, res1) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l)) let bn_mul1_add_in_place_lemma_loop_step #t #aLen a l acc i (c1, res1) =
false
null
true
let pbits = bits t in let b1 = pow2 (pbits * (i - 1)) in let b2 = pow2 (pbits * i) in let c, res = generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (c1, res1) in let c, e = mul_wide_add2 a.[ i - 1 ] l c1 acc.[ i - 1 ] in assert (v e + v c * pow2 pbits == v a.[ i - 1 ] * v l + v c1 + v acc.[ i - 1 ]); calc ( == ) { v c * b2 + bn_v #t #i res; ( == ) { bn_eval_snoc #t #(i - 1) res1 e } v c * b2 + bn_v #t #(i - 1) res1 + v e * b1; ( == ) { () } v c * b2 + eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l - (v e + v c * pow2 pbits - v a.[ i - 1 ] * v l - v acc.[ i - 1 ]) * b1 + v e * b1; ( == ) { Math.Lemmas.distributivity_add_left (v e) (v c * pow2 pbits - v a.[ i - 1 ] * v l - v acc.[ i - 1 ]) b1 } v c * b2 + eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l - (v c * pow2 pbits - v a.[ i - 1 ] * v l - v acc.[ i - 1 ]) * b1; ( == ) { Math.Lemmas.distributivity_sub_left (v c * pow2 pbits) (v a.[ i - 1 ] * v l + v acc.[ i - 1 ]) b1 } v c * b2 + eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l - (v c * pow2 pbits) * b1 + (v a.[ i - 1 ] * v l + v acc.[ i - 1 ]) * b1; ( == ) { (Math.Lemmas.paren_mul_right (v c) (pow2 pbits) b1; Math.Lemmas.pow2_plus pbits (pbits * (i - 1))) } eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l + (v a.[ i - 1 ] * v l + v acc.[ i - 1 ]) * b1; ( == ) { Math.Lemmas.distributivity_add_left (v a.[ i - 1 ] * v l) (v acc.[ i - 1 ]) b1 } eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l + (v a.[ i - 1 ] * v l) * b1 + v acc.[ i - 1 ] * b1; ( == ) { bn_eval_unfold_i acc i } eval_ aLen acc i + eval_ aLen a (i - 1) * v l + (v a.[ i - 1 ] * v l) * b1; ( == ) { Math.Lemmas.paren_mul_right (v a.[ i - 1 ]) (v l) b1 } eval_ aLen acc i + eval_ aLen a (i - 1) * v l + v a.[ i - 1 ] * (b1 * v l); ( == ) { Math.Lemmas.paren_mul_right (v a.[ i - 1 ]) b1 (v l) } eval_ aLen acc i + eval_ aLen a (i - 1) * v l + (v a.[ i - 1 ] * b1) * v l; ( == ) { Math.Lemmas.distributivity_add_left (eval_ aLen a (i - 1)) (v a.[ i - 1 ] * b1) (v l) } eval_ aLen acc i + (eval_ aLen a (i - 1) + v a.[ i - 1 ] * b1) * v l; ( == ) { bn_eval_unfold_i a i } eval_ aLen acc i + eval_ aLen a i * v l; }; assert (v c * b2 + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l)
{ "checked_file": "Hacl.Spec.Bignum.Multiplication.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Lib.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Multiplication.fst" }
[ "lemma" ]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Definitions.limb", "Prims.pos", "Prims.b2t", "Prims.op_LessThanOrEqual", "Hacl.Spec.Lib.generate_elem_a", "Prims.op_Subtraction", "Lib.Sequence.seq", "Prims.eq2", "Prims.nat", "Lib.Sequence.length", "Prims.op_Addition", "Prims._assert", "Prims.int", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.SEC", "Hacl.Spec.Bignum.Definitions.bn_v", "Hacl.Spec.Bignum.Definitions.eval_", "Prims.unit", "FStar.Calc.calc_finish", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "Lib.Sequence.op_String_Access", "Prims.pow2", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Hacl.Spec.Bignum.Definitions.bn_eval_snoc", "Prims.squash", "FStar.Math.Lemmas.distributivity_add_left", "FStar.Math.Lemmas.distributivity_sub_left", "FStar.Math.Lemmas.pow2_plus", "FStar.Math.Lemmas.paren_mul_right", "Hacl.Spec.Bignum.Definitions.bn_eval_unfold_i", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.Base.mul_wide_add2", "Hacl.Spec.Lib.generate_elem_f", "Hacl.Spec.Bignum.Multiplication.bn_mul1_add_in_place_f", "FStar.Pervasives.Native.Mktuple2", "Lib.IntTypes.bits" ]
[]
module Hacl.Spec.Bignum.Multiplication open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.LoopCombinators open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum.Base open Hacl.Spec.Lib #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val bn_mul1_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> i:size_nat{i < aLen} -> c:limb t -> limb t & limb t // carry & out let bn_mul1_f #t #aLen a l i c = mul_wide_add a.[i] l c val bn_mul1: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> limb t & lbignum t aLen let bn_mul1 #t #aLen a l = generate_elems aLen aLen (bn_mul1_f a l) (uint #t 0) val bn_mul1_add_in_place_f: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> i:size_nat{i < aLen} -> c:limb t -> limb t & limb t // carry & out let bn_mul1_add_in_place_f #t #aLen a l acc i c = mul_wide_add2 a.[i] l c acc.[i] val bn_mul1_add_in_place: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> limb t & lbignum t aLen let bn_mul1_add_in_place #t #aLen a l acc = generate_elems aLen aLen (bn_mul1_add_in_place_f a l acc) (uint #t 0) val bn_mul1_lshift_add: #t:limb_t -> #aLen:size_nat -> #resLen:size_nat -> a:lbignum t aLen -> b_j:limb t -> j:size_nat{j + aLen <= resLen} -> res:lbignum t resLen -> limb t & lbignum t resLen let bn_mul1_lshift_add #t #aLen #resLen a b_j j res = let res' = sub res j aLen in let c, res' = bn_mul1_add_in_place a b_j res' in let res = update_sub res j aLen res' in c, res val bn_mul_: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{aLen + bLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t bLen -> j:size_nat{j < bLen} -> res:lbignum t (aLen + bLen) -> lbignum t (aLen + bLen) let bn_mul_ #t #aLen #bLen a b j res = let c, res = bn_mul1_lshift_add a b.[j] j res in res.[aLen + j] <- c val bn_mul: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{aLen + bLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t bLen -> lbignum t (aLen + bLen) let bn_mul #t #aLen #bLen a b = let res = create (aLen + bLen) (uint #t 0) in repeati bLen (bn_mul_ a b) res val bn_mul1_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (limb t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) * v l)) (ensures (let (c1, res1) = c1_res1 in let (c, res) = generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i * v l)) let bn_mul1_lemma_loop_step #t #aLen a l i (c1, res1) = let pbits = bits t in let b1 = pow2 (pbits * (i - 1)) in let b2 = pow2 (pbits * i) in let (c, res) = generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1) in let c, e = mul_wide_add a.[i - 1] l c1 in assert (v e + v c * pow2 pbits == v a.[i - 1] * v l + v c1); calc (==) { v c * b2 + bn_v #t #i res; (==) { bn_eval_snoc #t #(i - 1) res1 e } v c * b2 + bn_v #t #(i - 1) res1 + v e * b1; (==) { } v c * b2 + eval_ aLen a (i - 1) * v l -(v e + v c * pow2 pbits - v a.[i - 1] * v l) * b1 + v e * b1; (==) { Math.Lemmas.distributivity_add_left (v e) (v c * pow2 pbits - v a.[i - 1] * v l) b1 } v c * b2 + eval_ aLen a (i - 1) * v l - (v c * pow2 pbits - v a.[i - 1] * v l) * b1; (==) { Math.Lemmas.distributivity_sub_left (v c * pow2 pbits) (v a.[i - 1] * v l) b1 } v c * b2 + eval_ aLen a (i - 1) * v l - v c * pow2 pbits * b1 + v a.[i - 1] * v l * b1; (==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) b1; Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) } eval_ aLen a (i - 1) * v l + v a.[i - 1] * v l * b1; (==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) (v l) b1 } eval_ aLen a (i - 1) * v l + v a.[i - 1] * (b1 * v l); (==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) b1 (v l) } eval_ aLen a (i - 1) * v l + v a.[i - 1] * b1 * v l; (==) { Math.Lemmas.distributivity_add_left (eval_ aLen a (i - 1)) (v a.[i - 1] * b1) (v l) } (eval_ aLen a (i - 1) + v a.[i - 1] * b1) * v l; (==) { bn_eval_unfold_i a i } eval_ aLen a i * v l; }; assert (v c * b2 + bn_v #t #i res == eval_ aLen a i * v l) val bn_mul1_lemma_loop: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> i:nat{i <= aLen} -> Lemma (let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_f a l) (uint #t 0) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i * v l) let rec bn_mul1_lemma_loop #t #aLen a l i = let pbits = bits t in let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_f a l) (uint #t 0) in if i = 0 then begin eq_generate_elems0 aLen i (bn_mul1_f a l) (uint #t 0); assert (c == uint #t 0 /\ res == Seq.empty); bn_eval0 #t #0 res; assert_norm (pow2 0 = 1); bn_eval0 a; () end else begin let (c1, res1) : generate_elem_a (limb t) (limb t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_mul1_f a l) (uint #t 0) in generate_elems_unfold aLen i (bn_mul1_f a l) (uint #t 0) (i - 1); assert (generate_elems aLen i (bn_mul1_f a l) (uint #t 0) == generate_elem_f aLen (bn_mul1_f a l) (i - 1) (generate_elems aLen (i - 1) (bn_mul1_f a l) (uint #t 0))); assert ((c, res) == generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1)); bn_mul1_lemma_loop a l (i - 1); assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) * v l); bn_mul1_lemma_loop_step a l i (c1, res1); assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i * v l); () end val bn_mul1_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> Lemma (let (c, res) = bn_mul1 a l in v c * pow2 (bits t * aLen) + bn_v res == bn_v a * v l) let bn_mul1_lemma #t #aLen a l = let (c, res) = bn_mul1 a l in bn_mul1_lemma_loop a l aLen #push-options "--z3rlimit 150" val bn_mul1_add_in_place_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (limb t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l)) (ensures (let (c1, res1) = c1_res1 in let (c, res) = generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (c1, res1) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l))
false
false
Hacl.Spec.Bignum.Multiplication.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 150, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_mul1_add_in_place_lemma_loop_step: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> l:limb t -> acc:lbignum t aLen -> i:pos{i <= aLen} -> c1_res1:generate_elem_a (limb t) (limb t) aLen (i - 1) -> Lemma (requires (let (c1, res1) = c1_res1 in v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l)) (ensures (let (c1, res1) = c1_res1 in let (c, res) = generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (c1, res1) in v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l))
[]
Hacl.Spec.Bignum.Multiplication.bn_mul1_add_in_place_lemma_loop_step
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Multiplication.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> l: Hacl.Spec.Bignum.Definitions.limb t -> acc: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> i: Prims.pos{i <= aLen} -> c1_res1: Hacl.Spec.Lib.generate_elem_a (Hacl.Spec.Bignum.Definitions.limb t) (Hacl.Spec.Bignum.Definitions.limb t) aLen (i - 1) -> FStar.Pervasives.Lemma (requires (let _ = c1_res1 in (let FStar.Pervasives.Native.Mktuple2 #_ #_ c1 res1 = _ in Lib.IntTypes.v c1 * Prims.pow2 (Lib.IntTypes.bits t * (i - 1)) + Hacl.Spec.Bignum.Definitions.bn_v res1 == Hacl.Spec.Bignum.Definitions.eval_ aLen acc (i - 1) + Hacl.Spec.Bignum.Definitions.eval_ aLen a (i - 1) * Lib.IntTypes.v l) <: Type0)) (ensures (let _ = c1_res1 in (let FStar.Pervasives.Native.Mktuple2 #_ #_ c1 res1 = _ in let _ = Hacl.Spec.Lib.generate_elem_f aLen (Hacl.Spec.Bignum.Multiplication.bn_mul1_add_in_place_f a l acc) (i - 1) (c1, res1) in (let FStar.Pervasives.Native.Mktuple2 #_ #_ c res = _ in Lib.IntTypes.v c * Prims.pow2 (Lib.IntTypes.bits t * i) + Hacl.Spec.Bignum.Definitions.bn_v res == Hacl.Spec.Bignum.Definitions.eval_ aLen acc i + Hacl.Spec.Bignum.Definitions.eval_ aLen a i * Lib.IntTypes.v l) <: Type0) <: Type0))
{ "end_col": 79, "end_line": 258, "start_col": 72, "start_line": 222 }
Prims.Tot
val le_of_uint32 (x: UInt32.t) : b: bytes{S.length b = 4}
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let le_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } = n_to_le 4ul (UInt32.v x)
val le_of_uint32 (x: UInt32.t) : b: bytes{S.length b = 4} let le_of_uint32 (x: UInt32.t) : b: bytes{S.length b = 4} =
false
null
false
n_to_le 4ul (UInt32.v x)
{ "checked_file": "FStar.Krml.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.All.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Krml.Endianness.fst" }
[ "total" ]
[ "FStar.UInt32.t", "FStar.Krml.Endianness.n_to_le", "FStar.UInt32.__uint_to_t", "FStar.UInt32.v", "FStar.Krml.Endianness.bytes", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "FStar.UInt8.t" ]
[]
module FStar.Krml.Endianness open FStar.Mul open FStar.HyperStack.All module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq (* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several name changes *) inline_for_extraction noextract type bytes = S.seq U8.t /// lt_to_n interprets a byte sequence as a little-endian natural number [@(deprecated "FStar.Endianness.le_to_n")] val le_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec le_to_n b = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) /// be_to_n interprets a byte sequence as a big-endian natural number [@(deprecated "FStar.Endianness.be_to_n")] val be_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec be_to_n b = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) [@(deprecated "FStar.Endianness.lemma_euclidean_division")] private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () [@(deprecated "FStar.Endianness.lemma_factorise")] private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () [@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")] val lemma_le_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (le_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end [@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")] val lemma_be_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (be_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_be_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 0 (Seq.length b - 1) in assert(Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert(UInt8.v (Seq.last b) < pow2 8); assert(be_to_n s < pow2 (8 * Seq.length s)); assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert(be_to_n b <= pow2 8 * (be_to_n s + 1)); assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end /// n_to_le encodes a number as a little-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_le")] val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b}) (decreases (U32.v len)) let rec n_to_le len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_le len n' in let b = S.cons byte b' in S.lemma_eq_intro b' (S.tail b); b /// n_to_be encodes a numbers as a big-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_be")] val n_to_be: len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b}) (decreases (U32.v len)) let rec n_to_be len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_be len n' in let b'' = S.create 1 byte in let b = S.append b' b'' in S.lemma_eq_intro b' (S.slice b 0 (U32.v len)); b [@(deprecated "FStar.Endianness.n_to_le_inj")] let n_to_le_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_le len n1 == n_to_le len n2)) (ensures (n1 == n2)) = // this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion // proof in the spec for n_to_le () [@(deprecated "FStar.Endianness.n_to_be_inj")] let n_to_be_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_be len n1 == n_to_be len n2)) (ensures (n1 == n2)) = () [@(deprecated "FStar.Endianness.be_to_n_inj")] let rec be_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1)); Seq.lemma_split b1 (Seq.length b1 - 1); Seq.lemma_split b2 (Seq.length b2 - 1) end [@(deprecated "FStar.Endianness.le_to_n_inj")] let rec le_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2)); Seq.lemma_split b1 1; Seq.lemma_split b2 1 end [@(deprecated "FStar.Endianness.n_to_be_be_to_n")] let n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures ( be_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\ n_to_be len (be_to_n s) == s )) [SMTPat (n_to_be len (be_to_n s))] = lemma_be_to_n_is_bounded s; be_to_n_inj s (n_to_be len (be_to_n s)) [@(deprecated "FStar.Endianness.n_to_le_le_to_n")] let n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures ( le_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\ n_to_le len (le_to_n s) == s )) [SMTPat (n_to_le len (le_to_n s))] = lemma_le_to_n_is_bounded s; le_to_n_inj s (n_to_le len (le_to_n s)) (** A series of specializations to deal with machine integers *) [@(deprecated "FStar.Endianness.uint32_of_le")] let uint32_of_le (b: bytes { S.length b = 4 }) = let n = le_to_n b in lemma_le_to_n_is_bounded b; UInt32.uint_to_t n [@(deprecated "FStar.Endianness.le_of_uint32")]
false
false
FStar.Krml.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val le_of_uint32 (x: UInt32.t) : b: bytes{S.length b = 4}
[]
FStar.Krml.Endianness.le_of_uint32
{ "file_name": "krmllib/FStar.Krml.Endianness.fst", "git_rev": "a7be2a7c43eca637ceb57fe8f3ffd16fc6627ebd", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
x: FStar.UInt32.t -> b: FStar.Krml.Endianness.bytes{FStar.Seq.Base.length b = 4}
{ "end_col": 26, "end_line": 204, "start_col": 2, "start_line": 204 }
Prims.Tot
val le_of_uint64 (x: UInt64.t) : b: bytes{S.length b = 8}
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let le_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } = n_to_le 8ul (UInt64.v x)
val le_of_uint64 (x: UInt64.t) : b: bytes{S.length b = 8} let le_of_uint64 (x: UInt64.t) : b: bytes{S.length b = 8} =
false
null
false
n_to_le 8ul (UInt64.v x)
{ "checked_file": "FStar.Krml.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.All.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Krml.Endianness.fst" }
[ "total" ]
[ "FStar.UInt64.t", "FStar.Krml.Endianness.n_to_le", "FStar.UInt32.__uint_to_t", "FStar.UInt64.v", "FStar.Krml.Endianness.bytes", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "FStar.UInt8.t" ]
[]
module FStar.Krml.Endianness open FStar.Mul open FStar.HyperStack.All module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq (* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several name changes *) inline_for_extraction noextract type bytes = S.seq U8.t /// lt_to_n interprets a byte sequence as a little-endian natural number [@(deprecated "FStar.Endianness.le_to_n")] val le_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec le_to_n b = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) /// be_to_n interprets a byte sequence as a big-endian natural number [@(deprecated "FStar.Endianness.be_to_n")] val be_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec be_to_n b = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) [@(deprecated "FStar.Endianness.lemma_euclidean_division")] private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () [@(deprecated "FStar.Endianness.lemma_factorise")] private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () [@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")] val lemma_le_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (le_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end [@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")] val lemma_be_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (be_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_be_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 0 (Seq.length b - 1) in assert(Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert(UInt8.v (Seq.last b) < pow2 8); assert(be_to_n s < pow2 (8 * Seq.length s)); assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert(be_to_n b <= pow2 8 * (be_to_n s + 1)); assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end /// n_to_le encodes a number as a little-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_le")] val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b}) (decreases (U32.v len)) let rec n_to_le len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_le len n' in let b = S.cons byte b' in S.lemma_eq_intro b' (S.tail b); b /// n_to_be encodes a numbers as a big-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_be")] val n_to_be: len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b}) (decreases (U32.v len)) let rec n_to_be len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_be len n' in let b'' = S.create 1 byte in let b = S.append b' b'' in S.lemma_eq_intro b' (S.slice b 0 (U32.v len)); b [@(deprecated "FStar.Endianness.n_to_le_inj")] let n_to_le_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_le len n1 == n_to_le len n2)) (ensures (n1 == n2)) = // this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion // proof in the spec for n_to_le () [@(deprecated "FStar.Endianness.n_to_be_inj")] let n_to_be_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_be len n1 == n_to_be len n2)) (ensures (n1 == n2)) = () [@(deprecated "FStar.Endianness.be_to_n_inj")] let rec be_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1)); Seq.lemma_split b1 (Seq.length b1 - 1); Seq.lemma_split b2 (Seq.length b2 - 1) end [@(deprecated "FStar.Endianness.le_to_n_inj")] let rec le_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2)); Seq.lemma_split b1 1; Seq.lemma_split b2 1 end [@(deprecated "FStar.Endianness.n_to_be_be_to_n")] let n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures ( be_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\ n_to_be len (be_to_n s) == s )) [SMTPat (n_to_be len (be_to_n s))] = lemma_be_to_n_is_bounded s; be_to_n_inj s (n_to_be len (be_to_n s)) [@(deprecated "FStar.Endianness.n_to_le_le_to_n")] let n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures ( le_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\ n_to_le len (le_to_n s) == s )) [SMTPat (n_to_le len (le_to_n s))] = lemma_le_to_n_is_bounded s; le_to_n_inj s (n_to_le len (le_to_n s)) (** A series of specializations to deal with machine integers *) [@(deprecated "FStar.Endianness.uint32_of_le")] let uint32_of_le (b: bytes { S.length b = 4 }) = let n = le_to_n b in lemma_le_to_n_is_bounded b; UInt32.uint_to_t n [@(deprecated "FStar.Endianness.le_of_uint32")] let le_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } = n_to_le 4ul (UInt32.v x) [@(deprecated "FStar.Endianness.uint32_of_be")] let uint32_of_be (b: bytes { S.length b = 4 }) = let n = be_to_n b in lemma_be_to_n_is_bounded b; UInt32.uint_to_t n [@(deprecated "FStar.Endianness.be_of_uint32")] let be_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } = n_to_be 4ul (UInt32.v x) [@(deprecated "FStar.Endianness.uint64_of_le")] let uint64_of_le (b: bytes { S.length b = 8 }) = let n = le_to_n b in lemma_le_to_n_is_bounded b; UInt64.uint_to_t n [@(deprecated "FStar.Endianness.le_of_uint64")]
false
false
FStar.Krml.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val le_of_uint64 (x: UInt64.t) : b: bytes{S.length b = 8}
[]
FStar.Krml.Endianness.le_of_uint64
{ "file_name": "krmllib/FStar.Krml.Endianness.fst", "git_rev": "a7be2a7c43eca637ceb57fe8f3ffd16fc6627ebd", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
x: FStar.UInt64.t -> b: FStar.Krml.Endianness.bytes{FStar.Seq.Base.length b = 8}
{ "end_col": 26, "end_line": 224, "start_col": 2, "start_line": 224 }
Prims.Tot
val be_of_uint64 (x: UInt64.t) : b: bytes{S.length b = 8}
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let be_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } = n_to_be 8ul (UInt64.v x)
val be_of_uint64 (x: UInt64.t) : b: bytes{S.length b = 8} let be_of_uint64 (x: UInt64.t) : b: bytes{S.length b = 8} =
false
null
false
n_to_be 8ul (UInt64.v x)
{ "checked_file": "FStar.Krml.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.All.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Krml.Endianness.fst" }
[ "total" ]
[ "FStar.UInt64.t", "FStar.Krml.Endianness.n_to_be", "FStar.UInt32.__uint_to_t", "FStar.UInt64.v", "FStar.Krml.Endianness.bytes", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "FStar.UInt8.t" ]
[]
module FStar.Krml.Endianness open FStar.Mul open FStar.HyperStack.All module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq (* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several name changes *) inline_for_extraction noextract type bytes = S.seq U8.t /// lt_to_n interprets a byte sequence as a little-endian natural number [@(deprecated "FStar.Endianness.le_to_n")] val le_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec le_to_n b = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) /// be_to_n interprets a byte sequence as a big-endian natural number [@(deprecated "FStar.Endianness.be_to_n")] val be_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec be_to_n b = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) [@(deprecated "FStar.Endianness.lemma_euclidean_division")] private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () [@(deprecated "FStar.Endianness.lemma_factorise")] private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () [@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")] val lemma_le_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (le_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end [@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")] val lemma_be_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (be_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_be_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 0 (Seq.length b - 1) in assert(Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert(UInt8.v (Seq.last b) < pow2 8); assert(be_to_n s < pow2 (8 * Seq.length s)); assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert(be_to_n b <= pow2 8 * (be_to_n s + 1)); assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end /// n_to_le encodes a number as a little-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_le")] val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b}) (decreases (U32.v len)) let rec n_to_le len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_le len n' in let b = S.cons byte b' in S.lemma_eq_intro b' (S.tail b); b /// n_to_be encodes a numbers as a big-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_be")] val n_to_be: len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b}) (decreases (U32.v len)) let rec n_to_be len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_be len n' in let b'' = S.create 1 byte in let b = S.append b' b'' in S.lemma_eq_intro b' (S.slice b 0 (U32.v len)); b [@(deprecated "FStar.Endianness.n_to_le_inj")] let n_to_le_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_le len n1 == n_to_le len n2)) (ensures (n1 == n2)) = // this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion // proof in the spec for n_to_le () [@(deprecated "FStar.Endianness.n_to_be_inj")] let n_to_be_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_be len n1 == n_to_be len n2)) (ensures (n1 == n2)) = () [@(deprecated "FStar.Endianness.be_to_n_inj")] let rec be_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1)); Seq.lemma_split b1 (Seq.length b1 - 1); Seq.lemma_split b2 (Seq.length b2 - 1) end [@(deprecated "FStar.Endianness.le_to_n_inj")] let rec le_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2)); Seq.lemma_split b1 1; Seq.lemma_split b2 1 end [@(deprecated "FStar.Endianness.n_to_be_be_to_n")] let n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures ( be_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\ n_to_be len (be_to_n s) == s )) [SMTPat (n_to_be len (be_to_n s))] = lemma_be_to_n_is_bounded s; be_to_n_inj s (n_to_be len (be_to_n s)) [@(deprecated "FStar.Endianness.n_to_le_le_to_n")] let n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures ( le_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\ n_to_le len (le_to_n s) == s )) [SMTPat (n_to_le len (le_to_n s))] = lemma_le_to_n_is_bounded s; le_to_n_inj s (n_to_le len (le_to_n s)) (** A series of specializations to deal with machine integers *) [@(deprecated "FStar.Endianness.uint32_of_le")] let uint32_of_le (b: bytes { S.length b = 4 }) = let n = le_to_n b in lemma_le_to_n_is_bounded b; UInt32.uint_to_t n [@(deprecated "FStar.Endianness.le_of_uint32")] let le_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } = n_to_le 4ul (UInt32.v x) [@(deprecated "FStar.Endianness.uint32_of_be")] let uint32_of_be (b: bytes { S.length b = 4 }) = let n = be_to_n b in lemma_be_to_n_is_bounded b; UInt32.uint_to_t n [@(deprecated "FStar.Endianness.be_of_uint32")] let be_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } = n_to_be 4ul (UInt32.v x) [@(deprecated "FStar.Endianness.uint64_of_le")] let uint64_of_le (b: bytes { S.length b = 8 }) = let n = le_to_n b in lemma_le_to_n_is_bounded b; UInt64.uint_to_t n [@(deprecated "FStar.Endianness.le_of_uint64")] let le_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } = n_to_le 8ul (UInt64.v x) [@(deprecated "FStar.Endianness.uint64_of_be")] let uint64_of_be (b: bytes { S.length b = 8 }) = let n = be_to_n b in lemma_be_to_n_is_bounded b; UInt64.uint_to_t n [@(deprecated "FStar.Endianness.be_of_uint64")]
false
false
FStar.Krml.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val be_of_uint64 (x: UInt64.t) : b: bytes{S.length b = 8}
[]
FStar.Krml.Endianness.be_of_uint64
{ "file_name": "krmllib/FStar.Krml.Endianness.fst", "git_rev": "a7be2a7c43eca637ceb57fe8f3ffd16fc6627ebd", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
x: FStar.UInt64.t -> b: FStar.Krml.Endianness.bytes{FStar.Seq.Base.length b = 8}
{ "end_col": 26, "end_line": 234, "start_col": 2, "start_line": 234 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let uint64_of_le (b: bytes { S.length b = 8 }) = let n = le_to_n b in lemma_le_to_n_is_bounded b; UInt64.uint_to_t n
let uint64_of_le (b: bytes{S.length b = 8}) =
false
null
false
let n = le_to_n b in lemma_le_to_n_is_bounded b; UInt64.uint_to_t n
{ "checked_file": "FStar.Krml.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.All.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Krml.Endianness.fst" }
[ "total" ]
[ "FStar.Krml.Endianness.bytes", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "FStar.UInt8.t", "FStar.UInt64.uint_to_t", "Prims.unit", "FStar.Krml.Endianness.lemma_le_to_n_is_bounded", "Prims.nat", "FStar.Krml.Endianness.le_to_n", "FStar.UInt64.t" ]
[]
module FStar.Krml.Endianness open FStar.Mul open FStar.HyperStack.All module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq (* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several name changes *) inline_for_extraction noextract type bytes = S.seq U8.t /// lt_to_n interprets a byte sequence as a little-endian natural number [@(deprecated "FStar.Endianness.le_to_n")] val le_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec le_to_n b = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) /// be_to_n interprets a byte sequence as a big-endian natural number [@(deprecated "FStar.Endianness.be_to_n")] val be_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec be_to_n b = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) [@(deprecated "FStar.Endianness.lemma_euclidean_division")] private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () [@(deprecated "FStar.Endianness.lemma_factorise")] private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () [@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")] val lemma_le_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (le_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end [@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")] val lemma_be_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (be_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_be_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 0 (Seq.length b - 1) in assert(Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert(UInt8.v (Seq.last b) < pow2 8); assert(be_to_n s < pow2 (8 * Seq.length s)); assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert(be_to_n b <= pow2 8 * (be_to_n s + 1)); assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end /// n_to_le encodes a number as a little-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_le")] val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b}) (decreases (U32.v len)) let rec n_to_le len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_le len n' in let b = S.cons byte b' in S.lemma_eq_intro b' (S.tail b); b /// n_to_be encodes a numbers as a big-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_be")] val n_to_be: len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b}) (decreases (U32.v len)) let rec n_to_be len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_be len n' in let b'' = S.create 1 byte in let b = S.append b' b'' in S.lemma_eq_intro b' (S.slice b 0 (U32.v len)); b [@(deprecated "FStar.Endianness.n_to_le_inj")] let n_to_le_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_le len n1 == n_to_le len n2)) (ensures (n1 == n2)) = // this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion // proof in the spec for n_to_le () [@(deprecated "FStar.Endianness.n_to_be_inj")] let n_to_be_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_be len n1 == n_to_be len n2)) (ensures (n1 == n2)) = () [@(deprecated "FStar.Endianness.be_to_n_inj")] let rec be_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1)); Seq.lemma_split b1 (Seq.length b1 - 1); Seq.lemma_split b2 (Seq.length b2 - 1) end [@(deprecated "FStar.Endianness.le_to_n_inj")] let rec le_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2)); Seq.lemma_split b1 1; Seq.lemma_split b2 1 end [@(deprecated "FStar.Endianness.n_to_be_be_to_n")] let n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures ( be_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\ n_to_be len (be_to_n s) == s )) [SMTPat (n_to_be len (be_to_n s))] = lemma_be_to_n_is_bounded s; be_to_n_inj s (n_to_be len (be_to_n s)) [@(deprecated "FStar.Endianness.n_to_le_le_to_n")] let n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures ( le_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\ n_to_le len (le_to_n s) == s )) [SMTPat (n_to_le len (le_to_n s))] = lemma_le_to_n_is_bounded s; le_to_n_inj s (n_to_le len (le_to_n s)) (** A series of specializations to deal with machine integers *) [@(deprecated "FStar.Endianness.uint32_of_le")] let uint32_of_le (b: bytes { S.length b = 4 }) = let n = le_to_n b in lemma_le_to_n_is_bounded b; UInt32.uint_to_t n [@(deprecated "FStar.Endianness.le_of_uint32")] let le_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } = n_to_le 4ul (UInt32.v x) [@(deprecated "FStar.Endianness.uint32_of_be")] let uint32_of_be (b: bytes { S.length b = 4 }) = let n = be_to_n b in lemma_be_to_n_is_bounded b; UInt32.uint_to_t n [@(deprecated "FStar.Endianness.be_of_uint32")] let be_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } = n_to_be 4ul (UInt32.v x)
false
false
FStar.Krml.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val uint64_of_le : b: FStar.Krml.Endianness.bytes{FStar.Seq.Base.length b = 8} -> FStar.UInt64.t
[]
FStar.Krml.Endianness.uint64_of_le
{ "file_name": "krmllib/FStar.Krml.Endianness.fst", "git_rev": "a7be2a7c43eca637ceb57fe8f3ffd16fc6627ebd", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
b: FStar.Krml.Endianness.bytes{FStar.Seq.Base.length b = 8} -> FStar.UInt64.t
{ "end_col": 20, "end_line": 220, "start_col": 48, "start_line": 217 }
Prims.Tot
val be_of_uint32 (x: UInt32.t) : b: bytes{S.length b = 4}
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let be_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } = n_to_be 4ul (UInt32.v x)
val be_of_uint32 (x: UInt32.t) : b: bytes{S.length b = 4} let be_of_uint32 (x: UInt32.t) : b: bytes{S.length b = 4} =
false
null
false
n_to_be 4ul (UInt32.v x)
{ "checked_file": "FStar.Krml.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.All.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Krml.Endianness.fst" }
[ "total" ]
[ "FStar.UInt32.t", "FStar.Krml.Endianness.n_to_be", "FStar.UInt32.__uint_to_t", "FStar.UInt32.v", "FStar.Krml.Endianness.bytes", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "FStar.UInt8.t" ]
[]
module FStar.Krml.Endianness open FStar.Mul open FStar.HyperStack.All module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq (* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several name changes *) inline_for_extraction noextract type bytes = S.seq U8.t /// lt_to_n interprets a byte sequence as a little-endian natural number [@(deprecated "FStar.Endianness.le_to_n")] val le_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec le_to_n b = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) /// be_to_n interprets a byte sequence as a big-endian natural number [@(deprecated "FStar.Endianness.be_to_n")] val be_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec be_to_n b = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) [@(deprecated "FStar.Endianness.lemma_euclidean_division")] private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () [@(deprecated "FStar.Endianness.lemma_factorise")] private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () [@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")] val lemma_le_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (le_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end [@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")] val lemma_be_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (be_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_be_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 0 (Seq.length b - 1) in assert(Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert(UInt8.v (Seq.last b) < pow2 8); assert(be_to_n s < pow2 (8 * Seq.length s)); assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert(be_to_n b <= pow2 8 * (be_to_n s + 1)); assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end /// n_to_le encodes a number as a little-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_le")] val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b}) (decreases (U32.v len)) let rec n_to_le len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_le len n' in let b = S.cons byte b' in S.lemma_eq_intro b' (S.tail b); b /// n_to_be encodes a numbers as a big-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_be")] val n_to_be: len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b}) (decreases (U32.v len)) let rec n_to_be len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_be len n' in let b'' = S.create 1 byte in let b = S.append b' b'' in S.lemma_eq_intro b' (S.slice b 0 (U32.v len)); b [@(deprecated "FStar.Endianness.n_to_le_inj")] let n_to_le_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_le len n1 == n_to_le len n2)) (ensures (n1 == n2)) = // this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion // proof in the spec for n_to_le () [@(deprecated "FStar.Endianness.n_to_be_inj")] let n_to_be_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_be len n1 == n_to_be len n2)) (ensures (n1 == n2)) = () [@(deprecated "FStar.Endianness.be_to_n_inj")] let rec be_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1)); Seq.lemma_split b1 (Seq.length b1 - 1); Seq.lemma_split b2 (Seq.length b2 - 1) end [@(deprecated "FStar.Endianness.le_to_n_inj")] let rec le_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2)); Seq.lemma_split b1 1; Seq.lemma_split b2 1 end [@(deprecated "FStar.Endianness.n_to_be_be_to_n")] let n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures ( be_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\ n_to_be len (be_to_n s) == s )) [SMTPat (n_to_be len (be_to_n s))] = lemma_be_to_n_is_bounded s; be_to_n_inj s (n_to_be len (be_to_n s)) [@(deprecated "FStar.Endianness.n_to_le_le_to_n")] let n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures ( le_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\ n_to_le len (le_to_n s) == s )) [SMTPat (n_to_le len (le_to_n s))] = lemma_le_to_n_is_bounded s; le_to_n_inj s (n_to_le len (le_to_n s)) (** A series of specializations to deal with machine integers *) [@(deprecated "FStar.Endianness.uint32_of_le")] let uint32_of_le (b: bytes { S.length b = 4 }) = let n = le_to_n b in lemma_le_to_n_is_bounded b; UInt32.uint_to_t n [@(deprecated "FStar.Endianness.le_of_uint32")] let le_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } = n_to_le 4ul (UInt32.v x) [@(deprecated "FStar.Endianness.uint32_of_be")] let uint32_of_be (b: bytes { S.length b = 4 }) = let n = be_to_n b in lemma_be_to_n_is_bounded b; UInt32.uint_to_t n [@(deprecated "FStar.Endianness.be_of_uint32")]
false
false
FStar.Krml.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val be_of_uint32 (x: UInt32.t) : b: bytes{S.length b = 4}
[]
FStar.Krml.Endianness.be_of_uint32
{ "file_name": "krmllib/FStar.Krml.Endianness.fst", "git_rev": "a7be2a7c43eca637ceb57fe8f3ffd16fc6627ebd", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
x: FStar.UInt32.t -> b: FStar.Krml.Endianness.bytes{FStar.Seq.Base.length b = 4}
{ "end_col": 26, "end_line": 214, "start_col": 2, "start_line": 214 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let uint32_of_le (b: bytes { S.length b = 4 }) = let n = le_to_n b in lemma_le_to_n_is_bounded b; UInt32.uint_to_t n
let uint32_of_le (b: bytes{S.length b = 4}) =
false
null
false
let n = le_to_n b in lemma_le_to_n_is_bounded b; UInt32.uint_to_t n
{ "checked_file": "FStar.Krml.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.All.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Krml.Endianness.fst" }
[ "total" ]
[ "FStar.Krml.Endianness.bytes", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "FStar.UInt8.t", "FStar.UInt32.uint_to_t", "Prims.unit", "FStar.Krml.Endianness.lemma_le_to_n_is_bounded", "Prims.nat", "FStar.Krml.Endianness.le_to_n", "FStar.UInt32.t" ]
[]
module FStar.Krml.Endianness open FStar.Mul open FStar.HyperStack.All module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq (* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several name changes *) inline_for_extraction noextract type bytes = S.seq U8.t /// lt_to_n interprets a byte sequence as a little-endian natural number [@(deprecated "FStar.Endianness.le_to_n")] val le_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec le_to_n b = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) /// be_to_n interprets a byte sequence as a big-endian natural number [@(deprecated "FStar.Endianness.be_to_n")] val be_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec be_to_n b = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) [@(deprecated "FStar.Endianness.lemma_euclidean_division")] private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () [@(deprecated "FStar.Endianness.lemma_factorise")] private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () [@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")] val lemma_le_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (le_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end [@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")] val lemma_be_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (be_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_be_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 0 (Seq.length b - 1) in assert(Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert(UInt8.v (Seq.last b) < pow2 8); assert(be_to_n s < pow2 (8 * Seq.length s)); assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert(be_to_n b <= pow2 8 * (be_to_n s + 1)); assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end /// n_to_le encodes a number as a little-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_le")] val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b}) (decreases (U32.v len)) let rec n_to_le len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_le len n' in let b = S.cons byte b' in S.lemma_eq_intro b' (S.tail b); b /// n_to_be encodes a numbers as a big-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_be")] val n_to_be: len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b}) (decreases (U32.v len)) let rec n_to_be len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_be len n' in let b'' = S.create 1 byte in let b = S.append b' b'' in S.lemma_eq_intro b' (S.slice b 0 (U32.v len)); b [@(deprecated "FStar.Endianness.n_to_le_inj")] let n_to_le_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_le len n1 == n_to_le len n2)) (ensures (n1 == n2)) = // this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion // proof in the spec for n_to_le () [@(deprecated "FStar.Endianness.n_to_be_inj")] let n_to_be_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_be len n1 == n_to_be len n2)) (ensures (n1 == n2)) = () [@(deprecated "FStar.Endianness.be_to_n_inj")] let rec be_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1)); Seq.lemma_split b1 (Seq.length b1 - 1); Seq.lemma_split b2 (Seq.length b2 - 1) end [@(deprecated "FStar.Endianness.le_to_n_inj")] let rec le_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2)); Seq.lemma_split b1 1; Seq.lemma_split b2 1 end [@(deprecated "FStar.Endianness.n_to_be_be_to_n")] let n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures ( be_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\ n_to_be len (be_to_n s) == s )) [SMTPat (n_to_be len (be_to_n s))] = lemma_be_to_n_is_bounded s; be_to_n_inj s (n_to_be len (be_to_n s)) [@(deprecated "FStar.Endianness.n_to_le_le_to_n")] let n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures ( le_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\ n_to_le len (le_to_n s) == s )) [SMTPat (n_to_le len (le_to_n s))] = lemma_le_to_n_is_bounded s; le_to_n_inj s (n_to_le len (le_to_n s)) (** A series of specializations to deal with machine integers *)
false
false
FStar.Krml.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val uint32_of_le : b: FStar.Krml.Endianness.bytes{FStar.Seq.Base.length b = 4} -> FStar.UInt32.t
[]
FStar.Krml.Endianness.uint32_of_le
{ "file_name": "krmllib/FStar.Krml.Endianness.fst", "git_rev": "a7be2a7c43eca637ceb57fe8f3ffd16fc6627ebd", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
b: FStar.Krml.Endianness.bytes{FStar.Seq.Base.length b = 4} -> FStar.UInt32.t
{ "end_col": 20, "end_line": 200, "start_col": 48, "start_line": 197 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let uint32_of_be (b: bytes { S.length b = 4 }) = let n = be_to_n b in lemma_be_to_n_is_bounded b; UInt32.uint_to_t n
let uint32_of_be (b: bytes{S.length b = 4}) =
false
null
false
let n = be_to_n b in lemma_be_to_n_is_bounded b; UInt32.uint_to_t n
{ "checked_file": "FStar.Krml.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.All.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Krml.Endianness.fst" }
[ "total" ]
[ "FStar.Krml.Endianness.bytes", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "FStar.UInt8.t", "FStar.UInt32.uint_to_t", "Prims.unit", "FStar.Krml.Endianness.lemma_be_to_n_is_bounded", "Prims.nat", "FStar.Krml.Endianness.be_to_n", "FStar.UInt32.t" ]
[]
module FStar.Krml.Endianness open FStar.Mul open FStar.HyperStack.All module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq (* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several name changes *) inline_for_extraction noextract type bytes = S.seq U8.t /// lt_to_n interprets a byte sequence as a little-endian natural number [@(deprecated "FStar.Endianness.le_to_n")] val le_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec le_to_n b = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) /// be_to_n interprets a byte sequence as a big-endian natural number [@(deprecated "FStar.Endianness.be_to_n")] val be_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec be_to_n b = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) [@(deprecated "FStar.Endianness.lemma_euclidean_division")] private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () [@(deprecated "FStar.Endianness.lemma_factorise")] private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () [@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")] val lemma_le_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (le_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end [@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")] val lemma_be_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (be_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_be_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 0 (Seq.length b - 1) in assert(Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert(UInt8.v (Seq.last b) < pow2 8); assert(be_to_n s < pow2 (8 * Seq.length s)); assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert(be_to_n b <= pow2 8 * (be_to_n s + 1)); assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end /// n_to_le encodes a number as a little-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_le")] val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b}) (decreases (U32.v len)) let rec n_to_le len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_le len n' in let b = S.cons byte b' in S.lemma_eq_intro b' (S.tail b); b /// n_to_be encodes a numbers as a big-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_be")] val n_to_be: len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b}) (decreases (U32.v len)) let rec n_to_be len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_be len n' in let b'' = S.create 1 byte in let b = S.append b' b'' in S.lemma_eq_intro b' (S.slice b 0 (U32.v len)); b [@(deprecated "FStar.Endianness.n_to_le_inj")] let n_to_le_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_le len n1 == n_to_le len n2)) (ensures (n1 == n2)) = // this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion // proof in the spec for n_to_le () [@(deprecated "FStar.Endianness.n_to_be_inj")] let n_to_be_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_be len n1 == n_to_be len n2)) (ensures (n1 == n2)) = () [@(deprecated "FStar.Endianness.be_to_n_inj")] let rec be_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1)); Seq.lemma_split b1 (Seq.length b1 - 1); Seq.lemma_split b2 (Seq.length b2 - 1) end [@(deprecated "FStar.Endianness.le_to_n_inj")] let rec le_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2)); Seq.lemma_split b1 1; Seq.lemma_split b2 1 end [@(deprecated "FStar.Endianness.n_to_be_be_to_n")] let n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures ( be_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\ n_to_be len (be_to_n s) == s )) [SMTPat (n_to_be len (be_to_n s))] = lemma_be_to_n_is_bounded s; be_to_n_inj s (n_to_be len (be_to_n s)) [@(deprecated "FStar.Endianness.n_to_le_le_to_n")] let n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures ( le_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\ n_to_le len (le_to_n s) == s )) [SMTPat (n_to_le len (le_to_n s))] = lemma_le_to_n_is_bounded s; le_to_n_inj s (n_to_le len (le_to_n s)) (** A series of specializations to deal with machine integers *) [@(deprecated "FStar.Endianness.uint32_of_le")] let uint32_of_le (b: bytes { S.length b = 4 }) = let n = le_to_n b in lemma_le_to_n_is_bounded b; UInt32.uint_to_t n [@(deprecated "FStar.Endianness.le_of_uint32")] let le_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } = n_to_le 4ul (UInt32.v x)
false
false
FStar.Krml.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val uint32_of_be : b: FStar.Krml.Endianness.bytes{FStar.Seq.Base.length b = 4} -> FStar.UInt32.t
[]
FStar.Krml.Endianness.uint32_of_be
{ "file_name": "krmllib/FStar.Krml.Endianness.fst", "git_rev": "a7be2a7c43eca637ceb57fe8f3ffd16fc6627ebd", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
b: FStar.Krml.Endianness.bytes{FStar.Seq.Base.length b = 4} -> FStar.UInt32.t
{ "end_col": 20, "end_line": 210, "start_col": 48, "start_line": 207 }
Prims.Tot
val be_to_n : b:bytes -> Tot nat (decreases (S.length b))
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec be_to_n b = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1))
val be_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec be_to_n b =
false
null
false
if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1))
{ "checked_file": "FStar.Krml.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.All.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Krml.Endianness.fst" }
[ "total", "" ]
[ "FStar.Krml.Endianness.bytes", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "FStar.UInt8.t", "Prims.bool", "Prims.op_Addition", "FStar.UInt8.v", "FStar.Seq.Properties.last", "FStar.Mul.op_Star", "Prims.pow2", "FStar.Krml.Endianness.be_to_n", "FStar.Seq.Base.slice", "Prims.op_Subtraction", "Prims.nat" ]
[]
module FStar.Krml.Endianness open FStar.Mul open FStar.HyperStack.All module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq (* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several name changes *) inline_for_extraction noextract type bytes = S.seq U8.t /// lt_to_n interprets a byte sequence as a little-endian natural number [@(deprecated "FStar.Endianness.le_to_n")] val le_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec le_to_n b = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) /// be_to_n interprets a byte sequence as a big-endian natural number [@(deprecated "FStar.Endianness.be_to_n")] val be_to_n : b:bytes -> Tot nat (decreases (S.length b))
false
true
FStar.Krml.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val be_to_n : b:bytes -> Tot nat (decreases (S.length b))
[ "recursion" ]
FStar.Krml.Endianness.be_to_n
{ "file_name": "krmllib/FStar.Krml.Endianness.fst", "git_rev": "a7be2a7c43eca637ceb57fe8f3ffd16fc6627ebd", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
b: FStar.Krml.Endianness.bytes -> Prims.Tot Prims.nat
{ "end_col": 72, "end_line": 30, "start_col": 2, "start_line": 29 }
Prims.Tot
val le_to_n : b:bytes -> Tot nat (decreases (S.length b))
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec le_to_n b = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b)
val le_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec le_to_n b =
false
null
false
if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b)
{ "checked_file": "FStar.Krml.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.All.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Krml.Endianness.fst" }
[ "total", "" ]
[ "FStar.Krml.Endianness.bytes", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "FStar.UInt8.t", "Prims.bool", "Prims.op_Addition", "FStar.UInt8.v", "FStar.Seq.Properties.head", "FStar.Mul.op_Star", "Prims.pow2", "FStar.Krml.Endianness.le_to_n", "FStar.Seq.Properties.tail", "Prims.nat" ]
[]
module FStar.Krml.Endianness open FStar.Mul open FStar.HyperStack.All module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq (* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several name changes *) inline_for_extraction noextract type bytes = S.seq U8.t /// lt_to_n interprets a byte sequence as a little-endian natural number [@(deprecated "FStar.Endianness.le_to_n")] val le_to_n : b:bytes -> Tot nat (decreases (S.length b))
false
true
FStar.Krml.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val le_to_n : b:bytes -> Tot nat (decreases (S.length b))
[ "recursion" ]
FStar.Krml.Endianness.le_to_n
{ "file_name": "krmllib/FStar.Krml.Endianness.fst", "git_rev": "a7be2a7c43eca637ceb57fe8f3ffd16fc6627ebd", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
b: FStar.Krml.Endianness.bytes -> Prims.Tot Prims.nat
{ "end_col": 52, "end_line": 23, "start_col": 2, "start_line": 22 }
Prims.Tot
val be_of_seq_uint32 (s: S.seq UInt32.t) : Tot (b: bytes{S.length b = 4 * S.length s}) (decreases (S.length s))
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec be_of_seq_uint32 (s: S.seq UInt32.t): Tot (b:bytes { S.length b = 4 * S.length s }) (decreases (S.length s)) = if S.length s = 0 then S.empty else S.append (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s))
val be_of_seq_uint32 (s: S.seq UInt32.t) : Tot (b: bytes{S.length b = 4 * S.length s}) (decreases (S.length s)) let rec be_of_seq_uint32 (s: S.seq UInt32.t) : Tot (b: bytes{S.length b = 4 * S.length s}) (decreases (S.length s)) =
false
null
false
if S.length s = 0 then S.empty else S.append (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s))
{ "checked_file": "FStar.Krml.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.All.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Krml.Endianness.fst" }
[ "total", "" ]
[ "FStar.Seq.Base.seq", "FStar.UInt32.t", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "FStar.Seq.Base.empty", "FStar.UInt8.t", "Prims.bool", "FStar.Seq.Base.append", "FStar.Krml.Endianness.be_of_uint32", "FStar.Seq.Properties.head", "FStar.Krml.Endianness.be_of_seq_uint32", "FStar.Seq.Properties.tail", "FStar.Krml.Endianness.bytes", "Prims.b2t", "FStar.Mul.op_Star" ]
[]
module FStar.Krml.Endianness open FStar.Mul open FStar.HyperStack.All module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq (* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several name changes *) inline_for_extraction noextract type bytes = S.seq U8.t /// lt_to_n interprets a byte sequence as a little-endian natural number [@(deprecated "FStar.Endianness.le_to_n")] val le_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec le_to_n b = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) /// be_to_n interprets a byte sequence as a big-endian natural number [@(deprecated "FStar.Endianness.be_to_n")] val be_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec be_to_n b = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) [@(deprecated "FStar.Endianness.lemma_euclidean_division")] private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () [@(deprecated "FStar.Endianness.lemma_factorise")] private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () [@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")] val lemma_le_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (le_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end [@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")] val lemma_be_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (be_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_be_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 0 (Seq.length b - 1) in assert(Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert(UInt8.v (Seq.last b) < pow2 8); assert(be_to_n s < pow2 (8 * Seq.length s)); assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert(be_to_n b <= pow2 8 * (be_to_n s + 1)); assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end /// n_to_le encodes a number as a little-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_le")] val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b}) (decreases (U32.v len)) let rec n_to_le len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_le len n' in let b = S.cons byte b' in S.lemma_eq_intro b' (S.tail b); b /// n_to_be encodes a numbers as a big-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_be")] val n_to_be: len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b}) (decreases (U32.v len)) let rec n_to_be len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_be len n' in let b'' = S.create 1 byte in let b = S.append b' b'' in S.lemma_eq_intro b' (S.slice b 0 (U32.v len)); b [@(deprecated "FStar.Endianness.n_to_le_inj")] let n_to_le_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_le len n1 == n_to_le len n2)) (ensures (n1 == n2)) = // this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion // proof in the spec for n_to_le () [@(deprecated "FStar.Endianness.n_to_be_inj")] let n_to_be_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_be len n1 == n_to_be len n2)) (ensures (n1 == n2)) = () [@(deprecated "FStar.Endianness.be_to_n_inj")] let rec be_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1)); Seq.lemma_split b1 (Seq.length b1 - 1); Seq.lemma_split b2 (Seq.length b2 - 1) end [@(deprecated "FStar.Endianness.le_to_n_inj")] let rec le_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2)); Seq.lemma_split b1 1; Seq.lemma_split b2 1 end [@(deprecated "FStar.Endianness.n_to_be_be_to_n")] let n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures ( be_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\ n_to_be len (be_to_n s) == s )) [SMTPat (n_to_be len (be_to_n s))] = lemma_be_to_n_is_bounded s; be_to_n_inj s (n_to_be len (be_to_n s)) [@(deprecated "FStar.Endianness.n_to_le_le_to_n")] let n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures ( le_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\ n_to_le len (le_to_n s) == s )) [SMTPat (n_to_le len (le_to_n s))] = lemma_le_to_n_is_bounded s; le_to_n_inj s (n_to_le len (le_to_n s)) (** A series of specializations to deal with machine integers *) [@(deprecated "FStar.Endianness.uint32_of_le")] let uint32_of_le (b: bytes { S.length b = 4 }) = let n = le_to_n b in lemma_le_to_n_is_bounded b; UInt32.uint_to_t n [@(deprecated "FStar.Endianness.le_of_uint32")] let le_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } = n_to_le 4ul (UInt32.v x) [@(deprecated "FStar.Endianness.uint32_of_be")] let uint32_of_be (b: bytes { S.length b = 4 }) = let n = be_to_n b in lemma_be_to_n_is_bounded b; UInt32.uint_to_t n [@(deprecated "FStar.Endianness.be_of_uint32")] let be_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } = n_to_be 4ul (UInt32.v x) [@(deprecated "FStar.Endianness.uint64_of_le")] let uint64_of_le (b: bytes { S.length b = 8 }) = let n = le_to_n b in lemma_le_to_n_is_bounded b; UInt64.uint_to_t n [@(deprecated "FStar.Endianness.le_of_uint64")] let le_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } = n_to_le 8ul (UInt64.v x) [@(deprecated "FStar.Endianness.uint64_of_be")] let uint64_of_be (b: bytes { S.length b = 8 }) = let n = be_to_n b in lemma_be_to_n_is_bounded b; UInt64.uint_to_t n [@(deprecated "FStar.Endianness.be_of_uint64")] let be_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } = n_to_be 8ul (UInt64.v x) [@(deprecated "FStar.Endianness.seq_uint32_of_le")] let rec seq_uint32_of_le (l: nat) (b: bytes{ S.length b = 4 * l }): s:S.seq UInt32.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_le hd) (seq_uint32_of_le (l - 1) tl) [@(deprecated "FStar.Endianness.le_of_seq_uint32")] let rec le_of_seq_uint32 (s: S.seq UInt32.t): Tot (b:bytes { S.length b = 4 * S.length s }) (decreases (S.length s)) = if S.length s = 0 then S.empty else S.append (le_of_uint32 (S.head s)) (le_of_seq_uint32 (S.tail s)) [@(deprecated "FStar.Endianness.seq_uint32_of_be")] let rec seq_uint32_of_be (l: nat) (b: bytes{ S.length b = 4 * l }): s:S.seq UInt32.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_be hd) (seq_uint32_of_be (l - 1) tl) [@(deprecated "FStar.Endianness.be_of_seq_uint32")] let rec be_of_seq_uint32 (s: S.seq UInt32.t): Tot (b:bytes { S.length b = 4 * S.length s }) (decreases (S.length s))
false
false
FStar.Krml.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val be_of_seq_uint32 (s: S.seq UInt32.t) : Tot (b: bytes{S.length b = 4 * S.length s}) (decreases (S.length s))
[ "recursion" ]
FStar.Krml.Endianness.be_of_seq_uint32
{ "file_name": "krmllib/FStar.Krml.Endianness.fst", "git_rev": "a7be2a7c43eca637ceb57fe8f3ffd16fc6627ebd", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
s: FStar.Seq.Base.seq FStar.UInt32.t -> Prims.Tot (b: FStar.Krml.Endianness.bytes{FStar.Seq.Base.length b = 4 * FStar.Seq.Base.length s})
{ "end_col": 68, "end_line": 274, "start_col": 2, "start_line": 271 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let uint64_of_be (b: bytes { S.length b = 8 }) = let n = be_to_n b in lemma_be_to_n_is_bounded b; UInt64.uint_to_t n
let uint64_of_be (b: bytes{S.length b = 8}) =
false
null
false
let n = be_to_n b in lemma_be_to_n_is_bounded b; UInt64.uint_to_t n
{ "checked_file": "FStar.Krml.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.All.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Krml.Endianness.fst" }
[ "total" ]
[ "FStar.Krml.Endianness.bytes", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "FStar.UInt8.t", "FStar.UInt64.uint_to_t", "Prims.unit", "FStar.Krml.Endianness.lemma_be_to_n_is_bounded", "Prims.nat", "FStar.Krml.Endianness.be_to_n", "FStar.UInt64.t" ]
[]
module FStar.Krml.Endianness open FStar.Mul open FStar.HyperStack.All module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq (* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several name changes *) inline_for_extraction noextract type bytes = S.seq U8.t /// lt_to_n interprets a byte sequence as a little-endian natural number [@(deprecated "FStar.Endianness.le_to_n")] val le_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec le_to_n b = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) /// be_to_n interprets a byte sequence as a big-endian natural number [@(deprecated "FStar.Endianness.be_to_n")] val be_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec be_to_n b = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) [@(deprecated "FStar.Endianness.lemma_euclidean_division")] private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () [@(deprecated "FStar.Endianness.lemma_factorise")] private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () [@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")] val lemma_le_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (le_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end [@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")] val lemma_be_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (be_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_be_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 0 (Seq.length b - 1) in assert(Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert(UInt8.v (Seq.last b) < pow2 8); assert(be_to_n s < pow2 (8 * Seq.length s)); assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert(be_to_n b <= pow2 8 * (be_to_n s + 1)); assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end /// n_to_le encodes a number as a little-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_le")] val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b}) (decreases (U32.v len)) let rec n_to_le len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_le len n' in let b = S.cons byte b' in S.lemma_eq_intro b' (S.tail b); b /// n_to_be encodes a numbers as a big-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_be")] val n_to_be: len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b}) (decreases (U32.v len)) let rec n_to_be len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_be len n' in let b'' = S.create 1 byte in let b = S.append b' b'' in S.lemma_eq_intro b' (S.slice b 0 (U32.v len)); b [@(deprecated "FStar.Endianness.n_to_le_inj")] let n_to_le_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_le len n1 == n_to_le len n2)) (ensures (n1 == n2)) = // this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion // proof in the spec for n_to_le () [@(deprecated "FStar.Endianness.n_to_be_inj")] let n_to_be_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_be len n1 == n_to_be len n2)) (ensures (n1 == n2)) = () [@(deprecated "FStar.Endianness.be_to_n_inj")] let rec be_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1)); Seq.lemma_split b1 (Seq.length b1 - 1); Seq.lemma_split b2 (Seq.length b2 - 1) end [@(deprecated "FStar.Endianness.le_to_n_inj")] let rec le_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2)); Seq.lemma_split b1 1; Seq.lemma_split b2 1 end [@(deprecated "FStar.Endianness.n_to_be_be_to_n")] let n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures ( be_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\ n_to_be len (be_to_n s) == s )) [SMTPat (n_to_be len (be_to_n s))] = lemma_be_to_n_is_bounded s; be_to_n_inj s (n_to_be len (be_to_n s)) [@(deprecated "FStar.Endianness.n_to_le_le_to_n")] let n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures ( le_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\ n_to_le len (le_to_n s) == s )) [SMTPat (n_to_le len (le_to_n s))] = lemma_le_to_n_is_bounded s; le_to_n_inj s (n_to_le len (le_to_n s)) (** A series of specializations to deal with machine integers *) [@(deprecated "FStar.Endianness.uint32_of_le")] let uint32_of_le (b: bytes { S.length b = 4 }) = let n = le_to_n b in lemma_le_to_n_is_bounded b; UInt32.uint_to_t n [@(deprecated "FStar.Endianness.le_of_uint32")] let le_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } = n_to_le 4ul (UInt32.v x) [@(deprecated "FStar.Endianness.uint32_of_be")] let uint32_of_be (b: bytes { S.length b = 4 }) = let n = be_to_n b in lemma_be_to_n_is_bounded b; UInt32.uint_to_t n [@(deprecated "FStar.Endianness.be_of_uint32")] let be_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } = n_to_be 4ul (UInt32.v x) [@(deprecated "FStar.Endianness.uint64_of_le")] let uint64_of_le (b: bytes { S.length b = 8 }) = let n = le_to_n b in lemma_le_to_n_is_bounded b; UInt64.uint_to_t n [@(deprecated "FStar.Endianness.le_of_uint64")] let le_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } = n_to_le 8ul (UInt64.v x)
false
false
FStar.Krml.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val uint64_of_be : b: FStar.Krml.Endianness.bytes{FStar.Seq.Base.length b = 8} -> FStar.UInt64.t
[]
FStar.Krml.Endianness.uint64_of_be
{ "file_name": "krmllib/FStar.Krml.Endianness.fst", "git_rev": "a7be2a7c43eca637ceb57fe8f3ffd16fc6627ebd", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
b: FStar.Krml.Endianness.bytes{FStar.Seq.Base.length b = 8} -> FStar.UInt64.t
{ "end_col": 20, "end_line": 230, "start_col": 48, "start_line": 227 }
FStar.Pervasives.Lemma
val n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures (be_to_n s < pow2 (8 `Prims.op_Multiply` (U32.v len)) /\ n_to_be len (be_to_n s) == s)) [SMTPat (n_to_be len (be_to_n s))]
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures ( be_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\ n_to_be len (be_to_n s) == s )) [SMTPat (n_to_be len (be_to_n s))] = lemma_be_to_n_is_bounded s; be_to_n_inj s (n_to_be len (be_to_n s))
val n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures (be_to_n s < pow2 (8 `Prims.op_Multiply` (U32.v len)) /\ n_to_be len (be_to_n s) == s)) [SMTPat (n_to_be len (be_to_n s))] let n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures (be_to_n s < pow2 (8 `Prims.op_Multiply` (U32.v len)) /\ n_to_be len (be_to_n s) == s)) [SMTPat (n_to_be len (be_to_n s))] =
false
null
true
lemma_be_to_n_is_bounded s; be_to_n_inj s (n_to_be len (be_to_n s))
{ "checked_file": "FStar.Krml.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.All.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Krml.Endianness.fst" }
[ "lemma" ]
[ "FStar.UInt32.t", "FStar.Seq.Base.seq", "FStar.UInt8.t", "FStar.Krml.Endianness.be_to_n_inj", "FStar.Krml.Endianness.n_to_be", "FStar.Krml.Endianness.be_to_n", "Prims.unit", "FStar.Krml.Endianness.lemma_be_to_n_is_bounded", "Prims.eq2", "Prims.int", "Prims.l_or", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "FStar.UInt.size", "FStar.UInt32.n", "FStar.Seq.Base.length", "FStar.UInt32.v", "Prims.squash", "Prims.l_and", "Prims.op_LessThan", "Prims.pow2", "Prims.op_Multiply", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "FStar.Krml.Endianness.bytes", "Prims.nat", "Prims.Nil" ]
[]
module FStar.Krml.Endianness open FStar.Mul open FStar.HyperStack.All module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq (* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several name changes *) inline_for_extraction noextract type bytes = S.seq U8.t /// lt_to_n interprets a byte sequence as a little-endian natural number [@(deprecated "FStar.Endianness.le_to_n")] val le_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec le_to_n b = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) /// be_to_n interprets a byte sequence as a big-endian natural number [@(deprecated "FStar.Endianness.be_to_n")] val be_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec be_to_n b = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) [@(deprecated "FStar.Endianness.lemma_euclidean_division")] private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () [@(deprecated "FStar.Endianness.lemma_factorise")] private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () [@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")] val lemma_le_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (le_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end [@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")] val lemma_be_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (be_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_be_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 0 (Seq.length b - 1) in assert(Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert(UInt8.v (Seq.last b) < pow2 8); assert(be_to_n s < pow2 (8 * Seq.length s)); assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert(be_to_n b <= pow2 8 * (be_to_n s + 1)); assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end /// n_to_le encodes a number as a little-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_le")] val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b}) (decreases (U32.v len)) let rec n_to_le len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_le len n' in let b = S.cons byte b' in S.lemma_eq_intro b' (S.tail b); b /// n_to_be encodes a numbers as a big-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_be")] val n_to_be: len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b}) (decreases (U32.v len)) let rec n_to_be len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_be len n' in let b'' = S.create 1 byte in let b = S.append b' b'' in S.lemma_eq_intro b' (S.slice b 0 (U32.v len)); b [@(deprecated "FStar.Endianness.n_to_le_inj")] let n_to_le_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_le len n1 == n_to_le len n2)) (ensures (n1 == n2)) = // this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion // proof in the spec for n_to_le () [@(deprecated "FStar.Endianness.n_to_be_inj")] let n_to_be_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_be len n1 == n_to_be len n2)) (ensures (n1 == n2)) = () [@(deprecated "FStar.Endianness.be_to_n_inj")] let rec be_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1)); Seq.lemma_split b1 (Seq.length b1 - 1); Seq.lemma_split b2 (Seq.length b2 - 1) end [@(deprecated "FStar.Endianness.le_to_n_inj")] let rec le_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2)); Seq.lemma_split b1 1; Seq.lemma_split b2 1 end [@(deprecated "FStar.Endianness.n_to_be_be_to_n")] let n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures ( be_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\ n_to_be len (be_to_n s) == s ))
false
false
FStar.Krml.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures (be_to_n s < pow2 (8 `Prims.op_Multiply` (U32.v len)) /\ n_to_be len (be_to_n s) == s)) [SMTPat (n_to_be len (be_to_n s))]
[]
FStar.Krml.Endianness.n_to_be_be_to_n
{ "file_name": "krmllib/FStar.Krml.Endianness.fst", "git_rev": "a7be2a7c43eca637ceb57fe8f3ffd16fc6627ebd", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
len: FStar.UInt32.t -> s: FStar.Seq.Base.seq FStar.UInt8.t -> FStar.Pervasives.Lemma (requires FStar.Seq.Base.length s == FStar.UInt32.v len) (ensures FStar.Krml.Endianness.be_to_n s < Prims.pow2 (8 * FStar.UInt32.v len) /\ FStar.Krml.Endianness.n_to_be len (FStar.Krml.Endianness.be_to_n s) == s) [SMTPat (FStar.Krml.Endianness.n_to_be len (FStar.Krml.Endianness.be_to_n s))]
{ "end_col": 41, "end_line": 181, "start_col": 2, "start_line": 180 }
Prims.Tot
val be_of_seq_uint64 (s: S.seq UInt64.t) : Tot (b: bytes{S.length b = 8 * S.length s}) (decreases (S.length s))
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec be_of_seq_uint64 (s: S.seq UInt64.t): Tot (b:bytes { S.length b = 8 * S.length s }) (decreases (S.length s)) = if S.length s = 0 then S.empty else S.append (be_of_uint64 (S.head s)) (be_of_seq_uint64 (S.tail s))
val be_of_seq_uint64 (s: S.seq UInt64.t) : Tot (b: bytes{S.length b = 8 * S.length s}) (decreases (S.length s)) let rec be_of_seq_uint64 (s: S.seq UInt64.t) : Tot (b: bytes{S.length b = 8 * S.length s}) (decreases (S.length s)) =
false
null
false
if S.length s = 0 then S.empty else S.append (be_of_uint64 (S.head s)) (be_of_seq_uint64 (S.tail s))
{ "checked_file": "FStar.Krml.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.All.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Krml.Endianness.fst" }
[ "total", "" ]
[ "FStar.Seq.Base.seq", "FStar.UInt64.t", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "FStar.Seq.Base.empty", "FStar.UInt8.t", "Prims.bool", "FStar.Seq.Base.append", "FStar.Krml.Endianness.be_of_uint64", "FStar.Seq.Properties.head", "FStar.Krml.Endianness.be_of_seq_uint64", "FStar.Seq.Properties.tail", "FStar.Krml.Endianness.bytes", "Prims.b2t", "FStar.Mul.op_Star" ]
[]
module FStar.Krml.Endianness open FStar.Mul open FStar.HyperStack.All module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq (* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several name changes *) inline_for_extraction noextract type bytes = S.seq U8.t /// lt_to_n interprets a byte sequence as a little-endian natural number [@(deprecated "FStar.Endianness.le_to_n")] val le_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec le_to_n b = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) /// be_to_n interprets a byte sequence as a big-endian natural number [@(deprecated "FStar.Endianness.be_to_n")] val be_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec be_to_n b = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) [@(deprecated "FStar.Endianness.lemma_euclidean_division")] private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () [@(deprecated "FStar.Endianness.lemma_factorise")] private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () [@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")] val lemma_le_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (le_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end [@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")] val lemma_be_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (be_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_be_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 0 (Seq.length b - 1) in assert(Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert(UInt8.v (Seq.last b) < pow2 8); assert(be_to_n s < pow2 (8 * Seq.length s)); assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert(be_to_n b <= pow2 8 * (be_to_n s + 1)); assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end /// n_to_le encodes a number as a little-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_le")] val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b}) (decreases (U32.v len)) let rec n_to_le len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_le len n' in let b = S.cons byte b' in S.lemma_eq_intro b' (S.tail b); b /// n_to_be encodes a numbers as a big-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_be")] val n_to_be: len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b}) (decreases (U32.v len)) let rec n_to_be len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_be len n' in let b'' = S.create 1 byte in let b = S.append b' b'' in S.lemma_eq_intro b' (S.slice b 0 (U32.v len)); b [@(deprecated "FStar.Endianness.n_to_le_inj")] let n_to_le_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_le len n1 == n_to_le len n2)) (ensures (n1 == n2)) = // this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion // proof in the spec for n_to_le () [@(deprecated "FStar.Endianness.n_to_be_inj")] let n_to_be_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_be len n1 == n_to_be len n2)) (ensures (n1 == n2)) = () [@(deprecated "FStar.Endianness.be_to_n_inj")] let rec be_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1)); Seq.lemma_split b1 (Seq.length b1 - 1); Seq.lemma_split b2 (Seq.length b2 - 1) end [@(deprecated "FStar.Endianness.le_to_n_inj")] let rec le_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2)); Seq.lemma_split b1 1; Seq.lemma_split b2 1 end [@(deprecated "FStar.Endianness.n_to_be_be_to_n")] let n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures ( be_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\ n_to_be len (be_to_n s) == s )) [SMTPat (n_to_be len (be_to_n s))] = lemma_be_to_n_is_bounded s; be_to_n_inj s (n_to_be len (be_to_n s)) [@(deprecated "FStar.Endianness.n_to_le_le_to_n")] let n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures ( le_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\ n_to_le len (le_to_n s) == s )) [SMTPat (n_to_le len (le_to_n s))] = lemma_le_to_n_is_bounded s; le_to_n_inj s (n_to_le len (le_to_n s)) (** A series of specializations to deal with machine integers *) [@(deprecated "FStar.Endianness.uint32_of_le")] let uint32_of_le (b: bytes { S.length b = 4 }) = let n = le_to_n b in lemma_le_to_n_is_bounded b; UInt32.uint_to_t n [@(deprecated "FStar.Endianness.le_of_uint32")] let le_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } = n_to_le 4ul (UInt32.v x) [@(deprecated "FStar.Endianness.uint32_of_be")] let uint32_of_be (b: bytes { S.length b = 4 }) = let n = be_to_n b in lemma_be_to_n_is_bounded b; UInt32.uint_to_t n [@(deprecated "FStar.Endianness.be_of_uint32")] let be_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } = n_to_be 4ul (UInt32.v x) [@(deprecated "FStar.Endianness.uint64_of_le")] let uint64_of_le (b: bytes { S.length b = 8 }) = let n = le_to_n b in lemma_le_to_n_is_bounded b; UInt64.uint_to_t n [@(deprecated "FStar.Endianness.le_of_uint64")] let le_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } = n_to_le 8ul (UInt64.v x) [@(deprecated "FStar.Endianness.uint64_of_be")] let uint64_of_be (b: bytes { S.length b = 8 }) = let n = be_to_n b in lemma_be_to_n_is_bounded b; UInt64.uint_to_t n [@(deprecated "FStar.Endianness.be_of_uint64")] let be_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } = n_to_be 8ul (UInt64.v x) [@(deprecated "FStar.Endianness.seq_uint32_of_le")] let rec seq_uint32_of_le (l: nat) (b: bytes{ S.length b = 4 * l }): s:S.seq UInt32.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_le hd) (seq_uint32_of_le (l - 1) tl) [@(deprecated "FStar.Endianness.le_of_seq_uint32")] let rec le_of_seq_uint32 (s: S.seq UInt32.t): Tot (b:bytes { S.length b = 4 * S.length s }) (decreases (S.length s)) = if S.length s = 0 then S.empty else S.append (le_of_uint32 (S.head s)) (le_of_seq_uint32 (S.tail s)) [@(deprecated "FStar.Endianness.seq_uint32_of_be")] let rec seq_uint32_of_be (l: nat) (b: bytes{ S.length b = 4 * l }): s:S.seq UInt32.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_be hd) (seq_uint32_of_be (l - 1) tl) [@(deprecated "FStar.Endianness.be_of_seq_uint32")] let rec be_of_seq_uint32 (s: S.seq UInt32.t): Tot (b:bytes { S.length b = 4 * S.length s }) (decreases (S.length s)) = if S.length s = 0 then S.empty else S.append (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s)) [@(deprecated "FStar.Endianness.seq_uint64_of_le")] let rec seq_uint64_of_le (l: nat) (b: bytes{ S.length b = 8 * l }): s:S.seq UInt64.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 8 in S.cons (uint64_of_le hd) (seq_uint64_of_le (l - 1) tl) [@(deprecated "FStar.Endianness.le_of_seq_uint64")] let rec le_of_seq_uint64 (s: S.seq UInt64.t): Tot (b:bytes { S.length b = 8 * S.length s }) (decreases (S.length s)) = if S.length s = 0 then S.empty else S.append (le_of_uint64 (S.head s)) (le_of_seq_uint64 (S.tail s)) [@(deprecated "FStar.Endianness.seq_uint64_of_be")] let rec seq_uint64_of_be (l: nat) (b: bytes{ S.length b = 8 * l }): s:S.seq UInt64.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 8 in S.cons (uint64_of_be hd) (seq_uint64_of_be (l - 1) tl) [@(deprecated "FStar.Endianness.be_of_seq_uint64")] let rec be_of_seq_uint64 (s: S.seq UInt64.t): Tot (b:bytes { S.length b = 8 * S.length s }) (decreases (S.length s))
false
false
FStar.Krml.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val be_of_seq_uint64 (s: S.seq UInt64.t) : Tot (b: bytes{S.length b = 8 * S.length s}) (decreases (S.length s))
[ "recursion" ]
FStar.Krml.Endianness.be_of_seq_uint64
{ "file_name": "krmllib/FStar.Krml.Endianness.fst", "git_rev": "a7be2a7c43eca637ceb57fe8f3ffd16fc6627ebd", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
s: FStar.Seq.Base.seq FStar.UInt64.t -> Prims.Tot (b: FStar.Krml.Endianness.bytes{FStar.Seq.Base.length b = 8 * FStar.Seq.Base.length s})
{ "end_col": 68, "end_line": 314, "start_col": 2, "start_line": 311 }
FStar.Pervasives.Lemma
val n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures (le_to_n s < pow2 (8 `Prims.op_Multiply` (U32.v len)) /\ n_to_le len (le_to_n s) == s)) [SMTPat (n_to_le len (le_to_n s))]
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures ( le_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\ n_to_le len (le_to_n s) == s )) [SMTPat (n_to_le len (le_to_n s))] = lemma_le_to_n_is_bounded s; le_to_n_inj s (n_to_le len (le_to_n s))
val n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures (le_to_n s < pow2 (8 `Prims.op_Multiply` (U32.v len)) /\ n_to_le len (le_to_n s) == s)) [SMTPat (n_to_le len (le_to_n s))] let n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures (le_to_n s < pow2 (8 `Prims.op_Multiply` (U32.v len)) /\ n_to_le len (le_to_n s) == s)) [SMTPat (n_to_le len (le_to_n s))] =
false
null
true
lemma_le_to_n_is_bounded s; le_to_n_inj s (n_to_le len (le_to_n s))
{ "checked_file": "FStar.Krml.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.All.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Krml.Endianness.fst" }
[ "lemma" ]
[ "FStar.UInt32.t", "FStar.Seq.Base.seq", "FStar.UInt8.t", "FStar.Krml.Endianness.le_to_n_inj", "FStar.Krml.Endianness.n_to_le", "FStar.Krml.Endianness.le_to_n", "Prims.unit", "FStar.Krml.Endianness.lemma_le_to_n_is_bounded", "Prims.eq2", "Prims.int", "Prims.l_or", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "FStar.UInt.size", "FStar.UInt32.n", "FStar.Seq.Base.length", "FStar.UInt32.v", "Prims.squash", "Prims.l_and", "Prims.op_LessThan", "Prims.pow2", "Prims.op_Multiply", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "FStar.Krml.Endianness.bytes", "Prims.nat", "Prims.Nil" ]
[]
module FStar.Krml.Endianness open FStar.Mul open FStar.HyperStack.All module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq (* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several name changes *) inline_for_extraction noextract type bytes = S.seq U8.t /// lt_to_n interprets a byte sequence as a little-endian natural number [@(deprecated "FStar.Endianness.le_to_n")] val le_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec le_to_n b = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) /// be_to_n interprets a byte sequence as a big-endian natural number [@(deprecated "FStar.Endianness.be_to_n")] val be_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec be_to_n b = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) [@(deprecated "FStar.Endianness.lemma_euclidean_division")] private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () [@(deprecated "FStar.Endianness.lemma_factorise")] private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () [@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")] val lemma_le_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (le_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end [@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")] val lemma_be_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (be_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_be_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 0 (Seq.length b - 1) in assert(Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert(UInt8.v (Seq.last b) < pow2 8); assert(be_to_n s < pow2 (8 * Seq.length s)); assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert(be_to_n b <= pow2 8 * (be_to_n s + 1)); assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end /// n_to_le encodes a number as a little-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_le")] val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b}) (decreases (U32.v len)) let rec n_to_le len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_le len n' in let b = S.cons byte b' in S.lemma_eq_intro b' (S.tail b); b /// n_to_be encodes a numbers as a big-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_be")] val n_to_be: len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b}) (decreases (U32.v len)) let rec n_to_be len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_be len n' in let b'' = S.create 1 byte in let b = S.append b' b'' in S.lemma_eq_intro b' (S.slice b 0 (U32.v len)); b [@(deprecated "FStar.Endianness.n_to_le_inj")] let n_to_le_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_le len n1 == n_to_le len n2)) (ensures (n1 == n2)) = // this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion // proof in the spec for n_to_le () [@(deprecated "FStar.Endianness.n_to_be_inj")] let n_to_be_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_be len n1 == n_to_be len n2)) (ensures (n1 == n2)) = () [@(deprecated "FStar.Endianness.be_to_n_inj")] let rec be_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1)); Seq.lemma_split b1 (Seq.length b1 - 1); Seq.lemma_split b2 (Seq.length b2 - 1) end [@(deprecated "FStar.Endianness.le_to_n_inj")] let rec le_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2)); Seq.lemma_split b1 1; Seq.lemma_split b2 1 end [@(deprecated "FStar.Endianness.n_to_be_be_to_n")] let n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures ( be_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\ n_to_be len (be_to_n s) == s )) [SMTPat (n_to_be len (be_to_n s))] = lemma_be_to_n_is_bounded s; be_to_n_inj s (n_to_be len (be_to_n s)) [@(deprecated "FStar.Endianness.n_to_le_le_to_n")] let n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures ( le_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\ n_to_le len (le_to_n s) == s ))
false
false
FStar.Krml.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures (le_to_n s < pow2 (8 `Prims.op_Multiply` (U32.v len)) /\ n_to_le len (le_to_n s) == s)) [SMTPat (n_to_le len (le_to_n s))]
[]
FStar.Krml.Endianness.n_to_le_le_to_n
{ "file_name": "krmllib/FStar.Krml.Endianness.fst", "git_rev": "a7be2a7c43eca637ceb57fe8f3ffd16fc6627ebd", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
len: FStar.UInt32.t -> s: FStar.Seq.Base.seq FStar.UInt8.t -> FStar.Pervasives.Lemma (requires FStar.Seq.Base.length s == FStar.UInt32.v len) (ensures FStar.Krml.Endianness.le_to_n s < Prims.pow2 (8 * FStar.UInt32.v len) /\ FStar.Krml.Endianness.n_to_le len (FStar.Krml.Endianness.le_to_n s) == s) [SMTPat (FStar.Krml.Endianness.n_to_le len (FStar.Krml.Endianness.le_to_n s))]
{ "end_col": 41, "end_line": 192, "start_col": 2, "start_line": 191 }
Prims.Tot
val le_of_seq_uint32 (s: S.seq UInt32.t) : Tot (b: bytes{S.length b = 4 * S.length s}) (decreases (S.length s))
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec le_of_seq_uint32 (s: S.seq UInt32.t): Tot (b:bytes { S.length b = 4 * S.length s }) (decreases (S.length s)) = if S.length s = 0 then S.empty else S.append (le_of_uint32 (S.head s)) (le_of_seq_uint32 (S.tail s))
val le_of_seq_uint32 (s: S.seq UInt32.t) : Tot (b: bytes{S.length b = 4 * S.length s}) (decreases (S.length s)) let rec le_of_seq_uint32 (s: S.seq UInt32.t) : Tot (b: bytes{S.length b = 4 * S.length s}) (decreases (S.length s)) =
false
null
false
if S.length s = 0 then S.empty else S.append (le_of_uint32 (S.head s)) (le_of_seq_uint32 (S.tail s))
{ "checked_file": "FStar.Krml.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.All.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Krml.Endianness.fst" }
[ "total", "" ]
[ "FStar.Seq.Base.seq", "FStar.UInt32.t", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "FStar.Seq.Base.empty", "FStar.UInt8.t", "Prims.bool", "FStar.Seq.Base.append", "FStar.Krml.Endianness.le_of_uint32", "FStar.Seq.Properties.head", "FStar.Krml.Endianness.le_of_seq_uint32", "FStar.Seq.Properties.tail", "FStar.Krml.Endianness.bytes", "Prims.b2t", "FStar.Mul.op_Star" ]
[]
module FStar.Krml.Endianness open FStar.Mul open FStar.HyperStack.All module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq (* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several name changes *) inline_for_extraction noextract type bytes = S.seq U8.t /// lt_to_n interprets a byte sequence as a little-endian natural number [@(deprecated "FStar.Endianness.le_to_n")] val le_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec le_to_n b = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) /// be_to_n interprets a byte sequence as a big-endian natural number [@(deprecated "FStar.Endianness.be_to_n")] val be_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec be_to_n b = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) [@(deprecated "FStar.Endianness.lemma_euclidean_division")] private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () [@(deprecated "FStar.Endianness.lemma_factorise")] private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () [@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")] val lemma_le_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (le_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end [@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")] val lemma_be_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (be_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_be_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 0 (Seq.length b - 1) in assert(Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert(UInt8.v (Seq.last b) < pow2 8); assert(be_to_n s < pow2 (8 * Seq.length s)); assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert(be_to_n b <= pow2 8 * (be_to_n s + 1)); assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end /// n_to_le encodes a number as a little-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_le")] val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b}) (decreases (U32.v len)) let rec n_to_le len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_le len n' in let b = S.cons byte b' in S.lemma_eq_intro b' (S.tail b); b /// n_to_be encodes a numbers as a big-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_be")] val n_to_be: len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b}) (decreases (U32.v len)) let rec n_to_be len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_be len n' in let b'' = S.create 1 byte in let b = S.append b' b'' in S.lemma_eq_intro b' (S.slice b 0 (U32.v len)); b [@(deprecated "FStar.Endianness.n_to_le_inj")] let n_to_le_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_le len n1 == n_to_le len n2)) (ensures (n1 == n2)) = // this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion // proof in the spec for n_to_le () [@(deprecated "FStar.Endianness.n_to_be_inj")] let n_to_be_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_be len n1 == n_to_be len n2)) (ensures (n1 == n2)) = () [@(deprecated "FStar.Endianness.be_to_n_inj")] let rec be_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1)); Seq.lemma_split b1 (Seq.length b1 - 1); Seq.lemma_split b2 (Seq.length b2 - 1) end [@(deprecated "FStar.Endianness.le_to_n_inj")] let rec le_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2)); Seq.lemma_split b1 1; Seq.lemma_split b2 1 end [@(deprecated "FStar.Endianness.n_to_be_be_to_n")] let n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures ( be_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\ n_to_be len (be_to_n s) == s )) [SMTPat (n_to_be len (be_to_n s))] = lemma_be_to_n_is_bounded s; be_to_n_inj s (n_to_be len (be_to_n s)) [@(deprecated "FStar.Endianness.n_to_le_le_to_n")] let n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures ( le_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\ n_to_le len (le_to_n s) == s )) [SMTPat (n_to_le len (le_to_n s))] = lemma_le_to_n_is_bounded s; le_to_n_inj s (n_to_le len (le_to_n s)) (** A series of specializations to deal with machine integers *) [@(deprecated "FStar.Endianness.uint32_of_le")] let uint32_of_le (b: bytes { S.length b = 4 }) = let n = le_to_n b in lemma_le_to_n_is_bounded b; UInt32.uint_to_t n [@(deprecated "FStar.Endianness.le_of_uint32")] let le_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } = n_to_le 4ul (UInt32.v x) [@(deprecated "FStar.Endianness.uint32_of_be")] let uint32_of_be (b: bytes { S.length b = 4 }) = let n = be_to_n b in lemma_be_to_n_is_bounded b; UInt32.uint_to_t n [@(deprecated "FStar.Endianness.be_of_uint32")] let be_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } = n_to_be 4ul (UInt32.v x) [@(deprecated "FStar.Endianness.uint64_of_le")] let uint64_of_le (b: bytes { S.length b = 8 }) = let n = le_to_n b in lemma_le_to_n_is_bounded b; UInt64.uint_to_t n [@(deprecated "FStar.Endianness.le_of_uint64")] let le_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } = n_to_le 8ul (UInt64.v x) [@(deprecated "FStar.Endianness.uint64_of_be")] let uint64_of_be (b: bytes { S.length b = 8 }) = let n = be_to_n b in lemma_be_to_n_is_bounded b; UInt64.uint_to_t n [@(deprecated "FStar.Endianness.be_of_uint64")] let be_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } = n_to_be 8ul (UInt64.v x) [@(deprecated "FStar.Endianness.seq_uint32_of_le")] let rec seq_uint32_of_le (l: nat) (b: bytes{ S.length b = 4 * l }): s:S.seq UInt32.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_le hd) (seq_uint32_of_le (l - 1) tl) [@(deprecated "FStar.Endianness.le_of_seq_uint32")] let rec le_of_seq_uint32 (s: S.seq UInt32.t): Tot (b:bytes { S.length b = 4 * S.length s }) (decreases (S.length s))
false
false
FStar.Krml.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val le_of_seq_uint32 (s: S.seq UInt32.t) : Tot (b: bytes{S.length b = 4 * S.length s}) (decreases (S.length s))
[ "recursion" ]
FStar.Krml.Endianness.le_of_seq_uint32
{ "file_name": "krmllib/FStar.Krml.Endianness.fst", "git_rev": "a7be2a7c43eca637ceb57fe8f3ffd16fc6627ebd", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
s: FStar.Seq.Base.seq FStar.UInt32.t -> Prims.Tot (b: FStar.Krml.Endianness.bytes{FStar.Seq.Base.length b = 4 * FStar.Seq.Base.length s})
{ "end_col": 68, "end_line": 254, "start_col": 2, "start_line": 251 }
FStar.Pervasives.Lemma
val be_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1))
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec be_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1)); Seq.lemma_split b1 (Seq.length b1 - 1); Seq.lemma_split b2 (Seq.length b2 - 1) end
val be_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) let rec be_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) =
false
null
true
if Seq.length b1 = 0 then () else (be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1)); Seq.lemma_split b1 (Seq.length b1 - 1); Seq.lemma_split b2 (Seq.length b2 - 1))
{ "checked_file": "FStar.Krml.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.All.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Krml.Endianness.fst" }
[ "lemma", "" ]
[ "FStar.Seq.Base.seq", "FStar.UInt8.t", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "Prims.bool", "FStar.Seq.Properties.lemma_split", "Prims.op_Subtraction", "Prims.unit", "FStar.Krml.Endianness.be_to_n_inj", "FStar.Seq.Base.slice", "Prims.l_and", "Prims.eq2", "Prims.nat", "FStar.Krml.Endianness.be_to_n", "Prims.squash", "FStar.Seq.Base.equal", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module FStar.Krml.Endianness open FStar.Mul open FStar.HyperStack.All module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq (* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several name changes *) inline_for_extraction noextract type bytes = S.seq U8.t /// lt_to_n interprets a byte sequence as a little-endian natural number [@(deprecated "FStar.Endianness.le_to_n")] val le_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec le_to_n b = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) /// be_to_n interprets a byte sequence as a big-endian natural number [@(deprecated "FStar.Endianness.be_to_n")] val be_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec be_to_n b = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) [@(deprecated "FStar.Endianness.lemma_euclidean_division")] private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () [@(deprecated "FStar.Endianness.lemma_factorise")] private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () [@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")] val lemma_le_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (le_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end [@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")] val lemma_be_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (be_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_be_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 0 (Seq.length b - 1) in assert(Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert(UInt8.v (Seq.last b) < pow2 8); assert(be_to_n s < pow2 (8 * Seq.length s)); assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert(be_to_n b <= pow2 8 * (be_to_n s + 1)); assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end /// n_to_le encodes a number as a little-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_le")] val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b}) (decreases (U32.v len)) let rec n_to_le len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_le len n' in let b = S.cons byte b' in S.lemma_eq_intro b' (S.tail b); b /// n_to_be encodes a numbers as a big-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_be")] val n_to_be: len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b}) (decreases (U32.v len)) let rec n_to_be len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_be len n' in let b'' = S.create 1 byte in let b = S.append b' b'' in S.lemma_eq_intro b' (S.slice b 0 (U32.v len)); b [@(deprecated "FStar.Endianness.n_to_le_inj")] let n_to_le_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_le len n1 == n_to_le len n2)) (ensures (n1 == n2)) = // this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion // proof in the spec for n_to_le () [@(deprecated "FStar.Endianness.n_to_be_inj")] let n_to_be_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_be len n1 == n_to_be len n2)) (ensures (n1 == n2)) = () [@(deprecated "FStar.Endianness.be_to_n_inj")] let rec be_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2)) (ensures (Seq.equal b1 b2))
false
false
FStar.Krml.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val be_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1))
[ "recursion" ]
FStar.Krml.Endianness.be_to_n_inj
{ "file_name": "krmllib/FStar.Krml.Endianness.fst", "git_rev": "a7be2a7c43eca637ceb57fe8f3ffd16fc6627ebd", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
b1: FStar.Seq.Base.seq FStar.UInt8.t -> b2: FStar.Seq.Base.seq FStar.UInt8.t -> FStar.Pervasives.Lemma (requires FStar.Seq.Base.length b1 == FStar.Seq.Base.length b2 /\ FStar.Krml.Endianness.be_to_n b1 == FStar.Krml.Endianness.be_to_n b2) (ensures FStar.Seq.Base.equal b1 b2) (decreases FStar.Seq.Base.length b1)
{ "end_col": 5, "end_line": 155, "start_col": 2, "start_line": 149 }
Prims.Tot
val seq_uint32_of_be (l: nat) (b: bytes{S.length b = 4 * l}) : s: S.seq UInt32.t {S.length s = l}
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec seq_uint32_of_be (l: nat) (b: bytes{ S.length b = 4 * l }): s:S.seq UInt32.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_be hd) (seq_uint32_of_be (l - 1) tl)
val seq_uint32_of_be (l: nat) (b: bytes{S.length b = 4 * l}) : s: S.seq UInt32.t {S.length s = l} let rec seq_uint32_of_be (l: nat) (b: bytes{S.length b = 4 * l}) : s: S.seq UInt32.t {S.length s = l} =
false
null
false
if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_be hd) (seq_uint32_of_be (l - 1) tl)
{ "checked_file": "FStar.Krml.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.All.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Krml.Endianness.fst" }
[ "total" ]
[ "Prims.nat", "FStar.Krml.Endianness.bytes", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "FStar.UInt8.t", "FStar.Mul.op_Star", "FStar.Seq.Base.empty", "FStar.UInt32.t", "Prims.bool", "FStar.Seq.Base.seq", "FStar.Seq.Properties.cons", "FStar.Krml.Endianness.uint32_of_be", "FStar.Krml.Endianness.seq_uint32_of_be", "Prims.op_Subtraction", "FStar.Pervasives.Native.tuple2", "FStar.Seq.Properties.split" ]
[]
module FStar.Krml.Endianness open FStar.Mul open FStar.HyperStack.All module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq (* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several name changes *) inline_for_extraction noextract type bytes = S.seq U8.t /// lt_to_n interprets a byte sequence as a little-endian natural number [@(deprecated "FStar.Endianness.le_to_n")] val le_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec le_to_n b = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) /// be_to_n interprets a byte sequence as a big-endian natural number [@(deprecated "FStar.Endianness.be_to_n")] val be_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec be_to_n b = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) [@(deprecated "FStar.Endianness.lemma_euclidean_division")] private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () [@(deprecated "FStar.Endianness.lemma_factorise")] private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () [@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")] val lemma_le_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (le_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end [@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")] val lemma_be_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (be_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_be_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 0 (Seq.length b - 1) in assert(Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert(UInt8.v (Seq.last b) < pow2 8); assert(be_to_n s < pow2 (8 * Seq.length s)); assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert(be_to_n b <= pow2 8 * (be_to_n s + 1)); assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end /// n_to_le encodes a number as a little-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_le")] val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b}) (decreases (U32.v len)) let rec n_to_le len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_le len n' in let b = S.cons byte b' in S.lemma_eq_intro b' (S.tail b); b /// n_to_be encodes a numbers as a big-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_be")] val n_to_be: len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b}) (decreases (U32.v len)) let rec n_to_be len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_be len n' in let b'' = S.create 1 byte in let b = S.append b' b'' in S.lemma_eq_intro b' (S.slice b 0 (U32.v len)); b [@(deprecated "FStar.Endianness.n_to_le_inj")] let n_to_le_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_le len n1 == n_to_le len n2)) (ensures (n1 == n2)) = // this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion // proof in the spec for n_to_le () [@(deprecated "FStar.Endianness.n_to_be_inj")] let n_to_be_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_be len n1 == n_to_be len n2)) (ensures (n1 == n2)) = () [@(deprecated "FStar.Endianness.be_to_n_inj")] let rec be_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1)); Seq.lemma_split b1 (Seq.length b1 - 1); Seq.lemma_split b2 (Seq.length b2 - 1) end [@(deprecated "FStar.Endianness.le_to_n_inj")] let rec le_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2)); Seq.lemma_split b1 1; Seq.lemma_split b2 1 end [@(deprecated "FStar.Endianness.n_to_be_be_to_n")] let n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures ( be_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\ n_to_be len (be_to_n s) == s )) [SMTPat (n_to_be len (be_to_n s))] = lemma_be_to_n_is_bounded s; be_to_n_inj s (n_to_be len (be_to_n s)) [@(deprecated "FStar.Endianness.n_to_le_le_to_n")] let n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures ( le_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\ n_to_le len (le_to_n s) == s )) [SMTPat (n_to_le len (le_to_n s))] = lemma_le_to_n_is_bounded s; le_to_n_inj s (n_to_le len (le_to_n s)) (** A series of specializations to deal with machine integers *) [@(deprecated "FStar.Endianness.uint32_of_le")] let uint32_of_le (b: bytes { S.length b = 4 }) = let n = le_to_n b in lemma_le_to_n_is_bounded b; UInt32.uint_to_t n [@(deprecated "FStar.Endianness.le_of_uint32")] let le_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } = n_to_le 4ul (UInt32.v x) [@(deprecated "FStar.Endianness.uint32_of_be")] let uint32_of_be (b: bytes { S.length b = 4 }) = let n = be_to_n b in lemma_be_to_n_is_bounded b; UInt32.uint_to_t n [@(deprecated "FStar.Endianness.be_of_uint32")] let be_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } = n_to_be 4ul (UInt32.v x) [@(deprecated "FStar.Endianness.uint64_of_le")] let uint64_of_le (b: bytes { S.length b = 8 }) = let n = le_to_n b in lemma_le_to_n_is_bounded b; UInt64.uint_to_t n [@(deprecated "FStar.Endianness.le_of_uint64")] let le_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } = n_to_le 8ul (UInt64.v x) [@(deprecated "FStar.Endianness.uint64_of_be")] let uint64_of_be (b: bytes { S.length b = 8 }) = let n = be_to_n b in lemma_be_to_n_is_bounded b; UInt64.uint_to_t n [@(deprecated "FStar.Endianness.be_of_uint64")] let be_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } = n_to_be 8ul (UInt64.v x) [@(deprecated "FStar.Endianness.seq_uint32_of_le")] let rec seq_uint32_of_le (l: nat) (b: bytes{ S.length b = 4 * l }): s:S.seq UInt32.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_le hd) (seq_uint32_of_le (l - 1) tl) [@(deprecated "FStar.Endianness.le_of_seq_uint32")] let rec le_of_seq_uint32 (s: S.seq UInt32.t): Tot (b:bytes { S.length b = 4 * S.length s }) (decreases (S.length s)) = if S.length s = 0 then S.empty else S.append (le_of_uint32 (S.head s)) (le_of_seq_uint32 (S.tail s)) [@(deprecated "FStar.Endianness.seq_uint32_of_be")] let rec seq_uint32_of_be (l: nat) (b: bytes{ S.length b = 4 * l }): s:S.seq UInt32.t { S.length s = l }
false
false
FStar.Krml.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val seq_uint32_of_be (l: nat) (b: bytes{S.length b = 4 * l}) : s: S.seq UInt32.t {S.length s = l}
[ "recursion" ]
FStar.Krml.Endianness.seq_uint32_of_be
{ "file_name": "krmllib/FStar.Krml.Endianness.fst", "git_rev": "a7be2a7c43eca637ceb57fe8f3ffd16fc6627ebd", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
l: Prims.nat -> b: FStar.Krml.Endianness.bytes{FStar.Seq.Base.length b = 4 * l} -> s: FStar.Seq.Base.seq FStar.UInt32.t {FStar.Seq.Base.length s = l}
{ "end_col": 58, "end_line": 264, "start_col": 2, "start_line": 260 }
Prims.Tot
val seq_uint64_of_be (l: nat) (b: bytes{S.length b = 8 * l}) : s: S.seq UInt64.t {S.length s = l}
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec seq_uint64_of_be (l: nat) (b: bytes{ S.length b = 8 * l }): s:S.seq UInt64.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 8 in S.cons (uint64_of_be hd) (seq_uint64_of_be (l - 1) tl)
val seq_uint64_of_be (l: nat) (b: bytes{S.length b = 8 * l}) : s: S.seq UInt64.t {S.length s = l} let rec seq_uint64_of_be (l: nat) (b: bytes{S.length b = 8 * l}) : s: S.seq UInt64.t {S.length s = l} =
false
null
false
if S.length b = 0 then S.empty else let hd, tl = Seq.split b 8 in S.cons (uint64_of_be hd) (seq_uint64_of_be (l - 1) tl)
{ "checked_file": "FStar.Krml.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.All.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Krml.Endianness.fst" }
[ "total" ]
[ "Prims.nat", "FStar.Krml.Endianness.bytes", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "FStar.UInt8.t", "FStar.Mul.op_Star", "FStar.Seq.Base.empty", "FStar.UInt64.t", "Prims.bool", "FStar.Seq.Base.seq", "FStar.Seq.Properties.cons", "FStar.Krml.Endianness.uint64_of_be", "FStar.Krml.Endianness.seq_uint64_of_be", "Prims.op_Subtraction", "FStar.Pervasives.Native.tuple2", "FStar.Seq.Properties.split" ]
[]
module FStar.Krml.Endianness open FStar.Mul open FStar.HyperStack.All module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq (* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several name changes *) inline_for_extraction noextract type bytes = S.seq U8.t /// lt_to_n interprets a byte sequence as a little-endian natural number [@(deprecated "FStar.Endianness.le_to_n")] val le_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec le_to_n b = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) /// be_to_n interprets a byte sequence as a big-endian natural number [@(deprecated "FStar.Endianness.be_to_n")] val be_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec be_to_n b = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) [@(deprecated "FStar.Endianness.lemma_euclidean_division")] private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () [@(deprecated "FStar.Endianness.lemma_factorise")] private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () [@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")] val lemma_le_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (le_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end [@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")] val lemma_be_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (be_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_be_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 0 (Seq.length b - 1) in assert(Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert(UInt8.v (Seq.last b) < pow2 8); assert(be_to_n s < pow2 (8 * Seq.length s)); assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert(be_to_n b <= pow2 8 * (be_to_n s + 1)); assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end /// n_to_le encodes a number as a little-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_le")] val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b}) (decreases (U32.v len)) let rec n_to_le len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_le len n' in let b = S.cons byte b' in S.lemma_eq_intro b' (S.tail b); b /// n_to_be encodes a numbers as a big-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_be")] val n_to_be: len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b}) (decreases (U32.v len)) let rec n_to_be len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_be len n' in let b'' = S.create 1 byte in let b = S.append b' b'' in S.lemma_eq_intro b' (S.slice b 0 (U32.v len)); b [@(deprecated "FStar.Endianness.n_to_le_inj")] let n_to_le_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_le len n1 == n_to_le len n2)) (ensures (n1 == n2)) = // this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion // proof in the spec for n_to_le () [@(deprecated "FStar.Endianness.n_to_be_inj")] let n_to_be_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_be len n1 == n_to_be len n2)) (ensures (n1 == n2)) = () [@(deprecated "FStar.Endianness.be_to_n_inj")] let rec be_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1)); Seq.lemma_split b1 (Seq.length b1 - 1); Seq.lemma_split b2 (Seq.length b2 - 1) end [@(deprecated "FStar.Endianness.le_to_n_inj")] let rec le_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2)); Seq.lemma_split b1 1; Seq.lemma_split b2 1 end [@(deprecated "FStar.Endianness.n_to_be_be_to_n")] let n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures ( be_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\ n_to_be len (be_to_n s) == s )) [SMTPat (n_to_be len (be_to_n s))] = lemma_be_to_n_is_bounded s; be_to_n_inj s (n_to_be len (be_to_n s)) [@(deprecated "FStar.Endianness.n_to_le_le_to_n")] let n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures ( le_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\ n_to_le len (le_to_n s) == s )) [SMTPat (n_to_le len (le_to_n s))] = lemma_le_to_n_is_bounded s; le_to_n_inj s (n_to_le len (le_to_n s)) (** A series of specializations to deal with machine integers *) [@(deprecated "FStar.Endianness.uint32_of_le")] let uint32_of_le (b: bytes { S.length b = 4 }) = let n = le_to_n b in lemma_le_to_n_is_bounded b; UInt32.uint_to_t n [@(deprecated "FStar.Endianness.le_of_uint32")] let le_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } = n_to_le 4ul (UInt32.v x) [@(deprecated "FStar.Endianness.uint32_of_be")] let uint32_of_be (b: bytes { S.length b = 4 }) = let n = be_to_n b in lemma_be_to_n_is_bounded b; UInt32.uint_to_t n [@(deprecated "FStar.Endianness.be_of_uint32")] let be_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } = n_to_be 4ul (UInt32.v x) [@(deprecated "FStar.Endianness.uint64_of_le")] let uint64_of_le (b: bytes { S.length b = 8 }) = let n = le_to_n b in lemma_le_to_n_is_bounded b; UInt64.uint_to_t n [@(deprecated "FStar.Endianness.le_of_uint64")] let le_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } = n_to_le 8ul (UInt64.v x) [@(deprecated "FStar.Endianness.uint64_of_be")] let uint64_of_be (b: bytes { S.length b = 8 }) = let n = be_to_n b in lemma_be_to_n_is_bounded b; UInt64.uint_to_t n [@(deprecated "FStar.Endianness.be_of_uint64")] let be_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } = n_to_be 8ul (UInt64.v x) [@(deprecated "FStar.Endianness.seq_uint32_of_le")] let rec seq_uint32_of_le (l: nat) (b: bytes{ S.length b = 4 * l }): s:S.seq UInt32.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_le hd) (seq_uint32_of_le (l - 1) tl) [@(deprecated "FStar.Endianness.le_of_seq_uint32")] let rec le_of_seq_uint32 (s: S.seq UInt32.t): Tot (b:bytes { S.length b = 4 * S.length s }) (decreases (S.length s)) = if S.length s = 0 then S.empty else S.append (le_of_uint32 (S.head s)) (le_of_seq_uint32 (S.tail s)) [@(deprecated "FStar.Endianness.seq_uint32_of_be")] let rec seq_uint32_of_be (l: nat) (b: bytes{ S.length b = 4 * l }): s:S.seq UInt32.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_be hd) (seq_uint32_of_be (l - 1) tl) [@(deprecated "FStar.Endianness.be_of_seq_uint32")] let rec be_of_seq_uint32 (s: S.seq UInt32.t): Tot (b:bytes { S.length b = 4 * S.length s }) (decreases (S.length s)) = if S.length s = 0 then S.empty else S.append (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s)) [@(deprecated "FStar.Endianness.seq_uint64_of_le")] let rec seq_uint64_of_le (l: nat) (b: bytes{ S.length b = 8 * l }): s:S.seq UInt64.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 8 in S.cons (uint64_of_le hd) (seq_uint64_of_le (l - 1) tl) [@(deprecated "FStar.Endianness.le_of_seq_uint64")] let rec le_of_seq_uint64 (s: S.seq UInt64.t): Tot (b:bytes { S.length b = 8 * S.length s }) (decreases (S.length s)) = if S.length s = 0 then S.empty else S.append (le_of_uint64 (S.head s)) (le_of_seq_uint64 (S.tail s)) [@(deprecated "FStar.Endianness.seq_uint64_of_be")] let rec seq_uint64_of_be (l: nat) (b: bytes{ S.length b = 8 * l }): s:S.seq UInt64.t { S.length s = l }
false
false
FStar.Krml.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val seq_uint64_of_be (l: nat) (b: bytes{S.length b = 8 * l}) : s: S.seq UInt64.t {S.length s = l}
[ "recursion" ]
FStar.Krml.Endianness.seq_uint64_of_be
{ "file_name": "krmllib/FStar.Krml.Endianness.fst", "git_rev": "a7be2a7c43eca637ceb57fe8f3ffd16fc6627ebd", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
l: Prims.nat -> b: FStar.Krml.Endianness.bytes{FStar.Seq.Base.length b = 8 * l} -> s: FStar.Seq.Base.seq FStar.UInt64.t {FStar.Seq.Base.length s = l}
{ "end_col": 58, "end_line": 304, "start_col": 2, "start_line": 300 }
Prims.Tot
val le_of_seq_uint64 (s: S.seq UInt64.t) : Tot (b: bytes{S.length b = 8 * S.length s}) (decreases (S.length s))
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec le_of_seq_uint64 (s: S.seq UInt64.t): Tot (b:bytes { S.length b = 8 * S.length s }) (decreases (S.length s)) = if S.length s = 0 then S.empty else S.append (le_of_uint64 (S.head s)) (le_of_seq_uint64 (S.tail s))
val le_of_seq_uint64 (s: S.seq UInt64.t) : Tot (b: bytes{S.length b = 8 * S.length s}) (decreases (S.length s)) let rec le_of_seq_uint64 (s: S.seq UInt64.t) : Tot (b: bytes{S.length b = 8 * S.length s}) (decreases (S.length s)) =
false
null
false
if S.length s = 0 then S.empty else S.append (le_of_uint64 (S.head s)) (le_of_seq_uint64 (S.tail s))
{ "checked_file": "FStar.Krml.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.All.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Krml.Endianness.fst" }
[ "total", "" ]
[ "FStar.Seq.Base.seq", "FStar.UInt64.t", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "FStar.Seq.Base.empty", "FStar.UInt8.t", "Prims.bool", "FStar.Seq.Base.append", "FStar.Krml.Endianness.le_of_uint64", "FStar.Seq.Properties.head", "FStar.Krml.Endianness.le_of_seq_uint64", "FStar.Seq.Properties.tail", "FStar.Krml.Endianness.bytes", "Prims.b2t", "FStar.Mul.op_Star" ]
[]
module FStar.Krml.Endianness open FStar.Mul open FStar.HyperStack.All module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq (* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several name changes *) inline_for_extraction noextract type bytes = S.seq U8.t /// lt_to_n interprets a byte sequence as a little-endian natural number [@(deprecated "FStar.Endianness.le_to_n")] val le_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec le_to_n b = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) /// be_to_n interprets a byte sequence as a big-endian natural number [@(deprecated "FStar.Endianness.be_to_n")] val be_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec be_to_n b = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) [@(deprecated "FStar.Endianness.lemma_euclidean_division")] private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () [@(deprecated "FStar.Endianness.lemma_factorise")] private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () [@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")] val lemma_le_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (le_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end [@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")] val lemma_be_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (be_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_be_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 0 (Seq.length b - 1) in assert(Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert(UInt8.v (Seq.last b) < pow2 8); assert(be_to_n s < pow2 (8 * Seq.length s)); assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert(be_to_n b <= pow2 8 * (be_to_n s + 1)); assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end /// n_to_le encodes a number as a little-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_le")] val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b}) (decreases (U32.v len)) let rec n_to_le len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_le len n' in let b = S.cons byte b' in S.lemma_eq_intro b' (S.tail b); b /// n_to_be encodes a numbers as a big-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_be")] val n_to_be: len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b}) (decreases (U32.v len)) let rec n_to_be len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_be len n' in let b'' = S.create 1 byte in let b = S.append b' b'' in S.lemma_eq_intro b' (S.slice b 0 (U32.v len)); b [@(deprecated "FStar.Endianness.n_to_le_inj")] let n_to_le_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_le len n1 == n_to_le len n2)) (ensures (n1 == n2)) = // this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion // proof in the spec for n_to_le () [@(deprecated "FStar.Endianness.n_to_be_inj")] let n_to_be_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_be len n1 == n_to_be len n2)) (ensures (n1 == n2)) = () [@(deprecated "FStar.Endianness.be_to_n_inj")] let rec be_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1)); Seq.lemma_split b1 (Seq.length b1 - 1); Seq.lemma_split b2 (Seq.length b2 - 1) end [@(deprecated "FStar.Endianness.le_to_n_inj")] let rec le_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2)); Seq.lemma_split b1 1; Seq.lemma_split b2 1 end [@(deprecated "FStar.Endianness.n_to_be_be_to_n")] let n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures ( be_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\ n_to_be len (be_to_n s) == s )) [SMTPat (n_to_be len (be_to_n s))] = lemma_be_to_n_is_bounded s; be_to_n_inj s (n_to_be len (be_to_n s)) [@(deprecated "FStar.Endianness.n_to_le_le_to_n")] let n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures ( le_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\ n_to_le len (le_to_n s) == s )) [SMTPat (n_to_le len (le_to_n s))] = lemma_le_to_n_is_bounded s; le_to_n_inj s (n_to_le len (le_to_n s)) (** A series of specializations to deal with machine integers *) [@(deprecated "FStar.Endianness.uint32_of_le")] let uint32_of_le (b: bytes { S.length b = 4 }) = let n = le_to_n b in lemma_le_to_n_is_bounded b; UInt32.uint_to_t n [@(deprecated "FStar.Endianness.le_of_uint32")] let le_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } = n_to_le 4ul (UInt32.v x) [@(deprecated "FStar.Endianness.uint32_of_be")] let uint32_of_be (b: bytes { S.length b = 4 }) = let n = be_to_n b in lemma_be_to_n_is_bounded b; UInt32.uint_to_t n [@(deprecated "FStar.Endianness.be_of_uint32")] let be_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } = n_to_be 4ul (UInt32.v x) [@(deprecated "FStar.Endianness.uint64_of_le")] let uint64_of_le (b: bytes { S.length b = 8 }) = let n = le_to_n b in lemma_le_to_n_is_bounded b; UInt64.uint_to_t n [@(deprecated "FStar.Endianness.le_of_uint64")] let le_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } = n_to_le 8ul (UInt64.v x) [@(deprecated "FStar.Endianness.uint64_of_be")] let uint64_of_be (b: bytes { S.length b = 8 }) = let n = be_to_n b in lemma_be_to_n_is_bounded b; UInt64.uint_to_t n [@(deprecated "FStar.Endianness.be_of_uint64")] let be_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } = n_to_be 8ul (UInt64.v x) [@(deprecated "FStar.Endianness.seq_uint32_of_le")] let rec seq_uint32_of_le (l: nat) (b: bytes{ S.length b = 4 * l }): s:S.seq UInt32.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_le hd) (seq_uint32_of_le (l - 1) tl) [@(deprecated "FStar.Endianness.le_of_seq_uint32")] let rec le_of_seq_uint32 (s: S.seq UInt32.t): Tot (b:bytes { S.length b = 4 * S.length s }) (decreases (S.length s)) = if S.length s = 0 then S.empty else S.append (le_of_uint32 (S.head s)) (le_of_seq_uint32 (S.tail s)) [@(deprecated "FStar.Endianness.seq_uint32_of_be")] let rec seq_uint32_of_be (l: nat) (b: bytes{ S.length b = 4 * l }): s:S.seq UInt32.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_be hd) (seq_uint32_of_be (l - 1) tl) [@(deprecated "FStar.Endianness.be_of_seq_uint32")] let rec be_of_seq_uint32 (s: S.seq UInt32.t): Tot (b:bytes { S.length b = 4 * S.length s }) (decreases (S.length s)) = if S.length s = 0 then S.empty else S.append (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s)) [@(deprecated "FStar.Endianness.seq_uint64_of_le")] let rec seq_uint64_of_le (l: nat) (b: bytes{ S.length b = 8 * l }): s:S.seq UInt64.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 8 in S.cons (uint64_of_le hd) (seq_uint64_of_le (l - 1) tl) [@(deprecated "FStar.Endianness.le_of_seq_uint64")] let rec le_of_seq_uint64 (s: S.seq UInt64.t): Tot (b:bytes { S.length b = 8 * S.length s }) (decreases (S.length s))
false
false
FStar.Krml.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val le_of_seq_uint64 (s: S.seq UInt64.t) : Tot (b: bytes{S.length b = 8 * S.length s}) (decreases (S.length s))
[ "recursion" ]
FStar.Krml.Endianness.le_of_seq_uint64
{ "file_name": "krmllib/FStar.Krml.Endianness.fst", "git_rev": "a7be2a7c43eca637ceb57fe8f3ffd16fc6627ebd", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
s: FStar.Seq.Base.seq FStar.UInt64.t -> Prims.Tot (b: FStar.Krml.Endianness.bytes{FStar.Seq.Base.length b = 8 * FStar.Seq.Base.length s})
{ "end_col": 68, "end_line": 294, "start_col": 2, "start_line": 291 }
FStar.Pervasives.Lemma
val be_of_seq_uint32_slice (s: S.seq U32.t) (lo hi: nat) : Lemma (requires (lo <= hi /\ hi <= S.length s)) (ensures ((be_of_seq_uint32 (S.slice s lo hi)) `S.equal` (S.slice (be_of_seq_uint32 s) (4 * lo) (4 * hi))))
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let be_of_seq_uint32_slice (s: S.seq U32.t) (lo: nat) (hi: nat) : Lemma (requires (lo <= hi /\ hi <= S.length s)) (ensures (be_of_seq_uint32 (S.slice s lo hi) `S.equal` S.slice (be_of_seq_uint32 s) (4 * lo) (4 * hi))) = slice_seq_uint32_of_be (S.length s) (be_of_seq_uint32 s) lo hi
val be_of_seq_uint32_slice (s: S.seq U32.t) (lo hi: nat) : Lemma (requires (lo <= hi /\ hi <= S.length s)) (ensures ((be_of_seq_uint32 (S.slice s lo hi)) `S.equal` (S.slice (be_of_seq_uint32 s) (4 * lo) (4 * hi)))) let be_of_seq_uint32_slice (s: S.seq U32.t) (lo hi: nat) : Lemma (requires (lo <= hi /\ hi <= S.length s)) (ensures ((be_of_seq_uint32 (S.slice s lo hi)) `S.equal` (S.slice (be_of_seq_uint32 s) (4 * lo) (4 * hi)))) =
false
null
true
slice_seq_uint32_of_be (S.length s) (be_of_seq_uint32 s) lo hi
{ "checked_file": "FStar.Krml.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.All.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Krml.Endianness.fst" }
[ "lemma" ]
[ "FStar.Seq.Base.seq", "FStar.UInt32.t", "Prims.nat", "FStar.Krml.Endianness.slice_seq_uint32_of_be", "FStar.Seq.Base.length", "FStar.Krml.Endianness.be_of_seq_uint32", "Prims.unit", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.squash", "FStar.Seq.Base.equal", "FStar.UInt8.t", "FStar.Seq.Base.slice", "FStar.Mul.op_Star", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module FStar.Krml.Endianness open FStar.Mul open FStar.HyperStack.All module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq (* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several name changes *) inline_for_extraction noextract type bytes = S.seq U8.t /// lt_to_n interprets a byte sequence as a little-endian natural number [@(deprecated "FStar.Endianness.le_to_n")] val le_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec le_to_n b = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) /// be_to_n interprets a byte sequence as a big-endian natural number [@(deprecated "FStar.Endianness.be_to_n")] val be_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec be_to_n b = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) [@(deprecated "FStar.Endianness.lemma_euclidean_division")] private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () [@(deprecated "FStar.Endianness.lemma_factorise")] private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () [@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")] val lemma_le_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (le_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end [@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")] val lemma_be_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (be_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_be_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 0 (Seq.length b - 1) in assert(Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert(UInt8.v (Seq.last b) < pow2 8); assert(be_to_n s < pow2 (8 * Seq.length s)); assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert(be_to_n b <= pow2 8 * (be_to_n s + 1)); assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end /// n_to_le encodes a number as a little-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_le")] val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b}) (decreases (U32.v len)) let rec n_to_le len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_le len n' in let b = S.cons byte b' in S.lemma_eq_intro b' (S.tail b); b /// n_to_be encodes a numbers as a big-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_be")] val n_to_be: len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b}) (decreases (U32.v len)) let rec n_to_be len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_be len n' in let b'' = S.create 1 byte in let b = S.append b' b'' in S.lemma_eq_intro b' (S.slice b 0 (U32.v len)); b [@(deprecated "FStar.Endianness.n_to_le_inj")] let n_to_le_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_le len n1 == n_to_le len n2)) (ensures (n1 == n2)) = // this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion // proof in the spec for n_to_le () [@(deprecated "FStar.Endianness.n_to_be_inj")] let n_to_be_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_be len n1 == n_to_be len n2)) (ensures (n1 == n2)) = () [@(deprecated "FStar.Endianness.be_to_n_inj")] let rec be_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1)); Seq.lemma_split b1 (Seq.length b1 - 1); Seq.lemma_split b2 (Seq.length b2 - 1) end [@(deprecated "FStar.Endianness.le_to_n_inj")] let rec le_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2)); Seq.lemma_split b1 1; Seq.lemma_split b2 1 end [@(deprecated "FStar.Endianness.n_to_be_be_to_n")] let n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures ( be_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\ n_to_be len (be_to_n s) == s )) [SMTPat (n_to_be len (be_to_n s))] = lemma_be_to_n_is_bounded s; be_to_n_inj s (n_to_be len (be_to_n s)) [@(deprecated "FStar.Endianness.n_to_le_le_to_n")] let n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures ( le_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\ n_to_le len (le_to_n s) == s )) [SMTPat (n_to_le len (le_to_n s))] = lemma_le_to_n_is_bounded s; le_to_n_inj s (n_to_le len (le_to_n s)) (** A series of specializations to deal with machine integers *) [@(deprecated "FStar.Endianness.uint32_of_le")] let uint32_of_le (b: bytes { S.length b = 4 }) = let n = le_to_n b in lemma_le_to_n_is_bounded b; UInt32.uint_to_t n [@(deprecated "FStar.Endianness.le_of_uint32")] let le_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } = n_to_le 4ul (UInt32.v x) [@(deprecated "FStar.Endianness.uint32_of_be")] let uint32_of_be (b: bytes { S.length b = 4 }) = let n = be_to_n b in lemma_be_to_n_is_bounded b; UInt32.uint_to_t n [@(deprecated "FStar.Endianness.be_of_uint32")] let be_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } = n_to_be 4ul (UInt32.v x) [@(deprecated "FStar.Endianness.uint64_of_le")] let uint64_of_le (b: bytes { S.length b = 8 }) = let n = le_to_n b in lemma_le_to_n_is_bounded b; UInt64.uint_to_t n [@(deprecated "FStar.Endianness.le_of_uint64")] let le_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } = n_to_le 8ul (UInt64.v x) [@(deprecated "FStar.Endianness.uint64_of_be")] let uint64_of_be (b: bytes { S.length b = 8 }) = let n = be_to_n b in lemma_be_to_n_is_bounded b; UInt64.uint_to_t n [@(deprecated "FStar.Endianness.be_of_uint64")] let be_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } = n_to_be 8ul (UInt64.v x) [@(deprecated "FStar.Endianness.seq_uint32_of_le")] let rec seq_uint32_of_le (l: nat) (b: bytes{ S.length b = 4 * l }): s:S.seq UInt32.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_le hd) (seq_uint32_of_le (l - 1) tl) [@(deprecated "FStar.Endianness.le_of_seq_uint32")] let rec le_of_seq_uint32 (s: S.seq UInt32.t): Tot (b:bytes { S.length b = 4 * S.length s }) (decreases (S.length s)) = if S.length s = 0 then S.empty else S.append (le_of_uint32 (S.head s)) (le_of_seq_uint32 (S.tail s)) [@(deprecated "FStar.Endianness.seq_uint32_of_be")] let rec seq_uint32_of_be (l: nat) (b: bytes{ S.length b = 4 * l }): s:S.seq UInt32.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_be hd) (seq_uint32_of_be (l - 1) tl) [@(deprecated "FStar.Endianness.be_of_seq_uint32")] let rec be_of_seq_uint32 (s: S.seq UInt32.t): Tot (b:bytes { S.length b = 4 * S.length s }) (decreases (S.length s)) = if S.length s = 0 then S.empty else S.append (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s)) [@(deprecated "FStar.Endianness.seq_uint64_of_le")] let rec seq_uint64_of_le (l: nat) (b: bytes{ S.length b = 8 * l }): s:S.seq UInt64.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 8 in S.cons (uint64_of_le hd) (seq_uint64_of_le (l - 1) tl) [@(deprecated "FStar.Endianness.le_of_seq_uint64")] let rec le_of_seq_uint64 (s: S.seq UInt64.t): Tot (b:bytes { S.length b = 8 * S.length s }) (decreases (S.length s)) = if S.length s = 0 then S.empty else S.append (le_of_uint64 (S.head s)) (le_of_seq_uint64 (S.tail s)) [@(deprecated "FStar.Endianness.seq_uint64_of_be")] let rec seq_uint64_of_be (l: nat) (b: bytes{ S.length b = 8 * l }): s:S.seq UInt64.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 8 in S.cons (uint64_of_be hd) (seq_uint64_of_be (l - 1) tl) [@(deprecated "FStar.Endianness.be_of_seq_uint64")] let rec be_of_seq_uint64 (s: S.seq UInt64.t): Tot (b:bytes { S.length b = 8 * S.length s }) (decreases (S.length s)) = if S.length s = 0 then S.empty else S.append (be_of_uint64 (S.head s)) (be_of_seq_uint64 (S.tail s)) #set-options "--max_fuel 1 --max_ifuel 0 --z3rlimit 50" [@(deprecated "FStar.Endianness.offset_uint32_be")] let rec offset_uint32_be (b: bytes) (n: nat) (i: nat): Lemma (requires ( S.length b = 4 * n /\ i < n)) (ensures ( S.index (seq_uint32_of_be n b) i == uint32_of_be (S.slice b (4 * i) (4 * i + 4)))) (decreases ( S.length b)) [ SMTPat (S.index (seq_uint32_of_be n b) i) ] = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 4 in if i = 0 then () else offset_uint32_be tl (n - 1) (i - 1) [@(deprecated "FStar.Endianness.offset_uint32_le")] let rec offset_uint32_le (b: bytes) (n: nat) (i: nat): Lemma (requires ( S.length b = 4 * n /\ i < n)) (ensures ( S.index (seq_uint32_of_le n b) i == uint32_of_le (S.slice b (4 * i) (4 * i + 4)))) (decreases ( S.length b)) [ SMTPat (S.index (seq_uint32_of_le n b) i) ] = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 4 in if i = 0 then () else offset_uint32_le tl (n - 1) (i - 1) [@(deprecated "FStar.Endianness.offset_uint64_be")] let rec offset_uint64_be (b: bytes) (n: nat) (i: nat): Lemma (requires ( S.length b = 8 * n /\ i < n)) (ensures ( S.index (seq_uint64_of_be n b) i == uint64_of_be (S.slice b (8 * i) (8 * i + 8)))) (decreases ( S.length b)) [ SMTPat (S.index (seq_uint64_of_be n b) i) ] = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 8 in if i = 0 then () else offset_uint64_be tl (n - 1) (i - 1) [@(deprecated "FStar.Endianness.offset_uint64_le")] let rec offset_uint64_le (b: bytes) (n: nat) (i: nat): Lemma (requires ( S.length b = 8 * n /\ i < n)) (ensures ( S.index (seq_uint64_of_le n b) i == uint64_of_le (S.slice b (8 * i) (8 * i + 8)))) (decreases ( S.length b)) [ SMTPat (S.index (seq_uint64_of_le n b) i) ] = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 8 in if i = 0 then () else offset_uint64_le tl (n - 1) (i - 1) (** Reasoning about endian-ness and words. *) #set-options "--max_fuel 1 --z3rlimit 20" (* TODO: move to FStar.Seq.Properties, with the pattern *) [@(deprecated "FStar.Endianness.tail_cons")] let tail_cons (#a: Type) (hd: a) (tl: S.seq a): Lemma (ensures (S.equal (S.tail (S.cons hd tl)) tl)) // [ SMTPat (S.tail (S.cons hd tl)) ] = () [@(deprecated "FStar.Endianness.be_of_seq_uint32_append")] let rec be_of_seq_uint32_append (s1 s2: S.seq U32.t): Lemma (ensures ( S.equal (be_of_seq_uint32 (S.append s1 s2)) (S.append (be_of_seq_uint32 s1) (be_of_seq_uint32 s2)))) (decreases ( S.length s1)) [ SMTPat (S.append (be_of_seq_uint32 s1) (be_of_seq_uint32 s2)) ] = Classical.forall_intro_2 (tail_cons #U32.t); // TODO: this is a local pattern, remove once tail_cons lands in FStar.Seq.Properties if S.length s1 = 0 then begin assert (S.equal (be_of_seq_uint32 s1) S.empty); assert (S.equal (S.append s1 s2) s2); () end else begin assert (S.equal (S.append s1 s2) (S.cons (S.head s1) (S.append (S.tail s1) s2))); assert (S.equal (be_of_seq_uint32 (S.append s1 s2)) (S.append (be_of_uint32 (S.head s1)) (be_of_seq_uint32 (S.append (S.tail s1) s2)))); be_of_seq_uint32_append (S.tail s1) s2 end [@(deprecated "FStar.Endianness.be_of_seq_uint32_base")] let be_of_seq_uint32_base (s1: S.seq U32.t) (s2: S.seq U8.t): Lemma (requires ( S.length s1 = 1 /\ S.length s2 = 4 /\ be_to_n s2 = U32.v (S.index s1 0))) (ensures (S.equal s2 (be_of_seq_uint32 s1))) [ SMTPat (be_to_n s2 = U32.v (S.index s1 0)) ] = () [@(deprecated "FStar.Endianness.le_of_seq_uint32_append")] let rec le_of_seq_uint32_append (s1 s2: S.seq U32.t): Lemma (ensures ( S.equal (le_of_seq_uint32 (S.append s1 s2)) (S.append (le_of_seq_uint32 s1) (le_of_seq_uint32 s2)))) (decreases ( S.length s1)) [ SMTPat (S.append (le_of_seq_uint32 s1) (le_of_seq_uint32 s2)) ] = Classical.forall_intro_2 (tail_cons #U32.t); // TODO: this is a local pattern, remove once tail_cons lands in FStar.Seq.Properties if S.length s1 = 0 then begin assert (S.equal (le_of_seq_uint32 s1) S.empty); assert (S.equal (S.append s1 s2) s2); () end else begin assert (S.equal (S.append s1 s2) (S.cons (S.head s1) (S.append (S.tail s1) s2))); assert (S.equal (le_of_seq_uint32 (S.append s1 s2)) (S.append (le_of_uint32 (S.head s1)) (le_of_seq_uint32 (S.append (S.tail s1) s2)))); le_of_seq_uint32_append (S.tail s1) s2 end [@(deprecated "FStar.Endianness.le_of_seq_uint32_base")] let le_of_seq_uint32_base (s1: S.seq U32.t) (s2: S.seq U8.t): Lemma (requires ( S.length s1 = 1 /\ S.length s2 = 4 /\ le_to_n s2 = U32.v (S.index s1 0))) (ensures (S.equal s2 (le_of_seq_uint32 s1))) [ SMTPat (le_to_n s2 = U32.v (S.index s1 0)) ] = () [@(deprecated "FStar.Endianness.be_of_seq_uint64_append")] let rec be_of_seq_uint64_append (s1 s2: S.seq U64.t): Lemma (ensures ( S.equal (be_of_seq_uint64 (S.append s1 s2)) (S.append (be_of_seq_uint64 s1) (be_of_seq_uint64 s2)))) (decreases ( S.length s1)) [ SMTPat (S.append (be_of_seq_uint64 s1) (be_of_seq_uint64 s2)) ] = Classical.forall_intro_2 (tail_cons #U64.t); // TODO: this is a local pattern, remove once tail_cons lands in FStar.Seq.Properties if S.length s1 = 0 then begin assert (S.equal (be_of_seq_uint64 s1) S.empty); assert (S.equal (S.append s1 s2) s2); () end else begin assert (S.equal (S.append s1 s2) (S.cons (S.head s1) (S.append (S.tail s1) s2))); assert (S.equal (be_of_seq_uint64 (S.append s1 s2)) (S.append (be_of_uint64 (S.head s1)) (be_of_seq_uint64 (S.append (S.tail s1) s2)))); be_of_seq_uint64_append (S.tail s1) s2 end [@(deprecated "FStar.Endianness.be_of_seq_uint64_base")] let be_of_seq_uint64_base (s1: S.seq U64.t) (s2: S.seq U8.t): Lemma (requires ( S.length s1 = 1 /\ S.length s2 = 8 /\ be_to_n s2 = U64.v (S.index s1 0))) (ensures (S.equal s2 (be_of_seq_uint64 s1))) [ SMTPat (be_to_n s2 = U64.v (S.index s1 0)) ] = () [@(deprecated "FStar.Endianness.seq_uint32_of_be_be_of_seq_uint32")] let rec seq_uint32_of_be_be_of_seq_uint32 (n: nat) (s: S.seq U32.t) : Lemma (requires (n == S.length s)) (ensures (seq_uint32_of_be n (be_of_seq_uint32 s) `S.equal` s)) (decreases n) [SMTPat (seq_uint32_of_be n (be_of_seq_uint32 s))] = if n = 0 then () else begin assert (s `S.equal` S.cons (S.head s) (S.tail s)); seq_uint32_of_be_be_of_seq_uint32 (n - 1) (S.tail s); let s' = be_of_seq_uint32 s in S.lemma_split s' 4; S.lemma_append_inj (S.slice s' 0 4) (S.slice s' 4 (S.length s')) (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s)) end [@(deprecated "FStar.Endianness.be_of_seq_uint32_seq_uint32_of_be")] let rec be_of_seq_uint32_seq_uint32_of_be (n: nat) (s: S.seq U8.t) : Lemma (requires (4 * n == S.length s)) (ensures (be_of_seq_uint32 (seq_uint32_of_be n s) `S.equal` s)) (decreases n) [SMTPat (be_of_seq_uint32 (seq_uint32_of_be n s))] = if n = 0 then () else begin S.lemma_split s 4; be_of_seq_uint32_seq_uint32_of_be (n - 1) (S.slice s 4 (S.length s)); let s' = seq_uint32_of_be n s in let hd, tl = S.split s 4 in assert (S.head s' == uint32_of_be hd); tail_cons (uint32_of_be hd) (seq_uint32_of_be (n - 1) tl); assert (S.tail s' == seq_uint32_of_be (n - 1) tl); let s'' = be_of_seq_uint32 s' in S.lemma_split s'' 4; S.lemma_append_inj (S.slice s'' 0 4) (S.slice s'' 4 (S.length s'')) (be_of_uint32 (S.head s')) (be_of_seq_uint32 (S.tail s')); n_to_be_be_to_n 4ul hd end [@(deprecated "FStar.Endianness.slice_seq_uint32_of_be")] let slice_seq_uint32_of_be (n: nat) (s: S.seq U8.t) (lo: nat) (hi: nat) : Lemma (requires (4 * n == S.length s /\ lo <= hi /\ hi <= n)) (ensures (S.slice (seq_uint32_of_be n s) lo hi) `S.equal` seq_uint32_of_be (hi - lo) (S.slice s (4 * lo) (4 * hi))) = () [@(deprecated "FStar.Endianness.be_of_seq_uint32_slice")] let be_of_seq_uint32_slice (s: S.seq U32.t) (lo: nat) (hi: nat) : Lemma (requires (lo <= hi /\ hi <= S.length s))
false
false
FStar.Krml.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val be_of_seq_uint32_slice (s: S.seq U32.t) (lo hi: nat) : Lemma (requires (lo <= hi /\ hi <= S.length s)) (ensures ((be_of_seq_uint32 (S.slice s lo hi)) `S.equal` (S.slice (be_of_seq_uint32 s) (4 * lo) (4 * hi))))
[]
FStar.Krml.Endianness.be_of_seq_uint32_slice
{ "file_name": "krmllib/FStar.Krml.Endianness.fst", "git_rev": "a7be2a7c43eca637ceb57fe8f3ffd16fc6627ebd", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
s: FStar.Seq.Base.seq FStar.UInt32.t -> lo: Prims.nat -> hi: Prims.nat -> FStar.Pervasives.Lemma (requires lo <= hi /\ hi <= FStar.Seq.Base.length s) (ensures FStar.Seq.Base.equal (FStar.Krml.Endianness.be_of_seq_uint32 (FStar.Seq.Base.slice s lo hi)) (FStar.Seq.Base.slice (FStar.Krml.Endianness.be_of_seq_uint32 s) (4 * lo) (4 * hi)))
{ "end_col": 64, "end_line": 560, "start_col": 2, "start_line": 560 }
FStar.Pervasives.Lemma
val le_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1))
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec le_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2)); Seq.lemma_split b1 1; Seq.lemma_split b2 1 end
val le_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) let rec le_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) =
false
null
true
if Seq.length b1 = 0 then () else (le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2)); Seq.lemma_split b1 1; Seq.lemma_split b2 1)
{ "checked_file": "FStar.Krml.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.All.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Krml.Endianness.fst" }
[ "lemma", "" ]
[ "FStar.Seq.Base.seq", "FStar.UInt8.t", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "Prims.bool", "FStar.Seq.Properties.lemma_split", "Prims.unit", "FStar.Krml.Endianness.le_to_n_inj", "FStar.Seq.Base.slice", "Prims.l_and", "Prims.eq2", "Prims.nat", "FStar.Krml.Endianness.le_to_n", "Prims.squash", "FStar.Seq.Base.equal", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module FStar.Krml.Endianness open FStar.Mul open FStar.HyperStack.All module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq (* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several name changes *) inline_for_extraction noextract type bytes = S.seq U8.t /// lt_to_n interprets a byte sequence as a little-endian natural number [@(deprecated "FStar.Endianness.le_to_n")] val le_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec le_to_n b = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) /// be_to_n interprets a byte sequence as a big-endian natural number [@(deprecated "FStar.Endianness.be_to_n")] val be_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec be_to_n b = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) [@(deprecated "FStar.Endianness.lemma_euclidean_division")] private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () [@(deprecated "FStar.Endianness.lemma_factorise")] private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () [@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")] val lemma_le_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (le_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end [@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")] val lemma_be_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (be_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_be_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 0 (Seq.length b - 1) in assert(Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert(UInt8.v (Seq.last b) < pow2 8); assert(be_to_n s < pow2 (8 * Seq.length s)); assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert(be_to_n b <= pow2 8 * (be_to_n s + 1)); assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end /// n_to_le encodes a number as a little-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_le")] val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b}) (decreases (U32.v len)) let rec n_to_le len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_le len n' in let b = S.cons byte b' in S.lemma_eq_intro b' (S.tail b); b /// n_to_be encodes a numbers as a big-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_be")] val n_to_be: len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b}) (decreases (U32.v len)) let rec n_to_be len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_be len n' in let b'' = S.create 1 byte in let b = S.append b' b'' in S.lemma_eq_intro b' (S.slice b 0 (U32.v len)); b [@(deprecated "FStar.Endianness.n_to_le_inj")] let n_to_le_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_le len n1 == n_to_le len n2)) (ensures (n1 == n2)) = // this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion // proof in the spec for n_to_le () [@(deprecated "FStar.Endianness.n_to_be_inj")] let n_to_be_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_be len n1 == n_to_be len n2)) (ensures (n1 == n2)) = () [@(deprecated "FStar.Endianness.be_to_n_inj")] let rec be_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1)); Seq.lemma_split b1 (Seq.length b1 - 1); Seq.lemma_split b2 (Seq.length b2 - 1) end [@(deprecated "FStar.Endianness.le_to_n_inj")] let rec le_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2)) (ensures (Seq.equal b1 b2))
false
false
FStar.Krml.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val le_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1))
[ "recursion" ]
FStar.Krml.Endianness.le_to_n_inj
{ "file_name": "krmllib/FStar.Krml.Endianness.fst", "git_rev": "a7be2a7c43eca637ceb57fe8f3ffd16fc6627ebd", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
b1: FStar.Seq.Base.seq FStar.UInt8.t -> b2: FStar.Seq.Base.seq FStar.UInt8.t -> FStar.Pervasives.Lemma (requires FStar.Seq.Base.length b1 == FStar.Seq.Base.length b2 /\ FStar.Krml.Endianness.le_to_n b1 == FStar.Krml.Endianness.le_to_n b2) (ensures FStar.Seq.Base.equal b1 b2) (decreases FStar.Seq.Base.length b1)
{ "end_col": 5, "end_line": 170, "start_col": 2, "start_line": 164 }
Prims.Tot
val seq_uint64_of_le (l: nat) (b: bytes{S.length b = 8 * l}) : s: S.seq UInt64.t {S.length s = l}
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec seq_uint64_of_le (l: nat) (b: bytes{ S.length b = 8 * l }): s:S.seq UInt64.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 8 in S.cons (uint64_of_le hd) (seq_uint64_of_le (l - 1) tl)
val seq_uint64_of_le (l: nat) (b: bytes{S.length b = 8 * l}) : s: S.seq UInt64.t {S.length s = l} let rec seq_uint64_of_le (l: nat) (b: bytes{S.length b = 8 * l}) : s: S.seq UInt64.t {S.length s = l} =
false
null
false
if S.length b = 0 then S.empty else let hd, tl = Seq.split b 8 in S.cons (uint64_of_le hd) (seq_uint64_of_le (l - 1) tl)
{ "checked_file": "FStar.Krml.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.All.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Krml.Endianness.fst" }
[ "total" ]
[ "Prims.nat", "FStar.Krml.Endianness.bytes", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "FStar.UInt8.t", "FStar.Mul.op_Star", "FStar.Seq.Base.empty", "FStar.UInt64.t", "Prims.bool", "FStar.Seq.Base.seq", "FStar.Seq.Properties.cons", "FStar.Krml.Endianness.uint64_of_le", "FStar.Krml.Endianness.seq_uint64_of_le", "Prims.op_Subtraction", "FStar.Pervasives.Native.tuple2", "FStar.Seq.Properties.split" ]
[]
module FStar.Krml.Endianness open FStar.Mul open FStar.HyperStack.All module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq (* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several name changes *) inline_for_extraction noextract type bytes = S.seq U8.t /// lt_to_n interprets a byte sequence as a little-endian natural number [@(deprecated "FStar.Endianness.le_to_n")] val le_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec le_to_n b = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) /// be_to_n interprets a byte sequence as a big-endian natural number [@(deprecated "FStar.Endianness.be_to_n")] val be_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec be_to_n b = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) [@(deprecated "FStar.Endianness.lemma_euclidean_division")] private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () [@(deprecated "FStar.Endianness.lemma_factorise")] private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () [@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")] val lemma_le_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (le_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end [@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")] val lemma_be_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (be_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_be_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 0 (Seq.length b - 1) in assert(Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert(UInt8.v (Seq.last b) < pow2 8); assert(be_to_n s < pow2 (8 * Seq.length s)); assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert(be_to_n b <= pow2 8 * (be_to_n s + 1)); assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end /// n_to_le encodes a number as a little-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_le")] val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b}) (decreases (U32.v len)) let rec n_to_le len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_le len n' in let b = S.cons byte b' in S.lemma_eq_intro b' (S.tail b); b /// n_to_be encodes a numbers as a big-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_be")] val n_to_be: len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b}) (decreases (U32.v len)) let rec n_to_be len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_be len n' in let b'' = S.create 1 byte in let b = S.append b' b'' in S.lemma_eq_intro b' (S.slice b 0 (U32.v len)); b [@(deprecated "FStar.Endianness.n_to_le_inj")] let n_to_le_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_le len n1 == n_to_le len n2)) (ensures (n1 == n2)) = // this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion // proof in the spec for n_to_le () [@(deprecated "FStar.Endianness.n_to_be_inj")] let n_to_be_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_be len n1 == n_to_be len n2)) (ensures (n1 == n2)) = () [@(deprecated "FStar.Endianness.be_to_n_inj")] let rec be_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1)); Seq.lemma_split b1 (Seq.length b1 - 1); Seq.lemma_split b2 (Seq.length b2 - 1) end [@(deprecated "FStar.Endianness.le_to_n_inj")] let rec le_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2)); Seq.lemma_split b1 1; Seq.lemma_split b2 1 end [@(deprecated "FStar.Endianness.n_to_be_be_to_n")] let n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures ( be_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\ n_to_be len (be_to_n s) == s )) [SMTPat (n_to_be len (be_to_n s))] = lemma_be_to_n_is_bounded s; be_to_n_inj s (n_to_be len (be_to_n s)) [@(deprecated "FStar.Endianness.n_to_le_le_to_n")] let n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures ( le_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\ n_to_le len (le_to_n s) == s )) [SMTPat (n_to_le len (le_to_n s))] = lemma_le_to_n_is_bounded s; le_to_n_inj s (n_to_le len (le_to_n s)) (** A series of specializations to deal with machine integers *) [@(deprecated "FStar.Endianness.uint32_of_le")] let uint32_of_le (b: bytes { S.length b = 4 }) = let n = le_to_n b in lemma_le_to_n_is_bounded b; UInt32.uint_to_t n [@(deprecated "FStar.Endianness.le_of_uint32")] let le_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } = n_to_le 4ul (UInt32.v x) [@(deprecated "FStar.Endianness.uint32_of_be")] let uint32_of_be (b: bytes { S.length b = 4 }) = let n = be_to_n b in lemma_be_to_n_is_bounded b; UInt32.uint_to_t n [@(deprecated "FStar.Endianness.be_of_uint32")] let be_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } = n_to_be 4ul (UInt32.v x) [@(deprecated "FStar.Endianness.uint64_of_le")] let uint64_of_le (b: bytes { S.length b = 8 }) = let n = le_to_n b in lemma_le_to_n_is_bounded b; UInt64.uint_to_t n [@(deprecated "FStar.Endianness.le_of_uint64")] let le_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } = n_to_le 8ul (UInt64.v x) [@(deprecated "FStar.Endianness.uint64_of_be")] let uint64_of_be (b: bytes { S.length b = 8 }) = let n = be_to_n b in lemma_be_to_n_is_bounded b; UInt64.uint_to_t n [@(deprecated "FStar.Endianness.be_of_uint64")] let be_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } = n_to_be 8ul (UInt64.v x) [@(deprecated "FStar.Endianness.seq_uint32_of_le")] let rec seq_uint32_of_le (l: nat) (b: bytes{ S.length b = 4 * l }): s:S.seq UInt32.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_le hd) (seq_uint32_of_le (l - 1) tl) [@(deprecated "FStar.Endianness.le_of_seq_uint32")] let rec le_of_seq_uint32 (s: S.seq UInt32.t): Tot (b:bytes { S.length b = 4 * S.length s }) (decreases (S.length s)) = if S.length s = 0 then S.empty else S.append (le_of_uint32 (S.head s)) (le_of_seq_uint32 (S.tail s)) [@(deprecated "FStar.Endianness.seq_uint32_of_be")] let rec seq_uint32_of_be (l: nat) (b: bytes{ S.length b = 4 * l }): s:S.seq UInt32.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_be hd) (seq_uint32_of_be (l - 1) tl) [@(deprecated "FStar.Endianness.be_of_seq_uint32")] let rec be_of_seq_uint32 (s: S.seq UInt32.t): Tot (b:bytes { S.length b = 4 * S.length s }) (decreases (S.length s)) = if S.length s = 0 then S.empty else S.append (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s)) [@(deprecated "FStar.Endianness.seq_uint64_of_le")] let rec seq_uint64_of_le (l: nat) (b: bytes{ S.length b = 8 * l }): s:S.seq UInt64.t { S.length s = l }
false
false
FStar.Krml.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val seq_uint64_of_le (l: nat) (b: bytes{S.length b = 8 * l}) : s: S.seq UInt64.t {S.length s = l}
[ "recursion" ]
FStar.Krml.Endianness.seq_uint64_of_le
{ "file_name": "krmllib/FStar.Krml.Endianness.fst", "git_rev": "a7be2a7c43eca637ceb57fe8f3ffd16fc6627ebd", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
l: Prims.nat -> b: FStar.Krml.Endianness.bytes{FStar.Seq.Base.length b = 8 * l} -> s: FStar.Seq.Base.seq FStar.UInt64.t {FStar.Seq.Base.length s = l}
{ "end_col": 58, "end_line": 284, "start_col": 2, "start_line": 280 }
Prims.Tot
val seq_uint32_of_le (l: nat) (b: bytes{S.length b = 4 * l}) : s: S.seq UInt32.t {S.length s = l}
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec seq_uint32_of_le (l: nat) (b: bytes{ S.length b = 4 * l }): s:S.seq UInt32.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_le hd) (seq_uint32_of_le (l - 1) tl)
val seq_uint32_of_le (l: nat) (b: bytes{S.length b = 4 * l}) : s: S.seq UInt32.t {S.length s = l} let rec seq_uint32_of_le (l: nat) (b: bytes{S.length b = 4 * l}) : s: S.seq UInt32.t {S.length s = l} =
false
null
false
if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_le hd) (seq_uint32_of_le (l - 1) tl)
{ "checked_file": "FStar.Krml.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.All.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Krml.Endianness.fst" }
[ "total" ]
[ "Prims.nat", "FStar.Krml.Endianness.bytes", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "FStar.UInt8.t", "FStar.Mul.op_Star", "FStar.Seq.Base.empty", "FStar.UInt32.t", "Prims.bool", "FStar.Seq.Base.seq", "FStar.Seq.Properties.cons", "FStar.Krml.Endianness.uint32_of_le", "FStar.Krml.Endianness.seq_uint32_of_le", "Prims.op_Subtraction", "FStar.Pervasives.Native.tuple2", "FStar.Seq.Properties.split" ]
[]
module FStar.Krml.Endianness open FStar.Mul open FStar.HyperStack.All module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq (* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several name changes *) inline_for_extraction noextract type bytes = S.seq U8.t /// lt_to_n interprets a byte sequence as a little-endian natural number [@(deprecated "FStar.Endianness.le_to_n")] val le_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec le_to_n b = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) /// be_to_n interprets a byte sequence as a big-endian natural number [@(deprecated "FStar.Endianness.be_to_n")] val be_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec be_to_n b = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) [@(deprecated "FStar.Endianness.lemma_euclidean_division")] private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () [@(deprecated "FStar.Endianness.lemma_factorise")] private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () [@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")] val lemma_le_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (le_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end [@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")] val lemma_be_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (be_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_be_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 0 (Seq.length b - 1) in assert(Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert(UInt8.v (Seq.last b) < pow2 8); assert(be_to_n s < pow2 (8 * Seq.length s)); assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert(be_to_n b <= pow2 8 * (be_to_n s + 1)); assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end /// n_to_le encodes a number as a little-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_le")] val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b}) (decreases (U32.v len)) let rec n_to_le len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_le len n' in let b = S.cons byte b' in S.lemma_eq_intro b' (S.tail b); b /// n_to_be encodes a numbers as a big-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_be")] val n_to_be: len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b}) (decreases (U32.v len)) let rec n_to_be len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_be len n' in let b'' = S.create 1 byte in let b = S.append b' b'' in S.lemma_eq_intro b' (S.slice b 0 (U32.v len)); b [@(deprecated "FStar.Endianness.n_to_le_inj")] let n_to_le_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_le len n1 == n_to_le len n2)) (ensures (n1 == n2)) = // this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion // proof in the spec for n_to_le () [@(deprecated "FStar.Endianness.n_to_be_inj")] let n_to_be_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_be len n1 == n_to_be len n2)) (ensures (n1 == n2)) = () [@(deprecated "FStar.Endianness.be_to_n_inj")] let rec be_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1)); Seq.lemma_split b1 (Seq.length b1 - 1); Seq.lemma_split b2 (Seq.length b2 - 1) end [@(deprecated "FStar.Endianness.le_to_n_inj")] let rec le_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2)); Seq.lemma_split b1 1; Seq.lemma_split b2 1 end [@(deprecated "FStar.Endianness.n_to_be_be_to_n")] let n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures ( be_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\ n_to_be len (be_to_n s) == s )) [SMTPat (n_to_be len (be_to_n s))] = lemma_be_to_n_is_bounded s; be_to_n_inj s (n_to_be len (be_to_n s)) [@(deprecated "FStar.Endianness.n_to_le_le_to_n")] let n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures ( le_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\ n_to_le len (le_to_n s) == s )) [SMTPat (n_to_le len (le_to_n s))] = lemma_le_to_n_is_bounded s; le_to_n_inj s (n_to_le len (le_to_n s)) (** A series of specializations to deal with machine integers *) [@(deprecated "FStar.Endianness.uint32_of_le")] let uint32_of_le (b: bytes { S.length b = 4 }) = let n = le_to_n b in lemma_le_to_n_is_bounded b; UInt32.uint_to_t n [@(deprecated "FStar.Endianness.le_of_uint32")] let le_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } = n_to_le 4ul (UInt32.v x) [@(deprecated "FStar.Endianness.uint32_of_be")] let uint32_of_be (b: bytes { S.length b = 4 }) = let n = be_to_n b in lemma_be_to_n_is_bounded b; UInt32.uint_to_t n [@(deprecated "FStar.Endianness.be_of_uint32")] let be_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } = n_to_be 4ul (UInt32.v x) [@(deprecated "FStar.Endianness.uint64_of_le")] let uint64_of_le (b: bytes { S.length b = 8 }) = let n = le_to_n b in lemma_le_to_n_is_bounded b; UInt64.uint_to_t n [@(deprecated "FStar.Endianness.le_of_uint64")] let le_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } = n_to_le 8ul (UInt64.v x) [@(deprecated "FStar.Endianness.uint64_of_be")] let uint64_of_be (b: bytes { S.length b = 8 }) = let n = be_to_n b in lemma_be_to_n_is_bounded b; UInt64.uint_to_t n [@(deprecated "FStar.Endianness.be_of_uint64")] let be_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } = n_to_be 8ul (UInt64.v x) [@(deprecated "FStar.Endianness.seq_uint32_of_le")] let rec seq_uint32_of_le (l: nat) (b: bytes{ S.length b = 4 * l }): s:S.seq UInt32.t { S.length s = l }
false
false
FStar.Krml.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val seq_uint32_of_le (l: nat) (b: bytes{S.length b = 4 * l}) : s: S.seq UInt32.t {S.length s = l}
[ "recursion" ]
FStar.Krml.Endianness.seq_uint32_of_le
{ "file_name": "krmllib/FStar.Krml.Endianness.fst", "git_rev": "a7be2a7c43eca637ceb57fe8f3ffd16fc6627ebd", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
l: Prims.nat -> b: FStar.Krml.Endianness.bytes{FStar.Seq.Base.length b = 4 * l} -> s: FStar.Seq.Base.seq FStar.UInt32.t {FStar.Seq.Base.length s = l}
{ "end_col": 58, "end_line": 244, "start_col": 2, "start_line": 240 }
FStar.Pervasives.Lemma
val lemma_be_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (be_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b))
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec lemma_be_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 0 (Seq.length b - 1) in assert(Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert(UInt8.v (Seq.last b) < pow2 8); assert(be_to_n s < pow2 (8 * Seq.length s)); assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert(be_to_n b <= pow2 8 * (be_to_n s + 1)); assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end
val lemma_be_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (be_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_be_to_n_is_bounded b =
false
null
true
if Seq.length b = 0 then () else let s = Seq.slice b 0 (Seq.length b - 1) in assert (Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert (UInt8.v (Seq.last b) < pow2 8); assert (be_to_n s < pow2 (8 * Seq.length s)); assert (be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert (be_to_n b <= pow2 8 * (be_to_n s + 1)); assert (be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1)
{ "checked_file": "FStar.Krml.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.All.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Krml.Endianness.fst" }
[ "lemma", "" ]
[ "FStar.Krml.Endianness.bytes", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "FStar.UInt8.t", "Prims.bool", "FStar.Krml.Endianness.lemma_factorise", "Prims.op_Subtraction", "Prims.unit", "FStar.Math.Lemmas.pow2_plus", "FStar.Mul.op_Star", "Prims._assert", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Krml.Endianness.be_to_n", "Prims.pow2", "Prims.op_Addition", "FStar.Krml.Endianness.lemma_euclidean_division", "FStar.UInt8.v", "FStar.Seq.Properties.last", "Prims.op_LessThan", "FStar.Krml.Endianness.lemma_be_to_n_is_bounded", "FStar.Seq.Base.seq", "FStar.Seq.Base.slice" ]
[]
module FStar.Krml.Endianness open FStar.Mul open FStar.HyperStack.All module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq (* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several name changes *) inline_for_extraction noextract type bytes = S.seq U8.t /// lt_to_n interprets a byte sequence as a little-endian natural number [@(deprecated "FStar.Endianness.le_to_n")] val le_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec le_to_n b = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) /// be_to_n interprets a byte sequence as a big-endian natural number [@(deprecated "FStar.Endianness.be_to_n")] val be_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec be_to_n b = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) [@(deprecated "FStar.Endianness.lemma_euclidean_division")] private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () [@(deprecated "FStar.Endianness.lemma_factorise")] private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () [@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")] val lemma_le_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (le_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end [@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")] val lemma_be_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (be_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b))
false
false
FStar.Krml.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_be_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (be_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b))
[ "recursion" ]
FStar.Krml.Endianness.lemma_be_to_n_is_bounded
{ "file_name": "krmllib/FStar.Krml.Endianness.fst", "git_rev": "a7be2a7c43eca637ceb57fe8f3ffd16fc6627ebd", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
b: FStar.Krml.Endianness.bytes -> FStar.Pervasives.Lemma (ensures FStar.Krml.Endianness.be_to_n b < Prims.pow2 (8 * FStar.Seq.Base.length b)) (decreases FStar.Seq.Base.length b)
{ "end_col": 7, "end_line": 84, "start_col": 2, "start_line": 70 }
Prims.Tot
val n_to_be: len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b}) (decreases (U32.v len))
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec n_to_be len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_be len n' in let b'' = S.create 1 byte in let b = S.append b' b'' in S.lemma_eq_intro b' (S.slice b 0 (U32.v len)); b
val n_to_be: len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b}) (decreases (U32.v len)) let rec n_to_be len n =
false
null
false
if len = 0ul then S.empty else let len = let open U32 in len -^ 1ul in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert (n' < pow2 (8 * U32.v len)); let b' = n_to_be len n' in let b'' = S.create 1 byte in let b = S.append b' b'' in S.lemma_eq_intro b' (S.slice b 0 (U32.v len)); b
{ "checked_file": "FStar.Krml.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.All.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Krml.Endianness.fst" }
[ "total", "" ]
[ "FStar.UInt32.t", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "FStar.Mul.op_Star", "FStar.UInt32.v", "Prims.op_Equality", "FStar.UInt32.__uint_to_t", "FStar.Seq.Base.empty", "FStar.UInt8.t", "Prims.bool", "Prims.unit", "FStar.Seq.Base.lemma_eq_intro", "FStar.Seq.Base.slice", "FStar.Seq.Base.seq", "FStar.Seq.Base.append", "FStar.Seq.Base.create", "FStar.Krml.Endianness.bytes", "Prims.l_and", "Prims.eq2", "Prims.int", "Prims.l_or", "Prims.op_GreaterThanOrEqual", "FStar.UInt.size", "FStar.Seq.Base.length", "FStar.Krml.Endianness.be_to_n", "FStar.Krml.Endianness.n_to_be", "Prims._assert", "FStar.Math.Lemmas.pow2_plus", "Prims.op_Division", "FStar.UInt8.uint_to_t", "Prims.op_Modulus", "FStar.UInt32.op_Subtraction_Hat", "FStar.UInt32.n" ]
[]
module FStar.Krml.Endianness open FStar.Mul open FStar.HyperStack.All module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq (* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several name changes *) inline_for_extraction noextract type bytes = S.seq U8.t /// lt_to_n interprets a byte sequence as a little-endian natural number [@(deprecated "FStar.Endianness.le_to_n")] val le_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec le_to_n b = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) /// be_to_n interprets a byte sequence as a big-endian natural number [@(deprecated "FStar.Endianness.be_to_n")] val be_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec be_to_n b = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) [@(deprecated "FStar.Endianness.lemma_euclidean_division")] private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () [@(deprecated "FStar.Endianness.lemma_factorise")] private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () [@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")] val lemma_le_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (le_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end [@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")] val lemma_be_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (be_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_be_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 0 (Seq.length b - 1) in assert(Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert(UInt8.v (Seq.last b) < pow2 8); assert(be_to_n s < pow2 (8 * Seq.length s)); assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert(be_to_n b <= pow2 8 * (be_to_n s + 1)); assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end /// n_to_le encodes a number as a little-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_le")] val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b}) (decreases (U32.v len)) let rec n_to_le len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_le len n' in let b = S.cons byte b' in S.lemma_eq_intro b' (S.tail b); b /// n_to_be encodes a numbers as a big-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_be")] val n_to_be: len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b}) (decreases (U32.v len))
false
false
FStar.Krml.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val n_to_be: len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b}) (decreases (U32.v len))
[ "recursion" ]
FStar.Krml.Endianness.n_to_be
{ "file_name": "krmllib/FStar.Krml.Endianness.fst", "git_rev": "a7be2a7c43eca637ceb57fe8f3ffd16fc6627ebd", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
len: FStar.UInt32.t -> n: Prims.nat{n < Prims.pow2 (8 * FStar.UInt32.v len)} -> Prims.Tot (b: FStar.Krml.Endianness.bytes {FStar.Seq.Base.length b == FStar.UInt32.v len /\ n == FStar.Krml.Endianness.be_to_n b})
{ "end_col": 5, "end_line": 126, "start_col": 2, "start_line": 114 }
FStar.Pervasives.Lemma
val lemma_le_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (le_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b))
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end
val lemma_le_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (le_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_le_to_n_is_bounded b =
false
null
true
if Seq.length b = 0 then () else let s = Seq.slice b 1 (Seq.length b) in assert (Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert (UInt8.v (Seq.index b 0) < pow2 8); assert (le_to_n s < pow2 (8 * Seq.length s)); assert (le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert (le_to_n b <= pow2 8 * (le_to_n s + 1)); assert (le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1)
{ "checked_file": "FStar.Krml.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.All.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Krml.Endianness.fst" }
[ "lemma", "" ]
[ "FStar.Krml.Endianness.bytes", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "FStar.UInt8.t", "Prims.bool", "FStar.Krml.Endianness.lemma_factorise", "Prims.op_Subtraction", "Prims.unit", "FStar.Math.Lemmas.pow2_plus", "FStar.Mul.op_Star", "Prims._assert", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Krml.Endianness.le_to_n", "Prims.pow2", "Prims.op_Addition", "FStar.Krml.Endianness.lemma_euclidean_division", "FStar.UInt8.v", "FStar.Seq.Base.index", "Prims.op_LessThan", "FStar.Krml.Endianness.lemma_le_to_n_is_bounded", "FStar.Seq.Base.seq", "FStar.Seq.Base.slice" ]
[]
module FStar.Krml.Endianness open FStar.Mul open FStar.HyperStack.All module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq (* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several name changes *) inline_for_extraction noextract type bytes = S.seq U8.t /// lt_to_n interprets a byte sequence as a little-endian natural number [@(deprecated "FStar.Endianness.le_to_n")] val le_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec le_to_n b = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) /// be_to_n interprets a byte sequence as a big-endian natural number [@(deprecated "FStar.Endianness.be_to_n")] val be_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec be_to_n b = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) [@(deprecated "FStar.Endianness.lemma_euclidean_division")] private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () [@(deprecated "FStar.Endianness.lemma_factorise")] private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () [@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")] val lemma_le_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (le_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b))
false
false
FStar.Krml.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_le_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (le_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b))
[ "recursion" ]
FStar.Krml.Endianness.lemma_le_to_n_is_bounded
{ "file_name": "krmllib/FStar.Krml.Endianness.fst", "git_rev": "a7be2a7c43eca637ceb57fe8f3ffd16fc6627ebd", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
b: FStar.Krml.Endianness.bytes -> FStar.Pervasives.Lemma (ensures FStar.Krml.Endianness.le_to_n b < Prims.pow2 (8 * FStar.Seq.Base.length b)) (decreases FStar.Seq.Base.length b)
{ "end_col": 7, "end_line": 62, "start_col": 2, "start_line": 48 }
FStar.Pervasives.Lemma
val seq_uint32_of_be_be_of_seq_uint32 (n: nat) (s: S.seq U32.t) : Lemma (requires (n == S.length s)) (ensures ((seq_uint32_of_be n (be_of_seq_uint32 s)) `S.equal` s)) (decreases n) [SMTPat (seq_uint32_of_be n (be_of_seq_uint32 s))]
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec seq_uint32_of_be_be_of_seq_uint32 (n: nat) (s: S.seq U32.t) : Lemma (requires (n == S.length s)) (ensures (seq_uint32_of_be n (be_of_seq_uint32 s) `S.equal` s)) (decreases n) [SMTPat (seq_uint32_of_be n (be_of_seq_uint32 s))] = if n = 0 then () else begin assert (s `S.equal` S.cons (S.head s) (S.tail s)); seq_uint32_of_be_be_of_seq_uint32 (n - 1) (S.tail s); let s' = be_of_seq_uint32 s in S.lemma_split s' 4; S.lemma_append_inj (S.slice s' 0 4) (S.slice s' 4 (S.length s')) (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s)) end
val seq_uint32_of_be_be_of_seq_uint32 (n: nat) (s: S.seq U32.t) : Lemma (requires (n == S.length s)) (ensures ((seq_uint32_of_be n (be_of_seq_uint32 s)) `S.equal` s)) (decreases n) [SMTPat (seq_uint32_of_be n (be_of_seq_uint32 s))] let rec seq_uint32_of_be_be_of_seq_uint32 (n: nat) (s: S.seq U32.t) : Lemma (requires (n == S.length s)) (ensures ((seq_uint32_of_be n (be_of_seq_uint32 s)) `S.equal` s)) (decreases n) [SMTPat (seq_uint32_of_be n (be_of_seq_uint32 s))] =
false
null
true
if n = 0 then () else (assert (s `S.equal` (S.cons (S.head s) (S.tail s))); seq_uint32_of_be_be_of_seq_uint32 (n - 1) (S.tail s); let s' = be_of_seq_uint32 s in S.lemma_split s' 4; S.lemma_append_inj (S.slice s' 0 4) (S.slice s' 4 (S.length s')) (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s)))
{ "checked_file": "FStar.Krml.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.All.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Krml.Endianness.fst" }
[ "lemma", "" ]
[ "Prims.nat", "FStar.Seq.Base.seq", "FStar.UInt32.t", "Prims.op_Equality", "Prims.int", "Prims.bool", "FStar.Seq.Properties.lemma_append_inj", "FStar.UInt8.t", "FStar.Seq.Base.slice", "FStar.Seq.Base.length", "FStar.Krml.Endianness.be_of_uint32", "FStar.Seq.Properties.head", "FStar.Krml.Endianness.be_of_seq_uint32", "FStar.Seq.Properties.tail", "Prims.unit", "FStar.Seq.Properties.lemma_split", "FStar.Krml.Endianness.bytes", "Prims.b2t", "Prims.op_Multiply", "FStar.Krml.Endianness.seq_uint32_of_be_be_of_seq_uint32", "Prims.op_Subtraction", "Prims._assert", "FStar.Seq.Base.equal", "FStar.Seq.Properties.cons", "Prims.eq2", "Prims.squash", "FStar.Krml.Endianness.seq_uint32_of_be", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.Nil" ]
[]
module FStar.Krml.Endianness open FStar.Mul open FStar.HyperStack.All module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq (* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several name changes *) inline_for_extraction noextract type bytes = S.seq U8.t /// lt_to_n interprets a byte sequence as a little-endian natural number [@(deprecated "FStar.Endianness.le_to_n")] val le_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec le_to_n b = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) /// be_to_n interprets a byte sequence as a big-endian natural number [@(deprecated "FStar.Endianness.be_to_n")] val be_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec be_to_n b = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) [@(deprecated "FStar.Endianness.lemma_euclidean_division")] private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () [@(deprecated "FStar.Endianness.lemma_factorise")] private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () [@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")] val lemma_le_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (le_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end [@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")] val lemma_be_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (be_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_be_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 0 (Seq.length b - 1) in assert(Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert(UInt8.v (Seq.last b) < pow2 8); assert(be_to_n s < pow2 (8 * Seq.length s)); assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert(be_to_n b <= pow2 8 * (be_to_n s + 1)); assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end /// n_to_le encodes a number as a little-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_le")] val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b}) (decreases (U32.v len)) let rec n_to_le len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_le len n' in let b = S.cons byte b' in S.lemma_eq_intro b' (S.tail b); b /// n_to_be encodes a numbers as a big-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_be")] val n_to_be: len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b}) (decreases (U32.v len)) let rec n_to_be len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_be len n' in let b'' = S.create 1 byte in let b = S.append b' b'' in S.lemma_eq_intro b' (S.slice b 0 (U32.v len)); b [@(deprecated "FStar.Endianness.n_to_le_inj")] let n_to_le_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_le len n1 == n_to_le len n2)) (ensures (n1 == n2)) = // this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion // proof in the spec for n_to_le () [@(deprecated "FStar.Endianness.n_to_be_inj")] let n_to_be_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_be len n1 == n_to_be len n2)) (ensures (n1 == n2)) = () [@(deprecated "FStar.Endianness.be_to_n_inj")] let rec be_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1)); Seq.lemma_split b1 (Seq.length b1 - 1); Seq.lemma_split b2 (Seq.length b2 - 1) end [@(deprecated "FStar.Endianness.le_to_n_inj")] let rec le_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2)); Seq.lemma_split b1 1; Seq.lemma_split b2 1 end [@(deprecated "FStar.Endianness.n_to_be_be_to_n")] let n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures ( be_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\ n_to_be len (be_to_n s) == s )) [SMTPat (n_to_be len (be_to_n s))] = lemma_be_to_n_is_bounded s; be_to_n_inj s (n_to_be len (be_to_n s)) [@(deprecated "FStar.Endianness.n_to_le_le_to_n")] let n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures ( le_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\ n_to_le len (le_to_n s) == s )) [SMTPat (n_to_le len (le_to_n s))] = lemma_le_to_n_is_bounded s; le_to_n_inj s (n_to_le len (le_to_n s)) (** A series of specializations to deal with machine integers *) [@(deprecated "FStar.Endianness.uint32_of_le")] let uint32_of_le (b: bytes { S.length b = 4 }) = let n = le_to_n b in lemma_le_to_n_is_bounded b; UInt32.uint_to_t n [@(deprecated "FStar.Endianness.le_of_uint32")] let le_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } = n_to_le 4ul (UInt32.v x) [@(deprecated "FStar.Endianness.uint32_of_be")] let uint32_of_be (b: bytes { S.length b = 4 }) = let n = be_to_n b in lemma_be_to_n_is_bounded b; UInt32.uint_to_t n [@(deprecated "FStar.Endianness.be_of_uint32")] let be_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } = n_to_be 4ul (UInt32.v x) [@(deprecated "FStar.Endianness.uint64_of_le")] let uint64_of_le (b: bytes { S.length b = 8 }) = let n = le_to_n b in lemma_le_to_n_is_bounded b; UInt64.uint_to_t n [@(deprecated "FStar.Endianness.le_of_uint64")] let le_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } = n_to_le 8ul (UInt64.v x) [@(deprecated "FStar.Endianness.uint64_of_be")] let uint64_of_be (b: bytes { S.length b = 8 }) = let n = be_to_n b in lemma_be_to_n_is_bounded b; UInt64.uint_to_t n [@(deprecated "FStar.Endianness.be_of_uint64")] let be_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } = n_to_be 8ul (UInt64.v x) [@(deprecated "FStar.Endianness.seq_uint32_of_le")] let rec seq_uint32_of_le (l: nat) (b: bytes{ S.length b = 4 * l }): s:S.seq UInt32.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_le hd) (seq_uint32_of_le (l - 1) tl) [@(deprecated "FStar.Endianness.le_of_seq_uint32")] let rec le_of_seq_uint32 (s: S.seq UInt32.t): Tot (b:bytes { S.length b = 4 * S.length s }) (decreases (S.length s)) = if S.length s = 0 then S.empty else S.append (le_of_uint32 (S.head s)) (le_of_seq_uint32 (S.tail s)) [@(deprecated "FStar.Endianness.seq_uint32_of_be")] let rec seq_uint32_of_be (l: nat) (b: bytes{ S.length b = 4 * l }): s:S.seq UInt32.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_be hd) (seq_uint32_of_be (l - 1) tl) [@(deprecated "FStar.Endianness.be_of_seq_uint32")] let rec be_of_seq_uint32 (s: S.seq UInt32.t): Tot (b:bytes { S.length b = 4 * S.length s }) (decreases (S.length s)) = if S.length s = 0 then S.empty else S.append (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s)) [@(deprecated "FStar.Endianness.seq_uint64_of_le")] let rec seq_uint64_of_le (l: nat) (b: bytes{ S.length b = 8 * l }): s:S.seq UInt64.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 8 in S.cons (uint64_of_le hd) (seq_uint64_of_le (l - 1) tl) [@(deprecated "FStar.Endianness.le_of_seq_uint64")] let rec le_of_seq_uint64 (s: S.seq UInt64.t): Tot (b:bytes { S.length b = 8 * S.length s }) (decreases (S.length s)) = if S.length s = 0 then S.empty else S.append (le_of_uint64 (S.head s)) (le_of_seq_uint64 (S.tail s)) [@(deprecated "FStar.Endianness.seq_uint64_of_be")] let rec seq_uint64_of_be (l: nat) (b: bytes{ S.length b = 8 * l }): s:S.seq UInt64.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 8 in S.cons (uint64_of_be hd) (seq_uint64_of_be (l - 1) tl) [@(deprecated "FStar.Endianness.be_of_seq_uint64")] let rec be_of_seq_uint64 (s: S.seq UInt64.t): Tot (b:bytes { S.length b = 8 * S.length s }) (decreases (S.length s)) = if S.length s = 0 then S.empty else S.append (be_of_uint64 (S.head s)) (be_of_seq_uint64 (S.tail s)) #set-options "--max_fuel 1 --max_ifuel 0 --z3rlimit 50" [@(deprecated "FStar.Endianness.offset_uint32_be")] let rec offset_uint32_be (b: bytes) (n: nat) (i: nat): Lemma (requires ( S.length b = 4 * n /\ i < n)) (ensures ( S.index (seq_uint32_of_be n b) i == uint32_of_be (S.slice b (4 * i) (4 * i + 4)))) (decreases ( S.length b)) [ SMTPat (S.index (seq_uint32_of_be n b) i) ] = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 4 in if i = 0 then () else offset_uint32_be tl (n - 1) (i - 1) [@(deprecated "FStar.Endianness.offset_uint32_le")] let rec offset_uint32_le (b: bytes) (n: nat) (i: nat): Lemma (requires ( S.length b = 4 * n /\ i < n)) (ensures ( S.index (seq_uint32_of_le n b) i == uint32_of_le (S.slice b (4 * i) (4 * i + 4)))) (decreases ( S.length b)) [ SMTPat (S.index (seq_uint32_of_le n b) i) ] = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 4 in if i = 0 then () else offset_uint32_le tl (n - 1) (i - 1) [@(deprecated "FStar.Endianness.offset_uint64_be")] let rec offset_uint64_be (b: bytes) (n: nat) (i: nat): Lemma (requires ( S.length b = 8 * n /\ i < n)) (ensures ( S.index (seq_uint64_of_be n b) i == uint64_of_be (S.slice b (8 * i) (8 * i + 8)))) (decreases ( S.length b)) [ SMTPat (S.index (seq_uint64_of_be n b) i) ] = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 8 in if i = 0 then () else offset_uint64_be tl (n - 1) (i - 1) [@(deprecated "FStar.Endianness.offset_uint64_le")] let rec offset_uint64_le (b: bytes) (n: nat) (i: nat): Lemma (requires ( S.length b = 8 * n /\ i < n)) (ensures ( S.index (seq_uint64_of_le n b) i == uint64_of_le (S.slice b (8 * i) (8 * i + 8)))) (decreases ( S.length b)) [ SMTPat (S.index (seq_uint64_of_le n b) i) ] = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 8 in if i = 0 then () else offset_uint64_le tl (n - 1) (i - 1) (** Reasoning about endian-ness and words. *) #set-options "--max_fuel 1 --z3rlimit 20" (* TODO: move to FStar.Seq.Properties, with the pattern *) [@(deprecated "FStar.Endianness.tail_cons")] let tail_cons (#a: Type) (hd: a) (tl: S.seq a): Lemma (ensures (S.equal (S.tail (S.cons hd tl)) tl)) // [ SMTPat (S.tail (S.cons hd tl)) ] = () [@(deprecated "FStar.Endianness.be_of_seq_uint32_append")] let rec be_of_seq_uint32_append (s1 s2: S.seq U32.t): Lemma (ensures ( S.equal (be_of_seq_uint32 (S.append s1 s2)) (S.append (be_of_seq_uint32 s1) (be_of_seq_uint32 s2)))) (decreases ( S.length s1)) [ SMTPat (S.append (be_of_seq_uint32 s1) (be_of_seq_uint32 s2)) ] = Classical.forall_intro_2 (tail_cons #U32.t); // TODO: this is a local pattern, remove once tail_cons lands in FStar.Seq.Properties if S.length s1 = 0 then begin assert (S.equal (be_of_seq_uint32 s1) S.empty); assert (S.equal (S.append s1 s2) s2); () end else begin assert (S.equal (S.append s1 s2) (S.cons (S.head s1) (S.append (S.tail s1) s2))); assert (S.equal (be_of_seq_uint32 (S.append s1 s2)) (S.append (be_of_uint32 (S.head s1)) (be_of_seq_uint32 (S.append (S.tail s1) s2)))); be_of_seq_uint32_append (S.tail s1) s2 end [@(deprecated "FStar.Endianness.be_of_seq_uint32_base")] let be_of_seq_uint32_base (s1: S.seq U32.t) (s2: S.seq U8.t): Lemma (requires ( S.length s1 = 1 /\ S.length s2 = 4 /\ be_to_n s2 = U32.v (S.index s1 0))) (ensures (S.equal s2 (be_of_seq_uint32 s1))) [ SMTPat (be_to_n s2 = U32.v (S.index s1 0)) ] = () [@(deprecated "FStar.Endianness.le_of_seq_uint32_append")] let rec le_of_seq_uint32_append (s1 s2: S.seq U32.t): Lemma (ensures ( S.equal (le_of_seq_uint32 (S.append s1 s2)) (S.append (le_of_seq_uint32 s1) (le_of_seq_uint32 s2)))) (decreases ( S.length s1)) [ SMTPat (S.append (le_of_seq_uint32 s1) (le_of_seq_uint32 s2)) ] = Classical.forall_intro_2 (tail_cons #U32.t); // TODO: this is a local pattern, remove once tail_cons lands in FStar.Seq.Properties if S.length s1 = 0 then begin assert (S.equal (le_of_seq_uint32 s1) S.empty); assert (S.equal (S.append s1 s2) s2); () end else begin assert (S.equal (S.append s1 s2) (S.cons (S.head s1) (S.append (S.tail s1) s2))); assert (S.equal (le_of_seq_uint32 (S.append s1 s2)) (S.append (le_of_uint32 (S.head s1)) (le_of_seq_uint32 (S.append (S.tail s1) s2)))); le_of_seq_uint32_append (S.tail s1) s2 end [@(deprecated "FStar.Endianness.le_of_seq_uint32_base")] let le_of_seq_uint32_base (s1: S.seq U32.t) (s2: S.seq U8.t): Lemma (requires ( S.length s1 = 1 /\ S.length s2 = 4 /\ le_to_n s2 = U32.v (S.index s1 0))) (ensures (S.equal s2 (le_of_seq_uint32 s1))) [ SMTPat (le_to_n s2 = U32.v (S.index s1 0)) ] = () [@(deprecated "FStar.Endianness.be_of_seq_uint64_append")] let rec be_of_seq_uint64_append (s1 s2: S.seq U64.t): Lemma (ensures ( S.equal (be_of_seq_uint64 (S.append s1 s2)) (S.append (be_of_seq_uint64 s1) (be_of_seq_uint64 s2)))) (decreases ( S.length s1)) [ SMTPat (S.append (be_of_seq_uint64 s1) (be_of_seq_uint64 s2)) ] = Classical.forall_intro_2 (tail_cons #U64.t); // TODO: this is a local pattern, remove once tail_cons lands in FStar.Seq.Properties if S.length s1 = 0 then begin assert (S.equal (be_of_seq_uint64 s1) S.empty); assert (S.equal (S.append s1 s2) s2); () end else begin assert (S.equal (S.append s1 s2) (S.cons (S.head s1) (S.append (S.tail s1) s2))); assert (S.equal (be_of_seq_uint64 (S.append s1 s2)) (S.append (be_of_uint64 (S.head s1)) (be_of_seq_uint64 (S.append (S.tail s1) s2)))); be_of_seq_uint64_append (S.tail s1) s2 end [@(deprecated "FStar.Endianness.be_of_seq_uint64_base")] let be_of_seq_uint64_base (s1: S.seq U64.t) (s2: S.seq U8.t): Lemma (requires ( S.length s1 = 1 /\ S.length s2 = 8 /\ be_to_n s2 = U64.v (S.index s1 0))) (ensures (S.equal s2 (be_of_seq_uint64 s1))) [ SMTPat (be_to_n s2 = U64.v (S.index s1 0)) ] = () [@(deprecated "FStar.Endianness.seq_uint32_of_be_be_of_seq_uint32")] let rec seq_uint32_of_be_be_of_seq_uint32 (n: nat) (s: S.seq U32.t) : Lemma (requires (n == S.length s)) (ensures (seq_uint32_of_be n (be_of_seq_uint32 s) `S.equal` s)) (decreases n)
false
false
FStar.Krml.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val seq_uint32_of_be_be_of_seq_uint32 (n: nat) (s: S.seq U32.t) : Lemma (requires (n == S.length s)) (ensures ((seq_uint32_of_be n (be_of_seq_uint32 s)) `S.equal` s)) (decreases n) [SMTPat (seq_uint32_of_be n (be_of_seq_uint32 s))]
[ "recursion" ]
FStar.Krml.Endianness.seq_uint32_of_be_be_of_seq_uint32
{ "file_name": "krmllib/FStar.Krml.Endianness.fst", "git_rev": "a7be2a7c43eca637ceb57fe8f3ffd16fc6627ebd", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
n: Prims.nat -> s: FStar.Seq.Base.seq FStar.UInt32.t -> FStar.Pervasives.Lemma (requires n == FStar.Seq.Base.length s) (ensures FStar.Seq.Base.equal (FStar.Krml.Endianness.seq_uint32_of_be n (FStar.Krml.Endianness.be_of_seq_uint32 s)) s) (decreases n) [SMTPat (FStar.Krml.Endianness.seq_uint32_of_be n (FStar.Krml.Endianness.be_of_seq_uint32 s))]
{ "end_col": 5, "end_line": 526, "start_col": 2, "start_line": 518 }
Prims.Tot
val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b}) (decreases (U32.v len))
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec n_to_le len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_le len n' in let b = S.cons byte b' in S.lemma_eq_intro b' (S.tail b); b
val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b}) (decreases (U32.v len)) let rec n_to_le len n =
false
null
false
if len = 0ul then S.empty else let len = let open U32 in len -^ 1ul in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert (n' < pow2 (8 * U32.v len)); let b' = n_to_le len n' in let b = S.cons byte b' in S.lemma_eq_intro b' (S.tail b); b
{ "checked_file": "FStar.Krml.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.All.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Krml.Endianness.fst" }
[ "total", "" ]
[ "FStar.UInt32.t", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "FStar.Mul.op_Star", "FStar.UInt32.v", "Prims.op_Equality", "FStar.UInt32.__uint_to_t", "FStar.Seq.Base.empty", "FStar.UInt8.t", "Prims.bool", "Prims.unit", "FStar.Seq.Base.lemma_eq_intro", "FStar.Seq.Properties.tail", "FStar.Seq.Base.seq", "FStar.Seq.Properties.cons", "FStar.Krml.Endianness.bytes", "Prims.l_and", "Prims.eq2", "Prims.int", "Prims.l_or", "Prims.op_GreaterThanOrEqual", "FStar.UInt.size", "FStar.Seq.Base.length", "FStar.Krml.Endianness.le_to_n", "FStar.Krml.Endianness.n_to_le", "Prims._assert", "FStar.Math.Lemmas.pow2_plus", "Prims.op_Division", "FStar.UInt8.uint_to_t", "Prims.op_Modulus", "FStar.UInt32.op_Subtraction_Hat", "FStar.UInt32.n" ]
[]
module FStar.Krml.Endianness open FStar.Mul open FStar.HyperStack.All module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq (* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several name changes *) inline_for_extraction noextract type bytes = S.seq U8.t /// lt_to_n interprets a byte sequence as a little-endian natural number [@(deprecated "FStar.Endianness.le_to_n")] val le_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec le_to_n b = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) /// be_to_n interprets a byte sequence as a big-endian natural number [@(deprecated "FStar.Endianness.be_to_n")] val be_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec be_to_n b = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) [@(deprecated "FStar.Endianness.lemma_euclidean_division")] private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () [@(deprecated "FStar.Endianness.lemma_factorise")] private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () [@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")] val lemma_le_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (le_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end [@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")] val lemma_be_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (be_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_be_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 0 (Seq.length b - 1) in assert(Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert(UInt8.v (Seq.last b) < pow2 8); assert(be_to_n s < pow2 (8 * Seq.length s)); assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert(be_to_n b <= pow2 8 * (be_to_n s + 1)); assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end /// n_to_le encodes a number as a little-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_le")] val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b}) (decreases (U32.v len))
false
false
FStar.Krml.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b}) (decreases (U32.v len))
[ "recursion" ]
FStar.Krml.Endianness.n_to_le
{ "file_name": "krmllib/FStar.Krml.Endianness.fst", "git_rev": "a7be2a7c43eca637ceb57fe8f3ffd16fc6627ebd", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
len: FStar.UInt32.t -> n: Prims.nat{n < Prims.pow2 (8 * FStar.UInt32.v len)} -> Prims.Tot (b: FStar.Krml.Endianness.bytes {FStar.Seq.Base.length b == FStar.UInt32.v len /\ n == FStar.Krml.Endianness.le_to_n b})
{ "end_col": 5, "end_line": 104, "start_col": 2, "start_line": 93 }
FStar.Pervasives.Lemma
val offset_uint32_be (b: bytes) (n i: nat) : Lemma (requires (S.length b = 4 * n /\ i < n)) (ensures (S.index (seq_uint32_of_be n b) i == uint32_of_be (S.slice b (4 * i) (4 * i + 4)))) (decreases (S.length b)) [SMTPat (S.index (seq_uint32_of_be n b) i)]
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec offset_uint32_be (b: bytes) (n: nat) (i: nat): Lemma (requires ( S.length b = 4 * n /\ i < n)) (ensures ( S.index (seq_uint32_of_be n b) i == uint32_of_be (S.slice b (4 * i) (4 * i + 4)))) (decreases ( S.length b)) [ SMTPat (S.index (seq_uint32_of_be n b) i) ] = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 4 in if i = 0 then () else offset_uint32_be tl (n - 1) (i - 1)
val offset_uint32_be (b: bytes) (n i: nat) : Lemma (requires (S.length b = 4 * n /\ i < n)) (ensures (S.index (seq_uint32_of_be n b) i == uint32_of_be (S.slice b (4 * i) (4 * i + 4)))) (decreases (S.length b)) [SMTPat (S.index (seq_uint32_of_be n b) i)] let rec offset_uint32_be (b: bytes) (n i: nat) : Lemma (requires (S.length b = 4 * n /\ i < n)) (ensures (S.index (seq_uint32_of_be n b) i == uint32_of_be (S.slice b (4 * i) (4 * i + 4)))) (decreases (S.length b)) [SMTPat (S.index (seq_uint32_of_be n b) i)] =
false
null
true
if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 4 in if i = 0 then () else offset_uint32_be tl (n - 1) (i - 1)
{ "checked_file": "FStar.Krml.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.All.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Krml.Endianness.fst" }
[ "lemma", "" ]
[ "FStar.Krml.Endianness.bytes", "Prims.nat", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "FStar.UInt8.t", "FStar.Pervasives.false_elim", "Prims.unit", "Prims.bool", "FStar.Seq.Base.seq", "FStar.Krml.Endianness.offset_uint32_be", "Prims.op_Subtraction", "FStar.Pervasives.Native.tuple2", "FStar.Seq.Properties.split", "Prims.l_and", "Prims.b2t", "FStar.Mul.op_Star", "Prims.op_LessThan", "Prims.squash", "Prims.eq2", "FStar.UInt32.t", "FStar.Seq.Base.index", "FStar.Krml.Endianness.seq_uint32_of_be", "FStar.Krml.Endianness.uint32_of_be", "FStar.Seq.Base.slice", "Prims.op_Addition", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.Nil" ]
[]
module FStar.Krml.Endianness open FStar.Mul open FStar.HyperStack.All module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq (* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several name changes *) inline_for_extraction noextract type bytes = S.seq U8.t /// lt_to_n interprets a byte sequence as a little-endian natural number [@(deprecated "FStar.Endianness.le_to_n")] val le_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec le_to_n b = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) /// be_to_n interprets a byte sequence as a big-endian natural number [@(deprecated "FStar.Endianness.be_to_n")] val be_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec be_to_n b = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) [@(deprecated "FStar.Endianness.lemma_euclidean_division")] private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () [@(deprecated "FStar.Endianness.lemma_factorise")] private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () [@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")] val lemma_le_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (le_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end [@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")] val lemma_be_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (be_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_be_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 0 (Seq.length b - 1) in assert(Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert(UInt8.v (Seq.last b) < pow2 8); assert(be_to_n s < pow2 (8 * Seq.length s)); assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert(be_to_n b <= pow2 8 * (be_to_n s + 1)); assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end /// n_to_le encodes a number as a little-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_le")] val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b}) (decreases (U32.v len)) let rec n_to_le len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_le len n' in let b = S.cons byte b' in S.lemma_eq_intro b' (S.tail b); b /// n_to_be encodes a numbers as a big-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_be")] val n_to_be: len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b}) (decreases (U32.v len)) let rec n_to_be len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_be len n' in let b'' = S.create 1 byte in let b = S.append b' b'' in S.lemma_eq_intro b' (S.slice b 0 (U32.v len)); b [@(deprecated "FStar.Endianness.n_to_le_inj")] let n_to_le_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_le len n1 == n_to_le len n2)) (ensures (n1 == n2)) = // this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion // proof in the spec for n_to_le () [@(deprecated "FStar.Endianness.n_to_be_inj")] let n_to_be_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_be len n1 == n_to_be len n2)) (ensures (n1 == n2)) = () [@(deprecated "FStar.Endianness.be_to_n_inj")] let rec be_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1)); Seq.lemma_split b1 (Seq.length b1 - 1); Seq.lemma_split b2 (Seq.length b2 - 1) end [@(deprecated "FStar.Endianness.le_to_n_inj")] let rec le_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2)); Seq.lemma_split b1 1; Seq.lemma_split b2 1 end [@(deprecated "FStar.Endianness.n_to_be_be_to_n")] let n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures ( be_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\ n_to_be len (be_to_n s) == s )) [SMTPat (n_to_be len (be_to_n s))] = lemma_be_to_n_is_bounded s; be_to_n_inj s (n_to_be len (be_to_n s)) [@(deprecated "FStar.Endianness.n_to_le_le_to_n")] let n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures ( le_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\ n_to_le len (le_to_n s) == s )) [SMTPat (n_to_le len (le_to_n s))] = lemma_le_to_n_is_bounded s; le_to_n_inj s (n_to_le len (le_to_n s)) (** A series of specializations to deal with machine integers *) [@(deprecated "FStar.Endianness.uint32_of_le")] let uint32_of_le (b: bytes { S.length b = 4 }) = let n = le_to_n b in lemma_le_to_n_is_bounded b; UInt32.uint_to_t n [@(deprecated "FStar.Endianness.le_of_uint32")] let le_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } = n_to_le 4ul (UInt32.v x) [@(deprecated "FStar.Endianness.uint32_of_be")] let uint32_of_be (b: bytes { S.length b = 4 }) = let n = be_to_n b in lemma_be_to_n_is_bounded b; UInt32.uint_to_t n [@(deprecated "FStar.Endianness.be_of_uint32")] let be_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } = n_to_be 4ul (UInt32.v x) [@(deprecated "FStar.Endianness.uint64_of_le")] let uint64_of_le (b: bytes { S.length b = 8 }) = let n = le_to_n b in lemma_le_to_n_is_bounded b; UInt64.uint_to_t n [@(deprecated "FStar.Endianness.le_of_uint64")] let le_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } = n_to_le 8ul (UInt64.v x) [@(deprecated "FStar.Endianness.uint64_of_be")] let uint64_of_be (b: bytes { S.length b = 8 }) = let n = be_to_n b in lemma_be_to_n_is_bounded b; UInt64.uint_to_t n [@(deprecated "FStar.Endianness.be_of_uint64")] let be_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } = n_to_be 8ul (UInt64.v x) [@(deprecated "FStar.Endianness.seq_uint32_of_le")] let rec seq_uint32_of_le (l: nat) (b: bytes{ S.length b = 4 * l }): s:S.seq UInt32.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_le hd) (seq_uint32_of_le (l - 1) tl) [@(deprecated "FStar.Endianness.le_of_seq_uint32")] let rec le_of_seq_uint32 (s: S.seq UInt32.t): Tot (b:bytes { S.length b = 4 * S.length s }) (decreases (S.length s)) = if S.length s = 0 then S.empty else S.append (le_of_uint32 (S.head s)) (le_of_seq_uint32 (S.tail s)) [@(deprecated "FStar.Endianness.seq_uint32_of_be")] let rec seq_uint32_of_be (l: nat) (b: bytes{ S.length b = 4 * l }): s:S.seq UInt32.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_be hd) (seq_uint32_of_be (l - 1) tl) [@(deprecated "FStar.Endianness.be_of_seq_uint32")] let rec be_of_seq_uint32 (s: S.seq UInt32.t): Tot (b:bytes { S.length b = 4 * S.length s }) (decreases (S.length s)) = if S.length s = 0 then S.empty else S.append (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s)) [@(deprecated "FStar.Endianness.seq_uint64_of_le")] let rec seq_uint64_of_le (l: nat) (b: bytes{ S.length b = 8 * l }): s:S.seq UInt64.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 8 in S.cons (uint64_of_le hd) (seq_uint64_of_le (l - 1) tl) [@(deprecated "FStar.Endianness.le_of_seq_uint64")] let rec le_of_seq_uint64 (s: S.seq UInt64.t): Tot (b:bytes { S.length b = 8 * S.length s }) (decreases (S.length s)) = if S.length s = 0 then S.empty else S.append (le_of_uint64 (S.head s)) (le_of_seq_uint64 (S.tail s)) [@(deprecated "FStar.Endianness.seq_uint64_of_be")] let rec seq_uint64_of_be (l: nat) (b: bytes{ S.length b = 8 * l }): s:S.seq UInt64.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 8 in S.cons (uint64_of_be hd) (seq_uint64_of_be (l - 1) tl) [@(deprecated "FStar.Endianness.be_of_seq_uint64")] let rec be_of_seq_uint64 (s: S.seq UInt64.t): Tot (b:bytes { S.length b = 8 * S.length s }) (decreases (S.length s)) = if S.length s = 0 then S.empty else S.append (be_of_uint64 (S.head s)) (be_of_seq_uint64 (S.tail s)) #set-options "--max_fuel 1 --max_ifuel 0 --z3rlimit 50" [@(deprecated "FStar.Endianness.offset_uint32_be")] let rec offset_uint32_be (b: bytes) (n: nat) (i: nat): Lemma (requires ( S.length b = 4 * n /\ i < n)) (ensures ( S.index (seq_uint32_of_be n b) i == uint32_of_be (S.slice b (4 * i) (4 * i + 4)))) (decreases ( S.length b)) [ SMTPat (S.index (seq_uint32_of_be n b) i) ]
false
false
FStar.Krml.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val offset_uint32_be (b: bytes) (n i: nat) : Lemma (requires (S.length b = 4 * n /\ i < n)) (ensures (S.index (seq_uint32_of_be n b) i == uint32_of_be (S.slice b (4 * i) (4 * i + 4)))) (decreases (S.length b)) [SMTPat (S.index (seq_uint32_of_be n b) i)]
[ "recursion" ]
FStar.Krml.Endianness.offset_uint32_be
{ "file_name": "krmllib/FStar.Krml.Endianness.fst", "git_rev": "a7be2a7c43eca637ceb57fe8f3ffd16fc6627ebd", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
b: FStar.Krml.Endianness.bytes -> n: Prims.nat -> i: Prims.nat -> FStar.Pervasives.Lemma (requires FStar.Seq.Base.length b = 4 * n /\ i < n) (ensures FStar.Seq.Base.index (FStar.Krml.Endianness.seq_uint32_of_be n b) i == FStar.Krml.Endianness.uint32_of_be (FStar.Seq.Base.slice b (4 * i) (4 * i + 4))) (decreases FStar.Seq.Base.length b) [SMTPat (FStar.Seq.Base.index (FStar.Krml.Endianness.seq_uint32_of_be n b) i)]
{ "end_col": 41, "end_line": 338, "start_col": 2, "start_line": 331 }
FStar.Pervasives.Lemma
val offset_uint64_be (b: bytes) (n i: nat) : Lemma (requires (S.length b = 8 * n /\ i < n)) (ensures (S.index (seq_uint64_of_be n b) i == uint64_of_be (S.slice b (8 * i) (8 * i + 8)))) (decreases (S.length b)) [SMTPat (S.index (seq_uint64_of_be n b) i)]
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec offset_uint64_be (b: bytes) (n: nat) (i: nat): Lemma (requires ( S.length b = 8 * n /\ i < n)) (ensures ( S.index (seq_uint64_of_be n b) i == uint64_of_be (S.slice b (8 * i) (8 * i + 8)))) (decreases ( S.length b)) [ SMTPat (S.index (seq_uint64_of_be n b) i) ] = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 8 in if i = 0 then () else offset_uint64_be tl (n - 1) (i - 1)
val offset_uint64_be (b: bytes) (n i: nat) : Lemma (requires (S.length b = 8 * n /\ i < n)) (ensures (S.index (seq_uint64_of_be n b) i == uint64_of_be (S.slice b (8 * i) (8 * i + 8)))) (decreases (S.length b)) [SMTPat (S.index (seq_uint64_of_be n b) i)] let rec offset_uint64_be (b: bytes) (n i: nat) : Lemma (requires (S.length b = 8 * n /\ i < n)) (ensures (S.index (seq_uint64_of_be n b) i == uint64_of_be (S.slice b (8 * i) (8 * i + 8)))) (decreases (S.length b)) [SMTPat (S.index (seq_uint64_of_be n b) i)] =
false
null
true
if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 8 in if i = 0 then () else offset_uint64_be tl (n - 1) (i - 1)
{ "checked_file": "FStar.Krml.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.All.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Krml.Endianness.fst" }
[ "lemma", "" ]
[ "FStar.Krml.Endianness.bytes", "Prims.nat", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "FStar.UInt8.t", "FStar.Pervasives.false_elim", "Prims.unit", "Prims.bool", "FStar.Seq.Base.seq", "FStar.Krml.Endianness.offset_uint64_be", "Prims.op_Subtraction", "FStar.Pervasives.Native.tuple2", "FStar.Seq.Properties.split", "Prims.l_and", "Prims.b2t", "FStar.Mul.op_Star", "Prims.op_LessThan", "Prims.squash", "Prims.eq2", "FStar.UInt64.t", "FStar.Seq.Base.index", "FStar.Krml.Endianness.seq_uint64_of_be", "FStar.Krml.Endianness.uint64_of_be", "FStar.Seq.Base.slice", "Prims.op_Addition", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.Nil" ]
[]
module FStar.Krml.Endianness open FStar.Mul open FStar.HyperStack.All module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq (* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several name changes *) inline_for_extraction noextract type bytes = S.seq U8.t /// lt_to_n interprets a byte sequence as a little-endian natural number [@(deprecated "FStar.Endianness.le_to_n")] val le_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec le_to_n b = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) /// be_to_n interprets a byte sequence as a big-endian natural number [@(deprecated "FStar.Endianness.be_to_n")] val be_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec be_to_n b = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) [@(deprecated "FStar.Endianness.lemma_euclidean_division")] private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () [@(deprecated "FStar.Endianness.lemma_factorise")] private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () [@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")] val lemma_le_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (le_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end [@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")] val lemma_be_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (be_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_be_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 0 (Seq.length b - 1) in assert(Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert(UInt8.v (Seq.last b) < pow2 8); assert(be_to_n s < pow2 (8 * Seq.length s)); assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert(be_to_n b <= pow2 8 * (be_to_n s + 1)); assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end /// n_to_le encodes a number as a little-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_le")] val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b}) (decreases (U32.v len)) let rec n_to_le len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_le len n' in let b = S.cons byte b' in S.lemma_eq_intro b' (S.tail b); b /// n_to_be encodes a numbers as a big-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_be")] val n_to_be: len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b}) (decreases (U32.v len)) let rec n_to_be len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_be len n' in let b'' = S.create 1 byte in let b = S.append b' b'' in S.lemma_eq_intro b' (S.slice b 0 (U32.v len)); b [@(deprecated "FStar.Endianness.n_to_le_inj")] let n_to_le_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_le len n1 == n_to_le len n2)) (ensures (n1 == n2)) = // this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion // proof in the spec for n_to_le () [@(deprecated "FStar.Endianness.n_to_be_inj")] let n_to_be_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_be len n1 == n_to_be len n2)) (ensures (n1 == n2)) = () [@(deprecated "FStar.Endianness.be_to_n_inj")] let rec be_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1)); Seq.lemma_split b1 (Seq.length b1 - 1); Seq.lemma_split b2 (Seq.length b2 - 1) end [@(deprecated "FStar.Endianness.le_to_n_inj")] let rec le_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2)); Seq.lemma_split b1 1; Seq.lemma_split b2 1 end [@(deprecated "FStar.Endianness.n_to_be_be_to_n")] let n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures ( be_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\ n_to_be len (be_to_n s) == s )) [SMTPat (n_to_be len (be_to_n s))] = lemma_be_to_n_is_bounded s; be_to_n_inj s (n_to_be len (be_to_n s)) [@(deprecated "FStar.Endianness.n_to_le_le_to_n")] let n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures ( le_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\ n_to_le len (le_to_n s) == s )) [SMTPat (n_to_le len (le_to_n s))] = lemma_le_to_n_is_bounded s; le_to_n_inj s (n_to_le len (le_to_n s)) (** A series of specializations to deal with machine integers *) [@(deprecated "FStar.Endianness.uint32_of_le")] let uint32_of_le (b: bytes { S.length b = 4 }) = let n = le_to_n b in lemma_le_to_n_is_bounded b; UInt32.uint_to_t n [@(deprecated "FStar.Endianness.le_of_uint32")] let le_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } = n_to_le 4ul (UInt32.v x) [@(deprecated "FStar.Endianness.uint32_of_be")] let uint32_of_be (b: bytes { S.length b = 4 }) = let n = be_to_n b in lemma_be_to_n_is_bounded b; UInt32.uint_to_t n [@(deprecated "FStar.Endianness.be_of_uint32")] let be_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } = n_to_be 4ul (UInt32.v x) [@(deprecated "FStar.Endianness.uint64_of_le")] let uint64_of_le (b: bytes { S.length b = 8 }) = let n = le_to_n b in lemma_le_to_n_is_bounded b; UInt64.uint_to_t n [@(deprecated "FStar.Endianness.le_of_uint64")] let le_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } = n_to_le 8ul (UInt64.v x) [@(deprecated "FStar.Endianness.uint64_of_be")] let uint64_of_be (b: bytes { S.length b = 8 }) = let n = be_to_n b in lemma_be_to_n_is_bounded b; UInt64.uint_to_t n [@(deprecated "FStar.Endianness.be_of_uint64")] let be_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } = n_to_be 8ul (UInt64.v x) [@(deprecated "FStar.Endianness.seq_uint32_of_le")] let rec seq_uint32_of_le (l: nat) (b: bytes{ S.length b = 4 * l }): s:S.seq UInt32.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_le hd) (seq_uint32_of_le (l - 1) tl) [@(deprecated "FStar.Endianness.le_of_seq_uint32")] let rec le_of_seq_uint32 (s: S.seq UInt32.t): Tot (b:bytes { S.length b = 4 * S.length s }) (decreases (S.length s)) = if S.length s = 0 then S.empty else S.append (le_of_uint32 (S.head s)) (le_of_seq_uint32 (S.tail s)) [@(deprecated "FStar.Endianness.seq_uint32_of_be")] let rec seq_uint32_of_be (l: nat) (b: bytes{ S.length b = 4 * l }): s:S.seq UInt32.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_be hd) (seq_uint32_of_be (l - 1) tl) [@(deprecated "FStar.Endianness.be_of_seq_uint32")] let rec be_of_seq_uint32 (s: S.seq UInt32.t): Tot (b:bytes { S.length b = 4 * S.length s }) (decreases (S.length s)) = if S.length s = 0 then S.empty else S.append (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s)) [@(deprecated "FStar.Endianness.seq_uint64_of_le")] let rec seq_uint64_of_le (l: nat) (b: bytes{ S.length b = 8 * l }): s:S.seq UInt64.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 8 in S.cons (uint64_of_le hd) (seq_uint64_of_le (l - 1) tl) [@(deprecated "FStar.Endianness.le_of_seq_uint64")] let rec le_of_seq_uint64 (s: S.seq UInt64.t): Tot (b:bytes { S.length b = 8 * S.length s }) (decreases (S.length s)) = if S.length s = 0 then S.empty else S.append (le_of_uint64 (S.head s)) (le_of_seq_uint64 (S.tail s)) [@(deprecated "FStar.Endianness.seq_uint64_of_be")] let rec seq_uint64_of_be (l: nat) (b: bytes{ S.length b = 8 * l }): s:S.seq UInt64.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 8 in S.cons (uint64_of_be hd) (seq_uint64_of_be (l - 1) tl) [@(deprecated "FStar.Endianness.be_of_seq_uint64")] let rec be_of_seq_uint64 (s: S.seq UInt64.t): Tot (b:bytes { S.length b = 8 * S.length s }) (decreases (S.length s)) = if S.length s = 0 then S.empty else S.append (be_of_uint64 (S.head s)) (be_of_seq_uint64 (S.tail s)) #set-options "--max_fuel 1 --max_ifuel 0 --z3rlimit 50" [@(deprecated "FStar.Endianness.offset_uint32_be")] let rec offset_uint32_be (b: bytes) (n: nat) (i: nat): Lemma (requires ( S.length b = 4 * n /\ i < n)) (ensures ( S.index (seq_uint32_of_be n b) i == uint32_of_be (S.slice b (4 * i) (4 * i + 4)))) (decreases ( S.length b)) [ SMTPat (S.index (seq_uint32_of_be n b) i) ] = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 4 in if i = 0 then () else offset_uint32_be tl (n - 1) (i - 1) [@(deprecated "FStar.Endianness.offset_uint32_le")] let rec offset_uint32_le (b: bytes) (n: nat) (i: nat): Lemma (requires ( S.length b = 4 * n /\ i < n)) (ensures ( S.index (seq_uint32_of_le n b) i == uint32_of_le (S.slice b (4 * i) (4 * i + 4)))) (decreases ( S.length b)) [ SMTPat (S.index (seq_uint32_of_le n b) i) ] = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 4 in if i = 0 then () else offset_uint32_le tl (n - 1) (i - 1) [@(deprecated "FStar.Endianness.offset_uint64_be")] let rec offset_uint64_be (b: bytes) (n: nat) (i: nat): Lemma (requires ( S.length b = 8 * n /\ i < n)) (ensures ( S.index (seq_uint64_of_be n b) i == uint64_of_be (S.slice b (8 * i) (8 * i + 8)))) (decreases ( S.length b)) [ SMTPat (S.index (seq_uint64_of_be n b) i) ]
false
false
FStar.Krml.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val offset_uint64_be (b: bytes) (n i: nat) : Lemma (requires (S.length b = 8 * n /\ i < n)) (ensures (S.index (seq_uint64_of_be n b) i == uint64_of_be (S.slice b (8 * i) (8 * i + 8)))) (decreases (S.length b)) [SMTPat (S.index (seq_uint64_of_be n b) i)]
[ "recursion" ]
FStar.Krml.Endianness.offset_uint64_be
{ "file_name": "krmllib/FStar.Krml.Endianness.fst", "git_rev": "a7be2a7c43eca637ceb57fe8f3ffd16fc6627ebd", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
b: FStar.Krml.Endianness.bytes -> n: Prims.nat -> i: Prims.nat -> FStar.Pervasives.Lemma (requires FStar.Seq.Base.length b = 8 * n /\ i < n) (ensures FStar.Seq.Base.index (FStar.Krml.Endianness.seq_uint64_of_be n b) i == FStar.Krml.Endianness.uint64_of_be (FStar.Seq.Base.slice b (8 * i) (8 * i + 8))) (decreases FStar.Seq.Base.length b) [SMTPat (FStar.Seq.Base.index (FStar.Krml.Endianness.seq_uint64_of_be n b) i)]
{ "end_col": 41, "end_line": 380, "start_col": 2, "start_line": 373 }
FStar.Pervasives.Lemma
val offset_uint32_le (b: bytes) (n i: nat) : Lemma (requires (S.length b = 4 * n /\ i < n)) (ensures (S.index (seq_uint32_of_le n b) i == uint32_of_le (S.slice b (4 * i) (4 * i + 4)))) (decreases (S.length b)) [SMTPat (S.index (seq_uint32_of_le n b) i)]
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec offset_uint32_le (b: bytes) (n: nat) (i: nat): Lemma (requires ( S.length b = 4 * n /\ i < n)) (ensures ( S.index (seq_uint32_of_le n b) i == uint32_of_le (S.slice b (4 * i) (4 * i + 4)))) (decreases ( S.length b)) [ SMTPat (S.index (seq_uint32_of_le n b) i) ] = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 4 in if i = 0 then () else offset_uint32_le tl (n - 1) (i - 1)
val offset_uint32_le (b: bytes) (n i: nat) : Lemma (requires (S.length b = 4 * n /\ i < n)) (ensures (S.index (seq_uint32_of_le n b) i == uint32_of_le (S.slice b (4 * i) (4 * i + 4)))) (decreases (S.length b)) [SMTPat (S.index (seq_uint32_of_le n b) i)] let rec offset_uint32_le (b: bytes) (n i: nat) : Lemma (requires (S.length b = 4 * n /\ i < n)) (ensures (S.index (seq_uint32_of_le n b) i == uint32_of_le (S.slice b (4 * i) (4 * i + 4)))) (decreases (S.length b)) [SMTPat (S.index (seq_uint32_of_le n b) i)] =
false
null
true
if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 4 in if i = 0 then () else offset_uint32_le tl (n - 1) (i - 1)
{ "checked_file": "FStar.Krml.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.All.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Krml.Endianness.fst" }
[ "lemma", "" ]
[ "FStar.Krml.Endianness.bytes", "Prims.nat", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "FStar.UInt8.t", "FStar.Pervasives.false_elim", "Prims.unit", "Prims.bool", "FStar.Seq.Base.seq", "FStar.Krml.Endianness.offset_uint32_le", "Prims.op_Subtraction", "FStar.Pervasives.Native.tuple2", "FStar.Seq.Properties.split", "Prims.l_and", "Prims.b2t", "FStar.Mul.op_Star", "Prims.op_LessThan", "Prims.squash", "Prims.eq2", "FStar.UInt32.t", "FStar.Seq.Base.index", "FStar.Krml.Endianness.seq_uint32_of_le", "FStar.Krml.Endianness.uint32_of_le", "FStar.Seq.Base.slice", "Prims.op_Addition", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.Nil" ]
[]
module FStar.Krml.Endianness open FStar.Mul open FStar.HyperStack.All module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq (* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several name changes *) inline_for_extraction noextract type bytes = S.seq U8.t /// lt_to_n interprets a byte sequence as a little-endian natural number [@(deprecated "FStar.Endianness.le_to_n")] val le_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec le_to_n b = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) /// be_to_n interprets a byte sequence as a big-endian natural number [@(deprecated "FStar.Endianness.be_to_n")] val be_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec be_to_n b = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) [@(deprecated "FStar.Endianness.lemma_euclidean_division")] private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () [@(deprecated "FStar.Endianness.lemma_factorise")] private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () [@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")] val lemma_le_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (le_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end [@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")] val lemma_be_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (be_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_be_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 0 (Seq.length b - 1) in assert(Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert(UInt8.v (Seq.last b) < pow2 8); assert(be_to_n s < pow2 (8 * Seq.length s)); assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert(be_to_n b <= pow2 8 * (be_to_n s + 1)); assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end /// n_to_le encodes a number as a little-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_le")] val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b}) (decreases (U32.v len)) let rec n_to_le len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_le len n' in let b = S.cons byte b' in S.lemma_eq_intro b' (S.tail b); b /// n_to_be encodes a numbers as a big-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_be")] val n_to_be: len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b}) (decreases (U32.v len)) let rec n_to_be len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_be len n' in let b'' = S.create 1 byte in let b = S.append b' b'' in S.lemma_eq_intro b' (S.slice b 0 (U32.v len)); b [@(deprecated "FStar.Endianness.n_to_le_inj")] let n_to_le_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_le len n1 == n_to_le len n2)) (ensures (n1 == n2)) = // this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion // proof in the spec for n_to_le () [@(deprecated "FStar.Endianness.n_to_be_inj")] let n_to_be_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_be len n1 == n_to_be len n2)) (ensures (n1 == n2)) = () [@(deprecated "FStar.Endianness.be_to_n_inj")] let rec be_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1)); Seq.lemma_split b1 (Seq.length b1 - 1); Seq.lemma_split b2 (Seq.length b2 - 1) end [@(deprecated "FStar.Endianness.le_to_n_inj")] let rec le_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2)); Seq.lemma_split b1 1; Seq.lemma_split b2 1 end [@(deprecated "FStar.Endianness.n_to_be_be_to_n")] let n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures ( be_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\ n_to_be len (be_to_n s) == s )) [SMTPat (n_to_be len (be_to_n s))] = lemma_be_to_n_is_bounded s; be_to_n_inj s (n_to_be len (be_to_n s)) [@(deprecated "FStar.Endianness.n_to_le_le_to_n")] let n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures ( le_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\ n_to_le len (le_to_n s) == s )) [SMTPat (n_to_le len (le_to_n s))] = lemma_le_to_n_is_bounded s; le_to_n_inj s (n_to_le len (le_to_n s)) (** A series of specializations to deal with machine integers *) [@(deprecated "FStar.Endianness.uint32_of_le")] let uint32_of_le (b: bytes { S.length b = 4 }) = let n = le_to_n b in lemma_le_to_n_is_bounded b; UInt32.uint_to_t n [@(deprecated "FStar.Endianness.le_of_uint32")] let le_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } = n_to_le 4ul (UInt32.v x) [@(deprecated "FStar.Endianness.uint32_of_be")] let uint32_of_be (b: bytes { S.length b = 4 }) = let n = be_to_n b in lemma_be_to_n_is_bounded b; UInt32.uint_to_t n [@(deprecated "FStar.Endianness.be_of_uint32")] let be_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } = n_to_be 4ul (UInt32.v x) [@(deprecated "FStar.Endianness.uint64_of_le")] let uint64_of_le (b: bytes { S.length b = 8 }) = let n = le_to_n b in lemma_le_to_n_is_bounded b; UInt64.uint_to_t n [@(deprecated "FStar.Endianness.le_of_uint64")] let le_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } = n_to_le 8ul (UInt64.v x) [@(deprecated "FStar.Endianness.uint64_of_be")] let uint64_of_be (b: bytes { S.length b = 8 }) = let n = be_to_n b in lemma_be_to_n_is_bounded b; UInt64.uint_to_t n [@(deprecated "FStar.Endianness.be_of_uint64")] let be_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } = n_to_be 8ul (UInt64.v x) [@(deprecated "FStar.Endianness.seq_uint32_of_le")] let rec seq_uint32_of_le (l: nat) (b: bytes{ S.length b = 4 * l }): s:S.seq UInt32.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_le hd) (seq_uint32_of_le (l - 1) tl) [@(deprecated "FStar.Endianness.le_of_seq_uint32")] let rec le_of_seq_uint32 (s: S.seq UInt32.t): Tot (b:bytes { S.length b = 4 * S.length s }) (decreases (S.length s)) = if S.length s = 0 then S.empty else S.append (le_of_uint32 (S.head s)) (le_of_seq_uint32 (S.tail s)) [@(deprecated "FStar.Endianness.seq_uint32_of_be")] let rec seq_uint32_of_be (l: nat) (b: bytes{ S.length b = 4 * l }): s:S.seq UInt32.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_be hd) (seq_uint32_of_be (l - 1) tl) [@(deprecated "FStar.Endianness.be_of_seq_uint32")] let rec be_of_seq_uint32 (s: S.seq UInt32.t): Tot (b:bytes { S.length b = 4 * S.length s }) (decreases (S.length s)) = if S.length s = 0 then S.empty else S.append (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s)) [@(deprecated "FStar.Endianness.seq_uint64_of_le")] let rec seq_uint64_of_le (l: nat) (b: bytes{ S.length b = 8 * l }): s:S.seq UInt64.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 8 in S.cons (uint64_of_le hd) (seq_uint64_of_le (l - 1) tl) [@(deprecated "FStar.Endianness.le_of_seq_uint64")] let rec le_of_seq_uint64 (s: S.seq UInt64.t): Tot (b:bytes { S.length b = 8 * S.length s }) (decreases (S.length s)) = if S.length s = 0 then S.empty else S.append (le_of_uint64 (S.head s)) (le_of_seq_uint64 (S.tail s)) [@(deprecated "FStar.Endianness.seq_uint64_of_be")] let rec seq_uint64_of_be (l: nat) (b: bytes{ S.length b = 8 * l }): s:S.seq UInt64.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 8 in S.cons (uint64_of_be hd) (seq_uint64_of_be (l - 1) tl) [@(deprecated "FStar.Endianness.be_of_seq_uint64")] let rec be_of_seq_uint64 (s: S.seq UInt64.t): Tot (b:bytes { S.length b = 8 * S.length s }) (decreases (S.length s)) = if S.length s = 0 then S.empty else S.append (be_of_uint64 (S.head s)) (be_of_seq_uint64 (S.tail s)) #set-options "--max_fuel 1 --max_ifuel 0 --z3rlimit 50" [@(deprecated "FStar.Endianness.offset_uint32_be")] let rec offset_uint32_be (b: bytes) (n: nat) (i: nat): Lemma (requires ( S.length b = 4 * n /\ i < n)) (ensures ( S.index (seq_uint32_of_be n b) i == uint32_of_be (S.slice b (4 * i) (4 * i + 4)))) (decreases ( S.length b)) [ SMTPat (S.index (seq_uint32_of_be n b) i) ] = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 4 in if i = 0 then () else offset_uint32_be tl (n - 1) (i - 1) [@(deprecated "FStar.Endianness.offset_uint32_le")] let rec offset_uint32_le (b: bytes) (n: nat) (i: nat): Lemma (requires ( S.length b = 4 * n /\ i < n)) (ensures ( S.index (seq_uint32_of_le n b) i == uint32_of_le (S.slice b (4 * i) (4 * i + 4)))) (decreases ( S.length b)) [ SMTPat (S.index (seq_uint32_of_le n b) i) ]
false
false
FStar.Krml.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val offset_uint32_le (b: bytes) (n i: nat) : Lemma (requires (S.length b = 4 * n /\ i < n)) (ensures (S.index (seq_uint32_of_le n b) i == uint32_of_le (S.slice b (4 * i) (4 * i + 4)))) (decreases (S.length b)) [SMTPat (S.index (seq_uint32_of_le n b) i)]
[ "recursion" ]
FStar.Krml.Endianness.offset_uint32_le
{ "file_name": "krmllib/FStar.Krml.Endianness.fst", "git_rev": "a7be2a7c43eca637ceb57fe8f3ffd16fc6627ebd", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
b: FStar.Krml.Endianness.bytes -> n: Prims.nat -> i: Prims.nat -> FStar.Pervasives.Lemma (requires FStar.Seq.Base.length b = 4 * n /\ i < n) (ensures FStar.Seq.Base.index (FStar.Krml.Endianness.seq_uint32_of_le n b) i == FStar.Krml.Endianness.uint32_of_le (FStar.Seq.Base.slice b (4 * i) (4 * i + 4))) (decreases FStar.Seq.Base.length b) [SMTPat (FStar.Seq.Base.index (FStar.Krml.Endianness.seq_uint32_of_le n b) i)]
{ "end_col": 41, "end_line": 359, "start_col": 2, "start_line": 352 }
FStar.Pervasives.Lemma
val be_of_seq_uint32_seq_uint32_of_be (n: nat) (s: S.seq U8.t) : Lemma (requires (4 * n == S.length s)) (ensures ((be_of_seq_uint32 (seq_uint32_of_be n s)) `S.equal` s)) (decreases n) [SMTPat (be_of_seq_uint32 (seq_uint32_of_be n s))]
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec be_of_seq_uint32_seq_uint32_of_be (n: nat) (s: S.seq U8.t) : Lemma (requires (4 * n == S.length s)) (ensures (be_of_seq_uint32 (seq_uint32_of_be n s) `S.equal` s)) (decreases n) [SMTPat (be_of_seq_uint32 (seq_uint32_of_be n s))] = if n = 0 then () else begin S.lemma_split s 4; be_of_seq_uint32_seq_uint32_of_be (n - 1) (S.slice s 4 (S.length s)); let s' = seq_uint32_of_be n s in let hd, tl = S.split s 4 in assert (S.head s' == uint32_of_be hd); tail_cons (uint32_of_be hd) (seq_uint32_of_be (n - 1) tl); assert (S.tail s' == seq_uint32_of_be (n - 1) tl); let s'' = be_of_seq_uint32 s' in S.lemma_split s'' 4; S.lemma_append_inj (S.slice s'' 0 4) (S.slice s'' 4 (S.length s'')) (be_of_uint32 (S.head s')) (be_of_seq_uint32 (S.tail s')); n_to_be_be_to_n 4ul hd end
val be_of_seq_uint32_seq_uint32_of_be (n: nat) (s: S.seq U8.t) : Lemma (requires (4 * n == S.length s)) (ensures ((be_of_seq_uint32 (seq_uint32_of_be n s)) `S.equal` s)) (decreases n) [SMTPat (be_of_seq_uint32 (seq_uint32_of_be n s))] let rec be_of_seq_uint32_seq_uint32_of_be (n: nat) (s: S.seq U8.t) : Lemma (requires (4 * n == S.length s)) (ensures ((be_of_seq_uint32 (seq_uint32_of_be n s)) `S.equal` s)) (decreases n) [SMTPat (be_of_seq_uint32 (seq_uint32_of_be n s))] =
false
null
true
if n = 0 then () else (S.lemma_split s 4; be_of_seq_uint32_seq_uint32_of_be (n - 1) (S.slice s 4 (S.length s)); let s' = seq_uint32_of_be n s in let hd, tl = S.split s 4 in assert (S.head s' == uint32_of_be hd); tail_cons (uint32_of_be hd) (seq_uint32_of_be (n - 1) tl); assert (S.tail s' == seq_uint32_of_be (n - 1) tl); let s'' = be_of_seq_uint32 s' in S.lemma_split s'' 4; S.lemma_append_inj (S.slice s'' 0 4) (S.slice s'' 4 (S.length s'')) (be_of_uint32 (S.head s')) (be_of_seq_uint32 (S.tail s')); n_to_be_be_to_n 4ul hd)
{ "checked_file": "FStar.Krml.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.All.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Krml.Endianness.fst" }
[ "lemma", "" ]
[ "Prims.nat", "FStar.Seq.Base.seq", "FStar.UInt8.t", "Prims.op_Equality", "Prims.int", "Prims.bool", "FStar.Krml.Endianness.n_to_be_be_to_n", "FStar.UInt32.__uint_to_t", "Prims.unit", "FStar.Seq.Properties.lemma_append_inj", "FStar.Seq.Base.slice", "FStar.Seq.Base.length", "FStar.Krml.Endianness.be_of_uint32", "FStar.Seq.Properties.head", "FStar.UInt32.t", "FStar.Krml.Endianness.be_of_seq_uint32", "FStar.Seq.Properties.tail", "FStar.Seq.Properties.lemma_split", "FStar.Krml.Endianness.bytes", "Prims.b2t", "Prims.op_Multiply", "Prims._assert", "Prims.eq2", "FStar.Krml.Endianness.seq_uint32_of_be", "Prims.op_Subtraction", "FStar.Krml.Endianness.tail_cons", "FStar.Krml.Endianness.uint32_of_be", "FStar.Pervasives.Native.tuple2", "FStar.Seq.Properties.split", "FStar.Krml.Endianness.be_of_seq_uint32_seq_uint32_of_be", "FStar.Mul.op_Star", "Prims.squash", "FStar.Seq.Base.equal", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.Nil" ]
[]
module FStar.Krml.Endianness open FStar.Mul open FStar.HyperStack.All module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq (* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several name changes *) inline_for_extraction noextract type bytes = S.seq U8.t /// lt_to_n interprets a byte sequence as a little-endian natural number [@(deprecated "FStar.Endianness.le_to_n")] val le_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec le_to_n b = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) /// be_to_n interprets a byte sequence as a big-endian natural number [@(deprecated "FStar.Endianness.be_to_n")] val be_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec be_to_n b = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) [@(deprecated "FStar.Endianness.lemma_euclidean_division")] private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () [@(deprecated "FStar.Endianness.lemma_factorise")] private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () [@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")] val lemma_le_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (le_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end [@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")] val lemma_be_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (be_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_be_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 0 (Seq.length b - 1) in assert(Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert(UInt8.v (Seq.last b) < pow2 8); assert(be_to_n s < pow2 (8 * Seq.length s)); assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert(be_to_n b <= pow2 8 * (be_to_n s + 1)); assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end /// n_to_le encodes a number as a little-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_le")] val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b}) (decreases (U32.v len)) let rec n_to_le len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_le len n' in let b = S.cons byte b' in S.lemma_eq_intro b' (S.tail b); b /// n_to_be encodes a numbers as a big-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_be")] val n_to_be: len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b}) (decreases (U32.v len)) let rec n_to_be len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_be len n' in let b'' = S.create 1 byte in let b = S.append b' b'' in S.lemma_eq_intro b' (S.slice b 0 (U32.v len)); b [@(deprecated "FStar.Endianness.n_to_le_inj")] let n_to_le_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_le len n1 == n_to_le len n2)) (ensures (n1 == n2)) = // this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion // proof in the spec for n_to_le () [@(deprecated "FStar.Endianness.n_to_be_inj")] let n_to_be_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_be len n1 == n_to_be len n2)) (ensures (n1 == n2)) = () [@(deprecated "FStar.Endianness.be_to_n_inj")] let rec be_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1)); Seq.lemma_split b1 (Seq.length b1 - 1); Seq.lemma_split b2 (Seq.length b2 - 1) end [@(deprecated "FStar.Endianness.le_to_n_inj")] let rec le_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2)); Seq.lemma_split b1 1; Seq.lemma_split b2 1 end [@(deprecated "FStar.Endianness.n_to_be_be_to_n")] let n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures ( be_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\ n_to_be len (be_to_n s) == s )) [SMTPat (n_to_be len (be_to_n s))] = lemma_be_to_n_is_bounded s; be_to_n_inj s (n_to_be len (be_to_n s)) [@(deprecated "FStar.Endianness.n_to_le_le_to_n")] let n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures ( le_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\ n_to_le len (le_to_n s) == s )) [SMTPat (n_to_le len (le_to_n s))] = lemma_le_to_n_is_bounded s; le_to_n_inj s (n_to_le len (le_to_n s)) (** A series of specializations to deal with machine integers *) [@(deprecated "FStar.Endianness.uint32_of_le")] let uint32_of_le (b: bytes { S.length b = 4 }) = let n = le_to_n b in lemma_le_to_n_is_bounded b; UInt32.uint_to_t n [@(deprecated "FStar.Endianness.le_of_uint32")] let le_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } = n_to_le 4ul (UInt32.v x) [@(deprecated "FStar.Endianness.uint32_of_be")] let uint32_of_be (b: bytes { S.length b = 4 }) = let n = be_to_n b in lemma_be_to_n_is_bounded b; UInt32.uint_to_t n [@(deprecated "FStar.Endianness.be_of_uint32")] let be_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } = n_to_be 4ul (UInt32.v x) [@(deprecated "FStar.Endianness.uint64_of_le")] let uint64_of_le (b: bytes { S.length b = 8 }) = let n = le_to_n b in lemma_le_to_n_is_bounded b; UInt64.uint_to_t n [@(deprecated "FStar.Endianness.le_of_uint64")] let le_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } = n_to_le 8ul (UInt64.v x) [@(deprecated "FStar.Endianness.uint64_of_be")] let uint64_of_be (b: bytes { S.length b = 8 }) = let n = be_to_n b in lemma_be_to_n_is_bounded b; UInt64.uint_to_t n [@(deprecated "FStar.Endianness.be_of_uint64")] let be_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } = n_to_be 8ul (UInt64.v x) [@(deprecated "FStar.Endianness.seq_uint32_of_le")] let rec seq_uint32_of_le (l: nat) (b: bytes{ S.length b = 4 * l }): s:S.seq UInt32.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_le hd) (seq_uint32_of_le (l - 1) tl) [@(deprecated "FStar.Endianness.le_of_seq_uint32")] let rec le_of_seq_uint32 (s: S.seq UInt32.t): Tot (b:bytes { S.length b = 4 * S.length s }) (decreases (S.length s)) = if S.length s = 0 then S.empty else S.append (le_of_uint32 (S.head s)) (le_of_seq_uint32 (S.tail s)) [@(deprecated "FStar.Endianness.seq_uint32_of_be")] let rec seq_uint32_of_be (l: nat) (b: bytes{ S.length b = 4 * l }): s:S.seq UInt32.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_be hd) (seq_uint32_of_be (l - 1) tl) [@(deprecated "FStar.Endianness.be_of_seq_uint32")] let rec be_of_seq_uint32 (s: S.seq UInt32.t): Tot (b:bytes { S.length b = 4 * S.length s }) (decreases (S.length s)) = if S.length s = 0 then S.empty else S.append (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s)) [@(deprecated "FStar.Endianness.seq_uint64_of_le")] let rec seq_uint64_of_le (l: nat) (b: bytes{ S.length b = 8 * l }): s:S.seq UInt64.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 8 in S.cons (uint64_of_le hd) (seq_uint64_of_le (l - 1) tl) [@(deprecated "FStar.Endianness.le_of_seq_uint64")] let rec le_of_seq_uint64 (s: S.seq UInt64.t): Tot (b:bytes { S.length b = 8 * S.length s }) (decreases (S.length s)) = if S.length s = 0 then S.empty else S.append (le_of_uint64 (S.head s)) (le_of_seq_uint64 (S.tail s)) [@(deprecated "FStar.Endianness.seq_uint64_of_be")] let rec seq_uint64_of_be (l: nat) (b: bytes{ S.length b = 8 * l }): s:S.seq UInt64.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 8 in S.cons (uint64_of_be hd) (seq_uint64_of_be (l - 1) tl) [@(deprecated "FStar.Endianness.be_of_seq_uint64")] let rec be_of_seq_uint64 (s: S.seq UInt64.t): Tot (b:bytes { S.length b = 8 * S.length s }) (decreases (S.length s)) = if S.length s = 0 then S.empty else S.append (be_of_uint64 (S.head s)) (be_of_seq_uint64 (S.tail s)) #set-options "--max_fuel 1 --max_ifuel 0 --z3rlimit 50" [@(deprecated "FStar.Endianness.offset_uint32_be")] let rec offset_uint32_be (b: bytes) (n: nat) (i: nat): Lemma (requires ( S.length b = 4 * n /\ i < n)) (ensures ( S.index (seq_uint32_of_be n b) i == uint32_of_be (S.slice b (4 * i) (4 * i + 4)))) (decreases ( S.length b)) [ SMTPat (S.index (seq_uint32_of_be n b) i) ] = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 4 in if i = 0 then () else offset_uint32_be tl (n - 1) (i - 1) [@(deprecated "FStar.Endianness.offset_uint32_le")] let rec offset_uint32_le (b: bytes) (n: nat) (i: nat): Lemma (requires ( S.length b = 4 * n /\ i < n)) (ensures ( S.index (seq_uint32_of_le n b) i == uint32_of_le (S.slice b (4 * i) (4 * i + 4)))) (decreases ( S.length b)) [ SMTPat (S.index (seq_uint32_of_le n b) i) ] = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 4 in if i = 0 then () else offset_uint32_le tl (n - 1) (i - 1) [@(deprecated "FStar.Endianness.offset_uint64_be")] let rec offset_uint64_be (b: bytes) (n: nat) (i: nat): Lemma (requires ( S.length b = 8 * n /\ i < n)) (ensures ( S.index (seq_uint64_of_be n b) i == uint64_of_be (S.slice b (8 * i) (8 * i + 8)))) (decreases ( S.length b)) [ SMTPat (S.index (seq_uint64_of_be n b) i) ] = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 8 in if i = 0 then () else offset_uint64_be tl (n - 1) (i - 1) [@(deprecated "FStar.Endianness.offset_uint64_le")] let rec offset_uint64_le (b: bytes) (n: nat) (i: nat): Lemma (requires ( S.length b = 8 * n /\ i < n)) (ensures ( S.index (seq_uint64_of_le n b) i == uint64_of_le (S.slice b (8 * i) (8 * i + 8)))) (decreases ( S.length b)) [ SMTPat (S.index (seq_uint64_of_le n b) i) ] = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 8 in if i = 0 then () else offset_uint64_le tl (n - 1) (i - 1) (** Reasoning about endian-ness and words. *) #set-options "--max_fuel 1 --z3rlimit 20" (* TODO: move to FStar.Seq.Properties, with the pattern *) [@(deprecated "FStar.Endianness.tail_cons")] let tail_cons (#a: Type) (hd: a) (tl: S.seq a): Lemma (ensures (S.equal (S.tail (S.cons hd tl)) tl)) // [ SMTPat (S.tail (S.cons hd tl)) ] = () [@(deprecated "FStar.Endianness.be_of_seq_uint32_append")] let rec be_of_seq_uint32_append (s1 s2: S.seq U32.t): Lemma (ensures ( S.equal (be_of_seq_uint32 (S.append s1 s2)) (S.append (be_of_seq_uint32 s1) (be_of_seq_uint32 s2)))) (decreases ( S.length s1)) [ SMTPat (S.append (be_of_seq_uint32 s1) (be_of_seq_uint32 s2)) ] = Classical.forall_intro_2 (tail_cons #U32.t); // TODO: this is a local pattern, remove once tail_cons lands in FStar.Seq.Properties if S.length s1 = 0 then begin assert (S.equal (be_of_seq_uint32 s1) S.empty); assert (S.equal (S.append s1 s2) s2); () end else begin assert (S.equal (S.append s1 s2) (S.cons (S.head s1) (S.append (S.tail s1) s2))); assert (S.equal (be_of_seq_uint32 (S.append s1 s2)) (S.append (be_of_uint32 (S.head s1)) (be_of_seq_uint32 (S.append (S.tail s1) s2)))); be_of_seq_uint32_append (S.tail s1) s2 end [@(deprecated "FStar.Endianness.be_of_seq_uint32_base")] let be_of_seq_uint32_base (s1: S.seq U32.t) (s2: S.seq U8.t): Lemma (requires ( S.length s1 = 1 /\ S.length s2 = 4 /\ be_to_n s2 = U32.v (S.index s1 0))) (ensures (S.equal s2 (be_of_seq_uint32 s1))) [ SMTPat (be_to_n s2 = U32.v (S.index s1 0)) ] = () [@(deprecated "FStar.Endianness.le_of_seq_uint32_append")] let rec le_of_seq_uint32_append (s1 s2: S.seq U32.t): Lemma (ensures ( S.equal (le_of_seq_uint32 (S.append s1 s2)) (S.append (le_of_seq_uint32 s1) (le_of_seq_uint32 s2)))) (decreases ( S.length s1)) [ SMTPat (S.append (le_of_seq_uint32 s1) (le_of_seq_uint32 s2)) ] = Classical.forall_intro_2 (tail_cons #U32.t); // TODO: this is a local pattern, remove once tail_cons lands in FStar.Seq.Properties if S.length s1 = 0 then begin assert (S.equal (le_of_seq_uint32 s1) S.empty); assert (S.equal (S.append s1 s2) s2); () end else begin assert (S.equal (S.append s1 s2) (S.cons (S.head s1) (S.append (S.tail s1) s2))); assert (S.equal (le_of_seq_uint32 (S.append s1 s2)) (S.append (le_of_uint32 (S.head s1)) (le_of_seq_uint32 (S.append (S.tail s1) s2)))); le_of_seq_uint32_append (S.tail s1) s2 end [@(deprecated "FStar.Endianness.le_of_seq_uint32_base")] let le_of_seq_uint32_base (s1: S.seq U32.t) (s2: S.seq U8.t): Lemma (requires ( S.length s1 = 1 /\ S.length s2 = 4 /\ le_to_n s2 = U32.v (S.index s1 0))) (ensures (S.equal s2 (le_of_seq_uint32 s1))) [ SMTPat (le_to_n s2 = U32.v (S.index s1 0)) ] = () [@(deprecated "FStar.Endianness.be_of_seq_uint64_append")] let rec be_of_seq_uint64_append (s1 s2: S.seq U64.t): Lemma (ensures ( S.equal (be_of_seq_uint64 (S.append s1 s2)) (S.append (be_of_seq_uint64 s1) (be_of_seq_uint64 s2)))) (decreases ( S.length s1)) [ SMTPat (S.append (be_of_seq_uint64 s1) (be_of_seq_uint64 s2)) ] = Classical.forall_intro_2 (tail_cons #U64.t); // TODO: this is a local pattern, remove once tail_cons lands in FStar.Seq.Properties if S.length s1 = 0 then begin assert (S.equal (be_of_seq_uint64 s1) S.empty); assert (S.equal (S.append s1 s2) s2); () end else begin assert (S.equal (S.append s1 s2) (S.cons (S.head s1) (S.append (S.tail s1) s2))); assert (S.equal (be_of_seq_uint64 (S.append s1 s2)) (S.append (be_of_uint64 (S.head s1)) (be_of_seq_uint64 (S.append (S.tail s1) s2)))); be_of_seq_uint64_append (S.tail s1) s2 end [@(deprecated "FStar.Endianness.be_of_seq_uint64_base")] let be_of_seq_uint64_base (s1: S.seq U64.t) (s2: S.seq U8.t): Lemma (requires ( S.length s1 = 1 /\ S.length s2 = 8 /\ be_to_n s2 = U64.v (S.index s1 0))) (ensures (S.equal s2 (be_of_seq_uint64 s1))) [ SMTPat (be_to_n s2 = U64.v (S.index s1 0)) ] = () [@(deprecated "FStar.Endianness.seq_uint32_of_be_be_of_seq_uint32")] let rec seq_uint32_of_be_be_of_seq_uint32 (n: nat) (s: S.seq U32.t) : Lemma (requires (n == S.length s)) (ensures (seq_uint32_of_be n (be_of_seq_uint32 s) `S.equal` s)) (decreases n) [SMTPat (seq_uint32_of_be n (be_of_seq_uint32 s))] = if n = 0 then () else begin assert (s `S.equal` S.cons (S.head s) (S.tail s)); seq_uint32_of_be_be_of_seq_uint32 (n - 1) (S.tail s); let s' = be_of_seq_uint32 s in S.lemma_split s' 4; S.lemma_append_inj (S.slice s' 0 4) (S.slice s' 4 (S.length s')) (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s)) end [@(deprecated "FStar.Endianness.be_of_seq_uint32_seq_uint32_of_be")] let rec be_of_seq_uint32_seq_uint32_of_be (n: nat) (s: S.seq U8.t) : Lemma (requires (4 * n == S.length s)) (ensures (be_of_seq_uint32 (seq_uint32_of_be n s) `S.equal` s)) (decreases n)
false
false
FStar.Krml.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val be_of_seq_uint32_seq_uint32_of_be (n: nat) (s: S.seq U8.t) : Lemma (requires (4 * n == S.length s)) (ensures ((be_of_seq_uint32 (seq_uint32_of_be n s)) `S.equal` s)) (decreases n) [SMTPat (be_of_seq_uint32 (seq_uint32_of_be n s))]
[ "recursion" ]
FStar.Krml.Endianness.be_of_seq_uint32_seq_uint32_of_be
{ "file_name": "krmllib/FStar.Krml.Endianness.fst", "git_rev": "a7be2a7c43eca637ceb57fe8f3ffd16fc6627ebd", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
n: Prims.nat -> s: FStar.Seq.Base.seq FStar.UInt8.t -> FStar.Pervasives.Lemma (requires 4 * n == FStar.Seq.Base.length s) (ensures FStar.Seq.Base.equal (FStar.Krml.Endianness.be_of_seq_uint32 (FStar.Krml.Endianness.seq_uint32_of_be n s)) s) (decreases n) [SMTPat (FStar.Krml.Endianness.be_of_seq_uint32 (FStar.Krml.Endianness.seq_uint32_of_be n s))]
{ "end_col": 5, "end_line": 548, "start_col": 2, "start_line": 534 }
FStar.Pervasives.Lemma
val offset_uint64_le (b: bytes) (n i: nat) : Lemma (requires (S.length b = 8 * n /\ i < n)) (ensures (S.index (seq_uint64_of_le n b) i == uint64_of_le (S.slice b (8 * i) (8 * i + 8)))) (decreases (S.length b)) [SMTPat (S.index (seq_uint64_of_le n b) i)]
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec offset_uint64_le (b: bytes) (n: nat) (i: nat): Lemma (requires ( S.length b = 8 * n /\ i < n)) (ensures ( S.index (seq_uint64_of_le n b) i == uint64_of_le (S.slice b (8 * i) (8 * i + 8)))) (decreases ( S.length b)) [ SMTPat (S.index (seq_uint64_of_le n b) i) ] = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 8 in if i = 0 then () else offset_uint64_le tl (n - 1) (i - 1)
val offset_uint64_le (b: bytes) (n i: nat) : Lemma (requires (S.length b = 8 * n /\ i < n)) (ensures (S.index (seq_uint64_of_le n b) i == uint64_of_le (S.slice b (8 * i) (8 * i + 8)))) (decreases (S.length b)) [SMTPat (S.index (seq_uint64_of_le n b) i)] let rec offset_uint64_le (b: bytes) (n i: nat) : Lemma (requires (S.length b = 8 * n /\ i < n)) (ensures (S.index (seq_uint64_of_le n b) i == uint64_of_le (S.slice b (8 * i) (8 * i + 8)))) (decreases (S.length b)) [SMTPat (S.index (seq_uint64_of_le n b) i)] =
false
null
true
if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 8 in if i = 0 then () else offset_uint64_le tl (n - 1) (i - 1)
{ "checked_file": "FStar.Krml.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.All.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Krml.Endianness.fst" }
[ "lemma", "" ]
[ "FStar.Krml.Endianness.bytes", "Prims.nat", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "FStar.UInt8.t", "FStar.Pervasives.false_elim", "Prims.unit", "Prims.bool", "FStar.Seq.Base.seq", "FStar.Krml.Endianness.offset_uint64_le", "Prims.op_Subtraction", "FStar.Pervasives.Native.tuple2", "FStar.Seq.Properties.split", "Prims.l_and", "Prims.b2t", "FStar.Mul.op_Star", "Prims.op_LessThan", "Prims.squash", "Prims.eq2", "FStar.UInt64.t", "FStar.Seq.Base.index", "FStar.Krml.Endianness.seq_uint64_of_le", "FStar.Krml.Endianness.uint64_of_le", "FStar.Seq.Base.slice", "Prims.op_Addition", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.Nil" ]
[]
module FStar.Krml.Endianness open FStar.Mul open FStar.HyperStack.All module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq (* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several name changes *) inline_for_extraction noextract type bytes = S.seq U8.t /// lt_to_n interprets a byte sequence as a little-endian natural number [@(deprecated "FStar.Endianness.le_to_n")] val le_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec le_to_n b = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) /// be_to_n interprets a byte sequence as a big-endian natural number [@(deprecated "FStar.Endianness.be_to_n")] val be_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec be_to_n b = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) [@(deprecated "FStar.Endianness.lemma_euclidean_division")] private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () [@(deprecated "FStar.Endianness.lemma_factorise")] private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () [@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")] val lemma_le_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (le_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end [@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")] val lemma_be_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (be_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_be_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 0 (Seq.length b - 1) in assert(Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert(UInt8.v (Seq.last b) < pow2 8); assert(be_to_n s < pow2 (8 * Seq.length s)); assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert(be_to_n b <= pow2 8 * (be_to_n s + 1)); assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end /// n_to_le encodes a number as a little-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_le")] val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b}) (decreases (U32.v len)) let rec n_to_le len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_le len n' in let b = S.cons byte b' in S.lemma_eq_intro b' (S.tail b); b /// n_to_be encodes a numbers as a big-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_be")] val n_to_be: len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b}) (decreases (U32.v len)) let rec n_to_be len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_be len n' in let b'' = S.create 1 byte in let b = S.append b' b'' in S.lemma_eq_intro b' (S.slice b 0 (U32.v len)); b [@(deprecated "FStar.Endianness.n_to_le_inj")] let n_to_le_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_le len n1 == n_to_le len n2)) (ensures (n1 == n2)) = // this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion // proof in the spec for n_to_le () [@(deprecated "FStar.Endianness.n_to_be_inj")] let n_to_be_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_be len n1 == n_to_be len n2)) (ensures (n1 == n2)) = () [@(deprecated "FStar.Endianness.be_to_n_inj")] let rec be_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1)); Seq.lemma_split b1 (Seq.length b1 - 1); Seq.lemma_split b2 (Seq.length b2 - 1) end [@(deprecated "FStar.Endianness.le_to_n_inj")] let rec le_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2)); Seq.lemma_split b1 1; Seq.lemma_split b2 1 end [@(deprecated "FStar.Endianness.n_to_be_be_to_n")] let n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures ( be_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\ n_to_be len (be_to_n s) == s )) [SMTPat (n_to_be len (be_to_n s))] = lemma_be_to_n_is_bounded s; be_to_n_inj s (n_to_be len (be_to_n s)) [@(deprecated "FStar.Endianness.n_to_le_le_to_n")] let n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures ( le_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\ n_to_le len (le_to_n s) == s )) [SMTPat (n_to_le len (le_to_n s))] = lemma_le_to_n_is_bounded s; le_to_n_inj s (n_to_le len (le_to_n s)) (** A series of specializations to deal with machine integers *) [@(deprecated "FStar.Endianness.uint32_of_le")] let uint32_of_le (b: bytes { S.length b = 4 }) = let n = le_to_n b in lemma_le_to_n_is_bounded b; UInt32.uint_to_t n [@(deprecated "FStar.Endianness.le_of_uint32")] let le_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } = n_to_le 4ul (UInt32.v x) [@(deprecated "FStar.Endianness.uint32_of_be")] let uint32_of_be (b: bytes { S.length b = 4 }) = let n = be_to_n b in lemma_be_to_n_is_bounded b; UInt32.uint_to_t n [@(deprecated "FStar.Endianness.be_of_uint32")] let be_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } = n_to_be 4ul (UInt32.v x) [@(deprecated "FStar.Endianness.uint64_of_le")] let uint64_of_le (b: bytes { S.length b = 8 }) = let n = le_to_n b in lemma_le_to_n_is_bounded b; UInt64.uint_to_t n [@(deprecated "FStar.Endianness.le_of_uint64")] let le_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } = n_to_le 8ul (UInt64.v x) [@(deprecated "FStar.Endianness.uint64_of_be")] let uint64_of_be (b: bytes { S.length b = 8 }) = let n = be_to_n b in lemma_be_to_n_is_bounded b; UInt64.uint_to_t n [@(deprecated "FStar.Endianness.be_of_uint64")] let be_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } = n_to_be 8ul (UInt64.v x) [@(deprecated "FStar.Endianness.seq_uint32_of_le")] let rec seq_uint32_of_le (l: nat) (b: bytes{ S.length b = 4 * l }): s:S.seq UInt32.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_le hd) (seq_uint32_of_le (l - 1) tl) [@(deprecated "FStar.Endianness.le_of_seq_uint32")] let rec le_of_seq_uint32 (s: S.seq UInt32.t): Tot (b:bytes { S.length b = 4 * S.length s }) (decreases (S.length s)) = if S.length s = 0 then S.empty else S.append (le_of_uint32 (S.head s)) (le_of_seq_uint32 (S.tail s)) [@(deprecated "FStar.Endianness.seq_uint32_of_be")] let rec seq_uint32_of_be (l: nat) (b: bytes{ S.length b = 4 * l }): s:S.seq UInt32.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_be hd) (seq_uint32_of_be (l - 1) tl) [@(deprecated "FStar.Endianness.be_of_seq_uint32")] let rec be_of_seq_uint32 (s: S.seq UInt32.t): Tot (b:bytes { S.length b = 4 * S.length s }) (decreases (S.length s)) = if S.length s = 0 then S.empty else S.append (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s)) [@(deprecated "FStar.Endianness.seq_uint64_of_le")] let rec seq_uint64_of_le (l: nat) (b: bytes{ S.length b = 8 * l }): s:S.seq UInt64.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 8 in S.cons (uint64_of_le hd) (seq_uint64_of_le (l - 1) tl) [@(deprecated "FStar.Endianness.le_of_seq_uint64")] let rec le_of_seq_uint64 (s: S.seq UInt64.t): Tot (b:bytes { S.length b = 8 * S.length s }) (decreases (S.length s)) = if S.length s = 0 then S.empty else S.append (le_of_uint64 (S.head s)) (le_of_seq_uint64 (S.tail s)) [@(deprecated "FStar.Endianness.seq_uint64_of_be")] let rec seq_uint64_of_be (l: nat) (b: bytes{ S.length b = 8 * l }): s:S.seq UInt64.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 8 in S.cons (uint64_of_be hd) (seq_uint64_of_be (l - 1) tl) [@(deprecated "FStar.Endianness.be_of_seq_uint64")] let rec be_of_seq_uint64 (s: S.seq UInt64.t): Tot (b:bytes { S.length b = 8 * S.length s }) (decreases (S.length s)) = if S.length s = 0 then S.empty else S.append (be_of_uint64 (S.head s)) (be_of_seq_uint64 (S.tail s)) #set-options "--max_fuel 1 --max_ifuel 0 --z3rlimit 50" [@(deprecated "FStar.Endianness.offset_uint32_be")] let rec offset_uint32_be (b: bytes) (n: nat) (i: nat): Lemma (requires ( S.length b = 4 * n /\ i < n)) (ensures ( S.index (seq_uint32_of_be n b) i == uint32_of_be (S.slice b (4 * i) (4 * i + 4)))) (decreases ( S.length b)) [ SMTPat (S.index (seq_uint32_of_be n b) i) ] = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 4 in if i = 0 then () else offset_uint32_be tl (n - 1) (i - 1) [@(deprecated "FStar.Endianness.offset_uint32_le")] let rec offset_uint32_le (b: bytes) (n: nat) (i: nat): Lemma (requires ( S.length b = 4 * n /\ i < n)) (ensures ( S.index (seq_uint32_of_le n b) i == uint32_of_le (S.slice b (4 * i) (4 * i + 4)))) (decreases ( S.length b)) [ SMTPat (S.index (seq_uint32_of_le n b) i) ] = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 4 in if i = 0 then () else offset_uint32_le tl (n - 1) (i - 1) [@(deprecated "FStar.Endianness.offset_uint64_be")] let rec offset_uint64_be (b: bytes) (n: nat) (i: nat): Lemma (requires ( S.length b = 8 * n /\ i < n)) (ensures ( S.index (seq_uint64_of_be n b) i == uint64_of_be (S.slice b (8 * i) (8 * i + 8)))) (decreases ( S.length b)) [ SMTPat (S.index (seq_uint64_of_be n b) i) ] = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 8 in if i = 0 then () else offset_uint64_be tl (n - 1) (i - 1) [@(deprecated "FStar.Endianness.offset_uint64_le")] let rec offset_uint64_le (b: bytes) (n: nat) (i: nat): Lemma (requires ( S.length b = 8 * n /\ i < n)) (ensures ( S.index (seq_uint64_of_le n b) i == uint64_of_le (S.slice b (8 * i) (8 * i + 8)))) (decreases ( S.length b)) [ SMTPat (S.index (seq_uint64_of_le n b) i) ]
false
false
FStar.Krml.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val offset_uint64_le (b: bytes) (n i: nat) : Lemma (requires (S.length b = 8 * n /\ i < n)) (ensures (S.index (seq_uint64_of_le n b) i == uint64_of_le (S.slice b (8 * i) (8 * i + 8)))) (decreases (S.length b)) [SMTPat (S.index (seq_uint64_of_le n b) i)]
[ "recursion" ]
FStar.Krml.Endianness.offset_uint64_le
{ "file_name": "krmllib/FStar.Krml.Endianness.fst", "git_rev": "a7be2a7c43eca637ceb57fe8f3ffd16fc6627ebd", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
b: FStar.Krml.Endianness.bytes -> n: Prims.nat -> i: Prims.nat -> FStar.Pervasives.Lemma (requires FStar.Seq.Base.length b = 8 * n /\ i < n) (ensures FStar.Seq.Base.index (FStar.Krml.Endianness.seq_uint64_of_le n b) i == FStar.Krml.Endianness.uint64_of_le (FStar.Seq.Base.slice b (8 * i) (8 * i + 8))) (decreases FStar.Seq.Base.length b) [SMTPat (FStar.Seq.Base.index (FStar.Krml.Endianness.seq_uint64_of_le n b) i)]
{ "end_col": 41, "end_line": 401, "start_col": 2, "start_line": 394 }
FStar.Pervasives.Lemma
val le_of_seq_uint32_append (s1 s2: S.seq U32.t) : Lemma (ensures (S.equal (le_of_seq_uint32 (S.append s1 s2)) (S.append (le_of_seq_uint32 s1) (le_of_seq_uint32 s2)))) (decreases (S.length s1)) [SMTPat (S.append (le_of_seq_uint32 s1) (le_of_seq_uint32 s2))]
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec le_of_seq_uint32_append (s1 s2: S.seq U32.t): Lemma (ensures ( S.equal (le_of_seq_uint32 (S.append s1 s2)) (S.append (le_of_seq_uint32 s1) (le_of_seq_uint32 s2)))) (decreases ( S.length s1)) [ SMTPat (S.append (le_of_seq_uint32 s1) (le_of_seq_uint32 s2)) ] = Classical.forall_intro_2 (tail_cons #U32.t); // TODO: this is a local pattern, remove once tail_cons lands in FStar.Seq.Properties if S.length s1 = 0 then begin assert (S.equal (le_of_seq_uint32 s1) S.empty); assert (S.equal (S.append s1 s2) s2); () end else begin assert (S.equal (S.append s1 s2) (S.cons (S.head s1) (S.append (S.tail s1) s2))); assert (S.equal (le_of_seq_uint32 (S.append s1 s2)) (S.append (le_of_uint32 (S.head s1)) (le_of_seq_uint32 (S.append (S.tail s1) s2)))); le_of_seq_uint32_append (S.tail s1) s2 end
val le_of_seq_uint32_append (s1 s2: S.seq U32.t) : Lemma (ensures (S.equal (le_of_seq_uint32 (S.append s1 s2)) (S.append (le_of_seq_uint32 s1) (le_of_seq_uint32 s2)))) (decreases (S.length s1)) [SMTPat (S.append (le_of_seq_uint32 s1) (le_of_seq_uint32 s2))] let rec le_of_seq_uint32_append (s1 s2: S.seq U32.t) : Lemma (ensures (S.equal (le_of_seq_uint32 (S.append s1 s2)) (S.append (le_of_seq_uint32 s1) (le_of_seq_uint32 s2)))) (decreases (S.length s1)) [SMTPat (S.append (le_of_seq_uint32 s1) (le_of_seq_uint32 s2))] =
false
null
true
Classical.forall_intro_2 (tail_cons #U32.t); if S.length s1 = 0 then (assert (S.equal (le_of_seq_uint32 s1) S.empty); assert (S.equal (S.append s1 s2) s2); ()) else (assert (S.equal (S.append s1 s2) (S.cons (S.head s1) (S.append (S.tail s1) s2))); assert (S.equal (le_of_seq_uint32 (S.append s1 s2)) (S.append (le_of_uint32 (S.head s1)) (le_of_seq_uint32 (S.append (S.tail s1) s2)))); le_of_seq_uint32_append (S.tail s1) s2)
{ "checked_file": "FStar.Krml.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.All.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Krml.Endianness.fst" }
[ "lemma", "" ]
[ "FStar.Seq.Base.seq", "FStar.UInt32.t", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "Prims.unit", "Prims._assert", "FStar.Seq.Base.equal", "FStar.Seq.Base.append", "FStar.UInt8.t", "FStar.Krml.Endianness.le_of_seq_uint32", "FStar.Seq.Base.empty", "Prims.bool", "FStar.Krml.Endianness.le_of_seq_uint32_append", "FStar.Seq.Properties.tail", "FStar.Krml.Endianness.le_of_uint32", "FStar.Seq.Properties.head", "FStar.Seq.Properties.cons", "FStar.Classical.forall_intro_2", "FStar.Krml.Endianness.tail_cons", "Prims.l_True", "Prims.squash", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.Nil" ]
[]
module FStar.Krml.Endianness open FStar.Mul open FStar.HyperStack.All module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq (* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several name changes *) inline_for_extraction noextract type bytes = S.seq U8.t /// lt_to_n interprets a byte sequence as a little-endian natural number [@(deprecated "FStar.Endianness.le_to_n")] val le_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec le_to_n b = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) /// be_to_n interprets a byte sequence as a big-endian natural number [@(deprecated "FStar.Endianness.be_to_n")] val be_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec be_to_n b = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) [@(deprecated "FStar.Endianness.lemma_euclidean_division")] private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () [@(deprecated "FStar.Endianness.lemma_factorise")] private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () [@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")] val lemma_le_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (le_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end [@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")] val lemma_be_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (be_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_be_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 0 (Seq.length b - 1) in assert(Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert(UInt8.v (Seq.last b) < pow2 8); assert(be_to_n s < pow2 (8 * Seq.length s)); assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert(be_to_n b <= pow2 8 * (be_to_n s + 1)); assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end /// n_to_le encodes a number as a little-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_le")] val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b}) (decreases (U32.v len)) let rec n_to_le len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_le len n' in let b = S.cons byte b' in S.lemma_eq_intro b' (S.tail b); b /// n_to_be encodes a numbers as a big-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_be")] val n_to_be: len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b}) (decreases (U32.v len)) let rec n_to_be len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_be len n' in let b'' = S.create 1 byte in let b = S.append b' b'' in S.lemma_eq_intro b' (S.slice b 0 (U32.v len)); b [@(deprecated "FStar.Endianness.n_to_le_inj")] let n_to_le_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_le len n1 == n_to_le len n2)) (ensures (n1 == n2)) = // this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion // proof in the spec for n_to_le () [@(deprecated "FStar.Endianness.n_to_be_inj")] let n_to_be_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_be len n1 == n_to_be len n2)) (ensures (n1 == n2)) = () [@(deprecated "FStar.Endianness.be_to_n_inj")] let rec be_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1)); Seq.lemma_split b1 (Seq.length b1 - 1); Seq.lemma_split b2 (Seq.length b2 - 1) end [@(deprecated "FStar.Endianness.le_to_n_inj")] let rec le_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2)); Seq.lemma_split b1 1; Seq.lemma_split b2 1 end [@(deprecated "FStar.Endianness.n_to_be_be_to_n")] let n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures ( be_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\ n_to_be len (be_to_n s) == s )) [SMTPat (n_to_be len (be_to_n s))] = lemma_be_to_n_is_bounded s; be_to_n_inj s (n_to_be len (be_to_n s)) [@(deprecated "FStar.Endianness.n_to_le_le_to_n")] let n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures ( le_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\ n_to_le len (le_to_n s) == s )) [SMTPat (n_to_le len (le_to_n s))] = lemma_le_to_n_is_bounded s; le_to_n_inj s (n_to_le len (le_to_n s)) (** A series of specializations to deal with machine integers *) [@(deprecated "FStar.Endianness.uint32_of_le")] let uint32_of_le (b: bytes { S.length b = 4 }) = let n = le_to_n b in lemma_le_to_n_is_bounded b; UInt32.uint_to_t n [@(deprecated "FStar.Endianness.le_of_uint32")] let le_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } = n_to_le 4ul (UInt32.v x) [@(deprecated "FStar.Endianness.uint32_of_be")] let uint32_of_be (b: bytes { S.length b = 4 }) = let n = be_to_n b in lemma_be_to_n_is_bounded b; UInt32.uint_to_t n [@(deprecated "FStar.Endianness.be_of_uint32")] let be_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } = n_to_be 4ul (UInt32.v x) [@(deprecated "FStar.Endianness.uint64_of_le")] let uint64_of_le (b: bytes { S.length b = 8 }) = let n = le_to_n b in lemma_le_to_n_is_bounded b; UInt64.uint_to_t n [@(deprecated "FStar.Endianness.le_of_uint64")] let le_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } = n_to_le 8ul (UInt64.v x) [@(deprecated "FStar.Endianness.uint64_of_be")] let uint64_of_be (b: bytes { S.length b = 8 }) = let n = be_to_n b in lemma_be_to_n_is_bounded b; UInt64.uint_to_t n [@(deprecated "FStar.Endianness.be_of_uint64")] let be_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } = n_to_be 8ul (UInt64.v x) [@(deprecated "FStar.Endianness.seq_uint32_of_le")] let rec seq_uint32_of_le (l: nat) (b: bytes{ S.length b = 4 * l }): s:S.seq UInt32.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_le hd) (seq_uint32_of_le (l - 1) tl) [@(deprecated "FStar.Endianness.le_of_seq_uint32")] let rec le_of_seq_uint32 (s: S.seq UInt32.t): Tot (b:bytes { S.length b = 4 * S.length s }) (decreases (S.length s)) = if S.length s = 0 then S.empty else S.append (le_of_uint32 (S.head s)) (le_of_seq_uint32 (S.tail s)) [@(deprecated "FStar.Endianness.seq_uint32_of_be")] let rec seq_uint32_of_be (l: nat) (b: bytes{ S.length b = 4 * l }): s:S.seq UInt32.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_be hd) (seq_uint32_of_be (l - 1) tl) [@(deprecated "FStar.Endianness.be_of_seq_uint32")] let rec be_of_seq_uint32 (s: S.seq UInt32.t): Tot (b:bytes { S.length b = 4 * S.length s }) (decreases (S.length s)) = if S.length s = 0 then S.empty else S.append (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s)) [@(deprecated "FStar.Endianness.seq_uint64_of_le")] let rec seq_uint64_of_le (l: nat) (b: bytes{ S.length b = 8 * l }): s:S.seq UInt64.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 8 in S.cons (uint64_of_le hd) (seq_uint64_of_le (l - 1) tl) [@(deprecated "FStar.Endianness.le_of_seq_uint64")] let rec le_of_seq_uint64 (s: S.seq UInt64.t): Tot (b:bytes { S.length b = 8 * S.length s }) (decreases (S.length s)) = if S.length s = 0 then S.empty else S.append (le_of_uint64 (S.head s)) (le_of_seq_uint64 (S.tail s)) [@(deprecated "FStar.Endianness.seq_uint64_of_be")] let rec seq_uint64_of_be (l: nat) (b: bytes{ S.length b = 8 * l }): s:S.seq UInt64.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 8 in S.cons (uint64_of_be hd) (seq_uint64_of_be (l - 1) tl) [@(deprecated "FStar.Endianness.be_of_seq_uint64")] let rec be_of_seq_uint64 (s: S.seq UInt64.t): Tot (b:bytes { S.length b = 8 * S.length s }) (decreases (S.length s)) = if S.length s = 0 then S.empty else S.append (be_of_uint64 (S.head s)) (be_of_seq_uint64 (S.tail s)) #set-options "--max_fuel 1 --max_ifuel 0 --z3rlimit 50" [@(deprecated "FStar.Endianness.offset_uint32_be")] let rec offset_uint32_be (b: bytes) (n: nat) (i: nat): Lemma (requires ( S.length b = 4 * n /\ i < n)) (ensures ( S.index (seq_uint32_of_be n b) i == uint32_of_be (S.slice b (4 * i) (4 * i + 4)))) (decreases ( S.length b)) [ SMTPat (S.index (seq_uint32_of_be n b) i) ] = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 4 in if i = 0 then () else offset_uint32_be tl (n - 1) (i - 1) [@(deprecated "FStar.Endianness.offset_uint32_le")] let rec offset_uint32_le (b: bytes) (n: nat) (i: nat): Lemma (requires ( S.length b = 4 * n /\ i < n)) (ensures ( S.index (seq_uint32_of_le n b) i == uint32_of_le (S.slice b (4 * i) (4 * i + 4)))) (decreases ( S.length b)) [ SMTPat (S.index (seq_uint32_of_le n b) i) ] = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 4 in if i = 0 then () else offset_uint32_le tl (n - 1) (i - 1) [@(deprecated "FStar.Endianness.offset_uint64_be")] let rec offset_uint64_be (b: bytes) (n: nat) (i: nat): Lemma (requires ( S.length b = 8 * n /\ i < n)) (ensures ( S.index (seq_uint64_of_be n b) i == uint64_of_be (S.slice b (8 * i) (8 * i + 8)))) (decreases ( S.length b)) [ SMTPat (S.index (seq_uint64_of_be n b) i) ] = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 8 in if i = 0 then () else offset_uint64_be tl (n - 1) (i - 1) [@(deprecated "FStar.Endianness.offset_uint64_le")] let rec offset_uint64_le (b: bytes) (n: nat) (i: nat): Lemma (requires ( S.length b = 8 * n /\ i < n)) (ensures ( S.index (seq_uint64_of_le n b) i == uint64_of_le (S.slice b (8 * i) (8 * i + 8)))) (decreases ( S.length b)) [ SMTPat (S.index (seq_uint64_of_le n b) i) ] = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 8 in if i = 0 then () else offset_uint64_le tl (n - 1) (i - 1) (** Reasoning about endian-ness and words. *) #set-options "--max_fuel 1 --z3rlimit 20" (* TODO: move to FStar.Seq.Properties, with the pattern *) [@(deprecated "FStar.Endianness.tail_cons")] let tail_cons (#a: Type) (hd: a) (tl: S.seq a): Lemma (ensures (S.equal (S.tail (S.cons hd tl)) tl)) // [ SMTPat (S.tail (S.cons hd tl)) ] = () [@(deprecated "FStar.Endianness.be_of_seq_uint32_append")] let rec be_of_seq_uint32_append (s1 s2: S.seq U32.t): Lemma (ensures ( S.equal (be_of_seq_uint32 (S.append s1 s2)) (S.append (be_of_seq_uint32 s1) (be_of_seq_uint32 s2)))) (decreases ( S.length s1)) [ SMTPat (S.append (be_of_seq_uint32 s1) (be_of_seq_uint32 s2)) ] = Classical.forall_intro_2 (tail_cons #U32.t); // TODO: this is a local pattern, remove once tail_cons lands in FStar.Seq.Properties if S.length s1 = 0 then begin assert (S.equal (be_of_seq_uint32 s1) S.empty); assert (S.equal (S.append s1 s2) s2); () end else begin assert (S.equal (S.append s1 s2) (S.cons (S.head s1) (S.append (S.tail s1) s2))); assert (S.equal (be_of_seq_uint32 (S.append s1 s2)) (S.append (be_of_uint32 (S.head s1)) (be_of_seq_uint32 (S.append (S.tail s1) s2)))); be_of_seq_uint32_append (S.tail s1) s2 end [@(deprecated "FStar.Endianness.be_of_seq_uint32_base")] let be_of_seq_uint32_base (s1: S.seq U32.t) (s2: S.seq U8.t): Lemma (requires ( S.length s1 = 1 /\ S.length s2 = 4 /\ be_to_n s2 = U32.v (S.index s1 0))) (ensures (S.equal s2 (be_of_seq_uint32 s1))) [ SMTPat (be_to_n s2 = U32.v (S.index s1 0)) ] = () [@(deprecated "FStar.Endianness.le_of_seq_uint32_append")] let rec le_of_seq_uint32_append (s1 s2: S.seq U32.t): Lemma (ensures ( S.equal (le_of_seq_uint32 (S.append s1 s2)) (S.append (le_of_seq_uint32 s1) (le_of_seq_uint32 s2)))) (decreases ( S.length s1)) [ SMTPat (S.append (le_of_seq_uint32 s1) (le_of_seq_uint32 s2)) ]
false
false
FStar.Krml.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val le_of_seq_uint32_append (s1 s2: S.seq U32.t) : Lemma (ensures (S.equal (le_of_seq_uint32 (S.append s1 s2)) (S.append (le_of_seq_uint32 s1) (le_of_seq_uint32 s2)))) (decreases (S.length s1)) [SMTPat (S.append (le_of_seq_uint32 s1) (le_of_seq_uint32 s2))]
[ "recursion" ]
FStar.Krml.Endianness.le_of_seq_uint32_append
{ "file_name": "krmllib/FStar.Krml.Endianness.fst", "git_rev": "a7be2a7c43eca637ceb57fe8f3ffd16fc6627ebd", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
s1: FStar.Seq.Base.seq FStar.UInt32.t -> s2: FStar.Seq.Base.seq FStar.UInt32.t -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.equal (FStar.Krml.Endianness.le_of_seq_uint32 (FStar.Seq.Base.append s1 s2)) (FStar.Seq.Base.append (FStar.Krml.Endianness.le_of_seq_uint32 s1) (FStar.Krml.Endianness.le_of_seq_uint32 s2))) (decreases FStar.Seq.Base.length s1) [ SMTPat (FStar.Seq.Base.append (FStar.Krml.Endianness.le_of_seq_uint32 s1) (FStar.Krml.Endianness.le_of_seq_uint32 s2)) ]
{ "end_col": 5, "end_line": 467, "start_col": 2, "start_line": 457 }
FStar.Pervasives.Lemma
val be_of_seq_uint64_append (s1 s2: S.seq U64.t) : Lemma (ensures (S.equal (be_of_seq_uint64 (S.append s1 s2)) (S.append (be_of_seq_uint64 s1) (be_of_seq_uint64 s2)))) (decreases (S.length s1)) [SMTPat (S.append (be_of_seq_uint64 s1) (be_of_seq_uint64 s2))]
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec be_of_seq_uint64_append (s1 s2: S.seq U64.t): Lemma (ensures ( S.equal (be_of_seq_uint64 (S.append s1 s2)) (S.append (be_of_seq_uint64 s1) (be_of_seq_uint64 s2)))) (decreases ( S.length s1)) [ SMTPat (S.append (be_of_seq_uint64 s1) (be_of_seq_uint64 s2)) ] = Classical.forall_intro_2 (tail_cons #U64.t); // TODO: this is a local pattern, remove once tail_cons lands in FStar.Seq.Properties if S.length s1 = 0 then begin assert (S.equal (be_of_seq_uint64 s1) S.empty); assert (S.equal (S.append s1 s2) s2); () end else begin assert (S.equal (S.append s1 s2) (S.cons (S.head s1) (S.append (S.tail s1) s2))); assert (S.equal (be_of_seq_uint64 (S.append s1 s2)) (S.append (be_of_uint64 (S.head s1)) (be_of_seq_uint64 (S.append (S.tail s1) s2)))); be_of_seq_uint64_append (S.tail s1) s2 end
val be_of_seq_uint64_append (s1 s2: S.seq U64.t) : Lemma (ensures (S.equal (be_of_seq_uint64 (S.append s1 s2)) (S.append (be_of_seq_uint64 s1) (be_of_seq_uint64 s2)))) (decreases (S.length s1)) [SMTPat (S.append (be_of_seq_uint64 s1) (be_of_seq_uint64 s2))] let rec be_of_seq_uint64_append (s1 s2: S.seq U64.t) : Lemma (ensures (S.equal (be_of_seq_uint64 (S.append s1 s2)) (S.append (be_of_seq_uint64 s1) (be_of_seq_uint64 s2)))) (decreases (S.length s1)) [SMTPat (S.append (be_of_seq_uint64 s1) (be_of_seq_uint64 s2))] =
false
null
true
Classical.forall_intro_2 (tail_cons #U64.t); if S.length s1 = 0 then (assert (S.equal (be_of_seq_uint64 s1) S.empty); assert (S.equal (S.append s1 s2) s2); ()) else (assert (S.equal (S.append s1 s2) (S.cons (S.head s1) (S.append (S.tail s1) s2))); assert (S.equal (be_of_seq_uint64 (S.append s1 s2)) (S.append (be_of_uint64 (S.head s1)) (be_of_seq_uint64 (S.append (S.tail s1) s2)))); be_of_seq_uint64_append (S.tail s1) s2)
{ "checked_file": "FStar.Krml.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.All.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Krml.Endianness.fst" }
[ "lemma", "" ]
[ "FStar.Seq.Base.seq", "FStar.UInt64.t", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "Prims.unit", "Prims._assert", "FStar.Seq.Base.equal", "FStar.Seq.Base.append", "FStar.UInt8.t", "FStar.Krml.Endianness.be_of_seq_uint64", "FStar.Seq.Base.empty", "Prims.bool", "FStar.Krml.Endianness.be_of_seq_uint64_append", "FStar.Seq.Properties.tail", "FStar.Krml.Endianness.be_of_uint64", "FStar.Seq.Properties.head", "FStar.Seq.Properties.cons", "FStar.Classical.forall_intro_2", "FStar.Krml.Endianness.tail_cons", "Prims.l_True", "Prims.squash", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.Nil" ]
[]
module FStar.Krml.Endianness open FStar.Mul open FStar.HyperStack.All module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq (* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several name changes *) inline_for_extraction noextract type bytes = S.seq U8.t /// lt_to_n interprets a byte sequence as a little-endian natural number [@(deprecated "FStar.Endianness.le_to_n")] val le_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec le_to_n b = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) /// be_to_n interprets a byte sequence as a big-endian natural number [@(deprecated "FStar.Endianness.be_to_n")] val be_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec be_to_n b = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) [@(deprecated "FStar.Endianness.lemma_euclidean_division")] private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () [@(deprecated "FStar.Endianness.lemma_factorise")] private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () [@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")] val lemma_le_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (le_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end [@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")] val lemma_be_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (be_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_be_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 0 (Seq.length b - 1) in assert(Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert(UInt8.v (Seq.last b) < pow2 8); assert(be_to_n s < pow2 (8 * Seq.length s)); assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert(be_to_n b <= pow2 8 * (be_to_n s + 1)); assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end /// n_to_le encodes a number as a little-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_le")] val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b}) (decreases (U32.v len)) let rec n_to_le len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_le len n' in let b = S.cons byte b' in S.lemma_eq_intro b' (S.tail b); b /// n_to_be encodes a numbers as a big-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_be")] val n_to_be: len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b}) (decreases (U32.v len)) let rec n_to_be len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_be len n' in let b'' = S.create 1 byte in let b = S.append b' b'' in S.lemma_eq_intro b' (S.slice b 0 (U32.v len)); b [@(deprecated "FStar.Endianness.n_to_le_inj")] let n_to_le_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_le len n1 == n_to_le len n2)) (ensures (n1 == n2)) = // this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion // proof in the spec for n_to_le () [@(deprecated "FStar.Endianness.n_to_be_inj")] let n_to_be_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_be len n1 == n_to_be len n2)) (ensures (n1 == n2)) = () [@(deprecated "FStar.Endianness.be_to_n_inj")] let rec be_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1)); Seq.lemma_split b1 (Seq.length b1 - 1); Seq.lemma_split b2 (Seq.length b2 - 1) end [@(deprecated "FStar.Endianness.le_to_n_inj")] let rec le_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2)); Seq.lemma_split b1 1; Seq.lemma_split b2 1 end [@(deprecated "FStar.Endianness.n_to_be_be_to_n")] let n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures ( be_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\ n_to_be len (be_to_n s) == s )) [SMTPat (n_to_be len (be_to_n s))] = lemma_be_to_n_is_bounded s; be_to_n_inj s (n_to_be len (be_to_n s)) [@(deprecated "FStar.Endianness.n_to_le_le_to_n")] let n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures ( le_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\ n_to_le len (le_to_n s) == s )) [SMTPat (n_to_le len (le_to_n s))] = lemma_le_to_n_is_bounded s; le_to_n_inj s (n_to_le len (le_to_n s)) (** A series of specializations to deal with machine integers *) [@(deprecated "FStar.Endianness.uint32_of_le")] let uint32_of_le (b: bytes { S.length b = 4 }) = let n = le_to_n b in lemma_le_to_n_is_bounded b; UInt32.uint_to_t n [@(deprecated "FStar.Endianness.le_of_uint32")] let le_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } = n_to_le 4ul (UInt32.v x) [@(deprecated "FStar.Endianness.uint32_of_be")] let uint32_of_be (b: bytes { S.length b = 4 }) = let n = be_to_n b in lemma_be_to_n_is_bounded b; UInt32.uint_to_t n [@(deprecated "FStar.Endianness.be_of_uint32")] let be_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } = n_to_be 4ul (UInt32.v x) [@(deprecated "FStar.Endianness.uint64_of_le")] let uint64_of_le (b: bytes { S.length b = 8 }) = let n = le_to_n b in lemma_le_to_n_is_bounded b; UInt64.uint_to_t n [@(deprecated "FStar.Endianness.le_of_uint64")] let le_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } = n_to_le 8ul (UInt64.v x) [@(deprecated "FStar.Endianness.uint64_of_be")] let uint64_of_be (b: bytes { S.length b = 8 }) = let n = be_to_n b in lemma_be_to_n_is_bounded b; UInt64.uint_to_t n [@(deprecated "FStar.Endianness.be_of_uint64")] let be_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } = n_to_be 8ul (UInt64.v x) [@(deprecated "FStar.Endianness.seq_uint32_of_le")] let rec seq_uint32_of_le (l: nat) (b: bytes{ S.length b = 4 * l }): s:S.seq UInt32.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_le hd) (seq_uint32_of_le (l - 1) tl) [@(deprecated "FStar.Endianness.le_of_seq_uint32")] let rec le_of_seq_uint32 (s: S.seq UInt32.t): Tot (b:bytes { S.length b = 4 * S.length s }) (decreases (S.length s)) = if S.length s = 0 then S.empty else S.append (le_of_uint32 (S.head s)) (le_of_seq_uint32 (S.tail s)) [@(deprecated "FStar.Endianness.seq_uint32_of_be")] let rec seq_uint32_of_be (l: nat) (b: bytes{ S.length b = 4 * l }): s:S.seq UInt32.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_be hd) (seq_uint32_of_be (l - 1) tl) [@(deprecated "FStar.Endianness.be_of_seq_uint32")] let rec be_of_seq_uint32 (s: S.seq UInt32.t): Tot (b:bytes { S.length b = 4 * S.length s }) (decreases (S.length s)) = if S.length s = 0 then S.empty else S.append (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s)) [@(deprecated "FStar.Endianness.seq_uint64_of_le")] let rec seq_uint64_of_le (l: nat) (b: bytes{ S.length b = 8 * l }): s:S.seq UInt64.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 8 in S.cons (uint64_of_le hd) (seq_uint64_of_le (l - 1) tl) [@(deprecated "FStar.Endianness.le_of_seq_uint64")] let rec le_of_seq_uint64 (s: S.seq UInt64.t): Tot (b:bytes { S.length b = 8 * S.length s }) (decreases (S.length s)) = if S.length s = 0 then S.empty else S.append (le_of_uint64 (S.head s)) (le_of_seq_uint64 (S.tail s)) [@(deprecated "FStar.Endianness.seq_uint64_of_be")] let rec seq_uint64_of_be (l: nat) (b: bytes{ S.length b = 8 * l }): s:S.seq UInt64.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 8 in S.cons (uint64_of_be hd) (seq_uint64_of_be (l - 1) tl) [@(deprecated "FStar.Endianness.be_of_seq_uint64")] let rec be_of_seq_uint64 (s: S.seq UInt64.t): Tot (b:bytes { S.length b = 8 * S.length s }) (decreases (S.length s)) = if S.length s = 0 then S.empty else S.append (be_of_uint64 (S.head s)) (be_of_seq_uint64 (S.tail s)) #set-options "--max_fuel 1 --max_ifuel 0 --z3rlimit 50" [@(deprecated "FStar.Endianness.offset_uint32_be")] let rec offset_uint32_be (b: bytes) (n: nat) (i: nat): Lemma (requires ( S.length b = 4 * n /\ i < n)) (ensures ( S.index (seq_uint32_of_be n b) i == uint32_of_be (S.slice b (4 * i) (4 * i + 4)))) (decreases ( S.length b)) [ SMTPat (S.index (seq_uint32_of_be n b) i) ] = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 4 in if i = 0 then () else offset_uint32_be tl (n - 1) (i - 1) [@(deprecated "FStar.Endianness.offset_uint32_le")] let rec offset_uint32_le (b: bytes) (n: nat) (i: nat): Lemma (requires ( S.length b = 4 * n /\ i < n)) (ensures ( S.index (seq_uint32_of_le n b) i == uint32_of_le (S.slice b (4 * i) (4 * i + 4)))) (decreases ( S.length b)) [ SMTPat (S.index (seq_uint32_of_le n b) i) ] = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 4 in if i = 0 then () else offset_uint32_le tl (n - 1) (i - 1) [@(deprecated "FStar.Endianness.offset_uint64_be")] let rec offset_uint64_be (b: bytes) (n: nat) (i: nat): Lemma (requires ( S.length b = 8 * n /\ i < n)) (ensures ( S.index (seq_uint64_of_be n b) i == uint64_of_be (S.slice b (8 * i) (8 * i + 8)))) (decreases ( S.length b)) [ SMTPat (S.index (seq_uint64_of_be n b) i) ] = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 8 in if i = 0 then () else offset_uint64_be tl (n - 1) (i - 1) [@(deprecated "FStar.Endianness.offset_uint64_le")] let rec offset_uint64_le (b: bytes) (n: nat) (i: nat): Lemma (requires ( S.length b = 8 * n /\ i < n)) (ensures ( S.index (seq_uint64_of_le n b) i == uint64_of_le (S.slice b (8 * i) (8 * i + 8)))) (decreases ( S.length b)) [ SMTPat (S.index (seq_uint64_of_le n b) i) ] = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 8 in if i = 0 then () else offset_uint64_le tl (n - 1) (i - 1) (** Reasoning about endian-ness and words. *) #set-options "--max_fuel 1 --z3rlimit 20" (* TODO: move to FStar.Seq.Properties, with the pattern *) [@(deprecated "FStar.Endianness.tail_cons")] let tail_cons (#a: Type) (hd: a) (tl: S.seq a): Lemma (ensures (S.equal (S.tail (S.cons hd tl)) tl)) // [ SMTPat (S.tail (S.cons hd tl)) ] = () [@(deprecated "FStar.Endianness.be_of_seq_uint32_append")] let rec be_of_seq_uint32_append (s1 s2: S.seq U32.t): Lemma (ensures ( S.equal (be_of_seq_uint32 (S.append s1 s2)) (S.append (be_of_seq_uint32 s1) (be_of_seq_uint32 s2)))) (decreases ( S.length s1)) [ SMTPat (S.append (be_of_seq_uint32 s1) (be_of_seq_uint32 s2)) ] = Classical.forall_intro_2 (tail_cons #U32.t); // TODO: this is a local pattern, remove once tail_cons lands in FStar.Seq.Properties if S.length s1 = 0 then begin assert (S.equal (be_of_seq_uint32 s1) S.empty); assert (S.equal (S.append s1 s2) s2); () end else begin assert (S.equal (S.append s1 s2) (S.cons (S.head s1) (S.append (S.tail s1) s2))); assert (S.equal (be_of_seq_uint32 (S.append s1 s2)) (S.append (be_of_uint32 (S.head s1)) (be_of_seq_uint32 (S.append (S.tail s1) s2)))); be_of_seq_uint32_append (S.tail s1) s2 end [@(deprecated "FStar.Endianness.be_of_seq_uint32_base")] let be_of_seq_uint32_base (s1: S.seq U32.t) (s2: S.seq U8.t): Lemma (requires ( S.length s1 = 1 /\ S.length s2 = 4 /\ be_to_n s2 = U32.v (S.index s1 0))) (ensures (S.equal s2 (be_of_seq_uint32 s1))) [ SMTPat (be_to_n s2 = U32.v (S.index s1 0)) ] = () [@(deprecated "FStar.Endianness.le_of_seq_uint32_append")] let rec le_of_seq_uint32_append (s1 s2: S.seq U32.t): Lemma (ensures ( S.equal (le_of_seq_uint32 (S.append s1 s2)) (S.append (le_of_seq_uint32 s1) (le_of_seq_uint32 s2)))) (decreases ( S.length s1)) [ SMTPat (S.append (le_of_seq_uint32 s1) (le_of_seq_uint32 s2)) ] = Classical.forall_intro_2 (tail_cons #U32.t); // TODO: this is a local pattern, remove once tail_cons lands in FStar.Seq.Properties if S.length s1 = 0 then begin assert (S.equal (le_of_seq_uint32 s1) S.empty); assert (S.equal (S.append s1 s2) s2); () end else begin assert (S.equal (S.append s1 s2) (S.cons (S.head s1) (S.append (S.tail s1) s2))); assert (S.equal (le_of_seq_uint32 (S.append s1 s2)) (S.append (le_of_uint32 (S.head s1)) (le_of_seq_uint32 (S.append (S.tail s1) s2)))); le_of_seq_uint32_append (S.tail s1) s2 end [@(deprecated "FStar.Endianness.le_of_seq_uint32_base")] let le_of_seq_uint32_base (s1: S.seq U32.t) (s2: S.seq U8.t): Lemma (requires ( S.length s1 = 1 /\ S.length s2 = 4 /\ le_to_n s2 = U32.v (S.index s1 0))) (ensures (S.equal s2 (le_of_seq_uint32 s1))) [ SMTPat (le_to_n s2 = U32.v (S.index s1 0)) ] = () [@(deprecated "FStar.Endianness.be_of_seq_uint64_append")] let rec be_of_seq_uint64_append (s1 s2: S.seq U64.t): Lemma (ensures ( S.equal (be_of_seq_uint64 (S.append s1 s2)) (S.append (be_of_seq_uint64 s1) (be_of_seq_uint64 s2)))) (decreases ( S.length s1)) [ SMTPat (S.append (be_of_seq_uint64 s1) (be_of_seq_uint64 s2)) ]
false
false
FStar.Krml.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val be_of_seq_uint64_append (s1 s2: S.seq U64.t) : Lemma (ensures (S.equal (be_of_seq_uint64 (S.append s1 s2)) (S.append (be_of_seq_uint64 s1) (be_of_seq_uint64 s2)))) (decreases (S.length s1)) [SMTPat (S.append (be_of_seq_uint64 s1) (be_of_seq_uint64 s2))]
[ "recursion" ]
FStar.Krml.Endianness.be_of_seq_uint64_append
{ "file_name": "krmllib/FStar.Krml.Endianness.fst", "git_rev": "a7be2a7c43eca637ceb57fe8f3ffd16fc6627ebd", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
s1: FStar.Seq.Base.seq FStar.UInt64.t -> s2: FStar.Seq.Base.seq FStar.UInt64.t -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.equal (FStar.Krml.Endianness.be_of_seq_uint64 (FStar.Seq.Base.append s1 s2)) (FStar.Seq.Base.append (FStar.Krml.Endianness.be_of_seq_uint64 s1) (FStar.Krml.Endianness.be_of_seq_uint64 s2))) (decreases FStar.Seq.Base.length s1) [ SMTPat (FStar.Seq.Base.append (FStar.Krml.Endianness.be_of_seq_uint64 s1) (FStar.Krml.Endianness.be_of_seq_uint64 s2)) ]
{ "end_col": 5, "end_line": 499, "start_col": 2, "start_line": 489 }
FStar.Pervasives.Lemma
val be_of_seq_uint32_append (s1 s2: S.seq U32.t) : Lemma (ensures (S.equal (be_of_seq_uint32 (S.append s1 s2)) (S.append (be_of_seq_uint32 s1) (be_of_seq_uint32 s2)))) (decreases (S.length s1)) [SMTPat (S.append (be_of_seq_uint32 s1) (be_of_seq_uint32 s2))]
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Math" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Krml", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec be_of_seq_uint32_append (s1 s2: S.seq U32.t): Lemma (ensures ( S.equal (be_of_seq_uint32 (S.append s1 s2)) (S.append (be_of_seq_uint32 s1) (be_of_seq_uint32 s2)))) (decreases ( S.length s1)) [ SMTPat (S.append (be_of_seq_uint32 s1) (be_of_seq_uint32 s2)) ] = Classical.forall_intro_2 (tail_cons #U32.t); // TODO: this is a local pattern, remove once tail_cons lands in FStar.Seq.Properties if S.length s1 = 0 then begin assert (S.equal (be_of_seq_uint32 s1) S.empty); assert (S.equal (S.append s1 s2) s2); () end else begin assert (S.equal (S.append s1 s2) (S.cons (S.head s1) (S.append (S.tail s1) s2))); assert (S.equal (be_of_seq_uint32 (S.append s1 s2)) (S.append (be_of_uint32 (S.head s1)) (be_of_seq_uint32 (S.append (S.tail s1) s2)))); be_of_seq_uint32_append (S.tail s1) s2 end
val be_of_seq_uint32_append (s1 s2: S.seq U32.t) : Lemma (ensures (S.equal (be_of_seq_uint32 (S.append s1 s2)) (S.append (be_of_seq_uint32 s1) (be_of_seq_uint32 s2)))) (decreases (S.length s1)) [SMTPat (S.append (be_of_seq_uint32 s1) (be_of_seq_uint32 s2))] let rec be_of_seq_uint32_append (s1 s2: S.seq U32.t) : Lemma (ensures (S.equal (be_of_seq_uint32 (S.append s1 s2)) (S.append (be_of_seq_uint32 s1) (be_of_seq_uint32 s2)))) (decreases (S.length s1)) [SMTPat (S.append (be_of_seq_uint32 s1) (be_of_seq_uint32 s2))] =
false
null
true
Classical.forall_intro_2 (tail_cons #U32.t); if S.length s1 = 0 then (assert (S.equal (be_of_seq_uint32 s1) S.empty); assert (S.equal (S.append s1 s2) s2); ()) else (assert (S.equal (S.append s1 s2) (S.cons (S.head s1) (S.append (S.tail s1) s2))); assert (S.equal (be_of_seq_uint32 (S.append s1 s2)) (S.append (be_of_uint32 (S.head s1)) (be_of_seq_uint32 (S.append (S.tail s1) s2)))); be_of_seq_uint32_append (S.tail s1) s2)
{ "checked_file": "FStar.Krml.Endianness.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.All.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Krml.Endianness.fst" }
[ "lemma", "" ]
[ "FStar.Seq.Base.seq", "FStar.UInt32.t", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "Prims.unit", "Prims._assert", "FStar.Seq.Base.equal", "FStar.Seq.Base.append", "FStar.UInt8.t", "FStar.Krml.Endianness.be_of_seq_uint32", "FStar.Seq.Base.empty", "Prims.bool", "FStar.Krml.Endianness.be_of_seq_uint32_append", "FStar.Seq.Properties.tail", "FStar.Krml.Endianness.be_of_uint32", "FStar.Seq.Properties.head", "FStar.Seq.Properties.cons", "FStar.Classical.forall_intro_2", "FStar.Krml.Endianness.tail_cons", "Prims.l_True", "Prims.squash", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.Nil" ]
[]
module FStar.Krml.Endianness open FStar.Mul open FStar.HyperStack.All module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module Math = FStar.Math.Lemmas module S = FStar.Seq (* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several name changes *) inline_for_extraction noextract type bytes = S.seq U8.t /// lt_to_n interprets a byte sequence as a little-endian natural number [@(deprecated "FStar.Endianness.le_to_n")] val le_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec le_to_n b = if S.length b = 0 then 0 else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b) /// be_to_n interprets a byte sequence as a big-endian natural number [@(deprecated "FStar.Endianness.be_to_n")] val be_to_n : b:bytes -> Tot nat (decreases (S.length b)) let rec be_to_n b = if S.length b = 0 then 0 else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1)) [@(deprecated "FStar.Endianness.lemma_euclidean_division")] private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma (requires (r < q)) (ensures (r + q * b < q * (b+1))) let lemma_euclidean_division r b q = () [@(deprecated "FStar.Endianness.lemma_factorise")] private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1)) let lemma_factorise a b = () [@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")] val lemma_le_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (le_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_le_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 1 (Seq.length b) in assert(Seq.length s = Seq.length b - 1); lemma_le_to_n_is_bounded s; assert(UInt8.v (Seq.index b 0) < pow2 8); assert(le_to_n s < pow2 (8 * Seq.length s)); assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8); assert(le_to_n b <= pow2 8 * (le_to_n s + 1)); assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end [@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")] val lemma_be_to_n_is_bounded: b:bytes -> Lemma (requires True) (ensures (be_to_n b < pow2 (8 * Seq.length b))) (decreases (Seq.length b)) let rec lemma_be_to_n_is_bounded b = if Seq.length b = 0 then () else begin let s = Seq.slice b 0 (Seq.length b - 1) in assert(Seq.length s = Seq.length b - 1); lemma_be_to_n_is_bounded s; assert(UInt8.v (Seq.last b) < pow2 8); assert(be_to_n s < pow2 (8 * Seq.length s)); assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1))); lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8); assert(be_to_n b <= pow2 8 * (be_to_n s + 1)); assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1))); Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1)); lemma_factorise 8 (Seq.length b - 1) end /// n_to_le encodes a number as a little-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_le")] val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b}) (decreases (U32.v len)) let rec n_to_le len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_le len n' in let b = S.cons byte b' in S.lemma_eq_intro b' (S.tail b); b /// n_to_be encodes a numbers as a big-endian byte sequence of a fixed, /// sufficiently large length [@(deprecated "FStar.Endianness.n_to_be")] val n_to_be: len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} -> Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b}) (decreases (U32.v len)) let rec n_to_be len n = if len = 0ul then S.empty else let len = U32.(len -^ 1ul) in let byte = U8.uint_to_t (n % 256) in let n' = n / 256 in Math.pow2_plus 8 (8 * U32.v len); assert(n' < pow2 (8 * U32.v len )); let b' = n_to_be len n' in let b'' = S.create 1 byte in let b = S.append b' b'' in S.lemma_eq_intro b' (S.slice b 0 (U32.v len)); b [@(deprecated "FStar.Endianness.n_to_le_inj")] let n_to_le_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_le len n1 == n_to_le len n2)) (ensures (n1 == n2)) = // this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion // proof in the spec for n_to_le () [@(deprecated "FStar.Endianness.n_to_be_inj")] let n_to_be_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) : Lemma (requires (n_to_be len n1 == n_to_be len n2)) (ensures (n1 == n2)) = () [@(deprecated "FStar.Endianness.be_to_n_inj")] let rec be_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1)); Seq.lemma_split b1 (Seq.length b1 - 1); Seq.lemma_split b2 (Seq.length b2 - 1) end [@(deprecated "FStar.Endianness.le_to_n_inj")] let rec le_to_n_inj (b1 b2: Seq.seq U8.t) : Lemma (requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2)) (ensures (Seq.equal b1 b2)) (decreases (Seq.length b1)) = if Seq.length b1 = 0 then () else begin le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2)); Seq.lemma_split b1 1; Seq.lemma_split b2 1 end [@(deprecated "FStar.Endianness.n_to_be_be_to_n")] let n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures ( be_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\ n_to_be len (be_to_n s) == s )) [SMTPat (n_to_be len (be_to_n s))] = lemma_be_to_n_is_bounded s; be_to_n_inj s (n_to_be len (be_to_n s)) [@(deprecated "FStar.Endianness.n_to_le_le_to_n")] let n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma (requires (Seq.length s == U32.v len)) (ensures ( le_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\ n_to_le len (le_to_n s) == s )) [SMTPat (n_to_le len (le_to_n s))] = lemma_le_to_n_is_bounded s; le_to_n_inj s (n_to_le len (le_to_n s)) (** A series of specializations to deal with machine integers *) [@(deprecated "FStar.Endianness.uint32_of_le")] let uint32_of_le (b: bytes { S.length b = 4 }) = let n = le_to_n b in lemma_le_to_n_is_bounded b; UInt32.uint_to_t n [@(deprecated "FStar.Endianness.le_of_uint32")] let le_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } = n_to_le 4ul (UInt32.v x) [@(deprecated "FStar.Endianness.uint32_of_be")] let uint32_of_be (b: bytes { S.length b = 4 }) = let n = be_to_n b in lemma_be_to_n_is_bounded b; UInt32.uint_to_t n [@(deprecated "FStar.Endianness.be_of_uint32")] let be_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } = n_to_be 4ul (UInt32.v x) [@(deprecated "FStar.Endianness.uint64_of_le")] let uint64_of_le (b: bytes { S.length b = 8 }) = let n = le_to_n b in lemma_le_to_n_is_bounded b; UInt64.uint_to_t n [@(deprecated "FStar.Endianness.le_of_uint64")] let le_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } = n_to_le 8ul (UInt64.v x) [@(deprecated "FStar.Endianness.uint64_of_be")] let uint64_of_be (b: bytes { S.length b = 8 }) = let n = be_to_n b in lemma_be_to_n_is_bounded b; UInt64.uint_to_t n [@(deprecated "FStar.Endianness.be_of_uint64")] let be_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } = n_to_be 8ul (UInt64.v x) [@(deprecated "FStar.Endianness.seq_uint32_of_le")] let rec seq_uint32_of_le (l: nat) (b: bytes{ S.length b = 4 * l }): s:S.seq UInt32.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_le hd) (seq_uint32_of_le (l - 1) tl) [@(deprecated "FStar.Endianness.le_of_seq_uint32")] let rec le_of_seq_uint32 (s: S.seq UInt32.t): Tot (b:bytes { S.length b = 4 * S.length s }) (decreases (S.length s)) = if S.length s = 0 then S.empty else S.append (le_of_uint32 (S.head s)) (le_of_seq_uint32 (S.tail s)) [@(deprecated "FStar.Endianness.seq_uint32_of_be")] let rec seq_uint32_of_be (l: nat) (b: bytes{ S.length b = 4 * l }): s:S.seq UInt32.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 4 in S.cons (uint32_of_be hd) (seq_uint32_of_be (l - 1) tl) [@(deprecated "FStar.Endianness.be_of_seq_uint32")] let rec be_of_seq_uint32 (s: S.seq UInt32.t): Tot (b:bytes { S.length b = 4 * S.length s }) (decreases (S.length s)) = if S.length s = 0 then S.empty else S.append (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s)) [@(deprecated "FStar.Endianness.seq_uint64_of_le")] let rec seq_uint64_of_le (l: nat) (b: bytes{ S.length b = 8 * l }): s:S.seq UInt64.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 8 in S.cons (uint64_of_le hd) (seq_uint64_of_le (l - 1) tl) [@(deprecated "FStar.Endianness.le_of_seq_uint64")] let rec le_of_seq_uint64 (s: S.seq UInt64.t): Tot (b:bytes { S.length b = 8 * S.length s }) (decreases (S.length s)) = if S.length s = 0 then S.empty else S.append (le_of_uint64 (S.head s)) (le_of_seq_uint64 (S.tail s)) [@(deprecated "FStar.Endianness.seq_uint64_of_be")] let rec seq_uint64_of_be (l: nat) (b: bytes{ S.length b = 8 * l }): s:S.seq UInt64.t { S.length s = l } = if S.length b = 0 then S.empty else let hd, tl = Seq.split b 8 in S.cons (uint64_of_be hd) (seq_uint64_of_be (l - 1) tl) [@(deprecated "FStar.Endianness.be_of_seq_uint64")] let rec be_of_seq_uint64 (s: S.seq UInt64.t): Tot (b:bytes { S.length b = 8 * S.length s }) (decreases (S.length s)) = if S.length s = 0 then S.empty else S.append (be_of_uint64 (S.head s)) (be_of_seq_uint64 (S.tail s)) #set-options "--max_fuel 1 --max_ifuel 0 --z3rlimit 50" [@(deprecated "FStar.Endianness.offset_uint32_be")] let rec offset_uint32_be (b: bytes) (n: nat) (i: nat): Lemma (requires ( S.length b = 4 * n /\ i < n)) (ensures ( S.index (seq_uint32_of_be n b) i == uint32_of_be (S.slice b (4 * i) (4 * i + 4)))) (decreases ( S.length b)) [ SMTPat (S.index (seq_uint32_of_be n b) i) ] = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 4 in if i = 0 then () else offset_uint32_be tl (n - 1) (i - 1) [@(deprecated "FStar.Endianness.offset_uint32_le")] let rec offset_uint32_le (b: bytes) (n: nat) (i: nat): Lemma (requires ( S.length b = 4 * n /\ i < n)) (ensures ( S.index (seq_uint32_of_le n b) i == uint32_of_le (S.slice b (4 * i) (4 * i + 4)))) (decreases ( S.length b)) [ SMTPat (S.index (seq_uint32_of_le n b) i) ] = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 4 in if i = 0 then () else offset_uint32_le tl (n - 1) (i - 1) [@(deprecated "FStar.Endianness.offset_uint64_be")] let rec offset_uint64_be (b: bytes) (n: nat) (i: nat): Lemma (requires ( S.length b = 8 * n /\ i < n)) (ensures ( S.index (seq_uint64_of_be n b) i == uint64_of_be (S.slice b (8 * i) (8 * i + 8)))) (decreases ( S.length b)) [ SMTPat (S.index (seq_uint64_of_be n b) i) ] = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 8 in if i = 0 then () else offset_uint64_be tl (n - 1) (i - 1) [@(deprecated "FStar.Endianness.offset_uint64_le")] let rec offset_uint64_le (b: bytes) (n: nat) (i: nat): Lemma (requires ( S.length b = 8 * n /\ i < n)) (ensures ( S.index (seq_uint64_of_le n b) i == uint64_of_le (S.slice b (8 * i) (8 * i + 8)))) (decreases ( S.length b)) [ SMTPat (S.index (seq_uint64_of_le n b) i) ] = if S.length b = 0 then false_elim () else let hd, tl = Seq.split b 8 in if i = 0 then () else offset_uint64_le tl (n - 1) (i - 1) (** Reasoning about endian-ness and words. *) #set-options "--max_fuel 1 --z3rlimit 20" (* TODO: move to FStar.Seq.Properties, with the pattern *) [@(deprecated "FStar.Endianness.tail_cons")] let tail_cons (#a: Type) (hd: a) (tl: S.seq a): Lemma (ensures (S.equal (S.tail (S.cons hd tl)) tl)) // [ SMTPat (S.tail (S.cons hd tl)) ] = () [@(deprecated "FStar.Endianness.be_of_seq_uint32_append")] let rec be_of_seq_uint32_append (s1 s2: S.seq U32.t): Lemma (ensures ( S.equal (be_of_seq_uint32 (S.append s1 s2)) (S.append (be_of_seq_uint32 s1) (be_of_seq_uint32 s2)))) (decreases ( S.length s1)) [ SMTPat (S.append (be_of_seq_uint32 s1) (be_of_seq_uint32 s2)) ]
false
false
FStar.Krml.Endianness.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val be_of_seq_uint32_append (s1 s2: S.seq U32.t) : Lemma (ensures (S.equal (be_of_seq_uint32 (S.append s1 s2)) (S.append (be_of_seq_uint32 s1) (be_of_seq_uint32 s2)))) (decreases (S.length s1)) [SMTPat (S.append (be_of_seq_uint32 s1) (be_of_seq_uint32 s2))]
[ "recursion" ]
FStar.Krml.Endianness.be_of_seq_uint32_append
{ "file_name": "krmllib/FStar.Krml.Endianness.fst", "git_rev": "a7be2a7c43eca637ceb57fe8f3ffd16fc6627ebd", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
s1: FStar.Seq.Base.seq FStar.UInt32.t -> s2: FStar.Seq.Base.seq FStar.UInt32.t -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.equal (FStar.Krml.Endianness.be_of_seq_uint32 (FStar.Seq.Base.append s1 s2)) (FStar.Seq.Base.append (FStar.Krml.Endianness.be_of_seq_uint32 s1) (FStar.Krml.Endianness.be_of_seq_uint32 s2))) (decreases FStar.Seq.Base.length s1) [ SMTPat (FStar.Seq.Base.append (FStar.Krml.Endianness.be_of_seq_uint32 s1) (FStar.Krml.Endianness.be_of_seq_uint32 s2)) ]
{ "end_col": 5, "end_line": 435, "start_col": 2, "start_line": 425 }
FStar.HyperStack.ST.Stack
val fmul_r2_normalize: out:felem 2 -> p:precomp_r 2 -> Stack unit (requires fun h -> live h out /\ live h p /\ felem_fits h out (3, 3, 3, 3, 3) /\ load_precompute_r_post h p) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ felem_fits h1 out (2, 2, 2, 2, 2) /\ (let r = feval h0 (gsub p 0ul 5ul) in (feval h1 out).[0] == Vec.normalize_2 r.[0] (feval h0 out)))
[ { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Field32xN", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Hacl.Spec.Poly1305.Vec", "short_module": "Vec" }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Field32xN.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let fmul_r2_normalize out p = let r = sub p 0ul 5ul in let r2 = sub p 10ul 5ul in let a0 = out.(0ul) in let a1 = out.(1ul) in let a2 = out.(2ul) in let a3 = out.(3ul) in let a4 = out.(4ul) in let r10 = r.(0ul) in let r11 = r.(1ul) in let r12 = r.(2ul) in let r13 = r.(3ul) in let r14 = r.(4ul) in let r20 = r2.(0ul) in let r21 = r2.(1ul) in let r22 = r2.(2ul) in let r23 = r2.(3ul) in let r24 = r2.(4ul) in let (o0, o1, o2, o3, o4) = fmul_r2_normalize5 (a0, a1, a2, a3, a4) (r10, r11, r12, r13, r14) (r20, r21, r22, r23, r24) in out.(0ul) <- o0; out.(1ul) <- o1; out.(2ul) <- o2; out.(3ul) <- o3; out.(4ul) <- o4
val fmul_r2_normalize: out:felem 2 -> p:precomp_r 2 -> Stack unit (requires fun h -> live h out /\ live h p /\ felem_fits h out (3, 3, 3, 3, 3) /\ load_precompute_r_post h p) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ felem_fits h1 out (2, 2, 2, 2, 2) /\ (let r = feval h0 (gsub p 0ul 5ul) in (feval h1 out).[0] == Vec.normalize_2 r.[0] (feval h0 out))) let fmul_r2_normalize out p =
true
null
false
let r = sub p 0ul 5ul in let r2 = sub p 10ul 5ul in let a0 = out.(0ul) in let a1 = out.(1ul) in let a2 = out.(2ul) in let a3 = out.(3ul) in let a4 = out.(4ul) in let r10 = r.(0ul) in let r11 = r.(1ul) in let r12 = r.(2ul) in let r13 = r.(3ul) in let r14 = r.(4ul) in let r20 = r2.(0ul) in let r21 = r2.(1ul) in let r22 = r2.(2ul) in let r23 = r2.(3ul) in let r24 = r2.(4ul) in let o0, o1, o2, o3, o4 = fmul_r2_normalize5 (a0, a1, a2, a3, a4) (r10, r11, r12, r13, r14) (r20, r21, r22, r23, r24) in out.(0ul) <- o0; out.(1ul) <- o1; out.(2ul) <- o2; out.(3ul) <- o3; out.(4ul) <- o4
{ "checked_file": "Hacl.Impl.Poly1305.Field32xN_128.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Poly1305.Vec.fst.checked", "Hacl.Spec.Poly1305.Field32xN.Lemmas.fst.checked", "Hacl.Spec.Poly1305.Field32xN.fst.checked", "Hacl.Impl.Poly1305.Field32xN.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Poly1305.Field32xN_128.fst" }
[]
[ "Hacl.Impl.Poly1305.Field32xN.felem", "Hacl.Impl.Poly1305.Field32xN.precomp_r", "Hacl.Spec.Poly1305.Field32xN.uint64xN", "Lib.Buffer.op_Array_Assignment", "FStar.UInt32.__uint_to_t", "Prims.unit", "Hacl.Spec.Poly1305.Field32xN.felem5", "Hacl.Spec.Poly1305.Field32xN.fmul_r2_normalize5", "FStar.Pervasives.Native.Mktuple5", "Lib.Buffer.op_Array_Access", "Lib.Buffer.MUT", "Lib.Buffer.lbuffer_t", "FStar.UInt32.uint_to_t", "FStar.UInt32.t", "Lib.Buffer.sub" ]
[]
module Hacl.Impl.Poly1305.Field32xN_128 open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer include Hacl.Spec.Poly1305.Field32xN open Hacl.Spec.Poly1305.Field32xN.Lemmas module Vec = Hacl.Spec.Poly1305.Vec module ST = FStar.HyperStack.ST open Hacl.Impl.Poly1305.Field32xN /// See comments in Hacl.Impl.Poly1305.Field32xN_256 #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50 --using_facts_from '* -FStar.Seq'" val load_acc2: acc:felem 2 -> b:lbuffer uint8 32ul -> Stack unit (requires fun h -> live h acc /\ live h b /\ disjoint acc b /\ felem_fits h acc (2, 2, 2, 2, 2)) (ensures fun h0 _ h1 -> modifies (loc acc) h0 h1 /\ felem_fits h1 acc (3, 3, 3, 3, 3) /\ feval h1 acc == Vec.load_acc2 (as_seq h0 b) (feval h0 acc).[0]) let load_acc2 acc b = push_frame(); let e = create 5ul (zero 2) in load_blocks e b; let acc0 = acc.(0ul) in let acc1 = acc.(1ul) in let acc2 = acc.(2ul) in let acc3 = acc.(3ul) in let acc4 = acc.(4ul) in let e0 = e.(0ul) in let e1 = e.(1ul) in let e2 = e.(2ul) in let e3 = e.(3ul) in let e4 = e.(4ul) in let (acc0, acc1, acc2, acc3, acc4) = load_acc5_2 (acc0, acc1, acc2, acc3, acc4) (e0, e1, e2, e3, e4) in acc.(0ul) <- acc0; acc.(1ul) <- acc1; acc.(2ul) <- acc2; acc.(3ul) <- acc3; acc.(4ul) <- acc4; pop_frame() val fmul_r2_normalize: out:felem 2 -> p:precomp_r 2 -> Stack unit (requires fun h -> live h out /\ live h p /\ felem_fits h out (3, 3, 3, 3, 3) /\ load_precompute_r_post h p) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ felem_fits h1 out (2, 2, 2, 2, 2) /\ (let r = feval h0 (gsub p 0ul 5ul) in
false
false
Hacl.Impl.Poly1305.Field32xN_128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fmul_r2_normalize: out:felem 2 -> p:precomp_r 2 -> Stack unit (requires fun h -> live h out /\ live h p /\ felem_fits h out (3, 3, 3, 3, 3) /\ load_precompute_r_post h p) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ felem_fits h1 out (2, 2, 2, 2, 2) /\ (let r = feval h0 (gsub p 0ul 5ul) in (feval h1 out).[0] == Vec.normalize_2 r.[0] (feval h0 out)))
[]
Hacl.Impl.Poly1305.Field32xN_128.fmul_r2_normalize
{ "file_name": "code/poly1305/Hacl.Impl.Poly1305.Field32xN_128.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
out: Hacl.Impl.Poly1305.Field32xN.felem 2 -> p: Hacl.Impl.Poly1305.Field32xN.precomp_r 2 -> FStar.HyperStack.ST.Stack Prims.unit
{ "end_col": 17, "end_line": 101, "start_col": 29, "start_line": 73 }
FStar.HyperStack.ST.Stack
val load_acc2: acc:felem 2 -> b:lbuffer uint8 32ul -> Stack unit (requires fun h -> live h acc /\ live h b /\ disjoint acc b /\ felem_fits h acc (2, 2, 2, 2, 2)) (ensures fun h0 _ h1 -> modifies (loc acc) h0 h1 /\ felem_fits h1 acc (3, 3, 3, 3, 3) /\ feval h1 acc == Vec.load_acc2 (as_seq h0 b) (feval h0 acc).[0])
[ { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Field32xN", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Hacl.Spec.Poly1305.Vec", "short_module": "Vec" }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Field32xN.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let load_acc2 acc b = push_frame(); let e = create 5ul (zero 2) in load_blocks e b; let acc0 = acc.(0ul) in let acc1 = acc.(1ul) in let acc2 = acc.(2ul) in let acc3 = acc.(3ul) in let acc4 = acc.(4ul) in let e0 = e.(0ul) in let e1 = e.(1ul) in let e2 = e.(2ul) in let e3 = e.(3ul) in let e4 = e.(4ul) in let (acc0, acc1, acc2, acc3, acc4) = load_acc5_2 (acc0, acc1, acc2, acc3, acc4) (e0, e1, e2, e3, e4) in acc.(0ul) <- acc0; acc.(1ul) <- acc1; acc.(2ul) <- acc2; acc.(3ul) <- acc3; acc.(4ul) <- acc4; pop_frame()
val load_acc2: acc:felem 2 -> b:lbuffer uint8 32ul -> Stack unit (requires fun h -> live h acc /\ live h b /\ disjoint acc b /\ felem_fits h acc (2, 2, 2, 2, 2)) (ensures fun h0 _ h1 -> modifies (loc acc) h0 h1 /\ felem_fits h1 acc (3, 3, 3, 3, 3) /\ feval h1 acc == Vec.load_acc2 (as_seq h0 b) (feval h0 acc).[0]) let load_acc2 acc b =
true
null
false
push_frame (); let e = create 5ul (zero 2) in load_blocks e b; let acc0 = acc.(0ul) in let acc1 = acc.(1ul) in let acc2 = acc.(2ul) in let acc3 = acc.(3ul) in let acc4 = acc.(4ul) in let e0 = e.(0ul) in let e1 = e.(1ul) in let e2 = e.(2ul) in let e3 = e.(3ul) in let e4 = e.(4ul) in let acc0, acc1, acc2, acc3, acc4 = load_acc5_2 (acc0, acc1, acc2, acc3, acc4) (e0, e1, e2, e3, e4) in acc.(0ul) <- acc0; acc.(1ul) <- acc1; acc.(2ul) <- acc2; acc.(3ul) <- acc3; acc.(4ul) <- acc4; pop_frame ()
{ "checked_file": "Hacl.Impl.Poly1305.Field32xN_128.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Poly1305.Vec.fst.checked", "Hacl.Spec.Poly1305.Field32xN.Lemmas.fst.checked", "Hacl.Spec.Poly1305.Field32xN.fst.checked", "Hacl.Impl.Poly1305.Field32xN.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Poly1305.Field32xN_128.fst" }
[]
[ "Hacl.Impl.Poly1305.Field32xN.felem", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "FStar.UInt32.__uint_to_t", "Hacl.Spec.Poly1305.Field32xN.uint64xN", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "Lib.Buffer.op_Array_Assignment", "Hacl.Spec.Poly1305.Field32xN.felem5", "Hacl.Spec.Poly1305.Field32xN.load_acc5_2", "FStar.Pervasives.Native.Mktuple5", "Lib.Buffer.op_Array_Access", "Lib.Buffer.MUT", "Hacl.Impl.Poly1305.Field32xN.load_blocks", "Lib.Buffer.lbuffer_t", "FStar.UInt32.uint_to_t", "FStar.UInt32.t", "Lib.Buffer.create", "Hacl.Spec.Poly1305.Field32xN.zero", "FStar.HyperStack.ST.push_frame" ]
[]
module Hacl.Impl.Poly1305.Field32xN_128 open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer include Hacl.Spec.Poly1305.Field32xN open Hacl.Spec.Poly1305.Field32xN.Lemmas module Vec = Hacl.Spec.Poly1305.Vec module ST = FStar.HyperStack.ST open Hacl.Impl.Poly1305.Field32xN /// See comments in Hacl.Impl.Poly1305.Field32xN_256 #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50 --using_facts_from '* -FStar.Seq'" val load_acc2: acc:felem 2 -> b:lbuffer uint8 32ul -> Stack unit (requires fun h -> live h acc /\ live h b /\ disjoint acc b /\ felem_fits h acc (2, 2, 2, 2, 2)) (ensures fun h0 _ h1 -> modifies (loc acc) h0 h1 /\ felem_fits h1 acc (3, 3, 3, 3, 3) /\ feval h1 acc == Vec.load_acc2 (as_seq h0 b) (feval h0 acc).[0])
false
false
Hacl.Impl.Poly1305.Field32xN_128.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val load_acc2: acc:felem 2 -> b:lbuffer uint8 32ul -> Stack unit (requires fun h -> live h acc /\ live h b /\ disjoint acc b /\ felem_fits h acc (2, 2, 2, 2, 2)) (ensures fun h0 _ h1 -> modifies (loc acc) h0 h1 /\ felem_fits h1 acc (3, 3, 3, 3, 3) /\ feval h1 acc == Vec.load_acc2 (as_seq h0 b) (feval h0 acc).[0])
[]
Hacl.Impl.Poly1305.Field32xN_128.load_acc2
{ "file_name": "code/poly1305/Hacl.Impl.Poly1305.Field32xN_128.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
acc: Hacl.Impl.Poly1305.Field32xN.felem 2 -> b: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul -> FStar.HyperStack.ST.Stack Prims.unit
{ "end_col": 13, "end_line": 57, "start_col": 2, "start_line": 35 }
Prims.Tot
val ghost_ref (a:Type u#1) : Type u#0
[ { "abbrev": true, "full_module": "Steel.PCMReference", "short_module": "RP" }, { "abbrev": false, "full_module": "FStar.Real", "short_module": null }, { "abbrev": false, "full_module": "Steel.PCMFrac", "short_module": null }, { "abbrev": false, "full_module": "FStar.PCM", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ghost_ref a = erased (ref a)
val ghost_ref (a:Type u#1) : Type u#0 let ghost_ref a =
false
null
false
erased (ref a)
{ "checked_file": "Steel.HigherReference.fst.checked", "dependencies": [ "Steel.PCMReference.fsti.checked", "Steel.PCMFrac.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Real.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.PCM.fst.checked", "FStar.NMSTTotal.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Steel.HigherReference.fst" }
[ "total" ]
[ "FStar.Ghost.erased", "Steel.HigherReference.ref" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.HigherReference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect open FStar.PCM open Steel.PCMFrac open FStar.Real module RP = Steel.PCMReference #set-options "--ide_id_info_off" module Mem = Steel.Memory let ref a = Mem.ref (fractional a) pcm_frac let null #a = Mem.null #(fractional a) #pcm_frac let is_null #a r = Mem.is_null #(fractional a) #pcm_frac r let perm_ok p : prop = (p.v <=. one == true) /\ True let pts_to_raw_sl (#a:Type) (r:ref a) (p:perm) (v:erased a) : slprop = Mem.pts_to r (Some (Ghost.reveal v, p)) let pts_to_raw (#a:Type) (r:ref a) (p:perm) (v:erased a) : vprop = to_vprop (Mem.pts_to r (Some (Ghost.reveal v, p))) [@@__reduce__] let pts_to' (#a:Type u#1) (r:ref a) (p:perm) (v:erased a) : vprop = pts_to_raw r p v `star` pure (perm_ok p) let pts_to_sl #a r p v = hp_of (pts_to' r p v) let abcd_acbd (a b c d:slprop) : Lemma (Mem.(((a `star` b) `star` (c `star` d)) `equiv` ((a `star` c) `star` (b `star` d)))) = let open Steel.Memory in calc (equiv) { ((a `star` b) `star` (c `star` d)); (equiv) { star_associative a b (c `star` d) } ((a `star` (b `star` (c `star` d)))); (equiv) { star_associative b c d; star_congruence a (b `star` (c `star` d)) a ((b `star` c) `star` d) } (a `star` ((b `star` c) `star` d)); (equiv) { star_commutative b c; star_congruence (b `star` c) d (c `star` b) d; star_congruence a ((b `star` c) `star` d) a ((c `star` b) `star` d) } (a `star` ((c `star` b) `star` d)); (equiv) { star_associative c b d; star_congruence a ((c `star` b) `star` d) a (c `star` (b `star` d)) } (a `star` (c `star` (b `star` d))); (equiv) { star_associative a c (b `star` d) } ((a `star` c) `star` (b `star` d)); } let pts_to_ref_injective (#a: Type u#1) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let open Steel.Memory in abcd_acbd (hp_of (pts_to_raw r p0 v0)) (pure (perm_ok p0)) (hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p1)); Mem.affine_star (hp_of (pts_to_raw r p0 v0) `star` hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p0) `star` pure (perm_ok p1)) m; Mem.pts_to_compatible r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) m let pts_to_not_null (#a:Type u#1) (r:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures r =!= null) = Mem.affine_star (hp_of (pts_to_raw r p v)) (Mem.pure (perm_ok p)) m; Mem.pts_to_not_null r (Some (Ghost.reveal v, p)) m let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : erased a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = Mem.pts_to_join r (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let higher_ref_pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let pts_to_framon (#a:Type) (r:ref a) (p:perm) : Lemma (is_frame_monotonic (pts_to_sl r p)) = pts_to_witinv r p let intro_pts_to (p:perm) #a #uses (#v:erased a) (r:ref a) : SteelGhost unit uses (pts_to_raw r p v) (fun _ -> pts_to r p v) (requires fun _ -> perm_ok p) (ensures fun _ _ _ -> True) = intro_pure (perm_ok p); rewrite_slprop (pts_to' r p v) (pts_to r p v) (fun _ -> ()) let alloc #a x = let v = Some (x, full_perm) in assert (FStar.PCM.composable pcm_frac v None); assert (compatible pcm_frac v v); let r = RP.alloc v in rewrite_slprop (RP.pts_to r v) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m ); extract_info_raw (pts_to r full_perm x) (~ (is_null r)) (fun m -> pts_to_not_null r full_perm x m); return r let read (#a:Type) (#p:perm) (#v:erased a) (r:ref a) = let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ()); elim_pure (perm_ok p); let v2 = RP.read r v1 in rewrite_slprop (RP.pts_to r v1) (pts_to r p v) (fun m -> emp_unit (hp_of (pts_to_raw r p v)); pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m); assert (compatible pcm_frac v1 v2); let Some (x, _) = v2 in rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ()); return x let atomic_read (#opened:_) (#a:Type) (#p:perm) (#v:erased a) (r:ref a) = let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ()); elim_pure (perm_ok p); let v2 = RP.atomic_read r v1 in rewrite_slprop (RP.pts_to r v1) (pts_to r p v) (fun m -> emp_unit (hp_of (pts_to_raw r p v)); pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m); assert (compatible pcm_frac v1 v2); let Some (x, _) = v2 in rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ()); return x let read_refine (#a:Type) (#p:perm) (q:a -> vprop) (r:ref a) : SteelT a (h_exists (fun (v:a) -> pts_to r p v `star` q v)) (fun v -> pts_to r p v `star` q v) = let vs:erased a = witness_exists () in rewrite_slprop (pts_to r p (Ghost.hide (Ghost.reveal vs))) (pts_to r p vs) (fun _ -> ()); let v = read r in rewrite_slprop (q vs) (q v) (fun _ -> ()); return v let write (#a:Type) (#v:erased a) (r:ref a) (x:a) : SteelT unit (pts_to r full_perm v) (fun _ -> pts_to r full_perm x) = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in let v_new : fractional a = Some (x, full_perm) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.write r v_old v_new; rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m) let atomic_write #opened #a #v r x = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in let v_new : fractional a = Some (x, full_perm) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.atomic_write r v_old v_new; rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m) let free (#a:Type) (#v:erased a) (r:ref a) : SteelT unit (pts_to r full_perm v) (fun _ -> emp) = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.free r v_old; drop (RP.pts_to r (Mkpcm'?.one (Mkpcm?.p pcm_frac))) let share_atomic_raw #a #uses (#p:perm) (r:ref a{perm_ok p}) (v0:erased a) : SteelGhostT unit uses (pts_to_raw r p v0) (fun _ -> pts_to_raw r (half_perm p) v0 `star` pts_to_raw r (half_perm p) v0) = rewrite_slprop (pts_to_raw r p v0) (RP.pts_to r _) (fun _ -> ()); RP.split r (Some (Ghost.reveal v0, p)) (Some (Ghost.reveal v0, half_perm p)) (Some (Ghost.reveal v0, half_perm p)); rewrite_slprop (RP.pts_to r _) (pts_to_raw r (half_perm p) v0) (fun _ -> ()); rewrite_slprop (RP.pts_to r _) (pts_to_raw r (half_perm p) v0) (fun _ -> ()) let share (#a:Type) #uses (#p:perm) (#v:erased a) (r:ref a) : SteelGhostT unit uses (pts_to r p v) (fun _ -> pts_to r (half_perm p) v `star` pts_to r (half_perm p) v) = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (pts_to' r p v) (fun _ -> ()); elim_pure (perm_ok p); share_atomic_raw r v; intro_pts_to (half_perm p) r; intro_pts_to (half_perm p) r let gather_atomic_raw (#a:Type) (#uses:_) (#p0 #p1:perm) (r:ref a) (v0:erased a) (v1:erased a) : SteelGhostT (_:unit{v0==v1 /\ perm_ok (sum_perm p0 p1)}) uses (pts_to_raw r p0 v0 `star` pts_to_raw r p1 v1) (fun _ -> pts_to_raw r (sum_perm p0 p1) v0) = rewrite_slprop (pts_to_raw r p0 v0) (RP.pts_to r (Ghost.reveal (Some (Ghost.reveal v0, p0)))) (fun _ -> ()); rewrite_slprop (pts_to_raw r p1 v1) (RP.pts_to r (Ghost.reveal (Some (Ghost.reveal v1, p1)))) (fun _ -> ()); let _ = RP.gather r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) in rewrite_slprop (RP.pts_to r _) (pts_to_raw r (sum_perm p0 p1) v0) (fun _ -> ()) let gather (#a:Type) (#uses:_) (#p0:perm) (#p1:perm) (#v0 #v1:erased a) (r:ref a) = let v0_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v0, p0)) in let v1_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v1, p1)) in rewrite_slprop (pts_to r p0 v0) (pts_to_raw r p0 v0 `star` pure (perm_ok p0)) (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (pts_to_raw r p1 v1 `star` pure (perm_ok p1)) (fun _ -> ()); elim_pure (perm_ok p0); elim_pure (perm_ok p1); let _ = gather_atomic_raw r v0 v1 in intro_pts_to (sum_perm p0 p1) r let cas_provides #t (r:ref t) (v:Ghost.erased t) (v_new:t) (b:bool) = if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v let equiv_ext_right (p q r:slprop) : Lemma (requires q `Mem.equiv` r) (ensures Mem.((p `star` q) `equiv` (p `star` r))) = let open Steel.Memory in calc (equiv) { p `star` q; (equiv) { star_commutative p q } q `star` p; (equiv) { equiv_extensional_on_star q r p } r `star` p; (equiv) { star_commutative p r } p `star` r; } let cas_action_helper (p q r s:slprop) (m:mem) : Lemma (requires interp Mem.(p `star` q `star` r `star` s) m) (ensures interp Mem.(p `star` q `star` s) m) = let open Steel.Memory in calc (equiv) { r `star` s; (equiv) { star_commutative r s } s `star` r; }; calc (equiv) { p `star` q `star` r `star` s; (equiv) { Mem.star_associative (p `star` q) r s } (p `star` q) `star` (r `star` s); (equiv) { equiv_ext_right (p `star` q) (r `star` s) (s `star` r) } (p `star` q) `star` (s `star` r); (equiv) { star_associative (p `star` q) s r } (p `star` q `star` s) `star` r; }; assert (interp ((p `star` q `star` s) `star` r) m); affine_star (p `star` q `star` s) r m let cas_action (#t:Type) (eq: (x:t -> y:t -> b:bool{b <==> (x == y)})) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (fr:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (cas_provides r v v_new) fr (fun _ -> True) (fun _ _ _ -> True) = let m0 : full_mem = NMSTTotal.get () in let fv = Ghost.hide (Some (Ghost.reveal v, full_perm)) in let fv' = Some (v_new, full_perm) in assert (interp Mem.(pts_to_sl r full_perm v `star` fr `star` locks_invariant uses m0) m0); assert (interp Mem.(pts_to r fv `star` pure (perm_ok full_perm) `star` fr `star` locks_invariant uses m0) m0); cas_action_helper (Mem.pts_to r fv) (Mem.pure (perm_ok full_perm)) fr (locks_invariant uses m0) m0; assert (interp Mem.((pts_to r fv `star` pure (perm_ok full_perm)) `star` locks_invariant uses m0) m0); let fv_actual = Mem.frame (Mem.pure (perm_ok full_perm)) (sel_action uses r fv) fr in assert (compatible pcm_frac fv fv_actual); let Some (v', p) = fv_actual in assert (v == Ghost.hide v'); assert (p == full_perm); let b = if eq v' v_old then (Mem.frame (Mem.pure (perm_ok full_perm)) (upd_action uses r fv fv') fr; true) else false in b (*** GHOST REFERENCES ***)
false
true
Steel.HigherReference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ghost_ref (a:Type u#1) : Type u#0
[]
Steel.HigherReference.ghost_ref
{ "file_name": "lib/steel/Steel.HigherReference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
a: Type -> Type0
{ "end_col": 32, "end_line": 365, "start_col": 18, "start_line": 365 }
Prims.Tot
val pts_to' (#a: Type u#1) (r: ref a) (p: perm) (v: erased a) : vprop
[ { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.PCMReference", "short_module": "RP" }, { "abbrev": false, "full_module": "FStar.Real", "short_module": null }, { "abbrev": false, "full_module": "Steel.PCMFrac", "short_module": null }, { "abbrev": false, "full_module": "FStar.PCM", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pts_to' (#a:Type u#1) (r:ref a) (p:perm) (v:erased a) : vprop = pts_to_raw r p v `star` pure (perm_ok p)
val pts_to' (#a: Type u#1) (r: ref a) (p: perm) (v: erased a) : vprop let pts_to' (#a: Type u#1) (r: ref a) (p: perm) (v: erased a) : vprop =
false
null
false
(pts_to_raw r p v) `star` (pure (perm_ok p))
{ "checked_file": "Steel.HigherReference.fst.checked", "dependencies": [ "Steel.PCMReference.fsti.checked", "Steel.PCMFrac.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Real.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.PCM.fst.checked", "FStar.NMSTTotal.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Steel.HigherReference.fst" }
[ "total" ]
[ "Steel.HigherReference.ref", "Steel.FractionalPermission.perm", "FStar.Ghost.erased", "Steel.Effect.Common.star", "Steel.HigherReference.pts_to_raw", "Steel.Effect.Common.pure", "Steel.HigherReference.perm_ok", "Steel.Effect.Common.vprop" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.HigherReference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect open FStar.PCM open Steel.PCMFrac open FStar.Real module RP = Steel.PCMReference #set-options "--ide_id_info_off" module Mem = Steel.Memory let ref a = Mem.ref (fractional a) pcm_frac let null #a = Mem.null #(fractional a) #pcm_frac let is_null #a r = Mem.is_null #(fractional a) #pcm_frac r let perm_ok p : prop = (p.v <=. one == true) /\ True let pts_to_raw_sl (#a:Type) (r:ref a) (p:perm) (v:erased a) : slprop = Mem.pts_to r (Some (Ghost.reveal v, p)) let pts_to_raw (#a:Type) (r:ref a) (p:perm) (v:erased a) : vprop = to_vprop (Mem.pts_to r (Some (Ghost.reveal v, p)))
false
false
Steel.HigherReference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pts_to' (#a: Type u#1) (r: ref a) (p: perm) (v: erased a) : vprop
[]
Steel.HigherReference.pts_to'
{ "file_name": "lib/steel/Steel.HigherReference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.HigherReference.ref a -> p: Steel.FractionalPermission.perm -> v: FStar.Ghost.erased a -> Steel.Effect.Common.vprop
{ "end_col": 108, "end_line": 40, "start_col": 68, "start_line": 40 }
Prims.Tot
val null (#a:Type u#1) : ref a
[ { "abbrev": true, "full_module": "Steel.PCMReference", "short_module": "RP" }, { "abbrev": false, "full_module": "FStar.Real", "short_module": null }, { "abbrev": false, "full_module": "Steel.PCMFrac", "short_module": null }, { "abbrev": false, "full_module": "FStar.PCM", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let null #a = Mem.null #(fractional a) #pcm_frac
val null (#a:Type u#1) : ref a let null #a =
false
null
false
Mem.null #(fractional a) #pcm_frac
{ "checked_file": "Steel.HigherReference.fst.checked", "dependencies": [ "Steel.PCMReference.fsti.checked", "Steel.PCMFrac.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Real.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.PCM.fst.checked", "FStar.NMSTTotal.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Steel.HigherReference.fst" }
[ "total" ]
[ "Steel.Memory.null", "Steel.PCMFrac.fractional", "Steel.PCMFrac.pcm_frac", "Steel.HigherReference.ref" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.HigherReference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect open FStar.PCM open Steel.PCMFrac open FStar.Real module RP = Steel.PCMReference #set-options "--ide_id_info_off" module Mem = Steel.Memory
false
false
Steel.HigherReference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val null (#a:Type u#1) : ref a
[]
Steel.HigherReference.null
{ "file_name": "lib/steel/Steel.HigherReference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
Steel.HigherReference.ref a
{ "end_col": 48, "end_line": 32, "start_col": 14, "start_line": 32 }
Prims.Tot
val pts_to_raw (#a: Type) (r: ref a) (p: perm) (v: erased a) : vprop
[ { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.PCMReference", "short_module": "RP" }, { "abbrev": false, "full_module": "FStar.Real", "short_module": null }, { "abbrev": false, "full_module": "Steel.PCMFrac", "short_module": null }, { "abbrev": false, "full_module": "FStar.PCM", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pts_to_raw (#a:Type) (r:ref a) (p:perm) (v:erased a) : vprop = to_vprop (Mem.pts_to r (Some (Ghost.reveal v, p)))
val pts_to_raw (#a: Type) (r: ref a) (p: perm) (v: erased a) : vprop let pts_to_raw (#a: Type) (r: ref a) (p: perm) (v: erased a) : vprop =
false
null
false
to_vprop (Mem.pts_to r (Some (Ghost.reveal v, p)))
{ "checked_file": "Steel.HigherReference.fst.checked", "dependencies": [ "Steel.PCMReference.fsti.checked", "Steel.PCMFrac.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Real.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.PCM.fst.checked", "FStar.NMSTTotal.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Steel.HigherReference.fst" }
[ "total" ]
[ "Steel.HigherReference.ref", "Steel.FractionalPermission.perm", "FStar.Ghost.erased", "Steel.Effect.Common.to_vprop", "Steel.Memory.pts_to", "Steel.PCMFrac.fractional", "Steel.PCMFrac.pcm_frac", "FStar.Pervasives.Native.Some", "FStar.Pervasives.Native.tuple2", "FStar.Pervasives.Native.Mktuple2", "FStar.Ghost.reveal", "Steel.Effect.Common.vprop" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.HigherReference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect open FStar.PCM open Steel.PCMFrac open FStar.Real module RP = Steel.PCMReference #set-options "--ide_id_info_off" module Mem = Steel.Memory let ref a = Mem.ref (fractional a) pcm_frac let null #a = Mem.null #(fractional a) #pcm_frac let is_null #a r = Mem.is_null #(fractional a) #pcm_frac r let perm_ok p : prop = (p.v <=. one == true) /\ True let pts_to_raw_sl (#a:Type) (r:ref a) (p:perm) (v:erased a) : slprop = Mem.pts_to r (Some (Ghost.reveal v, p))
false
false
Steel.HigherReference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pts_to_raw (#a: Type) (r: ref a) (p: perm) (v: erased a) : vprop
[]
Steel.HigherReference.pts_to_raw
{ "file_name": "lib/steel/Steel.HigherReference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.HigherReference.ref a -> p: Steel.FractionalPermission.perm -> v: FStar.Ghost.erased a -> Steel.Effect.Common.vprop
{ "end_col": 52, "end_line": 38, "start_col": 2, "start_line": 38 }
Prims.Tot
val ghost_pts_to_sl (#a:_) (r:ghost_ref a) (p:perm) (x:a) : slprop u#1
[ { "abbrev": true, "full_module": "Steel.PCMReference", "short_module": "RP" }, { "abbrev": false, "full_module": "FStar.Real", "short_module": null }, { "abbrev": false, "full_module": "Steel.PCMFrac", "short_module": null }, { "abbrev": false, "full_module": "FStar.PCM", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ghost_pts_to_sl #a (r:ghost_ref a) (p:perm) (x:a) = pts_to_sl (reveal r) p x
val ghost_pts_to_sl (#a:_) (r:ghost_ref a) (p:perm) (x:a) : slprop u#1 let ghost_pts_to_sl #a (r: ghost_ref a) (p: perm) (x: a) =
false
null
false
pts_to_sl (reveal r) p x
{ "checked_file": "Steel.HigherReference.fst.checked", "dependencies": [ "Steel.PCMReference.fsti.checked", "Steel.PCMFrac.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Real.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.PCM.fst.checked", "FStar.NMSTTotal.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Steel.HigherReference.fst" }
[ "total" ]
[ "Steel.HigherReference.ghost_ref", "Steel.FractionalPermission.perm", "Steel.HigherReference.pts_to_sl", "FStar.Ghost.reveal", "Steel.HigherReference.ref", "Steel.Memory.slprop" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.HigherReference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect open FStar.PCM open Steel.PCMFrac open FStar.Real module RP = Steel.PCMReference #set-options "--ide_id_info_off" module Mem = Steel.Memory let ref a = Mem.ref (fractional a) pcm_frac let null #a = Mem.null #(fractional a) #pcm_frac let is_null #a r = Mem.is_null #(fractional a) #pcm_frac r let perm_ok p : prop = (p.v <=. one == true) /\ True let pts_to_raw_sl (#a:Type) (r:ref a) (p:perm) (v:erased a) : slprop = Mem.pts_to r (Some (Ghost.reveal v, p)) let pts_to_raw (#a:Type) (r:ref a) (p:perm) (v:erased a) : vprop = to_vprop (Mem.pts_to r (Some (Ghost.reveal v, p))) [@@__reduce__] let pts_to' (#a:Type u#1) (r:ref a) (p:perm) (v:erased a) : vprop = pts_to_raw r p v `star` pure (perm_ok p) let pts_to_sl #a r p v = hp_of (pts_to' r p v) let abcd_acbd (a b c d:slprop) : Lemma (Mem.(((a `star` b) `star` (c `star` d)) `equiv` ((a `star` c) `star` (b `star` d)))) = let open Steel.Memory in calc (equiv) { ((a `star` b) `star` (c `star` d)); (equiv) { star_associative a b (c `star` d) } ((a `star` (b `star` (c `star` d)))); (equiv) { star_associative b c d; star_congruence a (b `star` (c `star` d)) a ((b `star` c) `star` d) } (a `star` ((b `star` c) `star` d)); (equiv) { star_commutative b c; star_congruence (b `star` c) d (c `star` b) d; star_congruence a ((b `star` c) `star` d) a ((c `star` b) `star` d) } (a `star` ((c `star` b) `star` d)); (equiv) { star_associative c b d; star_congruence a ((c `star` b) `star` d) a (c `star` (b `star` d)) } (a `star` (c `star` (b `star` d))); (equiv) { star_associative a c (b `star` d) } ((a `star` c) `star` (b `star` d)); } let pts_to_ref_injective (#a: Type u#1) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let open Steel.Memory in abcd_acbd (hp_of (pts_to_raw r p0 v0)) (pure (perm_ok p0)) (hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p1)); Mem.affine_star (hp_of (pts_to_raw r p0 v0) `star` hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p0) `star` pure (perm_ok p1)) m; Mem.pts_to_compatible r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) m let pts_to_not_null (#a:Type u#1) (r:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures r =!= null) = Mem.affine_star (hp_of (pts_to_raw r p v)) (Mem.pure (perm_ok p)) m; Mem.pts_to_not_null r (Some (Ghost.reveal v, p)) m let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : erased a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = Mem.pts_to_join r (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let higher_ref_pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let pts_to_framon (#a:Type) (r:ref a) (p:perm) : Lemma (is_frame_monotonic (pts_to_sl r p)) = pts_to_witinv r p let intro_pts_to (p:perm) #a #uses (#v:erased a) (r:ref a) : SteelGhost unit uses (pts_to_raw r p v) (fun _ -> pts_to r p v) (requires fun _ -> perm_ok p) (ensures fun _ _ _ -> True) = intro_pure (perm_ok p); rewrite_slprop (pts_to' r p v) (pts_to r p v) (fun _ -> ()) let alloc #a x = let v = Some (x, full_perm) in assert (FStar.PCM.composable pcm_frac v None); assert (compatible pcm_frac v v); let r = RP.alloc v in rewrite_slprop (RP.pts_to r v) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m ); extract_info_raw (pts_to r full_perm x) (~ (is_null r)) (fun m -> pts_to_not_null r full_perm x m); return r let read (#a:Type) (#p:perm) (#v:erased a) (r:ref a) = let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ()); elim_pure (perm_ok p); let v2 = RP.read r v1 in rewrite_slprop (RP.pts_to r v1) (pts_to r p v) (fun m -> emp_unit (hp_of (pts_to_raw r p v)); pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m); assert (compatible pcm_frac v1 v2); let Some (x, _) = v2 in rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ()); return x let atomic_read (#opened:_) (#a:Type) (#p:perm) (#v:erased a) (r:ref a) = let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ()); elim_pure (perm_ok p); let v2 = RP.atomic_read r v1 in rewrite_slprop (RP.pts_to r v1) (pts_to r p v) (fun m -> emp_unit (hp_of (pts_to_raw r p v)); pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m); assert (compatible pcm_frac v1 v2); let Some (x, _) = v2 in rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ()); return x let read_refine (#a:Type) (#p:perm) (q:a -> vprop) (r:ref a) : SteelT a (h_exists (fun (v:a) -> pts_to r p v `star` q v)) (fun v -> pts_to r p v `star` q v) = let vs:erased a = witness_exists () in rewrite_slprop (pts_to r p (Ghost.hide (Ghost.reveal vs))) (pts_to r p vs) (fun _ -> ()); let v = read r in rewrite_slprop (q vs) (q v) (fun _ -> ()); return v let write (#a:Type) (#v:erased a) (r:ref a) (x:a) : SteelT unit (pts_to r full_perm v) (fun _ -> pts_to r full_perm x) = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in let v_new : fractional a = Some (x, full_perm) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.write r v_old v_new; rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m) let atomic_write #opened #a #v r x = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in let v_new : fractional a = Some (x, full_perm) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.atomic_write r v_old v_new; rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m) let free (#a:Type) (#v:erased a) (r:ref a) : SteelT unit (pts_to r full_perm v) (fun _ -> emp) = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.free r v_old; drop (RP.pts_to r (Mkpcm'?.one (Mkpcm?.p pcm_frac))) let share_atomic_raw #a #uses (#p:perm) (r:ref a{perm_ok p}) (v0:erased a) : SteelGhostT unit uses (pts_to_raw r p v0) (fun _ -> pts_to_raw r (half_perm p) v0 `star` pts_to_raw r (half_perm p) v0) = rewrite_slprop (pts_to_raw r p v0) (RP.pts_to r _) (fun _ -> ()); RP.split r (Some (Ghost.reveal v0, p)) (Some (Ghost.reveal v0, half_perm p)) (Some (Ghost.reveal v0, half_perm p)); rewrite_slprop (RP.pts_to r _) (pts_to_raw r (half_perm p) v0) (fun _ -> ()); rewrite_slprop (RP.pts_to r _) (pts_to_raw r (half_perm p) v0) (fun _ -> ()) let share (#a:Type) #uses (#p:perm) (#v:erased a) (r:ref a) : SteelGhostT unit uses (pts_to r p v) (fun _ -> pts_to r (half_perm p) v `star` pts_to r (half_perm p) v) = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (pts_to' r p v) (fun _ -> ()); elim_pure (perm_ok p); share_atomic_raw r v; intro_pts_to (half_perm p) r; intro_pts_to (half_perm p) r let gather_atomic_raw (#a:Type) (#uses:_) (#p0 #p1:perm) (r:ref a) (v0:erased a) (v1:erased a) : SteelGhostT (_:unit{v0==v1 /\ perm_ok (sum_perm p0 p1)}) uses (pts_to_raw r p0 v0 `star` pts_to_raw r p1 v1) (fun _ -> pts_to_raw r (sum_perm p0 p1) v0) = rewrite_slprop (pts_to_raw r p0 v0) (RP.pts_to r (Ghost.reveal (Some (Ghost.reveal v0, p0)))) (fun _ -> ()); rewrite_slprop (pts_to_raw r p1 v1) (RP.pts_to r (Ghost.reveal (Some (Ghost.reveal v1, p1)))) (fun _ -> ()); let _ = RP.gather r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) in rewrite_slprop (RP.pts_to r _) (pts_to_raw r (sum_perm p0 p1) v0) (fun _ -> ()) let gather (#a:Type) (#uses:_) (#p0:perm) (#p1:perm) (#v0 #v1:erased a) (r:ref a) = let v0_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v0, p0)) in let v1_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v1, p1)) in rewrite_slprop (pts_to r p0 v0) (pts_to_raw r p0 v0 `star` pure (perm_ok p0)) (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (pts_to_raw r p1 v1 `star` pure (perm_ok p1)) (fun _ -> ()); elim_pure (perm_ok p0); elim_pure (perm_ok p1); let _ = gather_atomic_raw r v0 v1 in intro_pts_to (sum_perm p0 p1) r let cas_provides #t (r:ref t) (v:Ghost.erased t) (v_new:t) (b:bool) = if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v let equiv_ext_right (p q r:slprop) : Lemma (requires q `Mem.equiv` r) (ensures Mem.((p `star` q) `equiv` (p `star` r))) = let open Steel.Memory in calc (equiv) { p `star` q; (equiv) { star_commutative p q } q `star` p; (equiv) { equiv_extensional_on_star q r p } r `star` p; (equiv) { star_commutative p r } p `star` r; } let cas_action_helper (p q r s:slprop) (m:mem) : Lemma (requires interp Mem.(p `star` q `star` r `star` s) m) (ensures interp Mem.(p `star` q `star` s) m) = let open Steel.Memory in calc (equiv) { r `star` s; (equiv) { star_commutative r s } s `star` r; }; calc (equiv) { p `star` q `star` r `star` s; (equiv) { Mem.star_associative (p `star` q) r s } (p `star` q) `star` (r `star` s); (equiv) { equiv_ext_right (p `star` q) (r `star` s) (s `star` r) } (p `star` q) `star` (s `star` r); (equiv) { star_associative (p `star` q) s r } (p `star` q `star` s) `star` r; }; assert (interp ((p `star` q `star` s) `star` r) m); affine_star (p `star` q `star` s) r m let cas_action (#t:Type) (eq: (x:t -> y:t -> b:bool{b <==> (x == y)})) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (fr:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (cas_provides r v v_new) fr (fun _ -> True) (fun _ _ _ -> True) = let m0 : full_mem = NMSTTotal.get () in let fv = Ghost.hide (Some (Ghost.reveal v, full_perm)) in let fv' = Some (v_new, full_perm) in assert (interp Mem.(pts_to_sl r full_perm v `star` fr `star` locks_invariant uses m0) m0); assert (interp Mem.(pts_to r fv `star` pure (perm_ok full_perm) `star` fr `star` locks_invariant uses m0) m0); cas_action_helper (Mem.pts_to r fv) (Mem.pure (perm_ok full_perm)) fr (locks_invariant uses m0) m0; assert (interp Mem.((pts_to r fv `star` pure (perm_ok full_perm)) `star` locks_invariant uses m0) m0); let fv_actual = Mem.frame (Mem.pure (perm_ok full_perm)) (sel_action uses r fv) fr in assert (compatible pcm_frac fv fv_actual); let Some (v', p) = fv_actual in assert (v == Ghost.hide v'); assert (p == full_perm); let b = if eq v' v_old then (Mem.frame (Mem.pure (perm_ok full_perm)) (upd_action uses r fv fv') fr; true) else false in b (*** GHOST REFERENCES ***) let ghost_ref a = erased (ref a)
false
false
Steel.HigherReference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ghost_pts_to_sl (#a:_) (r:ghost_ref a) (p:perm) (x:a) : slprop u#1
[]
Steel.HigherReference.ghost_pts_to_sl
{ "file_name": "lib/steel/Steel.HigherReference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.HigherReference.ghost_ref a -> p: Steel.FractionalPermission.perm -> x: a -> Steel.Memory.slprop
{ "end_col": 80, "end_line": 368, "start_col": 56, "start_line": 368 }
Prims.Tot
val ref ([@@@unused] a:Type u#1) : Type u#0
[ { "abbrev": true, "full_module": "Steel.PCMReference", "short_module": "RP" }, { "abbrev": false, "full_module": "FStar.Real", "short_module": null }, { "abbrev": false, "full_module": "Steel.PCMFrac", "short_module": null }, { "abbrev": false, "full_module": "FStar.PCM", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ref a = Mem.ref (fractional a) pcm_frac
val ref ([@@@unused] a:Type u#1) : Type u#0 let ref a =
false
null
false
Mem.ref (fractional a) pcm_frac
{ "checked_file": "Steel.HigherReference.fst.checked", "dependencies": [ "Steel.PCMReference.fsti.checked", "Steel.PCMFrac.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Real.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.PCM.fst.checked", "FStar.NMSTTotal.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Steel.HigherReference.fst" }
[ "total" ]
[ "Steel.Memory.ref", "Steel.PCMFrac.fractional", "Steel.PCMFrac.pcm_frac" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.HigherReference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect open FStar.PCM open Steel.PCMFrac open FStar.Real module RP = Steel.PCMReference #set-options "--ide_id_info_off" module Mem = Steel.Memory
false
true
Steel.HigherReference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ref ([@@@unused] a:Type u#1) : Type u#0
[]
Steel.HigherReference.ref
{ "file_name": "lib/steel/Steel.HigherReference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
a: Type -> Type0
{ "end_col": 43, "end_line": 31, "start_col": 12, "start_line": 31 }
Prims.Tot
val pts_to_sl (#a:Type u#1) (r:ref a) (p:perm) (v:a) : slprop u#1
[ { "abbrev": true, "full_module": "Steel.PCMReference", "short_module": "RP" }, { "abbrev": false, "full_module": "FStar.Real", "short_module": null }, { "abbrev": false, "full_module": "Steel.PCMFrac", "short_module": null }, { "abbrev": false, "full_module": "FStar.PCM", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pts_to_sl #a r p v = hp_of (pts_to' r p v)
val pts_to_sl (#a:Type u#1) (r:ref a) (p:perm) (v:a) : slprop u#1 let pts_to_sl #a r p v =
false
null
false
hp_of (pts_to' r p v)
{ "checked_file": "Steel.HigherReference.fst.checked", "dependencies": [ "Steel.PCMReference.fsti.checked", "Steel.PCMFrac.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Real.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.PCM.fst.checked", "FStar.NMSTTotal.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Steel.HigherReference.fst" }
[ "total" ]
[ "Steel.HigherReference.ref", "Steel.FractionalPermission.perm", "Steel.Effect.Common.hp_of", "Steel.HigherReference.pts_to'", "FStar.Ghost.hide", "Steel.Memory.slprop" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.HigherReference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect open FStar.PCM open Steel.PCMFrac open FStar.Real module RP = Steel.PCMReference #set-options "--ide_id_info_off" module Mem = Steel.Memory let ref a = Mem.ref (fractional a) pcm_frac let null #a = Mem.null #(fractional a) #pcm_frac let is_null #a r = Mem.is_null #(fractional a) #pcm_frac r let perm_ok p : prop = (p.v <=. one == true) /\ True let pts_to_raw_sl (#a:Type) (r:ref a) (p:perm) (v:erased a) : slprop = Mem.pts_to r (Some (Ghost.reveal v, p)) let pts_to_raw (#a:Type) (r:ref a) (p:perm) (v:erased a) : vprop = to_vprop (Mem.pts_to r (Some (Ghost.reveal v, p))) [@@__reduce__]
false
false
Steel.HigherReference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pts_to_sl (#a:Type u#1) (r:ref a) (p:perm) (v:a) : slprop u#1
[]
Steel.HigherReference.pts_to_sl
{ "file_name": "lib/steel/Steel.HigherReference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.HigherReference.ref a -> p: Steel.FractionalPermission.perm -> v: a -> Steel.Memory.slprop
{ "end_col": 47, "end_line": 41, "start_col": 26, "start_line": 41 }
Prims.Tot
[ { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.PCMReference", "short_module": "RP" }, { "abbrev": false, "full_module": "FStar.Real", "short_module": null }, { "abbrev": false, "full_module": "Steel.PCMFrac", "short_module": null }, { "abbrev": false, "full_module": "FStar.PCM", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let cas_provides #t (r:ref t) (v:Ghost.erased t) (v_new:t) (b:bool) = if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v
let cas_provides #t (r: ref t) (v: Ghost.erased t) (v_new: t) (b: bool) =
false
null
false
if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v
{ "checked_file": "Steel.HigherReference.fst.checked", "dependencies": [ "Steel.PCMReference.fsti.checked", "Steel.PCMFrac.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Real.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.PCM.fst.checked", "FStar.NMSTTotal.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Steel.HigherReference.fst" }
[ "total" ]
[ "Steel.HigherReference.ref", "FStar.Ghost.erased", "Prims.bool", "Steel.HigherReference.pts_to_sl", "Steel.FractionalPermission.full_perm", "FStar.Ghost.reveal", "Steel.Memory.slprop" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.HigherReference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect open FStar.PCM open Steel.PCMFrac open FStar.Real module RP = Steel.PCMReference #set-options "--ide_id_info_off" module Mem = Steel.Memory let ref a = Mem.ref (fractional a) pcm_frac let null #a = Mem.null #(fractional a) #pcm_frac let is_null #a r = Mem.is_null #(fractional a) #pcm_frac r let perm_ok p : prop = (p.v <=. one == true) /\ True let pts_to_raw_sl (#a:Type) (r:ref a) (p:perm) (v:erased a) : slprop = Mem.pts_to r (Some (Ghost.reveal v, p)) let pts_to_raw (#a:Type) (r:ref a) (p:perm) (v:erased a) : vprop = to_vprop (Mem.pts_to r (Some (Ghost.reveal v, p))) [@@__reduce__] let pts_to' (#a:Type u#1) (r:ref a) (p:perm) (v:erased a) : vprop = pts_to_raw r p v `star` pure (perm_ok p) let pts_to_sl #a r p v = hp_of (pts_to' r p v) let abcd_acbd (a b c d:slprop) : Lemma (Mem.(((a `star` b) `star` (c `star` d)) `equiv` ((a `star` c) `star` (b `star` d)))) = let open Steel.Memory in calc (equiv) { ((a `star` b) `star` (c `star` d)); (equiv) { star_associative a b (c `star` d) } ((a `star` (b `star` (c `star` d)))); (equiv) { star_associative b c d; star_congruence a (b `star` (c `star` d)) a ((b `star` c) `star` d) } (a `star` ((b `star` c) `star` d)); (equiv) { star_commutative b c; star_congruence (b `star` c) d (c `star` b) d; star_congruence a ((b `star` c) `star` d) a ((c `star` b) `star` d) } (a `star` ((c `star` b) `star` d)); (equiv) { star_associative c b d; star_congruence a ((c `star` b) `star` d) a (c `star` (b `star` d)) } (a `star` (c `star` (b `star` d))); (equiv) { star_associative a c (b `star` d) } ((a `star` c) `star` (b `star` d)); } let pts_to_ref_injective (#a: Type u#1) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let open Steel.Memory in abcd_acbd (hp_of (pts_to_raw r p0 v0)) (pure (perm_ok p0)) (hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p1)); Mem.affine_star (hp_of (pts_to_raw r p0 v0) `star` hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p0) `star` pure (perm_ok p1)) m; Mem.pts_to_compatible r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) m let pts_to_not_null (#a:Type u#1) (r:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures r =!= null) = Mem.affine_star (hp_of (pts_to_raw r p v)) (Mem.pure (perm_ok p)) m; Mem.pts_to_not_null r (Some (Ghost.reveal v, p)) m let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : erased a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = Mem.pts_to_join r (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let higher_ref_pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let pts_to_framon (#a:Type) (r:ref a) (p:perm) : Lemma (is_frame_monotonic (pts_to_sl r p)) = pts_to_witinv r p let intro_pts_to (p:perm) #a #uses (#v:erased a) (r:ref a) : SteelGhost unit uses (pts_to_raw r p v) (fun _ -> pts_to r p v) (requires fun _ -> perm_ok p) (ensures fun _ _ _ -> True) = intro_pure (perm_ok p); rewrite_slprop (pts_to' r p v) (pts_to r p v) (fun _ -> ()) let alloc #a x = let v = Some (x, full_perm) in assert (FStar.PCM.composable pcm_frac v None); assert (compatible pcm_frac v v); let r = RP.alloc v in rewrite_slprop (RP.pts_to r v) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m ); extract_info_raw (pts_to r full_perm x) (~ (is_null r)) (fun m -> pts_to_not_null r full_perm x m); return r let read (#a:Type) (#p:perm) (#v:erased a) (r:ref a) = let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ()); elim_pure (perm_ok p); let v2 = RP.read r v1 in rewrite_slprop (RP.pts_to r v1) (pts_to r p v) (fun m -> emp_unit (hp_of (pts_to_raw r p v)); pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m); assert (compatible pcm_frac v1 v2); let Some (x, _) = v2 in rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ()); return x let atomic_read (#opened:_) (#a:Type) (#p:perm) (#v:erased a) (r:ref a) = let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ()); elim_pure (perm_ok p); let v2 = RP.atomic_read r v1 in rewrite_slprop (RP.pts_to r v1) (pts_to r p v) (fun m -> emp_unit (hp_of (pts_to_raw r p v)); pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m); assert (compatible pcm_frac v1 v2); let Some (x, _) = v2 in rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ()); return x let read_refine (#a:Type) (#p:perm) (q:a -> vprop) (r:ref a) : SteelT a (h_exists (fun (v:a) -> pts_to r p v `star` q v)) (fun v -> pts_to r p v `star` q v) = let vs:erased a = witness_exists () in rewrite_slprop (pts_to r p (Ghost.hide (Ghost.reveal vs))) (pts_to r p vs) (fun _ -> ()); let v = read r in rewrite_slprop (q vs) (q v) (fun _ -> ()); return v let write (#a:Type) (#v:erased a) (r:ref a) (x:a) : SteelT unit (pts_to r full_perm v) (fun _ -> pts_to r full_perm x) = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in let v_new : fractional a = Some (x, full_perm) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.write r v_old v_new; rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m) let atomic_write #opened #a #v r x = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in let v_new : fractional a = Some (x, full_perm) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.atomic_write r v_old v_new; rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m) let free (#a:Type) (#v:erased a) (r:ref a) : SteelT unit (pts_to r full_perm v) (fun _ -> emp) = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.free r v_old; drop (RP.pts_to r (Mkpcm'?.one (Mkpcm?.p pcm_frac))) let share_atomic_raw #a #uses (#p:perm) (r:ref a{perm_ok p}) (v0:erased a) : SteelGhostT unit uses (pts_to_raw r p v0) (fun _ -> pts_to_raw r (half_perm p) v0 `star` pts_to_raw r (half_perm p) v0) = rewrite_slprop (pts_to_raw r p v0) (RP.pts_to r _) (fun _ -> ()); RP.split r (Some (Ghost.reveal v0, p)) (Some (Ghost.reveal v0, half_perm p)) (Some (Ghost.reveal v0, half_perm p)); rewrite_slprop (RP.pts_to r _) (pts_to_raw r (half_perm p) v0) (fun _ -> ()); rewrite_slprop (RP.pts_to r _) (pts_to_raw r (half_perm p) v0) (fun _ -> ()) let share (#a:Type) #uses (#p:perm) (#v:erased a) (r:ref a) : SteelGhostT unit uses (pts_to r p v) (fun _ -> pts_to r (half_perm p) v `star` pts_to r (half_perm p) v) = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (pts_to' r p v) (fun _ -> ()); elim_pure (perm_ok p); share_atomic_raw r v; intro_pts_to (half_perm p) r; intro_pts_to (half_perm p) r let gather_atomic_raw (#a:Type) (#uses:_) (#p0 #p1:perm) (r:ref a) (v0:erased a) (v1:erased a) : SteelGhostT (_:unit{v0==v1 /\ perm_ok (sum_perm p0 p1)}) uses (pts_to_raw r p0 v0 `star` pts_to_raw r p1 v1) (fun _ -> pts_to_raw r (sum_perm p0 p1) v0) = rewrite_slprop (pts_to_raw r p0 v0) (RP.pts_to r (Ghost.reveal (Some (Ghost.reveal v0, p0)))) (fun _ -> ()); rewrite_slprop (pts_to_raw r p1 v1) (RP.pts_to r (Ghost.reveal (Some (Ghost.reveal v1, p1)))) (fun _ -> ()); let _ = RP.gather r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) in rewrite_slprop (RP.pts_to r _) (pts_to_raw r (sum_perm p0 p1) v0) (fun _ -> ()) let gather (#a:Type) (#uses:_) (#p0:perm) (#p1:perm) (#v0 #v1:erased a) (r:ref a) = let v0_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v0, p0)) in let v1_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v1, p1)) in rewrite_slprop (pts_to r p0 v0) (pts_to_raw r p0 v0 `star` pure (perm_ok p0)) (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (pts_to_raw r p1 v1 `star` pure (perm_ok p1)) (fun _ -> ()); elim_pure (perm_ok p0); elim_pure (perm_ok p1); let _ = gather_atomic_raw r v0 v1 in intro_pts_to (sum_perm p0 p1) r
false
false
Steel.HigherReference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val cas_provides : r: Steel.HigherReference.ref t -> v: FStar.Ghost.erased t -> v_new: t -> b: Prims.bool -> Steel.Memory.slprop
[]
Steel.HigherReference.cas_provides
{ "file_name": "lib/steel/Steel.HigherReference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.HigherReference.ref t -> v: FStar.Ghost.erased t -> v_new: t -> b: Prims.bool -> Steel.Memory.slprop
{ "end_col": 70, "end_line": 284, "start_col": 4, "start_line": 284 }
FStar.Pervasives.Lemma
val abcd_acbd (a b c d: slprop) : Lemma (let open Mem in ((a `star` b) `star` (c `star` d)) `equiv` ((a `star` c) `star` (b `star` d)))
[ { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.PCMReference", "short_module": "RP" }, { "abbrev": false, "full_module": "FStar.Real", "short_module": null }, { "abbrev": false, "full_module": "Steel.PCMFrac", "short_module": null }, { "abbrev": false, "full_module": "FStar.PCM", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let abcd_acbd (a b c d:slprop) : Lemma (Mem.(((a `star` b) `star` (c `star` d)) `equiv` ((a `star` c) `star` (b `star` d)))) = let open Steel.Memory in calc (equiv) { ((a `star` b) `star` (c `star` d)); (equiv) { star_associative a b (c `star` d) } ((a `star` (b `star` (c `star` d)))); (equiv) { star_associative b c d; star_congruence a (b `star` (c `star` d)) a ((b `star` c) `star` d) } (a `star` ((b `star` c) `star` d)); (equiv) { star_commutative b c; star_congruence (b `star` c) d (c `star` b) d; star_congruence a ((b `star` c) `star` d) a ((c `star` b) `star` d) } (a `star` ((c `star` b) `star` d)); (equiv) { star_associative c b d; star_congruence a ((c `star` b) `star` d) a (c `star` (b `star` d)) } (a `star` (c `star` (b `star` d))); (equiv) { star_associative a c (b `star` d) } ((a `star` c) `star` (b `star` d)); }
val abcd_acbd (a b c d: slprop) : Lemma (let open Mem in ((a `star` b) `star` (c `star` d)) `equiv` ((a `star` c) `star` (b `star` d))) let abcd_acbd (a b c d: slprop) : Lemma (let open Mem in ((a `star` b) `star` (c `star` d)) `equiv` ((a `star` c) `star` (b `star` d))) =
false
null
true
let open Steel.Memory in calc (equiv) { ((a `star` b) `star` (c `star` d)); (equiv) { star_associative a b (c `star` d) } ((a `star` (b `star` (c `star` d)))); (equiv) { (star_associative b c d; star_congruence a (b `star` (c `star` d)) a ((b `star` c) `star` d)) } (a `star` ((b `star` c) `star` d)); (equiv) { (star_commutative b c; star_congruence (b `star` c) d (c `star` b) d; star_congruence a ((b `star` c) `star` d) a ((c `star` b) `star` d)) } (a `star` ((c `star` b) `star` d)); (equiv) { (star_associative c b d; star_congruence a ((c `star` b) `star` d) a (c `star` (b `star` d))) } (a `star` (c `star` (b `star` d))); (equiv) { star_associative a c (b `star` d) } ((a `star` c) `star` (b `star` d)); }
{ "checked_file": "Steel.HigherReference.fst.checked", "dependencies": [ "Steel.PCMReference.fsti.checked", "Steel.PCMFrac.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Real.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.PCM.fst.checked", "FStar.NMSTTotal.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Steel.HigherReference.fst" }
[ "lemma" ]
[ "Steel.Memory.slprop", "FStar.Calc.calc_finish", "Steel.Memory.equiv", "Steel.Memory.star", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Steel.Memory.star_associative", "Prims.squash", "Steel.Memory.star_congruence", "Steel.Memory.star_commutative", "Prims.l_True", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.HigherReference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect open FStar.PCM open Steel.PCMFrac open FStar.Real module RP = Steel.PCMReference #set-options "--ide_id_info_off" module Mem = Steel.Memory let ref a = Mem.ref (fractional a) pcm_frac let null #a = Mem.null #(fractional a) #pcm_frac let is_null #a r = Mem.is_null #(fractional a) #pcm_frac r let perm_ok p : prop = (p.v <=. one == true) /\ True let pts_to_raw_sl (#a:Type) (r:ref a) (p:perm) (v:erased a) : slprop = Mem.pts_to r (Some (Ghost.reveal v, p)) let pts_to_raw (#a:Type) (r:ref a) (p:perm) (v:erased a) : vprop = to_vprop (Mem.pts_to r (Some (Ghost.reveal v, p))) [@@__reduce__] let pts_to' (#a:Type u#1) (r:ref a) (p:perm) (v:erased a) : vprop = pts_to_raw r p v `star` pure (perm_ok p) let pts_to_sl #a r p v = hp_of (pts_to' r p v) let abcd_acbd (a b c d:slprop) : Lemma (Mem.(((a `star` b) `star` (c `star` d)) `equiv`
false
false
Steel.HigherReference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val abcd_acbd (a b c d: slprop) : Lemma (let open Mem in ((a `star` b) `star` (c `star` d)) `equiv` ((a `star` c) `star` (b `star` d)))
[]
Steel.HigherReference.abcd_acbd
{ "file_name": "lib/steel/Steel.HigherReference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
a: Steel.Memory.slprop -> b: Steel.Memory.slprop -> c: Steel.Memory.slprop -> d: Steel.Memory.slprop -> FStar.Pervasives.Lemma (ensures Steel.Memory.equiv (Steel.Memory.star (Steel.Memory.star a b) (Steel.Memory.star c d)) (Steel.Memory.star (Steel.Memory.star a c) (Steel.Memory.star b d)))
{ "end_col": 4, "end_line": 66, "start_col": 4, "start_line": 46 }
FStar.Pervasives.Lemma
val pts_to_not_null (#a:Type u#1) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null)
[ { "abbrev": true, "full_module": "Steel.PCMReference", "short_module": "RP" }, { "abbrev": false, "full_module": "FStar.Real", "short_module": null }, { "abbrev": false, "full_module": "Steel.PCMFrac", "short_module": null }, { "abbrev": false, "full_module": "FStar.PCM", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pts_to_not_null (#a:Type u#1) (r:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures r =!= null) = Mem.affine_star (hp_of (pts_to_raw r p v)) (Mem.pure (perm_ok p)) m; Mem.pts_to_not_null r (Some (Ghost.reveal v, p)) m
val pts_to_not_null (#a:Type u#1) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) let pts_to_not_null (#a: Type u#1) (r: ref a) (p: perm) (v: a) (m: mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures r =!= null) =
false
null
true
Mem.affine_star (hp_of (pts_to_raw r p v)) (Mem.pure (perm_ok p)) m; Mem.pts_to_not_null r (Some (Ghost.reveal v, p)) m
{ "checked_file": "Steel.HigherReference.fst.checked", "dependencies": [ "Steel.PCMReference.fsti.checked", "Steel.PCMFrac.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Real.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.PCM.fst.checked", "FStar.NMSTTotal.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Steel.HigherReference.fst" }
[ "lemma" ]
[ "Steel.HigherReference.ref", "Steel.FractionalPermission.perm", "Steel.Memory.mem", "Steel.Memory.pts_to_not_null", "Steel.PCMFrac.fractional", "Steel.PCMFrac.pcm_frac", "FStar.Pervasives.Native.Some", "FStar.Pervasives.Native.tuple2", "FStar.Pervasives.Native.Mktuple2", "FStar.Ghost.reveal", "FStar.Ghost.hide", "Prims.unit", "Steel.Memory.affine_star", "Steel.Effect.Common.hp_of", "Steel.HigherReference.pts_to_raw", "Steel.Memory.pure", "Steel.HigherReference.perm_ok", "Steel.Memory.interp", "Steel.HigherReference.pts_to_sl", "Prims.squash", "Prims.l_not", "Prims.eq2", "Steel.HigherReference.null", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.HigherReference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect open FStar.PCM open Steel.PCMFrac open FStar.Real module RP = Steel.PCMReference #set-options "--ide_id_info_off" module Mem = Steel.Memory let ref a = Mem.ref (fractional a) pcm_frac let null #a = Mem.null #(fractional a) #pcm_frac let is_null #a r = Mem.is_null #(fractional a) #pcm_frac r let perm_ok p : prop = (p.v <=. one == true) /\ True let pts_to_raw_sl (#a:Type) (r:ref a) (p:perm) (v:erased a) : slprop = Mem.pts_to r (Some (Ghost.reveal v, p)) let pts_to_raw (#a:Type) (r:ref a) (p:perm) (v:erased a) : vprop = to_vprop (Mem.pts_to r (Some (Ghost.reveal v, p))) [@@__reduce__] let pts_to' (#a:Type u#1) (r:ref a) (p:perm) (v:erased a) : vprop = pts_to_raw r p v `star` pure (perm_ok p) let pts_to_sl #a r p v = hp_of (pts_to' r p v) let abcd_acbd (a b c d:slprop) : Lemma (Mem.(((a `star` b) `star` (c `star` d)) `equiv` ((a `star` c) `star` (b `star` d)))) = let open Steel.Memory in calc (equiv) { ((a `star` b) `star` (c `star` d)); (equiv) { star_associative a b (c `star` d) } ((a `star` (b `star` (c `star` d)))); (equiv) { star_associative b c d; star_congruence a (b `star` (c `star` d)) a ((b `star` c) `star` d) } (a `star` ((b `star` c) `star` d)); (equiv) { star_commutative b c; star_congruence (b `star` c) d (c `star` b) d; star_congruence a ((b `star` c) `star` d) a ((c `star` b) `star` d) } (a `star` ((c `star` b) `star` d)); (equiv) { star_associative c b d; star_congruence a ((c `star` b) `star` d) a (c `star` (b `star` d)) } (a `star` (c `star` (b `star` d))); (equiv) { star_associative a c (b `star` d) } ((a `star` c) `star` (b `star` d)); } let pts_to_ref_injective (#a: Type u#1) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let open Steel.Memory in abcd_acbd (hp_of (pts_to_raw r p0 v0)) (pure (perm_ok p0)) (hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p1)); Mem.affine_star (hp_of (pts_to_raw r p0 v0) `star` hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p0) `star` pure (perm_ok p1)) m; Mem.pts_to_compatible r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) m let pts_to_not_null (#a:Type u#1) (r:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m)
false
false
Steel.HigherReference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pts_to_not_null (#a:Type u#1) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null)
[]
Steel.HigherReference.pts_to_not_null
{ "file_name": "lib/steel/Steel.HigherReference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
x: Steel.HigherReference.ref a -> p: Steel.FractionalPermission.perm -> v: a -> m: Steel.Memory.mem -> FStar.Pervasives.Lemma (requires Steel.Memory.interp (Steel.HigherReference.pts_to_sl x p v) m) (ensures ~(x == Steel.HigherReference.null))
{ "end_col": 54, "end_line": 97, "start_col": 4, "start_line": 96 }
FStar.Pervasives.Lemma
val pts_to_framon (#a: Type) (r: ref a) (p: perm) : Lemma (is_frame_monotonic (pts_to_sl r p))
[ { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.PCMReference", "short_module": "RP" }, { "abbrev": false, "full_module": "FStar.Real", "short_module": null }, { "abbrev": false, "full_module": "Steel.PCMFrac", "short_module": null }, { "abbrev": false, "full_module": "FStar.PCM", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pts_to_framon (#a:Type) (r:ref a) (p:perm) : Lemma (is_frame_monotonic (pts_to_sl r p)) = pts_to_witinv r p
val pts_to_framon (#a: Type) (r: ref a) (p: perm) : Lemma (is_frame_monotonic (pts_to_sl r p)) let pts_to_framon (#a: Type) (r: ref a) (p: perm) : Lemma (is_frame_monotonic (pts_to_sl r p)) =
false
null
true
pts_to_witinv r p
{ "checked_file": "Steel.HigherReference.fst.checked", "dependencies": [ "Steel.PCMReference.fsti.checked", "Steel.PCMFrac.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Real.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.PCM.fst.checked", "FStar.NMSTTotal.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Steel.HigherReference.fst" }
[ "lemma" ]
[ "Steel.HigherReference.ref", "Steel.FractionalPermission.perm", "Steel.HigherReference.pts_to_witinv", "Prims.unit", "Prims.l_True", "Prims.squash", "Steel.Memory.is_frame_monotonic", "Steel.HigherReference.pts_to_sl", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.HigherReference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect open FStar.PCM open Steel.PCMFrac open FStar.Real module RP = Steel.PCMReference #set-options "--ide_id_info_off" module Mem = Steel.Memory let ref a = Mem.ref (fractional a) pcm_frac let null #a = Mem.null #(fractional a) #pcm_frac let is_null #a r = Mem.is_null #(fractional a) #pcm_frac r let perm_ok p : prop = (p.v <=. one == true) /\ True let pts_to_raw_sl (#a:Type) (r:ref a) (p:perm) (v:erased a) : slprop = Mem.pts_to r (Some (Ghost.reveal v, p)) let pts_to_raw (#a:Type) (r:ref a) (p:perm) (v:erased a) : vprop = to_vprop (Mem.pts_to r (Some (Ghost.reveal v, p))) [@@__reduce__] let pts_to' (#a:Type u#1) (r:ref a) (p:perm) (v:erased a) : vprop = pts_to_raw r p v `star` pure (perm_ok p) let pts_to_sl #a r p v = hp_of (pts_to' r p v) let abcd_acbd (a b c d:slprop) : Lemma (Mem.(((a `star` b) `star` (c `star` d)) `equiv` ((a `star` c) `star` (b `star` d)))) = let open Steel.Memory in calc (equiv) { ((a `star` b) `star` (c `star` d)); (equiv) { star_associative a b (c `star` d) } ((a `star` (b `star` (c `star` d)))); (equiv) { star_associative b c d; star_congruence a (b `star` (c `star` d)) a ((b `star` c) `star` d) } (a `star` ((b `star` c) `star` d)); (equiv) { star_commutative b c; star_congruence (b `star` c) d (c `star` b) d; star_congruence a ((b `star` c) `star` d) a ((c `star` b) `star` d) } (a `star` ((c `star` b) `star` d)); (equiv) { star_associative c b d; star_congruence a ((c `star` b) `star` d) a (c `star` (b `star` d)) } (a `star` (c `star` (b `star` d))); (equiv) { star_associative a c (b `star` d) } ((a `star` c) `star` (b `star` d)); } let pts_to_ref_injective (#a: Type u#1) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let open Steel.Memory in abcd_acbd (hp_of (pts_to_raw r p0 v0)) (pure (perm_ok p0)) (hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p1)); Mem.affine_star (hp_of (pts_to_raw r p0 v0) `star` hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p0) `star` pure (perm_ok p1)) m; Mem.pts_to_compatible r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) m let pts_to_not_null (#a:Type u#1) (r:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures r =!= null) = Mem.affine_star (hp_of (pts_to_raw r p v)) (Mem.pure (perm_ok p)) m; Mem.pts_to_not_null r (Some (Ghost.reveal v, p)) m let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : erased a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = Mem.pts_to_join r (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let higher_ref_pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ())
false
false
Steel.HigherReference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pts_to_framon (#a: Type) (r: ref a) (p: perm) : Lemma (is_frame_monotonic (pts_to_sl r p))
[]
Steel.HigherReference.pts_to_framon
{ "file_name": "lib/steel/Steel.HigherReference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.HigherReference.ref a -> p: Steel.FractionalPermission.perm -> FStar.Pervasives.Lemma (ensures Steel.Memory.is_frame_monotonic (Steel.HigherReference.pts_to_sl r p))
{ "end_col": 19, "end_line": 114, "start_col": 2, "start_line": 114 }
Prims.Tot
val is_null (#a:Type u#1) (r:ref a) : (b:bool{b <==> r == null})
[ { "abbrev": true, "full_module": "Steel.PCMReference", "short_module": "RP" }, { "abbrev": false, "full_module": "FStar.Real", "short_module": null }, { "abbrev": false, "full_module": "Steel.PCMFrac", "short_module": null }, { "abbrev": false, "full_module": "FStar.PCM", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let is_null #a r = Mem.is_null #(fractional a) #pcm_frac r
val is_null (#a:Type u#1) (r:ref a) : (b:bool{b <==> r == null}) let is_null #a r =
false
null
false
Mem.is_null #(fractional a) #pcm_frac r
{ "checked_file": "Steel.HigherReference.fst.checked", "dependencies": [ "Steel.PCMReference.fsti.checked", "Steel.PCMFrac.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Real.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.PCM.fst.checked", "FStar.NMSTTotal.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Steel.HigherReference.fst" }
[ "total" ]
[ "Steel.HigherReference.ref", "Steel.Memory.is_null", "Steel.PCMFrac.fractional", "Steel.PCMFrac.pcm_frac", "Prims.bool", "Prims.l_iff", "Prims.b2t", "Prims.eq2", "Steel.HigherReference.null" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.HigherReference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect open FStar.PCM open Steel.PCMFrac open FStar.Real module RP = Steel.PCMReference #set-options "--ide_id_info_off" module Mem = Steel.Memory let ref a = Mem.ref (fractional a) pcm_frac
false
false
Steel.HigherReference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val is_null (#a:Type u#1) (r:ref a) : (b:bool{b <==> r == null})
[]
Steel.HigherReference.is_null
{ "file_name": "lib/steel/Steel.HigherReference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.HigherReference.ref a -> b: Prims.bool{b <==> r == Steel.HigherReference.null}
{ "end_col": 58, "end_line": 33, "start_col": 19, "start_line": 33 }
FStar.Pervasives.Lemma
val ghost_pts_to_witinv (#a:Type) (r:ghost_ref a) (p:perm) : Lemma (is_witness_invariant (ghost_pts_to_sl r p))
[ { "abbrev": true, "full_module": "Steel.PCMReference", "short_module": "RP" }, { "abbrev": false, "full_module": "FStar.Real", "short_module": null }, { "abbrev": false, "full_module": "Steel.PCMFrac", "short_module": null }, { "abbrev": false, "full_module": "FStar.PCM", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ghost_pts_to_witinv (#a:Type) (r:ghost_ref a) (p:perm) : Lemma (is_witness_invariant (ghost_pts_to_sl r p)) = let aux (x y : erased a) (m:mem) : Lemma (requires (interp (ghost_pts_to_sl r p x) m /\ interp (ghost_pts_to_sl r p y) m)) (ensures (x == y)) [SMTPat ()] = Mem.pts_to_join (Ghost.reveal r) (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m in assert (forall x y m. interp (ghost_pts_to_sl r p x) m /\ interp (ghost_pts_to_sl r p y) m ==> x == y); assert (is_witness_invariant (ghost_pts_to_sl r p))
val ghost_pts_to_witinv (#a:Type) (r:ghost_ref a) (p:perm) : Lemma (is_witness_invariant (ghost_pts_to_sl r p)) let ghost_pts_to_witinv (#a: Type) (r: ghost_ref a) (p: perm) : Lemma (is_witness_invariant (ghost_pts_to_sl r p)) =
false
null
true
let aux (x y: erased a) (m: mem) : Lemma (requires (interp (ghost_pts_to_sl r p x) m /\ interp (ghost_pts_to_sl r p y) m)) (ensures (x == y)) [SMTPat ()] = Mem.pts_to_join (Ghost.reveal r) (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m in assert (forall x y m. interp (ghost_pts_to_sl r p x) m /\ interp (ghost_pts_to_sl r p y) m ==> x == y); assert (is_witness_invariant (ghost_pts_to_sl r p))
{ "checked_file": "Steel.HigherReference.fst.checked", "dependencies": [ "Steel.PCMReference.fsti.checked", "Steel.PCMFrac.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Real.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.PCM.fst.checked", "FStar.NMSTTotal.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Steel.HigherReference.fst" }
[ "lemma" ]
[ "Steel.HigherReference.ghost_ref", "Steel.FractionalPermission.perm", "Prims._assert", "Steel.Memory.is_witness_invariant", "Steel.HigherReference.ghost_pts_to_sl", "Prims.unit", "Prims.l_Forall", "Steel.Memory.mem", "Prims.l_imp", "Prims.l_and", "Steel.Memory.interp", "Prims.eq2", "FStar.Ghost.erased", "FStar.Ghost.reveal", "Prims.squash", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.Nil", "Steel.Memory.pts_to_join", "Steel.PCMFrac.fractional", "Steel.PCMFrac.pcm_frac", "Steel.HigherReference.ref", "FStar.Pervasives.Native.Some", "FStar.Pervasives.Native.tuple2", "FStar.Pervasives.Native.Mktuple2", "Prims.l_True" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.HigherReference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect open FStar.PCM open Steel.PCMFrac open FStar.Real module RP = Steel.PCMReference #set-options "--ide_id_info_off" module Mem = Steel.Memory let ref a = Mem.ref (fractional a) pcm_frac let null #a = Mem.null #(fractional a) #pcm_frac let is_null #a r = Mem.is_null #(fractional a) #pcm_frac r let perm_ok p : prop = (p.v <=. one == true) /\ True let pts_to_raw_sl (#a:Type) (r:ref a) (p:perm) (v:erased a) : slprop = Mem.pts_to r (Some (Ghost.reveal v, p)) let pts_to_raw (#a:Type) (r:ref a) (p:perm) (v:erased a) : vprop = to_vprop (Mem.pts_to r (Some (Ghost.reveal v, p))) [@@__reduce__] let pts_to' (#a:Type u#1) (r:ref a) (p:perm) (v:erased a) : vprop = pts_to_raw r p v `star` pure (perm_ok p) let pts_to_sl #a r p v = hp_of (pts_to' r p v) let abcd_acbd (a b c d:slprop) : Lemma (Mem.(((a `star` b) `star` (c `star` d)) `equiv` ((a `star` c) `star` (b `star` d)))) = let open Steel.Memory in calc (equiv) { ((a `star` b) `star` (c `star` d)); (equiv) { star_associative a b (c `star` d) } ((a `star` (b `star` (c `star` d)))); (equiv) { star_associative b c d; star_congruence a (b `star` (c `star` d)) a ((b `star` c) `star` d) } (a `star` ((b `star` c) `star` d)); (equiv) { star_commutative b c; star_congruence (b `star` c) d (c `star` b) d; star_congruence a ((b `star` c) `star` d) a ((c `star` b) `star` d) } (a `star` ((c `star` b) `star` d)); (equiv) { star_associative c b d; star_congruence a ((c `star` b) `star` d) a (c `star` (b `star` d)) } (a `star` (c `star` (b `star` d))); (equiv) { star_associative a c (b `star` d) } ((a `star` c) `star` (b `star` d)); } let pts_to_ref_injective (#a: Type u#1) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let open Steel.Memory in abcd_acbd (hp_of (pts_to_raw r p0 v0)) (pure (perm_ok p0)) (hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p1)); Mem.affine_star (hp_of (pts_to_raw r p0 v0) `star` hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p0) `star` pure (perm_ok p1)) m; Mem.pts_to_compatible r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) m let pts_to_not_null (#a:Type u#1) (r:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures r =!= null) = Mem.affine_star (hp_of (pts_to_raw r p v)) (Mem.pure (perm_ok p)) m; Mem.pts_to_not_null r (Some (Ghost.reveal v, p)) m let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : erased a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = Mem.pts_to_join r (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let higher_ref_pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let pts_to_framon (#a:Type) (r:ref a) (p:perm) : Lemma (is_frame_monotonic (pts_to_sl r p)) = pts_to_witinv r p let intro_pts_to (p:perm) #a #uses (#v:erased a) (r:ref a) : SteelGhost unit uses (pts_to_raw r p v) (fun _ -> pts_to r p v) (requires fun _ -> perm_ok p) (ensures fun _ _ _ -> True) = intro_pure (perm_ok p); rewrite_slprop (pts_to' r p v) (pts_to r p v) (fun _ -> ()) let alloc #a x = let v = Some (x, full_perm) in assert (FStar.PCM.composable pcm_frac v None); assert (compatible pcm_frac v v); let r = RP.alloc v in rewrite_slprop (RP.pts_to r v) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m ); extract_info_raw (pts_to r full_perm x) (~ (is_null r)) (fun m -> pts_to_not_null r full_perm x m); return r let read (#a:Type) (#p:perm) (#v:erased a) (r:ref a) = let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ()); elim_pure (perm_ok p); let v2 = RP.read r v1 in rewrite_slprop (RP.pts_to r v1) (pts_to r p v) (fun m -> emp_unit (hp_of (pts_to_raw r p v)); pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m); assert (compatible pcm_frac v1 v2); let Some (x, _) = v2 in rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ()); return x let atomic_read (#opened:_) (#a:Type) (#p:perm) (#v:erased a) (r:ref a) = let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ()); elim_pure (perm_ok p); let v2 = RP.atomic_read r v1 in rewrite_slprop (RP.pts_to r v1) (pts_to r p v) (fun m -> emp_unit (hp_of (pts_to_raw r p v)); pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m); assert (compatible pcm_frac v1 v2); let Some (x, _) = v2 in rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ()); return x let read_refine (#a:Type) (#p:perm) (q:a -> vprop) (r:ref a) : SteelT a (h_exists (fun (v:a) -> pts_to r p v `star` q v)) (fun v -> pts_to r p v `star` q v) = let vs:erased a = witness_exists () in rewrite_slprop (pts_to r p (Ghost.hide (Ghost.reveal vs))) (pts_to r p vs) (fun _ -> ()); let v = read r in rewrite_slprop (q vs) (q v) (fun _ -> ()); return v let write (#a:Type) (#v:erased a) (r:ref a) (x:a) : SteelT unit (pts_to r full_perm v) (fun _ -> pts_to r full_perm x) = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in let v_new : fractional a = Some (x, full_perm) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.write r v_old v_new; rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m) let atomic_write #opened #a #v r x = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in let v_new : fractional a = Some (x, full_perm) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.atomic_write r v_old v_new; rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m) let free (#a:Type) (#v:erased a) (r:ref a) : SteelT unit (pts_to r full_perm v) (fun _ -> emp) = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.free r v_old; drop (RP.pts_to r (Mkpcm'?.one (Mkpcm?.p pcm_frac))) let share_atomic_raw #a #uses (#p:perm) (r:ref a{perm_ok p}) (v0:erased a) : SteelGhostT unit uses (pts_to_raw r p v0) (fun _ -> pts_to_raw r (half_perm p) v0 `star` pts_to_raw r (half_perm p) v0) = rewrite_slprop (pts_to_raw r p v0) (RP.pts_to r _) (fun _ -> ()); RP.split r (Some (Ghost.reveal v0, p)) (Some (Ghost.reveal v0, half_perm p)) (Some (Ghost.reveal v0, half_perm p)); rewrite_slprop (RP.pts_to r _) (pts_to_raw r (half_perm p) v0) (fun _ -> ()); rewrite_slprop (RP.pts_to r _) (pts_to_raw r (half_perm p) v0) (fun _ -> ()) let share (#a:Type) #uses (#p:perm) (#v:erased a) (r:ref a) : SteelGhostT unit uses (pts_to r p v) (fun _ -> pts_to r (half_perm p) v `star` pts_to r (half_perm p) v) = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (pts_to' r p v) (fun _ -> ()); elim_pure (perm_ok p); share_atomic_raw r v; intro_pts_to (half_perm p) r; intro_pts_to (half_perm p) r let gather_atomic_raw (#a:Type) (#uses:_) (#p0 #p1:perm) (r:ref a) (v0:erased a) (v1:erased a) : SteelGhostT (_:unit{v0==v1 /\ perm_ok (sum_perm p0 p1)}) uses (pts_to_raw r p0 v0 `star` pts_to_raw r p1 v1) (fun _ -> pts_to_raw r (sum_perm p0 p1) v0) = rewrite_slprop (pts_to_raw r p0 v0) (RP.pts_to r (Ghost.reveal (Some (Ghost.reveal v0, p0)))) (fun _ -> ()); rewrite_slprop (pts_to_raw r p1 v1) (RP.pts_to r (Ghost.reveal (Some (Ghost.reveal v1, p1)))) (fun _ -> ()); let _ = RP.gather r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) in rewrite_slprop (RP.pts_to r _) (pts_to_raw r (sum_perm p0 p1) v0) (fun _ -> ()) let gather (#a:Type) (#uses:_) (#p0:perm) (#p1:perm) (#v0 #v1:erased a) (r:ref a) = let v0_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v0, p0)) in let v1_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v1, p1)) in rewrite_slprop (pts_to r p0 v0) (pts_to_raw r p0 v0 `star` pure (perm_ok p0)) (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (pts_to_raw r p1 v1 `star` pure (perm_ok p1)) (fun _ -> ()); elim_pure (perm_ok p0); elim_pure (perm_ok p1); let _ = gather_atomic_raw r v0 v1 in intro_pts_to (sum_perm p0 p1) r let cas_provides #t (r:ref t) (v:Ghost.erased t) (v_new:t) (b:bool) = if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v let equiv_ext_right (p q r:slprop) : Lemma (requires q `Mem.equiv` r) (ensures Mem.((p `star` q) `equiv` (p `star` r))) = let open Steel.Memory in calc (equiv) { p `star` q; (equiv) { star_commutative p q } q `star` p; (equiv) { equiv_extensional_on_star q r p } r `star` p; (equiv) { star_commutative p r } p `star` r; } let cas_action_helper (p q r s:slprop) (m:mem) : Lemma (requires interp Mem.(p `star` q `star` r `star` s) m) (ensures interp Mem.(p `star` q `star` s) m) = let open Steel.Memory in calc (equiv) { r `star` s; (equiv) { star_commutative r s } s `star` r; }; calc (equiv) { p `star` q `star` r `star` s; (equiv) { Mem.star_associative (p `star` q) r s } (p `star` q) `star` (r `star` s); (equiv) { equiv_ext_right (p `star` q) (r `star` s) (s `star` r) } (p `star` q) `star` (s `star` r); (equiv) { star_associative (p `star` q) s r } (p `star` q `star` s) `star` r; }; assert (interp ((p `star` q `star` s) `star` r) m); affine_star (p `star` q `star` s) r m let cas_action (#t:Type) (eq: (x:t -> y:t -> b:bool{b <==> (x == y)})) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (fr:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (cas_provides r v v_new) fr (fun _ -> True) (fun _ _ _ -> True) = let m0 : full_mem = NMSTTotal.get () in let fv = Ghost.hide (Some (Ghost.reveal v, full_perm)) in let fv' = Some (v_new, full_perm) in assert (interp Mem.(pts_to_sl r full_perm v `star` fr `star` locks_invariant uses m0) m0); assert (interp Mem.(pts_to r fv `star` pure (perm_ok full_perm) `star` fr `star` locks_invariant uses m0) m0); cas_action_helper (Mem.pts_to r fv) (Mem.pure (perm_ok full_perm)) fr (locks_invariant uses m0) m0; assert (interp Mem.((pts_to r fv `star` pure (perm_ok full_perm)) `star` locks_invariant uses m0) m0); let fv_actual = Mem.frame (Mem.pure (perm_ok full_perm)) (sel_action uses r fv) fr in assert (compatible pcm_frac fv fv_actual); let Some (v', p) = fv_actual in assert (v == Ghost.hide v'); assert (p == full_perm); let b = if eq v' v_old then (Mem.frame (Mem.pure (perm_ok full_perm)) (upd_action uses r fv fv') fr; true) else false in b (*** GHOST REFERENCES ***) let ghost_ref a = erased (ref a) [@@__reduce__] let ghost_pts_to_sl #a (r:ghost_ref a) (p:perm) (x:a) = pts_to_sl (reveal r) p x let reveal_ghost_ref _ = () let reveal_ghost_pts_to_sl _ _ _ = ()
false
false
Steel.HigherReference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ghost_pts_to_witinv (#a:Type) (r:ghost_ref a) (p:perm) : Lemma (is_witness_invariant (ghost_pts_to_sl r p))
[]
Steel.HigherReference.ghost_pts_to_witinv
{ "file_name": "lib/steel/Steel.HigherReference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.HigherReference.ghost_ref a -> p: Steel.FractionalPermission.perm -> FStar.Pervasives.Lemma (ensures Steel.Memory.is_witness_invariant (Steel.HigherReference.ghost_pts_to_sl r p))
{ "end_col": 53, "end_line": 384, "start_col": 113, "start_line": 375 }
FStar.Pervasives.Lemma
val cas_action_helper (p q r s: slprop) (m: mem) : Lemma (requires interp Mem.(((p `star` q) `star` r) `star` s) m) (ensures interp Mem.((p `star` q) `star` s) m)
[ { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.PCMReference", "short_module": "RP" }, { "abbrev": false, "full_module": "FStar.Real", "short_module": null }, { "abbrev": false, "full_module": "Steel.PCMFrac", "short_module": null }, { "abbrev": false, "full_module": "FStar.PCM", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let cas_action_helper (p q r s:slprop) (m:mem) : Lemma (requires interp Mem.(p `star` q `star` r `star` s) m) (ensures interp Mem.(p `star` q `star` s) m) = let open Steel.Memory in calc (equiv) { r `star` s; (equiv) { star_commutative r s } s `star` r; }; calc (equiv) { p `star` q `star` r `star` s; (equiv) { Mem.star_associative (p `star` q) r s } (p `star` q) `star` (r `star` s); (equiv) { equiv_ext_right (p `star` q) (r `star` s) (s `star` r) } (p `star` q) `star` (s `star` r); (equiv) { star_associative (p `star` q) s r } (p `star` q `star` s) `star` r; }; assert (interp ((p `star` q `star` s) `star` r) m); affine_star (p `star` q `star` s) r m
val cas_action_helper (p q r s: slprop) (m: mem) : Lemma (requires interp Mem.(((p `star` q) `star` r) `star` s) m) (ensures interp Mem.((p `star` q) `star` s) m) let cas_action_helper (p q r s: slprop) (m: mem) : Lemma (requires interp Mem.(((p `star` q) `star` r) `star` s) m) (ensures interp Mem.((p `star` q) `star` s) m) =
false
null
true
let open Steel.Memory in calc (equiv) { r `star` s; (equiv) { star_commutative r s } s `star` r; }; calc (equiv) { ((p `star` q) `star` r) `star` s; (equiv) { Mem.star_associative (p `star` q) r s } (p `star` q) `star` (r `star` s); (equiv) { equiv_ext_right (p `star` q) (r `star` s) (s `star` r) } (p `star` q) `star` (s `star` r); (equiv) { star_associative (p `star` q) s r } ((p `star` q) `star` s) `star` r; }; assert (interp (((p `star` q) `star` s) `star` r) m); affine_star ((p `star` q) `star` s) r m
{ "checked_file": "Steel.HigherReference.fst.checked", "dependencies": [ "Steel.PCMReference.fsti.checked", "Steel.PCMFrac.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Real.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.PCM.fst.checked", "FStar.NMSTTotal.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Steel.HigherReference.fst" }
[ "lemma" ]
[ "Steel.Memory.slprop", "Steel.Memory.mem", "Steel.Memory.affine_star", "Steel.Memory.star", "Prims.unit", "Prims._assert", "Steel.Memory.interp", "FStar.Calc.calc_finish", "Steel.Memory.equiv", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Steel.Memory.star_associative", "Prims.squash", "Steel.HigherReference.equiv_ext_right", "Steel.Memory.star_commutative", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.HigherReference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect open FStar.PCM open Steel.PCMFrac open FStar.Real module RP = Steel.PCMReference #set-options "--ide_id_info_off" module Mem = Steel.Memory let ref a = Mem.ref (fractional a) pcm_frac let null #a = Mem.null #(fractional a) #pcm_frac let is_null #a r = Mem.is_null #(fractional a) #pcm_frac r let perm_ok p : prop = (p.v <=. one == true) /\ True let pts_to_raw_sl (#a:Type) (r:ref a) (p:perm) (v:erased a) : slprop = Mem.pts_to r (Some (Ghost.reveal v, p)) let pts_to_raw (#a:Type) (r:ref a) (p:perm) (v:erased a) : vprop = to_vprop (Mem.pts_to r (Some (Ghost.reveal v, p))) [@@__reduce__] let pts_to' (#a:Type u#1) (r:ref a) (p:perm) (v:erased a) : vprop = pts_to_raw r p v `star` pure (perm_ok p) let pts_to_sl #a r p v = hp_of (pts_to' r p v) let abcd_acbd (a b c d:slprop) : Lemma (Mem.(((a `star` b) `star` (c `star` d)) `equiv` ((a `star` c) `star` (b `star` d)))) = let open Steel.Memory in calc (equiv) { ((a `star` b) `star` (c `star` d)); (equiv) { star_associative a b (c `star` d) } ((a `star` (b `star` (c `star` d)))); (equiv) { star_associative b c d; star_congruence a (b `star` (c `star` d)) a ((b `star` c) `star` d) } (a `star` ((b `star` c) `star` d)); (equiv) { star_commutative b c; star_congruence (b `star` c) d (c `star` b) d; star_congruence a ((b `star` c) `star` d) a ((c `star` b) `star` d) } (a `star` ((c `star` b) `star` d)); (equiv) { star_associative c b d; star_congruence a ((c `star` b) `star` d) a (c `star` (b `star` d)) } (a `star` (c `star` (b `star` d))); (equiv) { star_associative a c (b `star` d) } ((a `star` c) `star` (b `star` d)); } let pts_to_ref_injective (#a: Type u#1) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let open Steel.Memory in abcd_acbd (hp_of (pts_to_raw r p0 v0)) (pure (perm_ok p0)) (hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p1)); Mem.affine_star (hp_of (pts_to_raw r p0 v0) `star` hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p0) `star` pure (perm_ok p1)) m; Mem.pts_to_compatible r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) m let pts_to_not_null (#a:Type u#1) (r:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures r =!= null) = Mem.affine_star (hp_of (pts_to_raw r p v)) (Mem.pure (perm_ok p)) m; Mem.pts_to_not_null r (Some (Ghost.reveal v, p)) m let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : erased a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = Mem.pts_to_join r (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let higher_ref_pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let pts_to_framon (#a:Type) (r:ref a) (p:perm) : Lemma (is_frame_monotonic (pts_to_sl r p)) = pts_to_witinv r p let intro_pts_to (p:perm) #a #uses (#v:erased a) (r:ref a) : SteelGhost unit uses (pts_to_raw r p v) (fun _ -> pts_to r p v) (requires fun _ -> perm_ok p) (ensures fun _ _ _ -> True) = intro_pure (perm_ok p); rewrite_slprop (pts_to' r p v) (pts_to r p v) (fun _ -> ()) let alloc #a x = let v = Some (x, full_perm) in assert (FStar.PCM.composable pcm_frac v None); assert (compatible pcm_frac v v); let r = RP.alloc v in rewrite_slprop (RP.pts_to r v) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m ); extract_info_raw (pts_to r full_perm x) (~ (is_null r)) (fun m -> pts_to_not_null r full_perm x m); return r let read (#a:Type) (#p:perm) (#v:erased a) (r:ref a) = let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ()); elim_pure (perm_ok p); let v2 = RP.read r v1 in rewrite_slprop (RP.pts_to r v1) (pts_to r p v) (fun m -> emp_unit (hp_of (pts_to_raw r p v)); pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m); assert (compatible pcm_frac v1 v2); let Some (x, _) = v2 in rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ()); return x let atomic_read (#opened:_) (#a:Type) (#p:perm) (#v:erased a) (r:ref a) = let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ()); elim_pure (perm_ok p); let v2 = RP.atomic_read r v1 in rewrite_slprop (RP.pts_to r v1) (pts_to r p v) (fun m -> emp_unit (hp_of (pts_to_raw r p v)); pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m); assert (compatible pcm_frac v1 v2); let Some (x, _) = v2 in rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ()); return x let read_refine (#a:Type) (#p:perm) (q:a -> vprop) (r:ref a) : SteelT a (h_exists (fun (v:a) -> pts_to r p v `star` q v)) (fun v -> pts_to r p v `star` q v) = let vs:erased a = witness_exists () in rewrite_slprop (pts_to r p (Ghost.hide (Ghost.reveal vs))) (pts_to r p vs) (fun _ -> ()); let v = read r in rewrite_slprop (q vs) (q v) (fun _ -> ()); return v let write (#a:Type) (#v:erased a) (r:ref a) (x:a) : SteelT unit (pts_to r full_perm v) (fun _ -> pts_to r full_perm x) = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in let v_new : fractional a = Some (x, full_perm) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.write r v_old v_new; rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m) let atomic_write #opened #a #v r x = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in let v_new : fractional a = Some (x, full_perm) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.atomic_write r v_old v_new; rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m) let free (#a:Type) (#v:erased a) (r:ref a) : SteelT unit (pts_to r full_perm v) (fun _ -> emp) = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.free r v_old; drop (RP.pts_to r (Mkpcm'?.one (Mkpcm?.p pcm_frac))) let share_atomic_raw #a #uses (#p:perm) (r:ref a{perm_ok p}) (v0:erased a) : SteelGhostT unit uses (pts_to_raw r p v0) (fun _ -> pts_to_raw r (half_perm p) v0 `star` pts_to_raw r (half_perm p) v0) = rewrite_slprop (pts_to_raw r p v0) (RP.pts_to r _) (fun _ -> ()); RP.split r (Some (Ghost.reveal v0, p)) (Some (Ghost.reveal v0, half_perm p)) (Some (Ghost.reveal v0, half_perm p)); rewrite_slprop (RP.pts_to r _) (pts_to_raw r (half_perm p) v0) (fun _ -> ()); rewrite_slprop (RP.pts_to r _) (pts_to_raw r (half_perm p) v0) (fun _ -> ()) let share (#a:Type) #uses (#p:perm) (#v:erased a) (r:ref a) : SteelGhostT unit uses (pts_to r p v) (fun _ -> pts_to r (half_perm p) v `star` pts_to r (half_perm p) v) = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (pts_to' r p v) (fun _ -> ()); elim_pure (perm_ok p); share_atomic_raw r v; intro_pts_to (half_perm p) r; intro_pts_to (half_perm p) r let gather_atomic_raw (#a:Type) (#uses:_) (#p0 #p1:perm) (r:ref a) (v0:erased a) (v1:erased a) : SteelGhostT (_:unit{v0==v1 /\ perm_ok (sum_perm p0 p1)}) uses (pts_to_raw r p0 v0 `star` pts_to_raw r p1 v1) (fun _ -> pts_to_raw r (sum_perm p0 p1) v0) = rewrite_slprop (pts_to_raw r p0 v0) (RP.pts_to r (Ghost.reveal (Some (Ghost.reveal v0, p0)))) (fun _ -> ()); rewrite_slprop (pts_to_raw r p1 v1) (RP.pts_to r (Ghost.reveal (Some (Ghost.reveal v1, p1)))) (fun _ -> ()); let _ = RP.gather r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) in rewrite_slprop (RP.pts_to r _) (pts_to_raw r (sum_perm p0 p1) v0) (fun _ -> ()) let gather (#a:Type) (#uses:_) (#p0:perm) (#p1:perm) (#v0 #v1:erased a) (r:ref a) = let v0_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v0, p0)) in let v1_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v1, p1)) in rewrite_slprop (pts_to r p0 v0) (pts_to_raw r p0 v0 `star` pure (perm_ok p0)) (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (pts_to_raw r p1 v1 `star` pure (perm_ok p1)) (fun _ -> ()); elim_pure (perm_ok p0); elim_pure (perm_ok p1); let _ = gather_atomic_raw r v0 v1 in intro_pts_to (sum_perm p0 p1) r let cas_provides #t (r:ref t) (v:Ghost.erased t) (v_new:t) (b:bool) = if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v let equiv_ext_right (p q r:slprop) : Lemma (requires q `Mem.equiv` r) (ensures Mem.((p `star` q) `equiv` (p `star` r))) = let open Steel.Memory in calc (equiv) { p `star` q; (equiv) { star_commutative p q } q `star` p; (equiv) { equiv_extensional_on_star q r p } r `star` p; (equiv) { star_commutative p r } p `star` r; } let cas_action_helper (p q r s:slprop) (m:mem) : Lemma (requires interp Mem.(p `star` q `star` r `star` s) m)
false
false
Steel.HigherReference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val cas_action_helper (p q r s: slprop) (m: mem) : Lemma (requires interp Mem.(((p `star` q) `star` r) `star` s) m) (ensures interp Mem.((p `star` q) `star` s) m)
[]
Steel.HigherReference.cas_action_helper
{ "file_name": "lib/steel/Steel.HigherReference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
p: Steel.Memory.slprop -> q: Steel.Memory.slprop -> r: Steel.Memory.slprop -> s: Steel.Memory.slprop -> m: Steel.Memory.mem -> FStar.Pervasives.Lemma (requires Steel.Memory.interp (Steel.Memory.star (Steel.Memory.star (Steel.Memory.star p q) r) s) m) (ensures Steel.Memory.interp (Steel.Memory.star (Steel.Memory.star p q) s) m)
{ "end_col": 41, "end_line": 323, "start_col": 4, "start_line": 305 }
FStar.Pervasives.Lemma
val pts_to_ref_injective (#a: Type u#1) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1)
[ { "abbrev": true, "full_module": "Steel.PCMReference", "short_module": "RP" }, { "abbrev": false, "full_module": "FStar.Real", "short_module": null }, { "abbrev": false, "full_module": "Steel.PCMFrac", "short_module": null }, { "abbrev": false, "full_module": "FStar.PCM", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pts_to_ref_injective (#a: Type u#1) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let open Steel.Memory in abcd_acbd (hp_of (pts_to_raw r p0 v0)) (pure (perm_ok p0)) (hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p1)); Mem.affine_star (hp_of (pts_to_raw r p0 v0) `star` hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p0) `star` pure (perm_ok p1)) m; Mem.pts_to_compatible r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) m
val pts_to_ref_injective (#a: Type u#1) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) let pts_to_ref_injective (#a: Type u#1) (r: ref a) (p0 p1: perm) (v0 v1: a) (m: mem) : Lemma (requires interp ((pts_to_sl r p0 v0) `Mem.star` (pts_to_sl r p1 v1)) m) (ensures v0 == v1) =
false
null
true
let open Steel.Memory in abcd_acbd (hp_of (pts_to_raw r p0 v0)) (pure (perm_ok p0)) (hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p1)); Mem.affine_star ((hp_of (pts_to_raw r p0 v0)) `star` (hp_of (pts_to_raw r p1 v1))) ((pure (perm_ok p0)) `star` (pure (perm_ok p1))) m; Mem.pts_to_compatible r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) m
{ "checked_file": "Steel.HigherReference.fst.checked", "dependencies": [ "Steel.PCMReference.fsti.checked", "Steel.PCMFrac.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Real.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.PCM.fst.checked", "FStar.NMSTTotal.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Steel.HigherReference.fst" }
[ "lemma" ]
[ "Steel.HigherReference.ref", "Steel.FractionalPermission.perm", "Steel.Memory.mem", "Steel.Memory.pts_to_compatible", "Steel.PCMFrac.fractional", "Steel.PCMFrac.pcm_frac", "FStar.Pervasives.Native.Some", "FStar.Pervasives.Native.tuple2", "FStar.Pervasives.Native.Mktuple2", "FStar.Ghost.reveal", "FStar.Ghost.hide", "Prims.unit", "Steel.Memory.affine_star", "Steel.Memory.star", "Steel.Effect.Common.hp_of", "Steel.HigherReference.pts_to_raw", "Steel.Memory.pure", "Steel.HigherReference.perm_ok", "Steel.HigherReference.abcd_acbd", "Steel.Memory.interp", "Steel.HigherReference.pts_to_sl", "Prims.squash", "Prims.eq2", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.HigherReference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect open FStar.PCM open Steel.PCMFrac open FStar.Real module RP = Steel.PCMReference #set-options "--ide_id_info_off" module Mem = Steel.Memory let ref a = Mem.ref (fractional a) pcm_frac let null #a = Mem.null #(fractional a) #pcm_frac let is_null #a r = Mem.is_null #(fractional a) #pcm_frac r let perm_ok p : prop = (p.v <=. one == true) /\ True let pts_to_raw_sl (#a:Type) (r:ref a) (p:perm) (v:erased a) : slprop = Mem.pts_to r (Some (Ghost.reveal v, p)) let pts_to_raw (#a:Type) (r:ref a) (p:perm) (v:erased a) : vprop = to_vprop (Mem.pts_to r (Some (Ghost.reveal v, p))) [@@__reduce__] let pts_to' (#a:Type u#1) (r:ref a) (p:perm) (v:erased a) : vprop = pts_to_raw r p v `star` pure (perm_ok p) let pts_to_sl #a r p v = hp_of (pts_to' r p v) let abcd_acbd (a b c d:slprop) : Lemma (Mem.(((a `star` b) `star` (c `star` d)) `equiv` ((a `star` c) `star` (b `star` d)))) = let open Steel.Memory in calc (equiv) { ((a `star` b) `star` (c `star` d)); (equiv) { star_associative a b (c `star` d) } ((a `star` (b `star` (c `star` d)))); (equiv) { star_associative b c d; star_congruence a (b `star` (c `star` d)) a ((b `star` c) `star` d) } (a `star` ((b `star` c) `star` d)); (equiv) { star_commutative b c; star_congruence (b `star` c) d (c `star` b) d; star_congruence a ((b `star` c) `star` d) a ((c `star` b) `star` d) } (a `star` ((c `star` b) `star` d)); (equiv) { star_associative c b d; star_congruence a ((c `star` b) `star` d) a (c `star` (b `star` d)) } (a `star` (c `star` (b `star` d))); (equiv) { star_associative a c (b `star` d) } ((a `star` c) `star` (b `star` d)); } let pts_to_ref_injective (#a: Type u#1) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m)
false
false
Steel.HigherReference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pts_to_ref_injective (#a: Type u#1) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1)
[]
Steel.HigherReference.pts_to_ref_injective
{ "file_name": "lib/steel/Steel.HigherReference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.HigherReference.ref a -> p0: Steel.FractionalPermission.perm -> p1: Steel.FractionalPermission.perm -> v0: a -> v1: a -> m: Steel.Memory.mem -> FStar.Pervasives.Lemma (requires Steel.Memory.interp (Steel.Memory.star (Steel.HigherReference.pts_to_sl r p0 v0) (Steel.HigherReference.pts_to_sl r p1 v1)) m) (ensures v0 == v1)
{ "end_col": 31, "end_line": 87, "start_col": 6, "start_line": 78 }
FStar.Pervasives.Lemma
val pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p))
[ { "abbrev": true, "full_module": "Steel.PCMReference", "short_module": "RP" }, { "abbrev": false, "full_module": "FStar.Real", "short_module": null }, { "abbrev": false, "full_module": "Steel.PCMFrac", "short_module": null }, { "abbrev": false, "full_module": "FStar.PCM", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : erased a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = Mem.pts_to_join r (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y))
val pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) let pts_to_witinv (#a: Type) (r: ref a) (p: perm) : Lemma (is_witness_invariant (pts_to_sl r p)) =
false
null
true
let aux (x y: erased a) (m: mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = Mem.pts_to_join r (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y))
{ "checked_file": "Steel.HigherReference.fst.checked", "dependencies": [ "Steel.PCMReference.fsti.checked", "Steel.PCMFrac.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Real.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.PCM.fst.checked", "FStar.NMSTTotal.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Steel.HigherReference.fst" }
[ "lemma" ]
[ "Steel.HigherReference.ref", "Steel.FractionalPermission.perm", "FStar.Classical.forall_intro_3", "FStar.Ghost.erased", "Steel.Memory.mem", "Prims.l_imp", "Prims.l_and", "Steel.Memory.interp", "Steel.HigherReference.pts_to_sl", "FStar.Ghost.reveal", "Prims.eq2", "FStar.Classical.move_requires", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "Steel.Memory.pts_to_join", "Steel.PCMFrac.fractional", "Steel.PCMFrac.pcm_frac", "FStar.Pervasives.Native.Some", "FStar.Pervasives.Native.tuple2", "FStar.Pervasives.Native.Mktuple2", "Steel.Memory.is_witness_invariant" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.HigherReference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect open FStar.PCM open Steel.PCMFrac open FStar.Real module RP = Steel.PCMReference #set-options "--ide_id_info_off" module Mem = Steel.Memory let ref a = Mem.ref (fractional a) pcm_frac let null #a = Mem.null #(fractional a) #pcm_frac let is_null #a r = Mem.is_null #(fractional a) #pcm_frac r let perm_ok p : prop = (p.v <=. one == true) /\ True let pts_to_raw_sl (#a:Type) (r:ref a) (p:perm) (v:erased a) : slprop = Mem.pts_to r (Some (Ghost.reveal v, p)) let pts_to_raw (#a:Type) (r:ref a) (p:perm) (v:erased a) : vprop = to_vprop (Mem.pts_to r (Some (Ghost.reveal v, p))) [@@__reduce__] let pts_to' (#a:Type u#1) (r:ref a) (p:perm) (v:erased a) : vprop = pts_to_raw r p v `star` pure (perm_ok p) let pts_to_sl #a r p v = hp_of (pts_to' r p v) let abcd_acbd (a b c d:slprop) : Lemma (Mem.(((a `star` b) `star` (c `star` d)) `equiv` ((a `star` c) `star` (b `star` d)))) = let open Steel.Memory in calc (equiv) { ((a `star` b) `star` (c `star` d)); (equiv) { star_associative a b (c `star` d) } ((a `star` (b `star` (c `star` d)))); (equiv) { star_associative b c d; star_congruence a (b `star` (c `star` d)) a ((b `star` c) `star` d) } (a `star` ((b `star` c) `star` d)); (equiv) { star_commutative b c; star_congruence (b `star` c) d (c `star` b) d; star_congruence a ((b `star` c) `star` d) a ((c `star` b) `star` d) } (a `star` ((c `star` b) `star` d)); (equiv) { star_associative c b d; star_congruence a ((c `star` b) `star` d) a (c `star` (b `star` d)) } (a `star` (c `star` (b `star` d))); (equiv) { star_associative a c (b `star` d) } ((a `star` c) `star` (b `star` d)); } let pts_to_ref_injective (#a: Type u#1) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let open Steel.Memory in abcd_acbd (hp_of (pts_to_raw r p0 v0)) (pure (perm_ok p0)) (hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p1)); Mem.affine_star (hp_of (pts_to_raw r p0 v0) `star` hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p0) `star` pure (perm_ok p1)) m; Mem.pts_to_compatible r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) m let pts_to_not_null (#a:Type u#1) (r:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures r =!= null) = Mem.affine_star (hp_of (pts_to_raw r p v)) (Mem.pure (perm_ok p)) m; Mem.pts_to_not_null r (Some (Ghost.reveal v, p)) m
false
false
Steel.HigherReference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p))
[]
Steel.HigherReference.pts_to_witinv
{ "file_name": "lib/steel/Steel.HigherReference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.HigherReference.ref a -> p: Steel.FractionalPermission.perm -> FStar.Pervasives.Lemma (ensures Steel.Memory.is_witness_invariant (Steel.HigherReference.pts_to_sl r p))
{ "end_col": 73, "end_line": 106, "start_col": 95, "start_line": 99 }
Steel.Effect.Atomic.SteelGhostT
val ghost_share (#a:Type) (#u:_) (#p:perm) (#x:erased a) (r:ghost_ref a) : SteelGhostT unit u (ghost_pts_to r p x) (fun _ -> ghost_pts_to r (half_perm p) x `star` ghost_pts_to r (half_perm p) x)
[ { "abbrev": true, "full_module": "Steel.PCMReference", "short_module": "RP" }, { "abbrev": false, "full_module": "FStar.Real", "short_module": null }, { "abbrev": false, "full_module": "Steel.PCMFrac", "short_module": null }, { "abbrev": false, "full_module": "FStar.PCM", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ghost_share r = share (reveal r)
val ghost_share (#a:Type) (#u:_) (#p:perm) (#x:erased a) (r:ghost_ref a) : SteelGhostT unit u (ghost_pts_to r p x) (fun _ -> ghost_pts_to r (half_perm p) x `star` ghost_pts_to r (half_perm p) x) let ghost_share r =
true
null
false
share (reveal r)
{ "checked_file": "Steel.HigherReference.fst.checked", "dependencies": [ "Steel.PCMReference.fsti.checked", "Steel.PCMFrac.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Real.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.PCM.fst.checked", "FStar.NMSTTotal.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Steel.HigherReference.fst" }
[]
[ "Steel.Memory.inames", "Steel.FractionalPermission.perm", "FStar.Ghost.erased", "Steel.HigherReference.ghost_ref", "Steel.HigherReference.share", "FStar.Ghost.reveal", "Steel.HigherReference.ref", "Prims.unit" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.HigherReference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect open FStar.PCM open Steel.PCMFrac open FStar.Real module RP = Steel.PCMReference #set-options "--ide_id_info_off" module Mem = Steel.Memory let ref a = Mem.ref (fractional a) pcm_frac let null #a = Mem.null #(fractional a) #pcm_frac let is_null #a r = Mem.is_null #(fractional a) #pcm_frac r let perm_ok p : prop = (p.v <=. one == true) /\ True let pts_to_raw_sl (#a:Type) (r:ref a) (p:perm) (v:erased a) : slprop = Mem.pts_to r (Some (Ghost.reveal v, p)) let pts_to_raw (#a:Type) (r:ref a) (p:perm) (v:erased a) : vprop = to_vprop (Mem.pts_to r (Some (Ghost.reveal v, p))) [@@__reduce__] let pts_to' (#a:Type u#1) (r:ref a) (p:perm) (v:erased a) : vprop = pts_to_raw r p v `star` pure (perm_ok p) let pts_to_sl #a r p v = hp_of (pts_to' r p v) let abcd_acbd (a b c d:slprop) : Lemma (Mem.(((a `star` b) `star` (c `star` d)) `equiv` ((a `star` c) `star` (b `star` d)))) = let open Steel.Memory in calc (equiv) { ((a `star` b) `star` (c `star` d)); (equiv) { star_associative a b (c `star` d) } ((a `star` (b `star` (c `star` d)))); (equiv) { star_associative b c d; star_congruence a (b `star` (c `star` d)) a ((b `star` c) `star` d) } (a `star` ((b `star` c) `star` d)); (equiv) { star_commutative b c; star_congruence (b `star` c) d (c `star` b) d; star_congruence a ((b `star` c) `star` d) a ((c `star` b) `star` d) } (a `star` ((c `star` b) `star` d)); (equiv) { star_associative c b d; star_congruence a ((c `star` b) `star` d) a (c `star` (b `star` d)) } (a `star` (c `star` (b `star` d))); (equiv) { star_associative a c (b `star` d) } ((a `star` c) `star` (b `star` d)); } let pts_to_ref_injective (#a: Type u#1) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let open Steel.Memory in abcd_acbd (hp_of (pts_to_raw r p0 v0)) (pure (perm_ok p0)) (hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p1)); Mem.affine_star (hp_of (pts_to_raw r p0 v0) `star` hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p0) `star` pure (perm_ok p1)) m; Mem.pts_to_compatible r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) m let pts_to_not_null (#a:Type u#1) (r:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures r =!= null) = Mem.affine_star (hp_of (pts_to_raw r p v)) (Mem.pure (perm_ok p)) m; Mem.pts_to_not_null r (Some (Ghost.reveal v, p)) m let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : erased a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = Mem.pts_to_join r (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let higher_ref_pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let pts_to_framon (#a:Type) (r:ref a) (p:perm) : Lemma (is_frame_monotonic (pts_to_sl r p)) = pts_to_witinv r p let intro_pts_to (p:perm) #a #uses (#v:erased a) (r:ref a) : SteelGhost unit uses (pts_to_raw r p v) (fun _ -> pts_to r p v) (requires fun _ -> perm_ok p) (ensures fun _ _ _ -> True) = intro_pure (perm_ok p); rewrite_slprop (pts_to' r p v) (pts_to r p v) (fun _ -> ()) let alloc #a x = let v = Some (x, full_perm) in assert (FStar.PCM.composable pcm_frac v None); assert (compatible pcm_frac v v); let r = RP.alloc v in rewrite_slprop (RP.pts_to r v) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m ); extract_info_raw (pts_to r full_perm x) (~ (is_null r)) (fun m -> pts_to_not_null r full_perm x m); return r let read (#a:Type) (#p:perm) (#v:erased a) (r:ref a) = let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ()); elim_pure (perm_ok p); let v2 = RP.read r v1 in rewrite_slprop (RP.pts_to r v1) (pts_to r p v) (fun m -> emp_unit (hp_of (pts_to_raw r p v)); pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m); assert (compatible pcm_frac v1 v2); let Some (x, _) = v2 in rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ()); return x let atomic_read (#opened:_) (#a:Type) (#p:perm) (#v:erased a) (r:ref a) = let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ()); elim_pure (perm_ok p); let v2 = RP.atomic_read r v1 in rewrite_slprop (RP.pts_to r v1) (pts_to r p v) (fun m -> emp_unit (hp_of (pts_to_raw r p v)); pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m); assert (compatible pcm_frac v1 v2); let Some (x, _) = v2 in rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ()); return x let read_refine (#a:Type) (#p:perm) (q:a -> vprop) (r:ref a) : SteelT a (h_exists (fun (v:a) -> pts_to r p v `star` q v)) (fun v -> pts_to r p v `star` q v) = let vs:erased a = witness_exists () in rewrite_slprop (pts_to r p (Ghost.hide (Ghost.reveal vs))) (pts_to r p vs) (fun _ -> ()); let v = read r in rewrite_slprop (q vs) (q v) (fun _ -> ()); return v let write (#a:Type) (#v:erased a) (r:ref a) (x:a) : SteelT unit (pts_to r full_perm v) (fun _ -> pts_to r full_perm x) = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in let v_new : fractional a = Some (x, full_perm) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.write r v_old v_new; rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m) let atomic_write #opened #a #v r x = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in let v_new : fractional a = Some (x, full_perm) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.atomic_write r v_old v_new; rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m) let free (#a:Type) (#v:erased a) (r:ref a) : SteelT unit (pts_to r full_perm v) (fun _ -> emp) = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.free r v_old; drop (RP.pts_to r (Mkpcm'?.one (Mkpcm?.p pcm_frac))) let share_atomic_raw #a #uses (#p:perm) (r:ref a{perm_ok p}) (v0:erased a) : SteelGhostT unit uses (pts_to_raw r p v0) (fun _ -> pts_to_raw r (half_perm p) v0 `star` pts_to_raw r (half_perm p) v0) = rewrite_slprop (pts_to_raw r p v0) (RP.pts_to r _) (fun _ -> ()); RP.split r (Some (Ghost.reveal v0, p)) (Some (Ghost.reveal v0, half_perm p)) (Some (Ghost.reveal v0, half_perm p)); rewrite_slprop (RP.pts_to r _) (pts_to_raw r (half_perm p) v0) (fun _ -> ()); rewrite_slprop (RP.pts_to r _) (pts_to_raw r (half_perm p) v0) (fun _ -> ()) let share (#a:Type) #uses (#p:perm) (#v:erased a) (r:ref a) : SteelGhostT unit uses (pts_to r p v) (fun _ -> pts_to r (half_perm p) v `star` pts_to r (half_perm p) v) = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (pts_to' r p v) (fun _ -> ()); elim_pure (perm_ok p); share_atomic_raw r v; intro_pts_to (half_perm p) r; intro_pts_to (half_perm p) r let gather_atomic_raw (#a:Type) (#uses:_) (#p0 #p1:perm) (r:ref a) (v0:erased a) (v1:erased a) : SteelGhostT (_:unit{v0==v1 /\ perm_ok (sum_perm p0 p1)}) uses (pts_to_raw r p0 v0 `star` pts_to_raw r p1 v1) (fun _ -> pts_to_raw r (sum_perm p0 p1) v0) = rewrite_slprop (pts_to_raw r p0 v0) (RP.pts_to r (Ghost.reveal (Some (Ghost.reveal v0, p0)))) (fun _ -> ()); rewrite_slprop (pts_to_raw r p1 v1) (RP.pts_to r (Ghost.reveal (Some (Ghost.reveal v1, p1)))) (fun _ -> ()); let _ = RP.gather r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) in rewrite_slprop (RP.pts_to r _) (pts_to_raw r (sum_perm p0 p1) v0) (fun _ -> ()) let gather (#a:Type) (#uses:_) (#p0:perm) (#p1:perm) (#v0 #v1:erased a) (r:ref a) = let v0_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v0, p0)) in let v1_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v1, p1)) in rewrite_slprop (pts_to r p0 v0) (pts_to_raw r p0 v0 `star` pure (perm_ok p0)) (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (pts_to_raw r p1 v1 `star` pure (perm_ok p1)) (fun _ -> ()); elim_pure (perm_ok p0); elim_pure (perm_ok p1); let _ = gather_atomic_raw r v0 v1 in intro_pts_to (sum_perm p0 p1) r let cas_provides #t (r:ref t) (v:Ghost.erased t) (v_new:t) (b:bool) = if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v let equiv_ext_right (p q r:slprop) : Lemma (requires q `Mem.equiv` r) (ensures Mem.((p `star` q) `equiv` (p `star` r))) = let open Steel.Memory in calc (equiv) { p `star` q; (equiv) { star_commutative p q } q `star` p; (equiv) { equiv_extensional_on_star q r p } r `star` p; (equiv) { star_commutative p r } p `star` r; } let cas_action_helper (p q r s:slprop) (m:mem) : Lemma (requires interp Mem.(p `star` q `star` r `star` s) m) (ensures interp Mem.(p `star` q `star` s) m) = let open Steel.Memory in calc (equiv) { r `star` s; (equiv) { star_commutative r s } s `star` r; }; calc (equiv) { p `star` q `star` r `star` s; (equiv) { Mem.star_associative (p `star` q) r s } (p `star` q) `star` (r `star` s); (equiv) { equiv_ext_right (p `star` q) (r `star` s) (s `star` r) } (p `star` q) `star` (s `star` r); (equiv) { star_associative (p `star` q) s r } (p `star` q `star` s) `star` r; }; assert (interp ((p `star` q `star` s) `star` r) m); affine_star (p `star` q `star` s) r m let cas_action (#t:Type) (eq: (x:t -> y:t -> b:bool{b <==> (x == y)})) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (fr:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (cas_provides r v v_new) fr (fun _ -> True) (fun _ _ _ -> True) = let m0 : full_mem = NMSTTotal.get () in let fv = Ghost.hide (Some (Ghost.reveal v, full_perm)) in let fv' = Some (v_new, full_perm) in assert (interp Mem.(pts_to_sl r full_perm v `star` fr `star` locks_invariant uses m0) m0); assert (interp Mem.(pts_to r fv `star` pure (perm_ok full_perm) `star` fr `star` locks_invariant uses m0) m0); cas_action_helper (Mem.pts_to r fv) (Mem.pure (perm_ok full_perm)) fr (locks_invariant uses m0) m0; assert (interp Mem.((pts_to r fv `star` pure (perm_ok full_perm)) `star` locks_invariant uses m0) m0); let fv_actual = Mem.frame (Mem.pure (perm_ok full_perm)) (sel_action uses r fv) fr in assert (compatible pcm_frac fv fv_actual); let Some (v', p) = fv_actual in assert (v == Ghost.hide v'); assert (p == full_perm); let b = if eq v' v_old then (Mem.frame (Mem.pure (perm_ok full_perm)) (upd_action uses r fv fv') fr; true) else false in b (*** GHOST REFERENCES ***) let ghost_ref a = erased (ref a) [@@__reduce__] let ghost_pts_to_sl #a (r:ghost_ref a) (p:perm) (x:a) = pts_to_sl (reveal r) p x let reveal_ghost_ref _ = () let reveal_ghost_pts_to_sl _ _ _ = () #push-options "--z3rlimit 20 --warn_error -271" let ghost_pts_to_witinv (#a:Type) (r:ghost_ref a) (p:perm) : Lemma (is_witness_invariant (ghost_pts_to_sl r p)) = let aux (x y : erased a) (m:mem) : Lemma (requires (interp (ghost_pts_to_sl r p x) m /\ interp (ghost_pts_to_sl r p y) m)) (ensures (x == y)) [SMTPat ()] = Mem.pts_to_join (Ghost.reveal r) (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m in assert (forall x y m. interp (ghost_pts_to_sl r p x) m /\ interp (ghost_pts_to_sl r p y) m ==> x == y); assert (is_witness_invariant (ghost_pts_to_sl r p)) #pop-options let ghost_alloc_aux (#a:Type) (#u:_) (x:a) : SteelGhostT (ref a) u emp (fun r -> pts_to r full_perm (Ghost.hide x)) = let v : fractional a = Some (x, full_perm) in assert (FStar.PCM.composable pcm_frac v None); assert (compatible pcm_frac v v); rewrite_slprop emp (to_vprop Mem.emp) (fun _ -> reveal_emp()); let r : ref a = as_atomic_action_ghost (Steel.Memory.alloc_action u v) in rewrite_slprop (RP.pts_to r v) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m); r let ghost_alloc x = let r = ghost_alloc_aux (reveal x) in hide r let ghost_free #a #u #v r = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); as_atomic_action_ghost (free_action u r v_old); drop (RP.pts_to r (Mkpcm'?.one (Mkpcm?.p pcm_frac)))
false
false
Steel.HigherReference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ghost_share (#a:Type) (#u:_) (#p:perm) (#x:erased a) (r:ghost_ref a) : SteelGhostT unit u (ghost_pts_to r p x) (fun _ -> ghost_pts_to r (half_perm p) x `star` ghost_pts_to r (half_perm p) x)
[]
Steel.HigherReference.ghost_share
{ "file_name": "lib/steel/Steel.HigherReference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.HigherReference.ghost_ref a -> Steel.Effect.Atomic.SteelGhostT Prims.unit
{ "end_col": 36, "end_line": 415, "start_col": 20, "start_line": 415 }
FStar.Pervasives.Lemma
val equiv_ext_right (p q r: slprop) : Lemma (requires q `Mem.equiv` r) (ensures Mem.((p `star` q) `equiv` (p `star` r)))
[ { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.PCMReference", "short_module": "RP" }, { "abbrev": false, "full_module": "FStar.Real", "short_module": null }, { "abbrev": false, "full_module": "Steel.PCMFrac", "short_module": null }, { "abbrev": false, "full_module": "FStar.PCM", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let equiv_ext_right (p q r:slprop) : Lemma (requires q `Mem.equiv` r) (ensures Mem.((p `star` q) `equiv` (p `star` r))) = let open Steel.Memory in calc (equiv) { p `star` q; (equiv) { star_commutative p q } q `star` p; (equiv) { equiv_extensional_on_star q r p } r `star` p; (equiv) { star_commutative p r } p `star` r; }
val equiv_ext_right (p q r: slprop) : Lemma (requires q `Mem.equiv` r) (ensures Mem.((p `star` q) `equiv` (p `star` r))) let equiv_ext_right (p q r: slprop) : Lemma (requires q `Mem.equiv` r) (ensures Mem.((p `star` q) `equiv` (p `star` r))) =
false
null
true
let open Steel.Memory in calc (equiv) { p `star` q; (equiv) { star_commutative p q } q `star` p; (equiv) { equiv_extensional_on_star q r p } r `star` p; (equiv) { star_commutative p r } p `star` r; }
{ "checked_file": "Steel.HigherReference.fst.checked", "dependencies": [ "Steel.PCMReference.fsti.checked", "Steel.PCMFrac.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Real.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.PCM.fst.checked", "FStar.NMSTTotal.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Steel.HigherReference.fst" }
[ "lemma" ]
[ "Steel.Memory.slprop", "FStar.Calc.calc_finish", "Steel.Memory.equiv", "Steel.Memory.star", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Steel.Memory.star_commutative", "Prims.squash", "Steel.Memory.equiv_extensional_on_star", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.HigherReference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect open FStar.PCM open Steel.PCMFrac open FStar.Real module RP = Steel.PCMReference #set-options "--ide_id_info_off" module Mem = Steel.Memory let ref a = Mem.ref (fractional a) pcm_frac let null #a = Mem.null #(fractional a) #pcm_frac let is_null #a r = Mem.is_null #(fractional a) #pcm_frac r let perm_ok p : prop = (p.v <=. one == true) /\ True let pts_to_raw_sl (#a:Type) (r:ref a) (p:perm) (v:erased a) : slprop = Mem.pts_to r (Some (Ghost.reveal v, p)) let pts_to_raw (#a:Type) (r:ref a) (p:perm) (v:erased a) : vprop = to_vprop (Mem.pts_to r (Some (Ghost.reveal v, p))) [@@__reduce__] let pts_to' (#a:Type u#1) (r:ref a) (p:perm) (v:erased a) : vprop = pts_to_raw r p v `star` pure (perm_ok p) let pts_to_sl #a r p v = hp_of (pts_to' r p v) let abcd_acbd (a b c d:slprop) : Lemma (Mem.(((a `star` b) `star` (c `star` d)) `equiv` ((a `star` c) `star` (b `star` d)))) = let open Steel.Memory in calc (equiv) { ((a `star` b) `star` (c `star` d)); (equiv) { star_associative a b (c `star` d) } ((a `star` (b `star` (c `star` d)))); (equiv) { star_associative b c d; star_congruence a (b `star` (c `star` d)) a ((b `star` c) `star` d) } (a `star` ((b `star` c) `star` d)); (equiv) { star_commutative b c; star_congruence (b `star` c) d (c `star` b) d; star_congruence a ((b `star` c) `star` d) a ((c `star` b) `star` d) } (a `star` ((c `star` b) `star` d)); (equiv) { star_associative c b d; star_congruence a ((c `star` b) `star` d) a (c `star` (b `star` d)) } (a `star` (c `star` (b `star` d))); (equiv) { star_associative a c (b `star` d) } ((a `star` c) `star` (b `star` d)); } let pts_to_ref_injective (#a: Type u#1) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let open Steel.Memory in abcd_acbd (hp_of (pts_to_raw r p0 v0)) (pure (perm_ok p0)) (hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p1)); Mem.affine_star (hp_of (pts_to_raw r p0 v0) `star` hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p0) `star` pure (perm_ok p1)) m; Mem.pts_to_compatible r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) m let pts_to_not_null (#a:Type u#1) (r:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures r =!= null) = Mem.affine_star (hp_of (pts_to_raw r p v)) (Mem.pure (perm_ok p)) m; Mem.pts_to_not_null r (Some (Ghost.reveal v, p)) m let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : erased a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = Mem.pts_to_join r (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let higher_ref_pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let pts_to_framon (#a:Type) (r:ref a) (p:perm) : Lemma (is_frame_monotonic (pts_to_sl r p)) = pts_to_witinv r p let intro_pts_to (p:perm) #a #uses (#v:erased a) (r:ref a) : SteelGhost unit uses (pts_to_raw r p v) (fun _ -> pts_to r p v) (requires fun _ -> perm_ok p) (ensures fun _ _ _ -> True) = intro_pure (perm_ok p); rewrite_slprop (pts_to' r p v) (pts_to r p v) (fun _ -> ()) let alloc #a x = let v = Some (x, full_perm) in assert (FStar.PCM.composable pcm_frac v None); assert (compatible pcm_frac v v); let r = RP.alloc v in rewrite_slprop (RP.pts_to r v) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m ); extract_info_raw (pts_to r full_perm x) (~ (is_null r)) (fun m -> pts_to_not_null r full_perm x m); return r let read (#a:Type) (#p:perm) (#v:erased a) (r:ref a) = let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ()); elim_pure (perm_ok p); let v2 = RP.read r v1 in rewrite_slprop (RP.pts_to r v1) (pts_to r p v) (fun m -> emp_unit (hp_of (pts_to_raw r p v)); pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m); assert (compatible pcm_frac v1 v2); let Some (x, _) = v2 in rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ()); return x let atomic_read (#opened:_) (#a:Type) (#p:perm) (#v:erased a) (r:ref a) = let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ()); elim_pure (perm_ok p); let v2 = RP.atomic_read r v1 in rewrite_slprop (RP.pts_to r v1) (pts_to r p v) (fun m -> emp_unit (hp_of (pts_to_raw r p v)); pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m); assert (compatible pcm_frac v1 v2); let Some (x, _) = v2 in rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ()); return x let read_refine (#a:Type) (#p:perm) (q:a -> vprop) (r:ref a) : SteelT a (h_exists (fun (v:a) -> pts_to r p v `star` q v)) (fun v -> pts_to r p v `star` q v) = let vs:erased a = witness_exists () in rewrite_slprop (pts_to r p (Ghost.hide (Ghost.reveal vs))) (pts_to r p vs) (fun _ -> ()); let v = read r in rewrite_slprop (q vs) (q v) (fun _ -> ()); return v let write (#a:Type) (#v:erased a) (r:ref a) (x:a) : SteelT unit (pts_to r full_perm v) (fun _ -> pts_to r full_perm x) = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in let v_new : fractional a = Some (x, full_perm) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.write r v_old v_new; rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m) let atomic_write #opened #a #v r x = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in let v_new : fractional a = Some (x, full_perm) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.atomic_write r v_old v_new; rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m) let free (#a:Type) (#v:erased a) (r:ref a) : SteelT unit (pts_to r full_perm v) (fun _ -> emp) = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.free r v_old; drop (RP.pts_to r (Mkpcm'?.one (Mkpcm?.p pcm_frac))) let share_atomic_raw #a #uses (#p:perm) (r:ref a{perm_ok p}) (v0:erased a) : SteelGhostT unit uses (pts_to_raw r p v0) (fun _ -> pts_to_raw r (half_perm p) v0 `star` pts_to_raw r (half_perm p) v0) = rewrite_slprop (pts_to_raw r p v0) (RP.pts_to r _) (fun _ -> ()); RP.split r (Some (Ghost.reveal v0, p)) (Some (Ghost.reveal v0, half_perm p)) (Some (Ghost.reveal v0, half_perm p)); rewrite_slprop (RP.pts_to r _) (pts_to_raw r (half_perm p) v0) (fun _ -> ()); rewrite_slprop (RP.pts_to r _) (pts_to_raw r (half_perm p) v0) (fun _ -> ()) let share (#a:Type) #uses (#p:perm) (#v:erased a) (r:ref a) : SteelGhostT unit uses (pts_to r p v) (fun _ -> pts_to r (half_perm p) v `star` pts_to r (half_perm p) v) = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (pts_to' r p v) (fun _ -> ()); elim_pure (perm_ok p); share_atomic_raw r v; intro_pts_to (half_perm p) r; intro_pts_to (half_perm p) r let gather_atomic_raw (#a:Type) (#uses:_) (#p0 #p1:perm) (r:ref a) (v0:erased a) (v1:erased a) : SteelGhostT (_:unit{v0==v1 /\ perm_ok (sum_perm p0 p1)}) uses (pts_to_raw r p0 v0 `star` pts_to_raw r p1 v1) (fun _ -> pts_to_raw r (sum_perm p0 p1) v0) = rewrite_slprop (pts_to_raw r p0 v0) (RP.pts_to r (Ghost.reveal (Some (Ghost.reveal v0, p0)))) (fun _ -> ()); rewrite_slprop (pts_to_raw r p1 v1) (RP.pts_to r (Ghost.reveal (Some (Ghost.reveal v1, p1)))) (fun _ -> ()); let _ = RP.gather r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) in rewrite_slprop (RP.pts_to r _) (pts_to_raw r (sum_perm p0 p1) v0) (fun _ -> ()) let gather (#a:Type) (#uses:_) (#p0:perm) (#p1:perm) (#v0 #v1:erased a) (r:ref a) = let v0_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v0, p0)) in let v1_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v1, p1)) in rewrite_slprop (pts_to r p0 v0) (pts_to_raw r p0 v0 `star` pure (perm_ok p0)) (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (pts_to_raw r p1 v1 `star` pure (perm_ok p1)) (fun _ -> ()); elim_pure (perm_ok p0); elim_pure (perm_ok p1); let _ = gather_atomic_raw r v0 v1 in intro_pts_to (sum_perm p0 p1) r let cas_provides #t (r:ref t) (v:Ghost.erased t) (v_new:t) (b:bool) = if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v let equiv_ext_right (p q r:slprop) : Lemma (requires q `Mem.equiv` r)
false
false
Steel.HigherReference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val equiv_ext_right (p q r: slprop) : Lemma (requires q `Mem.equiv` r) (ensures Mem.((p `star` q) `equiv` (p `star` r)))
[]
Steel.HigherReference.equiv_ext_right
{ "file_name": "lib/steel/Steel.HigherReference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
p: Steel.Memory.slprop -> q: Steel.Memory.slprop -> r: Steel.Memory.slprop -> FStar.Pervasives.Lemma (requires Steel.Memory.equiv q r) (ensures Steel.Memory.equiv (Steel.Memory.star p q) (Steel.Memory.star p r))
{ "end_col": 5, "end_line": 299, "start_col": 4, "start_line": 290 }
Steel.Effect.Atomic.SteelGhost
val ghost_gather (#a:Type) (#u:_) (#p0 #p1:perm) (#x0 #x1:erased a) (r:ghost_ref a) : SteelGhost unit u (ghost_pts_to r p0 x0 `star` ghost_pts_to r p1 x1) (fun _ -> ghost_pts_to r (sum_perm p0 p1) x0) (requires fun _ -> True) (ensures fun _ _ _ -> x0 == x1)
[ { "abbrev": true, "full_module": "Steel.PCMReference", "short_module": "RP" }, { "abbrev": false, "full_module": "FStar.Real", "short_module": null }, { "abbrev": false, "full_module": "Steel.PCMFrac", "short_module": null }, { "abbrev": false, "full_module": "FStar.PCM", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ghost_gather r = gather (reveal r)
val ghost_gather (#a:Type) (#u:_) (#p0 #p1:perm) (#x0 #x1:erased a) (r:ghost_ref a) : SteelGhost unit u (ghost_pts_to r p0 x0 `star` ghost_pts_to r p1 x1) (fun _ -> ghost_pts_to r (sum_perm p0 p1) x0) (requires fun _ -> True) (ensures fun _ _ _ -> x0 == x1) let ghost_gather r =
true
null
false
gather (reveal r)
{ "checked_file": "Steel.HigherReference.fst.checked", "dependencies": [ "Steel.PCMReference.fsti.checked", "Steel.PCMFrac.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Real.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.PCM.fst.checked", "FStar.NMSTTotal.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Steel.HigherReference.fst" }
[]
[ "Steel.Memory.inames", "Steel.FractionalPermission.perm", "FStar.Ghost.erased", "Steel.HigherReference.ghost_ref", "Steel.HigherReference.gather", "FStar.Ghost.reveal", "Steel.HigherReference.ref", "Prims.unit" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.HigherReference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect open FStar.PCM open Steel.PCMFrac open FStar.Real module RP = Steel.PCMReference #set-options "--ide_id_info_off" module Mem = Steel.Memory let ref a = Mem.ref (fractional a) pcm_frac let null #a = Mem.null #(fractional a) #pcm_frac let is_null #a r = Mem.is_null #(fractional a) #pcm_frac r let perm_ok p : prop = (p.v <=. one == true) /\ True let pts_to_raw_sl (#a:Type) (r:ref a) (p:perm) (v:erased a) : slprop = Mem.pts_to r (Some (Ghost.reveal v, p)) let pts_to_raw (#a:Type) (r:ref a) (p:perm) (v:erased a) : vprop = to_vprop (Mem.pts_to r (Some (Ghost.reveal v, p))) [@@__reduce__] let pts_to' (#a:Type u#1) (r:ref a) (p:perm) (v:erased a) : vprop = pts_to_raw r p v `star` pure (perm_ok p) let pts_to_sl #a r p v = hp_of (pts_to' r p v) let abcd_acbd (a b c d:slprop) : Lemma (Mem.(((a `star` b) `star` (c `star` d)) `equiv` ((a `star` c) `star` (b `star` d)))) = let open Steel.Memory in calc (equiv) { ((a `star` b) `star` (c `star` d)); (equiv) { star_associative a b (c `star` d) } ((a `star` (b `star` (c `star` d)))); (equiv) { star_associative b c d; star_congruence a (b `star` (c `star` d)) a ((b `star` c) `star` d) } (a `star` ((b `star` c) `star` d)); (equiv) { star_commutative b c; star_congruence (b `star` c) d (c `star` b) d; star_congruence a ((b `star` c) `star` d) a ((c `star` b) `star` d) } (a `star` ((c `star` b) `star` d)); (equiv) { star_associative c b d; star_congruence a ((c `star` b) `star` d) a (c `star` (b `star` d)) } (a `star` (c `star` (b `star` d))); (equiv) { star_associative a c (b `star` d) } ((a `star` c) `star` (b `star` d)); } let pts_to_ref_injective (#a: Type u#1) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let open Steel.Memory in abcd_acbd (hp_of (pts_to_raw r p0 v0)) (pure (perm_ok p0)) (hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p1)); Mem.affine_star (hp_of (pts_to_raw r p0 v0) `star` hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p0) `star` pure (perm_ok p1)) m; Mem.pts_to_compatible r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) m let pts_to_not_null (#a:Type u#1) (r:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures r =!= null) = Mem.affine_star (hp_of (pts_to_raw r p v)) (Mem.pure (perm_ok p)) m; Mem.pts_to_not_null r (Some (Ghost.reveal v, p)) m let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : erased a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = Mem.pts_to_join r (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let higher_ref_pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let pts_to_framon (#a:Type) (r:ref a) (p:perm) : Lemma (is_frame_monotonic (pts_to_sl r p)) = pts_to_witinv r p let intro_pts_to (p:perm) #a #uses (#v:erased a) (r:ref a) : SteelGhost unit uses (pts_to_raw r p v) (fun _ -> pts_to r p v) (requires fun _ -> perm_ok p) (ensures fun _ _ _ -> True) = intro_pure (perm_ok p); rewrite_slprop (pts_to' r p v) (pts_to r p v) (fun _ -> ()) let alloc #a x = let v = Some (x, full_perm) in assert (FStar.PCM.composable pcm_frac v None); assert (compatible pcm_frac v v); let r = RP.alloc v in rewrite_slprop (RP.pts_to r v) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m ); extract_info_raw (pts_to r full_perm x) (~ (is_null r)) (fun m -> pts_to_not_null r full_perm x m); return r let read (#a:Type) (#p:perm) (#v:erased a) (r:ref a) = let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ()); elim_pure (perm_ok p); let v2 = RP.read r v1 in rewrite_slprop (RP.pts_to r v1) (pts_to r p v) (fun m -> emp_unit (hp_of (pts_to_raw r p v)); pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m); assert (compatible pcm_frac v1 v2); let Some (x, _) = v2 in rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ()); return x let atomic_read (#opened:_) (#a:Type) (#p:perm) (#v:erased a) (r:ref a) = let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ()); elim_pure (perm_ok p); let v2 = RP.atomic_read r v1 in rewrite_slprop (RP.pts_to r v1) (pts_to r p v) (fun m -> emp_unit (hp_of (pts_to_raw r p v)); pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m); assert (compatible pcm_frac v1 v2); let Some (x, _) = v2 in rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ()); return x let read_refine (#a:Type) (#p:perm) (q:a -> vprop) (r:ref a) : SteelT a (h_exists (fun (v:a) -> pts_to r p v `star` q v)) (fun v -> pts_to r p v `star` q v) = let vs:erased a = witness_exists () in rewrite_slprop (pts_to r p (Ghost.hide (Ghost.reveal vs))) (pts_to r p vs) (fun _ -> ()); let v = read r in rewrite_slprop (q vs) (q v) (fun _ -> ()); return v let write (#a:Type) (#v:erased a) (r:ref a) (x:a) : SteelT unit (pts_to r full_perm v) (fun _ -> pts_to r full_perm x) = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in let v_new : fractional a = Some (x, full_perm) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.write r v_old v_new; rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m) let atomic_write #opened #a #v r x = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in let v_new : fractional a = Some (x, full_perm) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.atomic_write r v_old v_new; rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m) let free (#a:Type) (#v:erased a) (r:ref a) : SteelT unit (pts_to r full_perm v) (fun _ -> emp) = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.free r v_old; drop (RP.pts_to r (Mkpcm'?.one (Mkpcm?.p pcm_frac))) let share_atomic_raw #a #uses (#p:perm) (r:ref a{perm_ok p}) (v0:erased a) : SteelGhostT unit uses (pts_to_raw r p v0) (fun _ -> pts_to_raw r (half_perm p) v0 `star` pts_to_raw r (half_perm p) v0) = rewrite_slprop (pts_to_raw r p v0) (RP.pts_to r _) (fun _ -> ()); RP.split r (Some (Ghost.reveal v0, p)) (Some (Ghost.reveal v0, half_perm p)) (Some (Ghost.reveal v0, half_perm p)); rewrite_slprop (RP.pts_to r _) (pts_to_raw r (half_perm p) v0) (fun _ -> ()); rewrite_slprop (RP.pts_to r _) (pts_to_raw r (half_perm p) v0) (fun _ -> ()) let share (#a:Type) #uses (#p:perm) (#v:erased a) (r:ref a) : SteelGhostT unit uses (pts_to r p v) (fun _ -> pts_to r (half_perm p) v `star` pts_to r (half_perm p) v) = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (pts_to' r p v) (fun _ -> ()); elim_pure (perm_ok p); share_atomic_raw r v; intro_pts_to (half_perm p) r; intro_pts_to (half_perm p) r let gather_atomic_raw (#a:Type) (#uses:_) (#p0 #p1:perm) (r:ref a) (v0:erased a) (v1:erased a) : SteelGhostT (_:unit{v0==v1 /\ perm_ok (sum_perm p0 p1)}) uses (pts_to_raw r p0 v0 `star` pts_to_raw r p1 v1) (fun _ -> pts_to_raw r (sum_perm p0 p1) v0) = rewrite_slprop (pts_to_raw r p0 v0) (RP.pts_to r (Ghost.reveal (Some (Ghost.reveal v0, p0)))) (fun _ -> ()); rewrite_slprop (pts_to_raw r p1 v1) (RP.pts_to r (Ghost.reveal (Some (Ghost.reveal v1, p1)))) (fun _ -> ()); let _ = RP.gather r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) in rewrite_slprop (RP.pts_to r _) (pts_to_raw r (sum_perm p0 p1) v0) (fun _ -> ()) let gather (#a:Type) (#uses:_) (#p0:perm) (#p1:perm) (#v0 #v1:erased a) (r:ref a) = let v0_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v0, p0)) in let v1_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v1, p1)) in rewrite_slprop (pts_to r p0 v0) (pts_to_raw r p0 v0 `star` pure (perm_ok p0)) (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (pts_to_raw r p1 v1 `star` pure (perm_ok p1)) (fun _ -> ()); elim_pure (perm_ok p0); elim_pure (perm_ok p1); let _ = gather_atomic_raw r v0 v1 in intro_pts_to (sum_perm p0 p1) r let cas_provides #t (r:ref t) (v:Ghost.erased t) (v_new:t) (b:bool) = if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v let equiv_ext_right (p q r:slprop) : Lemma (requires q `Mem.equiv` r) (ensures Mem.((p `star` q) `equiv` (p `star` r))) = let open Steel.Memory in calc (equiv) { p `star` q; (equiv) { star_commutative p q } q `star` p; (equiv) { equiv_extensional_on_star q r p } r `star` p; (equiv) { star_commutative p r } p `star` r; } let cas_action_helper (p q r s:slprop) (m:mem) : Lemma (requires interp Mem.(p `star` q `star` r `star` s) m) (ensures interp Mem.(p `star` q `star` s) m) = let open Steel.Memory in calc (equiv) { r `star` s; (equiv) { star_commutative r s } s `star` r; }; calc (equiv) { p `star` q `star` r `star` s; (equiv) { Mem.star_associative (p `star` q) r s } (p `star` q) `star` (r `star` s); (equiv) { equiv_ext_right (p `star` q) (r `star` s) (s `star` r) } (p `star` q) `star` (s `star` r); (equiv) { star_associative (p `star` q) s r } (p `star` q `star` s) `star` r; }; assert (interp ((p `star` q `star` s) `star` r) m); affine_star (p `star` q `star` s) r m let cas_action (#t:Type) (eq: (x:t -> y:t -> b:bool{b <==> (x == y)})) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (fr:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (cas_provides r v v_new) fr (fun _ -> True) (fun _ _ _ -> True) = let m0 : full_mem = NMSTTotal.get () in let fv = Ghost.hide (Some (Ghost.reveal v, full_perm)) in let fv' = Some (v_new, full_perm) in assert (interp Mem.(pts_to_sl r full_perm v `star` fr `star` locks_invariant uses m0) m0); assert (interp Mem.(pts_to r fv `star` pure (perm_ok full_perm) `star` fr `star` locks_invariant uses m0) m0); cas_action_helper (Mem.pts_to r fv) (Mem.pure (perm_ok full_perm)) fr (locks_invariant uses m0) m0; assert (interp Mem.((pts_to r fv `star` pure (perm_ok full_perm)) `star` locks_invariant uses m0) m0); let fv_actual = Mem.frame (Mem.pure (perm_ok full_perm)) (sel_action uses r fv) fr in assert (compatible pcm_frac fv fv_actual); let Some (v', p) = fv_actual in assert (v == Ghost.hide v'); assert (p == full_perm); let b = if eq v' v_old then (Mem.frame (Mem.pure (perm_ok full_perm)) (upd_action uses r fv fv') fr; true) else false in b (*** GHOST REFERENCES ***) let ghost_ref a = erased (ref a) [@@__reduce__] let ghost_pts_to_sl #a (r:ghost_ref a) (p:perm) (x:a) = pts_to_sl (reveal r) p x let reveal_ghost_ref _ = () let reveal_ghost_pts_to_sl _ _ _ = () #push-options "--z3rlimit 20 --warn_error -271" let ghost_pts_to_witinv (#a:Type) (r:ghost_ref a) (p:perm) : Lemma (is_witness_invariant (ghost_pts_to_sl r p)) = let aux (x y : erased a) (m:mem) : Lemma (requires (interp (ghost_pts_to_sl r p x) m /\ interp (ghost_pts_to_sl r p y) m)) (ensures (x == y)) [SMTPat ()] = Mem.pts_to_join (Ghost.reveal r) (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m in assert (forall x y m. interp (ghost_pts_to_sl r p x) m /\ interp (ghost_pts_to_sl r p y) m ==> x == y); assert (is_witness_invariant (ghost_pts_to_sl r p)) #pop-options let ghost_alloc_aux (#a:Type) (#u:_) (x:a) : SteelGhostT (ref a) u emp (fun r -> pts_to r full_perm (Ghost.hide x)) = let v : fractional a = Some (x, full_perm) in assert (FStar.PCM.composable pcm_frac v None); assert (compatible pcm_frac v v); rewrite_slprop emp (to_vprop Mem.emp) (fun _ -> reveal_emp()); let r : ref a = as_atomic_action_ghost (Steel.Memory.alloc_action u v) in rewrite_slprop (RP.pts_to r v) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m); r let ghost_alloc x = let r = ghost_alloc_aux (reveal x) in hide r let ghost_free #a #u #v r = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); as_atomic_action_ghost (free_action u r v_old); drop (RP.pts_to r (Mkpcm'?.one (Mkpcm?.p pcm_frac)))
false
false
Steel.HigherReference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ghost_gather (#a:Type) (#u:_) (#p0 #p1:perm) (#x0 #x1:erased a) (r:ghost_ref a) : SteelGhost unit u (ghost_pts_to r p0 x0 `star` ghost_pts_to r p1 x1) (fun _ -> ghost_pts_to r (sum_perm p0 p1) x0) (requires fun _ -> True) (ensures fun _ _ _ -> x0 == x1)
[]
Steel.HigherReference.ghost_gather
{ "file_name": "lib/steel/Steel.HigherReference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.HigherReference.ghost_ref a -> Steel.Effect.Atomic.SteelGhost Prims.unit
{ "end_col": 38, "end_line": 416, "start_col": 21, "start_line": 416 }
Steel.Effect.Atomic.SteelGhost
val ghost_pts_to_injective_eq (#a:_) (#u:_) (#p #q:_) (r:ghost_ref a) (v0 v1:Ghost.erased a) : SteelGhost unit u (ghost_pts_to r p v0 `star` ghost_pts_to r q v1) (fun _ -> ghost_pts_to r p v0 `star` ghost_pts_to r q v0) (requires fun _ -> True) (ensures fun _ _ _ -> v0 == v1)
[ { "abbrev": true, "full_module": "Steel.PCMReference", "short_module": "RP" }, { "abbrev": false, "full_module": "FStar.Real", "short_module": null }, { "abbrev": false, "full_module": "Steel.PCMFrac", "short_module": null }, { "abbrev": false, "full_module": "FStar.PCM", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ghost_pts_to_injective_eq #_ #_ #p0 #p1 r v0 v1 = higher_ref_pts_to_injective_eq #_ #_ #p0 #p1 #v0 #v1 (reveal r)
val ghost_pts_to_injective_eq (#a:_) (#u:_) (#p #q:_) (r:ghost_ref a) (v0 v1:Ghost.erased a) : SteelGhost unit u (ghost_pts_to r p v0 `star` ghost_pts_to r q v1) (fun _ -> ghost_pts_to r p v0 `star` ghost_pts_to r q v0) (requires fun _ -> True) (ensures fun _ _ _ -> v0 == v1) let ghost_pts_to_injective_eq #_ #_ #p0 #p1 r v0 v1 =
true
null
false
higher_ref_pts_to_injective_eq #_ #_ #p0 #p1 #v0 #v1 (reveal r)
{ "checked_file": "Steel.HigherReference.fst.checked", "dependencies": [ "Steel.PCMReference.fsti.checked", "Steel.PCMFrac.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Real.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.PCM.fst.checked", "FStar.NMSTTotal.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Steel.HigherReference.fst" }
[]
[ "Steel.Memory.inames", "Steel.FractionalPermission.perm", "Steel.HigherReference.ghost_ref", "FStar.Ghost.erased", "Steel.HigherReference.higher_ref_pts_to_injective_eq", "FStar.Ghost.reveal", "Steel.HigherReference.ref", "Prims.unit" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.HigherReference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect open FStar.PCM open Steel.PCMFrac open FStar.Real module RP = Steel.PCMReference #set-options "--ide_id_info_off" module Mem = Steel.Memory let ref a = Mem.ref (fractional a) pcm_frac let null #a = Mem.null #(fractional a) #pcm_frac let is_null #a r = Mem.is_null #(fractional a) #pcm_frac r let perm_ok p : prop = (p.v <=. one == true) /\ True let pts_to_raw_sl (#a:Type) (r:ref a) (p:perm) (v:erased a) : slprop = Mem.pts_to r (Some (Ghost.reveal v, p)) let pts_to_raw (#a:Type) (r:ref a) (p:perm) (v:erased a) : vprop = to_vprop (Mem.pts_to r (Some (Ghost.reveal v, p))) [@@__reduce__] let pts_to' (#a:Type u#1) (r:ref a) (p:perm) (v:erased a) : vprop = pts_to_raw r p v `star` pure (perm_ok p) let pts_to_sl #a r p v = hp_of (pts_to' r p v) let abcd_acbd (a b c d:slprop) : Lemma (Mem.(((a `star` b) `star` (c `star` d)) `equiv` ((a `star` c) `star` (b `star` d)))) = let open Steel.Memory in calc (equiv) { ((a `star` b) `star` (c `star` d)); (equiv) { star_associative a b (c `star` d) } ((a `star` (b `star` (c `star` d)))); (equiv) { star_associative b c d; star_congruence a (b `star` (c `star` d)) a ((b `star` c) `star` d) } (a `star` ((b `star` c) `star` d)); (equiv) { star_commutative b c; star_congruence (b `star` c) d (c `star` b) d; star_congruence a ((b `star` c) `star` d) a ((c `star` b) `star` d) } (a `star` ((c `star` b) `star` d)); (equiv) { star_associative c b d; star_congruence a ((c `star` b) `star` d) a (c `star` (b `star` d)) } (a `star` (c `star` (b `star` d))); (equiv) { star_associative a c (b `star` d) } ((a `star` c) `star` (b `star` d)); } let pts_to_ref_injective (#a: Type u#1) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let open Steel.Memory in abcd_acbd (hp_of (pts_to_raw r p0 v0)) (pure (perm_ok p0)) (hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p1)); Mem.affine_star (hp_of (pts_to_raw r p0 v0) `star` hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p0) `star` pure (perm_ok p1)) m; Mem.pts_to_compatible r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) m let pts_to_not_null (#a:Type u#1) (r:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures r =!= null) = Mem.affine_star (hp_of (pts_to_raw r p v)) (Mem.pure (perm_ok p)) m; Mem.pts_to_not_null r (Some (Ghost.reveal v, p)) m let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : erased a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = Mem.pts_to_join r (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let higher_ref_pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let pts_to_framon (#a:Type) (r:ref a) (p:perm) : Lemma (is_frame_monotonic (pts_to_sl r p)) = pts_to_witinv r p let intro_pts_to (p:perm) #a #uses (#v:erased a) (r:ref a) : SteelGhost unit uses (pts_to_raw r p v) (fun _ -> pts_to r p v) (requires fun _ -> perm_ok p) (ensures fun _ _ _ -> True) = intro_pure (perm_ok p); rewrite_slprop (pts_to' r p v) (pts_to r p v) (fun _ -> ()) let alloc #a x = let v = Some (x, full_perm) in assert (FStar.PCM.composable pcm_frac v None); assert (compatible pcm_frac v v); let r = RP.alloc v in rewrite_slprop (RP.pts_to r v) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m ); extract_info_raw (pts_to r full_perm x) (~ (is_null r)) (fun m -> pts_to_not_null r full_perm x m); return r let read (#a:Type) (#p:perm) (#v:erased a) (r:ref a) = let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ()); elim_pure (perm_ok p); let v2 = RP.read r v1 in rewrite_slprop (RP.pts_to r v1) (pts_to r p v) (fun m -> emp_unit (hp_of (pts_to_raw r p v)); pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m); assert (compatible pcm_frac v1 v2); let Some (x, _) = v2 in rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ()); return x let atomic_read (#opened:_) (#a:Type) (#p:perm) (#v:erased a) (r:ref a) = let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ()); elim_pure (perm_ok p); let v2 = RP.atomic_read r v1 in rewrite_slprop (RP.pts_to r v1) (pts_to r p v) (fun m -> emp_unit (hp_of (pts_to_raw r p v)); pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m); assert (compatible pcm_frac v1 v2); let Some (x, _) = v2 in rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ()); return x let read_refine (#a:Type) (#p:perm) (q:a -> vprop) (r:ref a) : SteelT a (h_exists (fun (v:a) -> pts_to r p v `star` q v)) (fun v -> pts_to r p v `star` q v) = let vs:erased a = witness_exists () in rewrite_slprop (pts_to r p (Ghost.hide (Ghost.reveal vs))) (pts_to r p vs) (fun _ -> ()); let v = read r in rewrite_slprop (q vs) (q v) (fun _ -> ()); return v let write (#a:Type) (#v:erased a) (r:ref a) (x:a) : SteelT unit (pts_to r full_perm v) (fun _ -> pts_to r full_perm x) = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in let v_new : fractional a = Some (x, full_perm) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.write r v_old v_new; rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m) let atomic_write #opened #a #v r x = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in let v_new : fractional a = Some (x, full_perm) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.atomic_write r v_old v_new; rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m) let free (#a:Type) (#v:erased a) (r:ref a) : SteelT unit (pts_to r full_perm v) (fun _ -> emp) = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.free r v_old; drop (RP.pts_to r (Mkpcm'?.one (Mkpcm?.p pcm_frac))) let share_atomic_raw #a #uses (#p:perm) (r:ref a{perm_ok p}) (v0:erased a) : SteelGhostT unit uses (pts_to_raw r p v0) (fun _ -> pts_to_raw r (half_perm p) v0 `star` pts_to_raw r (half_perm p) v0) = rewrite_slprop (pts_to_raw r p v0) (RP.pts_to r _) (fun _ -> ()); RP.split r (Some (Ghost.reveal v0, p)) (Some (Ghost.reveal v0, half_perm p)) (Some (Ghost.reveal v0, half_perm p)); rewrite_slprop (RP.pts_to r _) (pts_to_raw r (half_perm p) v0) (fun _ -> ()); rewrite_slprop (RP.pts_to r _) (pts_to_raw r (half_perm p) v0) (fun _ -> ()) let share (#a:Type) #uses (#p:perm) (#v:erased a) (r:ref a) : SteelGhostT unit uses (pts_to r p v) (fun _ -> pts_to r (half_perm p) v `star` pts_to r (half_perm p) v) = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (pts_to' r p v) (fun _ -> ()); elim_pure (perm_ok p); share_atomic_raw r v; intro_pts_to (half_perm p) r; intro_pts_to (half_perm p) r let gather_atomic_raw (#a:Type) (#uses:_) (#p0 #p1:perm) (r:ref a) (v0:erased a) (v1:erased a) : SteelGhostT (_:unit{v0==v1 /\ perm_ok (sum_perm p0 p1)}) uses (pts_to_raw r p0 v0 `star` pts_to_raw r p1 v1) (fun _ -> pts_to_raw r (sum_perm p0 p1) v0) = rewrite_slprop (pts_to_raw r p0 v0) (RP.pts_to r (Ghost.reveal (Some (Ghost.reveal v0, p0)))) (fun _ -> ()); rewrite_slprop (pts_to_raw r p1 v1) (RP.pts_to r (Ghost.reveal (Some (Ghost.reveal v1, p1)))) (fun _ -> ()); let _ = RP.gather r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) in rewrite_slprop (RP.pts_to r _) (pts_to_raw r (sum_perm p0 p1) v0) (fun _ -> ()) let gather (#a:Type) (#uses:_) (#p0:perm) (#p1:perm) (#v0 #v1:erased a) (r:ref a) = let v0_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v0, p0)) in let v1_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v1, p1)) in rewrite_slprop (pts_to r p0 v0) (pts_to_raw r p0 v0 `star` pure (perm_ok p0)) (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (pts_to_raw r p1 v1 `star` pure (perm_ok p1)) (fun _ -> ()); elim_pure (perm_ok p0); elim_pure (perm_ok p1); let _ = gather_atomic_raw r v0 v1 in intro_pts_to (sum_perm p0 p1) r let cas_provides #t (r:ref t) (v:Ghost.erased t) (v_new:t) (b:bool) = if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v let equiv_ext_right (p q r:slprop) : Lemma (requires q `Mem.equiv` r) (ensures Mem.((p `star` q) `equiv` (p `star` r))) = let open Steel.Memory in calc (equiv) { p `star` q; (equiv) { star_commutative p q } q `star` p; (equiv) { equiv_extensional_on_star q r p } r `star` p; (equiv) { star_commutative p r } p `star` r; } let cas_action_helper (p q r s:slprop) (m:mem) : Lemma (requires interp Mem.(p `star` q `star` r `star` s) m) (ensures interp Mem.(p `star` q `star` s) m) = let open Steel.Memory in calc (equiv) { r `star` s; (equiv) { star_commutative r s } s `star` r; }; calc (equiv) { p `star` q `star` r `star` s; (equiv) { Mem.star_associative (p `star` q) r s } (p `star` q) `star` (r `star` s); (equiv) { equiv_ext_right (p `star` q) (r `star` s) (s `star` r) } (p `star` q) `star` (s `star` r); (equiv) { star_associative (p `star` q) s r } (p `star` q `star` s) `star` r; }; assert (interp ((p `star` q `star` s) `star` r) m); affine_star (p `star` q `star` s) r m let cas_action (#t:Type) (eq: (x:t -> y:t -> b:bool{b <==> (x == y)})) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (fr:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (cas_provides r v v_new) fr (fun _ -> True) (fun _ _ _ -> True) = let m0 : full_mem = NMSTTotal.get () in let fv = Ghost.hide (Some (Ghost.reveal v, full_perm)) in let fv' = Some (v_new, full_perm) in assert (interp Mem.(pts_to_sl r full_perm v `star` fr `star` locks_invariant uses m0) m0); assert (interp Mem.(pts_to r fv `star` pure (perm_ok full_perm) `star` fr `star` locks_invariant uses m0) m0); cas_action_helper (Mem.pts_to r fv) (Mem.pure (perm_ok full_perm)) fr (locks_invariant uses m0) m0; assert (interp Mem.((pts_to r fv `star` pure (perm_ok full_perm)) `star` locks_invariant uses m0) m0); let fv_actual = Mem.frame (Mem.pure (perm_ok full_perm)) (sel_action uses r fv) fr in assert (compatible pcm_frac fv fv_actual); let Some (v', p) = fv_actual in assert (v == Ghost.hide v'); assert (p == full_perm); let b = if eq v' v_old then (Mem.frame (Mem.pure (perm_ok full_perm)) (upd_action uses r fv fv') fr; true) else false in b (*** GHOST REFERENCES ***) let ghost_ref a = erased (ref a) [@@__reduce__] let ghost_pts_to_sl #a (r:ghost_ref a) (p:perm) (x:a) = pts_to_sl (reveal r) p x let reveal_ghost_ref _ = () let reveal_ghost_pts_to_sl _ _ _ = () #push-options "--z3rlimit 20 --warn_error -271" let ghost_pts_to_witinv (#a:Type) (r:ghost_ref a) (p:perm) : Lemma (is_witness_invariant (ghost_pts_to_sl r p)) = let aux (x y : erased a) (m:mem) : Lemma (requires (interp (ghost_pts_to_sl r p x) m /\ interp (ghost_pts_to_sl r p y) m)) (ensures (x == y)) [SMTPat ()] = Mem.pts_to_join (Ghost.reveal r) (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m in assert (forall x y m. interp (ghost_pts_to_sl r p x) m /\ interp (ghost_pts_to_sl r p y) m ==> x == y); assert (is_witness_invariant (ghost_pts_to_sl r p)) #pop-options let ghost_alloc_aux (#a:Type) (#u:_) (x:a) : SteelGhostT (ref a) u emp (fun r -> pts_to r full_perm (Ghost.hide x)) = let v : fractional a = Some (x, full_perm) in assert (FStar.PCM.composable pcm_frac v None); assert (compatible pcm_frac v v); rewrite_slprop emp (to_vprop Mem.emp) (fun _ -> reveal_emp()); let r : ref a = as_atomic_action_ghost (Steel.Memory.alloc_action u v) in rewrite_slprop (RP.pts_to r v) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m); r let ghost_alloc x = let r = ghost_alloc_aux (reveal x) in hide r let ghost_free #a #u #v r = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); as_atomic_action_ghost (free_action u r v_old); drop (RP.pts_to r (Mkpcm'?.one (Mkpcm?.p pcm_frac))) let ghost_share r = share (reveal r) let ghost_gather r = gather (reveal r)
false
false
Steel.HigherReference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ghost_pts_to_injective_eq (#a:_) (#u:_) (#p #q:_) (r:ghost_ref a) (v0 v1:Ghost.erased a) : SteelGhost unit u (ghost_pts_to r p v0 `star` ghost_pts_to r q v1) (fun _ -> ghost_pts_to r p v0 `star` ghost_pts_to r q v0) (requires fun _ -> True) (ensures fun _ _ _ -> v0 == v1)
[]
Steel.HigherReference.ghost_pts_to_injective_eq
{ "file_name": "lib/steel/Steel.HigherReference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.HigherReference.ghost_ref a -> v0: FStar.Ghost.erased a -> v1: FStar.Ghost.erased a -> Steel.Effect.Atomic.SteelGhost Prims.unit
{ "end_col": 65, "end_line": 419, "start_col": 2, "start_line": 419 }
Steel.Effect.Atomic.SteelGhostT
val ghost_alloc (#a:Type) (#u:_) (x:erased a) : SteelGhostT (ghost_ref a) u emp (fun r -> ghost_pts_to r full_perm x)
[ { "abbrev": true, "full_module": "Steel.PCMReference", "short_module": "RP" }, { "abbrev": false, "full_module": "FStar.Real", "short_module": null }, { "abbrev": false, "full_module": "Steel.PCMFrac", "short_module": null }, { "abbrev": false, "full_module": "FStar.PCM", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ghost_alloc x = let r = ghost_alloc_aux (reveal x) in hide r
val ghost_alloc (#a:Type) (#u:_) (x:erased a) : SteelGhostT (ghost_ref a) u emp (fun r -> ghost_pts_to r full_perm x) let ghost_alloc x =
true
null
false
let r = ghost_alloc_aux (reveal x) in hide r
{ "checked_file": "Steel.HigherReference.fst.checked", "dependencies": [ "Steel.PCMReference.fsti.checked", "Steel.PCMFrac.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Real.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.PCM.fst.checked", "FStar.NMSTTotal.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Steel.HigherReference.fst" }
[]
[ "Steel.Memory.inames", "FStar.Ghost.erased", "FStar.Ghost.hide", "Steel.HigherReference.ref", "Steel.HigherReference.ghost_ref", "Steel.HigherReference.ghost_alloc_aux", "FStar.Ghost.reveal" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.HigherReference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect open FStar.PCM open Steel.PCMFrac open FStar.Real module RP = Steel.PCMReference #set-options "--ide_id_info_off" module Mem = Steel.Memory let ref a = Mem.ref (fractional a) pcm_frac let null #a = Mem.null #(fractional a) #pcm_frac let is_null #a r = Mem.is_null #(fractional a) #pcm_frac r let perm_ok p : prop = (p.v <=. one == true) /\ True let pts_to_raw_sl (#a:Type) (r:ref a) (p:perm) (v:erased a) : slprop = Mem.pts_to r (Some (Ghost.reveal v, p)) let pts_to_raw (#a:Type) (r:ref a) (p:perm) (v:erased a) : vprop = to_vprop (Mem.pts_to r (Some (Ghost.reveal v, p))) [@@__reduce__] let pts_to' (#a:Type u#1) (r:ref a) (p:perm) (v:erased a) : vprop = pts_to_raw r p v `star` pure (perm_ok p) let pts_to_sl #a r p v = hp_of (pts_to' r p v) let abcd_acbd (a b c d:slprop) : Lemma (Mem.(((a `star` b) `star` (c `star` d)) `equiv` ((a `star` c) `star` (b `star` d)))) = let open Steel.Memory in calc (equiv) { ((a `star` b) `star` (c `star` d)); (equiv) { star_associative a b (c `star` d) } ((a `star` (b `star` (c `star` d)))); (equiv) { star_associative b c d; star_congruence a (b `star` (c `star` d)) a ((b `star` c) `star` d) } (a `star` ((b `star` c) `star` d)); (equiv) { star_commutative b c; star_congruence (b `star` c) d (c `star` b) d; star_congruence a ((b `star` c) `star` d) a ((c `star` b) `star` d) } (a `star` ((c `star` b) `star` d)); (equiv) { star_associative c b d; star_congruence a ((c `star` b) `star` d) a (c `star` (b `star` d)) } (a `star` (c `star` (b `star` d))); (equiv) { star_associative a c (b `star` d) } ((a `star` c) `star` (b `star` d)); } let pts_to_ref_injective (#a: Type u#1) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let open Steel.Memory in abcd_acbd (hp_of (pts_to_raw r p0 v0)) (pure (perm_ok p0)) (hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p1)); Mem.affine_star (hp_of (pts_to_raw r p0 v0) `star` hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p0) `star` pure (perm_ok p1)) m; Mem.pts_to_compatible r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) m let pts_to_not_null (#a:Type u#1) (r:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures r =!= null) = Mem.affine_star (hp_of (pts_to_raw r p v)) (Mem.pure (perm_ok p)) m; Mem.pts_to_not_null r (Some (Ghost.reveal v, p)) m let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : erased a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = Mem.pts_to_join r (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let higher_ref_pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let pts_to_framon (#a:Type) (r:ref a) (p:perm) : Lemma (is_frame_monotonic (pts_to_sl r p)) = pts_to_witinv r p let intro_pts_to (p:perm) #a #uses (#v:erased a) (r:ref a) : SteelGhost unit uses (pts_to_raw r p v) (fun _ -> pts_to r p v) (requires fun _ -> perm_ok p) (ensures fun _ _ _ -> True) = intro_pure (perm_ok p); rewrite_slprop (pts_to' r p v) (pts_to r p v) (fun _ -> ()) let alloc #a x = let v = Some (x, full_perm) in assert (FStar.PCM.composable pcm_frac v None); assert (compatible pcm_frac v v); let r = RP.alloc v in rewrite_slprop (RP.pts_to r v) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m ); extract_info_raw (pts_to r full_perm x) (~ (is_null r)) (fun m -> pts_to_not_null r full_perm x m); return r let read (#a:Type) (#p:perm) (#v:erased a) (r:ref a) = let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ()); elim_pure (perm_ok p); let v2 = RP.read r v1 in rewrite_slprop (RP.pts_to r v1) (pts_to r p v) (fun m -> emp_unit (hp_of (pts_to_raw r p v)); pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m); assert (compatible pcm_frac v1 v2); let Some (x, _) = v2 in rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ()); return x let atomic_read (#opened:_) (#a:Type) (#p:perm) (#v:erased a) (r:ref a) = let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ()); elim_pure (perm_ok p); let v2 = RP.atomic_read r v1 in rewrite_slprop (RP.pts_to r v1) (pts_to r p v) (fun m -> emp_unit (hp_of (pts_to_raw r p v)); pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m); assert (compatible pcm_frac v1 v2); let Some (x, _) = v2 in rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ()); return x let read_refine (#a:Type) (#p:perm) (q:a -> vprop) (r:ref a) : SteelT a (h_exists (fun (v:a) -> pts_to r p v `star` q v)) (fun v -> pts_to r p v `star` q v) = let vs:erased a = witness_exists () in rewrite_slprop (pts_to r p (Ghost.hide (Ghost.reveal vs))) (pts_to r p vs) (fun _ -> ()); let v = read r in rewrite_slprop (q vs) (q v) (fun _ -> ()); return v let write (#a:Type) (#v:erased a) (r:ref a) (x:a) : SteelT unit (pts_to r full_perm v) (fun _ -> pts_to r full_perm x) = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in let v_new : fractional a = Some (x, full_perm) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.write r v_old v_new; rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m) let atomic_write #opened #a #v r x = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in let v_new : fractional a = Some (x, full_perm) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.atomic_write r v_old v_new; rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m) let free (#a:Type) (#v:erased a) (r:ref a) : SteelT unit (pts_to r full_perm v) (fun _ -> emp) = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.free r v_old; drop (RP.pts_to r (Mkpcm'?.one (Mkpcm?.p pcm_frac))) let share_atomic_raw #a #uses (#p:perm) (r:ref a{perm_ok p}) (v0:erased a) : SteelGhostT unit uses (pts_to_raw r p v0) (fun _ -> pts_to_raw r (half_perm p) v0 `star` pts_to_raw r (half_perm p) v0) = rewrite_slprop (pts_to_raw r p v0) (RP.pts_to r _) (fun _ -> ()); RP.split r (Some (Ghost.reveal v0, p)) (Some (Ghost.reveal v0, half_perm p)) (Some (Ghost.reveal v0, half_perm p)); rewrite_slprop (RP.pts_to r _) (pts_to_raw r (half_perm p) v0) (fun _ -> ()); rewrite_slprop (RP.pts_to r _) (pts_to_raw r (half_perm p) v0) (fun _ -> ()) let share (#a:Type) #uses (#p:perm) (#v:erased a) (r:ref a) : SteelGhostT unit uses (pts_to r p v) (fun _ -> pts_to r (half_perm p) v `star` pts_to r (half_perm p) v) = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (pts_to' r p v) (fun _ -> ()); elim_pure (perm_ok p); share_atomic_raw r v; intro_pts_to (half_perm p) r; intro_pts_to (half_perm p) r let gather_atomic_raw (#a:Type) (#uses:_) (#p0 #p1:perm) (r:ref a) (v0:erased a) (v1:erased a) : SteelGhostT (_:unit{v0==v1 /\ perm_ok (sum_perm p0 p1)}) uses (pts_to_raw r p0 v0 `star` pts_to_raw r p1 v1) (fun _ -> pts_to_raw r (sum_perm p0 p1) v0) = rewrite_slprop (pts_to_raw r p0 v0) (RP.pts_to r (Ghost.reveal (Some (Ghost.reveal v0, p0)))) (fun _ -> ()); rewrite_slprop (pts_to_raw r p1 v1) (RP.pts_to r (Ghost.reveal (Some (Ghost.reveal v1, p1)))) (fun _ -> ()); let _ = RP.gather r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) in rewrite_slprop (RP.pts_to r _) (pts_to_raw r (sum_perm p0 p1) v0) (fun _ -> ()) let gather (#a:Type) (#uses:_) (#p0:perm) (#p1:perm) (#v0 #v1:erased a) (r:ref a) = let v0_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v0, p0)) in let v1_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v1, p1)) in rewrite_slprop (pts_to r p0 v0) (pts_to_raw r p0 v0 `star` pure (perm_ok p0)) (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (pts_to_raw r p1 v1 `star` pure (perm_ok p1)) (fun _ -> ()); elim_pure (perm_ok p0); elim_pure (perm_ok p1); let _ = gather_atomic_raw r v0 v1 in intro_pts_to (sum_perm p0 p1) r let cas_provides #t (r:ref t) (v:Ghost.erased t) (v_new:t) (b:bool) = if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v let equiv_ext_right (p q r:slprop) : Lemma (requires q `Mem.equiv` r) (ensures Mem.((p `star` q) `equiv` (p `star` r))) = let open Steel.Memory in calc (equiv) { p `star` q; (equiv) { star_commutative p q } q `star` p; (equiv) { equiv_extensional_on_star q r p } r `star` p; (equiv) { star_commutative p r } p `star` r; } let cas_action_helper (p q r s:slprop) (m:mem) : Lemma (requires interp Mem.(p `star` q `star` r `star` s) m) (ensures interp Mem.(p `star` q `star` s) m) = let open Steel.Memory in calc (equiv) { r `star` s; (equiv) { star_commutative r s } s `star` r; }; calc (equiv) { p `star` q `star` r `star` s; (equiv) { Mem.star_associative (p `star` q) r s } (p `star` q) `star` (r `star` s); (equiv) { equiv_ext_right (p `star` q) (r `star` s) (s `star` r) } (p `star` q) `star` (s `star` r); (equiv) { star_associative (p `star` q) s r } (p `star` q `star` s) `star` r; }; assert (interp ((p `star` q `star` s) `star` r) m); affine_star (p `star` q `star` s) r m let cas_action (#t:Type) (eq: (x:t -> y:t -> b:bool{b <==> (x == y)})) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (fr:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (cas_provides r v v_new) fr (fun _ -> True) (fun _ _ _ -> True) = let m0 : full_mem = NMSTTotal.get () in let fv = Ghost.hide (Some (Ghost.reveal v, full_perm)) in let fv' = Some (v_new, full_perm) in assert (interp Mem.(pts_to_sl r full_perm v `star` fr `star` locks_invariant uses m0) m0); assert (interp Mem.(pts_to r fv `star` pure (perm_ok full_perm) `star` fr `star` locks_invariant uses m0) m0); cas_action_helper (Mem.pts_to r fv) (Mem.pure (perm_ok full_perm)) fr (locks_invariant uses m0) m0; assert (interp Mem.((pts_to r fv `star` pure (perm_ok full_perm)) `star` locks_invariant uses m0) m0); let fv_actual = Mem.frame (Mem.pure (perm_ok full_perm)) (sel_action uses r fv) fr in assert (compatible pcm_frac fv fv_actual); let Some (v', p) = fv_actual in assert (v == Ghost.hide v'); assert (p == full_perm); let b = if eq v' v_old then (Mem.frame (Mem.pure (perm_ok full_perm)) (upd_action uses r fv fv') fr; true) else false in b (*** GHOST REFERENCES ***) let ghost_ref a = erased (ref a) [@@__reduce__] let ghost_pts_to_sl #a (r:ghost_ref a) (p:perm) (x:a) = pts_to_sl (reveal r) p x let reveal_ghost_ref _ = () let reveal_ghost_pts_to_sl _ _ _ = () #push-options "--z3rlimit 20 --warn_error -271" let ghost_pts_to_witinv (#a:Type) (r:ghost_ref a) (p:perm) : Lemma (is_witness_invariant (ghost_pts_to_sl r p)) = let aux (x y : erased a) (m:mem) : Lemma (requires (interp (ghost_pts_to_sl r p x) m /\ interp (ghost_pts_to_sl r p y) m)) (ensures (x == y)) [SMTPat ()] = Mem.pts_to_join (Ghost.reveal r) (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m in assert (forall x y m. interp (ghost_pts_to_sl r p x) m /\ interp (ghost_pts_to_sl r p y) m ==> x == y); assert (is_witness_invariant (ghost_pts_to_sl r p)) #pop-options let ghost_alloc_aux (#a:Type) (#u:_) (x:a) : SteelGhostT (ref a) u emp (fun r -> pts_to r full_perm (Ghost.hide x)) = let v : fractional a = Some (x, full_perm) in assert (FStar.PCM.composable pcm_frac v None); assert (compatible pcm_frac v v); rewrite_slprop emp (to_vprop Mem.emp) (fun _ -> reveal_emp()); let r : ref a = as_atomic_action_ghost (Steel.Memory.alloc_action u v) in rewrite_slprop (RP.pts_to r v) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m); r
false
false
Steel.HigherReference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ghost_alloc (#a:Type) (#u:_) (x:erased a) : SteelGhostT (ghost_ref a) u emp (fun r -> ghost_pts_to r full_perm x)
[]
Steel.HigherReference.ghost_alloc
{ "file_name": "lib/steel/Steel.HigherReference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
x: FStar.Ghost.erased a -> Steel.Effect.Atomic.SteelGhostT (Steel.HigherReference.ghost_ref a)
{ "end_col": 8, "end_line": 403, "start_col": 19, "start_line": 401 }
Steel.Effect.Atomic.SteelGhostT
val ghost_write (#a:Type) (#u:_) (#v:erased a) (r:ghost_ref a) (x:erased a) : SteelGhostT unit u (ghost_pts_to r full_perm v) (fun _ -> ghost_pts_to r full_perm x)
[ { "abbrev": true, "full_module": "Steel.PCMReference", "short_module": "RP" }, { "abbrev": false, "full_module": "FStar.Real", "short_module": null }, { "abbrev": false, "full_module": "Steel.PCMFrac", "short_module": null }, { "abbrev": false, "full_module": "FStar.PCM", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ghost_write r x = ghost_write_aux (reveal r) (reveal x); rewrite_slprop (pts_to (reveal r) full_perm (hide (reveal x))) (ghost_pts_to r full_perm x) (fun _ -> ())
val ghost_write (#a:Type) (#u:_) (#v:erased a) (r:ghost_ref a) (x:erased a) : SteelGhostT unit u (ghost_pts_to r full_perm v) (fun _ -> ghost_pts_to r full_perm x) let ghost_write r x =
true
null
false
ghost_write_aux (reveal r) (reveal x); rewrite_slprop (pts_to (reveal r) full_perm (hide (reveal x))) (ghost_pts_to r full_perm x) (fun _ -> ())
{ "checked_file": "Steel.HigherReference.fst.checked", "dependencies": [ "Steel.PCMReference.fsti.checked", "Steel.PCMFrac.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Real.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.PCM.fst.checked", "FStar.NMSTTotal.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Steel.HigherReference.fst" }
[]
[ "Steel.Memory.inames", "FStar.Ghost.erased", "Steel.HigherReference.ghost_ref", "Steel.Effect.Atomic.rewrite_slprop", "Steel.HigherReference.pts_to", "FStar.Ghost.reveal", "Steel.HigherReference.ref", "Steel.FractionalPermission.full_perm", "Steel.HigherReference.ghost_pts_to", "Steel.Memory.mem", "Prims.unit", "Steel.HigherReference.ghost_write_aux" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.HigherReference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect open FStar.PCM open Steel.PCMFrac open FStar.Real module RP = Steel.PCMReference #set-options "--ide_id_info_off" module Mem = Steel.Memory let ref a = Mem.ref (fractional a) pcm_frac let null #a = Mem.null #(fractional a) #pcm_frac let is_null #a r = Mem.is_null #(fractional a) #pcm_frac r let perm_ok p : prop = (p.v <=. one == true) /\ True let pts_to_raw_sl (#a:Type) (r:ref a) (p:perm) (v:erased a) : slprop = Mem.pts_to r (Some (Ghost.reveal v, p)) let pts_to_raw (#a:Type) (r:ref a) (p:perm) (v:erased a) : vprop = to_vprop (Mem.pts_to r (Some (Ghost.reveal v, p))) [@@__reduce__] let pts_to' (#a:Type u#1) (r:ref a) (p:perm) (v:erased a) : vprop = pts_to_raw r p v `star` pure (perm_ok p) let pts_to_sl #a r p v = hp_of (pts_to' r p v) let abcd_acbd (a b c d:slprop) : Lemma (Mem.(((a `star` b) `star` (c `star` d)) `equiv` ((a `star` c) `star` (b `star` d)))) = let open Steel.Memory in calc (equiv) { ((a `star` b) `star` (c `star` d)); (equiv) { star_associative a b (c `star` d) } ((a `star` (b `star` (c `star` d)))); (equiv) { star_associative b c d; star_congruence a (b `star` (c `star` d)) a ((b `star` c) `star` d) } (a `star` ((b `star` c) `star` d)); (equiv) { star_commutative b c; star_congruence (b `star` c) d (c `star` b) d; star_congruence a ((b `star` c) `star` d) a ((c `star` b) `star` d) } (a `star` ((c `star` b) `star` d)); (equiv) { star_associative c b d; star_congruence a ((c `star` b) `star` d) a (c `star` (b `star` d)) } (a `star` (c `star` (b `star` d))); (equiv) { star_associative a c (b `star` d) } ((a `star` c) `star` (b `star` d)); } let pts_to_ref_injective (#a: Type u#1) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let open Steel.Memory in abcd_acbd (hp_of (pts_to_raw r p0 v0)) (pure (perm_ok p0)) (hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p1)); Mem.affine_star (hp_of (pts_to_raw r p0 v0) `star` hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p0) `star` pure (perm_ok p1)) m; Mem.pts_to_compatible r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) m let pts_to_not_null (#a:Type u#1) (r:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures r =!= null) = Mem.affine_star (hp_of (pts_to_raw r p v)) (Mem.pure (perm_ok p)) m; Mem.pts_to_not_null r (Some (Ghost.reveal v, p)) m let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : erased a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = Mem.pts_to_join r (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let higher_ref_pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let pts_to_framon (#a:Type) (r:ref a) (p:perm) : Lemma (is_frame_monotonic (pts_to_sl r p)) = pts_to_witinv r p let intro_pts_to (p:perm) #a #uses (#v:erased a) (r:ref a) : SteelGhost unit uses (pts_to_raw r p v) (fun _ -> pts_to r p v) (requires fun _ -> perm_ok p) (ensures fun _ _ _ -> True) = intro_pure (perm_ok p); rewrite_slprop (pts_to' r p v) (pts_to r p v) (fun _ -> ()) let alloc #a x = let v = Some (x, full_perm) in assert (FStar.PCM.composable pcm_frac v None); assert (compatible pcm_frac v v); let r = RP.alloc v in rewrite_slprop (RP.pts_to r v) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m ); extract_info_raw (pts_to r full_perm x) (~ (is_null r)) (fun m -> pts_to_not_null r full_perm x m); return r let read (#a:Type) (#p:perm) (#v:erased a) (r:ref a) = let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ()); elim_pure (perm_ok p); let v2 = RP.read r v1 in rewrite_slprop (RP.pts_to r v1) (pts_to r p v) (fun m -> emp_unit (hp_of (pts_to_raw r p v)); pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m); assert (compatible pcm_frac v1 v2); let Some (x, _) = v2 in rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ()); return x let atomic_read (#opened:_) (#a:Type) (#p:perm) (#v:erased a) (r:ref a) = let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ()); elim_pure (perm_ok p); let v2 = RP.atomic_read r v1 in rewrite_slprop (RP.pts_to r v1) (pts_to r p v) (fun m -> emp_unit (hp_of (pts_to_raw r p v)); pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m); assert (compatible pcm_frac v1 v2); let Some (x, _) = v2 in rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ()); return x let read_refine (#a:Type) (#p:perm) (q:a -> vprop) (r:ref a) : SteelT a (h_exists (fun (v:a) -> pts_to r p v `star` q v)) (fun v -> pts_to r p v `star` q v) = let vs:erased a = witness_exists () in rewrite_slprop (pts_to r p (Ghost.hide (Ghost.reveal vs))) (pts_to r p vs) (fun _ -> ()); let v = read r in rewrite_slprop (q vs) (q v) (fun _ -> ()); return v let write (#a:Type) (#v:erased a) (r:ref a) (x:a) : SteelT unit (pts_to r full_perm v) (fun _ -> pts_to r full_perm x) = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in let v_new : fractional a = Some (x, full_perm) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.write r v_old v_new; rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m) let atomic_write #opened #a #v r x = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in let v_new : fractional a = Some (x, full_perm) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.atomic_write r v_old v_new; rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m) let free (#a:Type) (#v:erased a) (r:ref a) : SteelT unit (pts_to r full_perm v) (fun _ -> emp) = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.free r v_old; drop (RP.pts_to r (Mkpcm'?.one (Mkpcm?.p pcm_frac))) let share_atomic_raw #a #uses (#p:perm) (r:ref a{perm_ok p}) (v0:erased a) : SteelGhostT unit uses (pts_to_raw r p v0) (fun _ -> pts_to_raw r (half_perm p) v0 `star` pts_to_raw r (half_perm p) v0) = rewrite_slprop (pts_to_raw r p v0) (RP.pts_to r _) (fun _ -> ()); RP.split r (Some (Ghost.reveal v0, p)) (Some (Ghost.reveal v0, half_perm p)) (Some (Ghost.reveal v0, half_perm p)); rewrite_slprop (RP.pts_to r _) (pts_to_raw r (half_perm p) v0) (fun _ -> ()); rewrite_slprop (RP.pts_to r _) (pts_to_raw r (half_perm p) v0) (fun _ -> ()) let share (#a:Type) #uses (#p:perm) (#v:erased a) (r:ref a) : SteelGhostT unit uses (pts_to r p v) (fun _ -> pts_to r (half_perm p) v `star` pts_to r (half_perm p) v) = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (pts_to' r p v) (fun _ -> ()); elim_pure (perm_ok p); share_atomic_raw r v; intro_pts_to (half_perm p) r; intro_pts_to (half_perm p) r let gather_atomic_raw (#a:Type) (#uses:_) (#p0 #p1:perm) (r:ref a) (v0:erased a) (v1:erased a) : SteelGhostT (_:unit{v0==v1 /\ perm_ok (sum_perm p0 p1)}) uses (pts_to_raw r p0 v0 `star` pts_to_raw r p1 v1) (fun _ -> pts_to_raw r (sum_perm p0 p1) v0) = rewrite_slprop (pts_to_raw r p0 v0) (RP.pts_to r (Ghost.reveal (Some (Ghost.reveal v0, p0)))) (fun _ -> ()); rewrite_slprop (pts_to_raw r p1 v1) (RP.pts_to r (Ghost.reveal (Some (Ghost.reveal v1, p1)))) (fun _ -> ()); let _ = RP.gather r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) in rewrite_slprop (RP.pts_to r _) (pts_to_raw r (sum_perm p0 p1) v0) (fun _ -> ()) let gather (#a:Type) (#uses:_) (#p0:perm) (#p1:perm) (#v0 #v1:erased a) (r:ref a) = let v0_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v0, p0)) in let v1_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v1, p1)) in rewrite_slprop (pts_to r p0 v0) (pts_to_raw r p0 v0 `star` pure (perm_ok p0)) (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (pts_to_raw r p1 v1 `star` pure (perm_ok p1)) (fun _ -> ()); elim_pure (perm_ok p0); elim_pure (perm_ok p1); let _ = gather_atomic_raw r v0 v1 in intro_pts_to (sum_perm p0 p1) r let cas_provides #t (r:ref t) (v:Ghost.erased t) (v_new:t) (b:bool) = if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v let equiv_ext_right (p q r:slprop) : Lemma (requires q `Mem.equiv` r) (ensures Mem.((p `star` q) `equiv` (p `star` r))) = let open Steel.Memory in calc (equiv) { p `star` q; (equiv) { star_commutative p q } q `star` p; (equiv) { equiv_extensional_on_star q r p } r `star` p; (equiv) { star_commutative p r } p `star` r; } let cas_action_helper (p q r s:slprop) (m:mem) : Lemma (requires interp Mem.(p `star` q `star` r `star` s) m) (ensures interp Mem.(p `star` q `star` s) m) = let open Steel.Memory in calc (equiv) { r `star` s; (equiv) { star_commutative r s } s `star` r; }; calc (equiv) { p `star` q `star` r `star` s; (equiv) { Mem.star_associative (p `star` q) r s } (p `star` q) `star` (r `star` s); (equiv) { equiv_ext_right (p `star` q) (r `star` s) (s `star` r) } (p `star` q) `star` (s `star` r); (equiv) { star_associative (p `star` q) s r } (p `star` q `star` s) `star` r; }; assert (interp ((p `star` q `star` s) `star` r) m); affine_star (p `star` q `star` s) r m let cas_action (#t:Type) (eq: (x:t -> y:t -> b:bool{b <==> (x == y)})) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (fr:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (cas_provides r v v_new) fr (fun _ -> True) (fun _ _ _ -> True) = let m0 : full_mem = NMSTTotal.get () in let fv = Ghost.hide (Some (Ghost.reveal v, full_perm)) in let fv' = Some (v_new, full_perm) in assert (interp Mem.(pts_to_sl r full_perm v `star` fr `star` locks_invariant uses m0) m0); assert (interp Mem.(pts_to r fv `star` pure (perm_ok full_perm) `star` fr `star` locks_invariant uses m0) m0); cas_action_helper (Mem.pts_to r fv) (Mem.pure (perm_ok full_perm)) fr (locks_invariant uses m0) m0; assert (interp Mem.((pts_to r fv `star` pure (perm_ok full_perm)) `star` locks_invariant uses m0) m0); let fv_actual = Mem.frame (Mem.pure (perm_ok full_perm)) (sel_action uses r fv) fr in assert (compatible pcm_frac fv fv_actual); let Some (v', p) = fv_actual in assert (v == Ghost.hide v'); assert (p == full_perm); let b = if eq v' v_old then (Mem.frame (Mem.pure (perm_ok full_perm)) (upd_action uses r fv fv') fr; true) else false in b (*** GHOST REFERENCES ***) let ghost_ref a = erased (ref a) [@@__reduce__] let ghost_pts_to_sl #a (r:ghost_ref a) (p:perm) (x:a) = pts_to_sl (reveal r) p x let reveal_ghost_ref _ = () let reveal_ghost_pts_to_sl _ _ _ = () #push-options "--z3rlimit 20 --warn_error -271" let ghost_pts_to_witinv (#a:Type) (r:ghost_ref a) (p:perm) : Lemma (is_witness_invariant (ghost_pts_to_sl r p)) = let aux (x y : erased a) (m:mem) : Lemma (requires (interp (ghost_pts_to_sl r p x) m /\ interp (ghost_pts_to_sl r p y) m)) (ensures (x == y)) [SMTPat ()] = Mem.pts_to_join (Ghost.reveal r) (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m in assert (forall x y m. interp (ghost_pts_to_sl r p x) m /\ interp (ghost_pts_to_sl r p y) m ==> x == y); assert (is_witness_invariant (ghost_pts_to_sl r p)) #pop-options let ghost_alloc_aux (#a:Type) (#u:_) (x:a) : SteelGhostT (ref a) u emp (fun r -> pts_to r full_perm (Ghost.hide x)) = let v : fractional a = Some (x, full_perm) in assert (FStar.PCM.composable pcm_frac v None); assert (compatible pcm_frac v v); rewrite_slprop emp (to_vprop Mem.emp) (fun _ -> reveal_emp()); let r : ref a = as_atomic_action_ghost (Steel.Memory.alloc_action u v) in rewrite_slprop (RP.pts_to r v) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m); r let ghost_alloc x = let r = ghost_alloc_aux (reveal x) in hide r let ghost_free #a #u #v r = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); as_atomic_action_ghost (free_action u r v_old); drop (RP.pts_to r (Mkpcm'?.one (Mkpcm?.p pcm_frac))) let ghost_share r = share (reveal r) let ghost_gather r = gather (reveal r) let ghost_pts_to_injective_eq #_ #_ #p0 #p1 r v0 v1 = higher_ref_pts_to_injective_eq #_ #_ #p0 #p1 #v0 #v1 (reveal r) let ghost_pts_to_perm #a #_ #p #v r = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (ghost_pts_to r p v) (RP.pts_to r v_old `star` pure (perm_ok p)) (fun _ -> ()); elim_pure (perm_ok p); intro_pure (perm_ok p); rewrite_slprop (RP.pts_to r v_old `star` pure (perm_ok p)) (ghost_pts_to r p v) (fun _ -> ()) let ghost_read #a #u #p #v r = let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ()); elim_pure (perm_ok p); let v2 = as_atomic_action_ghost (sel_action u r v1) in rewrite_slprop (RP.pts_to r v1) (pts_to r p v) (fun m -> emp_unit (hp_of (pts_to_raw r p v)); pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m); assert (compatible pcm_frac v1 v2); let Some (x, _) = v2 in rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ()); x let ghost_write_aux (#a:Type) (#u:_) (#v:erased a) (r:ref a) (x:a) : SteelGhostT unit u (pts_to r full_perm v) (fun _ -> pts_to r full_perm (Ghost.hide x)) = let v_old : erased (fractional a) = Ghost.hide (Some (reveal v, full_perm)) in let v_new : fractional a = Some (x, full_perm) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); as_atomic_action_ghost (Mem.upd_action u r v_old v_new); rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm (hide x)) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm (hide x))); pure_star_interp (hp_of (pts_to_raw r full_perm (hide x))) (perm_ok full_perm) m)
false
false
Steel.HigherReference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ghost_write (#a:Type) (#u:_) (#v:erased a) (r:ghost_ref a) (x:erased a) : SteelGhostT unit u (ghost_pts_to r full_perm v) (fun _ -> ghost_pts_to r full_perm x)
[]
Steel.HigherReference.ghost_write
{ "file_name": "lib/steel/Steel.HigherReference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.HigherReference.ghost_ref a -> x: FStar.Ghost.erased a -> Steel.Effect.Atomic.SteelGhostT Prims.unit
{ "end_col": 17, "end_line": 469, "start_col": 2, "start_line": 465 }
Steel.Effect.Atomic.SteelGhost
val higher_ref_pts_to_injective_eq (#a: Type) (#opened:inames) (#p0 #p1:perm) (#v0 #v1: erased a) (r: ref a) : SteelGhost unit opened (pts_to r p0 v0 `star` pts_to r p1 v1) (fun _ -> pts_to r p0 v0 `star` pts_to r p1 v0) (requires fun _ -> True) (ensures fun _ _ _ -> v0 == v1)
[ { "abbrev": true, "full_module": "Steel.PCMReference", "short_module": "RP" }, { "abbrev": false, "full_module": "FStar.Real", "short_module": null }, { "abbrev": false, "full_module": "Steel.PCMFrac", "short_module": null }, { "abbrev": false, "full_module": "FStar.PCM", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let higher_ref_pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ())
val higher_ref_pts_to_injective_eq (#a: Type) (#opened:inames) (#p0 #p1:perm) (#v0 #v1: erased a) (r: ref a) : SteelGhost unit opened (pts_to r p0 v0 `star` pts_to r p1 v1) (fun _ -> pts_to r p0 v0 `star` pts_to r p1 v0) (requires fun _ -> True) (ensures fun _ _ _ -> v0 == v1) let higher_ref_pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r =
true
null
false
extract_info_raw ((pts_to r p0 v0) `star` (pts_to r p1 v1)) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ())
{ "checked_file": "Steel.HigherReference.fst.checked", "dependencies": [ "Steel.PCMReference.fsti.checked", "Steel.PCMFrac.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Real.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.PCM.fst.checked", "FStar.NMSTTotal.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Steel.HigherReference.fst" }
[]
[ "Steel.Memory.inames", "Steel.FractionalPermission.perm", "FStar.Ghost.erased", "Steel.HigherReference.ref", "Steel.Effect.Atomic.rewrite_slprop", "Steel.HigherReference.pts_to", "FStar.Ghost.reveal", "Steel.Memory.mem", "Prims.unit", "Steel.Effect.Atomic.extract_info_raw", "Steel.Effect.Common.star", "Prims.eq2", "Steel.HigherReference.pts_to_ref_injective" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.HigherReference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect open FStar.PCM open Steel.PCMFrac open FStar.Real module RP = Steel.PCMReference #set-options "--ide_id_info_off" module Mem = Steel.Memory let ref a = Mem.ref (fractional a) pcm_frac let null #a = Mem.null #(fractional a) #pcm_frac let is_null #a r = Mem.is_null #(fractional a) #pcm_frac r let perm_ok p : prop = (p.v <=. one == true) /\ True let pts_to_raw_sl (#a:Type) (r:ref a) (p:perm) (v:erased a) : slprop = Mem.pts_to r (Some (Ghost.reveal v, p)) let pts_to_raw (#a:Type) (r:ref a) (p:perm) (v:erased a) : vprop = to_vprop (Mem.pts_to r (Some (Ghost.reveal v, p))) [@@__reduce__] let pts_to' (#a:Type u#1) (r:ref a) (p:perm) (v:erased a) : vprop = pts_to_raw r p v `star` pure (perm_ok p) let pts_to_sl #a r p v = hp_of (pts_to' r p v) let abcd_acbd (a b c d:slprop) : Lemma (Mem.(((a `star` b) `star` (c `star` d)) `equiv` ((a `star` c) `star` (b `star` d)))) = let open Steel.Memory in calc (equiv) { ((a `star` b) `star` (c `star` d)); (equiv) { star_associative a b (c `star` d) } ((a `star` (b `star` (c `star` d)))); (equiv) { star_associative b c d; star_congruence a (b `star` (c `star` d)) a ((b `star` c) `star` d) } (a `star` ((b `star` c) `star` d)); (equiv) { star_commutative b c; star_congruence (b `star` c) d (c `star` b) d; star_congruence a ((b `star` c) `star` d) a ((c `star` b) `star` d) } (a `star` ((c `star` b) `star` d)); (equiv) { star_associative c b d; star_congruence a ((c `star` b) `star` d) a (c `star` (b `star` d)) } (a `star` (c `star` (b `star` d))); (equiv) { star_associative a c (b `star` d) } ((a `star` c) `star` (b `star` d)); } let pts_to_ref_injective (#a: Type u#1) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let open Steel.Memory in abcd_acbd (hp_of (pts_to_raw r p0 v0)) (pure (perm_ok p0)) (hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p1)); Mem.affine_star (hp_of (pts_to_raw r p0 v0) `star` hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p0) `star` pure (perm_ok p1)) m; Mem.pts_to_compatible r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) m let pts_to_not_null (#a:Type u#1) (r:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures r =!= null) = Mem.affine_star (hp_of (pts_to_raw r p v)) (Mem.pure (perm_ok p)) m; Mem.pts_to_not_null r (Some (Ghost.reveal v, p)) m let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : erased a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = Mem.pts_to_join r (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y))
false
false
Steel.HigherReference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val higher_ref_pts_to_injective_eq (#a: Type) (#opened:inames) (#p0 #p1:perm) (#v0 #v1: erased a) (r: ref a) : SteelGhost unit opened (pts_to r p0 v0 `star` pts_to r p1 v1) (fun _ -> pts_to r p0 v0 `star` pts_to r p1 v0) (requires fun _ -> True) (ensures fun _ _ _ -> v0 == v1)
[]
Steel.HigherReference.higher_ref_pts_to_injective_eq
{ "file_name": "lib/steel/Steel.HigherReference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.HigherReference.ref a -> Steel.Effect.Atomic.SteelGhost Prims.unit
{ "end_col": 64, "end_line": 111, "start_col": 2, "start_line": 109 }
Steel.Effect.Atomic.SteelGhost
val intro_pts_to (p: perm) (#a #uses: _) (#v: erased a) (r: ref a) : SteelGhost unit uses (pts_to_raw r p v) (fun _ -> pts_to r p v) (requires fun _ -> perm_ok p) (ensures fun _ _ _ -> True)
[ { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.PCMReference", "short_module": "RP" }, { "abbrev": false, "full_module": "FStar.Real", "short_module": null }, { "abbrev": false, "full_module": "Steel.PCMFrac", "short_module": null }, { "abbrev": false, "full_module": "FStar.PCM", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let intro_pts_to (p:perm) #a #uses (#v:erased a) (r:ref a) : SteelGhost unit uses (pts_to_raw r p v) (fun _ -> pts_to r p v) (requires fun _ -> perm_ok p) (ensures fun _ _ _ -> True) = intro_pure (perm_ok p); rewrite_slprop (pts_to' r p v) (pts_to r p v) (fun _ -> ())
val intro_pts_to (p: perm) (#a #uses: _) (#v: erased a) (r: ref a) : SteelGhost unit uses (pts_to_raw r p v) (fun _ -> pts_to r p v) (requires fun _ -> perm_ok p) (ensures fun _ _ _ -> True) let intro_pts_to (p: perm) #a #uses (#v: erased a) (r: ref a) : SteelGhost unit uses (pts_to_raw r p v) (fun _ -> pts_to r p v) (requires fun _ -> perm_ok p) (ensures fun _ _ _ -> True) =
true
null
false
intro_pure (perm_ok p); rewrite_slprop (pts_to' r p v) (pts_to r p v) (fun _ -> ())
{ "checked_file": "Steel.HigherReference.fst.checked", "dependencies": [ "Steel.PCMReference.fsti.checked", "Steel.PCMFrac.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Real.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.PCM.fst.checked", "FStar.NMSTTotal.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Steel.HigherReference.fst" }
[]
[ "Steel.FractionalPermission.perm", "Steel.Memory.inames", "FStar.Ghost.erased", "Steel.HigherReference.ref", "Steel.Effect.Atomic.rewrite_slprop", "Steel.HigherReference.pts_to'", "Steel.HigherReference.pts_to", "FStar.Ghost.reveal", "Steel.Memory.mem", "Prims.unit", "Steel.Effect.Atomic.intro_pure", "Steel.HigherReference.perm_ok", "Steel.HigherReference.pts_to_raw", "Steel.Effect.Common.vprop", "Steel.Effect.Common.rmem", "Prims.l_True" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.HigherReference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect open FStar.PCM open Steel.PCMFrac open FStar.Real module RP = Steel.PCMReference #set-options "--ide_id_info_off" module Mem = Steel.Memory let ref a = Mem.ref (fractional a) pcm_frac let null #a = Mem.null #(fractional a) #pcm_frac let is_null #a r = Mem.is_null #(fractional a) #pcm_frac r let perm_ok p : prop = (p.v <=. one == true) /\ True let pts_to_raw_sl (#a:Type) (r:ref a) (p:perm) (v:erased a) : slprop = Mem.pts_to r (Some (Ghost.reveal v, p)) let pts_to_raw (#a:Type) (r:ref a) (p:perm) (v:erased a) : vprop = to_vprop (Mem.pts_to r (Some (Ghost.reveal v, p))) [@@__reduce__] let pts_to' (#a:Type u#1) (r:ref a) (p:perm) (v:erased a) : vprop = pts_to_raw r p v `star` pure (perm_ok p) let pts_to_sl #a r p v = hp_of (pts_to' r p v) let abcd_acbd (a b c d:slprop) : Lemma (Mem.(((a `star` b) `star` (c `star` d)) `equiv` ((a `star` c) `star` (b `star` d)))) = let open Steel.Memory in calc (equiv) { ((a `star` b) `star` (c `star` d)); (equiv) { star_associative a b (c `star` d) } ((a `star` (b `star` (c `star` d)))); (equiv) { star_associative b c d; star_congruence a (b `star` (c `star` d)) a ((b `star` c) `star` d) } (a `star` ((b `star` c) `star` d)); (equiv) { star_commutative b c; star_congruence (b `star` c) d (c `star` b) d; star_congruence a ((b `star` c) `star` d) a ((c `star` b) `star` d) } (a `star` ((c `star` b) `star` d)); (equiv) { star_associative c b d; star_congruence a ((c `star` b) `star` d) a (c `star` (b `star` d)) } (a `star` (c `star` (b `star` d))); (equiv) { star_associative a c (b `star` d) } ((a `star` c) `star` (b `star` d)); } let pts_to_ref_injective (#a: Type u#1) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let open Steel.Memory in abcd_acbd (hp_of (pts_to_raw r p0 v0)) (pure (perm_ok p0)) (hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p1)); Mem.affine_star (hp_of (pts_to_raw r p0 v0) `star` hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p0) `star` pure (perm_ok p1)) m; Mem.pts_to_compatible r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) m let pts_to_not_null (#a:Type u#1) (r:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures r =!= null) = Mem.affine_star (hp_of (pts_to_raw r p v)) (Mem.pure (perm_ok p)) m; Mem.pts_to_not_null r (Some (Ghost.reveal v, p)) m let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : erased a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = Mem.pts_to_join r (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let higher_ref_pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let pts_to_framon (#a:Type) (r:ref a) (p:perm) : Lemma (is_frame_monotonic (pts_to_sl r p)) = pts_to_witinv r p let intro_pts_to (p:perm) #a #uses (#v:erased a) (r:ref a) : SteelGhost unit uses (pts_to_raw r p v) (fun _ -> pts_to r p v) (requires fun _ -> perm_ok p)
false
false
Steel.HigherReference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val intro_pts_to (p: perm) (#a #uses: _) (#v: erased a) (r: ref a) : SteelGhost unit uses (pts_to_raw r p v) (fun _ -> pts_to r p v) (requires fun _ -> perm_ok p) (ensures fun _ _ _ -> True)
[]
Steel.HigherReference.intro_pts_to
{ "file_name": "lib/steel/Steel.HigherReference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
p: Steel.FractionalPermission.perm -> r: Steel.HigherReference.ref a -> Steel.Effect.Atomic.SteelGhost Prims.unit
{ "end_col": 63, "end_line": 123, "start_col": 4, "start_line": 122 }
Prims.Tot
val cas_action (#t:Type) (eq: (x:t -> y:t -> b:bool{b <==> (x == y)})) (#uses:inames) (r:ref t) (v:erased t) (v_old:t) (v_new:t) : action_except (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (fun b -> if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)
[ { "abbrev": true, "full_module": "Steel.PCMReference", "short_module": "RP" }, { "abbrev": false, "full_module": "FStar.Real", "short_module": null }, { "abbrev": false, "full_module": "Steel.PCMFrac", "short_module": null }, { "abbrev": false, "full_module": "FStar.PCM", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let cas_action (#t:Type) (eq: (x:t -> y:t -> b:bool{b <==> (x == y)})) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (fr:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (cas_provides r v v_new) fr (fun _ -> True) (fun _ _ _ -> True) = let m0 : full_mem = NMSTTotal.get () in let fv = Ghost.hide (Some (Ghost.reveal v, full_perm)) in let fv' = Some (v_new, full_perm) in assert (interp Mem.(pts_to_sl r full_perm v `star` fr `star` locks_invariant uses m0) m0); assert (interp Mem.(pts_to r fv `star` pure (perm_ok full_perm) `star` fr `star` locks_invariant uses m0) m0); cas_action_helper (Mem.pts_to r fv) (Mem.pure (perm_ok full_perm)) fr (locks_invariant uses m0) m0; assert (interp Mem.((pts_to r fv `star` pure (perm_ok full_perm)) `star` locks_invariant uses m0) m0); let fv_actual = Mem.frame (Mem.pure (perm_ok full_perm)) (sel_action uses r fv) fr in assert (compatible pcm_frac fv fv_actual); let Some (v', p) = fv_actual in assert (v == Ghost.hide v'); assert (p == full_perm); let b = if eq v' v_old then (Mem.frame (Mem.pure (perm_ok full_perm)) (upd_action uses r fv fv') fr; true) else false in b
val cas_action (#t:Type) (eq: (x:t -> y:t -> b:bool{b <==> (x == y)})) (#uses:inames) (r:ref t) (v:erased t) (v_old:t) (v_new:t) : action_except (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (fun b -> if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v) let cas_action (#t: Type) (eq: (x: t -> y: t -> b: bool{b <==> (x == y)})) (#uses: inames) (r: ref t) (v: Ghost.erased t) (v_old v_new: t) (fr: slprop) : MstTot (b: bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (cas_provides r v v_new) fr (fun _ -> True) (fun _ _ _ -> True) =
false
null
false
let m0:full_mem = NMSTTotal.get () in let fv = Ghost.hide (Some (Ghost.reveal v, full_perm)) in let fv' = Some (v_new, full_perm) in assert (interp Mem.(((pts_to_sl r full_perm v) `star` fr) `star` (locks_invariant uses m0)) m0); assert (interp Mem.((((pts_to r fv) `star` (pure (perm_ok full_perm))) `star` fr) `star` (locks_invariant uses m0)) m0); cas_action_helper (Mem.pts_to r fv) (Mem.pure (perm_ok full_perm)) fr (locks_invariant uses m0) m0; assert (interp Mem.(((pts_to r fv) `star` (pure (perm_ok full_perm))) `star` (locks_invariant uses m0)) m0); let fv_actual = Mem.frame (Mem.pure (perm_ok full_perm)) (sel_action uses r fv) fr in assert (compatible pcm_frac fv fv_actual); let Some (v', p) = fv_actual in assert (v == Ghost.hide v'); assert (p == full_perm); let b = if eq v' v_old then (Mem.frame (Mem.pure (perm_ok full_perm)) (upd_action uses r fv fv') fr; true) else false in b
{ "checked_file": "Steel.HigherReference.fst.checked", "dependencies": [ "Steel.PCMReference.fsti.checked", "Steel.PCMFrac.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Real.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.PCM.fst.checked", "FStar.NMSTTotal.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Steel.HigherReference.fst" }
[ "total" ]
[ "Prims.bool", "Prims.l_iff", "Prims.b2t", "Prims.eq2", "Steel.Memory.inames", "Steel.HigherReference.ref", "FStar.Ghost.erased", "Steel.Memory.slprop", "Steel.FractionalPermission.perm", "FStar.Ghost.reveal", "Prims.unit", "Steel.Memory.frame", "Steel.Memory.pts_to", "Steel.PCMFrac.fractional", "Steel.PCMFrac.pcm_frac", "Steel.Memory.mem", "Prims.l_True", "Prims.prop", "Steel.Memory.pure", "Steel.HigherReference.perm_ok", "Steel.FractionalPermission.full_perm", "Steel.Memory.upd_action", "Prims._assert", "FStar.Ghost.hide", "FStar.PCM.compatible", "Steel.Memory.sel_action", "Steel.Memory.interp", "Steel.Memory.star", "Steel.Memory.locks_invariant", "Steel.HigherReference.cas_action_helper", "Steel.HigherReference.pts_to_sl", "FStar.Pervasives.Native.option", "FStar.Pervasives.Native.tuple2", "FStar.Pervasives.Native.Some", "FStar.Pervasives.Native.Mktuple2", "Steel.Memory.full_mem", "FStar.NMSTTotal.get", "Steel.Memory.mem_evolves", "Steel.HigherReference.cas_provides" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.HigherReference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect open FStar.PCM open Steel.PCMFrac open FStar.Real module RP = Steel.PCMReference #set-options "--ide_id_info_off" module Mem = Steel.Memory let ref a = Mem.ref (fractional a) pcm_frac let null #a = Mem.null #(fractional a) #pcm_frac let is_null #a r = Mem.is_null #(fractional a) #pcm_frac r let perm_ok p : prop = (p.v <=. one == true) /\ True let pts_to_raw_sl (#a:Type) (r:ref a) (p:perm) (v:erased a) : slprop = Mem.pts_to r (Some (Ghost.reveal v, p)) let pts_to_raw (#a:Type) (r:ref a) (p:perm) (v:erased a) : vprop = to_vprop (Mem.pts_to r (Some (Ghost.reveal v, p))) [@@__reduce__] let pts_to' (#a:Type u#1) (r:ref a) (p:perm) (v:erased a) : vprop = pts_to_raw r p v `star` pure (perm_ok p) let pts_to_sl #a r p v = hp_of (pts_to' r p v) let abcd_acbd (a b c d:slprop) : Lemma (Mem.(((a `star` b) `star` (c `star` d)) `equiv` ((a `star` c) `star` (b `star` d)))) = let open Steel.Memory in calc (equiv) { ((a `star` b) `star` (c `star` d)); (equiv) { star_associative a b (c `star` d) } ((a `star` (b `star` (c `star` d)))); (equiv) { star_associative b c d; star_congruence a (b `star` (c `star` d)) a ((b `star` c) `star` d) } (a `star` ((b `star` c) `star` d)); (equiv) { star_commutative b c; star_congruence (b `star` c) d (c `star` b) d; star_congruence a ((b `star` c) `star` d) a ((c `star` b) `star` d) } (a `star` ((c `star` b) `star` d)); (equiv) { star_associative c b d; star_congruence a ((c `star` b) `star` d) a (c `star` (b `star` d)) } (a `star` (c `star` (b `star` d))); (equiv) { star_associative a c (b `star` d) } ((a `star` c) `star` (b `star` d)); } let pts_to_ref_injective (#a: Type u#1) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let open Steel.Memory in abcd_acbd (hp_of (pts_to_raw r p0 v0)) (pure (perm_ok p0)) (hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p1)); Mem.affine_star (hp_of (pts_to_raw r p0 v0) `star` hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p0) `star` pure (perm_ok p1)) m; Mem.pts_to_compatible r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) m let pts_to_not_null (#a:Type u#1) (r:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures r =!= null) = Mem.affine_star (hp_of (pts_to_raw r p v)) (Mem.pure (perm_ok p)) m; Mem.pts_to_not_null r (Some (Ghost.reveal v, p)) m let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : erased a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = Mem.pts_to_join r (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let higher_ref_pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let pts_to_framon (#a:Type) (r:ref a) (p:perm) : Lemma (is_frame_monotonic (pts_to_sl r p)) = pts_to_witinv r p let intro_pts_to (p:perm) #a #uses (#v:erased a) (r:ref a) : SteelGhost unit uses (pts_to_raw r p v) (fun _ -> pts_to r p v) (requires fun _ -> perm_ok p) (ensures fun _ _ _ -> True) = intro_pure (perm_ok p); rewrite_slprop (pts_to' r p v) (pts_to r p v) (fun _ -> ()) let alloc #a x = let v = Some (x, full_perm) in assert (FStar.PCM.composable pcm_frac v None); assert (compatible pcm_frac v v); let r = RP.alloc v in rewrite_slprop (RP.pts_to r v) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m ); extract_info_raw (pts_to r full_perm x) (~ (is_null r)) (fun m -> pts_to_not_null r full_perm x m); return r let read (#a:Type) (#p:perm) (#v:erased a) (r:ref a) = let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ()); elim_pure (perm_ok p); let v2 = RP.read r v1 in rewrite_slprop (RP.pts_to r v1) (pts_to r p v) (fun m -> emp_unit (hp_of (pts_to_raw r p v)); pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m); assert (compatible pcm_frac v1 v2); let Some (x, _) = v2 in rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ()); return x let atomic_read (#opened:_) (#a:Type) (#p:perm) (#v:erased a) (r:ref a) = let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ()); elim_pure (perm_ok p); let v2 = RP.atomic_read r v1 in rewrite_slprop (RP.pts_to r v1) (pts_to r p v) (fun m -> emp_unit (hp_of (pts_to_raw r p v)); pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m); assert (compatible pcm_frac v1 v2); let Some (x, _) = v2 in rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ()); return x let read_refine (#a:Type) (#p:perm) (q:a -> vprop) (r:ref a) : SteelT a (h_exists (fun (v:a) -> pts_to r p v `star` q v)) (fun v -> pts_to r p v `star` q v) = let vs:erased a = witness_exists () in rewrite_slprop (pts_to r p (Ghost.hide (Ghost.reveal vs))) (pts_to r p vs) (fun _ -> ()); let v = read r in rewrite_slprop (q vs) (q v) (fun _ -> ()); return v let write (#a:Type) (#v:erased a) (r:ref a) (x:a) : SteelT unit (pts_to r full_perm v) (fun _ -> pts_to r full_perm x) = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in let v_new : fractional a = Some (x, full_perm) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.write r v_old v_new; rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m) let atomic_write #opened #a #v r x = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in let v_new : fractional a = Some (x, full_perm) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.atomic_write r v_old v_new; rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m) let free (#a:Type) (#v:erased a) (r:ref a) : SteelT unit (pts_to r full_perm v) (fun _ -> emp) = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.free r v_old; drop (RP.pts_to r (Mkpcm'?.one (Mkpcm?.p pcm_frac))) let share_atomic_raw #a #uses (#p:perm) (r:ref a{perm_ok p}) (v0:erased a) : SteelGhostT unit uses (pts_to_raw r p v0) (fun _ -> pts_to_raw r (half_perm p) v0 `star` pts_to_raw r (half_perm p) v0) = rewrite_slprop (pts_to_raw r p v0) (RP.pts_to r _) (fun _ -> ()); RP.split r (Some (Ghost.reveal v0, p)) (Some (Ghost.reveal v0, half_perm p)) (Some (Ghost.reveal v0, half_perm p)); rewrite_slprop (RP.pts_to r _) (pts_to_raw r (half_perm p) v0) (fun _ -> ()); rewrite_slprop (RP.pts_to r _) (pts_to_raw r (half_perm p) v0) (fun _ -> ()) let share (#a:Type) #uses (#p:perm) (#v:erased a) (r:ref a) : SteelGhostT unit uses (pts_to r p v) (fun _ -> pts_to r (half_perm p) v `star` pts_to r (half_perm p) v) = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (pts_to' r p v) (fun _ -> ()); elim_pure (perm_ok p); share_atomic_raw r v; intro_pts_to (half_perm p) r; intro_pts_to (half_perm p) r let gather_atomic_raw (#a:Type) (#uses:_) (#p0 #p1:perm) (r:ref a) (v0:erased a) (v1:erased a) : SteelGhostT (_:unit{v0==v1 /\ perm_ok (sum_perm p0 p1)}) uses (pts_to_raw r p0 v0 `star` pts_to_raw r p1 v1) (fun _ -> pts_to_raw r (sum_perm p0 p1) v0) = rewrite_slprop (pts_to_raw r p0 v0) (RP.pts_to r (Ghost.reveal (Some (Ghost.reveal v0, p0)))) (fun _ -> ()); rewrite_slprop (pts_to_raw r p1 v1) (RP.pts_to r (Ghost.reveal (Some (Ghost.reveal v1, p1)))) (fun _ -> ()); let _ = RP.gather r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) in rewrite_slprop (RP.pts_to r _) (pts_to_raw r (sum_perm p0 p1) v0) (fun _ -> ()) let gather (#a:Type) (#uses:_) (#p0:perm) (#p1:perm) (#v0 #v1:erased a) (r:ref a) = let v0_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v0, p0)) in let v1_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v1, p1)) in rewrite_slprop (pts_to r p0 v0) (pts_to_raw r p0 v0 `star` pure (perm_ok p0)) (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (pts_to_raw r p1 v1 `star` pure (perm_ok p1)) (fun _ -> ()); elim_pure (perm_ok p0); elim_pure (perm_ok p1); let _ = gather_atomic_raw r v0 v1 in intro_pts_to (sum_perm p0 p1) r let cas_provides #t (r:ref t) (v:Ghost.erased t) (v_new:t) (b:bool) = if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v let equiv_ext_right (p q r:slprop) : Lemma (requires q `Mem.equiv` r) (ensures Mem.((p `star` q) `equiv` (p `star` r))) = let open Steel.Memory in calc (equiv) { p `star` q; (equiv) { star_commutative p q } q `star` p; (equiv) { equiv_extensional_on_star q r p } r `star` p; (equiv) { star_commutative p r } p `star` r; } let cas_action_helper (p q r s:slprop) (m:mem) : Lemma (requires interp Mem.(p `star` q `star` r `star` s) m) (ensures interp Mem.(p `star` q `star` s) m) = let open Steel.Memory in calc (equiv) { r `star` s; (equiv) { star_commutative r s } s `star` r; }; calc (equiv) { p `star` q `star` r `star` s; (equiv) { Mem.star_associative (p `star` q) r s } (p `star` q) `star` (r `star` s); (equiv) { equiv_ext_right (p `star` q) (r `star` s) (s `star` r) } (p `star` q) `star` (s `star` r); (equiv) { star_associative (p `star` q) s r } (p `star` q `star` s) `star` r; }; assert (interp ((p `star` q `star` s) `star` r) m); affine_star (p `star` q `star` s) r m let cas_action (#t:Type) (eq: (x:t -> y:t -> b:bool{b <==> (x == y)})) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (fr:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (cas_provides r v v_new) fr (fun _ -> True)
false
false
Steel.HigherReference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val cas_action (#t:Type) (eq: (x:t -> y:t -> b:bool{b <==> (x == y)})) (#uses:inames) (r:ref t) (v:erased t) (v_old:t) (v_new:t) : action_except (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (fun b -> if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)
[]
Steel.HigherReference.cas_action
{ "file_name": "lib/steel/Steel.HigherReference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
eq: (x: t -> y: t -> b: Prims.bool{b <==> x == y}) -> r: Steel.HigherReference.ref t -> v: FStar.Ghost.erased t -> v_old: t -> v_new: t -> Steel.Memory.action_except (b: Prims.bool{b <==> FStar.Ghost.reveal v == v_old}) uses (Steel.HigherReference.pts_to_sl r Steel.FractionalPermission.full_perm (FStar.Ghost.reveal v) ) (fun b -> (match b with | true -> Steel.HigherReference.pts_to_sl r Steel.FractionalPermission.full_perm v_new | _ -> Steel.HigherReference.pts_to_sl r Steel.FractionalPermission.full_perm (FStar.Ghost.reveal v)) <: Steel.Memory.slprop)
{ "end_col": 6, "end_line": 361, "start_col": 4, "start_line": 340 }
Steel.Effect.Atomic.SteelGhost
val ghost_pts_to_perm (#a: _) (#u: _) (#p: _) (#v: _) (r: ghost_ref a) : SteelGhost unit u (ghost_pts_to r p v) (fun _ -> ghost_pts_to r p v) (fun _ -> True) (fun _ _ _ -> p `lesser_equal_perm` full_perm)
[ { "abbrev": true, "full_module": "Steel.PCMReference", "short_module": "RP" }, { "abbrev": false, "full_module": "FStar.Real", "short_module": null }, { "abbrev": false, "full_module": "Steel.PCMFrac", "short_module": null }, { "abbrev": false, "full_module": "FStar.PCM", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ghost_pts_to_perm #a #_ #p #v r = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (ghost_pts_to r p v) (RP.pts_to r v_old `star` pure (perm_ok p)) (fun _ -> ()); elim_pure (perm_ok p); intro_pure (perm_ok p); rewrite_slprop (RP.pts_to r v_old `star` pure (perm_ok p)) (ghost_pts_to r p v) (fun _ -> ())
val ghost_pts_to_perm (#a: _) (#u: _) (#p: _) (#v: _) (r: ghost_ref a) : SteelGhost unit u (ghost_pts_to r p v) (fun _ -> ghost_pts_to r p v) (fun _ -> True) (fun _ _ _ -> p `lesser_equal_perm` full_perm) let ghost_pts_to_perm #a #_ #p #v r =
true
null
false
let v_old:erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (ghost_pts_to r p v) ((RP.pts_to r v_old) `star` (pure (perm_ok p))) (fun _ -> ()); elim_pure (perm_ok p); intro_pure (perm_ok p); rewrite_slprop ((RP.pts_to r v_old) `star` (pure (perm_ok p))) (ghost_pts_to r p v) (fun _ -> ())
{ "checked_file": "Steel.HigherReference.fst.checked", "dependencies": [ "Steel.PCMReference.fsti.checked", "Steel.PCMFrac.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Real.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.PCM.fst.checked", "FStar.NMSTTotal.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Steel.HigherReference.fst" }
[]
[ "Steel.Memory.inames", "Steel.FractionalPermission.perm", "Steel.HigherReference.ghost_ref", "Steel.Effect.Atomic.rewrite_slprop", "Steel.Effect.Common.star", "Steel.PCMReference.pts_to", "Steel.PCMFrac.fractional", "Steel.PCMFrac.pcm_frac", "FStar.Ghost.reveal", "Steel.HigherReference.ref", "Steel.Effect.Common.pure", "Steel.HigherReference.perm_ok", "Steel.HigherReference.ghost_pts_to", "Steel.Memory.mem", "Prims.unit", "Steel.Effect.Atomic.intro_pure", "Steel.Effect.Atomic.elim_pure", "FStar.Ghost.erased", "FStar.Ghost.hide", "FStar.Pervasives.Native.Some", "FStar.Pervasives.Native.tuple2", "FStar.Pervasives.Native.Mktuple2" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.HigherReference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect open FStar.PCM open Steel.PCMFrac open FStar.Real module RP = Steel.PCMReference #set-options "--ide_id_info_off" module Mem = Steel.Memory let ref a = Mem.ref (fractional a) pcm_frac let null #a = Mem.null #(fractional a) #pcm_frac let is_null #a r = Mem.is_null #(fractional a) #pcm_frac r let perm_ok p : prop = (p.v <=. one == true) /\ True let pts_to_raw_sl (#a:Type) (r:ref a) (p:perm) (v:erased a) : slprop = Mem.pts_to r (Some (Ghost.reveal v, p)) let pts_to_raw (#a:Type) (r:ref a) (p:perm) (v:erased a) : vprop = to_vprop (Mem.pts_to r (Some (Ghost.reveal v, p))) [@@__reduce__] let pts_to' (#a:Type u#1) (r:ref a) (p:perm) (v:erased a) : vprop = pts_to_raw r p v `star` pure (perm_ok p) let pts_to_sl #a r p v = hp_of (pts_to' r p v) let abcd_acbd (a b c d:slprop) : Lemma (Mem.(((a `star` b) `star` (c `star` d)) `equiv` ((a `star` c) `star` (b `star` d)))) = let open Steel.Memory in calc (equiv) { ((a `star` b) `star` (c `star` d)); (equiv) { star_associative a b (c `star` d) } ((a `star` (b `star` (c `star` d)))); (equiv) { star_associative b c d; star_congruence a (b `star` (c `star` d)) a ((b `star` c) `star` d) } (a `star` ((b `star` c) `star` d)); (equiv) { star_commutative b c; star_congruence (b `star` c) d (c `star` b) d; star_congruence a ((b `star` c) `star` d) a ((c `star` b) `star` d) } (a `star` ((c `star` b) `star` d)); (equiv) { star_associative c b d; star_congruence a ((c `star` b) `star` d) a (c `star` (b `star` d)) } (a `star` (c `star` (b `star` d))); (equiv) { star_associative a c (b `star` d) } ((a `star` c) `star` (b `star` d)); } let pts_to_ref_injective (#a: Type u#1) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let open Steel.Memory in abcd_acbd (hp_of (pts_to_raw r p0 v0)) (pure (perm_ok p0)) (hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p1)); Mem.affine_star (hp_of (pts_to_raw r p0 v0) `star` hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p0) `star` pure (perm_ok p1)) m; Mem.pts_to_compatible r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) m let pts_to_not_null (#a:Type u#1) (r:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures r =!= null) = Mem.affine_star (hp_of (pts_to_raw r p v)) (Mem.pure (perm_ok p)) m; Mem.pts_to_not_null r (Some (Ghost.reveal v, p)) m let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : erased a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = Mem.pts_to_join r (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let higher_ref_pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let pts_to_framon (#a:Type) (r:ref a) (p:perm) : Lemma (is_frame_monotonic (pts_to_sl r p)) = pts_to_witinv r p let intro_pts_to (p:perm) #a #uses (#v:erased a) (r:ref a) : SteelGhost unit uses (pts_to_raw r p v) (fun _ -> pts_to r p v) (requires fun _ -> perm_ok p) (ensures fun _ _ _ -> True) = intro_pure (perm_ok p); rewrite_slprop (pts_to' r p v) (pts_to r p v) (fun _ -> ()) let alloc #a x = let v = Some (x, full_perm) in assert (FStar.PCM.composable pcm_frac v None); assert (compatible pcm_frac v v); let r = RP.alloc v in rewrite_slprop (RP.pts_to r v) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m ); extract_info_raw (pts_to r full_perm x) (~ (is_null r)) (fun m -> pts_to_not_null r full_perm x m); return r let read (#a:Type) (#p:perm) (#v:erased a) (r:ref a) = let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ()); elim_pure (perm_ok p); let v2 = RP.read r v1 in rewrite_slprop (RP.pts_to r v1) (pts_to r p v) (fun m -> emp_unit (hp_of (pts_to_raw r p v)); pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m); assert (compatible pcm_frac v1 v2); let Some (x, _) = v2 in rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ()); return x let atomic_read (#opened:_) (#a:Type) (#p:perm) (#v:erased a) (r:ref a) = let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ()); elim_pure (perm_ok p); let v2 = RP.atomic_read r v1 in rewrite_slprop (RP.pts_to r v1) (pts_to r p v) (fun m -> emp_unit (hp_of (pts_to_raw r p v)); pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m); assert (compatible pcm_frac v1 v2); let Some (x, _) = v2 in rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ()); return x let read_refine (#a:Type) (#p:perm) (q:a -> vprop) (r:ref a) : SteelT a (h_exists (fun (v:a) -> pts_to r p v `star` q v)) (fun v -> pts_to r p v `star` q v) = let vs:erased a = witness_exists () in rewrite_slprop (pts_to r p (Ghost.hide (Ghost.reveal vs))) (pts_to r p vs) (fun _ -> ()); let v = read r in rewrite_slprop (q vs) (q v) (fun _ -> ()); return v let write (#a:Type) (#v:erased a) (r:ref a) (x:a) : SteelT unit (pts_to r full_perm v) (fun _ -> pts_to r full_perm x) = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in let v_new : fractional a = Some (x, full_perm) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.write r v_old v_new; rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m) let atomic_write #opened #a #v r x = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in let v_new : fractional a = Some (x, full_perm) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.atomic_write r v_old v_new; rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m) let free (#a:Type) (#v:erased a) (r:ref a) : SteelT unit (pts_to r full_perm v) (fun _ -> emp) = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.free r v_old; drop (RP.pts_to r (Mkpcm'?.one (Mkpcm?.p pcm_frac))) let share_atomic_raw #a #uses (#p:perm) (r:ref a{perm_ok p}) (v0:erased a) : SteelGhostT unit uses (pts_to_raw r p v0) (fun _ -> pts_to_raw r (half_perm p) v0 `star` pts_to_raw r (half_perm p) v0) = rewrite_slprop (pts_to_raw r p v0) (RP.pts_to r _) (fun _ -> ()); RP.split r (Some (Ghost.reveal v0, p)) (Some (Ghost.reveal v0, half_perm p)) (Some (Ghost.reveal v0, half_perm p)); rewrite_slprop (RP.pts_to r _) (pts_to_raw r (half_perm p) v0) (fun _ -> ()); rewrite_slprop (RP.pts_to r _) (pts_to_raw r (half_perm p) v0) (fun _ -> ()) let share (#a:Type) #uses (#p:perm) (#v:erased a) (r:ref a) : SteelGhostT unit uses (pts_to r p v) (fun _ -> pts_to r (half_perm p) v `star` pts_to r (half_perm p) v) = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (pts_to' r p v) (fun _ -> ()); elim_pure (perm_ok p); share_atomic_raw r v; intro_pts_to (half_perm p) r; intro_pts_to (half_perm p) r let gather_atomic_raw (#a:Type) (#uses:_) (#p0 #p1:perm) (r:ref a) (v0:erased a) (v1:erased a) : SteelGhostT (_:unit{v0==v1 /\ perm_ok (sum_perm p0 p1)}) uses (pts_to_raw r p0 v0 `star` pts_to_raw r p1 v1) (fun _ -> pts_to_raw r (sum_perm p0 p1) v0) = rewrite_slprop (pts_to_raw r p0 v0) (RP.pts_to r (Ghost.reveal (Some (Ghost.reveal v0, p0)))) (fun _ -> ()); rewrite_slprop (pts_to_raw r p1 v1) (RP.pts_to r (Ghost.reveal (Some (Ghost.reveal v1, p1)))) (fun _ -> ()); let _ = RP.gather r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) in rewrite_slprop (RP.pts_to r _) (pts_to_raw r (sum_perm p0 p1) v0) (fun _ -> ()) let gather (#a:Type) (#uses:_) (#p0:perm) (#p1:perm) (#v0 #v1:erased a) (r:ref a) = let v0_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v0, p0)) in let v1_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v1, p1)) in rewrite_slprop (pts_to r p0 v0) (pts_to_raw r p0 v0 `star` pure (perm_ok p0)) (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (pts_to_raw r p1 v1 `star` pure (perm_ok p1)) (fun _ -> ()); elim_pure (perm_ok p0); elim_pure (perm_ok p1); let _ = gather_atomic_raw r v0 v1 in intro_pts_to (sum_perm p0 p1) r let cas_provides #t (r:ref t) (v:Ghost.erased t) (v_new:t) (b:bool) = if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v let equiv_ext_right (p q r:slprop) : Lemma (requires q `Mem.equiv` r) (ensures Mem.((p `star` q) `equiv` (p `star` r))) = let open Steel.Memory in calc (equiv) { p `star` q; (equiv) { star_commutative p q } q `star` p; (equiv) { equiv_extensional_on_star q r p } r `star` p; (equiv) { star_commutative p r } p `star` r; } let cas_action_helper (p q r s:slprop) (m:mem) : Lemma (requires interp Mem.(p `star` q `star` r `star` s) m) (ensures interp Mem.(p `star` q `star` s) m) = let open Steel.Memory in calc (equiv) { r `star` s; (equiv) { star_commutative r s } s `star` r; }; calc (equiv) { p `star` q `star` r `star` s; (equiv) { Mem.star_associative (p `star` q) r s } (p `star` q) `star` (r `star` s); (equiv) { equiv_ext_right (p `star` q) (r `star` s) (s `star` r) } (p `star` q) `star` (s `star` r); (equiv) { star_associative (p `star` q) s r } (p `star` q `star` s) `star` r; }; assert (interp ((p `star` q `star` s) `star` r) m); affine_star (p `star` q `star` s) r m let cas_action (#t:Type) (eq: (x:t -> y:t -> b:bool{b <==> (x == y)})) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (fr:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (cas_provides r v v_new) fr (fun _ -> True) (fun _ _ _ -> True) = let m0 : full_mem = NMSTTotal.get () in let fv = Ghost.hide (Some (Ghost.reveal v, full_perm)) in let fv' = Some (v_new, full_perm) in assert (interp Mem.(pts_to_sl r full_perm v `star` fr `star` locks_invariant uses m0) m0); assert (interp Mem.(pts_to r fv `star` pure (perm_ok full_perm) `star` fr `star` locks_invariant uses m0) m0); cas_action_helper (Mem.pts_to r fv) (Mem.pure (perm_ok full_perm)) fr (locks_invariant uses m0) m0; assert (interp Mem.((pts_to r fv `star` pure (perm_ok full_perm)) `star` locks_invariant uses m0) m0); let fv_actual = Mem.frame (Mem.pure (perm_ok full_perm)) (sel_action uses r fv) fr in assert (compatible pcm_frac fv fv_actual); let Some (v', p) = fv_actual in assert (v == Ghost.hide v'); assert (p == full_perm); let b = if eq v' v_old then (Mem.frame (Mem.pure (perm_ok full_perm)) (upd_action uses r fv fv') fr; true) else false in b (*** GHOST REFERENCES ***) let ghost_ref a = erased (ref a) [@@__reduce__] let ghost_pts_to_sl #a (r:ghost_ref a) (p:perm) (x:a) = pts_to_sl (reveal r) p x let reveal_ghost_ref _ = () let reveal_ghost_pts_to_sl _ _ _ = () #push-options "--z3rlimit 20 --warn_error -271" let ghost_pts_to_witinv (#a:Type) (r:ghost_ref a) (p:perm) : Lemma (is_witness_invariant (ghost_pts_to_sl r p)) = let aux (x y : erased a) (m:mem) : Lemma (requires (interp (ghost_pts_to_sl r p x) m /\ interp (ghost_pts_to_sl r p y) m)) (ensures (x == y)) [SMTPat ()] = Mem.pts_to_join (Ghost.reveal r) (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m in assert (forall x y m. interp (ghost_pts_to_sl r p x) m /\ interp (ghost_pts_to_sl r p y) m ==> x == y); assert (is_witness_invariant (ghost_pts_to_sl r p)) #pop-options let ghost_alloc_aux (#a:Type) (#u:_) (x:a) : SteelGhostT (ref a) u emp (fun r -> pts_to r full_perm (Ghost.hide x)) = let v : fractional a = Some (x, full_perm) in assert (FStar.PCM.composable pcm_frac v None); assert (compatible pcm_frac v v); rewrite_slprop emp (to_vprop Mem.emp) (fun _ -> reveal_emp()); let r : ref a = as_atomic_action_ghost (Steel.Memory.alloc_action u v) in rewrite_slprop (RP.pts_to r v) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m); r let ghost_alloc x = let r = ghost_alloc_aux (reveal x) in hide r let ghost_free #a #u #v r = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); as_atomic_action_ghost (free_action u r v_old); drop (RP.pts_to r (Mkpcm'?.one (Mkpcm?.p pcm_frac))) let ghost_share r = share (reveal r) let ghost_gather r = gather (reveal r) let ghost_pts_to_injective_eq #_ #_ #p0 #p1 r v0 v1 = higher_ref_pts_to_injective_eq #_ #_ #p0 #p1 #v0 #v1 (reveal r)
false
false
Steel.HigherReference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ghost_pts_to_perm (#a: _) (#u: _) (#p: _) (#v: _) (r: ghost_ref a) : SteelGhost unit u (ghost_pts_to r p v) (fun _ -> ghost_pts_to r p v) (fun _ -> True) (fun _ _ _ -> p `lesser_equal_perm` full_perm)
[]
Steel.HigherReference.ghost_pts_to_perm
{ "file_name": "lib/steel/Steel.HigherReference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.HigherReference.ghost_ref a -> Steel.Effect.Atomic.SteelGhost Prims.unit
{ "end_col": 19, "end_line": 432, "start_col": 37, "start_line": 421 }
Steel.Effect.Atomic.SteelAtomicT
val atomic_write (#opened:_) (#a:Type) (#v:erased a) (r:ref a) (x:a) : SteelAtomicT unit opened (pts_to r full_perm v) (fun _ -> pts_to r full_perm x)
[ { "abbrev": true, "full_module": "Steel.PCMReference", "short_module": "RP" }, { "abbrev": false, "full_module": "FStar.Real", "short_module": null }, { "abbrev": false, "full_module": "Steel.PCMFrac", "short_module": null }, { "abbrev": false, "full_module": "FStar.PCM", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let atomic_write #opened #a #v r x = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in let v_new : fractional a = Some (x, full_perm) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.atomic_write r v_old v_new; rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m)
val atomic_write (#opened:_) (#a:Type) (#v:erased a) (r:ref a) (x:a) : SteelAtomicT unit opened (pts_to r full_perm v) (fun _ -> pts_to r full_perm x) let atomic_write #opened #a #v r x =
true
null
false
let v_old:erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in let v_new:fractional a = Some (x, full_perm) in rewrite_slprop (pts_to r full_perm v) ((RP.pts_to r v_old) `star` (pure (perm_ok full_perm))) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.atomic_write r v_old v_new; rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m)
{ "checked_file": "Steel.HigherReference.fst.checked", "dependencies": [ "Steel.PCMReference.fsti.checked", "Steel.PCMFrac.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Real.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.PCM.fst.checked", "FStar.NMSTTotal.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Steel.HigherReference.fst" }
[]
[ "Steel.Memory.inames", "FStar.Ghost.erased", "Steel.HigherReference.ref", "Steel.Effect.Atomic.rewrite_slprop", "Steel.PCMReference.pts_to", "Steel.PCMFrac.fractional", "Steel.PCMFrac.pcm_frac", "Steel.HigherReference.pts_to", "Steel.FractionalPermission.full_perm", "Steel.Memory.mem", "Steel.Memory.pure_star_interp", "Steel.Effect.Common.hp_of", "Steel.HigherReference.pts_to_raw", "FStar.Ghost.hide", "Steel.HigherReference.perm_ok", "Prims.unit", "Steel.Memory.emp_unit", "Steel.PCMReference.atomic_write", "Steel.Effect.Atomic.elim_pure", "FStar.Ghost.reveal", "Steel.Effect.Common.star", "Steel.Effect.Common.pure", "FStar.Pervasives.Native.Some", "FStar.Pervasives.Native.tuple2", "Steel.FractionalPermission.perm", "FStar.Pervasives.Native.Mktuple2" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.HigherReference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect open FStar.PCM open Steel.PCMFrac open FStar.Real module RP = Steel.PCMReference #set-options "--ide_id_info_off" module Mem = Steel.Memory let ref a = Mem.ref (fractional a) pcm_frac let null #a = Mem.null #(fractional a) #pcm_frac let is_null #a r = Mem.is_null #(fractional a) #pcm_frac r let perm_ok p : prop = (p.v <=. one == true) /\ True let pts_to_raw_sl (#a:Type) (r:ref a) (p:perm) (v:erased a) : slprop = Mem.pts_to r (Some (Ghost.reveal v, p)) let pts_to_raw (#a:Type) (r:ref a) (p:perm) (v:erased a) : vprop = to_vprop (Mem.pts_to r (Some (Ghost.reveal v, p))) [@@__reduce__] let pts_to' (#a:Type u#1) (r:ref a) (p:perm) (v:erased a) : vprop = pts_to_raw r p v `star` pure (perm_ok p) let pts_to_sl #a r p v = hp_of (pts_to' r p v) let abcd_acbd (a b c d:slprop) : Lemma (Mem.(((a `star` b) `star` (c `star` d)) `equiv` ((a `star` c) `star` (b `star` d)))) = let open Steel.Memory in calc (equiv) { ((a `star` b) `star` (c `star` d)); (equiv) { star_associative a b (c `star` d) } ((a `star` (b `star` (c `star` d)))); (equiv) { star_associative b c d; star_congruence a (b `star` (c `star` d)) a ((b `star` c) `star` d) } (a `star` ((b `star` c) `star` d)); (equiv) { star_commutative b c; star_congruence (b `star` c) d (c `star` b) d; star_congruence a ((b `star` c) `star` d) a ((c `star` b) `star` d) } (a `star` ((c `star` b) `star` d)); (equiv) { star_associative c b d; star_congruence a ((c `star` b) `star` d) a (c `star` (b `star` d)) } (a `star` (c `star` (b `star` d))); (equiv) { star_associative a c (b `star` d) } ((a `star` c) `star` (b `star` d)); } let pts_to_ref_injective (#a: Type u#1) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let open Steel.Memory in abcd_acbd (hp_of (pts_to_raw r p0 v0)) (pure (perm_ok p0)) (hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p1)); Mem.affine_star (hp_of (pts_to_raw r p0 v0) `star` hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p0) `star` pure (perm_ok p1)) m; Mem.pts_to_compatible r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) m let pts_to_not_null (#a:Type u#1) (r:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures r =!= null) = Mem.affine_star (hp_of (pts_to_raw r p v)) (Mem.pure (perm_ok p)) m; Mem.pts_to_not_null r (Some (Ghost.reveal v, p)) m let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : erased a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = Mem.pts_to_join r (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let higher_ref_pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let pts_to_framon (#a:Type) (r:ref a) (p:perm) : Lemma (is_frame_monotonic (pts_to_sl r p)) = pts_to_witinv r p let intro_pts_to (p:perm) #a #uses (#v:erased a) (r:ref a) : SteelGhost unit uses (pts_to_raw r p v) (fun _ -> pts_to r p v) (requires fun _ -> perm_ok p) (ensures fun _ _ _ -> True) = intro_pure (perm_ok p); rewrite_slprop (pts_to' r p v) (pts_to r p v) (fun _ -> ()) let alloc #a x = let v = Some (x, full_perm) in assert (FStar.PCM.composable pcm_frac v None); assert (compatible pcm_frac v v); let r = RP.alloc v in rewrite_slprop (RP.pts_to r v) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m ); extract_info_raw (pts_to r full_perm x) (~ (is_null r)) (fun m -> pts_to_not_null r full_perm x m); return r let read (#a:Type) (#p:perm) (#v:erased a) (r:ref a) = let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ()); elim_pure (perm_ok p); let v2 = RP.read r v1 in rewrite_slprop (RP.pts_to r v1) (pts_to r p v) (fun m -> emp_unit (hp_of (pts_to_raw r p v)); pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m); assert (compatible pcm_frac v1 v2); let Some (x, _) = v2 in rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ()); return x let atomic_read (#opened:_) (#a:Type) (#p:perm) (#v:erased a) (r:ref a) = let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ()); elim_pure (perm_ok p); let v2 = RP.atomic_read r v1 in rewrite_slprop (RP.pts_to r v1) (pts_to r p v) (fun m -> emp_unit (hp_of (pts_to_raw r p v)); pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m); assert (compatible pcm_frac v1 v2); let Some (x, _) = v2 in rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ()); return x let read_refine (#a:Type) (#p:perm) (q:a -> vprop) (r:ref a) : SteelT a (h_exists (fun (v:a) -> pts_to r p v `star` q v)) (fun v -> pts_to r p v `star` q v) = let vs:erased a = witness_exists () in rewrite_slprop (pts_to r p (Ghost.hide (Ghost.reveal vs))) (pts_to r p vs) (fun _ -> ()); let v = read r in rewrite_slprop (q vs) (q v) (fun _ -> ()); return v let write (#a:Type) (#v:erased a) (r:ref a) (x:a) : SteelT unit (pts_to r full_perm v) (fun _ -> pts_to r full_perm x) = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in let v_new : fractional a = Some (x, full_perm) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.write r v_old v_new; rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m)
false
false
Steel.HigherReference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val atomic_write (#opened:_) (#a:Type) (#v:erased a) (r:ref a) (x:a) : SteelAtomicT unit opened (pts_to r full_perm v) (fun _ -> pts_to r full_perm x)
[]
Steel.HigherReference.atomic_write
{ "file_name": "lib/steel/Steel.HigherReference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.HigherReference.ref a -> x: a -> Steel.Effect.Atomic.SteelAtomicT Prims.unit
{ "end_col": 84, "end_line": 203, "start_col": 3, "start_line": 194 }
Steel.Effect.Steel
val alloc (#a:Type) (x:a) : Steel (ref a) emp (fun r -> pts_to r full_perm x) (requires fun _ -> True) (ensures fun _ r _ -> not (is_null r))
[ { "abbrev": true, "full_module": "Steel.PCMReference", "short_module": "RP" }, { "abbrev": false, "full_module": "FStar.Real", "short_module": null }, { "abbrev": false, "full_module": "Steel.PCMFrac", "short_module": null }, { "abbrev": false, "full_module": "FStar.PCM", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let alloc #a x = let v = Some (x, full_perm) in assert (FStar.PCM.composable pcm_frac v None); assert (compatible pcm_frac v v); let r = RP.alloc v in rewrite_slprop (RP.pts_to r v) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m ); extract_info_raw (pts_to r full_perm x) (~ (is_null r)) (fun m -> pts_to_not_null r full_perm x m); return r
val alloc (#a:Type) (x:a) : Steel (ref a) emp (fun r -> pts_to r full_perm x) (requires fun _ -> True) (ensures fun _ r _ -> not (is_null r)) let alloc #a x =
true
null
false
let v = Some (x, full_perm) in assert (FStar.PCM.composable pcm_frac v None); assert (compatible pcm_frac v v); let r = RP.alloc v in rewrite_slprop (RP.pts_to r v) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m); extract_info_raw (pts_to r full_perm x) (~(is_null r)) (fun m -> pts_to_not_null r full_perm x m); return r
{ "checked_file": "Steel.HigherReference.fst.checked", "dependencies": [ "Steel.PCMReference.fsti.checked", "Steel.PCMFrac.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Real.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.PCM.fst.checked", "FStar.NMSTTotal.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Steel.HigherReference.fst" }
[]
[ "Steel.Effect.Atomic.return", "Steel.HigherReference.ref", "FStar.Ghost.hide", "FStar.Set.set", "Steel.Memory.iname", "FStar.Set.empty", "Steel.HigherReference.pts_to", "Steel.FractionalPermission.full_perm", "Steel.Effect.Common.vprop", "Prims.unit", "Steel.Effect.Atomic.extract_info_raw", "Prims.l_not", "Prims.b2t", "Steel.HigherReference.is_null", "Steel.Memory.mem", "Steel.HigherReference.pts_to_not_null", "Steel.Effect.Atomic.rewrite_slprop", "Steel.PCMReference.pts_to", "Steel.PCMFrac.fractional", "Steel.PCMFrac.pcm_frac", "Steel.Memory.pure_star_interp", "Steel.Effect.Common.hp_of", "Steel.HigherReference.pts_to_raw", "Steel.HigherReference.perm_ok", "Steel.Memory.emp_unit", "Steel.Memory.ref", "Steel.PCMReference.alloc", "Prims._assert", "FStar.PCM.compatible", "FStar.PCM.composable", "FStar.Pervasives.Native.None", "FStar.Pervasives.Native.tuple2", "Steel.FractionalPermission.perm", "FStar.Pervasives.Native.option", "FStar.Pervasives.Native.Some", "FStar.Pervasives.Native.Mktuple2" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.HigherReference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect open FStar.PCM open Steel.PCMFrac open FStar.Real module RP = Steel.PCMReference #set-options "--ide_id_info_off" module Mem = Steel.Memory let ref a = Mem.ref (fractional a) pcm_frac let null #a = Mem.null #(fractional a) #pcm_frac let is_null #a r = Mem.is_null #(fractional a) #pcm_frac r let perm_ok p : prop = (p.v <=. one == true) /\ True let pts_to_raw_sl (#a:Type) (r:ref a) (p:perm) (v:erased a) : slprop = Mem.pts_to r (Some (Ghost.reveal v, p)) let pts_to_raw (#a:Type) (r:ref a) (p:perm) (v:erased a) : vprop = to_vprop (Mem.pts_to r (Some (Ghost.reveal v, p))) [@@__reduce__] let pts_to' (#a:Type u#1) (r:ref a) (p:perm) (v:erased a) : vprop = pts_to_raw r p v `star` pure (perm_ok p) let pts_to_sl #a r p v = hp_of (pts_to' r p v) let abcd_acbd (a b c d:slprop) : Lemma (Mem.(((a `star` b) `star` (c `star` d)) `equiv` ((a `star` c) `star` (b `star` d)))) = let open Steel.Memory in calc (equiv) { ((a `star` b) `star` (c `star` d)); (equiv) { star_associative a b (c `star` d) } ((a `star` (b `star` (c `star` d)))); (equiv) { star_associative b c d; star_congruence a (b `star` (c `star` d)) a ((b `star` c) `star` d) } (a `star` ((b `star` c) `star` d)); (equiv) { star_commutative b c; star_congruence (b `star` c) d (c `star` b) d; star_congruence a ((b `star` c) `star` d) a ((c `star` b) `star` d) } (a `star` ((c `star` b) `star` d)); (equiv) { star_associative c b d; star_congruence a ((c `star` b) `star` d) a (c `star` (b `star` d)) } (a `star` (c `star` (b `star` d))); (equiv) { star_associative a c (b `star` d) } ((a `star` c) `star` (b `star` d)); } let pts_to_ref_injective (#a: Type u#1) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let open Steel.Memory in abcd_acbd (hp_of (pts_to_raw r p0 v0)) (pure (perm_ok p0)) (hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p1)); Mem.affine_star (hp_of (pts_to_raw r p0 v0) `star` hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p0) `star` pure (perm_ok p1)) m; Mem.pts_to_compatible r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) m let pts_to_not_null (#a:Type u#1) (r:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures r =!= null) = Mem.affine_star (hp_of (pts_to_raw r p v)) (Mem.pure (perm_ok p)) m; Mem.pts_to_not_null r (Some (Ghost.reveal v, p)) m let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : erased a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = Mem.pts_to_join r (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let higher_ref_pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let pts_to_framon (#a:Type) (r:ref a) (p:perm) : Lemma (is_frame_monotonic (pts_to_sl r p)) = pts_to_witinv r p let intro_pts_to (p:perm) #a #uses (#v:erased a) (r:ref a) : SteelGhost unit uses (pts_to_raw r p v) (fun _ -> pts_to r p v) (requires fun _ -> perm_ok p) (ensures fun _ _ _ -> True) = intro_pure (perm_ok p); rewrite_slprop (pts_to' r p v) (pts_to r p v) (fun _ -> ())
false
false
Steel.HigherReference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val alloc (#a:Type) (x:a) : Steel (ref a) emp (fun r -> pts_to r full_perm x) (requires fun _ -> True) (ensures fun _ r _ -> not (is_null r))
[]
Steel.HigherReference.alloc
{ "file_name": "lib/steel/Steel.HigherReference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
x: a -> Steel.Effect.Steel (Steel.HigherReference.ref a)
{ "end_col": 11, "end_line": 137, "start_col": 16, "start_line": 125 }
Steel.Effect.Atomic.SteelGhostT
val share_atomic_raw (#a #uses: _) (#p: perm) (r: ref a {perm_ok p}) (v0: erased a) : SteelGhostT unit uses (pts_to_raw r p v0) (fun _ -> (pts_to_raw r (half_perm p) v0) `star` (pts_to_raw r (half_perm p) v0))
[ { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.PCMReference", "short_module": "RP" }, { "abbrev": false, "full_module": "FStar.Real", "short_module": null }, { "abbrev": false, "full_module": "Steel.PCMFrac", "short_module": null }, { "abbrev": false, "full_module": "FStar.PCM", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let share_atomic_raw #a #uses (#p:perm) (r:ref a{perm_ok p}) (v0:erased a) : SteelGhostT unit uses (pts_to_raw r p v0) (fun _ -> pts_to_raw r (half_perm p) v0 `star` pts_to_raw r (half_perm p) v0) = rewrite_slprop (pts_to_raw r p v0) (RP.pts_to r _) (fun _ -> ()); RP.split r (Some (Ghost.reveal v0, p)) (Some (Ghost.reveal v0, half_perm p)) (Some (Ghost.reveal v0, half_perm p)); rewrite_slprop (RP.pts_to r _) (pts_to_raw r (half_perm p) v0) (fun _ -> ()); rewrite_slprop (RP.pts_to r _) (pts_to_raw r (half_perm p) v0) (fun _ -> ())
val share_atomic_raw (#a #uses: _) (#p: perm) (r: ref a {perm_ok p}) (v0: erased a) : SteelGhostT unit uses (pts_to_raw r p v0) (fun _ -> (pts_to_raw r (half_perm p) v0) `star` (pts_to_raw r (half_perm p) v0)) let share_atomic_raw #a #uses (#p: perm) (r: ref a {perm_ok p}) (v0: erased a) : SteelGhostT unit uses (pts_to_raw r p v0) (fun _ -> (pts_to_raw r (half_perm p) v0) `star` (pts_to_raw r (half_perm p) v0)) =
true
null
false
rewrite_slprop (pts_to_raw r p v0) (RP.pts_to r _) (fun _ -> ()); RP.split r (Some (Ghost.reveal v0, p)) (Some (Ghost.reveal v0, half_perm p)) (Some (Ghost.reveal v0, half_perm p)); rewrite_slprop (RP.pts_to r _) (pts_to_raw r (half_perm p) v0) (fun _ -> ()); rewrite_slprop (RP.pts_to r _) (pts_to_raw r (half_perm p) v0) (fun _ -> ())
{ "checked_file": "Steel.HigherReference.fst.checked", "dependencies": [ "Steel.PCMReference.fsti.checked", "Steel.PCMFrac.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Real.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.PCM.fst.checked", "FStar.NMSTTotal.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Steel.HigherReference.fst" }
[]
[ "Steel.Memory.inames", "Steel.FractionalPermission.perm", "Steel.HigherReference.ref", "Steel.HigherReference.perm_ok", "FStar.Ghost.erased", "Steel.Effect.Atomic.rewrite_slprop", "Steel.PCMReference.pts_to", "Steel.PCMFrac.fractional", "Steel.PCMFrac.pcm_frac", "FStar.Pervasives.Native.Some", "FStar.Pervasives.Native.tuple2", "FStar.Pervasives.Native.Mktuple2", "FStar.Ghost.reveal", "Steel.FractionalPermission.half_perm", "Steel.HigherReference.pts_to_raw", "Steel.Memory.mem", "Prims.unit", "FStar.Ghost.hide", "Steel.PCMReference.split", "Steel.Effect.Common.star", "Steel.Effect.Common.vprop" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.HigherReference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect open FStar.PCM open Steel.PCMFrac open FStar.Real module RP = Steel.PCMReference #set-options "--ide_id_info_off" module Mem = Steel.Memory let ref a = Mem.ref (fractional a) pcm_frac let null #a = Mem.null #(fractional a) #pcm_frac let is_null #a r = Mem.is_null #(fractional a) #pcm_frac r let perm_ok p : prop = (p.v <=. one == true) /\ True let pts_to_raw_sl (#a:Type) (r:ref a) (p:perm) (v:erased a) : slprop = Mem.pts_to r (Some (Ghost.reveal v, p)) let pts_to_raw (#a:Type) (r:ref a) (p:perm) (v:erased a) : vprop = to_vprop (Mem.pts_to r (Some (Ghost.reveal v, p))) [@@__reduce__] let pts_to' (#a:Type u#1) (r:ref a) (p:perm) (v:erased a) : vprop = pts_to_raw r p v `star` pure (perm_ok p) let pts_to_sl #a r p v = hp_of (pts_to' r p v) let abcd_acbd (a b c d:slprop) : Lemma (Mem.(((a `star` b) `star` (c `star` d)) `equiv` ((a `star` c) `star` (b `star` d)))) = let open Steel.Memory in calc (equiv) { ((a `star` b) `star` (c `star` d)); (equiv) { star_associative a b (c `star` d) } ((a `star` (b `star` (c `star` d)))); (equiv) { star_associative b c d; star_congruence a (b `star` (c `star` d)) a ((b `star` c) `star` d) } (a `star` ((b `star` c) `star` d)); (equiv) { star_commutative b c; star_congruence (b `star` c) d (c `star` b) d; star_congruence a ((b `star` c) `star` d) a ((c `star` b) `star` d) } (a `star` ((c `star` b) `star` d)); (equiv) { star_associative c b d; star_congruence a ((c `star` b) `star` d) a (c `star` (b `star` d)) } (a `star` (c `star` (b `star` d))); (equiv) { star_associative a c (b `star` d) } ((a `star` c) `star` (b `star` d)); } let pts_to_ref_injective (#a: Type u#1) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let open Steel.Memory in abcd_acbd (hp_of (pts_to_raw r p0 v0)) (pure (perm_ok p0)) (hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p1)); Mem.affine_star (hp_of (pts_to_raw r p0 v0) `star` hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p0) `star` pure (perm_ok p1)) m; Mem.pts_to_compatible r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) m let pts_to_not_null (#a:Type u#1) (r:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures r =!= null) = Mem.affine_star (hp_of (pts_to_raw r p v)) (Mem.pure (perm_ok p)) m; Mem.pts_to_not_null r (Some (Ghost.reveal v, p)) m let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : erased a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = Mem.pts_to_join r (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let higher_ref_pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let pts_to_framon (#a:Type) (r:ref a) (p:perm) : Lemma (is_frame_monotonic (pts_to_sl r p)) = pts_to_witinv r p let intro_pts_to (p:perm) #a #uses (#v:erased a) (r:ref a) : SteelGhost unit uses (pts_to_raw r p v) (fun _ -> pts_to r p v) (requires fun _ -> perm_ok p) (ensures fun _ _ _ -> True) = intro_pure (perm_ok p); rewrite_slprop (pts_to' r p v) (pts_to r p v) (fun _ -> ()) let alloc #a x = let v = Some (x, full_perm) in assert (FStar.PCM.composable pcm_frac v None); assert (compatible pcm_frac v v); let r = RP.alloc v in rewrite_slprop (RP.pts_to r v) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m ); extract_info_raw (pts_to r full_perm x) (~ (is_null r)) (fun m -> pts_to_not_null r full_perm x m); return r let read (#a:Type) (#p:perm) (#v:erased a) (r:ref a) = let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ()); elim_pure (perm_ok p); let v2 = RP.read r v1 in rewrite_slprop (RP.pts_to r v1) (pts_to r p v) (fun m -> emp_unit (hp_of (pts_to_raw r p v)); pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m); assert (compatible pcm_frac v1 v2); let Some (x, _) = v2 in rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ()); return x let atomic_read (#opened:_) (#a:Type) (#p:perm) (#v:erased a) (r:ref a) = let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ()); elim_pure (perm_ok p); let v2 = RP.atomic_read r v1 in rewrite_slprop (RP.pts_to r v1) (pts_to r p v) (fun m -> emp_unit (hp_of (pts_to_raw r p v)); pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m); assert (compatible pcm_frac v1 v2); let Some (x, _) = v2 in rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ()); return x let read_refine (#a:Type) (#p:perm) (q:a -> vprop) (r:ref a) : SteelT a (h_exists (fun (v:a) -> pts_to r p v `star` q v)) (fun v -> pts_to r p v `star` q v) = let vs:erased a = witness_exists () in rewrite_slprop (pts_to r p (Ghost.hide (Ghost.reveal vs))) (pts_to r p vs) (fun _ -> ()); let v = read r in rewrite_slprop (q vs) (q v) (fun _ -> ()); return v let write (#a:Type) (#v:erased a) (r:ref a) (x:a) : SteelT unit (pts_to r full_perm v) (fun _ -> pts_to r full_perm x) = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in let v_new : fractional a = Some (x, full_perm) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.write r v_old v_new; rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m) let atomic_write #opened #a #v r x = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in let v_new : fractional a = Some (x, full_perm) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.atomic_write r v_old v_new; rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m) let free (#a:Type) (#v:erased a) (r:ref a) : SteelT unit (pts_to r full_perm v) (fun _ -> emp) = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.free r v_old; drop (RP.pts_to r (Mkpcm'?.one (Mkpcm?.p pcm_frac))) let share_atomic_raw #a #uses (#p:perm) (r:ref a{perm_ok p}) (v0:erased a) : SteelGhostT unit uses (pts_to_raw r p v0)
false
false
Steel.HigherReference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val share_atomic_raw (#a #uses: _) (#p: perm) (r: ref a {perm_ok p}) (v0: erased a) : SteelGhostT unit uses (pts_to_raw r p v0) (fun _ -> (pts_to_raw r (half_perm p) v0) `star` (pts_to_raw r (half_perm p) v0))
[]
Steel.HigherReference.share_atomic_raw
{ "file_name": "lib/steel/Steel.HigherReference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.HigherReference.ref a {Steel.HigherReference.perm_ok p} -> v0: FStar.Ghost.erased a -> Steel.Effect.Atomic.SteelGhostT Prims.unit
{ "end_col": 19, "end_line": 232, "start_col": 4, "start_line": 220 }
Steel.Effect.SteelT
val free (#a:Type) (#v:erased a) (r:ref a) : SteelT unit (pts_to r full_perm v) (fun _ -> emp)
[ { "abbrev": true, "full_module": "Steel.PCMReference", "short_module": "RP" }, { "abbrev": false, "full_module": "FStar.Real", "short_module": null }, { "abbrev": false, "full_module": "Steel.PCMFrac", "short_module": null }, { "abbrev": false, "full_module": "FStar.PCM", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let free (#a:Type) (#v:erased a) (r:ref a) : SteelT unit (pts_to r full_perm v) (fun _ -> emp) = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.free r v_old; drop (RP.pts_to r (Mkpcm'?.one (Mkpcm?.p pcm_frac)))
val free (#a:Type) (#v:erased a) (r:ref a) : SteelT unit (pts_to r full_perm v) (fun _ -> emp) let free (#a: Type) (#v: erased a) (r: ref a) : SteelT unit (pts_to r full_perm v) (fun _ -> emp) =
true
null
false
let v_old:erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in rewrite_slprop (pts_to r full_perm v) ((RP.pts_to r v_old) `star` (pure (perm_ok full_perm))) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.free r v_old; drop (RP.pts_to r (Mkpcm'?.one (Mkpcm?.p pcm_frac)))
{ "checked_file": "Steel.HigherReference.fst.checked", "dependencies": [ "Steel.PCMReference.fsti.checked", "Steel.PCMFrac.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Real.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.PCM.fst.checked", "FStar.NMSTTotal.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Steel.HigherReference.fst" }
[]
[ "FStar.Ghost.erased", "Steel.HigherReference.ref", "Steel.Effect.Atomic.drop", "FStar.Ghost.hide", "FStar.Set.set", "Steel.Memory.iname", "FStar.Set.empty", "Steel.PCMReference.pts_to", "Steel.PCMFrac.fractional", "Steel.PCMFrac.pcm_frac", "FStar.PCM.__proj__Mkpcm'__item__one", "FStar.PCM.__proj__Mkpcm__item__p", "Prims.unit", "Steel.PCMReference.free", "Steel.Effect.Atomic.elim_pure", "Steel.HigherReference.perm_ok", "Steel.FractionalPermission.full_perm", "Steel.Effect.Atomic.rewrite_slprop", "Steel.HigherReference.pts_to", "FStar.Ghost.reveal", "Steel.Effect.Common.star", "Steel.Effect.Common.pure", "Steel.Memory.mem", "FStar.Pervasives.Native.Some", "FStar.Pervasives.Native.tuple2", "Steel.FractionalPermission.perm", "FStar.Pervasives.Native.Mktuple2", "Steel.Effect.Common.emp", "Steel.Effect.Common.vprop" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.HigherReference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect open FStar.PCM open Steel.PCMFrac open FStar.Real module RP = Steel.PCMReference #set-options "--ide_id_info_off" module Mem = Steel.Memory let ref a = Mem.ref (fractional a) pcm_frac let null #a = Mem.null #(fractional a) #pcm_frac let is_null #a r = Mem.is_null #(fractional a) #pcm_frac r let perm_ok p : prop = (p.v <=. one == true) /\ True let pts_to_raw_sl (#a:Type) (r:ref a) (p:perm) (v:erased a) : slprop = Mem.pts_to r (Some (Ghost.reveal v, p)) let pts_to_raw (#a:Type) (r:ref a) (p:perm) (v:erased a) : vprop = to_vprop (Mem.pts_to r (Some (Ghost.reveal v, p))) [@@__reduce__] let pts_to' (#a:Type u#1) (r:ref a) (p:perm) (v:erased a) : vprop = pts_to_raw r p v `star` pure (perm_ok p) let pts_to_sl #a r p v = hp_of (pts_to' r p v) let abcd_acbd (a b c d:slprop) : Lemma (Mem.(((a `star` b) `star` (c `star` d)) `equiv` ((a `star` c) `star` (b `star` d)))) = let open Steel.Memory in calc (equiv) { ((a `star` b) `star` (c `star` d)); (equiv) { star_associative a b (c `star` d) } ((a `star` (b `star` (c `star` d)))); (equiv) { star_associative b c d; star_congruence a (b `star` (c `star` d)) a ((b `star` c) `star` d) } (a `star` ((b `star` c) `star` d)); (equiv) { star_commutative b c; star_congruence (b `star` c) d (c `star` b) d; star_congruence a ((b `star` c) `star` d) a ((c `star` b) `star` d) } (a `star` ((c `star` b) `star` d)); (equiv) { star_associative c b d; star_congruence a ((c `star` b) `star` d) a (c `star` (b `star` d)) } (a `star` (c `star` (b `star` d))); (equiv) { star_associative a c (b `star` d) } ((a `star` c) `star` (b `star` d)); } let pts_to_ref_injective (#a: Type u#1) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let open Steel.Memory in abcd_acbd (hp_of (pts_to_raw r p0 v0)) (pure (perm_ok p0)) (hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p1)); Mem.affine_star (hp_of (pts_to_raw r p0 v0) `star` hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p0) `star` pure (perm_ok p1)) m; Mem.pts_to_compatible r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) m let pts_to_not_null (#a:Type u#1) (r:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures r =!= null) = Mem.affine_star (hp_of (pts_to_raw r p v)) (Mem.pure (perm_ok p)) m; Mem.pts_to_not_null r (Some (Ghost.reveal v, p)) m let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : erased a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = Mem.pts_to_join r (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let higher_ref_pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let pts_to_framon (#a:Type) (r:ref a) (p:perm) : Lemma (is_frame_monotonic (pts_to_sl r p)) = pts_to_witinv r p let intro_pts_to (p:perm) #a #uses (#v:erased a) (r:ref a) : SteelGhost unit uses (pts_to_raw r p v) (fun _ -> pts_to r p v) (requires fun _ -> perm_ok p) (ensures fun _ _ _ -> True) = intro_pure (perm_ok p); rewrite_slprop (pts_to' r p v) (pts_to r p v) (fun _ -> ()) let alloc #a x = let v = Some (x, full_perm) in assert (FStar.PCM.composable pcm_frac v None); assert (compatible pcm_frac v v); let r = RP.alloc v in rewrite_slprop (RP.pts_to r v) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m ); extract_info_raw (pts_to r full_perm x) (~ (is_null r)) (fun m -> pts_to_not_null r full_perm x m); return r let read (#a:Type) (#p:perm) (#v:erased a) (r:ref a) = let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ()); elim_pure (perm_ok p); let v2 = RP.read r v1 in rewrite_slprop (RP.pts_to r v1) (pts_to r p v) (fun m -> emp_unit (hp_of (pts_to_raw r p v)); pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m); assert (compatible pcm_frac v1 v2); let Some (x, _) = v2 in rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ()); return x let atomic_read (#opened:_) (#a:Type) (#p:perm) (#v:erased a) (r:ref a) = let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ()); elim_pure (perm_ok p); let v2 = RP.atomic_read r v1 in rewrite_slprop (RP.pts_to r v1) (pts_to r p v) (fun m -> emp_unit (hp_of (pts_to_raw r p v)); pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m); assert (compatible pcm_frac v1 v2); let Some (x, _) = v2 in rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ()); return x let read_refine (#a:Type) (#p:perm) (q:a -> vprop) (r:ref a) : SteelT a (h_exists (fun (v:a) -> pts_to r p v `star` q v)) (fun v -> pts_to r p v `star` q v) = let vs:erased a = witness_exists () in rewrite_slprop (pts_to r p (Ghost.hide (Ghost.reveal vs))) (pts_to r p vs) (fun _ -> ()); let v = read r in rewrite_slprop (q vs) (q v) (fun _ -> ()); return v let write (#a:Type) (#v:erased a) (r:ref a) (x:a) : SteelT unit (pts_to r full_perm v) (fun _ -> pts_to r full_perm x) = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in let v_new : fractional a = Some (x, full_perm) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.write r v_old v_new; rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m) let atomic_write #opened #a #v r x = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in let v_new : fractional a = Some (x, full_perm) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.atomic_write r v_old v_new; rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m) let free (#a:Type) (#v:erased a) (r:ref a)
false
false
Steel.HigherReference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val free (#a:Type) (#v:erased a) (r:ref a) : SteelT unit (pts_to r full_perm v) (fun _ -> emp)
[]
Steel.HigherReference.free
{ "file_name": "lib/steel/Steel.HigherReference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.HigherReference.ref a -> Steel.Effect.SteelT Prims.unit
{ "end_col": 56, "end_line": 214, "start_col": 3, "start_line": 207 }
Steel.Effect.SteelT
val write (#a:Type) (#v:erased a) (r:ref a) (x:a) : SteelT unit (pts_to r full_perm v) (fun _ -> pts_to r full_perm x)
[ { "abbrev": true, "full_module": "Steel.PCMReference", "short_module": "RP" }, { "abbrev": false, "full_module": "FStar.Real", "short_module": null }, { "abbrev": false, "full_module": "Steel.PCMFrac", "short_module": null }, { "abbrev": false, "full_module": "FStar.PCM", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let write (#a:Type) (#v:erased a) (r:ref a) (x:a) : SteelT unit (pts_to r full_perm v) (fun _ -> pts_to r full_perm x) = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in let v_new : fractional a = Some (x, full_perm) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.write r v_old v_new; rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m)
val write (#a:Type) (#v:erased a) (r:ref a) (x:a) : SteelT unit (pts_to r full_perm v) (fun _ -> pts_to r full_perm x) let write (#a: Type) (#v: erased a) (r: ref a) (x: a) : SteelT unit (pts_to r full_perm v) (fun _ -> pts_to r full_perm x) =
true
null
false
let v_old:erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in let v_new:fractional a = Some (x, full_perm) in rewrite_slprop (pts_to r full_perm v) ((RP.pts_to r v_old) `star` (pure (perm_ok full_perm))) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.write r v_old v_new; rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m)
{ "checked_file": "Steel.HigherReference.fst.checked", "dependencies": [ "Steel.PCMReference.fsti.checked", "Steel.PCMFrac.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Real.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.PCM.fst.checked", "FStar.NMSTTotal.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Steel.HigherReference.fst" }
[]
[ "FStar.Ghost.erased", "Steel.HigherReference.ref", "Steel.Effect.Atomic.rewrite_slprop", "FStar.Ghost.hide", "FStar.Set.set", "Steel.Memory.iname", "FStar.Set.empty", "Steel.PCMReference.pts_to", "Steel.PCMFrac.fractional", "Steel.PCMFrac.pcm_frac", "Steel.HigherReference.pts_to", "Steel.FractionalPermission.full_perm", "Steel.Memory.mem", "Steel.Memory.pure_star_interp", "Steel.Effect.Common.hp_of", "Steel.HigherReference.pts_to_raw", "Steel.HigherReference.perm_ok", "Prims.unit", "Steel.Memory.emp_unit", "Steel.PCMReference.write", "Steel.Effect.Atomic.elim_pure", "FStar.Ghost.reveal", "Steel.Effect.Common.star", "Steel.Effect.Common.pure", "FStar.Pervasives.Native.Some", "FStar.Pervasives.Native.tuple2", "Steel.FractionalPermission.perm", "FStar.Pervasives.Native.Mktuple2", "Steel.Effect.Common.vprop" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.HigherReference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect open FStar.PCM open Steel.PCMFrac open FStar.Real module RP = Steel.PCMReference #set-options "--ide_id_info_off" module Mem = Steel.Memory let ref a = Mem.ref (fractional a) pcm_frac let null #a = Mem.null #(fractional a) #pcm_frac let is_null #a r = Mem.is_null #(fractional a) #pcm_frac r let perm_ok p : prop = (p.v <=. one == true) /\ True let pts_to_raw_sl (#a:Type) (r:ref a) (p:perm) (v:erased a) : slprop = Mem.pts_to r (Some (Ghost.reveal v, p)) let pts_to_raw (#a:Type) (r:ref a) (p:perm) (v:erased a) : vprop = to_vprop (Mem.pts_to r (Some (Ghost.reveal v, p))) [@@__reduce__] let pts_to' (#a:Type u#1) (r:ref a) (p:perm) (v:erased a) : vprop = pts_to_raw r p v `star` pure (perm_ok p) let pts_to_sl #a r p v = hp_of (pts_to' r p v) let abcd_acbd (a b c d:slprop) : Lemma (Mem.(((a `star` b) `star` (c `star` d)) `equiv` ((a `star` c) `star` (b `star` d)))) = let open Steel.Memory in calc (equiv) { ((a `star` b) `star` (c `star` d)); (equiv) { star_associative a b (c `star` d) } ((a `star` (b `star` (c `star` d)))); (equiv) { star_associative b c d; star_congruence a (b `star` (c `star` d)) a ((b `star` c) `star` d) } (a `star` ((b `star` c) `star` d)); (equiv) { star_commutative b c; star_congruence (b `star` c) d (c `star` b) d; star_congruence a ((b `star` c) `star` d) a ((c `star` b) `star` d) } (a `star` ((c `star` b) `star` d)); (equiv) { star_associative c b d; star_congruence a ((c `star` b) `star` d) a (c `star` (b `star` d)) } (a `star` (c `star` (b `star` d))); (equiv) { star_associative a c (b `star` d) } ((a `star` c) `star` (b `star` d)); } let pts_to_ref_injective (#a: Type u#1) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let open Steel.Memory in abcd_acbd (hp_of (pts_to_raw r p0 v0)) (pure (perm_ok p0)) (hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p1)); Mem.affine_star (hp_of (pts_to_raw r p0 v0) `star` hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p0) `star` pure (perm_ok p1)) m; Mem.pts_to_compatible r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) m let pts_to_not_null (#a:Type u#1) (r:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures r =!= null) = Mem.affine_star (hp_of (pts_to_raw r p v)) (Mem.pure (perm_ok p)) m; Mem.pts_to_not_null r (Some (Ghost.reveal v, p)) m let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : erased a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = Mem.pts_to_join r (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let higher_ref_pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let pts_to_framon (#a:Type) (r:ref a) (p:perm) : Lemma (is_frame_monotonic (pts_to_sl r p)) = pts_to_witinv r p let intro_pts_to (p:perm) #a #uses (#v:erased a) (r:ref a) : SteelGhost unit uses (pts_to_raw r p v) (fun _ -> pts_to r p v) (requires fun _ -> perm_ok p) (ensures fun _ _ _ -> True) = intro_pure (perm_ok p); rewrite_slprop (pts_to' r p v) (pts_to r p v) (fun _ -> ()) let alloc #a x = let v = Some (x, full_perm) in assert (FStar.PCM.composable pcm_frac v None); assert (compatible pcm_frac v v); let r = RP.alloc v in rewrite_slprop (RP.pts_to r v) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m ); extract_info_raw (pts_to r full_perm x) (~ (is_null r)) (fun m -> pts_to_not_null r full_perm x m); return r let read (#a:Type) (#p:perm) (#v:erased a) (r:ref a) = let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ()); elim_pure (perm_ok p); let v2 = RP.read r v1 in rewrite_slprop (RP.pts_to r v1) (pts_to r p v) (fun m -> emp_unit (hp_of (pts_to_raw r p v)); pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m); assert (compatible pcm_frac v1 v2); let Some (x, _) = v2 in rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ()); return x let atomic_read (#opened:_) (#a:Type) (#p:perm) (#v:erased a) (r:ref a) = let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ()); elim_pure (perm_ok p); let v2 = RP.atomic_read r v1 in rewrite_slprop (RP.pts_to r v1) (pts_to r p v) (fun m -> emp_unit (hp_of (pts_to_raw r p v)); pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m); assert (compatible pcm_frac v1 v2); let Some (x, _) = v2 in rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ()); return x let read_refine (#a:Type) (#p:perm) (q:a -> vprop) (r:ref a) : SteelT a (h_exists (fun (v:a) -> pts_to r p v `star` q v)) (fun v -> pts_to r p v `star` q v) = let vs:erased a = witness_exists () in rewrite_slprop (pts_to r p (Ghost.hide (Ghost.reveal vs))) (pts_to r p vs) (fun _ -> ()); let v = read r in rewrite_slprop (q vs) (q v) (fun _ -> ()); return v let write (#a:Type) (#v:erased a) (r:ref a) (x:a)
false
false
Steel.HigherReference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val write (#a:Type) (#v:erased a) (r:ref a) (x:a) : SteelT unit (pts_to r full_perm v) (fun _ -> pts_to r full_perm x)
[]
Steel.HigherReference.write
{ "file_name": "lib/steel/Steel.HigherReference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.HigherReference.ref a -> x: a -> Steel.Effect.SteelT Prims.unit
{ "end_col": 84, "end_line": 191, "start_col": 3, "start_line": 182 }
Steel.Effect.Atomic.SteelGhostT
val share (#a:Type) (#uses:_) (#p:perm) (#v:erased a) (r:ref a) : SteelGhostT unit uses (pts_to r p v) (fun _ -> pts_to r (half_perm p) v `star` pts_to r (half_perm p) v)
[ { "abbrev": true, "full_module": "Steel.PCMReference", "short_module": "RP" }, { "abbrev": false, "full_module": "FStar.Real", "short_module": null }, { "abbrev": false, "full_module": "Steel.PCMFrac", "short_module": null }, { "abbrev": false, "full_module": "FStar.PCM", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let share (#a:Type) #uses (#p:perm) (#v:erased a) (r:ref a) : SteelGhostT unit uses (pts_to r p v) (fun _ -> pts_to r (half_perm p) v `star` pts_to r (half_perm p) v) = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (pts_to' r p v) (fun _ -> ()); elim_pure (perm_ok p); share_atomic_raw r v; intro_pts_to (half_perm p) r; intro_pts_to (half_perm p) r
val share (#a:Type) (#uses:_) (#p:perm) (#v:erased a) (r:ref a) : SteelGhostT unit uses (pts_to r p v) (fun _ -> pts_to r (half_perm p) v `star` pts_to r (half_perm p) v) let share (#a: Type) #uses (#p: perm) (#v: erased a) (r: ref a) : SteelGhostT unit uses (pts_to r p v) (fun _ -> (pts_to r (half_perm p) v) `star` (pts_to r (half_perm p) v)) =
true
null
false
let v_old:erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (pts_to' r p v) (fun _ -> ()); elim_pure (perm_ok p); share_atomic_raw r v; intro_pts_to (half_perm p) r; intro_pts_to (half_perm p) r
{ "checked_file": "Steel.HigherReference.fst.checked", "dependencies": [ "Steel.PCMReference.fsti.checked", "Steel.PCMFrac.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Real.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.PCM.fst.checked", "FStar.NMSTTotal.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Steel.HigherReference.fst" }
[]
[ "Steel.Memory.inames", "Steel.FractionalPermission.perm", "FStar.Ghost.erased", "Steel.HigherReference.ref", "Steel.HigherReference.intro_pts_to", "Steel.FractionalPermission.half_perm", "Prims.unit", "Steel.HigherReference.share_atomic_raw", "Steel.Effect.Atomic.elim_pure", "Steel.HigherReference.perm_ok", "Steel.Effect.Atomic.rewrite_slprop", "Steel.HigherReference.pts_to", "FStar.Ghost.reveal", "Steel.HigherReference.pts_to'", "Steel.Memory.mem", "Steel.PCMFrac.fractional", "FStar.Ghost.hide", "FStar.Pervasives.Native.Some", "FStar.Pervasives.Native.tuple2", "FStar.Pervasives.Native.Mktuple2", "Steel.Effect.Common.star", "Steel.Effect.Common.vprop" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.HigherReference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect open FStar.PCM open Steel.PCMFrac open FStar.Real module RP = Steel.PCMReference #set-options "--ide_id_info_off" module Mem = Steel.Memory let ref a = Mem.ref (fractional a) pcm_frac let null #a = Mem.null #(fractional a) #pcm_frac let is_null #a r = Mem.is_null #(fractional a) #pcm_frac r let perm_ok p : prop = (p.v <=. one == true) /\ True let pts_to_raw_sl (#a:Type) (r:ref a) (p:perm) (v:erased a) : slprop = Mem.pts_to r (Some (Ghost.reveal v, p)) let pts_to_raw (#a:Type) (r:ref a) (p:perm) (v:erased a) : vprop = to_vprop (Mem.pts_to r (Some (Ghost.reveal v, p))) [@@__reduce__] let pts_to' (#a:Type u#1) (r:ref a) (p:perm) (v:erased a) : vprop = pts_to_raw r p v `star` pure (perm_ok p) let pts_to_sl #a r p v = hp_of (pts_to' r p v) let abcd_acbd (a b c d:slprop) : Lemma (Mem.(((a `star` b) `star` (c `star` d)) `equiv` ((a `star` c) `star` (b `star` d)))) = let open Steel.Memory in calc (equiv) { ((a `star` b) `star` (c `star` d)); (equiv) { star_associative a b (c `star` d) } ((a `star` (b `star` (c `star` d)))); (equiv) { star_associative b c d; star_congruence a (b `star` (c `star` d)) a ((b `star` c) `star` d) } (a `star` ((b `star` c) `star` d)); (equiv) { star_commutative b c; star_congruence (b `star` c) d (c `star` b) d; star_congruence a ((b `star` c) `star` d) a ((c `star` b) `star` d) } (a `star` ((c `star` b) `star` d)); (equiv) { star_associative c b d; star_congruence a ((c `star` b) `star` d) a (c `star` (b `star` d)) } (a `star` (c `star` (b `star` d))); (equiv) { star_associative a c (b `star` d) } ((a `star` c) `star` (b `star` d)); } let pts_to_ref_injective (#a: Type u#1) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let open Steel.Memory in abcd_acbd (hp_of (pts_to_raw r p0 v0)) (pure (perm_ok p0)) (hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p1)); Mem.affine_star (hp_of (pts_to_raw r p0 v0) `star` hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p0) `star` pure (perm_ok p1)) m; Mem.pts_to_compatible r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) m let pts_to_not_null (#a:Type u#1) (r:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures r =!= null) = Mem.affine_star (hp_of (pts_to_raw r p v)) (Mem.pure (perm_ok p)) m; Mem.pts_to_not_null r (Some (Ghost.reveal v, p)) m let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : erased a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = Mem.pts_to_join r (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let higher_ref_pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let pts_to_framon (#a:Type) (r:ref a) (p:perm) : Lemma (is_frame_monotonic (pts_to_sl r p)) = pts_to_witinv r p let intro_pts_to (p:perm) #a #uses (#v:erased a) (r:ref a) : SteelGhost unit uses (pts_to_raw r p v) (fun _ -> pts_to r p v) (requires fun _ -> perm_ok p) (ensures fun _ _ _ -> True) = intro_pure (perm_ok p); rewrite_slprop (pts_to' r p v) (pts_to r p v) (fun _ -> ()) let alloc #a x = let v = Some (x, full_perm) in assert (FStar.PCM.composable pcm_frac v None); assert (compatible pcm_frac v v); let r = RP.alloc v in rewrite_slprop (RP.pts_to r v) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m ); extract_info_raw (pts_to r full_perm x) (~ (is_null r)) (fun m -> pts_to_not_null r full_perm x m); return r let read (#a:Type) (#p:perm) (#v:erased a) (r:ref a) = let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ()); elim_pure (perm_ok p); let v2 = RP.read r v1 in rewrite_slprop (RP.pts_to r v1) (pts_to r p v) (fun m -> emp_unit (hp_of (pts_to_raw r p v)); pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m); assert (compatible pcm_frac v1 v2); let Some (x, _) = v2 in rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ()); return x let atomic_read (#opened:_) (#a:Type) (#p:perm) (#v:erased a) (r:ref a) = let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ()); elim_pure (perm_ok p); let v2 = RP.atomic_read r v1 in rewrite_slprop (RP.pts_to r v1) (pts_to r p v) (fun m -> emp_unit (hp_of (pts_to_raw r p v)); pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m); assert (compatible pcm_frac v1 v2); let Some (x, _) = v2 in rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ()); return x let read_refine (#a:Type) (#p:perm) (q:a -> vprop) (r:ref a) : SteelT a (h_exists (fun (v:a) -> pts_to r p v `star` q v)) (fun v -> pts_to r p v `star` q v) = let vs:erased a = witness_exists () in rewrite_slprop (pts_to r p (Ghost.hide (Ghost.reveal vs))) (pts_to r p vs) (fun _ -> ()); let v = read r in rewrite_slprop (q vs) (q v) (fun _ -> ()); return v let write (#a:Type) (#v:erased a) (r:ref a) (x:a) : SteelT unit (pts_to r full_perm v) (fun _ -> pts_to r full_perm x) = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in let v_new : fractional a = Some (x, full_perm) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.write r v_old v_new; rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m) let atomic_write #opened #a #v r x = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in let v_new : fractional a = Some (x, full_perm) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.atomic_write r v_old v_new; rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m) let free (#a:Type) (#v:erased a) (r:ref a) : SteelT unit (pts_to r full_perm v) (fun _ -> emp) = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.free r v_old; drop (RP.pts_to r (Mkpcm'?.one (Mkpcm?.p pcm_frac))) let share_atomic_raw #a #uses (#p:perm) (r:ref a{perm_ok p}) (v0:erased a) : SteelGhostT unit uses (pts_to_raw r p v0) (fun _ -> pts_to_raw r (half_perm p) v0 `star` pts_to_raw r (half_perm p) v0) = rewrite_slprop (pts_to_raw r p v0) (RP.pts_to r _) (fun _ -> ()); RP.split r (Some (Ghost.reveal v0, p)) (Some (Ghost.reveal v0, half_perm p)) (Some (Ghost.reveal v0, half_perm p)); rewrite_slprop (RP.pts_to r _) (pts_to_raw r (half_perm p) v0) (fun _ -> ()); rewrite_slprop (RP.pts_to r _) (pts_to_raw r (half_perm p) v0) (fun _ -> ()) let share (#a:Type) #uses (#p:perm) (#v:erased a) (r:ref a) : SteelGhostT unit uses (pts_to r p v)
false
false
Steel.HigherReference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val share (#a:Type) (#uses:_) (#p:perm) (#v:erased a) (r:ref a) : SteelGhostT unit uses (pts_to r p v) (fun _ -> pts_to r (half_perm p) v `star` pts_to r (half_perm p) v)
[]
Steel.HigherReference.share
{ "file_name": "lib/steel/Steel.HigherReference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.HigherReference.ref a -> Steel.Effect.Atomic.SteelGhostT Prims.unit
{ "end_col": 32, "end_line": 246, "start_col": 3, "start_line": 238 }
Steel.Effect.Atomic.SteelGhost
val gather (#a:Type) (#uses:_) (#p0:perm) (#p1:perm) (#v0 #v1:erased a) (r:ref a) : SteelGhost unit uses (pts_to r p0 v0 `star` pts_to r p1 v1) (fun _ -> pts_to r (sum_perm p0 p1) v0) (requires fun _ -> True) (ensures fun _ _ _ -> v0 == v1)
[ { "abbrev": true, "full_module": "Steel.PCMReference", "short_module": "RP" }, { "abbrev": false, "full_module": "FStar.Real", "short_module": null }, { "abbrev": false, "full_module": "Steel.PCMFrac", "short_module": null }, { "abbrev": false, "full_module": "FStar.PCM", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let gather (#a:Type) (#uses:_) (#p0:perm) (#p1:perm) (#v0 #v1:erased a) (r:ref a) = let v0_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v0, p0)) in let v1_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v1, p1)) in rewrite_slprop (pts_to r p0 v0) (pts_to_raw r p0 v0 `star` pure (perm_ok p0)) (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (pts_to_raw r p1 v1 `star` pure (perm_ok p1)) (fun _ -> ()); elim_pure (perm_ok p0); elim_pure (perm_ok p1); let _ = gather_atomic_raw r v0 v1 in intro_pts_to (sum_perm p0 p1) r
val gather (#a:Type) (#uses:_) (#p0:perm) (#p1:perm) (#v0 #v1:erased a) (r:ref a) : SteelGhost unit uses (pts_to r p0 v0 `star` pts_to r p1 v1) (fun _ -> pts_to r (sum_perm p0 p1) v0) (requires fun _ -> True) (ensures fun _ _ _ -> v0 == v1) let gather (#a: Type) (#uses: _) (#p0 #p1: perm) (#v0 #v1: erased a) (r: ref a) =
true
null
false
let v0_old:erased (fractional a) = Ghost.hide (Some (Ghost.reveal v0, p0)) in let v1_old:erased (fractional a) = Ghost.hide (Some (Ghost.reveal v1, p1)) in rewrite_slprop (pts_to r p0 v0) ((pts_to_raw r p0 v0) `star` (pure (perm_ok p0))) (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) ((pts_to_raw r p1 v1) `star` (pure (perm_ok p1))) (fun _ -> ()); elim_pure (perm_ok p0); elim_pure (perm_ok p1); let _ = gather_atomic_raw r v0 v1 in intro_pts_to (sum_perm p0 p1) r
{ "checked_file": "Steel.HigherReference.fst.checked", "dependencies": [ "Steel.PCMReference.fsti.checked", "Steel.PCMFrac.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Real.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.PCM.fst.checked", "FStar.NMSTTotal.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Steel.HigherReference.fst" }
[]
[ "Steel.Memory.inames", "Steel.FractionalPermission.perm", "FStar.Ghost.erased", "Steel.HigherReference.ref", "Steel.HigherReference.intro_pts_to", "Steel.FractionalPermission.sum_perm", "Prims.unit", "Prims.l_and", "Prims.eq2", "Steel.HigherReference.perm_ok", "Steel.HigherReference.gather_atomic_raw", "Steel.Effect.Atomic.elim_pure", "Steel.Effect.Atomic.rewrite_slprop", "Steel.HigherReference.pts_to", "FStar.Ghost.reveal", "Steel.Effect.Common.star", "Steel.HigherReference.pts_to_raw", "Steel.Effect.Common.pure", "Steel.Memory.mem", "Steel.PCMFrac.fractional", "FStar.Ghost.hide", "FStar.Pervasives.Native.Some", "FStar.Pervasives.Native.tuple2", "FStar.Pervasives.Native.Mktuple2" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.HigherReference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect open FStar.PCM open Steel.PCMFrac open FStar.Real module RP = Steel.PCMReference #set-options "--ide_id_info_off" module Mem = Steel.Memory let ref a = Mem.ref (fractional a) pcm_frac let null #a = Mem.null #(fractional a) #pcm_frac let is_null #a r = Mem.is_null #(fractional a) #pcm_frac r let perm_ok p : prop = (p.v <=. one == true) /\ True let pts_to_raw_sl (#a:Type) (r:ref a) (p:perm) (v:erased a) : slprop = Mem.pts_to r (Some (Ghost.reveal v, p)) let pts_to_raw (#a:Type) (r:ref a) (p:perm) (v:erased a) : vprop = to_vprop (Mem.pts_to r (Some (Ghost.reveal v, p))) [@@__reduce__] let pts_to' (#a:Type u#1) (r:ref a) (p:perm) (v:erased a) : vprop = pts_to_raw r p v `star` pure (perm_ok p) let pts_to_sl #a r p v = hp_of (pts_to' r p v) let abcd_acbd (a b c d:slprop) : Lemma (Mem.(((a `star` b) `star` (c `star` d)) `equiv` ((a `star` c) `star` (b `star` d)))) = let open Steel.Memory in calc (equiv) { ((a `star` b) `star` (c `star` d)); (equiv) { star_associative a b (c `star` d) } ((a `star` (b `star` (c `star` d)))); (equiv) { star_associative b c d; star_congruence a (b `star` (c `star` d)) a ((b `star` c) `star` d) } (a `star` ((b `star` c) `star` d)); (equiv) { star_commutative b c; star_congruence (b `star` c) d (c `star` b) d; star_congruence a ((b `star` c) `star` d) a ((c `star` b) `star` d) } (a `star` ((c `star` b) `star` d)); (equiv) { star_associative c b d; star_congruence a ((c `star` b) `star` d) a (c `star` (b `star` d)) } (a `star` (c `star` (b `star` d))); (equiv) { star_associative a c (b `star` d) } ((a `star` c) `star` (b `star` d)); } let pts_to_ref_injective (#a: Type u#1) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let open Steel.Memory in abcd_acbd (hp_of (pts_to_raw r p0 v0)) (pure (perm_ok p0)) (hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p1)); Mem.affine_star (hp_of (pts_to_raw r p0 v0) `star` hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p0) `star` pure (perm_ok p1)) m; Mem.pts_to_compatible r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) m let pts_to_not_null (#a:Type u#1) (r:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures r =!= null) = Mem.affine_star (hp_of (pts_to_raw r p v)) (Mem.pure (perm_ok p)) m; Mem.pts_to_not_null r (Some (Ghost.reveal v, p)) m let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : erased a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = Mem.pts_to_join r (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let higher_ref_pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let pts_to_framon (#a:Type) (r:ref a) (p:perm) : Lemma (is_frame_monotonic (pts_to_sl r p)) = pts_to_witinv r p let intro_pts_to (p:perm) #a #uses (#v:erased a) (r:ref a) : SteelGhost unit uses (pts_to_raw r p v) (fun _ -> pts_to r p v) (requires fun _ -> perm_ok p) (ensures fun _ _ _ -> True) = intro_pure (perm_ok p); rewrite_slprop (pts_to' r p v) (pts_to r p v) (fun _ -> ()) let alloc #a x = let v = Some (x, full_perm) in assert (FStar.PCM.composable pcm_frac v None); assert (compatible pcm_frac v v); let r = RP.alloc v in rewrite_slprop (RP.pts_to r v) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m ); extract_info_raw (pts_to r full_perm x) (~ (is_null r)) (fun m -> pts_to_not_null r full_perm x m); return r let read (#a:Type) (#p:perm) (#v:erased a) (r:ref a) = let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ()); elim_pure (perm_ok p); let v2 = RP.read r v1 in rewrite_slprop (RP.pts_to r v1) (pts_to r p v) (fun m -> emp_unit (hp_of (pts_to_raw r p v)); pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m); assert (compatible pcm_frac v1 v2); let Some (x, _) = v2 in rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ()); return x let atomic_read (#opened:_) (#a:Type) (#p:perm) (#v:erased a) (r:ref a) = let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ()); elim_pure (perm_ok p); let v2 = RP.atomic_read r v1 in rewrite_slprop (RP.pts_to r v1) (pts_to r p v) (fun m -> emp_unit (hp_of (pts_to_raw r p v)); pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m); assert (compatible pcm_frac v1 v2); let Some (x, _) = v2 in rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ()); return x let read_refine (#a:Type) (#p:perm) (q:a -> vprop) (r:ref a) : SteelT a (h_exists (fun (v:a) -> pts_to r p v `star` q v)) (fun v -> pts_to r p v `star` q v) = let vs:erased a = witness_exists () in rewrite_slprop (pts_to r p (Ghost.hide (Ghost.reveal vs))) (pts_to r p vs) (fun _ -> ()); let v = read r in rewrite_slprop (q vs) (q v) (fun _ -> ()); return v let write (#a:Type) (#v:erased a) (r:ref a) (x:a) : SteelT unit (pts_to r full_perm v) (fun _ -> pts_to r full_perm x) = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in let v_new : fractional a = Some (x, full_perm) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.write r v_old v_new; rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m) let atomic_write #opened #a #v r x = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in let v_new : fractional a = Some (x, full_perm) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.atomic_write r v_old v_new; rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m) let free (#a:Type) (#v:erased a) (r:ref a) : SteelT unit (pts_to r full_perm v) (fun _ -> emp) = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.free r v_old; drop (RP.pts_to r (Mkpcm'?.one (Mkpcm?.p pcm_frac))) let share_atomic_raw #a #uses (#p:perm) (r:ref a{perm_ok p}) (v0:erased a) : SteelGhostT unit uses (pts_to_raw r p v0) (fun _ -> pts_to_raw r (half_perm p) v0 `star` pts_to_raw r (half_perm p) v0) = rewrite_slprop (pts_to_raw r p v0) (RP.pts_to r _) (fun _ -> ()); RP.split r (Some (Ghost.reveal v0, p)) (Some (Ghost.reveal v0, half_perm p)) (Some (Ghost.reveal v0, half_perm p)); rewrite_slprop (RP.pts_to r _) (pts_to_raw r (half_perm p) v0) (fun _ -> ()); rewrite_slprop (RP.pts_to r _) (pts_to_raw r (half_perm p) v0) (fun _ -> ()) let share (#a:Type) #uses (#p:perm) (#v:erased a) (r:ref a) : SteelGhostT unit uses (pts_to r p v) (fun _ -> pts_to r (half_perm p) v `star` pts_to r (half_perm p) v) = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (pts_to' r p v) (fun _ -> ()); elim_pure (perm_ok p); share_atomic_raw r v; intro_pts_to (half_perm p) r; intro_pts_to (half_perm p) r let gather_atomic_raw (#a:Type) (#uses:_) (#p0 #p1:perm) (r:ref a) (v0:erased a) (v1:erased a) : SteelGhostT (_:unit{v0==v1 /\ perm_ok (sum_perm p0 p1)}) uses (pts_to_raw r p0 v0 `star` pts_to_raw r p1 v1) (fun _ -> pts_to_raw r (sum_perm p0 p1) v0) = rewrite_slprop (pts_to_raw r p0 v0) (RP.pts_to r (Ghost.reveal (Some (Ghost.reveal v0, p0)))) (fun _ -> ()); rewrite_slprop (pts_to_raw r p1 v1) (RP.pts_to r (Ghost.reveal (Some (Ghost.reveal v1, p1)))) (fun _ -> ()); let _ = RP.gather r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) in rewrite_slprop (RP.pts_to r _) (pts_to_raw r (sum_perm p0 p1) v0) (fun _ -> ())
false
false
Steel.HigherReference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val gather (#a:Type) (#uses:_) (#p0:perm) (#p1:perm) (#v0 #v1:erased a) (r:ref a) : SteelGhost unit uses (pts_to r p0 v0 `star` pts_to r p1 v1) (fun _ -> pts_to r (sum_perm p0 p1) v0) (requires fun _ -> True) (ensures fun _ _ _ -> v0 == v1)
[]
Steel.HigherReference.gather
{ "file_name": "lib/steel/Steel.HigherReference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.HigherReference.ref a -> Steel.Effect.Atomic.SteelGhost Prims.unit
{ "end_col": 35, "end_line": 281, "start_col": 3, "start_line": 268 }
Steel.Effect.SteelT
val read_refine (#a:Type) (#p:perm) (q:a -> vprop) (r:ref a) : SteelT a (h_exists (fun (v:a) -> pts_to r p v `star` q v)) (fun v -> pts_to r p v `star` q v)
[ { "abbrev": true, "full_module": "Steel.PCMReference", "short_module": "RP" }, { "abbrev": false, "full_module": "FStar.Real", "short_module": null }, { "abbrev": false, "full_module": "Steel.PCMFrac", "short_module": null }, { "abbrev": false, "full_module": "FStar.PCM", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let read_refine (#a:Type) (#p:perm) (q:a -> vprop) (r:ref a) : SteelT a (h_exists (fun (v:a) -> pts_to r p v `star` q v)) (fun v -> pts_to r p v `star` q v) = let vs:erased a = witness_exists () in rewrite_slprop (pts_to r p (Ghost.hide (Ghost.reveal vs))) (pts_to r p vs) (fun _ -> ()); let v = read r in rewrite_slprop (q vs) (q v) (fun _ -> ()); return v
val read_refine (#a:Type) (#p:perm) (q:a -> vprop) (r:ref a) : SteelT a (h_exists (fun (v:a) -> pts_to r p v `star` q v)) (fun v -> pts_to r p v `star` q v) let read_refine (#a: Type) (#p: perm) (q: (a -> vprop)) (r: ref a) : SteelT a (h_exists (fun (v: a) -> (pts_to r p v) `star` (q v))) (fun v -> (pts_to r p v) `star` (q v)) =
true
null
false
let vs:erased a = witness_exists () in rewrite_slprop (pts_to r p (Ghost.hide (Ghost.reveal vs))) (pts_to r p vs) (fun _ -> ()); let v = read r in rewrite_slprop (q vs) (q v) (fun _ -> ()); return v
{ "checked_file": "Steel.HigherReference.fst.checked", "dependencies": [ "Steel.PCMReference.fsti.checked", "Steel.PCMFrac.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Real.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.PCM.fst.checked", "FStar.NMSTTotal.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Steel.HigherReference.fst" }
[]
[ "Steel.FractionalPermission.perm", "Steel.Effect.Common.vprop", "Steel.HigherReference.ref", "Steel.Effect.Atomic.return", "FStar.Ghost.hide", "FStar.Set.set", "Steel.Memory.iname", "FStar.Set.empty", "Steel.Effect.Common.VStar", "Steel.HigherReference.pts_to", "Prims.unit", "Steel.Effect.Atomic.rewrite_slprop", "FStar.Ghost.reveal", "Steel.Memory.mem", "Steel.HigherReference.read", "FStar.Ghost.erased", "Steel.Effect.Atomic.witness_exists", "Steel.Effect.Atomic.h_exists", "Steel.Effect.Common.star" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.HigherReference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect open FStar.PCM open Steel.PCMFrac open FStar.Real module RP = Steel.PCMReference #set-options "--ide_id_info_off" module Mem = Steel.Memory let ref a = Mem.ref (fractional a) pcm_frac let null #a = Mem.null #(fractional a) #pcm_frac let is_null #a r = Mem.is_null #(fractional a) #pcm_frac r let perm_ok p : prop = (p.v <=. one == true) /\ True let pts_to_raw_sl (#a:Type) (r:ref a) (p:perm) (v:erased a) : slprop = Mem.pts_to r (Some (Ghost.reveal v, p)) let pts_to_raw (#a:Type) (r:ref a) (p:perm) (v:erased a) : vprop = to_vprop (Mem.pts_to r (Some (Ghost.reveal v, p))) [@@__reduce__] let pts_to' (#a:Type u#1) (r:ref a) (p:perm) (v:erased a) : vprop = pts_to_raw r p v `star` pure (perm_ok p) let pts_to_sl #a r p v = hp_of (pts_to' r p v) let abcd_acbd (a b c d:slprop) : Lemma (Mem.(((a `star` b) `star` (c `star` d)) `equiv` ((a `star` c) `star` (b `star` d)))) = let open Steel.Memory in calc (equiv) { ((a `star` b) `star` (c `star` d)); (equiv) { star_associative a b (c `star` d) } ((a `star` (b `star` (c `star` d)))); (equiv) { star_associative b c d; star_congruence a (b `star` (c `star` d)) a ((b `star` c) `star` d) } (a `star` ((b `star` c) `star` d)); (equiv) { star_commutative b c; star_congruence (b `star` c) d (c `star` b) d; star_congruence a ((b `star` c) `star` d) a ((c `star` b) `star` d) } (a `star` ((c `star` b) `star` d)); (equiv) { star_associative c b d; star_congruence a ((c `star` b) `star` d) a (c `star` (b `star` d)) } (a `star` (c `star` (b `star` d))); (equiv) { star_associative a c (b `star` d) } ((a `star` c) `star` (b `star` d)); } let pts_to_ref_injective (#a: Type u#1) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let open Steel.Memory in abcd_acbd (hp_of (pts_to_raw r p0 v0)) (pure (perm_ok p0)) (hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p1)); Mem.affine_star (hp_of (pts_to_raw r p0 v0) `star` hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p0) `star` pure (perm_ok p1)) m; Mem.pts_to_compatible r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) m let pts_to_not_null (#a:Type u#1) (r:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures r =!= null) = Mem.affine_star (hp_of (pts_to_raw r p v)) (Mem.pure (perm_ok p)) m; Mem.pts_to_not_null r (Some (Ghost.reveal v, p)) m let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : erased a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = Mem.pts_to_join r (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let higher_ref_pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let pts_to_framon (#a:Type) (r:ref a) (p:perm) : Lemma (is_frame_monotonic (pts_to_sl r p)) = pts_to_witinv r p let intro_pts_to (p:perm) #a #uses (#v:erased a) (r:ref a) : SteelGhost unit uses (pts_to_raw r p v) (fun _ -> pts_to r p v) (requires fun _ -> perm_ok p) (ensures fun _ _ _ -> True) = intro_pure (perm_ok p); rewrite_slprop (pts_to' r p v) (pts_to r p v) (fun _ -> ()) let alloc #a x = let v = Some (x, full_perm) in assert (FStar.PCM.composable pcm_frac v None); assert (compatible pcm_frac v v); let r = RP.alloc v in rewrite_slprop (RP.pts_to r v) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m ); extract_info_raw (pts_to r full_perm x) (~ (is_null r)) (fun m -> pts_to_not_null r full_perm x m); return r let read (#a:Type) (#p:perm) (#v:erased a) (r:ref a) = let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ()); elim_pure (perm_ok p); let v2 = RP.read r v1 in rewrite_slprop (RP.pts_to r v1) (pts_to r p v) (fun m -> emp_unit (hp_of (pts_to_raw r p v)); pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m); assert (compatible pcm_frac v1 v2); let Some (x, _) = v2 in rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ()); return x let atomic_read (#opened:_) (#a:Type) (#p:perm) (#v:erased a) (r:ref a) = let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ()); elim_pure (perm_ok p); let v2 = RP.atomic_read r v1 in rewrite_slprop (RP.pts_to r v1) (pts_to r p v) (fun m -> emp_unit (hp_of (pts_to_raw r p v)); pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m); assert (compatible pcm_frac v1 v2); let Some (x, _) = v2 in rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ()); return x let read_refine (#a:Type) (#p:perm) (q:a -> vprop) (r:ref a) : SteelT a (h_exists (fun (v:a) -> pts_to r p v `star` q v))
false
false
Steel.HigherReference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val read_refine (#a:Type) (#p:perm) (q:a -> vprop) (r:ref a) : SteelT a (h_exists (fun (v:a) -> pts_to r p v `star` q v)) (fun v -> pts_to r p v `star` q v)
[]
Steel.HigherReference.read_refine
{ "file_name": "lib/steel/Steel.HigherReference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
q: (_: a -> Steel.Effect.Common.vprop) -> r: Steel.HigherReference.ref a -> Steel.Effect.SteelT a
{ "end_col": 12, "end_line": 178, "start_col": 3, "start_line": 171 }
Steel.Effect.Atomic.SteelAtomic
val atomic_read (#opened:_) (#a:Type) (#p:perm) (#v:erased a) (r:ref a) : SteelAtomic a opened (pts_to r p v) (fun x -> pts_to r p x) (requires fun h -> True) (ensures fun _ x _ -> x == Ghost.reveal v)
[ { "abbrev": true, "full_module": "Steel.PCMReference", "short_module": "RP" }, { "abbrev": false, "full_module": "FStar.Real", "short_module": null }, { "abbrev": false, "full_module": "Steel.PCMFrac", "short_module": null }, { "abbrev": false, "full_module": "FStar.PCM", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let atomic_read (#opened:_) (#a:Type) (#p:perm) (#v:erased a) (r:ref a) = let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ()); elim_pure (perm_ok p); let v2 = RP.atomic_read r v1 in rewrite_slprop (RP.pts_to r v1) (pts_to r p v) (fun m -> emp_unit (hp_of (pts_to_raw r p v)); pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m); assert (compatible pcm_frac v1 v2); let Some (x, _) = v2 in rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ()); return x
val atomic_read (#opened:_) (#a:Type) (#p:perm) (#v:erased a) (r:ref a) : SteelAtomic a opened (pts_to r p v) (fun x -> pts_to r p x) (requires fun h -> True) (ensures fun _ x _ -> x == Ghost.reveal v) let atomic_read (#opened: _) (#a: Type) (#p: perm) (#v: erased a) (r: ref a) =
true
null
false
let v1:erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) ((RP.pts_to r v1) `star` (pure (perm_ok p))) (fun _ -> ()); elim_pure (perm_ok p); let v2 = RP.atomic_read r v1 in rewrite_slprop (RP.pts_to r v1) (pts_to r p v) (fun m -> emp_unit (hp_of (pts_to_raw r p v)); pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m); assert (compatible pcm_frac v1 v2); let Some (x, _) = v2 in rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ()); return x
{ "checked_file": "Steel.HigherReference.fst.checked", "dependencies": [ "Steel.PCMReference.fsti.checked", "Steel.PCMFrac.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Real.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.PCM.fst.checked", "FStar.NMSTTotal.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Steel.HigherReference.fst" }
[]
[ "Steel.Memory.inames", "Steel.FractionalPermission.perm", "FStar.Ghost.erased", "Steel.HigherReference.ref", "Steel.Effect.Atomic.return", "Steel.HigherReference.pts_to", "Steel.Effect.Common.vprop", "Prims.unit", "Steel.Effect.Atomic.rewrite_slprop", "FStar.Ghost.reveal", "Steel.Memory.mem", "Steel.PCMFrac.fractional", "Prims._assert", "FStar.PCM.compatible", "Steel.PCMFrac.pcm_frac", "Steel.PCMReference.pts_to", "Steel.Memory.pure_star_interp", "Steel.Effect.Common.hp_of", "Steel.HigherReference.pts_to_raw", "Steel.HigherReference.perm_ok", "Steel.Memory.emp_unit", "Steel.PCMReference.atomic_read", "Steel.Effect.Atomic.elim_pure", "Steel.Effect.Common.star", "Steel.Effect.Common.pure", "FStar.Ghost.hide", "FStar.Pervasives.Native.Some", "FStar.Pervasives.Native.tuple2", "FStar.Pervasives.Native.Mktuple2" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.HigherReference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect open FStar.PCM open Steel.PCMFrac open FStar.Real module RP = Steel.PCMReference #set-options "--ide_id_info_off" module Mem = Steel.Memory let ref a = Mem.ref (fractional a) pcm_frac let null #a = Mem.null #(fractional a) #pcm_frac let is_null #a r = Mem.is_null #(fractional a) #pcm_frac r let perm_ok p : prop = (p.v <=. one == true) /\ True let pts_to_raw_sl (#a:Type) (r:ref a) (p:perm) (v:erased a) : slprop = Mem.pts_to r (Some (Ghost.reveal v, p)) let pts_to_raw (#a:Type) (r:ref a) (p:perm) (v:erased a) : vprop = to_vprop (Mem.pts_to r (Some (Ghost.reveal v, p))) [@@__reduce__] let pts_to' (#a:Type u#1) (r:ref a) (p:perm) (v:erased a) : vprop = pts_to_raw r p v `star` pure (perm_ok p) let pts_to_sl #a r p v = hp_of (pts_to' r p v) let abcd_acbd (a b c d:slprop) : Lemma (Mem.(((a `star` b) `star` (c `star` d)) `equiv` ((a `star` c) `star` (b `star` d)))) = let open Steel.Memory in calc (equiv) { ((a `star` b) `star` (c `star` d)); (equiv) { star_associative a b (c `star` d) } ((a `star` (b `star` (c `star` d)))); (equiv) { star_associative b c d; star_congruence a (b `star` (c `star` d)) a ((b `star` c) `star` d) } (a `star` ((b `star` c) `star` d)); (equiv) { star_commutative b c; star_congruence (b `star` c) d (c `star` b) d; star_congruence a ((b `star` c) `star` d) a ((c `star` b) `star` d) } (a `star` ((c `star` b) `star` d)); (equiv) { star_associative c b d; star_congruence a ((c `star` b) `star` d) a (c `star` (b `star` d)) } (a `star` (c `star` (b `star` d))); (equiv) { star_associative a c (b `star` d) } ((a `star` c) `star` (b `star` d)); } let pts_to_ref_injective (#a: Type u#1) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let open Steel.Memory in abcd_acbd (hp_of (pts_to_raw r p0 v0)) (pure (perm_ok p0)) (hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p1)); Mem.affine_star (hp_of (pts_to_raw r p0 v0) `star` hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p0) `star` pure (perm_ok p1)) m; Mem.pts_to_compatible r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) m let pts_to_not_null (#a:Type u#1) (r:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures r =!= null) = Mem.affine_star (hp_of (pts_to_raw r p v)) (Mem.pure (perm_ok p)) m; Mem.pts_to_not_null r (Some (Ghost.reveal v, p)) m let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : erased a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = Mem.pts_to_join r (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let higher_ref_pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let pts_to_framon (#a:Type) (r:ref a) (p:perm) : Lemma (is_frame_monotonic (pts_to_sl r p)) = pts_to_witinv r p let intro_pts_to (p:perm) #a #uses (#v:erased a) (r:ref a) : SteelGhost unit uses (pts_to_raw r p v) (fun _ -> pts_to r p v) (requires fun _ -> perm_ok p) (ensures fun _ _ _ -> True) = intro_pure (perm_ok p); rewrite_slprop (pts_to' r p v) (pts_to r p v) (fun _ -> ()) let alloc #a x = let v = Some (x, full_perm) in assert (FStar.PCM.composable pcm_frac v None); assert (compatible pcm_frac v v); let r = RP.alloc v in rewrite_slprop (RP.pts_to r v) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m ); extract_info_raw (pts_to r full_perm x) (~ (is_null r)) (fun m -> pts_to_not_null r full_perm x m); return r let read (#a:Type) (#p:perm) (#v:erased a) (r:ref a) = let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ()); elim_pure (perm_ok p); let v2 = RP.read r v1 in rewrite_slprop (RP.pts_to r v1) (pts_to r p v) (fun m -> emp_unit (hp_of (pts_to_raw r p v)); pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m); assert (compatible pcm_frac v1 v2); let Some (x, _) = v2 in rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ()); return x
false
false
Steel.HigherReference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val atomic_read (#opened:_) (#a:Type) (#p:perm) (#v:erased a) (r:ref a) : SteelAtomic a opened (pts_to r p v) (fun x -> pts_to r p x) (requires fun h -> True) (ensures fun _ x _ -> x == Ghost.reveal v)
[]
Steel.HigherReference.atomic_read
{ "file_name": "lib/steel/Steel.HigherReference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.HigherReference.ref a -> Steel.Effect.Atomic.SteelAtomic a
{ "end_col": 12, "end_line": 166, "start_col": 3, "start_line": 154 }
Steel.Effect.Atomic.SteelGhostT
val gather_atomic_raw (#a: Type) (#uses: _) (#p0 #p1: perm) (r: ref a) (v0 v1: erased a) : SteelGhostT (_: unit{v0 == v1 /\ perm_ok (sum_perm p0 p1)}) uses ((pts_to_raw r p0 v0) `star` (pts_to_raw r p1 v1)) (fun _ -> pts_to_raw r (sum_perm p0 p1) v0)
[ { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.PCMReference", "short_module": "RP" }, { "abbrev": false, "full_module": "FStar.Real", "short_module": null }, { "abbrev": false, "full_module": "Steel.PCMFrac", "short_module": null }, { "abbrev": false, "full_module": "FStar.PCM", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let gather_atomic_raw (#a:Type) (#uses:_) (#p0 #p1:perm) (r:ref a) (v0:erased a) (v1:erased a) : SteelGhostT (_:unit{v0==v1 /\ perm_ok (sum_perm p0 p1)}) uses (pts_to_raw r p0 v0 `star` pts_to_raw r p1 v1) (fun _ -> pts_to_raw r (sum_perm p0 p1) v0) = rewrite_slprop (pts_to_raw r p0 v0) (RP.pts_to r (Ghost.reveal (Some (Ghost.reveal v0, p0)))) (fun _ -> ()); rewrite_slprop (pts_to_raw r p1 v1) (RP.pts_to r (Ghost.reveal (Some (Ghost.reveal v1, p1)))) (fun _ -> ()); let _ = RP.gather r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) in rewrite_slprop (RP.pts_to r _) (pts_to_raw r (sum_perm p0 p1) v0) (fun _ -> ())
val gather_atomic_raw (#a: Type) (#uses: _) (#p0 #p1: perm) (r: ref a) (v0 v1: erased a) : SteelGhostT (_: unit{v0 == v1 /\ perm_ok (sum_perm p0 p1)}) uses ((pts_to_raw r p0 v0) `star` (pts_to_raw r p1 v1)) (fun _ -> pts_to_raw r (sum_perm p0 p1) v0) let gather_atomic_raw (#a: Type) (#uses: _) (#p0 #p1: perm) (r: ref a) (v0 v1: erased a) : SteelGhostT (_: unit{v0 == v1 /\ perm_ok (sum_perm p0 p1)}) uses ((pts_to_raw r p0 v0) `star` (pts_to_raw r p1 v1)) (fun _ -> pts_to_raw r (sum_perm p0 p1) v0) =
true
null
false
rewrite_slprop (pts_to_raw r p0 v0) (RP.pts_to r (Ghost.reveal (Some (Ghost.reveal v0, p0)))) (fun _ -> ()); rewrite_slprop (pts_to_raw r p1 v1) (RP.pts_to r (Ghost.reveal (Some (Ghost.reveal v1, p1)))) (fun _ -> ()); let _ = RP.gather r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) in rewrite_slprop (RP.pts_to r _) (pts_to_raw r (sum_perm p0 p1) v0) (fun _ -> ())
{ "checked_file": "Steel.HigherReference.fst.checked", "dependencies": [ "Steel.PCMReference.fsti.checked", "Steel.PCMFrac.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Real.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.PCM.fst.checked", "FStar.NMSTTotal.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Steel.HigherReference.fst" }
[]
[ "Steel.Memory.inames", "Steel.FractionalPermission.perm", "Steel.HigherReference.ref", "FStar.Ghost.erased", "Steel.Effect.Atomic.rewrite_slprop", "Steel.PCMReference.pts_to", "Steel.PCMFrac.fractional", "Steel.PCMFrac.pcm_frac", "FStar.PCM.op", "FStar.Pervasives.Native.Some", "FStar.Pervasives.Native.tuple2", "FStar.Pervasives.Native.Mktuple2", "FStar.Ghost.reveal", "Steel.HigherReference.pts_to_raw", "Steel.FractionalPermission.sum_perm", "Steel.Memory.mem", "Prims.unit", "FStar.PCM.composable", "FStar.Ghost.hide", "Steel.PCMReference.gather", "Prims.l_and", "Prims.eq2", "Steel.HigherReference.perm_ok", "Steel.Effect.Common.star", "Steel.Effect.Common.vprop" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.HigherReference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect open FStar.PCM open Steel.PCMFrac open FStar.Real module RP = Steel.PCMReference #set-options "--ide_id_info_off" module Mem = Steel.Memory let ref a = Mem.ref (fractional a) pcm_frac let null #a = Mem.null #(fractional a) #pcm_frac let is_null #a r = Mem.is_null #(fractional a) #pcm_frac r let perm_ok p : prop = (p.v <=. one == true) /\ True let pts_to_raw_sl (#a:Type) (r:ref a) (p:perm) (v:erased a) : slprop = Mem.pts_to r (Some (Ghost.reveal v, p)) let pts_to_raw (#a:Type) (r:ref a) (p:perm) (v:erased a) : vprop = to_vprop (Mem.pts_to r (Some (Ghost.reveal v, p))) [@@__reduce__] let pts_to' (#a:Type u#1) (r:ref a) (p:perm) (v:erased a) : vprop = pts_to_raw r p v `star` pure (perm_ok p) let pts_to_sl #a r p v = hp_of (pts_to' r p v) let abcd_acbd (a b c d:slprop) : Lemma (Mem.(((a `star` b) `star` (c `star` d)) `equiv` ((a `star` c) `star` (b `star` d)))) = let open Steel.Memory in calc (equiv) { ((a `star` b) `star` (c `star` d)); (equiv) { star_associative a b (c `star` d) } ((a `star` (b `star` (c `star` d)))); (equiv) { star_associative b c d; star_congruence a (b `star` (c `star` d)) a ((b `star` c) `star` d) } (a `star` ((b `star` c) `star` d)); (equiv) { star_commutative b c; star_congruence (b `star` c) d (c `star` b) d; star_congruence a ((b `star` c) `star` d) a ((c `star` b) `star` d) } (a `star` ((c `star` b) `star` d)); (equiv) { star_associative c b d; star_congruence a ((c `star` b) `star` d) a (c `star` (b `star` d)) } (a `star` (c `star` (b `star` d))); (equiv) { star_associative a c (b `star` d) } ((a `star` c) `star` (b `star` d)); } let pts_to_ref_injective (#a: Type u#1) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let open Steel.Memory in abcd_acbd (hp_of (pts_to_raw r p0 v0)) (pure (perm_ok p0)) (hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p1)); Mem.affine_star (hp_of (pts_to_raw r p0 v0) `star` hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p0) `star` pure (perm_ok p1)) m; Mem.pts_to_compatible r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) m let pts_to_not_null (#a:Type u#1) (r:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures r =!= null) = Mem.affine_star (hp_of (pts_to_raw r p v)) (Mem.pure (perm_ok p)) m; Mem.pts_to_not_null r (Some (Ghost.reveal v, p)) m let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : erased a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = Mem.pts_to_join r (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let higher_ref_pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let pts_to_framon (#a:Type) (r:ref a) (p:perm) : Lemma (is_frame_monotonic (pts_to_sl r p)) = pts_to_witinv r p let intro_pts_to (p:perm) #a #uses (#v:erased a) (r:ref a) : SteelGhost unit uses (pts_to_raw r p v) (fun _ -> pts_to r p v) (requires fun _ -> perm_ok p) (ensures fun _ _ _ -> True) = intro_pure (perm_ok p); rewrite_slprop (pts_to' r p v) (pts_to r p v) (fun _ -> ()) let alloc #a x = let v = Some (x, full_perm) in assert (FStar.PCM.composable pcm_frac v None); assert (compatible pcm_frac v v); let r = RP.alloc v in rewrite_slprop (RP.pts_to r v) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m ); extract_info_raw (pts_to r full_perm x) (~ (is_null r)) (fun m -> pts_to_not_null r full_perm x m); return r let read (#a:Type) (#p:perm) (#v:erased a) (r:ref a) = let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ()); elim_pure (perm_ok p); let v2 = RP.read r v1 in rewrite_slprop (RP.pts_to r v1) (pts_to r p v) (fun m -> emp_unit (hp_of (pts_to_raw r p v)); pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m); assert (compatible pcm_frac v1 v2); let Some (x, _) = v2 in rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ()); return x let atomic_read (#opened:_) (#a:Type) (#p:perm) (#v:erased a) (r:ref a) = let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ()); elim_pure (perm_ok p); let v2 = RP.atomic_read r v1 in rewrite_slprop (RP.pts_to r v1) (pts_to r p v) (fun m -> emp_unit (hp_of (pts_to_raw r p v)); pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m); assert (compatible pcm_frac v1 v2); let Some (x, _) = v2 in rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ()); return x let read_refine (#a:Type) (#p:perm) (q:a -> vprop) (r:ref a) : SteelT a (h_exists (fun (v:a) -> pts_to r p v `star` q v)) (fun v -> pts_to r p v `star` q v) = let vs:erased a = witness_exists () in rewrite_slprop (pts_to r p (Ghost.hide (Ghost.reveal vs))) (pts_to r p vs) (fun _ -> ()); let v = read r in rewrite_slprop (q vs) (q v) (fun _ -> ()); return v let write (#a:Type) (#v:erased a) (r:ref a) (x:a) : SteelT unit (pts_to r full_perm v) (fun _ -> pts_to r full_perm x) = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in let v_new : fractional a = Some (x, full_perm) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.write r v_old v_new; rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m) let atomic_write #opened #a #v r x = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in let v_new : fractional a = Some (x, full_perm) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.atomic_write r v_old v_new; rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m) let free (#a:Type) (#v:erased a) (r:ref a) : SteelT unit (pts_to r full_perm v) (fun _ -> emp) = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ()); elim_pure (perm_ok full_perm); RP.free r v_old; drop (RP.pts_to r (Mkpcm'?.one (Mkpcm?.p pcm_frac))) let share_atomic_raw #a #uses (#p:perm) (r:ref a{perm_ok p}) (v0:erased a) : SteelGhostT unit uses (pts_to_raw r p v0) (fun _ -> pts_to_raw r (half_perm p) v0 `star` pts_to_raw r (half_perm p) v0) = rewrite_slprop (pts_to_raw r p v0) (RP.pts_to r _) (fun _ -> ()); RP.split r (Some (Ghost.reveal v0, p)) (Some (Ghost.reveal v0, half_perm p)) (Some (Ghost.reveal v0, half_perm p)); rewrite_slprop (RP.pts_to r _) (pts_to_raw r (half_perm p) v0) (fun _ -> ()); rewrite_slprop (RP.pts_to r _) (pts_to_raw r (half_perm p) v0) (fun _ -> ()) let share (#a:Type) #uses (#p:perm) (#v:erased a) (r:ref a) : SteelGhostT unit uses (pts_to r p v) (fun _ -> pts_to r (half_perm p) v `star` pts_to r (half_perm p) v) = let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (pts_to' r p v) (fun _ -> ()); elim_pure (perm_ok p); share_atomic_raw r v; intro_pts_to (half_perm p) r; intro_pts_to (half_perm p) r let gather_atomic_raw (#a:Type) (#uses:_) (#p0 #p1:perm) (r:ref a) (v0:erased a) (v1:erased a) : SteelGhostT (_:unit{v0==v1 /\ perm_ok (sum_perm p0 p1)}) uses (pts_to_raw r p0 v0 `star` pts_to_raw r p1 v1) (fun _ -> pts_to_raw r (sum_perm p0 p1) v0)
false
false
Steel.HigherReference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val gather_atomic_raw (#a: Type) (#uses: _) (#p0 #p1: perm) (r: ref a) (v0 v1: erased a) : SteelGhostT (_: unit{v0 == v1 /\ perm_ok (sum_perm p0 p1)}) uses ((pts_to_raw r p0 v0) `star` (pts_to_raw r p1 v1)) (fun _ -> pts_to_raw r (sum_perm p0 p1) v0)
[]
Steel.HigherReference.gather_atomic_raw
{ "file_name": "lib/steel/Steel.HigherReference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.HigherReference.ref a -> v0: FStar.Ghost.erased a -> v1: FStar.Ghost.erased a -> Steel.Effect.Atomic.SteelGhostT (_: Prims.unit {v0 == v1 /\ Steel.HigherReference.perm_ok (Steel.FractionalPermission.sum_perm p0 p1)})
{ "end_col": 19, "end_line": 265, "start_col": 4, "start_line": 253 }
Steel.Effect.Steel
val read (#a:Type) (#p:perm) (#v:erased a) (r:ref a) : Steel a (pts_to r p v) (fun x -> pts_to r p x) (requires fun h -> True) (ensures fun _ x _ -> x == Ghost.reveal v)
[ { "abbrev": true, "full_module": "Steel.PCMReference", "short_module": "RP" }, { "abbrev": false, "full_module": "FStar.Real", "short_module": null }, { "abbrev": false, "full_module": "Steel.PCMFrac", "short_module": null }, { "abbrev": false, "full_module": "FStar.PCM", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let read (#a:Type) (#p:perm) (#v:erased a) (r:ref a) = let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ()); elim_pure (perm_ok p); let v2 = RP.read r v1 in rewrite_slprop (RP.pts_to r v1) (pts_to r p v) (fun m -> emp_unit (hp_of (pts_to_raw r p v)); pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m); assert (compatible pcm_frac v1 v2); let Some (x, _) = v2 in rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ()); return x
val read (#a:Type) (#p:perm) (#v:erased a) (r:ref a) : Steel a (pts_to r p v) (fun x -> pts_to r p x) (requires fun h -> True) (ensures fun _ x _ -> x == Ghost.reveal v) let read (#a: Type) (#p: perm) (#v: erased a) (r: ref a) =
true
null
false
let v1:erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in rewrite_slprop (pts_to r p v) ((RP.pts_to r v1) `star` (pure (perm_ok p))) (fun _ -> ()); elim_pure (perm_ok p); let v2 = RP.read r v1 in rewrite_slprop (RP.pts_to r v1) (pts_to r p v) (fun m -> emp_unit (hp_of (pts_to_raw r p v)); pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m); assert (compatible pcm_frac v1 v2); let Some (x, _) = v2 in rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ()); return x
{ "checked_file": "Steel.HigherReference.fst.checked", "dependencies": [ "Steel.PCMReference.fsti.checked", "Steel.PCMFrac.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Real.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.PCM.fst.checked", "FStar.NMSTTotal.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Steel.HigherReference.fst" }
[]
[ "Steel.FractionalPermission.perm", "FStar.Ghost.erased", "Steel.HigherReference.ref", "Steel.Effect.Atomic.return", "FStar.Ghost.hide", "FStar.Set.set", "Steel.Memory.iname", "FStar.Set.empty", "Steel.HigherReference.pts_to", "Steel.Effect.Common.vprop", "Prims.unit", "Steel.Effect.Atomic.rewrite_slprop", "FStar.Ghost.reveal", "Steel.Memory.mem", "Steel.PCMFrac.fractional", "Prims._assert", "FStar.PCM.compatible", "Steel.PCMFrac.pcm_frac", "Steel.PCMReference.pts_to", "Steel.Memory.pure_star_interp", "Steel.Effect.Common.hp_of", "Steel.HigherReference.pts_to_raw", "Steel.HigherReference.perm_ok", "Steel.Memory.emp_unit", "Steel.PCMReference.read", "Steel.Effect.Atomic.elim_pure", "Steel.Effect.Common.star", "Steel.Effect.Common.pure", "FStar.Pervasives.Native.Some", "FStar.Pervasives.Native.tuple2", "FStar.Pervasives.Native.Mktuple2" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.HigherReference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect open FStar.PCM open Steel.PCMFrac open FStar.Real module RP = Steel.PCMReference #set-options "--ide_id_info_off" module Mem = Steel.Memory let ref a = Mem.ref (fractional a) pcm_frac let null #a = Mem.null #(fractional a) #pcm_frac let is_null #a r = Mem.is_null #(fractional a) #pcm_frac r let perm_ok p : prop = (p.v <=. one == true) /\ True let pts_to_raw_sl (#a:Type) (r:ref a) (p:perm) (v:erased a) : slprop = Mem.pts_to r (Some (Ghost.reveal v, p)) let pts_to_raw (#a:Type) (r:ref a) (p:perm) (v:erased a) : vprop = to_vprop (Mem.pts_to r (Some (Ghost.reveal v, p))) [@@__reduce__] let pts_to' (#a:Type u#1) (r:ref a) (p:perm) (v:erased a) : vprop = pts_to_raw r p v `star` pure (perm_ok p) let pts_to_sl #a r p v = hp_of (pts_to' r p v) let abcd_acbd (a b c d:slprop) : Lemma (Mem.(((a `star` b) `star` (c `star` d)) `equiv` ((a `star` c) `star` (b `star` d)))) = let open Steel.Memory in calc (equiv) { ((a `star` b) `star` (c `star` d)); (equiv) { star_associative a b (c `star` d) } ((a `star` (b `star` (c `star` d)))); (equiv) { star_associative b c d; star_congruence a (b `star` (c `star` d)) a ((b `star` c) `star` d) } (a `star` ((b `star` c) `star` d)); (equiv) { star_commutative b c; star_congruence (b `star` c) d (c `star` b) d; star_congruence a ((b `star` c) `star` d) a ((c `star` b) `star` d) } (a `star` ((c `star` b) `star` d)); (equiv) { star_associative c b d; star_congruence a ((c `star` b) `star` d) a (c `star` (b `star` d)) } (a `star` (c `star` (b `star` d))); (equiv) { star_associative a c (b `star` d) } ((a `star` c) `star` (b `star` d)); } let pts_to_ref_injective (#a: Type u#1) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let open Steel.Memory in abcd_acbd (hp_of (pts_to_raw r p0 v0)) (pure (perm_ok p0)) (hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p1)); Mem.affine_star (hp_of (pts_to_raw r p0 v0) `star` hp_of (pts_to_raw r p1 v1)) (pure (perm_ok p0) `star` pure (perm_ok p1)) m; Mem.pts_to_compatible r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) m let pts_to_not_null (#a:Type u#1) (r:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures r =!= null) = Mem.affine_star (hp_of (pts_to_raw r p v)) (Mem.pure (perm_ok p)) m; Mem.pts_to_not_null r (Some (Ghost.reveal v, p)) m let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : erased a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = Mem.pts_to_join r (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let higher_ref_pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let pts_to_framon (#a:Type) (r:ref a) (p:perm) : Lemma (is_frame_monotonic (pts_to_sl r p)) = pts_to_witinv r p let intro_pts_to (p:perm) #a #uses (#v:erased a) (r:ref a) : SteelGhost unit uses (pts_to_raw r p v) (fun _ -> pts_to r p v) (requires fun _ -> perm_ok p) (ensures fun _ _ _ -> True) = intro_pure (perm_ok p); rewrite_slprop (pts_to' r p v) (pts_to r p v) (fun _ -> ()) let alloc #a x = let v = Some (x, full_perm) in assert (FStar.PCM.composable pcm_frac v None); assert (compatible pcm_frac v v); let r = RP.alloc v in rewrite_slprop (RP.pts_to r v) (pts_to r full_perm x) (fun m -> emp_unit (hp_of (pts_to_raw r full_perm x)); pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m ); extract_info_raw (pts_to r full_perm x) (~ (is_null r)) (fun m -> pts_to_not_null r full_perm x m); return r
false
false
Steel.HigherReference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val read (#a:Type) (#p:perm) (#v:erased a) (r:ref a) : Steel a (pts_to r p v) (fun x -> pts_to r p x) (requires fun h -> True) (ensures fun _ x _ -> x == Ghost.reveal v)
[]
Steel.HigherReference.read
{ "file_name": "lib/steel/Steel.HigherReference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.HigherReference.ref a -> Steel.Effect.Steel a
{ "end_col": 12, "end_line": 151, "start_col": 3, "start_line": 140 }
Prims.Tot
[ { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pow2_24 = 0x1000000
let pow2_24 =
false
null
false
0x1000000
{ "checked_file": "Vale.AES.Types_helpers.fsti.checked", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.TypesNative_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Arch.Types.fsti.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.AES.Types_helpers.fsti" }
[ "total" ]
[]
[]
module Vale.AES.Types_helpers open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Words.Four_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Mul open FStar.Seq open Vale.Lib.Seqs
false
true
Vale.AES.Types_helpers.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pow2_24 : Prims.int
[]
Vale.AES.Types_helpers.pow2_24
{ "file_name": "vale/code/crypto/aes/Vale.AES.Types_helpers.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Prims.int
{ "end_col": 30, "end_line": 12, "start_col": 21, "start_line": 12 }
Prims.Tot
[ { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let nat24 = natN pow2_24
let nat24 =
false
null
false
natN pow2_24
{ "checked_file": "Vale.AES.Types_helpers.fsti.checked", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.TypesNative_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Arch.Types.fsti.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.AES.Types_helpers.fsti" }
[ "total" ]
[ "Vale.Def.Words_s.natN", "Vale.AES.Types_helpers.pow2_24" ]
[]
module Vale.AES.Types_helpers open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Words.Four_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Mul open FStar.Seq open Vale.Lib.Seqs
false
true
Vale.AES.Types_helpers.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val nat24 : Type0
[]
Vale.AES.Types_helpers.nat24
{ "file_name": "vale/code/crypto/aes/Vale.AES.Types_helpers.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Type0
{ "end_col": 24, "end_line": 13, "start_col": 12, "start_line": 13 }
FStar.Pervasives.Lemma
val lemma_ishl_64 (x: nat64) (k: nat) : Lemma (ensures ishl #pow2_64 x k == x * pow2 k % pow2_64)
[ { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_ishl_64 (x:nat64) (k:nat) : Lemma (ensures ishl #pow2_64 x k == x * pow2 k % pow2_64) = Vale.Def.TypesNative_s.reveal_ishl 64 x k; FStar.UInt.shift_left_value_lemma #64 x k; ()
val lemma_ishl_64 (x: nat64) (k: nat) : Lemma (ensures ishl #pow2_64 x k == x * pow2 k % pow2_64) let lemma_ishl_64 (x: nat64) (k: nat) : Lemma (ensures ishl #pow2_64 x k == x * pow2 k % pow2_64) =
false
null
true
Vale.Def.TypesNative_s.reveal_ishl 64 x k; FStar.UInt.shift_left_value_lemma #64 x k; ()
{ "checked_file": "Vale.AES.Types_helpers.fsti.checked", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.TypesNative_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Arch.Types.fsti.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.AES.Types_helpers.fsti" }
[ "lemma" ]
[ "Vale.Def.Types_s.nat64", "Prims.nat", "Prims.unit", "FStar.UInt.shift_left_value_lemma", "Vale.Def.TypesNative_s.reveal_ishl", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.int", "Vale.Def.Types_s.ishl", "Vale.Def.Words_s.pow2_64", "Prims.op_Modulus", "FStar.Mul.op_Star", "Prims.pow2", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.AES.Types_helpers open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Words.Four_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Mul open FStar.Seq open Vale.Lib.Seqs unfold let pow2_24 = 0x1000000 let nat24 = natN pow2_24 val lemma_slices_le_quad32_to_bytes (q:quad32) : Lemma (ensures ( let s = le_quad32_to_bytes q in q.lo0 == four_to_nat 8 (seq_to_four_LE (slice s 0 4)) /\ q.lo1 == four_to_nat 8 (seq_to_four_LE (slice s 4 8)) /\ q.hi2 == four_to_nat 8 (seq_to_four_LE (slice s 8 12)) /\ q.hi3 == four_to_nat 8 (seq_to_four_LE (slice s 12 16)) )) val lemma_slices_be_quad32_to_bytes (q:quad32) : Lemma (ensures ( let s = be_quad32_to_bytes q in q.hi3 == four_to_nat 8 (seq_to_four_BE (slice s 0 4)) /\ q.hi2 == four_to_nat 8 (seq_to_four_BE (slice s 4 8)) /\ q.lo1 == four_to_nat 8 (seq_to_four_BE (slice s 8 12)) /\ q.lo0 == four_to_nat 8 (seq_to_four_BE (slice s 12 16)) )) val lemma_BitwiseXorWithZero64 (n:nat64) : Lemma (ixor n 0 == n) let lemma_ishl_64 (x:nat64) (k:nat) : Lemma (ensures ishl #pow2_64 x k == x * pow2 k % pow2_64)
false
false
Vale.AES.Types_helpers.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_ishl_64 (x: nat64) (k: nat) : Lemma (ensures ishl #pow2_64 x k == x * pow2 k % pow2_64)
[]
Vale.AES.Types_helpers.lemma_ishl_64
{ "file_name": "vale/code/crypto/aes/Vale.AES.Types_helpers.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Vale.Def.Types_s.nat64 -> k: Prims.nat -> FStar.Pervasives.Lemma (ensures Vale.Def.Types_s.ishl x k == x * Prims.pow2 k % Vale.Def.Words_s.pow2_64)
{ "end_col": 4, "end_line": 40, "start_col": 2, "start_line": 38 }
FStar.Pervasives.Lemma
val lemma_ishr_32 (x: nat32) (k: nat) : Lemma (ensures ishr #pow2_32 x k == x / pow2 k)
[ { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_ishr_32 (x:nat32) (k:nat) : Lemma (ensures ishr #pow2_32 x k == x / pow2 k) = Vale.Def.TypesNative_s.reveal_ishr 32 x k; FStar.UInt.shift_right_value_lemma #32 x k; ()
val lemma_ishr_32 (x: nat32) (k: nat) : Lemma (ensures ishr #pow2_32 x k == x / pow2 k) let lemma_ishr_32 (x: nat32) (k: nat) : Lemma (ensures ishr #pow2_32 x k == x / pow2 k) =
false
null
true
Vale.Def.TypesNative_s.reveal_ishr 32 x k; FStar.UInt.shift_right_value_lemma #32 x k; ()
{ "checked_file": "Vale.AES.Types_helpers.fsti.checked", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.TypesNative_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Arch.Types.fsti.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.AES.Types_helpers.fsti" }
[ "lemma" ]
[ "Vale.Def.Types_s.nat32", "Prims.nat", "Prims.unit", "FStar.UInt.shift_right_value_lemma", "Vale.Def.TypesNative_s.reveal_ishr", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.int", "Vale.Def.Types_s.ishr", "Vale.Def.Words_s.pow2_32", "Prims.op_Division", "Prims.pow2", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.AES.Types_helpers open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Words.Four_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Mul open FStar.Seq open Vale.Lib.Seqs unfold let pow2_24 = 0x1000000 let nat24 = natN pow2_24 val lemma_slices_le_quad32_to_bytes (q:quad32) : Lemma (ensures ( let s = le_quad32_to_bytes q in q.lo0 == four_to_nat 8 (seq_to_four_LE (slice s 0 4)) /\ q.lo1 == four_to_nat 8 (seq_to_four_LE (slice s 4 8)) /\ q.hi2 == four_to_nat 8 (seq_to_four_LE (slice s 8 12)) /\ q.hi3 == four_to_nat 8 (seq_to_four_LE (slice s 12 16)) )) val lemma_slices_be_quad32_to_bytes (q:quad32) : Lemma (ensures ( let s = be_quad32_to_bytes q in q.hi3 == four_to_nat 8 (seq_to_four_BE (slice s 0 4)) /\ q.hi2 == four_to_nat 8 (seq_to_four_BE (slice s 4 8)) /\ q.lo1 == four_to_nat 8 (seq_to_four_BE (slice s 8 12)) /\ q.lo0 == four_to_nat 8 (seq_to_four_BE (slice s 12 16)) )) val lemma_BitwiseXorWithZero64 (n:nat64) : Lemma (ixor n 0 == n) let lemma_ishl_64 (x:nat64) (k:nat) : Lemma (ensures ishl #pow2_64 x k == x * pow2 k % pow2_64) = Vale.Def.TypesNative_s.reveal_ishl 64 x k; FStar.UInt.shift_left_value_lemma #64 x k; () let lemma_ishr_64 (x:nat64) (k:nat) : Lemma (ensures ishr #pow2_64 x k == x / pow2 k) = Vale.Def.TypesNative_s.reveal_ishr 64 x k; FStar.UInt.shift_right_value_lemma #64 x k; () let lemma_ishr_32 (x:nat32) (k:nat) : Lemma (ensures ishr #pow2_32 x k == x / pow2 k)
false
false
Vale.AES.Types_helpers.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_ishr_32 (x: nat32) (k: nat) : Lemma (ensures ishr #pow2_32 x k == x / pow2 k)
[]
Vale.AES.Types_helpers.lemma_ishr_32
{ "file_name": "vale/code/crypto/aes/Vale.AES.Types_helpers.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Vale.Def.Types_s.nat32 -> k: Prims.nat -> FStar.Pervasives.Lemma (ensures Vale.Def.Types_s.ishr x k == x / Prims.pow2 k)
{ "end_col": 4, "end_line": 54, "start_col": 2, "start_line": 52 }
FStar.Pervasives.Lemma
val lemma_ishr_64 (x: nat64) (k: nat) : Lemma (ensures ishr #pow2_64 x k == x / pow2 k)
[ { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_ishr_64 (x:nat64) (k:nat) : Lemma (ensures ishr #pow2_64 x k == x / pow2 k) = Vale.Def.TypesNative_s.reveal_ishr 64 x k; FStar.UInt.shift_right_value_lemma #64 x k; ()
val lemma_ishr_64 (x: nat64) (k: nat) : Lemma (ensures ishr #pow2_64 x k == x / pow2 k) let lemma_ishr_64 (x: nat64) (k: nat) : Lemma (ensures ishr #pow2_64 x k == x / pow2 k) =
false
null
true
Vale.Def.TypesNative_s.reveal_ishr 64 x k; FStar.UInt.shift_right_value_lemma #64 x k; ()
{ "checked_file": "Vale.AES.Types_helpers.fsti.checked", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.TypesNative_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Arch.Types.fsti.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.AES.Types_helpers.fsti" }
[ "lemma" ]
[ "Vale.Def.Types_s.nat64", "Prims.nat", "Prims.unit", "FStar.UInt.shift_right_value_lemma", "Vale.Def.TypesNative_s.reveal_ishr", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.int", "Vale.Def.Types_s.ishr", "Vale.Def.Words_s.pow2_64", "Prims.op_Division", "Prims.pow2", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.AES.Types_helpers open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Words.Four_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Mul open FStar.Seq open Vale.Lib.Seqs unfold let pow2_24 = 0x1000000 let nat24 = natN pow2_24 val lemma_slices_le_quad32_to_bytes (q:quad32) : Lemma (ensures ( let s = le_quad32_to_bytes q in q.lo0 == four_to_nat 8 (seq_to_four_LE (slice s 0 4)) /\ q.lo1 == four_to_nat 8 (seq_to_four_LE (slice s 4 8)) /\ q.hi2 == four_to_nat 8 (seq_to_four_LE (slice s 8 12)) /\ q.hi3 == four_to_nat 8 (seq_to_four_LE (slice s 12 16)) )) val lemma_slices_be_quad32_to_bytes (q:quad32) : Lemma (ensures ( let s = be_quad32_to_bytes q in q.hi3 == four_to_nat 8 (seq_to_four_BE (slice s 0 4)) /\ q.hi2 == four_to_nat 8 (seq_to_four_BE (slice s 4 8)) /\ q.lo1 == four_to_nat 8 (seq_to_four_BE (slice s 8 12)) /\ q.lo0 == four_to_nat 8 (seq_to_four_BE (slice s 12 16)) )) val lemma_BitwiseXorWithZero64 (n:nat64) : Lemma (ixor n 0 == n) let lemma_ishl_64 (x:nat64) (k:nat) : Lemma (ensures ishl #pow2_64 x k == x * pow2 k % pow2_64) = Vale.Def.TypesNative_s.reveal_ishl 64 x k; FStar.UInt.shift_left_value_lemma #64 x k; () let lemma_ishr_64 (x:nat64) (k:nat) : Lemma (ensures ishr #pow2_64 x k == x / pow2 k)
false
false
Vale.AES.Types_helpers.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_ishr_64 (x: nat64) (k: nat) : Lemma (ensures ishr #pow2_64 x k == x / pow2 k)
[]
Vale.AES.Types_helpers.lemma_ishr_64
{ "file_name": "vale/code/crypto/aes/Vale.AES.Types_helpers.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Vale.Def.Types_s.nat64 -> k: Prims.nat -> FStar.Pervasives.Lemma (ensures Vale.Def.Types_s.ishr x k == x / Prims.pow2 k)
{ "end_col": 4, "end_line": 47, "start_col": 2, "start_line": 45 }