effect
stringclasses 48
values | original_source_type
stringlengths 0
23k
| opens_and_abbrevs
listlengths 2
92
| isa_cross_project_example
bool 1
class | source_definition
stringlengths 9
57.9k
| partial_definition
stringlengths 7
23.3k
| is_div
bool 2
classes | is_type
null | is_proof
bool 2
classes | completed_definiton
stringlengths 1
250k
| dependencies
dict | effect_flags
sequencelengths 0
2
| ideal_premises
sequencelengths 0
236
| mutual_with
sequencelengths 0
11
| file_context
stringlengths 0
407k
| interleaved
bool 1
class | is_simply_typed
bool 2
classes | file_name
stringlengths 5
48
| vconfig
dict | is_simple_lemma
null | source_type
stringlengths 10
23k
| proof_features
sequencelengths 0
1
| name
stringlengths 8
95
| source
dict | verbose_type
stringlengths 1
7.42k
| source_range
dict |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Prims.Pure | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let op_Greater_Greater_Hat = shift_right | let op_Greater_Greater_Hat = | false | null | false | shift_right | {
"checked_file": "FStar.UInt8.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "FStar.UInt8.fsti"
} | [] | [
"FStar.UInt8.shift_right"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 8
/// For FStar.UIntN.fstp: anything that you fix/update here should be
/// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of
/// this module.
///
/// Except, as compared to [FStar.IntN.fstp], here:
/// - every occurrence of [int_t] has been replaced with [uint_t]
/// - every occurrence of [@%] has been replaced with [%].
/// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers
/// This module provides an abstract type for machine integers of a
/// given signedness and width. The interface is designed to be safe
/// with respect to arithmetic underflow and overflow.
/// Note, we have attempted several times to re-design this module to
/// make it more amenable to normalization and to impose less overhead
/// on the SMT solver when reasoning about machine integer
/// arithmetic. The following github issue reports on the current
/// status of that work.
///
/// https://github.com/FStarLang/FStar/issues/1757
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(** Abstract type of machine integers, with an underlying
representation using a bounded mathematical integer *)
new val t : eqtype
(** A coercion that projects a bounded mathematical integer from a
machine integer *)
val v (x:t) : Tot (uint_t n)
(** A coercion that injects a bounded mathematical integers into a
machine integer *)
val uint_to_t (x:uint_t n) : Pure t
(requires True)
(ensures (fun y -> v y = x))
(** Injection/projection inverse *)
val uv_inv (x : t) : Lemma
(ensures (uint_to_t (v x) == x))
[SMTPat (v x)]
(** Projection/injection inverse *)
val vu_inv (x : uint_t n) : Lemma
(ensures (v (uint_to_t x) == x))
[SMTPat (uint_to_t x)]
(** An alternate form of the injectivity of the [v] projection *)
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
(** Constants 0 and 1 *)
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
(**** Addition primitives *)
(** Bounds-respecting addition
The precondition enforces that the sum does not overflow,
expressing the bound as an addition on mathematical integers *)
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(** Underspecified, possibly overflowing addition:
The postcondition only enures that the result is the sum of the
arguments in case there is no overflow *)
val add_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a + v b) n ==> v a + v b = v c))
(** Addition modulo [2^n]
Machine integers can always be added, but the postcondition is now
in terms of addition modulo [2^n] on mathematical integers *)
val add_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
(**** Subtraction primitives *)
(** Bounds-respecting subtraction
The precondition enforces that the difference does not underflow,
expressing the bound as a difference on mathematical integers *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(** Underspecified, possibly overflowing subtraction:
The postcondition only enures that the result is the difference of
the arguments in case there is no underflow *)
val sub_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a - v b) n ==> v a - v b = v c))
(** Subtraction modulo [2^n]
Machine integers can always be subtractd, but the postcondition is
now in terms of subtraction modulo [2^n] on mathematical integers *)
val sub_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
(**** Multiplication primitives *)
(** Bounds-respecting multiplication
The precondition enforces that the product does not overflow,
expressing the bound as a product on mathematical integers *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(** Underspecified, possibly overflowing product
The postcondition only enures that the result is the product of
the arguments in case there is no overflow *)
val mul_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a * v b) n ==> v a * v b = v c))
(** Multiplication modulo [2^n]
Machine integers can always be multiplied, but the postcondition
is now in terms of product modulo [2^n] on mathematical integers *)
val mul_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
(**** Division primitives *)
(** Euclidean division of [a] and [b], with [b] non-zero *)
val div (a:t) (b:t{v b <> 0}) : Pure t
(requires (True))
(ensures (fun c -> v a / v b = v c))
(**** Modulo primitives *)
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b] *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
(**** Bitwise operators *)
/// Also see FStar.BV
(** Bitwise logical conjunction *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
(** Bitwise logical exclusive-or *)
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
(** Bitwise logical disjunction *)
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
(** Bitwise logical negation *)
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(**** Shift operators *)
(** Shift right with zero fill, shifting at most the integer width *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c))
(** Shift left with zero fill, shifting at most the integer width *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c))
(**** Comparison operators *)
(** Equality
Note, it is safe to also use the polymorphic decidable equality
operator [=] *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
(** Greater than *)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
(** Greater than or equal *)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
(** Less than *)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
(** Less than or equal *)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(** Unary negation *)
inline_for_extraction
let minus (a:t) = add_mod (lognot a) (uint_to_t 1)
(** The maximum value for this type *)
inline_for_extraction
let n_minus_one = UInt32.uint_to_t (n - 1)
#set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1"
(** A constant-time way to compute the equality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b
Note, the branching on [a=b] is just for proof-purposes.
*)
[@ CNoInline ]
let eq_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\
(v a <> v b ==> v c = 0)))
= let x = logxor a b in
let minus_x = minus x in
let x_or_minus_x = logor x minus_x in
let xnx = shift_right x_or_minus_x n_minus_one in
let c = sub_mod xnx (uint_to_t 1) in
if a = b then
begin
logxor_self (v a);
lognot_lemma_1 #n;
logor_lemma_1 (v x);
assert (v x = 0 /\ v minus_x = 0 /\
v x_or_minus_x = 0 /\ v xnx = 0);
assert (v c = ones n)
end
else
begin
logxor_neq_nonzero (v a) (v b);
lemma_msb_pow2 #n (v (lognot x));
lemma_msb_pow2 #n (v minus_x);
lemma_minus_zero #n (v x);
assert (v c = FStar.UInt.zero n)
end;
c
private
val lemma_sub_msbs (a:t) (b:t)
: Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b))))
(** A constant-time way to compute the [>=] inequality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a
*)
[@ CNoInline ]
let gte_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\
(v a < v b ==> v c = 0)))
= let x = a in
let y = b in
let x_xor_y = logxor x y in
let x_sub_y = sub_mod x y in
let x_sub_y_xor_y = logxor x_sub_y y in
let q = logor x_xor_y x_sub_y_xor_y in
let x_xor_q = logxor x q in
let x_xor_q_ = shift_right x_xor_q n_minus_one in
let c = sub_mod x_xor_q_ (uint_to_t 1) in
lemma_sub_msbs x y;
lemma_msb_gte (v x) (v y);
lemma_msb_gte (v y) (v x);
c
#reset-options
(*** Infix notations *)
unfold let op_Plus_Hat = add
unfold let op_Plus_Question_Hat = add_underspec
unfold let op_Plus_Percent_Hat = add_mod
unfold let op_Subtraction_Hat = sub
unfold let op_Subtraction_Question_Hat = sub_underspec
unfold let op_Subtraction_Percent_Hat = sub_mod
unfold let op_Star_Hat = mul
unfold let op_Star_Question_Hat = mul_underspec
unfold let op_Star_Percent_Hat = mul_mod
unfold let op_Slash_Hat = div
unfold let op_Percent_Hat = rem
unfold let op_Hat_Hat = logxor
unfold let op_Amp_Hat = logand
unfold let op_Bar_Hat = logor | false | false | FStar.UInt8.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val op_Greater_Greater_Hat : a: FStar.UInt8.t -> s: FStar.UInt32.t -> Prims.Pure FStar.UInt8.t | [] | FStar.UInt8.op_Greater_Greater_Hat | {
"file_name": "ulib/FStar.UInt8.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: FStar.UInt8.t -> s: FStar.UInt32.t -> Prims.Pure FStar.UInt8.t | {
"end_col": 47,
"end_line": 330,
"start_col": 36,
"start_line": 330
} |
|
Prims.Pure | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let op_Less_Less_Hat = shift_left | let op_Less_Less_Hat = | false | null | false | shift_left | {
"checked_file": "FStar.UInt8.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "FStar.UInt8.fsti"
} | [] | [
"FStar.UInt8.shift_left"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 8
/// For FStar.UIntN.fstp: anything that you fix/update here should be
/// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of
/// this module.
///
/// Except, as compared to [FStar.IntN.fstp], here:
/// - every occurrence of [int_t] has been replaced with [uint_t]
/// - every occurrence of [@%] has been replaced with [%].
/// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers
/// This module provides an abstract type for machine integers of a
/// given signedness and width. The interface is designed to be safe
/// with respect to arithmetic underflow and overflow.
/// Note, we have attempted several times to re-design this module to
/// make it more amenable to normalization and to impose less overhead
/// on the SMT solver when reasoning about machine integer
/// arithmetic. The following github issue reports on the current
/// status of that work.
///
/// https://github.com/FStarLang/FStar/issues/1757
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(** Abstract type of machine integers, with an underlying
representation using a bounded mathematical integer *)
new val t : eqtype
(** A coercion that projects a bounded mathematical integer from a
machine integer *)
val v (x:t) : Tot (uint_t n)
(** A coercion that injects a bounded mathematical integers into a
machine integer *)
val uint_to_t (x:uint_t n) : Pure t
(requires True)
(ensures (fun y -> v y = x))
(** Injection/projection inverse *)
val uv_inv (x : t) : Lemma
(ensures (uint_to_t (v x) == x))
[SMTPat (v x)]
(** Projection/injection inverse *)
val vu_inv (x : uint_t n) : Lemma
(ensures (v (uint_to_t x) == x))
[SMTPat (uint_to_t x)]
(** An alternate form of the injectivity of the [v] projection *)
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
(** Constants 0 and 1 *)
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
(**** Addition primitives *)
(** Bounds-respecting addition
The precondition enforces that the sum does not overflow,
expressing the bound as an addition on mathematical integers *)
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(** Underspecified, possibly overflowing addition:
The postcondition only enures that the result is the sum of the
arguments in case there is no overflow *)
val add_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a + v b) n ==> v a + v b = v c))
(** Addition modulo [2^n]
Machine integers can always be added, but the postcondition is now
in terms of addition modulo [2^n] on mathematical integers *)
val add_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
(**** Subtraction primitives *)
(** Bounds-respecting subtraction
The precondition enforces that the difference does not underflow,
expressing the bound as a difference on mathematical integers *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(** Underspecified, possibly overflowing subtraction:
The postcondition only enures that the result is the difference of
the arguments in case there is no underflow *)
val sub_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a - v b) n ==> v a - v b = v c))
(** Subtraction modulo [2^n]
Machine integers can always be subtractd, but the postcondition is
now in terms of subtraction modulo [2^n] on mathematical integers *)
val sub_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
(**** Multiplication primitives *)
(** Bounds-respecting multiplication
The precondition enforces that the product does not overflow,
expressing the bound as a product on mathematical integers *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(** Underspecified, possibly overflowing product
The postcondition only enures that the result is the product of
the arguments in case there is no overflow *)
val mul_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a * v b) n ==> v a * v b = v c))
(** Multiplication modulo [2^n]
Machine integers can always be multiplied, but the postcondition
is now in terms of product modulo [2^n] on mathematical integers *)
val mul_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
(**** Division primitives *)
(** Euclidean division of [a] and [b], with [b] non-zero *)
val div (a:t) (b:t{v b <> 0}) : Pure t
(requires (True))
(ensures (fun c -> v a / v b = v c))
(**** Modulo primitives *)
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b] *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
(**** Bitwise operators *)
/// Also see FStar.BV
(** Bitwise logical conjunction *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
(** Bitwise logical exclusive-or *)
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
(** Bitwise logical disjunction *)
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
(** Bitwise logical negation *)
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(**** Shift operators *)
(** Shift right with zero fill, shifting at most the integer width *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c))
(** Shift left with zero fill, shifting at most the integer width *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c))
(**** Comparison operators *)
(** Equality
Note, it is safe to also use the polymorphic decidable equality
operator [=] *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
(** Greater than *)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
(** Greater than or equal *)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
(** Less than *)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
(** Less than or equal *)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(** Unary negation *)
inline_for_extraction
let minus (a:t) = add_mod (lognot a) (uint_to_t 1)
(** The maximum value for this type *)
inline_for_extraction
let n_minus_one = UInt32.uint_to_t (n - 1)
#set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1"
(** A constant-time way to compute the equality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b
Note, the branching on [a=b] is just for proof-purposes.
*)
[@ CNoInline ]
let eq_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\
(v a <> v b ==> v c = 0)))
= let x = logxor a b in
let minus_x = minus x in
let x_or_minus_x = logor x minus_x in
let xnx = shift_right x_or_minus_x n_minus_one in
let c = sub_mod xnx (uint_to_t 1) in
if a = b then
begin
logxor_self (v a);
lognot_lemma_1 #n;
logor_lemma_1 (v x);
assert (v x = 0 /\ v minus_x = 0 /\
v x_or_minus_x = 0 /\ v xnx = 0);
assert (v c = ones n)
end
else
begin
logxor_neq_nonzero (v a) (v b);
lemma_msb_pow2 #n (v (lognot x));
lemma_msb_pow2 #n (v minus_x);
lemma_minus_zero #n (v x);
assert (v c = FStar.UInt.zero n)
end;
c
private
val lemma_sub_msbs (a:t) (b:t)
: Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b))))
(** A constant-time way to compute the [>=] inequality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a
*)
[@ CNoInline ]
let gte_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\
(v a < v b ==> v c = 0)))
= let x = a in
let y = b in
let x_xor_y = logxor x y in
let x_sub_y = sub_mod x y in
let x_sub_y_xor_y = logxor x_sub_y y in
let q = logor x_xor_y x_sub_y_xor_y in
let x_xor_q = logxor x q in
let x_xor_q_ = shift_right x_xor_q n_minus_one in
let c = sub_mod x_xor_q_ (uint_to_t 1) in
lemma_sub_msbs x y;
lemma_msb_gte (v x) (v y);
lemma_msb_gte (v y) (v x);
c
#reset-options
(*** Infix notations *)
unfold let op_Plus_Hat = add
unfold let op_Plus_Question_Hat = add_underspec
unfold let op_Plus_Percent_Hat = add_mod
unfold let op_Subtraction_Hat = sub
unfold let op_Subtraction_Question_Hat = sub_underspec
unfold let op_Subtraction_Percent_Hat = sub_mod
unfold let op_Star_Hat = mul
unfold let op_Star_Question_Hat = mul_underspec
unfold let op_Star_Percent_Hat = mul_mod
unfold let op_Slash_Hat = div
unfold let op_Percent_Hat = rem
unfold let op_Hat_Hat = logxor
unfold let op_Amp_Hat = logand | false | false | FStar.UInt8.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val op_Less_Less_Hat : a: FStar.UInt8.t -> s: FStar.UInt32.t -> Prims.Pure FStar.UInt8.t | [] | FStar.UInt8.op_Less_Less_Hat | {
"file_name": "ulib/FStar.UInt8.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: FStar.UInt8.t -> s: FStar.UInt32.t -> Prims.Pure FStar.UInt8.t | {
"end_col": 40,
"end_line": 329,
"start_col": 30,
"start_line": 329
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let op_Greater_Equals_Hat = gte | let op_Greater_Equals_Hat = | false | null | false | gte | {
"checked_file": "FStar.UInt8.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "FStar.UInt8.fsti"
} | [
"total"
] | [
"FStar.UInt8.gte"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 8
/// For FStar.UIntN.fstp: anything that you fix/update here should be
/// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of
/// this module.
///
/// Except, as compared to [FStar.IntN.fstp], here:
/// - every occurrence of [int_t] has been replaced with [uint_t]
/// - every occurrence of [@%] has been replaced with [%].
/// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers
/// This module provides an abstract type for machine integers of a
/// given signedness and width. The interface is designed to be safe
/// with respect to arithmetic underflow and overflow.
/// Note, we have attempted several times to re-design this module to
/// make it more amenable to normalization and to impose less overhead
/// on the SMT solver when reasoning about machine integer
/// arithmetic. The following github issue reports on the current
/// status of that work.
///
/// https://github.com/FStarLang/FStar/issues/1757
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(** Abstract type of machine integers, with an underlying
representation using a bounded mathematical integer *)
new val t : eqtype
(** A coercion that projects a bounded mathematical integer from a
machine integer *)
val v (x:t) : Tot (uint_t n)
(** A coercion that injects a bounded mathematical integers into a
machine integer *)
val uint_to_t (x:uint_t n) : Pure t
(requires True)
(ensures (fun y -> v y = x))
(** Injection/projection inverse *)
val uv_inv (x : t) : Lemma
(ensures (uint_to_t (v x) == x))
[SMTPat (v x)]
(** Projection/injection inverse *)
val vu_inv (x : uint_t n) : Lemma
(ensures (v (uint_to_t x) == x))
[SMTPat (uint_to_t x)]
(** An alternate form of the injectivity of the [v] projection *)
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
(** Constants 0 and 1 *)
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
(**** Addition primitives *)
(** Bounds-respecting addition
The precondition enforces that the sum does not overflow,
expressing the bound as an addition on mathematical integers *)
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(** Underspecified, possibly overflowing addition:
The postcondition only enures that the result is the sum of the
arguments in case there is no overflow *)
val add_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a + v b) n ==> v a + v b = v c))
(** Addition modulo [2^n]
Machine integers can always be added, but the postcondition is now
in terms of addition modulo [2^n] on mathematical integers *)
val add_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
(**** Subtraction primitives *)
(** Bounds-respecting subtraction
The precondition enforces that the difference does not underflow,
expressing the bound as a difference on mathematical integers *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(** Underspecified, possibly overflowing subtraction:
The postcondition only enures that the result is the difference of
the arguments in case there is no underflow *)
val sub_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a - v b) n ==> v a - v b = v c))
(** Subtraction modulo [2^n]
Machine integers can always be subtractd, but the postcondition is
now in terms of subtraction modulo [2^n] on mathematical integers *)
val sub_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
(**** Multiplication primitives *)
(** Bounds-respecting multiplication
The precondition enforces that the product does not overflow,
expressing the bound as a product on mathematical integers *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(** Underspecified, possibly overflowing product
The postcondition only enures that the result is the product of
the arguments in case there is no overflow *)
val mul_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a * v b) n ==> v a * v b = v c))
(** Multiplication modulo [2^n]
Machine integers can always be multiplied, but the postcondition
is now in terms of product modulo [2^n] on mathematical integers *)
val mul_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
(**** Division primitives *)
(** Euclidean division of [a] and [b], with [b] non-zero *)
val div (a:t) (b:t{v b <> 0}) : Pure t
(requires (True))
(ensures (fun c -> v a / v b = v c))
(**** Modulo primitives *)
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b] *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
(**** Bitwise operators *)
/// Also see FStar.BV
(** Bitwise logical conjunction *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
(** Bitwise logical exclusive-or *)
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
(** Bitwise logical disjunction *)
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
(** Bitwise logical negation *)
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(**** Shift operators *)
(** Shift right with zero fill, shifting at most the integer width *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c))
(** Shift left with zero fill, shifting at most the integer width *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c))
(**** Comparison operators *)
(** Equality
Note, it is safe to also use the polymorphic decidable equality
operator [=] *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
(** Greater than *)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
(** Greater than or equal *)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
(** Less than *)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
(** Less than or equal *)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(** Unary negation *)
inline_for_extraction
let minus (a:t) = add_mod (lognot a) (uint_to_t 1)
(** The maximum value for this type *)
inline_for_extraction
let n_minus_one = UInt32.uint_to_t (n - 1)
#set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1"
(** A constant-time way to compute the equality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b
Note, the branching on [a=b] is just for proof-purposes.
*)
[@ CNoInline ]
let eq_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\
(v a <> v b ==> v c = 0)))
= let x = logxor a b in
let minus_x = minus x in
let x_or_minus_x = logor x minus_x in
let xnx = shift_right x_or_minus_x n_minus_one in
let c = sub_mod xnx (uint_to_t 1) in
if a = b then
begin
logxor_self (v a);
lognot_lemma_1 #n;
logor_lemma_1 (v x);
assert (v x = 0 /\ v minus_x = 0 /\
v x_or_minus_x = 0 /\ v xnx = 0);
assert (v c = ones n)
end
else
begin
logxor_neq_nonzero (v a) (v b);
lemma_msb_pow2 #n (v (lognot x));
lemma_msb_pow2 #n (v minus_x);
lemma_minus_zero #n (v x);
assert (v c = FStar.UInt.zero n)
end;
c
private
val lemma_sub_msbs (a:t) (b:t)
: Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b))))
(** A constant-time way to compute the [>=] inequality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a
*)
[@ CNoInline ]
let gte_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\
(v a < v b ==> v c = 0)))
= let x = a in
let y = b in
let x_xor_y = logxor x y in
let x_sub_y = sub_mod x y in
let x_sub_y_xor_y = logxor x_sub_y y in
let q = logor x_xor_y x_sub_y_xor_y in
let x_xor_q = logxor x q in
let x_xor_q_ = shift_right x_xor_q n_minus_one in
let c = sub_mod x_xor_q_ (uint_to_t 1) in
lemma_sub_msbs x y;
lemma_msb_gte (v x) (v y);
lemma_msb_gte (v y) (v x);
c
#reset-options
(*** Infix notations *)
unfold let op_Plus_Hat = add
unfold let op_Plus_Question_Hat = add_underspec
unfold let op_Plus_Percent_Hat = add_mod
unfold let op_Subtraction_Hat = sub
unfold let op_Subtraction_Question_Hat = sub_underspec
unfold let op_Subtraction_Percent_Hat = sub_mod
unfold let op_Star_Hat = mul
unfold let op_Star_Question_Hat = mul_underspec
unfold let op_Star_Percent_Hat = mul_mod
unfold let op_Slash_Hat = div
unfold let op_Percent_Hat = rem
unfold let op_Hat_Hat = logxor
unfold let op_Amp_Hat = logand
unfold let op_Bar_Hat = logor
unfold let op_Less_Less_Hat = shift_left
unfold let op_Greater_Greater_Hat = shift_right
unfold let op_Equals_Hat = eq | false | true | FStar.UInt8.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val op_Greater_Equals_Hat : a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.bool | [] | FStar.UInt8.op_Greater_Equals_Hat | {
"file_name": "ulib/FStar.UInt8.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.bool | {
"end_col": 38,
"end_line": 333,
"start_col": 35,
"start_line": 333
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let n_minus_one = UInt32.uint_to_t (n - 1) | let n_minus_one = | false | null | false | UInt32.uint_to_t (n - 1) | {
"checked_file": "FStar.UInt8.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "FStar.UInt8.fsti"
} | [
"total"
] | [
"FStar.UInt32.uint_to_t",
"Prims.op_Subtraction",
"FStar.UInt8.n"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 8
/// For FStar.UIntN.fstp: anything that you fix/update here should be
/// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of
/// this module.
///
/// Except, as compared to [FStar.IntN.fstp], here:
/// - every occurrence of [int_t] has been replaced with [uint_t]
/// - every occurrence of [@%] has been replaced with [%].
/// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers
/// This module provides an abstract type for machine integers of a
/// given signedness and width. The interface is designed to be safe
/// with respect to arithmetic underflow and overflow.
/// Note, we have attempted several times to re-design this module to
/// make it more amenable to normalization and to impose less overhead
/// on the SMT solver when reasoning about machine integer
/// arithmetic. The following github issue reports on the current
/// status of that work.
///
/// https://github.com/FStarLang/FStar/issues/1757
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(** Abstract type of machine integers, with an underlying
representation using a bounded mathematical integer *)
new val t : eqtype
(** A coercion that projects a bounded mathematical integer from a
machine integer *)
val v (x:t) : Tot (uint_t n)
(** A coercion that injects a bounded mathematical integers into a
machine integer *)
val uint_to_t (x:uint_t n) : Pure t
(requires True)
(ensures (fun y -> v y = x))
(** Injection/projection inverse *)
val uv_inv (x : t) : Lemma
(ensures (uint_to_t (v x) == x))
[SMTPat (v x)]
(** Projection/injection inverse *)
val vu_inv (x : uint_t n) : Lemma
(ensures (v (uint_to_t x) == x))
[SMTPat (uint_to_t x)]
(** An alternate form of the injectivity of the [v] projection *)
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
(** Constants 0 and 1 *)
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
(**** Addition primitives *)
(** Bounds-respecting addition
The precondition enforces that the sum does not overflow,
expressing the bound as an addition on mathematical integers *)
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(** Underspecified, possibly overflowing addition:
The postcondition only enures that the result is the sum of the
arguments in case there is no overflow *)
val add_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a + v b) n ==> v a + v b = v c))
(** Addition modulo [2^n]
Machine integers can always be added, but the postcondition is now
in terms of addition modulo [2^n] on mathematical integers *)
val add_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
(**** Subtraction primitives *)
(** Bounds-respecting subtraction
The precondition enforces that the difference does not underflow,
expressing the bound as a difference on mathematical integers *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(** Underspecified, possibly overflowing subtraction:
The postcondition only enures that the result is the difference of
the arguments in case there is no underflow *)
val sub_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a - v b) n ==> v a - v b = v c))
(** Subtraction modulo [2^n]
Machine integers can always be subtractd, but the postcondition is
now in terms of subtraction modulo [2^n] on mathematical integers *)
val sub_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
(**** Multiplication primitives *)
(** Bounds-respecting multiplication
The precondition enforces that the product does not overflow,
expressing the bound as a product on mathematical integers *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(** Underspecified, possibly overflowing product
The postcondition only enures that the result is the product of
the arguments in case there is no overflow *)
val mul_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a * v b) n ==> v a * v b = v c))
(** Multiplication modulo [2^n]
Machine integers can always be multiplied, but the postcondition
is now in terms of product modulo [2^n] on mathematical integers *)
val mul_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
(**** Division primitives *)
(** Euclidean division of [a] and [b], with [b] non-zero *)
val div (a:t) (b:t{v b <> 0}) : Pure t
(requires (True))
(ensures (fun c -> v a / v b = v c))
(**** Modulo primitives *)
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b] *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
(**** Bitwise operators *)
/// Also see FStar.BV
(** Bitwise logical conjunction *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
(** Bitwise logical exclusive-or *)
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
(** Bitwise logical disjunction *)
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
(** Bitwise logical negation *)
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(**** Shift operators *)
(** Shift right with zero fill, shifting at most the integer width *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c))
(** Shift left with zero fill, shifting at most the integer width *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c))
(**** Comparison operators *)
(** Equality
Note, it is safe to also use the polymorphic decidable equality
operator [=] *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
(** Greater than *)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
(** Greater than or equal *)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
(** Less than *)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
(** Less than or equal *)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(** Unary negation *)
inline_for_extraction
let minus (a:t) = add_mod (lognot a) (uint_to_t 1)
(** The maximum value for this type *) | false | true | FStar.UInt8.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val n_minus_one : FStar.UInt32.t | [] | FStar.UInt8.n_minus_one | {
"file_name": "ulib/FStar.UInt8.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | FStar.UInt32.t | {
"end_col": 42,
"end_line": 243,
"start_col": 18,
"start_line": 243
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let minus (a:t) = add_mod (lognot a) (uint_to_t 1) | let minus (a: t) = | false | null | false | add_mod (lognot a) (uint_to_t 1) | {
"checked_file": "FStar.UInt8.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "FStar.UInt8.fsti"
} | [
"total"
] | [
"FStar.UInt8.t",
"FStar.UInt8.add_mod",
"FStar.UInt8.lognot",
"FStar.UInt8.uint_to_t"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 8
/// For FStar.UIntN.fstp: anything that you fix/update here should be
/// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of
/// this module.
///
/// Except, as compared to [FStar.IntN.fstp], here:
/// - every occurrence of [int_t] has been replaced with [uint_t]
/// - every occurrence of [@%] has been replaced with [%].
/// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers
/// This module provides an abstract type for machine integers of a
/// given signedness and width. The interface is designed to be safe
/// with respect to arithmetic underflow and overflow.
/// Note, we have attempted several times to re-design this module to
/// make it more amenable to normalization and to impose less overhead
/// on the SMT solver when reasoning about machine integer
/// arithmetic. The following github issue reports on the current
/// status of that work.
///
/// https://github.com/FStarLang/FStar/issues/1757
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(** Abstract type of machine integers, with an underlying
representation using a bounded mathematical integer *)
new val t : eqtype
(** A coercion that projects a bounded mathematical integer from a
machine integer *)
val v (x:t) : Tot (uint_t n)
(** A coercion that injects a bounded mathematical integers into a
machine integer *)
val uint_to_t (x:uint_t n) : Pure t
(requires True)
(ensures (fun y -> v y = x))
(** Injection/projection inverse *)
val uv_inv (x : t) : Lemma
(ensures (uint_to_t (v x) == x))
[SMTPat (v x)]
(** Projection/injection inverse *)
val vu_inv (x : uint_t n) : Lemma
(ensures (v (uint_to_t x) == x))
[SMTPat (uint_to_t x)]
(** An alternate form of the injectivity of the [v] projection *)
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
(** Constants 0 and 1 *)
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
(**** Addition primitives *)
(** Bounds-respecting addition
The precondition enforces that the sum does not overflow,
expressing the bound as an addition on mathematical integers *)
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(** Underspecified, possibly overflowing addition:
The postcondition only enures that the result is the sum of the
arguments in case there is no overflow *)
val add_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a + v b) n ==> v a + v b = v c))
(** Addition modulo [2^n]
Machine integers can always be added, but the postcondition is now
in terms of addition modulo [2^n] on mathematical integers *)
val add_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
(**** Subtraction primitives *)
(** Bounds-respecting subtraction
The precondition enforces that the difference does not underflow,
expressing the bound as a difference on mathematical integers *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(** Underspecified, possibly overflowing subtraction:
The postcondition only enures that the result is the difference of
the arguments in case there is no underflow *)
val sub_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a - v b) n ==> v a - v b = v c))
(** Subtraction modulo [2^n]
Machine integers can always be subtractd, but the postcondition is
now in terms of subtraction modulo [2^n] on mathematical integers *)
val sub_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
(**** Multiplication primitives *)
(** Bounds-respecting multiplication
The precondition enforces that the product does not overflow,
expressing the bound as a product on mathematical integers *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(** Underspecified, possibly overflowing product
The postcondition only enures that the result is the product of
the arguments in case there is no overflow *)
val mul_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a * v b) n ==> v a * v b = v c))
(** Multiplication modulo [2^n]
Machine integers can always be multiplied, but the postcondition
is now in terms of product modulo [2^n] on mathematical integers *)
val mul_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
(**** Division primitives *)
(** Euclidean division of [a] and [b], with [b] non-zero *)
val div (a:t) (b:t{v b <> 0}) : Pure t
(requires (True))
(ensures (fun c -> v a / v b = v c))
(**** Modulo primitives *)
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b] *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
(**** Bitwise operators *)
/// Also see FStar.BV
(** Bitwise logical conjunction *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
(** Bitwise logical exclusive-or *)
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
(** Bitwise logical disjunction *)
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
(** Bitwise logical negation *)
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(**** Shift operators *)
(** Shift right with zero fill, shifting at most the integer width *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c))
(** Shift left with zero fill, shifting at most the integer width *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c))
(**** Comparison operators *)
(** Equality
Note, it is safe to also use the polymorphic decidable equality
operator [=] *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
(** Greater than *)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
(** Greater than or equal *)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
(** Less than *)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
(** Less than or equal *)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(** Unary negation *) | false | true | FStar.UInt8.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val minus : a: FStar.UInt8.t -> FStar.UInt8.t | [] | FStar.UInt8.minus | {
"file_name": "ulib/FStar.UInt8.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: FStar.UInt8.t -> FStar.UInt8.t | {
"end_col": 50,
"end_line": 239,
"start_col": 18,
"start_line": 239
} |
|
Prims.Pure | val gte_mask (a b: t)
: Pure t
(requires True)
(ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let gte_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\
(v a < v b ==> v c = 0)))
= let x = a in
let y = b in
let x_xor_y = logxor x y in
let x_sub_y = sub_mod x y in
let x_sub_y_xor_y = logxor x_sub_y y in
let q = logor x_xor_y x_sub_y_xor_y in
let x_xor_q = logxor x q in
let x_xor_q_ = shift_right x_xor_q n_minus_one in
let c = sub_mod x_xor_q_ (uint_to_t 1) in
lemma_sub_msbs x y;
lemma_msb_gte (v x) (v y);
lemma_msb_gte (v y) (v x);
c | val gte_mask (a b: t)
: Pure t
(requires True)
(ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0)))
let gte_mask (a b: t)
: Pure t
(requires True)
(ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = | false | null | false | let x = a in
let y = b in
let x_xor_y = logxor x y in
let x_sub_y = sub_mod x y in
let x_sub_y_xor_y = logxor x_sub_y y in
let q = logor x_xor_y x_sub_y_xor_y in
let x_xor_q = logxor x q in
let x_xor_q_ = shift_right x_xor_q n_minus_one in
let c = sub_mod x_xor_q_ (uint_to_t 1) in
lemma_sub_msbs x y;
lemma_msb_gte (v x) (v y);
lemma_msb_gte (v y) (v x);
c | {
"checked_file": "FStar.UInt8.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "FStar.UInt8.fsti"
} | [] | [
"FStar.UInt8.t",
"Prims.unit",
"FStar.UInt.lemma_msb_gte",
"FStar.UInt8.n",
"FStar.UInt8.v",
"FStar.UInt8.lemma_sub_msbs",
"FStar.UInt8.sub_mod",
"FStar.UInt8.uint_to_t",
"FStar.UInt8.shift_right",
"FStar.UInt8.n_minus_one",
"FStar.UInt8.logxor",
"FStar.UInt8.logor",
"Prims.l_True",
"Prims.l_and",
"Prims.l_imp",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Subtraction",
"Prims.pow2",
"Prims.op_LessThan"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 8
/// For FStar.UIntN.fstp: anything that you fix/update here should be
/// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of
/// this module.
///
/// Except, as compared to [FStar.IntN.fstp], here:
/// - every occurrence of [int_t] has been replaced with [uint_t]
/// - every occurrence of [@%] has been replaced with [%].
/// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers
/// This module provides an abstract type for machine integers of a
/// given signedness and width. The interface is designed to be safe
/// with respect to arithmetic underflow and overflow.
/// Note, we have attempted several times to re-design this module to
/// make it more amenable to normalization and to impose less overhead
/// on the SMT solver when reasoning about machine integer
/// arithmetic. The following github issue reports on the current
/// status of that work.
///
/// https://github.com/FStarLang/FStar/issues/1757
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(** Abstract type of machine integers, with an underlying
representation using a bounded mathematical integer *)
new val t : eqtype
(** A coercion that projects a bounded mathematical integer from a
machine integer *)
val v (x:t) : Tot (uint_t n)
(** A coercion that injects a bounded mathematical integers into a
machine integer *)
val uint_to_t (x:uint_t n) : Pure t
(requires True)
(ensures (fun y -> v y = x))
(** Injection/projection inverse *)
val uv_inv (x : t) : Lemma
(ensures (uint_to_t (v x) == x))
[SMTPat (v x)]
(** Projection/injection inverse *)
val vu_inv (x : uint_t n) : Lemma
(ensures (v (uint_to_t x) == x))
[SMTPat (uint_to_t x)]
(** An alternate form of the injectivity of the [v] projection *)
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
(** Constants 0 and 1 *)
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
(**** Addition primitives *)
(** Bounds-respecting addition
The precondition enforces that the sum does not overflow,
expressing the bound as an addition on mathematical integers *)
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(** Underspecified, possibly overflowing addition:
The postcondition only enures that the result is the sum of the
arguments in case there is no overflow *)
val add_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a + v b) n ==> v a + v b = v c))
(** Addition modulo [2^n]
Machine integers can always be added, but the postcondition is now
in terms of addition modulo [2^n] on mathematical integers *)
val add_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
(**** Subtraction primitives *)
(** Bounds-respecting subtraction
The precondition enforces that the difference does not underflow,
expressing the bound as a difference on mathematical integers *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(** Underspecified, possibly overflowing subtraction:
The postcondition only enures that the result is the difference of
the arguments in case there is no underflow *)
val sub_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a - v b) n ==> v a - v b = v c))
(** Subtraction modulo [2^n]
Machine integers can always be subtractd, but the postcondition is
now in terms of subtraction modulo [2^n] on mathematical integers *)
val sub_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
(**** Multiplication primitives *)
(** Bounds-respecting multiplication
The precondition enforces that the product does not overflow,
expressing the bound as a product on mathematical integers *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(** Underspecified, possibly overflowing product
The postcondition only enures that the result is the product of
the arguments in case there is no overflow *)
val mul_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a * v b) n ==> v a * v b = v c))
(** Multiplication modulo [2^n]
Machine integers can always be multiplied, but the postcondition
is now in terms of product modulo [2^n] on mathematical integers *)
val mul_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
(**** Division primitives *)
(** Euclidean division of [a] and [b], with [b] non-zero *)
val div (a:t) (b:t{v b <> 0}) : Pure t
(requires (True))
(ensures (fun c -> v a / v b = v c))
(**** Modulo primitives *)
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b] *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
(**** Bitwise operators *)
/// Also see FStar.BV
(** Bitwise logical conjunction *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
(** Bitwise logical exclusive-or *)
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
(** Bitwise logical disjunction *)
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
(** Bitwise logical negation *)
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(**** Shift operators *)
(** Shift right with zero fill, shifting at most the integer width *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c))
(** Shift left with zero fill, shifting at most the integer width *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c))
(**** Comparison operators *)
(** Equality
Note, it is safe to also use the polymorphic decidable equality
operator [=] *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
(** Greater than *)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
(** Greater than or equal *)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
(** Less than *)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
(** Less than or equal *)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(** Unary negation *)
inline_for_extraction
let minus (a:t) = add_mod (lognot a) (uint_to_t 1)
(** The maximum value for this type *)
inline_for_extraction
let n_minus_one = UInt32.uint_to_t (n - 1)
#set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1"
(** A constant-time way to compute the equality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b
Note, the branching on [a=b] is just for proof-purposes.
*)
[@ CNoInline ]
let eq_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\
(v a <> v b ==> v c = 0)))
= let x = logxor a b in
let minus_x = minus x in
let x_or_minus_x = logor x minus_x in
let xnx = shift_right x_or_minus_x n_minus_one in
let c = sub_mod xnx (uint_to_t 1) in
if a = b then
begin
logxor_self (v a);
lognot_lemma_1 #n;
logor_lemma_1 (v x);
assert (v x = 0 /\ v minus_x = 0 /\
v x_or_minus_x = 0 /\ v xnx = 0);
assert (v c = ones n)
end
else
begin
logxor_neq_nonzero (v a) (v b);
lemma_msb_pow2 #n (v (lognot x));
lemma_msb_pow2 #n (v minus_x);
lemma_minus_zero #n (v x);
assert (v c = FStar.UInt.zero n)
end;
c
private
val lemma_sub_msbs (a:t) (b:t)
: Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b))))
(** A constant-time way to compute the [>=] inequality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a
*)
[@ CNoInline ]
let gte_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ | false | false | FStar.UInt8.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 1,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 80,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val gte_mask (a b: t)
: Pure t
(requires True)
(ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) | [] | FStar.UInt8.gte_mask | {
"file_name": "ulib/FStar.UInt8.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t | {
"end_col": 5,
"end_line": 311,
"start_col": 3,
"start_line": 299
} |
Prims.Pure | val eq_mask (a b: t)
: Pure t
(requires True)
(ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let eq_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\
(v a <> v b ==> v c = 0)))
= let x = logxor a b in
let minus_x = minus x in
let x_or_minus_x = logor x minus_x in
let xnx = shift_right x_or_minus_x n_minus_one in
let c = sub_mod xnx (uint_to_t 1) in
if a = b then
begin
logxor_self (v a);
lognot_lemma_1 #n;
logor_lemma_1 (v x);
assert (v x = 0 /\ v minus_x = 0 /\
v x_or_minus_x = 0 /\ v xnx = 0);
assert (v c = ones n)
end
else
begin
logxor_neq_nonzero (v a) (v b);
lemma_msb_pow2 #n (v (lognot x));
lemma_msb_pow2 #n (v minus_x);
lemma_minus_zero #n (v x);
assert (v c = FStar.UInt.zero n)
end;
c | val eq_mask (a b: t)
: Pure t
(requires True)
(ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0)))
let eq_mask (a b: t)
: Pure t
(requires True)
(ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = | false | null | false | let x = logxor a b in
let minus_x = minus x in
let x_or_minus_x = logor x minus_x in
let xnx = shift_right x_or_minus_x n_minus_one in
let c = sub_mod xnx (uint_to_t 1) in
if a = b
then
(logxor_self (v a);
lognot_lemma_1 #n;
logor_lemma_1 (v x);
assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0);
assert (v c = ones n))
else
(logxor_neq_nonzero (v a) (v b);
lemma_msb_pow2 #n (v (lognot x));
lemma_msb_pow2 #n (v minus_x);
lemma_minus_zero #n (v x);
assert (v c = FStar.UInt.zero n));
c | {
"checked_file": "FStar.UInt8.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "FStar.UInt8.fsti"
} | [] | [
"FStar.UInt8.t",
"Prims.unit",
"Prims.op_Equality",
"Prims._assert",
"Prims.b2t",
"FStar.UInt.uint_t",
"FStar.UInt8.n",
"FStar.UInt8.v",
"FStar.UInt.ones",
"Prims.l_and",
"Prims.int",
"FStar.UInt.logor_lemma_1",
"FStar.UInt.lognot_lemma_1",
"FStar.UInt.logxor_self",
"Prims.bool",
"FStar.UInt.zero",
"FStar.UInt.lemma_minus_zero",
"FStar.UInt.lemma_msb_pow2",
"FStar.UInt8.lognot",
"FStar.UInt.logxor_neq_nonzero",
"FStar.UInt8.sub_mod",
"FStar.UInt8.uint_to_t",
"FStar.UInt8.shift_right",
"FStar.UInt8.n_minus_one",
"FStar.UInt8.logor",
"FStar.UInt8.minus",
"FStar.UInt8.logxor",
"Prims.l_True",
"Prims.l_imp",
"Prims.op_Subtraction",
"Prims.pow2",
"Prims.op_disEquality"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 8
/// For FStar.UIntN.fstp: anything that you fix/update here should be
/// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of
/// this module.
///
/// Except, as compared to [FStar.IntN.fstp], here:
/// - every occurrence of [int_t] has been replaced with [uint_t]
/// - every occurrence of [@%] has been replaced with [%].
/// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers
/// This module provides an abstract type for machine integers of a
/// given signedness and width. The interface is designed to be safe
/// with respect to arithmetic underflow and overflow.
/// Note, we have attempted several times to re-design this module to
/// make it more amenable to normalization and to impose less overhead
/// on the SMT solver when reasoning about machine integer
/// arithmetic. The following github issue reports on the current
/// status of that work.
///
/// https://github.com/FStarLang/FStar/issues/1757
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(** Abstract type of machine integers, with an underlying
representation using a bounded mathematical integer *)
new val t : eqtype
(** A coercion that projects a bounded mathematical integer from a
machine integer *)
val v (x:t) : Tot (uint_t n)
(** A coercion that injects a bounded mathematical integers into a
machine integer *)
val uint_to_t (x:uint_t n) : Pure t
(requires True)
(ensures (fun y -> v y = x))
(** Injection/projection inverse *)
val uv_inv (x : t) : Lemma
(ensures (uint_to_t (v x) == x))
[SMTPat (v x)]
(** Projection/injection inverse *)
val vu_inv (x : uint_t n) : Lemma
(ensures (v (uint_to_t x) == x))
[SMTPat (uint_to_t x)]
(** An alternate form of the injectivity of the [v] projection *)
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
(** Constants 0 and 1 *)
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
(**** Addition primitives *)
(** Bounds-respecting addition
The precondition enforces that the sum does not overflow,
expressing the bound as an addition on mathematical integers *)
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(** Underspecified, possibly overflowing addition:
The postcondition only enures that the result is the sum of the
arguments in case there is no overflow *)
val add_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a + v b) n ==> v a + v b = v c))
(** Addition modulo [2^n]
Machine integers can always be added, but the postcondition is now
in terms of addition modulo [2^n] on mathematical integers *)
val add_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
(**** Subtraction primitives *)
(** Bounds-respecting subtraction
The precondition enforces that the difference does not underflow,
expressing the bound as a difference on mathematical integers *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(** Underspecified, possibly overflowing subtraction:
The postcondition only enures that the result is the difference of
the arguments in case there is no underflow *)
val sub_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a - v b) n ==> v a - v b = v c))
(** Subtraction modulo [2^n]
Machine integers can always be subtractd, but the postcondition is
now in terms of subtraction modulo [2^n] on mathematical integers *)
val sub_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
(**** Multiplication primitives *)
(** Bounds-respecting multiplication
The precondition enforces that the product does not overflow,
expressing the bound as a product on mathematical integers *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(** Underspecified, possibly overflowing product
The postcondition only enures that the result is the product of
the arguments in case there is no overflow *)
val mul_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a * v b) n ==> v a * v b = v c))
(** Multiplication modulo [2^n]
Machine integers can always be multiplied, but the postcondition
is now in terms of product modulo [2^n] on mathematical integers *)
val mul_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
(**** Division primitives *)
(** Euclidean division of [a] and [b], with [b] non-zero *)
val div (a:t) (b:t{v b <> 0}) : Pure t
(requires (True))
(ensures (fun c -> v a / v b = v c))
(**** Modulo primitives *)
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b] *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
(**** Bitwise operators *)
/// Also see FStar.BV
(** Bitwise logical conjunction *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
(** Bitwise logical exclusive-or *)
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
(** Bitwise logical disjunction *)
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
(** Bitwise logical negation *)
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(**** Shift operators *)
(** Shift right with zero fill, shifting at most the integer width *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c))
(** Shift left with zero fill, shifting at most the integer width *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c))
(**** Comparison operators *)
(** Equality
Note, it is safe to also use the polymorphic decidable equality
operator [=] *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
(** Greater than *)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
(** Greater than or equal *)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
(** Less than *)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
(** Less than or equal *)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(** Unary negation *)
inline_for_extraction
let minus (a:t) = add_mod (lognot a) (uint_to_t 1)
(** The maximum value for this type *)
inline_for_extraction
let n_minus_one = UInt32.uint_to_t (n - 1)
#set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1"
(** A constant-time way to compute the equality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b
Note, the branching on [a=b] is just for proof-purposes.
*)
[@ CNoInline ]
let eq_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ | false | false | FStar.UInt8.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 1,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 80,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val eq_mask (a b: t)
: Pure t
(requires True)
(ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) | [] | FStar.UInt8.eq_mask | {
"file_name": "ulib/FStar.UInt8.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t | {
"end_col": 5,
"end_line": 282,
"start_col": 3,
"start_line": 260
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "EverCrypt.Error",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Agile.AEAD",
"short_module": "Spec"
},
{
"abbrev": false,
"full_module": "Spec.Agile.AEAD",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bytes = Seq.seq uint8 | let bytes = | false | null | false | Seq.seq uint8 | {
"checked_file": "EverCrypt.AEAD.fsti.checked",
"dependencies": [
"Vale.X64.CPU_Features_s.fst.checked",
"Spec.Agile.AEAD.fsti.checked",
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"EverCrypt.TargetConfig.fsti.checked",
"EverCrypt.Error.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.AEAD.fsti"
} | [
"total"
] | [
"FStar.Seq.Base.seq",
"Spec.Agile.AEAD.uint8"
] | [] | module EverCrypt.AEAD
/// The new AEAD interface for EverCrypt, which supersedes the functions found
/// in EverCrypt.fst
///
/// The expected usage for this module is as follows:
/// - client expands key, obtaining an ``expanded_key a``
/// - client uses ``encrypt``/``decrypt`` with the same ``expanded_key a`` repeatedly.
///
/// This usage protocol is enforced for verified F* clients but, naturally,
/// isn't for C clients.
module S = FStar.Seq
module G = FStar.Ghost
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Integers
open Spec.Agile.AEAD
module Spec = Spec.Agile.AEAD
open EverCrypt.Error
/// Note: if the fst and the fsti are running on different fuel settings,
/// something that works in the interactive mode for the fsti, when
/// "re-interpreted" in the fst, might stop working!
#set-options "--max_fuel 0 --max_ifuel 0"
/// Abstract footprints, with the same machinery as EverCrypt.Hash
/// --------------------------------------------------------------
///
/// Differences from EverCrypt.Hash include: combined framing lemma, the
/// equivalent of the ``repr`` function does *not* require the memory, and order
/// of arguments to be in line with ``B.as_seq``, etc. which take the memory
/// first.
[@@ CAbstractStruct; Comment "Both encryption and decryption require a state that holds the key.
The state may be reused as many times as desired."]
val state_s: alg -> Type0
inline_for_extraction noextract
let state alg = B.pointer (state_s alg)
inline_for_extraction noextract
val freeable_s: #(a: alg) -> state_s a -> Type0
inline_for_extraction noextract
let freeable (#a: alg) (h: HS.mem) (p: state a) =
B.freeable p /\ freeable_s (B.deref h p)
inline_for_extraction noextract
let preserves_freeable #a (s: state a) (h0 h1: HS.mem): Type0 =
freeable h0 s ==> freeable h1 s
val footprint_s: #a:alg -> state_s a -> GTot B.loc
let footprint (#a:alg) (m: HS.mem) (s: state a) =
B.(loc_union (loc_addr_of_buffer s) (footprint_s (B.deref m s)))
// TR: the following pattern is necessary because, if we generically
// add such a pattern directly on `loc_includes_union_l`, then
// verification will blowup whenever both sides of `loc_includes` are
// `loc_union`s. We would like to break all unions on the
// right-hand-side of `loc_includes` first, using
// `loc_includes_union_r`. Here the pattern is on `footprint_s`,
// because we already expose the fact that `footprint` is a
// `loc_union`. (In other words, the pattern should be on every
// smallest location that is not exposed to be a `loc_union`.)
let loc_includes_union_l_footprint_s
(l1 l2: B.loc) (#a: alg) (s: state_s a)
: Lemma
(requires (
B.loc_includes l1 (footprint_s s) \/ B.loc_includes l2 (footprint_s s)
))
(ensures (B.loc_includes (B.loc_union l1 l2) (footprint_s s)))
[SMTPat (B.loc_includes (B.loc_union l1 l2) (footprint_s s))]
= B.loc_includes_union_l l1 l2 (footprint_s s)
/// The configuration preconditions
inline_for_extraction noextract
let config_pre a =
match a with
| AES128_GCM
| AES256_GCM ->
EverCrypt.TargetConfig.hacl_can_compile_vale /\
Vale.X64.CPU_Features_s.(aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\
movbe_enabled /\ sse_enabled)
| CHACHA20_POLY1305 -> True
| _ -> True
inline_for_extraction noextract
val invariant_s: (#a:alg) -> HS.mem -> state_s a -> Type0
inline_for_extraction noextract
let invariant (#a:alg) (m: HS.mem) (s: state a) =
B.live m s /\
B.(loc_disjoint (loc_addr_of_buffer s) (footprint_s (B.deref m s))) /\
invariant_s m (B.get m s 0)
val invariant_loc_in_footprint
(#a: alg)
(s: state a)
(m: HS.mem)
: Lemma
(requires (invariant m s))
(ensures (B.loc_in (footprint m s) m))
[SMTPat (invariant m s)]
val frame_invariant: #a:alg -> l:B.loc -> s:state a -> h0:HS.mem -> h1:HS.mem -> Lemma
(requires (
invariant h0 s /\
B.loc_disjoint l (footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
invariant h1 s /\
footprint h0 s == footprint h1 s))
[ SMTPat (invariant h1 s); SMTPat (B.modifies l h0 h1) ]
/// Actual stateful API
/// ------------------- | false | true | EverCrypt.AEAD.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bytes : Type0 | [] | EverCrypt.AEAD.bytes | {
"file_name": "providers/evercrypt/EverCrypt.AEAD.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Type0 | {
"end_col": 25,
"end_line": 129,
"start_col": 12,
"start_line": 129
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "EverCrypt.Error",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Agile.AEAD",
"short_module": "Spec"
},
{
"abbrev": false,
"full_module": "Spec.Agile.AEAD",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let freeable (#a: alg) (h: HS.mem) (p: state a) =
B.freeable p /\ freeable_s (B.deref h p) | let freeable (#a: alg) (h: HS.mem) (p: state a) = | false | null | false | B.freeable p /\ freeable_s (B.deref h p) | {
"checked_file": "EverCrypt.AEAD.fsti.checked",
"dependencies": [
"Vale.X64.CPU_Features_s.fst.checked",
"Spec.Agile.AEAD.fsti.checked",
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"EverCrypt.TargetConfig.fsti.checked",
"EverCrypt.Error.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.AEAD.fsti"
} | [
"total"
] | [
"Spec.Agile.AEAD.alg",
"FStar.Monotonic.HyperStack.mem",
"EverCrypt.AEAD.state",
"Prims.l_and",
"LowStar.Monotonic.Buffer.freeable",
"EverCrypt.AEAD.state_s",
"LowStar.Buffer.trivial_preorder",
"EverCrypt.AEAD.freeable_s",
"LowStar.Monotonic.Buffer.deref",
"Prims.logical"
] | [] | module EverCrypt.AEAD
/// The new AEAD interface for EverCrypt, which supersedes the functions found
/// in EverCrypt.fst
///
/// The expected usage for this module is as follows:
/// - client expands key, obtaining an ``expanded_key a``
/// - client uses ``encrypt``/``decrypt`` with the same ``expanded_key a`` repeatedly.
///
/// This usage protocol is enforced for verified F* clients but, naturally,
/// isn't for C clients.
module S = FStar.Seq
module G = FStar.Ghost
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Integers
open Spec.Agile.AEAD
module Spec = Spec.Agile.AEAD
open EverCrypt.Error
/// Note: if the fst and the fsti are running on different fuel settings,
/// something that works in the interactive mode for the fsti, when
/// "re-interpreted" in the fst, might stop working!
#set-options "--max_fuel 0 --max_ifuel 0"
/// Abstract footprints, with the same machinery as EverCrypt.Hash
/// --------------------------------------------------------------
///
/// Differences from EverCrypt.Hash include: combined framing lemma, the
/// equivalent of the ``repr`` function does *not* require the memory, and order
/// of arguments to be in line with ``B.as_seq``, etc. which take the memory
/// first.
[@@ CAbstractStruct; Comment "Both encryption and decryption require a state that holds the key.
The state may be reused as many times as desired."]
val state_s: alg -> Type0
inline_for_extraction noextract
let state alg = B.pointer (state_s alg)
inline_for_extraction noextract
val freeable_s: #(a: alg) -> state_s a -> Type0
inline_for_extraction noextract | false | false | EverCrypt.AEAD.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val freeable : h: FStar.Monotonic.HyperStack.mem -> p: EverCrypt.AEAD.state a -> Prims.logical | [] | EverCrypt.AEAD.freeable | {
"file_name": "providers/evercrypt/EverCrypt.AEAD.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | h: FStar.Monotonic.HyperStack.mem -> p: EverCrypt.AEAD.state a -> Prims.logical | {
"end_col": 42,
"end_line": 54,
"start_col": 2,
"start_line": 54
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "EverCrypt.Error",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Agile.AEAD",
"short_module": "Spec"
},
{
"abbrev": false,
"full_module": "Spec.Agile.AEAD",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let state alg = B.pointer (state_s alg) | let state alg = | false | null | false | B.pointer (state_s alg) | {
"checked_file": "EverCrypt.AEAD.fsti.checked",
"dependencies": [
"Vale.X64.CPU_Features_s.fst.checked",
"Spec.Agile.AEAD.fsti.checked",
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"EverCrypt.TargetConfig.fsti.checked",
"EverCrypt.Error.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.AEAD.fsti"
} | [
"total"
] | [
"Spec.Agile.AEAD.alg",
"LowStar.Buffer.pointer",
"EverCrypt.AEAD.state_s"
] | [] | module EverCrypt.AEAD
/// The new AEAD interface for EverCrypt, which supersedes the functions found
/// in EverCrypt.fst
///
/// The expected usage for this module is as follows:
/// - client expands key, obtaining an ``expanded_key a``
/// - client uses ``encrypt``/``decrypt`` with the same ``expanded_key a`` repeatedly.
///
/// This usage protocol is enforced for verified F* clients but, naturally,
/// isn't for C clients.
module S = FStar.Seq
module G = FStar.Ghost
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Integers
open Spec.Agile.AEAD
module Spec = Spec.Agile.AEAD
open EverCrypt.Error
/// Note: if the fst and the fsti are running on different fuel settings,
/// something that works in the interactive mode for the fsti, when
/// "re-interpreted" in the fst, might stop working!
#set-options "--max_fuel 0 --max_ifuel 0"
/// Abstract footprints, with the same machinery as EverCrypt.Hash
/// --------------------------------------------------------------
///
/// Differences from EverCrypt.Hash include: combined framing lemma, the
/// equivalent of the ``repr`` function does *not* require the memory, and order
/// of arguments to be in line with ``B.as_seq``, etc. which take the memory
/// first.
[@@ CAbstractStruct; Comment "Both encryption and decryption require a state that holds the key.
The state may be reused as many times as desired."]
val state_s: alg -> Type0 | false | true | EverCrypt.AEAD.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val state : alg: Spec.Agile.AEAD.alg -> Type0 | [] | EverCrypt.AEAD.state | {
"file_name": "providers/evercrypt/EverCrypt.AEAD.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | alg: Spec.Agile.AEAD.alg -> Type0 | {
"end_col": 39,
"end_line": 47,
"start_col": 16,
"start_line": 47
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "EverCrypt.Error",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Agile.AEAD",
"short_module": "Spec"
},
{
"abbrev": false,
"full_module": "Spec.Agile.AEAD",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let ad_p a = ad:B.buffer uint8 { B.length ad <= max_length a } | let ad_p a = | false | null | false | ad: B.buffer uint8 {B.length ad <= max_length a} | {
"checked_file": "EverCrypt.AEAD.fsti.checked",
"dependencies": [
"Vale.X64.CPU_Features_s.fst.checked",
"Spec.Agile.AEAD.fsti.checked",
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"EverCrypt.TargetConfig.fsti.checked",
"EverCrypt.Error.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.AEAD.fsti"
} | [
"total"
] | [
"Spec.Agile.AEAD.supported_alg",
"LowStar.Buffer.buffer",
"Spec.Agile.AEAD.uint8",
"Prims.b2t",
"FStar.Integers.op_Less_Equals",
"FStar.Integers.Signed",
"FStar.Integers.Winfinite",
"LowStar.Monotonic.Buffer.length",
"LowStar.Buffer.trivial_preorder",
"Spec.Agile.AEAD.max_length"
] | [] | module EverCrypt.AEAD
/// The new AEAD interface for EverCrypt, which supersedes the functions found
/// in EverCrypt.fst
///
/// The expected usage for this module is as follows:
/// - client expands key, obtaining an ``expanded_key a``
/// - client uses ``encrypt``/``decrypt`` with the same ``expanded_key a`` repeatedly.
///
/// This usage protocol is enforced for verified F* clients but, naturally,
/// isn't for C clients.
module S = FStar.Seq
module G = FStar.Ghost
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Integers
open Spec.Agile.AEAD
module Spec = Spec.Agile.AEAD
open EverCrypt.Error
/// Note: if the fst and the fsti are running on different fuel settings,
/// something that works in the interactive mode for the fsti, when
/// "re-interpreted" in the fst, might stop working!
#set-options "--max_fuel 0 --max_ifuel 0"
/// Abstract footprints, with the same machinery as EverCrypt.Hash
/// --------------------------------------------------------------
///
/// Differences from EverCrypt.Hash include: combined framing lemma, the
/// equivalent of the ``repr`` function does *not* require the memory, and order
/// of arguments to be in line with ``B.as_seq``, etc. which take the memory
/// first.
[@@ CAbstractStruct; Comment "Both encryption and decryption require a state that holds the key.
The state may be reused as many times as desired."]
val state_s: alg -> Type0
inline_for_extraction noextract
let state alg = B.pointer (state_s alg)
inline_for_extraction noextract
val freeable_s: #(a: alg) -> state_s a -> Type0
inline_for_extraction noextract
let freeable (#a: alg) (h: HS.mem) (p: state a) =
B.freeable p /\ freeable_s (B.deref h p)
inline_for_extraction noextract
let preserves_freeable #a (s: state a) (h0 h1: HS.mem): Type0 =
freeable h0 s ==> freeable h1 s
val footprint_s: #a:alg -> state_s a -> GTot B.loc
let footprint (#a:alg) (m: HS.mem) (s: state a) =
B.(loc_union (loc_addr_of_buffer s) (footprint_s (B.deref m s)))
// TR: the following pattern is necessary because, if we generically
// add such a pattern directly on `loc_includes_union_l`, then
// verification will blowup whenever both sides of `loc_includes` are
// `loc_union`s. We would like to break all unions on the
// right-hand-side of `loc_includes` first, using
// `loc_includes_union_r`. Here the pattern is on `footprint_s`,
// because we already expose the fact that `footprint` is a
// `loc_union`. (In other words, the pattern should be on every
// smallest location that is not exposed to be a `loc_union`.)
let loc_includes_union_l_footprint_s
(l1 l2: B.loc) (#a: alg) (s: state_s a)
: Lemma
(requires (
B.loc_includes l1 (footprint_s s) \/ B.loc_includes l2 (footprint_s s)
))
(ensures (B.loc_includes (B.loc_union l1 l2) (footprint_s s)))
[SMTPat (B.loc_includes (B.loc_union l1 l2) (footprint_s s))]
= B.loc_includes_union_l l1 l2 (footprint_s s)
/// The configuration preconditions
inline_for_extraction noextract
let config_pre a =
match a with
| AES128_GCM
| AES256_GCM ->
EverCrypt.TargetConfig.hacl_can_compile_vale /\
Vale.X64.CPU_Features_s.(aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\
movbe_enabled /\ sse_enabled)
| CHACHA20_POLY1305 -> True
| _ -> True
inline_for_extraction noextract
val invariant_s: (#a:alg) -> HS.mem -> state_s a -> Type0
inline_for_extraction noextract
let invariant (#a:alg) (m: HS.mem) (s: state a) =
B.live m s /\
B.(loc_disjoint (loc_addr_of_buffer s) (footprint_s (B.deref m s))) /\
invariant_s m (B.get m s 0)
val invariant_loc_in_footprint
(#a: alg)
(s: state a)
(m: HS.mem)
: Lemma
(requires (invariant m s))
(ensures (B.loc_in (footprint m s) m))
[SMTPat (invariant m s)]
val frame_invariant: #a:alg -> l:B.loc -> s:state a -> h0:HS.mem -> h1:HS.mem -> Lemma
(requires (
invariant h0 s /\
B.loc_disjoint l (footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
invariant h1 s /\
footprint h0 s == footprint h1 s))
[ SMTPat (invariant h1 s); SMTPat (B.modifies l h0 h1) ]
/// Actual stateful API
/// -------------------
noextract
let bytes = Seq.seq uint8
[@@ Comment "Return the algorithm used in the AEAD state.
@param s State of the AEAD algorithm.
@return Algorithm used in the AEAD state."]
val alg_of_state (a: G.erased alg) (s: state (G.reveal a)): Stack alg
(requires (fun h0 -> invariant #(G.reveal a) h0 s))
(ensures (fun h0 a' h1 ->
a' == G.reveal a /\
h0 == h1))
/// The API is constructed in a way that one can always get the original key
/// value behind a state, any any memory.
val as_kv: (#a: alg) -> state_s a -> GTot (kv a)
inline_for_extraction noextract
let create_in_st (a: alg) =
r:HS.rid ->
dst:B.pointer (B.pointer_or_null (state_s a)) ->
k:B.buffer uint8 { B.length k = key_length a } ->
ST error_code
(requires fun h0 ->
ST.is_eternal_region r /\
B.live h0 k /\ B.live h0 dst)
(ensures fun h0 e h1 ->
match e with
| UnsupportedAlgorithm ->
B.(modifies loc_none h0 h1)
| Success ->
let s = B.deref h1 dst in
// Sanity
is_supported_alg a /\
not (B.g_is_null s) /\
invariant h1 s /\
// Memory stuff
B.(modifies (loc_buffer dst) h0 h1) /\
B.fresh_loc (footprint h1 s) h0 h1 /\
B.(loc_includes (loc_region_only true r) (footprint h1 s)) /\
freeable h1 s /\
// Useful stuff
as_kv (B.deref h1 s) == B.as_seq h0 k
| _ -> False)
/// Same function as above, but in the StackInline effect, so that it is possible
/// to use AES GCM while staying in the Stack effect. In this case, the state should
/// be allocated/deallocated just before/after any encryption or decryption (which
/// is not very problematic during, for example, a handshake).
inline_for_extraction noextract
let alloca_st (a: alg) =
k:B.buffer uint8 { B.length k = key_length a } ->
StackInline (B.pointer (state_s a))
(requires fun h0 ->
B.live h0 k /\ config_pre a /\ is_supported_alg a)
(ensures fun h0 s h1 ->
// Sanity
invariant h1 s /\
// Memory stuff
B.(modifies loc_none h0 h1) /\
B.fresh_loc (footprint h1 s) h0 h1 /\
B.live h1 s /\
B.(loc_includes (loc_region_only true (HS.get_tip h1)) (footprint h1 s)) /\
// Useful stuff
as_kv (B.deref h1 s) == B.as_seq h0 k)
/// This function takes a pointer to a caller-allocated reference ``dst`` then,
/// if the algorithm is supported (on this platform), allocates a fresh state
/// and modifies ``dst`` to point to it. The key-value associated with this can
/// be obtained via ``kv (B.deref dst)``; as long as ``dst`` is not modified,
/// then the caller can derive that the ``kv`` remains the same, which will be
/// required for encrypt.
(** @type: true
*)
[@@ Comment "Create the required AEAD state for the algorithm.
Note: The caller must free the AEAD state by calling `EverCrypt_AEAD_free`.
@param a The argument `a` must be either of:
* `Spec_Agile_AEAD_AES128_GCM` (KEY_LEN=16),
* `Spec_Agile_AEAD_AES256_GCM` (KEY_LEN=32), or
* `Spec_Agile_AEAD_CHACHA20_POLY1305` (KEY_LEN=32).
@param dst Pointer to a pointer where the address of the allocated AEAD state will be written to.
@param k Pointer to `KEY_LEN` bytes of memory where the key is read from. The size depends on the used algorithm, see above.
@return The function returns `EverCrypt_Error_Success` on success or
`EverCrypt_Error_UnsupportedAlgorithm` in case of a bad algorithm identifier.
(See `EverCrypt_Error.h`.)"]
val create_in: #a:alg -> create_in_st a
inline_for_extraction noextract
val alloca: #a:alg -> alloca_st a
/// Encryption (pre-allocated state)
/// --------------------------------
inline_for_extraction noextract
let iv_p a = iv:B.buffer uint8 { iv_length a (B.length iv)} | false | true | EverCrypt.AEAD.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val ad_p : a: Spec.Agile.AEAD.supported_alg -> Type0 | [] | EverCrypt.AEAD.ad_p | {
"file_name": "providers/evercrypt/EverCrypt.AEAD.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Spec.Agile.AEAD.supported_alg -> Type0 | {
"end_col": 62,
"end_line": 234,
"start_col": 13,
"start_line": 234
} |
|
Prims.Tot | val preserves_freeable (#a: _) (s: state a) (h0 h1: HS.mem) : Type0 | [
{
"abbrev": false,
"full_module": "EverCrypt.Error",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Agile.AEAD",
"short_module": "Spec"
},
{
"abbrev": false,
"full_module": "Spec.Agile.AEAD",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let preserves_freeable #a (s: state a) (h0 h1: HS.mem): Type0 =
freeable h0 s ==> freeable h1 s | val preserves_freeable (#a: _) (s: state a) (h0 h1: HS.mem) : Type0
let preserves_freeable #a (s: state a) (h0: HS.mem) (h1: HS.mem) : Type0 = | false | null | false | freeable h0 s ==> freeable h1 s | {
"checked_file": "EverCrypt.AEAD.fsti.checked",
"dependencies": [
"Vale.X64.CPU_Features_s.fst.checked",
"Spec.Agile.AEAD.fsti.checked",
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"EverCrypt.TargetConfig.fsti.checked",
"EverCrypt.Error.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.AEAD.fsti"
} | [
"total"
] | [
"Spec.Agile.AEAD.alg",
"EverCrypt.AEAD.state",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_imp",
"EverCrypt.AEAD.freeable"
] | [] | module EverCrypt.AEAD
/// The new AEAD interface for EverCrypt, which supersedes the functions found
/// in EverCrypt.fst
///
/// The expected usage for this module is as follows:
/// - client expands key, obtaining an ``expanded_key a``
/// - client uses ``encrypt``/``decrypt`` with the same ``expanded_key a`` repeatedly.
///
/// This usage protocol is enforced for verified F* clients but, naturally,
/// isn't for C clients.
module S = FStar.Seq
module G = FStar.Ghost
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Integers
open Spec.Agile.AEAD
module Spec = Spec.Agile.AEAD
open EverCrypt.Error
/// Note: if the fst and the fsti are running on different fuel settings,
/// something that works in the interactive mode for the fsti, when
/// "re-interpreted" in the fst, might stop working!
#set-options "--max_fuel 0 --max_ifuel 0"
/// Abstract footprints, with the same machinery as EverCrypt.Hash
/// --------------------------------------------------------------
///
/// Differences from EverCrypt.Hash include: combined framing lemma, the
/// equivalent of the ``repr`` function does *not* require the memory, and order
/// of arguments to be in line with ``B.as_seq``, etc. which take the memory
/// first.
[@@ CAbstractStruct; Comment "Both encryption and decryption require a state that holds the key.
The state may be reused as many times as desired."]
val state_s: alg -> Type0
inline_for_extraction noextract
let state alg = B.pointer (state_s alg)
inline_for_extraction noextract
val freeable_s: #(a: alg) -> state_s a -> Type0
inline_for_extraction noextract
let freeable (#a: alg) (h: HS.mem) (p: state a) =
B.freeable p /\ freeable_s (B.deref h p)
inline_for_extraction noextract | false | false | EverCrypt.AEAD.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val preserves_freeable (#a: _) (s: state a) (h0 h1: HS.mem) : Type0 | [] | EverCrypt.AEAD.preserves_freeable | {
"file_name": "providers/evercrypt/EverCrypt.AEAD.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
s: EverCrypt.AEAD.state a ->
h0: FStar.Monotonic.HyperStack.mem ->
h1: FStar.Monotonic.HyperStack.mem
-> Type0 | {
"end_col": 33,
"end_line": 58,
"start_col": 2,
"start_line": 58
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "EverCrypt.Error",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Agile.AEAD",
"short_module": "Spec"
},
{
"abbrev": false,
"full_module": "Spec.Agile.AEAD",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let plain_p a = p:B.buffer uint8 { B.length p <= max_length a } | let plain_p a = | false | null | false | p: B.buffer uint8 {B.length p <= max_length a} | {
"checked_file": "EverCrypt.AEAD.fsti.checked",
"dependencies": [
"Vale.X64.CPU_Features_s.fst.checked",
"Spec.Agile.AEAD.fsti.checked",
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"EverCrypt.TargetConfig.fsti.checked",
"EverCrypt.Error.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.AEAD.fsti"
} | [
"total"
] | [
"Spec.Agile.AEAD.supported_alg",
"LowStar.Buffer.buffer",
"Spec.Agile.AEAD.uint8",
"Prims.b2t",
"FStar.Integers.op_Less_Equals",
"FStar.Integers.Signed",
"FStar.Integers.Winfinite",
"LowStar.Monotonic.Buffer.length",
"LowStar.Buffer.trivial_preorder",
"Spec.Agile.AEAD.max_length"
] | [] | module EverCrypt.AEAD
/// The new AEAD interface for EverCrypt, which supersedes the functions found
/// in EverCrypt.fst
///
/// The expected usage for this module is as follows:
/// - client expands key, obtaining an ``expanded_key a``
/// - client uses ``encrypt``/``decrypt`` with the same ``expanded_key a`` repeatedly.
///
/// This usage protocol is enforced for verified F* clients but, naturally,
/// isn't for C clients.
module S = FStar.Seq
module G = FStar.Ghost
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Integers
open Spec.Agile.AEAD
module Spec = Spec.Agile.AEAD
open EverCrypt.Error
/// Note: if the fst and the fsti are running on different fuel settings,
/// something that works in the interactive mode for the fsti, when
/// "re-interpreted" in the fst, might stop working!
#set-options "--max_fuel 0 --max_ifuel 0"
/// Abstract footprints, with the same machinery as EverCrypt.Hash
/// --------------------------------------------------------------
///
/// Differences from EverCrypt.Hash include: combined framing lemma, the
/// equivalent of the ``repr`` function does *not* require the memory, and order
/// of arguments to be in line with ``B.as_seq``, etc. which take the memory
/// first.
[@@ CAbstractStruct; Comment "Both encryption and decryption require a state that holds the key.
The state may be reused as many times as desired."]
val state_s: alg -> Type0
inline_for_extraction noextract
let state alg = B.pointer (state_s alg)
inline_for_extraction noextract
val freeable_s: #(a: alg) -> state_s a -> Type0
inline_for_extraction noextract
let freeable (#a: alg) (h: HS.mem) (p: state a) =
B.freeable p /\ freeable_s (B.deref h p)
inline_for_extraction noextract
let preserves_freeable #a (s: state a) (h0 h1: HS.mem): Type0 =
freeable h0 s ==> freeable h1 s
val footprint_s: #a:alg -> state_s a -> GTot B.loc
let footprint (#a:alg) (m: HS.mem) (s: state a) =
B.(loc_union (loc_addr_of_buffer s) (footprint_s (B.deref m s)))
// TR: the following pattern is necessary because, if we generically
// add such a pattern directly on `loc_includes_union_l`, then
// verification will blowup whenever both sides of `loc_includes` are
// `loc_union`s. We would like to break all unions on the
// right-hand-side of `loc_includes` first, using
// `loc_includes_union_r`. Here the pattern is on `footprint_s`,
// because we already expose the fact that `footprint` is a
// `loc_union`. (In other words, the pattern should be on every
// smallest location that is not exposed to be a `loc_union`.)
let loc_includes_union_l_footprint_s
(l1 l2: B.loc) (#a: alg) (s: state_s a)
: Lemma
(requires (
B.loc_includes l1 (footprint_s s) \/ B.loc_includes l2 (footprint_s s)
))
(ensures (B.loc_includes (B.loc_union l1 l2) (footprint_s s)))
[SMTPat (B.loc_includes (B.loc_union l1 l2) (footprint_s s))]
= B.loc_includes_union_l l1 l2 (footprint_s s)
/// The configuration preconditions
inline_for_extraction noextract
let config_pre a =
match a with
| AES128_GCM
| AES256_GCM ->
EverCrypt.TargetConfig.hacl_can_compile_vale /\
Vale.X64.CPU_Features_s.(aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\
movbe_enabled /\ sse_enabled)
| CHACHA20_POLY1305 -> True
| _ -> True
inline_for_extraction noextract
val invariant_s: (#a:alg) -> HS.mem -> state_s a -> Type0
inline_for_extraction noextract
let invariant (#a:alg) (m: HS.mem) (s: state a) =
B.live m s /\
B.(loc_disjoint (loc_addr_of_buffer s) (footprint_s (B.deref m s))) /\
invariant_s m (B.get m s 0)
val invariant_loc_in_footprint
(#a: alg)
(s: state a)
(m: HS.mem)
: Lemma
(requires (invariant m s))
(ensures (B.loc_in (footprint m s) m))
[SMTPat (invariant m s)]
val frame_invariant: #a:alg -> l:B.loc -> s:state a -> h0:HS.mem -> h1:HS.mem -> Lemma
(requires (
invariant h0 s /\
B.loc_disjoint l (footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
invariant h1 s /\
footprint h0 s == footprint h1 s))
[ SMTPat (invariant h1 s); SMTPat (B.modifies l h0 h1) ]
/// Actual stateful API
/// -------------------
noextract
let bytes = Seq.seq uint8
[@@ Comment "Return the algorithm used in the AEAD state.
@param s State of the AEAD algorithm.
@return Algorithm used in the AEAD state."]
val alg_of_state (a: G.erased alg) (s: state (G.reveal a)): Stack alg
(requires (fun h0 -> invariant #(G.reveal a) h0 s))
(ensures (fun h0 a' h1 ->
a' == G.reveal a /\
h0 == h1))
/// The API is constructed in a way that one can always get the original key
/// value behind a state, any any memory.
val as_kv: (#a: alg) -> state_s a -> GTot (kv a)
inline_for_extraction noextract
let create_in_st (a: alg) =
r:HS.rid ->
dst:B.pointer (B.pointer_or_null (state_s a)) ->
k:B.buffer uint8 { B.length k = key_length a } ->
ST error_code
(requires fun h0 ->
ST.is_eternal_region r /\
B.live h0 k /\ B.live h0 dst)
(ensures fun h0 e h1 ->
match e with
| UnsupportedAlgorithm ->
B.(modifies loc_none h0 h1)
| Success ->
let s = B.deref h1 dst in
// Sanity
is_supported_alg a /\
not (B.g_is_null s) /\
invariant h1 s /\
// Memory stuff
B.(modifies (loc_buffer dst) h0 h1) /\
B.fresh_loc (footprint h1 s) h0 h1 /\
B.(loc_includes (loc_region_only true r) (footprint h1 s)) /\
freeable h1 s /\
// Useful stuff
as_kv (B.deref h1 s) == B.as_seq h0 k
| _ -> False)
/// Same function as above, but in the StackInline effect, so that it is possible
/// to use AES GCM while staying in the Stack effect. In this case, the state should
/// be allocated/deallocated just before/after any encryption or decryption (which
/// is not very problematic during, for example, a handshake).
inline_for_extraction noextract
let alloca_st (a: alg) =
k:B.buffer uint8 { B.length k = key_length a } ->
StackInline (B.pointer (state_s a))
(requires fun h0 ->
B.live h0 k /\ config_pre a /\ is_supported_alg a)
(ensures fun h0 s h1 ->
// Sanity
invariant h1 s /\
// Memory stuff
B.(modifies loc_none h0 h1) /\
B.fresh_loc (footprint h1 s) h0 h1 /\
B.live h1 s /\
B.(loc_includes (loc_region_only true (HS.get_tip h1)) (footprint h1 s)) /\
// Useful stuff
as_kv (B.deref h1 s) == B.as_seq h0 k)
/// This function takes a pointer to a caller-allocated reference ``dst`` then,
/// if the algorithm is supported (on this platform), allocates a fresh state
/// and modifies ``dst`` to point to it. The key-value associated with this can
/// be obtained via ``kv (B.deref dst)``; as long as ``dst`` is not modified,
/// then the caller can derive that the ``kv`` remains the same, which will be
/// required for encrypt.
(** @type: true
*)
[@@ Comment "Create the required AEAD state for the algorithm.
Note: The caller must free the AEAD state by calling `EverCrypt_AEAD_free`.
@param a The argument `a` must be either of:
* `Spec_Agile_AEAD_AES128_GCM` (KEY_LEN=16),
* `Spec_Agile_AEAD_AES256_GCM` (KEY_LEN=32), or
* `Spec_Agile_AEAD_CHACHA20_POLY1305` (KEY_LEN=32).
@param dst Pointer to a pointer where the address of the allocated AEAD state will be written to.
@param k Pointer to `KEY_LEN` bytes of memory where the key is read from. The size depends on the used algorithm, see above.
@return The function returns `EverCrypt_Error_Success` on success or
`EverCrypt_Error_UnsupportedAlgorithm` in case of a bad algorithm identifier.
(See `EverCrypt_Error.h`.)"]
val create_in: #a:alg -> create_in_st a
inline_for_extraction noextract
val alloca: #a:alg -> alloca_st a
/// Encryption (pre-allocated state)
/// --------------------------------
inline_for_extraction noextract
let iv_p a = iv:B.buffer uint8 { iv_length a (B.length iv)}
inline_for_extraction noextract
let ad_p a = ad:B.buffer uint8 { B.length ad <= max_length a } | false | true | EverCrypt.AEAD.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val plain_p : a: Spec.Agile.AEAD.supported_alg -> Type0 | [] | EverCrypt.AEAD.plain_p | {
"file_name": "providers/evercrypt/EverCrypt.AEAD.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Spec.Agile.AEAD.supported_alg -> Type0 | {
"end_col": 63,
"end_line": 237,
"start_col": 16,
"start_line": 237
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "EverCrypt.Error",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Agile.AEAD",
"short_module": "Spec"
},
{
"abbrev": false,
"full_module": "Spec.Agile.AEAD",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let config_pre a =
match a with
| AES128_GCM
| AES256_GCM ->
EverCrypt.TargetConfig.hacl_can_compile_vale /\
Vale.X64.CPU_Features_s.(aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\
movbe_enabled /\ sse_enabled)
| CHACHA20_POLY1305 -> True
| _ -> True | let config_pre a = | false | null | false | match a with
| AES128_GCM
| AES256_GCM ->
EverCrypt.TargetConfig.hacl_can_compile_vale /\
Vale.X64.CPU_Features_s.(aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\ movbe_enabled /\
sse_enabled)
| CHACHA20_POLY1305 -> True
| _ -> True | {
"checked_file": "EverCrypt.AEAD.fsti.checked",
"dependencies": [
"Vale.X64.CPU_Features_s.fst.checked",
"Spec.Agile.AEAD.fsti.checked",
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"EverCrypt.TargetConfig.fsti.checked",
"EverCrypt.Error.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.AEAD.fsti"
} | [
"total"
] | [
"Spec.Agile.AEAD.alg",
"Prims.l_and",
"Prims.b2t",
"EverCrypt.TargetConfig.hacl_can_compile_vale",
"Vale.X64.CPU_Features_s.aesni_enabled",
"Vale.X64.CPU_Features_s.pclmulqdq_enabled",
"Vale.X64.CPU_Features_s.avx_enabled",
"Vale.X64.CPU_Features_s.movbe_enabled",
"Vale.X64.CPU_Features_s.sse_enabled",
"Prims.l_True",
"Prims.logical"
] | [] | module EverCrypt.AEAD
/// The new AEAD interface for EverCrypt, which supersedes the functions found
/// in EverCrypt.fst
///
/// The expected usage for this module is as follows:
/// - client expands key, obtaining an ``expanded_key a``
/// - client uses ``encrypt``/``decrypt`` with the same ``expanded_key a`` repeatedly.
///
/// This usage protocol is enforced for verified F* clients but, naturally,
/// isn't for C clients.
module S = FStar.Seq
module G = FStar.Ghost
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Integers
open Spec.Agile.AEAD
module Spec = Spec.Agile.AEAD
open EverCrypt.Error
/// Note: if the fst and the fsti are running on different fuel settings,
/// something that works in the interactive mode for the fsti, when
/// "re-interpreted" in the fst, might stop working!
#set-options "--max_fuel 0 --max_ifuel 0"
/// Abstract footprints, with the same machinery as EverCrypt.Hash
/// --------------------------------------------------------------
///
/// Differences from EverCrypt.Hash include: combined framing lemma, the
/// equivalent of the ``repr`` function does *not* require the memory, and order
/// of arguments to be in line with ``B.as_seq``, etc. which take the memory
/// first.
[@@ CAbstractStruct; Comment "Both encryption and decryption require a state that holds the key.
The state may be reused as many times as desired."]
val state_s: alg -> Type0
inline_for_extraction noextract
let state alg = B.pointer (state_s alg)
inline_for_extraction noextract
val freeable_s: #(a: alg) -> state_s a -> Type0
inline_for_extraction noextract
let freeable (#a: alg) (h: HS.mem) (p: state a) =
B.freeable p /\ freeable_s (B.deref h p)
inline_for_extraction noextract
let preserves_freeable #a (s: state a) (h0 h1: HS.mem): Type0 =
freeable h0 s ==> freeable h1 s
val footprint_s: #a:alg -> state_s a -> GTot B.loc
let footprint (#a:alg) (m: HS.mem) (s: state a) =
B.(loc_union (loc_addr_of_buffer s) (footprint_s (B.deref m s)))
// TR: the following pattern is necessary because, if we generically
// add such a pattern directly on `loc_includes_union_l`, then
// verification will blowup whenever both sides of `loc_includes` are
// `loc_union`s. We would like to break all unions on the
// right-hand-side of `loc_includes` first, using
// `loc_includes_union_r`. Here the pattern is on `footprint_s`,
// because we already expose the fact that `footprint` is a
// `loc_union`. (In other words, the pattern should be on every
// smallest location that is not exposed to be a `loc_union`.)
let loc_includes_union_l_footprint_s
(l1 l2: B.loc) (#a: alg) (s: state_s a)
: Lemma
(requires (
B.loc_includes l1 (footprint_s s) \/ B.loc_includes l2 (footprint_s s)
))
(ensures (B.loc_includes (B.loc_union l1 l2) (footprint_s s)))
[SMTPat (B.loc_includes (B.loc_union l1 l2) (footprint_s s))]
= B.loc_includes_union_l l1 l2 (footprint_s s)
/// The configuration preconditions
inline_for_extraction noextract | false | true | EverCrypt.AEAD.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val config_pre : a: Spec.Agile.AEAD.alg -> Prims.logical | [] | EverCrypt.AEAD.config_pre | {
"file_name": "providers/evercrypt/EverCrypt.AEAD.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Spec.Agile.AEAD.alg -> Prims.logical | {
"end_col": 13,
"end_line": 94,
"start_col": 2,
"start_line": 87
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "EverCrypt.Error",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Agile.AEAD",
"short_module": "Spec"
},
{
"abbrev": false,
"full_module": "Spec.Agile.AEAD",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let cipher_p a = p:B.buffer uint8 { B.length p + tag_length a <= max_length a } | let cipher_p a = | false | null | false | p: B.buffer uint8 {B.length p + tag_length a <= max_length a} | {
"checked_file": "EverCrypt.AEAD.fsti.checked",
"dependencies": [
"Vale.X64.CPU_Features_s.fst.checked",
"Spec.Agile.AEAD.fsti.checked",
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"EverCrypt.TargetConfig.fsti.checked",
"EverCrypt.Error.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.AEAD.fsti"
} | [
"total"
] | [
"Spec.Agile.AEAD.alg",
"Prims.b2t",
"Spec.Agile.AEAD.is_supported_alg",
"LowStar.Buffer.buffer",
"Spec.Agile.AEAD.uint8",
"FStar.Integers.op_Less_Equals",
"FStar.Integers.Signed",
"FStar.Integers.Winfinite",
"FStar.Integers.op_Plus",
"LowStar.Monotonic.Buffer.length",
"LowStar.Buffer.trivial_preorder",
"Spec.Agile.AEAD.tag_length",
"Spec.Agile.AEAD.max_length"
] | [] | module EverCrypt.AEAD
/// The new AEAD interface for EverCrypt, which supersedes the functions found
/// in EverCrypt.fst
///
/// The expected usage for this module is as follows:
/// - client expands key, obtaining an ``expanded_key a``
/// - client uses ``encrypt``/``decrypt`` with the same ``expanded_key a`` repeatedly.
///
/// This usage protocol is enforced for verified F* clients but, naturally,
/// isn't for C clients.
module S = FStar.Seq
module G = FStar.Ghost
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Integers
open Spec.Agile.AEAD
module Spec = Spec.Agile.AEAD
open EverCrypt.Error
/// Note: if the fst and the fsti are running on different fuel settings,
/// something that works in the interactive mode for the fsti, when
/// "re-interpreted" in the fst, might stop working!
#set-options "--max_fuel 0 --max_ifuel 0"
/// Abstract footprints, with the same machinery as EverCrypt.Hash
/// --------------------------------------------------------------
///
/// Differences from EverCrypt.Hash include: combined framing lemma, the
/// equivalent of the ``repr`` function does *not* require the memory, and order
/// of arguments to be in line with ``B.as_seq``, etc. which take the memory
/// first.
[@@ CAbstractStruct; Comment "Both encryption and decryption require a state that holds the key.
The state may be reused as many times as desired."]
val state_s: alg -> Type0
inline_for_extraction noextract
let state alg = B.pointer (state_s alg)
inline_for_extraction noextract
val freeable_s: #(a: alg) -> state_s a -> Type0
inline_for_extraction noextract
let freeable (#a: alg) (h: HS.mem) (p: state a) =
B.freeable p /\ freeable_s (B.deref h p)
inline_for_extraction noextract
let preserves_freeable #a (s: state a) (h0 h1: HS.mem): Type0 =
freeable h0 s ==> freeable h1 s
val footprint_s: #a:alg -> state_s a -> GTot B.loc
let footprint (#a:alg) (m: HS.mem) (s: state a) =
B.(loc_union (loc_addr_of_buffer s) (footprint_s (B.deref m s)))
// TR: the following pattern is necessary because, if we generically
// add such a pattern directly on `loc_includes_union_l`, then
// verification will blowup whenever both sides of `loc_includes` are
// `loc_union`s. We would like to break all unions on the
// right-hand-side of `loc_includes` first, using
// `loc_includes_union_r`. Here the pattern is on `footprint_s`,
// because we already expose the fact that `footprint` is a
// `loc_union`. (In other words, the pattern should be on every
// smallest location that is not exposed to be a `loc_union`.)
let loc_includes_union_l_footprint_s
(l1 l2: B.loc) (#a: alg) (s: state_s a)
: Lemma
(requires (
B.loc_includes l1 (footprint_s s) \/ B.loc_includes l2 (footprint_s s)
))
(ensures (B.loc_includes (B.loc_union l1 l2) (footprint_s s)))
[SMTPat (B.loc_includes (B.loc_union l1 l2) (footprint_s s))]
= B.loc_includes_union_l l1 l2 (footprint_s s)
/// The configuration preconditions
inline_for_extraction noextract
let config_pre a =
match a with
| AES128_GCM
| AES256_GCM ->
EverCrypt.TargetConfig.hacl_can_compile_vale /\
Vale.X64.CPU_Features_s.(aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\
movbe_enabled /\ sse_enabled)
| CHACHA20_POLY1305 -> True
| _ -> True
inline_for_extraction noextract
val invariant_s: (#a:alg) -> HS.mem -> state_s a -> Type0
inline_for_extraction noextract
let invariant (#a:alg) (m: HS.mem) (s: state a) =
B.live m s /\
B.(loc_disjoint (loc_addr_of_buffer s) (footprint_s (B.deref m s))) /\
invariant_s m (B.get m s 0)
val invariant_loc_in_footprint
(#a: alg)
(s: state a)
(m: HS.mem)
: Lemma
(requires (invariant m s))
(ensures (B.loc_in (footprint m s) m))
[SMTPat (invariant m s)]
val frame_invariant: #a:alg -> l:B.loc -> s:state a -> h0:HS.mem -> h1:HS.mem -> Lemma
(requires (
invariant h0 s /\
B.loc_disjoint l (footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
invariant h1 s /\
footprint h0 s == footprint h1 s))
[ SMTPat (invariant h1 s); SMTPat (B.modifies l h0 h1) ]
/// Actual stateful API
/// -------------------
noextract
let bytes = Seq.seq uint8
[@@ Comment "Return the algorithm used in the AEAD state.
@param s State of the AEAD algorithm.
@return Algorithm used in the AEAD state."]
val alg_of_state (a: G.erased alg) (s: state (G.reveal a)): Stack alg
(requires (fun h0 -> invariant #(G.reveal a) h0 s))
(ensures (fun h0 a' h1 ->
a' == G.reveal a /\
h0 == h1))
/// The API is constructed in a way that one can always get the original key
/// value behind a state, any any memory.
val as_kv: (#a: alg) -> state_s a -> GTot (kv a)
inline_for_extraction noextract
let create_in_st (a: alg) =
r:HS.rid ->
dst:B.pointer (B.pointer_or_null (state_s a)) ->
k:B.buffer uint8 { B.length k = key_length a } ->
ST error_code
(requires fun h0 ->
ST.is_eternal_region r /\
B.live h0 k /\ B.live h0 dst)
(ensures fun h0 e h1 ->
match e with
| UnsupportedAlgorithm ->
B.(modifies loc_none h0 h1)
| Success ->
let s = B.deref h1 dst in
// Sanity
is_supported_alg a /\
not (B.g_is_null s) /\
invariant h1 s /\
// Memory stuff
B.(modifies (loc_buffer dst) h0 h1) /\
B.fresh_loc (footprint h1 s) h0 h1 /\
B.(loc_includes (loc_region_only true r) (footprint h1 s)) /\
freeable h1 s /\
// Useful stuff
as_kv (B.deref h1 s) == B.as_seq h0 k
| _ -> False)
/// Same function as above, but in the StackInline effect, so that it is possible
/// to use AES GCM while staying in the Stack effect. In this case, the state should
/// be allocated/deallocated just before/after any encryption or decryption (which
/// is not very problematic during, for example, a handshake).
inline_for_extraction noextract
let alloca_st (a: alg) =
k:B.buffer uint8 { B.length k = key_length a } ->
StackInline (B.pointer (state_s a))
(requires fun h0 ->
B.live h0 k /\ config_pre a /\ is_supported_alg a)
(ensures fun h0 s h1 ->
// Sanity
invariant h1 s /\
// Memory stuff
B.(modifies loc_none h0 h1) /\
B.fresh_loc (footprint h1 s) h0 h1 /\
B.live h1 s /\
B.(loc_includes (loc_region_only true (HS.get_tip h1)) (footprint h1 s)) /\
// Useful stuff
as_kv (B.deref h1 s) == B.as_seq h0 k)
/// This function takes a pointer to a caller-allocated reference ``dst`` then,
/// if the algorithm is supported (on this platform), allocates a fresh state
/// and modifies ``dst`` to point to it. The key-value associated with this can
/// be obtained via ``kv (B.deref dst)``; as long as ``dst`` is not modified,
/// then the caller can derive that the ``kv`` remains the same, which will be
/// required for encrypt.
(** @type: true
*)
[@@ Comment "Create the required AEAD state for the algorithm.
Note: The caller must free the AEAD state by calling `EverCrypt_AEAD_free`.
@param a The argument `a` must be either of:
* `Spec_Agile_AEAD_AES128_GCM` (KEY_LEN=16),
* `Spec_Agile_AEAD_AES256_GCM` (KEY_LEN=32), or
* `Spec_Agile_AEAD_CHACHA20_POLY1305` (KEY_LEN=32).
@param dst Pointer to a pointer where the address of the allocated AEAD state will be written to.
@param k Pointer to `KEY_LEN` bytes of memory where the key is read from. The size depends on the used algorithm, see above.
@return The function returns `EverCrypt_Error_Success` on success or
`EverCrypt_Error_UnsupportedAlgorithm` in case of a bad algorithm identifier.
(See `EverCrypt_Error.h`.)"]
val create_in: #a:alg -> create_in_st a
inline_for_extraction noextract
val alloca: #a:alg -> alloca_st a
/// Encryption (pre-allocated state)
/// --------------------------------
inline_for_extraction noextract
let iv_p a = iv:B.buffer uint8 { iv_length a (B.length iv)}
inline_for_extraction noextract
let ad_p a = ad:B.buffer uint8 { B.length ad <= max_length a }
inline_for_extraction noextract
let plain_p a = p:B.buffer uint8 { B.length p <= max_length a } | false | false | EverCrypt.AEAD.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val cipher_p : a: Spec.Agile.AEAD.alg{Spec.Agile.AEAD.is_supported_alg a} -> Type0 | [] | EverCrypt.AEAD.cipher_p | {
"file_name": "providers/evercrypt/EverCrypt.AEAD.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Spec.Agile.AEAD.alg{Spec.Agile.AEAD.is_supported_alg a} -> Type0 | {
"end_col": 79,
"end_line": 240,
"start_col": 17,
"start_line": 240
} |
|
Prims.GTot | [
{
"abbrev": false,
"full_module": "EverCrypt.Error",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Agile.AEAD",
"short_module": "Spec"
},
{
"abbrev": false,
"full_module": "Spec.Agile.AEAD",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let footprint (#a:alg) (m: HS.mem) (s: state a) =
B.(loc_union (loc_addr_of_buffer s) (footprint_s (B.deref m s))) | let footprint (#a: alg) (m: HS.mem) (s: state a) = | false | null | false | let open B in loc_union (loc_addr_of_buffer s) (footprint_s (B.deref m s)) | {
"checked_file": "EverCrypt.AEAD.fsti.checked",
"dependencies": [
"Vale.X64.CPU_Features_s.fst.checked",
"Spec.Agile.AEAD.fsti.checked",
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"EverCrypt.TargetConfig.fsti.checked",
"EverCrypt.Error.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.AEAD.fsti"
} | [
"sometrivial"
] | [
"Spec.Agile.AEAD.alg",
"FStar.Monotonic.HyperStack.mem",
"EverCrypt.AEAD.state",
"LowStar.Monotonic.Buffer.loc_union",
"LowStar.Monotonic.Buffer.loc_addr_of_buffer",
"EverCrypt.AEAD.state_s",
"LowStar.Buffer.trivial_preorder",
"EverCrypt.AEAD.footprint_s",
"LowStar.Monotonic.Buffer.deref",
"LowStar.Monotonic.Buffer.loc"
] | [] | module EverCrypt.AEAD
/// The new AEAD interface for EverCrypt, which supersedes the functions found
/// in EverCrypt.fst
///
/// The expected usage for this module is as follows:
/// - client expands key, obtaining an ``expanded_key a``
/// - client uses ``encrypt``/``decrypt`` with the same ``expanded_key a`` repeatedly.
///
/// This usage protocol is enforced for verified F* clients but, naturally,
/// isn't for C clients.
module S = FStar.Seq
module G = FStar.Ghost
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Integers
open Spec.Agile.AEAD
module Spec = Spec.Agile.AEAD
open EverCrypt.Error
/// Note: if the fst and the fsti are running on different fuel settings,
/// something that works in the interactive mode for the fsti, when
/// "re-interpreted" in the fst, might stop working!
#set-options "--max_fuel 0 --max_ifuel 0"
/// Abstract footprints, with the same machinery as EverCrypt.Hash
/// --------------------------------------------------------------
///
/// Differences from EverCrypt.Hash include: combined framing lemma, the
/// equivalent of the ``repr`` function does *not* require the memory, and order
/// of arguments to be in line with ``B.as_seq``, etc. which take the memory
/// first.
[@@ CAbstractStruct; Comment "Both encryption and decryption require a state that holds the key.
The state may be reused as many times as desired."]
val state_s: alg -> Type0
inline_for_extraction noextract
let state alg = B.pointer (state_s alg)
inline_for_extraction noextract
val freeable_s: #(a: alg) -> state_s a -> Type0
inline_for_extraction noextract
let freeable (#a: alg) (h: HS.mem) (p: state a) =
B.freeable p /\ freeable_s (B.deref h p)
inline_for_extraction noextract
let preserves_freeable #a (s: state a) (h0 h1: HS.mem): Type0 =
freeable h0 s ==> freeable h1 s
val footprint_s: #a:alg -> state_s a -> GTot B.loc | false | false | EverCrypt.AEAD.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val footprint : m: FStar.Monotonic.HyperStack.mem -> s: EverCrypt.AEAD.state a
-> Prims.GTot LowStar.Monotonic.Buffer.loc | [] | EverCrypt.AEAD.footprint | {
"file_name": "providers/evercrypt/EverCrypt.AEAD.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | m: FStar.Monotonic.HyperStack.mem -> s: EverCrypt.AEAD.state a
-> Prims.GTot LowStar.Monotonic.Buffer.loc | {
"end_col": 66,
"end_line": 62,
"start_col": 2,
"start_line": 62
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "EverCrypt.Error",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Agile.AEAD",
"short_module": "Spec"
},
{
"abbrev": false,
"full_module": "Spec.Agile.AEAD",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let iv_p a = iv:B.buffer uint8 { iv_length a (B.length iv)} | let iv_p a = | false | null | false | iv: B.buffer uint8 {iv_length a (B.length iv)} | {
"checked_file": "EverCrypt.AEAD.fsti.checked",
"dependencies": [
"Vale.X64.CPU_Features_s.fst.checked",
"Spec.Agile.AEAD.fsti.checked",
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"EverCrypt.TargetConfig.fsti.checked",
"EverCrypt.Error.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.AEAD.fsti"
} | [
"total"
] | [
"Spec.Agile.AEAD.supported_alg",
"LowStar.Buffer.buffer",
"Spec.Agile.AEAD.uint8",
"Spec.Agile.AEAD.iv_length",
"LowStar.Monotonic.Buffer.length",
"LowStar.Buffer.trivial_preorder"
] | [] | module EverCrypt.AEAD
/// The new AEAD interface for EverCrypt, which supersedes the functions found
/// in EverCrypt.fst
///
/// The expected usage for this module is as follows:
/// - client expands key, obtaining an ``expanded_key a``
/// - client uses ``encrypt``/``decrypt`` with the same ``expanded_key a`` repeatedly.
///
/// This usage protocol is enforced for verified F* clients but, naturally,
/// isn't for C clients.
module S = FStar.Seq
module G = FStar.Ghost
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Integers
open Spec.Agile.AEAD
module Spec = Spec.Agile.AEAD
open EverCrypt.Error
/// Note: if the fst and the fsti are running on different fuel settings,
/// something that works in the interactive mode for the fsti, when
/// "re-interpreted" in the fst, might stop working!
#set-options "--max_fuel 0 --max_ifuel 0"
/// Abstract footprints, with the same machinery as EverCrypt.Hash
/// --------------------------------------------------------------
///
/// Differences from EverCrypt.Hash include: combined framing lemma, the
/// equivalent of the ``repr`` function does *not* require the memory, and order
/// of arguments to be in line with ``B.as_seq``, etc. which take the memory
/// first.
[@@ CAbstractStruct; Comment "Both encryption and decryption require a state that holds the key.
The state may be reused as many times as desired."]
val state_s: alg -> Type0
inline_for_extraction noextract
let state alg = B.pointer (state_s alg)
inline_for_extraction noextract
val freeable_s: #(a: alg) -> state_s a -> Type0
inline_for_extraction noextract
let freeable (#a: alg) (h: HS.mem) (p: state a) =
B.freeable p /\ freeable_s (B.deref h p)
inline_for_extraction noextract
let preserves_freeable #a (s: state a) (h0 h1: HS.mem): Type0 =
freeable h0 s ==> freeable h1 s
val footprint_s: #a:alg -> state_s a -> GTot B.loc
let footprint (#a:alg) (m: HS.mem) (s: state a) =
B.(loc_union (loc_addr_of_buffer s) (footprint_s (B.deref m s)))
// TR: the following pattern is necessary because, if we generically
// add such a pattern directly on `loc_includes_union_l`, then
// verification will blowup whenever both sides of `loc_includes` are
// `loc_union`s. We would like to break all unions on the
// right-hand-side of `loc_includes` first, using
// `loc_includes_union_r`. Here the pattern is on `footprint_s`,
// because we already expose the fact that `footprint` is a
// `loc_union`. (In other words, the pattern should be on every
// smallest location that is not exposed to be a `loc_union`.)
let loc_includes_union_l_footprint_s
(l1 l2: B.loc) (#a: alg) (s: state_s a)
: Lemma
(requires (
B.loc_includes l1 (footprint_s s) \/ B.loc_includes l2 (footprint_s s)
))
(ensures (B.loc_includes (B.loc_union l1 l2) (footprint_s s)))
[SMTPat (B.loc_includes (B.loc_union l1 l2) (footprint_s s))]
= B.loc_includes_union_l l1 l2 (footprint_s s)
/// The configuration preconditions
inline_for_extraction noextract
let config_pre a =
match a with
| AES128_GCM
| AES256_GCM ->
EverCrypt.TargetConfig.hacl_can_compile_vale /\
Vale.X64.CPU_Features_s.(aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\
movbe_enabled /\ sse_enabled)
| CHACHA20_POLY1305 -> True
| _ -> True
inline_for_extraction noextract
val invariant_s: (#a:alg) -> HS.mem -> state_s a -> Type0
inline_for_extraction noextract
let invariant (#a:alg) (m: HS.mem) (s: state a) =
B.live m s /\
B.(loc_disjoint (loc_addr_of_buffer s) (footprint_s (B.deref m s))) /\
invariant_s m (B.get m s 0)
val invariant_loc_in_footprint
(#a: alg)
(s: state a)
(m: HS.mem)
: Lemma
(requires (invariant m s))
(ensures (B.loc_in (footprint m s) m))
[SMTPat (invariant m s)]
val frame_invariant: #a:alg -> l:B.loc -> s:state a -> h0:HS.mem -> h1:HS.mem -> Lemma
(requires (
invariant h0 s /\
B.loc_disjoint l (footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
invariant h1 s /\
footprint h0 s == footprint h1 s))
[ SMTPat (invariant h1 s); SMTPat (B.modifies l h0 h1) ]
/// Actual stateful API
/// -------------------
noextract
let bytes = Seq.seq uint8
[@@ Comment "Return the algorithm used in the AEAD state.
@param s State of the AEAD algorithm.
@return Algorithm used in the AEAD state."]
val alg_of_state (a: G.erased alg) (s: state (G.reveal a)): Stack alg
(requires (fun h0 -> invariant #(G.reveal a) h0 s))
(ensures (fun h0 a' h1 ->
a' == G.reveal a /\
h0 == h1))
/// The API is constructed in a way that one can always get the original key
/// value behind a state, any any memory.
val as_kv: (#a: alg) -> state_s a -> GTot (kv a)
inline_for_extraction noextract
let create_in_st (a: alg) =
r:HS.rid ->
dst:B.pointer (B.pointer_or_null (state_s a)) ->
k:B.buffer uint8 { B.length k = key_length a } ->
ST error_code
(requires fun h0 ->
ST.is_eternal_region r /\
B.live h0 k /\ B.live h0 dst)
(ensures fun h0 e h1 ->
match e with
| UnsupportedAlgorithm ->
B.(modifies loc_none h0 h1)
| Success ->
let s = B.deref h1 dst in
// Sanity
is_supported_alg a /\
not (B.g_is_null s) /\
invariant h1 s /\
// Memory stuff
B.(modifies (loc_buffer dst) h0 h1) /\
B.fresh_loc (footprint h1 s) h0 h1 /\
B.(loc_includes (loc_region_only true r) (footprint h1 s)) /\
freeable h1 s /\
// Useful stuff
as_kv (B.deref h1 s) == B.as_seq h0 k
| _ -> False)
/// Same function as above, but in the StackInline effect, so that it is possible
/// to use AES GCM while staying in the Stack effect. In this case, the state should
/// be allocated/deallocated just before/after any encryption or decryption (which
/// is not very problematic during, for example, a handshake).
inline_for_extraction noextract
let alloca_st (a: alg) =
k:B.buffer uint8 { B.length k = key_length a } ->
StackInline (B.pointer (state_s a))
(requires fun h0 ->
B.live h0 k /\ config_pre a /\ is_supported_alg a)
(ensures fun h0 s h1 ->
// Sanity
invariant h1 s /\
// Memory stuff
B.(modifies loc_none h0 h1) /\
B.fresh_loc (footprint h1 s) h0 h1 /\
B.live h1 s /\
B.(loc_includes (loc_region_only true (HS.get_tip h1)) (footprint h1 s)) /\
// Useful stuff
as_kv (B.deref h1 s) == B.as_seq h0 k)
/// This function takes a pointer to a caller-allocated reference ``dst`` then,
/// if the algorithm is supported (on this platform), allocates a fresh state
/// and modifies ``dst`` to point to it. The key-value associated with this can
/// be obtained via ``kv (B.deref dst)``; as long as ``dst`` is not modified,
/// then the caller can derive that the ``kv`` remains the same, which will be
/// required for encrypt.
(** @type: true
*)
[@@ Comment "Create the required AEAD state for the algorithm.
Note: The caller must free the AEAD state by calling `EverCrypt_AEAD_free`.
@param a The argument `a` must be either of:
* `Spec_Agile_AEAD_AES128_GCM` (KEY_LEN=16),
* `Spec_Agile_AEAD_AES256_GCM` (KEY_LEN=32), or
* `Spec_Agile_AEAD_CHACHA20_POLY1305` (KEY_LEN=32).
@param dst Pointer to a pointer where the address of the allocated AEAD state will be written to.
@param k Pointer to `KEY_LEN` bytes of memory where the key is read from. The size depends on the used algorithm, see above.
@return The function returns `EverCrypt_Error_Success` on success or
`EverCrypt_Error_UnsupportedAlgorithm` in case of a bad algorithm identifier.
(See `EverCrypt_Error.h`.)"]
val create_in: #a:alg -> create_in_st a
inline_for_extraction noextract
val alloca: #a:alg -> alloca_st a
/// Encryption (pre-allocated state)
/// -------------------------------- | false | true | EverCrypt.AEAD.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val iv_p : a: Spec.Agile.AEAD.supported_alg -> Type0 | [] | EverCrypt.AEAD.iv_p | {
"file_name": "providers/evercrypt/EverCrypt.AEAD.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Spec.Agile.AEAD.supported_alg -> Type0 | {
"end_col": 59,
"end_line": 231,
"start_col": 13,
"start_line": 231
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "EverCrypt.Error",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Agile.AEAD",
"short_module": "Spec"
},
{
"abbrev": false,
"full_module": "Spec.Agile.AEAD",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let encrypt_live_disjoint_pre (a: supported_alg)
(iv:iv_p a)
(iv_len: UInt32.t)
(ad:ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher: B.buffer uint8)
(tag: B.buffer uint8)
(h0: HS.mem)
=
MB.(all_live h0 [ buf iv; buf ad; buf plain; buf cipher; buf tag ]) /\
(B.disjoint plain cipher \/ plain == cipher) /\
B.disjoint cipher tag /\
B.disjoint iv cipher /\ B.disjoint iv tag /\
B.disjoint plain tag /\
B.disjoint plain ad /\
B.disjoint ad cipher /\ B.disjoint ad tag | let encrypt_live_disjoint_pre
(a: supported_alg)
(iv: iv_p a)
(iv_len: UInt32.t)
(ad: ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher tag: B.buffer uint8)
(h0: HS.mem)
= | false | null | false | MB.(all_live h0 [buf iv; buf ad; buf plain; buf cipher; buf tag]) /\
(B.disjoint plain cipher \/ plain == cipher) /\ B.disjoint cipher tag /\ B.disjoint iv cipher /\
B.disjoint iv tag /\ B.disjoint plain tag /\ B.disjoint plain ad /\ B.disjoint ad cipher /\
B.disjoint ad tag | {
"checked_file": "EverCrypt.AEAD.fsti.checked",
"dependencies": [
"Vale.X64.CPU_Features_s.fst.checked",
"Spec.Agile.AEAD.fsti.checked",
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"EverCrypt.TargetConfig.fsti.checked",
"EverCrypt.Error.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.AEAD.fsti"
} | [
"total"
] | [
"Spec.Agile.AEAD.supported_alg",
"EverCrypt.AEAD.iv_p",
"FStar.UInt32.t",
"EverCrypt.AEAD.ad_p",
"EverCrypt.AEAD.plain_p",
"LowStar.Buffer.buffer",
"Spec.Agile.AEAD.uint8",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_and",
"LowStar.Monotonic.Buffer.all_live",
"Prims.Cons",
"LowStar.Monotonic.Buffer.buf_t",
"LowStar.Monotonic.Buffer.buf",
"LowStar.Buffer.trivial_preorder",
"Prims.Nil",
"Prims.l_or",
"LowStar.Monotonic.Buffer.disjoint",
"Prims.eq2",
"Prims.logical"
] | [] | module EverCrypt.AEAD
/// The new AEAD interface for EverCrypt, which supersedes the functions found
/// in EverCrypt.fst
///
/// The expected usage for this module is as follows:
/// - client expands key, obtaining an ``expanded_key a``
/// - client uses ``encrypt``/``decrypt`` with the same ``expanded_key a`` repeatedly.
///
/// This usage protocol is enforced for verified F* clients but, naturally,
/// isn't for C clients.
module S = FStar.Seq
module G = FStar.Ghost
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Integers
open Spec.Agile.AEAD
module Spec = Spec.Agile.AEAD
open EverCrypt.Error
/// Note: if the fst and the fsti are running on different fuel settings,
/// something that works in the interactive mode for the fsti, when
/// "re-interpreted" in the fst, might stop working!
#set-options "--max_fuel 0 --max_ifuel 0"
/// Abstract footprints, with the same machinery as EverCrypt.Hash
/// --------------------------------------------------------------
///
/// Differences from EverCrypt.Hash include: combined framing lemma, the
/// equivalent of the ``repr`` function does *not* require the memory, and order
/// of arguments to be in line with ``B.as_seq``, etc. which take the memory
/// first.
[@@ CAbstractStruct; Comment "Both encryption and decryption require a state that holds the key.
The state may be reused as many times as desired."]
val state_s: alg -> Type0
inline_for_extraction noextract
let state alg = B.pointer (state_s alg)
inline_for_extraction noextract
val freeable_s: #(a: alg) -> state_s a -> Type0
inline_for_extraction noextract
let freeable (#a: alg) (h: HS.mem) (p: state a) =
B.freeable p /\ freeable_s (B.deref h p)
inline_for_extraction noextract
let preserves_freeable #a (s: state a) (h0 h1: HS.mem): Type0 =
freeable h0 s ==> freeable h1 s
val footprint_s: #a:alg -> state_s a -> GTot B.loc
let footprint (#a:alg) (m: HS.mem) (s: state a) =
B.(loc_union (loc_addr_of_buffer s) (footprint_s (B.deref m s)))
// TR: the following pattern is necessary because, if we generically
// add such a pattern directly on `loc_includes_union_l`, then
// verification will blowup whenever both sides of `loc_includes` are
// `loc_union`s. We would like to break all unions on the
// right-hand-side of `loc_includes` first, using
// `loc_includes_union_r`. Here the pattern is on `footprint_s`,
// because we already expose the fact that `footprint` is a
// `loc_union`. (In other words, the pattern should be on every
// smallest location that is not exposed to be a `loc_union`.)
let loc_includes_union_l_footprint_s
(l1 l2: B.loc) (#a: alg) (s: state_s a)
: Lemma
(requires (
B.loc_includes l1 (footprint_s s) \/ B.loc_includes l2 (footprint_s s)
))
(ensures (B.loc_includes (B.loc_union l1 l2) (footprint_s s)))
[SMTPat (B.loc_includes (B.loc_union l1 l2) (footprint_s s))]
= B.loc_includes_union_l l1 l2 (footprint_s s)
/// The configuration preconditions
inline_for_extraction noextract
let config_pre a =
match a with
| AES128_GCM
| AES256_GCM ->
EverCrypt.TargetConfig.hacl_can_compile_vale /\
Vale.X64.CPU_Features_s.(aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\
movbe_enabled /\ sse_enabled)
| CHACHA20_POLY1305 -> True
| _ -> True
inline_for_extraction noextract
val invariant_s: (#a:alg) -> HS.mem -> state_s a -> Type0
inline_for_extraction noextract
let invariant (#a:alg) (m: HS.mem) (s: state a) =
B.live m s /\
B.(loc_disjoint (loc_addr_of_buffer s) (footprint_s (B.deref m s))) /\
invariant_s m (B.get m s 0)
val invariant_loc_in_footprint
(#a: alg)
(s: state a)
(m: HS.mem)
: Lemma
(requires (invariant m s))
(ensures (B.loc_in (footprint m s) m))
[SMTPat (invariant m s)]
val frame_invariant: #a:alg -> l:B.loc -> s:state a -> h0:HS.mem -> h1:HS.mem -> Lemma
(requires (
invariant h0 s /\
B.loc_disjoint l (footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
invariant h1 s /\
footprint h0 s == footprint h1 s))
[ SMTPat (invariant h1 s); SMTPat (B.modifies l h0 h1) ]
/// Actual stateful API
/// -------------------
noextract
let bytes = Seq.seq uint8
[@@ Comment "Return the algorithm used in the AEAD state.
@param s State of the AEAD algorithm.
@return Algorithm used in the AEAD state."]
val alg_of_state (a: G.erased alg) (s: state (G.reveal a)): Stack alg
(requires (fun h0 -> invariant #(G.reveal a) h0 s))
(ensures (fun h0 a' h1 ->
a' == G.reveal a /\
h0 == h1))
/// The API is constructed in a way that one can always get the original key
/// value behind a state, any any memory.
val as_kv: (#a: alg) -> state_s a -> GTot (kv a)
inline_for_extraction noextract
let create_in_st (a: alg) =
r:HS.rid ->
dst:B.pointer (B.pointer_or_null (state_s a)) ->
k:B.buffer uint8 { B.length k = key_length a } ->
ST error_code
(requires fun h0 ->
ST.is_eternal_region r /\
B.live h0 k /\ B.live h0 dst)
(ensures fun h0 e h1 ->
match e with
| UnsupportedAlgorithm ->
B.(modifies loc_none h0 h1)
| Success ->
let s = B.deref h1 dst in
// Sanity
is_supported_alg a /\
not (B.g_is_null s) /\
invariant h1 s /\
// Memory stuff
B.(modifies (loc_buffer dst) h0 h1) /\
B.fresh_loc (footprint h1 s) h0 h1 /\
B.(loc_includes (loc_region_only true r) (footprint h1 s)) /\
freeable h1 s /\
// Useful stuff
as_kv (B.deref h1 s) == B.as_seq h0 k
| _ -> False)
/// Same function as above, but in the StackInline effect, so that it is possible
/// to use AES GCM while staying in the Stack effect. In this case, the state should
/// be allocated/deallocated just before/after any encryption or decryption (which
/// is not very problematic during, for example, a handshake).
inline_for_extraction noextract
let alloca_st (a: alg) =
k:B.buffer uint8 { B.length k = key_length a } ->
StackInline (B.pointer (state_s a))
(requires fun h0 ->
B.live h0 k /\ config_pre a /\ is_supported_alg a)
(ensures fun h0 s h1 ->
// Sanity
invariant h1 s /\
// Memory stuff
B.(modifies loc_none h0 h1) /\
B.fresh_loc (footprint h1 s) h0 h1 /\
B.live h1 s /\
B.(loc_includes (loc_region_only true (HS.get_tip h1)) (footprint h1 s)) /\
// Useful stuff
as_kv (B.deref h1 s) == B.as_seq h0 k)
/// This function takes a pointer to a caller-allocated reference ``dst`` then,
/// if the algorithm is supported (on this platform), allocates a fresh state
/// and modifies ``dst`` to point to it. The key-value associated with this can
/// be obtained via ``kv (B.deref dst)``; as long as ``dst`` is not modified,
/// then the caller can derive that the ``kv`` remains the same, which will be
/// required for encrypt.
(** @type: true
*)
[@@ Comment "Create the required AEAD state for the algorithm.
Note: The caller must free the AEAD state by calling `EverCrypt_AEAD_free`.
@param a The argument `a` must be either of:
* `Spec_Agile_AEAD_AES128_GCM` (KEY_LEN=16),
* `Spec_Agile_AEAD_AES256_GCM` (KEY_LEN=32), or
* `Spec_Agile_AEAD_CHACHA20_POLY1305` (KEY_LEN=32).
@param dst Pointer to a pointer where the address of the allocated AEAD state will be written to.
@param k Pointer to `KEY_LEN` bytes of memory where the key is read from. The size depends on the used algorithm, see above.
@return The function returns `EverCrypt_Error_Success` on success or
`EverCrypt_Error_UnsupportedAlgorithm` in case of a bad algorithm identifier.
(See `EverCrypt_Error.h`.)"]
val create_in: #a:alg -> create_in_st a
inline_for_extraction noextract
val alloca: #a:alg -> alloca_st a
/// Encryption (pre-allocated state)
/// --------------------------------
inline_for_extraction noextract
let iv_p a = iv:B.buffer uint8 { iv_length a (B.length iv)}
inline_for_extraction noextract
let ad_p a = ad:B.buffer uint8 { B.length ad <= max_length a }
inline_for_extraction noextract
let plain_p a = p:B.buffer uint8 { B.length p <= max_length a }
inline_for_extraction noextract
let cipher_p a = p:B.buffer uint8 { B.length p + tag_length a <= max_length a }
// SNIPPET_START: encrypt_pre
inline_for_extraction noextract
let encrypt_gen_pre (a: supported_alg)
(iv:iv_p a)
(iv_len: UInt32.t)
(ad:ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher: B.buffer uint8)
(tag: B.buffer uint8)
(h0: HS.mem)
=
v iv_len = B.length iv /\ v iv_len > 0 /\
v ad_len = B.length ad /\ v ad_len <= pow2 31 /\
v plain_len = B.length plain /\ v plain_len <= max_length a /\
B.length cipher = B.length plain /\
B.length tag = tag_length a
inline_for_extraction noextract
let encrypt_live_disjoint_pre (a: supported_alg)
(iv:iv_p a)
(iv_len: UInt32.t)
(ad:ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher: B.buffer uint8)
(tag: B.buffer uint8)
(h0: HS.mem) | false | false | EverCrypt.AEAD.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val encrypt_live_disjoint_pre : a: Spec.Agile.AEAD.supported_alg ->
iv: EverCrypt.AEAD.iv_p a ->
iv_len: FStar.UInt32.t ->
ad: EverCrypt.AEAD.ad_p a ->
ad_len: FStar.UInt32.t ->
plain: EverCrypt.AEAD.plain_p a ->
plain_len: FStar.UInt32.t ->
cipher: LowStar.Buffer.buffer Spec.Agile.AEAD.uint8 ->
tag: LowStar.Buffer.buffer Spec.Agile.AEAD.uint8 ->
h0: FStar.Monotonic.HyperStack.mem
-> Prims.logical | [] | EverCrypt.AEAD.encrypt_live_disjoint_pre | {
"file_name": "providers/evercrypt/EverCrypt.AEAD.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
a: Spec.Agile.AEAD.supported_alg ->
iv: EverCrypt.AEAD.iv_p a ->
iv_len: FStar.UInt32.t ->
ad: EverCrypt.AEAD.ad_p a ->
ad_len: FStar.UInt32.t ->
plain: EverCrypt.AEAD.plain_p a ->
plain_len: FStar.UInt32.t ->
cipher: LowStar.Buffer.buffer Spec.Agile.AEAD.uint8 ->
tag: LowStar.Buffer.buffer Spec.Agile.AEAD.uint8 ->
h0: FStar.Monotonic.HyperStack.mem
-> Prims.logical | {
"end_col": 43,
"end_line": 279,
"start_col": 2,
"start_line": 273
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "EverCrypt.Error",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Agile.AEAD",
"short_module": "Spec"
},
{
"abbrev": false,
"full_module": "Spec.Agile.AEAD",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let alloca_st (a: alg) =
k:B.buffer uint8 { B.length k = key_length a } ->
StackInline (B.pointer (state_s a))
(requires fun h0 ->
B.live h0 k /\ config_pre a /\ is_supported_alg a)
(ensures fun h0 s h1 ->
// Sanity
invariant h1 s /\
// Memory stuff
B.(modifies loc_none h0 h1) /\
B.fresh_loc (footprint h1 s) h0 h1 /\
B.live h1 s /\
B.(loc_includes (loc_region_only true (HS.get_tip h1)) (footprint h1 s)) /\
// Useful stuff
as_kv (B.deref h1 s) == B.as_seq h0 k) | let alloca_st (a: alg) = | false | null | false | k: B.buffer uint8 {B.length k = key_length a}
-> StackInline (B.pointer (state_s a))
(requires fun h0 -> B.live h0 k /\ config_pre a /\ is_supported_alg a)
(ensures
fun h0 s h1 ->
invariant h1 s /\ B.(modifies loc_none h0 h1) /\ B.fresh_loc (footprint h1 s) h0 h1 /\
B.live h1 s /\ B.(loc_includes (loc_region_only true (HS.get_tip h1)) (footprint h1 s)) /\
as_kv (B.deref h1 s) == B.as_seq h0 k) | {
"checked_file": "EverCrypt.AEAD.fsti.checked",
"dependencies": [
"Vale.X64.CPU_Features_s.fst.checked",
"Spec.Agile.AEAD.fsti.checked",
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"EverCrypt.TargetConfig.fsti.checked",
"EverCrypt.Error.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.AEAD.fsti"
} | [
"total"
] | [
"Spec.Agile.AEAD.alg",
"LowStar.Buffer.buffer",
"Spec.Agile.AEAD.uint8",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.l_or",
"Prims.op_GreaterThanOrEqual",
"FStar.Integers.op_Greater_Equals",
"FStar.Integers.Signed",
"FStar.Integers.Winfinite",
"LowStar.Monotonic.Buffer.length",
"LowStar.Buffer.trivial_preorder",
"Spec.Agile.AEAD.key_length",
"LowStar.Buffer.pointer",
"EverCrypt.AEAD.state_s",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_and",
"LowStar.Monotonic.Buffer.live",
"EverCrypt.AEAD.config_pre",
"Spec.Agile.AEAD.is_supported_alg",
"EverCrypt.AEAD.invariant",
"LowStar.Monotonic.Buffer.modifies",
"LowStar.Monotonic.Buffer.loc_none",
"LowStar.Monotonic.Buffer.fresh_loc",
"EverCrypt.AEAD.footprint",
"LowStar.Monotonic.Buffer.loc_includes",
"LowStar.Monotonic.Buffer.loc_region_only",
"FStar.Monotonic.HyperStack.get_tip",
"Prims.eq2",
"FStar.Seq.Base.seq",
"EverCrypt.AEAD.as_kv",
"LowStar.Monotonic.Buffer.deref",
"LowStar.Monotonic.Buffer.as_seq"
] | [] | module EverCrypt.AEAD
/// The new AEAD interface for EverCrypt, which supersedes the functions found
/// in EverCrypt.fst
///
/// The expected usage for this module is as follows:
/// - client expands key, obtaining an ``expanded_key a``
/// - client uses ``encrypt``/``decrypt`` with the same ``expanded_key a`` repeatedly.
///
/// This usage protocol is enforced for verified F* clients but, naturally,
/// isn't for C clients.
module S = FStar.Seq
module G = FStar.Ghost
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Integers
open Spec.Agile.AEAD
module Spec = Spec.Agile.AEAD
open EverCrypt.Error
/// Note: if the fst and the fsti are running on different fuel settings,
/// something that works in the interactive mode for the fsti, when
/// "re-interpreted" in the fst, might stop working!
#set-options "--max_fuel 0 --max_ifuel 0"
/// Abstract footprints, with the same machinery as EverCrypt.Hash
/// --------------------------------------------------------------
///
/// Differences from EverCrypt.Hash include: combined framing lemma, the
/// equivalent of the ``repr`` function does *not* require the memory, and order
/// of arguments to be in line with ``B.as_seq``, etc. which take the memory
/// first.
[@@ CAbstractStruct; Comment "Both encryption and decryption require a state that holds the key.
The state may be reused as many times as desired."]
val state_s: alg -> Type0
inline_for_extraction noextract
let state alg = B.pointer (state_s alg)
inline_for_extraction noextract
val freeable_s: #(a: alg) -> state_s a -> Type0
inline_for_extraction noextract
let freeable (#a: alg) (h: HS.mem) (p: state a) =
B.freeable p /\ freeable_s (B.deref h p)
inline_for_extraction noextract
let preserves_freeable #a (s: state a) (h0 h1: HS.mem): Type0 =
freeable h0 s ==> freeable h1 s
val footprint_s: #a:alg -> state_s a -> GTot B.loc
let footprint (#a:alg) (m: HS.mem) (s: state a) =
B.(loc_union (loc_addr_of_buffer s) (footprint_s (B.deref m s)))
// TR: the following pattern is necessary because, if we generically
// add such a pattern directly on `loc_includes_union_l`, then
// verification will blowup whenever both sides of `loc_includes` are
// `loc_union`s. We would like to break all unions on the
// right-hand-side of `loc_includes` first, using
// `loc_includes_union_r`. Here the pattern is on `footprint_s`,
// because we already expose the fact that `footprint` is a
// `loc_union`. (In other words, the pattern should be on every
// smallest location that is not exposed to be a `loc_union`.)
let loc_includes_union_l_footprint_s
(l1 l2: B.loc) (#a: alg) (s: state_s a)
: Lemma
(requires (
B.loc_includes l1 (footprint_s s) \/ B.loc_includes l2 (footprint_s s)
))
(ensures (B.loc_includes (B.loc_union l1 l2) (footprint_s s)))
[SMTPat (B.loc_includes (B.loc_union l1 l2) (footprint_s s))]
= B.loc_includes_union_l l1 l2 (footprint_s s)
/// The configuration preconditions
inline_for_extraction noextract
let config_pre a =
match a with
| AES128_GCM
| AES256_GCM ->
EverCrypt.TargetConfig.hacl_can_compile_vale /\
Vale.X64.CPU_Features_s.(aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\
movbe_enabled /\ sse_enabled)
| CHACHA20_POLY1305 -> True
| _ -> True
inline_for_extraction noextract
val invariant_s: (#a:alg) -> HS.mem -> state_s a -> Type0
inline_for_extraction noextract
let invariant (#a:alg) (m: HS.mem) (s: state a) =
B.live m s /\
B.(loc_disjoint (loc_addr_of_buffer s) (footprint_s (B.deref m s))) /\
invariant_s m (B.get m s 0)
val invariant_loc_in_footprint
(#a: alg)
(s: state a)
(m: HS.mem)
: Lemma
(requires (invariant m s))
(ensures (B.loc_in (footprint m s) m))
[SMTPat (invariant m s)]
val frame_invariant: #a:alg -> l:B.loc -> s:state a -> h0:HS.mem -> h1:HS.mem -> Lemma
(requires (
invariant h0 s /\
B.loc_disjoint l (footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
invariant h1 s /\
footprint h0 s == footprint h1 s))
[ SMTPat (invariant h1 s); SMTPat (B.modifies l h0 h1) ]
/// Actual stateful API
/// -------------------
noextract
let bytes = Seq.seq uint8
[@@ Comment "Return the algorithm used in the AEAD state.
@param s State of the AEAD algorithm.
@return Algorithm used in the AEAD state."]
val alg_of_state (a: G.erased alg) (s: state (G.reveal a)): Stack alg
(requires (fun h0 -> invariant #(G.reveal a) h0 s))
(ensures (fun h0 a' h1 ->
a' == G.reveal a /\
h0 == h1))
/// The API is constructed in a way that one can always get the original key
/// value behind a state, any any memory.
val as_kv: (#a: alg) -> state_s a -> GTot (kv a)
inline_for_extraction noextract
let create_in_st (a: alg) =
r:HS.rid ->
dst:B.pointer (B.pointer_or_null (state_s a)) ->
k:B.buffer uint8 { B.length k = key_length a } ->
ST error_code
(requires fun h0 ->
ST.is_eternal_region r /\
B.live h0 k /\ B.live h0 dst)
(ensures fun h0 e h1 ->
match e with
| UnsupportedAlgorithm ->
B.(modifies loc_none h0 h1)
| Success ->
let s = B.deref h1 dst in
// Sanity
is_supported_alg a /\
not (B.g_is_null s) /\
invariant h1 s /\
// Memory stuff
B.(modifies (loc_buffer dst) h0 h1) /\
B.fresh_loc (footprint h1 s) h0 h1 /\
B.(loc_includes (loc_region_only true r) (footprint h1 s)) /\
freeable h1 s /\
// Useful stuff
as_kv (B.deref h1 s) == B.as_seq h0 k
| _ -> False)
/// Same function as above, but in the StackInline effect, so that it is possible
/// to use AES GCM while staying in the Stack effect. In this case, the state should
/// be allocated/deallocated just before/after any encryption or decryption (which
/// is not very problematic during, for example, a handshake).
inline_for_extraction noextract | false | true | EverCrypt.AEAD.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val alloca_st : a: Spec.Agile.AEAD.alg -> Type0 | [] | EverCrypt.AEAD.alloca_st | {
"file_name": "providers/evercrypt/EverCrypt.AEAD.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Spec.Agile.AEAD.alg -> Type0 | {
"end_col": 44,
"end_line": 197,
"start_col": 2,
"start_line": 182
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "EverCrypt.Error",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Agile.AEAD",
"short_module": "Spec"
},
{
"abbrev": false,
"full_module": "Spec.Agile.AEAD",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let encrypt_expand_pre (a: supported_alg)
(k:B.buffer uint8 { B.length k = key_length a })
(iv:iv_p a)
(iv_len: UInt32.t)
(ad:ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher: B.buffer uint8)
(tag: B.buffer uint8)
(h0: HS.mem)
=
encrypt_gen_pre a iv iv_len ad ad_len plain plain_len cipher tag h0 /\ (
B.live h0 k /\ B.disjoint k cipher /\
encrypt_live_disjoint_pre a iv iv_len ad ad_len
plain plain_len cipher tag h0) | let encrypt_expand_pre
(a: supported_alg)
(k: B.buffer uint8 {B.length k = key_length a})
(iv: iv_p a)
(iv_len: UInt32.t)
(ad: ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher tag: B.buffer uint8)
(h0: HS.mem)
= | false | null | false | encrypt_gen_pre a iv iv_len ad ad_len plain plain_len cipher tag h0 /\
(B.live h0 k /\ B.disjoint k cipher /\
encrypt_live_disjoint_pre a iv iv_len ad ad_len plain plain_len cipher tag h0) | {
"checked_file": "EverCrypt.AEAD.fsti.checked",
"dependencies": [
"Vale.X64.CPU_Features_s.fst.checked",
"Spec.Agile.AEAD.fsti.checked",
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"EverCrypt.TargetConfig.fsti.checked",
"EverCrypt.Error.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.AEAD.fsti"
} | [
"total"
] | [
"Spec.Agile.AEAD.supported_alg",
"LowStar.Buffer.buffer",
"Spec.Agile.AEAD.uint8",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.l_or",
"Prims.op_GreaterThanOrEqual",
"FStar.Integers.op_Greater_Equals",
"FStar.Integers.Signed",
"FStar.Integers.Winfinite",
"LowStar.Monotonic.Buffer.length",
"LowStar.Buffer.trivial_preorder",
"Spec.Agile.AEAD.key_length",
"EverCrypt.AEAD.iv_p",
"FStar.UInt32.t",
"EverCrypt.AEAD.ad_p",
"EverCrypt.AEAD.plain_p",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_and",
"EverCrypt.AEAD.encrypt_gen_pre",
"LowStar.Monotonic.Buffer.live",
"LowStar.Monotonic.Buffer.disjoint",
"EverCrypt.AEAD.encrypt_live_disjoint_pre",
"Prims.logical"
] | [] | module EverCrypt.AEAD
/// The new AEAD interface for EverCrypt, which supersedes the functions found
/// in EverCrypt.fst
///
/// The expected usage for this module is as follows:
/// - client expands key, obtaining an ``expanded_key a``
/// - client uses ``encrypt``/``decrypt`` with the same ``expanded_key a`` repeatedly.
///
/// This usage protocol is enforced for verified F* clients but, naturally,
/// isn't for C clients.
module S = FStar.Seq
module G = FStar.Ghost
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Integers
open Spec.Agile.AEAD
module Spec = Spec.Agile.AEAD
open EverCrypt.Error
/// Note: if the fst and the fsti are running on different fuel settings,
/// something that works in the interactive mode for the fsti, when
/// "re-interpreted" in the fst, might stop working!
#set-options "--max_fuel 0 --max_ifuel 0"
/// Abstract footprints, with the same machinery as EverCrypt.Hash
/// --------------------------------------------------------------
///
/// Differences from EverCrypt.Hash include: combined framing lemma, the
/// equivalent of the ``repr`` function does *not* require the memory, and order
/// of arguments to be in line with ``B.as_seq``, etc. which take the memory
/// first.
[@@ CAbstractStruct; Comment "Both encryption and decryption require a state that holds the key.
The state may be reused as many times as desired."]
val state_s: alg -> Type0
inline_for_extraction noextract
let state alg = B.pointer (state_s alg)
inline_for_extraction noextract
val freeable_s: #(a: alg) -> state_s a -> Type0
inline_for_extraction noextract
let freeable (#a: alg) (h: HS.mem) (p: state a) =
B.freeable p /\ freeable_s (B.deref h p)
inline_for_extraction noextract
let preserves_freeable #a (s: state a) (h0 h1: HS.mem): Type0 =
freeable h0 s ==> freeable h1 s
val footprint_s: #a:alg -> state_s a -> GTot B.loc
let footprint (#a:alg) (m: HS.mem) (s: state a) =
B.(loc_union (loc_addr_of_buffer s) (footprint_s (B.deref m s)))
// TR: the following pattern is necessary because, if we generically
// add such a pattern directly on `loc_includes_union_l`, then
// verification will blowup whenever both sides of `loc_includes` are
// `loc_union`s. We would like to break all unions on the
// right-hand-side of `loc_includes` first, using
// `loc_includes_union_r`. Here the pattern is on `footprint_s`,
// because we already expose the fact that `footprint` is a
// `loc_union`. (In other words, the pattern should be on every
// smallest location that is not exposed to be a `loc_union`.)
let loc_includes_union_l_footprint_s
(l1 l2: B.loc) (#a: alg) (s: state_s a)
: Lemma
(requires (
B.loc_includes l1 (footprint_s s) \/ B.loc_includes l2 (footprint_s s)
))
(ensures (B.loc_includes (B.loc_union l1 l2) (footprint_s s)))
[SMTPat (B.loc_includes (B.loc_union l1 l2) (footprint_s s))]
= B.loc_includes_union_l l1 l2 (footprint_s s)
/// The configuration preconditions
inline_for_extraction noextract
let config_pre a =
match a with
| AES128_GCM
| AES256_GCM ->
EverCrypt.TargetConfig.hacl_can_compile_vale /\
Vale.X64.CPU_Features_s.(aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\
movbe_enabled /\ sse_enabled)
| CHACHA20_POLY1305 -> True
| _ -> True
inline_for_extraction noextract
val invariant_s: (#a:alg) -> HS.mem -> state_s a -> Type0
inline_for_extraction noextract
let invariant (#a:alg) (m: HS.mem) (s: state a) =
B.live m s /\
B.(loc_disjoint (loc_addr_of_buffer s) (footprint_s (B.deref m s))) /\
invariant_s m (B.get m s 0)
val invariant_loc_in_footprint
(#a: alg)
(s: state a)
(m: HS.mem)
: Lemma
(requires (invariant m s))
(ensures (B.loc_in (footprint m s) m))
[SMTPat (invariant m s)]
val frame_invariant: #a:alg -> l:B.loc -> s:state a -> h0:HS.mem -> h1:HS.mem -> Lemma
(requires (
invariant h0 s /\
B.loc_disjoint l (footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
invariant h1 s /\
footprint h0 s == footprint h1 s))
[ SMTPat (invariant h1 s); SMTPat (B.modifies l h0 h1) ]
/// Actual stateful API
/// -------------------
noextract
let bytes = Seq.seq uint8
[@@ Comment "Return the algorithm used in the AEAD state.
@param s State of the AEAD algorithm.
@return Algorithm used in the AEAD state."]
val alg_of_state (a: G.erased alg) (s: state (G.reveal a)): Stack alg
(requires (fun h0 -> invariant #(G.reveal a) h0 s))
(ensures (fun h0 a' h1 ->
a' == G.reveal a /\
h0 == h1))
/// The API is constructed in a way that one can always get the original key
/// value behind a state, any any memory.
val as_kv: (#a: alg) -> state_s a -> GTot (kv a)
inline_for_extraction noextract
let create_in_st (a: alg) =
r:HS.rid ->
dst:B.pointer (B.pointer_or_null (state_s a)) ->
k:B.buffer uint8 { B.length k = key_length a } ->
ST error_code
(requires fun h0 ->
ST.is_eternal_region r /\
B.live h0 k /\ B.live h0 dst)
(ensures fun h0 e h1 ->
match e with
| UnsupportedAlgorithm ->
B.(modifies loc_none h0 h1)
| Success ->
let s = B.deref h1 dst in
// Sanity
is_supported_alg a /\
not (B.g_is_null s) /\
invariant h1 s /\
// Memory stuff
B.(modifies (loc_buffer dst) h0 h1) /\
B.fresh_loc (footprint h1 s) h0 h1 /\
B.(loc_includes (loc_region_only true r) (footprint h1 s)) /\
freeable h1 s /\
// Useful stuff
as_kv (B.deref h1 s) == B.as_seq h0 k
| _ -> False)
/// Same function as above, but in the StackInline effect, so that it is possible
/// to use AES GCM while staying in the Stack effect. In this case, the state should
/// be allocated/deallocated just before/after any encryption or decryption (which
/// is not very problematic during, for example, a handshake).
inline_for_extraction noextract
let alloca_st (a: alg) =
k:B.buffer uint8 { B.length k = key_length a } ->
StackInline (B.pointer (state_s a))
(requires fun h0 ->
B.live h0 k /\ config_pre a /\ is_supported_alg a)
(ensures fun h0 s h1 ->
// Sanity
invariant h1 s /\
// Memory stuff
B.(modifies loc_none h0 h1) /\
B.fresh_loc (footprint h1 s) h0 h1 /\
B.live h1 s /\
B.(loc_includes (loc_region_only true (HS.get_tip h1)) (footprint h1 s)) /\
// Useful stuff
as_kv (B.deref h1 s) == B.as_seq h0 k)
/// This function takes a pointer to a caller-allocated reference ``dst`` then,
/// if the algorithm is supported (on this platform), allocates a fresh state
/// and modifies ``dst`` to point to it. The key-value associated with this can
/// be obtained via ``kv (B.deref dst)``; as long as ``dst`` is not modified,
/// then the caller can derive that the ``kv`` remains the same, which will be
/// required for encrypt.
(** @type: true
*)
[@@ Comment "Create the required AEAD state for the algorithm.
Note: The caller must free the AEAD state by calling `EverCrypt_AEAD_free`.
@param a The argument `a` must be either of:
* `Spec_Agile_AEAD_AES128_GCM` (KEY_LEN=16),
* `Spec_Agile_AEAD_AES256_GCM` (KEY_LEN=32), or
* `Spec_Agile_AEAD_CHACHA20_POLY1305` (KEY_LEN=32).
@param dst Pointer to a pointer where the address of the allocated AEAD state will be written to.
@param k Pointer to `KEY_LEN` bytes of memory where the key is read from. The size depends on the used algorithm, see above.
@return The function returns `EverCrypt_Error_Success` on success or
`EverCrypt_Error_UnsupportedAlgorithm` in case of a bad algorithm identifier.
(See `EverCrypt_Error.h`.)"]
val create_in: #a:alg -> create_in_st a
inline_for_extraction noextract
val alloca: #a:alg -> alloca_st a
/// Encryption (pre-allocated state)
/// --------------------------------
inline_for_extraction noextract
let iv_p a = iv:B.buffer uint8 { iv_length a (B.length iv)}
inline_for_extraction noextract
let ad_p a = ad:B.buffer uint8 { B.length ad <= max_length a }
inline_for_extraction noextract
let plain_p a = p:B.buffer uint8 { B.length p <= max_length a }
inline_for_extraction noextract
let cipher_p a = p:B.buffer uint8 { B.length p + tag_length a <= max_length a }
// SNIPPET_START: encrypt_pre
inline_for_extraction noextract
let encrypt_gen_pre (a: supported_alg)
(iv:iv_p a)
(iv_len: UInt32.t)
(ad:ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher: B.buffer uint8)
(tag: B.buffer uint8)
(h0: HS.mem)
=
v iv_len = B.length iv /\ v iv_len > 0 /\
v ad_len = B.length ad /\ v ad_len <= pow2 31 /\
v plain_len = B.length plain /\ v plain_len <= max_length a /\
B.length cipher = B.length plain /\
B.length tag = tag_length a
inline_for_extraction noextract
let encrypt_live_disjoint_pre (a: supported_alg)
(iv:iv_p a)
(iv_len: UInt32.t)
(ad:ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher: B.buffer uint8)
(tag: B.buffer uint8)
(h0: HS.mem)
=
MB.(all_live h0 [ buf iv; buf ad; buf plain; buf cipher; buf tag ]) /\
(B.disjoint plain cipher \/ plain == cipher) /\
B.disjoint cipher tag /\
B.disjoint iv cipher /\ B.disjoint iv tag /\
B.disjoint plain tag /\
B.disjoint plain ad /\
B.disjoint ad cipher /\ B.disjoint ad tag
inline_for_extraction noextract
let encrypt_pre (a: supported_alg)
(s:B.pointer_or_null (state_s a))
(iv:iv_p a)
(iv_len: UInt32.t)
(ad:ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher: B.buffer uint8)
(tag: B.buffer uint8)
(h0: HS.mem)
=
encrypt_gen_pre a iv iv_len ad ad_len plain plain_len cipher tag h0 /\ (
not (B.g_is_null s) ==>
invariant h0 s /\
B.(loc_disjoint (footprint h0 s) (loc_buffer iv)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer ad)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer tag)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer plain)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer cipher)) /\
encrypt_live_disjoint_pre a iv iv_len ad ad_len plain plain_len cipher tag h0)
// SNIPPET_END: encrypt_pre
inline_for_extraction noextract
let encrypt_st (a: supported_alg) =
s:B.pointer_or_null (state_s a) ->
iv:iv_p a ->
iv_len: UInt32.t { v iv_len = B.length iv /\ v iv_len > 0 } ->
ad:ad_p a ->
ad_len: UInt32.t { v ad_len = B.length ad /\ v ad_len <= pow2 31 } ->
plain: plain_p a ->
plain_len: UInt32.t { v plain_len = B.length plain /\ v plain_len <= max_length a } ->
cipher: B.buffer uint8 { B.length cipher = B.length plain } ->
tag: B.buffer uint8 { B.length tag = tag_length a } ->
Stack error_code
(requires encrypt_pre a s iv iv_len ad ad_len plain plain_len cipher tag)
(ensures fun h0 r h1 ->
match r with
| Success ->
not (B.g_is_null s) /\
B.(modifies (loc_union (footprint h1 s) (loc_union (loc_buffer cipher) (loc_buffer tag))) h0 h1) /\
invariant h1 s /\
footprint h0 s == footprint h1 s /\
preserves_freeable s h0 h1 /\
as_kv (B.deref h1 s) == as_kv (B.deref h0 s) /\
S.equal (S.append (B.as_seq h1 cipher) (B.as_seq h1 tag))
(Spec.encrypt #a (as_kv (B.deref h0 s)) (B.as_seq h0 iv) (B.as_seq h0 ad) (B.as_seq h0 plain))
| InvalidKey ->
B.g_is_null s /\
B.(modifies loc_none h0 h1)
| _ -> False)
/// This function takes a previously expanded key and performs encryption.
///
/// Possible return values are:
/// - ``Success``: encryption was successfully performed
/// - ``InvalidKey``: the function was passed a NULL expanded key (see above)
(** @type: true
*)
[@@ Comment "Encrypt and authenticate a message (`plain`) with associated data (`ad`).
@param s Pointer to the The AEAD state created by `EverCrypt_AEAD_create_in`. It already contains the encryption key.
@param iv Pointer to `iv_len` bytes of memory where the nonce is read from.
@param iv_len Length of the nonce. Note: ChaCha20Poly1305 requires a 12 byte nonce.
@param ad Pointer to `ad_len` bytes of memory where the associated data is read from.
@param ad_len Length of the associated data.
@param plain Pointer to `plain_len` bytes of memory where the to-be-encrypted plaintext is read from.
@param plain_len Length of the to-be-encrypted plaintext.
@param cipher Pointer to `plain_len` bytes of memory where the ciphertext is written to.
@param tag Pointer to `TAG_LEN` bytes of memory where the tag is written to.
The length of the `tag` must be of a suitable length for the chosen algorithm:
* `Spec_Agile_AEAD_AES128_GCM` (TAG_LEN=16)
* `Spec_Agile_AEAD_AES256_GCM` (TAG_LEN=16)
* `Spec_Agile_AEAD_CHACHA20_POLY1305` (TAG_LEN=16)
@return `EverCrypt_AEAD_encrypt` may return either `EverCrypt_Error_Success` or `EverCrypt_Error_InvalidKey` (`EverCrypt_error.h`). The latter is returned if and only if the `s` parameter is `NULL`."]
val encrypt: #a:G.erased (supported_alg) -> encrypt_st (G.reveal a)
/// Encryption (no pre-allocated state)
/// -----------------------------------
///
/// All-in-one API that does not require performing key expansion separately.
/// Use if you must be in the Stack effect, or if you know you do not intend to
/// reuse the key with a different nonce later.
inline_for_extraction noextract
let encrypt_expand_pre (a: supported_alg)
(k:B.buffer uint8 { B.length k = key_length a })
(iv:iv_p a)
(iv_len: UInt32.t)
(ad:ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher: B.buffer uint8)
(tag: B.buffer uint8)
(h0: HS.mem) | false | false | EverCrypt.AEAD.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val encrypt_expand_pre : a: Spec.Agile.AEAD.supported_alg ->
k:
LowStar.Buffer.buffer Spec.Agile.AEAD.uint8
{LowStar.Monotonic.Buffer.length k = Spec.Agile.AEAD.key_length a} ->
iv: EverCrypt.AEAD.iv_p a ->
iv_len: FStar.UInt32.t ->
ad: EverCrypt.AEAD.ad_p a ->
ad_len: FStar.UInt32.t ->
plain: EverCrypt.AEAD.plain_p a ->
plain_len: FStar.UInt32.t ->
cipher: LowStar.Buffer.buffer Spec.Agile.AEAD.uint8 ->
tag: LowStar.Buffer.buffer Spec.Agile.AEAD.uint8 ->
h0: FStar.Monotonic.HyperStack.mem
-> Prims.logical | [] | EverCrypt.AEAD.encrypt_expand_pre | {
"file_name": "providers/evercrypt/EverCrypt.AEAD.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
a: Spec.Agile.AEAD.supported_alg ->
k:
LowStar.Buffer.buffer Spec.Agile.AEAD.uint8
{LowStar.Monotonic.Buffer.length k = Spec.Agile.AEAD.key_length a} ->
iv: EverCrypt.AEAD.iv_p a ->
iv_len: FStar.UInt32.t ->
ad: EverCrypt.AEAD.ad_p a ->
ad_len: FStar.UInt32.t ->
plain: EverCrypt.AEAD.plain_p a ->
plain_len: FStar.UInt32.t ->
cipher: LowStar.Buffer.buffer Spec.Agile.AEAD.uint8 ->
tag: LowStar.Buffer.buffer Spec.Agile.AEAD.uint8 ->
h0: FStar.Monotonic.HyperStack.mem
-> Prims.logical | {
"end_col": 58,
"end_line": 383,
"start_col": 2,
"start_line": 380
} |
|
FStar.Pervasives.Lemma | val loc_includes_union_l_footprint_s (l1 l2: B.loc) (#a: alg) (s: state_s a)
: Lemma (requires (B.loc_includes l1 (footprint_s s) \/ B.loc_includes l2 (footprint_s s)))
(ensures (B.loc_includes (B.loc_union l1 l2) (footprint_s s)))
[SMTPat (B.loc_includes (B.loc_union l1 l2) (footprint_s s))] | [
{
"abbrev": false,
"full_module": "EverCrypt.Error",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Agile.AEAD",
"short_module": "Spec"
},
{
"abbrev": false,
"full_module": "Spec.Agile.AEAD",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let loc_includes_union_l_footprint_s
(l1 l2: B.loc) (#a: alg) (s: state_s a)
: Lemma
(requires (
B.loc_includes l1 (footprint_s s) \/ B.loc_includes l2 (footprint_s s)
))
(ensures (B.loc_includes (B.loc_union l1 l2) (footprint_s s)))
[SMTPat (B.loc_includes (B.loc_union l1 l2) (footprint_s s))]
= B.loc_includes_union_l l1 l2 (footprint_s s) | val loc_includes_union_l_footprint_s (l1 l2: B.loc) (#a: alg) (s: state_s a)
: Lemma (requires (B.loc_includes l1 (footprint_s s) \/ B.loc_includes l2 (footprint_s s)))
(ensures (B.loc_includes (B.loc_union l1 l2) (footprint_s s)))
[SMTPat (B.loc_includes (B.loc_union l1 l2) (footprint_s s))]
let loc_includes_union_l_footprint_s (l1 l2: B.loc) (#a: alg) (s: state_s a)
: Lemma (requires (B.loc_includes l1 (footprint_s s) \/ B.loc_includes l2 (footprint_s s)))
(ensures (B.loc_includes (B.loc_union l1 l2) (footprint_s s)))
[SMTPat (B.loc_includes (B.loc_union l1 l2) (footprint_s s))] = | false | null | true | B.loc_includes_union_l l1 l2 (footprint_s s) | {
"checked_file": "EverCrypt.AEAD.fsti.checked",
"dependencies": [
"Vale.X64.CPU_Features_s.fst.checked",
"Spec.Agile.AEAD.fsti.checked",
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"EverCrypt.TargetConfig.fsti.checked",
"EverCrypt.Error.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.AEAD.fsti"
} | [
"lemma"
] | [
"LowStar.Monotonic.Buffer.loc",
"Spec.Agile.AEAD.alg",
"EverCrypt.AEAD.state_s",
"LowStar.Monotonic.Buffer.loc_includes_union_l",
"EverCrypt.AEAD.footprint_s",
"Prims.unit",
"Prims.l_or",
"LowStar.Monotonic.Buffer.loc_includes",
"Prims.squash",
"LowStar.Monotonic.Buffer.loc_union",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [] | module EverCrypt.AEAD
/// The new AEAD interface for EverCrypt, which supersedes the functions found
/// in EverCrypt.fst
///
/// The expected usage for this module is as follows:
/// - client expands key, obtaining an ``expanded_key a``
/// - client uses ``encrypt``/``decrypt`` with the same ``expanded_key a`` repeatedly.
///
/// This usage protocol is enforced for verified F* clients but, naturally,
/// isn't for C clients.
module S = FStar.Seq
module G = FStar.Ghost
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Integers
open Spec.Agile.AEAD
module Spec = Spec.Agile.AEAD
open EverCrypt.Error
/// Note: if the fst and the fsti are running on different fuel settings,
/// something that works in the interactive mode for the fsti, when
/// "re-interpreted" in the fst, might stop working!
#set-options "--max_fuel 0 --max_ifuel 0"
/// Abstract footprints, with the same machinery as EverCrypt.Hash
/// --------------------------------------------------------------
///
/// Differences from EverCrypt.Hash include: combined framing lemma, the
/// equivalent of the ``repr`` function does *not* require the memory, and order
/// of arguments to be in line with ``B.as_seq``, etc. which take the memory
/// first.
[@@ CAbstractStruct; Comment "Both encryption and decryption require a state that holds the key.
The state may be reused as many times as desired."]
val state_s: alg -> Type0
inline_for_extraction noextract
let state alg = B.pointer (state_s alg)
inline_for_extraction noextract
val freeable_s: #(a: alg) -> state_s a -> Type0
inline_for_extraction noextract
let freeable (#a: alg) (h: HS.mem) (p: state a) =
B.freeable p /\ freeable_s (B.deref h p)
inline_for_extraction noextract
let preserves_freeable #a (s: state a) (h0 h1: HS.mem): Type0 =
freeable h0 s ==> freeable h1 s
val footprint_s: #a:alg -> state_s a -> GTot B.loc
let footprint (#a:alg) (m: HS.mem) (s: state a) =
B.(loc_union (loc_addr_of_buffer s) (footprint_s (B.deref m s)))
// TR: the following pattern is necessary because, if we generically
// add such a pattern directly on `loc_includes_union_l`, then
// verification will blowup whenever both sides of `loc_includes` are
// `loc_union`s. We would like to break all unions on the
// right-hand-side of `loc_includes` first, using
// `loc_includes_union_r`. Here the pattern is on `footprint_s`,
// because we already expose the fact that `footprint` is a
// `loc_union`. (In other words, the pattern should be on every
// smallest location that is not exposed to be a `loc_union`.)
let loc_includes_union_l_footprint_s
(l1 l2: B.loc) (#a: alg) (s: state_s a)
: Lemma
(requires (
B.loc_includes l1 (footprint_s s) \/ B.loc_includes l2 (footprint_s s)
))
(ensures (B.loc_includes (B.loc_union l1 l2) (footprint_s s))) | false | false | EverCrypt.AEAD.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val loc_includes_union_l_footprint_s (l1 l2: B.loc) (#a: alg) (s: state_s a)
: Lemma (requires (B.loc_includes l1 (footprint_s s) \/ B.loc_includes l2 (footprint_s s)))
(ensures (B.loc_includes (B.loc_union l1 l2) (footprint_s s)))
[SMTPat (B.loc_includes (B.loc_union l1 l2) (footprint_s s))] | [] | EverCrypt.AEAD.loc_includes_union_l_footprint_s | {
"file_name": "providers/evercrypt/EverCrypt.AEAD.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | l1: LowStar.Monotonic.Buffer.loc -> l2: LowStar.Monotonic.Buffer.loc -> s: EverCrypt.AEAD.state_s a
-> FStar.Pervasives.Lemma
(requires
LowStar.Monotonic.Buffer.loc_includes l1 (EverCrypt.AEAD.footprint_s s) \/
LowStar.Monotonic.Buffer.loc_includes l2 (EverCrypt.AEAD.footprint_s s))
(ensures
LowStar.Monotonic.Buffer.loc_includes (LowStar.Monotonic.Buffer.loc_union l1 l2)
(EverCrypt.AEAD.footprint_s s))
[
SMTPat (LowStar.Monotonic.Buffer.loc_includes (LowStar.Monotonic.Buffer.loc_union l1 l2)
(EverCrypt.AEAD.footprint_s s))
] | {
"end_col": 46,
"end_line": 82,
"start_col": 2,
"start_line": 82
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "EverCrypt.Error",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Agile.AEAD",
"short_module": "Spec"
},
{
"abbrev": false,
"full_module": "Spec.Agile.AEAD",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let invariant (#a:alg) (m: HS.mem) (s: state a) =
B.live m s /\
B.(loc_disjoint (loc_addr_of_buffer s) (footprint_s (B.deref m s))) /\
invariant_s m (B.get m s 0) | let invariant (#a: alg) (m: HS.mem) (s: state a) = | false | null | false | B.live m s /\ B.(loc_disjoint (loc_addr_of_buffer s) (footprint_s (B.deref m s))) /\
invariant_s m (B.get m s 0) | {
"checked_file": "EverCrypt.AEAD.fsti.checked",
"dependencies": [
"Vale.X64.CPU_Features_s.fst.checked",
"Spec.Agile.AEAD.fsti.checked",
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"EverCrypt.TargetConfig.fsti.checked",
"EverCrypt.Error.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.AEAD.fsti"
} | [
"total"
] | [
"Spec.Agile.AEAD.alg",
"FStar.Monotonic.HyperStack.mem",
"EverCrypt.AEAD.state",
"Prims.l_and",
"LowStar.Monotonic.Buffer.live",
"EverCrypt.AEAD.state_s",
"LowStar.Buffer.trivial_preorder",
"LowStar.Monotonic.Buffer.loc_disjoint",
"LowStar.Monotonic.Buffer.loc_addr_of_buffer",
"EverCrypt.AEAD.footprint_s",
"LowStar.Monotonic.Buffer.deref",
"EverCrypt.AEAD.invariant_s",
"LowStar.Monotonic.Buffer.get",
"Prims.logical"
] | [] | module EverCrypt.AEAD
/// The new AEAD interface for EverCrypt, which supersedes the functions found
/// in EverCrypt.fst
///
/// The expected usage for this module is as follows:
/// - client expands key, obtaining an ``expanded_key a``
/// - client uses ``encrypt``/``decrypt`` with the same ``expanded_key a`` repeatedly.
///
/// This usage protocol is enforced for verified F* clients but, naturally,
/// isn't for C clients.
module S = FStar.Seq
module G = FStar.Ghost
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Integers
open Spec.Agile.AEAD
module Spec = Spec.Agile.AEAD
open EverCrypt.Error
/// Note: if the fst and the fsti are running on different fuel settings,
/// something that works in the interactive mode for the fsti, when
/// "re-interpreted" in the fst, might stop working!
#set-options "--max_fuel 0 --max_ifuel 0"
/// Abstract footprints, with the same machinery as EverCrypt.Hash
/// --------------------------------------------------------------
///
/// Differences from EverCrypt.Hash include: combined framing lemma, the
/// equivalent of the ``repr`` function does *not* require the memory, and order
/// of arguments to be in line with ``B.as_seq``, etc. which take the memory
/// first.
[@@ CAbstractStruct; Comment "Both encryption and decryption require a state that holds the key.
The state may be reused as many times as desired."]
val state_s: alg -> Type0
inline_for_extraction noextract
let state alg = B.pointer (state_s alg)
inline_for_extraction noextract
val freeable_s: #(a: alg) -> state_s a -> Type0
inline_for_extraction noextract
let freeable (#a: alg) (h: HS.mem) (p: state a) =
B.freeable p /\ freeable_s (B.deref h p)
inline_for_extraction noextract
let preserves_freeable #a (s: state a) (h0 h1: HS.mem): Type0 =
freeable h0 s ==> freeable h1 s
val footprint_s: #a:alg -> state_s a -> GTot B.loc
let footprint (#a:alg) (m: HS.mem) (s: state a) =
B.(loc_union (loc_addr_of_buffer s) (footprint_s (B.deref m s)))
// TR: the following pattern is necessary because, if we generically
// add such a pattern directly on `loc_includes_union_l`, then
// verification will blowup whenever both sides of `loc_includes` are
// `loc_union`s. We would like to break all unions on the
// right-hand-side of `loc_includes` first, using
// `loc_includes_union_r`. Here the pattern is on `footprint_s`,
// because we already expose the fact that `footprint` is a
// `loc_union`. (In other words, the pattern should be on every
// smallest location that is not exposed to be a `loc_union`.)
let loc_includes_union_l_footprint_s
(l1 l2: B.loc) (#a: alg) (s: state_s a)
: Lemma
(requires (
B.loc_includes l1 (footprint_s s) \/ B.loc_includes l2 (footprint_s s)
))
(ensures (B.loc_includes (B.loc_union l1 l2) (footprint_s s)))
[SMTPat (B.loc_includes (B.loc_union l1 l2) (footprint_s s))]
= B.loc_includes_union_l l1 l2 (footprint_s s)
/// The configuration preconditions
inline_for_extraction noextract
let config_pre a =
match a with
| AES128_GCM
| AES256_GCM ->
EverCrypt.TargetConfig.hacl_can_compile_vale /\
Vale.X64.CPU_Features_s.(aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\
movbe_enabled /\ sse_enabled)
| CHACHA20_POLY1305 -> True
| _ -> True
inline_for_extraction noextract
val invariant_s: (#a:alg) -> HS.mem -> state_s a -> Type0
inline_for_extraction noextract | false | false | EverCrypt.AEAD.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val invariant : m: FStar.Monotonic.HyperStack.mem -> s: EverCrypt.AEAD.state a -> Prims.logical | [] | EverCrypt.AEAD.invariant | {
"file_name": "providers/evercrypt/EverCrypt.AEAD.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | m: FStar.Monotonic.HyperStack.mem -> s: EverCrypt.AEAD.state a -> Prims.logical | {
"end_col": 29,
"end_line": 103,
"start_col": 2,
"start_line": 101
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "EverCrypt.Error",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Agile.AEAD",
"short_module": "Spec"
},
{
"abbrev": false,
"full_module": "Spec.Agile.AEAD",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let encrypt_gen_pre (a: supported_alg)
(iv:iv_p a)
(iv_len: UInt32.t)
(ad:ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher: B.buffer uint8)
(tag: B.buffer uint8)
(h0: HS.mem)
=
v iv_len = B.length iv /\ v iv_len > 0 /\
v ad_len = B.length ad /\ v ad_len <= pow2 31 /\
v plain_len = B.length plain /\ v plain_len <= max_length a /\
B.length cipher = B.length plain /\
B.length tag = tag_length a | let encrypt_gen_pre
(a: supported_alg)
(iv: iv_p a)
(iv_len: UInt32.t)
(ad: ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher tag: B.buffer uint8)
(h0: HS.mem)
= | false | null | false | v iv_len = B.length iv /\ v iv_len > 0 /\ v ad_len = B.length ad /\ v ad_len <= pow2 31 /\
v plain_len = B.length plain /\ v plain_len <= max_length a /\ B.length cipher = B.length plain /\
B.length tag = tag_length a | {
"checked_file": "EverCrypt.AEAD.fsti.checked",
"dependencies": [
"Vale.X64.CPU_Features_s.fst.checked",
"Spec.Agile.AEAD.fsti.checked",
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"EverCrypt.TargetConfig.fsti.checked",
"EverCrypt.Error.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.AEAD.fsti"
} | [
"total"
] | [
"Spec.Agile.AEAD.supported_alg",
"EverCrypt.AEAD.iv_p",
"FStar.UInt32.t",
"EverCrypt.AEAD.ad_p",
"EverCrypt.AEAD.plain_p",
"LowStar.Buffer.buffer",
"Spec.Agile.AEAD.uint8",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_and",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.l_or",
"Prims.op_GreaterThanOrEqual",
"FStar.Integers.within_bounds",
"FStar.Integers.Unsigned",
"FStar.Integers.W32",
"FStar.Integers.v",
"LowStar.Monotonic.Buffer.length",
"LowStar.Buffer.trivial_preorder",
"FStar.Integers.op_Greater",
"FStar.Integers.Signed",
"FStar.Integers.Winfinite",
"FStar.Integers.op_Less_Equals",
"Prims.pow2",
"Spec.Agile.AEAD.max_length",
"Prims.nat",
"Spec.Agile.AEAD.tag_length",
"Prims.logical"
] | [] | module EverCrypt.AEAD
/// The new AEAD interface for EverCrypt, which supersedes the functions found
/// in EverCrypt.fst
///
/// The expected usage for this module is as follows:
/// - client expands key, obtaining an ``expanded_key a``
/// - client uses ``encrypt``/``decrypt`` with the same ``expanded_key a`` repeatedly.
///
/// This usage protocol is enforced for verified F* clients but, naturally,
/// isn't for C clients.
module S = FStar.Seq
module G = FStar.Ghost
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Integers
open Spec.Agile.AEAD
module Spec = Spec.Agile.AEAD
open EverCrypt.Error
/// Note: if the fst and the fsti are running on different fuel settings,
/// something that works in the interactive mode for the fsti, when
/// "re-interpreted" in the fst, might stop working!
#set-options "--max_fuel 0 --max_ifuel 0"
/// Abstract footprints, with the same machinery as EverCrypt.Hash
/// --------------------------------------------------------------
///
/// Differences from EverCrypt.Hash include: combined framing lemma, the
/// equivalent of the ``repr`` function does *not* require the memory, and order
/// of arguments to be in line with ``B.as_seq``, etc. which take the memory
/// first.
[@@ CAbstractStruct; Comment "Both encryption and decryption require a state that holds the key.
The state may be reused as many times as desired."]
val state_s: alg -> Type0
inline_for_extraction noextract
let state alg = B.pointer (state_s alg)
inline_for_extraction noextract
val freeable_s: #(a: alg) -> state_s a -> Type0
inline_for_extraction noextract
let freeable (#a: alg) (h: HS.mem) (p: state a) =
B.freeable p /\ freeable_s (B.deref h p)
inline_for_extraction noextract
let preserves_freeable #a (s: state a) (h0 h1: HS.mem): Type0 =
freeable h0 s ==> freeable h1 s
val footprint_s: #a:alg -> state_s a -> GTot B.loc
let footprint (#a:alg) (m: HS.mem) (s: state a) =
B.(loc_union (loc_addr_of_buffer s) (footprint_s (B.deref m s)))
// TR: the following pattern is necessary because, if we generically
// add such a pattern directly on `loc_includes_union_l`, then
// verification will blowup whenever both sides of `loc_includes` are
// `loc_union`s. We would like to break all unions on the
// right-hand-side of `loc_includes` first, using
// `loc_includes_union_r`. Here the pattern is on `footprint_s`,
// because we already expose the fact that `footprint` is a
// `loc_union`. (In other words, the pattern should be on every
// smallest location that is not exposed to be a `loc_union`.)
let loc_includes_union_l_footprint_s
(l1 l2: B.loc) (#a: alg) (s: state_s a)
: Lemma
(requires (
B.loc_includes l1 (footprint_s s) \/ B.loc_includes l2 (footprint_s s)
))
(ensures (B.loc_includes (B.loc_union l1 l2) (footprint_s s)))
[SMTPat (B.loc_includes (B.loc_union l1 l2) (footprint_s s))]
= B.loc_includes_union_l l1 l2 (footprint_s s)
/// The configuration preconditions
inline_for_extraction noextract
let config_pre a =
match a with
| AES128_GCM
| AES256_GCM ->
EverCrypt.TargetConfig.hacl_can_compile_vale /\
Vale.X64.CPU_Features_s.(aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\
movbe_enabled /\ sse_enabled)
| CHACHA20_POLY1305 -> True
| _ -> True
inline_for_extraction noextract
val invariant_s: (#a:alg) -> HS.mem -> state_s a -> Type0
inline_for_extraction noextract
let invariant (#a:alg) (m: HS.mem) (s: state a) =
B.live m s /\
B.(loc_disjoint (loc_addr_of_buffer s) (footprint_s (B.deref m s))) /\
invariant_s m (B.get m s 0)
val invariant_loc_in_footprint
(#a: alg)
(s: state a)
(m: HS.mem)
: Lemma
(requires (invariant m s))
(ensures (B.loc_in (footprint m s) m))
[SMTPat (invariant m s)]
val frame_invariant: #a:alg -> l:B.loc -> s:state a -> h0:HS.mem -> h1:HS.mem -> Lemma
(requires (
invariant h0 s /\
B.loc_disjoint l (footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
invariant h1 s /\
footprint h0 s == footprint h1 s))
[ SMTPat (invariant h1 s); SMTPat (B.modifies l h0 h1) ]
/// Actual stateful API
/// -------------------
noextract
let bytes = Seq.seq uint8
[@@ Comment "Return the algorithm used in the AEAD state.
@param s State of the AEAD algorithm.
@return Algorithm used in the AEAD state."]
val alg_of_state (a: G.erased alg) (s: state (G.reveal a)): Stack alg
(requires (fun h0 -> invariant #(G.reveal a) h0 s))
(ensures (fun h0 a' h1 ->
a' == G.reveal a /\
h0 == h1))
/// The API is constructed in a way that one can always get the original key
/// value behind a state, any any memory.
val as_kv: (#a: alg) -> state_s a -> GTot (kv a)
inline_for_extraction noextract
let create_in_st (a: alg) =
r:HS.rid ->
dst:B.pointer (B.pointer_or_null (state_s a)) ->
k:B.buffer uint8 { B.length k = key_length a } ->
ST error_code
(requires fun h0 ->
ST.is_eternal_region r /\
B.live h0 k /\ B.live h0 dst)
(ensures fun h0 e h1 ->
match e with
| UnsupportedAlgorithm ->
B.(modifies loc_none h0 h1)
| Success ->
let s = B.deref h1 dst in
// Sanity
is_supported_alg a /\
not (B.g_is_null s) /\
invariant h1 s /\
// Memory stuff
B.(modifies (loc_buffer dst) h0 h1) /\
B.fresh_loc (footprint h1 s) h0 h1 /\
B.(loc_includes (loc_region_only true r) (footprint h1 s)) /\
freeable h1 s /\
// Useful stuff
as_kv (B.deref h1 s) == B.as_seq h0 k
| _ -> False)
/// Same function as above, but in the StackInline effect, so that it is possible
/// to use AES GCM while staying in the Stack effect. In this case, the state should
/// be allocated/deallocated just before/after any encryption or decryption (which
/// is not very problematic during, for example, a handshake).
inline_for_extraction noextract
let alloca_st (a: alg) =
k:B.buffer uint8 { B.length k = key_length a } ->
StackInline (B.pointer (state_s a))
(requires fun h0 ->
B.live h0 k /\ config_pre a /\ is_supported_alg a)
(ensures fun h0 s h1 ->
// Sanity
invariant h1 s /\
// Memory stuff
B.(modifies loc_none h0 h1) /\
B.fresh_loc (footprint h1 s) h0 h1 /\
B.live h1 s /\
B.(loc_includes (loc_region_only true (HS.get_tip h1)) (footprint h1 s)) /\
// Useful stuff
as_kv (B.deref h1 s) == B.as_seq h0 k)
/// This function takes a pointer to a caller-allocated reference ``dst`` then,
/// if the algorithm is supported (on this platform), allocates a fresh state
/// and modifies ``dst`` to point to it. The key-value associated with this can
/// be obtained via ``kv (B.deref dst)``; as long as ``dst`` is not modified,
/// then the caller can derive that the ``kv`` remains the same, which will be
/// required for encrypt.
(** @type: true
*)
[@@ Comment "Create the required AEAD state for the algorithm.
Note: The caller must free the AEAD state by calling `EverCrypt_AEAD_free`.
@param a The argument `a` must be either of:
* `Spec_Agile_AEAD_AES128_GCM` (KEY_LEN=16),
* `Spec_Agile_AEAD_AES256_GCM` (KEY_LEN=32), or
* `Spec_Agile_AEAD_CHACHA20_POLY1305` (KEY_LEN=32).
@param dst Pointer to a pointer where the address of the allocated AEAD state will be written to.
@param k Pointer to `KEY_LEN` bytes of memory where the key is read from. The size depends on the used algorithm, see above.
@return The function returns `EverCrypt_Error_Success` on success or
`EverCrypt_Error_UnsupportedAlgorithm` in case of a bad algorithm identifier.
(See `EverCrypt_Error.h`.)"]
val create_in: #a:alg -> create_in_st a
inline_for_extraction noextract
val alloca: #a:alg -> alloca_st a
/// Encryption (pre-allocated state)
/// --------------------------------
inline_for_extraction noextract
let iv_p a = iv:B.buffer uint8 { iv_length a (B.length iv)}
inline_for_extraction noextract
let ad_p a = ad:B.buffer uint8 { B.length ad <= max_length a }
inline_for_extraction noextract
let plain_p a = p:B.buffer uint8 { B.length p <= max_length a }
inline_for_extraction noextract
let cipher_p a = p:B.buffer uint8 { B.length p + tag_length a <= max_length a }
// SNIPPET_START: encrypt_pre
inline_for_extraction noextract
let encrypt_gen_pre (a: supported_alg)
(iv:iv_p a)
(iv_len: UInt32.t)
(ad:ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher: B.buffer uint8)
(tag: B.buffer uint8)
(h0: HS.mem) | false | false | EverCrypt.AEAD.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val encrypt_gen_pre : a: Spec.Agile.AEAD.supported_alg ->
iv: EverCrypt.AEAD.iv_p a ->
iv_len: FStar.UInt32.t ->
ad: EverCrypt.AEAD.ad_p a ->
ad_len: FStar.UInt32.t ->
plain: EverCrypt.AEAD.plain_p a ->
plain_len: FStar.UInt32.t ->
cipher: LowStar.Buffer.buffer Spec.Agile.AEAD.uint8 ->
tag: LowStar.Buffer.buffer Spec.Agile.AEAD.uint8 ->
h0: FStar.Monotonic.HyperStack.mem
-> Prims.logical | [] | EverCrypt.AEAD.encrypt_gen_pre | {
"file_name": "providers/evercrypt/EverCrypt.AEAD.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
a: Spec.Agile.AEAD.supported_alg ->
iv: EverCrypt.AEAD.iv_p a ->
iv_len: FStar.UInt32.t ->
ad: EverCrypt.AEAD.ad_p a ->
ad_len: FStar.UInt32.t ->
plain: EverCrypt.AEAD.plain_p a ->
plain_len: FStar.UInt32.t ->
cipher: LowStar.Buffer.buffer Spec.Agile.AEAD.uint8 ->
tag: LowStar.Buffer.buffer Spec.Agile.AEAD.uint8 ->
h0: FStar.Monotonic.HyperStack.mem
-> Prims.logical | {
"end_col": 29,
"end_line": 259,
"start_col": 2,
"start_line": 255
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "EverCrypt.Error",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Agile.AEAD",
"short_module": "Spec"
},
{
"abbrev": false,
"full_module": "Spec.Agile.AEAD",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let create_in_st (a: alg) =
r:HS.rid ->
dst:B.pointer (B.pointer_or_null (state_s a)) ->
k:B.buffer uint8 { B.length k = key_length a } ->
ST error_code
(requires fun h0 ->
ST.is_eternal_region r /\
B.live h0 k /\ B.live h0 dst)
(ensures fun h0 e h1 ->
match e with
| UnsupportedAlgorithm ->
B.(modifies loc_none h0 h1)
| Success ->
let s = B.deref h1 dst in
// Sanity
is_supported_alg a /\
not (B.g_is_null s) /\
invariant h1 s /\
// Memory stuff
B.(modifies (loc_buffer dst) h0 h1) /\
B.fresh_loc (footprint h1 s) h0 h1 /\
B.(loc_includes (loc_region_only true r) (footprint h1 s)) /\
freeable h1 s /\
// Useful stuff
as_kv (B.deref h1 s) == B.as_seq h0 k
| _ -> False) | let create_in_st (a: alg) = | false | null | false |
r: HS.rid ->
dst: B.pointer (B.pointer_or_null (state_s a)) ->
k: B.buffer uint8 {B.length k = key_length a}
-> ST error_code
(requires fun h0 -> ST.is_eternal_region r /\ B.live h0 k /\ B.live h0 dst)
(ensures
fun h0 e h1 ->
match e with
| UnsupportedAlgorithm -> let open B in modifies loc_none h0 h1
| Success ->
let s = B.deref h1 dst in
is_supported_alg a /\ not (B.g_is_null s) /\ invariant h1 s /\
B.(modifies (loc_buffer dst) h0 h1) /\ B.fresh_loc (footprint h1 s) h0 h1 /\
B.(loc_includes (loc_region_only true r) (footprint h1 s)) /\ freeable h1 s /\
as_kv (B.deref h1 s) == B.as_seq h0 k
| _ -> False) | {
"checked_file": "EverCrypt.AEAD.fsti.checked",
"dependencies": [
"Vale.X64.CPU_Features_s.fst.checked",
"Spec.Agile.AEAD.fsti.checked",
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"EverCrypt.TargetConfig.fsti.checked",
"EverCrypt.Error.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.AEAD.fsti"
} | [
"total"
] | [
"Spec.Agile.AEAD.alg",
"FStar.Monotonic.HyperHeap.rid",
"LowStar.Buffer.pointer",
"LowStar.Buffer.pointer_or_null",
"EverCrypt.AEAD.state_s",
"LowStar.Buffer.buffer",
"Spec.Agile.AEAD.uint8",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.l_or",
"Prims.op_GreaterThanOrEqual",
"FStar.Integers.op_Greater_Equals",
"FStar.Integers.Signed",
"FStar.Integers.Winfinite",
"LowStar.Monotonic.Buffer.length",
"LowStar.Buffer.trivial_preorder",
"Spec.Agile.AEAD.key_length",
"EverCrypt.Error.error_code",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_and",
"FStar.HyperStack.ST.is_eternal_region",
"LowStar.Monotonic.Buffer.live",
"LowStar.Monotonic.Buffer.modifies",
"LowStar.Monotonic.Buffer.loc_none",
"Spec.Agile.AEAD.is_supported_alg",
"Prims.op_Negation",
"LowStar.Monotonic.Buffer.g_is_null",
"EverCrypt.AEAD.invariant",
"LowStar.Monotonic.Buffer.loc_buffer",
"LowStar.Monotonic.Buffer.fresh_loc",
"EverCrypt.AEAD.footprint",
"LowStar.Monotonic.Buffer.loc_includes",
"LowStar.Monotonic.Buffer.loc_region_only",
"EverCrypt.AEAD.freeable",
"Prims.eq2",
"FStar.Seq.Base.seq",
"EverCrypt.AEAD.as_kv",
"LowStar.Monotonic.Buffer.deref",
"LowStar.Monotonic.Buffer.as_seq",
"Prims.l_False"
] | [] | module EverCrypt.AEAD
/// The new AEAD interface for EverCrypt, which supersedes the functions found
/// in EverCrypt.fst
///
/// The expected usage for this module is as follows:
/// - client expands key, obtaining an ``expanded_key a``
/// - client uses ``encrypt``/``decrypt`` with the same ``expanded_key a`` repeatedly.
///
/// This usage protocol is enforced for verified F* clients but, naturally,
/// isn't for C clients.
module S = FStar.Seq
module G = FStar.Ghost
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Integers
open Spec.Agile.AEAD
module Spec = Spec.Agile.AEAD
open EverCrypt.Error
/// Note: if the fst and the fsti are running on different fuel settings,
/// something that works in the interactive mode for the fsti, when
/// "re-interpreted" in the fst, might stop working!
#set-options "--max_fuel 0 --max_ifuel 0"
/// Abstract footprints, with the same machinery as EverCrypt.Hash
/// --------------------------------------------------------------
///
/// Differences from EverCrypt.Hash include: combined framing lemma, the
/// equivalent of the ``repr`` function does *not* require the memory, and order
/// of arguments to be in line with ``B.as_seq``, etc. which take the memory
/// first.
[@@ CAbstractStruct; Comment "Both encryption and decryption require a state that holds the key.
The state may be reused as many times as desired."]
val state_s: alg -> Type0
inline_for_extraction noextract
let state alg = B.pointer (state_s alg)
inline_for_extraction noextract
val freeable_s: #(a: alg) -> state_s a -> Type0
inline_for_extraction noextract
let freeable (#a: alg) (h: HS.mem) (p: state a) =
B.freeable p /\ freeable_s (B.deref h p)
inline_for_extraction noextract
let preserves_freeable #a (s: state a) (h0 h1: HS.mem): Type0 =
freeable h0 s ==> freeable h1 s
val footprint_s: #a:alg -> state_s a -> GTot B.loc
let footprint (#a:alg) (m: HS.mem) (s: state a) =
B.(loc_union (loc_addr_of_buffer s) (footprint_s (B.deref m s)))
// TR: the following pattern is necessary because, if we generically
// add such a pattern directly on `loc_includes_union_l`, then
// verification will blowup whenever both sides of `loc_includes` are
// `loc_union`s. We would like to break all unions on the
// right-hand-side of `loc_includes` first, using
// `loc_includes_union_r`. Here the pattern is on `footprint_s`,
// because we already expose the fact that `footprint` is a
// `loc_union`. (In other words, the pattern should be on every
// smallest location that is not exposed to be a `loc_union`.)
let loc_includes_union_l_footprint_s
(l1 l2: B.loc) (#a: alg) (s: state_s a)
: Lemma
(requires (
B.loc_includes l1 (footprint_s s) \/ B.loc_includes l2 (footprint_s s)
))
(ensures (B.loc_includes (B.loc_union l1 l2) (footprint_s s)))
[SMTPat (B.loc_includes (B.loc_union l1 l2) (footprint_s s))]
= B.loc_includes_union_l l1 l2 (footprint_s s)
/// The configuration preconditions
inline_for_extraction noextract
let config_pre a =
match a with
| AES128_GCM
| AES256_GCM ->
EverCrypt.TargetConfig.hacl_can_compile_vale /\
Vale.X64.CPU_Features_s.(aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\
movbe_enabled /\ sse_enabled)
| CHACHA20_POLY1305 -> True
| _ -> True
inline_for_extraction noextract
val invariant_s: (#a:alg) -> HS.mem -> state_s a -> Type0
inline_for_extraction noextract
let invariant (#a:alg) (m: HS.mem) (s: state a) =
B.live m s /\
B.(loc_disjoint (loc_addr_of_buffer s) (footprint_s (B.deref m s))) /\
invariant_s m (B.get m s 0)
val invariant_loc_in_footprint
(#a: alg)
(s: state a)
(m: HS.mem)
: Lemma
(requires (invariant m s))
(ensures (B.loc_in (footprint m s) m))
[SMTPat (invariant m s)]
val frame_invariant: #a:alg -> l:B.loc -> s:state a -> h0:HS.mem -> h1:HS.mem -> Lemma
(requires (
invariant h0 s /\
B.loc_disjoint l (footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
invariant h1 s /\
footprint h0 s == footprint h1 s))
[ SMTPat (invariant h1 s); SMTPat (B.modifies l h0 h1) ]
/// Actual stateful API
/// -------------------
noextract
let bytes = Seq.seq uint8
[@@ Comment "Return the algorithm used in the AEAD state.
@param s State of the AEAD algorithm.
@return Algorithm used in the AEAD state."]
val alg_of_state (a: G.erased alg) (s: state (G.reveal a)): Stack alg
(requires (fun h0 -> invariant #(G.reveal a) h0 s))
(ensures (fun h0 a' h1 ->
a' == G.reveal a /\
h0 == h1))
/// The API is constructed in a way that one can always get the original key
/// value behind a state, any any memory.
val as_kv: (#a: alg) -> state_s a -> GTot (kv a)
inline_for_extraction noextract | false | true | EverCrypt.AEAD.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val create_in_st : a: Spec.Agile.AEAD.alg -> Type0 | [] | EverCrypt.AEAD.create_in_st | {
"file_name": "providers/evercrypt/EverCrypt.AEAD.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Spec.Agile.AEAD.alg -> Type0 | {
"end_col": 19,
"end_line": 174,
"start_col": 2,
"start_line": 148
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "EverCrypt.Error",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Agile.AEAD",
"short_module": "Spec"
},
{
"abbrev": false,
"full_module": "Spec.Agile.AEAD",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let encrypt_pre (a: supported_alg)
(s:B.pointer_or_null (state_s a))
(iv:iv_p a)
(iv_len: UInt32.t)
(ad:ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher: B.buffer uint8)
(tag: B.buffer uint8)
(h0: HS.mem)
=
encrypt_gen_pre a iv iv_len ad ad_len plain plain_len cipher tag h0 /\ (
not (B.g_is_null s) ==>
invariant h0 s /\
B.(loc_disjoint (footprint h0 s) (loc_buffer iv)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer ad)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer tag)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer plain)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer cipher)) /\
encrypt_live_disjoint_pre a iv iv_len ad ad_len plain plain_len cipher tag h0) | let encrypt_pre
(a: supported_alg)
(s: B.pointer_or_null (state_s a))
(iv: iv_p a)
(iv_len: UInt32.t)
(ad: ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher tag: B.buffer uint8)
(h0: HS.mem)
= | false | null | false | encrypt_gen_pre a iv iv_len ad ad_len plain plain_len cipher tag h0 /\
(not (B.g_is_null s) ==>
invariant h0 s /\ B.(loc_disjoint (footprint h0 s) (loc_buffer iv)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer ad)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer tag)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer plain)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer cipher)) /\
encrypt_live_disjoint_pre a iv iv_len ad ad_len plain plain_len cipher tag h0) | {
"checked_file": "EverCrypt.AEAD.fsti.checked",
"dependencies": [
"Vale.X64.CPU_Features_s.fst.checked",
"Spec.Agile.AEAD.fsti.checked",
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"EverCrypt.TargetConfig.fsti.checked",
"EverCrypt.Error.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.AEAD.fsti"
} | [
"total"
] | [
"Spec.Agile.AEAD.supported_alg",
"LowStar.Buffer.pointer_or_null",
"EverCrypt.AEAD.state_s",
"EverCrypt.AEAD.iv_p",
"FStar.UInt32.t",
"EverCrypt.AEAD.ad_p",
"EverCrypt.AEAD.plain_p",
"LowStar.Buffer.buffer",
"Spec.Agile.AEAD.uint8",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_and",
"EverCrypt.AEAD.encrypt_gen_pre",
"Prims.l_imp",
"Prims.b2t",
"Prims.op_Negation",
"LowStar.Monotonic.Buffer.g_is_null",
"LowStar.Buffer.trivial_preorder",
"EverCrypt.AEAD.invariant",
"LowStar.Monotonic.Buffer.loc_disjoint",
"EverCrypt.AEAD.footprint",
"LowStar.Monotonic.Buffer.loc_buffer",
"EverCrypt.AEAD.encrypt_live_disjoint_pre",
"Prims.logical"
] | [] | module EverCrypt.AEAD
/// The new AEAD interface for EverCrypt, which supersedes the functions found
/// in EverCrypt.fst
///
/// The expected usage for this module is as follows:
/// - client expands key, obtaining an ``expanded_key a``
/// - client uses ``encrypt``/``decrypt`` with the same ``expanded_key a`` repeatedly.
///
/// This usage protocol is enforced for verified F* clients but, naturally,
/// isn't for C clients.
module S = FStar.Seq
module G = FStar.Ghost
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Integers
open Spec.Agile.AEAD
module Spec = Spec.Agile.AEAD
open EverCrypt.Error
/// Note: if the fst and the fsti are running on different fuel settings,
/// something that works in the interactive mode for the fsti, when
/// "re-interpreted" in the fst, might stop working!
#set-options "--max_fuel 0 --max_ifuel 0"
/// Abstract footprints, with the same machinery as EverCrypt.Hash
/// --------------------------------------------------------------
///
/// Differences from EverCrypt.Hash include: combined framing lemma, the
/// equivalent of the ``repr`` function does *not* require the memory, and order
/// of arguments to be in line with ``B.as_seq``, etc. which take the memory
/// first.
[@@ CAbstractStruct; Comment "Both encryption and decryption require a state that holds the key.
The state may be reused as many times as desired."]
val state_s: alg -> Type0
inline_for_extraction noextract
let state alg = B.pointer (state_s alg)
inline_for_extraction noextract
val freeable_s: #(a: alg) -> state_s a -> Type0
inline_for_extraction noextract
let freeable (#a: alg) (h: HS.mem) (p: state a) =
B.freeable p /\ freeable_s (B.deref h p)
inline_for_extraction noextract
let preserves_freeable #a (s: state a) (h0 h1: HS.mem): Type0 =
freeable h0 s ==> freeable h1 s
val footprint_s: #a:alg -> state_s a -> GTot B.loc
let footprint (#a:alg) (m: HS.mem) (s: state a) =
B.(loc_union (loc_addr_of_buffer s) (footprint_s (B.deref m s)))
// TR: the following pattern is necessary because, if we generically
// add such a pattern directly on `loc_includes_union_l`, then
// verification will blowup whenever both sides of `loc_includes` are
// `loc_union`s. We would like to break all unions on the
// right-hand-side of `loc_includes` first, using
// `loc_includes_union_r`. Here the pattern is on `footprint_s`,
// because we already expose the fact that `footprint` is a
// `loc_union`. (In other words, the pattern should be on every
// smallest location that is not exposed to be a `loc_union`.)
let loc_includes_union_l_footprint_s
(l1 l2: B.loc) (#a: alg) (s: state_s a)
: Lemma
(requires (
B.loc_includes l1 (footprint_s s) \/ B.loc_includes l2 (footprint_s s)
))
(ensures (B.loc_includes (B.loc_union l1 l2) (footprint_s s)))
[SMTPat (B.loc_includes (B.loc_union l1 l2) (footprint_s s))]
= B.loc_includes_union_l l1 l2 (footprint_s s)
/// The configuration preconditions
inline_for_extraction noextract
let config_pre a =
match a with
| AES128_GCM
| AES256_GCM ->
EverCrypt.TargetConfig.hacl_can_compile_vale /\
Vale.X64.CPU_Features_s.(aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\
movbe_enabled /\ sse_enabled)
| CHACHA20_POLY1305 -> True
| _ -> True
inline_for_extraction noextract
val invariant_s: (#a:alg) -> HS.mem -> state_s a -> Type0
inline_for_extraction noextract
let invariant (#a:alg) (m: HS.mem) (s: state a) =
B.live m s /\
B.(loc_disjoint (loc_addr_of_buffer s) (footprint_s (B.deref m s))) /\
invariant_s m (B.get m s 0)
val invariant_loc_in_footprint
(#a: alg)
(s: state a)
(m: HS.mem)
: Lemma
(requires (invariant m s))
(ensures (B.loc_in (footprint m s) m))
[SMTPat (invariant m s)]
val frame_invariant: #a:alg -> l:B.loc -> s:state a -> h0:HS.mem -> h1:HS.mem -> Lemma
(requires (
invariant h0 s /\
B.loc_disjoint l (footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
invariant h1 s /\
footprint h0 s == footprint h1 s))
[ SMTPat (invariant h1 s); SMTPat (B.modifies l h0 h1) ]
/// Actual stateful API
/// -------------------
noextract
let bytes = Seq.seq uint8
[@@ Comment "Return the algorithm used in the AEAD state.
@param s State of the AEAD algorithm.
@return Algorithm used in the AEAD state."]
val alg_of_state (a: G.erased alg) (s: state (G.reveal a)): Stack alg
(requires (fun h0 -> invariant #(G.reveal a) h0 s))
(ensures (fun h0 a' h1 ->
a' == G.reveal a /\
h0 == h1))
/// The API is constructed in a way that one can always get the original key
/// value behind a state, any any memory.
val as_kv: (#a: alg) -> state_s a -> GTot (kv a)
inline_for_extraction noextract
let create_in_st (a: alg) =
r:HS.rid ->
dst:B.pointer (B.pointer_or_null (state_s a)) ->
k:B.buffer uint8 { B.length k = key_length a } ->
ST error_code
(requires fun h0 ->
ST.is_eternal_region r /\
B.live h0 k /\ B.live h0 dst)
(ensures fun h0 e h1 ->
match e with
| UnsupportedAlgorithm ->
B.(modifies loc_none h0 h1)
| Success ->
let s = B.deref h1 dst in
// Sanity
is_supported_alg a /\
not (B.g_is_null s) /\
invariant h1 s /\
// Memory stuff
B.(modifies (loc_buffer dst) h0 h1) /\
B.fresh_loc (footprint h1 s) h0 h1 /\
B.(loc_includes (loc_region_only true r) (footprint h1 s)) /\
freeable h1 s /\
// Useful stuff
as_kv (B.deref h1 s) == B.as_seq h0 k
| _ -> False)
/// Same function as above, but in the StackInline effect, so that it is possible
/// to use AES GCM while staying in the Stack effect. In this case, the state should
/// be allocated/deallocated just before/after any encryption or decryption (which
/// is not very problematic during, for example, a handshake).
inline_for_extraction noextract
let alloca_st (a: alg) =
k:B.buffer uint8 { B.length k = key_length a } ->
StackInline (B.pointer (state_s a))
(requires fun h0 ->
B.live h0 k /\ config_pre a /\ is_supported_alg a)
(ensures fun h0 s h1 ->
// Sanity
invariant h1 s /\
// Memory stuff
B.(modifies loc_none h0 h1) /\
B.fresh_loc (footprint h1 s) h0 h1 /\
B.live h1 s /\
B.(loc_includes (loc_region_only true (HS.get_tip h1)) (footprint h1 s)) /\
// Useful stuff
as_kv (B.deref h1 s) == B.as_seq h0 k)
/// This function takes a pointer to a caller-allocated reference ``dst`` then,
/// if the algorithm is supported (on this platform), allocates a fresh state
/// and modifies ``dst`` to point to it. The key-value associated with this can
/// be obtained via ``kv (B.deref dst)``; as long as ``dst`` is not modified,
/// then the caller can derive that the ``kv`` remains the same, which will be
/// required for encrypt.
(** @type: true
*)
[@@ Comment "Create the required AEAD state for the algorithm.
Note: The caller must free the AEAD state by calling `EverCrypt_AEAD_free`.
@param a The argument `a` must be either of:
* `Spec_Agile_AEAD_AES128_GCM` (KEY_LEN=16),
* `Spec_Agile_AEAD_AES256_GCM` (KEY_LEN=32), or
* `Spec_Agile_AEAD_CHACHA20_POLY1305` (KEY_LEN=32).
@param dst Pointer to a pointer where the address of the allocated AEAD state will be written to.
@param k Pointer to `KEY_LEN` bytes of memory where the key is read from. The size depends on the used algorithm, see above.
@return The function returns `EverCrypt_Error_Success` on success or
`EverCrypt_Error_UnsupportedAlgorithm` in case of a bad algorithm identifier.
(See `EverCrypt_Error.h`.)"]
val create_in: #a:alg -> create_in_st a
inline_for_extraction noextract
val alloca: #a:alg -> alloca_st a
/// Encryption (pre-allocated state)
/// --------------------------------
inline_for_extraction noextract
let iv_p a = iv:B.buffer uint8 { iv_length a (B.length iv)}
inline_for_extraction noextract
let ad_p a = ad:B.buffer uint8 { B.length ad <= max_length a }
inline_for_extraction noextract
let plain_p a = p:B.buffer uint8 { B.length p <= max_length a }
inline_for_extraction noextract
let cipher_p a = p:B.buffer uint8 { B.length p + tag_length a <= max_length a }
// SNIPPET_START: encrypt_pre
inline_for_extraction noextract
let encrypt_gen_pre (a: supported_alg)
(iv:iv_p a)
(iv_len: UInt32.t)
(ad:ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher: B.buffer uint8)
(tag: B.buffer uint8)
(h0: HS.mem)
=
v iv_len = B.length iv /\ v iv_len > 0 /\
v ad_len = B.length ad /\ v ad_len <= pow2 31 /\
v plain_len = B.length plain /\ v plain_len <= max_length a /\
B.length cipher = B.length plain /\
B.length tag = tag_length a
inline_for_extraction noextract
let encrypt_live_disjoint_pre (a: supported_alg)
(iv:iv_p a)
(iv_len: UInt32.t)
(ad:ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher: B.buffer uint8)
(tag: B.buffer uint8)
(h0: HS.mem)
=
MB.(all_live h0 [ buf iv; buf ad; buf plain; buf cipher; buf tag ]) /\
(B.disjoint plain cipher \/ plain == cipher) /\
B.disjoint cipher tag /\
B.disjoint iv cipher /\ B.disjoint iv tag /\
B.disjoint plain tag /\
B.disjoint plain ad /\
B.disjoint ad cipher /\ B.disjoint ad tag
inline_for_extraction noextract
let encrypt_pre (a: supported_alg)
(s:B.pointer_or_null (state_s a))
(iv:iv_p a)
(iv_len: UInt32.t)
(ad:ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher: B.buffer uint8)
(tag: B.buffer uint8)
(h0: HS.mem) | false | false | EverCrypt.AEAD.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val encrypt_pre : a: Spec.Agile.AEAD.supported_alg ->
s: LowStar.Buffer.pointer_or_null (EverCrypt.AEAD.state_s a) ->
iv: EverCrypt.AEAD.iv_p a ->
iv_len: FStar.UInt32.t ->
ad: EverCrypt.AEAD.ad_p a ->
ad_len: FStar.UInt32.t ->
plain: EverCrypt.AEAD.plain_p a ->
plain_len: FStar.UInt32.t ->
cipher: LowStar.Buffer.buffer Spec.Agile.AEAD.uint8 ->
tag: LowStar.Buffer.buffer Spec.Agile.AEAD.uint8 ->
h0: FStar.Monotonic.HyperStack.mem
-> Prims.logical | [] | EverCrypt.AEAD.encrypt_pre | {
"file_name": "providers/evercrypt/EverCrypt.AEAD.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
a: Spec.Agile.AEAD.supported_alg ->
s: LowStar.Buffer.pointer_or_null (EverCrypt.AEAD.state_s a) ->
iv: EverCrypt.AEAD.iv_p a ->
iv_len: FStar.UInt32.t ->
ad: EverCrypt.AEAD.ad_p a ->
ad_len: FStar.UInt32.t ->
plain: EverCrypt.AEAD.plain_p a ->
plain_len: FStar.UInt32.t ->
cipher: LowStar.Buffer.buffer Spec.Agile.AEAD.uint8 ->
tag: LowStar.Buffer.buffer Spec.Agile.AEAD.uint8 ->
h0: FStar.Monotonic.HyperStack.mem
-> Prims.logical | {
"end_col": 82,
"end_line": 302,
"start_col": 2,
"start_line": 294
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "EverCrypt.Error",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Agile.AEAD",
"short_module": "Spec"
},
{
"abbrev": false,
"full_module": "Spec.Agile.AEAD",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let encrypt_expand_st (does_runtime_check: bool) (a: supported_alg) =
k:B.buffer uint8 { B.length k = key_length a } ->
iv:iv_p a ->
iv_len: UInt32.t { v iv_len = B.length iv /\ v iv_len > 0 } ->
ad:ad_p a ->
ad_len: UInt32.t { v ad_len = B.length ad /\ v ad_len <= pow2 31 } ->
plain: plain_p a ->
plain_len: UInt32.t { v plain_len = B.length plain /\ v plain_len <= max_length a } ->
cipher: B.buffer uint8 { B.length cipher = B.length plain } ->
tag: B.buffer uint8 { B.length tag = tag_length a } ->
Stack error_code
(requires fun h0 ->
(if does_runtime_check then
True
else
config_pre a) /\
encrypt_expand_pre a k iv iv_len ad ad_len plain plain_len cipher tag h0)
(ensures fun h0 r h1 ->
match r with
| Success ->
B.(modifies ((loc_union (loc_buffer cipher) (loc_buffer tag))) h0 h1) /\
S.equal (S.append (B.as_seq h1 cipher) (B.as_seq h1 tag))
(Spec.encrypt #a (B.as_seq h0 k) (B.as_seq h0 iv) (B.as_seq h0 ad) (B.as_seq h0 plain))
| UnsupportedAlgorithm ->
if does_runtime_check then
B.(modifies loc_none h0 h1)
else
False
| _ ->
False) | let encrypt_expand_st (does_runtime_check: bool) (a: supported_alg) = | false | null | false |
k: B.buffer uint8 {B.length k = key_length a} ->
iv: iv_p a ->
iv_len: UInt32.t{v iv_len = B.length iv /\ v iv_len > 0} ->
ad: ad_p a ->
ad_len: UInt32.t{v ad_len = B.length ad /\ v ad_len <= pow2 31} ->
plain: plain_p a ->
plain_len: UInt32.t{v plain_len = B.length plain /\ v plain_len <= max_length a} ->
cipher: B.buffer uint8 {B.length cipher = B.length plain} ->
tag: B.buffer uint8 {B.length tag = tag_length a}
-> Stack error_code
(requires
fun h0 ->
(if does_runtime_check then True else config_pre a) /\
encrypt_expand_pre a k iv iv_len ad ad_len plain plain_len cipher tag h0)
(ensures
fun h0 r h1 ->
match r with
| Success ->
B.(modifies ((loc_union (loc_buffer cipher) (loc_buffer tag))) h0 h1) /\
S.equal (S.append (B.as_seq h1 cipher) (B.as_seq h1 tag))
(Spec.encrypt #a (B.as_seq h0 k) (B.as_seq h0 iv) (B.as_seq h0 ad) (B.as_seq h0 plain)
)
| UnsupportedAlgorithm ->
if does_runtime_check then let open B in modifies loc_none h0 h1 else False
| _ -> False) | {
"checked_file": "EverCrypt.AEAD.fsti.checked",
"dependencies": [
"Vale.X64.CPU_Features_s.fst.checked",
"Spec.Agile.AEAD.fsti.checked",
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"EverCrypt.TargetConfig.fsti.checked",
"EverCrypt.Error.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.AEAD.fsti"
} | [
"total"
] | [
"Prims.bool",
"Spec.Agile.AEAD.supported_alg",
"LowStar.Buffer.buffer",
"Spec.Agile.AEAD.uint8",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.l_or",
"Prims.op_GreaterThanOrEqual",
"FStar.Integers.op_Greater_Equals",
"FStar.Integers.Signed",
"FStar.Integers.Winfinite",
"LowStar.Monotonic.Buffer.length",
"LowStar.Buffer.trivial_preorder",
"Spec.Agile.AEAD.key_length",
"EverCrypt.AEAD.iv_p",
"FStar.UInt32.t",
"Prims.l_and",
"FStar.Integers.within_bounds",
"FStar.Integers.Unsigned",
"FStar.Integers.W32",
"FStar.Integers.v",
"FStar.Integers.op_Greater",
"EverCrypt.AEAD.ad_p",
"FStar.Integers.op_Less_Equals",
"Prims.pow2",
"EverCrypt.AEAD.plain_p",
"Spec.Agile.AEAD.max_length",
"Prims.nat",
"Spec.Agile.AEAD.tag_length",
"EverCrypt.Error.error_code",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_True",
"EverCrypt.AEAD.config_pre",
"Prims.logical",
"EverCrypt.AEAD.encrypt_expand_pre",
"LowStar.Monotonic.Buffer.modifies",
"LowStar.Monotonic.Buffer.loc_union",
"LowStar.Monotonic.Buffer.loc_buffer",
"FStar.Seq.Base.equal",
"FStar.Seq.Base.append",
"LowStar.Monotonic.Buffer.as_seq",
"Spec.Agile.AEAD.encrypt",
"LowStar.Monotonic.Buffer.loc_none",
"Prims.l_False"
] | [] | module EverCrypt.AEAD
/// The new AEAD interface for EverCrypt, which supersedes the functions found
/// in EverCrypt.fst
///
/// The expected usage for this module is as follows:
/// - client expands key, obtaining an ``expanded_key a``
/// - client uses ``encrypt``/``decrypt`` with the same ``expanded_key a`` repeatedly.
///
/// This usage protocol is enforced for verified F* clients but, naturally,
/// isn't for C clients.
module S = FStar.Seq
module G = FStar.Ghost
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Integers
open Spec.Agile.AEAD
module Spec = Spec.Agile.AEAD
open EverCrypt.Error
/// Note: if the fst and the fsti are running on different fuel settings,
/// something that works in the interactive mode for the fsti, when
/// "re-interpreted" in the fst, might stop working!
#set-options "--max_fuel 0 --max_ifuel 0"
/// Abstract footprints, with the same machinery as EverCrypt.Hash
/// --------------------------------------------------------------
///
/// Differences from EverCrypt.Hash include: combined framing lemma, the
/// equivalent of the ``repr`` function does *not* require the memory, and order
/// of arguments to be in line with ``B.as_seq``, etc. which take the memory
/// first.
[@@ CAbstractStruct; Comment "Both encryption and decryption require a state that holds the key.
The state may be reused as many times as desired."]
val state_s: alg -> Type0
inline_for_extraction noextract
let state alg = B.pointer (state_s alg)
inline_for_extraction noextract
val freeable_s: #(a: alg) -> state_s a -> Type0
inline_for_extraction noextract
let freeable (#a: alg) (h: HS.mem) (p: state a) =
B.freeable p /\ freeable_s (B.deref h p)
inline_for_extraction noextract
let preserves_freeable #a (s: state a) (h0 h1: HS.mem): Type0 =
freeable h0 s ==> freeable h1 s
val footprint_s: #a:alg -> state_s a -> GTot B.loc
let footprint (#a:alg) (m: HS.mem) (s: state a) =
B.(loc_union (loc_addr_of_buffer s) (footprint_s (B.deref m s)))
// TR: the following pattern is necessary because, if we generically
// add such a pattern directly on `loc_includes_union_l`, then
// verification will blowup whenever both sides of `loc_includes` are
// `loc_union`s. We would like to break all unions on the
// right-hand-side of `loc_includes` first, using
// `loc_includes_union_r`. Here the pattern is on `footprint_s`,
// because we already expose the fact that `footprint` is a
// `loc_union`. (In other words, the pattern should be on every
// smallest location that is not exposed to be a `loc_union`.)
let loc_includes_union_l_footprint_s
(l1 l2: B.loc) (#a: alg) (s: state_s a)
: Lemma
(requires (
B.loc_includes l1 (footprint_s s) \/ B.loc_includes l2 (footprint_s s)
))
(ensures (B.loc_includes (B.loc_union l1 l2) (footprint_s s)))
[SMTPat (B.loc_includes (B.loc_union l1 l2) (footprint_s s))]
= B.loc_includes_union_l l1 l2 (footprint_s s)
/// The configuration preconditions
inline_for_extraction noextract
let config_pre a =
match a with
| AES128_GCM
| AES256_GCM ->
EverCrypt.TargetConfig.hacl_can_compile_vale /\
Vale.X64.CPU_Features_s.(aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\
movbe_enabled /\ sse_enabled)
| CHACHA20_POLY1305 -> True
| _ -> True
inline_for_extraction noextract
val invariant_s: (#a:alg) -> HS.mem -> state_s a -> Type0
inline_for_extraction noextract
let invariant (#a:alg) (m: HS.mem) (s: state a) =
B.live m s /\
B.(loc_disjoint (loc_addr_of_buffer s) (footprint_s (B.deref m s))) /\
invariant_s m (B.get m s 0)
val invariant_loc_in_footprint
(#a: alg)
(s: state a)
(m: HS.mem)
: Lemma
(requires (invariant m s))
(ensures (B.loc_in (footprint m s) m))
[SMTPat (invariant m s)]
val frame_invariant: #a:alg -> l:B.loc -> s:state a -> h0:HS.mem -> h1:HS.mem -> Lemma
(requires (
invariant h0 s /\
B.loc_disjoint l (footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
invariant h1 s /\
footprint h0 s == footprint h1 s))
[ SMTPat (invariant h1 s); SMTPat (B.modifies l h0 h1) ]
/// Actual stateful API
/// -------------------
noextract
let bytes = Seq.seq uint8
[@@ Comment "Return the algorithm used in the AEAD state.
@param s State of the AEAD algorithm.
@return Algorithm used in the AEAD state."]
val alg_of_state (a: G.erased alg) (s: state (G.reveal a)): Stack alg
(requires (fun h0 -> invariant #(G.reveal a) h0 s))
(ensures (fun h0 a' h1 ->
a' == G.reveal a /\
h0 == h1))
/// The API is constructed in a way that one can always get the original key
/// value behind a state, any any memory.
val as_kv: (#a: alg) -> state_s a -> GTot (kv a)
inline_for_extraction noextract
let create_in_st (a: alg) =
r:HS.rid ->
dst:B.pointer (B.pointer_or_null (state_s a)) ->
k:B.buffer uint8 { B.length k = key_length a } ->
ST error_code
(requires fun h0 ->
ST.is_eternal_region r /\
B.live h0 k /\ B.live h0 dst)
(ensures fun h0 e h1 ->
match e with
| UnsupportedAlgorithm ->
B.(modifies loc_none h0 h1)
| Success ->
let s = B.deref h1 dst in
// Sanity
is_supported_alg a /\
not (B.g_is_null s) /\
invariant h1 s /\
// Memory stuff
B.(modifies (loc_buffer dst) h0 h1) /\
B.fresh_loc (footprint h1 s) h0 h1 /\
B.(loc_includes (loc_region_only true r) (footprint h1 s)) /\
freeable h1 s /\
// Useful stuff
as_kv (B.deref h1 s) == B.as_seq h0 k
| _ -> False)
/// Same function as above, but in the StackInline effect, so that it is possible
/// to use AES GCM while staying in the Stack effect. In this case, the state should
/// be allocated/deallocated just before/after any encryption or decryption (which
/// is not very problematic during, for example, a handshake).
inline_for_extraction noextract
let alloca_st (a: alg) =
k:B.buffer uint8 { B.length k = key_length a } ->
StackInline (B.pointer (state_s a))
(requires fun h0 ->
B.live h0 k /\ config_pre a /\ is_supported_alg a)
(ensures fun h0 s h1 ->
// Sanity
invariant h1 s /\
// Memory stuff
B.(modifies loc_none h0 h1) /\
B.fresh_loc (footprint h1 s) h0 h1 /\
B.live h1 s /\
B.(loc_includes (loc_region_only true (HS.get_tip h1)) (footprint h1 s)) /\
// Useful stuff
as_kv (B.deref h1 s) == B.as_seq h0 k)
/// This function takes a pointer to a caller-allocated reference ``dst`` then,
/// if the algorithm is supported (on this platform), allocates a fresh state
/// and modifies ``dst`` to point to it. The key-value associated with this can
/// be obtained via ``kv (B.deref dst)``; as long as ``dst`` is not modified,
/// then the caller can derive that the ``kv`` remains the same, which will be
/// required for encrypt.
(** @type: true
*)
[@@ Comment "Create the required AEAD state for the algorithm.
Note: The caller must free the AEAD state by calling `EverCrypt_AEAD_free`.
@param a The argument `a` must be either of:
* `Spec_Agile_AEAD_AES128_GCM` (KEY_LEN=16),
* `Spec_Agile_AEAD_AES256_GCM` (KEY_LEN=32), or
* `Spec_Agile_AEAD_CHACHA20_POLY1305` (KEY_LEN=32).
@param dst Pointer to a pointer where the address of the allocated AEAD state will be written to.
@param k Pointer to `KEY_LEN` bytes of memory where the key is read from. The size depends on the used algorithm, see above.
@return The function returns `EverCrypt_Error_Success` on success or
`EverCrypt_Error_UnsupportedAlgorithm` in case of a bad algorithm identifier.
(See `EverCrypt_Error.h`.)"]
val create_in: #a:alg -> create_in_st a
inline_for_extraction noextract
val alloca: #a:alg -> alloca_st a
/// Encryption (pre-allocated state)
/// --------------------------------
inline_for_extraction noextract
let iv_p a = iv:B.buffer uint8 { iv_length a (B.length iv)}
inline_for_extraction noextract
let ad_p a = ad:B.buffer uint8 { B.length ad <= max_length a }
inline_for_extraction noextract
let plain_p a = p:B.buffer uint8 { B.length p <= max_length a }
inline_for_extraction noextract
let cipher_p a = p:B.buffer uint8 { B.length p + tag_length a <= max_length a }
// SNIPPET_START: encrypt_pre
inline_for_extraction noextract
let encrypt_gen_pre (a: supported_alg)
(iv:iv_p a)
(iv_len: UInt32.t)
(ad:ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher: B.buffer uint8)
(tag: B.buffer uint8)
(h0: HS.mem)
=
v iv_len = B.length iv /\ v iv_len > 0 /\
v ad_len = B.length ad /\ v ad_len <= pow2 31 /\
v plain_len = B.length plain /\ v plain_len <= max_length a /\
B.length cipher = B.length plain /\
B.length tag = tag_length a
inline_for_extraction noextract
let encrypt_live_disjoint_pre (a: supported_alg)
(iv:iv_p a)
(iv_len: UInt32.t)
(ad:ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher: B.buffer uint8)
(tag: B.buffer uint8)
(h0: HS.mem)
=
MB.(all_live h0 [ buf iv; buf ad; buf plain; buf cipher; buf tag ]) /\
(B.disjoint plain cipher \/ plain == cipher) /\
B.disjoint cipher tag /\
B.disjoint iv cipher /\ B.disjoint iv tag /\
B.disjoint plain tag /\
B.disjoint plain ad /\
B.disjoint ad cipher /\ B.disjoint ad tag
inline_for_extraction noextract
let encrypt_pre (a: supported_alg)
(s:B.pointer_or_null (state_s a))
(iv:iv_p a)
(iv_len: UInt32.t)
(ad:ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher: B.buffer uint8)
(tag: B.buffer uint8)
(h0: HS.mem)
=
encrypt_gen_pre a iv iv_len ad ad_len plain plain_len cipher tag h0 /\ (
not (B.g_is_null s) ==>
invariant h0 s /\
B.(loc_disjoint (footprint h0 s) (loc_buffer iv)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer ad)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer tag)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer plain)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer cipher)) /\
encrypt_live_disjoint_pre a iv iv_len ad ad_len plain plain_len cipher tag h0)
// SNIPPET_END: encrypt_pre
inline_for_extraction noextract
let encrypt_st (a: supported_alg) =
s:B.pointer_or_null (state_s a) ->
iv:iv_p a ->
iv_len: UInt32.t { v iv_len = B.length iv /\ v iv_len > 0 } ->
ad:ad_p a ->
ad_len: UInt32.t { v ad_len = B.length ad /\ v ad_len <= pow2 31 } ->
plain: plain_p a ->
plain_len: UInt32.t { v plain_len = B.length plain /\ v plain_len <= max_length a } ->
cipher: B.buffer uint8 { B.length cipher = B.length plain } ->
tag: B.buffer uint8 { B.length tag = tag_length a } ->
Stack error_code
(requires encrypt_pre a s iv iv_len ad ad_len plain plain_len cipher tag)
(ensures fun h0 r h1 ->
match r with
| Success ->
not (B.g_is_null s) /\
B.(modifies (loc_union (footprint h1 s) (loc_union (loc_buffer cipher) (loc_buffer tag))) h0 h1) /\
invariant h1 s /\
footprint h0 s == footprint h1 s /\
preserves_freeable s h0 h1 /\
as_kv (B.deref h1 s) == as_kv (B.deref h0 s) /\
S.equal (S.append (B.as_seq h1 cipher) (B.as_seq h1 tag))
(Spec.encrypt #a (as_kv (B.deref h0 s)) (B.as_seq h0 iv) (B.as_seq h0 ad) (B.as_seq h0 plain))
| InvalidKey ->
B.g_is_null s /\
B.(modifies loc_none h0 h1)
| _ -> False)
/// This function takes a previously expanded key and performs encryption.
///
/// Possible return values are:
/// - ``Success``: encryption was successfully performed
/// - ``InvalidKey``: the function was passed a NULL expanded key (see above)
(** @type: true
*)
[@@ Comment "Encrypt and authenticate a message (`plain`) with associated data (`ad`).
@param s Pointer to the The AEAD state created by `EverCrypt_AEAD_create_in`. It already contains the encryption key.
@param iv Pointer to `iv_len` bytes of memory where the nonce is read from.
@param iv_len Length of the nonce. Note: ChaCha20Poly1305 requires a 12 byte nonce.
@param ad Pointer to `ad_len` bytes of memory where the associated data is read from.
@param ad_len Length of the associated data.
@param plain Pointer to `plain_len` bytes of memory where the to-be-encrypted plaintext is read from.
@param plain_len Length of the to-be-encrypted plaintext.
@param cipher Pointer to `plain_len` bytes of memory where the ciphertext is written to.
@param tag Pointer to `TAG_LEN` bytes of memory where the tag is written to.
The length of the `tag` must be of a suitable length for the chosen algorithm:
* `Spec_Agile_AEAD_AES128_GCM` (TAG_LEN=16)
* `Spec_Agile_AEAD_AES256_GCM` (TAG_LEN=16)
* `Spec_Agile_AEAD_CHACHA20_POLY1305` (TAG_LEN=16)
@return `EverCrypt_AEAD_encrypt` may return either `EverCrypt_Error_Success` or `EverCrypt_Error_InvalidKey` (`EverCrypt_error.h`). The latter is returned if and only if the `s` parameter is `NULL`."]
val encrypt: #a:G.erased (supported_alg) -> encrypt_st (G.reveal a)
/// Encryption (no pre-allocated state)
/// -----------------------------------
///
/// All-in-one API that does not require performing key expansion separately.
/// Use if you must be in the Stack effect, or if you know you do not intend to
/// reuse the key with a different nonce later.
inline_for_extraction noextract
let encrypt_expand_pre (a: supported_alg)
(k:B.buffer uint8 { B.length k = key_length a })
(iv:iv_p a)
(iv_len: UInt32.t)
(ad:ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher: B.buffer uint8)
(tag: B.buffer uint8)
(h0: HS.mem)
=
encrypt_gen_pre a iv iv_len ad ad_len plain plain_len cipher tag h0 /\ (
B.live h0 k /\ B.disjoint k cipher /\
encrypt_live_disjoint_pre a iv iv_len ad ad_len
plain plain_len cipher tag h0)
inline_for_extraction noextract | false | true | EverCrypt.AEAD.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val encrypt_expand_st : does_runtime_check: Prims.bool -> a: Spec.Agile.AEAD.supported_alg -> Type0 | [] | EverCrypt.AEAD.encrypt_expand_st | {
"file_name": "providers/evercrypt/EverCrypt.AEAD.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | does_runtime_check: Prims.bool -> a: Spec.Agile.AEAD.supported_alg -> Type0 | {
"end_col": 16,
"end_line": 415,
"start_col": 2,
"start_line": 387
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "EverCrypt.Error",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Agile.AEAD",
"short_module": "Spec"
},
{
"abbrev": false,
"full_module": "Spec.Agile.AEAD",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let encrypt_st (a: supported_alg) =
s:B.pointer_or_null (state_s a) ->
iv:iv_p a ->
iv_len: UInt32.t { v iv_len = B.length iv /\ v iv_len > 0 } ->
ad:ad_p a ->
ad_len: UInt32.t { v ad_len = B.length ad /\ v ad_len <= pow2 31 } ->
plain: plain_p a ->
plain_len: UInt32.t { v plain_len = B.length plain /\ v plain_len <= max_length a } ->
cipher: B.buffer uint8 { B.length cipher = B.length plain } ->
tag: B.buffer uint8 { B.length tag = tag_length a } ->
Stack error_code
(requires encrypt_pre a s iv iv_len ad ad_len plain plain_len cipher tag)
(ensures fun h0 r h1 ->
match r with
| Success ->
not (B.g_is_null s) /\
B.(modifies (loc_union (footprint h1 s) (loc_union (loc_buffer cipher) (loc_buffer tag))) h0 h1) /\
invariant h1 s /\
footprint h0 s == footprint h1 s /\
preserves_freeable s h0 h1 /\
as_kv (B.deref h1 s) == as_kv (B.deref h0 s) /\
S.equal (S.append (B.as_seq h1 cipher) (B.as_seq h1 tag))
(Spec.encrypt #a (as_kv (B.deref h0 s)) (B.as_seq h0 iv) (B.as_seq h0 ad) (B.as_seq h0 plain))
| InvalidKey ->
B.g_is_null s /\
B.(modifies loc_none h0 h1)
| _ -> False) | let encrypt_st (a: supported_alg) = | false | null | false |
s: B.pointer_or_null (state_s a) ->
iv: iv_p a ->
iv_len: UInt32.t{v iv_len = B.length iv /\ v iv_len > 0} ->
ad: ad_p a ->
ad_len: UInt32.t{v ad_len = B.length ad /\ v ad_len <= pow2 31} ->
plain: plain_p a ->
plain_len: UInt32.t{v plain_len = B.length plain /\ v plain_len <= max_length a} ->
cipher: B.buffer uint8 {B.length cipher = B.length plain} ->
tag: B.buffer uint8 {B.length tag = tag_length a}
-> Stack error_code
(requires encrypt_pre a s iv iv_len ad ad_len plain plain_len cipher tag)
(ensures
fun h0 r h1 ->
match r with
| Success ->
not (B.g_is_null s) /\
B.(modifies (loc_union (footprint h1 s) (loc_union (loc_buffer cipher) (loc_buffer tag))
)
h0
h1) /\ invariant h1 s /\ footprint h0 s == footprint h1 s /\
preserves_freeable s h0 h1 /\ as_kv (B.deref h1 s) == as_kv (B.deref h0 s) /\
S.equal (S.append (B.as_seq h1 cipher) (B.as_seq h1 tag))
(Spec.encrypt #a
(as_kv (B.deref h0 s))
(B.as_seq h0 iv)
(B.as_seq h0 ad)
(B.as_seq h0 plain))
| InvalidKey -> B.g_is_null s /\ B.(modifies loc_none h0 h1)
| _ -> False) | {
"checked_file": "EverCrypt.AEAD.fsti.checked",
"dependencies": [
"Vale.X64.CPU_Features_s.fst.checked",
"Spec.Agile.AEAD.fsti.checked",
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"EverCrypt.TargetConfig.fsti.checked",
"EverCrypt.Error.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.AEAD.fsti"
} | [
"total"
] | [
"Spec.Agile.AEAD.supported_alg",
"LowStar.Buffer.pointer_or_null",
"EverCrypt.AEAD.state_s",
"EverCrypt.AEAD.iv_p",
"FStar.UInt32.t",
"Prims.l_and",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.l_or",
"Prims.op_GreaterThanOrEqual",
"FStar.Integers.within_bounds",
"FStar.Integers.Unsigned",
"FStar.Integers.W32",
"FStar.Integers.v",
"LowStar.Monotonic.Buffer.length",
"Spec.Agile.AEAD.uint8",
"LowStar.Buffer.trivial_preorder",
"FStar.Integers.op_Greater",
"FStar.Integers.Signed",
"FStar.Integers.Winfinite",
"EverCrypt.AEAD.ad_p",
"FStar.Integers.op_Less_Equals",
"Prims.pow2",
"EverCrypt.AEAD.plain_p",
"Spec.Agile.AEAD.max_length",
"LowStar.Buffer.buffer",
"Prims.nat",
"Spec.Agile.AEAD.tag_length",
"EverCrypt.Error.error_code",
"EverCrypt.AEAD.encrypt_pre",
"FStar.Monotonic.HyperStack.mem",
"Prims.op_Negation",
"LowStar.Monotonic.Buffer.g_is_null",
"LowStar.Monotonic.Buffer.modifies",
"LowStar.Monotonic.Buffer.loc_union",
"EverCrypt.AEAD.footprint",
"LowStar.Monotonic.Buffer.loc_buffer",
"EverCrypt.AEAD.invariant",
"Prims.eq2",
"LowStar.Monotonic.Buffer.loc",
"EverCrypt.AEAD.preserves_freeable",
"Spec.Agile.AEAD.kv",
"EverCrypt.AEAD.as_kv",
"LowStar.Monotonic.Buffer.deref",
"FStar.Seq.Base.equal",
"FStar.Seq.Base.append",
"LowStar.Monotonic.Buffer.as_seq",
"Spec.Agile.AEAD.encrypt",
"LowStar.Monotonic.Buffer.loc_none",
"Prims.l_False"
] | [] | module EverCrypt.AEAD
/// The new AEAD interface for EverCrypt, which supersedes the functions found
/// in EverCrypt.fst
///
/// The expected usage for this module is as follows:
/// - client expands key, obtaining an ``expanded_key a``
/// - client uses ``encrypt``/``decrypt`` with the same ``expanded_key a`` repeatedly.
///
/// This usage protocol is enforced for verified F* clients but, naturally,
/// isn't for C clients.
module S = FStar.Seq
module G = FStar.Ghost
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Integers
open Spec.Agile.AEAD
module Spec = Spec.Agile.AEAD
open EverCrypt.Error
/// Note: if the fst and the fsti are running on different fuel settings,
/// something that works in the interactive mode for the fsti, when
/// "re-interpreted" in the fst, might stop working!
#set-options "--max_fuel 0 --max_ifuel 0"
/// Abstract footprints, with the same machinery as EverCrypt.Hash
/// --------------------------------------------------------------
///
/// Differences from EverCrypt.Hash include: combined framing lemma, the
/// equivalent of the ``repr`` function does *not* require the memory, and order
/// of arguments to be in line with ``B.as_seq``, etc. which take the memory
/// first.
[@@ CAbstractStruct; Comment "Both encryption and decryption require a state that holds the key.
The state may be reused as many times as desired."]
val state_s: alg -> Type0
inline_for_extraction noextract
let state alg = B.pointer (state_s alg)
inline_for_extraction noextract
val freeable_s: #(a: alg) -> state_s a -> Type0
inline_for_extraction noextract
let freeable (#a: alg) (h: HS.mem) (p: state a) =
B.freeable p /\ freeable_s (B.deref h p)
inline_for_extraction noextract
let preserves_freeable #a (s: state a) (h0 h1: HS.mem): Type0 =
freeable h0 s ==> freeable h1 s
val footprint_s: #a:alg -> state_s a -> GTot B.loc
let footprint (#a:alg) (m: HS.mem) (s: state a) =
B.(loc_union (loc_addr_of_buffer s) (footprint_s (B.deref m s)))
// TR: the following pattern is necessary because, if we generically
// add such a pattern directly on `loc_includes_union_l`, then
// verification will blowup whenever both sides of `loc_includes` are
// `loc_union`s. We would like to break all unions on the
// right-hand-side of `loc_includes` first, using
// `loc_includes_union_r`. Here the pattern is on `footprint_s`,
// because we already expose the fact that `footprint` is a
// `loc_union`. (In other words, the pattern should be on every
// smallest location that is not exposed to be a `loc_union`.)
let loc_includes_union_l_footprint_s
(l1 l2: B.loc) (#a: alg) (s: state_s a)
: Lemma
(requires (
B.loc_includes l1 (footprint_s s) \/ B.loc_includes l2 (footprint_s s)
))
(ensures (B.loc_includes (B.loc_union l1 l2) (footprint_s s)))
[SMTPat (B.loc_includes (B.loc_union l1 l2) (footprint_s s))]
= B.loc_includes_union_l l1 l2 (footprint_s s)
/// The configuration preconditions
inline_for_extraction noextract
let config_pre a =
match a with
| AES128_GCM
| AES256_GCM ->
EverCrypt.TargetConfig.hacl_can_compile_vale /\
Vale.X64.CPU_Features_s.(aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\
movbe_enabled /\ sse_enabled)
| CHACHA20_POLY1305 -> True
| _ -> True
inline_for_extraction noextract
val invariant_s: (#a:alg) -> HS.mem -> state_s a -> Type0
inline_for_extraction noextract
let invariant (#a:alg) (m: HS.mem) (s: state a) =
B.live m s /\
B.(loc_disjoint (loc_addr_of_buffer s) (footprint_s (B.deref m s))) /\
invariant_s m (B.get m s 0)
val invariant_loc_in_footprint
(#a: alg)
(s: state a)
(m: HS.mem)
: Lemma
(requires (invariant m s))
(ensures (B.loc_in (footprint m s) m))
[SMTPat (invariant m s)]
val frame_invariant: #a:alg -> l:B.loc -> s:state a -> h0:HS.mem -> h1:HS.mem -> Lemma
(requires (
invariant h0 s /\
B.loc_disjoint l (footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
invariant h1 s /\
footprint h0 s == footprint h1 s))
[ SMTPat (invariant h1 s); SMTPat (B.modifies l h0 h1) ]
/// Actual stateful API
/// -------------------
noextract
let bytes = Seq.seq uint8
[@@ Comment "Return the algorithm used in the AEAD state.
@param s State of the AEAD algorithm.
@return Algorithm used in the AEAD state."]
val alg_of_state (a: G.erased alg) (s: state (G.reveal a)): Stack alg
(requires (fun h0 -> invariant #(G.reveal a) h0 s))
(ensures (fun h0 a' h1 ->
a' == G.reveal a /\
h0 == h1))
/// The API is constructed in a way that one can always get the original key
/// value behind a state, any any memory.
val as_kv: (#a: alg) -> state_s a -> GTot (kv a)
inline_for_extraction noextract
let create_in_st (a: alg) =
r:HS.rid ->
dst:B.pointer (B.pointer_or_null (state_s a)) ->
k:B.buffer uint8 { B.length k = key_length a } ->
ST error_code
(requires fun h0 ->
ST.is_eternal_region r /\
B.live h0 k /\ B.live h0 dst)
(ensures fun h0 e h1 ->
match e with
| UnsupportedAlgorithm ->
B.(modifies loc_none h0 h1)
| Success ->
let s = B.deref h1 dst in
// Sanity
is_supported_alg a /\
not (B.g_is_null s) /\
invariant h1 s /\
// Memory stuff
B.(modifies (loc_buffer dst) h0 h1) /\
B.fresh_loc (footprint h1 s) h0 h1 /\
B.(loc_includes (loc_region_only true r) (footprint h1 s)) /\
freeable h1 s /\
// Useful stuff
as_kv (B.deref h1 s) == B.as_seq h0 k
| _ -> False)
/// Same function as above, but in the StackInline effect, so that it is possible
/// to use AES GCM while staying in the Stack effect. In this case, the state should
/// be allocated/deallocated just before/after any encryption or decryption (which
/// is not very problematic during, for example, a handshake).
inline_for_extraction noextract
let alloca_st (a: alg) =
k:B.buffer uint8 { B.length k = key_length a } ->
StackInline (B.pointer (state_s a))
(requires fun h0 ->
B.live h0 k /\ config_pre a /\ is_supported_alg a)
(ensures fun h0 s h1 ->
// Sanity
invariant h1 s /\
// Memory stuff
B.(modifies loc_none h0 h1) /\
B.fresh_loc (footprint h1 s) h0 h1 /\
B.live h1 s /\
B.(loc_includes (loc_region_only true (HS.get_tip h1)) (footprint h1 s)) /\
// Useful stuff
as_kv (B.deref h1 s) == B.as_seq h0 k)
/// This function takes a pointer to a caller-allocated reference ``dst`` then,
/// if the algorithm is supported (on this platform), allocates a fresh state
/// and modifies ``dst`` to point to it. The key-value associated with this can
/// be obtained via ``kv (B.deref dst)``; as long as ``dst`` is not modified,
/// then the caller can derive that the ``kv`` remains the same, which will be
/// required for encrypt.
(** @type: true
*)
[@@ Comment "Create the required AEAD state for the algorithm.
Note: The caller must free the AEAD state by calling `EverCrypt_AEAD_free`.
@param a The argument `a` must be either of:
* `Spec_Agile_AEAD_AES128_GCM` (KEY_LEN=16),
* `Spec_Agile_AEAD_AES256_GCM` (KEY_LEN=32), or
* `Spec_Agile_AEAD_CHACHA20_POLY1305` (KEY_LEN=32).
@param dst Pointer to a pointer where the address of the allocated AEAD state will be written to.
@param k Pointer to `KEY_LEN` bytes of memory where the key is read from. The size depends on the used algorithm, see above.
@return The function returns `EverCrypt_Error_Success` on success or
`EverCrypt_Error_UnsupportedAlgorithm` in case of a bad algorithm identifier.
(See `EverCrypt_Error.h`.)"]
val create_in: #a:alg -> create_in_st a
inline_for_extraction noextract
val alloca: #a:alg -> alloca_st a
/// Encryption (pre-allocated state)
/// --------------------------------
inline_for_extraction noextract
let iv_p a = iv:B.buffer uint8 { iv_length a (B.length iv)}
inline_for_extraction noextract
let ad_p a = ad:B.buffer uint8 { B.length ad <= max_length a }
inline_for_extraction noextract
let plain_p a = p:B.buffer uint8 { B.length p <= max_length a }
inline_for_extraction noextract
let cipher_p a = p:B.buffer uint8 { B.length p + tag_length a <= max_length a }
// SNIPPET_START: encrypt_pre
inline_for_extraction noextract
let encrypt_gen_pre (a: supported_alg)
(iv:iv_p a)
(iv_len: UInt32.t)
(ad:ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher: B.buffer uint8)
(tag: B.buffer uint8)
(h0: HS.mem)
=
v iv_len = B.length iv /\ v iv_len > 0 /\
v ad_len = B.length ad /\ v ad_len <= pow2 31 /\
v plain_len = B.length plain /\ v plain_len <= max_length a /\
B.length cipher = B.length plain /\
B.length tag = tag_length a
inline_for_extraction noextract
let encrypt_live_disjoint_pre (a: supported_alg)
(iv:iv_p a)
(iv_len: UInt32.t)
(ad:ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher: B.buffer uint8)
(tag: B.buffer uint8)
(h0: HS.mem)
=
MB.(all_live h0 [ buf iv; buf ad; buf plain; buf cipher; buf tag ]) /\
(B.disjoint plain cipher \/ plain == cipher) /\
B.disjoint cipher tag /\
B.disjoint iv cipher /\ B.disjoint iv tag /\
B.disjoint plain tag /\
B.disjoint plain ad /\
B.disjoint ad cipher /\ B.disjoint ad tag
inline_for_extraction noextract
let encrypt_pre (a: supported_alg)
(s:B.pointer_or_null (state_s a))
(iv:iv_p a)
(iv_len: UInt32.t)
(ad:ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher: B.buffer uint8)
(tag: B.buffer uint8)
(h0: HS.mem)
=
encrypt_gen_pre a iv iv_len ad ad_len plain plain_len cipher tag h0 /\ (
not (B.g_is_null s) ==>
invariant h0 s /\
B.(loc_disjoint (footprint h0 s) (loc_buffer iv)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer ad)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer tag)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer plain)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer cipher)) /\
encrypt_live_disjoint_pre a iv iv_len ad ad_len plain plain_len cipher tag h0)
// SNIPPET_END: encrypt_pre
inline_for_extraction noextract | false | true | EverCrypt.AEAD.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val encrypt_st : a: Spec.Agile.AEAD.supported_alg -> Type0 | [] | EverCrypt.AEAD.encrypt_st | {
"file_name": "providers/evercrypt/EverCrypt.AEAD.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Spec.Agile.AEAD.supported_alg -> Type0 | {
"end_col": 19,
"end_line": 333,
"start_col": 2,
"start_line": 308
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "EverCrypt.Error",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Agile.AEAD",
"short_module": "Spec"
},
{
"abbrev": false,
"full_module": "Spec.Agile.AEAD",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let decrypt_expand_st (does_runtime_check: bool) (a: supported_alg) =
k:B.buffer uint8 { B.length k = key_length a } ->
iv:iv_p a ->
iv_len:UInt32.t { v iv_len = B.length iv /\ v iv_len > 0 } ->
ad:ad_p a ->
ad_len: UInt32.t { v ad_len = B.length ad /\ v ad_len <= pow2 31 } ->
cipher: cipher_p a ->
cipher_len: UInt32.t { v cipher_len = B.length cipher } ->
tag: B.buffer uint8 { B.length tag = tag_length a } ->
dst: B.buffer uint8 { B.length dst = B.length cipher } ->
Stack error_code
(requires fun h0 ->
(if does_runtime_check then
True
else
config_pre a) /\
MB.(all_live h0 [ buf k; buf iv; buf ad; buf cipher; buf tag; buf dst ]) /\
B.disjoint k dst /\
B.disjoint tag dst /\ B.disjoint tag cipher /\
B.disjoint tag ad /\
B.disjoint cipher ad /\ B.disjoint dst ad /\
(B.disjoint cipher dst \/ cipher == dst))
(ensures fun h0 err h1 ->
let cipher_tag = B.as_seq h0 cipher `S.append` B.as_seq h0 tag in
let plain = Spec.decrypt #a (B.as_seq h0 k) (B.as_seq h0 iv) (B.as_seq h0 ad) cipher_tag in
B.(modifies (loc_buffer dst) h0 h1) /\
begin
match err with
| Success ->
Some? plain /\ S.equal (Some?.v plain) (B.as_seq h1 dst)
| AuthenticationFailure ->
None? plain
| UnsupportedAlgorithm ->
if does_runtime_check then
B.(modifies loc_none h0 h1)
else
False
| _ -> False
end) | let decrypt_expand_st (does_runtime_check: bool) (a: supported_alg) = | false | null | false |
k: B.buffer uint8 {B.length k = key_length a} ->
iv: iv_p a ->
iv_len: UInt32.t{v iv_len = B.length iv /\ v iv_len > 0} ->
ad: ad_p a ->
ad_len: UInt32.t{v ad_len = B.length ad /\ v ad_len <= pow2 31} ->
cipher: cipher_p a ->
cipher_len: UInt32.t{v cipher_len = B.length cipher} ->
tag: B.buffer uint8 {B.length tag = tag_length a} ->
dst: B.buffer uint8 {B.length dst = B.length cipher}
-> Stack error_code
(requires
fun h0 ->
(if does_runtime_check then True else config_pre a) /\
MB.(all_live h0 [buf k; buf iv; buf ad; buf cipher; buf tag; buf dst]) /\ B.disjoint k dst /\
B.disjoint tag dst /\ B.disjoint tag cipher /\ B.disjoint tag ad /\ B.disjoint cipher ad /\
B.disjoint dst ad /\ (B.disjoint cipher dst \/ cipher == dst))
(ensures
fun h0 err h1 ->
let cipher_tag = (B.as_seq h0 cipher) `S.append` (B.as_seq h0 tag) in
let plain =
Spec.decrypt #a (B.as_seq h0 k) (B.as_seq h0 iv) (B.as_seq h0 ad) cipher_tag
in
B.(modifies (loc_buffer dst) h0 h1) /\
(match err with
| Success -> Some? plain /\ S.equal (Some?.v plain) (B.as_seq h1 dst)
| AuthenticationFailure -> None? plain
| UnsupportedAlgorithm ->
if does_runtime_check then let open B in modifies loc_none h0 h1 else False
| _ -> False)) | {
"checked_file": "EverCrypt.AEAD.fsti.checked",
"dependencies": [
"Vale.X64.CPU_Features_s.fst.checked",
"Spec.Agile.AEAD.fsti.checked",
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"EverCrypt.TargetConfig.fsti.checked",
"EverCrypt.Error.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.AEAD.fsti"
} | [
"total"
] | [
"Prims.bool",
"Spec.Agile.AEAD.supported_alg",
"LowStar.Buffer.buffer",
"Spec.Agile.AEAD.uint8",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.l_or",
"Prims.op_GreaterThanOrEqual",
"FStar.Integers.op_Greater_Equals",
"FStar.Integers.Signed",
"FStar.Integers.Winfinite",
"LowStar.Monotonic.Buffer.length",
"LowStar.Buffer.trivial_preorder",
"Spec.Agile.AEAD.key_length",
"EverCrypt.AEAD.iv_p",
"FStar.UInt32.t",
"Prims.l_and",
"FStar.Integers.within_bounds",
"FStar.Integers.Unsigned",
"FStar.Integers.W32",
"FStar.Integers.v",
"FStar.Integers.op_Greater",
"EverCrypt.AEAD.ad_p",
"FStar.Integers.op_Less_Equals",
"Prims.pow2",
"EverCrypt.AEAD.cipher_p",
"Spec.Agile.AEAD.tag_length",
"Prims.nat",
"EverCrypt.Error.error_code",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_True",
"EverCrypt.AEAD.config_pre",
"Prims.logical",
"LowStar.Monotonic.Buffer.all_live",
"Prims.Cons",
"LowStar.Monotonic.Buffer.buf_t",
"LowStar.Monotonic.Buffer.buf",
"Prims.Nil",
"LowStar.Monotonic.Buffer.disjoint",
"Prims.eq2",
"FStar.Integers.op_Plus",
"Spec.Agile.AEAD.max_length",
"LowStar.Monotonic.Buffer.modifies",
"LowStar.Monotonic.Buffer.loc_buffer",
"FStar.Pervasives.Native.uu___is_Some",
"Spec.Agile.AEAD.decrypted",
"FStar.Seq.Base.equal",
"FStar.Pervasives.Native.__proj__Some__item__v",
"LowStar.Monotonic.Buffer.as_seq",
"FStar.Pervasives.Native.uu___is_None",
"LowStar.Monotonic.Buffer.loc_none",
"Prims.l_False",
"FStar.Pervasives.Native.option",
"Spec.Agile.AEAD.decrypt",
"FStar.Seq.Base.seq",
"FStar.Seq.Base.append"
] | [] | module EverCrypt.AEAD
/// The new AEAD interface for EverCrypt, which supersedes the functions found
/// in EverCrypt.fst
///
/// The expected usage for this module is as follows:
/// - client expands key, obtaining an ``expanded_key a``
/// - client uses ``encrypt``/``decrypt`` with the same ``expanded_key a`` repeatedly.
///
/// This usage protocol is enforced for verified F* clients but, naturally,
/// isn't for C clients.
module S = FStar.Seq
module G = FStar.Ghost
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Integers
open Spec.Agile.AEAD
module Spec = Spec.Agile.AEAD
open EverCrypt.Error
/// Note: if the fst and the fsti are running on different fuel settings,
/// something that works in the interactive mode for the fsti, when
/// "re-interpreted" in the fst, might stop working!
#set-options "--max_fuel 0 --max_ifuel 0"
/// Abstract footprints, with the same machinery as EverCrypt.Hash
/// --------------------------------------------------------------
///
/// Differences from EverCrypt.Hash include: combined framing lemma, the
/// equivalent of the ``repr`` function does *not* require the memory, and order
/// of arguments to be in line with ``B.as_seq``, etc. which take the memory
/// first.
[@@ CAbstractStruct; Comment "Both encryption and decryption require a state that holds the key.
The state may be reused as many times as desired."]
val state_s: alg -> Type0
inline_for_extraction noextract
let state alg = B.pointer (state_s alg)
inline_for_extraction noextract
val freeable_s: #(a: alg) -> state_s a -> Type0
inline_for_extraction noextract
let freeable (#a: alg) (h: HS.mem) (p: state a) =
B.freeable p /\ freeable_s (B.deref h p)
inline_for_extraction noextract
let preserves_freeable #a (s: state a) (h0 h1: HS.mem): Type0 =
freeable h0 s ==> freeable h1 s
val footprint_s: #a:alg -> state_s a -> GTot B.loc
let footprint (#a:alg) (m: HS.mem) (s: state a) =
B.(loc_union (loc_addr_of_buffer s) (footprint_s (B.deref m s)))
// TR: the following pattern is necessary because, if we generically
// add such a pattern directly on `loc_includes_union_l`, then
// verification will blowup whenever both sides of `loc_includes` are
// `loc_union`s. We would like to break all unions on the
// right-hand-side of `loc_includes` first, using
// `loc_includes_union_r`. Here the pattern is on `footprint_s`,
// because we already expose the fact that `footprint` is a
// `loc_union`. (In other words, the pattern should be on every
// smallest location that is not exposed to be a `loc_union`.)
let loc_includes_union_l_footprint_s
(l1 l2: B.loc) (#a: alg) (s: state_s a)
: Lemma
(requires (
B.loc_includes l1 (footprint_s s) \/ B.loc_includes l2 (footprint_s s)
))
(ensures (B.loc_includes (B.loc_union l1 l2) (footprint_s s)))
[SMTPat (B.loc_includes (B.loc_union l1 l2) (footprint_s s))]
= B.loc_includes_union_l l1 l2 (footprint_s s)
/// The configuration preconditions
inline_for_extraction noextract
let config_pre a =
match a with
| AES128_GCM
| AES256_GCM ->
EverCrypt.TargetConfig.hacl_can_compile_vale /\
Vale.X64.CPU_Features_s.(aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\
movbe_enabled /\ sse_enabled)
| CHACHA20_POLY1305 -> True
| _ -> True
inline_for_extraction noextract
val invariant_s: (#a:alg) -> HS.mem -> state_s a -> Type0
inline_for_extraction noextract
let invariant (#a:alg) (m: HS.mem) (s: state a) =
B.live m s /\
B.(loc_disjoint (loc_addr_of_buffer s) (footprint_s (B.deref m s))) /\
invariant_s m (B.get m s 0)
val invariant_loc_in_footprint
(#a: alg)
(s: state a)
(m: HS.mem)
: Lemma
(requires (invariant m s))
(ensures (B.loc_in (footprint m s) m))
[SMTPat (invariant m s)]
val frame_invariant: #a:alg -> l:B.loc -> s:state a -> h0:HS.mem -> h1:HS.mem -> Lemma
(requires (
invariant h0 s /\
B.loc_disjoint l (footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
invariant h1 s /\
footprint h0 s == footprint h1 s))
[ SMTPat (invariant h1 s); SMTPat (B.modifies l h0 h1) ]
/// Actual stateful API
/// -------------------
noextract
let bytes = Seq.seq uint8
[@@ Comment "Return the algorithm used in the AEAD state.
@param s State of the AEAD algorithm.
@return Algorithm used in the AEAD state."]
val alg_of_state (a: G.erased alg) (s: state (G.reveal a)): Stack alg
(requires (fun h0 -> invariant #(G.reveal a) h0 s))
(ensures (fun h0 a' h1 ->
a' == G.reveal a /\
h0 == h1))
/// The API is constructed in a way that one can always get the original key
/// value behind a state, any any memory.
val as_kv: (#a: alg) -> state_s a -> GTot (kv a)
inline_for_extraction noextract
let create_in_st (a: alg) =
r:HS.rid ->
dst:B.pointer (B.pointer_or_null (state_s a)) ->
k:B.buffer uint8 { B.length k = key_length a } ->
ST error_code
(requires fun h0 ->
ST.is_eternal_region r /\
B.live h0 k /\ B.live h0 dst)
(ensures fun h0 e h1 ->
match e with
| UnsupportedAlgorithm ->
B.(modifies loc_none h0 h1)
| Success ->
let s = B.deref h1 dst in
// Sanity
is_supported_alg a /\
not (B.g_is_null s) /\
invariant h1 s /\
// Memory stuff
B.(modifies (loc_buffer dst) h0 h1) /\
B.fresh_loc (footprint h1 s) h0 h1 /\
B.(loc_includes (loc_region_only true r) (footprint h1 s)) /\
freeable h1 s /\
// Useful stuff
as_kv (B.deref h1 s) == B.as_seq h0 k
| _ -> False)
/// Same function as above, but in the StackInline effect, so that it is possible
/// to use AES GCM while staying in the Stack effect. In this case, the state should
/// be allocated/deallocated just before/after any encryption or decryption (which
/// is not very problematic during, for example, a handshake).
inline_for_extraction noextract
let alloca_st (a: alg) =
k:B.buffer uint8 { B.length k = key_length a } ->
StackInline (B.pointer (state_s a))
(requires fun h0 ->
B.live h0 k /\ config_pre a /\ is_supported_alg a)
(ensures fun h0 s h1 ->
// Sanity
invariant h1 s /\
// Memory stuff
B.(modifies loc_none h0 h1) /\
B.fresh_loc (footprint h1 s) h0 h1 /\
B.live h1 s /\
B.(loc_includes (loc_region_only true (HS.get_tip h1)) (footprint h1 s)) /\
// Useful stuff
as_kv (B.deref h1 s) == B.as_seq h0 k)
/// This function takes a pointer to a caller-allocated reference ``dst`` then,
/// if the algorithm is supported (on this platform), allocates a fresh state
/// and modifies ``dst`` to point to it. The key-value associated with this can
/// be obtained via ``kv (B.deref dst)``; as long as ``dst`` is not modified,
/// then the caller can derive that the ``kv`` remains the same, which will be
/// required for encrypt.
(** @type: true
*)
[@@ Comment "Create the required AEAD state for the algorithm.
Note: The caller must free the AEAD state by calling `EverCrypt_AEAD_free`.
@param a The argument `a` must be either of:
* `Spec_Agile_AEAD_AES128_GCM` (KEY_LEN=16),
* `Spec_Agile_AEAD_AES256_GCM` (KEY_LEN=32), or
* `Spec_Agile_AEAD_CHACHA20_POLY1305` (KEY_LEN=32).
@param dst Pointer to a pointer where the address of the allocated AEAD state will be written to.
@param k Pointer to `KEY_LEN` bytes of memory where the key is read from. The size depends on the used algorithm, see above.
@return The function returns `EverCrypt_Error_Success` on success or
`EverCrypt_Error_UnsupportedAlgorithm` in case of a bad algorithm identifier.
(See `EverCrypt_Error.h`.)"]
val create_in: #a:alg -> create_in_st a
inline_for_extraction noextract
val alloca: #a:alg -> alloca_st a
/// Encryption (pre-allocated state)
/// --------------------------------
inline_for_extraction noextract
let iv_p a = iv:B.buffer uint8 { iv_length a (B.length iv)}
inline_for_extraction noextract
let ad_p a = ad:B.buffer uint8 { B.length ad <= max_length a }
inline_for_extraction noextract
let plain_p a = p:B.buffer uint8 { B.length p <= max_length a }
inline_for_extraction noextract
let cipher_p a = p:B.buffer uint8 { B.length p + tag_length a <= max_length a }
// SNIPPET_START: encrypt_pre
inline_for_extraction noextract
let encrypt_gen_pre (a: supported_alg)
(iv:iv_p a)
(iv_len: UInt32.t)
(ad:ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher: B.buffer uint8)
(tag: B.buffer uint8)
(h0: HS.mem)
=
v iv_len = B.length iv /\ v iv_len > 0 /\
v ad_len = B.length ad /\ v ad_len <= pow2 31 /\
v plain_len = B.length plain /\ v plain_len <= max_length a /\
B.length cipher = B.length plain /\
B.length tag = tag_length a
inline_for_extraction noextract
let encrypt_live_disjoint_pre (a: supported_alg)
(iv:iv_p a)
(iv_len: UInt32.t)
(ad:ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher: B.buffer uint8)
(tag: B.buffer uint8)
(h0: HS.mem)
=
MB.(all_live h0 [ buf iv; buf ad; buf plain; buf cipher; buf tag ]) /\
(B.disjoint plain cipher \/ plain == cipher) /\
B.disjoint cipher tag /\
B.disjoint iv cipher /\ B.disjoint iv tag /\
B.disjoint plain tag /\
B.disjoint plain ad /\
B.disjoint ad cipher /\ B.disjoint ad tag
inline_for_extraction noextract
let encrypt_pre (a: supported_alg)
(s:B.pointer_or_null (state_s a))
(iv:iv_p a)
(iv_len: UInt32.t)
(ad:ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher: B.buffer uint8)
(tag: B.buffer uint8)
(h0: HS.mem)
=
encrypt_gen_pre a iv iv_len ad ad_len plain plain_len cipher tag h0 /\ (
not (B.g_is_null s) ==>
invariant h0 s /\
B.(loc_disjoint (footprint h0 s) (loc_buffer iv)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer ad)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer tag)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer plain)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer cipher)) /\
encrypt_live_disjoint_pre a iv iv_len ad ad_len plain plain_len cipher tag h0)
// SNIPPET_END: encrypt_pre
inline_for_extraction noextract
let encrypt_st (a: supported_alg) =
s:B.pointer_or_null (state_s a) ->
iv:iv_p a ->
iv_len: UInt32.t { v iv_len = B.length iv /\ v iv_len > 0 } ->
ad:ad_p a ->
ad_len: UInt32.t { v ad_len = B.length ad /\ v ad_len <= pow2 31 } ->
plain: plain_p a ->
plain_len: UInt32.t { v plain_len = B.length plain /\ v plain_len <= max_length a } ->
cipher: B.buffer uint8 { B.length cipher = B.length plain } ->
tag: B.buffer uint8 { B.length tag = tag_length a } ->
Stack error_code
(requires encrypt_pre a s iv iv_len ad ad_len plain plain_len cipher tag)
(ensures fun h0 r h1 ->
match r with
| Success ->
not (B.g_is_null s) /\
B.(modifies (loc_union (footprint h1 s) (loc_union (loc_buffer cipher) (loc_buffer tag))) h0 h1) /\
invariant h1 s /\
footprint h0 s == footprint h1 s /\
preserves_freeable s h0 h1 /\
as_kv (B.deref h1 s) == as_kv (B.deref h0 s) /\
S.equal (S.append (B.as_seq h1 cipher) (B.as_seq h1 tag))
(Spec.encrypt #a (as_kv (B.deref h0 s)) (B.as_seq h0 iv) (B.as_seq h0 ad) (B.as_seq h0 plain))
| InvalidKey ->
B.g_is_null s /\
B.(modifies loc_none h0 h1)
| _ -> False)
/// This function takes a previously expanded key and performs encryption.
///
/// Possible return values are:
/// - ``Success``: encryption was successfully performed
/// - ``InvalidKey``: the function was passed a NULL expanded key (see above)
(** @type: true
*)
[@@ Comment "Encrypt and authenticate a message (`plain`) with associated data (`ad`).
@param s Pointer to the The AEAD state created by `EverCrypt_AEAD_create_in`. It already contains the encryption key.
@param iv Pointer to `iv_len` bytes of memory where the nonce is read from.
@param iv_len Length of the nonce. Note: ChaCha20Poly1305 requires a 12 byte nonce.
@param ad Pointer to `ad_len` bytes of memory where the associated data is read from.
@param ad_len Length of the associated data.
@param plain Pointer to `plain_len` bytes of memory where the to-be-encrypted plaintext is read from.
@param plain_len Length of the to-be-encrypted plaintext.
@param cipher Pointer to `plain_len` bytes of memory where the ciphertext is written to.
@param tag Pointer to `TAG_LEN` bytes of memory where the tag is written to.
The length of the `tag` must be of a suitable length for the chosen algorithm:
* `Spec_Agile_AEAD_AES128_GCM` (TAG_LEN=16)
* `Spec_Agile_AEAD_AES256_GCM` (TAG_LEN=16)
* `Spec_Agile_AEAD_CHACHA20_POLY1305` (TAG_LEN=16)
@return `EverCrypt_AEAD_encrypt` may return either `EverCrypt_Error_Success` or `EverCrypt_Error_InvalidKey` (`EverCrypt_error.h`). The latter is returned if and only if the `s` parameter is `NULL`."]
val encrypt: #a:G.erased (supported_alg) -> encrypt_st (G.reveal a)
/// Encryption (no pre-allocated state)
/// -----------------------------------
///
/// All-in-one API that does not require performing key expansion separately.
/// Use if you must be in the Stack effect, or if you know you do not intend to
/// reuse the key with a different nonce later.
inline_for_extraction noextract
let encrypt_expand_pre (a: supported_alg)
(k:B.buffer uint8 { B.length k = key_length a })
(iv:iv_p a)
(iv_len: UInt32.t)
(ad:ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher: B.buffer uint8)
(tag: B.buffer uint8)
(h0: HS.mem)
=
encrypt_gen_pre a iv iv_len ad ad_len plain plain_len cipher tag h0 /\ (
B.live h0 k /\ B.disjoint k cipher /\
encrypt_live_disjoint_pre a iv iv_len ad ad_len
plain plain_len cipher tag h0)
inline_for_extraction noextract
let encrypt_expand_st (does_runtime_check: bool) (a: supported_alg) =
k:B.buffer uint8 { B.length k = key_length a } ->
iv:iv_p a ->
iv_len: UInt32.t { v iv_len = B.length iv /\ v iv_len > 0 } ->
ad:ad_p a ->
ad_len: UInt32.t { v ad_len = B.length ad /\ v ad_len <= pow2 31 } ->
plain: plain_p a ->
plain_len: UInt32.t { v plain_len = B.length plain /\ v plain_len <= max_length a } ->
cipher: B.buffer uint8 { B.length cipher = B.length plain } ->
tag: B.buffer uint8 { B.length tag = tag_length a } ->
Stack error_code
(requires fun h0 ->
(if does_runtime_check then
True
else
config_pre a) /\
encrypt_expand_pre a k iv iv_len ad ad_len plain plain_len cipher tag h0)
(ensures fun h0 r h1 ->
match r with
| Success ->
B.(modifies ((loc_union (loc_buffer cipher) (loc_buffer tag))) h0 h1) /\
S.equal (S.append (B.as_seq h1 cipher) (B.as_seq h1 tag))
(Spec.encrypt #a (B.as_seq h0 k) (B.as_seq h0 iv) (B.as_seq h0 ad) (B.as_seq h0 plain))
| UnsupportedAlgorithm ->
if does_runtime_check then
B.(modifies loc_none h0 h1)
else
False
| _ ->
False)
/// It's a little difficult to deal with AES-GCM cleanly because we're missing a
/// fallback C implementation. The two functions below guard the reference to the
/// X64 AES-GCM code behind a test of `EverCrypt.TargetConfig.hacl_can_compile_vale`,
/// which gets extracted to a preprocessor test, so that we can always compile them.
/// In case the code is compiled on a system which doesn't support Vale, the functions
/// are compiled in such a way that they make the program exit cleanly.
[@@ Comment "WARNING: this function doesn't perform any dynamic
hardware check. You MUST make sure your hardware supports the
implementation of AESGCM. Besides, this function was not designed
for cross-compilation: if you compile it on a system which doesn't
support Vale, it will compile it to a function which makes the
program exit."]
val encrypt_expand_aes128_gcm_no_check: encrypt_expand_st false AES128_GCM
[@@ Comment "WARNING: this function doesn't perform any dynamic
hardware check. You MUST make sure your hardware supports the
implementation of AESGCM. Besides, this function was not designed
for cross-compilation: if you compile it on a system which doesn't
support Vale, it will compile it to a function which makes the
program exit."]
val encrypt_expand_aes256_gcm_no_check: encrypt_expand_st false AES256_GCM
/// Those functions take a key, expand it then perform encryption. They do not
/// require calling create_in before.
val encrypt_expand_aes128_gcm: encrypt_expand_st true AES128_GCM
val encrypt_expand_aes256_gcm: encrypt_expand_st true AES256_GCM
val encrypt_expand_chacha20_poly1305: encrypt_expand_st false CHACHA20_POLY1305
/// Run-time agility, run-time multiplexing, but not pre-expansion of the key.
val encrypt_expand: #a:supported_alg -> encrypt_expand_st true (G.reveal a)
/// Decryption (pre-allocated state)
/// --------------------------------
inline_for_extraction noextract
let decrypt_st (a: supported_alg) =
s:B.pointer_or_null (state_s a) ->
iv:iv_p a ->
iv_len:UInt32.t { v iv_len = B.length iv /\ v iv_len > 0 } ->
ad:ad_p a ->
ad_len: UInt32.t { v ad_len = B.length ad /\ v ad_len <= pow2 31 } ->
cipher: cipher_p a ->
cipher_len: UInt32.t { v cipher_len = B.length cipher } ->
tag: B.buffer uint8 { B.length tag = tag_length a } ->
dst: B.buffer uint8 { B.length dst = B.length cipher } ->
Stack error_code
(requires fun h0 ->
not (B.g_is_null s) ==>
invariant h0 s /\
B.(loc_disjoint (footprint h0 s) (loc_buffer iv)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer ad)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer tag)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer dst)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer cipher)) /\
MB.(all_live h0 [ buf iv; buf ad; buf cipher; buf tag; buf dst ]) /\
B.disjoint tag dst /\ B.disjoint tag cipher /\
B.disjoint tag ad /\
B.disjoint cipher ad /\ B.disjoint dst ad /\
(B.disjoint cipher dst \/ cipher == dst))
(ensures fun h0 err h1 ->
let cipher_tag = B.as_seq h0 cipher `S.append` B.as_seq h0 tag in
match err with
| InvalidKey ->
B.g_is_null s /\
B.(modifies loc_none h0 h1)
| Success ->
not (B.g_is_null s) /\ (
let plain = Spec.decrypt #a (as_kv (B.deref h0 s)) (B.as_seq h0 iv) (B.as_seq h0 ad) cipher_tag in
B.(modifies (loc_union (footprint h1 s) (loc_buffer dst)) h0 h1) /\
invariant h1 s /\
footprint h0 s == footprint h1 s /\
preserves_freeable s h0 h1 /\
as_kv (B.deref h1 s) == as_kv (B.deref h0 s) /\
Some? plain /\ S.equal (Some?.v plain) (B.as_seq h1 dst))
| AuthenticationFailure ->
not (B.g_is_null s) /\ (
let plain = decrypt #a (as_kv (B.deref h0 s)) (B.as_seq h0 iv) (B.as_seq h0 ad) cipher_tag in
B.(modifies (loc_union (footprint h1 s) (loc_buffer dst)) h0 h1) /\
invariant h1 s /\
footprint h0 s == footprint h1 s /\
preserves_freeable s h0 h1 /\
as_kv (B.deref h1 s) == as_kv (B.deref h0 s) /\
None? plain)
| _ ->
False)
/// This function takes a previously expanded key and performs decryption.
///
/// Possible return values are:
/// - ``Success``: decryption was successfully performed
/// - ``InvalidKey``: the function was passed a NULL expanded key (see above)
/// - ``Failure``: cipher text could not be decrypted (e.g. tag mismatch)
(** @type: true
*)
[@@ Comment "Verify the authenticity of `ad` || `cipher` and decrypt `cipher` into `dst`.
@param s Pointer to the The AEAD state created by `EverCrypt_AEAD_create_in`. It already contains the encryption key.
@param iv Pointer to `iv_len` bytes of memory where the nonce is read from.
@param iv_len Length of the nonce. Note: ChaCha20Poly1305 requires a 12 byte nonce.
@param ad Pointer to `ad_len` bytes of memory where the associated data is read from.
@param ad_len Length of the associated data.
@param cipher Pointer to `cipher_len` bytes of memory where the ciphertext is read from.
@param cipher_len Length of the ciphertext.
@param tag Pointer to `TAG_LEN` bytes of memory where the tag is read from.
The length of the `tag` must be of a suitable length for the chosen algorithm:
* `Spec_Agile_AEAD_AES128_GCM` (TAG_LEN=16)
* `Spec_Agile_AEAD_AES256_GCM` (TAG_LEN=16)
* `Spec_Agile_AEAD_CHACHA20_POLY1305` (TAG_LEN=16)
@param dst Pointer to `cipher_len` bytes of memory where the decrypted plaintext will be written to.
@return `EverCrypt_AEAD_decrypt` returns ...
* `EverCrypt_Error_Success`
... on success and either of ...
* `EverCrypt_Error_InvalidKey` (returned if and only if the `s` parameter is `NULL`),
* `EverCrypt_Error_InvalidIVLength` (see note about requirements on IV size above), or
* `EverCrypt_Error_AuthenticationFailure` (in case the ciphertext could not be authenticated, e.g., due to modifications)
... on failure (`EverCrypt_error.h`).
Upon success, the plaintext will be written into `dst`."]
val decrypt: #a:G.erased supported_alg -> decrypt_st (G.reveal a)
/// Decryption (no pre-allocated state)
/// -----------------------------------
inline_for_extraction noextract | false | true | EverCrypt.AEAD.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val decrypt_expand_st : does_runtime_check: Prims.bool -> a: Spec.Agile.AEAD.supported_alg -> Type0 | [] | EverCrypt.AEAD.decrypt_expand_st | {
"file_name": "providers/evercrypt/EverCrypt.AEAD.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | does_runtime_check: Prims.bool -> a: Spec.Agile.AEAD.supported_alg -> Type0 | {
"end_col": 10,
"end_line": 586,
"start_col": 2,
"start_line": 549
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "EverCrypt.Error",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Agile.AEAD",
"short_module": "Spec"
},
{
"abbrev": false,
"full_module": "Spec.Agile.AEAD",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let decrypt_st (a: supported_alg) =
s:B.pointer_or_null (state_s a) ->
iv:iv_p a ->
iv_len:UInt32.t { v iv_len = B.length iv /\ v iv_len > 0 } ->
ad:ad_p a ->
ad_len: UInt32.t { v ad_len = B.length ad /\ v ad_len <= pow2 31 } ->
cipher: cipher_p a ->
cipher_len: UInt32.t { v cipher_len = B.length cipher } ->
tag: B.buffer uint8 { B.length tag = tag_length a } ->
dst: B.buffer uint8 { B.length dst = B.length cipher } ->
Stack error_code
(requires fun h0 ->
not (B.g_is_null s) ==>
invariant h0 s /\
B.(loc_disjoint (footprint h0 s) (loc_buffer iv)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer ad)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer tag)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer dst)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer cipher)) /\
MB.(all_live h0 [ buf iv; buf ad; buf cipher; buf tag; buf dst ]) /\
B.disjoint tag dst /\ B.disjoint tag cipher /\
B.disjoint tag ad /\
B.disjoint cipher ad /\ B.disjoint dst ad /\
(B.disjoint cipher dst \/ cipher == dst))
(ensures fun h0 err h1 ->
let cipher_tag = B.as_seq h0 cipher `S.append` B.as_seq h0 tag in
match err with
| InvalidKey ->
B.g_is_null s /\
B.(modifies loc_none h0 h1)
| Success ->
not (B.g_is_null s) /\ (
let plain = Spec.decrypt #a (as_kv (B.deref h0 s)) (B.as_seq h0 iv) (B.as_seq h0 ad) cipher_tag in
B.(modifies (loc_union (footprint h1 s) (loc_buffer dst)) h0 h1) /\
invariant h1 s /\
footprint h0 s == footprint h1 s /\
preserves_freeable s h0 h1 /\
as_kv (B.deref h1 s) == as_kv (B.deref h0 s) /\
Some? plain /\ S.equal (Some?.v plain) (B.as_seq h1 dst))
| AuthenticationFailure ->
not (B.g_is_null s) /\ (
let plain = decrypt #a (as_kv (B.deref h0 s)) (B.as_seq h0 iv) (B.as_seq h0 ad) cipher_tag in
B.(modifies (loc_union (footprint h1 s) (loc_buffer dst)) h0 h1) /\
invariant h1 s /\
footprint h0 s == footprint h1 s /\
preserves_freeable s h0 h1 /\
as_kv (B.deref h1 s) == as_kv (B.deref h0 s) /\
None? plain)
| _ ->
False) | let decrypt_st (a: supported_alg) = | false | null | false |
s: B.pointer_or_null (state_s a) ->
iv: iv_p a ->
iv_len: UInt32.t{v iv_len = B.length iv /\ v iv_len > 0} ->
ad: ad_p a ->
ad_len: UInt32.t{v ad_len = B.length ad /\ v ad_len <= pow2 31} ->
cipher: cipher_p a ->
cipher_len: UInt32.t{v cipher_len = B.length cipher} ->
tag: B.buffer uint8 {B.length tag = tag_length a} ->
dst: B.buffer uint8 {B.length dst = B.length cipher}
-> Stack error_code
(requires
fun h0 ->
not (B.g_is_null s) ==>
invariant h0 s /\ B.(loc_disjoint (footprint h0 s) (loc_buffer iv)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer ad)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer tag)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer dst)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer cipher)) /\
MB.(all_live h0 [buf iv; buf ad; buf cipher; buf tag; buf dst]) /\ B.disjoint tag dst /\
B.disjoint tag cipher /\ B.disjoint tag ad /\ B.disjoint cipher ad /\ B.disjoint dst ad /\
(B.disjoint cipher dst \/ cipher == dst))
(ensures
fun h0 err h1 ->
let cipher_tag = (B.as_seq h0 cipher) `S.append` (B.as_seq h0 tag) in
match err with
| InvalidKey -> B.g_is_null s /\ B.(modifies loc_none h0 h1)
| Success ->
not (B.g_is_null s) /\
(let plain =
Spec.decrypt #a (as_kv (B.deref h0 s)) (B.as_seq h0 iv) (B.as_seq h0 ad) cipher_tag
in
B.(modifies (loc_union (footprint h1 s) (loc_buffer dst)) h0 h1) /\ invariant h1 s /\
footprint h0 s == footprint h1 s /\ preserves_freeable s h0 h1 /\
as_kv (B.deref h1 s) == as_kv (B.deref h0 s) /\ Some? plain /\
S.equal (Some?.v plain) (B.as_seq h1 dst))
| AuthenticationFailure ->
not (B.g_is_null s) /\
(let plain =
decrypt #a (as_kv (B.deref h0 s)) (B.as_seq h0 iv) (B.as_seq h0 ad) cipher_tag
in
B.(modifies (loc_union (footprint h1 s) (loc_buffer dst)) h0 h1) /\ invariant h1 s /\
footprint h0 s == footprint h1 s /\ preserves_freeable s h0 h1 /\
as_kv (B.deref h1 s) == as_kv (B.deref h0 s) /\ None? plain)
| _ -> False) | {
"checked_file": "EverCrypt.AEAD.fsti.checked",
"dependencies": [
"Vale.X64.CPU_Features_s.fst.checked",
"Spec.Agile.AEAD.fsti.checked",
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"EverCrypt.TargetConfig.fsti.checked",
"EverCrypt.Error.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.AEAD.fsti"
} | [
"total"
] | [
"Spec.Agile.AEAD.supported_alg",
"LowStar.Buffer.pointer_or_null",
"EverCrypt.AEAD.state_s",
"EverCrypt.AEAD.iv_p",
"FStar.UInt32.t",
"Prims.l_and",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.l_or",
"Prims.op_GreaterThanOrEqual",
"FStar.Integers.within_bounds",
"FStar.Integers.Unsigned",
"FStar.Integers.W32",
"FStar.Integers.v",
"LowStar.Monotonic.Buffer.length",
"Spec.Agile.AEAD.uint8",
"LowStar.Buffer.trivial_preorder",
"FStar.Integers.op_Greater",
"FStar.Integers.Signed",
"FStar.Integers.Winfinite",
"EverCrypt.AEAD.ad_p",
"FStar.Integers.op_Less_Equals",
"Prims.pow2",
"EverCrypt.AEAD.cipher_p",
"LowStar.Buffer.buffer",
"Spec.Agile.AEAD.tag_length",
"Prims.nat",
"EverCrypt.Error.error_code",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_imp",
"Prims.op_Negation",
"LowStar.Monotonic.Buffer.g_is_null",
"EverCrypt.AEAD.invariant",
"LowStar.Monotonic.Buffer.loc_disjoint",
"EverCrypt.AEAD.footprint",
"LowStar.Monotonic.Buffer.loc_buffer",
"LowStar.Monotonic.Buffer.all_live",
"Prims.Cons",
"LowStar.Monotonic.Buffer.buf_t",
"LowStar.Monotonic.Buffer.buf",
"Prims.Nil",
"LowStar.Monotonic.Buffer.disjoint",
"Prims.eq2",
"FStar.Integers.op_Plus",
"Spec.Agile.AEAD.max_length",
"LowStar.Monotonic.Buffer.modifies",
"LowStar.Monotonic.Buffer.loc_none",
"LowStar.Monotonic.Buffer.loc_union",
"LowStar.Monotonic.Buffer.loc",
"EverCrypt.AEAD.preserves_freeable",
"Spec.Agile.AEAD.kv",
"EverCrypt.AEAD.as_kv",
"LowStar.Monotonic.Buffer.deref",
"FStar.Pervasives.Native.uu___is_Some",
"Spec.Agile.AEAD.decrypted",
"FStar.Seq.Base.equal",
"FStar.Pervasives.Native.__proj__Some__item__v",
"LowStar.Monotonic.Buffer.as_seq",
"FStar.Pervasives.Native.option",
"Spec.Agile.AEAD.decrypt",
"FStar.Pervasives.Native.uu___is_None",
"Prims.l_False",
"FStar.Seq.Base.seq",
"FStar.Seq.Base.append"
] | [] | module EverCrypt.AEAD
/// The new AEAD interface for EverCrypt, which supersedes the functions found
/// in EverCrypt.fst
///
/// The expected usage for this module is as follows:
/// - client expands key, obtaining an ``expanded_key a``
/// - client uses ``encrypt``/``decrypt`` with the same ``expanded_key a`` repeatedly.
///
/// This usage protocol is enforced for verified F* clients but, naturally,
/// isn't for C clients.
module S = FStar.Seq
module G = FStar.Ghost
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Integers
open Spec.Agile.AEAD
module Spec = Spec.Agile.AEAD
open EverCrypt.Error
/// Note: if the fst and the fsti are running on different fuel settings,
/// something that works in the interactive mode for the fsti, when
/// "re-interpreted" in the fst, might stop working!
#set-options "--max_fuel 0 --max_ifuel 0"
/// Abstract footprints, with the same machinery as EverCrypt.Hash
/// --------------------------------------------------------------
///
/// Differences from EverCrypt.Hash include: combined framing lemma, the
/// equivalent of the ``repr`` function does *not* require the memory, and order
/// of arguments to be in line with ``B.as_seq``, etc. which take the memory
/// first.
[@@ CAbstractStruct; Comment "Both encryption and decryption require a state that holds the key.
The state may be reused as many times as desired."]
val state_s: alg -> Type0
inline_for_extraction noextract
let state alg = B.pointer (state_s alg)
inline_for_extraction noextract
val freeable_s: #(a: alg) -> state_s a -> Type0
inline_for_extraction noextract
let freeable (#a: alg) (h: HS.mem) (p: state a) =
B.freeable p /\ freeable_s (B.deref h p)
inline_for_extraction noextract
let preserves_freeable #a (s: state a) (h0 h1: HS.mem): Type0 =
freeable h0 s ==> freeable h1 s
val footprint_s: #a:alg -> state_s a -> GTot B.loc
let footprint (#a:alg) (m: HS.mem) (s: state a) =
B.(loc_union (loc_addr_of_buffer s) (footprint_s (B.deref m s)))
// TR: the following pattern is necessary because, if we generically
// add such a pattern directly on `loc_includes_union_l`, then
// verification will blowup whenever both sides of `loc_includes` are
// `loc_union`s. We would like to break all unions on the
// right-hand-side of `loc_includes` first, using
// `loc_includes_union_r`. Here the pattern is on `footprint_s`,
// because we already expose the fact that `footprint` is a
// `loc_union`. (In other words, the pattern should be on every
// smallest location that is not exposed to be a `loc_union`.)
let loc_includes_union_l_footprint_s
(l1 l2: B.loc) (#a: alg) (s: state_s a)
: Lemma
(requires (
B.loc_includes l1 (footprint_s s) \/ B.loc_includes l2 (footprint_s s)
))
(ensures (B.loc_includes (B.loc_union l1 l2) (footprint_s s)))
[SMTPat (B.loc_includes (B.loc_union l1 l2) (footprint_s s))]
= B.loc_includes_union_l l1 l2 (footprint_s s)
/// The configuration preconditions
inline_for_extraction noextract
let config_pre a =
match a with
| AES128_GCM
| AES256_GCM ->
EverCrypt.TargetConfig.hacl_can_compile_vale /\
Vale.X64.CPU_Features_s.(aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\
movbe_enabled /\ sse_enabled)
| CHACHA20_POLY1305 -> True
| _ -> True
inline_for_extraction noextract
val invariant_s: (#a:alg) -> HS.mem -> state_s a -> Type0
inline_for_extraction noextract
let invariant (#a:alg) (m: HS.mem) (s: state a) =
B.live m s /\
B.(loc_disjoint (loc_addr_of_buffer s) (footprint_s (B.deref m s))) /\
invariant_s m (B.get m s 0)
val invariant_loc_in_footprint
(#a: alg)
(s: state a)
(m: HS.mem)
: Lemma
(requires (invariant m s))
(ensures (B.loc_in (footprint m s) m))
[SMTPat (invariant m s)]
val frame_invariant: #a:alg -> l:B.loc -> s:state a -> h0:HS.mem -> h1:HS.mem -> Lemma
(requires (
invariant h0 s /\
B.loc_disjoint l (footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
invariant h1 s /\
footprint h0 s == footprint h1 s))
[ SMTPat (invariant h1 s); SMTPat (B.modifies l h0 h1) ]
/// Actual stateful API
/// -------------------
noextract
let bytes = Seq.seq uint8
[@@ Comment "Return the algorithm used in the AEAD state.
@param s State of the AEAD algorithm.
@return Algorithm used in the AEAD state."]
val alg_of_state (a: G.erased alg) (s: state (G.reveal a)): Stack alg
(requires (fun h0 -> invariant #(G.reveal a) h0 s))
(ensures (fun h0 a' h1 ->
a' == G.reveal a /\
h0 == h1))
/// The API is constructed in a way that one can always get the original key
/// value behind a state, any any memory.
val as_kv: (#a: alg) -> state_s a -> GTot (kv a)
inline_for_extraction noextract
let create_in_st (a: alg) =
r:HS.rid ->
dst:B.pointer (B.pointer_or_null (state_s a)) ->
k:B.buffer uint8 { B.length k = key_length a } ->
ST error_code
(requires fun h0 ->
ST.is_eternal_region r /\
B.live h0 k /\ B.live h0 dst)
(ensures fun h0 e h1 ->
match e with
| UnsupportedAlgorithm ->
B.(modifies loc_none h0 h1)
| Success ->
let s = B.deref h1 dst in
// Sanity
is_supported_alg a /\
not (B.g_is_null s) /\
invariant h1 s /\
// Memory stuff
B.(modifies (loc_buffer dst) h0 h1) /\
B.fresh_loc (footprint h1 s) h0 h1 /\
B.(loc_includes (loc_region_only true r) (footprint h1 s)) /\
freeable h1 s /\
// Useful stuff
as_kv (B.deref h1 s) == B.as_seq h0 k
| _ -> False)
/// Same function as above, but in the StackInline effect, so that it is possible
/// to use AES GCM while staying in the Stack effect. In this case, the state should
/// be allocated/deallocated just before/after any encryption or decryption (which
/// is not very problematic during, for example, a handshake).
inline_for_extraction noextract
let alloca_st (a: alg) =
k:B.buffer uint8 { B.length k = key_length a } ->
StackInline (B.pointer (state_s a))
(requires fun h0 ->
B.live h0 k /\ config_pre a /\ is_supported_alg a)
(ensures fun h0 s h1 ->
// Sanity
invariant h1 s /\
// Memory stuff
B.(modifies loc_none h0 h1) /\
B.fresh_loc (footprint h1 s) h0 h1 /\
B.live h1 s /\
B.(loc_includes (loc_region_only true (HS.get_tip h1)) (footprint h1 s)) /\
// Useful stuff
as_kv (B.deref h1 s) == B.as_seq h0 k)
/// This function takes a pointer to a caller-allocated reference ``dst`` then,
/// if the algorithm is supported (on this platform), allocates a fresh state
/// and modifies ``dst`` to point to it. The key-value associated with this can
/// be obtained via ``kv (B.deref dst)``; as long as ``dst`` is not modified,
/// then the caller can derive that the ``kv`` remains the same, which will be
/// required for encrypt.
(** @type: true
*)
[@@ Comment "Create the required AEAD state for the algorithm.
Note: The caller must free the AEAD state by calling `EverCrypt_AEAD_free`.
@param a The argument `a` must be either of:
* `Spec_Agile_AEAD_AES128_GCM` (KEY_LEN=16),
* `Spec_Agile_AEAD_AES256_GCM` (KEY_LEN=32), or
* `Spec_Agile_AEAD_CHACHA20_POLY1305` (KEY_LEN=32).
@param dst Pointer to a pointer where the address of the allocated AEAD state will be written to.
@param k Pointer to `KEY_LEN` bytes of memory where the key is read from. The size depends on the used algorithm, see above.
@return The function returns `EverCrypt_Error_Success` on success or
`EverCrypt_Error_UnsupportedAlgorithm` in case of a bad algorithm identifier.
(See `EverCrypt_Error.h`.)"]
val create_in: #a:alg -> create_in_st a
inline_for_extraction noextract
val alloca: #a:alg -> alloca_st a
/// Encryption (pre-allocated state)
/// --------------------------------
inline_for_extraction noextract
let iv_p a = iv:B.buffer uint8 { iv_length a (B.length iv)}
inline_for_extraction noextract
let ad_p a = ad:B.buffer uint8 { B.length ad <= max_length a }
inline_for_extraction noextract
let plain_p a = p:B.buffer uint8 { B.length p <= max_length a }
inline_for_extraction noextract
let cipher_p a = p:B.buffer uint8 { B.length p + tag_length a <= max_length a }
// SNIPPET_START: encrypt_pre
inline_for_extraction noextract
let encrypt_gen_pre (a: supported_alg)
(iv:iv_p a)
(iv_len: UInt32.t)
(ad:ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher: B.buffer uint8)
(tag: B.buffer uint8)
(h0: HS.mem)
=
v iv_len = B.length iv /\ v iv_len > 0 /\
v ad_len = B.length ad /\ v ad_len <= pow2 31 /\
v plain_len = B.length plain /\ v plain_len <= max_length a /\
B.length cipher = B.length plain /\
B.length tag = tag_length a
inline_for_extraction noextract
let encrypt_live_disjoint_pre (a: supported_alg)
(iv:iv_p a)
(iv_len: UInt32.t)
(ad:ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher: B.buffer uint8)
(tag: B.buffer uint8)
(h0: HS.mem)
=
MB.(all_live h0 [ buf iv; buf ad; buf plain; buf cipher; buf tag ]) /\
(B.disjoint plain cipher \/ plain == cipher) /\
B.disjoint cipher tag /\
B.disjoint iv cipher /\ B.disjoint iv tag /\
B.disjoint plain tag /\
B.disjoint plain ad /\
B.disjoint ad cipher /\ B.disjoint ad tag
inline_for_extraction noextract
let encrypt_pre (a: supported_alg)
(s:B.pointer_or_null (state_s a))
(iv:iv_p a)
(iv_len: UInt32.t)
(ad:ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher: B.buffer uint8)
(tag: B.buffer uint8)
(h0: HS.mem)
=
encrypt_gen_pre a iv iv_len ad ad_len plain plain_len cipher tag h0 /\ (
not (B.g_is_null s) ==>
invariant h0 s /\
B.(loc_disjoint (footprint h0 s) (loc_buffer iv)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer ad)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer tag)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer plain)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer cipher)) /\
encrypt_live_disjoint_pre a iv iv_len ad ad_len plain plain_len cipher tag h0)
// SNIPPET_END: encrypt_pre
inline_for_extraction noextract
let encrypt_st (a: supported_alg) =
s:B.pointer_or_null (state_s a) ->
iv:iv_p a ->
iv_len: UInt32.t { v iv_len = B.length iv /\ v iv_len > 0 } ->
ad:ad_p a ->
ad_len: UInt32.t { v ad_len = B.length ad /\ v ad_len <= pow2 31 } ->
plain: plain_p a ->
plain_len: UInt32.t { v plain_len = B.length plain /\ v plain_len <= max_length a } ->
cipher: B.buffer uint8 { B.length cipher = B.length plain } ->
tag: B.buffer uint8 { B.length tag = tag_length a } ->
Stack error_code
(requires encrypt_pre a s iv iv_len ad ad_len plain plain_len cipher tag)
(ensures fun h0 r h1 ->
match r with
| Success ->
not (B.g_is_null s) /\
B.(modifies (loc_union (footprint h1 s) (loc_union (loc_buffer cipher) (loc_buffer tag))) h0 h1) /\
invariant h1 s /\
footprint h0 s == footprint h1 s /\
preserves_freeable s h0 h1 /\
as_kv (B.deref h1 s) == as_kv (B.deref h0 s) /\
S.equal (S.append (B.as_seq h1 cipher) (B.as_seq h1 tag))
(Spec.encrypt #a (as_kv (B.deref h0 s)) (B.as_seq h0 iv) (B.as_seq h0 ad) (B.as_seq h0 plain))
| InvalidKey ->
B.g_is_null s /\
B.(modifies loc_none h0 h1)
| _ -> False)
/// This function takes a previously expanded key and performs encryption.
///
/// Possible return values are:
/// - ``Success``: encryption was successfully performed
/// - ``InvalidKey``: the function was passed a NULL expanded key (see above)
(** @type: true
*)
[@@ Comment "Encrypt and authenticate a message (`plain`) with associated data (`ad`).
@param s Pointer to the The AEAD state created by `EverCrypt_AEAD_create_in`. It already contains the encryption key.
@param iv Pointer to `iv_len` bytes of memory where the nonce is read from.
@param iv_len Length of the nonce. Note: ChaCha20Poly1305 requires a 12 byte nonce.
@param ad Pointer to `ad_len` bytes of memory where the associated data is read from.
@param ad_len Length of the associated data.
@param plain Pointer to `plain_len` bytes of memory where the to-be-encrypted plaintext is read from.
@param plain_len Length of the to-be-encrypted plaintext.
@param cipher Pointer to `plain_len` bytes of memory where the ciphertext is written to.
@param tag Pointer to `TAG_LEN` bytes of memory where the tag is written to.
The length of the `tag` must be of a suitable length for the chosen algorithm:
* `Spec_Agile_AEAD_AES128_GCM` (TAG_LEN=16)
* `Spec_Agile_AEAD_AES256_GCM` (TAG_LEN=16)
* `Spec_Agile_AEAD_CHACHA20_POLY1305` (TAG_LEN=16)
@return `EverCrypt_AEAD_encrypt` may return either `EverCrypt_Error_Success` or `EverCrypt_Error_InvalidKey` (`EverCrypt_error.h`). The latter is returned if and only if the `s` parameter is `NULL`."]
val encrypt: #a:G.erased (supported_alg) -> encrypt_st (G.reveal a)
/// Encryption (no pre-allocated state)
/// -----------------------------------
///
/// All-in-one API that does not require performing key expansion separately.
/// Use if you must be in the Stack effect, or if you know you do not intend to
/// reuse the key with a different nonce later.
inline_for_extraction noextract
let encrypt_expand_pre (a: supported_alg)
(k:B.buffer uint8 { B.length k = key_length a })
(iv:iv_p a)
(iv_len: UInt32.t)
(ad:ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher: B.buffer uint8)
(tag: B.buffer uint8)
(h0: HS.mem)
=
encrypt_gen_pre a iv iv_len ad ad_len plain plain_len cipher tag h0 /\ (
B.live h0 k /\ B.disjoint k cipher /\
encrypt_live_disjoint_pre a iv iv_len ad ad_len
plain plain_len cipher tag h0)
inline_for_extraction noextract
let encrypt_expand_st (does_runtime_check: bool) (a: supported_alg) =
k:B.buffer uint8 { B.length k = key_length a } ->
iv:iv_p a ->
iv_len: UInt32.t { v iv_len = B.length iv /\ v iv_len > 0 } ->
ad:ad_p a ->
ad_len: UInt32.t { v ad_len = B.length ad /\ v ad_len <= pow2 31 } ->
plain: plain_p a ->
plain_len: UInt32.t { v plain_len = B.length plain /\ v plain_len <= max_length a } ->
cipher: B.buffer uint8 { B.length cipher = B.length plain } ->
tag: B.buffer uint8 { B.length tag = tag_length a } ->
Stack error_code
(requires fun h0 ->
(if does_runtime_check then
True
else
config_pre a) /\
encrypt_expand_pre a k iv iv_len ad ad_len plain plain_len cipher tag h0)
(ensures fun h0 r h1 ->
match r with
| Success ->
B.(modifies ((loc_union (loc_buffer cipher) (loc_buffer tag))) h0 h1) /\
S.equal (S.append (B.as_seq h1 cipher) (B.as_seq h1 tag))
(Spec.encrypt #a (B.as_seq h0 k) (B.as_seq h0 iv) (B.as_seq h0 ad) (B.as_seq h0 plain))
| UnsupportedAlgorithm ->
if does_runtime_check then
B.(modifies loc_none h0 h1)
else
False
| _ ->
False)
/// It's a little difficult to deal with AES-GCM cleanly because we're missing a
/// fallback C implementation. The two functions below guard the reference to the
/// X64 AES-GCM code behind a test of `EverCrypt.TargetConfig.hacl_can_compile_vale`,
/// which gets extracted to a preprocessor test, so that we can always compile them.
/// In case the code is compiled on a system which doesn't support Vale, the functions
/// are compiled in such a way that they make the program exit cleanly.
[@@ Comment "WARNING: this function doesn't perform any dynamic
hardware check. You MUST make sure your hardware supports the
implementation of AESGCM. Besides, this function was not designed
for cross-compilation: if you compile it on a system which doesn't
support Vale, it will compile it to a function which makes the
program exit."]
val encrypt_expand_aes128_gcm_no_check: encrypt_expand_st false AES128_GCM
[@@ Comment "WARNING: this function doesn't perform any dynamic
hardware check. You MUST make sure your hardware supports the
implementation of AESGCM. Besides, this function was not designed
for cross-compilation: if you compile it on a system which doesn't
support Vale, it will compile it to a function which makes the
program exit."]
val encrypt_expand_aes256_gcm_no_check: encrypt_expand_st false AES256_GCM
/// Those functions take a key, expand it then perform encryption. They do not
/// require calling create_in before.
val encrypt_expand_aes128_gcm: encrypt_expand_st true AES128_GCM
val encrypt_expand_aes256_gcm: encrypt_expand_st true AES256_GCM
val encrypt_expand_chacha20_poly1305: encrypt_expand_st false CHACHA20_POLY1305
/// Run-time agility, run-time multiplexing, but not pre-expansion of the key.
val encrypt_expand: #a:supported_alg -> encrypt_expand_st true (G.reveal a)
/// Decryption (pre-allocated state)
/// --------------------------------
inline_for_extraction noextract | false | true | EverCrypt.AEAD.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val decrypt_st : a: Spec.Agile.AEAD.supported_alg -> Type0 | [] | EverCrypt.AEAD.decrypt_st | {
"file_name": "providers/evercrypt/EverCrypt.AEAD.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Spec.Agile.AEAD.supported_alg -> Type0 | {
"end_col": 16,
"end_line": 502,
"start_col": 2,
"start_line": 454
} |
|
Prims.Tot | val openBase: openBase_st cs vale_p | [
{
"abbrev": true,
"full_module": "Hacl.HPKE.Interface.AEAD",
"short_module": "IAEAD"
},
{
"abbrev": true,
"full_module": "Hacl.HPKE.Interface.Hash",
"short_module": "IHash"
},
{
"abbrev": true,
"full_module": "Hacl.HPKE.Interface.HKDF",
"short_module": "IHK"
},
{
"abbrev": true,
"full_module": "Hacl.HPKE.Interface.DH",
"short_module": "IDH"
},
{
"abbrev": false,
"full_module": "Hacl.Meta.HPKE",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Agile.Hash",
"short_module": "Hash"
},
{
"abbrev": true,
"full_module": "Spec.Agile.AEAD",
"short_module": "AEAD"
},
{
"abbrev": true,
"full_module": "Spec.Agile.DH",
"short_module": "DH"
},
{
"abbrev": true,
"full_module": "Spec.Agile.HPKE",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.HPKE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.HPKE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.HPKE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let openBase = hpke_openBase_higher #cs vale_p IAEAD.aead_decrypt_cp256 setupBaseR | val openBase: openBase_st cs vale_p
let openBase = | false | null | false | hpke_openBase_higher #cs vale_p IAEAD.aead_decrypt_cp256 setupBaseR | {
"checked_file": "Hacl.HPKE.Curve64_CP256_SHA256.fst.checked",
"dependencies": [
"prims.fst.checked",
"Hacl.Meta.HPKE.fst.checked",
"Hacl.Meta.HPKE.fst.checked",
"Hacl.HPKE.Interface.HKDF.fst.checked",
"Hacl.HPKE.Interface.Hash.fst.checked",
"Hacl.HPKE.Interface.DH.fst.checked",
"Hacl.HPKE.Interface.AEAD.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Hacl.HPKE.Curve64_CP256_SHA256.fst"
} | [
"total"
] | [
"Hacl.Meta.HPKE.hpke_openBase_higher",
"Hacl.HPKE.Curve64_CP256_SHA256.cs",
"Hacl.HPKE.Curve64_CP256_SHA256.vale_p",
"Hacl.HPKE.Interface.AEAD.aead_decrypt_cp256",
"Hacl.HPKE.Curve64_CP256_SHA256.setupBaseR"
] | [] | module Hacl.HPKE.Curve64_CP256_SHA256
open Hacl.Meta.HPKE
module IDH = Hacl.HPKE.Interface.DH
module IHK = Hacl.HPKE.Interface.HKDF
module IHash = Hacl.HPKE.Interface.Hash
module IAEAD = Hacl.HPKE.Interface.AEAD
friend Hacl.Meta.HPKE
#set-options "--fuel 0 --ifuel 0"
let setupBaseS = hpke_setupBaseS_higher #cs vale_p IHK.hkdf_expand256 IHK.hkdf_extract256 IDH.secret_to_public_c64 IDH.dh_c64 IHK.hkdf_expand256 IHK.hkdf_extract256
let setupBaseR = hpke_setupBaseR_higher #cs vale_p IHK.hkdf_expand256 IHK.hkdf_extract256 IDH.dh_c64 IHK.hkdf_expand256 IHK.hkdf_extract256 IDH.secret_to_public_c64
let sealBase = hpke_sealBase_higher #cs vale_p IAEAD.aead_encrypt_cp256 setupBaseS | false | true | Hacl.HPKE.Curve64_CP256_SHA256.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val openBase: openBase_st cs vale_p | [] | Hacl.HPKE.Curve64_CP256_SHA256.openBase | {
"file_name": "code/hpke/Hacl.HPKE.Curve64_CP256_SHA256.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Hacl.Impl.HPKE.openBase_st Hacl.HPKE.Curve64_CP256_SHA256.cs Hacl.HPKE.Curve64_CP256_SHA256.vale_p | {
"end_col": 82,
"end_line": 20,
"start_col": 15,
"start_line": 20
} |
Prims.Tot | val sealBase: sealBase_st cs vale_p | [
{
"abbrev": true,
"full_module": "Hacl.HPKE.Interface.AEAD",
"short_module": "IAEAD"
},
{
"abbrev": true,
"full_module": "Hacl.HPKE.Interface.Hash",
"short_module": "IHash"
},
{
"abbrev": true,
"full_module": "Hacl.HPKE.Interface.HKDF",
"short_module": "IHK"
},
{
"abbrev": true,
"full_module": "Hacl.HPKE.Interface.DH",
"short_module": "IDH"
},
{
"abbrev": false,
"full_module": "Hacl.Meta.HPKE",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Agile.Hash",
"short_module": "Hash"
},
{
"abbrev": true,
"full_module": "Spec.Agile.AEAD",
"short_module": "AEAD"
},
{
"abbrev": true,
"full_module": "Spec.Agile.DH",
"short_module": "DH"
},
{
"abbrev": true,
"full_module": "Spec.Agile.HPKE",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.HPKE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.HPKE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.HPKE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let sealBase = hpke_sealBase_higher #cs vale_p IAEAD.aead_encrypt_cp256 setupBaseS | val sealBase: sealBase_st cs vale_p
let sealBase = | false | null | false | hpke_sealBase_higher #cs vale_p IAEAD.aead_encrypt_cp256 setupBaseS | {
"checked_file": "Hacl.HPKE.Curve64_CP256_SHA256.fst.checked",
"dependencies": [
"prims.fst.checked",
"Hacl.Meta.HPKE.fst.checked",
"Hacl.Meta.HPKE.fst.checked",
"Hacl.HPKE.Interface.HKDF.fst.checked",
"Hacl.HPKE.Interface.Hash.fst.checked",
"Hacl.HPKE.Interface.DH.fst.checked",
"Hacl.HPKE.Interface.AEAD.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Hacl.HPKE.Curve64_CP256_SHA256.fst"
} | [
"total"
] | [
"Hacl.Meta.HPKE.hpke_sealBase_higher",
"Hacl.HPKE.Curve64_CP256_SHA256.cs",
"Hacl.HPKE.Curve64_CP256_SHA256.vale_p",
"Hacl.HPKE.Interface.AEAD.aead_encrypt_cp256",
"Hacl.HPKE.Curve64_CP256_SHA256.setupBaseS"
] | [] | module Hacl.HPKE.Curve64_CP256_SHA256
open Hacl.Meta.HPKE
module IDH = Hacl.HPKE.Interface.DH
module IHK = Hacl.HPKE.Interface.HKDF
module IHash = Hacl.HPKE.Interface.Hash
module IAEAD = Hacl.HPKE.Interface.AEAD
friend Hacl.Meta.HPKE
#set-options "--fuel 0 --ifuel 0"
let setupBaseS = hpke_setupBaseS_higher #cs vale_p IHK.hkdf_expand256 IHK.hkdf_extract256 IDH.secret_to_public_c64 IDH.dh_c64 IHK.hkdf_expand256 IHK.hkdf_extract256
let setupBaseR = hpke_setupBaseR_higher #cs vale_p IHK.hkdf_expand256 IHK.hkdf_extract256 IDH.dh_c64 IHK.hkdf_expand256 IHK.hkdf_extract256 IDH.secret_to_public_c64 | false | true | Hacl.HPKE.Curve64_CP256_SHA256.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val sealBase: sealBase_st cs vale_p | [] | Hacl.HPKE.Curve64_CP256_SHA256.sealBase | {
"file_name": "code/hpke/Hacl.HPKE.Curve64_CP256_SHA256.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Hacl.Impl.HPKE.sealBase_st Hacl.HPKE.Curve64_CP256_SHA256.cs Hacl.HPKE.Curve64_CP256_SHA256.vale_p | {
"end_col": 82,
"end_line": 18,
"start_col": 15,
"start_line": 18
} |
Prims.Tot | val setupBaseS: setupBaseS_st cs vale_p | [
{
"abbrev": true,
"full_module": "Hacl.HPKE.Interface.AEAD",
"short_module": "IAEAD"
},
{
"abbrev": true,
"full_module": "Hacl.HPKE.Interface.Hash",
"short_module": "IHash"
},
{
"abbrev": true,
"full_module": "Hacl.HPKE.Interface.HKDF",
"short_module": "IHK"
},
{
"abbrev": true,
"full_module": "Hacl.HPKE.Interface.DH",
"short_module": "IDH"
},
{
"abbrev": false,
"full_module": "Hacl.Meta.HPKE",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Agile.Hash",
"short_module": "Hash"
},
{
"abbrev": true,
"full_module": "Spec.Agile.AEAD",
"short_module": "AEAD"
},
{
"abbrev": true,
"full_module": "Spec.Agile.DH",
"short_module": "DH"
},
{
"abbrev": true,
"full_module": "Spec.Agile.HPKE",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.HPKE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.HPKE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.HPKE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let setupBaseS = hpke_setupBaseS_higher #cs vale_p IHK.hkdf_expand256 IHK.hkdf_extract256 IDH.secret_to_public_c64 IDH.dh_c64 IHK.hkdf_expand256 IHK.hkdf_extract256 | val setupBaseS: setupBaseS_st cs vale_p
let setupBaseS = | false | null | false | hpke_setupBaseS_higher #cs
vale_p
IHK.hkdf_expand256
IHK.hkdf_extract256
IDH.secret_to_public_c64
IDH.dh_c64
IHK.hkdf_expand256
IHK.hkdf_extract256 | {
"checked_file": "Hacl.HPKE.Curve64_CP256_SHA256.fst.checked",
"dependencies": [
"prims.fst.checked",
"Hacl.Meta.HPKE.fst.checked",
"Hacl.Meta.HPKE.fst.checked",
"Hacl.HPKE.Interface.HKDF.fst.checked",
"Hacl.HPKE.Interface.Hash.fst.checked",
"Hacl.HPKE.Interface.DH.fst.checked",
"Hacl.HPKE.Interface.AEAD.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Hacl.HPKE.Curve64_CP256_SHA256.fst"
} | [
"total"
] | [
"Hacl.Meta.HPKE.hpke_setupBaseS_higher",
"Hacl.HPKE.Curve64_CP256_SHA256.cs",
"Hacl.HPKE.Curve64_CP256_SHA256.vale_p",
"Hacl.HPKE.Interface.HKDF.hkdf_expand256",
"Hacl.HPKE.Interface.HKDF.hkdf_extract256",
"Hacl.HPKE.Interface.DH.secret_to_public_c64",
"Hacl.HPKE.Interface.DH.dh_c64"
] | [] | module Hacl.HPKE.Curve64_CP256_SHA256
open Hacl.Meta.HPKE
module IDH = Hacl.HPKE.Interface.DH
module IHK = Hacl.HPKE.Interface.HKDF
module IHash = Hacl.HPKE.Interface.Hash
module IAEAD = Hacl.HPKE.Interface.AEAD
friend Hacl.Meta.HPKE
#set-options "--fuel 0 --ifuel 0" | false | true | Hacl.HPKE.Curve64_CP256_SHA256.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val setupBaseS: setupBaseS_st cs vale_p | [] | Hacl.HPKE.Curve64_CP256_SHA256.setupBaseS | {
"file_name": "code/hpke/Hacl.HPKE.Curve64_CP256_SHA256.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Hacl.Impl.HPKE.setupBaseS_st Hacl.HPKE.Curve64_CP256_SHA256.cs Hacl.HPKE.Curve64_CP256_SHA256.vale_p | {
"end_col": 164,
"end_line": 14,
"start_col": 17,
"start_line": 14
} |
Prims.Tot | val setupBaseR: setupBaseR_st cs vale_p | [
{
"abbrev": true,
"full_module": "Hacl.HPKE.Interface.AEAD",
"short_module": "IAEAD"
},
{
"abbrev": true,
"full_module": "Hacl.HPKE.Interface.Hash",
"short_module": "IHash"
},
{
"abbrev": true,
"full_module": "Hacl.HPKE.Interface.HKDF",
"short_module": "IHK"
},
{
"abbrev": true,
"full_module": "Hacl.HPKE.Interface.DH",
"short_module": "IDH"
},
{
"abbrev": false,
"full_module": "Hacl.Meta.HPKE",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Agile.Hash",
"short_module": "Hash"
},
{
"abbrev": true,
"full_module": "Spec.Agile.AEAD",
"short_module": "AEAD"
},
{
"abbrev": true,
"full_module": "Spec.Agile.DH",
"short_module": "DH"
},
{
"abbrev": true,
"full_module": "Spec.Agile.HPKE",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.HPKE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.HPKE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.HPKE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let setupBaseR = hpke_setupBaseR_higher #cs vale_p IHK.hkdf_expand256 IHK.hkdf_extract256 IDH.dh_c64 IHK.hkdf_expand256 IHK.hkdf_extract256 IDH.secret_to_public_c64 | val setupBaseR: setupBaseR_st cs vale_p
let setupBaseR = | false | null | false | hpke_setupBaseR_higher #cs
vale_p
IHK.hkdf_expand256
IHK.hkdf_extract256
IDH.dh_c64
IHK.hkdf_expand256
IHK.hkdf_extract256
IDH.secret_to_public_c64 | {
"checked_file": "Hacl.HPKE.Curve64_CP256_SHA256.fst.checked",
"dependencies": [
"prims.fst.checked",
"Hacl.Meta.HPKE.fst.checked",
"Hacl.Meta.HPKE.fst.checked",
"Hacl.HPKE.Interface.HKDF.fst.checked",
"Hacl.HPKE.Interface.Hash.fst.checked",
"Hacl.HPKE.Interface.DH.fst.checked",
"Hacl.HPKE.Interface.AEAD.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Hacl.HPKE.Curve64_CP256_SHA256.fst"
} | [
"total"
] | [
"Hacl.Meta.HPKE.hpke_setupBaseR_higher",
"Hacl.HPKE.Curve64_CP256_SHA256.cs",
"Hacl.HPKE.Curve64_CP256_SHA256.vale_p",
"Hacl.HPKE.Interface.HKDF.hkdf_expand256",
"Hacl.HPKE.Interface.HKDF.hkdf_extract256",
"Hacl.HPKE.Interface.DH.dh_c64",
"Hacl.HPKE.Interface.DH.secret_to_public_c64"
] | [] | module Hacl.HPKE.Curve64_CP256_SHA256
open Hacl.Meta.HPKE
module IDH = Hacl.HPKE.Interface.DH
module IHK = Hacl.HPKE.Interface.HKDF
module IHash = Hacl.HPKE.Interface.Hash
module IAEAD = Hacl.HPKE.Interface.AEAD
friend Hacl.Meta.HPKE
#set-options "--fuel 0 --ifuel 0"
let setupBaseS = hpke_setupBaseS_higher #cs vale_p IHK.hkdf_expand256 IHK.hkdf_extract256 IDH.secret_to_public_c64 IDH.dh_c64 IHK.hkdf_expand256 IHK.hkdf_extract256 | false | true | Hacl.HPKE.Curve64_CP256_SHA256.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val setupBaseR: setupBaseR_st cs vale_p | [] | Hacl.HPKE.Curve64_CP256_SHA256.setupBaseR | {
"file_name": "code/hpke/Hacl.HPKE.Curve64_CP256_SHA256.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Hacl.Impl.HPKE.setupBaseR_st Hacl.HPKE.Curve64_CP256_SHA256.cs Hacl.HPKE.Curve64_CP256_SHA256.vale_p | {
"end_col": 164,
"end_line": 16,
"start_col": 17,
"start_line": 16
} |
Prims.Tot | val parse32_vldata
(sz: integer_size)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata sz p)) | [
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.SLow.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.VLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let parse32_vldata
(sz: integer_size)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata sz p))
= parse32_vldata_gen sz (unconstrained_bounded_integer sz) (fun _ -> true) p32 | val parse32_vldata
(sz: integer_size)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata sz p))
let parse32_vldata
(sz: integer_size)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata sz p)) = | false | null | false | parse32_vldata_gen sz (unconstrained_bounded_integer sz) (fun _ -> true) p32 | {
"checked_file": "LowParse.SLow.VLData.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.VLData.fsti.checked",
"LowParse.SLow.FLData.fst.checked",
"LowParse.SLow.BoundedInt.fsti.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.VLData.fst"
} | [
"total"
] | [
"LowParse.Spec.BoundedInt.integer_size",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.SLow.Base.parser32",
"LowParse.SLow.VLData.parse32_vldata_gen",
"LowParse.Spec.VLData.unconstrained_bounded_integer",
"LowParse.Spec.BoundedInt.bounded_integer",
"Prims.bool",
"Prims.eq2",
"LowParse.Spec.VLData.parse_vldata_gen_kind",
"LowParse.Spec.VLData.parse_vldata"
] | [] | module LowParse.SLow.VLData
include LowParse.Spec.VLData
include LowParse.SLow.FLData
include LowParse.SLow.BoundedInt // for bounded_integer
module Seq = FStar.Seq
module U32 = FStar.UInt32
module B32 = LowParse.Bytes32
(* Parsers and serializers for the payload *)
inline_for_extraction
let parse32_vldata_payload
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(i: bounded_integer sz { f i == true } )
: Tot (parser32 (parse_vldata_payload sz f p i))
= fun (input: bytes32) -> parse32_fldata p32 (U32.v i) i input
inline_for_extraction
let parse32_vldata_gen
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(f' : (x: bounded_integer sz) -> Tot (y: bool {y == f x}))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata_gen sz f p))
= [@inline_let]
let _ = parse_vldata_gen_eq_def sz f p in
parse32_and_then
(parse32_filter (parse32_bounded_integer sz) f f')
(parse_vldata_payload sz f p)
()
(parse32_vldata_payload sz f p32)
inline_for_extraction
let parse32_vldata
(sz: integer_size)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p) | false | false | LowParse.SLow.VLData.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val parse32_vldata
(sz: integer_size)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata sz p)) | [] | LowParse.SLow.VLData.parse32_vldata | {
"file_name": "src/lowparse/LowParse.SLow.VLData.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | sz: LowParse.Spec.BoundedInt.integer_size -> p32: LowParse.SLow.Base.parser32 p
-> LowParse.SLow.Base.parser32 (LowParse.Spec.VLData.parse_vldata sz p) | {
"end_col": 78,
"end_line": 50,
"start_col": 2,
"start_line": 50
} |
Prims.Tot | val parse32_vldata_payload
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(i: bounded_integer sz {f i == true})
: Tot (parser32 (parse_vldata_payload sz f p i)) | [
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.SLow.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.VLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let parse32_vldata_payload
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(i: bounded_integer sz { f i == true } )
: Tot (parser32 (parse_vldata_payload sz f p i))
= fun (input: bytes32) -> parse32_fldata p32 (U32.v i) i input | val parse32_vldata_payload
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(i: bounded_integer sz {f i == true})
: Tot (parser32 (parse_vldata_payload sz f p i))
let parse32_vldata_payload
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(i: bounded_integer sz {f i == true})
: Tot (parser32 (parse_vldata_payload sz f p i)) = | false | null | false | fun (input: bytes32) -> parse32_fldata p32 (U32.v i) i input | {
"checked_file": "LowParse.SLow.VLData.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.VLData.fsti.checked",
"LowParse.SLow.FLData.fst.checked",
"LowParse.SLow.BoundedInt.fsti.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.VLData.fst"
} | [
"total"
] | [
"LowParse.Spec.BoundedInt.integer_size",
"LowParse.Spec.BoundedInt.bounded_integer",
"Prims.bool",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.SLow.Base.parser32",
"Prims.eq2",
"LowParse.SLow.Base.bytes32",
"LowParse.SLow.FLData.parse32_fldata",
"FStar.UInt32.v",
"FStar.Pervasives.Native.option",
"FStar.Pervasives.Native.tuple2",
"FStar.UInt32.t",
"LowParse.SLow.Base.parser32_correct",
"LowParse.Spec.VLData.parse_vldata_payload_kind",
"LowParse.Spec.VLData.parse_vldata_payload"
] | [] | module LowParse.SLow.VLData
include LowParse.Spec.VLData
include LowParse.SLow.FLData
include LowParse.SLow.BoundedInt // for bounded_integer
module Seq = FStar.Seq
module U32 = FStar.UInt32
module B32 = LowParse.Bytes32
(* Parsers and serializers for the payload *)
inline_for_extraction
let parse32_vldata_payload
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(i: bounded_integer sz { f i == true } ) | false | false | LowParse.SLow.VLData.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val parse32_vldata_payload
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(i: bounded_integer sz {f i == true})
: Tot (parser32 (parse_vldata_payload sz f p i)) | [] | LowParse.SLow.VLData.parse32_vldata_payload | {
"file_name": "src/lowparse/LowParse.SLow.VLData.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
sz: LowParse.Spec.BoundedInt.integer_size ->
f: (_: LowParse.Spec.BoundedInt.bounded_integer sz -> Prims.GTot Prims.bool) ->
p32: LowParse.SLow.Base.parser32 p ->
i: LowParse.Spec.BoundedInt.bounded_integer sz {f i == true}
-> LowParse.SLow.Base.parser32 (LowParse.Spec.VLData.parse_vldata_payload sz f p i) | {
"end_col": 62,
"end_line": 22,
"start_col": 2,
"start_line": 22
} |
Prims.Tot | val parse32_vldata_gen
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(f': (x: bounded_integer sz -> Tot (y: bool{y == f x})))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata_gen sz f p)) | [
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.SLow.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.VLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let parse32_vldata_gen
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(f' : (x: bounded_integer sz) -> Tot (y: bool {y == f x}))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata_gen sz f p))
= [@inline_let]
let _ = parse_vldata_gen_eq_def sz f p in
parse32_and_then
(parse32_filter (parse32_bounded_integer sz) f f')
(parse_vldata_payload sz f p)
()
(parse32_vldata_payload sz f p32) | val parse32_vldata_gen
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(f': (x: bounded_integer sz -> Tot (y: bool{y == f x})))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata_gen sz f p))
let parse32_vldata_gen
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(f': (x: bounded_integer sz -> Tot (y: bool{y == f x})))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata_gen sz f p)) = | false | null | false | [@@ inline_let ]let _ = parse_vldata_gen_eq_def sz f p in
parse32_and_then (parse32_filter (parse32_bounded_integer sz) f f')
(parse_vldata_payload sz f p)
()
(parse32_vldata_payload sz f p32) | {
"checked_file": "LowParse.SLow.VLData.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.VLData.fsti.checked",
"LowParse.SLow.FLData.fst.checked",
"LowParse.SLow.BoundedInt.fsti.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.VLData.fst"
} | [
"total"
] | [
"LowParse.Spec.BoundedInt.integer_size",
"LowParse.Spec.BoundedInt.bounded_integer",
"Prims.bool",
"Prims.eq2",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.SLow.Base.parser32",
"LowParse.SLow.Combinators.parse32_and_then",
"LowParse.Spec.Combinators.parse_filter_kind",
"LowParse.Spec.BoundedInt.parse_bounded_integer_kind",
"LowParse.Spec.Combinators.parse_filter_refine",
"LowParse.Spec.Combinators.parse_filter",
"LowParse.Spec.BoundedInt.parse_bounded_integer",
"LowParse.SLow.Combinators.parse32_filter",
"LowParse.SLow.BoundedInt.parse32_bounded_integer",
"LowParse.Spec.VLData.parse_vldata_payload_kind",
"LowParse.Spec.VLData.parse_vldata_payload",
"LowParse.SLow.VLData.parse32_vldata_payload",
"Prims.unit",
"LowParse.Spec.VLData.parse_vldata_gen_eq_def",
"LowParse.Spec.VLData.parse_vldata_gen_kind",
"LowParse.Spec.VLData.parse_vldata_gen"
] | [] | module LowParse.SLow.VLData
include LowParse.Spec.VLData
include LowParse.SLow.FLData
include LowParse.SLow.BoundedInt // for bounded_integer
module Seq = FStar.Seq
module U32 = FStar.UInt32
module B32 = LowParse.Bytes32
(* Parsers and serializers for the payload *)
inline_for_extraction
let parse32_vldata_payload
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(i: bounded_integer sz { f i == true } )
: Tot (parser32 (parse_vldata_payload sz f p i))
= fun (input: bytes32) -> parse32_fldata p32 (U32.v i) i input
inline_for_extraction
let parse32_vldata_gen
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(f' : (x: bounded_integer sz) -> Tot (y: bool {y == f x}))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p) | false | false | LowParse.SLow.VLData.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val parse32_vldata_gen
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(f': (x: bounded_integer sz -> Tot (y: bool{y == f x})))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata_gen sz f p)) | [] | LowParse.SLow.VLData.parse32_vldata_gen | {
"file_name": "src/lowparse/LowParse.SLow.VLData.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
sz: LowParse.Spec.BoundedInt.integer_size ->
f: (_: LowParse.Spec.BoundedInt.bounded_integer sz -> Prims.GTot Prims.bool) ->
f': (x: LowParse.Spec.BoundedInt.bounded_integer sz -> y: Prims.bool{y == f x}) ->
p32: LowParse.SLow.Base.parser32 p
-> LowParse.SLow.Base.parser32 (LowParse.Spec.VLData.parse_vldata_gen sz f p) | {
"end_col": 37,
"end_line": 40,
"start_col": 2,
"start_line": 34
} |
Prims.Tot | val check_vldata_payload_size32
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max /\ max > 0 /\ max < 4294967295})
(max32: U32.t{U32.v max32 == max})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s)
(input: t)
: Tot (y: bool{y == true <==> parse_bounded_vldata_strong_pred min max s input}) | [
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.SLow.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.VLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let check_vldata_payload_size32
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967295 } ) // necessary to exclude the overflow case; enough to be compatible with serialize32
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s)
(input: t)
: Tot (y: bool { y == true <==> parse_bounded_vldata_strong_pred min max s input } )
= let sz : U32.t = s32 input in
[@inline_let]
let y : bool =
not (sz = u32_max || U32.lt sz min32 || U32.lt max32 sz)
in
[@inline_let]
let _ : squash (y == true <==> parse_bounded_vldata_strong_pred min max s input) =
if sz = u32_max
then
if Seq.length (serialize s input) > U32.v u32_max
then ()
else begin
assert (U32.v u32_max == Seq.length (serialize s input));
assert_norm (U32.v u32_max == 4294967295);
assert (Seq.length (serialize s input) > max);
assert (~ (parse_bounded_vldata_strong_pred min max s input))
end
else
if Seq.length (serialize s input) > U32.v u32_max
then ()
else ()
in
y | val check_vldata_payload_size32
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max /\ max > 0 /\ max < 4294967295})
(max32: U32.t{U32.v max32 == max})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s)
(input: t)
: Tot (y: bool{y == true <==> parse_bounded_vldata_strong_pred min max s input})
let check_vldata_payload_size32
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max /\ max > 0 /\ max < 4294967295})
(max32: U32.t{U32.v max32 == max})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s)
(input: t)
: Tot (y: bool{y == true <==> parse_bounded_vldata_strong_pred min max s input}) = | false | null | false | let sz:U32.t = s32 input in
[@@ inline_let ]let y:bool = not (sz = u32_max || U32.lt sz min32 || U32.lt max32 sz) in
[@@ inline_let ]let _:squash (y == true <==> parse_bounded_vldata_strong_pred min max s input) =
if sz = u32_max
then
if Seq.length (serialize s input) > U32.v u32_max
then ()
else
(assert (U32.v u32_max == Seq.length (serialize s input));
assert_norm (U32.v u32_max == 4294967295);
assert (Seq.length (serialize s input) > max);
assert (~(parse_bounded_vldata_strong_pred min max s input)))
else if Seq.length (serialize s input) > U32.v u32_max then ()
in
y | {
"checked_file": "LowParse.SLow.VLData.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.VLData.fsti.checked",
"LowParse.SLow.FLData.fst.checked",
"LowParse.SLow.BoundedInt.fsti.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.VLData.fst"
} | [
"total"
] | [
"Prims.nat",
"FStar.UInt32.t",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"FStar.UInt.size",
"FStar.UInt32.n",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt32.v",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"Prims.op_GreaterThan",
"Prims.op_LessThan",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"LowParse.SLow.Base.size32",
"Prims.squash",
"Prims.l_iff",
"Prims.bool",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_pred",
"Prims.op_Equality",
"LowParse.SLow.Base.u32_max",
"FStar.Seq.Base.length",
"LowParse.Bytes.byte",
"LowParse.Spec.Base.serialize",
"Prims._assert",
"Prims.l_not",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.op_Negation",
"Prims.op_BarBar",
"FStar.UInt32.lt"
] | [] | module LowParse.SLow.VLData
include LowParse.Spec.VLData
include LowParse.SLow.FLData
include LowParse.SLow.BoundedInt // for bounded_integer
module Seq = FStar.Seq
module U32 = FStar.UInt32
module B32 = LowParse.Bytes32
(* Parsers and serializers for the payload *)
inline_for_extraction
let parse32_vldata_payload
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(i: bounded_integer sz { f i == true } )
: Tot (parser32 (parse_vldata_payload sz f p i))
= fun (input: bytes32) -> parse32_fldata p32 (U32.v i) i input
inline_for_extraction
let parse32_vldata_gen
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(f' : (x: bounded_integer sz) -> Tot (y: bool {y == f x}))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata_gen sz f p))
= [@inline_let]
let _ = parse_vldata_gen_eq_def sz f p in
parse32_and_then
(parse32_filter (parse32_bounded_integer sz) f f')
(parse_vldata_payload sz f p)
()
(parse32_vldata_payload sz f p32)
inline_for_extraction
let parse32_vldata
(sz: integer_size)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata sz p))
= parse32_vldata_gen sz (unconstrained_bounded_integer sz) (fun _ -> true) p32
#set-options "--z3rlimit 32"
inline_for_extraction
let parse32_bounded_vldata'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata' min max l p))
= [@inline_let]
let _ = parse_bounded_vldata_correct min max l p in
[@inline_let]
let sz : integer_size = l in
(fun input -> parse32_vldata_gen sz (in_bounds min max) (fun i -> not (U32.lt i min32 || U32.lt max32 i)) p32 input)
inline_for_extraction
let parse32_bounded_vldata
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata min max p))
= parse32_bounded_vldata' min min32 max max32 (log256' max) p32
inline_for_extraction
let parse32_bounded_vldata_strong_aux
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Tot (option (parse_bounded_vldata_strong_t min max #k #t #p s * U32.t))
= let res =
parse32_strengthen
#(parse_bounded_vldata_strong_kind min max l k)
#t
#(parse_bounded_vldata' min max l #k #t p)
(parse32_bounded_vldata' min min32 max max32 l #k #t #p p32)
(parse_bounded_vldata_strong_pred min max #k #t #p s)
(parse_bounded_vldata_strong_correct min max l #k #t #p s)
input
in
match res with
| None -> None
| Some (x, consumed) ->
let x1 : t = x in
Some ((x1 <: parse_bounded_vldata_strong_t min max #k #t #p s), consumed)
let parse32_bounded_vldata_strong_correct
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Lemma
( let res : option (parse_bounded_vldata_strong_t min max s * U32.t) =
parse32_bounded_vldata_strong_aux min min32 max max32 l s p32 input
in
parser32_correct (parse_bounded_vldata_strong' min max l s) input res)
= let res =
parse32_strengthen
#(parse_bounded_vldata_strong_kind min max l k)
#t
#(parse_bounded_vldata' min max l #k #t p)
(parse32_bounded_vldata' min min32 max max32 l #k #t #p p32)
(parse_bounded_vldata_strong_pred min max #k #t #p s)
(parse_bounded_vldata_strong_correct min max l #k #t #p s)
input
in
match res with
| None -> ()
| Some (x, consumed) ->
let x1 : t = x in
let res = Some ((x1 <: parse_bounded_vldata_strong_t min max #k #t #p s), consumed) in
assert (parser32_correct (parse_bounded_vldata_strong' min max l s) input res)
inline_for_extraction
let parse32_bounded_vldata_strong'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot (parser32 #_ #(parse_bounded_vldata_strong_t min max s) (parse_bounded_vldata_strong' min max l s))
= make_parser32
(parse_bounded_vldata_strong' min max l s)
(fun input ->
parse32_bounded_vldata_strong_correct min min32 max max32 l s p32 input;
parse32_bounded_vldata_strong_aux min min32 max max32 l s p32 input
)
inline_for_extraction
let parse32_bounded_vldata_strong
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot (parser32 #_ #(parse_bounded_vldata_strong_t min max s) (parse_bounded_vldata_strong min max s))
= parse32_bounded_vldata_strong' min min32 max max32 (log256' max) s p32
inline_for_extraction
let serialize32_bounded_vldata_strong_aux
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (parse_bounded_vldata_strong_t min max s -> Tot bytes32)
= [@inline_let]
let sz : integer_size = l in
[@inline_let]
let ser : serializer32 (serialize_bounded_integer sz) = serialize32_bounded_integer sz in
(fun (input: parse_bounded_vldata_strong_t min max s) ->
let pl = s32 input in
let len = B32.len pl in
assert (min <= U32.v len /\ U32.v len <= max);
let slen = ser (len <: bounded_integer sz) in
seq_slice_append_l (B32.reveal slen) (B32.reveal pl);
seq_slice_append_r (B32.reveal slen) (B32.reveal pl);
let res : bytes32 = B32.b32append slen pl in
res)
let serialize32_bounded_vldata_strong_correct
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
(input: parse_bounded_vldata_strong_t min max s)
: Lemma
(serializer32_correct (serialize_bounded_vldata_strong' min max l s) input (serialize32_bounded_vldata_strong_aux min max l s32 input))
= let sz : integer_size = l in
let ser : serializer32 (serialize_bounded_integer sz) = serialize32_bounded_integer sz in
let pl = s32 input in
assert (B32.reveal pl == s input);
let len = B32.len pl in
let nlen = U32.v len in
assert (min <= nlen /\ nlen <= max);
let slen = ser (len <: bounded_integer sz) in
assert (B32.reveal slen == serialize (serialize_bounded_integer sz) len);
seq_slice_append_l (B32.reveal slen) (B32.reveal pl);
seq_slice_append_r (B32.reveal slen) (B32.reveal pl);
let res : bytes32 = B32.b32append slen pl in
assert (B32.reveal res == Seq.append (B32.reveal slen) (B32.reveal pl));
assert (B32.reveal res == serialize_bounded_vldata_strong_aux min max l s input);
assert (serializer32_correct (serialize_bounded_vldata_strong' min max l s) input res)
inline_for_extraction
let serialize32_bounded_vldata_strong'
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (serializer32 (serialize_bounded_vldata_strong' min max l s))
= fun (input: parse_bounded_vldata_strong_t min max s) ->
serialize32_bounded_vldata_strong_correct min max l s32 input;
(serialize32_bounded_vldata_strong_aux min max l s32 input <: (res: bytes32 { serializer32_correct (serialize_bounded_vldata_strong' min max l s) input res } ))
inline_for_extraction
let serialize32_bounded_vldata_strong
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (serializer32 (serialize_bounded_vldata_strong min max s))
= serialize32_bounded_vldata_strong' min max (log256' max) s32
inline_for_extraction
let serialize32_bounded_vldata
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s { serialize_bounded_vldata_precond min max k } )
: Tot (serializer32 (serialize_bounded_vldata min max s))
= fun (input: t) ->
[@inline_let]
let _ : unit =
let Some (_, consumed) = parse p (serialize s input) in
()
in
serialize32_bounded_vldata_strong_correct min max (log256' max) s32 input;
(serialize32_bounded_vldata_strong_aux min max (log256' max) s32 input <: (res: bytes32 { serializer32_correct (serialize_bounded_vldata min max s) input res } ))
#reset-options "--z3rlimit 32 --z3cliopt smt.arith.nl=false"
inline_for_extraction
let check_vldata_payload_size32
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967295 } ) // necessary to exclude the overflow case; enough to be compatible with serialize32
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s)
(input: t) | false | false | LowParse.SLow.VLData.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val check_vldata_payload_size32
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max /\ max > 0 /\ max < 4294967295})
(max32: U32.t{U32.v max32 == max})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s)
(input: t)
: Tot (y: bool{y == true <==> parse_bounded_vldata_strong_pred min max s input}) | [] | LowParse.SLow.VLData.check_vldata_payload_size32 | {
"file_name": "src/lowparse/LowParse.SLow.VLData.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
min: Prims.nat ->
min32: FStar.UInt32.t{FStar.UInt32.v min32 == min} ->
max: Prims.nat{min <= max /\ max > 0 /\ max < 4294967295} ->
max32: FStar.UInt32.t{FStar.UInt32.v max32 == max} ->
s32: LowParse.SLow.Base.size32 s ->
input: t
-> y:
Prims.bool{y == true <==> LowParse.Spec.VLData.parse_bounded_vldata_strong_pred min max s input} | {
"end_col": 3,
"end_line": 319,
"start_col": 1,
"start_line": 297
} |
Prims.Tot | val parse32_bounded_vldata
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(max32: U32.t{U32.v max32 == max})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata min max p)) | [
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.SLow.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.VLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let parse32_bounded_vldata
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata min max p))
= parse32_bounded_vldata' min min32 max max32 (log256' max) p32 | val parse32_bounded_vldata
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(max32: U32.t{U32.v max32 == max})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata min max p))
let parse32_bounded_vldata
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(max32: U32.t{U32.v max32 == max})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata min max p)) = | false | null | false | parse32_bounded_vldata' min min32 max max32 (log256' max) p32 | {
"checked_file": "LowParse.SLow.VLData.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.VLData.fsti.checked",
"LowParse.SLow.FLData.fst.checked",
"LowParse.SLow.BoundedInt.fsti.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.VLData.fst"
} | [
"total"
] | [
"Prims.nat",
"FStar.UInt32.t",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"FStar.UInt.size",
"FStar.UInt32.n",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt32.v",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"Prims.op_GreaterThan",
"Prims.op_LessThan",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.SLow.Base.parser32",
"LowParse.SLow.VLData.parse32_bounded_vldata'",
"LowParse.Spec.BoundedInt.log256'",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_kind",
"LowParse.Spec.VLData.parse_bounded_vldata"
] | [] | module LowParse.SLow.VLData
include LowParse.Spec.VLData
include LowParse.SLow.FLData
include LowParse.SLow.BoundedInt // for bounded_integer
module Seq = FStar.Seq
module U32 = FStar.UInt32
module B32 = LowParse.Bytes32
(* Parsers and serializers for the payload *)
inline_for_extraction
let parse32_vldata_payload
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(i: bounded_integer sz { f i == true } )
: Tot (parser32 (parse_vldata_payload sz f p i))
= fun (input: bytes32) -> parse32_fldata p32 (U32.v i) i input
inline_for_extraction
let parse32_vldata_gen
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(f' : (x: bounded_integer sz) -> Tot (y: bool {y == f x}))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata_gen sz f p))
= [@inline_let]
let _ = parse_vldata_gen_eq_def sz f p in
parse32_and_then
(parse32_filter (parse32_bounded_integer sz) f f')
(parse_vldata_payload sz f p)
()
(parse32_vldata_payload sz f p32)
inline_for_extraction
let parse32_vldata
(sz: integer_size)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata sz p))
= parse32_vldata_gen sz (unconstrained_bounded_integer sz) (fun _ -> true) p32
#set-options "--z3rlimit 32"
inline_for_extraction
let parse32_bounded_vldata'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata' min max l p))
= [@inline_let]
let _ = parse_bounded_vldata_correct min max l p in
[@inline_let]
let sz : integer_size = l in
(fun input -> parse32_vldata_gen sz (in_bounds min max) (fun i -> not (U32.lt i min32 || U32.lt max32 i)) p32 input)
inline_for_extraction
let parse32_bounded_vldata
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p) | false | false | LowParse.SLow.VLData.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val parse32_bounded_vldata
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(max32: U32.t{U32.v max32 == max})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata min max p)) | [] | LowParse.SLow.VLData.parse32_bounded_vldata | {
"file_name": "src/lowparse/LowParse.SLow.VLData.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
min: Prims.nat ->
min32: FStar.UInt32.t{FStar.UInt32.v min32 == min} ->
max: Prims.nat{min <= max /\ max > 0 /\ max < 4294967296} ->
max32: FStar.UInt32.t{FStar.UInt32.v max32 == max} ->
p32: LowParse.SLow.Base.parser32 p
-> LowParse.SLow.Base.parser32 (LowParse.Spec.VLData.parse_bounded_vldata min max p) | {
"end_col": 63,
"end_line": 83,
"start_col": 2,
"start_line": 83
} |
Prims.Tot | val serialize32_bounded_vldata_strong
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (serializer32 (serialize_bounded_vldata_strong min max s)) | [
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.SLow.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.VLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let serialize32_bounded_vldata_strong
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (serializer32 (serialize_bounded_vldata_strong min max s))
= serialize32_bounded_vldata_strong' min max (log256' max) s32 | val serialize32_bounded_vldata_strong
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (serializer32 (serialize_bounded_vldata_strong min max s))
let serialize32_bounded_vldata_strong
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (serializer32 (serialize_bounded_vldata_strong min max s)) = | false | null | false | serialize32_bounded_vldata_strong' min max (log256' max) s32 | {
"checked_file": "LowParse.SLow.VLData.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.VLData.fsti.checked",
"LowParse.SLow.FLData.fst.checked",
"LowParse.SLow.BoundedInt.fsti.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.VLData.fst"
} | [
"total"
] | [
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_GreaterThan",
"Prims.op_LessThan",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"LowParse.SLow.Base.partial_serializer32",
"LowParse.SLow.VLData.serialize32_bounded_vldata_strong'",
"LowParse.Spec.BoundedInt.log256'",
"LowParse.SLow.Base.serializer32",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_kind",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_t",
"LowParse.Spec.VLData.parse_bounded_vldata_strong",
"LowParse.Spec.VLData.serialize_bounded_vldata_strong"
] | [] | module LowParse.SLow.VLData
include LowParse.Spec.VLData
include LowParse.SLow.FLData
include LowParse.SLow.BoundedInt // for bounded_integer
module Seq = FStar.Seq
module U32 = FStar.UInt32
module B32 = LowParse.Bytes32
(* Parsers and serializers for the payload *)
inline_for_extraction
let parse32_vldata_payload
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(i: bounded_integer sz { f i == true } )
: Tot (parser32 (parse_vldata_payload sz f p i))
= fun (input: bytes32) -> parse32_fldata p32 (U32.v i) i input
inline_for_extraction
let parse32_vldata_gen
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(f' : (x: bounded_integer sz) -> Tot (y: bool {y == f x}))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata_gen sz f p))
= [@inline_let]
let _ = parse_vldata_gen_eq_def sz f p in
parse32_and_then
(parse32_filter (parse32_bounded_integer sz) f f')
(parse_vldata_payload sz f p)
()
(parse32_vldata_payload sz f p32)
inline_for_extraction
let parse32_vldata
(sz: integer_size)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata sz p))
= parse32_vldata_gen sz (unconstrained_bounded_integer sz) (fun _ -> true) p32
#set-options "--z3rlimit 32"
inline_for_extraction
let parse32_bounded_vldata'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata' min max l p))
= [@inline_let]
let _ = parse_bounded_vldata_correct min max l p in
[@inline_let]
let sz : integer_size = l in
(fun input -> parse32_vldata_gen sz (in_bounds min max) (fun i -> not (U32.lt i min32 || U32.lt max32 i)) p32 input)
inline_for_extraction
let parse32_bounded_vldata
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata min max p))
= parse32_bounded_vldata' min min32 max max32 (log256' max) p32
inline_for_extraction
let parse32_bounded_vldata_strong_aux
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Tot (option (parse_bounded_vldata_strong_t min max #k #t #p s * U32.t))
= let res =
parse32_strengthen
#(parse_bounded_vldata_strong_kind min max l k)
#t
#(parse_bounded_vldata' min max l #k #t p)
(parse32_bounded_vldata' min min32 max max32 l #k #t #p p32)
(parse_bounded_vldata_strong_pred min max #k #t #p s)
(parse_bounded_vldata_strong_correct min max l #k #t #p s)
input
in
match res with
| None -> None
| Some (x, consumed) ->
let x1 : t = x in
Some ((x1 <: parse_bounded_vldata_strong_t min max #k #t #p s), consumed)
let parse32_bounded_vldata_strong_correct
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Lemma
( let res : option (parse_bounded_vldata_strong_t min max s * U32.t) =
parse32_bounded_vldata_strong_aux min min32 max max32 l s p32 input
in
parser32_correct (parse_bounded_vldata_strong' min max l s) input res)
= let res =
parse32_strengthen
#(parse_bounded_vldata_strong_kind min max l k)
#t
#(parse_bounded_vldata' min max l #k #t p)
(parse32_bounded_vldata' min min32 max max32 l #k #t #p p32)
(parse_bounded_vldata_strong_pred min max #k #t #p s)
(parse_bounded_vldata_strong_correct min max l #k #t #p s)
input
in
match res with
| None -> ()
| Some (x, consumed) ->
let x1 : t = x in
let res = Some ((x1 <: parse_bounded_vldata_strong_t min max #k #t #p s), consumed) in
assert (parser32_correct (parse_bounded_vldata_strong' min max l s) input res)
inline_for_extraction
let parse32_bounded_vldata_strong'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot (parser32 #_ #(parse_bounded_vldata_strong_t min max s) (parse_bounded_vldata_strong' min max l s))
= make_parser32
(parse_bounded_vldata_strong' min max l s)
(fun input ->
parse32_bounded_vldata_strong_correct min min32 max max32 l s p32 input;
parse32_bounded_vldata_strong_aux min min32 max max32 l s p32 input
)
inline_for_extraction
let parse32_bounded_vldata_strong
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot (parser32 #_ #(parse_bounded_vldata_strong_t min max s) (parse_bounded_vldata_strong min max s))
= parse32_bounded_vldata_strong' min min32 max max32 (log256' max) s p32
inline_for_extraction
let serialize32_bounded_vldata_strong_aux
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (parse_bounded_vldata_strong_t min max s -> Tot bytes32)
= [@inline_let]
let sz : integer_size = l in
[@inline_let]
let ser : serializer32 (serialize_bounded_integer sz) = serialize32_bounded_integer sz in
(fun (input: parse_bounded_vldata_strong_t min max s) ->
let pl = s32 input in
let len = B32.len pl in
assert (min <= U32.v len /\ U32.v len <= max);
let slen = ser (len <: bounded_integer sz) in
seq_slice_append_l (B32.reveal slen) (B32.reveal pl);
seq_slice_append_r (B32.reveal slen) (B32.reveal pl);
let res : bytes32 = B32.b32append slen pl in
res)
let serialize32_bounded_vldata_strong_correct
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
(input: parse_bounded_vldata_strong_t min max s)
: Lemma
(serializer32_correct (serialize_bounded_vldata_strong' min max l s) input (serialize32_bounded_vldata_strong_aux min max l s32 input))
= let sz : integer_size = l in
let ser : serializer32 (serialize_bounded_integer sz) = serialize32_bounded_integer sz in
let pl = s32 input in
assert (B32.reveal pl == s input);
let len = B32.len pl in
let nlen = U32.v len in
assert (min <= nlen /\ nlen <= max);
let slen = ser (len <: bounded_integer sz) in
assert (B32.reveal slen == serialize (serialize_bounded_integer sz) len);
seq_slice_append_l (B32.reveal slen) (B32.reveal pl);
seq_slice_append_r (B32.reveal slen) (B32.reveal pl);
let res : bytes32 = B32.b32append slen pl in
assert (B32.reveal res == Seq.append (B32.reveal slen) (B32.reveal pl));
assert (B32.reveal res == serialize_bounded_vldata_strong_aux min max l s input);
assert (serializer32_correct (serialize_bounded_vldata_strong' min max l s) input res)
inline_for_extraction
let serialize32_bounded_vldata_strong'
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (serializer32 (serialize_bounded_vldata_strong' min max l s))
= fun (input: parse_bounded_vldata_strong_t min max s) ->
serialize32_bounded_vldata_strong_correct min max l s32 input;
(serialize32_bounded_vldata_strong_aux min max l s32 input <: (res: bytes32 { serializer32_correct (serialize_bounded_vldata_strong' min max l s) input res } ))
inline_for_extraction
let serialize32_bounded_vldata_strong
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s) | false | false | LowParse.SLow.VLData.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val serialize32_bounded_vldata_strong
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (serializer32 (serialize_bounded_vldata_strong min max s)) | [] | LowParse.SLow.VLData.serialize32_bounded_vldata_strong | {
"file_name": "src/lowparse/LowParse.SLow.VLData.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
min: Prims.nat ->
max: Prims.nat{min <= max /\ max > 0 /\ max < 4294967292} ->
s32: LowParse.SLow.Base.partial_serializer32 s
-> LowParse.SLow.Base.serializer32 (LowParse.Spec.VLData.serialize_bounded_vldata_strong min max s
) | {
"end_col": 62,
"end_line": 261,
"start_col": 2,
"start_line": 261
} |
Prims.Tot | val parse32_bounded_vldata_strong
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(max32: U32.t{U32.v max32 == max})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot
(parser32 #_ #(parse_bounded_vldata_strong_t min max s) (parse_bounded_vldata_strong min max s)) | [
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.SLow.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.VLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let parse32_bounded_vldata_strong
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot (parser32 #_ #(parse_bounded_vldata_strong_t min max s) (parse_bounded_vldata_strong min max s))
= parse32_bounded_vldata_strong' min min32 max max32 (log256' max) s p32 | val parse32_bounded_vldata_strong
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(max32: U32.t{U32.v max32 == max})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot
(parser32 #_ #(parse_bounded_vldata_strong_t min max s) (parse_bounded_vldata_strong min max s))
let parse32_bounded_vldata_strong
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(max32: U32.t{U32.v max32 == max})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot
(parser32 #_ #(parse_bounded_vldata_strong_t min max s) (parse_bounded_vldata_strong min max s)) = | false | null | false | parse32_bounded_vldata_strong' min min32 max max32 (log256' max) s p32 | {
"checked_file": "LowParse.SLow.VLData.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.VLData.fsti.checked",
"LowParse.SLow.FLData.fst.checked",
"LowParse.SLow.BoundedInt.fsti.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.VLData.fst"
} | [
"total"
] | [
"Prims.nat",
"FStar.UInt32.t",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"FStar.UInt.size",
"FStar.UInt32.n",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt32.v",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"Prims.op_GreaterThan",
"Prims.op_LessThan",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"LowParse.SLow.Base.parser32",
"LowParse.SLow.VLData.parse32_bounded_vldata_strong'",
"LowParse.Spec.BoundedInt.log256'",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_kind",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_t",
"LowParse.Spec.VLData.parse_bounded_vldata_strong"
] | [] | module LowParse.SLow.VLData
include LowParse.Spec.VLData
include LowParse.SLow.FLData
include LowParse.SLow.BoundedInt // for bounded_integer
module Seq = FStar.Seq
module U32 = FStar.UInt32
module B32 = LowParse.Bytes32
(* Parsers and serializers for the payload *)
inline_for_extraction
let parse32_vldata_payload
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(i: bounded_integer sz { f i == true } )
: Tot (parser32 (parse_vldata_payload sz f p i))
= fun (input: bytes32) -> parse32_fldata p32 (U32.v i) i input
inline_for_extraction
let parse32_vldata_gen
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(f' : (x: bounded_integer sz) -> Tot (y: bool {y == f x}))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata_gen sz f p))
= [@inline_let]
let _ = parse_vldata_gen_eq_def sz f p in
parse32_and_then
(parse32_filter (parse32_bounded_integer sz) f f')
(parse_vldata_payload sz f p)
()
(parse32_vldata_payload sz f p32)
inline_for_extraction
let parse32_vldata
(sz: integer_size)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata sz p))
= parse32_vldata_gen sz (unconstrained_bounded_integer sz) (fun _ -> true) p32
#set-options "--z3rlimit 32"
inline_for_extraction
let parse32_bounded_vldata'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata' min max l p))
= [@inline_let]
let _ = parse_bounded_vldata_correct min max l p in
[@inline_let]
let sz : integer_size = l in
(fun input -> parse32_vldata_gen sz (in_bounds min max) (fun i -> not (U32.lt i min32 || U32.lt max32 i)) p32 input)
inline_for_extraction
let parse32_bounded_vldata
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata min max p))
= parse32_bounded_vldata' min min32 max max32 (log256' max) p32
inline_for_extraction
let parse32_bounded_vldata_strong_aux
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Tot (option (parse_bounded_vldata_strong_t min max #k #t #p s * U32.t))
= let res =
parse32_strengthen
#(parse_bounded_vldata_strong_kind min max l k)
#t
#(parse_bounded_vldata' min max l #k #t p)
(parse32_bounded_vldata' min min32 max max32 l #k #t #p p32)
(parse_bounded_vldata_strong_pred min max #k #t #p s)
(parse_bounded_vldata_strong_correct min max l #k #t #p s)
input
in
match res with
| None -> None
| Some (x, consumed) ->
let x1 : t = x in
Some ((x1 <: parse_bounded_vldata_strong_t min max #k #t #p s), consumed)
let parse32_bounded_vldata_strong_correct
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Lemma
( let res : option (parse_bounded_vldata_strong_t min max s * U32.t) =
parse32_bounded_vldata_strong_aux min min32 max max32 l s p32 input
in
parser32_correct (parse_bounded_vldata_strong' min max l s) input res)
= let res =
parse32_strengthen
#(parse_bounded_vldata_strong_kind min max l k)
#t
#(parse_bounded_vldata' min max l #k #t p)
(parse32_bounded_vldata' min min32 max max32 l #k #t #p p32)
(parse_bounded_vldata_strong_pred min max #k #t #p s)
(parse_bounded_vldata_strong_correct min max l #k #t #p s)
input
in
match res with
| None -> ()
| Some (x, consumed) ->
let x1 : t = x in
let res = Some ((x1 <: parse_bounded_vldata_strong_t min max #k #t #p s), consumed) in
assert (parser32_correct (parse_bounded_vldata_strong' min max l s) input res)
inline_for_extraction
let parse32_bounded_vldata_strong'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot (parser32 #_ #(parse_bounded_vldata_strong_t min max s) (parse_bounded_vldata_strong' min max l s))
= make_parser32
(parse_bounded_vldata_strong' min max l s)
(fun input ->
parse32_bounded_vldata_strong_correct min min32 max max32 l s p32 input;
parse32_bounded_vldata_strong_aux min min32 max max32 l s p32 input
)
inline_for_extraction
let parse32_bounded_vldata_strong
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p) | false | false | LowParse.SLow.VLData.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val parse32_bounded_vldata_strong
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(max32: U32.t{U32.v max32 == max})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot
(parser32 #_ #(parse_bounded_vldata_strong_t min max s) (parse_bounded_vldata_strong min max s)) | [] | LowParse.SLow.VLData.parse32_bounded_vldata_strong | {
"file_name": "src/lowparse/LowParse.SLow.VLData.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
min: Prims.nat ->
min32: FStar.UInt32.t{FStar.UInt32.v min32 == min} ->
max: Prims.nat{min <= max /\ max > 0 /\ max < 4294967296} ->
max32: FStar.UInt32.t{FStar.UInt32.v max32 == max} ->
s: LowParse.Spec.Base.serializer p ->
p32: LowParse.SLow.Base.parser32 p
-> LowParse.SLow.Base.parser32 (LowParse.Spec.VLData.parse_bounded_vldata_strong min max s) | {
"end_col": 72,
"end_line": 181,
"start_col": 2,
"start_line": 181
} |
Prims.Tot | val parse32_bounded_vldata_strong'
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(max32: U32.t{U32.v max32 == max})
(l: nat{l >= log256' max /\ l <= 4})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot
(parser32 #_
#(parse_bounded_vldata_strong_t min max s)
(parse_bounded_vldata_strong' min max l s)) | [
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.SLow.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.VLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let parse32_bounded_vldata_strong'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot (parser32 #_ #(parse_bounded_vldata_strong_t min max s) (parse_bounded_vldata_strong' min max l s))
= make_parser32
(parse_bounded_vldata_strong' min max l s)
(fun input ->
parse32_bounded_vldata_strong_correct min min32 max max32 l s p32 input;
parse32_bounded_vldata_strong_aux min min32 max max32 l s p32 input
) | val parse32_bounded_vldata_strong'
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(max32: U32.t{U32.v max32 == max})
(l: nat{l >= log256' max /\ l <= 4})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot
(parser32 #_
#(parse_bounded_vldata_strong_t min max s)
(parse_bounded_vldata_strong' min max l s))
let parse32_bounded_vldata_strong'
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(max32: U32.t{U32.v max32 == max})
(l: nat{l >= log256' max /\ l <= 4})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot
(parser32 #_
#(parse_bounded_vldata_strong_t min max s)
(parse_bounded_vldata_strong' min max l s)) = | false | null | false | make_parser32 (parse_bounded_vldata_strong' min max l s)
(fun input ->
parse32_bounded_vldata_strong_correct min min32 max max32 l s p32 input;
parse32_bounded_vldata_strong_aux min min32 max max32 l s p32 input) | {
"checked_file": "LowParse.SLow.VLData.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.VLData.fsti.checked",
"LowParse.SLow.FLData.fst.checked",
"LowParse.SLow.BoundedInt.fsti.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.VLData.fst"
} | [
"total"
] | [
"Prims.nat",
"FStar.UInt32.t",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"FStar.UInt.size",
"FStar.UInt32.n",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt32.v",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"Prims.op_GreaterThan",
"Prims.op_LessThan",
"LowParse.Spec.BoundedInt.log256'",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"LowParse.SLow.Base.parser32",
"LowParse.SLow.Base.make_parser32",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_kind",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_t",
"LowParse.Spec.VLData.parse_bounded_vldata_strong'",
"LowParse.SLow.Base.bytes32",
"LowParse.SLow.VLData.parse32_bounded_vldata_strong_aux",
"Prims.unit",
"LowParse.SLow.VLData.parse32_bounded_vldata_strong_correct",
"FStar.Pervasives.Native.option",
"FStar.Pervasives.Native.tuple2"
] | [] | module LowParse.SLow.VLData
include LowParse.Spec.VLData
include LowParse.SLow.FLData
include LowParse.SLow.BoundedInt // for bounded_integer
module Seq = FStar.Seq
module U32 = FStar.UInt32
module B32 = LowParse.Bytes32
(* Parsers and serializers for the payload *)
inline_for_extraction
let parse32_vldata_payload
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(i: bounded_integer sz { f i == true } )
: Tot (parser32 (parse_vldata_payload sz f p i))
= fun (input: bytes32) -> parse32_fldata p32 (U32.v i) i input
inline_for_extraction
let parse32_vldata_gen
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(f' : (x: bounded_integer sz) -> Tot (y: bool {y == f x}))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata_gen sz f p))
= [@inline_let]
let _ = parse_vldata_gen_eq_def sz f p in
parse32_and_then
(parse32_filter (parse32_bounded_integer sz) f f')
(parse_vldata_payload sz f p)
()
(parse32_vldata_payload sz f p32)
inline_for_extraction
let parse32_vldata
(sz: integer_size)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata sz p))
= parse32_vldata_gen sz (unconstrained_bounded_integer sz) (fun _ -> true) p32
#set-options "--z3rlimit 32"
inline_for_extraction
let parse32_bounded_vldata'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata' min max l p))
= [@inline_let]
let _ = parse_bounded_vldata_correct min max l p in
[@inline_let]
let sz : integer_size = l in
(fun input -> parse32_vldata_gen sz (in_bounds min max) (fun i -> not (U32.lt i min32 || U32.lt max32 i)) p32 input)
inline_for_extraction
let parse32_bounded_vldata
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata min max p))
= parse32_bounded_vldata' min min32 max max32 (log256' max) p32
inline_for_extraction
let parse32_bounded_vldata_strong_aux
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Tot (option (parse_bounded_vldata_strong_t min max #k #t #p s * U32.t))
= let res =
parse32_strengthen
#(parse_bounded_vldata_strong_kind min max l k)
#t
#(parse_bounded_vldata' min max l #k #t p)
(parse32_bounded_vldata' min min32 max max32 l #k #t #p p32)
(parse_bounded_vldata_strong_pred min max #k #t #p s)
(parse_bounded_vldata_strong_correct min max l #k #t #p s)
input
in
match res with
| None -> None
| Some (x, consumed) ->
let x1 : t = x in
Some ((x1 <: parse_bounded_vldata_strong_t min max #k #t #p s), consumed)
let parse32_bounded_vldata_strong_correct
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Lemma
( let res : option (parse_bounded_vldata_strong_t min max s * U32.t) =
parse32_bounded_vldata_strong_aux min min32 max max32 l s p32 input
in
parser32_correct (parse_bounded_vldata_strong' min max l s) input res)
= let res =
parse32_strengthen
#(parse_bounded_vldata_strong_kind min max l k)
#t
#(parse_bounded_vldata' min max l #k #t p)
(parse32_bounded_vldata' min min32 max max32 l #k #t #p p32)
(parse_bounded_vldata_strong_pred min max #k #t #p s)
(parse_bounded_vldata_strong_correct min max l #k #t #p s)
input
in
match res with
| None -> ()
| Some (x, consumed) ->
let x1 : t = x in
let res = Some ((x1 <: parse_bounded_vldata_strong_t min max #k #t #p s), consumed) in
assert (parser32_correct (parse_bounded_vldata_strong' min max l s) input res)
inline_for_extraction
let parse32_bounded_vldata_strong'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p) | false | false | LowParse.SLow.VLData.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val parse32_bounded_vldata_strong'
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(max32: U32.t{U32.v max32 == max})
(l: nat{l >= log256' max /\ l <= 4})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot
(parser32 #_
#(parse_bounded_vldata_strong_t min max s)
(parse_bounded_vldata_strong' min max l s)) | [] | LowParse.SLow.VLData.parse32_bounded_vldata_strong' | {
"file_name": "src/lowparse/LowParse.SLow.VLData.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
min: Prims.nat ->
min32: FStar.UInt32.t{FStar.UInt32.v min32 == min} ->
max: Prims.nat{min <= max /\ max > 0 /\ max < 4294967296} ->
max32: FStar.UInt32.t{FStar.UInt32.v max32 == max} ->
l: Prims.nat{l >= LowParse.Spec.BoundedInt.log256' max /\ l <= 4} ->
s: LowParse.Spec.Base.serializer p ->
p32: LowParse.SLow.Base.parser32 p
-> LowParse.SLow.Base.parser32 (LowParse.Spec.VLData.parse_bounded_vldata_strong' min max l s) | {
"end_col": 5,
"end_line": 167,
"start_col": 2,
"start_line": 162
} |
Prims.Tot | val parse32_bounded_vldata_strong_aux
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(max32: U32.t{U32.v max32 == max})
(l: nat{l >= log256' max /\ l <= 4})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Tot (option (parse_bounded_vldata_strong_t min max #k #t #p s * U32.t)) | [
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.SLow.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.VLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let parse32_bounded_vldata_strong_aux
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Tot (option (parse_bounded_vldata_strong_t min max #k #t #p s * U32.t))
= let res =
parse32_strengthen
#(parse_bounded_vldata_strong_kind min max l k)
#t
#(parse_bounded_vldata' min max l #k #t p)
(parse32_bounded_vldata' min min32 max max32 l #k #t #p p32)
(parse_bounded_vldata_strong_pred min max #k #t #p s)
(parse_bounded_vldata_strong_correct min max l #k #t #p s)
input
in
match res with
| None -> None
| Some (x, consumed) ->
let x1 : t = x in
Some ((x1 <: parse_bounded_vldata_strong_t min max #k #t #p s), consumed) | val parse32_bounded_vldata_strong_aux
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(max32: U32.t{U32.v max32 == max})
(l: nat{l >= log256' max /\ l <= 4})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Tot (option (parse_bounded_vldata_strong_t min max #k #t #p s * U32.t))
let parse32_bounded_vldata_strong_aux
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(max32: U32.t{U32.v max32 == max})
(l: nat{l >= log256' max /\ l <= 4})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Tot (option (parse_bounded_vldata_strong_t min max #k #t #p s * U32.t)) = | false | null | false | let res =
parse32_strengthen #(parse_bounded_vldata_strong_kind min max l k)
#t
#(parse_bounded_vldata' min max l #k #t p)
(parse32_bounded_vldata' min min32 max max32 l #k #t #p p32)
(parse_bounded_vldata_strong_pred min max #k #t #p s)
(parse_bounded_vldata_strong_correct min max l #k #t #p s)
input
in
match res with
| None -> None
| Some (x, consumed) ->
let x1:t = x in
Some ((x1 <: parse_bounded_vldata_strong_t min max #k #t #p s), consumed) | {
"checked_file": "LowParse.SLow.VLData.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.VLData.fsti.checked",
"LowParse.SLow.FLData.fst.checked",
"LowParse.SLow.BoundedInt.fsti.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.VLData.fst"
} | [
"total"
] | [
"Prims.nat",
"FStar.UInt32.t",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"FStar.UInt.size",
"FStar.UInt32.n",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt32.v",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"Prims.op_GreaterThan",
"Prims.op_LessThan",
"LowParse.Spec.BoundedInt.log256'",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"LowParse.SLow.Base.parser32",
"LowParse.SLow.Base.bytes32",
"FStar.Pervasives.Native.None",
"FStar.Pervasives.Native.tuple2",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_t",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_pred",
"FStar.Pervasives.Native.Some",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Pervasives.Native.option",
"LowParse.SLow.Base.parser32_correct",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_kind",
"LowParse.Spec.Combinators.parse_strengthen",
"LowParse.Spec.VLData.parse_bounded_vldata'",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_correct",
"LowParse.SLow.Combinators.parse32_strengthen",
"LowParse.SLow.VLData.parse32_bounded_vldata'"
] | [] | module LowParse.SLow.VLData
include LowParse.Spec.VLData
include LowParse.SLow.FLData
include LowParse.SLow.BoundedInt // for bounded_integer
module Seq = FStar.Seq
module U32 = FStar.UInt32
module B32 = LowParse.Bytes32
(* Parsers and serializers for the payload *)
inline_for_extraction
let parse32_vldata_payload
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(i: bounded_integer sz { f i == true } )
: Tot (parser32 (parse_vldata_payload sz f p i))
= fun (input: bytes32) -> parse32_fldata p32 (U32.v i) i input
inline_for_extraction
let parse32_vldata_gen
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(f' : (x: bounded_integer sz) -> Tot (y: bool {y == f x}))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata_gen sz f p))
= [@inline_let]
let _ = parse_vldata_gen_eq_def sz f p in
parse32_and_then
(parse32_filter (parse32_bounded_integer sz) f f')
(parse_vldata_payload sz f p)
()
(parse32_vldata_payload sz f p32)
inline_for_extraction
let parse32_vldata
(sz: integer_size)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata sz p))
= parse32_vldata_gen sz (unconstrained_bounded_integer sz) (fun _ -> true) p32
#set-options "--z3rlimit 32"
inline_for_extraction
let parse32_bounded_vldata'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata' min max l p))
= [@inline_let]
let _ = parse_bounded_vldata_correct min max l p in
[@inline_let]
let sz : integer_size = l in
(fun input -> parse32_vldata_gen sz (in_bounds min max) (fun i -> not (U32.lt i min32 || U32.lt max32 i)) p32 input)
inline_for_extraction
let parse32_bounded_vldata
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata min max p))
= parse32_bounded_vldata' min min32 max max32 (log256' max) p32
inline_for_extraction
let parse32_bounded_vldata_strong_aux
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32) | false | false | LowParse.SLow.VLData.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val parse32_bounded_vldata_strong_aux
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(max32: U32.t{U32.v max32 == max})
(l: nat{l >= log256' max /\ l <= 4})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Tot (option (parse_bounded_vldata_strong_t min max #k #t #p s * U32.t)) | [] | LowParse.SLow.VLData.parse32_bounded_vldata_strong_aux | {
"file_name": "src/lowparse/LowParse.SLow.VLData.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
min: Prims.nat ->
min32: FStar.UInt32.t{FStar.UInt32.v min32 == min} ->
max: Prims.nat{min <= max /\ max > 0 /\ max < 4294967296} ->
max32: FStar.UInt32.t{FStar.UInt32.v max32 == max} ->
l: Prims.nat{l >= LowParse.Spec.BoundedInt.log256' max /\ l <= 4} ->
s: LowParse.Spec.Base.serializer p ->
p32: LowParse.SLow.Base.parser32 p ->
input: LowParse.SLow.Base.bytes32
-> FStar.Pervasives.Native.option (LowParse.Spec.VLData.parse_bounded_vldata_strong_t min max s *
FStar.UInt32.t) | {
"end_col": 77,
"end_line": 113,
"start_col": 1,
"start_line": 99
} |
Prims.Tot | val parse32_bounded_vldata'
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(max32: U32.t{U32.v max32 == max})
(l: nat{l >= log256' max /\ l <= 4})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata' min max l p)) | [
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.SLow.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.VLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let parse32_bounded_vldata'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata' min max l p))
= [@inline_let]
let _ = parse_bounded_vldata_correct min max l p in
[@inline_let]
let sz : integer_size = l in
(fun input -> parse32_vldata_gen sz (in_bounds min max) (fun i -> not (U32.lt i min32 || U32.lt max32 i)) p32 input) | val parse32_bounded_vldata'
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(max32: U32.t{U32.v max32 == max})
(l: nat{l >= log256' max /\ l <= 4})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata' min max l p))
let parse32_bounded_vldata'
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(max32: U32.t{U32.v max32 == max})
(l: nat{l >= log256' max /\ l <= 4})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata' min max l p)) = | false | null | false | [@@ inline_let ]let _ = parse_bounded_vldata_correct min max l p in
[@@ inline_let ]let sz:integer_size = l in
(fun input ->
parse32_vldata_gen sz
(in_bounds min max)
(fun i -> not (U32.lt i min32 || U32.lt max32 i))
p32
input) | {
"checked_file": "LowParse.SLow.VLData.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.VLData.fsti.checked",
"LowParse.SLow.FLData.fst.checked",
"LowParse.SLow.BoundedInt.fsti.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.VLData.fst"
} | [
"total"
] | [
"Prims.nat",
"FStar.UInt32.t",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"FStar.UInt.size",
"FStar.UInt32.n",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt32.v",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"Prims.op_GreaterThan",
"Prims.op_LessThan",
"LowParse.Spec.BoundedInt.log256'",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.SLow.Base.parser32",
"LowParse.SLow.Base.bytes32",
"LowParse.SLow.VLData.parse32_vldata_gen",
"LowParse.Spec.BoundedInt.in_bounds",
"LowParse.Spec.BoundedInt.bounded_integer",
"Prims.op_Negation",
"Prims.op_BarBar",
"FStar.UInt32.lt",
"Prims.bool",
"FStar.Pervasives.Native.option",
"FStar.Pervasives.Native.tuple2",
"LowParse.SLow.Base.parser32_correct",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_kind",
"LowParse.Spec.VLData.parse_bounded_vldata'",
"LowParse.Spec.BoundedInt.integer_size",
"Prims.unit",
"LowParse.Spec.VLData.parse_bounded_vldata_correct"
] | [] | module LowParse.SLow.VLData
include LowParse.Spec.VLData
include LowParse.SLow.FLData
include LowParse.SLow.BoundedInt // for bounded_integer
module Seq = FStar.Seq
module U32 = FStar.UInt32
module B32 = LowParse.Bytes32
(* Parsers and serializers for the payload *)
inline_for_extraction
let parse32_vldata_payload
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(i: bounded_integer sz { f i == true } )
: Tot (parser32 (parse_vldata_payload sz f p i))
= fun (input: bytes32) -> parse32_fldata p32 (U32.v i) i input
inline_for_extraction
let parse32_vldata_gen
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(f' : (x: bounded_integer sz) -> Tot (y: bool {y == f x}))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata_gen sz f p))
= [@inline_let]
let _ = parse_vldata_gen_eq_def sz f p in
parse32_and_then
(parse32_filter (parse32_bounded_integer sz) f f')
(parse_vldata_payload sz f p)
()
(parse32_vldata_payload sz f p32)
inline_for_extraction
let parse32_vldata
(sz: integer_size)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata sz p))
= parse32_vldata_gen sz (unconstrained_bounded_integer sz) (fun _ -> true) p32
#set-options "--z3rlimit 32"
inline_for_extraction
let parse32_bounded_vldata'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p) | false | false | LowParse.SLow.VLData.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val parse32_bounded_vldata'
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(max32: U32.t{U32.v max32 == max})
(l: nat{l >= log256' max /\ l <= 4})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata' min max l p)) | [] | LowParse.SLow.VLData.parse32_bounded_vldata' | {
"file_name": "src/lowparse/LowParse.SLow.VLData.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
min: Prims.nat ->
min32: FStar.UInt32.t{FStar.UInt32.v min32 == min} ->
max: Prims.nat{min <= max /\ max > 0 /\ max < 4294967296} ->
max32: FStar.UInt32.t{FStar.UInt32.v max32 == max} ->
l: Prims.nat{l >= LowParse.Spec.BoundedInt.log256' max /\ l <= 4} ->
p32: LowParse.SLow.Base.parser32 p
-> LowParse.SLow.Base.parser32 (LowParse.Spec.VLData.parse_bounded_vldata' min max l p) | {
"end_col": 118,
"end_line": 70,
"start_col": 2,
"start_line": 66
} |
Prims.Tot | val serialize32_bounded_vldata_strong'
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(l: nat{l >= log256' max /\ l <= 4})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (serializer32 (serialize_bounded_vldata_strong' min max l s)) | [
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.SLow.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.VLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let serialize32_bounded_vldata_strong'
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (serializer32 (serialize_bounded_vldata_strong' min max l s))
= fun (input: parse_bounded_vldata_strong_t min max s) ->
serialize32_bounded_vldata_strong_correct min max l s32 input;
(serialize32_bounded_vldata_strong_aux min max l s32 input <: (res: bytes32 { serializer32_correct (serialize_bounded_vldata_strong' min max l s) input res } )) | val serialize32_bounded_vldata_strong'
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(l: nat{l >= log256' max /\ l <= 4})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (serializer32 (serialize_bounded_vldata_strong' min max l s))
let serialize32_bounded_vldata_strong'
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(l: nat{l >= log256' max /\ l <= 4})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (serializer32 (serialize_bounded_vldata_strong' min max l s)) = | false | null | false | fun (input: parse_bounded_vldata_strong_t min max s) ->
serialize32_bounded_vldata_strong_correct min max l s32 input;
(serialize32_bounded_vldata_strong_aux min max l s32 input
<:
(res: bytes32{serializer32_correct (serialize_bounded_vldata_strong' min max l s) input res})) | {
"checked_file": "LowParse.SLow.VLData.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.VLData.fsti.checked",
"LowParse.SLow.FLData.fst.checked",
"LowParse.SLow.BoundedInt.fsti.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.VLData.fst"
} | [
"total"
] | [
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_GreaterThan",
"Prims.op_LessThan",
"Prims.op_GreaterThanOrEqual",
"LowParse.Spec.BoundedInt.log256'",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"LowParse.SLow.Base.partial_serializer32",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_t",
"LowParse.SLow.VLData.serialize32_bounded_vldata_strong_aux",
"LowParse.SLow.Base.bytes32",
"LowParse.SLow.Base.serializer32_correct",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_kind",
"LowParse.Spec.VLData.parse_bounded_vldata_strong'",
"LowParse.Spec.VLData.serialize_bounded_vldata_strong'",
"Prims.unit",
"LowParse.SLow.VLData.serialize32_bounded_vldata_strong_correct",
"LowParse.SLow.Base.serializer32"
] | [] | module LowParse.SLow.VLData
include LowParse.Spec.VLData
include LowParse.SLow.FLData
include LowParse.SLow.BoundedInt // for bounded_integer
module Seq = FStar.Seq
module U32 = FStar.UInt32
module B32 = LowParse.Bytes32
(* Parsers and serializers for the payload *)
inline_for_extraction
let parse32_vldata_payload
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(i: bounded_integer sz { f i == true } )
: Tot (parser32 (parse_vldata_payload sz f p i))
= fun (input: bytes32) -> parse32_fldata p32 (U32.v i) i input
inline_for_extraction
let parse32_vldata_gen
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(f' : (x: bounded_integer sz) -> Tot (y: bool {y == f x}))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata_gen sz f p))
= [@inline_let]
let _ = parse_vldata_gen_eq_def sz f p in
parse32_and_then
(parse32_filter (parse32_bounded_integer sz) f f')
(parse_vldata_payload sz f p)
()
(parse32_vldata_payload sz f p32)
inline_for_extraction
let parse32_vldata
(sz: integer_size)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata sz p))
= parse32_vldata_gen sz (unconstrained_bounded_integer sz) (fun _ -> true) p32
#set-options "--z3rlimit 32"
inline_for_extraction
let parse32_bounded_vldata'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata' min max l p))
= [@inline_let]
let _ = parse_bounded_vldata_correct min max l p in
[@inline_let]
let sz : integer_size = l in
(fun input -> parse32_vldata_gen sz (in_bounds min max) (fun i -> not (U32.lt i min32 || U32.lt max32 i)) p32 input)
inline_for_extraction
let parse32_bounded_vldata
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata min max p))
= parse32_bounded_vldata' min min32 max max32 (log256' max) p32
inline_for_extraction
let parse32_bounded_vldata_strong_aux
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Tot (option (parse_bounded_vldata_strong_t min max #k #t #p s * U32.t))
= let res =
parse32_strengthen
#(parse_bounded_vldata_strong_kind min max l k)
#t
#(parse_bounded_vldata' min max l #k #t p)
(parse32_bounded_vldata' min min32 max max32 l #k #t #p p32)
(parse_bounded_vldata_strong_pred min max #k #t #p s)
(parse_bounded_vldata_strong_correct min max l #k #t #p s)
input
in
match res with
| None -> None
| Some (x, consumed) ->
let x1 : t = x in
Some ((x1 <: parse_bounded_vldata_strong_t min max #k #t #p s), consumed)
let parse32_bounded_vldata_strong_correct
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Lemma
( let res : option (parse_bounded_vldata_strong_t min max s * U32.t) =
parse32_bounded_vldata_strong_aux min min32 max max32 l s p32 input
in
parser32_correct (parse_bounded_vldata_strong' min max l s) input res)
= let res =
parse32_strengthen
#(parse_bounded_vldata_strong_kind min max l k)
#t
#(parse_bounded_vldata' min max l #k #t p)
(parse32_bounded_vldata' min min32 max max32 l #k #t #p p32)
(parse_bounded_vldata_strong_pred min max #k #t #p s)
(parse_bounded_vldata_strong_correct min max l #k #t #p s)
input
in
match res with
| None -> ()
| Some (x, consumed) ->
let x1 : t = x in
let res = Some ((x1 <: parse_bounded_vldata_strong_t min max #k #t #p s), consumed) in
assert (parser32_correct (parse_bounded_vldata_strong' min max l s) input res)
inline_for_extraction
let parse32_bounded_vldata_strong'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot (parser32 #_ #(parse_bounded_vldata_strong_t min max s) (parse_bounded_vldata_strong' min max l s))
= make_parser32
(parse_bounded_vldata_strong' min max l s)
(fun input ->
parse32_bounded_vldata_strong_correct min min32 max max32 l s p32 input;
parse32_bounded_vldata_strong_aux min min32 max max32 l s p32 input
)
inline_for_extraction
let parse32_bounded_vldata_strong
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot (parser32 #_ #(parse_bounded_vldata_strong_t min max s) (parse_bounded_vldata_strong min max s))
= parse32_bounded_vldata_strong' min min32 max max32 (log256' max) s p32
inline_for_extraction
let serialize32_bounded_vldata_strong_aux
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (parse_bounded_vldata_strong_t min max s -> Tot bytes32)
= [@inline_let]
let sz : integer_size = l in
[@inline_let]
let ser : serializer32 (serialize_bounded_integer sz) = serialize32_bounded_integer sz in
(fun (input: parse_bounded_vldata_strong_t min max s) ->
let pl = s32 input in
let len = B32.len pl in
assert (min <= U32.v len /\ U32.v len <= max);
let slen = ser (len <: bounded_integer sz) in
seq_slice_append_l (B32.reveal slen) (B32.reveal pl);
seq_slice_append_r (B32.reveal slen) (B32.reveal pl);
let res : bytes32 = B32.b32append slen pl in
res)
let serialize32_bounded_vldata_strong_correct
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
(input: parse_bounded_vldata_strong_t min max s)
: Lemma
(serializer32_correct (serialize_bounded_vldata_strong' min max l s) input (serialize32_bounded_vldata_strong_aux min max l s32 input))
= let sz : integer_size = l in
let ser : serializer32 (serialize_bounded_integer sz) = serialize32_bounded_integer sz in
let pl = s32 input in
assert (B32.reveal pl == s input);
let len = B32.len pl in
let nlen = U32.v len in
assert (min <= nlen /\ nlen <= max);
let slen = ser (len <: bounded_integer sz) in
assert (B32.reveal slen == serialize (serialize_bounded_integer sz) len);
seq_slice_append_l (B32.reveal slen) (B32.reveal pl);
seq_slice_append_r (B32.reveal slen) (B32.reveal pl);
let res : bytes32 = B32.b32append slen pl in
assert (B32.reveal res == Seq.append (B32.reveal slen) (B32.reveal pl));
assert (B32.reveal res == serialize_bounded_vldata_strong_aux min max l s input);
assert (serializer32_correct (serialize_bounded_vldata_strong' min max l s) input res)
inline_for_extraction
let serialize32_bounded_vldata_strong'
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s) | false | false | LowParse.SLow.VLData.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val serialize32_bounded_vldata_strong'
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(l: nat{l >= log256' max /\ l <= 4})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (serializer32 (serialize_bounded_vldata_strong' min max l s)) | [] | LowParse.SLow.VLData.serialize32_bounded_vldata_strong' | {
"file_name": "src/lowparse/LowParse.SLow.VLData.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
min: Prims.nat ->
max: Prims.nat{min <= max /\ max > 0 /\ max < 4294967292} ->
l: Prims.nat{l >= LowParse.Spec.BoundedInt.log256' max /\ l <= 4} ->
s32: LowParse.SLow.Base.partial_serializer32 s
-> LowParse.SLow.Base.serializer32 (LowParse.Spec.VLData.serialize_bounded_vldata_strong' min
max
l
s) | {
"end_col": 162,
"end_line": 249,
"start_col": 2,
"start_line": 247
} |
Prims.Tot | val serialize32_bounded_vldata
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s {serialize_bounded_vldata_precond min max k})
: Tot (serializer32 (serialize_bounded_vldata min max s)) | [
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.SLow.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.VLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let serialize32_bounded_vldata
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s { serialize_bounded_vldata_precond min max k } )
: Tot (serializer32 (serialize_bounded_vldata min max s))
= fun (input: t) ->
[@inline_let]
let _ : unit =
let Some (_, consumed) = parse p (serialize s input) in
()
in
serialize32_bounded_vldata_strong_correct min max (log256' max) s32 input;
(serialize32_bounded_vldata_strong_aux min max (log256' max) s32 input <: (res: bytes32 { serializer32_correct (serialize_bounded_vldata min max s) input res } )) | val serialize32_bounded_vldata
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s {serialize_bounded_vldata_precond min max k})
: Tot (serializer32 (serialize_bounded_vldata min max s))
let serialize32_bounded_vldata
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s {serialize_bounded_vldata_precond min max k})
: Tot (serializer32 (serialize_bounded_vldata min max s)) = | false | null | false | fun (input: t) ->
[@@ inline_let ]let _:unit =
let Some (_, consumed) = parse p (serialize s input) in
()
in
serialize32_bounded_vldata_strong_correct min max (log256' max) s32 input;
(serialize32_bounded_vldata_strong_aux min max (log256' max) s32 input
<:
(res: bytes32{serializer32_correct (serialize_bounded_vldata min max s) input res})) | {
"checked_file": "LowParse.SLow.VLData.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.VLData.fsti.checked",
"LowParse.SLow.FLData.fst.checked",
"LowParse.SLow.BoundedInt.fsti.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.VLData.fst"
} | [
"total"
] | [
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_GreaterThan",
"Prims.op_LessThan",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"LowParse.SLow.Base.partial_serializer32",
"LowParse.Spec.VLData.serialize_bounded_vldata_precond",
"LowParse.SLow.VLData.serialize32_bounded_vldata_strong_aux",
"LowParse.Spec.BoundedInt.log256'",
"LowParse.SLow.Base.bytes32",
"LowParse.SLow.Base.serializer32_correct",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_kind",
"LowParse.Spec.VLData.parse_bounded_vldata",
"LowParse.Spec.VLData.serialize_bounded_vldata",
"Prims.unit",
"LowParse.SLow.VLData.serialize32_bounded_vldata_strong_correct",
"LowParse.Spec.Base.consumed_length",
"LowParse.Spec.Base.serialize",
"FStar.Pervasives.Native.option",
"FStar.Pervasives.Native.tuple2",
"LowParse.Spec.Base.parse",
"LowParse.SLow.Base.serializer32"
] | [] | module LowParse.SLow.VLData
include LowParse.Spec.VLData
include LowParse.SLow.FLData
include LowParse.SLow.BoundedInt // for bounded_integer
module Seq = FStar.Seq
module U32 = FStar.UInt32
module B32 = LowParse.Bytes32
(* Parsers and serializers for the payload *)
inline_for_extraction
let parse32_vldata_payload
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(i: bounded_integer sz { f i == true } )
: Tot (parser32 (parse_vldata_payload sz f p i))
= fun (input: bytes32) -> parse32_fldata p32 (U32.v i) i input
inline_for_extraction
let parse32_vldata_gen
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(f' : (x: bounded_integer sz) -> Tot (y: bool {y == f x}))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata_gen sz f p))
= [@inline_let]
let _ = parse_vldata_gen_eq_def sz f p in
parse32_and_then
(parse32_filter (parse32_bounded_integer sz) f f')
(parse_vldata_payload sz f p)
()
(parse32_vldata_payload sz f p32)
inline_for_extraction
let parse32_vldata
(sz: integer_size)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata sz p))
= parse32_vldata_gen sz (unconstrained_bounded_integer sz) (fun _ -> true) p32
#set-options "--z3rlimit 32"
inline_for_extraction
let parse32_bounded_vldata'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata' min max l p))
= [@inline_let]
let _ = parse_bounded_vldata_correct min max l p in
[@inline_let]
let sz : integer_size = l in
(fun input -> parse32_vldata_gen sz (in_bounds min max) (fun i -> not (U32.lt i min32 || U32.lt max32 i)) p32 input)
inline_for_extraction
let parse32_bounded_vldata
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata min max p))
= parse32_bounded_vldata' min min32 max max32 (log256' max) p32
inline_for_extraction
let parse32_bounded_vldata_strong_aux
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Tot (option (parse_bounded_vldata_strong_t min max #k #t #p s * U32.t))
= let res =
parse32_strengthen
#(parse_bounded_vldata_strong_kind min max l k)
#t
#(parse_bounded_vldata' min max l #k #t p)
(parse32_bounded_vldata' min min32 max max32 l #k #t #p p32)
(parse_bounded_vldata_strong_pred min max #k #t #p s)
(parse_bounded_vldata_strong_correct min max l #k #t #p s)
input
in
match res with
| None -> None
| Some (x, consumed) ->
let x1 : t = x in
Some ((x1 <: parse_bounded_vldata_strong_t min max #k #t #p s), consumed)
let parse32_bounded_vldata_strong_correct
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Lemma
( let res : option (parse_bounded_vldata_strong_t min max s * U32.t) =
parse32_bounded_vldata_strong_aux min min32 max max32 l s p32 input
in
parser32_correct (parse_bounded_vldata_strong' min max l s) input res)
= let res =
parse32_strengthen
#(parse_bounded_vldata_strong_kind min max l k)
#t
#(parse_bounded_vldata' min max l #k #t p)
(parse32_bounded_vldata' min min32 max max32 l #k #t #p p32)
(parse_bounded_vldata_strong_pred min max #k #t #p s)
(parse_bounded_vldata_strong_correct min max l #k #t #p s)
input
in
match res with
| None -> ()
| Some (x, consumed) ->
let x1 : t = x in
let res = Some ((x1 <: parse_bounded_vldata_strong_t min max #k #t #p s), consumed) in
assert (parser32_correct (parse_bounded_vldata_strong' min max l s) input res)
inline_for_extraction
let parse32_bounded_vldata_strong'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot (parser32 #_ #(parse_bounded_vldata_strong_t min max s) (parse_bounded_vldata_strong' min max l s))
= make_parser32
(parse_bounded_vldata_strong' min max l s)
(fun input ->
parse32_bounded_vldata_strong_correct min min32 max max32 l s p32 input;
parse32_bounded_vldata_strong_aux min min32 max max32 l s p32 input
)
inline_for_extraction
let parse32_bounded_vldata_strong
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot (parser32 #_ #(parse_bounded_vldata_strong_t min max s) (parse_bounded_vldata_strong min max s))
= parse32_bounded_vldata_strong' min min32 max max32 (log256' max) s p32
inline_for_extraction
let serialize32_bounded_vldata_strong_aux
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (parse_bounded_vldata_strong_t min max s -> Tot bytes32)
= [@inline_let]
let sz : integer_size = l in
[@inline_let]
let ser : serializer32 (serialize_bounded_integer sz) = serialize32_bounded_integer sz in
(fun (input: parse_bounded_vldata_strong_t min max s) ->
let pl = s32 input in
let len = B32.len pl in
assert (min <= U32.v len /\ U32.v len <= max);
let slen = ser (len <: bounded_integer sz) in
seq_slice_append_l (B32.reveal slen) (B32.reveal pl);
seq_slice_append_r (B32.reveal slen) (B32.reveal pl);
let res : bytes32 = B32.b32append slen pl in
res)
let serialize32_bounded_vldata_strong_correct
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
(input: parse_bounded_vldata_strong_t min max s)
: Lemma
(serializer32_correct (serialize_bounded_vldata_strong' min max l s) input (serialize32_bounded_vldata_strong_aux min max l s32 input))
= let sz : integer_size = l in
let ser : serializer32 (serialize_bounded_integer sz) = serialize32_bounded_integer sz in
let pl = s32 input in
assert (B32.reveal pl == s input);
let len = B32.len pl in
let nlen = U32.v len in
assert (min <= nlen /\ nlen <= max);
let slen = ser (len <: bounded_integer sz) in
assert (B32.reveal slen == serialize (serialize_bounded_integer sz) len);
seq_slice_append_l (B32.reveal slen) (B32.reveal pl);
seq_slice_append_r (B32.reveal slen) (B32.reveal pl);
let res : bytes32 = B32.b32append slen pl in
assert (B32.reveal res == Seq.append (B32.reveal slen) (B32.reveal pl));
assert (B32.reveal res == serialize_bounded_vldata_strong_aux min max l s input);
assert (serializer32_correct (serialize_bounded_vldata_strong' min max l s) input res)
inline_for_extraction
let serialize32_bounded_vldata_strong'
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (serializer32 (serialize_bounded_vldata_strong' min max l s))
= fun (input: parse_bounded_vldata_strong_t min max s) ->
serialize32_bounded_vldata_strong_correct min max l s32 input;
(serialize32_bounded_vldata_strong_aux min max l s32 input <: (res: bytes32 { serializer32_correct (serialize_bounded_vldata_strong' min max l s) input res } ))
inline_for_extraction
let serialize32_bounded_vldata_strong
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (serializer32 (serialize_bounded_vldata_strong min max s))
= serialize32_bounded_vldata_strong' min max (log256' max) s32
inline_for_extraction
let serialize32_bounded_vldata
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s { serialize_bounded_vldata_precond min max k } ) | false | false | LowParse.SLow.VLData.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val serialize32_bounded_vldata
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s {serialize_bounded_vldata_precond min max k})
: Tot (serializer32 (serialize_bounded_vldata min max s)) | [] | LowParse.SLow.VLData.serialize32_bounded_vldata | {
"file_name": "src/lowparse/LowParse.SLow.VLData.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
min: Prims.nat ->
max: Prims.nat{min <= max /\ max > 0 /\ max < 4294967292} ->
s32:
LowParse.SLow.Base.partial_serializer32 s
{LowParse.Spec.VLData.serialize_bounded_vldata_precond min max k}
-> LowParse.SLow.Base.serializer32 (LowParse.Spec.VLData.serialize_bounded_vldata min max s) | {
"end_col": 164,
"end_line": 280,
"start_col": 2,
"start_line": 273
} |
Prims.Tot | val size32_bounded_vldata_strong
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s)
(sz32: U32.t{U32.v sz32 == log256' max})
: Tot (size32 (serialize_bounded_vldata_strong min max s)) | [
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.SLow.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.VLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let size32_bounded_vldata_strong
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4, otherwise add overflows
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s)
(sz32: U32.t { U32.v sz32 == log256' max } )
: Tot (size32 (serialize_bounded_vldata_strong min max s))
= size32_bounded_vldata_strong' min max (log256' max) s32 sz32 | val size32_bounded_vldata_strong
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s)
(sz32: U32.t{U32.v sz32 == log256' max})
: Tot (size32 (serialize_bounded_vldata_strong min max s))
let size32_bounded_vldata_strong
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s)
(sz32: U32.t{U32.v sz32 == log256' max})
: Tot (size32 (serialize_bounded_vldata_strong min max s)) = | false | null | false | size32_bounded_vldata_strong' min max (log256' max) s32 sz32 | {
"checked_file": "LowParse.SLow.VLData.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.VLData.fsti.checked",
"LowParse.SLow.FLData.fst.checked",
"LowParse.SLow.BoundedInt.fsti.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.VLData.fst"
} | [
"total"
] | [
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_GreaterThan",
"Prims.op_LessThan",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"LowParse.SLow.Base.size32",
"FStar.UInt32.t",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"FStar.UInt.size",
"FStar.UInt32.n",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt32.v",
"LowParse.Spec.BoundedInt.log256'",
"LowParse.SLow.VLData.size32_bounded_vldata_strong'",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_kind",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_t",
"LowParse.Spec.VLData.parse_bounded_vldata_strong",
"LowParse.Spec.VLData.serialize_bounded_vldata_strong"
] | [] | module LowParse.SLow.VLData
include LowParse.Spec.VLData
include LowParse.SLow.FLData
include LowParse.SLow.BoundedInt // for bounded_integer
module Seq = FStar.Seq
module U32 = FStar.UInt32
module B32 = LowParse.Bytes32
(* Parsers and serializers for the payload *)
inline_for_extraction
let parse32_vldata_payload
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(i: bounded_integer sz { f i == true } )
: Tot (parser32 (parse_vldata_payload sz f p i))
= fun (input: bytes32) -> parse32_fldata p32 (U32.v i) i input
inline_for_extraction
let parse32_vldata_gen
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(f' : (x: bounded_integer sz) -> Tot (y: bool {y == f x}))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata_gen sz f p))
= [@inline_let]
let _ = parse_vldata_gen_eq_def sz f p in
parse32_and_then
(parse32_filter (parse32_bounded_integer sz) f f')
(parse_vldata_payload sz f p)
()
(parse32_vldata_payload sz f p32)
inline_for_extraction
let parse32_vldata
(sz: integer_size)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata sz p))
= parse32_vldata_gen sz (unconstrained_bounded_integer sz) (fun _ -> true) p32
#set-options "--z3rlimit 32"
inline_for_extraction
let parse32_bounded_vldata'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata' min max l p))
= [@inline_let]
let _ = parse_bounded_vldata_correct min max l p in
[@inline_let]
let sz : integer_size = l in
(fun input -> parse32_vldata_gen sz (in_bounds min max) (fun i -> not (U32.lt i min32 || U32.lt max32 i)) p32 input)
inline_for_extraction
let parse32_bounded_vldata
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata min max p))
= parse32_bounded_vldata' min min32 max max32 (log256' max) p32
inline_for_extraction
let parse32_bounded_vldata_strong_aux
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Tot (option (parse_bounded_vldata_strong_t min max #k #t #p s * U32.t))
= let res =
parse32_strengthen
#(parse_bounded_vldata_strong_kind min max l k)
#t
#(parse_bounded_vldata' min max l #k #t p)
(parse32_bounded_vldata' min min32 max max32 l #k #t #p p32)
(parse_bounded_vldata_strong_pred min max #k #t #p s)
(parse_bounded_vldata_strong_correct min max l #k #t #p s)
input
in
match res with
| None -> None
| Some (x, consumed) ->
let x1 : t = x in
Some ((x1 <: parse_bounded_vldata_strong_t min max #k #t #p s), consumed)
let parse32_bounded_vldata_strong_correct
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Lemma
( let res : option (parse_bounded_vldata_strong_t min max s * U32.t) =
parse32_bounded_vldata_strong_aux min min32 max max32 l s p32 input
in
parser32_correct (parse_bounded_vldata_strong' min max l s) input res)
= let res =
parse32_strengthen
#(parse_bounded_vldata_strong_kind min max l k)
#t
#(parse_bounded_vldata' min max l #k #t p)
(parse32_bounded_vldata' min min32 max max32 l #k #t #p p32)
(parse_bounded_vldata_strong_pred min max #k #t #p s)
(parse_bounded_vldata_strong_correct min max l #k #t #p s)
input
in
match res with
| None -> ()
| Some (x, consumed) ->
let x1 : t = x in
let res = Some ((x1 <: parse_bounded_vldata_strong_t min max #k #t #p s), consumed) in
assert (parser32_correct (parse_bounded_vldata_strong' min max l s) input res)
inline_for_extraction
let parse32_bounded_vldata_strong'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot (parser32 #_ #(parse_bounded_vldata_strong_t min max s) (parse_bounded_vldata_strong' min max l s))
= make_parser32
(parse_bounded_vldata_strong' min max l s)
(fun input ->
parse32_bounded_vldata_strong_correct min min32 max max32 l s p32 input;
parse32_bounded_vldata_strong_aux min min32 max max32 l s p32 input
)
inline_for_extraction
let parse32_bounded_vldata_strong
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot (parser32 #_ #(parse_bounded_vldata_strong_t min max s) (parse_bounded_vldata_strong min max s))
= parse32_bounded_vldata_strong' min min32 max max32 (log256' max) s p32
inline_for_extraction
let serialize32_bounded_vldata_strong_aux
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (parse_bounded_vldata_strong_t min max s -> Tot bytes32)
= [@inline_let]
let sz : integer_size = l in
[@inline_let]
let ser : serializer32 (serialize_bounded_integer sz) = serialize32_bounded_integer sz in
(fun (input: parse_bounded_vldata_strong_t min max s) ->
let pl = s32 input in
let len = B32.len pl in
assert (min <= U32.v len /\ U32.v len <= max);
let slen = ser (len <: bounded_integer sz) in
seq_slice_append_l (B32.reveal slen) (B32.reveal pl);
seq_slice_append_r (B32.reveal slen) (B32.reveal pl);
let res : bytes32 = B32.b32append slen pl in
res)
let serialize32_bounded_vldata_strong_correct
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
(input: parse_bounded_vldata_strong_t min max s)
: Lemma
(serializer32_correct (serialize_bounded_vldata_strong' min max l s) input (serialize32_bounded_vldata_strong_aux min max l s32 input))
= let sz : integer_size = l in
let ser : serializer32 (serialize_bounded_integer sz) = serialize32_bounded_integer sz in
let pl = s32 input in
assert (B32.reveal pl == s input);
let len = B32.len pl in
let nlen = U32.v len in
assert (min <= nlen /\ nlen <= max);
let slen = ser (len <: bounded_integer sz) in
assert (B32.reveal slen == serialize (serialize_bounded_integer sz) len);
seq_slice_append_l (B32.reveal slen) (B32.reveal pl);
seq_slice_append_r (B32.reveal slen) (B32.reveal pl);
let res : bytes32 = B32.b32append slen pl in
assert (B32.reveal res == Seq.append (B32.reveal slen) (B32.reveal pl));
assert (B32.reveal res == serialize_bounded_vldata_strong_aux min max l s input);
assert (serializer32_correct (serialize_bounded_vldata_strong' min max l s) input res)
inline_for_extraction
let serialize32_bounded_vldata_strong'
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (serializer32 (serialize_bounded_vldata_strong' min max l s))
= fun (input: parse_bounded_vldata_strong_t min max s) ->
serialize32_bounded_vldata_strong_correct min max l s32 input;
(serialize32_bounded_vldata_strong_aux min max l s32 input <: (res: bytes32 { serializer32_correct (serialize_bounded_vldata_strong' min max l s) input res } ))
inline_for_extraction
let serialize32_bounded_vldata_strong
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (serializer32 (serialize_bounded_vldata_strong min max s))
= serialize32_bounded_vldata_strong' min max (log256' max) s32
inline_for_extraction
let serialize32_bounded_vldata
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s { serialize_bounded_vldata_precond min max k } )
: Tot (serializer32 (serialize_bounded_vldata min max s))
= fun (input: t) ->
[@inline_let]
let _ : unit =
let Some (_, consumed) = parse p (serialize s input) in
()
in
serialize32_bounded_vldata_strong_correct min max (log256' max) s32 input;
(serialize32_bounded_vldata_strong_aux min max (log256' max) s32 input <: (res: bytes32 { serializer32_correct (serialize_bounded_vldata min max s) input res } ))
#reset-options "--z3rlimit 32 --z3cliopt smt.arith.nl=false"
inline_for_extraction
let check_vldata_payload_size32
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967295 } ) // necessary to exclude the overflow case; enough to be compatible with serialize32
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s)
(input: t)
: Tot (y: bool { y == true <==> parse_bounded_vldata_strong_pred min max s input } )
= let sz : U32.t = s32 input in
[@inline_let]
let y : bool =
not (sz = u32_max || U32.lt sz min32 || U32.lt max32 sz)
in
[@inline_let]
let _ : squash (y == true <==> parse_bounded_vldata_strong_pred min max s input) =
if sz = u32_max
then
if Seq.length (serialize s input) > U32.v u32_max
then ()
else begin
assert (U32.v u32_max == Seq.length (serialize s input));
assert_norm (U32.v u32_max == 4294967295);
assert (Seq.length (serialize s input) > max);
assert (~ (parse_bounded_vldata_strong_pred min max s input))
end
else
if Seq.length (serialize s input) > U32.v u32_max
then ()
else ()
in
y
inline_for_extraction
let size32_bounded_vldata_strong'
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4, otherwise add overflows
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s)
(sz32: U32.t { U32.v sz32 == l } )
: Tot (size32 (serialize_bounded_vldata_strong' min max l s))
= (fun (input: parse_bounded_vldata_strong_t min max s) ->
let len = s32 input in
[@inline_let]
let _ = assert_norm (U32.v u32_max == 4294967295) in
[@inline_let]
let _ = assert (min <= U32.v len /\ U32.v len <= max) in
[@inline_let]
let res : U32.t = U32.add sz32 len in
(res <: (res: U32.t { size32_postcond (serialize_bounded_vldata_strong' min max l s) input res } )))
inline_for_extraction
let size32_bounded_vldata_strong
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4, otherwise add overflows
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s)
(sz32: U32.t { U32.v sz32 == log256' max } ) | false | false | LowParse.SLow.VLData.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val size32_bounded_vldata_strong
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s)
(sz32: U32.t{U32.v sz32 == log256' max})
: Tot (size32 (serialize_bounded_vldata_strong min max s)) | [] | LowParse.SLow.VLData.size32_bounded_vldata_strong | {
"file_name": "src/lowparse/LowParse.SLow.VLData.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
min: Prims.nat ->
max: Prims.nat{min <= max /\ max > 0 /\ max < 4294967292} ->
s32: LowParse.SLow.Base.size32 s ->
sz32: FStar.UInt32.t{FStar.UInt32.v sz32 == LowParse.Spec.BoundedInt.log256' max}
-> LowParse.SLow.Base.size32 (LowParse.Spec.VLData.serialize_bounded_vldata_strong min max s) | {
"end_col": 62,
"end_line": 354,
"start_col": 2,
"start_line": 354
} |
Prims.Tot | val serialize32_bounded_vldata_strong_aux
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(l: nat{l >= log256' max /\ l <= 4})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (parse_bounded_vldata_strong_t min max s -> Tot bytes32) | [
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.SLow.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.VLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let serialize32_bounded_vldata_strong_aux
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (parse_bounded_vldata_strong_t min max s -> Tot bytes32)
= [@inline_let]
let sz : integer_size = l in
[@inline_let]
let ser : serializer32 (serialize_bounded_integer sz) = serialize32_bounded_integer sz in
(fun (input: parse_bounded_vldata_strong_t min max s) ->
let pl = s32 input in
let len = B32.len pl in
assert (min <= U32.v len /\ U32.v len <= max);
let slen = ser (len <: bounded_integer sz) in
seq_slice_append_l (B32.reveal slen) (B32.reveal pl);
seq_slice_append_r (B32.reveal slen) (B32.reveal pl);
let res : bytes32 = B32.b32append slen pl in
res) | val serialize32_bounded_vldata_strong_aux
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(l: nat{l >= log256' max /\ l <= 4})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (parse_bounded_vldata_strong_t min max s -> Tot bytes32)
let serialize32_bounded_vldata_strong_aux
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(l: nat{l >= log256' max /\ l <= 4})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (parse_bounded_vldata_strong_t min max s -> Tot bytes32) = | false | null | false | [@@ inline_let ]let sz:integer_size = l in
[@@ inline_let ]let ser:serializer32 (serialize_bounded_integer sz) =
serialize32_bounded_integer sz
in
(fun (input: parse_bounded_vldata_strong_t min max s) ->
let pl = s32 input in
let len = B32.len pl in
assert (min <= U32.v len /\ U32.v len <= max);
let slen = ser (len <: bounded_integer sz) in
seq_slice_append_l (B32.reveal slen) (B32.reveal pl);
seq_slice_append_r (B32.reveal slen) (B32.reveal pl);
let res:bytes32 = B32.b32append slen pl in
res) | {
"checked_file": "LowParse.SLow.VLData.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.VLData.fsti.checked",
"LowParse.SLow.FLData.fst.checked",
"LowParse.SLow.BoundedInt.fsti.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.VLData.fst"
} | [
"total"
] | [
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_GreaterThan",
"Prims.op_LessThan",
"Prims.op_GreaterThanOrEqual",
"LowParse.Spec.BoundedInt.log256'",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"LowParse.SLow.Base.partial_serializer32",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_t",
"LowParse.SLow.Base.bytes32",
"LowParse.Bytes32.b32append",
"Prims.unit",
"LowParse.Spec.Combinators.seq_slice_append_r",
"FStar.Bytes.byte",
"FStar.Bytes.reveal",
"LowParse.Spec.Combinators.seq_slice_append_l",
"LowParse.SLow.Base.serializer32_correct",
"LowParse.Spec.BoundedInt.parse_bounded_integer_kind",
"LowParse.Spec.BoundedInt.bounded_integer",
"LowParse.Spec.BoundedInt.parse_bounded_integer",
"LowParse.Spec.BoundedInt.serialize_bounded_integer",
"Prims._assert",
"FStar.UInt32.v",
"FStar.UInt32.t",
"FStar.Bytes.len",
"LowParse.SLow.Base.serializer32",
"LowParse.SLow.BoundedInt.serialize32_bounded_integer",
"LowParse.Spec.BoundedInt.integer_size"
] | [] | module LowParse.SLow.VLData
include LowParse.Spec.VLData
include LowParse.SLow.FLData
include LowParse.SLow.BoundedInt // for bounded_integer
module Seq = FStar.Seq
module U32 = FStar.UInt32
module B32 = LowParse.Bytes32
(* Parsers and serializers for the payload *)
inline_for_extraction
let parse32_vldata_payload
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(i: bounded_integer sz { f i == true } )
: Tot (parser32 (parse_vldata_payload sz f p i))
= fun (input: bytes32) -> parse32_fldata p32 (U32.v i) i input
inline_for_extraction
let parse32_vldata_gen
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(f' : (x: bounded_integer sz) -> Tot (y: bool {y == f x}))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata_gen sz f p))
= [@inline_let]
let _ = parse_vldata_gen_eq_def sz f p in
parse32_and_then
(parse32_filter (parse32_bounded_integer sz) f f')
(parse_vldata_payload sz f p)
()
(parse32_vldata_payload sz f p32)
inline_for_extraction
let parse32_vldata
(sz: integer_size)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata sz p))
= parse32_vldata_gen sz (unconstrained_bounded_integer sz) (fun _ -> true) p32
#set-options "--z3rlimit 32"
inline_for_extraction
let parse32_bounded_vldata'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata' min max l p))
= [@inline_let]
let _ = parse_bounded_vldata_correct min max l p in
[@inline_let]
let sz : integer_size = l in
(fun input -> parse32_vldata_gen sz (in_bounds min max) (fun i -> not (U32.lt i min32 || U32.lt max32 i)) p32 input)
inline_for_extraction
let parse32_bounded_vldata
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata min max p))
= parse32_bounded_vldata' min min32 max max32 (log256' max) p32
inline_for_extraction
let parse32_bounded_vldata_strong_aux
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Tot (option (parse_bounded_vldata_strong_t min max #k #t #p s * U32.t))
= let res =
parse32_strengthen
#(parse_bounded_vldata_strong_kind min max l k)
#t
#(parse_bounded_vldata' min max l #k #t p)
(parse32_bounded_vldata' min min32 max max32 l #k #t #p p32)
(parse_bounded_vldata_strong_pred min max #k #t #p s)
(parse_bounded_vldata_strong_correct min max l #k #t #p s)
input
in
match res with
| None -> None
| Some (x, consumed) ->
let x1 : t = x in
Some ((x1 <: parse_bounded_vldata_strong_t min max #k #t #p s), consumed)
let parse32_bounded_vldata_strong_correct
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Lemma
( let res : option (parse_bounded_vldata_strong_t min max s * U32.t) =
parse32_bounded_vldata_strong_aux min min32 max max32 l s p32 input
in
parser32_correct (parse_bounded_vldata_strong' min max l s) input res)
= let res =
parse32_strengthen
#(parse_bounded_vldata_strong_kind min max l k)
#t
#(parse_bounded_vldata' min max l #k #t p)
(parse32_bounded_vldata' min min32 max max32 l #k #t #p p32)
(parse_bounded_vldata_strong_pred min max #k #t #p s)
(parse_bounded_vldata_strong_correct min max l #k #t #p s)
input
in
match res with
| None -> ()
| Some (x, consumed) ->
let x1 : t = x in
let res = Some ((x1 <: parse_bounded_vldata_strong_t min max #k #t #p s), consumed) in
assert (parser32_correct (parse_bounded_vldata_strong' min max l s) input res)
inline_for_extraction
let parse32_bounded_vldata_strong'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot (parser32 #_ #(parse_bounded_vldata_strong_t min max s) (parse_bounded_vldata_strong' min max l s))
= make_parser32
(parse_bounded_vldata_strong' min max l s)
(fun input ->
parse32_bounded_vldata_strong_correct min min32 max max32 l s p32 input;
parse32_bounded_vldata_strong_aux min min32 max max32 l s p32 input
)
inline_for_extraction
let parse32_bounded_vldata_strong
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot (parser32 #_ #(parse_bounded_vldata_strong_t min max s) (parse_bounded_vldata_strong min max s))
= parse32_bounded_vldata_strong' min min32 max max32 (log256' max) s p32
inline_for_extraction
let serialize32_bounded_vldata_strong_aux
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s) | false | false | LowParse.SLow.VLData.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val serialize32_bounded_vldata_strong_aux
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(l: nat{l >= log256' max /\ l <= 4})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (parse_bounded_vldata_strong_t min max s -> Tot bytes32) | [] | LowParse.SLow.VLData.serialize32_bounded_vldata_strong_aux | {
"file_name": "src/lowparse/LowParse.SLow.VLData.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
min: Prims.nat ->
max: Prims.nat{min <= max /\ max > 0 /\ max < 4294967292} ->
l: Prims.nat{l >= LowParse.Spec.BoundedInt.log256' max /\ l <= 4} ->
s32: LowParse.SLow.Base.partial_serializer32 s ->
_: LowParse.Spec.VLData.parse_bounded_vldata_strong_t min max s
-> LowParse.SLow.Base.bytes32 | {
"end_col": 8,
"end_line": 206,
"start_col": 2,
"start_line": 194
} |
FStar.Pervasives.Lemma | val parse32_bounded_vldata_strong_correct
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(max32: U32.t{U32.v max32 == max})
(l: nat{l >= log256' max /\ l <= 4})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Lemma
(let res:option (parse_bounded_vldata_strong_t min max s * U32.t) =
parse32_bounded_vldata_strong_aux min min32 max max32 l s p32 input
in
parser32_correct (parse_bounded_vldata_strong' min max l s) input res) | [
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.SLow.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.VLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let parse32_bounded_vldata_strong_correct
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Lemma
( let res : option (parse_bounded_vldata_strong_t min max s * U32.t) =
parse32_bounded_vldata_strong_aux min min32 max max32 l s p32 input
in
parser32_correct (parse_bounded_vldata_strong' min max l s) input res)
= let res =
parse32_strengthen
#(parse_bounded_vldata_strong_kind min max l k)
#t
#(parse_bounded_vldata' min max l #k #t p)
(parse32_bounded_vldata' min min32 max max32 l #k #t #p p32)
(parse_bounded_vldata_strong_pred min max #k #t #p s)
(parse_bounded_vldata_strong_correct min max l #k #t #p s)
input
in
match res with
| None -> ()
| Some (x, consumed) ->
let x1 : t = x in
let res = Some ((x1 <: parse_bounded_vldata_strong_t min max #k #t #p s), consumed) in
assert (parser32_correct (parse_bounded_vldata_strong' min max l s) input res) | val parse32_bounded_vldata_strong_correct
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(max32: U32.t{U32.v max32 == max})
(l: nat{l >= log256' max /\ l <= 4})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Lemma
(let res:option (parse_bounded_vldata_strong_t min max s * U32.t) =
parse32_bounded_vldata_strong_aux min min32 max max32 l s p32 input
in
parser32_correct (parse_bounded_vldata_strong' min max l s) input res)
let parse32_bounded_vldata_strong_correct
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(max32: U32.t{U32.v max32 == max})
(l: nat{l >= log256' max /\ l <= 4})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Lemma
(let res:option (parse_bounded_vldata_strong_t min max s * U32.t) =
parse32_bounded_vldata_strong_aux min min32 max max32 l s p32 input
in
parser32_correct (parse_bounded_vldata_strong' min max l s) input res) = | false | null | true | let res =
parse32_strengthen #(parse_bounded_vldata_strong_kind min max l k)
#t
#(parse_bounded_vldata' min max l #k #t p)
(parse32_bounded_vldata' min min32 max max32 l #k #t #p p32)
(parse_bounded_vldata_strong_pred min max #k #t #p s)
(parse_bounded_vldata_strong_correct min max l #k #t #p s)
input
in
match res with
| None -> ()
| Some (x, consumed) ->
let x1:t = x in
let res = Some ((x1 <: parse_bounded_vldata_strong_t min max #k #t #p s), consumed) in
assert (parser32_correct (parse_bounded_vldata_strong' min max l s) input res) | {
"checked_file": "LowParse.SLow.VLData.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.VLData.fsti.checked",
"LowParse.SLow.FLData.fst.checked",
"LowParse.SLow.BoundedInt.fsti.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.VLData.fst"
} | [
"lemma"
] | [
"Prims.nat",
"FStar.UInt32.t",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"FStar.UInt.size",
"FStar.UInt32.n",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt32.v",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"Prims.op_GreaterThan",
"Prims.op_LessThan",
"LowParse.Spec.BoundedInt.log256'",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"LowParse.SLow.Base.parser32",
"LowParse.SLow.Base.bytes32",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_pred",
"Prims._assert",
"LowParse.SLow.Base.parser32_correct",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_kind",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_t",
"LowParse.Spec.VLData.parse_bounded_vldata_strong'",
"FStar.Pervasives.Native.option",
"FStar.Pervasives.Native.tuple2",
"FStar.Pervasives.Native.Some",
"FStar.Pervasives.Native.Mktuple2",
"Prims.unit",
"LowParse.Spec.Combinators.parse_strengthen",
"LowParse.Spec.VLData.parse_bounded_vldata'",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_correct",
"LowParse.SLow.Combinators.parse32_strengthen",
"LowParse.SLow.VLData.parse32_bounded_vldata'",
"Prims.l_True",
"Prims.squash",
"LowParse.SLow.VLData.parse32_bounded_vldata_strong_aux",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module LowParse.SLow.VLData
include LowParse.Spec.VLData
include LowParse.SLow.FLData
include LowParse.SLow.BoundedInt // for bounded_integer
module Seq = FStar.Seq
module U32 = FStar.UInt32
module B32 = LowParse.Bytes32
(* Parsers and serializers for the payload *)
inline_for_extraction
let parse32_vldata_payload
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(i: bounded_integer sz { f i == true } )
: Tot (parser32 (parse_vldata_payload sz f p i))
= fun (input: bytes32) -> parse32_fldata p32 (U32.v i) i input
inline_for_extraction
let parse32_vldata_gen
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(f' : (x: bounded_integer sz) -> Tot (y: bool {y == f x}))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata_gen sz f p))
= [@inline_let]
let _ = parse_vldata_gen_eq_def sz f p in
parse32_and_then
(parse32_filter (parse32_bounded_integer sz) f f')
(parse_vldata_payload sz f p)
()
(parse32_vldata_payload sz f p32)
inline_for_extraction
let parse32_vldata
(sz: integer_size)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata sz p))
= parse32_vldata_gen sz (unconstrained_bounded_integer sz) (fun _ -> true) p32
#set-options "--z3rlimit 32"
inline_for_extraction
let parse32_bounded_vldata'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata' min max l p))
= [@inline_let]
let _ = parse_bounded_vldata_correct min max l p in
[@inline_let]
let sz : integer_size = l in
(fun input -> parse32_vldata_gen sz (in_bounds min max) (fun i -> not (U32.lt i min32 || U32.lt max32 i)) p32 input)
inline_for_extraction
let parse32_bounded_vldata
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata min max p))
= parse32_bounded_vldata' min min32 max max32 (log256' max) p32
inline_for_extraction
let parse32_bounded_vldata_strong_aux
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Tot (option (parse_bounded_vldata_strong_t min max #k #t #p s * U32.t))
= let res =
parse32_strengthen
#(parse_bounded_vldata_strong_kind min max l k)
#t
#(parse_bounded_vldata' min max l #k #t p)
(parse32_bounded_vldata' min min32 max max32 l #k #t #p p32)
(parse_bounded_vldata_strong_pred min max #k #t #p s)
(parse_bounded_vldata_strong_correct min max l #k #t #p s)
input
in
match res with
| None -> None
| Some (x, consumed) ->
let x1 : t = x in
Some ((x1 <: parse_bounded_vldata_strong_t min max #k #t #p s), consumed)
let parse32_bounded_vldata_strong_correct
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Lemma
( let res : option (parse_bounded_vldata_strong_t min max s * U32.t) =
parse32_bounded_vldata_strong_aux min min32 max max32 l s p32 input
in | false | false | LowParse.SLow.VLData.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val parse32_bounded_vldata_strong_correct
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(max32: U32.t{U32.v max32 == max})
(l: nat{l >= log256' max /\ l <= 4})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Lemma
(let res:option (parse_bounded_vldata_strong_t min max s * U32.t) =
parse32_bounded_vldata_strong_aux min min32 max max32 l s p32 input
in
parser32_correct (parse_bounded_vldata_strong' min max l s) input res) | [] | LowParse.SLow.VLData.parse32_bounded_vldata_strong_correct | {
"file_name": "src/lowparse/LowParse.SLow.VLData.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
min: Prims.nat ->
min32: FStar.UInt32.t{FStar.UInt32.v min32 == min} ->
max: Prims.nat{min <= max /\ max > 0 /\ max < 4294967296} ->
max32: FStar.UInt32.t{FStar.UInt32.v max32 == max} ->
l: Prims.nat{l >= LowParse.Spec.BoundedInt.log256' max /\ l <= 4} ->
s: LowParse.Spec.Base.serializer p ->
p32: LowParse.SLow.Base.parser32 p ->
input: LowParse.SLow.Base.bytes32
-> FStar.Pervasives.Lemma
(ensures
(let res =
LowParse.SLow.VLData.parse32_bounded_vldata_strong_aux min min32 max max32 l s p32 input
in
LowParse.SLow.Base.parser32_correct (LowParse.Spec.VLData.parse_bounded_vldata_strong' min
max
l
s)
input
res)) | {
"end_col": 82,
"end_line": 147,
"start_col": 1,
"start_line": 132
} |
Prims.Tot | val size32_bounded_vldata
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s {serialize_bounded_vldata_precond min max k})
(sz32: U32.t{U32.v sz32 == log256' max})
: Tot (size32 (serialize_bounded_vldata min max s)) | [
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.SLow.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.VLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let size32_bounded_vldata
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s { serialize_bounded_vldata_precond min max k } )
(sz32: U32.t { U32.v sz32 == log256' max } )
: Tot (size32 (serialize_bounded_vldata min max s))
= fun (input: t) ->
[@inline_let]
let _ : unit =
let Some (_, consumed) = parse p (serialize s input) in
()
in
(size32_bounded_vldata_strong min max s32 sz32 input <: (res: U32.t { size32_postcond (serialize_bounded_vldata min max s) input res } )) | val size32_bounded_vldata
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s {serialize_bounded_vldata_precond min max k})
(sz32: U32.t{U32.v sz32 == log256' max})
: Tot (size32 (serialize_bounded_vldata min max s))
let size32_bounded_vldata
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s {serialize_bounded_vldata_precond min max k})
(sz32: U32.t{U32.v sz32 == log256' max})
: Tot (size32 (serialize_bounded_vldata min max s)) = | false | null | false | fun (input: t) ->
[@@ inline_let ]let _:unit =
let Some (_, consumed) = parse p (serialize s input) in
()
in
(size32_bounded_vldata_strong min max s32 sz32 input
<:
(res: U32.t{size32_postcond (serialize_bounded_vldata min max s) input res})) | {
"checked_file": "LowParse.SLow.VLData.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.VLData.fsti.checked",
"LowParse.SLow.FLData.fst.checked",
"LowParse.SLow.BoundedInt.fsti.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.VLData.fst"
} | [
"total"
] | [
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_GreaterThan",
"Prims.op_LessThan",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"LowParse.SLow.Base.size32",
"LowParse.Spec.VLData.serialize_bounded_vldata_precond",
"FStar.UInt32.t",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"FStar.UInt.size",
"FStar.UInt32.n",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt32.v",
"LowParse.Spec.BoundedInt.log256'",
"LowParse.SLow.VLData.size32_bounded_vldata_strong",
"LowParse.SLow.Base.size32_postcond",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_kind",
"LowParse.Spec.VLData.parse_bounded_vldata",
"LowParse.Spec.VLData.serialize_bounded_vldata",
"Prims.unit",
"LowParse.Spec.Base.consumed_length",
"LowParse.Spec.Base.serialize",
"FStar.Pervasives.Native.option",
"FStar.Pervasives.Native.tuple2",
"LowParse.Spec.Base.parse"
] | [] | module LowParse.SLow.VLData
include LowParse.Spec.VLData
include LowParse.SLow.FLData
include LowParse.SLow.BoundedInt // for bounded_integer
module Seq = FStar.Seq
module U32 = FStar.UInt32
module B32 = LowParse.Bytes32
(* Parsers and serializers for the payload *)
inline_for_extraction
let parse32_vldata_payload
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(i: bounded_integer sz { f i == true } )
: Tot (parser32 (parse_vldata_payload sz f p i))
= fun (input: bytes32) -> parse32_fldata p32 (U32.v i) i input
inline_for_extraction
let parse32_vldata_gen
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(f' : (x: bounded_integer sz) -> Tot (y: bool {y == f x}))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata_gen sz f p))
= [@inline_let]
let _ = parse_vldata_gen_eq_def sz f p in
parse32_and_then
(parse32_filter (parse32_bounded_integer sz) f f')
(parse_vldata_payload sz f p)
()
(parse32_vldata_payload sz f p32)
inline_for_extraction
let parse32_vldata
(sz: integer_size)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata sz p))
= parse32_vldata_gen sz (unconstrained_bounded_integer sz) (fun _ -> true) p32
#set-options "--z3rlimit 32"
inline_for_extraction
let parse32_bounded_vldata'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata' min max l p))
= [@inline_let]
let _ = parse_bounded_vldata_correct min max l p in
[@inline_let]
let sz : integer_size = l in
(fun input -> parse32_vldata_gen sz (in_bounds min max) (fun i -> not (U32.lt i min32 || U32.lt max32 i)) p32 input)
inline_for_extraction
let parse32_bounded_vldata
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata min max p))
= parse32_bounded_vldata' min min32 max max32 (log256' max) p32
inline_for_extraction
let parse32_bounded_vldata_strong_aux
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Tot (option (parse_bounded_vldata_strong_t min max #k #t #p s * U32.t))
= let res =
parse32_strengthen
#(parse_bounded_vldata_strong_kind min max l k)
#t
#(parse_bounded_vldata' min max l #k #t p)
(parse32_bounded_vldata' min min32 max max32 l #k #t #p p32)
(parse_bounded_vldata_strong_pred min max #k #t #p s)
(parse_bounded_vldata_strong_correct min max l #k #t #p s)
input
in
match res with
| None -> None
| Some (x, consumed) ->
let x1 : t = x in
Some ((x1 <: parse_bounded_vldata_strong_t min max #k #t #p s), consumed)
let parse32_bounded_vldata_strong_correct
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Lemma
( let res : option (parse_bounded_vldata_strong_t min max s * U32.t) =
parse32_bounded_vldata_strong_aux min min32 max max32 l s p32 input
in
parser32_correct (parse_bounded_vldata_strong' min max l s) input res)
= let res =
parse32_strengthen
#(parse_bounded_vldata_strong_kind min max l k)
#t
#(parse_bounded_vldata' min max l #k #t p)
(parse32_bounded_vldata' min min32 max max32 l #k #t #p p32)
(parse_bounded_vldata_strong_pred min max #k #t #p s)
(parse_bounded_vldata_strong_correct min max l #k #t #p s)
input
in
match res with
| None -> ()
| Some (x, consumed) ->
let x1 : t = x in
let res = Some ((x1 <: parse_bounded_vldata_strong_t min max #k #t #p s), consumed) in
assert (parser32_correct (parse_bounded_vldata_strong' min max l s) input res)
inline_for_extraction
let parse32_bounded_vldata_strong'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot (parser32 #_ #(parse_bounded_vldata_strong_t min max s) (parse_bounded_vldata_strong' min max l s))
= make_parser32
(parse_bounded_vldata_strong' min max l s)
(fun input ->
parse32_bounded_vldata_strong_correct min min32 max max32 l s p32 input;
parse32_bounded_vldata_strong_aux min min32 max max32 l s p32 input
)
inline_for_extraction
let parse32_bounded_vldata_strong
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot (parser32 #_ #(parse_bounded_vldata_strong_t min max s) (parse_bounded_vldata_strong min max s))
= parse32_bounded_vldata_strong' min min32 max max32 (log256' max) s p32
inline_for_extraction
let serialize32_bounded_vldata_strong_aux
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (parse_bounded_vldata_strong_t min max s -> Tot bytes32)
= [@inline_let]
let sz : integer_size = l in
[@inline_let]
let ser : serializer32 (serialize_bounded_integer sz) = serialize32_bounded_integer sz in
(fun (input: parse_bounded_vldata_strong_t min max s) ->
let pl = s32 input in
let len = B32.len pl in
assert (min <= U32.v len /\ U32.v len <= max);
let slen = ser (len <: bounded_integer sz) in
seq_slice_append_l (B32.reveal slen) (B32.reveal pl);
seq_slice_append_r (B32.reveal slen) (B32.reveal pl);
let res : bytes32 = B32.b32append slen pl in
res)
let serialize32_bounded_vldata_strong_correct
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
(input: parse_bounded_vldata_strong_t min max s)
: Lemma
(serializer32_correct (serialize_bounded_vldata_strong' min max l s) input (serialize32_bounded_vldata_strong_aux min max l s32 input))
= let sz : integer_size = l in
let ser : serializer32 (serialize_bounded_integer sz) = serialize32_bounded_integer sz in
let pl = s32 input in
assert (B32.reveal pl == s input);
let len = B32.len pl in
let nlen = U32.v len in
assert (min <= nlen /\ nlen <= max);
let slen = ser (len <: bounded_integer sz) in
assert (B32.reveal slen == serialize (serialize_bounded_integer sz) len);
seq_slice_append_l (B32.reveal slen) (B32.reveal pl);
seq_slice_append_r (B32.reveal slen) (B32.reveal pl);
let res : bytes32 = B32.b32append slen pl in
assert (B32.reveal res == Seq.append (B32.reveal slen) (B32.reveal pl));
assert (B32.reveal res == serialize_bounded_vldata_strong_aux min max l s input);
assert (serializer32_correct (serialize_bounded_vldata_strong' min max l s) input res)
inline_for_extraction
let serialize32_bounded_vldata_strong'
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (serializer32 (serialize_bounded_vldata_strong' min max l s))
= fun (input: parse_bounded_vldata_strong_t min max s) ->
serialize32_bounded_vldata_strong_correct min max l s32 input;
(serialize32_bounded_vldata_strong_aux min max l s32 input <: (res: bytes32 { serializer32_correct (serialize_bounded_vldata_strong' min max l s) input res } ))
inline_for_extraction
let serialize32_bounded_vldata_strong
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (serializer32 (serialize_bounded_vldata_strong min max s))
= serialize32_bounded_vldata_strong' min max (log256' max) s32
inline_for_extraction
let serialize32_bounded_vldata
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s { serialize_bounded_vldata_precond min max k } )
: Tot (serializer32 (serialize_bounded_vldata min max s))
= fun (input: t) ->
[@inline_let]
let _ : unit =
let Some (_, consumed) = parse p (serialize s input) in
()
in
serialize32_bounded_vldata_strong_correct min max (log256' max) s32 input;
(serialize32_bounded_vldata_strong_aux min max (log256' max) s32 input <: (res: bytes32 { serializer32_correct (serialize_bounded_vldata min max s) input res } ))
#reset-options "--z3rlimit 32 --z3cliopt smt.arith.nl=false"
inline_for_extraction
let check_vldata_payload_size32
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967295 } ) // necessary to exclude the overflow case; enough to be compatible with serialize32
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s)
(input: t)
: Tot (y: bool { y == true <==> parse_bounded_vldata_strong_pred min max s input } )
= let sz : U32.t = s32 input in
[@inline_let]
let y : bool =
not (sz = u32_max || U32.lt sz min32 || U32.lt max32 sz)
in
[@inline_let]
let _ : squash (y == true <==> parse_bounded_vldata_strong_pred min max s input) =
if sz = u32_max
then
if Seq.length (serialize s input) > U32.v u32_max
then ()
else begin
assert (U32.v u32_max == Seq.length (serialize s input));
assert_norm (U32.v u32_max == 4294967295);
assert (Seq.length (serialize s input) > max);
assert (~ (parse_bounded_vldata_strong_pred min max s input))
end
else
if Seq.length (serialize s input) > U32.v u32_max
then ()
else ()
in
y
inline_for_extraction
let size32_bounded_vldata_strong'
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4, otherwise add overflows
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s)
(sz32: U32.t { U32.v sz32 == l } )
: Tot (size32 (serialize_bounded_vldata_strong' min max l s))
= (fun (input: parse_bounded_vldata_strong_t min max s) ->
let len = s32 input in
[@inline_let]
let _ = assert_norm (U32.v u32_max == 4294967295) in
[@inline_let]
let _ = assert (min <= U32.v len /\ U32.v len <= max) in
[@inline_let]
let res : U32.t = U32.add sz32 len in
(res <: (res: U32.t { size32_postcond (serialize_bounded_vldata_strong' min max l s) input res } )))
inline_for_extraction
let size32_bounded_vldata_strong
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4, otherwise add overflows
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s)
(sz32: U32.t { U32.v sz32 == log256' max } )
: Tot (size32 (serialize_bounded_vldata_strong min max s))
= size32_bounded_vldata_strong' min max (log256' max) s32 sz32
inline_for_extraction
let size32_bounded_vldata
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s { serialize_bounded_vldata_precond min max k } )
(sz32: U32.t { U32.v sz32 == log256' max } ) | false | false | LowParse.SLow.VLData.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val size32_bounded_vldata
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s {serialize_bounded_vldata_precond min max k})
(sz32: U32.t{U32.v sz32 == log256' max})
: Tot (size32 (serialize_bounded_vldata min max s)) | [] | LowParse.SLow.VLData.size32_bounded_vldata | {
"file_name": "src/lowparse/LowParse.SLow.VLData.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
min: Prims.nat ->
max: Prims.nat{min <= max /\ max > 0 /\ max < 4294967292} ->
s32:
LowParse.SLow.Base.size32 s {LowParse.Spec.VLData.serialize_bounded_vldata_precond min max k} ->
sz32: FStar.UInt32.t{FStar.UInt32.v sz32 == LowParse.Spec.BoundedInt.log256' max}
-> LowParse.SLow.Base.size32 (LowParse.Spec.VLData.serialize_bounded_vldata min max s) | {
"end_col": 139,
"end_line": 373,
"start_col": 2,
"start_line": 367
} |
FStar.Pervasives.Lemma | val serialize32_bounded_vldata_strong_correct
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(l: nat{l >= log256' max /\ l <= 4})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
(input: parse_bounded_vldata_strong_t min max s)
: Lemma
(serializer32_correct (serialize_bounded_vldata_strong' min max l s)
input
(serialize32_bounded_vldata_strong_aux min max l s32 input)) | [
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.SLow.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.VLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let serialize32_bounded_vldata_strong_correct
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
(input: parse_bounded_vldata_strong_t min max s)
: Lemma
(serializer32_correct (serialize_bounded_vldata_strong' min max l s) input (serialize32_bounded_vldata_strong_aux min max l s32 input))
= let sz : integer_size = l in
let ser : serializer32 (serialize_bounded_integer sz) = serialize32_bounded_integer sz in
let pl = s32 input in
assert (B32.reveal pl == s input);
let len = B32.len pl in
let nlen = U32.v len in
assert (min <= nlen /\ nlen <= max);
let slen = ser (len <: bounded_integer sz) in
assert (B32.reveal slen == serialize (serialize_bounded_integer sz) len);
seq_slice_append_l (B32.reveal slen) (B32.reveal pl);
seq_slice_append_r (B32.reveal slen) (B32.reveal pl);
let res : bytes32 = B32.b32append slen pl in
assert (B32.reveal res == Seq.append (B32.reveal slen) (B32.reveal pl));
assert (B32.reveal res == serialize_bounded_vldata_strong_aux min max l s input);
assert (serializer32_correct (serialize_bounded_vldata_strong' min max l s) input res) | val serialize32_bounded_vldata_strong_correct
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(l: nat{l >= log256' max /\ l <= 4})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
(input: parse_bounded_vldata_strong_t min max s)
: Lemma
(serializer32_correct (serialize_bounded_vldata_strong' min max l s)
input
(serialize32_bounded_vldata_strong_aux min max l s32 input))
let serialize32_bounded_vldata_strong_correct
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(l: nat{l >= log256' max /\ l <= 4})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
(input: parse_bounded_vldata_strong_t min max s)
: Lemma
(serializer32_correct (serialize_bounded_vldata_strong' min max l s)
input
(serialize32_bounded_vldata_strong_aux min max l s32 input)) = | false | null | true | let sz:integer_size = l in
let ser:serializer32 (serialize_bounded_integer sz) = serialize32_bounded_integer sz in
let pl = s32 input in
assert (B32.reveal pl == s input);
let len = B32.len pl in
let nlen = U32.v len in
assert (min <= nlen /\ nlen <= max);
let slen = ser (len <: bounded_integer sz) in
assert (B32.reveal slen == serialize (serialize_bounded_integer sz) len);
seq_slice_append_l (B32.reveal slen) (B32.reveal pl);
seq_slice_append_r (B32.reveal slen) (B32.reveal pl);
let res:bytes32 = B32.b32append slen pl in
assert (B32.reveal res == Seq.append (B32.reveal slen) (B32.reveal pl));
assert (B32.reveal res == serialize_bounded_vldata_strong_aux min max l s input);
assert (serializer32_correct (serialize_bounded_vldata_strong' min max l s) input res) | {
"checked_file": "LowParse.SLow.VLData.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.VLData.fsti.checked",
"LowParse.SLow.FLData.fst.checked",
"LowParse.SLow.BoundedInt.fsti.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.VLData.fst"
} | [
"lemma"
] | [
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_GreaterThan",
"Prims.op_LessThan",
"Prims.op_GreaterThanOrEqual",
"LowParse.Spec.BoundedInt.log256'",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"LowParse.SLow.Base.partial_serializer32",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_t",
"Prims._assert",
"LowParse.SLow.Base.serializer32_correct",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_kind",
"LowParse.Spec.VLData.parse_bounded_vldata_strong'",
"LowParse.Spec.VLData.serialize_bounded_vldata_strong'",
"Prims.unit",
"Prims.eq2",
"FStar.Seq.Base.seq",
"LowParse.Bytes.byte",
"FStar.Bytes.reveal",
"LowParse.Spec.VLData.serialize_bounded_vldata_strong_aux",
"FStar.Bytes.byte",
"FStar.Seq.Base.append",
"LowParse.SLow.Base.bytes32",
"LowParse.Bytes32.b32append",
"LowParse.Spec.Combinators.seq_slice_append_r",
"LowParse.Spec.Combinators.seq_slice_append_l",
"LowParse.Spec.Base.serialize",
"LowParse.Spec.BoundedInt.parse_bounded_integer_kind",
"LowParse.Spec.BoundedInt.bounded_integer",
"LowParse.Spec.BoundedInt.parse_bounded_integer",
"LowParse.Spec.BoundedInt.serialize_bounded_integer",
"FStar.UInt.uint_t",
"FStar.UInt32.v",
"FStar.UInt32.t",
"FStar.Bytes.len",
"LowParse.SLow.Base.serializer32",
"LowParse.SLow.BoundedInt.serialize32_bounded_integer",
"LowParse.Spec.BoundedInt.integer_size",
"Prims.l_True",
"Prims.squash",
"LowParse.SLow.VLData.serialize32_bounded_vldata_strong_aux",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module LowParse.SLow.VLData
include LowParse.Spec.VLData
include LowParse.SLow.FLData
include LowParse.SLow.BoundedInt // for bounded_integer
module Seq = FStar.Seq
module U32 = FStar.UInt32
module B32 = LowParse.Bytes32
(* Parsers and serializers for the payload *)
inline_for_extraction
let parse32_vldata_payload
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(i: bounded_integer sz { f i == true } )
: Tot (parser32 (parse_vldata_payload sz f p i))
= fun (input: bytes32) -> parse32_fldata p32 (U32.v i) i input
inline_for_extraction
let parse32_vldata_gen
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(f' : (x: bounded_integer sz) -> Tot (y: bool {y == f x}))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata_gen sz f p))
= [@inline_let]
let _ = parse_vldata_gen_eq_def sz f p in
parse32_and_then
(parse32_filter (parse32_bounded_integer sz) f f')
(parse_vldata_payload sz f p)
()
(parse32_vldata_payload sz f p32)
inline_for_extraction
let parse32_vldata
(sz: integer_size)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata sz p))
= parse32_vldata_gen sz (unconstrained_bounded_integer sz) (fun _ -> true) p32
#set-options "--z3rlimit 32"
inline_for_extraction
let parse32_bounded_vldata'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata' min max l p))
= [@inline_let]
let _ = parse_bounded_vldata_correct min max l p in
[@inline_let]
let sz : integer_size = l in
(fun input -> parse32_vldata_gen sz (in_bounds min max) (fun i -> not (U32.lt i min32 || U32.lt max32 i)) p32 input)
inline_for_extraction
let parse32_bounded_vldata
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata min max p))
= parse32_bounded_vldata' min min32 max max32 (log256' max) p32
inline_for_extraction
let parse32_bounded_vldata_strong_aux
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Tot (option (parse_bounded_vldata_strong_t min max #k #t #p s * U32.t))
= let res =
parse32_strengthen
#(parse_bounded_vldata_strong_kind min max l k)
#t
#(parse_bounded_vldata' min max l #k #t p)
(parse32_bounded_vldata' min min32 max max32 l #k #t #p p32)
(parse_bounded_vldata_strong_pred min max #k #t #p s)
(parse_bounded_vldata_strong_correct min max l #k #t #p s)
input
in
match res with
| None -> None
| Some (x, consumed) ->
let x1 : t = x in
Some ((x1 <: parse_bounded_vldata_strong_t min max #k #t #p s), consumed)
let parse32_bounded_vldata_strong_correct
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Lemma
( let res : option (parse_bounded_vldata_strong_t min max s * U32.t) =
parse32_bounded_vldata_strong_aux min min32 max max32 l s p32 input
in
parser32_correct (parse_bounded_vldata_strong' min max l s) input res)
= let res =
parse32_strengthen
#(parse_bounded_vldata_strong_kind min max l k)
#t
#(parse_bounded_vldata' min max l #k #t p)
(parse32_bounded_vldata' min min32 max max32 l #k #t #p p32)
(parse_bounded_vldata_strong_pred min max #k #t #p s)
(parse_bounded_vldata_strong_correct min max l #k #t #p s)
input
in
match res with
| None -> ()
| Some (x, consumed) ->
let x1 : t = x in
let res = Some ((x1 <: parse_bounded_vldata_strong_t min max #k #t #p s), consumed) in
assert (parser32_correct (parse_bounded_vldata_strong' min max l s) input res)
inline_for_extraction
let parse32_bounded_vldata_strong'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot (parser32 #_ #(parse_bounded_vldata_strong_t min max s) (parse_bounded_vldata_strong' min max l s))
= make_parser32
(parse_bounded_vldata_strong' min max l s)
(fun input ->
parse32_bounded_vldata_strong_correct min min32 max max32 l s p32 input;
parse32_bounded_vldata_strong_aux min min32 max max32 l s p32 input
)
inline_for_extraction
let parse32_bounded_vldata_strong
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot (parser32 #_ #(parse_bounded_vldata_strong_t min max s) (parse_bounded_vldata_strong min max s))
= parse32_bounded_vldata_strong' min min32 max max32 (log256' max) s p32
inline_for_extraction
let serialize32_bounded_vldata_strong_aux
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (parse_bounded_vldata_strong_t min max s -> Tot bytes32)
= [@inline_let]
let sz : integer_size = l in
[@inline_let]
let ser : serializer32 (serialize_bounded_integer sz) = serialize32_bounded_integer sz in
(fun (input: parse_bounded_vldata_strong_t min max s) ->
let pl = s32 input in
let len = B32.len pl in
assert (min <= U32.v len /\ U32.v len <= max);
let slen = ser (len <: bounded_integer sz) in
seq_slice_append_l (B32.reveal slen) (B32.reveal pl);
seq_slice_append_r (B32.reveal slen) (B32.reveal pl);
let res : bytes32 = B32.b32append slen pl in
res)
let serialize32_bounded_vldata_strong_correct
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
(input: parse_bounded_vldata_strong_t min max s)
: Lemma | false | false | LowParse.SLow.VLData.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val serialize32_bounded_vldata_strong_correct
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(l: nat{l >= log256' max /\ l <= 4})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
(input: parse_bounded_vldata_strong_t min max s)
: Lemma
(serializer32_correct (serialize_bounded_vldata_strong' min max l s)
input
(serialize32_bounded_vldata_strong_aux min max l s32 input)) | [] | LowParse.SLow.VLData.serialize32_bounded_vldata_strong_correct | {
"file_name": "src/lowparse/LowParse.SLow.VLData.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
min: Prims.nat ->
max: Prims.nat{min <= max /\ max > 0 /\ max < 4294967292} ->
l: Prims.nat{l >= LowParse.Spec.BoundedInt.log256' max /\ l <= 4} ->
s32: LowParse.SLow.Base.partial_serializer32 s ->
input: LowParse.Spec.VLData.parse_bounded_vldata_strong_t min max s
-> FStar.Pervasives.Lemma
(ensures
LowParse.SLow.Base.serializer32_correct (LowParse.Spec.VLData.serialize_bounded_vldata_strong'
min
max
l
s)
input
(LowParse.SLow.VLData.serialize32_bounded_vldata_strong_aux min max l s32 input)) | {
"end_col": 88,
"end_line": 234,
"start_col": 1,
"start_line": 220
} |
Prims.Tot | val size32_bounded_vldata_strong'
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(l: nat{l >= log256' max /\ l <= 4})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s)
(sz32: U32.t{U32.v sz32 == l})
: Tot (size32 (serialize_bounded_vldata_strong' min max l s)) | [
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.SLow.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.VLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let size32_bounded_vldata_strong'
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4, otherwise add overflows
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s)
(sz32: U32.t { U32.v sz32 == l } )
: Tot (size32 (serialize_bounded_vldata_strong' min max l s))
= (fun (input: parse_bounded_vldata_strong_t min max s) ->
let len = s32 input in
[@inline_let]
let _ = assert_norm (U32.v u32_max == 4294967295) in
[@inline_let]
let _ = assert (min <= U32.v len /\ U32.v len <= max) in
[@inline_let]
let res : U32.t = U32.add sz32 len in
(res <: (res: U32.t { size32_postcond (serialize_bounded_vldata_strong' min max l s) input res } ))) | val size32_bounded_vldata_strong'
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(l: nat{l >= log256' max /\ l <= 4})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s)
(sz32: U32.t{U32.v sz32 == l})
: Tot (size32 (serialize_bounded_vldata_strong' min max l s))
let size32_bounded_vldata_strong'
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(l: nat{l >= log256' max /\ l <= 4})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s)
(sz32: U32.t{U32.v sz32 == l})
: Tot (size32 (serialize_bounded_vldata_strong' min max l s)) = | false | null | false | (fun (input: parse_bounded_vldata_strong_t min max s) ->
let len = s32 input in
[@@ inline_let ]let _ = assert_norm (U32.v u32_max == 4294967295) in
[@@ inline_let ]let _ = assert (min <= U32.v len /\ U32.v len <= max) in
[@@ inline_let ]let res:U32.t = U32.add sz32 len in
(res <: (res: U32.t{size32_postcond (serialize_bounded_vldata_strong' min max l s) input res}))) | {
"checked_file": "LowParse.SLow.VLData.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.VLData.fsti.checked",
"LowParse.SLow.FLData.fst.checked",
"LowParse.SLow.BoundedInt.fsti.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.VLData.fst"
} | [
"total"
] | [
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_GreaterThan",
"Prims.op_LessThan",
"Prims.op_GreaterThanOrEqual",
"LowParse.Spec.BoundedInt.log256'",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"LowParse.SLow.Base.size32",
"FStar.UInt32.t",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"FStar.UInt.size",
"FStar.UInt32.n",
"FStar.UInt32.v",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_t",
"LowParse.SLow.Base.size32_postcond",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_kind",
"LowParse.Spec.VLData.parse_bounded_vldata_strong'",
"LowParse.Spec.VLData.serialize_bounded_vldata_strong'",
"FStar.UInt32.add",
"Prims.unit",
"Prims._assert",
"FStar.Pervasives.assert_norm",
"LowParse.SLow.Base.u32_max"
] | [] | module LowParse.SLow.VLData
include LowParse.Spec.VLData
include LowParse.SLow.FLData
include LowParse.SLow.BoundedInt // for bounded_integer
module Seq = FStar.Seq
module U32 = FStar.UInt32
module B32 = LowParse.Bytes32
(* Parsers and serializers for the payload *)
inline_for_extraction
let parse32_vldata_payload
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(i: bounded_integer sz { f i == true } )
: Tot (parser32 (parse_vldata_payload sz f p i))
= fun (input: bytes32) -> parse32_fldata p32 (U32.v i) i input
inline_for_extraction
let parse32_vldata_gen
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(f' : (x: bounded_integer sz) -> Tot (y: bool {y == f x}))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata_gen sz f p))
= [@inline_let]
let _ = parse_vldata_gen_eq_def sz f p in
parse32_and_then
(parse32_filter (parse32_bounded_integer sz) f f')
(parse_vldata_payload sz f p)
()
(parse32_vldata_payload sz f p32)
inline_for_extraction
let parse32_vldata
(sz: integer_size)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata sz p))
= parse32_vldata_gen sz (unconstrained_bounded_integer sz) (fun _ -> true) p32
#set-options "--z3rlimit 32"
inline_for_extraction
let parse32_bounded_vldata'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata' min max l p))
= [@inline_let]
let _ = parse_bounded_vldata_correct min max l p in
[@inline_let]
let sz : integer_size = l in
(fun input -> parse32_vldata_gen sz (in_bounds min max) (fun i -> not (U32.lt i min32 || U32.lt max32 i)) p32 input)
inline_for_extraction
let parse32_bounded_vldata
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata min max p))
= parse32_bounded_vldata' min min32 max max32 (log256' max) p32
inline_for_extraction
let parse32_bounded_vldata_strong_aux
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Tot (option (parse_bounded_vldata_strong_t min max #k #t #p s * U32.t))
= let res =
parse32_strengthen
#(parse_bounded_vldata_strong_kind min max l k)
#t
#(parse_bounded_vldata' min max l #k #t p)
(parse32_bounded_vldata' min min32 max max32 l #k #t #p p32)
(parse_bounded_vldata_strong_pred min max #k #t #p s)
(parse_bounded_vldata_strong_correct min max l #k #t #p s)
input
in
match res with
| None -> None
| Some (x, consumed) ->
let x1 : t = x in
Some ((x1 <: parse_bounded_vldata_strong_t min max #k #t #p s), consumed)
let parse32_bounded_vldata_strong_correct
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Lemma
( let res : option (parse_bounded_vldata_strong_t min max s * U32.t) =
parse32_bounded_vldata_strong_aux min min32 max max32 l s p32 input
in
parser32_correct (parse_bounded_vldata_strong' min max l s) input res)
= let res =
parse32_strengthen
#(parse_bounded_vldata_strong_kind min max l k)
#t
#(parse_bounded_vldata' min max l #k #t p)
(parse32_bounded_vldata' min min32 max max32 l #k #t #p p32)
(parse_bounded_vldata_strong_pred min max #k #t #p s)
(parse_bounded_vldata_strong_correct min max l #k #t #p s)
input
in
match res with
| None -> ()
| Some (x, consumed) ->
let x1 : t = x in
let res = Some ((x1 <: parse_bounded_vldata_strong_t min max #k #t #p s), consumed) in
assert (parser32_correct (parse_bounded_vldata_strong' min max l s) input res)
inline_for_extraction
let parse32_bounded_vldata_strong'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot (parser32 #_ #(parse_bounded_vldata_strong_t min max s) (parse_bounded_vldata_strong' min max l s))
= make_parser32
(parse_bounded_vldata_strong' min max l s)
(fun input ->
parse32_bounded_vldata_strong_correct min min32 max max32 l s p32 input;
parse32_bounded_vldata_strong_aux min min32 max max32 l s p32 input
)
inline_for_extraction
let parse32_bounded_vldata_strong
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot (parser32 #_ #(parse_bounded_vldata_strong_t min max s) (parse_bounded_vldata_strong min max s))
= parse32_bounded_vldata_strong' min min32 max max32 (log256' max) s p32
inline_for_extraction
let serialize32_bounded_vldata_strong_aux
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (parse_bounded_vldata_strong_t min max s -> Tot bytes32)
= [@inline_let]
let sz : integer_size = l in
[@inline_let]
let ser : serializer32 (serialize_bounded_integer sz) = serialize32_bounded_integer sz in
(fun (input: parse_bounded_vldata_strong_t min max s) ->
let pl = s32 input in
let len = B32.len pl in
assert (min <= U32.v len /\ U32.v len <= max);
let slen = ser (len <: bounded_integer sz) in
seq_slice_append_l (B32.reveal slen) (B32.reveal pl);
seq_slice_append_r (B32.reveal slen) (B32.reveal pl);
let res : bytes32 = B32.b32append slen pl in
res)
let serialize32_bounded_vldata_strong_correct
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
(input: parse_bounded_vldata_strong_t min max s)
: Lemma
(serializer32_correct (serialize_bounded_vldata_strong' min max l s) input (serialize32_bounded_vldata_strong_aux min max l s32 input))
= let sz : integer_size = l in
let ser : serializer32 (serialize_bounded_integer sz) = serialize32_bounded_integer sz in
let pl = s32 input in
assert (B32.reveal pl == s input);
let len = B32.len pl in
let nlen = U32.v len in
assert (min <= nlen /\ nlen <= max);
let slen = ser (len <: bounded_integer sz) in
assert (B32.reveal slen == serialize (serialize_bounded_integer sz) len);
seq_slice_append_l (B32.reveal slen) (B32.reveal pl);
seq_slice_append_r (B32.reveal slen) (B32.reveal pl);
let res : bytes32 = B32.b32append slen pl in
assert (B32.reveal res == Seq.append (B32.reveal slen) (B32.reveal pl));
assert (B32.reveal res == serialize_bounded_vldata_strong_aux min max l s input);
assert (serializer32_correct (serialize_bounded_vldata_strong' min max l s) input res)
inline_for_extraction
let serialize32_bounded_vldata_strong'
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (serializer32 (serialize_bounded_vldata_strong' min max l s))
= fun (input: parse_bounded_vldata_strong_t min max s) ->
serialize32_bounded_vldata_strong_correct min max l s32 input;
(serialize32_bounded_vldata_strong_aux min max l s32 input <: (res: bytes32 { serializer32_correct (serialize_bounded_vldata_strong' min max l s) input res } ))
inline_for_extraction
let serialize32_bounded_vldata_strong
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (serializer32 (serialize_bounded_vldata_strong min max s))
= serialize32_bounded_vldata_strong' min max (log256' max) s32
inline_for_extraction
let serialize32_bounded_vldata
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s { serialize_bounded_vldata_precond min max k } )
: Tot (serializer32 (serialize_bounded_vldata min max s))
= fun (input: t) ->
[@inline_let]
let _ : unit =
let Some (_, consumed) = parse p (serialize s input) in
()
in
serialize32_bounded_vldata_strong_correct min max (log256' max) s32 input;
(serialize32_bounded_vldata_strong_aux min max (log256' max) s32 input <: (res: bytes32 { serializer32_correct (serialize_bounded_vldata min max s) input res } ))
#reset-options "--z3rlimit 32 --z3cliopt smt.arith.nl=false"
inline_for_extraction
let check_vldata_payload_size32
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967295 } ) // necessary to exclude the overflow case; enough to be compatible with serialize32
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s)
(input: t)
: Tot (y: bool { y == true <==> parse_bounded_vldata_strong_pred min max s input } )
= let sz : U32.t = s32 input in
[@inline_let]
let y : bool =
not (sz = u32_max || U32.lt sz min32 || U32.lt max32 sz)
in
[@inline_let]
let _ : squash (y == true <==> parse_bounded_vldata_strong_pred min max s input) =
if sz = u32_max
then
if Seq.length (serialize s input) > U32.v u32_max
then ()
else begin
assert (U32.v u32_max == Seq.length (serialize s input));
assert_norm (U32.v u32_max == 4294967295);
assert (Seq.length (serialize s input) > max);
assert (~ (parse_bounded_vldata_strong_pred min max s input))
end
else
if Seq.length (serialize s input) > U32.v u32_max
then ()
else ()
in
y
inline_for_extraction
let size32_bounded_vldata_strong'
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4, otherwise add overflows
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s)
(sz32: U32.t { U32.v sz32 == l } ) | false | false | LowParse.SLow.VLData.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val size32_bounded_vldata_strong'
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(l: nat{l >= log256' max /\ l <= 4})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s)
(sz32: U32.t{U32.v sz32 == l})
: Tot (size32 (serialize_bounded_vldata_strong' min max l s)) | [] | LowParse.SLow.VLData.size32_bounded_vldata_strong' | {
"file_name": "src/lowparse/LowParse.SLow.VLData.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
min: Prims.nat ->
max: Prims.nat{min <= max /\ max > 0 /\ max < 4294967292} ->
l: Prims.nat{l >= LowParse.Spec.BoundedInt.log256' max /\ l <= 4} ->
s32: LowParse.SLow.Base.size32 s ->
sz32: FStar.UInt32.t{FStar.UInt32.v sz32 == l}
-> LowParse.SLow.Base.size32 (LowParse.Spec.VLData.serialize_bounded_vldata_strong' min max l s) | {
"end_col": 105,
"end_line": 341,
"start_col": 2,
"start_line": 333
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Agile",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Agile",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let prime (a:algorithm) =
match a with
| DH_Curve25519 -> Spec.Curve25519.prime
| DH_P256 -> Spec.P256.prime | let prime (a: algorithm) = | false | null | false | match a with
| DH_Curve25519 -> Spec.Curve25519.prime
| DH_P256 -> Spec.P256.prime | {
"checked_file": "Spec.Agile.DH.fst.checked",
"dependencies": [
"Spec.P256.fst.checked",
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Agile.DH.fst"
} | [
"total"
] | [
"Spec.Agile.DH.algorithm",
"Spec.Curve25519.prime",
"Spec.P256.PointOps.prime",
"Prims.pos"
] | [] | module Spec.Agile.DH
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
/// Constants
type algorithm =
| DH_Curve25519
| DH_P256
inline_for_extraction
let size_key (a:algorithm) : Tot size_nat =
match a with
| DH_Curve25519 -> 32
| DH_P256 -> 32
inline_for_extraction
let size_public (a:algorithm) : Tot size_nat =
match a with
| DH_Curve25519 -> 32
| DH_P256 -> 64
inline_for_extraction | false | true | Spec.Agile.DH.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val prime : a: Spec.Agile.DH.algorithm -> Prims.pos | [] | Spec.Agile.DH.prime | {
"file_name": "specs/Spec.Agile.DH.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Spec.Agile.DH.algorithm -> Prims.pos | {
"end_col": 30,
"end_line": 31,
"start_col": 2,
"start_line": 29
} |
|
Prims.Tot | val secret_to_public: a:algorithm -> scalar a -> Tot (option (serialized_point a)) | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Agile",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Agile",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let secret_to_public a kpriv =
match a with
| DH_Curve25519 -> Some (Spec.Curve25519.secret_to_public kpriv)
| DH_P256 -> Spec.P256.secret_to_public kpriv | val secret_to_public: a:algorithm -> scalar a -> Tot (option (serialized_point a))
let secret_to_public a kpriv = | false | null | false | match a with
| DH_Curve25519 -> Some (Spec.Curve25519.secret_to_public kpriv)
| DH_P256 -> Spec.P256.secret_to_public kpriv | {
"checked_file": "Spec.Agile.DH.fst.checked",
"dependencies": [
"Spec.P256.fst.checked",
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Agile.DH.fst"
} | [
"total"
] | [
"Spec.Agile.DH.algorithm",
"Spec.Agile.DH.scalar",
"FStar.Pervasives.Native.Some",
"Spec.Agile.DH.serialized_point",
"Spec.Curve25519.secret_to_public",
"Spec.P256.secret_to_public",
"FStar.Pervasives.Native.option"
] | [] | module Spec.Agile.DH
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
/// Constants
type algorithm =
| DH_Curve25519
| DH_P256
inline_for_extraction
let size_key (a:algorithm) : Tot size_nat =
match a with
| DH_Curve25519 -> 32
| DH_P256 -> 32
inline_for_extraction
let size_public (a:algorithm) : Tot size_nat =
match a with
| DH_Curve25519 -> 32
| DH_P256 -> 64
inline_for_extraction
let prime (a:algorithm) =
match a with
| DH_Curve25519 -> Spec.Curve25519.prime
| DH_P256 -> Spec.P256.prime
/// Types
type scalar (a:algorithm) = lbytes (size_key a)
type serialized_point (a:algorithm) = lbytes (size_public a)
/// Functions
val clamp: alg:algorithm{alg = DH_Curve25519} -> scalar alg -> Tot (scalar alg)
let clamp a k =
match a with
| DH.DH_Curve25519 -> Spec.Curve25519.decodeScalar k
#set-options "--z3rlimit 50"
val dh: a:algorithm -> s:scalar a -> p:serialized_point a -> Tot (option (serialized_point a))
let dh a s p =
match a with
| DH_Curve25519 ->
let output = Spec.Curve25519.scalarmult s p in
let is_valid = not (lbytes_eq (create (size_public a) (u8 0)) output) in
if is_valid then Some output else None
| DH_P256 ->
Spec.P256.ecdh p s
val secret_to_public: a:algorithm -> scalar a -> Tot (option (serialized_point a)) | false | false | Spec.Agile.DH.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val secret_to_public: a:algorithm -> scalar a -> Tot (option (serialized_point a)) | [] | Spec.Agile.DH.secret_to_public | {
"file_name": "specs/Spec.Agile.DH.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Spec.Agile.DH.algorithm -> kpriv: Spec.Agile.DH.scalar a
-> FStar.Pervasives.Native.option (Spec.Agile.DH.serialized_point a) | {
"end_col": 47,
"end_line": 62,
"start_col": 2,
"start_line": 60
} |
Prims.Tot | val clamp: alg:algorithm{alg = DH_Curve25519} -> scalar alg -> Tot (scalar alg) | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Agile",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Agile",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let clamp a k =
match a with
| DH.DH_Curve25519 -> Spec.Curve25519.decodeScalar k | val clamp: alg:algorithm{alg = DH_Curve25519} -> scalar alg -> Tot (scalar alg)
let clamp a k = | false | null | false | match a with | DH.DH_Curve25519 -> Spec.Curve25519.decodeScalar k | {
"checked_file": "Spec.Agile.DH.fst.checked",
"dependencies": [
"Spec.P256.fst.checked",
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Agile.DH.fst"
} | [
"total"
] | [
"Spec.Agile.DH.algorithm",
"Prims.b2t",
"Prims.op_Equality",
"Spec.Agile.DH.DH_Curve25519",
"Spec.Agile.DH.scalar",
"Spec.Curve25519.decodeScalar"
] | [] | module Spec.Agile.DH
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
/// Constants
type algorithm =
| DH_Curve25519
| DH_P256
inline_for_extraction
let size_key (a:algorithm) : Tot size_nat =
match a with
| DH_Curve25519 -> 32
| DH_P256 -> 32
inline_for_extraction
let size_public (a:algorithm) : Tot size_nat =
match a with
| DH_Curve25519 -> 32
| DH_P256 -> 64
inline_for_extraction
let prime (a:algorithm) =
match a with
| DH_Curve25519 -> Spec.Curve25519.prime
| DH_P256 -> Spec.P256.prime
/// Types
type scalar (a:algorithm) = lbytes (size_key a)
type serialized_point (a:algorithm) = lbytes (size_public a)
/// Functions
val clamp: alg:algorithm{alg = DH_Curve25519} -> scalar alg -> Tot (scalar alg) | false | false | Spec.Agile.DH.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val clamp: alg:algorithm{alg = DH_Curve25519} -> scalar alg -> Tot (scalar alg) | [] | Spec.Agile.DH.clamp | {
"file_name": "specs/Spec.Agile.DH.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | alg: Spec.Agile.DH.algorithm{alg = Spec.Agile.DH.DH_Curve25519} -> k: Spec.Agile.DH.scalar alg
-> Spec.Agile.DH.scalar alg | {
"end_col": 54,
"end_line": 44,
"start_col": 2,
"start_line": 43
} |
Prims.Tot | val size_key (a: algorithm) : Tot size_nat | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Agile",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Agile",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let size_key (a:algorithm) : Tot size_nat =
match a with
| DH_Curve25519 -> 32
| DH_P256 -> 32 | val size_key (a: algorithm) : Tot size_nat
let size_key (a: algorithm) : Tot size_nat = | false | null | false | match a with
| DH_Curve25519 -> 32
| DH_P256 -> 32 | {
"checked_file": "Spec.Agile.DH.fst.checked",
"dependencies": [
"Spec.P256.fst.checked",
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Agile.DH.fst"
} | [
"total"
] | [
"Spec.Agile.DH.algorithm",
"Lib.IntTypes.size_nat"
] | [] | module Spec.Agile.DH
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
/// Constants
type algorithm =
| DH_Curve25519
| DH_P256
inline_for_extraction | false | true | Spec.Agile.DH.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val size_key (a: algorithm) : Tot size_nat | [] | Spec.Agile.DH.size_key | {
"file_name": "specs/Spec.Agile.DH.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Spec.Agile.DH.algorithm -> Lib.IntTypes.size_nat | {
"end_col": 17,
"end_line": 19,
"start_col": 2,
"start_line": 17
} |
Prims.Tot | val size_public (a: algorithm) : Tot size_nat | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Agile",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Agile",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let size_public (a:algorithm) : Tot size_nat =
match a with
| DH_Curve25519 -> 32
| DH_P256 -> 64 | val size_public (a: algorithm) : Tot size_nat
let size_public (a: algorithm) : Tot size_nat = | false | null | false | match a with
| DH_Curve25519 -> 32
| DH_P256 -> 64 | {
"checked_file": "Spec.Agile.DH.fst.checked",
"dependencies": [
"Spec.P256.fst.checked",
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Agile.DH.fst"
} | [
"total"
] | [
"Spec.Agile.DH.algorithm",
"Lib.IntTypes.size_nat"
] | [] | module Spec.Agile.DH
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
/// Constants
type algorithm =
| DH_Curve25519
| DH_P256
inline_for_extraction
let size_key (a:algorithm) : Tot size_nat =
match a with
| DH_Curve25519 -> 32
| DH_P256 -> 32
inline_for_extraction | false | true | Spec.Agile.DH.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val size_public (a: algorithm) : Tot size_nat | [] | Spec.Agile.DH.size_public | {
"file_name": "specs/Spec.Agile.DH.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Spec.Agile.DH.algorithm -> Lib.IntTypes.size_nat | {
"end_col": 17,
"end_line": 25,
"start_col": 2,
"start_line": 23
} |
Prims.Tot | val dh: a:algorithm -> s:scalar a -> p:serialized_point a -> Tot (option (serialized_point a)) | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Agile",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Agile",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let dh a s p =
match a with
| DH_Curve25519 ->
let output = Spec.Curve25519.scalarmult s p in
let is_valid = not (lbytes_eq (create (size_public a) (u8 0)) output) in
if is_valid then Some output else None
| DH_P256 ->
Spec.P256.ecdh p s | val dh: a:algorithm -> s:scalar a -> p:serialized_point a -> Tot (option (serialized_point a))
let dh a s p = | false | null | false | match a with
| DH_Curve25519 ->
let output = Spec.Curve25519.scalarmult s p in
let is_valid = not (lbytes_eq (create (size_public a) (u8 0)) output) in
if is_valid then Some output else None
| DH_P256 -> Spec.P256.ecdh p s | {
"checked_file": "Spec.Agile.DH.fst.checked",
"dependencies": [
"Spec.P256.fst.checked",
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Agile.DH.fst"
} | [
"total"
] | [
"Spec.Agile.DH.algorithm",
"Spec.Agile.DH.scalar",
"Spec.Agile.DH.serialized_point",
"FStar.Pervasives.Native.Some",
"Prims.bool",
"FStar.Pervasives.Native.None",
"FStar.Pervasives.Native.option",
"Prims.op_Negation",
"Lib.ByteSequence.lbytes_eq",
"Spec.Agile.DH.size_public",
"Lib.Sequence.create",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Lib.IntTypes.u8",
"Spec.Curve25519.serialized_point",
"Spec.Curve25519.scalarmult",
"Spec.P256.ecdh"
] | [] | module Spec.Agile.DH
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
/// Constants
type algorithm =
| DH_Curve25519
| DH_P256
inline_for_extraction
let size_key (a:algorithm) : Tot size_nat =
match a with
| DH_Curve25519 -> 32
| DH_P256 -> 32
inline_for_extraction
let size_public (a:algorithm) : Tot size_nat =
match a with
| DH_Curve25519 -> 32
| DH_P256 -> 64
inline_for_extraction
let prime (a:algorithm) =
match a with
| DH_Curve25519 -> Spec.Curve25519.prime
| DH_P256 -> Spec.P256.prime
/// Types
type scalar (a:algorithm) = lbytes (size_key a)
type serialized_point (a:algorithm) = lbytes (size_public a)
/// Functions
val clamp: alg:algorithm{alg = DH_Curve25519} -> scalar alg -> Tot (scalar alg)
let clamp a k =
match a with
| DH.DH_Curve25519 -> Spec.Curve25519.decodeScalar k
#set-options "--z3rlimit 50"
val dh: a:algorithm -> s:scalar a -> p:serialized_point a -> Tot (option (serialized_point a)) | false | false | Spec.Agile.DH.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val dh: a:algorithm -> s:scalar a -> p:serialized_point a -> Tot (option (serialized_point a)) | [] | Spec.Agile.DH.dh | {
"file_name": "specs/Spec.Agile.DH.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Spec.Agile.DH.algorithm -> s: Spec.Agile.DH.scalar a -> p: Spec.Agile.DH.serialized_point a
-> FStar.Pervasives.Native.option (Spec.Agile.DH.serialized_point a) | {
"end_col": 22,
"end_line": 56,
"start_col": 2,
"start_line": 50
} |
FStar.Pervasives.Lemma | val lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) :
Lemma (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s)
[SMTPat (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s))] | [
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) :
Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s)
=
reveal_reverse_bytes_nat32_seq s;
reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s);
assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s) | val lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) :
Lemma (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s)
[SMTPat (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s))]
let lemma_reverse_reverse_bytes_nat32_seq (s: seq nat32)
: Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s) = | false | null | true | reveal_reverse_bytes_nat32_seq s;
reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s);
assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s) | {
"checked_file": "Vale.Arch.Types.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Arch.Types.fst"
} | [
"lemma"
] | [
"FStar.Seq.Base.seq",
"Vale.Def.Words_s.nat32",
"Prims._assert",
"FStar.Seq.Base.equal",
"Vale.Def.Types_s.nat32",
"Vale.Def.Types_s.reverse_bytes_nat32_seq",
"Prims.unit",
"Vale.Def.Types_s.reveal_reverse_bytes_nat32_seq",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.Arch.Types
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.TypesNative
open Vale.Lib.Seqs
open Vale.Def.Words_s
open Vale.Def.Words.Two
open FStar.Calc
let lemma_nat_to_two32 () =
assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000))
let lemma_BitwiseXorCommutative x y =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ y) (y *^ x)
let lemma_BitwiseXorWithZero n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ 0) n
let lemma_BitwiseXorCancel n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ n) 0
let lemma_BitwiseXorCancel64 (n:nat64) =
lemma_ixor_nth_all 64;
lemma_zero_nth 64;
lemma_equal_nth 64 (ixor n n) 0
let lemma_BitwiseXorAssociative x y z =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z)
let xor_lemmas () =
FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative;
FStar.Classical.forall_intro lemma_BitwiseXorWithZero;
FStar.Classical.forall_intro lemma_BitwiseXorCancel;
FStar.Classical.forall_intro lemma_BitwiseXorCancel64;
FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_quad32_xor () =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
xor_lemmas()
(*
let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) =
let q' = quad32_xor q q in
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
// REVIEW: Why are these necessary?
assert (q'.lo0 == nat32_xor q.lo0 q.lo0);
assert (q'.lo1 == nat32_xor q.lo1 q.lo1);
assert (q'.hi2 == nat32_xor q.hi2 q.hi2);
assert (q'.hi3 == nat32_xor q.hi3 q.hi3);
xor_lemmas()
in
FStar.Classical.forall_intro helper
*)
#pop-options
let lemma_reverse_reverse_bytes_nat32 (n:nat32) :
Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n)
=
reverse_bytes_nat32_reveal ();
let r = reverse_seq (nat32_to_be_bytes n) in
be_bytes_to_nat32_to_be_bytes r;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_reverse_bytes_quad32 (q:quad32) =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
reveal_reverse_bytes_quad32 q;
reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q);
()
#pop-options
let lemma_reverse_bytes_nat32 (_:unit) : Lemma
(reverse_bytes_nat32 0 == 0)
=
reverse_bytes_nat32_reveal ();
assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0);
()
let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma
(let z = Mkfour 0 0 0 0 in
reverse_bytes_quad32 z == z)
=
let z = Mkfour 0 0 0 0 in
calc (==) {
reverse_bytes_quad32 z;
== { reveal_reverse_bytes_quad32 z }
four_reverse (four_map reverse_bytes_nat32 z);
== { lemma_reverse_bytes_nat32() }
z;
};
()
let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) :
Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s) | false | false | Vale.Arch.Types.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) :
Lemma (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s)
[SMTPat (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s))] | [] | Vale.Arch.Types.lemma_reverse_reverse_bytes_nat32_seq | {
"file_name": "vale/code/arch/Vale.Arch.Types.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | s: FStar.Seq.Base.seq Vale.Def.Words_s.nat32
-> FStar.Pervasives.Lemma
(ensures
Vale.Def.Types_s.reverse_bytes_nat32_seq (Vale.Def.Types_s.reverse_bytes_nat32_seq s) == s)
[
SMTPat (Vale.Def.Types_s.reverse_bytes_nat32_seq (Vale.Def.Types_s.reverse_bytes_nat32_seq s
))
] | {
"end_col": 72,
"end_line": 111,
"start_col": 2,
"start_line": 109
} |
FStar.Pervasives.Lemma | val lemma_reverse_reverse_bytes_nat32 (n:nat32) :
Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n)
[SMTPat (reverse_bytes_nat32 (reverse_bytes_nat32 n))] | [
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_reverse_reverse_bytes_nat32 (n:nat32) :
Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n)
=
reverse_bytes_nat32_reveal ();
let r = reverse_seq (nat32_to_be_bytes n) in
be_bytes_to_nat32_to_be_bytes r;
() | val lemma_reverse_reverse_bytes_nat32 (n:nat32) :
Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n)
[SMTPat (reverse_bytes_nat32 (reverse_bytes_nat32 n))]
let lemma_reverse_reverse_bytes_nat32 (n: nat32)
: Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n) = | false | null | true | reverse_bytes_nat32_reveal ();
let r = reverse_seq (nat32_to_be_bytes n) in
be_bytes_to_nat32_to_be_bytes r;
() | {
"checked_file": "Vale.Arch.Types.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Arch.Types.fst"
} | [
"lemma"
] | [
"Vale.Def.Words_s.nat32",
"Prims.unit",
"Vale.Def.Types_s.be_bytes_to_nat32_to_be_bytes",
"FStar.Seq.Base.seq",
"Vale.Def.Words_s.nat8",
"Vale.Lib.Seqs_s.reverse_seq",
"Vale.Def.Types_s.nat8",
"Vale.Def.Types_s.nat32_to_be_bytes",
"Vale.Def.Types_s.reverse_bytes_nat32_reveal",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Vale.Def.Types_s.reverse_bytes_nat32",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.Arch.Types
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.TypesNative
open Vale.Lib.Seqs
open Vale.Def.Words_s
open Vale.Def.Words.Two
open FStar.Calc
let lemma_nat_to_two32 () =
assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000))
let lemma_BitwiseXorCommutative x y =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ y) (y *^ x)
let lemma_BitwiseXorWithZero n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ 0) n
let lemma_BitwiseXorCancel n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ n) 0
let lemma_BitwiseXorCancel64 (n:nat64) =
lemma_ixor_nth_all 64;
lemma_zero_nth 64;
lemma_equal_nth 64 (ixor n n) 0
let lemma_BitwiseXorAssociative x y z =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z)
let xor_lemmas () =
FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative;
FStar.Classical.forall_intro lemma_BitwiseXorWithZero;
FStar.Classical.forall_intro lemma_BitwiseXorCancel;
FStar.Classical.forall_intro lemma_BitwiseXorCancel64;
FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_quad32_xor () =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
xor_lemmas()
(*
let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) =
let q' = quad32_xor q q in
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
// REVIEW: Why are these necessary?
assert (q'.lo0 == nat32_xor q.lo0 q.lo0);
assert (q'.lo1 == nat32_xor q.lo1 q.lo1);
assert (q'.hi2 == nat32_xor q.hi2 q.hi2);
assert (q'.hi3 == nat32_xor q.hi3 q.hi3);
xor_lemmas()
in
FStar.Classical.forall_intro helper
*)
#pop-options
let lemma_reverse_reverse_bytes_nat32 (n:nat32) :
Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n) | false | false | Vale.Arch.Types.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_reverse_reverse_bytes_nat32 (n:nat32) :
Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n)
[SMTPat (reverse_bytes_nat32 (reverse_bytes_nat32 n))] | [] | Vale.Arch.Types.lemma_reverse_reverse_bytes_nat32 | {
"file_name": "vale/code/arch/Vale.Arch.Types.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | n: Vale.Def.Words_s.nat32
-> FStar.Pervasives.Lemma
(ensures Vale.Def.Types_s.reverse_bytes_nat32 (Vale.Def.Types_s.reverse_bytes_nat32 n) == n)
[SMTPat (Vale.Def.Types_s.reverse_bytes_nat32 (Vale.Def.Types_s.reverse_bytes_nat32 n))] | {
"end_col": 4,
"end_line": 74,
"start_col": 2,
"start_line": 71
} |
FStar.Pervasives.Lemma | val lemma_BitwiseXorCancel (n:nat32) : Lemma (n *^ n == 0) | [
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_BitwiseXorCancel n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ n) 0 | val lemma_BitwiseXorCancel (n:nat32) : Lemma (n *^ n == 0)
let lemma_BitwiseXorCancel n = | false | null | true | lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ n) 0 | {
"checked_file": "Vale.Arch.Types.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Arch.Types.fst"
} | [
"lemma"
] | [
"Vale.Def.Words_s.nat32",
"Vale.Arch.TypesNative.lemma_equal_nth",
"Vale.Arch.Types.op_Star_Hat",
"Prims.unit",
"Vale.Arch.TypesNative.lemma_zero_nth",
"Vale.Arch.TypesNative.lemma_ixor_nth_all"
] | [] | module Vale.Arch.Types
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.TypesNative
open Vale.Lib.Seqs
open Vale.Def.Words_s
open Vale.Def.Words.Two
open FStar.Calc
let lemma_nat_to_two32 () =
assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000))
let lemma_BitwiseXorCommutative x y =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ y) (y *^ x)
let lemma_BitwiseXorWithZero n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ 0) n | false | false | Vale.Arch.Types.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_BitwiseXorCancel (n:nat32) : Lemma (n *^ n == 0) | [] | Vale.Arch.Types.lemma_BitwiseXorCancel | {
"file_name": "vale/code/arch/Vale.Arch.Types.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | n: Vale.Def.Words_s.nat32 -> FStar.Pervasives.Lemma (ensures n *^ n == 0) | {
"end_col": 31,
"end_line": 28,
"start_col": 2,
"start_line": 26
} |
FStar.Pervasives.Lemma | val be_quad32_to_bytes_injective_specific (b b':quad32) :
Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') | [
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let be_quad32_to_bytes_injective_specific (b b':quad32) :
Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b')
=
be_quad32_to_bytes_injective() | val be_quad32_to_bytes_injective_specific (b b':quad32) :
Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b')
let be_quad32_to_bytes_injective_specific (b b': quad32)
: Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = | false | null | true | be_quad32_to_bytes_injective () | {
"checked_file": "Vale.Arch.Types.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Arch.Types.fst"
} | [
"lemma"
] | [
"Vale.Def.Types_s.quad32",
"Vale.Arch.Types.be_quad32_to_bytes_injective",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.l_imp",
"Prims.eq2",
"Vale.Def.Words.Seq_s.seq16",
"Vale.Def.Words_s.nat8",
"Vale.Arch.Types.be_quad32_to_bytes",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.Arch.Types
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.TypesNative
open Vale.Lib.Seqs
open Vale.Def.Words_s
open Vale.Def.Words.Two
open FStar.Calc
let lemma_nat_to_two32 () =
assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000))
let lemma_BitwiseXorCommutative x y =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ y) (y *^ x)
let lemma_BitwiseXorWithZero n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ 0) n
let lemma_BitwiseXorCancel n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ n) 0
let lemma_BitwiseXorCancel64 (n:nat64) =
lemma_ixor_nth_all 64;
lemma_zero_nth 64;
lemma_equal_nth 64 (ixor n n) 0
let lemma_BitwiseXorAssociative x y z =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z)
let xor_lemmas () =
FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative;
FStar.Classical.forall_intro lemma_BitwiseXorWithZero;
FStar.Classical.forall_intro lemma_BitwiseXorCancel;
FStar.Classical.forall_intro lemma_BitwiseXorCancel64;
FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_quad32_xor () =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
xor_lemmas()
(*
let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) =
let q' = quad32_xor q q in
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
// REVIEW: Why are these necessary?
assert (q'.lo0 == nat32_xor q.lo0 q.lo0);
assert (q'.lo1 == nat32_xor q.lo1 q.lo1);
assert (q'.hi2 == nat32_xor q.hi2 q.hi2);
assert (q'.hi3 == nat32_xor q.hi3 q.hi3);
xor_lemmas()
in
FStar.Classical.forall_intro helper
*)
#pop-options
let lemma_reverse_reverse_bytes_nat32 (n:nat32) :
Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n)
=
reverse_bytes_nat32_reveal ();
let r = reverse_seq (nat32_to_be_bytes n) in
be_bytes_to_nat32_to_be_bytes r;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_reverse_bytes_quad32 (q:quad32) =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
reveal_reverse_bytes_quad32 q;
reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q);
()
#pop-options
let lemma_reverse_bytes_nat32 (_:unit) : Lemma
(reverse_bytes_nat32 0 == 0)
=
reverse_bytes_nat32_reveal ();
assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0);
()
let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma
(let z = Mkfour 0 0 0 0 in
reverse_bytes_quad32 z == z)
=
let z = Mkfour 0 0 0 0 in
calc (==) {
reverse_bytes_quad32 z;
== { reveal_reverse_bytes_quad32 z }
four_reverse (four_map reverse_bytes_nat32 z);
== { lemma_reverse_bytes_nat32() }
z;
};
()
let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) :
Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s)
=
reveal_reverse_bytes_nat32_seq s;
reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s);
assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s)
(*
let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) :
Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\
( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\
((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF))
=
if n.lo == 0 /\ n.hi == 0 then (
assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0);
()
) else (
()
);
()
let lemma_equality_check_helper_lo (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1);
()
let lemma_equality_check_helper_hi (q:quad32) :
Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3);
()
*)
let lemma_insert_nat64_properties (q:quad32) (n:nat64) :
Lemma ( (let q' = insert_nat64 q n 0 in
q'.hi2 == q.hi2 /\
q'.hi3 == q.hi3) /\
(let q' = insert_nat64 q n 1 in
q'.lo0 == q.lo0 /\
q'.lo1 == q.lo1))
=
insert_nat64_reveal ();
()
let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) :
Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 ==
Mkfour n0 n1 q.hi2 q.hi3 /\
insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 ==
Mkfour q.lo0 q.lo1 n0 n1 )
=
let open Vale.Def.Words.Two in
insert_nat64_reveal ();
()
let lemma_lo64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1))
=
lo64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_hi64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1))
=
hi64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma
(reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0)))
=
reverse_bytes_nat64_reveal ()
let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma
(requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1)
(ensures final == reverse_bytes_quad32 src)
=
reverse_bytes_nat64_reveal ();
let Mkfour x0 x1 x2 x3 = src in
let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in
let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in
calc (==) {
reverse_bytes_quad32 src;
== { reveal_reverse_bytes_quad32 src }
four_reverse (four_map reverse_bytes_nat32 src);
== {}
four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3));
== {}
Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0);
== { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3)
(reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) }
insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1;
== { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) }
insert_nat64 (insert_nat64 orig two32 0) two10 1;
};
calc (==) {
reverse_bytes_nat64 (hi64 src);
== { hi64_reveal ()}
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3));
== { lemma_reverse_bytes_nat64_32 x2 x3 }
two32;
};
calc (==) {
reverse_bytes_nat64 (lo64 src);
== { lo64_reveal () }
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1));
== { lemma_reverse_bytes_nat64_32 x0 x1 }
two10;
};
()
let lemma_equality_check_helper (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)
)
=
// lemma_equality_check_helper_lo q;
// lemma_equality_check_helper_hi q;
lo64_reveal ();
hi64_reveal ();
assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x);
()
let push_pop_xmm (x y:quad32) : Lemma
(let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in
x == x')
=
// assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1);
insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_insrq_extrq_relations (x y:quad32) :
Lemma (let z = insert_nat64 x (lo64 y) 0 in
z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\
(let z = insert_nat64 x (hi64 y) 1 in
z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3))
=
let open Vale.Def.Words.Two in
let z = insert_nat64 x (lo64 y) 0 in
insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
assert (z == insert_nat64_def x (lo64_def y) 0);
//assert (q'.hi2 == q.hi2);
//assert (q'.hi3 == q.hi3);
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0));
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0));
let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in
nat_to_two_to_nat n1 n2;
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0));
//assert (q'.lo1 == q.lo1);
//assert (q == q');
()
open Vale.Def.Words.Two
let le_bytes_to_nat64_to_bytes s =
le_nat64_to_bytes_reveal ();
le_bytes_to_nat64_reveal ()
let le_nat64_to_bytes_to_nat64 n =
le_nat64_to_bytes_reveal ();
le_bytes_to_nat64_reveal ()
let le_bytes_to_seq_quad32_empty () :
Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
()
let be_bytes_to_seq_quad32_empty () :
Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
()
#reset-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'"
let le_bytes_to_seq_quad32_to_bytes_one_quad b =
calc (==) {
le_bytes_to_seq_quad32 (le_quad32_to_bytes b);
== {reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32}
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_quad32_to_bytes b));
== {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes}
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))));
== {}
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)))));
== {seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))}
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_LE b)));
== {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_LE b)}
seq_to_seq_four_LE (four_to_seq_LE b);
== {four_to_seq_LE_is_seq_four_to_seq_LE b}
seq_to_seq_four_LE (seq_four_to_seq_LE (create 1 b));
== {}
create 1 b;
}
let be_bytes_to_seq_quad32_to_bytes_one_quad b =
calc (==) {
be_bytes_to_seq_quad32 (be_quad32_to_bytes b);
== {reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32}
seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (be_quad32_to_bytes b));
== {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes}
seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))));
== {}
seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b)))));
== {seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))}
seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_BE b)));
== {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE b)}
seq_to_seq_four_BE (four_to_seq_BE b);
== {four_to_seq_BE_is_seq_four_to_seq_BE b}
seq_to_seq_four_BE (seq_four_to_seq_BE (create 1 b));
== {}
create 1 b;
}
let le_bytes_to_seq_quad32_to_bytes (s:seq quad32) :
Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s)
(* This expands into showing:
le_bytes_to_seq_quad32 (le_quad32_to_bytes s)
== { definition of le_bytes_to_seq_quad32 }
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_seq_quad32_to_bytes s))
== { definition of le_seq_quad32_to_bytes }
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s)))
== { definition of seq_nat8_to_seq_nat32_LE }
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s))))
== { definition of seq_nat32_to_seq_nat8_LE }
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)))))
*)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_seq_quad32_to_bytes_reveal ();
seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_LE s);
seq_to_seq_four_to_seq_LE (s) ;
()
let be_bytes_to_seq_quad32_to_bytes (s:seq quad32) :
Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_BE s);
seq_to_seq_four_to_seq_BE (s) ;
()
let le_seq_quad32_to_bytes_to_seq_quad32 s =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_seq_quad32_to_bytes_reveal ();
calc (==) {
le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 s);
(==) { }
seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE (seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s)));
(==) { }
s;
}
(*
le_quad32_to_bytes (le_bytes_to_quad32 s)
== { definition of le_quad32_to_bytes }
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (le_bytes_to_quad32 s)))
== { definition of le_bytes_to_quad32 }
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)))))
*)
let le_quad32_to_bytes_to_quad32 s =
calc (==) {
le_quad32_to_bytes (le_bytes_to_quad32 s);
== {le_bytes_to_quad32_reveal ()}
le_quad32_to_bytes (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)));
== {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes}
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)))));
== {four_to_seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))}
seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)));
== {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_LE s)}
seq_four_to_seq_LE (seq_to_seq_four_LE s);
== {}
s;
}
let be_quad32_to_bytes_to_quad32 s =
calc (==) {
be_quad32_to_bytes (be_bytes_to_quad32 s);
== {be_bytes_to_quad32_reveal ()}
be_quad32_to_bytes (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)));
== {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes}
seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)))));
== {four_to_seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))}
seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)));
== {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_BE s)}
seq_four_to_seq_BE (seq_to_seq_four_BE s);
== {}
s;
}
let le_seq_quad32_to_bytes_of_singleton (q:quad32) :
Lemma (le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q))
=
le_seq_quad32_to_bytes_reveal ();
reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes;
four_to_seq_LE_is_seq_four_to_seq_LE q;
()
let be_seq_quad32_to_bytes_of_singleton (q:quad32) :
Lemma (be_quad32_to_bytes q == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 q)))
=
reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes;
four_to_seq_BE_is_seq_four_to_seq_BE q;
()
let le_quad32_to_bytes_injective ():
Lemma (forall b b' . le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b')
=
reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes;
let helper (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') =
if le_quad32_to_bytes b = le_quad32_to_bytes b' then (
let b1 = seq_map (nat_to_four 8) (four_to_seq_LE b) in
let b1' = seq_map (nat_to_four 8) (four_to_seq_LE b') in
assert (le_quad32_to_bytes b == seq_four_to_seq_LE b1);
assert (le_quad32_to_bytes b' == seq_four_to_seq_LE b1');
seq_four_to_seq_LE_injective_specific b1 b1';
assert (b1 == b1');
nat_to_four_8_injective();
seq_map_injective (nat_to_four 8) (four_to_seq_LE b) (four_to_seq_LE b');
assert ((four_to_seq_LE b) == (four_to_seq_LE b'));
four_to_seq_LE_injective nat32;
()
) else
()
in
FStar.Classical.forall_intro_2 helper
let be_quad32_to_bytes_injective ():
Lemma (forall b b' . be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b')
=
reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes;
let helper (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') =
if be_quad32_to_bytes b = be_quad32_to_bytes b' then (
let b1 = seq_map (nat_to_four 8) (four_to_seq_BE b) in
let b1' = seq_map (nat_to_four 8) (four_to_seq_BE b') in
assert (be_quad32_to_bytes b == seq_four_to_seq_BE b1);
assert (be_quad32_to_bytes b' == seq_four_to_seq_BE b1');
seq_four_to_seq_BE_injective_specific b1 b1';
assert (b1 == b1');
nat_to_four_8_injective();
seq_map_injective (nat_to_four 8) (four_to_seq_BE b) (four_to_seq_BE b');
assert ((four_to_seq_BE b) == (four_to_seq_BE b'));
four_to_seq_BE_injective nat32;
()
) else
()
in
FStar.Classical.forall_intro_2 helper
let le_quad32_to_bytes_injective_specific (b b':quad32) :
Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b')
=
le_quad32_to_bytes_injective()
let be_quad32_to_bytes_injective_specific (b b':quad32) :
Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') | false | false | Vale.Arch.Types.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val be_quad32_to_bytes_injective_specific (b b':quad32) :
Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') | [] | Vale.Arch.Types.be_quad32_to_bytes_injective_specific | {
"file_name": "vale/code/arch/Vale.Arch.Types.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b: Vale.Def.Types_s.quad32 -> b': Vale.Def.Types_s.quad32
-> FStar.Pervasives.Lemma
(ensures
Vale.Arch.Types.be_quad32_to_bytes b == Vale.Arch.Types.be_quad32_to_bytes b' ==> b == b') | {
"end_col": 32,
"end_line": 507,
"start_col": 2,
"start_line": 507
} |
FStar.Pervasives.Lemma | val be_seq_quad32_to_bytes_of_singleton (q:quad32) :
Lemma (be_quad32_to_bytes q == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 q))) | [
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let be_seq_quad32_to_bytes_of_singleton (q:quad32) :
Lemma (be_quad32_to_bytes q == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 q)))
=
reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes;
four_to_seq_BE_is_seq_four_to_seq_BE q;
() | val be_seq_quad32_to_bytes_of_singleton (q:quad32) :
Lemma (be_quad32_to_bytes q == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 q)))
let be_seq_quad32_to_bytes_of_singleton (q: quad32)
: Lemma (be_quad32_to_bytes q == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 q))) = | false | null | true | reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes;
four_to_seq_BE_is_seq_four_to_seq_BE q;
() | {
"checked_file": "Vale.Arch.Types.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Arch.Types.fst"
} | [
"lemma"
] | [
"Vale.Def.Types_s.quad32",
"Prims.unit",
"Vale.Def.Words.Seq.four_to_seq_BE_is_seq_four_to_seq_BE",
"FStar.Pervasives.reveal_opaque",
"Vale.Def.Words.Seq_s.seq16",
"Vale.Def.Words_s.nat8",
"Vale.Arch.Types.be_quad32_to_bytes",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"FStar.Seq.Base.seq",
"Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE",
"Vale.Def.Words.Seq_s.seq_four_to_seq_BE",
"Vale.Def.Words_s.nat32",
"FStar.Seq.Base.create",
"Vale.Def.Words_s.four",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.Arch.Types
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.TypesNative
open Vale.Lib.Seqs
open Vale.Def.Words_s
open Vale.Def.Words.Two
open FStar.Calc
let lemma_nat_to_two32 () =
assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000))
let lemma_BitwiseXorCommutative x y =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ y) (y *^ x)
let lemma_BitwiseXorWithZero n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ 0) n
let lemma_BitwiseXorCancel n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ n) 0
let lemma_BitwiseXorCancel64 (n:nat64) =
lemma_ixor_nth_all 64;
lemma_zero_nth 64;
lemma_equal_nth 64 (ixor n n) 0
let lemma_BitwiseXorAssociative x y z =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z)
let xor_lemmas () =
FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative;
FStar.Classical.forall_intro lemma_BitwiseXorWithZero;
FStar.Classical.forall_intro lemma_BitwiseXorCancel;
FStar.Classical.forall_intro lemma_BitwiseXorCancel64;
FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_quad32_xor () =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
xor_lemmas()
(*
let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) =
let q' = quad32_xor q q in
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
// REVIEW: Why are these necessary?
assert (q'.lo0 == nat32_xor q.lo0 q.lo0);
assert (q'.lo1 == nat32_xor q.lo1 q.lo1);
assert (q'.hi2 == nat32_xor q.hi2 q.hi2);
assert (q'.hi3 == nat32_xor q.hi3 q.hi3);
xor_lemmas()
in
FStar.Classical.forall_intro helper
*)
#pop-options
let lemma_reverse_reverse_bytes_nat32 (n:nat32) :
Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n)
=
reverse_bytes_nat32_reveal ();
let r = reverse_seq (nat32_to_be_bytes n) in
be_bytes_to_nat32_to_be_bytes r;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_reverse_bytes_quad32 (q:quad32) =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
reveal_reverse_bytes_quad32 q;
reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q);
()
#pop-options
let lemma_reverse_bytes_nat32 (_:unit) : Lemma
(reverse_bytes_nat32 0 == 0)
=
reverse_bytes_nat32_reveal ();
assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0);
()
let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma
(let z = Mkfour 0 0 0 0 in
reverse_bytes_quad32 z == z)
=
let z = Mkfour 0 0 0 0 in
calc (==) {
reverse_bytes_quad32 z;
== { reveal_reverse_bytes_quad32 z }
four_reverse (four_map reverse_bytes_nat32 z);
== { lemma_reverse_bytes_nat32() }
z;
};
()
let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) :
Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s)
=
reveal_reverse_bytes_nat32_seq s;
reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s);
assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s)
(*
let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) :
Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\
( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\
((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF))
=
if n.lo == 0 /\ n.hi == 0 then (
assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0);
()
) else (
()
);
()
let lemma_equality_check_helper_lo (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1);
()
let lemma_equality_check_helper_hi (q:quad32) :
Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3);
()
*)
let lemma_insert_nat64_properties (q:quad32) (n:nat64) :
Lemma ( (let q' = insert_nat64 q n 0 in
q'.hi2 == q.hi2 /\
q'.hi3 == q.hi3) /\
(let q' = insert_nat64 q n 1 in
q'.lo0 == q.lo0 /\
q'.lo1 == q.lo1))
=
insert_nat64_reveal ();
()
let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) :
Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 ==
Mkfour n0 n1 q.hi2 q.hi3 /\
insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 ==
Mkfour q.lo0 q.lo1 n0 n1 )
=
let open Vale.Def.Words.Two in
insert_nat64_reveal ();
()
let lemma_lo64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1))
=
lo64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_hi64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1))
=
hi64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma
(reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0)))
=
reverse_bytes_nat64_reveal ()
let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma
(requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1)
(ensures final == reverse_bytes_quad32 src)
=
reverse_bytes_nat64_reveal ();
let Mkfour x0 x1 x2 x3 = src in
let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in
let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in
calc (==) {
reverse_bytes_quad32 src;
== { reveal_reverse_bytes_quad32 src }
four_reverse (four_map reverse_bytes_nat32 src);
== {}
four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3));
== {}
Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0);
== { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3)
(reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) }
insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1;
== { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) }
insert_nat64 (insert_nat64 orig two32 0) two10 1;
};
calc (==) {
reverse_bytes_nat64 (hi64 src);
== { hi64_reveal ()}
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3));
== { lemma_reverse_bytes_nat64_32 x2 x3 }
two32;
};
calc (==) {
reverse_bytes_nat64 (lo64 src);
== { lo64_reveal () }
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1));
== { lemma_reverse_bytes_nat64_32 x0 x1 }
two10;
};
()
let lemma_equality_check_helper (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)
)
=
// lemma_equality_check_helper_lo q;
// lemma_equality_check_helper_hi q;
lo64_reveal ();
hi64_reveal ();
assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x);
()
let push_pop_xmm (x y:quad32) : Lemma
(let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in
x == x')
=
// assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1);
insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_insrq_extrq_relations (x y:quad32) :
Lemma (let z = insert_nat64 x (lo64 y) 0 in
z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\
(let z = insert_nat64 x (hi64 y) 1 in
z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3))
=
let open Vale.Def.Words.Two in
let z = insert_nat64 x (lo64 y) 0 in
insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
assert (z == insert_nat64_def x (lo64_def y) 0);
//assert (q'.hi2 == q.hi2);
//assert (q'.hi3 == q.hi3);
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0));
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0));
let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in
nat_to_two_to_nat n1 n2;
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0));
//assert (q'.lo1 == q.lo1);
//assert (q == q');
()
open Vale.Def.Words.Two
let le_bytes_to_nat64_to_bytes s =
le_nat64_to_bytes_reveal ();
le_bytes_to_nat64_reveal ()
let le_nat64_to_bytes_to_nat64 n =
le_nat64_to_bytes_reveal ();
le_bytes_to_nat64_reveal ()
let le_bytes_to_seq_quad32_empty () :
Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
()
let be_bytes_to_seq_quad32_empty () :
Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
()
#reset-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'"
let le_bytes_to_seq_quad32_to_bytes_one_quad b =
calc (==) {
le_bytes_to_seq_quad32 (le_quad32_to_bytes b);
== {reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32}
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_quad32_to_bytes b));
== {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes}
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))));
== {}
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)))));
== {seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))}
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_LE b)));
== {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_LE b)}
seq_to_seq_four_LE (four_to_seq_LE b);
== {four_to_seq_LE_is_seq_four_to_seq_LE b}
seq_to_seq_four_LE (seq_four_to_seq_LE (create 1 b));
== {}
create 1 b;
}
let be_bytes_to_seq_quad32_to_bytes_one_quad b =
calc (==) {
be_bytes_to_seq_quad32 (be_quad32_to_bytes b);
== {reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32}
seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (be_quad32_to_bytes b));
== {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes}
seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))));
== {}
seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b)))));
== {seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))}
seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_BE b)));
== {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE b)}
seq_to_seq_four_BE (four_to_seq_BE b);
== {four_to_seq_BE_is_seq_four_to_seq_BE b}
seq_to_seq_four_BE (seq_four_to_seq_BE (create 1 b));
== {}
create 1 b;
}
let le_bytes_to_seq_quad32_to_bytes (s:seq quad32) :
Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s)
(* This expands into showing:
le_bytes_to_seq_quad32 (le_quad32_to_bytes s)
== { definition of le_bytes_to_seq_quad32 }
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_seq_quad32_to_bytes s))
== { definition of le_seq_quad32_to_bytes }
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s)))
== { definition of seq_nat8_to_seq_nat32_LE }
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s))))
== { definition of seq_nat32_to_seq_nat8_LE }
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)))))
*)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_seq_quad32_to_bytes_reveal ();
seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_LE s);
seq_to_seq_four_to_seq_LE (s) ;
()
let be_bytes_to_seq_quad32_to_bytes (s:seq quad32) :
Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_BE s);
seq_to_seq_four_to_seq_BE (s) ;
()
let le_seq_quad32_to_bytes_to_seq_quad32 s =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_seq_quad32_to_bytes_reveal ();
calc (==) {
le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 s);
(==) { }
seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE (seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s)));
(==) { }
s;
}
(*
le_quad32_to_bytes (le_bytes_to_quad32 s)
== { definition of le_quad32_to_bytes }
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (le_bytes_to_quad32 s)))
== { definition of le_bytes_to_quad32 }
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)))))
*)
let le_quad32_to_bytes_to_quad32 s =
calc (==) {
le_quad32_to_bytes (le_bytes_to_quad32 s);
== {le_bytes_to_quad32_reveal ()}
le_quad32_to_bytes (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)));
== {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes}
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)))));
== {four_to_seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))}
seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)));
== {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_LE s)}
seq_four_to_seq_LE (seq_to_seq_four_LE s);
== {}
s;
}
let be_quad32_to_bytes_to_quad32 s =
calc (==) {
be_quad32_to_bytes (be_bytes_to_quad32 s);
== {be_bytes_to_quad32_reveal ()}
be_quad32_to_bytes (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)));
== {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes}
seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)))));
== {four_to_seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))}
seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)));
== {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_BE s)}
seq_four_to_seq_BE (seq_to_seq_four_BE s);
== {}
s;
}
let le_seq_quad32_to_bytes_of_singleton (q:quad32) :
Lemma (le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q))
=
le_seq_quad32_to_bytes_reveal ();
reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes;
four_to_seq_LE_is_seq_four_to_seq_LE q;
()
let be_seq_quad32_to_bytes_of_singleton (q:quad32) :
Lemma (be_quad32_to_bytes q == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 q))) | false | false | Vale.Arch.Types.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val be_seq_quad32_to_bytes_of_singleton (q:quad32) :
Lemma (be_quad32_to_bytes q == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 q))) | [] | Vale.Arch.Types.be_seq_quad32_to_bytes_of_singleton | {
"file_name": "vale/code/arch/Vale.Arch.Types.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | q: Vale.Def.Types_s.quad32
-> FStar.Pervasives.Lemma
(ensures
Vale.Arch.Types.be_quad32_to_bytes q ==
Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE (FStar.Seq.Base.create
1
q))) | {
"end_col": 4,
"end_line": 453,
"start_col": 2,
"start_line": 451
} |
FStar.Pervasives.Lemma | val lemma_BitwiseXorCancel64 (n:nat64) : Lemma (ixor n n == 0) | [
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_BitwiseXorCancel64 (n:nat64) =
lemma_ixor_nth_all 64;
lemma_zero_nth 64;
lemma_equal_nth 64 (ixor n n) 0 | val lemma_BitwiseXorCancel64 (n:nat64) : Lemma (ixor n n == 0)
let lemma_BitwiseXorCancel64 (n: nat64) = | false | null | true | lemma_ixor_nth_all 64;
lemma_zero_nth 64;
lemma_equal_nth 64 (ixor n n) 0 | {
"checked_file": "Vale.Arch.Types.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Arch.Types.fst"
} | [
"lemma"
] | [
"Vale.Def.Words_s.nat64",
"Vale.Arch.TypesNative.lemma_equal_nth",
"Vale.Def.Types_s.ixor",
"Vale.Def.Words_s.pow2_64",
"Prims.unit",
"Vale.Arch.TypesNative.lemma_zero_nth",
"Vale.Arch.TypesNative.lemma_ixor_nth_all"
] | [] | module Vale.Arch.Types
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.TypesNative
open Vale.Lib.Seqs
open Vale.Def.Words_s
open Vale.Def.Words.Two
open FStar.Calc
let lemma_nat_to_two32 () =
assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000))
let lemma_BitwiseXorCommutative x y =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ y) (y *^ x)
let lemma_BitwiseXorWithZero n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ 0) n
let lemma_BitwiseXorCancel n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ n) 0 | false | false | Vale.Arch.Types.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_BitwiseXorCancel64 (n:nat64) : Lemma (ixor n n == 0) | [] | Vale.Arch.Types.lemma_BitwiseXorCancel64 | {
"file_name": "vale/code/arch/Vale.Arch.Types.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | n: Vale.Def.Words_s.nat64 -> FStar.Pervasives.Lemma (ensures Vale.Def.Types_s.ixor n n == 0) | {
"end_col": 33,
"end_line": 33,
"start_col": 2,
"start_line": 31
} |
FStar.Pervasives.Lemma | val lemma_reverse_bytes_quad32 (q:quad32) :
Lemma (reverse_bytes_quad32 (reverse_bytes_quad32 q) == q)
[SMTPat (reverse_bytes_quad32 (reverse_bytes_quad32 q))] | [
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_reverse_bytes_quad32 (q:quad32) =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
reveal_reverse_bytes_quad32 q;
reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q);
() | val lemma_reverse_bytes_quad32 (q:quad32) :
Lemma (reverse_bytes_quad32 (reverse_bytes_quad32 q) == q)
[SMTPat (reverse_bytes_quad32 (reverse_bytes_quad32 q))]
let lemma_reverse_bytes_quad32 (q: quad32) = | false | null | true | quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
reveal_reverse_bytes_quad32 q;
reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q);
() | {
"checked_file": "Vale.Arch.Types.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Arch.Types.fst"
} | [
"lemma"
] | [
"Vale.Def.Types_s.quad32",
"Prims.unit",
"Vale.Def.Types_s.reveal_reverse_bytes_quad32",
"Vale.Def.Types_s.reverse_bytes_quad32",
"Vale.Def.Types_s.reverse_bytes_nat32_reveal",
"Vale.Def.Types_s.quad32_xor_reveal"
] | [] | module Vale.Arch.Types
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.TypesNative
open Vale.Lib.Seqs
open Vale.Def.Words_s
open Vale.Def.Words.Two
open FStar.Calc
let lemma_nat_to_two32 () =
assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000))
let lemma_BitwiseXorCommutative x y =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ y) (y *^ x)
let lemma_BitwiseXorWithZero n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ 0) n
let lemma_BitwiseXorCancel n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ n) 0
let lemma_BitwiseXorCancel64 (n:nat64) =
lemma_ixor_nth_all 64;
lemma_zero_nth 64;
lemma_equal_nth 64 (ixor n n) 0
let lemma_BitwiseXorAssociative x y z =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z)
let xor_lemmas () =
FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative;
FStar.Classical.forall_intro lemma_BitwiseXorWithZero;
FStar.Classical.forall_intro lemma_BitwiseXorCancel;
FStar.Classical.forall_intro lemma_BitwiseXorCancel64;
FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_quad32_xor () =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
xor_lemmas()
(*
let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) =
let q' = quad32_xor q q in
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
// REVIEW: Why are these necessary?
assert (q'.lo0 == nat32_xor q.lo0 q.lo0);
assert (q'.lo1 == nat32_xor q.lo1 q.lo1);
assert (q'.hi2 == nat32_xor q.hi2 q.hi2);
assert (q'.hi3 == nat32_xor q.hi3 q.hi3);
xor_lemmas()
in
FStar.Classical.forall_intro helper
*)
#pop-options
let lemma_reverse_reverse_bytes_nat32 (n:nat32) :
Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n)
=
reverse_bytes_nat32_reveal ();
let r = reverse_seq (nat32_to_be_bytes n) in
be_bytes_to_nat32_to_be_bytes r;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? | false | false | Vale.Arch.Types.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 3,
"initial_ifuel": 3,
"max_fuel": 3,
"max_ifuel": 3,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_reverse_bytes_quad32 (q:quad32) :
Lemma (reverse_bytes_quad32 (reverse_bytes_quad32 q) == q)
[SMTPat (reverse_bytes_quad32 (reverse_bytes_quad32 q))] | [] | Vale.Arch.Types.lemma_reverse_bytes_quad32 | {
"file_name": "vale/code/arch/Vale.Arch.Types.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | q: Vale.Def.Types_s.quad32
-> FStar.Pervasives.Lemma
(ensures Vale.Def.Types_s.reverse_bytes_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 q) == q)
[SMTPat (Vale.Def.Types_s.reverse_bytes_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 q))] | {
"end_col": 4,
"end_line": 82,
"start_col": 2,
"start_line": 78
} |
FStar.Pervasives.Lemma | val lemma_hi64_properties (_:unit) : Lemma
(forall (q0 q1:quad32).{:pattern hi64 q0; hi64 q1}
(q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) | [
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_hi64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1))
=
hi64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
() | val lemma_hi64_properties (_:unit) : Lemma
(forall (q0 q1:quad32).{:pattern hi64 q0; hi64 q1}
(q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1))
let lemma_hi64_properties (_: unit)
: Lemma
(forall (q0: quad32) (q1: quad32).
(q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = | false | null | true | hi64_reveal ();
let helper (q0 q1: quad32)
: Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
() | {
"checked_file": "Vale.Arch.Types.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Arch.Types.fst"
} | [
"lemma"
] | [
"Prims.unit",
"FStar.Classical.forall_intro_2",
"Vale.Def.Types_s.quad32",
"Prims.l_iff",
"Prims.l_and",
"Prims.eq2",
"Vale.Def.Types_s.nat32",
"Vale.Def.Words_s.__proj__Mkfour__item__hi2",
"Vale.Def.Words_s.__proj__Mkfour__item__hi3",
"Vale.Def.Words_s.nat64",
"Vale.Arch.Types.hi64",
"Prims.l_True",
"Prims.squash",
"Vale.Def.Words_s.nat32",
"Prims.Nil",
"FStar.Pervasives.pattern",
"Vale.Def.Words.Two.nat_to_two_to_nat",
"Vale.Def.Words_s.two",
"Vale.Def.Words.Two_s.two_select",
"Vale.Def.Words.Four_s.four_to_two_two",
"Vale.Arch.Types.hi64_reveal",
"Prims.l_Forall"
] | [] | module Vale.Arch.Types
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.TypesNative
open Vale.Lib.Seqs
open Vale.Def.Words_s
open Vale.Def.Words.Two
open FStar.Calc
let lemma_nat_to_two32 () =
assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000))
let lemma_BitwiseXorCommutative x y =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ y) (y *^ x)
let lemma_BitwiseXorWithZero n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ 0) n
let lemma_BitwiseXorCancel n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ n) 0
let lemma_BitwiseXorCancel64 (n:nat64) =
lemma_ixor_nth_all 64;
lemma_zero_nth 64;
lemma_equal_nth 64 (ixor n n) 0
let lemma_BitwiseXorAssociative x y z =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z)
let xor_lemmas () =
FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative;
FStar.Classical.forall_intro lemma_BitwiseXorWithZero;
FStar.Classical.forall_intro lemma_BitwiseXorCancel;
FStar.Classical.forall_intro lemma_BitwiseXorCancel64;
FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_quad32_xor () =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
xor_lemmas()
(*
let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) =
let q' = quad32_xor q q in
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
// REVIEW: Why are these necessary?
assert (q'.lo0 == nat32_xor q.lo0 q.lo0);
assert (q'.lo1 == nat32_xor q.lo1 q.lo1);
assert (q'.hi2 == nat32_xor q.hi2 q.hi2);
assert (q'.hi3 == nat32_xor q.hi3 q.hi3);
xor_lemmas()
in
FStar.Classical.forall_intro helper
*)
#pop-options
let lemma_reverse_reverse_bytes_nat32 (n:nat32) :
Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n)
=
reverse_bytes_nat32_reveal ();
let r = reverse_seq (nat32_to_be_bytes n) in
be_bytes_to_nat32_to_be_bytes r;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_reverse_bytes_quad32 (q:quad32) =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
reveal_reverse_bytes_quad32 q;
reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q);
()
#pop-options
let lemma_reverse_bytes_nat32 (_:unit) : Lemma
(reverse_bytes_nat32 0 == 0)
=
reverse_bytes_nat32_reveal ();
assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0);
()
let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma
(let z = Mkfour 0 0 0 0 in
reverse_bytes_quad32 z == z)
=
let z = Mkfour 0 0 0 0 in
calc (==) {
reverse_bytes_quad32 z;
== { reveal_reverse_bytes_quad32 z }
four_reverse (four_map reverse_bytes_nat32 z);
== { lemma_reverse_bytes_nat32() }
z;
};
()
let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) :
Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s)
=
reveal_reverse_bytes_nat32_seq s;
reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s);
assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s)
(*
let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) :
Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\
( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\
((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF))
=
if n.lo == 0 /\ n.hi == 0 then (
assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0);
()
) else (
()
);
()
let lemma_equality_check_helper_lo (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1);
()
let lemma_equality_check_helper_hi (q:quad32) :
Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3);
()
*)
let lemma_insert_nat64_properties (q:quad32) (n:nat64) :
Lemma ( (let q' = insert_nat64 q n 0 in
q'.hi2 == q.hi2 /\
q'.hi3 == q.hi3) /\
(let q' = insert_nat64 q n 1 in
q'.lo0 == q.lo0 /\
q'.lo1 == q.lo1))
=
insert_nat64_reveal ();
()
let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) :
Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 ==
Mkfour n0 n1 q.hi2 q.hi3 /\
insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 ==
Mkfour q.lo0 q.lo1 n0 n1 )
=
let open Vale.Def.Words.Two in
insert_nat64_reveal ();
()
let lemma_lo64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1))
=
lo64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_hi64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) | false | false | Vale.Arch.Types.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_hi64_properties (_:unit) : Lemma
(forall (q0 q1:quad32).{:pattern hi64 q0; hi64 q1}
(q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) | [] | Vale.Arch.Types.lemma_hi64_properties | {
"file_name": "vale/code/arch/Vale.Arch.Types.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | _: Prims.unit
-> FStar.Pervasives.Lemma
(ensures
forall (q0: Vale.Def.Types_s.quad32) (q1: Vale.Def.Types_s.quad32).
{:pattern Vale.Arch.Types.hi64 q0; Vale.Arch.Types.hi64 q1}
Mkfour?.hi2 q0 == Mkfour?.hi2 q1 /\ Mkfour?.hi3 q0 == Mkfour?.hi3 q1 <==>
Vale.Arch.Types.hi64 q0 == Vale.Arch.Types.hi64 q1) | {
"end_col": 4,
"end_line": 193,
"start_col": 2,
"start_line": 184
} |
FStar.Pervasives.Lemma | val lemma_reverse_reverse_bytes_quad32_seq (s:seq quad32) :
Lemma (reverse_bytes_quad32_seq (reverse_bytes_quad32_seq s) == s)
[SMTPat (reverse_bytes_quad32_seq (reverse_bytes_quad32_seq s))] | [
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_reverse_reverse_bytes_quad32_seq (s:seq quad32) :
Lemma (reverse_bytes_quad32_seq (reverse_bytes_quad32_seq s) == s)
[SMTPat (reverse_bytes_quad32_seq (reverse_bytes_quad32_seq s))]
=
seq_map_inverses reverse_bytes_quad32 reverse_bytes_quad32 s | val lemma_reverse_reverse_bytes_quad32_seq (s:seq quad32) :
Lemma (reverse_bytes_quad32_seq (reverse_bytes_quad32_seq s) == s)
[SMTPat (reverse_bytes_quad32_seq (reverse_bytes_quad32_seq s))]
let lemma_reverse_reverse_bytes_quad32_seq (s: seq quad32)
: Lemma (reverse_bytes_quad32_seq (reverse_bytes_quad32_seq s) == s)
[SMTPat (reverse_bytes_quad32_seq (reverse_bytes_quad32_seq s))] = | false | null | true | seq_map_inverses reverse_bytes_quad32 reverse_bytes_quad32 s | {
"checked_file": "Vale.Arch.Types.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Arch.Types.fst"
} | [
"lemma"
] | [
"FStar.Seq.Base.seq",
"Vale.Def.Types_s.quad32",
"Vale.Lib.Seqs.seq_map_inverses",
"Vale.Def.Types_s.reverse_bytes_quad32",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Vale.Arch.Types.reverse_bytes_quad32_seq",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [] | module Vale.Arch.Types
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.TypesNative
open Vale.Lib.Seqs
open Vale.Def.Words_s
open Vale.Def.Words.Two
open FStar.Calc
let lemma_nat_to_two32 () =
assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000))
let lemma_BitwiseXorCommutative x y =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ y) (y *^ x)
let lemma_BitwiseXorWithZero n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ 0) n
let lemma_BitwiseXorCancel n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ n) 0
let lemma_BitwiseXorCancel64 (n:nat64) =
lemma_ixor_nth_all 64;
lemma_zero_nth 64;
lemma_equal_nth 64 (ixor n n) 0
let lemma_BitwiseXorAssociative x y z =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z)
let xor_lemmas () =
FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative;
FStar.Classical.forall_intro lemma_BitwiseXorWithZero;
FStar.Classical.forall_intro lemma_BitwiseXorCancel;
FStar.Classical.forall_intro lemma_BitwiseXorCancel64;
FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_quad32_xor () =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
xor_lemmas()
(*
let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) =
let q' = quad32_xor q q in
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
// REVIEW: Why are these necessary?
assert (q'.lo0 == nat32_xor q.lo0 q.lo0);
assert (q'.lo1 == nat32_xor q.lo1 q.lo1);
assert (q'.hi2 == nat32_xor q.hi2 q.hi2);
assert (q'.hi3 == nat32_xor q.hi3 q.hi3);
xor_lemmas()
in
FStar.Classical.forall_intro helper
*)
#pop-options
let lemma_reverse_reverse_bytes_nat32 (n:nat32) :
Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n)
=
reverse_bytes_nat32_reveal ();
let r = reverse_seq (nat32_to_be_bytes n) in
be_bytes_to_nat32_to_be_bytes r;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_reverse_bytes_quad32 (q:quad32) =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
reveal_reverse_bytes_quad32 q;
reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q);
()
#pop-options
let lemma_reverse_bytes_nat32 (_:unit) : Lemma
(reverse_bytes_nat32 0 == 0)
=
reverse_bytes_nat32_reveal ();
assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0);
()
let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma
(let z = Mkfour 0 0 0 0 in
reverse_bytes_quad32 z == z)
=
let z = Mkfour 0 0 0 0 in
calc (==) {
reverse_bytes_quad32 z;
== { reveal_reverse_bytes_quad32 z }
four_reverse (four_map reverse_bytes_nat32 z);
== { lemma_reverse_bytes_nat32() }
z;
};
()
let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) :
Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s)
=
reveal_reverse_bytes_nat32_seq s;
reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s);
assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s)
(*
let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) :
Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\
( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\
((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF))
=
if n.lo == 0 /\ n.hi == 0 then (
assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0);
()
) else (
()
);
()
let lemma_equality_check_helper_lo (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1);
()
let lemma_equality_check_helper_hi (q:quad32) :
Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3);
()
*)
let lemma_insert_nat64_properties (q:quad32) (n:nat64) :
Lemma ( (let q' = insert_nat64 q n 0 in
q'.hi2 == q.hi2 /\
q'.hi3 == q.hi3) /\
(let q' = insert_nat64 q n 1 in
q'.lo0 == q.lo0 /\
q'.lo1 == q.lo1))
=
insert_nat64_reveal ();
()
let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) :
Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 ==
Mkfour n0 n1 q.hi2 q.hi3 /\
insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 ==
Mkfour q.lo0 q.lo1 n0 n1 )
=
let open Vale.Def.Words.Two in
insert_nat64_reveal ();
()
let lemma_lo64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1))
=
lo64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_hi64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1))
=
hi64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma
(reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0)))
=
reverse_bytes_nat64_reveal ()
let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma
(requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1)
(ensures final == reverse_bytes_quad32 src)
=
reverse_bytes_nat64_reveal ();
let Mkfour x0 x1 x2 x3 = src in
let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in
let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in
calc (==) {
reverse_bytes_quad32 src;
== { reveal_reverse_bytes_quad32 src }
four_reverse (four_map reverse_bytes_nat32 src);
== {}
four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3));
== {}
Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0);
== { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3)
(reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) }
insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1;
== { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) }
insert_nat64 (insert_nat64 orig two32 0) two10 1;
};
calc (==) {
reverse_bytes_nat64 (hi64 src);
== { hi64_reveal ()}
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3));
== { lemma_reverse_bytes_nat64_32 x2 x3 }
two32;
};
calc (==) {
reverse_bytes_nat64 (lo64 src);
== { lo64_reveal () }
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1));
== { lemma_reverse_bytes_nat64_32 x0 x1 }
two10;
};
()
let lemma_equality_check_helper (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)
)
=
// lemma_equality_check_helper_lo q;
// lemma_equality_check_helper_hi q;
lo64_reveal ();
hi64_reveal ();
assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x);
()
let push_pop_xmm (x y:quad32) : Lemma
(let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in
x == x')
=
// assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1);
insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_insrq_extrq_relations (x y:quad32) :
Lemma (let z = insert_nat64 x (lo64 y) 0 in
z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\
(let z = insert_nat64 x (hi64 y) 1 in
z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3))
=
let open Vale.Def.Words.Two in
let z = insert_nat64 x (lo64 y) 0 in
insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
assert (z == insert_nat64_def x (lo64_def y) 0);
//assert (q'.hi2 == q.hi2);
//assert (q'.hi3 == q.hi3);
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0));
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0));
let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in
nat_to_two_to_nat n1 n2;
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0));
//assert (q'.lo1 == q.lo1);
//assert (q == q');
()
open Vale.Def.Words.Two
let le_bytes_to_nat64_to_bytes s =
le_nat64_to_bytes_reveal ();
le_bytes_to_nat64_reveal ()
let le_nat64_to_bytes_to_nat64 n =
le_nat64_to_bytes_reveal ();
le_bytes_to_nat64_reveal ()
let le_bytes_to_seq_quad32_empty () :
Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
()
let be_bytes_to_seq_quad32_empty () :
Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
()
#reset-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'"
let le_bytes_to_seq_quad32_to_bytes_one_quad b =
calc (==) {
le_bytes_to_seq_quad32 (le_quad32_to_bytes b);
== {reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32}
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_quad32_to_bytes b));
== {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes}
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))));
== {}
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)))));
== {seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))}
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_LE b)));
== {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_LE b)}
seq_to_seq_four_LE (four_to_seq_LE b);
== {four_to_seq_LE_is_seq_four_to_seq_LE b}
seq_to_seq_four_LE (seq_four_to_seq_LE (create 1 b));
== {}
create 1 b;
}
let be_bytes_to_seq_quad32_to_bytes_one_quad b =
calc (==) {
be_bytes_to_seq_quad32 (be_quad32_to_bytes b);
== {reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32}
seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (be_quad32_to_bytes b));
== {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes}
seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))));
== {}
seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b)))));
== {seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))}
seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_BE b)));
== {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE b)}
seq_to_seq_four_BE (four_to_seq_BE b);
== {four_to_seq_BE_is_seq_four_to_seq_BE b}
seq_to_seq_four_BE (seq_four_to_seq_BE (create 1 b));
== {}
create 1 b;
}
let le_bytes_to_seq_quad32_to_bytes (s:seq quad32) :
Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s)
(* This expands into showing:
le_bytes_to_seq_quad32 (le_quad32_to_bytes s)
== { definition of le_bytes_to_seq_quad32 }
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_seq_quad32_to_bytes s))
== { definition of le_seq_quad32_to_bytes }
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s)))
== { definition of seq_nat8_to_seq_nat32_LE }
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s))))
== { definition of seq_nat32_to_seq_nat8_LE }
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)))))
*)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_seq_quad32_to_bytes_reveal ();
seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_LE s);
seq_to_seq_four_to_seq_LE (s) ;
()
let be_bytes_to_seq_quad32_to_bytes (s:seq quad32) :
Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_BE s);
seq_to_seq_four_to_seq_BE (s) ;
()
let le_seq_quad32_to_bytes_to_seq_quad32 s =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_seq_quad32_to_bytes_reveal ();
calc (==) {
le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 s);
(==) { }
seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE (seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s)));
(==) { }
s;
}
(*
le_quad32_to_bytes (le_bytes_to_quad32 s)
== { definition of le_quad32_to_bytes }
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (le_bytes_to_quad32 s)))
== { definition of le_bytes_to_quad32 }
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)))))
*)
let le_quad32_to_bytes_to_quad32 s =
calc (==) {
le_quad32_to_bytes (le_bytes_to_quad32 s);
== {le_bytes_to_quad32_reveal ()}
le_quad32_to_bytes (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)));
== {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes}
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)))));
== {four_to_seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))}
seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)));
== {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_LE s)}
seq_four_to_seq_LE (seq_to_seq_four_LE s);
== {}
s;
}
let be_quad32_to_bytes_to_quad32 s =
calc (==) {
be_quad32_to_bytes (be_bytes_to_quad32 s);
== {be_bytes_to_quad32_reveal ()}
be_quad32_to_bytes (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)));
== {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes}
seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)))));
== {four_to_seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))}
seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)));
== {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_BE s)}
seq_four_to_seq_BE (seq_to_seq_four_BE s);
== {}
s;
}
let le_seq_quad32_to_bytes_of_singleton (q:quad32) :
Lemma (le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q))
=
le_seq_quad32_to_bytes_reveal ();
reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes;
four_to_seq_LE_is_seq_four_to_seq_LE q;
()
let be_seq_quad32_to_bytes_of_singleton (q:quad32) :
Lemma (be_quad32_to_bytes q == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 q)))
=
reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes;
four_to_seq_BE_is_seq_four_to_seq_BE q;
()
let le_quad32_to_bytes_injective ():
Lemma (forall b b' . le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b')
=
reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes;
let helper (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') =
if le_quad32_to_bytes b = le_quad32_to_bytes b' then (
let b1 = seq_map (nat_to_four 8) (four_to_seq_LE b) in
let b1' = seq_map (nat_to_four 8) (four_to_seq_LE b') in
assert (le_quad32_to_bytes b == seq_four_to_seq_LE b1);
assert (le_quad32_to_bytes b' == seq_four_to_seq_LE b1');
seq_four_to_seq_LE_injective_specific b1 b1';
assert (b1 == b1');
nat_to_four_8_injective();
seq_map_injective (nat_to_four 8) (four_to_seq_LE b) (four_to_seq_LE b');
assert ((four_to_seq_LE b) == (four_to_seq_LE b'));
four_to_seq_LE_injective nat32;
()
) else
()
in
FStar.Classical.forall_intro_2 helper
let be_quad32_to_bytes_injective ():
Lemma (forall b b' . be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b')
=
reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes;
let helper (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') =
if be_quad32_to_bytes b = be_quad32_to_bytes b' then (
let b1 = seq_map (nat_to_four 8) (four_to_seq_BE b) in
let b1' = seq_map (nat_to_four 8) (four_to_seq_BE b') in
assert (be_quad32_to_bytes b == seq_four_to_seq_BE b1);
assert (be_quad32_to_bytes b' == seq_four_to_seq_BE b1');
seq_four_to_seq_BE_injective_specific b1 b1';
assert (b1 == b1');
nat_to_four_8_injective();
seq_map_injective (nat_to_four 8) (four_to_seq_BE b) (four_to_seq_BE b');
assert ((four_to_seq_BE b) == (four_to_seq_BE b'));
four_to_seq_BE_injective nat32;
()
) else
()
in
FStar.Classical.forall_intro_2 helper
let le_quad32_to_bytes_injective_specific (b b':quad32) :
Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b')
=
le_quad32_to_bytes_injective()
let be_quad32_to_bytes_injective_specific (b b':quad32) :
Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b')
=
be_quad32_to_bytes_injective()
let le_seq_quad32_to_bytes_injective (b b':seq quad32) =
le_seq_quad32_to_bytes_reveal ();
seq_four_to_seq_LE_injective nat8;
nat_to_four_8_injective();
seq_map_injective (nat_to_four 8) (seq_four_to_seq_LE b) (seq_four_to_seq_LE b');
seq_four_to_seq_LE_injective_specific b b';
assert (equal b b')
let seq_to_four_LE_is_seq_to_seq_four_LE (#a:Type) (s:seq4 a) : Lemma
(create 1 (seq_to_four_LE s) == seq_to_seq_four_LE s)
=
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a);
assert (equal (create 1 (seq_to_four_LE s)) (seq_to_seq_four_LE s));
()
let seq_to_four_BE_is_seq_to_seq_four_BE (#a:Type) (s:seq4 a) : Lemma
(create 1 (seq_to_four_BE s) == seq_to_seq_four_BE s)
=
reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a);
assert (equal (create 1 (seq_to_four_BE s)) (seq_to_seq_four_BE s));
()
let le_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma
(requires q == le_bytes_to_quad32 b)
(ensures create 1 q == le_bytes_to_seq_quad32 b)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_bytes_to_quad32_reveal ();
seq_to_four_LE_is_seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b));
// q == le_bytes_to_quad32 b
// == seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b))
//
// == seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b))
// le_bytes_to_seq_quad32 b == seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE b)
()
let be_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma
(requires q == be_bytes_to_quad32 b)
(ensures create 1 q == be_bytes_to_seq_quad32 b)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
be_bytes_to_quad32_reveal ();
seq_to_four_BE_is_seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE b));
()
let le_bytes_to_quad32_to_bytes (q:quad32) :
Lemma(le_bytes_to_quad32 (le_quad32_to_bytes q) == q)
=
le_seq_quad32_to_bytes_of_singleton q; // ==> le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q)
let b = le_quad32_to_bytes q in
let q' = le_bytes_to_quad32 b in
le_bytes_to_seq_quad_of_singleton q' b; // ==> create 1 q' == le_bytes_to_seq_quad32 b
// == le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes (create 1 q))
le_bytes_to_seq_quad32_to_bytes (create 1 q); // == create 1 q
//assert (create 1 q == create 1 q');
//assert (equal (create 1 q) (create 1 q'));
assert (q == index (create 1 q) 0); // OBSERVE
assert (q == q');
()
let be_bytes_to_quad32_to_bytes (q:quad32) :
Lemma (be_bytes_to_quad32 (be_quad32_to_bytes q) == q)
=
be_bytes_to_quad32_reveal ();
let q':quad32 = be_bytes_to_quad32 (be_quad32_to_bytes q) in
seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE q));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE q);
seq_to_four_to_seq_BE q;
()
let lemma_reverse_reverse_bytes_nat32_quad32 (s:quad32) :
Lemma (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s) == s)
[SMTPat (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s))]
=
let s' = reverse_bytes_nat32_quad32 s in
let s''= reverse_bytes_nat32_quad32 s' in
assert (s''.lo0 == reverse_bytes_nat32 (reverse_bytes_nat32 s.lo0)); // OBSERVE
assert (s''.lo1 == reverse_bytes_nat32 (reverse_bytes_nat32 s.lo1)); // OBSERVE
assert (s''.hi2 == reverse_bytes_nat32 (reverse_bytes_nat32 s.hi2)); // OBSERVE
assert (s''.hi3 == reverse_bytes_nat32 (reverse_bytes_nat32 s.hi3)); // OBSERVE
()
let lemma_reverse_reverse_bytes_nat32_quad32_seq (s:seq quad32) :
Lemma (reverse_bytes_nat32_quad32_seq (reverse_bytes_nat32_quad32_seq s) == s)
[SMTPat (reverse_bytes_nat32_quad32_seq (reverse_bytes_nat32_quad32_seq s))]
=
seq_map_inverses reverse_bytes_nat32_quad32 reverse_bytes_nat32_quad32 s
let lemma_reverse_reverse_bytes_quad32_seq (s:seq quad32) :
Lemma (reverse_bytes_quad32_seq (reverse_bytes_quad32_seq s) == s)
[SMTPat (reverse_bytes_quad32_seq (reverse_bytes_quad32_seq s))] | false | false | Vale.Arch.Types.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_reverse_reverse_bytes_quad32_seq (s:seq quad32) :
Lemma (reverse_bytes_quad32_seq (reverse_bytes_quad32_seq s) == s)
[SMTPat (reverse_bytes_quad32_seq (reverse_bytes_quad32_seq s))] | [] | Vale.Arch.Types.lemma_reverse_reverse_bytes_quad32_seq | {
"file_name": "vale/code/arch/Vale.Arch.Types.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | s: FStar.Seq.Base.seq Vale.Def.Types_s.quad32
-> FStar.Pervasives.Lemma
(ensures
Vale.Arch.Types.reverse_bytes_quad32_seq (Vale.Arch.Types.reverse_bytes_quad32_seq s) == s)
[
SMTPat (Vale.Arch.Types.reverse_bytes_quad32_seq (Vale.Arch.Types.reverse_bytes_quad32_seq s
))
] | {
"end_col": 62,
"end_line": 602,
"start_col": 2,
"start_line": 602
} |
FStar.Pervasives.Lemma | val le_seq_quad32_to_bytes_of_singleton (q:quad32) :
Lemma (le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q)) | [
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let le_seq_quad32_to_bytes_of_singleton (q:quad32) :
Lemma (le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q))
=
le_seq_quad32_to_bytes_reveal ();
reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes;
four_to_seq_LE_is_seq_four_to_seq_LE q;
() | val le_seq_quad32_to_bytes_of_singleton (q:quad32) :
Lemma (le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q))
let le_seq_quad32_to_bytes_of_singleton (q: quad32)
: Lemma (le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q)) = | false | null | true | le_seq_quad32_to_bytes_reveal ();
reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes;
four_to_seq_LE_is_seq_four_to_seq_LE q;
() | {
"checked_file": "Vale.Arch.Types.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Arch.Types.fst"
} | [
"lemma"
] | [
"Vale.Def.Types_s.quad32",
"Prims.unit",
"Vale.Def.Words.Seq.four_to_seq_LE_is_seq_four_to_seq_LE",
"Vale.Def.Types_s.nat32",
"FStar.Pervasives.reveal_opaque",
"FStar.Seq.Base.seq",
"Vale.Def.Types_s.nat8",
"Prims.l_True",
"Prims.eq2",
"Prims.int",
"FStar.Seq.Base.length",
"Vale.Def.Types_s.le_quad32_to_bytes",
"Vale.Def.Types_s.le_seq_quad32_to_bytes_reveal",
"Prims.squash",
"Vale.Def.Types_s.le_seq_quad32_to_bytes",
"FStar.Seq.Base.create",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.Arch.Types
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.TypesNative
open Vale.Lib.Seqs
open Vale.Def.Words_s
open Vale.Def.Words.Two
open FStar.Calc
let lemma_nat_to_two32 () =
assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000))
let lemma_BitwiseXorCommutative x y =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ y) (y *^ x)
let lemma_BitwiseXorWithZero n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ 0) n
let lemma_BitwiseXorCancel n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ n) 0
let lemma_BitwiseXorCancel64 (n:nat64) =
lemma_ixor_nth_all 64;
lemma_zero_nth 64;
lemma_equal_nth 64 (ixor n n) 0
let lemma_BitwiseXorAssociative x y z =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z)
let xor_lemmas () =
FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative;
FStar.Classical.forall_intro lemma_BitwiseXorWithZero;
FStar.Classical.forall_intro lemma_BitwiseXorCancel;
FStar.Classical.forall_intro lemma_BitwiseXorCancel64;
FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_quad32_xor () =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
xor_lemmas()
(*
let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) =
let q' = quad32_xor q q in
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
// REVIEW: Why are these necessary?
assert (q'.lo0 == nat32_xor q.lo0 q.lo0);
assert (q'.lo1 == nat32_xor q.lo1 q.lo1);
assert (q'.hi2 == nat32_xor q.hi2 q.hi2);
assert (q'.hi3 == nat32_xor q.hi3 q.hi3);
xor_lemmas()
in
FStar.Classical.forall_intro helper
*)
#pop-options
let lemma_reverse_reverse_bytes_nat32 (n:nat32) :
Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n)
=
reverse_bytes_nat32_reveal ();
let r = reverse_seq (nat32_to_be_bytes n) in
be_bytes_to_nat32_to_be_bytes r;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_reverse_bytes_quad32 (q:quad32) =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
reveal_reverse_bytes_quad32 q;
reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q);
()
#pop-options
let lemma_reverse_bytes_nat32 (_:unit) : Lemma
(reverse_bytes_nat32 0 == 0)
=
reverse_bytes_nat32_reveal ();
assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0);
()
let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma
(let z = Mkfour 0 0 0 0 in
reverse_bytes_quad32 z == z)
=
let z = Mkfour 0 0 0 0 in
calc (==) {
reverse_bytes_quad32 z;
== { reveal_reverse_bytes_quad32 z }
four_reverse (four_map reverse_bytes_nat32 z);
== { lemma_reverse_bytes_nat32() }
z;
};
()
let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) :
Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s)
=
reveal_reverse_bytes_nat32_seq s;
reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s);
assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s)
(*
let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) :
Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\
( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\
((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF))
=
if n.lo == 0 /\ n.hi == 0 then (
assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0);
()
) else (
()
);
()
let lemma_equality_check_helper_lo (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1);
()
let lemma_equality_check_helper_hi (q:quad32) :
Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3);
()
*)
let lemma_insert_nat64_properties (q:quad32) (n:nat64) :
Lemma ( (let q' = insert_nat64 q n 0 in
q'.hi2 == q.hi2 /\
q'.hi3 == q.hi3) /\
(let q' = insert_nat64 q n 1 in
q'.lo0 == q.lo0 /\
q'.lo1 == q.lo1))
=
insert_nat64_reveal ();
()
let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) :
Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 ==
Mkfour n0 n1 q.hi2 q.hi3 /\
insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 ==
Mkfour q.lo0 q.lo1 n0 n1 )
=
let open Vale.Def.Words.Two in
insert_nat64_reveal ();
()
let lemma_lo64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1))
=
lo64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_hi64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1))
=
hi64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma
(reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0)))
=
reverse_bytes_nat64_reveal ()
let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma
(requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1)
(ensures final == reverse_bytes_quad32 src)
=
reverse_bytes_nat64_reveal ();
let Mkfour x0 x1 x2 x3 = src in
let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in
let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in
calc (==) {
reverse_bytes_quad32 src;
== { reveal_reverse_bytes_quad32 src }
four_reverse (four_map reverse_bytes_nat32 src);
== {}
four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3));
== {}
Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0);
== { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3)
(reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) }
insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1;
== { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) }
insert_nat64 (insert_nat64 orig two32 0) two10 1;
};
calc (==) {
reverse_bytes_nat64 (hi64 src);
== { hi64_reveal ()}
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3));
== { lemma_reverse_bytes_nat64_32 x2 x3 }
two32;
};
calc (==) {
reverse_bytes_nat64 (lo64 src);
== { lo64_reveal () }
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1));
== { lemma_reverse_bytes_nat64_32 x0 x1 }
two10;
};
()
let lemma_equality_check_helper (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)
)
=
// lemma_equality_check_helper_lo q;
// lemma_equality_check_helper_hi q;
lo64_reveal ();
hi64_reveal ();
assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x);
()
let push_pop_xmm (x y:quad32) : Lemma
(let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in
x == x')
=
// assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1);
insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_insrq_extrq_relations (x y:quad32) :
Lemma (let z = insert_nat64 x (lo64 y) 0 in
z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\
(let z = insert_nat64 x (hi64 y) 1 in
z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3))
=
let open Vale.Def.Words.Two in
let z = insert_nat64 x (lo64 y) 0 in
insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
assert (z == insert_nat64_def x (lo64_def y) 0);
//assert (q'.hi2 == q.hi2);
//assert (q'.hi3 == q.hi3);
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0));
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0));
let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in
nat_to_two_to_nat n1 n2;
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0));
//assert (q'.lo1 == q.lo1);
//assert (q == q');
()
open Vale.Def.Words.Two
let le_bytes_to_nat64_to_bytes s =
le_nat64_to_bytes_reveal ();
le_bytes_to_nat64_reveal ()
let le_nat64_to_bytes_to_nat64 n =
le_nat64_to_bytes_reveal ();
le_bytes_to_nat64_reveal ()
let le_bytes_to_seq_quad32_empty () :
Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
()
let be_bytes_to_seq_quad32_empty () :
Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
()
#reset-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'"
let le_bytes_to_seq_quad32_to_bytes_one_quad b =
calc (==) {
le_bytes_to_seq_quad32 (le_quad32_to_bytes b);
== {reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32}
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_quad32_to_bytes b));
== {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes}
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))));
== {}
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)))));
== {seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))}
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_LE b)));
== {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_LE b)}
seq_to_seq_four_LE (four_to_seq_LE b);
== {four_to_seq_LE_is_seq_four_to_seq_LE b}
seq_to_seq_four_LE (seq_four_to_seq_LE (create 1 b));
== {}
create 1 b;
}
let be_bytes_to_seq_quad32_to_bytes_one_quad b =
calc (==) {
be_bytes_to_seq_quad32 (be_quad32_to_bytes b);
== {reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32}
seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (be_quad32_to_bytes b));
== {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes}
seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))));
== {}
seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b)))));
== {seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))}
seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_BE b)));
== {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE b)}
seq_to_seq_four_BE (four_to_seq_BE b);
== {four_to_seq_BE_is_seq_four_to_seq_BE b}
seq_to_seq_four_BE (seq_four_to_seq_BE (create 1 b));
== {}
create 1 b;
}
let le_bytes_to_seq_quad32_to_bytes (s:seq quad32) :
Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s)
(* This expands into showing:
le_bytes_to_seq_quad32 (le_quad32_to_bytes s)
== { definition of le_bytes_to_seq_quad32 }
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_seq_quad32_to_bytes s))
== { definition of le_seq_quad32_to_bytes }
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s)))
== { definition of seq_nat8_to_seq_nat32_LE }
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s))))
== { definition of seq_nat32_to_seq_nat8_LE }
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)))))
*)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_seq_quad32_to_bytes_reveal ();
seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_LE s);
seq_to_seq_four_to_seq_LE (s) ;
()
let be_bytes_to_seq_quad32_to_bytes (s:seq quad32) :
Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_BE s);
seq_to_seq_four_to_seq_BE (s) ;
()
let le_seq_quad32_to_bytes_to_seq_quad32 s =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_seq_quad32_to_bytes_reveal ();
calc (==) {
le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 s);
(==) { }
seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE (seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s)));
(==) { }
s;
}
(*
le_quad32_to_bytes (le_bytes_to_quad32 s)
== { definition of le_quad32_to_bytes }
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (le_bytes_to_quad32 s)))
== { definition of le_bytes_to_quad32 }
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)))))
*)
let le_quad32_to_bytes_to_quad32 s =
calc (==) {
le_quad32_to_bytes (le_bytes_to_quad32 s);
== {le_bytes_to_quad32_reveal ()}
le_quad32_to_bytes (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)));
== {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes}
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)))));
== {four_to_seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))}
seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)));
== {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_LE s)}
seq_four_to_seq_LE (seq_to_seq_four_LE s);
== {}
s;
}
let be_quad32_to_bytes_to_quad32 s =
calc (==) {
be_quad32_to_bytes (be_bytes_to_quad32 s);
== {be_bytes_to_quad32_reveal ()}
be_quad32_to_bytes (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)));
== {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes}
seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)))));
== {four_to_seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))}
seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)));
== {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_BE s)}
seq_four_to_seq_BE (seq_to_seq_four_BE s);
== {}
s;
}
let le_seq_quad32_to_bytes_of_singleton (q:quad32) :
Lemma (le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q)) | false | false | Vale.Arch.Types.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val le_seq_quad32_to_bytes_of_singleton (q:quad32) :
Lemma (le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q)) | [] | Vale.Arch.Types.le_seq_quad32_to_bytes_of_singleton | {
"file_name": "vale/code/arch/Vale.Arch.Types.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | q: Vale.Def.Types_s.quad32
-> FStar.Pervasives.Lemma
(ensures
Vale.Def.Types_s.le_quad32_to_bytes q ==
Vale.Def.Types_s.le_seq_quad32_to_bytes (FStar.Seq.Base.create 1 q)) | {
"end_col": 4,
"end_line": 446,
"start_col": 2,
"start_line": 443
} |
FStar.Pervasives.Lemma | val lemma_reverse_reverse_bytes_nat32_quad32 (s:quad32) :
Lemma (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s) == s)
[SMTPat (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s))] | [
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_reverse_reverse_bytes_nat32_quad32 (s:quad32) :
Lemma (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s) == s)
[SMTPat (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s))]
=
let s' = reverse_bytes_nat32_quad32 s in
let s''= reverse_bytes_nat32_quad32 s' in
assert (s''.lo0 == reverse_bytes_nat32 (reverse_bytes_nat32 s.lo0)); // OBSERVE
assert (s''.lo1 == reverse_bytes_nat32 (reverse_bytes_nat32 s.lo1)); // OBSERVE
assert (s''.hi2 == reverse_bytes_nat32 (reverse_bytes_nat32 s.hi2)); // OBSERVE
assert (s''.hi3 == reverse_bytes_nat32 (reverse_bytes_nat32 s.hi3)); // OBSERVE
() | val lemma_reverse_reverse_bytes_nat32_quad32 (s:quad32) :
Lemma (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s) == s)
[SMTPat (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s))]
let lemma_reverse_reverse_bytes_nat32_quad32 (s: quad32)
: Lemma (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s) == s)
[SMTPat (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s))] = | false | null | true | let s' = reverse_bytes_nat32_quad32 s in
let s'' = reverse_bytes_nat32_quad32 s' in
assert (s''.lo0 == reverse_bytes_nat32 (reverse_bytes_nat32 s.lo0));
assert (s''.lo1 == reverse_bytes_nat32 (reverse_bytes_nat32 s.lo1));
assert (s''.hi2 == reverse_bytes_nat32 (reverse_bytes_nat32 s.hi2));
assert (s''.hi3 == reverse_bytes_nat32 (reverse_bytes_nat32 s.hi3));
() | {
"checked_file": "Vale.Arch.Types.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Arch.Types.fst"
} | [
"lemma"
] | [
"Vale.Def.Types_s.quad32",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"Vale.Def.Types_s.nat32",
"Vale.Def.Words_s.__proj__Mkfour__item__hi3",
"Vale.Def.Types_s.reverse_bytes_nat32",
"Vale.Def.Words_s.__proj__Mkfour__item__hi2",
"Vale.Def.Words_s.__proj__Mkfour__item__lo1",
"Vale.Def.Words_s.__proj__Mkfour__item__lo0",
"Vale.Arch.Types.reverse_bytes_nat32_quad32",
"Prims.l_True",
"Prims.squash",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [] | module Vale.Arch.Types
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.TypesNative
open Vale.Lib.Seqs
open Vale.Def.Words_s
open Vale.Def.Words.Two
open FStar.Calc
let lemma_nat_to_two32 () =
assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000))
let lemma_BitwiseXorCommutative x y =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ y) (y *^ x)
let lemma_BitwiseXorWithZero n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ 0) n
let lemma_BitwiseXorCancel n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ n) 0
let lemma_BitwiseXorCancel64 (n:nat64) =
lemma_ixor_nth_all 64;
lemma_zero_nth 64;
lemma_equal_nth 64 (ixor n n) 0
let lemma_BitwiseXorAssociative x y z =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z)
let xor_lemmas () =
FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative;
FStar.Classical.forall_intro lemma_BitwiseXorWithZero;
FStar.Classical.forall_intro lemma_BitwiseXorCancel;
FStar.Classical.forall_intro lemma_BitwiseXorCancel64;
FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_quad32_xor () =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
xor_lemmas()
(*
let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) =
let q' = quad32_xor q q in
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
// REVIEW: Why are these necessary?
assert (q'.lo0 == nat32_xor q.lo0 q.lo0);
assert (q'.lo1 == nat32_xor q.lo1 q.lo1);
assert (q'.hi2 == nat32_xor q.hi2 q.hi2);
assert (q'.hi3 == nat32_xor q.hi3 q.hi3);
xor_lemmas()
in
FStar.Classical.forall_intro helper
*)
#pop-options
let lemma_reverse_reverse_bytes_nat32 (n:nat32) :
Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n)
=
reverse_bytes_nat32_reveal ();
let r = reverse_seq (nat32_to_be_bytes n) in
be_bytes_to_nat32_to_be_bytes r;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_reverse_bytes_quad32 (q:quad32) =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
reveal_reverse_bytes_quad32 q;
reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q);
()
#pop-options
let lemma_reverse_bytes_nat32 (_:unit) : Lemma
(reverse_bytes_nat32 0 == 0)
=
reverse_bytes_nat32_reveal ();
assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0);
()
let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma
(let z = Mkfour 0 0 0 0 in
reverse_bytes_quad32 z == z)
=
let z = Mkfour 0 0 0 0 in
calc (==) {
reverse_bytes_quad32 z;
== { reveal_reverse_bytes_quad32 z }
four_reverse (four_map reverse_bytes_nat32 z);
== { lemma_reverse_bytes_nat32() }
z;
};
()
let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) :
Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s)
=
reveal_reverse_bytes_nat32_seq s;
reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s);
assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s)
(*
let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) :
Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\
( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\
((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF))
=
if n.lo == 0 /\ n.hi == 0 then (
assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0);
()
) else (
()
);
()
let lemma_equality_check_helper_lo (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1);
()
let lemma_equality_check_helper_hi (q:quad32) :
Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3);
()
*)
let lemma_insert_nat64_properties (q:quad32) (n:nat64) :
Lemma ( (let q' = insert_nat64 q n 0 in
q'.hi2 == q.hi2 /\
q'.hi3 == q.hi3) /\
(let q' = insert_nat64 q n 1 in
q'.lo0 == q.lo0 /\
q'.lo1 == q.lo1))
=
insert_nat64_reveal ();
()
let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) :
Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 ==
Mkfour n0 n1 q.hi2 q.hi3 /\
insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 ==
Mkfour q.lo0 q.lo1 n0 n1 )
=
let open Vale.Def.Words.Two in
insert_nat64_reveal ();
()
let lemma_lo64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1))
=
lo64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_hi64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1))
=
hi64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma
(reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0)))
=
reverse_bytes_nat64_reveal ()
let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma
(requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1)
(ensures final == reverse_bytes_quad32 src)
=
reverse_bytes_nat64_reveal ();
let Mkfour x0 x1 x2 x3 = src in
let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in
let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in
calc (==) {
reverse_bytes_quad32 src;
== { reveal_reverse_bytes_quad32 src }
four_reverse (four_map reverse_bytes_nat32 src);
== {}
four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3));
== {}
Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0);
== { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3)
(reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) }
insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1;
== { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) }
insert_nat64 (insert_nat64 orig two32 0) two10 1;
};
calc (==) {
reverse_bytes_nat64 (hi64 src);
== { hi64_reveal ()}
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3));
== { lemma_reverse_bytes_nat64_32 x2 x3 }
two32;
};
calc (==) {
reverse_bytes_nat64 (lo64 src);
== { lo64_reveal () }
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1));
== { lemma_reverse_bytes_nat64_32 x0 x1 }
two10;
};
()
let lemma_equality_check_helper (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)
)
=
// lemma_equality_check_helper_lo q;
// lemma_equality_check_helper_hi q;
lo64_reveal ();
hi64_reveal ();
assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x);
()
let push_pop_xmm (x y:quad32) : Lemma
(let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in
x == x')
=
// assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1);
insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_insrq_extrq_relations (x y:quad32) :
Lemma (let z = insert_nat64 x (lo64 y) 0 in
z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\
(let z = insert_nat64 x (hi64 y) 1 in
z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3))
=
let open Vale.Def.Words.Two in
let z = insert_nat64 x (lo64 y) 0 in
insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
assert (z == insert_nat64_def x (lo64_def y) 0);
//assert (q'.hi2 == q.hi2);
//assert (q'.hi3 == q.hi3);
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0));
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0));
let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in
nat_to_two_to_nat n1 n2;
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0));
//assert (q'.lo1 == q.lo1);
//assert (q == q');
()
open Vale.Def.Words.Two
let le_bytes_to_nat64_to_bytes s =
le_nat64_to_bytes_reveal ();
le_bytes_to_nat64_reveal ()
let le_nat64_to_bytes_to_nat64 n =
le_nat64_to_bytes_reveal ();
le_bytes_to_nat64_reveal ()
let le_bytes_to_seq_quad32_empty () :
Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
()
let be_bytes_to_seq_quad32_empty () :
Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
()
#reset-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'"
let le_bytes_to_seq_quad32_to_bytes_one_quad b =
calc (==) {
le_bytes_to_seq_quad32 (le_quad32_to_bytes b);
== {reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32}
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_quad32_to_bytes b));
== {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes}
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))));
== {}
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)))));
== {seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))}
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_LE b)));
== {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_LE b)}
seq_to_seq_four_LE (four_to_seq_LE b);
== {four_to_seq_LE_is_seq_four_to_seq_LE b}
seq_to_seq_four_LE (seq_four_to_seq_LE (create 1 b));
== {}
create 1 b;
}
let be_bytes_to_seq_quad32_to_bytes_one_quad b =
calc (==) {
be_bytes_to_seq_quad32 (be_quad32_to_bytes b);
== {reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32}
seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (be_quad32_to_bytes b));
== {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes}
seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))));
== {}
seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b)))));
== {seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))}
seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_BE b)));
== {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE b)}
seq_to_seq_four_BE (four_to_seq_BE b);
== {four_to_seq_BE_is_seq_four_to_seq_BE b}
seq_to_seq_four_BE (seq_four_to_seq_BE (create 1 b));
== {}
create 1 b;
}
let le_bytes_to_seq_quad32_to_bytes (s:seq quad32) :
Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s)
(* This expands into showing:
le_bytes_to_seq_quad32 (le_quad32_to_bytes s)
== { definition of le_bytes_to_seq_quad32 }
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_seq_quad32_to_bytes s))
== { definition of le_seq_quad32_to_bytes }
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s)))
== { definition of seq_nat8_to_seq_nat32_LE }
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s))))
== { definition of seq_nat32_to_seq_nat8_LE }
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)))))
*)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_seq_quad32_to_bytes_reveal ();
seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_LE s);
seq_to_seq_four_to_seq_LE (s) ;
()
let be_bytes_to_seq_quad32_to_bytes (s:seq quad32) :
Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_BE s);
seq_to_seq_four_to_seq_BE (s) ;
()
let le_seq_quad32_to_bytes_to_seq_quad32 s =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_seq_quad32_to_bytes_reveal ();
calc (==) {
le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 s);
(==) { }
seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE (seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s)));
(==) { }
s;
}
(*
le_quad32_to_bytes (le_bytes_to_quad32 s)
== { definition of le_quad32_to_bytes }
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (le_bytes_to_quad32 s)))
== { definition of le_bytes_to_quad32 }
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)))))
*)
let le_quad32_to_bytes_to_quad32 s =
calc (==) {
le_quad32_to_bytes (le_bytes_to_quad32 s);
== {le_bytes_to_quad32_reveal ()}
le_quad32_to_bytes (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)));
== {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes}
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)))));
== {four_to_seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))}
seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)));
== {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_LE s)}
seq_four_to_seq_LE (seq_to_seq_four_LE s);
== {}
s;
}
let be_quad32_to_bytes_to_quad32 s =
calc (==) {
be_quad32_to_bytes (be_bytes_to_quad32 s);
== {be_bytes_to_quad32_reveal ()}
be_quad32_to_bytes (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)));
== {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes}
seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)))));
== {four_to_seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))}
seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)));
== {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_BE s)}
seq_four_to_seq_BE (seq_to_seq_four_BE s);
== {}
s;
}
let le_seq_quad32_to_bytes_of_singleton (q:quad32) :
Lemma (le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q))
=
le_seq_quad32_to_bytes_reveal ();
reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes;
four_to_seq_LE_is_seq_four_to_seq_LE q;
()
let be_seq_quad32_to_bytes_of_singleton (q:quad32) :
Lemma (be_quad32_to_bytes q == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 q)))
=
reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes;
four_to_seq_BE_is_seq_four_to_seq_BE q;
()
let le_quad32_to_bytes_injective ():
Lemma (forall b b' . le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b')
=
reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes;
let helper (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') =
if le_quad32_to_bytes b = le_quad32_to_bytes b' then (
let b1 = seq_map (nat_to_four 8) (four_to_seq_LE b) in
let b1' = seq_map (nat_to_four 8) (four_to_seq_LE b') in
assert (le_quad32_to_bytes b == seq_four_to_seq_LE b1);
assert (le_quad32_to_bytes b' == seq_four_to_seq_LE b1');
seq_four_to_seq_LE_injective_specific b1 b1';
assert (b1 == b1');
nat_to_four_8_injective();
seq_map_injective (nat_to_four 8) (four_to_seq_LE b) (four_to_seq_LE b');
assert ((four_to_seq_LE b) == (four_to_seq_LE b'));
four_to_seq_LE_injective nat32;
()
) else
()
in
FStar.Classical.forall_intro_2 helper
let be_quad32_to_bytes_injective ():
Lemma (forall b b' . be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b')
=
reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes;
let helper (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') =
if be_quad32_to_bytes b = be_quad32_to_bytes b' then (
let b1 = seq_map (nat_to_four 8) (four_to_seq_BE b) in
let b1' = seq_map (nat_to_four 8) (four_to_seq_BE b') in
assert (be_quad32_to_bytes b == seq_four_to_seq_BE b1);
assert (be_quad32_to_bytes b' == seq_four_to_seq_BE b1');
seq_four_to_seq_BE_injective_specific b1 b1';
assert (b1 == b1');
nat_to_four_8_injective();
seq_map_injective (nat_to_four 8) (four_to_seq_BE b) (four_to_seq_BE b');
assert ((four_to_seq_BE b) == (four_to_seq_BE b'));
four_to_seq_BE_injective nat32;
()
) else
()
in
FStar.Classical.forall_intro_2 helper
let le_quad32_to_bytes_injective_specific (b b':quad32) :
Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b')
=
le_quad32_to_bytes_injective()
let be_quad32_to_bytes_injective_specific (b b':quad32) :
Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b')
=
be_quad32_to_bytes_injective()
let le_seq_quad32_to_bytes_injective (b b':seq quad32) =
le_seq_quad32_to_bytes_reveal ();
seq_four_to_seq_LE_injective nat8;
nat_to_four_8_injective();
seq_map_injective (nat_to_four 8) (seq_four_to_seq_LE b) (seq_four_to_seq_LE b');
seq_four_to_seq_LE_injective_specific b b';
assert (equal b b')
let seq_to_four_LE_is_seq_to_seq_four_LE (#a:Type) (s:seq4 a) : Lemma
(create 1 (seq_to_four_LE s) == seq_to_seq_four_LE s)
=
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a);
assert (equal (create 1 (seq_to_four_LE s)) (seq_to_seq_four_LE s));
()
let seq_to_four_BE_is_seq_to_seq_four_BE (#a:Type) (s:seq4 a) : Lemma
(create 1 (seq_to_four_BE s) == seq_to_seq_four_BE s)
=
reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a);
assert (equal (create 1 (seq_to_four_BE s)) (seq_to_seq_four_BE s));
()
let le_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma
(requires q == le_bytes_to_quad32 b)
(ensures create 1 q == le_bytes_to_seq_quad32 b)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_bytes_to_quad32_reveal ();
seq_to_four_LE_is_seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b));
// q == le_bytes_to_quad32 b
// == seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b))
//
// == seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b))
// le_bytes_to_seq_quad32 b == seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE b)
()
let be_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma
(requires q == be_bytes_to_quad32 b)
(ensures create 1 q == be_bytes_to_seq_quad32 b)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
be_bytes_to_quad32_reveal ();
seq_to_four_BE_is_seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE b));
()
let le_bytes_to_quad32_to_bytes (q:quad32) :
Lemma(le_bytes_to_quad32 (le_quad32_to_bytes q) == q)
=
le_seq_quad32_to_bytes_of_singleton q; // ==> le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q)
let b = le_quad32_to_bytes q in
let q' = le_bytes_to_quad32 b in
le_bytes_to_seq_quad_of_singleton q' b; // ==> create 1 q' == le_bytes_to_seq_quad32 b
// == le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes (create 1 q))
le_bytes_to_seq_quad32_to_bytes (create 1 q); // == create 1 q
//assert (create 1 q == create 1 q');
//assert (equal (create 1 q) (create 1 q'));
assert (q == index (create 1 q) 0); // OBSERVE
assert (q == q');
()
let be_bytes_to_quad32_to_bytes (q:quad32) :
Lemma (be_bytes_to_quad32 (be_quad32_to_bytes q) == q)
=
be_bytes_to_quad32_reveal ();
let q':quad32 = be_bytes_to_quad32 (be_quad32_to_bytes q) in
seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE q));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE q);
seq_to_four_to_seq_BE q;
()
let lemma_reverse_reverse_bytes_nat32_quad32 (s:quad32) :
Lemma (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s) == s) | false | false | Vale.Arch.Types.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_reverse_reverse_bytes_nat32_quad32 (s:quad32) :
Lemma (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s) == s)
[SMTPat (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s))] | [] | Vale.Arch.Types.lemma_reverse_reverse_bytes_nat32_quad32 | {
"file_name": "vale/code/arch/Vale.Arch.Types.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | s: Vale.Def.Types_s.quad32
-> FStar.Pervasives.Lemma
(ensures
Vale.Arch.Types.reverse_bytes_nat32_quad32 (Vale.Arch.Types.reverse_bytes_nat32_quad32 s) ==
s)
[
SMTPat (Vale.Arch.Types.reverse_bytes_nat32_quad32 (Vale.Arch.Types.reverse_bytes_nat32_quad32
s))
] | {
"end_col": 4,
"end_line": 590,
"start_col": 3,
"start_line": 583
} |
FStar.Pervasives.Lemma | val lemma_BitwiseXorWithZero (n:nat32) : Lemma (n *^ 0 == n) | [
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_BitwiseXorWithZero n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ 0) n | val lemma_BitwiseXorWithZero (n:nat32) : Lemma (n *^ 0 == n)
let lemma_BitwiseXorWithZero n = | false | null | true | lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ 0) n | {
"checked_file": "Vale.Arch.Types.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Arch.Types.fst"
} | [
"lemma"
] | [
"Vale.Def.Words_s.nat32",
"Vale.Arch.TypesNative.lemma_equal_nth",
"Vale.Arch.Types.op_Star_Hat",
"Prims.unit",
"Vale.Arch.TypesNative.lemma_zero_nth",
"Vale.Arch.TypesNative.lemma_ixor_nth_all"
] | [] | module Vale.Arch.Types
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.TypesNative
open Vale.Lib.Seqs
open Vale.Def.Words_s
open Vale.Def.Words.Two
open FStar.Calc
let lemma_nat_to_two32 () =
assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000))
let lemma_BitwiseXorCommutative x y =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ y) (y *^ x) | false | false | Vale.Arch.Types.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_BitwiseXorWithZero (n:nat32) : Lemma (n *^ 0 == n) | [] | Vale.Arch.Types.lemma_BitwiseXorWithZero | {
"file_name": "vale/code/arch/Vale.Arch.Types.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | n: Vale.Def.Words_s.nat32 -> FStar.Pervasives.Lemma (ensures n *^ 0 == n) | {
"end_col": 31,
"end_line": 23,
"start_col": 2,
"start_line": 21
} |
FStar.Pervasives.Lemma | val lemma_insert_nat64_properties (q:quad32) (n:nat64) :
Lemma ( (let q' = insert_nat64 q n 0 in
q'.hi2 == q.hi2 /\
q'.hi3 == q.hi3) /\
(let q' = insert_nat64 q n 1 in
q'.lo0 == q.lo0 /\
q'.lo1 == q.lo1))
[SMTPat (insert_nat64 q n)] | [
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_insert_nat64_properties (q:quad32) (n:nat64) :
Lemma ( (let q' = insert_nat64 q n 0 in
q'.hi2 == q.hi2 /\
q'.hi3 == q.hi3) /\
(let q' = insert_nat64 q n 1 in
q'.lo0 == q.lo0 /\
q'.lo1 == q.lo1))
=
insert_nat64_reveal ();
() | val lemma_insert_nat64_properties (q:quad32) (n:nat64) :
Lemma ( (let q' = insert_nat64 q n 0 in
q'.hi2 == q.hi2 /\
q'.hi3 == q.hi3) /\
(let q' = insert_nat64 q n 1 in
q'.lo0 == q.lo0 /\
q'.lo1 == q.lo1))
[SMTPat (insert_nat64 q n)]
let lemma_insert_nat64_properties (q: quad32) (n: nat64)
: Lemma
((let q' = insert_nat64 q n 0 in
q'.hi2 == q.hi2 /\ q'.hi3 == q.hi3) /\
(let q' = insert_nat64 q n 1 in
q'.lo0 == q.lo0 /\ q'.lo1 == q.lo1)) = | false | null | true | insert_nat64_reveal ();
() | {
"checked_file": "Vale.Arch.Types.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Arch.Types.fst"
} | [
"lemma"
] | [
"Vale.Def.Types_s.quad32",
"Vale.Def.Words_s.nat64",
"Prims.unit",
"Vale.Def.Types_s.insert_nat64_reveal",
"Prims.l_True",
"Prims.squash",
"Prims.l_and",
"Prims.eq2",
"Vale.Def.Types_s.nat32",
"Vale.Def.Words_s.__proj__Mkfour__item__hi2",
"Vale.Def.Words_s.__proj__Mkfour__item__hi3",
"Vale.Def.Types_s.insert_nat64",
"Vale.Def.Words_s.__proj__Mkfour__item__lo0",
"Vale.Def.Words_s.__proj__Mkfour__item__lo1",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.Arch.Types
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.TypesNative
open Vale.Lib.Seqs
open Vale.Def.Words_s
open Vale.Def.Words.Two
open FStar.Calc
let lemma_nat_to_two32 () =
assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000))
let lemma_BitwiseXorCommutative x y =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ y) (y *^ x)
let lemma_BitwiseXorWithZero n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ 0) n
let lemma_BitwiseXorCancel n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ n) 0
let lemma_BitwiseXorCancel64 (n:nat64) =
lemma_ixor_nth_all 64;
lemma_zero_nth 64;
lemma_equal_nth 64 (ixor n n) 0
let lemma_BitwiseXorAssociative x y z =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z)
let xor_lemmas () =
FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative;
FStar.Classical.forall_intro lemma_BitwiseXorWithZero;
FStar.Classical.forall_intro lemma_BitwiseXorCancel;
FStar.Classical.forall_intro lemma_BitwiseXorCancel64;
FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_quad32_xor () =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
xor_lemmas()
(*
let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) =
let q' = quad32_xor q q in
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
// REVIEW: Why are these necessary?
assert (q'.lo0 == nat32_xor q.lo0 q.lo0);
assert (q'.lo1 == nat32_xor q.lo1 q.lo1);
assert (q'.hi2 == nat32_xor q.hi2 q.hi2);
assert (q'.hi3 == nat32_xor q.hi3 q.hi3);
xor_lemmas()
in
FStar.Classical.forall_intro helper
*)
#pop-options
let lemma_reverse_reverse_bytes_nat32 (n:nat32) :
Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n)
=
reverse_bytes_nat32_reveal ();
let r = reverse_seq (nat32_to_be_bytes n) in
be_bytes_to_nat32_to_be_bytes r;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_reverse_bytes_quad32 (q:quad32) =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
reveal_reverse_bytes_quad32 q;
reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q);
()
#pop-options
let lemma_reverse_bytes_nat32 (_:unit) : Lemma
(reverse_bytes_nat32 0 == 0)
=
reverse_bytes_nat32_reveal ();
assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0);
()
let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma
(let z = Mkfour 0 0 0 0 in
reverse_bytes_quad32 z == z)
=
let z = Mkfour 0 0 0 0 in
calc (==) {
reverse_bytes_quad32 z;
== { reveal_reverse_bytes_quad32 z }
four_reverse (four_map reverse_bytes_nat32 z);
== { lemma_reverse_bytes_nat32() }
z;
};
()
let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) :
Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s)
=
reveal_reverse_bytes_nat32_seq s;
reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s);
assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s)
(*
let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) :
Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\
( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\
((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF))
=
if n.lo == 0 /\ n.hi == 0 then (
assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0);
()
) else (
()
);
()
let lemma_equality_check_helper_lo (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1);
()
let lemma_equality_check_helper_hi (q:quad32) :
Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3);
()
*)
let lemma_insert_nat64_properties (q:quad32) (n:nat64) :
Lemma ( (let q' = insert_nat64 q n 0 in
q'.hi2 == q.hi2 /\
q'.hi3 == q.hi3) /\
(let q' = insert_nat64 q n 1 in
q'.lo0 == q.lo0 /\
q'.lo1 == q.lo1)) | false | false | Vale.Arch.Types.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_insert_nat64_properties (q:quad32) (n:nat64) :
Lemma ( (let q' = insert_nat64 q n 0 in
q'.hi2 == q.hi2 /\
q'.hi3 == q.hi3) /\
(let q' = insert_nat64 q n 1 in
q'.lo0 == q.lo0 /\
q'.lo1 == q.lo1))
[SMTPat (insert_nat64 q n)] | [] | Vale.Arch.Types.lemma_insert_nat64_properties | {
"file_name": "vale/code/arch/Vale.Arch.Types.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | q: Vale.Def.Types_s.quad32 -> n: Vale.Def.Words_s.nat64
-> FStar.Pervasives.Lemma
(ensures
(let q' = Vale.Def.Types_s.insert_nat64 q n 0 in
Mkfour?.hi2 q' == Mkfour?.hi2 q /\ Mkfour?.hi3 q' == Mkfour?.hi3 q) /\
(let q' = Vale.Def.Types_s.insert_nat64 q n 1 in
Mkfour?.lo0 q' == Mkfour?.lo0 q /\ Mkfour?.lo1 q' == Mkfour?.lo1 q))
[SMTPat (Vale.Def.Types_s.insert_nat64 q n)] | {
"end_col": 4,
"end_line": 155,
"start_col": 2,
"start_line": 154
} |
FStar.Pervasives.Lemma | val lemma_reverse_bytes_quad32_zero (_:unit) : Lemma
(let z = Mkfour 0 0 0 0 in
reverse_bytes_quad32 z == z) | [
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma
(let z = Mkfour 0 0 0 0 in
reverse_bytes_quad32 z == z)
=
let z = Mkfour 0 0 0 0 in
calc (==) {
reverse_bytes_quad32 z;
== { reveal_reverse_bytes_quad32 z }
four_reverse (four_map reverse_bytes_nat32 z);
== { lemma_reverse_bytes_nat32() }
z;
};
() | val lemma_reverse_bytes_quad32_zero (_:unit) : Lemma
(let z = Mkfour 0 0 0 0 in
reverse_bytes_quad32 z == z)
let lemma_reverse_bytes_quad32_zero (_: unit)
: Lemma
(let z = Mkfour 0 0 0 0 in
reverse_bytes_quad32 z == z) = | false | null | true | let z = Mkfour 0 0 0 0 in
calc ( == ) {
reverse_bytes_quad32 z;
( == ) { reveal_reverse_bytes_quad32 z }
four_reverse (four_map reverse_bytes_nat32 z);
( == ) { lemma_reverse_bytes_nat32 () }
z;
};
() | {
"checked_file": "Vale.Arch.Types.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Arch.Types.fst"
} | [
"lemma"
] | [
"Prims.unit",
"FStar.Calc.calc_finish",
"Vale.Def.Types_s.quad32",
"Prims.eq2",
"Vale.Def.Types_s.reverse_bytes_quad32",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"FStar.Calc.calc_step",
"Vale.Def.Words.Four_s.four_reverse",
"Vale.Def.Types_s.nat32",
"Vale.Def.Words.Four_s.four_map",
"Vale.Def.Types_s.reverse_bytes_nat32",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Vale.Def.Types_s.reveal_reverse_bytes_quad32",
"Prims.squash",
"Vale.Arch.Types.lemma_reverse_bytes_nat32",
"Vale.Def.Words_s.four",
"Vale.Def.Words_s.nat32",
"Vale.Def.Words_s.Mkfour",
"Prims.l_True",
"FStar.Pervasives.pattern"
] | [] | module Vale.Arch.Types
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.TypesNative
open Vale.Lib.Seqs
open Vale.Def.Words_s
open Vale.Def.Words.Two
open FStar.Calc
let lemma_nat_to_two32 () =
assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000))
let lemma_BitwiseXorCommutative x y =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ y) (y *^ x)
let lemma_BitwiseXorWithZero n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ 0) n
let lemma_BitwiseXorCancel n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ n) 0
let lemma_BitwiseXorCancel64 (n:nat64) =
lemma_ixor_nth_all 64;
lemma_zero_nth 64;
lemma_equal_nth 64 (ixor n n) 0
let lemma_BitwiseXorAssociative x y z =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z)
let xor_lemmas () =
FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative;
FStar.Classical.forall_intro lemma_BitwiseXorWithZero;
FStar.Classical.forall_intro lemma_BitwiseXorCancel;
FStar.Classical.forall_intro lemma_BitwiseXorCancel64;
FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_quad32_xor () =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
xor_lemmas()
(*
let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) =
let q' = quad32_xor q q in
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
// REVIEW: Why are these necessary?
assert (q'.lo0 == nat32_xor q.lo0 q.lo0);
assert (q'.lo1 == nat32_xor q.lo1 q.lo1);
assert (q'.hi2 == nat32_xor q.hi2 q.hi2);
assert (q'.hi3 == nat32_xor q.hi3 q.hi3);
xor_lemmas()
in
FStar.Classical.forall_intro helper
*)
#pop-options
let lemma_reverse_reverse_bytes_nat32 (n:nat32) :
Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n)
=
reverse_bytes_nat32_reveal ();
let r = reverse_seq (nat32_to_be_bytes n) in
be_bytes_to_nat32_to_be_bytes r;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_reverse_bytes_quad32 (q:quad32) =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
reveal_reverse_bytes_quad32 q;
reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q);
()
#pop-options
let lemma_reverse_bytes_nat32 (_:unit) : Lemma
(reverse_bytes_nat32 0 == 0)
=
reverse_bytes_nat32_reveal ();
assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0);
()
let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma
(let z = Mkfour 0 0 0 0 in | false | false | Vale.Arch.Types.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_reverse_bytes_quad32_zero (_:unit) : Lemma
(let z = Mkfour 0 0 0 0 in
reverse_bytes_quad32 z == z) | [] | Vale.Arch.Types.lemma_reverse_bytes_quad32_zero | {
"file_name": "vale/code/arch/Vale.Arch.Types.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | _: Prims.unit
-> FStar.Pervasives.Lemma
(ensures
(let z = Vale.Def.Words_s.Mkfour 0 0 0 0 in
Vale.Def.Types_s.reverse_bytes_quad32 z == z)) | {
"end_col": 4,
"end_line": 104,
"start_col": 3,
"start_line": 95
} |
FStar.Pervasives.Lemma | val le_quad32_to_bytes_injective_specific (b b':quad32) :
Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') | [
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let le_quad32_to_bytes_injective_specific (b b':quad32) :
Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b')
=
le_quad32_to_bytes_injective() | val le_quad32_to_bytes_injective_specific (b b':quad32) :
Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b')
let le_quad32_to_bytes_injective_specific (b b': quad32)
: Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = | false | null | true | le_quad32_to_bytes_injective () | {
"checked_file": "Vale.Arch.Types.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Arch.Types.fst"
} | [
"lemma"
] | [
"Vale.Def.Types_s.quad32",
"Vale.Arch.Types.le_quad32_to_bytes_injective",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.l_imp",
"Prims.eq2",
"FStar.Seq.Base.seq",
"Vale.Def.Types_s.nat8",
"Vale.Def.Types_s.le_quad32_to_bytes",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.Arch.Types
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.TypesNative
open Vale.Lib.Seqs
open Vale.Def.Words_s
open Vale.Def.Words.Two
open FStar.Calc
let lemma_nat_to_two32 () =
assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000))
let lemma_BitwiseXorCommutative x y =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ y) (y *^ x)
let lemma_BitwiseXorWithZero n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ 0) n
let lemma_BitwiseXorCancel n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ n) 0
let lemma_BitwiseXorCancel64 (n:nat64) =
lemma_ixor_nth_all 64;
lemma_zero_nth 64;
lemma_equal_nth 64 (ixor n n) 0
let lemma_BitwiseXorAssociative x y z =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z)
let xor_lemmas () =
FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative;
FStar.Classical.forall_intro lemma_BitwiseXorWithZero;
FStar.Classical.forall_intro lemma_BitwiseXorCancel;
FStar.Classical.forall_intro lemma_BitwiseXorCancel64;
FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_quad32_xor () =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
xor_lemmas()
(*
let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) =
let q' = quad32_xor q q in
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
// REVIEW: Why are these necessary?
assert (q'.lo0 == nat32_xor q.lo0 q.lo0);
assert (q'.lo1 == nat32_xor q.lo1 q.lo1);
assert (q'.hi2 == nat32_xor q.hi2 q.hi2);
assert (q'.hi3 == nat32_xor q.hi3 q.hi3);
xor_lemmas()
in
FStar.Classical.forall_intro helper
*)
#pop-options
let lemma_reverse_reverse_bytes_nat32 (n:nat32) :
Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n)
=
reverse_bytes_nat32_reveal ();
let r = reverse_seq (nat32_to_be_bytes n) in
be_bytes_to_nat32_to_be_bytes r;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_reverse_bytes_quad32 (q:quad32) =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
reveal_reverse_bytes_quad32 q;
reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q);
()
#pop-options
let lemma_reverse_bytes_nat32 (_:unit) : Lemma
(reverse_bytes_nat32 0 == 0)
=
reverse_bytes_nat32_reveal ();
assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0);
()
let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma
(let z = Mkfour 0 0 0 0 in
reverse_bytes_quad32 z == z)
=
let z = Mkfour 0 0 0 0 in
calc (==) {
reverse_bytes_quad32 z;
== { reveal_reverse_bytes_quad32 z }
four_reverse (four_map reverse_bytes_nat32 z);
== { lemma_reverse_bytes_nat32() }
z;
};
()
let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) :
Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s)
=
reveal_reverse_bytes_nat32_seq s;
reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s);
assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s)
(*
let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) :
Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\
( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\
((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF))
=
if n.lo == 0 /\ n.hi == 0 then (
assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0);
()
) else (
()
);
()
let lemma_equality_check_helper_lo (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1);
()
let lemma_equality_check_helper_hi (q:quad32) :
Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3);
()
*)
let lemma_insert_nat64_properties (q:quad32) (n:nat64) :
Lemma ( (let q' = insert_nat64 q n 0 in
q'.hi2 == q.hi2 /\
q'.hi3 == q.hi3) /\
(let q' = insert_nat64 q n 1 in
q'.lo0 == q.lo0 /\
q'.lo1 == q.lo1))
=
insert_nat64_reveal ();
()
let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) :
Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 ==
Mkfour n0 n1 q.hi2 q.hi3 /\
insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 ==
Mkfour q.lo0 q.lo1 n0 n1 )
=
let open Vale.Def.Words.Two in
insert_nat64_reveal ();
()
let lemma_lo64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1))
=
lo64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_hi64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1))
=
hi64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma
(reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0)))
=
reverse_bytes_nat64_reveal ()
let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma
(requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1)
(ensures final == reverse_bytes_quad32 src)
=
reverse_bytes_nat64_reveal ();
let Mkfour x0 x1 x2 x3 = src in
let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in
let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in
calc (==) {
reverse_bytes_quad32 src;
== { reveal_reverse_bytes_quad32 src }
four_reverse (four_map reverse_bytes_nat32 src);
== {}
four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3));
== {}
Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0);
== { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3)
(reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) }
insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1;
== { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) }
insert_nat64 (insert_nat64 orig two32 0) two10 1;
};
calc (==) {
reverse_bytes_nat64 (hi64 src);
== { hi64_reveal ()}
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3));
== { lemma_reverse_bytes_nat64_32 x2 x3 }
two32;
};
calc (==) {
reverse_bytes_nat64 (lo64 src);
== { lo64_reveal () }
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1));
== { lemma_reverse_bytes_nat64_32 x0 x1 }
two10;
};
()
let lemma_equality_check_helper (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)
)
=
// lemma_equality_check_helper_lo q;
// lemma_equality_check_helper_hi q;
lo64_reveal ();
hi64_reveal ();
assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x);
()
let push_pop_xmm (x y:quad32) : Lemma
(let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in
x == x')
=
// assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1);
insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_insrq_extrq_relations (x y:quad32) :
Lemma (let z = insert_nat64 x (lo64 y) 0 in
z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\
(let z = insert_nat64 x (hi64 y) 1 in
z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3))
=
let open Vale.Def.Words.Two in
let z = insert_nat64 x (lo64 y) 0 in
insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
assert (z == insert_nat64_def x (lo64_def y) 0);
//assert (q'.hi2 == q.hi2);
//assert (q'.hi3 == q.hi3);
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0));
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0));
let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in
nat_to_two_to_nat n1 n2;
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0));
//assert (q'.lo1 == q.lo1);
//assert (q == q');
()
open Vale.Def.Words.Two
let le_bytes_to_nat64_to_bytes s =
le_nat64_to_bytes_reveal ();
le_bytes_to_nat64_reveal ()
let le_nat64_to_bytes_to_nat64 n =
le_nat64_to_bytes_reveal ();
le_bytes_to_nat64_reveal ()
let le_bytes_to_seq_quad32_empty () :
Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
()
let be_bytes_to_seq_quad32_empty () :
Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
()
#reset-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'"
let le_bytes_to_seq_quad32_to_bytes_one_quad b =
calc (==) {
le_bytes_to_seq_quad32 (le_quad32_to_bytes b);
== {reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32}
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_quad32_to_bytes b));
== {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes}
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))));
== {}
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)))));
== {seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))}
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_LE b)));
== {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_LE b)}
seq_to_seq_four_LE (four_to_seq_LE b);
== {four_to_seq_LE_is_seq_four_to_seq_LE b}
seq_to_seq_four_LE (seq_four_to_seq_LE (create 1 b));
== {}
create 1 b;
}
let be_bytes_to_seq_quad32_to_bytes_one_quad b =
calc (==) {
be_bytes_to_seq_quad32 (be_quad32_to_bytes b);
== {reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32}
seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (be_quad32_to_bytes b));
== {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes}
seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))));
== {}
seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b)))));
== {seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))}
seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_BE b)));
== {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE b)}
seq_to_seq_four_BE (four_to_seq_BE b);
== {four_to_seq_BE_is_seq_four_to_seq_BE b}
seq_to_seq_four_BE (seq_four_to_seq_BE (create 1 b));
== {}
create 1 b;
}
let le_bytes_to_seq_quad32_to_bytes (s:seq quad32) :
Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s)
(* This expands into showing:
le_bytes_to_seq_quad32 (le_quad32_to_bytes s)
== { definition of le_bytes_to_seq_quad32 }
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_seq_quad32_to_bytes s))
== { definition of le_seq_quad32_to_bytes }
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s)))
== { definition of seq_nat8_to_seq_nat32_LE }
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s))))
== { definition of seq_nat32_to_seq_nat8_LE }
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)))))
*)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_seq_quad32_to_bytes_reveal ();
seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_LE s);
seq_to_seq_four_to_seq_LE (s) ;
()
let be_bytes_to_seq_quad32_to_bytes (s:seq quad32) :
Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_BE s);
seq_to_seq_four_to_seq_BE (s) ;
()
let le_seq_quad32_to_bytes_to_seq_quad32 s =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_seq_quad32_to_bytes_reveal ();
calc (==) {
le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 s);
(==) { }
seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE (seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s)));
(==) { }
s;
}
(*
le_quad32_to_bytes (le_bytes_to_quad32 s)
== { definition of le_quad32_to_bytes }
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (le_bytes_to_quad32 s)))
== { definition of le_bytes_to_quad32 }
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)))))
*)
let le_quad32_to_bytes_to_quad32 s =
calc (==) {
le_quad32_to_bytes (le_bytes_to_quad32 s);
== {le_bytes_to_quad32_reveal ()}
le_quad32_to_bytes (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)));
== {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes}
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)))));
== {four_to_seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))}
seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)));
== {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_LE s)}
seq_four_to_seq_LE (seq_to_seq_four_LE s);
== {}
s;
}
let be_quad32_to_bytes_to_quad32 s =
calc (==) {
be_quad32_to_bytes (be_bytes_to_quad32 s);
== {be_bytes_to_quad32_reveal ()}
be_quad32_to_bytes (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)));
== {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes}
seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)))));
== {four_to_seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))}
seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)));
== {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_BE s)}
seq_four_to_seq_BE (seq_to_seq_four_BE s);
== {}
s;
}
let le_seq_quad32_to_bytes_of_singleton (q:quad32) :
Lemma (le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q))
=
le_seq_quad32_to_bytes_reveal ();
reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes;
four_to_seq_LE_is_seq_four_to_seq_LE q;
()
let be_seq_quad32_to_bytes_of_singleton (q:quad32) :
Lemma (be_quad32_to_bytes q == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 q)))
=
reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes;
four_to_seq_BE_is_seq_four_to_seq_BE q;
()
let le_quad32_to_bytes_injective ():
Lemma (forall b b' . le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b')
=
reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes;
let helper (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') =
if le_quad32_to_bytes b = le_quad32_to_bytes b' then (
let b1 = seq_map (nat_to_four 8) (four_to_seq_LE b) in
let b1' = seq_map (nat_to_four 8) (four_to_seq_LE b') in
assert (le_quad32_to_bytes b == seq_four_to_seq_LE b1);
assert (le_quad32_to_bytes b' == seq_four_to_seq_LE b1');
seq_four_to_seq_LE_injective_specific b1 b1';
assert (b1 == b1');
nat_to_four_8_injective();
seq_map_injective (nat_to_four 8) (four_to_seq_LE b) (four_to_seq_LE b');
assert ((four_to_seq_LE b) == (four_to_seq_LE b'));
four_to_seq_LE_injective nat32;
()
) else
()
in
FStar.Classical.forall_intro_2 helper
let be_quad32_to_bytes_injective ():
Lemma (forall b b' . be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b')
=
reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes;
let helper (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') =
if be_quad32_to_bytes b = be_quad32_to_bytes b' then (
let b1 = seq_map (nat_to_four 8) (four_to_seq_BE b) in
let b1' = seq_map (nat_to_four 8) (four_to_seq_BE b') in
assert (be_quad32_to_bytes b == seq_four_to_seq_BE b1);
assert (be_quad32_to_bytes b' == seq_four_to_seq_BE b1');
seq_four_to_seq_BE_injective_specific b1 b1';
assert (b1 == b1');
nat_to_four_8_injective();
seq_map_injective (nat_to_four 8) (four_to_seq_BE b) (four_to_seq_BE b');
assert ((four_to_seq_BE b) == (four_to_seq_BE b'));
four_to_seq_BE_injective nat32;
()
) else
()
in
FStar.Classical.forall_intro_2 helper
let le_quad32_to_bytes_injective_specific (b b':quad32) :
Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') | false | false | Vale.Arch.Types.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val le_quad32_to_bytes_injective_specific (b b':quad32) :
Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') | [] | Vale.Arch.Types.le_quad32_to_bytes_injective_specific | {
"file_name": "vale/code/arch/Vale.Arch.Types.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b: Vale.Def.Types_s.quad32 -> b': Vale.Def.Types_s.quad32
-> FStar.Pervasives.Lemma
(ensures
Vale.Def.Types_s.le_quad32_to_bytes b == Vale.Def.Types_s.le_quad32_to_bytes b' ==> b == b') | {
"end_col": 32,
"end_line": 502,
"start_col": 2,
"start_line": 502
} |
FStar.Pervasives.Lemma | val seq_to_four_BE_is_seq_to_seq_four_BE (#a:Type) (s:seq4 a) : Lemma
(create 1 (seq_to_four_BE s) == seq_to_seq_four_BE s) | [
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let seq_to_four_BE_is_seq_to_seq_four_BE (#a:Type) (s:seq4 a) : Lemma
(create 1 (seq_to_four_BE s) == seq_to_seq_four_BE s)
=
reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a);
assert (equal (create 1 (seq_to_four_BE s)) (seq_to_seq_four_BE s));
() | val seq_to_four_BE_is_seq_to_seq_four_BE (#a:Type) (s:seq4 a) : Lemma
(create 1 (seq_to_four_BE s) == seq_to_seq_four_BE s)
let seq_to_four_BE_is_seq_to_seq_four_BE (#a: Type) (s: seq4 a)
: Lemma (create 1 (seq_to_four_BE s) == seq_to_seq_four_BE s) = | false | null | true | reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a);
assert (equal (create 1 (seq_to_four_BE s)) (seq_to_seq_four_BE s));
() | {
"checked_file": "Vale.Arch.Types.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Arch.Types.fst"
} | [
"lemma"
] | [
"Vale.Def.Words.Seq_s.seq4",
"Prims.unit",
"Prims._assert",
"FStar.Seq.Base.equal",
"Vale.Def.Words_s.four",
"FStar.Seq.Base.create",
"Vale.Def.Words.Seq_s.seq_to_four_BE",
"Vale.Def.Words.Seq_s.seq_to_seq_four_BE",
"FStar.Pervasives.reveal_opaque",
"FStar.Seq.Base.seq",
"Prims.eq2",
"Prims.int",
"Prims.op_Modulus",
"FStar.Seq.Base.length",
"Prims.op_Division",
"Prims.l_True",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.Arch.Types
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.TypesNative
open Vale.Lib.Seqs
open Vale.Def.Words_s
open Vale.Def.Words.Two
open FStar.Calc
let lemma_nat_to_two32 () =
assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000))
let lemma_BitwiseXorCommutative x y =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ y) (y *^ x)
let lemma_BitwiseXorWithZero n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ 0) n
let lemma_BitwiseXorCancel n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ n) 0
let lemma_BitwiseXorCancel64 (n:nat64) =
lemma_ixor_nth_all 64;
lemma_zero_nth 64;
lemma_equal_nth 64 (ixor n n) 0
let lemma_BitwiseXorAssociative x y z =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z)
let xor_lemmas () =
FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative;
FStar.Classical.forall_intro lemma_BitwiseXorWithZero;
FStar.Classical.forall_intro lemma_BitwiseXorCancel;
FStar.Classical.forall_intro lemma_BitwiseXorCancel64;
FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_quad32_xor () =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
xor_lemmas()
(*
let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) =
let q' = quad32_xor q q in
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
// REVIEW: Why are these necessary?
assert (q'.lo0 == nat32_xor q.lo0 q.lo0);
assert (q'.lo1 == nat32_xor q.lo1 q.lo1);
assert (q'.hi2 == nat32_xor q.hi2 q.hi2);
assert (q'.hi3 == nat32_xor q.hi3 q.hi3);
xor_lemmas()
in
FStar.Classical.forall_intro helper
*)
#pop-options
let lemma_reverse_reverse_bytes_nat32 (n:nat32) :
Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n)
=
reverse_bytes_nat32_reveal ();
let r = reverse_seq (nat32_to_be_bytes n) in
be_bytes_to_nat32_to_be_bytes r;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_reverse_bytes_quad32 (q:quad32) =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
reveal_reverse_bytes_quad32 q;
reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q);
()
#pop-options
let lemma_reverse_bytes_nat32 (_:unit) : Lemma
(reverse_bytes_nat32 0 == 0)
=
reverse_bytes_nat32_reveal ();
assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0);
()
let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma
(let z = Mkfour 0 0 0 0 in
reverse_bytes_quad32 z == z)
=
let z = Mkfour 0 0 0 0 in
calc (==) {
reverse_bytes_quad32 z;
== { reveal_reverse_bytes_quad32 z }
four_reverse (four_map reverse_bytes_nat32 z);
== { lemma_reverse_bytes_nat32() }
z;
};
()
let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) :
Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s)
=
reveal_reverse_bytes_nat32_seq s;
reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s);
assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s)
(*
let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) :
Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\
( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\
((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF))
=
if n.lo == 0 /\ n.hi == 0 then (
assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0);
()
) else (
()
);
()
let lemma_equality_check_helper_lo (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1);
()
let lemma_equality_check_helper_hi (q:quad32) :
Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3);
()
*)
let lemma_insert_nat64_properties (q:quad32) (n:nat64) :
Lemma ( (let q' = insert_nat64 q n 0 in
q'.hi2 == q.hi2 /\
q'.hi3 == q.hi3) /\
(let q' = insert_nat64 q n 1 in
q'.lo0 == q.lo0 /\
q'.lo1 == q.lo1))
=
insert_nat64_reveal ();
()
let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) :
Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 ==
Mkfour n0 n1 q.hi2 q.hi3 /\
insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 ==
Mkfour q.lo0 q.lo1 n0 n1 )
=
let open Vale.Def.Words.Two in
insert_nat64_reveal ();
()
let lemma_lo64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1))
=
lo64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_hi64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1))
=
hi64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma
(reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0)))
=
reverse_bytes_nat64_reveal ()
let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma
(requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1)
(ensures final == reverse_bytes_quad32 src)
=
reverse_bytes_nat64_reveal ();
let Mkfour x0 x1 x2 x3 = src in
let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in
let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in
calc (==) {
reverse_bytes_quad32 src;
== { reveal_reverse_bytes_quad32 src }
four_reverse (four_map reverse_bytes_nat32 src);
== {}
four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3));
== {}
Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0);
== { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3)
(reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) }
insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1;
== { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) }
insert_nat64 (insert_nat64 orig two32 0) two10 1;
};
calc (==) {
reverse_bytes_nat64 (hi64 src);
== { hi64_reveal ()}
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3));
== { lemma_reverse_bytes_nat64_32 x2 x3 }
two32;
};
calc (==) {
reverse_bytes_nat64 (lo64 src);
== { lo64_reveal () }
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1));
== { lemma_reverse_bytes_nat64_32 x0 x1 }
two10;
};
()
let lemma_equality_check_helper (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)
)
=
// lemma_equality_check_helper_lo q;
// lemma_equality_check_helper_hi q;
lo64_reveal ();
hi64_reveal ();
assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x);
()
let push_pop_xmm (x y:quad32) : Lemma
(let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in
x == x')
=
// assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1);
insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_insrq_extrq_relations (x y:quad32) :
Lemma (let z = insert_nat64 x (lo64 y) 0 in
z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\
(let z = insert_nat64 x (hi64 y) 1 in
z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3))
=
let open Vale.Def.Words.Two in
let z = insert_nat64 x (lo64 y) 0 in
insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
assert (z == insert_nat64_def x (lo64_def y) 0);
//assert (q'.hi2 == q.hi2);
//assert (q'.hi3 == q.hi3);
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0));
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0));
let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in
nat_to_two_to_nat n1 n2;
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0));
//assert (q'.lo1 == q.lo1);
//assert (q == q');
()
open Vale.Def.Words.Two
let le_bytes_to_nat64_to_bytes s =
le_nat64_to_bytes_reveal ();
le_bytes_to_nat64_reveal ()
let le_nat64_to_bytes_to_nat64 n =
le_nat64_to_bytes_reveal ();
le_bytes_to_nat64_reveal ()
let le_bytes_to_seq_quad32_empty () :
Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
()
let be_bytes_to_seq_quad32_empty () :
Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
()
#reset-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'"
let le_bytes_to_seq_quad32_to_bytes_one_quad b =
calc (==) {
le_bytes_to_seq_quad32 (le_quad32_to_bytes b);
== {reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32}
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_quad32_to_bytes b));
== {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes}
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))));
== {}
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)))));
== {seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))}
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_LE b)));
== {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_LE b)}
seq_to_seq_four_LE (four_to_seq_LE b);
== {four_to_seq_LE_is_seq_four_to_seq_LE b}
seq_to_seq_four_LE (seq_four_to_seq_LE (create 1 b));
== {}
create 1 b;
}
let be_bytes_to_seq_quad32_to_bytes_one_quad b =
calc (==) {
be_bytes_to_seq_quad32 (be_quad32_to_bytes b);
== {reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32}
seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (be_quad32_to_bytes b));
== {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes}
seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))));
== {}
seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b)))));
== {seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))}
seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_BE b)));
== {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE b)}
seq_to_seq_four_BE (four_to_seq_BE b);
== {four_to_seq_BE_is_seq_four_to_seq_BE b}
seq_to_seq_four_BE (seq_four_to_seq_BE (create 1 b));
== {}
create 1 b;
}
let le_bytes_to_seq_quad32_to_bytes (s:seq quad32) :
Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s)
(* This expands into showing:
le_bytes_to_seq_quad32 (le_quad32_to_bytes s)
== { definition of le_bytes_to_seq_quad32 }
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_seq_quad32_to_bytes s))
== { definition of le_seq_quad32_to_bytes }
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s)))
== { definition of seq_nat8_to_seq_nat32_LE }
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s))))
== { definition of seq_nat32_to_seq_nat8_LE }
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)))))
*)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_seq_quad32_to_bytes_reveal ();
seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_LE s);
seq_to_seq_four_to_seq_LE (s) ;
()
let be_bytes_to_seq_quad32_to_bytes (s:seq quad32) :
Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_BE s);
seq_to_seq_four_to_seq_BE (s) ;
()
let le_seq_quad32_to_bytes_to_seq_quad32 s =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_seq_quad32_to_bytes_reveal ();
calc (==) {
le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 s);
(==) { }
seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE (seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s)));
(==) { }
s;
}
(*
le_quad32_to_bytes (le_bytes_to_quad32 s)
== { definition of le_quad32_to_bytes }
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (le_bytes_to_quad32 s)))
== { definition of le_bytes_to_quad32 }
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)))))
*)
let le_quad32_to_bytes_to_quad32 s =
calc (==) {
le_quad32_to_bytes (le_bytes_to_quad32 s);
== {le_bytes_to_quad32_reveal ()}
le_quad32_to_bytes (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)));
== {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes}
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)))));
== {four_to_seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))}
seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)));
== {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_LE s)}
seq_four_to_seq_LE (seq_to_seq_four_LE s);
== {}
s;
}
let be_quad32_to_bytes_to_quad32 s =
calc (==) {
be_quad32_to_bytes (be_bytes_to_quad32 s);
== {be_bytes_to_quad32_reveal ()}
be_quad32_to_bytes (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)));
== {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes}
seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)))));
== {four_to_seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))}
seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)));
== {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_BE s)}
seq_four_to_seq_BE (seq_to_seq_four_BE s);
== {}
s;
}
let le_seq_quad32_to_bytes_of_singleton (q:quad32) :
Lemma (le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q))
=
le_seq_quad32_to_bytes_reveal ();
reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes;
four_to_seq_LE_is_seq_four_to_seq_LE q;
()
let be_seq_quad32_to_bytes_of_singleton (q:quad32) :
Lemma (be_quad32_to_bytes q == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 q)))
=
reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes;
four_to_seq_BE_is_seq_four_to_seq_BE q;
()
let le_quad32_to_bytes_injective ():
Lemma (forall b b' . le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b')
=
reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes;
let helper (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') =
if le_quad32_to_bytes b = le_quad32_to_bytes b' then (
let b1 = seq_map (nat_to_four 8) (four_to_seq_LE b) in
let b1' = seq_map (nat_to_four 8) (four_to_seq_LE b') in
assert (le_quad32_to_bytes b == seq_four_to_seq_LE b1);
assert (le_quad32_to_bytes b' == seq_four_to_seq_LE b1');
seq_four_to_seq_LE_injective_specific b1 b1';
assert (b1 == b1');
nat_to_four_8_injective();
seq_map_injective (nat_to_four 8) (four_to_seq_LE b) (four_to_seq_LE b');
assert ((four_to_seq_LE b) == (four_to_seq_LE b'));
four_to_seq_LE_injective nat32;
()
) else
()
in
FStar.Classical.forall_intro_2 helper
let be_quad32_to_bytes_injective ():
Lemma (forall b b' . be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b')
=
reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes;
let helper (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') =
if be_quad32_to_bytes b = be_quad32_to_bytes b' then (
let b1 = seq_map (nat_to_four 8) (four_to_seq_BE b) in
let b1' = seq_map (nat_to_four 8) (four_to_seq_BE b') in
assert (be_quad32_to_bytes b == seq_four_to_seq_BE b1);
assert (be_quad32_to_bytes b' == seq_four_to_seq_BE b1');
seq_four_to_seq_BE_injective_specific b1 b1';
assert (b1 == b1');
nat_to_four_8_injective();
seq_map_injective (nat_to_four 8) (four_to_seq_BE b) (four_to_seq_BE b');
assert ((four_to_seq_BE b) == (four_to_seq_BE b'));
four_to_seq_BE_injective nat32;
()
) else
()
in
FStar.Classical.forall_intro_2 helper
let le_quad32_to_bytes_injective_specific (b b':quad32) :
Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b')
=
le_quad32_to_bytes_injective()
let be_quad32_to_bytes_injective_specific (b b':quad32) :
Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b')
=
be_quad32_to_bytes_injective()
let le_seq_quad32_to_bytes_injective (b b':seq quad32) =
le_seq_quad32_to_bytes_reveal ();
seq_four_to_seq_LE_injective nat8;
nat_to_four_8_injective();
seq_map_injective (nat_to_four 8) (seq_four_to_seq_LE b) (seq_four_to_seq_LE b');
seq_four_to_seq_LE_injective_specific b b';
assert (equal b b')
let seq_to_four_LE_is_seq_to_seq_four_LE (#a:Type) (s:seq4 a) : Lemma
(create 1 (seq_to_four_LE s) == seq_to_seq_four_LE s)
=
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a);
assert (equal (create 1 (seq_to_four_LE s)) (seq_to_seq_four_LE s));
()
let seq_to_four_BE_is_seq_to_seq_four_BE (#a:Type) (s:seq4 a) : Lemma
(create 1 (seq_to_four_BE s) == seq_to_seq_four_BE s) | false | false | Vale.Arch.Types.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val seq_to_four_BE_is_seq_to_seq_four_BE (#a:Type) (s:seq4 a) : Lemma
(create 1 (seq_to_four_BE s) == seq_to_seq_four_BE s) | [] | Vale.Arch.Types.seq_to_four_BE_is_seq_to_seq_four_BE | {
"file_name": "vale/code/arch/Vale.Arch.Types.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | s: Vale.Def.Words.Seq_s.seq4 a
-> FStar.Pervasives.Lemma
(ensures
FStar.Seq.Base.create 1 (Vale.Def.Words.Seq_s.seq_to_four_BE s) ==
Vale.Def.Words.Seq_s.seq_to_seq_four_BE s) | {
"end_col": 4,
"end_line": 529,
"start_col": 2,
"start_line": 527
} |
FStar.Pervasives.Lemma | val lemma_quad32_xor (_:unit) : Lemma (forall q . {:pattern quad32_xor q q} quad32_xor q q == Mkfour 0 0 0 0) | [
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_quad32_xor () =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
xor_lemmas() | val lemma_quad32_xor (_:unit) : Lemma (forall q . {:pattern quad32_xor q q} quad32_xor q q == Mkfour 0 0 0 0)
let lemma_quad32_xor () = | false | null | true | quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
xor_lemmas () | {
"checked_file": "Vale.Arch.Types.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Arch.Types.fst"
} | [
"lemma"
] | [
"Prims.unit",
"Vale.Arch.Types.xor_lemmas",
"Vale.Def.Types_s.reverse_bytes_nat32_reveal",
"Vale.Def.Types_s.quad32_xor_reveal"
] | [] | module Vale.Arch.Types
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.TypesNative
open Vale.Lib.Seqs
open Vale.Def.Words_s
open Vale.Def.Words.Two
open FStar.Calc
let lemma_nat_to_two32 () =
assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000))
let lemma_BitwiseXorCommutative x y =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ y) (y *^ x)
let lemma_BitwiseXorWithZero n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ 0) n
let lemma_BitwiseXorCancel n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ n) 0
let lemma_BitwiseXorCancel64 (n:nat64) =
lemma_ixor_nth_all 64;
lemma_zero_nth 64;
lemma_equal_nth 64 (ixor n n) 0
let lemma_BitwiseXorAssociative x y z =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z)
let xor_lemmas () =
FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative;
FStar.Classical.forall_intro lemma_BitwiseXorWithZero;
FStar.Classical.forall_intro lemma_BitwiseXorCancel;
FStar.Classical.forall_intro lemma_BitwiseXorCancel64;
FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? | false | false | Vale.Arch.Types.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 3,
"initial_ifuel": 3,
"max_fuel": 3,
"max_ifuel": 3,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_quad32_xor (_:unit) : Lemma (forall q . {:pattern quad32_xor q q} quad32_xor q q == Mkfour 0 0 0 0) | [] | Vale.Arch.Types.lemma_quad32_xor | {
"file_name": "vale/code/arch/Vale.Arch.Types.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | _: Prims.unit
-> FStar.Pervasives.Lemma
(ensures
forall (q: Vale.Def.Types_s.quad32). {:pattern Vale.Def.Types_s.quad32_xor q q}
Vale.Def.Types_s.quad32_xor q q == Vale.Def.Words_s.Mkfour 0 0 0 0) | {
"end_col": 14,
"end_line": 51,
"start_col": 2,
"start_line": 49
} |
FStar.Pervasives.Lemma | val slice_commutes_be_seq_quad32_to_bytes0 (s:seq quad32) (n:nat{n <= length s}) :
Lemma(slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 (n * 16) ==
seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice s 0 n))) | [
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let slice_commutes_be_seq_quad32_to_bytes0 (s:seq quad32) (n:nat{n <= length s}) :
Lemma(slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 (n * 16) ==
seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice s 0 n)))
=
slice_commutes_be_seq_quad32_to_bytes s 0 n | val slice_commutes_be_seq_quad32_to_bytes0 (s:seq quad32) (n:nat{n <= length s}) :
Lemma(slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 (n * 16) ==
seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice s 0 n)))
let slice_commutes_be_seq_quad32_to_bytes0 (s: seq quad32) (n: nat{n <= length s})
: Lemma
(slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 (n * 16) ==
seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice s 0 n))) = | false | null | true | slice_commutes_be_seq_quad32_to_bytes s 0 n | {
"checked_file": "Vale.Arch.Types.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Arch.Types.fst"
} | [
"lemma"
] | [
"FStar.Seq.Base.seq",
"Vale.Def.Types_s.quad32",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.Seq.Base.length",
"Vale.Arch.Types.slice_commutes_be_seq_quad32_to_bytes",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Vale.Def.Words_s.nat8",
"FStar.Seq.Base.slice",
"Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE",
"Vale.Def.Words.Seq_s.seq_four_to_seq_BE",
"Vale.Def.Types_s.nat32",
"FStar.Mul.op_Star",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.Arch.Types
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.TypesNative
open Vale.Lib.Seqs
open Vale.Def.Words_s
open Vale.Def.Words.Two
open FStar.Calc
let lemma_nat_to_two32 () =
assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000))
let lemma_BitwiseXorCommutative x y =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ y) (y *^ x)
let lemma_BitwiseXorWithZero n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ 0) n
let lemma_BitwiseXorCancel n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ n) 0
let lemma_BitwiseXorCancel64 (n:nat64) =
lemma_ixor_nth_all 64;
lemma_zero_nth 64;
lemma_equal_nth 64 (ixor n n) 0
let lemma_BitwiseXorAssociative x y z =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z)
let xor_lemmas () =
FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative;
FStar.Classical.forall_intro lemma_BitwiseXorWithZero;
FStar.Classical.forall_intro lemma_BitwiseXorCancel;
FStar.Classical.forall_intro lemma_BitwiseXorCancel64;
FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_quad32_xor () =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
xor_lemmas()
(*
let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) =
let q' = quad32_xor q q in
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
// REVIEW: Why are these necessary?
assert (q'.lo0 == nat32_xor q.lo0 q.lo0);
assert (q'.lo1 == nat32_xor q.lo1 q.lo1);
assert (q'.hi2 == nat32_xor q.hi2 q.hi2);
assert (q'.hi3 == nat32_xor q.hi3 q.hi3);
xor_lemmas()
in
FStar.Classical.forall_intro helper
*)
#pop-options
let lemma_reverse_reverse_bytes_nat32 (n:nat32) :
Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n)
=
reverse_bytes_nat32_reveal ();
let r = reverse_seq (nat32_to_be_bytes n) in
be_bytes_to_nat32_to_be_bytes r;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_reverse_bytes_quad32 (q:quad32) =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
reveal_reverse_bytes_quad32 q;
reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q);
()
#pop-options
let lemma_reverse_bytes_nat32 (_:unit) : Lemma
(reverse_bytes_nat32 0 == 0)
=
reverse_bytes_nat32_reveal ();
assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0);
()
let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma
(let z = Mkfour 0 0 0 0 in
reverse_bytes_quad32 z == z)
=
let z = Mkfour 0 0 0 0 in
calc (==) {
reverse_bytes_quad32 z;
== { reveal_reverse_bytes_quad32 z }
four_reverse (four_map reverse_bytes_nat32 z);
== { lemma_reverse_bytes_nat32() }
z;
};
()
let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) :
Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s)
=
reveal_reverse_bytes_nat32_seq s;
reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s);
assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s)
(*
let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) :
Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\
( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\
((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF))
=
if n.lo == 0 /\ n.hi == 0 then (
assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0);
()
) else (
()
);
()
let lemma_equality_check_helper_lo (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1);
()
let lemma_equality_check_helper_hi (q:quad32) :
Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3);
()
*)
let lemma_insert_nat64_properties (q:quad32) (n:nat64) :
Lemma ( (let q' = insert_nat64 q n 0 in
q'.hi2 == q.hi2 /\
q'.hi3 == q.hi3) /\
(let q' = insert_nat64 q n 1 in
q'.lo0 == q.lo0 /\
q'.lo1 == q.lo1))
=
insert_nat64_reveal ();
()
let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) :
Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 ==
Mkfour n0 n1 q.hi2 q.hi3 /\
insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 ==
Mkfour q.lo0 q.lo1 n0 n1 )
=
let open Vale.Def.Words.Two in
insert_nat64_reveal ();
()
let lemma_lo64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1))
=
lo64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_hi64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1))
=
hi64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma
(reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0)))
=
reverse_bytes_nat64_reveal ()
let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma
(requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1)
(ensures final == reverse_bytes_quad32 src)
=
reverse_bytes_nat64_reveal ();
let Mkfour x0 x1 x2 x3 = src in
let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in
let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in
calc (==) {
reverse_bytes_quad32 src;
== { reveal_reverse_bytes_quad32 src }
four_reverse (four_map reverse_bytes_nat32 src);
== {}
four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3));
== {}
Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0);
== { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3)
(reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) }
insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1;
== { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) }
insert_nat64 (insert_nat64 orig two32 0) two10 1;
};
calc (==) {
reverse_bytes_nat64 (hi64 src);
== { hi64_reveal ()}
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3));
== { lemma_reverse_bytes_nat64_32 x2 x3 }
two32;
};
calc (==) {
reverse_bytes_nat64 (lo64 src);
== { lo64_reveal () }
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1));
== { lemma_reverse_bytes_nat64_32 x0 x1 }
two10;
};
()
let lemma_equality_check_helper (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)
)
=
// lemma_equality_check_helper_lo q;
// lemma_equality_check_helper_hi q;
lo64_reveal ();
hi64_reveal ();
assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x);
()
let push_pop_xmm (x y:quad32) : Lemma
(let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in
x == x')
=
// assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1);
insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_insrq_extrq_relations (x y:quad32) :
Lemma (let z = insert_nat64 x (lo64 y) 0 in
z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\
(let z = insert_nat64 x (hi64 y) 1 in
z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3))
=
let open Vale.Def.Words.Two in
let z = insert_nat64 x (lo64 y) 0 in
insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
assert (z == insert_nat64_def x (lo64_def y) 0);
//assert (q'.hi2 == q.hi2);
//assert (q'.hi3 == q.hi3);
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0));
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0));
let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in
nat_to_two_to_nat n1 n2;
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0));
//assert (q'.lo1 == q.lo1);
//assert (q == q');
()
open Vale.Def.Words.Two
let le_bytes_to_nat64_to_bytes s =
le_nat64_to_bytes_reveal ();
le_bytes_to_nat64_reveal ()
let le_nat64_to_bytes_to_nat64 n =
le_nat64_to_bytes_reveal ();
le_bytes_to_nat64_reveal ()
let le_bytes_to_seq_quad32_empty () :
Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
()
let be_bytes_to_seq_quad32_empty () :
Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
()
#reset-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'"
let le_bytes_to_seq_quad32_to_bytes_one_quad b =
calc (==) {
le_bytes_to_seq_quad32 (le_quad32_to_bytes b);
== {reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32}
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_quad32_to_bytes b));
== {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes}
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))));
== {}
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)))));
== {seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))}
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_LE b)));
== {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_LE b)}
seq_to_seq_four_LE (four_to_seq_LE b);
== {four_to_seq_LE_is_seq_four_to_seq_LE b}
seq_to_seq_four_LE (seq_four_to_seq_LE (create 1 b));
== {}
create 1 b;
}
let be_bytes_to_seq_quad32_to_bytes_one_quad b =
calc (==) {
be_bytes_to_seq_quad32 (be_quad32_to_bytes b);
== {reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32}
seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (be_quad32_to_bytes b));
== {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes}
seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))));
== {}
seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b)))));
== {seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))}
seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_BE b)));
== {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE b)}
seq_to_seq_four_BE (four_to_seq_BE b);
== {four_to_seq_BE_is_seq_four_to_seq_BE b}
seq_to_seq_four_BE (seq_four_to_seq_BE (create 1 b));
== {}
create 1 b;
}
let le_bytes_to_seq_quad32_to_bytes (s:seq quad32) :
Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s)
(* This expands into showing:
le_bytes_to_seq_quad32 (le_quad32_to_bytes s)
== { definition of le_bytes_to_seq_quad32 }
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_seq_quad32_to_bytes s))
== { definition of le_seq_quad32_to_bytes }
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s)))
== { definition of seq_nat8_to_seq_nat32_LE }
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s))))
== { definition of seq_nat32_to_seq_nat8_LE }
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)))))
*)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_seq_quad32_to_bytes_reveal ();
seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_LE s);
seq_to_seq_four_to_seq_LE (s) ;
()
let be_bytes_to_seq_quad32_to_bytes (s:seq quad32) :
Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_BE s);
seq_to_seq_four_to_seq_BE (s) ;
()
let le_seq_quad32_to_bytes_to_seq_quad32 s =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_seq_quad32_to_bytes_reveal ();
calc (==) {
le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 s);
(==) { }
seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE (seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s)));
(==) { }
s;
}
(*
le_quad32_to_bytes (le_bytes_to_quad32 s)
== { definition of le_quad32_to_bytes }
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (le_bytes_to_quad32 s)))
== { definition of le_bytes_to_quad32 }
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)))))
*)
let le_quad32_to_bytes_to_quad32 s =
calc (==) {
le_quad32_to_bytes (le_bytes_to_quad32 s);
== {le_bytes_to_quad32_reveal ()}
le_quad32_to_bytes (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)));
== {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes}
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)))));
== {four_to_seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))}
seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)));
== {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_LE s)}
seq_four_to_seq_LE (seq_to_seq_four_LE s);
== {}
s;
}
let be_quad32_to_bytes_to_quad32 s =
calc (==) {
be_quad32_to_bytes (be_bytes_to_quad32 s);
== {be_bytes_to_quad32_reveal ()}
be_quad32_to_bytes (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)));
== {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes}
seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)))));
== {four_to_seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))}
seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)));
== {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_BE s)}
seq_four_to_seq_BE (seq_to_seq_four_BE s);
== {}
s;
}
let le_seq_quad32_to_bytes_of_singleton (q:quad32) :
Lemma (le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q))
=
le_seq_quad32_to_bytes_reveal ();
reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes;
four_to_seq_LE_is_seq_four_to_seq_LE q;
()
let be_seq_quad32_to_bytes_of_singleton (q:quad32) :
Lemma (be_quad32_to_bytes q == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 q)))
=
reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes;
four_to_seq_BE_is_seq_four_to_seq_BE q;
()
let le_quad32_to_bytes_injective ():
Lemma (forall b b' . le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b')
=
reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes;
let helper (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') =
if le_quad32_to_bytes b = le_quad32_to_bytes b' then (
let b1 = seq_map (nat_to_four 8) (four_to_seq_LE b) in
let b1' = seq_map (nat_to_four 8) (four_to_seq_LE b') in
assert (le_quad32_to_bytes b == seq_four_to_seq_LE b1);
assert (le_quad32_to_bytes b' == seq_four_to_seq_LE b1');
seq_four_to_seq_LE_injective_specific b1 b1';
assert (b1 == b1');
nat_to_four_8_injective();
seq_map_injective (nat_to_four 8) (four_to_seq_LE b) (four_to_seq_LE b');
assert ((four_to_seq_LE b) == (four_to_seq_LE b'));
four_to_seq_LE_injective nat32;
()
) else
()
in
FStar.Classical.forall_intro_2 helper
let be_quad32_to_bytes_injective ():
Lemma (forall b b' . be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b')
=
reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes;
let helper (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') =
if be_quad32_to_bytes b = be_quad32_to_bytes b' then (
let b1 = seq_map (nat_to_four 8) (four_to_seq_BE b) in
let b1' = seq_map (nat_to_four 8) (four_to_seq_BE b') in
assert (be_quad32_to_bytes b == seq_four_to_seq_BE b1);
assert (be_quad32_to_bytes b' == seq_four_to_seq_BE b1');
seq_four_to_seq_BE_injective_specific b1 b1';
assert (b1 == b1');
nat_to_four_8_injective();
seq_map_injective (nat_to_four 8) (four_to_seq_BE b) (four_to_seq_BE b');
assert ((four_to_seq_BE b) == (four_to_seq_BE b'));
four_to_seq_BE_injective nat32;
()
) else
()
in
FStar.Classical.forall_intro_2 helper
let le_quad32_to_bytes_injective_specific (b b':quad32) :
Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b')
=
le_quad32_to_bytes_injective()
let be_quad32_to_bytes_injective_specific (b b':quad32) :
Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b')
=
be_quad32_to_bytes_injective()
let le_seq_quad32_to_bytes_injective (b b':seq quad32) =
le_seq_quad32_to_bytes_reveal ();
seq_four_to_seq_LE_injective nat8;
nat_to_four_8_injective();
seq_map_injective (nat_to_four 8) (seq_four_to_seq_LE b) (seq_four_to_seq_LE b');
seq_four_to_seq_LE_injective_specific b b';
assert (equal b b')
let seq_to_four_LE_is_seq_to_seq_four_LE (#a:Type) (s:seq4 a) : Lemma
(create 1 (seq_to_four_LE s) == seq_to_seq_four_LE s)
=
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a);
assert (equal (create 1 (seq_to_four_LE s)) (seq_to_seq_four_LE s));
()
let seq_to_four_BE_is_seq_to_seq_four_BE (#a:Type) (s:seq4 a) : Lemma
(create 1 (seq_to_four_BE s) == seq_to_seq_four_BE s)
=
reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a);
assert (equal (create 1 (seq_to_four_BE s)) (seq_to_seq_four_BE s));
()
let le_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma
(requires q == le_bytes_to_quad32 b)
(ensures create 1 q == le_bytes_to_seq_quad32 b)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_bytes_to_quad32_reveal ();
seq_to_four_LE_is_seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b));
// q == le_bytes_to_quad32 b
// == seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b))
//
// == seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b))
// le_bytes_to_seq_quad32 b == seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE b)
()
let be_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma
(requires q == be_bytes_to_quad32 b)
(ensures create 1 q == be_bytes_to_seq_quad32 b)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
be_bytes_to_quad32_reveal ();
seq_to_four_BE_is_seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE b));
()
let le_bytes_to_quad32_to_bytes (q:quad32) :
Lemma(le_bytes_to_quad32 (le_quad32_to_bytes q) == q)
=
le_seq_quad32_to_bytes_of_singleton q; // ==> le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q)
let b = le_quad32_to_bytes q in
let q' = le_bytes_to_quad32 b in
le_bytes_to_seq_quad_of_singleton q' b; // ==> create 1 q' == le_bytes_to_seq_quad32 b
// == le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes (create 1 q))
le_bytes_to_seq_quad32_to_bytes (create 1 q); // == create 1 q
//assert (create 1 q == create 1 q');
//assert (equal (create 1 q) (create 1 q'));
assert (q == index (create 1 q) 0); // OBSERVE
assert (q == q');
()
let be_bytes_to_quad32_to_bytes (q:quad32) :
Lemma (be_bytes_to_quad32 (be_quad32_to_bytes q) == q)
=
be_bytes_to_quad32_reveal ();
let q':quad32 = be_bytes_to_quad32 (be_quad32_to_bytes q) in
seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE q));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE q);
seq_to_four_to_seq_BE q;
()
let lemma_reverse_reverse_bytes_nat32_quad32 (s:quad32) :
Lemma (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s) == s)
[SMTPat (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s))]
=
let s' = reverse_bytes_nat32_quad32 s in
let s''= reverse_bytes_nat32_quad32 s' in
assert (s''.lo0 == reverse_bytes_nat32 (reverse_bytes_nat32 s.lo0)); // OBSERVE
assert (s''.lo1 == reverse_bytes_nat32 (reverse_bytes_nat32 s.lo1)); // OBSERVE
assert (s''.hi2 == reverse_bytes_nat32 (reverse_bytes_nat32 s.hi2)); // OBSERVE
assert (s''.hi3 == reverse_bytes_nat32 (reverse_bytes_nat32 s.hi3)); // OBSERVE
()
let lemma_reverse_reverse_bytes_nat32_quad32_seq (s:seq quad32) :
Lemma (reverse_bytes_nat32_quad32_seq (reverse_bytes_nat32_quad32_seq s) == s)
[SMTPat (reverse_bytes_nat32_quad32_seq (reverse_bytes_nat32_quad32_seq s))]
=
seq_map_inverses reverse_bytes_nat32_quad32 reverse_bytes_nat32_quad32 s
let lemma_reverse_reverse_bytes_quad32_seq (s:seq quad32) :
Lemma (reverse_bytes_quad32_seq (reverse_bytes_quad32_seq s) == s)
[SMTPat (reverse_bytes_quad32_seq (reverse_bytes_quad32_seq s))]
=
seq_map_inverses reverse_bytes_quad32 reverse_bytes_quad32 s
let lemma_le_seq_quad32_to_bytes_length (s:seq quad32) :
Lemma(length (le_seq_quad32_to_bytes s) == (length s) * 16)
=
()
let lemma_be_seq_quad32_to_bytes_length (s:seq quad32) :
Lemma(length (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == (length s) * 16)
=
()
let slice_commutes_seq_four_to_seq_LE (#a:Type) (s:seq (four a)) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) :
Lemma(slice (seq_four_to_seq_LE s) (n * 4) (n' * 4) ==
seq_four_to_seq_LE (slice s n n'))
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a);
assert (equal (slice (seq_four_to_seq_LE s) (n * 4) (n' * 4))
(seq_four_to_seq_LE (slice s n n')));
()
let slice_commutes_seq_four_to_seq_BE (#a:Type) (s:seq (four a)) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) :
Lemma(slice (seq_four_to_seq_BE s) (n * 4) (n' * 4) ==
seq_four_to_seq_BE (slice s n n'))
=
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a);
assert (equal (slice (seq_four_to_seq_BE s) (n * 4) (n' * 4))
(seq_four_to_seq_BE (slice s n n')));
()
let slice_commutes_le_seq_quad32_to_bytes (s:seq quad32) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) :
Lemma(slice (le_seq_quad32_to_bytes s) (n * 16) (n' * 16) ==
le_seq_quad32_to_bytes (slice s n n'))
=
le_seq_quad32_to_bytes_reveal ();
slice_commutes_seq_four_to_seq_LE s n n';
assert (slice (seq_four_to_seq_LE s) (n * 4) (n' * 4) == seq_four_to_seq_LE (slice s n n'));
(*
le_seq_quad32_to_bytes (slice s n n') == seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE (slice s n n')));
== seq_four_to_seq_LE (seq_map (nat_to_four 8) (slice (seq_four_to_seq_LE s) (n * 4) (n' * 4))
slice (le_seq_quad32_to_bytes s) (n * 16) (n' * 16)
== slice (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s))) (n * 16) (n' * 16)
== seq_four_to_seq_LE (slice (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)) (n * 4) (n' * 4))
*)
slice_seq_map_commute (nat_to_four 8) (seq_four_to_seq_LE s) (n*4) (n'*4);
let s_inner = (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)) in
slice_commutes_seq_four_to_seq_LE s_inner (n * 4) (n' * 4);
()
let slice_commutes_be_seq_quad32_to_bytes (s:seq quad32) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) :
Lemma(slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (n * 16) (n' * 16) ==
seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice s n n')))
=
slice_commutes_seq_four_to_seq_BE s n n';
assert (slice (seq_four_to_seq_BE s) (n * 4) (n' * 4) == seq_four_to_seq_BE (slice s n n'));
slice_seq_map_commute (nat_to_four 8) (seq_four_to_seq_BE s) (n*4) (n'*4);
let s_inner = (seq_map (nat_to_four 8) (seq_four_to_seq_BE s)) in
slice_commutes_seq_four_to_seq_BE s_inner (n * 4) (n' * 4);
()
let slice_commutes_le_seq_quad32_to_bytes0 (s:seq quad32) (n:nat{n <= length s}) :
Lemma(slice (le_seq_quad32_to_bytes s) 0 (n * 16) ==
le_seq_quad32_to_bytes (slice s 0 n))
=
slice_commutes_le_seq_quad32_to_bytes s 0 n
let slice_commutes_be_seq_quad32_to_bytes0 (s:seq quad32) (n:nat{n <= length s}) :
Lemma(slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 (n * 16) ==
seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice s 0 n))) | false | false | Vale.Arch.Types.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val slice_commutes_be_seq_quad32_to_bytes0 (s:seq quad32) (n:nat{n <= length s}) :
Lemma(slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 (n * 16) ==
seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice s 0 n))) | [] | Vale.Arch.Types.slice_commutes_be_seq_quad32_to_bytes0 | {
"file_name": "vale/code/arch/Vale.Arch.Types.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | s: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> n: Prims.nat{n <= FStar.Seq.Base.length s}
-> FStar.Pervasives.Lemma
(ensures
FStar.Seq.Base.slice (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE
s))
0
(n * 16) ==
Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE (FStar.Seq.Base.slice
s
0
n))) | {
"end_col": 45,
"end_line": 674,
"start_col": 2,
"start_line": 674
} |
FStar.Pervasives.Lemma | val le_bytes_to_seq_quad32_to_bytes (s:seq quad32) :
Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s) | [
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let le_bytes_to_seq_quad32_to_bytes (s:seq quad32) :
Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s)
(* This expands into showing:
le_bytes_to_seq_quad32 (le_quad32_to_bytes s)
== { definition of le_bytes_to_seq_quad32 }
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_seq_quad32_to_bytes s))
== { definition of le_seq_quad32_to_bytes }
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s)))
== { definition of seq_nat8_to_seq_nat32_LE }
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s))))
== { definition of seq_nat32_to_seq_nat8_LE }
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)))))
*)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_seq_quad32_to_bytes_reveal ();
seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_LE s);
seq_to_seq_four_to_seq_LE (s) ;
() | val le_bytes_to_seq_quad32_to_bytes (s:seq quad32) :
Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s)
let le_bytes_to_seq_quad32_to_bytes (s: seq quad32)
: Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s) = | false | null | true | reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_seq_quad32_to_bytes_reveal ();
seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_LE s);
seq_to_seq_four_to_seq_LE (s);
() | {
"checked_file": "Vale.Arch.Types.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Arch.Types.fst"
} | [
"lemma"
] | [
"FStar.Seq.Base.seq",
"Vale.Def.Types_s.quad32",
"Prims.unit",
"Vale.Def.Words.Seq.seq_to_seq_four_to_seq_LE",
"Vale.Def.Types_s.nat32",
"Vale.Lib.Seqs.seq_map_inverses",
"Vale.Def.Words_s.four",
"Vale.Def.Words_s.natN",
"Prims.pow2",
"Vale.Def.Words.Four_s.nat_to_four",
"Vale.Def.Words.Four_s.four_to_nat",
"Vale.Def.Words.Seq_s.seq_four_to_seq_LE",
"Vale.Lib.Seqs_s.seq_map",
"Vale.Def.Types_s.le_seq_quad32_to_bytes_reveal",
"FStar.Pervasives.reveal_opaque",
"Vale.Def.Types_s.nat8",
"Prims.eq2",
"Prims.int",
"Prims.op_Modulus",
"FStar.Seq.Base.length",
"Prims.l_True",
"Vale.Def.Types_s.le_bytes_to_seq_quad32",
"Prims.squash",
"Vale.Def.Types_s.le_seq_quad32_to_bytes",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.Arch.Types
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.TypesNative
open Vale.Lib.Seqs
open Vale.Def.Words_s
open Vale.Def.Words.Two
open FStar.Calc
let lemma_nat_to_two32 () =
assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000))
let lemma_BitwiseXorCommutative x y =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ y) (y *^ x)
let lemma_BitwiseXorWithZero n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ 0) n
let lemma_BitwiseXorCancel n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ n) 0
let lemma_BitwiseXorCancel64 (n:nat64) =
lemma_ixor_nth_all 64;
lemma_zero_nth 64;
lemma_equal_nth 64 (ixor n n) 0
let lemma_BitwiseXorAssociative x y z =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z)
let xor_lemmas () =
FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative;
FStar.Classical.forall_intro lemma_BitwiseXorWithZero;
FStar.Classical.forall_intro lemma_BitwiseXorCancel;
FStar.Classical.forall_intro lemma_BitwiseXorCancel64;
FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_quad32_xor () =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
xor_lemmas()
(*
let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) =
let q' = quad32_xor q q in
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
// REVIEW: Why are these necessary?
assert (q'.lo0 == nat32_xor q.lo0 q.lo0);
assert (q'.lo1 == nat32_xor q.lo1 q.lo1);
assert (q'.hi2 == nat32_xor q.hi2 q.hi2);
assert (q'.hi3 == nat32_xor q.hi3 q.hi3);
xor_lemmas()
in
FStar.Classical.forall_intro helper
*)
#pop-options
let lemma_reverse_reverse_bytes_nat32 (n:nat32) :
Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n)
=
reverse_bytes_nat32_reveal ();
let r = reverse_seq (nat32_to_be_bytes n) in
be_bytes_to_nat32_to_be_bytes r;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_reverse_bytes_quad32 (q:quad32) =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
reveal_reverse_bytes_quad32 q;
reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q);
()
#pop-options
let lemma_reverse_bytes_nat32 (_:unit) : Lemma
(reverse_bytes_nat32 0 == 0)
=
reverse_bytes_nat32_reveal ();
assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0);
()
let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma
(let z = Mkfour 0 0 0 0 in
reverse_bytes_quad32 z == z)
=
let z = Mkfour 0 0 0 0 in
calc (==) {
reverse_bytes_quad32 z;
== { reveal_reverse_bytes_quad32 z }
four_reverse (four_map reverse_bytes_nat32 z);
== { lemma_reverse_bytes_nat32() }
z;
};
()
let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) :
Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s)
=
reveal_reverse_bytes_nat32_seq s;
reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s);
assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s)
(*
let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) :
Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\
( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\
((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF))
=
if n.lo == 0 /\ n.hi == 0 then (
assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0);
()
) else (
()
);
()
let lemma_equality_check_helper_lo (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1);
()
let lemma_equality_check_helper_hi (q:quad32) :
Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3);
()
*)
let lemma_insert_nat64_properties (q:quad32) (n:nat64) :
Lemma ( (let q' = insert_nat64 q n 0 in
q'.hi2 == q.hi2 /\
q'.hi3 == q.hi3) /\
(let q' = insert_nat64 q n 1 in
q'.lo0 == q.lo0 /\
q'.lo1 == q.lo1))
=
insert_nat64_reveal ();
()
let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) :
Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 ==
Mkfour n0 n1 q.hi2 q.hi3 /\
insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 ==
Mkfour q.lo0 q.lo1 n0 n1 )
=
let open Vale.Def.Words.Two in
insert_nat64_reveal ();
()
let lemma_lo64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1))
=
lo64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_hi64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1))
=
hi64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma
(reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0)))
=
reverse_bytes_nat64_reveal ()
let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma
(requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1)
(ensures final == reverse_bytes_quad32 src)
=
reverse_bytes_nat64_reveal ();
let Mkfour x0 x1 x2 x3 = src in
let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in
let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in
calc (==) {
reverse_bytes_quad32 src;
== { reveal_reverse_bytes_quad32 src }
four_reverse (four_map reverse_bytes_nat32 src);
== {}
four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3));
== {}
Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0);
== { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3)
(reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) }
insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1;
== { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) }
insert_nat64 (insert_nat64 orig two32 0) two10 1;
};
calc (==) {
reverse_bytes_nat64 (hi64 src);
== { hi64_reveal ()}
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3));
== { lemma_reverse_bytes_nat64_32 x2 x3 }
two32;
};
calc (==) {
reverse_bytes_nat64 (lo64 src);
== { lo64_reveal () }
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1));
== { lemma_reverse_bytes_nat64_32 x0 x1 }
two10;
};
()
let lemma_equality_check_helper (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)
)
=
// lemma_equality_check_helper_lo q;
// lemma_equality_check_helper_hi q;
lo64_reveal ();
hi64_reveal ();
assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x);
()
let push_pop_xmm (x y:quad32) : Lemma
(let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in
x == x')
=
// assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1);
insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_insrq_extrq_relations (x y:quad32) :
Lemma (let z = insert_nat64 x (lo64 y) 0 in
z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\
(let z = insert_nat64 x (hi64 y) 1 in
z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3))
=
let open Vale.Def.Words.Two in
let z = insert_nat64 x (lo64 y) 0 in
insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
assert (z == insert_nat64_def x (lo64_def y) 0);
//assert (q'.hi2 == q.hi2);
//assert (q'.hi3 == q.hi3);
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0));
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0));
let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in
nat_to_two_to_nat n1 n2;
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0));
//assert (q'.lo1 == q.lo1);
//assert (q == q');
()
open Vale.Def.Words.Two
let le_bytes_to_nat64_to_bytes s =
le_nat64_to_bytes_reveal ();
le_bytes_to_nat64_reveal ()
let le_nat64_to_bytes_to_nat64 n =
le_nat64_to_bytes_reveal ();
le_bytes_to_nat64_reveal ()
let le_bytes_to_seq_quad32_empty () :
Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
()
let be_bytes_to_seq_quad32_empty () :
Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
()
#reset-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'"
let le_bytes_to_seq_quad32_to_bytes_one_quad b =
calc (==) {
le_bytes_to_seq_quad32 (le_quad32_to_bytes b);
== {reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32}
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_quad32_to_bytes b));
== {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes}
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))));
== {}
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)))));
== {seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))}
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_LE b)));
== {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_LE b)}
seq_to_seq_four_LE (four_to_seq_LE b);
== {four_to_seq_LE_is_seq_four_to_seq_LE b}
seq_to_seq_four_LE (seq_four_to_seq_LE (create 1 b));
== {}
create 1 b;
}
let be_bytes_to_seq_quad32_to_bytes_one_quad b =
calc (==) {
be_bytes_to_seq_quad32 (be_quad32_to_bytes b);
== {reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32}
seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (be_quad32_to_bytes b));
== {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes}
seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))));
== {}
seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b)))));
== {seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))}
seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_BE b)));
== {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE b)}
seq_to_seq_four_BE (four_to_seq_BE b);
== {four_to_seq_BE_is_seq_four_to_seq_BE b}
seq_to_seq_four_BE (seq_four_to_seq_BE (create 1 b));
== {}
create 1 b;
}
let le_bytes_to_seq_quad32_to_bytes (s:seq quad32) :
Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s)
(* This expands into showing:
le_bytes_to_seq_quad32 (le_quad32_to_bytes s)
== { definition of le_bytes_to_seq_quad32 }
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_seq_quad32_to_bytes s))
== { definition of le_seq_quad32_to_bytes }
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s)))
== { definition of seq_nat8_to_seq_nat32_LE }
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s))))
== { definition of seq_nat32_to_seq_nat8_LE }
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)))))
*) | false | false | Vale.Arch.Types.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val le_bytes_to_seq_quad32_to_bytes (s:seq quad32) :
Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s) | [] | Vale.Arch.Types.le_bytes_to_seq_quad32_to_bytes | {
"file_name": "vale/code/arch/Vale.Arch.Types.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | s: FStar.Seq.Base.seq Vale.Def.Types_s.quad32
-> FStar.Pervasives.Lemma
(ensures
Vale.Def.Types_s.le_bytes_to_seq_quad32 (Vale.Def.Types_s.le_seq_quad32_to_bytes s) == s) | {
"end_col": 4,
"end_line": 380,
"start_col": 2,
"start_line": 375
} |
FStar.Pervasives.Lemma | val le_seq_quad32_to_bytes_injective (b b':Seq.seq quad32) : Lemma
(requires Seq.equal (le_seq_quad32_to_bytes b) (le_seq_quad32_to_bytes b'))
(ensures b == b') | [
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let le_seq_quad32_to_bytes_injective (b b':seq quad32) =
le_seq_quad32_to_bytes_reveal ();
seq_four_to_seq_LE_injective nat8;
nat_to_four_8_injective();
seq_map_injective (nat_to_four 8) (seq_four_to_seq_LE b) (seq_four_to_seq_LE b');
seq_four_to_seq_LE_injective_specific b b';
assert (equal b b') | val le_seq_quad32_to_bytes_injective (b b':Seq.seq quad32) : Lemma
(requires Seq.equal (le_seq_quad32_to_bytes b) (le_seq_quad32_to_bytes b'))
(ensures b == b')
let le_seq_quad32_to_bytes_injective (b b': seq quad32) = | false | null | true | le_seq_quad32_to_bytes_reveal ();
seq_four_to_seq_LE_injective nat8;
nat_to_four_8_injective ();
seq_map_injective (nat_to_four 8) (seq_four_to_seq_LE b) (seq_four_to_seq_LE b');
seq_four_to_seq_LE_injective_specific b b';
assert (equal b b') | {
"checked_file": "Vale.Arch.Types.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Arch.Types.fst"
} | [
"lemma"
] | [
"FStar.Seq.Base.seq",
"Vale.Def.Types_s.quad32",
"Prims._assert",
"FStar.Seq.Base.equal",
"Prims.unit",
"Vale.Def.Words.Seq.seq_four_to_seq_LE_injective_specific",
"Vale.Def.Types_s.nat32",
"Vale.Lib.Seqs.seq_map_injective",
"Vale.Def.Words_s.four",
"Vale.Def.Words_s.natN",
"Prims.pow2",
"Vale.Def.Words.Four_s.nat_to_four",
"Vale.Def.Words.Seq_s.seq_four_to_seq_LE",
"Vale.Def.Words.Seq.nat_to_four_8_injective",
"Vale.Def.Words.Seq.seq_four_to_seq_LE_injective",
"Vale.Def.Words_s.nat8",
"Vale.Def.Types_s.le_seq_quad32_to_bytes_reveal"
] | [] | module Vale.Arch.Types
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.TypesNative
open Vale.Lib.Seqs
open Vale.Def.Words_s
open Vale.Def.Words.Two
open FStar.Calc
let lemma_nat_to_two32 () =
assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000))
let lemma_BitwiseXorCommutative x y =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ y) (y *^ x)
let lemma_BitwiseXorWithZero n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ 0) n
let lemma_BitwiseXorCancel n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ n) 0
let lemma_BitwiseXorCancel64 (n:nat64) =
lemma_ixor_nth_all 64;
lemma_zero_nth 64;
lemma_equal_nth 64 (ixor n n) 0
let lemma_BitwiseXorAssociative x y z =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z)
let xor_lemmas () =
FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative;
FStar.Classical.forall_intro lemma_BitwiseXorWithZero;
FStar.Classical.forall_intro lemma_BitwiseXorCancel;
FStar.Classical.forall_intro lemma_BitwiseXorCancel64;
FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_quad32_xor () =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
xor_lemmas()
(*
let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) =
let q' = quad32_xor q q in
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
// REVIEW: Why are these necessary?
assert (q'.lo0 == nat32_xor q.lo0 q.lo0);
assert (q'.lo1 == nat32_xor q.lo1 q.lo1);
assert (q'.hi2 == nat32_xor q.hi2 q.hi2);
assert (q'.hi3 == nat32_xor q.hi3 q.hi3);
xor_lemmas()
in
FStar.Classical.forall_intro helper
*)
#pop-options
let lemma_reverse_reverse_bytes_nat32 (n:nat32) :
Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n)
=
reverse_bytes_nat32_reveal ();
let r = reverse_seq (nat32_to_be_bytes n) in
be_bytes_to_nat32_to_be_bytes r;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_reverse_bytes_quad32 (q:quad32) =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
reveal_reverse_bytes_quad32 q;
reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q);
()
#pop-options
let lemma_reverse_bytes_nat32 (_:unit) : Lemma
(reverse_bytes_nat32 0 == 0)
=
reverse_bytes_nat32_reveal ();
assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0);
()
let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma
(let z = Mkfour 0 0 0 0 in
reverse_bytes_quad32 z == z)
=
let z = Mkfour 0 0 0 0 in
calc (==) {
reverse_bytes_quad32 z;
== { reveal_reverse_bytes_quad32 z }
four_reverse (four_map reverse_bytes_nat32 z);
== { lemma_reverse_bytes_nat32() }
z;
};
()
let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) :
Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s)
=
reveal_reverse_bytes_nat32_seq s;
reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s);
assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s)
(*
let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) :
Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\
( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\
((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF))
=
if n.lo == 0 /\ n.hi == 0 then (
assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0);
()
) else (
()
);
()
let lemma_equality_check_helper_lo (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1);
()
let lemma_equality_check_helper_hi (q:quad32) :
Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3);
()
*)
let lemma_insert_nat64_properties (q:quad32) (n:nat64) :
Lemma ( (let q' = insert_nat64 q n 0 in
q'.hi2 == q.hi2 /\
q'.hi3 == q.hi3) /\
(let q' = insert_nat64 q n 1 in
q'.lo0 == q.lo0 /\
q'.lo1 == q.lo1))
=
insert_nat64_reveal ();
()
let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) :
Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 ==
Mkfour n0 n1 q.hi2 q.hi3 /\
insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 ==
Mkfour q.lo0 q.lo1 n0 n1 )
=
let open Vale.Def.Words.Two in
insert_nat64_reveal ();
()
let lemma_lo64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1))
=
lo64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_hi64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1))
=
hi64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma
(reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0)))
=
reverse_bytes_nat64_reveal ()
let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma
(requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1)
(ensures final == reverse_bytes_quad32 src)
=
reverse_bytes_nat64_reveal ();
let Mkfour x0 x1 x2 x3 = src in
let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in
let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in
calc (==) {
reverse_bytes_quad32 src;
== { reveal_reverse_bytes_quad32 src }
four_reverse (four_map reverse_bytes_nat32 src);
== {}
four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3));
== {}
Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0);
== { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3)
(reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) }
insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1;
== { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) }
insert_nat64 (insert_nat64 orig two32 0) two10 1;
};
calc (==) {
reverse_bytes_nat64 (hi64 src);
== { hi64_reveal ()}
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3));
== { lemma_reverse_bytes_nat64_32 x2 x3 }
two32;
};
calc (==) {
reverse_bytes_nat64 (lo64 src);
== { lo64_reveal () }
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1));
== { lemma_reverse_bytes_nat64_32 x0 x1 }
two10;
};
()
let lemma_equality_check_helper (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)
)
=
// lemma_equality_check_helper_lo q;
// lemma_equality_check_helper_hi q;
lo64_reveal ();
hi64_reveal ();
assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x);
()
let push_pop_xmm (x y:quad32) : Lemma
(let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in
x == x')
=
// assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1);
insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_insrq_extrq_relations (x y:quad32) :
Lemma (let z = insert_nat64 x (lo64 y) 0 in
z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\
(let z = insert_nat64 x (hi64 y) 1 in
z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3))
=
let open Vale.Def.Words.Two in
let z = insert_nat64 x (lo64 y) 0 in
insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
assert (z == insert_nat64_def x (lo64_def y) 0);
//assert (q'.hi2 == q.hi2);
//assert (q'.hi3 == q.hi3);
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0));
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0));
let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in
nat_to_two_to_nat n1 n2;
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0));
//assert (q'.lo1 == q.lo1);
//assert (q == q');
()
open Vale.Def.Words.Two
let le_bytes_to_nat64_to_bytes s =
le_nat64_to_bytes_reveal ();
le_bytes_to_nat64_reveal ()
let le_nat64_to_bytes_to_nat64 n =
le_nat64_to_bytes_reveal ();
le_bytes_to_nat64_reveal ()
let le_bytes_to_seq_quad32_empty () :
Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
()
let be_bytes_to_seq_quad32_empty () :
Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
()
#reset-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'"
let le_bytes_to_seq_quad32_to_bytes_one_quad b =
calc (==) {
le_bytes_to_seq_quad32 (le_quad32_to_bytes b);
== {reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32}
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_quad32_to_bytes b));
== {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes}
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))));
== {}
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)))));
== {seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))}
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_LE b)));
== {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_LE b)}
seq_to_seq_four_LE (four_to_seq_LE b);
== {four_to_seq_LE_is_seq_four_to_seq_LE b}
seq_to_seq_four_LE (seq_four_to_seq_LE (create 1 b));
== {}
create 1 b;
}
let be_bytes_to_seq_quad32_to_bytes_one_quad b =
calc (==) {
be_bytes_to_seq_quad32 (be_quad32_to_bytes b);
== {reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32}
seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (be_quad32_to_bytes b));
== {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes}
seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))));
== {}
seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b)))));
== {seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))}
seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_BE b)));
== {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE b)}
seq_to_seq_four_BE (four_to_seq_BE b);
== {four_to_seq_BE_is_seq_four_to_seq_BE b}
seq_to_seq_four_BE (seq_four_to_seq_BE (create 1 b));
== {}
create 1 b;
}
let le_bytes_to_seq_quad32_to_bytes (s:seq quad32) :
Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s)
(* This expands into showing:
le_bytes_to_seq_quad32 (le_quad32_to_bytes s)
== { definition of le_bytes_to_seq_quad32 }
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_seq_quad32_to_bytes s))
== { definition of le_seq_quad32_to_bytes }
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s)))
== { definition of seq_nat8_to_seq_nat32_LE }
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s))))
== { definition of seq_nat32_to_seq_nat8_LE }
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)))))
*)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_seq_quad32_to_bytes_reveal ();
seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_LE s);
seq_to_seq_four_to_seq_LE (s) ;
()
let be_bytes_to_seq_quad32_to_bytes (s:seq quad32) :
Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_BE s);
seq_to_seq_four_to_seq_BE (s) ;
()
let le_seq_quad32_to_bytes_to_seq_quad32 s =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_seq_quad32_to_bytes_reveal ();
calc (==) {
le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 s);
(==) { }
seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE (seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s)));
(==) { }
s;
}
(*
le_quad32_to_bytes (le_bytes_to_quad32 s)
== { definition of le_quad32_to_bytes }
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (le_bytes_to_quad32 s)))
== { definition of le_bytes_to_quad32 }
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)))))
*)
let le_quad32_to_bytes_to_quad32 s =
calc (==) {
le_quad32_to_bytes (le_bytes_to_quad32 s);
== {le_bytes_to_quad32_reveal ()}
le_quad32_to_bytes (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)));
== {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes}
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)))));
== {four_to_seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))}
seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)));
== {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_LE s)}
seq_four_to_seq_LE (seq_to_seq_four_LE s);
== {}
s;
}
let be_quad32_to_bytes_to_quad32 s =
calc (==) {
be_quad32_to_bytes (be_bytes_to_quad32 s);
== {be_bytes_to_quad32_reveal ()}
be_quad32_to_bytes (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)));
== {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes}
seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)))));
== {four_to_seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))}
seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)));
== {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_BE s)}
seq_four_to_seq_BE (seq_to_seq_four_BE s);
== {}
s;
}
let le_seq_quad32_to_bytes_of_singleton (q:quad32) :
Lemma (le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q))
=
le_seq_quad32_to_bytes_reveal ();
reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes;
four_to_seq_LE_is_seq_four_to_seq_LE q;
()
let be_seq_quad32_to_bytes_of_singleton (q:quad32) :
Lemma (be_quad32_to_bytes q == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 q)))
=
reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes;
four_to_seq_BE_is_seq_four_to_seq_BE q;
()
let le_quad32_to_bytes_injective ():
Lemma (forall b b' . le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b')
=
reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes;
let helper (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') =
if le_quad32_to_bytes b = le_quad32_to_bytes b' then (
let b1 = seq_map (nat_to_four 8) (four_to_seq_LE b) in
let b1' = seq_map (nat_to_four 8) (four_to_seq_LE b') in
assert (le_quad32_to_bytes b == seq_four_to_seq_LE b1);
assert (le_quad32_to_bytes b' == seq_four_to_seq_LE b1');
seq_four_to_seq_LE_injective_specific b1 b1';
assert (b1 == b1');
nat_to_four_8_injective();
seq_map_injective (nat_to_four 8) (four_to_seq_LE b) (four_to_seq_LE b');
assert ((four_to_seq_LE b) == (four_to_seq_LE b'));
four_to_seq_LE_injective nat32;
()
) else
()
in
FStar.Classical.forall_intro_2 helper
let be_quad32_to_bytes_injective ():
Lemma (forall b b' . be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b')
=
reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes;
let helper (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') =
if be_quad32_to_bytes b = be_quad32_to_bytes b' then (
let b1 = seq_map (nat_to_four 8) (four_to_seq_BE b) in
let b1' = seq_map (nat_to_four 8) (four_to_seq_BE b') in
assert (be_quad32_to_bytes b == seq_four_to_seq_BE b1);
assert (be_quad32_to_bytes b' == seq_four_to_seq_BE b1');
seq_four_to_seq_BE_injective_specific b1 b1';
assert (b1 == b1');
nat_to_four_8_injective();
seq_map_injective (nat_to_four 8) (four_to_seq_BE b) (four_to_seq_BE b');
assert ((four_to_seq_BE b) == (four_to_seq_BE b'));
four_to_seq_BE_injective nat32;
()
) else
()
in
FStar.Classical.forall_intro_2 helper
let le_quad32_to_bytes_injective_specific (b b':quad32) :
Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b')
=
le_quad32_to_bytes_injective()
let be_quad32_to_bytes_injective_specific (b b':quad32) :
Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b')
=
be_quad32_to_bytes_injective() | false | false | Vale.Arch.Types.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val le_seq_quad32_to_bytes_injective (b b':Seq.seq quad32) : Lemma
(requires Seq.equal (le_seq_quad32_to_bytes b) (le_seq_quad32_to_bytes b'))
(ensures b == b') | [] | Vale.Arch.Types.le_seq_quad32_to_bytes_injective | {
"file_name": "vale/code/arch/Vale.Arch.Types.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> b': FStar.Seq.Base.seq Vale.Def.Types_s.quad32
-> FStar.Pervasives.Lemma
(requires
FStar.Seq.Base.equal (Vale.Def.Types_s.le_seq_quad32_to_bytes b)
(Vale.Def.Types_s.le_seq_quad32_to_bytes b')) (ensures b == b') | {
"end_col": 21,
"end_line": 515,
"start_col": 2,
"start_line": 510
} |
FStar.Pervasives.Lemma | val le_bytes_to_seq_quad32_empty: unit ->
Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0) | [
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let le_bytes_to_seq_quad32_empty () :
Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
() | val le_bytes_to_seq_quad32_empty: unit ->
Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0)
let le_bytes_to_seq_quad32_empty ()
: Lemma
(forall s. {:pattern (length (le_bytes_to_seq_quad32 s))}
length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0) = | false | null | true | reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
() | {
"checked_file": "Vale.Arch.Types.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Arch.Types.fst"
} | [
"lemma"
] | [
"Prims.unit",
"FStar.Pervasives.reveal_opaque",
"FStar.Seq.Base.seq",
"Vale.Def.Types_s.nat8",
"Vale.Def.Types_s.quad32",
"Prims.eq2",
"Prims.int",
"Prims.op_Modulus",
"FStar.Seq.Base.length",
"Prims.l_True",
"Vale.Def.Types_s.le_bytes_to_seq_quad32",
"Prims.squash",
"Prims.l_Forall",
"Prims.l_imp",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.Arch.Types
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.TypesNative
open Vale.Lib.Seqs
open Vale.Def.Words_s
open Vale.Def.Words.Two
open FStar.Calc
let lemma_nat_to_two32 () =
assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000))
let lemma_BitwiseXorCommutative x y =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ y) (y *^ x)
let lemma_BitwiseXorWithZero n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ 0) n
let lemma_BitwiseXorCancel n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ n) 0
let lemma_BitwiseXorCancel64 (n:nat64) =
lemma_ixor_nth_all 64;
lemma_zero_nth 64;
lemma_equal_nth 64 (ixor n n) 0
let lemma_BitwiseXorAssociative x y z =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z)
let xor_lemmas () =
FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative;
FStar.Classical.forall_intro lemma_BitwiseXorWithZero;
FStar.Classical.forall_intro lemma_BitwiseXorCancel;
FStar.Classical.forall_intro lemma_BitwiseXorCancel64;
FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_quad32_xor () =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
xor_lemmas()
(*
let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) =
let q' = quad32_xor q q in
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
// REVIEW: Why are these necessary?
assert (q'.lo0 == nat32_xor q.lo0 q.lo0);
assert (q'.lo1 == nat32_xor q.lo1 q.lo1);
assert (q'.hi2 == nat32_xor q.hi2 q.hi2);
assert (q'.hi3 == nat32_xor q.hi3 q.hi3);
xor_lemmas()
in
FStar.Classical.forall_intro helper
*)
#pop-options
let lemma_reverse_reverse_bytes_nat32 (n:nat32) :
Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n)
=
reverse_bytes_nat32_reveal ();
let r = reverse_seq (nat32_to_be_bytes n) in
be_bytes_to_nat32_to_be_bytes r;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_reverse_bytes_quad32 (q:quad32) =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
reveal_reverse_bytes_quad32 q;
reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q);
()
#pop-options
let lemma_reverse_bytes_nat32 (_:unit) : Lemma
(reverse_bytes_nat32 0 == 0)
=
reverse_bytes_nat32_reveal ();
assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0);
()
let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma
(let z = Mkfour 0 0 0 0 in
reverse_bytes_quad32 z == z)
=
let z = Mkfour 0 0 0 0 in
calc (==) {
reverse_bytes_quad32 z;
== { reveal_reverse_bytes_quad32 z }
four_reverse (four_map reverse_bytes_nat32 z);
== { lemma_reverse_bytes_nat32() }
z;
};
()
let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) :
Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s)
=
reveal_reverse_bytes_nat32_seq s;
reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s);
assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s)
(*
let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) :
Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\
( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\
((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF))
=
if n.lo == 0 /\ n.hi == 0 then (
assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0);
()
) else (
()
);
()
let lemma_equality_check_helper_lo (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1);
()
let lemma_equality_check_helper_hi (q:quad32) :
Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3);
()
*)
let lemma_insert_nat64_properties (q:quad32) (n:nat64) :
Lemma ( (let q' = insert_nat64 q n 0 in
q'.hi2 == q.hi2 /\
q'.hi3 == q.hi3) /\
(let q' = insert_nat64 q n 1 in
q'.lo0 == q.lo0 /\
q'.lo1 == q.lo1))
=
insert_nat64_reveal ();
()
let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) :
Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 ==
Mkfour n0 n1 q.hi2 q.hi3 /\
insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 ==
Mkfour q.lo0 q.lo1 n0 n1 )
=
let open Vale.Def.Words.Two in
insert_nat64_reveal ();
()
let lemma_lo64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1))
=
lo64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_hi64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1))
=
hi64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma
(reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0)))
=
reverse_bytes_nat64_reveal ()
let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma
(requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1)
(ensures final == reverse_bytes_quad32 src)
=
reverse_bytes_nat64_reveal ();
let Mkfour x0 x1 x2 x3 = src in
let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in
let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in
calc (==) {
reverse_bytes_quad32 src;
== { reveal_reverse_bytes_quad32 src }
four_reverse (four_map reverse_bytes_nat32 src);
== {}
four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3));
== {}
Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0);
== { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3)
(reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) }
insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1;
== { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) }
insert_nat64 (insert_nat64 orig two32 0) two10 1;
};
calc (==) {
reverse_bytes_nat64 (hi64 src);
== { hi64_reveal ()}
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3));
== { lemma_reverse_bytes_nat64_32 x2 x3 }
two32;
};
calc (==) {
reverse_bytes_nat64 (lo64 src);
== { lo64_reveal () }
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1));
== { lemma_reverse_bytes_nat64_32 x0 x1 }
two10;
};
()
let lemma_equality_check_helper (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)
)
=
// lemma_equality_check_helper_lo q;
// lemma_equality_check_helper_hi q;
lo64_reveal ();
hi64_reveal ();
assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x);
()
let push_pop_xmm (x y:quad32) : Lemma
(let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in
x == x')
=
// assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1);
insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_insrq_extrq_relations (x y:quad32) :
Lemma (let z = insert_nat64 x (lo64 y) 0 in
z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\
(let z = insert_nat64 x (hi64 y) 1 in
z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3))
=
let open Vale.Def.Words.Two in
let z = insert_nat64 x (lo64 y) 0 in
insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
assert (z == insert_nat64_def x (lo64_def y) 0);
//assert (q'.hi2 == q.hi2);
//assert (q'.hi3 == q.hi3);
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0));
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0));
let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in
nat_to_two_to_nat n1 n2;
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0));
//assert (q'.lo1 == q.lo1);
//assert (q == q');
()
open Vale.Def.Words.Two
let le_bytes_to_nat64_to_bytes s =
le_nat64_to_bytes_reveal ();
le_bytes_to_nat64_reveal ()
let le_nat64_to_bytes_to_nat64 n =
le_nat64_to_bytes_reveal ();
le_bytes_to_nat64_reveal ()
let le_bytes_to_seq_quad32_empty () :
Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0) | false | false | Vale.Arch.Types.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 3,
"initial_ifuel": 3,
"max_fuel": 3,
"max_ifuel": 3,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val le_bytes_to_seq_quad32_empty: unit ->
Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0) | [] | Vale.Arch.Types.le_bytes_to_seq_quad32_empty | {
"file_name": "vale/code/arch/Vale.Arch.Types.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | _: Prims.unit
-> FStar.Pervasives.Lemma
(ensures
forall (s: FStar.Seq.Base.seq Vale.Def.Types_s.nat8).
{:pattern FStar.Seq.Base.length (Vale.Def.Types_s.le_bytes_to_seq_quad32 s)}
FStar.Seq.Base.length s == 0 ==>
FStar.Seq.Base.length (Vale.Def.Types_s.le_bytes_to_seq_quad32 s) == 0) | {
"end_col": 4,
"end_line": 314,
"start_col": 2,
"start_line": 313
} |
FStar.Pervasives.Lemma | val lemma_insrq_extrq_relations (x y:quad32) :
Lemma (let z = insert_nat64 x (lo64 y) 0 in
z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\
(let z = insert_nat64 x (hi64 y) 1 in
z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3)) | [
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_insrq_extrq_relations (x y:quad32) :
Lemma (let z = insert_nat64 x (lo64 y) 0 in
z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\
(let z = insert_nat64 x (hi64 y) 1 in
z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3))
=
let open Vale.Def.Words.Two in
let z = insert_nat64 x (lo64 y) 0 in
insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
assert (z == insert_nat64_def x (lo64_def y) 0);
//assert (q'.hi2 == q.hi2);
//assert (q'.hi3 == q.hi3);
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0));
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0));
let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in
nat_to_two_to_nat n1 n2;
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0));
//assert (q'.lo1 == q.lo1);
//assert (q == q');
() | val lemma_insrq_extrq_relations (x y:quad32) :
Lemma (let z = insert_nat64 x (lo64 y) 0 in
z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\
(let z = insert_nat64 x (hi64 y) 1 in
z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3))
let lemma_insrq_extrq_relations (x y: quad32)
: Lemma
(let z = insert_nat64 x (lo64 y) 0 in
z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\
(let z = insert_nat64 x (hi64 y) 1 in
z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3)) = | false | null | true | let open Vale.Def.Words.Two in
let z = insert_nat64 x (lo64 y) 0 in
insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
assert (z == insert_nat64_def x (lo64_def y) 0);
let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in
nat_to_two_to_nat n1 n2;
() | {
"checked_file": "Vale.Arch.Types.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Arch.Types.fst"
} | [
"lemma"
] | [
"Vale.Def.Types_s.quad32",
"Vale.Def.Types_s.nat32",
"Prims.unit",
"Vale.Def.Words.Two.nat_to_two_to_nat",
"Vale.Def.Words_s.two",
"Vale.Def.Words_s.nat32",
"Vale.Def.Words.Two_s.two_select",
"Vale.Def.Words.Four_s.four_to_two_two",
"Prims._assert",
"Prims.eq2",
"Vale.Def.Types_s.insert_nat64_def",
"Vale.Arch.Types.lo64_def",
"Vale.Arch.Types.hi64_reveal",
"Vale.Arch.Types.lo64_reveal",
"Vale.Def.Types_s.insert_nat64_reveal",
"Vale.Def.Types_s.insert_nat64",
"Vale.Arch.Types.lo64",
"Prims.l_True",
"Prims.squash",
"Prims.l_and",
"Vale.Def.Words_s.four",
"Vale.Def.Words_s.Mkfour",
"Vale.Def.Words_s.__proj__Mkfour__item__lo0",
"Vale.Def.Words_s.__proj__Mkfour__item__lo1",
"Vale.Def.Words_s.__proj__Mkfour__item__hi2",
"Vale.Def.Words_s.__proj__Mkfour__item__hi3",
"Vale.Arch.Types.hi64",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.Arch.Types
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.TypesNative
open Vale.Lib.Seqs
open Vale.Def.Words_s
open Vale.Def.Words.Two
open FStar.Calc
let lemma_nat_to_two32 () =
assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000))
let lemma_BitwiseXorCommutative x y =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ y) (y *^ x)
let lemma_BitwiseXorWithZero n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ 0) n
let lemma_BitwiseXorCancel n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ n) 0
let lemma_BitwiseXorCancel64 (n:nat64) =
lemma_ixor_nth_all 64;
lemma_zero_nth 64;
lemma_equal_nth 64 (ixor n n) 0
let lemma_BitwiseXorAssociative x y z =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z)
let xor_lemmas () =
FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative;
FStar.Classical.forall_intro lemma_BitwiseXorWithZero;
FStar.Classical.forall_intro lemma_BitwiseXorCancel;
FStar.Classical.forall_intro lemma_BitwiseXorCancel64;
FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_quad32_xor () =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
xor_lemmas()
(*
let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) =
let q' = quad32_xor q q in
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
// REVIEW: Why are these necessary?
assert (q'.lo0 == nat32_xor q.lo0 q.lo0);
assert (q'.lo1 == nat32_xor q.lo1 q.lo1);
assert (q'.hi2 == nat32_xor q.hi2 q.hi2);
assert (q'.hi3 == nat32_xor q.hi3 q.hi3);
xor_lemmas()
in
FStar.Classical.forall_intro helper
*)
#pop-options
let lemma_reverse_reverse_bytes_nat32 (n:nat32) :
Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n)
=
reverse_bytes_nat32_reveal ();
let r = reverse_seq (nat32_to_be_bytes n) in
be_bytes_to_nat32_to_be_bytes r;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_reverse_bytes_quad32 (q:quad32) =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
reveal_reverse_bytes_quad32 q;
reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q);
()
#pop-options
let lemma_reverse_bytes_nat32 (_:unit) : Lemma
(reverse_bytes_nat32 0 == 0)
=
reverse_bytes_nat32_reveal ();
assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0);
()
let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma
(let z = Mkfour 0 0 0 0 in
reverse_bytes_quad32 z == z)
=
let z = Mkfour 0 0 0 0 in
calc (==) {
reverse_bytes_quad32 z;
== { reveal_reverse_bytes_quad32 z }
four_reverse (four_map reverse_bytes_nat32 z);
== { lemma_reverse_bytes_nat32() }
z;
};
()
let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) :
Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s)
=
reveal_reverse_bytes_nat32_seq s;
reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s);
assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s)
(*
let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) :
Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\
( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\
((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF))
=
if n.lo == 0 /\ n.hi == 0 then (
assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0);
()
) else (
()
);
()
let lemma_equality_check_helper_lo (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1);
()
let lemma_equality_check_helper_hi (q:quad32) :
Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3);
()
*)
let lemma_insert_nat64_properties (q:quad32) (n:nat64) :
Lemma ( (let q' = insert_nat64 q n 0 in
q'.hi2 == q.hi2 /\
q'.hi3 == q.hi3) /\
(let q' = insert_nat64 q n 1 in
q'.lo0 == q.lo0 /\
q'.lo1 == q.lo1))
=
insert_nat64_reveal ();
()
let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) :
Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 ==
Mkfour n0 n1 q.hi2 q.hi3 /\
insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 ==
Mkfour q.lo0 q.lo1 n0 n1 )
=
let open Vale.Def.Words.Two in
insert_nat64_reveal ();
()
let lemma_lo64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1))
=
lo64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_hi64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1))
=
hi64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma
(reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0)))
=
reverse_bytes_nat64_reveal ()
let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma
(requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1)
(ensures final == reverse_bytes_quad32 src)
=
reverse_bytes_nat64_reveal ();
let Mkfour x0 x1 x2 x3 = src in
let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in
let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in
calc (==) {
reverse_bytes_quad32 src;
== { reveal_reverse_bytes_quad32 src }
four_reverse (four_map reverse_bytes_nat32 src);
== {}
four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3));
== {}
Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0);
== { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3)
(reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) }
insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1;
== { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) }
insert_nat64 (insert_nat64 orig two32 0) two10 1;
};
calc (==) {
reverse_bytes_nat64 (hi64 src);
== { hi64_reveal ()}
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3));
== { lemma_reverse_bytes_nat64_32 x2 x3 }
two32;
};
calc (==) {
reverse_bytes_nat64 (lo64 src);
== { lo64_reveal () }
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1));
== { lemma_reverse_bytes_nat64_32 x0 x1 }
two10;
};
()
let lemma_equality_check_helper (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)
)
=
// lemma_equality_check_helper_lo q;
// lemma_equality_check_helper_hi q;
lo64_reveal ();
hi64_reveal ();
assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x);
()
let push_pop_xmm (x y:quad32) : Lemma
(let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in
x == x')
=
// assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1);
insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_insrq_extrq_relations (x y:quad32) :
Lemma (let z = insert_nat64 x (lo64 y) 0 in
z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\
(let z = insert_nat64 x (hi64 y) 1 in
z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3)) | false | false | Vale.Arch.Types.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 3,
"initial_ifuel": 3,
"max_fuel": 3,
"max_ifuel": 3,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_insrq_extrq_relations (x y:quad32) :
Lemma (let z = insert_nat64 x (lo64 y) 0 in
z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\
(let z = insert_nat64 x (hi64 y) 1 in
z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3)) | [] | Vale.Arch.Types.lemma_insrq_extrq_relations | {
"file_name": "vale/code/arch/Vale.Arch.Types.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x: Vale.Def.Types_s.quad32 -> y: Vale.Def.Types_s.quad32
-> FStar.Pervasives.Lemma
(ensures
(let z = Vale.Def.Types_s.insert_nat64 x (Vale.Arch.Types.lo64 y) 0 in
z == Vale.Def.Words_s.Mkfour (Mkfour?.lo0 y) (Mkfour?.lo1 y) (Mkfour?.hi2 x) (Mkfour?.hi3 x) /\
(let z = Vale.Def.Types_s.insert_nat64 x (Vale.Arch.Types.hi64 y) 1 in
z ==
Vale.Def.Words_s.Mkfour (Mkfour?.lo0 x) (Mkfour?.lo1 x) (Mkfour?.hi2 y) (Mkfour?.hi3 y)))) | {
"end_col": 4,
"end_line": 297,
"start_col": 2,
"start_line": 280
} |
FStar.Pervasives.Lemma | val le_bytes_to_nat64_to_bytes (s:nat64) :
Lemma (le_bytes_to_nat64 (le_nat64_to_bytes s) == s) | [
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let le_bytes_to_nat64_to_bytes s =
le_nat64_to_bytes_reveal ();
le_bytes_to_nat64_reveal () | val le_bytes_to_nat64_to_bytes (s:nat64) :
Lemma (le_bytes_to_nat64 (le_nat64_to_bytes s) == s)
let le_bytes_to_nat64_to_bytes s = | false | null | true | le_nat64_to_bytes_reveal ();
le_bytes_to_nat64_reveal () | {
"checked_file": "Vale.Arch.Types.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Arch.Types.fst"
} | [
"lemma"
] | [
"Vale.Def.Words_s.nat64",
"Vale.Def.Types_s.le_bytes_to_nat64_reveal",
"Prims.unit",
"Vale.Def.Types_s.le_nat64_to_bytes_reveal"
] | [] | module Vale.Arch.Types
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.TypesNative
open Vale.Lib.Seqs
open Vale.Def.Words_s
open Vale.Def.Words.Two
open FStar.Calc
let lemma_nat_to_two32 () =
assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000))
let lemma_BitwiseXorCommutative x y =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ y) (y *^ x)
let lemma_BitwiseXorWithZero n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ 0) n
let lemma_BitwiseXorCancel n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ n) 0
let lemma_BitwiseXorCancel64 (n:nat64) =
lemma_ixor_nth_all 64;
lemma_zero_nth 64;
lemma_equal_nth 64 (ixor n n) 0
let lemma_BitwiseXorAssociative x y z =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z)
let xor_lemmas () =
FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative;
FStar.Classical.forall_intro lemma_BitwiseXorWithZero;
FStar.Classical.forall_intro lemma_BitwiseXorCancel;
FStar.Classical.forall_intro lemma_BitwiseXorCancel64;
FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_quad32_xor () =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
xor_lemmas()
(*
let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) =
let q' = quad32_xor q q in
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
// REVIEW: Why are these necessary?
assert (q'.lo0 == nat32_xor q.lo0 q.lo0);
assert (q'.lo1 == nat32_xor q.lo1 q.lo1);
assert (q'.hi2 == nat32_xor q.hi2 q.hi2);
assert (q'.hi3 == nat32_xor q.hi3 q.hi3);
xor_lemmas()
in
FStar.Classical.forall_intro helper
*)
#pop-options
let lemma_reverse_reverse_bytes_nat32 (n:nat32) :
Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n)
=
reverse_bytes_nat32_reveal ();
let r = reverse_seq (nat32_to_be_bytes n) in
be_bytes_to_nat32_to_be_bytes r;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_reverse_bytes_quad32 (q:quad32) =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
reveal_reverse_bytes_quad32 q;
reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q);
()
#pop-options
let lemma_reverse_bytes_nat32 (_:unit) : Lemma
(reverse_bytes_nat32 0 == 0)
=
reverse_bytes_nat32_reveal ();
assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0);
()
let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma
(let z = Mkfour 0 0 0 0 in
reverse_bytes_quad32 z == z)
=
let z = Mkfour 0 0 0 0 in
calc (==) {
reverse_bytes_quad32 z;
== { reveal_reverse_bytes_quad32 z }
four_reverse (four_map reverse_bytes_nat32 z);
== { lemma_reverse_bytes_nat32() }
z;
};
()
let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) :
Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s)
=
reveal_reverse_bytes_nat32_seq s;
reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s);
assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s)
(*
let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) :
Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\
( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\
((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF))
=
if n.lo == 0 /\ n.hi == 0 then (
assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0);
()
) else (
()
);
()
let lemma_equality_check_helper_lo (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1);
()
let lemma_equality_check_helper_hi (q:quad32) :
Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3);
()
*)
let lemma_insert_nat64_properties (q:quad32) (n:nat64) :
Lemma ( (let q' = insert_nat64 q n 0 in
q'.hi2 == q.hi2 /\
q'.hi3 == q.hi3) /\
(let q' = insert_nat64 q n 1 in
q'.lo0 == q.lo0 /\
q'.lo1 == q.lo1))
=
insert_nat64_reveal ();
()
let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) :
Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 ==
Mkfour n0 n1 q.hi2 q.hi3 /\
insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 ==
Mkfour q.lo0 q.lo1 n0 n1 )
=
let open Vale.Def.Words.Two in
insert_nat64_reveal ();
()
let lemma_lo64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1))
=
lo64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_hi64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1))
=
hi64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma
(reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0)))
=
reverse_bytes_nat64_reveal ()
let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma
(requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1)
(ensures final == reverse_bytes_quad32 src)
=
reverse_bytes_nat64_reveal ();
let Mkfour x0 x1 x2 x3 = src in
let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in
let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in
calc (==) {
reverse_bytes_quad32 src;
== { reveal_reverse_bytes_quad32 src }
four_reverse (four_map reverse_bytes_nat32 src);
== {}
four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3));
== {}
Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0);
== { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3)
(reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) }
insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1;
== { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) }
insert_nat64 (insert_nat64 orig two32 0) two10 1;
};
calc (==) {
reverse_bytes_nat64 (hi64 src);
== { hi64_reveal ()}
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3));
== { lemma_reverse_bytes_nat64_32 x2 x3 }
two32;
};
calc (==) {
reverse_bytes_nat64 (lo64 src);
== { lo64_reveal () }
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1));
== { lemma_reverse_bytes_nat64_32 x0 x1 }
two10;
};
()
let lemma_equality_check_helper (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)
)
=
// lemma_equality_check_helper_lo q;
// lemma_equality_check_helper_hi q;
lo64_reveal ();
hi64_reveal ();
assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x);
()
let push_pop_xmm (x y:quad32) : Lemma
(let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in
x == x')
=
// assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1);
insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_insrq_extrq_relations (x y:quad32) :
Lemma (let z = insert_nat64 x (lo64 y) 0 in
z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\
(let z = insert_nat64 x (hi64 y) 1 in
z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3))
=
let open Vale.Def.Words.Two in
let z = insert_nat64 x (lo64 y) 0 in
insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
assert (z == insert_nat64_def x (lo64_def y) 0);
//assert (q'.hi2 == q.hi2);
//assert (q'.hi3 == q.hi3);
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0));
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0));
let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in
nat_to_two_to_nat n1 n2;
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0));
//assert (q'.lo1 == q.lo1);
//assert (q == q');
()
open Vale.Def.Words.Two | false | false | Vale.Arch.Types.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 3,
"initial_ifuel": 3,
"max_fuel": 3,
"max_ifuel": 3,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val le_bytes_to_nat64_to_bytes (s:nat64) :
Lemma (le_bytes_to_nat64 (le_nat64_to_bytes s) == s) | [] | Vale.Arch.Types.le_bytes_to_nat64_to_bytes | {
"file_name": "vale/code/arch/Vale.Arch.Types.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | s: Vale.Def.Words_s.nat64
-> FStar.Pervasives.Lemma
(ensures Vale.Def.Types_s.le_bytes_to_nat64 (Vale.Def.Types_s.le_nat64_to_bytes s) == s) | {
"end_col": 29,
"end_line": 303,
"start_col": 2,
"start_line": 302
} |
FStar.Pervasives.Lemma | val lemma_lo64_properties (_:unit) : Lemma
(forall (q0 q1:quad32).{:pattern lo64 q0; lo64 q1}
(q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) | [
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_lo64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1))
=
lo64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
() | val lemma_lo64_properties (_:unit) : Lemma
(forall (q0 q1:quad32).{:pattern lo64 q0; lo64 q1}
(q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1))
let lemma_lo64_properties (_: unit)
: Lemma
(forall (q0: quad32) (q1: quad32).
(q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = | false | null | true | lo64_reveal ();
let helper (q0 q1: quad32)
: Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
() | {
"checked_file": "Vale.Arch.Types.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Arch.Types.fst"
} | [
"lemma"
] | [
"Prims.unit",
"FStar.Classical.forall_intro_2",
"Vale.Def.Types_s.quad32",
"Prims.l_iff",
"Prims.l_and",
"Prims.eq2",
"Vale.Def.Types_s.nat32",
"Vale.Def.Words_s.__proj__Mkfour__item__lo0",
"Vale.Def.Words_s.__proj__Mkfour__item__lo1",
"Vale.Def.Words_s.nat64",
"Vale.Arch.Types.lo64",
"Prims.l_True",
"Prims.squash",
"Vale.Def.Words_s.nat32",
"Prims.Nil",
"FStar.Pervasives.pattern",
"Vale.Def.Words.Two.nat_to_two_to_nat",
"Vale.Def.Words_s.two",
"Vale.Def.Words.Two_s.two_select",
"Vale.Def.Words.Four_s.four_to_two_two",
"Vale.Arch.Types.lo64_reveal",
"Prims.l_Forall"
] | [] | module Vale.Arch.Types
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.TypesNative
open Vale.Lib.Seqs
open Vale.Def.Words_s
open Vale.Def.Words.Two
open FStar.Calc
let lemma_nat_to_two32 () =
assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000))
let lemma_BitwiseXorCommutative x y =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ y) (y *^ x)
let lemma_BitwiseXorWithZero n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ 0) n
let lemma_BitwiseXorCancel n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ n) 0
let lemma_BitwiseXorCancel64 (n:nat64) =
lemma_ixor_nth_all 64;
lemma_zero_nth 64;
lemma_equal_nth 64 (ixor n n) 0
let lemma_BitwiseXorAssociative x y z =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z)
let xor_lemmas () =
FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative;
FStar.Classical.forall_intro lemma_BitwiseXorWithZero;
FStar.Classical.forall_intro lemma_BitwiseXorCancel;
FStar.Classical.forall_intro lemma_BitwiseXorCancel64;
FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_quad32_xor () =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
xor_lemmas()
(*
let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) =
let q' = quad32_xor q q in
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
// REVIEW: Why are these necessary?
assert (q'.lo0 == nat32_xor q.lo0 q.lo0);
assert (q'.lo1 == nat32_xor q.lo1 q.lo1);
assert (q'.hi2 == nat32_xor q.hi2 q.hi2);
assert (q'.hi3 == nat32_xor q.hi3 q.hi3);
xor_lemmas()
in
FStar.Classical.forall_intro helper
*)
#pop-options
let lemma_reverse_reverse_bytes_nat32 (n:nat32) :
Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n)
=
reverse_bytes_nat32_reveal ();
let r = reverse_seq (nat32_to_be_bytes n) in
be_bytes_to_nat32_to_be_bytes r;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_reverse_bytes_quad32 (q:quad32) =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
reveal_reverse_bytes_quad32 q;
reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q);
()
#pop-options
let lemma_reverse_bytes_nat32 (_:unit) : Lemma
(reverse_bytes_nat32 0 == 0)
=
reverse_bytes_nat32_reveal ();
assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0);
()
let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma
(let z = Mkfour 0 0 0 0 in
reverse_bytes_quad32 z == z)
=
let z = Mkfour 0 0 0 0 in
calc (==) {
reverse_bytes_quad32 z;
== { reveal_reverse_bytes_quad32 z }
four_reverse (four_map reverse_bytes_nat32 z);
== { lemma_reverse_bytes_nat32() }
z;
};
()
let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) :
Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s)
=
reveal_reverse_bytes_nat32_seq s;
reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s);
assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s)
(*
let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) :
Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\
( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\
((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF))
=
if n.lo == 0 /\ n.hi == 0 then (
assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0);
()
) else (
()
);
()
let lemma_equality_check_helper_lo (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1);
()
let lemma_equality_check_helper_hi (q:quad32) :
Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3);
()
*)
let lemma_insert_nat64_properties (q:quad32) (n:nat64) :
Lemma ( (let q' = insert_nat64 q n 0 in
q'.hi2 == q.hi2 /\
q'.hi3 == q.hi3) /\
(let q' = insert_nat64 q n 1 in
q'.lo0 == q.lo0 /\
q'.lo1 == q.lo1))
=
insert_nat64_reveal ();
()
let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) :
Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 ==
Mkfour n0 n1 q.hi2 q.hi3 /\
insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 ==
Mkfour q.lo0 q.lo1 n0 n1 )
=
let open Vale.Def.Words.Two in
insert_nat64_reveal ();
()
let lemma_lo64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) | false | false | Vale.Arch.Types.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_lo64_properties (_:unit) : Lemma
(forall (q0 q1:quad32).{:pattern lo64 q0; lo64 q1}
(q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) | [] | Vale.Arch.Types.lemma_lo64_properties | {
"file_name": "vale/code/arch/Vale.Arch.Types.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | _: Prims.unit
-> FStar.Pervasives.Lemma
(ensures
forall (q0: Vale.Def.Types_s.quad32) (q1: Vale.Def.Types_s.quad32).
{:pattern Vale.Arch.Types.lo64 q0; Vale.Arch.Types.lo64 q1}
Mkfour?.lo0 q0 == Mkfour?.lo0 q1 /\ Mkfour?.lo1 q0 == Mkfour?.lo1 q1 <==>
Vale.Arch.Types.lo64 q0 == Vale.Arch.Types.lo64 q1) | {
"end_col": 4,
"end_line": 179,
"start_col": 2,
"start_line": 170
} |
FStar.Pervasives.Lemma | val lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) :
Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 ==
Mkfour n0 n1 q.hi2 q.hi3 /\
insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 ==
Mkfour q.lo0 q.lo1 n0 n1 ) | [
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) :
Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 ==
Mkfour n0 n1 q.hi2 q.hi3 /\
insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 ==
Mkfour q.lo0 q.lo1 n0 n1 )
=
let open Vale.Def.Words.Two in
insert_nat64_reveal ();
() | val lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) :
Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 ==
Mkfour n0 n1 q.hi2 q.hi3 /\
insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 ==
Mkfour q.lo0 q.lo1 n0 n1 )
let lemma_insert_nat64_nat32s (q: quad32) (n0 n1: nat32)
: Lemma
(insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 == Mkfour n0 n1 q.hi2 q.hi3 /\
insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 == Mkfour q.lo0 q.lo1 n0 n1) = | false | null | true | let open Vale.Def.Words.Two in
insert_nat64_reveal ();
() | {
"checked_file": "Vale.Arch.Types.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Arch.Types.fst"
} | [
"lemma"
] | [
"Vale.Def.Types_s.quad32",
"Vale.Def.Words_s.nat32",
"Prims.unit",
"Vale.Def.Types_s.insert_nat64_reveal",
"Prims.l_True",
"Prims.squash",
"Prims.l_and",
"Prims.eq2",
"Vale.Def.Words_s.four",
"Vale.Def.Types_s.nat32",
"Vale.Def.Types_s.insert_nat64",
"Vale.Arch.Types.two_to_nat32",
"Vale.Def.Words_s.Mktwo",
"Vale.Def.Words_s.Mkfour",
"Vale.Def.Words_s.__proj__Mkfour__item__hi2",
"Vale.Def.Words_s.__proj__Mkfour__item__hi3",
"Vale.Def.Words_s.__proj__Mkfour__item__lo0",
"Vale.Def.Words_s.__proj__Mkfour__item__lo1",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.Arch.Types
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.TypesNative
open Vale.Lib.Seqs
open Vale.Def.Words_s
open Vale.Def.Words.Two
open FStar.Calc
let lemma_nat_to_two32 () =
assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000))
let lemma_BitwiseXorCommutative x y =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ y) (y *^ x)
let lemma_BitwiseXorWithZero n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ 0) n
let lemma_BitwiseXorCancel n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ n) 0
let lemma_BitwiseXorCancel64 (n:nat64) =
lemma_ixor_nth_all 64;
lemma_zero_nth 64;
lemma_equal_nth 64 (ixor n n) 0
let lemma_BitwiseXorAssociative x y z =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z)
let xor_lemmas () =
FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative;
FStar.Classical.forall_intro lemma_BitwiseXorWithZero;
FStar.Classical.forall_intro lemma_BitwiseXorCancel;
FStar.Classical.forall_intro lemma_BitwiseXorCancel64;
FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_quad32_xor () =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
xor_lemmas()
(*
let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) =
let q' = quad32_xor q q in
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
// REVIEW: Why are these necessary?
assert (q'.lo0 == nat32_xor q.lo0 q.lo0);
assert (q'.lo1 == nat32_xor q.lo1 q.lo1);
assert (q'.hi2 == nat32_xor q.hi2 q.hi2);
assert (q'.hi3 == nat32_xor q.hi3 q.hi3);
xor_lemmas()
in
FStar.Classical.forall_intro helper
*)
#pop-options
let lemma_reverse_reverse_bytes_nat32 (n:nat32) :
Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n)
=
reverse_bytes_nat32_reveal ();
let r = reverse_seq (nat32_to_be_bytes n) in
be_bytes_to_nat32_to_be_bytes r;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_reverse_bytes_quad32 (q:quad32) =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
reveal_reverse_bytes_quad32 q;
reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q);
()
#pop-options
let lemma_reverse_bytes_nat32 (_:unit) : Lemma
(reverse_bytes_nat32 0 == 0)
=
reverse_bytes_nat32_reveal ();
assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0);
()
let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma
(let z = Mkfour 0 0 0 0 in
reverse_bytes_quad32 z == z)
=
let z = Mkfour 0 0 0 0 in
calc (==) {
reverse_bytes_quad32 z;
== { reveal_reverse_bytes_quad32 z }
four_reverse (four_map reverse_bytes_nat32 z);
== { lemma_reverse_bytes_nat32() }
z;
};
()
let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) :
Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s)
=
reveal_reverse_bytes_nat32_seq s;
reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s);
assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s)
(*
let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) :
Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\
( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\
((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF))
=
if n.lo == 0 /\ n.hi == 0 then (
assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0);
()
) else (
()
);
()
let lemma_equality_check_helper_lo (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1);
()
let lemma_equality_check_helper_hi (q:quad32) :
Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3);
()
*)
let lemma_insert_nat64_properties (q:quad32) (n:nat64) :
Lemma ( (let q' = insert_nat64 q n 0 in
q'.hi2 == q.hi2 /\
q'.hi3 == q.hi3) /\
(let q' = insert_nat64 q n 1 in
q'.lo0 == q.lo0 /\
q'.lo1 == q.lo1))
=
insert_nat64_reveal ();
()
let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) :
Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 ==
Mkfour n0 n1 q.hi2 q.hi3 /\
insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 ==
Mkfour q.lo0 q.lo1 n0 n1 ) | false | false | Vale.Arch.Types.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) :
Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 ==
Mkfour n0 n1 q.hi2 q.hi3 /\
insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 ==
Mkfour q.lo0 q.lo1 n0 n1 ) | [] | Vale.Arch.Types.lemma_insert_nat64_nat32s | {
"file_name": "vale/code/arch/Vale.Arch.Types.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | q: Vale.Def.Types_s.quad32 -> n0: Vale.Def.Words_s.nat32 -> n1: Vale.Def.Words_s.nat32
-> FStar.Pervasives.Lemma
(ensures
Vale.Def.Types_s.insert_nat64 q
(Vale.Arch.Types.two_to_nat32 (Vale.Def.Words_s.Mktwo n0 n1))
0 ==
Vale.Def.Words_s.Mkfour n0 n1 (Mkfour?.hi2 q) (Mkfour?.hi3 q) /\
Vale.Def.Types_s.insert_nat64 q
(Vale.Arch.Types.two_to_nat32 (Vale.Def.Words_s.Mktwo n0 n1))
1 ==
Vale.Def.Words_s.Mkfour (Mkfour?.lo0 q) (Mkfour?.lo1 q) n0 n1) | {
"end_col": 4,
"end_line": 165,
"start_col": 2,
"start_line": 163
} |
FStar.Pervasives.Lemma | val be_bytes_to_quad32_to_bytes (q:quad32) :
Lemma (be_bytes_to_quad32 (be_quad32_to_bytes q) == q)
[SMTPat (be_bytes_to_quad32 (be_quad32_to_bytes q))] | [
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let be_bytes_to_quad32_to_bytes (q:quad32) :
Lemma (be_bytes_to_quad32 (be_quad32_to_bytes q) == q)
=
be_bytes_to_quad32_reveal ();
let q':quad32 = be_bytes_to_quad32 (be_quad32_to_bytes q) in
seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE q));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE q);
seq_to_four_to_seq_BE q;
() | val be_bytes_to_quad32_to_bytes (q:quad32) :
Lemma (be_bytes_to_quad32 (be_quad32_to_bytes q) == q)
[SMTPat (be_bytes_to_quad32 (be_quad32_to_bytes q))]
let be_bytes_to_quad32_to_bytes (q: quad32) : Lemma (be_bytes_to_quad32 (be_quad32_to_bytes q) == q) = | false | null | true | be_bytes_to_quad32_reveal ();
let q':quad32 = be_bytes_to_quad32 (be_quad32_to_bytes q) in
seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE q));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE q);
seq_to_four_to_seq_BE q;
() | {
"checked_file": "Vale.Arch.Types.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Arch.Types.fst"
} | [
"lemma"
] | [
"Vale.Def.Types_s.quad32",
"Prims.unit",
"Vale.Def.Words.Seq.seq_to_four_to_seq_BE",
"Vale.Def.Types_s.nat32",
"Vale.Lib.Seqs.seq_map_inverses",
"Vale.Def.Words_s.four",
"Vale.Def.Words_s.natN",
"Prims.pow2",
"Vale.Def.Words.Four_s.nat_to_four",
"Vale.Def.Words.Four_s.four_to_nat",
"Vale.Def.Words.Seq_s.four_to_seq_BE",
"Vale.Def.Words.Seq.seq_to_seq_four_to_seq_BE",
"Vale.Lib.Seqs_s.seq_map",
"Vale.Def.Types_s.be_bytes_to_quad32",
"Vale.Arch.Types.be_quad32_to_bytes",
"Vale.Def.Types_s.be_bytes_to_quad32_reveal",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.Arch.Types
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.TypesNative
open Vale.Lib.Seqs
open Vale.Def.Words_s
open Vale.Def.Words.Two
open FStar.Calc
let lemma_nat_to_two32 () =
assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000))
let lemma_BitwiseXorCommutative x y =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ y) (y *^ x)
let lemma_BitwiseXorWithZero n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ 0) n
let lemma_BitwiseXorCancel n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ n) 0
let lemma_BitwiseXorCancel64 (n:nat64) =
lemma_ixor_nth_all 64;
lemma_zero_nth 64;
lemma_equal_nth 64 (ixor n n) 0
let lemma_BitwiseXorAssociative x y z =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z)
let xor_lemmas () =
FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative;
FStar.Classical.forall_intro lemma_BitwiseXorWithZero;
FStar.Classical.forall_intro lemma_BitwiseXorCancel;
FStar.Classical.forall_intro lemma_BitwiseXorCancel64;
FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_quad32_xor () =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
xor_lemmas()
(*
let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) =
let q' = quad32_xor q q in
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
// REVIEW: Why are these necessary?
assert (q'.lo0 == nat32_xor q.lo0 q.lo0);
assert (q'.lo1 == nat32_xor q.lo1 q.lo1);
assert (q'.hi2 == nat32_xor q.hi2 q.hi2);
assert (q'.hi3 == nat32_xor q.hi3 q.hi3);
xor_lemmas()
in
FStar.Classical.forall_intro helper
*)
#pop-options
let lemma_reverse_reverse_bytes_nat32 (n:nat32) :
Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n)
=
reverse_bytes_nat32_reveal ();
let r = reverse_seq (nat32_to_be_bytes n) in
be_bytes_to_nat32_to_be_bytes r;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_reverse_bytes_quad32 (q:quad32) =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
reveal_reverse_bytes_quad32 q;
reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q);
()
#pop-options
let lemma_reverse_bytes_nat32 (_:unit) : Lemma
(reverse_bytes_nat32 0 == 0)
=
reverse_bytes_nat32_reveal ();
assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0);
()
let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma
(let z = Mkfour 0 0 0 0 in
reverse_bytes_quad32 z == z)
=
let z = Mkfour 0 0 0 0 in
calc (==) {
reverse_bytes_quad32 z;
== { reveal_reverse_bytes_quad32 z }
four_reverse (four_map reverse_bytes_nat32 z);
== { lemma_reverse_bytes_nat32() }
z;
};
()
let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) :
Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s)
=
reveal_reverse_bytes_nat32_seq s;
reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s);
assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s)
(*
let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) :
Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\
( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\
((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF))
=
if n.lo == 0 /\ n.hi == 0 then (
assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0);
()
) else (
()
);
()
let lemma_equality_check_helper_lo (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1);
()
let lemma_equality_check_helper_hi (q:quad32) :
Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3);
()
*)
let lemma_insert_nat64_properties (q:quad32) (n:nat64) :
Lemma ( (let q' = insert_nat64 q n 0 in
q'.hi2 == q.hi2 /\
q'.hi3 == q.hi3) /\
(let q' = insert_nat64 q n 1 in
q'.lo0 == q.lo0 /\
q'.lo1 == q.lo1))
=
insert_nat64_reveal ();
()
let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) :
Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 ==
Mkfour n0 n1 q.hi2 q.hi3 /\
insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 ==
Mkfour q.lo0 q.lo1 n0 n1 )
=
let open Vale.Def.Words.Two in
insert_nat64_reveal ();
()
let lemma_lo64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1))
=
lo64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_hi64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1))
=
hi64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma
(reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0)))
=
reverse_bytes_nat64_reveal ()
let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma
(requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1)
(ensures final == reverse_bytes_quad32 src)
=
reverse_bytes_nat64_reveal ();
let Mkfour x0 x1 x2 x3 = src in
let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in
let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in
calc (==) {
reverse_bytes_quad32 src;
== { reveal_reverse_bytes_quad32 src }
four_reverse (four_map reverse_bytes_nat32 src);
== {}
four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3));
== {}
Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0);
== { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3)
(reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) }
insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1;
== { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) }
insert_nat64 (insert_nat64 orig two32 0) two10 1;
};
calc (==) {
reverse_bytes_nat64 (hi64 src);
== { hi64_reveal ()}
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3));
== { lemma_reverse_bytes_nat64_32 x2 x3 }
two32;
};
calc (==) {
reverse_bytes_nat64 (lo64 src);
== { lo64_reveal () }
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1));
== { lemma_reverse_bytes_nat64_32 x0 x1 }
two10;
};
()
let lemma_equality_check_helper (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)
)
=
// lemma_equality_check_helper_lo q;
// lemma_equality_check_helper_hi q;
lo64_reveal ();
hi64_reveal ();
assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x);
()
let push_pop_xmm (x y:quad32) : Lemma
(let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in
x == x')
=
// assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1);
insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_insrq_extrq_relations (x y:quad32) :
Lemma (let z = insert_nat64 x (lo64 y) 0 in
z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\
(let z = insert_nat64 x (hi64 y) 1 in
z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3))
=
let open Vale.Def.Words.Two in
let z = insert_nat64 x (lo64 y) 0 in
insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
assert (z == insert_nat64_def x (lo64_def y) 0);
//assert (q'.hi2 == q.hi2);
//assert (q'.hi3 == q.hi3);
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0));
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0));
let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in
nat_to_two_to_nat n1 n2;
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0));
//assert (q'.lo1 == q.lo1);
//assert (q == q');
()
open Vale.Def.Words.Two
let le_bytes_to_nat64_to_bytes s =
le_nat64_to_bytes_reveal ();
le_bytes_to_nat64_reveal ()
let le_nat64_to_bytes_to_nat64 n =
le_nat64_to_bytes_reveal ();
le_bytes_to_nat64_reveal ()
let le_bytes_to_seq_quad32_empty () :
Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
()
let be_bytes_to_seq_quad32_empty () :
Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
()
#reset-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'"
let le_bytes_to_seq_quad32_to_bytes_one_quad b =
calc (==) {
le_bytes_to_seq_quad32 (le_quad32_to_bytes b);
== {reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32}
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_quad32_to_bytes b));
== {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes}
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))));
== {}
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)))));
== {seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))}
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_LE b)));
== {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_LE b)}
seq_to_seq_four_LE (four_to_seq_LE b);
== {four_to_seq_LE_is_seq_four_to_seq_LE b}
seq_to_seq_four_LE (seq_four_to_seq_LE (create 1 b));
== {}
create 1 b;
}
let be_bytes_to_seq_quad32_to_bytes_one_quad b =
calc (==) {
be_bytes_to_seq_quad32 (be_quad32_to_bytes b);
== {reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32}
seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (be_quad32_to_bytes b));
== {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes}
seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))));
== {}
seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b)))));
== {seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))}
seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_BE b)));
== {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE b)}
seq_to_seq_four_BE (four_to_seq_BE b);
== {four_to_seq_BE_is_seq_four_to_seq_BE b}
seq_to_seq_four_BE (seq_four_to_seq_BE (create 1 b));
== {}
create 1 b;
}
let le_bytes_to_seq_quad32_to_bytes (s:seq quad32) :
Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s)
(* This expands into showing:
le_bytes_to_seq_quad32 (le_quad32_to_bytes s)
== { definition of le_bytes_to_seq_quad32 }
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_seq_quad32_to_bytes s))
== { definition of le_seq_quad32_to_bytes }
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s)))
== { definition of seq_nat8_to_seq_nat32_LE }
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s))))
== { definition of seq_nat32_to_seq_nat8_LE }
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)))))
*)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_seq_quad32_to_bytes_reveal ();
seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_LE s);
seq_to_seq_four_to_seq_LE (s) ;
()
let be_bytes_to_seq_quad32_to_bytes (s:seq quad32) :
Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_BE s);
seq_to_seq_four_to_seq_BE (s) ;
()
let le_seq_quad32_to_bytes_to_seq_quad32 s =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_seq_quad32_to_bytes_reveal ();
calc (==) {
le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 s);
(==) { }
seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE (seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s)));
(==) { }
s;
}
(*
le_quad32_to_bytes (le_bytes_to_quad32 s)
== { definition of le_quad32_to_bytes }
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (le_bytes_to_quad32 s)))
== { definition of le_bytes_to_quad32 }
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)))))
*)
let le_quad32_to_bytes_to_quad32 s =
calc (==) {
le_quad32_to_bytes (le_bytes_to_quad32 s);
== {le_bytes_to_quad32_reveal ()}
le_quad32_to_bytes (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)));
== {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes}
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)))));
== {four_to_seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))}
seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)));
== {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_LE s)}
seq_four_to_seq_LE (seq_to_seq_four_LE s);
== {}
s;
}
let be_quad32_to_bytes_to_quad32 s =
calc (==) {
be_quad32_to_bytes (be_bytes_to_quad32 s);
== {be_bytes_to_quad32_reveal ()}
be_quad32_to_bytes (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)));
== {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes}
seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)))));
== {four_to_seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))}
seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)));
== {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_BE s)}
seq_four_to_seq_BE (seq_to_seq_four_BE s);
== {}
s;
}
let le_seq_quad32_to_bytes_of_singleton (q:quad32) :
Lemma (le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q))
=
le_seq_quad32_to_bytes_reveal ();
reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes;
four_to_seq_LE_is_seq_four_to_seq_LE q;
()
let be_seq_quad32_to_bytes_of_singleton (q:quad32) :
Lemma (be_quad32_to_bytes q == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 q)))
=
reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes;
four_to_seq_BE_is_seq_four_to_seq_BE q;
()
let le_quad32_to_bytes_injective ():
Lemma (forall b b' . le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b')
=
reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes;
let helper (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') =
if le_quad32_to_bytes b = le_quad32_to_bytes b' then (
let b1 = seq_map (nat_to_four 8) (four_to_seq_LE b) in
let b1' = seq_map (nat_to_four 8) (four_to_seq_LE b') in
assert (le_quad32_to_bytes b == seq_four_to_seq_LE b1);
assert (le_quad32_to_bytes b' == seq_four_to_seq_LE b1');
seq_four_to_seq_LE_injective_specific b1 b1';
assert (b1 == b1');
nat_to_four_8_injective();
seq_map_injective (nat_to_four 8) (four_to_seq_LE b) (four_to_seq_LE b');
assert ((four_to_seq_LE b) == (four_to_seq_LE b'));
four_to_seq_LE_injective nat32;
()
) else
()
in
FStar.Classical.forall_intro_2 helper
let be_quad32_to_bytes_injective ():
Lemma (forall b b' . be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b')
=
reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes;
let helper (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') =
if be_quad32_to_bytes b = be_quad32_to_bytes b' then (
let b1 = seq_map (nat_to_four 8) (four_to_seq_BE b) in
let b1' = seq_map (nat_to_four 8) (four_to_seq_BE b') in
assert (be_quad32_to_bytes b == seq_four_to_seq_BE b1);
assert (be_quad32_to_bytes b' == seq_four_to_seq_BE b1');
seq_four_to_seq_BE_injective_specific b1 b1';
assert (b1 == b1');
nat_to_four_8_injective();
seq_map_injective (nat_to_four 8) (four_to_seq_BE b) (four_to_seq_BE b');
assert ((four_to_seq_BE b) == (four_to_seq_BE b'));
four_to_seq_BE_injective nat32;
()
) else
()
in
FStar.Classical.forall_intro_2 helper
let le_quad32_to_bytes_injective_specific (b b':quad32) :
Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b')
=
le_quad32_to_bytes_injective()
let be_quad32_to_bytes_injective_specific (b b':quad32) :
Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b')
=
be_quad32_to_bytes_injective()
let le_seq_quad32_to_bytes_injective (b b':seq quad32) =
le_seq_quad32_to_bytes_reveal ();
seq_four_to_seq_LE_injective nat8;
nat_to_four_8_injective();
seq_map_injective (nat_to_four 8) (seq_four_to_seq_LE b) (seq_four_to_seq_LE b');
seq_four_to_seq_LE_injective_specific b b';
assert (equal b b')
let seq_to_four_LE_is_seq_to_seq_four_LE (#a:Type) (s:seq4 a) : Lemma
(create 1 (seq_to_four_LE s) == seq_to_seq_four_LE s)
=
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a);
assert (equal (create 1 (seq_to_four_LE s)) (seq_to_seq_four_LE s));
()
let seq_to_four_BE_is_seq_to_seq_four_BE (#a:Type) (s:seq4 a) : Lemma
(create 1 (seq_to_four_BE s) == seq_to_seq_four_BE s)
=
reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a);
assert (equal (create 1 (seq_to_four_BE s)) (seq_to_seq_four_BE s));
()
let le_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma
(requires q == le_bytes_to_quad32 b)
(ensures create 1 q == le_bytes_to_seq_quad32 b)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_bytes_to_quad32_reveal ();
seq_to_four_LE_is_seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b));
// q == le_bytes_to_quad32 b
// == seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b))
//
// == seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b))
// le_bytes_to_seq_quad32 b == seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE b)
()
let be_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma
(requires q == be_bytes_to_quad32 b)
(ensures create 1 q == be_bytes_to_seq_quad32 b)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
be_bytes_to_quad32_reveal ();
seq_to_four_BE_is_seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE b));
()
let le_bytes_to_quad32_to_bytes (q:quad32) :
Lemma(le_bytes_to_quad32 (le_quad32_to_bytes q) == q)
=
le_seq_quad32_to_bytes_of_singleton q; // ==> le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q)
let b = le_quad32_to_bytes q in
let q' = le_bytes_to_quad32 b in
le_bytes_to_seq_quad_of_singleton q' b; // ==> create 1 q' == le_bytes_to_seq_quad32 b
// == le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes (create 1 q))
le_bytes_to_seq_quad32_to_bytes (create 1 q); // == create 1 q
//assert (create 1 q == create 1 q');
//assert (equal (create 1 q) (create 1 q'));
assert (q == index (create 1 q) 0); // OBSERVE
assert (q == q');
()
let be_bytes_to_quad32_to_bytes (q:quad32) :
Lemma (be_bytes_to_quad32 (be_quad32_to_bytes q) == q) | false | false | Vale.Arch.Types.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val be_bytes_to_quad32_to_bytes (q:quad32) :
Lemma (be_bytes_to_quad32 (be_quad32_to_bytes q) == q)
[SMTPat (be_bytes_to_quad32 (be_quad32_to_bytes q))] | [] | Vale.Arch.Types.be_bytes_to_quad32_to_bytes | {
"file_name": "vale/code/arch/Vale.Arch.Types.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | q: Vale.Def.Types_s.quad32
-> FStar.Pervasives.Lemma
(ensures Vale.Def.Types_s.be_bytes_to_quad32 (Vale.Arch.Types.be_quad32_to_bytes q) == q)
[SMTPat (Vale.Def.Types_s.be_bytes_to_quad32 (Vale.Arch.Types.be_quad32_to_bytes q))] | {
"end_col": 4,
"end_line": 578,
"start_col": 2,
"start_line": 573
} |
FStar.Pervasives.Lemma | val slice_commutes_seq_four_to_seq_BE (#a:Type) (s:seq (four a)) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) :
Lemma(slice (seq_four_to_seq_BE s) (n * 4) (n' * 4) ==
seq_four_to_seq_BE (slice s n n')) | [
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let slice_commutes_seq_four_to_seq_BE (#a:Type) (s:seq (four a)) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) :
Lemma(slice (seq_four_to_seq_BE s) (n * 4) (n' * 4) ==
seq_four_to_seq_BE (slice s n n'))
=
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a);
assert (equal (slice (seq_four_to_seq_BE s) (n * 4) (n' * 4))
(seq_four_to_seq_BE (slice s n n')));
() | val slice_commutes_seq_four_to_seq_BE (#a:Type) (s:seq (four a)) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) :
Lemma(slice (seq_four_to_seq_BE s) (n * 4) (n' * 4) ==
seq_four_to_seq_BE (slice s n n'))
let slice_commutes_seq_four_to_seq_BE
(#a: Type)
(s: seq (four a))
(n: nat{n <= length s})
(n': nat{n <= n' /\ n' <= length s})
: Lemma (slice (seq_four_to_seq_BE s) (n * 4) (n' * 4) == seq_four_to_seq_BE (slice s n n')) = | false | null | true | reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a);
assert (equal (slice (seq_four_to_seq_BE s) (n * 4) (n' * 4)) (seq_four_to_seq_BE (slice s n n')));
() | {
"checked_file": "Vale.Arch.Types.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Arch.Types.fst"
} | [
"lemma"
] | [
"FStar.Seq.Base.seq",
"Vale.Def.Words_s.four",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.Seq.Base.length",
"Prims.l_and",
"Prims.unit",
"Prims._assert",
"FStar.Seq.Base.equal",
"FStar.Seq.Base.slice",
"Vale.Def.Words.Seq_s.seq_four_to_seq_BE",
"FStar.Mul.op_Star",
"FStar.Pervasives.reveal_opaque",
"Prims.eq2",
"Prims.int",
"Prims.l_True",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.Arch.Types
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.TypesNative
open Vale.Lib.Seqs
open Vale.Def.Words_s
open Vale.Def.Words.Two
open FStar.Calc
let lemma_nat_to_two32 () =
assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000))
let lemma_BitwiseXorCommutative x y =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ y) (y *^ x)
let lemma_BitwiseXorWithZero n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ 0) n
let lemma_BitwiseXorCancel n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ n) 0
let lemma_BitwiseXorCancel64 (n:nat64) =
lemma_ixor_nth_all 64;
lemma_zero_nth 64;
lemma_equal_nth 64 (ixor n n) 0
let lemma_BitwiseXorAssociative x y z =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z)
let xor_lemmas () =
FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative;
FStar.Classical.forall_intro lemma_BitwiseXorWithZero;
FStar.Classical.forall_intro lemma_BitwiseXorCancel;
FStar.Classical.forall_intro lemma_BitwiseXorCancel64;
FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_quad32_xor () =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
xor_lemmas()
(*
let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) =
let q' = quad32_xor q q in
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
// REVIEW: Why are these necessary?
assert (q'.lo0 == nat32_xor q.lo0 q.lo0);
assert (q'.lo1 == nat32_xor q.lo1 q.lo1);
assert (q'.hi2 == nat32_xor q.hi2 q.hi2);
assert (q'.hi3 == nat32_xor q.hi3 q.hi3);
xor_lemmas()
in
FStar.Classical.forall_intro helper
*)
#pop-options
let lemma_reverse_reverse_bytes_nat32 (n:nat32) :
Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n)
=
reverse_bytes_nat32_reveal ();
let r = reverse_seq (nat32_to_be_bytes n) in
be_bytes_to_nat32_to_be_bytes r;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_reverse_bytes_quad32 (q:quad32) =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
reveal_reverse_bytes_quad32 q;
reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q);
()
#pop-options
let lemma_reverse_bytes_nat32 (_:unit) : Lemma
(reverse_bytes_nat32 0 == 0)
=
reverse_bytes_nat32_reveal ();
assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0);
()
let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma
(let z = Mkfour 0 0 0 0 in
reverse_bytes_quad32 z == z)
=
let z = Mkfour 0 0 0 0 in
calc (==) {
reverse_bytes_quad32 z;
== { reveal_reverse_bytes_quad32 z }
four_reverse (four_map reverse_bytes_nat32 z);
== { lemma_reverse_bytes_nat32() }
z;
};
()
let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) :
Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s)
=
reveal_reverse_bytes_nat32_seq s;
reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s);
assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s)
(*
let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) :
Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\
( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\
((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF))
=
if n.lo == 0 /\ n.hi == 0 then (
assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0);
()
) else (
()
);
()
let lemma_equality_check_helper_lo (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1);
()
let lemma_equality_check_helper_hi (q:quad32) :
Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3);
()
*)
let lemma_insert_nat64_properties (q:quad32) (n:nat64) :
Lemma ( (let q' = insert_nat64 q n 0 in
q'.hi2 == q.hi2 /\
q'.hi3 == q.hi3) /\
(let q' = insert_nat64 q n 1 in
q'.lo0 == q.lo0 /\
q'.lo1 == q.lo1))
=
insert_nat64_reveal ();
()
let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) :
Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 ==
Mkfour n0 n1 q.hi2 q.hi3 /\
insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 ==
Mkfour q.lo0 q.lo1 n0 n1 )
=
let open Vale.Def.Words.Two in
insert_nat64_reveal ();
()
let lemma_lo64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1))
=
lo64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_hi64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1))
=
hi64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma
(reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0)))
=
reverse_bytes_nat64_reveal ()
let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma
(requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1)
(ensures final == reverse_bytes_quad32 src)
=
reverse_bytes_nat64_reveal ();
let Mkfour x0 x1 x2 x3 = src in
let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in
let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in
calc (==) {
reverse_bytes_quad32 src;
== { reveal_reverse_bytes_quad32 src }
four_reverse (four_map reverse_bytes_nat32 src);
== {}
four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3));
== {}
Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0);
== { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3)
(reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) }
insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1;
== { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) }
insert_nat64 (insert_nat64 orig two32 0) two10 1;
};
calc (==) {
reverse_bytes_nat64 (hi64 src);
== { hi64_reveal ()}
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3));
== { lemma_reverse_bytes_nat64_32 x2 x3 }
two32;
};
calc (==) {
reverse_bytes_nat64 (lo64 src);
== { lo64_reveal () }
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1));
== { lemma_reverse_bytes_nat64_32 x0 x1 }
two10;
};
()
let lemma_equality_check_helper (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)
)
=
// lemma_equality_check_helper_lo q;
// lemma_equality_check_helper_hi q;
lo64_reveal ();
hi64_reveal ();
assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x);
()
let push_pop_xmm (x y:quad32) : Lemma
(let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in
x == x')
=
// assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1);
insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_insrq_extrq_relations (x y:quad32) :
Lemma (let z = insert_nat64 x (lo64 y) 0 in
z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\
(let z = insert_nat64 x (hi64 y) 1 in
z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3))
=
let open Vale.Def.Words.Two in
let z = insert_nat64 x (lo64 y) 0 in
insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
assert (z == insert_nat64_def x (lo64_def y) 0);
//assert (q'.hi2 == q.hi2);
//assert (q'.hi3 == q.hi3);
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0));
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0));
let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in
nat_to_two_to_nat n1 n2;
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0));
//assert (q'.lo1 == q.lo1);
//assert (q == q');
()
open Vale.Def.Words.Two
let le_bytes_to_nat64_to_bytes s =
le_nat64_to_bytes_reveal ();
le_bytes_to_nat64_reveal ()
let le_nat64_to_bytes_to_nat64 n =
le_nat64_to_bytes_reveal ();
le_bytes_to_nat64_reveal ()
let le_bytes_to_seq_quad32_empty () :
Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
()
let be_bytes_to_seq_quad32_empty () :
Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
()
#reset-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'"
let le_bytes_to_seq_quad32_to_bytes_one_quad b =
calc (==) {
le_bytes_to_seq_quad32 (le_quad32_to_bytes b);
== {reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32}
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_quad32_to_bytes b));
== {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes}
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))));
== {}
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)))));
== {seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))}
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_LE b)));
== {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_LE b)}
seq_to_seq_four_LE (four_to_seq_LE b);
== {four_to_seq_LE_is_seq_four_to_seq_LE b}
seq_to_seq_four_LE (seq_four_to_seq_LE (create 1 b));
== {}
create 1 b;
}
let be_bytes_to_seq_quad32_to_bytes_one_quad b =
calc (==) {
be_bytes_to_seq_quad32 (be_quad32_to_bytes b);
== {reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32}
seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (be_quad32_to_bytes b));
== {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes}
seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))));
== {}
seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b)))));
== {seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))}
seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_BE b)));
== {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE b)}
seq_to_seq_four_BE (four_to_seq_BE b);
== {four_to_seq_BE_is_seq_four_to_seq_BE b}
seq_to_seq_four_BE (seq_four_to_seq_BE (create 1 b));
== {}
create 1 b;
}
let le_bytes_to_seq_quad32_to_bytes (s:seq quad32) :
Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s)
(* This expands into showing:
le_bytes_to_seq_quad32 (le_quad32_to_bytes s)
== { definition of le_bytes_to_seq_quad32 }
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_seq_quad32_to_bytes s))
== { definition of le_seq_quad32_to_bytes }
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s)))
== { definition of seq_nat8_to_seq_nat32_LE }
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s))))
== { definition of seq_nat32_to_seq_nat8_LE }
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)))))
*)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_seq_quad32_to_bytes_reveal ();
seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_LE s);
seq_to_seq_four_to_seq_LE (s) ;
()
let be_bytes_to_seq_quad32_to_bytes (s:seq quad32) :
Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_BE s);
seq_to_seq_four_to_seq_BE (s) ;
()
let le_seq_quad32_to_bytes_to_seq_quad32 s =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_seq_quad32_to_bytes_reveal ();
calc (==) {
le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 s);
(==) { }
seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE (seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s)));
(==) { }
s;
}
(*
le_quad32_to_bytes (le_bytes_to_quad32 s)
== { definition of le_quad32_to_bytes }
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (le_bytes_to_quad32 s)))
== { definition of le_bytes_to_quad32 }
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)))))
*)
let le_quad32_to_bytes_to_quad32 s =
calc (==) {
le_quad32_to_bytes (le_bytes_to_quad32 s);
== {le_bytes_to_quad32_reveal ()}
le_quad32_to_bytes (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)));
== {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes}
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)))));
== {four_to_seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))}
seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)));
== {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_LE s)}
seq_four_to_seq_LE (seq_to_seq_four_LE s);
== {}
s;
}
let be_quad32_to_bytes_to_quad32 s =
calc (==) {
be_quad32_to_bytes (be_bytes_to_quad32 s);
== {be_bytes_to_quad32_reveal ()}
be_quad32_to_bytes (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)));
== {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes}
seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)))));
== {four_to_seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))}
seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)));
== {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_BE s)}
seq_four_to_seq_BE (seq_to_seq_four_BE s);
== {}
s;
}
let le_seq_quad32_to_bytes_of_singleton (q:quad32) :
Lemma (le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q))
=
le_seq_quad32_to_bytes_reveal ();
reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes;
four_to_seq_LE_is_seq_four_to_seq_LE q;
()
let be_seq_quad32_to_bytes_of_singleton (q:quad32) :
Lemma (be_quad32_to_bytes q == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 q)))
=
reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes;
four_to_seq_BE_is_seq_four_to_seq_BE q;
()
let le_quad32_to_bytes_injective ():
Lemma (forall b b' . le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b')
=
reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes;
let helper (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') =
if le_quad32_to_bytes b = le_quad32_to_bytes b' then (
let b1 = seq_map (nat_to_four 8) (four_to_seq_LE b) in
let b1' = seq_map (nat_to_four 8) (four_to_seq_LE b') in
assert (le_quad32_to_bytes b == seq_four_to_seq_LE b1);
assert (le_quad32_to_bytes b' == seq_four_to_seq_LE b1');
seq_four_to_seq_LE_injective_specific b1 b1';
assert (b1 == b1');
nat_to_four_8_injective();
seq_map_injective (nat_to_four 8) (four_to_seq_LE b) (four_to_seq_LE b');
assert ((four_to_seq_LE b) == (four_to_seq_LE b'));
four_to_seq_LE_injective nat32;
()
) else
()
in
FStar.Classical.forall_intro_2 helper
let be_quad32_to_bytes_injective ():
Lemma (forall b b' . be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b')
=
reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes;
let helper (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') =
if be_quad32_to_bytes b = be_quad32_to_bytes b' then (
let b1 = seq_map (nat_to_four 8) (four_to_seq_BE b) in
let b1' = seq_map (nat_to_four 8) (four_to_seq_BE b') in
assert (be_quad32_to_bytes b == seq_four_to_seq_BE b1);
assert (be_quad32_to_bytes b' == seq_four_to_seq_BE b1');
seq_four_to_seq_BE_injective_specific b1 b1';
assert (b1 == b1');
nat_to_four_8_injective();
seq_map_injective (nat_to_four 8) (four_to_seq_BE b) (four_to_seq_BE b');
assert ((four_to_seq_BE b) == (four_to_seq_BE b'));
four_to_seq_BE_injective nat32;
()
) else
()
in
FStar.Classical.forall_intro_2 helper
let le_quad32_to_bytes_injective_specific (b b':quad32) :
Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b')
=
le_quad32_to_bytes_injective()
let be_quad32_to_bytes_injective_specific (b b':quad32) :
Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b')
=
be_quad32_to_bytes_injective()
let le_seq_quad32_to_bytes_injective (b b':seq quad32) =
le_seq_quad32_to_bytes_reveal ();
seq_four_to_seq_LE_injective nat8;
nat_to_four_8_injective();
seq_map_injective (nat_to_four 8) (seq_four_to_seq_LE b) (seq_four_to_seq_LE b');
seq_four_to_seq_LE_injective_specific b b';
assert (equal b b')
let seq_to_four_LE_is_seq_to_seq_four_LE (#a:Type) (s:seq4 a) : Lemma
(create 1 (seq_to_four_LE s) == seq_to_seq_four_LE s)
=
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a);
assert (equal (create 1 (seq_to_four_LE s)) (seq_to_seq_four_LE s));
()
let seq_to_four_BE_is_seq_to_seq_four_BE (#a:Type) (s:seq4 a) : Lemma
(create 1 (seq_to_four_BE s) == seq_to_seq_four_BE s)
=
reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a);
assert (equal (create 1 (seq_to_four_BE s)) (seq_to_seq_four_BE s));
()
let le_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma
(requires q == le_bytes_to_quad32 b)
(ensures create 1 q == le_bytes_to_seq_quad32 b)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_bytes_to_quad32_reveal ();
seq_to_four_LE_is_seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b));
// q == le_bytes_to_quad32 b
// == seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b))
//
// == seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b))
// le_bytes_to_seq_quad32 b == seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE b)
()
let be_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma
(requires q == be_bytes_to_quad32 b)
(ensures create 1 q == be_bytes_to_seq_quad32 b)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
be_bytes_to_quad32_reveal ();
seq_to_four_BE_is_seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE b));
()
let le_bytes_to_quad32_to_bytes (q:quad32) :
Lemma(le_bytes_to_quad32 (le_quad32_to_bytes q) == q)
=
le_seq_quad32_to_bytes_of_singleton q; // ==> le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q)
let b = le_quad32_to_bytes q in
let q' = le_bytes_to_quad32 b in
le_bytes_to_seq_quad_of_singleton q' b; // ==> create 1 q' == le_bytes_to_seq_quad32 b
// == le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes (create 1 q))
le_bytes_to_seq_quad32_to_bytes (create 1 q); // == create 1 q
//assert (create 1 q == create 1 q');
//assert (equal (create 1 q) (create 1 q'));
assert (q == index (create 1 q) 0); // OBSERVE
assert (q == q');
()
let be_bytes_to_quad32_to_bytes (q:quad32) :
Lemma (be_bytes_to_quad32 (be_quad32_to_bytes q) == q)
=
be_bytes_to_quad32_reveal ();
let q':quad32 = be_bytes_to_quad32 (be_quad32_to_bytes q) in
seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE q));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE q);
seq_to_four_to_seq_BE q;
()
let lemma_reverse_reverse_bytes_nat32_quad32 (s:quad32) :
Lemma (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s) == s)
[SMTPat (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s))]
=
let s' = reverse_bytes_nat32_quad32 s in
let s''= reverse_bytes_nat32_quad32 s' in
assert (s''.lo0 == reverse_bytes_nat32 (reverse_bytes_nat32 s.lo0)); // OBSERVE
assert (s''.lo1 == reverse_bytes_nat32 (reverse_bytes_nat32 s.lo1)); // OBSERVE
assert (s''.hi2 == reverse_bytes_nat32 (reverse_bytes_nat32 s.hi2)); // OBSERVE
assert (s''.hi3 == reverse_bytes_nat32 (reverse_bytes_nat32 s.hi3)); // OBSERVE
()
let lemma_reverse_reverse_bytes_nat32_quad32_seq (s:seq quad32) :
Lemma (reverse_bytes_nat32_quad32_seq (reverse_bytes_nat32_quad32_seq s) == s)
[SMTPat (reverse_bytes_nat32_quad32_seq (reverse_bytes_nat32_quad32_seq s))]
=
seq_map_inverses reverse_bytes_nat32_quad32 reverse_bytes_nat32_quad32 s
let lemma_reverse_reverse_bytes_quad32_seq (s:seq quad32) :
Lemma (reverse_bytes_quad32_seq (reverse_bytes_quad32_seq s) == s)
[SMTPat (reverse_bytes_quad32_seq (reverse_bytes_quad32_seq s))]
=
seq_map_inverses reverse_bytes_quad32 reverse_bytes_quad32 s
let lemma_le_seq_quad32_to_bytes_length (s:seq quad32) :
Lemma(length (le_seq_quad32_to_bytes s) == (length s) * 16)
=
()
let lemma_be_seq_quad32_to_bytes_length (s:seq quad32) :
Lemma(length (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == (length s) * 16)
=
()
let slice_commutes_seq_four_to_seq_LE (#a:Type) (s:seq (four a)) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) :
Lemma(slice (seq_four_to_seq_LE s) (n * 4) (n' * 4) ==
seq_four_to_seq_LE (slice s n n'))
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a);
assert (equal (slice (seq_four_to_seq_LE s) (n * 4) (n' * 4))
(seq_four_to_seq_LE (slice s n n')));
()
let slice_commutes_seq_four_to_seq_BE (#a:Type) (s:seq (four a)) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) :
Lemma(slice (seq_four_to_seq_BE s) (n * 4) (n' * 4) ==
seq_four_to_seq_BE (slice s n n')) | false | false | Vale.Arch.Types.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val slice_commutes_seq_four_to_seq_BE (#a:Type) (s:seq (four a)) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) :
Lemma(slice (seq_four_to_seq_BE s) (n * 4) (n' * 4) ==
seq_four_to_seq_BE (slice s n n')) | [] | Vale.Arch.Types.slice_commutes_seq_four_to_seq_BE | {
"file_name": "vale/code/arch/Vale.Arch.Types.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
s: FStar.Seq.Base.seq (Vale.Def.Words_s.four a) ->
n: Prims.nat{n <= FStar.Seq.Base.length s} ->
n': Prims.nat{n <= n' /\ n' <= FStar.Seq.Base.length s}
-> FStar.Pervasives.Lemma
(ensures
FStar.Seq.Base.slice (Vale.Def.Words.Seq_s.seq_four_to_seq_BE s) (n * 4) (n' * 4) ==
Vale.Def.Words.Seq_s.seq_four_to_seq_BE (FStar.Seq.Base.slice s n n')) | {
"end_col": 4,
"end_line": 630,
"start_col": 2,
"start_line": 627
} |
FStar.Pervasives.Lemma | val lemma_nat_to_two32 (_:unit) : Lemma
(forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000)) | [
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_nat_to_two32 () =
assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000)) | val lemma_nat_to_two32 (_:unit) : Lemma
(forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000))
let lemma_nat_to_two32 () = | false | null | true | assert_norm (forall (x: nat64). {:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000)) | {
"checked_file": "Vale.Arch.Types.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Arch.Types.fst"
} | [
"lemma"
] | [
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.l_Forall",
"Vale.Def.Words_s.nat64",
"Prims.eq2",
"Vale.Def.Words_s.two",
"Vale.Def.Words_s.natN",
"Prims.pow2",
"Vale.Def.Words.Two_s.nat_to_two",
"Vale.Def.Words_s.Mktwo",
"Prims.op_Modulus",
"Prims.op_Division"
] | [] | module Vale.Arch.Types
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.TypesNative
open Vale.Lib.Seqs
open Vale.Def.Words_s
open Vale.Def.Words.Two
open FStar.Calc | false | false | Vale.Arch.Types.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_nat_to_two32 (_:unit) : Lemma
(forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000)) | [] | Vale.Arch.Types.lemma_nat_to_two32 | {
"file_name": "vale/code/arch/Vale.Arch.Types.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | _: Prims.unit
-> FStar.Pervasives.Lemma
(ensures
forall (x: Vale.Def.Words_s.nat64). {:pattern Vale.Def.Words.Two_s.nat_to_two 32 x}
Vale.Def.Words.Two_s.nat_to_two 32 x ==
Vale.Def.Words_s.Mktwo (x % 0x100000000) (x / 0x100000000)) | {
"end_col": 65,
"end_line": 14,
"start_col": 2,
"start_line": 13
} |
FStar.Pervasives.Lemma | val lemma_reverse_reverse_bytes_nat32_quad32_seq (s:seq quad32) :
Lemma (reverse_bytes_nat32_quad32_seq (reverse_bytes_nat32_quad32_seq s) == s)
[SMTPat (reverse_bytes_nat32_quad32_seq (reverse_bytes_nat32_quad32_seq s))] | [
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_reverse_reverse_bytes_nat32_quad32_seq (s:seq quad32) :
Lemma (reverse_bytes_nat32_quad32_seq (reverse_bytes_nat32_quad32_seq s) == s)
[SMTPat (reverse_bytes_nat32_quad32_seq (reverse_bytes_nat32_quad32_seq s))]
=
seq_map_inverses reverse_bytes_nat32_quad32 reverse_bytes_nat32_quad32 s | val lemma_reverse_reverse_bytes_nat32_quad32_seq (s:seq quad32) :
Lemma (reverse_bytes_nat32_quad32_seq (reverse_bytes_nat32_quad32_seq s) == s)
[SMTPat (reverse_bytes_nat32_quad32_seq (reverse_bytes_nat32_quad32_seq s))]
let lemma_reverse_reverse_bytes_nat32_quad32_seq (s: seq quad32)
: Lemma (reverse_bytes_nat32_quad32_seq (reverse_bytes_nat32_quad32_seq s) == s)
[SMTPat (reverse_bytes_nat32_quad32_seq (reverse_bytes_nat32_quad32_seq s))] = | false | null | true | seq_map_inverses reverse_bytes_nat32_quad32 reverse_bytes_nat32_quad32 s | {
"checked_file": "Vale.Arch.Types.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Arch.Types.fst"
} | [
"lemma"
] | [
"FStar.Seq.Base.seq",
"Vale.Def.Types_s.quad32",
"Vale.Lib.Seqs.seq_map_inverses",
"Vale.Arch.Types.reverse_bytes_nat32_quad32",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Vale.Arch.Types.reverse_bytes_nat32_quad32_seq",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [] | module Vale.Arch.Types
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.TypesNative
open Vale.Lib.Seqs
open Vale.Def.Words_s
open Vale.Def.Words.Two
open FStar.Calc
let lemma_nat_to_two32 () =
assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000))
let lemma_BitwiseXorCommutative x y =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ y) (y *^ x)
let lemma_BitwiseXorWithZero n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ 0) n
let lemma_BitwiseXorCancel n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ n) 0
let lemma_BitwiseXorCancel64 (n:nat64) =
lemma_ixor_nth_all 64;
lemma_zero_nth 64;
lemma_equal_nth 64 (ixor n n) 0
let lemma_BitwiseXorAssociative x y z =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z)
let xor_lemmas () =
FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative;
FStar.Classical.forall_intro lemma_BitwiseXorWithZero;
FStar.Classical.forall_intro lemma_BitwiseXorCancel;
FStar.Classical.forall_intro lemma_BitwiseXorCancel64;
FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_quad32_xor () =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
xor_lemmas()
(*
let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) =
let q' = quad32_xor q q in
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
// REVIEW: Why are these necessary?
assert (q'.lo0 == nat32_xor q.lo0 q.lo0);
assert (q'.lo1 == nat32_xor q.lo1 q.lo1);
assert (q'.hi2 == nat32_xor q.hi2 q.hi2);
assert (q'.hi3 == nat32_xor q.hi3 q.hi3);
xor_lemmas()
in
FStar.Classical.forall_intro helper
*)
#pop-options
let lemma_reverse_reverse_bytes_nat32 (n:nat32) :
Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n)
=
reverse_bytes_nat32_reveal ();
let r = reverse_seq (nat32_to_be_bytes n) in
be_bytes_to_nat32_to_be_bytes r;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_reverse_bytes_quad32 (q:quad32) =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
reveal_reverse_bytes_quad32 q;
reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q);
()
#pop-options
let lemma_reverse_bytes_nat32 (_:unit) : Lemma
(reverse_bytes_nat32 0 == 0)
=
reverse_bytes_nat32_reveal ();
assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0);
()
let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma
(let z = Mkfour 0 0 0 0 in
reverse_bytes_quad32 z == z)
=
let z = Mkfour 0 0 0 0 in
calc (==) {
reverse_bytes_quad32 z;
== { reveal_reverse_bytes_quad32 z }
four_reverse (four_map reverse_bytes_nat32 z);
== { lemma_reverse_bytes_nat32() }
z;
};
()
let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) :
Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s)
=
reveal_reverse_bytes_nat32_seq s;
reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s);
assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s)
(*
let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) :
Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\
( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\
((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF))
=
if n.lo == 0 /\ n.hi == 0 then (
assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0);
()
) else (
()
);
()
let lemma_equality_check_helper_lo (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1);
()
let lemma_equality_check_helper_hi (q:quad32) :
Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3);
()
*)
let lemma_insert_nat64_properties (q:quad32) (n:nat64) :
Lemma ( (let q' = insert_nat64 q n 0 in
q'.hi2 == q.hi2 /\
q'.hi3 == q.hi3) /\
(let q' = insert_nat64 q n 1 in
q'.lo0 == q.lo0 /\
q'.lo1 == q.lo1))
=
insert_nat64_reveal ();
()
let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) :
Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 ==
Mkfour n0 n1 q.hi2 q.hi3 /\
insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 ==
Mkfour q.lo0 q.lo1 n0 n1 )
=
let open Vale.Def.Words.Two in
insert_nat64_reveal ();
()
let lemma_lo64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1))
=
lo64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_hi64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1))
=
hi64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma
(reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0)))
=
reverse_bytes_nat64_reveal ()
let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma
(requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1)
(ensures final == reverse_bytes_quad32 src)
=
reverse_bytes_nat64_reveal ();
let Mkfour x0 x1 x2 x3 = src in
let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in
let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in
calc (==) {
reverse_bytes_quad32 src;
== { reveal_reverse_bytes_quad32 src }
four_reverse (four_map reverse_bytes_nat32 src);
== {}
four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3));
== {}
Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0);
== { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3)
(reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) }
insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1;
== { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) }
insert_nat64 (insert_nat64 orig two32 0) two10 1;
};
calc (==) {
reverse_bytes_nat64 (hi64 src);
== { hi64_reveal ()}
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3));
== { lemma_reverse_bytes_nat64_32 x2 x3 }
two32;
};
calc (==) {
reverse_bytes_nat64 (lo64 src);
== { lo64_reveal () }
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1));
== { lemma_reverse_bytes_nat64_32 x0 x1 }
two10;
};
()
let lemma_equality_check_helper (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)
)
=
// lemma_equality_check_helper_lo q;
// lemma_equality_check_helper_hi q;
lo64_reveal ();
hi64_reveal ();
assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x);
()
let push_pop_xmm (x y:quad32) : Lemma
(let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in
x == x')
=
// assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1);
insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_insrq_extrq_relations (x y:quad32) :
Lemma (let z = insert_nat64 x (lo64 y) 0 in
z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\
(let z = insert_nat64 x (hi64 y) 1 in
z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3))
=
let open Vale.Def.Words.Two in
let z = insert_nat64 x (lo64 y) 0 in
insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
assert (z == insert_nat64_def x (lo64_def y) 0);
//assert (q'.hi2 == q.hi2);
//assert (q'.hi3 == q.hi3);
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0));
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0));
let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in
nat_to_two_to_nat n1 n2;
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0));
//assert (q'.lo1 == q.lo1);
//assert (q == q');
()
open Vale.Def.Words.Two
let le_bytes_to_nat64_to_bytes s =
le_nat64_to_bytes_reveal ();
le_bytes_to_nat64_reveal ()
let le_nat64_to_bytes_to_nat64 n =
le_nat64_to_bytes_reveal ();
le_bytes_to_nat64_reveal ()
let le_bytes_to_seq_quad32_empty () :
Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
()
let be_bytes_to_seq_quad32_empty () :
Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
()
#reset-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'"
let le_bytes_to_seq_quad32_to_bytes_one_quad b =
calc (==) {
le_bytes_to_seq_quad32 (le_quad32_to_bytes b);
== {reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32}
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_quad32_to_bytes b));
== {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes}
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))));
== {}
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)))));
== {seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))}
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_LE b)));
== {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_LE b)}
seq_to_seq_four_LE (four_to_seq_LE b);
== {four_to_seq_LE_is_seq_four_to_seq_LE b}
seq_to_seq_four_LE (seq_four_to_seq_LE (create 1 b));
== {}
create 1 b;
}
let be_bytes_to_seq_quad32_to_bytes_one_quad b =
calc (==) {
be_bytes_to_seq_quad32 (be_quad32_to_bytes b);
== {reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32}
seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (be_quad32_to_bytes b));
== {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes}
seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))));
== {}
seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b)))));
== {seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))}
seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_BE b)));
== {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE b)}
seq_to_seq_four_BE (four_to_seq_BE b);
== {four_to_seq_BE_is_seq_four_to_seq_BE b}
seq_to_seq_four_BE (seq_four_to_seq_BE (create 1 b));
== {}
create 1 b;
}
let le_bytes_to_seq_quad32_to_bytes (s:seq quad32) :
Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s)
(* This expands into showing:
le_bytes_to_seq_quad32 (le_quad32_to_bytes s)
== { definition of le_bytes_to_seq_quad32 }
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_seq_quad32_to_bytes s))
== { definition of le_seq_quad32_to_bytes }
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s)))
== { definition of seq_nat8_to_seq_nat32_LE }
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s))))
== { definition of seq_nat32_to_seq_nat8_LE }
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)))))
*)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_seq_quad32_to_bytes_reveal ();
seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_LE s);
seq_to_seq_four_to_seq_LE (s) ;
()
let be_bytes_to_seq_quad32_to_bytes (s:seq quad32) :
Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_BE s);
seq_to_seq_four_to_seq_BE (s) ;
()
let le_seq_quad32_to_bytes_to_seq_quad32 s =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_seq_quad32_to_bytes_reveal ();
calc (==) {
le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 s);
(==) { }
seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE (seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s)));
(==) { }
s;
}
(*
le_quad32_to_bytes (le_bytes_to_quad32 s)
== { definition of le_quad32_to_bytes }
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (le_bytes_to_quad32 s)))
== { definition of le_bytes_to_quad32 }
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)))))
*)
let le_quad32_to_bytes_to_quad32 s =
calc (==) {
le_quad32_to_bytes (le_bytes_to_quad32 s);
== {le_bytes_to_quad32_reveal ()}
le_quad32_to_bytes (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)));
== {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes}
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)))));
== {four_to_seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))}
seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)));
== {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_LE s)}
seq_four_to_seq_LE (seq_to_seq_four_LE s);
== {}
s;
}
let be_quad32_to_bytes_to_quad32 s =
calc (==) {
be_quad32_to_bytes (be_bytes_to_quad32 s);
== {be_bytes_to_quad32_reveal ()}
be_quad32_to_bytes (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)));
== {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes}
seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)))));
== {four_to_seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))}
seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)));
== {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_BE s)}
seq_four_to_seq_BE (seq_to_seq_four_BE s);
== {}
s;
}
let le_seq_quad32_to_bytes_of_singleton (q:quad32) :
Lemma (le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q))
=
le_seq_quad32_to_bytes_reveal ();
reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes;
four_to_seq_LE_is_seq_four_to_seq_LE q;
()
let be_seq_quad32_to_bytes_of_singleton (q:quad32) :
Lemma (be_quad32_to_bytes q == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 q)))
=
reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes;
four_to_seq_BE_is_seq_four_to_seq_BE q;
()
let le_quad32_to_bytes_injective ():
Lemma (forall b b' . le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b')
=
reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes;
let helper (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') =
if le_quad32_to_bytes b = le_quad32_to_bytes b' then (
let b1 = seq_map (nat_to_four 8) (four_to_seq_LE b) in
let b1' = seq_map (nat_to_four 8) (four_to_seq_LE b') in
assert (le_quad32_to_bytes b == seq_four_to_seq_LE b1);
assert (le_quad32_to_bytes b' == seq_four_to_seq_LE b1');
seq_four_to_seq_LE_injective_specific b1 b1';
assert (b1 == b1');
nat_to_four_8_injective();
seq_map_injective (nat_to_four 8) (four_to_seq_LE b) (four_to_seq_LE b');
assert ((four_to_seq_LE b) == (four_to_seq_LE b'));
four_to_seq_LE_injective nat32;
()
) else
()
in
FStar.Classical.forall_intro_2 helper
let be_quad32_to_bytes_injective ():
Lemma (forall b b' . be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b')
=
reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes;
let helper (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') =
if be_quad32_to_bytes b = be_quad32_to_bytes b' then (
let b1 = seq_map (nat_to_four 8) (four_to_seq_BE b) in
let b1' = seq_map (nat_to_four 8) (four_to_seq_BE b') in
assert (be_quad32_to_bytes b == seq_four_to_seq_BE b1);
assert (be_quad32_to_bytes b' == seq_four_to_seq_BE b1');
seq_four_to_seq_BE_injective_specific b1 b1';
assert (b1 == b1');
nat_to_four_8_injective();
seq_map_injective (nat_to_four 8) (four_to_seq_BE b) (four_to_seq_BE b');
assert ((four_to_seq_BE b) == (four_to_seq_BE b'));
four_to_seq_BE_injective nat32;
()
) else
()
in
FStar.Classical.forall_intro_2 helper
let le_quad32_to_bytes_injective_specific (b b':quad32) :
Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b')
=
le_quad32_to_bytes_injective()
let be_quad32_to_bytes_injective_specific (b b':quad32) :
Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b')
=
be_quad32_to_bytes_injective()
let le_seq_quad32_to_bytes_injective (b b':seq quad32) =
le_seq_quad32_to_bytes_reveal ();
seq_four_to_seq_LE_injective nat8;
nat_to_four_8_injective();
seq_map_injective (nat_to_four 8) (seq_four_to_seq_LE b) (seq_four_to_seq_LE b');
seq_four_to_seq_LE_injective_specific b b';
assert (equal b b')
let seq_to_four_LE_is_seq_to_seq_four_LE (#a:Type) (s:seq4 a) : Lemma
(create 1 (seq_to_four_LE s) == seq_to_seq_four_LE s)
=
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a);
assert (equal (create 1 (seq_to_four_LE s)) (seq_to_seq_four_LE s));
()
let seq_to_four_BE_is_seq_to_seq_four_BE (#a:Type) (s:seq4 a) : Lemma
(create 1 (seq_to_four_BE s) == seq_to_seq_four_BE s)
=
reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a);
assert (equal (create 1 (seq_to_four_BE s)) (seq_to_seq_four_BE s));
()
let le_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma
(requires q == le_bytes_to_quad32 b)
(ensures create 1 q == le_bytes_to_seq_quad32 b)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_bytes_to_quad32_reveal ();
seq_to_four_LE_is_seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b));
// q == le_bytes_to_quad32 b
// == seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b))
//
// == seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b))
// le_bytes_to_seq_quad32 b == seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE b)
()
let be_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma
(requires q == be_bytes_to_quad32 b)
(ensures create 1 q == be_bytes_to_seq_quad32 b)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
be_bytes_to_quad32_reveal ();
seq_to_four_BE_is_seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE b));
()
let le_bytes_to_quad32_to_bytes (q:quad32) :
Lemma(le_bytes_to_quad32 (le_quad32_to_bytes q) == q)
=
le_seq_quad32_to_bytes_of_singleton q; // ==> le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q)
let b = le_quad32_to_bytes q in
let q' = le_bytes_to_quad32 b in
le_bytes_to_seq_quad_of_singleton q' b; // ==> create 1 q' == le_bytes_to_seq_quad32 b
// == le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes (create 1 q))
le_bytes_to_seq_quad32_to_bytes (create 1 q); // == create 1 q
//assert (create 1 q == create 1 q');
//assert (equal (create 1 q) (create 1 q'));
assert (q == index (create 1 q) 0); // OBSERVE
assert (q == q');
()
let be_bytes_to_quad32_to_bytes (q:quad32) :
Lemma (be_bytes_to_quad32 (be_quad32_to_bytes q) == q)
=
be_bytes_to_quad32_reveal ();
let q':quad32 = be_bytes_to_quad32 (be_quad32_to_bytes q) in
seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE q));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE q);
seq_to_four_to_seq_BE q;
()
let lemma_reverse_reverse_bytes_nat32_quad32 (s:quad32) :
Lemma (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s) == s)
[SMTPat (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s))]
=
let s' = reverse_bytes_nat32_quad32 s in
let s''= reverse_bytes_nat32_quad32 s' in
assert (s''.lo0 == reverse_bytes_nat32 (reverse_bytes_nat32 s.lo0)); // OBSERVE
assert (s''.lo1 == reverse_bytes_nat32 (reverse_bytes_nat32 s.lo1)); // OBSERVE
assert (s''.hi2 == reverse_bytes_nat32 (reverse_bytes_nat32 s.hi2)); // OBSERVE
assert (s''.hi3 == reverse_bytes_nat32 (reverse_bytes_nat32 s.hi3)); // OBSERVE
()
let lemma_reverse_reverse_bytes_nat32_quad32_seq (s:seq quad32) :
Lemma (reverse_bytes_nat32_quad32_seq (reverse_bytes_nat32_quad32_seq s) == s)
[SMTPat (reverse_bytes_nat32_quad32_seq (reverse_bytes_nat32_quad32_seq s))] | false | false | Vale.Arch.Types.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_reverse_reverse_bytes_nat32_quad32_seq (s:seq quad32) :
Lemma (reverse_bytes_nat32_quad32_seq (reverse_bytes_nat32_quad32_seq s) == s)
[SMTPat (reverse_bytes_nat32_quad32_seq (reverse_bytes_nat32_quad32_seq s))] | [] | Vale.Arch.Types.lemma_reverse_reverse_bytes_nat32_quad32_seq | {
"file_name": "vale/code/arch/Vale.Arch.Types.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | s: FStar.Seq.Base.seq Vale.Def.Types_s.quad32
-> FStar.Pervasives.Lemma
(ensures
Vale.Arch.Types.reverse_bytes_nat32_quad32_seq (Vale.Arch.Types.reverse_bytes_nat32_quad32_seq
s) ==
s)
[
SMTPat (Vale.Arch.Types.reverse_bytes_nat32_quad32_seq (Vale.Arch.Types.reverse_bytes_nat32_quad32_seq
s))
] | {
"end_col": 74,
"end_line": 596,
"start_col": 2,
"start_line": 596
} |
FStar.Pervasives.Lemma | val be_bytes_to_seq_quad32_to_bytes (s:seq quad32) :
Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s) | [
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let be_bytes_to_seq_quad32_to_bytes (s:seq quad32) :
Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_BE s);
seq_to_seq_four_to_seq_BE (s) ;
() | val be_bytes_to_seq_quad32_to_bytes (s:seq quad32) :
Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s)
let be_bytes_to_seq_quad32_to_bytes (s: seq quad32)
: Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s) = | false | null | true | reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_BE s);
seq_to_seq_four_to_seq_BE (s);
() | {
"checked_file": "Vale.Arch.Types.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Arch.Types.fst"
} | [
"lemma"
] | [
"FStar.Seq.Base.seq",
"Vale.Def.Types_s.quad32",
"Prims.unit",
"Vale.Def.Words.Seq.seq_to_seq_four_to_seq_BE",
"Vale.Def.Types_s.nat32",
"Vale.Lib.Seqs.seq_map_inverses",
"Vale.Def.Words_s.four",
"Vale.Def.Words_s.natN",
"Prims.pow2",
"Vale.Def.Words.Four_s.nat_to_four",
"Vale.Def.Words.Four_s.four_to_nat",
"Vale.Def.Words.Seq_s.seq_four_to_seq_BE",
"Vale.Lib.Seqs_s.seq_map",
"FStar.Pervasives.reveal_opaque",
"Vale.Def.Types_s.nat8",
"Prims.eq2",
"Prims.int",
"Prims.op_Modulus",
"FStar.Seq.Base.length",
"Prims.l_True",
"Vale.Def.Types_s.be_bytes_to_seq_quad32",
"Prims.squash",
"Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.Arch.Types
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.TypesNative
open Vale.Lib.Seqs
open Vale.Def.Words_s
open Vale.Def.Words.Two
open FStar.Calc
let lemma_nat_to_two32 () =
assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000))
let lemma_BitwiseXorCommutative x y =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ y) (y *^ x)
let lemma_BitwiseXorWithZero n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ 0) n
let lemma_BitwiseXorCancel n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ n) 0
let lemma_BitwiseXorCancel64 (n:nat64) =
lemma_ixor_nth_all 64;
lemma_zero_nth 64;
lemma_equal_nth 64 (ixor n n) 0
let lemma_BitwiseXorAssociative x y z =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z)
let xor_lemmas () =
FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative;
FStar.Classical.forall_intro lemma_BitwiseXorWithZero;
FStar.Classical.forall_intro lemma_BitwiseXorCancel;
FStar.Classical.forall_intro lemma_BitwiseXorCancel64;
FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_quad32_xor () =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
xor_lemmas()
(*
let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) =
let q' = quad32_xor q q in
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
// REVIEW: Why are these necessary?
assert (q'.lo0 == nat32_xor q.lo0 q.lo0);
assert (q'.lo1 == nat32_xor q.lo1 q.lo1);
assert (q'.hi2 == nat32_xor q.hi2 q.hi2);
assert (q'.hi3 == nat32_xor q.hi3 q.hi3);
xor_lemmas()
in
FStar.Classical.forall_intro helper
*)
#pop-options
let lemma_reverse_reverse_bytes_nat32 (n:nat32) :
Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n)
=
reverse_bytes_nat32_reveal ();
let r = reverse_seq (nat32_to_be_bytes n) in
be_bytes_to_nat32_to_be_bytes r;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_reverse_bytes_quad32 (q:quad32) =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
reveal_reverse_bytes_quad32 q;
reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q);
()
#pop-options
let lemma_reverse_bytes_nat32 (_:unit) : Lemma
(reverse_bytes_nat32 0 == 0)
=
reverse_bytes_nat32_reveal ();
assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0);
()
let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma
(let z = Mkfour 0 0 0 0 in
reverse_bytes_quad32 z == z)
=
let z = Mkfour 0 0 0 0 in
calc (==) {
reverse_bytes_quad32 z;
== { reveal_reverse_bytes_quad32 z }
four_reverse (four_map reverse_bytes_nat32 z);
== { lemma_reverse_bytes_nat32() }
z;
};
()
let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) :
Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s)
=
reveal_reverse_bytes_nat32_seq s;
reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s);
assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s)
(*
let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) :
Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\
( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\
((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF))
=
if n.lo == 0 /\ n.hi == 0 then (
assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0);
()
) else (
()
);
()
let lemma_equality_check_helper_lo (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1);
()
let lemma_equality_check_helper_hi (q:quad32) :
Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3);
()
*)
let lemma_insert_nat64_properties (q:quad32) (n:nat64) :
Lemma ( (let q' = insert_nat64 q n 0 in
q'.hi2 == q.hi2 /\
q'.hi3 == q.hi3) /\
(let q' = insert_nat64 q n 1 in
q'.lo0 == q.lo0 /\
q'.lo1 == q.lo1))
=
insert_nat64_reveal ();
()
let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) :
Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 ==
Mkfour n0 n1 q.hi2 q.hi3 /\
insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 ==
Mkfour q.lo0 q.lo1 n0 n1 )
=
let open Vale.Def.Words.Two in
insert_nat64_reveal ();
()
let lemma_lo64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1))
=
lo64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_hi64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1))
=
hi64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma
(reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0)))
=
reverse_bytes_nat64_reveal ()
let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma
(requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1)
(ensures final == reverse_bytes_quad32 src)
=
reverse_bytes_nat64_reveal ();
let Mkfour x0 x1 x2 x3 = src in
let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in
let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in
calc (==) {
reverse_bytes_quad32 src;
== { reveal_reverse_bytes_quad32 src }
four_reverse (four_map reverse_bytes_nat32 src);
== {}
four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3));
== {}
Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0);
== { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3)
(reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) }
insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1;
== { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) }
insert_nat64 (insert_nat64 orig two32 0) two10 1;
};
calc (==) {
reverse_bytes_nat64 (hi64 src);
== { hi64_reveal ()}
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3));
== { lemma_reverse_bytes_nat64_32 x2 x3 }
two32;
};
calc (==) {
reverse_bytes_nat64 (lo64 src);
== { lo64_reveal () }
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1));
== { lemma_reverse_bytes_nat64_32 x0 x1 }
two10;
};
()
let lemma_equality_check_helper (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)
)
=
// lemma_equality_check_helper_lo q;
// lemma_equality_check_helper_hi q;
lo64_reveal ();
hi64_reveal ();
assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x);
()
let push_pop_xmm (x y:quad32) : Lemma
(let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in
x == x')
=
// assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1);
insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_insrq_extrq_relations (x y:quad32) :
Lemma (let z = insert_nat64 x (lo64 y) 0 in
z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\
(let z = insert_nat64 x (hi64 y) 1 in
z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3))
=
let open Vale.Def.Words.Two in
let z = insert_nat64 x (lo64 y) 0 in
insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
assert (z == insert_nat64_def x (lo64_def y) 0);
//assert (q'.hi2 == q.hi2);
//assert (q'.hi3 == q.hi3);
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0));
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0));
let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in
nat_to_two_to_nat n1 n2;
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0));
//assert (q'.lo1 == q.lo1);
//assert (q == q');
()
open Vale.Def.Words.Two
let le_bytes_to_nat64_to_bytes s =
le_nat64_to_bytes_reveal ();
le_bytes_to_nat64_reveal ()
let le_nat64_to_bytes_to_nat64 n =
le_nat64_to_bytes_reveal ();
le_bytes_to_nat64_reveal ()
let le_bytes_to_seq_quad32_empty () :
Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
()
let be_bytes_to_seq_quad32_empty () :
Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
()
#reset-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'"
let le_bytes_to_seq_quad32_to_bytes_one_quad b =
calc (==) {
le_bytes_to_seq_quad32 (le_quad32_to_bytes b);
== {reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32}
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_quad32_to_bytes b));
== {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes}
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))));
== {}
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)))));
== {seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))}
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_LE b)));
== {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_LE b)}
seq_to_seq_four_LE (four_to_seq_LE b);
== {four_to_seq_LE_is_seq_four_to_seq_LE b}
seq_to_seq_four_LE (seq_four_to_seq_LE (create 1 b));
== {}
create 1 b;
}
let be_bytes_to_seq_quad32_to_bytes_one_quad b =
calc (==) {
be_bytes_to_seq_quad32 (be_quad32_to_bytes b);
== {reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32}
seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (be_quad32_to_bytes b));
== {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes}
seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))));
== {}
seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b)))));
== {seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))}
seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_BE b)));
== {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE b)}
seq_to_seq_four_BE (four_to_seq_BE b);
== {four_to_seq_BE_is_seq_four_to_seq_BE b}
seq_to_seq_four_BE (seq_four_to_seq_BE (create 1 b));
== {}
create 1 b;
}
let le_bytes_to_seq_quad32_to_bytes (s:seq quad32) :
Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s)
(* This expands into showing:
le_bytes_to_seq_quad32 (le_quad32_to_bytes s)
== { definition of le_bytes_to_seq_quad32 }
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_seq_quad32_to_bytes s))
== { definition of le_seq_quad32_to_bytes }
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s)))
== { definition of seq_nat8_to_seq_nat32_LE }
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s))))
== { definition of seq_nat32_to_seq_nat8_LE }
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)))))
*)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_seq_quad32_to_bytes_reveal ();
seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_LE s);
seq_to_seq_four_to_seq_LE (s) ;
()
let be_bytes_to_seq_quad32_to_bytes (s:seq quad32) :
Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s) | false | false | Vale.Arch.Types.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val be_bytes_to_seq_quad32_to_bytes (s:seq quad32) :
Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s) | [] | Vale.Arch.Types.be_bytes_to_seq_quad32_to_bytes | {
"file_name": "vale/code/arch/Vale.Arch.Types.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | s: FStar.Seq.Base.seq Vale.Def.Types_s.quad32
-> FStar.Pervasives.Lemma
(ensures
Vale.Def.Types_s.be_bytes_to_seq_quad32 (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE
s)) ==
s) | {
"end_col": 4,
"end_line": 389,
"start_col": 2,
"start_line": 385
} |
FStar.Pervasives.Lemma | val seq_to_four_LE_is_seq_to_seq_four_LE (#a:Type) (s:seq4 a) : Lemma
(create 1 (seq_to_four_LE s) == seq_to_seq_four_LE s) | [
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let seq_to_four_LE_is_seq_to_seq_four_LE (#a:Type) (s:seq4 a) : Lemma
(create 1 (seq_to_four_LE s) == seq_to_seq_four_LE s)
=
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a);
assert (equal (create 1 (seq_to_four_LE s)) (seq_to_seq_four_LE s));
() | val seq_to_four_LE_is_seq_to_seq_four_LE (#a:Type) (s:seq4 a) : Lemma
(create 1 (seq_to_four_LE s) == seq_to_seq_four_LE s)
let seq_to_four_LE_is_seq_to_seq_four_LE (#a: Type) (s: seq4 a)
: Lemma (create 1 (seq_to_four_LE s) == seq_to_seq_four_LE s) = | false | null | true | reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a);
assert (equal (create 1 (seq_to_four_LE s)) (seq_to_seq_four_LE s));
() | {
"checked_file": "Vale.Arch.Types.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Arch.Types.fst"
} | [
"lemma"
] | [
"Vale.Def.Words.Seq_s.seq4",
"Prims.unit",
"Prims._assert",
"FStar.Seq.Base.equal",
"Vale.Def.Words_s.four",
"FStar.Seq.Base.create",
"Vale.Def.Words.Seq_s.seq_to_four_LE",
"Vale.Def.Words.Seq_s.seq_to_seq_four_LE",
"FStar.Pervasives.reveal_opaque",
"FStar.Seq.Base.seq",
"Prims.eq2",
"Prims.int",
"Prims.op_Modulus",
"FStar.Seq.Base.length",
"Prims.op_Division",
"Prims.l_True",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.Arch.Types
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.TypesNative
open Vale.Lib.Seqs
open Vale.Def.Words_s
open Vale.Def.Words.Two
open FStar.Calc
let lemma_nat_to_two32 () =
assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000))
let lemma_BitwiseXorCommutative x y =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ y) (y *^ x)
let lemma_BitwiseXorWithZero n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ 0) n
let lemma_BitwiseXorCancel n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ n) 0
let lemma_BitwiseXorCancel64 (n:nat64) =
lemma_ixor_nth_all 64;
lemma_zero_nth 64;
lemma_equal_nth 64 (ixor n n) 0
let lemma_BitwiseXorAssociative x y z =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z)
let xor_lemmas () =
FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative;
FStar.Classical.forall_intro lemma_BitwiseXorWithZero;
FStar.Classical.forall_intro lemma_BitwiseXorCancel;
FStar.Classical.forall_intro lemma_BitwiseXorCancel64;
FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_quad32_xor () =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
xor_lemmas()
(*
let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) =
let q' = quad32_xor q q in
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
// REVIEW: Why are these necessary?
assert (q'.lo0 == nat32_xor q.lo0 q.lo0);
assert (q'.lo1 == nat32_xor q.lo1 q.lo1);
assert (q'.hi2 == nat32_xor q.hi2 q.hi2);
assert (q'.hi3 == nat32_xor q.hi3 q.hi3);
xor_lemmas()
in
FStar.Classical.forall_intro helper
*)
#pop-options
let lemma_reverse_reverse_bytes_nat32 (n:nat32) :
Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n)
=
reverse_bytes_nat32_reveal ();
let r = reverse_seq (nat32_to_be_bytes n) in
be_bytes_to_nat32_to_be_bytes r;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_reverse_bytes_quad32 (q:quad32) =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
reveal_reverse_bytes_quad32 q;
reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q);
()
#pop-options
let lemma_reverse_bytes_nat32 (_:unit) : Lemma
(reverse_bytes_nat32 0 == 0)
=
reverse_bytes_nat32_reveal ();
assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0);
()
let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma
(let z = Mkfour 0 0 0 0 in
reverse_bytes_quad32 z == z)
=
let z = Mkfour 0 0 0 0 in
calc (==) {
reverse_bytes_quad32 z;
== { reveal_reverse_bytes_quad32 z }
four_reverse (four_map reverse_bytes_nat32 z);
== { lemma_reverse_bytes_nat32() }
z;
};
()
let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) :
Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s)
=
reveal_reverse_bytes_nat32_seq s;
reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s);
assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s)
(*
let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) :
Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\
( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\
((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF))
=
if n.lo == 0 /\ n.hi == 0 then (
assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0);
()
) else (
()
);
()
let lemma_equality_check_helper_lo (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1);
()
let lemma_equality_check_helper_hi (q:quad32) :
Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3);
()
*)
let lemma_insert_nat64_properties (q:quad32) (n:nat64) :
Lemma ( (let q' = insert_nat64 q n 0 in
q'.hi2 == q.hi2 /\
q'.hi3 == q.hi3) /\
(let q' = insert_nat64 q n 1 in
q'.lo0 == q.lo0 /\
q'.lo1 == q.lo1))
=
insert_nat64_reveal ();
()
let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) :
Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 ==
Mkfour n0 n1 q.hi2 q.hi3 /\
insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 ==
Mkfour q.lo0 q.lo1 n0 n1 )
=
let open Vale.Def.Words.Two in
insert_nat64_reveal ();
()
let lemma_lo64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1))
=
lo64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_hi64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1))
=
hi64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma
(reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0)))
=
reverse_bytes_nat64_reveal ()
let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma
(requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1)
(ensures final == reverse_bytes_quad32 src)
=
reverse_bytes_nat64_reveal ();
let Mkfour x0 x1 x2 x3 = src in
let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in
let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in
calc (==) {
reverse_bytes_quad32 src;
== { reveal_reverse_bytes_quad32 src }
four_reverse (four_map reverse_bytes_nat32 src);
== {}
four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3));
== {}
Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0);
== { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3)
(reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) }
insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1;
== { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) }
insert_nat64 (insert_nat64 orig two32 0) two10 1;
};
calc (==) {
reverse_bytes_nat64 (hi64 src);
== { hi64_reveal ()}
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3));
== { lemma_reverse_bytes_nat64_32 x2 x3 }
two32;
};
calc (==) {
reverse_bytes_nat64 (lo64 src);
== { lo64_reveal () }
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1));
== { lemma_reverse_bytes_nat64_32 x0 x1 }
two10;
};
()
let lemma_equality_check_helper (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)
)
=
// lemma_equality_check_helper_lo q;
// lemma_equality_check_helper_hi q;
lo64_reveal ();
hi64_reveal ();
assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x);
()
let push_pop_xmm (x y:quad32) : Lemma
(let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in
x == x')
=
// assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1);
insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_insrq_extrq_relations (x y:quad32) :
Lemma (let z = insert_nat64 x (lo64 y) 0 in
z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\
(let z = insert_nat64 x (hi64 y) 1 in
z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3))
=
let open Vale.Def.Words.Two in
let z = insert_nat64 x (lo64 y) 0 in
insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
assert (z == insert_nat64_def x (lo64_def y) 0);
//assert (q'.hi2 == q.hi2);
//assert (q'.hi3 == q.hi3);
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0));
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0));
let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in
nat_to_two_to_nat n1 n2;
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0));
//assert (q'.lo1 == q.lo1);
//assert (q == q');
()
open Vale.Def.Words.Two
let le_bytes_to_nat64_to_bytes s =
le_nat64_to_bytes_reveal ();
le_bytes_to_nat64_reveal ()
let le_nat64_to_bytes_to_nat64 n =
le_nat64_to_bytes_reveal ();
le_bytes_to_nat64_reveal ()
let le_bytes_to_seq_quad32_empty () :
Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
()
let be_bytes_to_seq_quad32_empty () :
Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
()
#reset-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'"
let le_bytes_to_seq_quad32_to_bytes_one_quad b =
calc (==) {
le_bytes_to_seq_quad32 (le_quad32_to_bytes b);
== {reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32}
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_quad32_to_bytes b));
== {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes}
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))));
== {}
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)))));
== {seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))}
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_LE b)));
== {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_LE b)}
seq_to_seq_four_LE (four_to_seq_LE b);
== {four_to_seq_LE_is_seq_four_to_seq_LE b}
seq_to_seq_four_LE (seq_four_to_seq_LE (create 1 b));
== {}
create 1 b;
}
let be_bytes_to_seq_quad32_to_bytes_one_quad b =
calc (==) {
be_bytes_to_seq_quad32 (be_quad32_to_bytes b);
== {reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32}
seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (be_quad32_to_bytes b));
== {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes}
seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))));
== {}
seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b)))));
== {seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))}
seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_BE b)));
== {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE b)}
seq_to_seq_four_BE (four_to_seq_BE b);
== {four_to_seq_BE_is_seq_four_to_seq_BE b}
seq_to_seq_four_BE (seq_four_to_seq_BE (create 1 b));
== {}
create 1 b;
}
let le_bytes_to_seq_quad32_to_bytes (s:seq quad32) :
Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s)
(* This expands into showing:
le_bytes_to_seq_quad32 (le_quad32_to_bytes s)
== { definition of le_bytes_to_seq_quad32 }
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_seq_quad32_to_bytes s))
== { definition of le_seq_quad32_to_bytes }
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s)))
== { definition of seq_nat8_to_seq_nat32_LE }
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s))))
== { definition of seq_nat32_to_seq_nat8_LE }
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)))))
*)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_seq_quad32_to_bytes_reveal ();
seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_LE s);
seq_to_seq_four_to_seq_LE (s) ;
()
let be_bytes_to_seq_quad32_to_bytes (s:seq quad32) :
Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_BE s);
seq_to_seq_four_to_seq_BE (s) ;
()
let le_seq_quad32_to_bytes_to_seq_quad32 s =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_seq_quad32_to_bytes_reveal ();
calc (==) {
le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 s);
(==) { }
seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE (seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s)));
(==) { }
s;
}
(*
le_quad32_to_bytes (le_bytes_to_quad32 s)
== { definition of le_quad32_to_bytes }
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (le_bytes_to_quad32 s)))
== { definition of le_bytes_to_quad32 }
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)))))
*)
let le_quad32_to_bytes_to_quad32 s =
calc (==) {
le_quad32_to_bytes (le_bytes_to_quad32 s);
== {le_bytes_to_quad32_reveal ()}
le_quad32_to_bytes (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)));
== {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes}
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)))));
== {four_to_seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))}
seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)));
== {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_LE s)}
seq_four_to_seq_LE (seq_to_seq_four_LE s);
== {}
s;
}
let be_quad32_to_bytes_to_quad32 s =
calc (==) {
be_quad32_to_bytes (be_bytes_to_quad32 s);
== {be_bytes_to_quad32_reveal ()}
be_quad32_to_bytes (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)));
== {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes}
seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)))));
== {four_to_seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))}
seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)));
== {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_BE s)}
seq_four_to_seq_BE (seq_to_seq_four_BE s);
== {}
s;
}
let le_seq_quad32_to_bytes_of_singleton (q:quad32) :
Lemma (le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q))
=
le_seq_quad32_to_bytes_reveal ();
reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes;
four_to_seq_LE_is_seq_four_to_seq_LE q;
()
let be_seq_quad32_to_bytes_of_singleton (q:quad32) :
Lemma (be_quad32_to_bytes q == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 q)))
=
reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes;
four_to_seq_BE_is_seq_four_to_seq_BE q;
()
let le_quad32_to_bytes_injective ():
Lemma (forall b b' . le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b')
=
reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes;
let helper (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') =
if le_quad32_to_bytes b = le_quad32_to_bytes b' then (
let b1 = seq_map (nat_to_four 8) (four_to_seq_LE b) in
let b1' = seq_map (nat_to_four 8) (four_to_seq_LE b') in
assert (le_quad32_to_bytes b == seq_four_to_seq_LE b1);
assert (le_quad32_to_bytes b' == seq_four_to_seq_LE b1');
seq_four_to_seq_LE_injective_specific b1 b1';
assert (b1 == b1');
nat_to_four_8_injective();
seq_map_injective (nat_to_four 8) (four_to_seq_LE b) (four_to_seq_LE b');
assert ((four_to_seq_LE b) == (four_to_seq_LE b'));
four_to_seq_LE_injective nat32;
()
) else
()
in
FStar.Classical.forall_intro_2 helper
let be_quad32_to_bytes_injective ():
Lemma (forall b b' . be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b')
=
reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes;
let helper (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') =
if be_quad32_to_bytes b = be_quad32_to_bytes b' then (
let b1 = seq_map (nat_to_four 8) (four_to_seq_BE b) in
let b1' = seq_map (nat_to_four 8) (four_to_seq_BE b') in
assert (be_quad32_to_bytes b == seq_four_to_seq_BE b1);
assert (be_quad32_to_bytes b' == seq_four_to_seq_BE b1');
seq_four_to_seq_BE_injective_specific b1 b1';
assert (b1 == b1');
nat_to_four_8_injective();
seq_map_injective (nat_to_four 8) (four_to_seq_BE b) (four_to_seq_BE b');
assert ((four_to_seq_BE b) == (four_to_seq_BE b'));
four_to_seq_BE_injective nat32;
()
) else
()
in
FStar.Classical.forall_intro_2 helper
let le_quad32_to_bytes_injective_specific (b b':quad32) :
Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b')
=
le_quad32_to_bytes_injective()
let be_quad32_to_bytes_injective_specific (b b':quad32) :
Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b')
=
be_quad32_to_bytes_injective()
let le_seq_quad32_to_bytes_injective (b b':seq quad32) =
le_seq_quad32_to_bytes_reveal ();
seq_four_to_seq_LE_injective nat8;
nat_to_four_8_injective();
seq_map_injective (nat_to_four 8) (seq_four_to_seq_LE b) (seq_four_to_seq_LE b');
seq_four_to_seq_LE_injective_specific b b';
assert (equal b b')
let seq_to_four_LE_is_seq_to_seq_four_LE (#a:Type) (s:seq4 a) : Lemma
(create 1 (seq_to_four_LE s) == seq_to_seq_four_LE s) | false | false | Vale.Arch.Types.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val seq_to_four_LE_is_seq_to_seq_four_LE (#a:Type) (s:seq4 a) : Lemma
(create 1 (seq_to_four_LE s) == seq_to_seq_four_LE s) | [] | Vale.Arch.Types.seq_to_four_LE_is_seq_to_seq_four_LE | {
"file_name": "vale/code/arch/Vale.Arch.Types.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | s: Vale.Def.Words.Seq_s.seq4 a
-> FStar.Pervasives.Lemma
(ensures
FStar.Seq.Base.create 1 (Vale.Def.Words.Seq_s.seq_to_four_LE s) ==
Vale.Def.Words.Seq_s.seq_to_seq_four_LE s) | {
"end_col": 4,
"end_line": 522,
"start_col": 2,
"start_line": 520
} |
FStar.Pervasives.Lemma | val le_bytes_to_quad32_to_bytes (q:quad32) :
Lemma(le_bytes_to_quad32 (le_quad32_to_bytes q) == q) | [
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let le_bytes_to_quad32_to_bytes (q:quad32) :
Lemma(le_bytes_to_quad32 (le_quad32_to_bytes q) == q)
=
le_seq_quad32_to_bytes_of_singleton q; // ==> le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q)
let b = le_quad32_to_bytes q in
let q' = le_bytes_to_quad32 b in
le_bytes_to_seq_quad_of_singleton q' b; // ==> create 1 q' == le_bytes_to_seq_quad32 b
// == le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes (create 1 q))
le_bytes_to_seq_quad32_to_bytes (create 1 q); // == create 1 q
//assert (create 1 q == create 1 q');
//assert (equal (create 1 q) (create 1 q'));
assert (q == index (create 1 q) 0); // OBSERVE
assert (q == q');
() | val le_bytes_to_quad32_to_bytes (q:quad32) :
Lemma(le_bytes_to_quad32 (le_quad32_to_bytes q) == q)
let le_bytes_to_quad32_to_bytes (q: quad32) : Lemma (le_bytes_to_quad32 (le_quad32_to_bytes q) == q) = | false | null | true | le_seq_quad32_to_bytes_of_singleton q;
let b = le_quad32_to_bytes q in
let q' = le_bytes_to_quad32 b in
le_bytes_to_seq_quad_of_singleton q' b;
le_bytes_to_seq_quad32_to_bytes (create 1 q);
assert (q == index (create 1 q) 0);
assert (q == q');
() | {
"checked_file": "Vale.Arch.Types.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Arch.Types.fst"
} | [
"lemma"
] | [
"Vale.Def.Types_s.quad32",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"FStar.Seq.Base.index",
"FStar.Seq.Base.create",
"Vale.Arch.Types.le_bytes_to_seq_quad32_to_bytes",
"Vale.Arch.Types.le_bytes_to_seq_quad_of_singleton",
"Vale.Def.Types_s.le_bytes_to_quad32",
"FStar.Seq.Base.seq",
"Vale.Def.Words_s.nat8",
"Vale.Def.Types_s.le_quad32_to_bytes",
"Vale.Arch.Types.le_seq_quad32_to_bytes_of_singleton",
"Prims.l_True",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.Arch.Types
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.TypesNative
open Vale.Lib.Seqs
open Vale.Def.Words_s
open Vale.Def.Words.Two
open FStar.Calc
let lemma_nat_to_two32 () =
assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000))
let lemma_BitwiseXorCommutative x y =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ y) (y *^ x)
let lemma_BitwiseXorWithZero n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ 0) n
let lemma_BitwiseXorCancel n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ n) 0
let lemma_BitwiseXorCancel64 (n:nat64) =
lemma_ixor_nth_all 64;
lemma_zero_nth 64;
lemma_equal_nth 64 (ixor n n) 0
let lemma_BitwiseXorAssociative x y z =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z)
let xor_lemmas () =
FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative;
FStar.Classical.forall_intro lemma_BitwiseXorWithZero;
FStar.Classical.forall_intro lemma_BitwiseXorCancel;
FStar.Classical.forall_intro lemma_BitwiseXorCancel64;
FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_quad32_xor () =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
xor_lemmas()
(*
let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) =
let q' = quad32_xor q q in
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
// REVIEW: Why are these necessary?
assert (q'.lo0 == nat32_xor q.lo0 q.lo0);
assert (q'.lo1 == nat32_xor q.lo1 q.lo1);
assert (q'.hi2 == nat32_xor q.hi2 q.hi2);
assert (q'.hi3 == nat32_xor q.hi3 q.hi3);
xor_lemmas()
in
FStar.Classical.forall_intro helper
*)
#pop-options
let lemma_reverse_reverse_bytes_nat32 (n:nat32) :
Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n)
=
reverse_bytes_nat32_reveal ();
let r = reverse_seq (nat32_to_be_bytes n) in
be_bytes_to_nat32_to_be_bytes r;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_reverse_bytes_quad32 (q:quad32) =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
reveal_reverse_bytes_quad32 q;
reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q);
()
#pop-options
let lemma_reverse_bytes_nat32 (_:unit) : Lemma
(reverse_bytes_nat32 0 == 0)
=
reverse_bytes_nat32_reveal ();
assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0);
()
let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma
(let z = Mkfour 0 0 0 0 in
reverse_bytes_quad32 z == z)
=
let z = Mkfour 0 0 0 0 in
calc (==) {
reverse_bytes_quad32 z;
== { reveal_reverse_bytes_quad32 z }
four_reverse (four_map reverse_bytes_nat32 z);
== { lemma_reverse_bytes_nat32() }
z;
};
()
let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) :
Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s)
=
reveal_reverse_bytes_nat32_seq s;
reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s);
assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s)
(*
let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) :
Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\
( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\
((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF))
=
if n.lo == 0 /\ n.hi == 0 then (
assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0);
()
) else (
()
);
()
let lemma_equality_check_helper_lo (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1);
()
let lemma_equality_check_helper_hi (q:quad32) :
Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3);
()
*)
let lemma_insert_nat64_properties (q:quad32) (n:nat64) :
Lemma ( (let q' = insert_nat64 q n 0 in
q'.hi2 == q.hi2 /\
q'.hi3 == q.hi3) /\
(let q' = insert_nat64 q n 1 in
q'.lo0 == q.lo0 /\
q'.lo1 == q.lo1))
=
insert_nat64_reveal ();
()
let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) :
Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 ==
Mkfour n0 n1 q.hi2 q.hi3 /\
insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 ==
Mkfour q.lo0 q.lo1 n0 n1 )
=
let open Vale.Def.Words.Two in
insert_nat64_reveal ();
()
let lemma_lo64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1))
=
lo64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_hi64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1))
=
hi64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma
(reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0)))
=
reverse_bytes_nat64_reveal ()
let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma
(requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1)
(ensures final == reverse_bytes_quad32 src)
=
reverse_bytes_nat64_reveal ();
let Mkfour x0 x1 x2 x3 = src in
let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in
let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in
calc (==) {
reverse_bytes_quad32 src;
== { reveal_reverse_bytes_quad32 src }
four_reverse (four_map reverse_bytes_nat32 src);
== {}
four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3));
== {}
Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0);
== { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3)
(reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) }
insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1;
== { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) }
insert_nat64 (insert_nat64 orig two32 0) two10 1;
};
calc (==) {
reverse_bytes_nat64 (hi64 src);
== { hi64_reveal ()}
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3));
== { lemma_reverse_bytes_nat64_32 x2 x3 }
two32;
};
calc (==) {
reverse_bytes_nat64 (lo64 src);
== { lo64_reveal () }
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1));
== { lemma_reverse_bytes_nat64_32 x0 x1 }
two10;
};
()
let lemma_equality_check_helper (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)
)
=
// lemma_equality_check_helper_lo q;
// lemma_equality_check_helper_hi q;
lo64_reveal ();
hi64_reveal ();
assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x);
()
let push_pop_xmm (x y:quad32) : Lemma
(let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in
x == x')
=
// assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1);
insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_insrq_extrq_relations (x y:quad32) :
Lemma (let z = insert_nat64 x (lo64 y) 0 in
z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\
(let z = insert_nat64 x (hi64 y) 1 in
z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3))
=
let open Vale.Def.Words.Two in
let z = insert_nat64 x (lo64 y) 0 in
insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
assert (z == insert_nat64_def x (lo64_def y) 0);
//assert (q'.hi2 == q.hi2);
//assert (q'.hi3 == q.hi3);
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0));
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0));
let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in
nat_to_two_to_nat n1 n2;
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0));
//assert (q'.lo1 == q.lo1);
//assert (q == q');
()
open Vale.Def.Words.Two
let le_bytes_to_nat64_to_bytes s =
le_nat64_to_bytes_reveal ();
le_bytes_to_nat64_reveal ()
let le_nat64_to_bytes_to_nat64 n =
le_nat64_to_bytes_reveal ();
le_bytes_to_nat64_reveal ()
let le_bytes_to_seq_quad32_empty () :
Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
()
let be_bytes_to_seq_quad32_empty () :
Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
()
#reset-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'"
let le_bytes_to_seq_quad32_to_bytes_one_quad b =
calc (==) {
le_bytes_to_seq_quad32 (le_quad32_to_bytes b);
== {reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32}
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_quad32_to_bytes b));
== {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes}
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))));
== {}
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)))));
== {seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))}
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_LE b)));
== {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_LE b)}
seq_to_seq_four_LE (four_to_seq_LE b);
== {four_to_seq_LE_is_seq_four_to_seq_LE b}
seq_to_seq_four_LE (seq_four_to_seq_LE (create 1 b));
== {}
create 1 b;
}
let be_bytes_to_seq_quad32_to_bytes_one_quad b =
calc (==) {
be_bytes_to_seq_quad32 (be_quad32_to_bytes b);
== {reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32}
seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (be_quad32_to_bytes b));
== {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes}
seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))));
== {}
seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b)))));
== {seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))}
seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_BE b)));
== {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE b)}
seq_to_seq_four_BE (four_to_seq_BE b);
== {four_to_seq_BE_is_seq_four_to_seq_BE b}
seq_to_seq_four_BE (seq_four_to_seq_BE (create 1 b));
== {}
create 1 b;
}
let le_bytes_to_seq_quad32_to_bytes (s:seq quad32) :
Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s)
(* This expands into showing:
le_bytes_to_seq_quad32 (le_quad32_to_bytes s)
== { definition of le_bytes_to_seq_quad32 }
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_seq_quad32_to_bytes s))
== { definition of le_seq_quad32_to_bytes }
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s)))
== { definition of seq_nat8_to_seq_nat32_LE }
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s))))
== { definition of seq_nat32_to_seq_nat8_LE }
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)))))
*)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_seq_quad32_to_bytes_reveal ();
seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_LE s);
seq_to_seq_four_to_seq_LE (s) ;
()
let be_bytes_to_seq_quad32_to_bytes (s:seq quad32) :
Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_BE s);
seq_to_seq_four_to_seq_BE (s) ;
()
let le_seq_quad32_to_bytes_to_seq_quad32 s =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_seq_quad32_to_bytes_reveal ();
calc (==) {
le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 s);
(==) { }
seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE (seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s)));
(==) { }
s;
}
(*
le_quad32_to_bytes (le_bytes_to_quad32 s)
== { definition of le_quad32_to_bytes }
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (le_bytes_to_quad32 s)))
== { definition of le_bytes_to_quad32 }
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)))))
*)
let le_quad32_to_bytes_to_quad32 s =
calc (==) {
le_quad32_to_bytes (le_bytes_to_quad32 s);
== {le_bytes_to_quad32_reveal ()}
le_quad32_to_bytes (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)));
== {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes}
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)))));
== {four_to_seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))}
seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)));
== {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_LE s)}
seq_four_to_seq_LE (seq_to_seq_four_LE s);
== {}
s;
}
let be_quad32_to_bytes_to_quad32 s =
calc (==) {
be_quad32_to_bytes (be_bytes_to_quad32 s);
== {be_bytes_to_quad32_reveal ()}
be_quad32_to_bytes (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)));
== {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes}
seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)))));
== {four_to_seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))}
seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)));
== {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_BE s)}
seq_four_to_seq_BE (seq_to_seq_four_BE s);
== {}
s;
}
let le_seq_quad32_to_bytes_of_singleton (q:quad32) :
Lemma (le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q))
=
le_seq_quad32_to_bytes_reveal ();
reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes;
four_to_seq_LE_is_seq_four_to_seq_LE q;
()
let be_seq_quad32_to_bytes_of_singleton (q:quad32) :
Lemma (be_quad32_to_bytes q == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 q)))
=
reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes;
four_to_seq_BE_is_seq_four_to_seq_BE q;
()
let le_quad32_to_bytes_injective ():
Lemma (forall b b' . le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b')
=
reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes;
let helper (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') =
if le_quad32_to_bytes b = le_quad32_to_bytes b' then (
let b1 = seq_map (nat_to_four 8) (four_to_seq_LE b) in
let b1' = seq_map (nat_to_four 8) (four_to_seq_LE b') in
assert (le_quad32_to_bytes b == seq_four_to_seq_LE b1);
assert (le_quad32_to_bytes b' == seq_four_to_seq_LE b1');
seq_four_to_seq_LE_injective_specific b1 b1';
assert (b1 == b1');
nat_to_four_8_injective();
seq_map_injective (nat_to_four 8) (four_to_seq_LE b) (four_to_seq_LE b');
assert ((four_to_seq_LE b) == (four_to_seq_LE b'));
four_to_seq_LE_injective nat32;
()
) else
()
in
FStar.Classical.forall_intro_2 helper
let be_quad32_to_bytes_injective ():
Lemma (forall b b' . be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b')
=
reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes;
let helper (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') =
if be_quad32_to_bytes b = be_quad32_to_bytes b' then (
let b1 = seq_map (nat_to_four 8) (four_to_seq_BE b) in
let b1' = seq_map (nat_to_four 8) (four_to_seq_BE b') in
assert (be_quad32_to_bytes b == seq_four_to_seq_BE b1);
assert (be_quad32_to_bytes b' == seq_four_to_seq_BE b1');
seq_four_to_seq_BE_injective_specific b1 b1';
assert (b1 == b1');
nat_to_four_8_injective();
seq_map_injective (nat_to_four 8) (four_to_seq_BE b) (four_to_seq_BE b');
assert ((four_to_seq_BE b) == (four_to_seq_BE b'));
four_to_seq_BE_injective nat32;
()
) else
()
in
FStar.Classical.forall_intro_2 helper
let le_quad32_to_bytes_injective_specific (b b':quad32) :
Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b')
=
le_quad32_to_bytes_injective()
let be_quad32_to_bytes_injective_specific (b b':quad32) :
Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b')
=
be_quad32_to_bytes_injective()
let le_seq_quad32_to_bytes_injective (b b':seq quad32) =
le_seq_quad32_to_bytes_reveal ();
seq_four_to_seq_LE_injective nat8;
nat_to_four_8_injective();
seq_map_injective (nat_to_four 8) (seq_four_to_seq_LE b) (seq_four_to_seq_LE b');
seq_four_to_seq_LE_injective_specific b b';
assert (equal b b')
let seq_to_four_LE_is_seq_to_seq_four_LE (#a:Type) (s:seq4 a) : Lemma
(create 1 (seq_to_four_LE s) == seq_to_seq_four_LE s)
=
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a);
assert (equal (create 1 (seq_to_four_LE s)) (seq_to_seq_four_LE s));
()
let seq_to_four_BE_is_seq_to_seq_four_BE (#a:Type) (s:seq4 a) : Lemma
(create 1 (seq_to_four_BE s) == seq_to_seq_four_BE s)
=
reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a);
assert (equal (create 1 (seq_to_four_BE s)) (seq_to_seq_four_BE s));
()
let le_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma
(requires q == le_bytes_to_quad32 b)
(ensures create 1 q == le_bytes_to_seq_quad32 b)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_bytes_to_quad32_reveal ();
seq_to_four_LE_is_seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b));
// q == le_bytes_to_quad32 b
// == seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b))
//
// == seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b))
// le_bytes_to_seq_quad32 b == seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE b)
()
let be_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma
(requires q == be_bytes_to_quad32 b)
(ensures create 1 q == be_bytes_to_seq_quad32 b)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
be_bytes_to_quad32_reveal ();
seq_to_four_BE_is_seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE b));
()
let le_bytes_to_quad32_to_bytes (q:quad32) :
Lemma(le_bytes_to_quad32 (le_quad32_to_bytes q) == q) | false | false | Vale.Arch.Types.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val le_bytes_to_quad32_to_bytes (q:quad32) :
Lemma(le_bytes_to_quad32 (le_quad32_to_bytes q) == q) | [] | Vale.Arch.Types.le_bytes_to_quad32_to_bytes | {
"file_name": "vale/code/arch/Vale.Arch.Types.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | q: Vale.Def.Types_s.quad32
-> FStar.Pervasives.Lemma
(ensures Vale.Def.Types_s.le_bytes_to_quad32 (Vale.Def.Types_s.le_quad32_to_bytes q) == q) | {
"end_col": 4,
"end_line": 568,
"start_col": 2,
"start_line": 558
} |
FStar.Pervasives.Lemma | val be_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma
(requires q == be_bytes_to_quad32 b)
(ensures create 1 q == be_bytes_to_seq_quad32 b) | [
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let be_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma
(requires q == be_bytes_to_quad32 b)
(ensures create 1 q == be_bytes_to_seq_quad32 b)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
be_bytes_to_quad32_reveal ();
seq_to_four_BE_is_seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE b));
() | val be_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma
(requires q == be_bytes_to_quad32 b)
(ensures create 1 q == be_bytes_to_seq_quad32 b)
let be_bytes_to_seq_quad_of_singleton (q: quad32) (b: seq nat8 {length b == 16})
: Lemma (requires q == be_bytes_to_quad32 b) (ensures create 1 q == be_bytes_to_seq_quad32 b) = | false | null | true | reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
be_bytes_to_quad32_reveal ();
seq_to_four_BE_is_seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE b));
() | {
"checked_file": "Vale.Arch.Types.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Arch.Types.fst"
} | [
"lemma"
] | [
"Vale.Def.Types_s.quad32",
"FStar.Seq.Base.seq",
"Vale.Def.Words_s.nat8",
"Prims.eq2",
"Prims.int",
"FStar.Seq.Base.length",
"Prims.unit",
"Vale.Arch.Types.seq_to_four_BE_is_seq_to_seq_four_BE",
"Vale.Def.Words_s.natN",
"Prims.pow2",
"FStar.Mul.op_Star",
"Vale.Lib.Seqs_s.seq_map",
"Vale.Def.Words_s.four",
"Vale.Def.Words.Four_s.four_to_nat",
"Vale.Def.Words.Seq_s.seq_to_seq_four_BE",
"Vale.Def.Types_s.be_bytes_to_quad32_reveal",
"FStar.Pervasives.reveal_opaque",
"Vale.Def.Types_s.nat8",
"Prims.op_Modulus",
"Prims.l_True",
"Vale.Def.Types_s.be_bytes_to_seq_quad32",
"Vale.Def.Types_s.be_bytes_to_quad32",
"Prims.squash",
"FStar.Seq.Base.create",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.Arch.Types
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.TypesNative
open Vale.Lib.Seqs
open Vale.Def.Words_s
open Vale.Def.Words.Two
open FStar.Calc
let lemma_nat_to_two32 () =
assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000))
let lemma_BitwiseXorCommutative x y =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ y) (y *^ x)
let lemma_BitwiseXorWithZero n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ 0) n
let lemma_BitwiseXorCancel n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ n) 0
let lemma_BitwiseXorCancel64 (n:nat64) =
lemma_ixor_nth_all 64;
lemma_zero_nth 64;
lemma_equal_nth 64 (ixor n n) 0
let lemma_BitwiseXorAssociative x y z =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z)
let xor_lemmas () =
FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative;
FStar.Classical.forall_intro lemma_BitwiseXorWithZero;
FStar.Classical.forall_intro lemma_BitwiseXorCancel;
FStar.Classical.forall_intro lemma_BitwiseXorCancel64;
FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_quad32_xor () =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
xor_lemmas()
(*
let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) =
let q' = quad32_xor q q in
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
// REVIEW: Why are these necessary?
assert (q'.lo0 == nat32_xor q.lo0 q.lo0);
assert (q'.lo1 == nat32_xor q.lo1 q.lo1);
assert (q'.hi2 == nat32_xor q.hi2 q.hi2);
assert (q'.hi3 == nat32_xor q.hi3 q.hi3);
xor_lemmas()
in
FStar.Classical.forall_intro helper
*)
#pop-options
let lemma_reverse_reverse_bytes_nat32 (n:nat32) :
Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n)
=
reverse_bytes_nat32_reveal ();
let r = reverse_seq (nat32_to_be_bytes n) in
be_bytes_to_nat32_to_be_bytes r;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_reverse_bytes_quad32 (q:quad32) =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
reveal_reverse_bytes_quad32 q;
reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q);
()
#pop-options
let lemma_reverse_bytes_nat32 (_:unit) : Lemma
(reverse_bytes_nat32 0 == 0)
=
reverse_bytes_nat32_reveal ();
assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0);
()
let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma
(let z = Mkfour 0 0 0 0 in
reverse_bytes_quad32 z == z)
=
let z = Mkfour 0 0 0 0 in
calc (==) {
reverse_bytes_quad32 z;
== { reveal_reverse_bytes_quad32 z }
four_reverse (four_map reverse_bytes_nat32 z);
== { lemma_reverse_bytes_nat32() }
z;
};
()
let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) :
Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s)
=
reveal_reverse_bytes_nat32_seq s;
reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s);
assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s)
(*
let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) :
Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\
( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\
((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF))
=
if n.lo == 0 /\ n.hi == 0 then (
assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0);
()
) else (
()
);
()
let lemma_equality_check_helper_lo (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1);
()
let lemma_equality_check_helper_hi (q:quad32) :
Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3);
()
*)
let lemma_insert_nat64_properties (q:quad32) (n:nat64) :
Lemma ( (let q' = insert_nat64 q n 0 in
q'.hi2 == q.hi2 /\
q'.hi3 == q.hi3) /\
(let q' = insert_nat64 q n 1 in
q'.lo0 == q.lo0 /\
q'.lo1 == q.lo1))
=
insert_nat64_reveal ();
()
let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) :
Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 ==
Mkfour n0 n1 q.hi2 q.hi3 /\
insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 ==
Mkfour q.lo0 q.lo1 n0 n1 )
=
let open Vale.Def.Words.Two in
insert_nat64_reveal ();
()
let lemma_lo64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1))
=
lo64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_hi64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1))
=
hi64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma
(reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0)))
=
reverse_bytes_nat64_reveal ()
let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma
(requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1)
(ensures final == reverse_bytes_quad32 src)
=
reverse_bytes_nat64_reveal ();
let Mkfour x0 x1 x2 x3 = src in
let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in
let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in
calc (==) {
reverse_bytes_quad32 src;
== { reveal_reverse_bytes_quad32 src }
four_reverse (four_map reverse_bytes_nat32 src);
== {}
four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3));
== {}
Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0);
== { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3)
(reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) }
insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1;
== { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) }
insert_nat64 (insert_nat64 orig two32 0) two10 1;
};
calc (==) {
reverse_bytes_nat64 (hi64 src);
== { hi64_reveal ()}
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3));
== { lemma_reverse_bytes_nat64_32 x2 x3 }
two32;
};
calc (==) {
reverse_bytes_nat64 (lo64 src);
== { lo64_reveal () }
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1));
== { lemma_reverse_bytes_nat64_32 x0 x1 }
two10;
};
()
let lemma_equality_check_helper (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)
)
=
// lemma_equality_check_helper_lo q;
// lemma_equality_check_helper_hi q;
lo64_reveal ();
hi64_reveal ();
assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x);
()
let push_pop_xmm (x y:quad32) : Lemma
(let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in
x == x')
=
// assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1);
insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_insrq_extrq_relations (x y:quad32) :
Lemma (let z = insert_nat64 x (lo64 y) 0 in
z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\
(let z = insert_nat64 x (hi64 y) 1 in
z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3))
=
let open Vale.Def.Words.Two in
let z = insert_nat64 x (lo64 y) 0 in
insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
assert (z == insert_nat64_def x (lo64_def y) 0);
//assert (q'.hi2 == q.hi2);
//assert (q'.hi3 == q.hi3);
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0));
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0));
let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in
nat_to_two_to_nat n1 n2;
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0));
//assert (q'.lo1 == q.lo1);
//assert (q == q');
()
open Vale.Def.Words.Two
let le_bytes_to_nat64_to_bytes s =
le_nat64_to_bytes_reveal ();
le_bytes_to_nat64_reveal ()
let le_nat64_to_bytes_to_nat64 n =
le_nat64_to_bytes_reveal ();
le_bytes_to_nat64_reveal ()
let le_bytes_to_seq_quad32_empty () :
Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
()
let be_bytes_to_seq_quad32_empty () :
Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
()
#reset-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'"
let le_bytes_to_seq_quad32_to_bytes_one_quad b =
calc (==) {
le_bytes_to_seq_quad32 (le_quad32_to_bytes b);
== {reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32}
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_quad32_to_bytes b));
== {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes}
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))));
== {}
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)))));
== {seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))}
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_LE b)));
== {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_LE b)}
seq_to_seq_four_LE (four_to_seq_LE b);
== {four_to_seq_LE_is_seq_four_to_seq_LE b}
seq_to_seq_four_LE (seq_four_to_seq_LE (create 1 b));
== {}
create 1 b;
}
let be_bytes_to_seq_quad32_to_bytes_one_quad b =
calc (==) {
be_bytes_to_seq_quad32 (be_quad32_to_bytes b);
== {reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32}
seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (be_quad32_to_bytes b));
== {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes}
seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))));
== {}
seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b)))));
== {seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))}
seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_BE b)));
== {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE b)}
seq_to_seq_four_BE (four_to_seq_BE b);
== {four_to_seq_BE_is_seq_four_to_seq_BE b}
seq_to_seq_four_BE (seq_four_to_seq_BE (create 1 b));
== {}
create 1 b;
}
let le_bytes_to_seq_quad32_to_bytes (s:seq quad32) :
Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s)
(* This expands into showing:
le_bytes_to_seq_quad32 (le_quad32_to_bytes s)
== { definition of le_bytes_to_seq_quad32 }
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_seq_quad32_to_bytes s))
== { definition of le_seq_quad32_to_bytes }
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s)))
== { definition of seq_nat8_to_seq_nat32_LE }
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s))))
== { definition of seq_nat32_to_seq_nat8_LE }
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)))))
*)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_seq_quad32_to_bytes_reveal ();
seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_LE s);
seq_to_seq_four_to_seq_LE (s) ;
()
let be_bytes_to_seq_quad32_to_bytes (s:seq quad32) :
Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_BE s);
seq_to_seq_four_to_seq_BE (s) ;
()
let le_seq_quad32_to_bytes_to_seq_quad32 s =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_seq_quad32_to_bytes_reveal ();
calc (==) {
le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 s);
(==) { }
seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE (seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s)));
(==) { }
s;
}
(*
le_quad32_to_bytes (le_bytes_to_quad32 s)
== { definition of le_quad32_to_bytes }
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (le_bytes_to_quad32 s)))
== { definition of le_bytes_to_quad32 }
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)))))
*)
let le_quad32_to_bytes_to_quad32 s =
calc (==) {
le_quad32_to_bytes (le_bytes_to_quad32 s);
== {le_bytes_to_quad32_reveal ()}
le_quad32_to_bytes (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)));
== {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes}
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)))));
== {four_to_seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))}
seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)));
== {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_LE s)}
seq_four_to_seq_LE (seq_to_seq_four_LE s);
== {}
s;
}
let be_quad32_to_bytes_to_quad32 s =
calc (==) {
be_quad32_to_bytes (be_bytes_to_quad32 s);
== {be_bytes_to_quad32_reveal ()}
be_quad32_to_bytes (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)));
== {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes}
seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)))));
== {four_to_seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))}
seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)));
== {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_BE s)}
seq_four_to_seq_BE (seq_to_seq_four_BE s);
== {}
s;
}
let le_seq_quad32_to_bytes_of_singleton (q:quad32) :
Lemma (le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q))
=
le_seq_quad32_to_bytes_reveal ();
reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes;
four_to_seq_LE_is_seq_four_to_seq_LE q;
()
let be_seq_quad32_to_bytes_of_singleton (q:quad32) :
Lemma (be_quad32_to_bytes q == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 q)))
=
reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes;
four_to_seq_BE_is_seq_four_to_seq_BE q;
()
let le_quad32_to_bytes_injective ():
Lemma (forall b b' . le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b')
=
reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes;
let helper (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') =
if le_quad32_to_bytes b = le_quad32_to_bytes b' then (
let b1 = seq_map (nat_to_four 8) (four_to_seq_LE b) in
let b1' = seq_map (nat_to_four 8) (four_to_seq_LE b') in
assert (le_quad32_to_bytes b == seq_four_to_seq_LE b1);
assert (le_quad32_to_bytes b' == seq_four_to_seq_LE b1');
seq_four_to_seq_LE_injective_specific b1 b1';
assert (b1 == b1');
nat_to_four_8_injective();
seq_map_injective (nat_to_four 8) (four_to_seq_LE b) (four_to_seq_LE b');
assert ((four_to_seq_LE b) == (four_to_seq_LE b'));
four_to_seq_LE_injective nat32;
()
) else
()
in
FStar.Classical.forall_intro_2 helper
let be_quad32_to_bytes_injective ():
Lemma (forall b b' . be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b')
=
reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes;
let helper (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') =
if be_quad32_to_bytes b = be_quad32_to_bytes b' then (
let b1 = seq_map (nat_to_four 8) (four_to_seq_BE b) in
let b1' = seq_map (nat_to_four 8) (four_to_seq_BE b') in
assert (be_quad32_to_bytes b == seq_four_to_seq_BE b1);
assert (be_quad32_to_bytes b' == seq_four_to_seq_BE b1');
seq_four_to_seq_BE_injective_specific b1 b1';
assert (b1 == b1');
nat_to_four_8_injective();
seq_map_injective (nat_to_four 8) (four_to_seq_BE b) (four_to_seq_BE b');
assert ((four_to_seq_BE b) == (four_to_seq_BE b'));
four_to_seq_BE_injective nat32;
()
) else
()
in
FStar.Classical.forall_intro_2 helper
let le_quad32_to_bytes_injective_specific (b b':quad32) :
Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b')
=
le_quad32_to_bytes_injective()
let be_quad32_to_bytes_injective_specific (b b':quad32) :
Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b')
=
be_quad32_to_bytes_injective()
let le_seq_quad32_to_bytes_injective (b b':seq quad32) =
le_seq_quad32_to_bytes_reveal ();
seq_four_to_seq_LE_injective nat8;
nat_to_four_8_injective();
seq_map_injective (nat_to_four 8) (seq_four_to_seq_LE b) (seq_four_to_seq_LE b');
seq_four_to_seq_LE_injective_specific b b';
assert (equal b b')
let seq_to_four_LE_is_seq_to_seq_four_LE (#a:Type) (s:seq4 a) : Lemma
(create 1 (seq_to_four_LE s) == seq_to_seq_four_LE s)
=
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a);
assert (equal (create 1 (seq_to_four_LE s)) (seq_to_seq_four_LE s));
()
let seq_to_four_BE_is_seq_to_seq_four_BE (#a:Type) (s:seq4 a) : Lemma
(create 1 (seq_to_four_BE s) == seq_to_seq_four_BE s)
=
reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a);
assert (equal (create 1 (seq_to_four_BE s)) (seq_to_seq_four_BE s));
()
let le_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma
(requires q == le_bytes_to_quad32 b)
(ensures create 1 q == le_bytes_to_seq_quad32 b)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_bytes_to_quad32_reveal ();
seq_to_four_LE_is_seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b));
// q == le_bytes_to_quad32 b
// == seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b))
//
// == seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b))
// le_bytes_to_seq_quad32 b == seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE b)
()
let be_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma
(requires q == be_bytes_to_quad32 b)
(ensures create 1 q == be_bytes_to_seq_quad32 b) | false | false | Vale.Arch.Types.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val be_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma
(requires q == be_bytes_to_quad32 b)
(ensures create 1 q == be_bytes_to_seq_quad32 b) | [] | Vale.Arch.Types.be_bytes_to_seq_quad_of_singleton | {
"file_name": "vale/code/arch/Vale.Arch.Types.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
q: Vale.Def.Types_s.quad32 ->
b: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 {FStar.Seq.Base.length b == 16}
-> FStar.Pervasives.Lemma (requires q == Vale.Def.Types_s.be_bytes_to_quad32 b)
(ensures FStar.Seq.Base.create 1 q == Vale.Def.Types_s.be_bytes_to_seq_quad32 b) | {
"end_col": 4,
"end_line": 553,
"start_col": 2,
"start_line": 550
} |
FStar.Pervasives.Lemma | val slice_commutes_le_seq_quad32_to_bytes0 (s:seq quad32) (n:nat{n <= length s}) :
Lemma(slice (le_seq_quad32_to_bytes s) 0 (n * 16) ==
le_seq_quad32_to_bytes (slice s 0 n)) | [
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let slice_commutes_le_seq_quad32_to_bytes0 (s:seq quad32) (n:nat{n <= length s}) :
Lemma(slice (le_seq_quad32_to_bytes s) 0 (n * 16) ==
le_seq_quad32_to_bytes (slice s 0 n))
=
slice_commutes_le_seq_quad32_to_bytes s 0 n | val slice_commutes_le_seq_quad32_to_bytes0 (s:seq quad32) (n:nat{n <= length s}) :
Lemma(slice (le_seq_quad32_to_bytes s) 0 (n * 16) ==
le_seq_quad32_to_bytes (slice s 0 n))
let slice_commutes_le_seq_quad32_to_bytes0 (s: seq quad32) (n: nat{n <= length s})
: Lemma (slice (le_seq_quad32_to_bytes s) 0 (n * 16) == le_seq_quad32_to_bytes (slice s 0 n)) = | false | null | true | slice_commutes_le_seq_quad32_to_bytes s 0 n | {
"checked_file": "Vale.Arch.Types.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Arch.Types.fst"
} | [
"lemma"
] | [
"FStar.Seq.Base.seq",
"Vale.Def.Types_s.quad32",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.Seq.Base.length",
"Vale.Arch.Types.slice_commutes_le_seq_quad32_to_bytes",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Vale.Def.Types_s.nat8",
"FStar.Seq.Base.slice",
"Vale.Def.Types_s.le_seq_quad32_to_bytes",
"FStar.Mul.op_Star",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.Arch.Types
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.TypesNative
open Vale.Lib.Seqs
open Vale.Def.Words_s
open Vale.Def.Words.Two
open FStar.Calc
let lemma_nat_to_two32 () =
assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000))
let lemma_BitwiseXorCommutative x y =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ y) (y *^ x)
let lemma_BitwiseXorWithZero n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ 0) n
let lemma_BitwiseXorCancel n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ n) 0
let lemma_BitwiseXorCancel64 (n:nat64) =
lemma_ixor_nth_all 64;
lemma_zero_nth 64;
lemma_equal_nth 64 (ixor n n) 0
let lemma_BitwiseXorAssociative x y z =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z)
let xor_lemmas () =
FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative;
FStar.Classical.forall_intro lemma_BitwiseXorWithZero;
FStar.Classical.forall_intro lemma_BitwiseXorCancel;
FStar.Classical.forall_intro lemma_BitwiseXorCancel64;
FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_quad32_xor () =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
xor_lemmas()
(*
let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) =
let q' = quad32_xor q q in
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
// REVIEW: Why are these necessary?
assert (q'.lo0 == nat32_xor q.lo0 q.lo0);
assert (q'.lo1 == nat32_xor q.lo1 q.lo1);
assert (q'.hi2 == nat32_xor q.hi2 q.hi2);
assert (q'.hi3 == nat32_xor q.hi3 q.hi3);
xor_lemmas()
in
FStar.Classical.forall_intro helper
*)
#pop-options
let lemma_reverse_reverse_bytes_nat32 (n:nat32) :
Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n)
=
reverse_bytes_nat32_reveal ();
let r = reverse_seq (nat32_to_be_bytes n) in
be_bytes_to_nat32_to_be_bytes r;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_reverse_bytes_quad32 (q:quad32) =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
reveal_reverse_bytes_quad32 q;
reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q);
()
#pop-options
let lemma_reverse_bytes_nat32 (_:unit) : Lemma
(reverse_bytes_nat32 0 == 0)
=
reverse_bytes_nat32_reveal ();
assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0);
()
let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma
(let z = Mkfour 0 0 0 0 in
reverse_bytes_quad32 z == z)
=
let z = Mkfour 0 0 0 0 in
calc (==) {
reverse_bytes_quad32 z;
== { reveal_reverse_bytes_quad32 z }
four_reverse (four_map reverse_bytes_nat32 z);
== { lemma_reverse_bytes_nat32() }
z;
};
()
let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) :
Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s)
=
reveal_reverse_bytes_nat32_seq s;
reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s);
assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s)
(*
let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) :
Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\
( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\
((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF))
=
if n.lo == 0 /\ n.hi == 0 then (
assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0);
()
) else (
()
);
()
let lemma_equality_check_helper_lo (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1);
()
let lemma_equality_check_helper_hi (q:quad32) :
Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3);
()
*)
let lemma_insert_nat64_properties (q:quad32) (n:nat64) :
Lemma ( (let q' = insert_nat64 q n 0 in
q'.hi2 == q.hi2 /\
q'.hi3 == q.hi3) /\
(let q' = insert_nat64 q n 1 in
q'.lo0 == q.lo0 /\
q'.lo1 == q.lo1))
=
insert_nat64_reveal ();
()
let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) :
Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 ==
Mkfour n0 n1 q.hi2 q.hi3 /\
insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 ==
Mkfour q.lo0 q.lo1 n0 n1 )
=
let open Vale.Def.Words.Two in
insert_nat64_reveal ();
()
let lemma_lo64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1))
=
lo64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_hi64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1))
=
hi64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma
(reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0)))
=
reverse_bytes_nat64_reveal ()
let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma
(requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1)
(ensures final == reverse_bytes_quad32 src)
=
reverse_bytes_nat64_reveal ();
let Mkfour x0 x1 x2 x3 = src in
let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in
let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in
calc (==) {
reverse_bytes_quad32 src;
== { reveal_reverse_bytes_quad32 src }
four_reverse (four_map reverse_bytes_nat32 src);
== {}
four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3));
== {}
Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0);
== { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3)
(reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) }
insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1;
== { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) }
insert_nat64 (insert_nat64 orig two32 0) two10 1;
};
calc (==) {
reverse_bytes_nat64 (hi64 src);
== { hi64_reveal ()}
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3));
== { lemma_reverse_bytes_nat64_32 x2 x3 }
two32;
};
calc (==) {
reverse_bytes_nat64 (lo64 src);
== { lo64_reveal () }
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1));
== { lemma_reverse_bytes_nat64_32 x0 x1 }
two10;
};
()
let lemma_equality_check_helper (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)
)
=
// lemma_equality_check_helper_lo q;
// lemma_equality_check_helper_hi q;
lo64_reveal ();
hi64_reveal ();
assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x);
()
let push_pop_xmm (x y:quad32) : Lemma
(let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in
x == x')
=
// assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1);
insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_insrq_extrq_relations (x y:quad32) :
Lemma (let z = insert_nat64 x (lo64 y) 0 in
z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\
(let z = insert_nat64 x (hi64 y) 1 in
z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3))
=
let open Vale.Def.Words.Two in
let z = insert_nat64 x (lo64 y) 0 in
insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
assert (z == insert_nat64_def x (lo64_def y) 0);
//assert (q'.hi2 == q.hi2);
//assert (q'.hi3 == q.hi3);
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0));
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0));
let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in
nat_to_two_to_nat n1 n2;
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0));
//assert (q'.lo1 == q.lo1);
//assert (q == q');
()
open Vale.Def.Words.Two
let le_bytes_to_nat64_to_bytes s =
le_nat64_to_bytes_reveal ();
le_bytes_to_nat64_reveal ()
let le_nat64_to_bytes_to_nat64 n =
le_nat64_to_bytes_reveal ();
le_bytes_to_nat64_reveal ()
let le_bytes_to_seq_quad32_empty () :
Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
()
let be_bytes_to_seq_quad32_empty () :
Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
()
#reset-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'"
let le_bytes_to_seq_quad32_to_bytes_one_quad b =
calc (==) {
le_bytes_to_seq_quad32 (le_quad32_to_bytes b);
== {reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32}
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_quad32_to_bytes b));
== {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes}
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))));
== {}
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)))));
== {seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))}
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_LE b)));
== {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_LE b)}
seq_to_seq_four_LE (four_to_seq_LE b);
== {four_to_seq_LE_is_seq_four_to_seq_LE b}
seq_to_seq_four_LE (seq_four_to_seq_LE (create 1 b));
== {}
create 1 b;
}
let be_bytes_to_seq_quad32_to_bytes_one_quad b =
calc (==) {
be_bytes_to_seq_quad32 (be_quad32_to_bytes b);
== {reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32}
seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (be_quad32_to_bytes b));
== {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes}
seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))));
== {}
seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b)))));
== {seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))}
seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_BE b)));
== {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE b)}
seq_to_seq_four_BE (four_to_seq_BE b);
== {four_to_seq_BE_is_seq_four_to_seq_BE b}
seq_to_seq_four_BE (seq_four_to_seq_BE (create 1 b));
== {}
create 1 b;
}
let le_bytes_to_seq_quad32_to_bytes (s:seq quad32) :
Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s)
(* This expands into showing:
le_bytes_to_seq_quad32 (le_quad32_to_bytes s)
== { definition of le_bytes_to_seq_quad32 }
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_seq_quad32_to_bytes s))
== { definition of le_seq_quad32_to_bytes }
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s)))
== { definition of seq_nat8_to_seq_nat32_LE }
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s))))
== { definition of seq_nat32_to_seq_nat8_LE }
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)))))
*)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_seq_quad32_to_bytes_reveal ();
seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_LE s);
seq_to_seq_four_to_seq_LE (s) ;
()
let be_bytes_to_seq_quad32_to_bytes (s:seq quad32) :
Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_BE s);
seq_to_seq_four_to_seq_BE (s) ;
()
let le_seq_quad32_to_bytes_to_seq_quad32 s =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_seq_quad32_to_bytes_reveal ();
calc (==) {
le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 s);
(==) { }
seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE (seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s)));
(==) { }
s;
}
(*
le_quad32_to_bytes (le_bytes_to_quad32 s)
== { definition of le_quad32_to_bytes }
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (le_bytes_to_quad32 s)))
== { definition of le_bytes_to_quad32 }
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)))))
*)
let le_quad32_to_bytes_to_quad32 s =
calc (==) {
le_quad32_to_bytes (le_bytes_to_quad32 s);
== {le_bytes_to_quad32_reveal ()}
le_quad32_to_bytes (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)));
== {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes}
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)))));
== {four_to_seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))}
seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)));
== {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_LE s)}
seq_four_to_seq_LE (seq_to_seq_four_LE s);
== {}
s;
}
let be_quad32_to_bytes_to_quad32 s =
calc (==) {
be_quad32_to_bytes (be_bytes_to_quad32 s);
== {be_bytes_to_quad32_reveal ()}
be_quad32_to_bytes (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)));
== {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes}
seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)))));
== {four_to_seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))}
seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)));
== {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_BE s)}
seq_four_to_seq_BE (seq_to_seq_four_BE s);
== {}
s;
}
let le_seq_quad32_to_bytes_of_singleton (q:quad32) :
Lemma (le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q))
=
le_seq_quad32_to_bytes_reveal ();
reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes;
four_to_seq_LE_is_seq_four_to_seq_LE q;
()
let be_seq_quad32_to_bytes_of_singleton (q:quad32) :
Lemma (be_quad32_to_bytes q == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 q)))
=
reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes;
four_to_seq_BE_is_seq_four_to_seq_BE q;
()
let le_quad32_to_bytes_injective ():
Lemma (forall b b' . le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b')
=
reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes;
let helper (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') =
if le_quad32_to_bytes b = le_quad32_to_bytes b' then (
let b1 = seq_map (nat_to_four 8) (four_to_seq_LE b) in
let b1' = seq_map (nat_to_four 8) (four_to_seq_LE b') in
assert (le_quad32_to_bytes b == seq_four_to_seq_LE b1);
assert (le_quad32_to_bytes b' == seq_four_to_seq_LE b1');
seq_four_to_seq_LE_injective_specific b1 b1';
assert (b1 == b1');
nat_to_four_8_injective();
seq_map_injective (nat_to_four 8) (four_to_seq_LE b) (four_to_seq_LE b');
assert ((four_to_seq_LE b) == (four_to_seq_LE b'));
four_to_seq_LE_injective nat32;
()
) else
()
in
FStar.Classical.forall_intro_2 helper
let be_quad32_to_bytes_injective ():
Lemma (forall b b' . be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b')
=
reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes;
let helper (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') =
if be_quad32_to_bytes b = be_quad32_to_bytes b' then (
let b1 = seq_map (nat_to_four 8) (four_to_seq_BE b) in
let b1' = seq_map (nat_to_four 8) (four_to_seq_BE b') in
assert (be_quad32_to_bytes b == seq_four_to_seq_BE b1);
assert (be_quad32_to_bytes b' == seq_four_to_seq_BE b1');
seq_four_to_seq_BE_injective_specific b1 b1';
assert (b1 == b1');
nat_to_four_8_injective();
seq_map_injective (nat_to_four 8) (four_to_seq_BE b) (four_to_seq_BE b');
assert ((four_to_seq_BE b) == (four_to_seq_BE b'));
four_to_seq_BE_injective nat32;
()
) else
()
in
FStar.Classical.forall_intro_2 helper
let le_quad32_to_bytes_injective_specific (b b':quad32) :
Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b')
=
le_quad32_to_bytes_injective()
let be_quad32_to_bytes_injective_specific (b b':quad32) :
Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b')
=
be_quad32_to_bytes_injective()
let le_seq_quad32_to_bytes_injective (b b':seq quad32) =
le_seq_quad32_to_bytes_reveal ();
seq_four_to_seq_LE_injective nat8;
nat_to_four_8_injective();
seq_map_injective (nat_to_four 8) (seq_four_to_seq_LE b) (seq_four_to_seq_LE b');
seq_four_to_seq_LE_injective_specific b b';
assert (equal b b')
let seq_to_four_LE_is_seq_to_seq_four_LE (#a:Type) (s:seq4 a) : Lemma
(create 1 (seq_to_four_LE s) == seq_to_seq_four_LE s)
=
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a);
assert (equal (create 1 (seq_to_four_LE s)) (seq_to_seq_four_LE s));
()
let seq_to_four_BE_is_seq_to_seq_four_BE (#a:Type) (s:seq4 a) : Lemma
(create 1 (seq_to_four_BE s) == seq_to_seq_four_BE s)
=
reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a);
assert (equal (create 1 (seq_to_four_BE s)) (seq_to_seq_four_BE s));
()
let le_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma
(requires q == le_bytes_to_quad32 b)
(ensures create 1 q == le_bytes_to_seq_quad32 b)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_bytes_to_quad32_reveal ();
seq_to_four_LE_is_seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b));
// q == le_bytes_to_quad32 b
// == seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b))
//
// == seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b))
// le_bytes_to_seq_quad32 b == seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE b)
()
let be_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma
(requires q == be_bytes_to_quad32 b)
(ensures create 1 q == be_bytes_to_seq_quad32 b)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
be_bytes_to_quad32_reveal ();
seq_to_four_BE_is_seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE b));
()
let le_bytes_to_quad32_to_bytes (q:quad32) :
Lemma(le_bytes_to_quad32 (le_quad32_to_bytes q) == q)
=
le_seq_quad32_to_bytes_of_singleton q; // ==> le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q)
let b = le_quad32_to_bytes q in
let q' = le_bytes_to_quad32 b in
le_bytes_to_seq_quad_of_singleton q' b; // ==> create 1 q' == le_bytes_to_seq_quad32 b
// == le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes (create 1 q))
le_bytes_to_seq_quad32_to_bytes (create 1 q); // == create 1 q
//assert (create 1 q == create 1 q');
//assert (equal (create 1 q) (create 1 q'));
assert (q == index (create 1 q) 0); // OBSERVE
assert (q == q');
()
let be_bytes_to_quad32_to_bytes (q:quad32) :
Lemma (be_bytes_to_quad32 (be_quad32_to_bytes q) == q)
=
be_bytes_to_quad32_reveal ();
let q':quad32 = be_bytes_to_quad32 (be_quad32_to_bytes q) in
seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE q));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE q);
seq_to_four_to_seq_BE q;
()
let lemma_reverse_reverse_bytes_nat32_quad32 (s:quad32) :
Lemma (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s) == s)
[SMTPat (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s))]
=
let s' = reverse_bytes_nat32_quad32 s in
let s''= reverse_bytes_nat32_quad32 s' in
assert (s''.lo0 == reverse_bytes_nat32 (reverse_bytes_nat32 s.lo0)); // OBSERVE
assert (s''.lo1 == reverse_bytes_nat32 (reverse_bytes_nat32 s.lo1)); // OBSERVE
assert (s''.hi2 == reverse_bytes_nat32 (reverse_bytes_nat32 s.hi2)); // OBSERVE
assert (s''.hi3 == reverse_bytes_nat32 (reverse_bytes_nat32 s.hi3)); // OBSERVE
()
let lemma_reverse_reverse_bytes_nat32_quad32_seq (s:seq quad32) :
Lemma (reverse_bytes_nat32_quad32_seq (reverse_bytes_nat32_quad32_seq s) == s)
[SMTPat (reverse_bytes_nat32_quad32_seq (reverse_bytes_nat32_quad32_seq s))]
=
seq_map_inverses reverse_bytes_nat32_quad32 reverse_bytes_nat32_quad32 s
let lemma_reverse_reverse_bytes_quad32_seq (s:seq quad32) :
Lemma (reverse_bytes_quad32_seq (reverse_bytes_quad32_seq s) == s)
[SMTPat (reverse_bytes_quad32_seq (reverse_bytes_quad32_seq s))]
=
seq_map_inverses reverse_bytes_quad32 reverse_bytes_quad32 s
let lemma_le_seq_quad32_to_bytes_length (s:seq quad32) :
Lemma(length (le_seq_quad32_to_bytes s) == (length s) * 16)
=
()
let lemma_be_seq_quad32_to_bytes_length (s:seq quad32) :
Lemma(length (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == (length s) * 16)
=
()
let slice_commutes_seq_four_to_seq_LE (#a:Type) (s:seq (four a)) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) :
Lemma(slice (seq_four_to_seq_LE s) (n * 4) (n' * 4) ==
seq_four_to_seq_LE (slice s n n'))
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a);
assert (equal (slice (seq_four_to_seq_LE s) (n * 4) (n' * 4))
(seq_four_to_seq_LE (slice s n n')));
()
let slice_commutes_seq_four_to_seq_BE (#a:Type) (s:seq (four a)) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) :
Lemma(slice (seq_four_to_seq_BE s) (n * 4) (n' * 4) ==
seq_four_to_seq_BE (slice s n n'))
=
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a);
assert (equal (slice (seq_four_to_seq_BE s) (n * 4) (n' * 4))
(seq_four_to_seq_BE (slice s n n')));
()
let slice_commutes_le_seq_quad32_to_bytes (s:seq quad32) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) :
Lemma(slice (le_seq_quad32_to_bytes s) (n * 16) (n' * 16) ==
le_seq_quad32_to_bytes (slice s n n'))
=
le_seq_quad32_to_bytes_reveal ();
slice_commutes_seq_four_to_seq_LE s n n';
assert (slice (seq_four_to_seq_LE s) (n * 4) (n' * 4) == seq_four_to_seq_LE (slice s n n'));
(*
le_seq_quad32_to_bytes (slice s n n') == seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE (slice s n n')));
== seq_four_to_seq_LE (seq_map (nat_to_four 8) (slice (seq_four_to_seq_LE s) (n * 4) (n' * 4))
slice (le_seq_quad32_to_bytes s) (n * 16) (n' * 16)
== slice (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s))) (n * 16) (n' * 16)
== seq_four_to_seq_LE (slice (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)) (n * 4) (n' * 4))
*)
slice_seq_map_commute (nat_to_four 8) (seq_four_to_seq_LE s) (n*4) (n'*4);
let s_inner = (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)) in
slice_commutes_seq_four_to_seq_LE s_inner (n * 4) (n' * 4);
()
let slice_commutes_be_seq_quad32_to_bytes (s:seq quad32) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) :
Lemma(slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (n * 16) (n' * 16) ==
seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice s n n')))
=
slice_commutes_seq_four_to_seq_BE s n n';
assert (slice (seq_four_to_seq_BE s) (n * 4) (n' * 4) == seq_four_to_seq_BE (slice s n n'));
slice_seq_map_commute (nat_to_four 8) (seq_four_to_seq_BE s) (n*4) (n'*4);
let s_inner = (seq_map (nat_to_four 8) (seq_four_to_seq_BE s)) in
slice_commutes_seq_four_to_seq_BE s_inner (n * 4) (n' * 4);
()
let slice_commutes_le_seq_quad32_to_bytes0 (s:seq quad32) (n:nat{n <= length s}) :
Lemma(slice (le_seq_quad32_to_bytes s) 0 (n * 16) ==
le_seq_quad32_to_bytes (slice s 0 n)) | false | false | Vale.Arch.Types.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val slice_commutes_le_seq_quad32_to_bytes0 (s:seq quad32) (n:nat{n <= length s}) :
Lemma(slice (le_seq_quad32_to_bytes s) 0 (n * 16) ==
le_seq_quad32_to_bytes (slice s 0 n)) | [] | Vale.Arch.Types.slice_commutes_le_seq_quad32_to_bytes0 | {
"file_name": "vale/code/arch/Vale.Arch.Types.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | s: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> n: Prims.nat{n <= FStar.Seq.Base.length s}
-> FStar.Pervasives.Lemma
(ensures
FStar.Seq.Base.slice (Vale.Def.Types_s.le_seq_quad32_to_bytes s) 0 (n * 16) ==
Vale.Def.Types_s.le_seq_quad32_to_bytes (FStar.Seq.Base.slice s 0 n)) | {
"end_col": 45,
"end_line": 668,
"start_col": 2,
"start_line": 668
} |
FStar.Pervasives.Lemma | val le_nat64_to_bytes_to_nat64 (s:seq nat8 { length s == 8 }) :
Lemma (le_nat64_to_bytes (le_bytes_to_nat64 s) == s) | [
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let le_nat64_to_bytes_to_nat64 n =
le_nat64_to_bytes_reveal ();
le_bytes_to_nat64_reveal () | val le_nat64_to_bytes_to_nat64 (s:seq nat8 { length s == 8 }) :
Lemma (le_nat64_to_bytes (le_bytes_to_nat64 s) == s)
let le_nat64_to_bytes_to_nat64 n = | false | null | true | le_nat64_to_bytes_reveal ();
le_bytes_to_nat64_reveal () | {
"checked_file": "Vale.Arch.Types.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Arch.Types.fst"
} | [
"lemma"
] | [
"FStar.Seq.Base.seq",
"Vale.Def.Words_s.nat8",
"Prims.eq2",
"Prims.int",
"FStar.Seq.Base.length",
"Vale.Def.Types_s.le_bytes_to_nat64_reveal",
"Prims.unit",
"Vale.Def.Types_s.le_nat64_to_bytes_reveal"
] | [] | module Vale.Arch.Types
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.TypesNative
open Vale.Lib.Seqs
open Vale.Def.Words_s
open Vale.Def.Words.Two
open FStar.Calc
let lemma_nat_to_two32 () =
assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000))
let lemma_BitwiseXorCommutative x y =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ y) (y *^ x)
let lemma_BitwiseXorWithZero n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ 0) n
let lemma_BitwiseXorCancel n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ n) 0
let lemma_BitwiseXorCancel64 (n:nat64) =
lemma_ixor_nth_all 64;
lemma_zero_nth 64;
lemma_equal_nth 64 (ixor n n) 0
let lemma_BitwiseXorAssociative x y z =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z)
let xor_lemmas () =
FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative;
FStar.Classical.forall_intro lemma_BitwiseXorWithZero;
FStar.Classical.forall_intro lemma_BitwiseXorCancel;
FStar.Classical.forall_intro lemma_BitwiseXorCancel64;
FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_quad32_xor () =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
xor_lemmas()
(*
let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) =
let q' = quad32_xor q q in
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
// REVIEW: Why are these necessary?
assert (q'.lo0 == nat32_xor q.lo0 q.lo0);
assert (q'.lo1 == nat32_xor q.lo1 q.lo1);
assert (q'.hi2 == nat32_xor q.hi2 q.hi2);
assert (q'.hi3 == nat32_xor q.hi3 q.hi3);
xor_lemmas()
in
FStar.Classical.forall_intro helper
*)
#pop-options
let lemma_reverse_reverse_bytes_nat32 (n:nat32) :
Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n)
=
reverse_bytes_nat32_reveal ();
let r = reverse_seq (nat32_to_be_bytes n) in
be_bytes_to_nat32_to_be_bytes r;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_reverse_bytes_quad32 (q:quad32) =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
reveal_reverse_bytes_quad32 q;
reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q);
()
#pop-options
let lemma_reverse_bytes_nat32 (_:unit) : Lemma
(reverse_bytes_nat32 0 == 0)
=
reverse_bytes_nat32_reveal ();
assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0);
()
let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma
(let z = Mkfour 0 0 0 0 in
reverse_bytes_quad32 z == z)
=
let z = Mkfour 0 0 0 0 in
calc (==) {
reverse_bytes_quad32 z;
== { reveal_reverse_bytes_quad32 z }
four_reverse (four_map reverse_bytes_nat32 z);
== { lemma_reverse_bytes_nat32() }
z;
};
()
let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) :
Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s)
=
reveal_reverse_bytes_nat32_seq s;
reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s);
assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s)
(*
let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) :
Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\
( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\
((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF))
=
if n.lo == 0 /\ n.hi == 0 then (
assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0);
()
) else (
()
);
()
let lemma_equality_check_helper_lo (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1);
()
let lemma_equality_check_helper_hi (q:quad32) :
Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3);
()
*)
let lemma_insert_nat64_properties (q:quad32) (n:nat64) :
Lemma ( (let q' = insert_nat64 q n 0 in
q'.hi2 == q.hi2 /\
q'.hi3 == q.hi3) /\
(let q' = insert_nat64 q n 1 in
q'.lo0 == q.lo0 /\
q'.lo1 == q.lo1))
=
insert_nat64_reveal ();
()
let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) :
Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 ==
Mkfour n0 n1 q.hi2 q.hi3 /\
insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 ==
Mkfour q.lo0 q.lo1 n0 n1 )
=
let open Vale.Def.Words.Two in
insert_nat64_reveal ();
()
let lemma_lo64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1))
=
lo64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_hi64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1))
=
hi64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma
(reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0)))
=
reverse_bytes_nat64_reveal ()
let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma
(requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1)
(ensures final == reverse_bytes_quad32 src)
=
reverse_bytes_nat64_reveal ();
let Mkfour x0 x1 x2 x3 = src in
let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in
let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in
calc (==) {
reverse_bytes_quad32 src;
== { reveal_reverse_bytes_quad32 src }
four_reverse (four_map reverse_bytes_nat32 src);
== {}
four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3));
== {}
Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0);
== { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3)
(reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) }
insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1;
== { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) }
insert_nat64 (insert_nat64 orig two32 0) two10 1;
};
calc (==) {
reverse_bytes_nat64 (hi64 src);
== { hi64_reveal ()}
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3));
== { lemma_reverse_bytes_nat64_32 x2 x3 }
two32;
};
calc (==) {
reverse_bytes_nat64 (lo64 src);
== { lo64_reveal () }
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1));
== { lemma_reverse_bytes_nat64_32 x0 x1 }
two10;
};
()
let lemma_equality_check_helper (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)
)
=
// lemma_equality_check_helper_lo q;
// lemma_equality_check_helper_hi q;
lo64_reveal ();
hi64_reveal ();
assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x);
()
let push_pop_xmm (x y:quad32) : Lemma
(let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in
x == x')
=
// assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1);
insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_insrq_extrq_relations (x y:quad32) :
Lemma (let z = insert_nat64 x (lo64 y) 0 in
z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\
(let z = insert_nat64 x (hi64 y) 1 in
z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3))
=
let open Vale.Def.Words.Two in
let z = insert_nat64 x (lo64 y) 0 in
insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
assert (z == insert_nat64_def x (lo64_def y) 0);
//assert (q'.hi2 == q.hi2);
//assert (q'.hi3 == q.hi3);
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0));
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0));
let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in
nat_to_two_to_nat n1 n2;
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0));
//assert (q'.lo1 == q.lo1);
//assert (q == q');
()
open Vale.Def.Words.Two
let le_bytes_to_nat64_to_bytes s =
le_nat64_to_bytes_reveal ();
le_bytes_to_nat64_reveal () | false | false | Vale.Arch.Types.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 3,
"initial_ifuel": 3,
"max_fuel": 3,
"max_ifuel": 3,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val le_nat64_to_bytes_to_nat64 (s:seq nat8 { length s == 8 }) :
Lemma (le_nat64_to_bytes (le_bytes_to_nat64 s) == s) | [] | Vale.Arch.Types.le_nat64_to_bytes_to_nat64 | {
"file_name": "vale/code/arch/Vale.Arch.Types.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | s: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 {FStar.Seq.Base.length s == 8}
-> FStar.Pervasives.Lemma
(ensures Vale.Def.Types_s.le_nat64_to_bytes (Vale.Def.Types_s.le_bytes_to_nat64 s) == s) | {
"end_col": 29,
"end_line": 307,
"start_col": 2,
"start_line": 306
} |
FStar.Pervasives.Lemma | val le_quad32_to_bytes_injective: unit ->
Lemma (forall b b' . le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') | [
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let le_quad32_to_bytes_injective ():
Lemma (forall b b' . le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b')
=
reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes;
let helper (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') =
if le_quad32_to_bytes b = le_quad32_to_bytes b' then (
let b1 = seq_map (nat_to_four 8) (four_to_seq_LE b) in
let b1' = seq_map (nat_to_four 8) (four_to_seq_LE b') in
assert (le_quad32_to_bytes b == seq_four_to_seq_LE b1);
assert (le_quad32_to_bytes b' == seq_four_to_seq_LE b1');
seq_four_to_seq_LE_injective_specific b1 b1';
assert (b1 == b1');
nat_to_four_8_injective();
seq_map_injective (nat_to_four 8) (four_to_seq_LE b) (four_to_seq_LE b');
assert ((four_to_seq_LE b) == (four_to_seq_LE b'));
four_to_seq_LE_injective nat32;
()
) else
()
in
FStar.Classical.forall_intro_2 helper | val le_quad32_to_bytes_injective: unit ->
Lemma (forall b b' . le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b')
let le_quad32_to_bytes_injective ()
: Lemma (forall b b'. le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = | false | null | true | reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes;
let helper (b b': quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') =
if le_quad32_to_bytes b = le_quad32_to_bytes b'
then
(let b1 = seq_map (nat_to_four 8) (four_to_seq_LE b) in
let b1' = seq_map (nat_to_four 8) (four_to_seq_LE b') in
assert (le_quad32_to_bytes b == seq_four_to_seq_LE b1);
assert (le_quad32_to_bytes b' == seq_four_to_seq_LE b1');
seq_four_to_seq_LE_injective_specific b1 b1';
assert (b1 == b1');
nat_to_four_8_injective ();
seq_map_injective (nat_to_four 8) (four_to_seq_LE b) (four_to_seq_LE b');
assert ((four_to_seq_LE b) == (four_to_seq_LE b'));
four_to_seq_LE_injective nat32;
())
in
FStar.Classical.forall_intro_2 helper | {
"checked_file": "Vale.Arch.Types.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Arch.Types.fst"
} | [
"lemma"
] | [
"Prims.unit",
"FStar.Classical.forall_intro_2",
"Vale.Def.Types_s.quad32",
"Prims.l_imp",
"Prims.eq2",
"FStar.Seq.Base.seq",
"Vale.Def.Types_s.nat8",
"Vale.Def.Types_s.le_quad32_to_bytes",
"Prims.l_True",
"Prims.squash",
"Vale.Def.Words_s.nat8",
"Prims.Nil",
"FStar.Pervasives.pattern",
"Prims.op_Equality",
"Vale.Def.Words.Seq.four_to_seq_LE_injective",
"Vale.Def.Words_s.nat32",
"Prims._assert",
"Vale.Def.Words.Seq_s.seq4",
"Vale.Def.Types_s.nat32",
"Vale.Def.Words.Seq_s.four_to_seq_LE",
"Vale.Lib.Seqs.seq_map_injective",
"Vale.Def.Words_s.four",
"Vale.Def.Words_s.natN",
"Prims.pow2",
"Vale.Def.Words.Four_s.nat_to_four",
"Vale.Def.Words.Seq.nat_to_four_8_injective",
"Vale.Def.Words.Seq.seq_four_to_seq_LE_injective_specific",
"Vale.Def.Words.Seq_s.seq_four_to_seq_LE",
"Vale.Lib.Seqs_s.seq_map",
"Prims.bool",
"FStar.Pervasives.reveal_opaque",
"Prims.int",
"FStar.Seq.Base.length",
"Prims.l_Forall"
] | [] | module Vale.Arch.Types
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.TypesNative
open Vale.Lib.Seqs
open Vale.Def.Words_s
open Vale.Def.Words.Two
open FStar.Calc
let lemma_nat_to_two32 () =
assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000))
let lemma_BitwiseXorCommutative x y =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ y) (y *^ x)
let lemma_BitwiseXorWithZero n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ 0) n
let lemma_BitwiseXorCancel n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ n) 0
let lemma_BitwiseXorCancel64 (n:nat64) =
lemma_ixor_nth_all 64;
lemma_zero_nth 64;
lemma_equal_nth 64 (ixor n n) 0
let lemma_BitwiseXorAssociative x y z =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z)
let xor_lemmas () =
FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative;
FStar.Classical.forall_intro lemma_BitwiseXorWithZero;
FStar.Classical.forall_intro lemma_BitwiseXorCancel;
FStar.Classical.forall_intro lemma_BitwiseXorCancel64;
FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_quad32_xor () =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
xor_lemmas()
(*
let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) =
let q' = quad32_xor q q in
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
// REVIEW: Why are these necessary?
assert (q'.lo0 == nat32_xor q.lo0 q.lo0);
assert (q'.lo1 == nat32_xor q.lo1 q.lo1);
assert (q'.hi2 == nat32_xor q.hi2 q.hi2);
assert (q'.hi3 == nat32_xor q.hi3 q.hi3);
xor_lemmas()
in
FStar.Classical.forall_intro helper
*)
#pop-options
let lemma_reverse_reverse_bytes_nat32 (n:nat32) :
Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n)
=
reverse_bytes_nat32_reveal ();
let r = reverse_seq (nat32_to_be_bytes n) in
be_bytes_to_nat32_to_be_bytes r;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_reverse_bytes_quad32 (q:quad32) =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
reveal_reverse_bytes_quad32 q;
reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q);
()
#pop-options
let lemma_reverse_bytes_nat32 (_:unit) : Lemma
(reverse_bytes_nat32 0 == 0)
=
reverse_bytes_nat32_reveal ();
assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0);
()
let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma
(let z = Mkfour 0 0 0 0 in
reverse_bytes_quad32 z == z)
=
let z = Mkfour 0 0 0 0 in
calc (==) {
reverse_bytes_quad32 z;
== { reveal_reverse_bytes_quad32 z }
four_reverse (four_map reverse_bytes_nat32 z);
== { lemma_reverse_bytes_nat32() }
z;
};
()
let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) :
Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s)
=
reveal_reverse_bytes_nat32_seq s;
reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s);
assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s)
(*
let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) :
Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\
( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\
((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF))
=
if n.lo == 0 /\ n.hi == 0 then (
assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0);
()
) else (
()
);
()
let lemma_equality_check_helper_lo (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1);
()
let lemma_equality_check_helper_hi (q:quad32) :
Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3);
()
*)
let lemma_insert_nat64_properties (q:quad32) (n:nat64) :
Lemma ( (let q' = insert_nat64 q n 0 in
q'.hi2 == q.hi2 /\
q'.hi3 == q.hi3) /\
(let q' = insert_nat64 q n 1 in
q'.lo0 == q.lo0 /\
q'.lo1 == q.lo1))
=
insert_nat64_reveal ();
()
let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) :
Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 ==
Mkfour n0 n1 q.hi2 q.hi3 /\
insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 ==
Mkfour q.lo0 q.lo1 n0 n1 )
=
let open Vale.Def.Words.Two in
insert_nat64_reveal ();
()
let lemma_lo64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1))
=
lo64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_hi64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1))
=
hi64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma
(reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0)))
=
reverse_bytes_nat64_reveal ()
let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma
(requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1)
(ensures final == reverse_bytes_quad32 src)
=
reverse_bytes_nat64_reveal ();
let Mkfour x0 x1 x2 x3 = src in
let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in
let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in
calc (==) {
reverse_bytes_quad32 src;
== { reveal_reverse_bytes_quad32 src }
four_reverse (four_map reverse_bytes_nat32 src);
== {}
four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3));
== {}
Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0);
== { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3)
(reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) }
insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1;
== { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) }
insert_nat64 (insert_nat64 orig two32 0) two10 1;
};
calc (==) {
reverse_bytes_nat64 (hi64 src);
== { hi64_reveal ()}
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3));
== { lemma_reverse_bytes_nat64_32 x2 x3 }
two32;
};
calc (==) {
reverse_bytes_nat64 (lo64 src);
== { lo64_reveal () }
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1));
== { lemma_reverse_bytes_nat64_32 x0 x1 }
two10;
};
()
let lemma_equality_check_helper (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)
)
=
// lemma_equality_check_helper_lo q;
// lemma_equality_check_helper_hi q;
lo64_reveal ();
hi64_reveal ();
assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x);
()
let push_pop_xmm (x y:quad32) : Lemma
(let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in
x == x')
=
// assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1);
insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_insrq_extrq_relations (x y:quad32) :
Lemma (let z = insert_nat64 x (lo64 y) 0 in
z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\
(let z = insert_nat64 x (hi64 y) 1 in
z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3))
=
let open Vale.Def.Words.Two in
let z = insert_nat64 x (lo64 y) 0 in
insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
assert (z == insert_nat64_def x (lo64_def y) 0);
//assert (q'.hi2 == q.hi2);
//assert (q'.hi3 == q.hi3);
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0));
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0));
let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in
nat_to_two_to_nat n1 n2;
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0));
//assert (q'.lo1 == q.lo1);
//assert (q == q');
()
open Vale.Def.Words.Two
let le_bytes_to_nat64_to_bytes s =
le_nat64_to_bytes_reveal ();
le_bytes_to_nat64_reveal ()
let le_nat64_to_bytes_to_nat64 n =
le_nat64_to_bytes_reveal ();
le_bytes_to_nat64_reveal ()
let le_bytes_to_seq_quad32_empty () :
Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
()
let be_bytes_to_seq_quad32_empty () :
Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
()
#reset-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'"
let le_bytes_to_seq_quad32_to_bytes_one_quad b =
calc (==) {
le_bytes_to_seq_quad32 (le_quad32_to_bytes b);
== {reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32}
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_quad32_to_bytes b));
== {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes}
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))));
== {}
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)))));
== {seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))}
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_LE b)));
== {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_LE b)}
seq_to_seq_four_LE (four_to_seq_LE b);
== {four_to_seq_LE_is_seq_four_to_seq_LE b}
seq_to_seq_four_LE (seq_four_to_seq_LE (create 1 b));
== {}
create 1 b;
}
let be_bytes_to_seq_quad32_to_bytes_one_quad b =
calc (==) {
be_bytes_to_seq_quad32 (be_quad32_to_bytes b);
== {reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32}
seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (be_quad32_to_bytes b));
== {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes}
seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))));
== {}
seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b)))));
== {seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))}
seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_BE b)));
== {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE b)}
seq_to_seq_four_BE (four_to_seq_BE b);
== {four_to_seq_BE_is_seq_four_to_seq_BE b}
seq_to_seq_four_BE (seq_four_to_seq_BE (create 1 b));
== {}
create 1 b;
}
let le_bytes_to_seq_quad32_to_bytes (s:seq quad32) :
Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s)
(* This expands into showing:
le_bytes_to_seq_quad32 (le_quad32_to_bytes s)
== { definition of le_bytes_to_seq_quad32 }
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_seq_quad32_to_bytes s))
== { definition of le_seq_quad32_to_bytes }
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s)))
== { definition of seq_nat8_to_seq_nat32_LE }
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s))))
== { definition of seq_nat32_to_seq_nat8_LE }
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)))))
*)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_seq_quad32_to_bytes_reveal ();
seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_LE s);
seq_to_seq_four_to_seq_LE (s) ;
()
let be_bytes_to_seq_quad32_to_bytes (s:seq quad32) :
Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_BE s);
seq_to_seq_four_to_seq_BE (s) ;
()
let le_seq_quad32_to_bytes_to_seq_quad32 s =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_seq_quad32_to_bytes_reveal ();
calc (==) {
le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 s);
(==) { }
seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE (seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s)));
(==) { }
s;
}
(*
le_quad32_to_bytes (le_bytes_to_quad32 s)
== { definition of le_quad32_to_bytes }
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (le_bytes_to_quad32 s)))
== { definition of le_bytes_to_quad32 }
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)))))
*)
let le_quad32_to_bytes_to_quad32 s =
calc (==) {
le_quad32_to_bytes (le_bytes_to_quad32 s);
== {le_bytes_to_quad32_reveal ()}
le_quad32_to_bytes (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)));
== {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes}
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)))));
== {four_to_seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))}
seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)));
== {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_LE s)}
seq_four_to_seq_LE (seq_to_seq_four_LE s);
== {}
s;
}
let be_quad32_to_bytes_to_quad32 s =
calc (==) {
be_quad32_to_bytes (be_bytes_to_quad32 s);
== {be_bytes_to_quad32_reveal ()}
be_quad32_to_bytes (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)));
== {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes}
seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)))));
== {four_to_seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))}
seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)));
== {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_BE s)}
seq_four_to_seq_BE (seq_to_seq_four_BE s);
== {}
s;
}
let le_seq_quad32_to_bytes_of_singleton (q:quad32) :
Lemma (le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q))
=
le_seq_quad32_to_bytes_reveal ();
reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes;
four_to_seq_LE_is_seq_four_to_seq_LE q;
()
let be_seq_quad32_to_bytes_of_singleton (q:quad32) :
Lemma (be_quad32_to_bytes q == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 q)))
=
reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes;
four_to_seq_BE_is_seq_four_to_seq_BE q;
()
let le_quad32_to_bytes_injective ():
Lemma (forall b b' . le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') | false | false | Vale.Arch.Types.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val le_quad32_to_bytes_injective: unit ->
Lemma (forall b b' . le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') | [] | Vale.Arch.Types.le_quad32_to_bytes_injective | {
"file_name": "vale/code/arch/Vale.Arch.Types.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | _: Prims.unit
-> FStar.Pervasives.Lemma
(ensures
forall (b: Vale.Def.Types_s.quad32) (b': Vale.Def.Types_s.quad32).
Vale.Def.Types_s.le_quad32_to_bytes b == Vale.Def.Types_s.le_quad32_to_bytes b' ==> b == b') | {
"end_col": 39,
"end_line": 475,
"start_col": 2,
"start_line": 458
} |
FStar.Pervasives.Lemma | val push_pop_xmm (x y:quad32) : Lemma
(let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in
x == x') | [
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let push_pop_xmm (x y:quad32) : Lemma
(let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in
x == x')
=
// assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1);
insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
() | val push_pop_xmm (x y:quad32) : Lemma
(let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in
x == x')
let push_pop_xmm (x y: quad32)
: Lemma
(let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in
x == x') = | false | null | true | insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
() | {
"checked_file": "Vale.Arch.Types.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Arch.Types.fst"
} | [
"lemma"
] | [
"Vale.Def.Types_s.quad32",
"Prims.unit",
"Vale.Arch.Types.hi64_reveal",
"Vale.Arch.Types.lo64_reveal",
"Vale.Def.Types_s.insert_nat64_reveal",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Vale.Def.Types_s.insert_nat64",
"Vale.Arch.Types.hi64",
"Vale.Arch.Types.lo64",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.Arch.Types
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.TypesNative
open Vale.Lib.Seqs
open Vale.Def.Words_s
open Vale.Def.Words.Two
open FStar.Calc
let lemma_nat_to_two32 () =
assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000))
let lemma_BitwiseXorCommutative x y =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ y) (y *^ x)
let lemma_BitwiseXorWithZero n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ 0) n
let lemma_BitwiseXorCancel n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ n) 0
let lemma_BitwiseXorCancel64 (n:nat64) =
lemma_ixor_nth_all 64;
lemma_zero_nth 64;
lemma_equal_nth 64 (ixor n n) 0
let lemma_BitwiseXorAssociative x y z =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z)
let xor_lemmas () =
FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative;
FStar.Classical.forall_intro lemma_BitwiseXorWithZero;
FStar.Classical.forall_intro lemma_BitwiseXorCancel;
FStar.Classical.forall_intro lemma_BitwiseXorCancel64;
FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_quad32_xor () =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
xor_lemmas()
(*
let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) =
let q' = quad32_xor q q in
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
// REVIEW: Why are these necessary?
assert (q'.lo0 == nat32_xor q.lo0 q.lo0);
assert (q'.lo1 == nat32_xor q.lo1 q.lo1);
assert (q'.hi2 == nat32_xor q.hi2 q.hi2);
assert (q'.hi3 == nat32_xor q.hi3 q.hi3);
xor_lemmas()
in
FStar.Classical.forall_intro helper
*)
#pop-options
let lemma_reverse_reverse_bytes_nat32 (n:nat32) :
Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n)
=
reverse_bytes_nat32_reveal ();
let r = reverse_seq (nat32_to_be_bytes n) in
be_bytes_to_nat32_to_be_bytes r;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_reverse_bytes_quad32 (q:quad32) =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
reveal_reverse_bytes_quad32 q;
reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q);
()
#pop-options
let lemma_reverse_bytes_nat32 (_:unit) : Lemma
(reverse_bytes_nat32 0 == 0)
=
reverse_bytes_nat32_reveal ();
assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0);
()
let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma
(let z = Mkfour 0 0 0 0 in
reverse_bytes_quad32 z == z)
=
let z = Mkfour 0 0 0 0 in
calc (==) {
reverse_bytes_quad32 z;
== { reveal_reverse_bytes_quad32 z }
four_reverse (four_map reverse_bytes_nat32 z);
== { lemma_reverse_bytes_nat32() }
z;
};
()
let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) :
Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s)
=
reveal_reverse_bytes_nat32_seq s;
reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s);
assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s)
(*
let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) :
Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\
( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\
((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF))
=
if n.lo == 0 /\ n.hi == 0 then (
assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0);
()
) else (
()
);
()
let lemma_equality_check_helper_lo (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1);
()
let lemma_equality_check_helper_hi (q:quad32) :
Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3);
()
*)
let lemma_insert_nat64_properties (q:quad32) (n:nat64) :
Lemma ( (let q' = insert_nat64 q n 0 in
q'.hi2 == q.hi2 /\
q'.hi3 == q.hi3) /\
(let q' = insert_nat64 q n 1 in
q'.lo0 == q.lo0 /\
q'.lo1 == q.lo1))
=
insert_nat64_reveal ();
()
let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) :
Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 ==
Mkfour n0 n1 q.hi2 q.hi3 /\
insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 ==
Mkfour q.lo0 q.lo1 n0 n1 )
=
let open Vale.Def.Words.Two in
insert_nat64_reveal ();
()
let lemma_lo64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1))
=
lo64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_hi64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1))
=
hi64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma
(reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0)))
=
reverse_bytes_nat64_reveal ()
let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma
(requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1)
(ensures final == reverse_bytes_quad32 src)
=
reverse_bytes_nat64_reveal ();
let Mkfour x0 x1 x2 x3 = src in
let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in
let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in
calc (==) {
reverse_bytes_quad32 src;
== { reveal_reverse_bytes_quad32 src }
four_reverse (four_map reverse_bytes_nat32 src);
== {}
four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3));
== {}
Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0);
== { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3)
(reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) }
insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1;
== { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) }
insert_nat64 (insert_nat64 orig two32 0) two10 1;
};
calc (==) {
reverse_bytes_nat64 (hi64 src);
== { hi64_reveal ()}
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3));
== { lemma_reverse_bytes_nat64_32 x2 x3 }
two32;
};
calc (==) {
reverse_bytes_nat64 (lo64 src);
== { lo64_reveal () }
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1));
== { lemma_reverse_bytes_nat64_32 x0 x1 }
two10;
};
()
let lemma_equality_check_helper (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)
)
=
// lemma_equality_check_helper_lo q;
// lemma_equality_check_helper_hi q;
lo64_reveal ();
hi64_reveal ();
assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x);
()
let push_pop_xmm (x y:quad32) : Lemma
(let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in
x == x')
= | false | false | Vale.Arch.Types.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val push_pop_xmm (x y:quad32) : Lemma
(let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in
x == x') | [] | Vale.Arch.Types.push_pop_xmm | {
"file_name": "vale/code/arch/Vale.Arch.Types.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x: Vale.Def.Types_s.quad32 -> y: Vale.Def.Types_s.quad32
-> FStar.Pervasives.Lemma
(ensures
(let x' =
Vale.Def.Types_s.insert_nat64 (Vale.Def.Types_s.insert_nat64 y (Vale.Arch.Types.hi64 x) 1)
(Vale.Arch.Types.lo64 x)
0
in
x == x')) | {
"end_col": 4,
"end_line": 271,
"start_col": 2,
"start_line": 268
} |
FStar.Pervasives.Lemma | val slice_commutes_le_seq_quad32_to_bytes (s:seq quad32) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) :
Lemma(slice (le_seq_quad32_to_bytes s) (n * 16) (n' * 16) ==
le_seq_quad32_to_bytes (slice s n n')) | [
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let slice_commutes_le_seq_quad32_to_bytes (s:seq quad32) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) :
Lemma(slice (le_seq_quad32_to_bytes s) (n * 16) (n' * 16) ==
le_seq_quad32_to_bytes (slice s n n'))
=
le_seq_quad32_to_bytes_reveal ();
slice_commutes_seq_four_to_seq_LE s n n';
assert (slice (seq_four_to_seq_LE s) (n * 4) (n' * 4) == seq_four_to_seq_LE (slice s n n'));
(*
le_seq_quad32_to_bytes (slice s n n') == seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE (slice s n n')));
== seq_four_to_seq_LE (seq_map (nat_to_four 8) (slice (seq_four_to_seq_LE s) (n * 4) (n' * 4))
slice (le_seq_quad32_to_bytes s) (n * 16) (n' * 16)
== slice (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s))) (n * 16) (n' * 16)
== seq_four_to_seq_LE (slice (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)) (n * 4) (n' * 4))
*)
slice_seq_map_commute (nat_to_four 8) (seq_four_to_seq_LE s) (n*4) (n'*4);
let s_inner = (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)) in
slice_commutes_seq_four_to_seq_LE s_inner (n * 4) (n' * 4);
() | val slice_commutes_le_seq_quad32_to_bytes (s:seq quad32) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) :
Lemma(slice (le_seq_quad32_to_bytes s) (n * 16) (n' * 16) ==
le_seq_quad32_to_bytes (slice s n n'))
let slice_commutes_le_seq_quad32_to_bytes
(s: seq quad32)
(n: nat{n <= length s})
(n': nat{n <= n' /\ n' <= length s})
: Lemma
(slice (le_seq_quad32_to_bytes s) (n * 16) (n' * 16) == le_seq_quad32_to_bytes (slice s n n')) = | false | null | true | le_seq_quad32_to_bytes_reveal ();
slice_commutes_seq_four_to_seq_LE s n n';
assert (slice (seq_four_to_seq_LE s) (n * 4) (n' * 4) == seq_four_to_seq_LE (slice s n n'));
slice_seq_map_commute (nat_to_four 8) (seq_four_to_seq_LE s) (n * 4) (n' * 4);
let s_inner = (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)) in
slice_commutes_seq_four_to_seq_LE s_inner (n * 4) (n' * 4);
() | {
"checked_file": "Vale.Arch.Types.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Arch.Types.fst"
} | [
"lemma"
] | [
"FStar.Seq.Base.seq",
"Vale.Def.Types_s.quad32",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.Seq.Base.length",
"Prims.l_and",
"Prims.unit",
"Vale.Arch.Types.slice_commutes_seq_four_to_seq_LE",
"Vale.Def.Words_s.natN",
"Prims.pow2",
"FStar.Mul.op_Star",
"Vale.Def.Words_s.four",
"Vale.Lib.Seqs_s.seq_map",
"Vale.Def.Types_s.nat32",
"Vale.Def.Words.Four_s.nat_to_four",
"Vale.Def.Words.Seq_s.seq_four_to_seq_LE",
"Vale.Lib.Seqs.slice_seq_map_commute",
"Prims._assert",
"Prims.eq2",
"FStar.Seq.Base.slice",
"Vale.Def.Types_s.le_seq_quad32_to_bytes_reveal",
"Prims.l_True",
"Prims.squash",
"Vale.Def.Types_s.nat8",
"Vale.Def.Types_s.le_seq_quad32_to_bytes",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.Arch.Types
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.TypesNative
open Vale.Lib.Seqs
open Vale.Def.Words_s
open Vale.Def.Words.Two
open FStar.Calc
let lemma_nat_to_two32 () =
assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000))
let lemma_BitwiseXorCommutative x y =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ y) (y *^ x)
let lemma_BitwiseXorWithZero n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ 0) n
let lemma_BitwiseXorCancel n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ n) 0
let lemma_BitwiseXorCancel64 (n:nat64) =
lemma_ixor_nth_all 64;
lemma_zero_nth 64;
lemma_equal_nth 64 (ixor n n) 0
let lemma_BitwiseXorAssociative x y z =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z)
let xor_lemmas () =
FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative;
FStar.Classical.forall_intro lemma_BitwiseXorWithZero;
FStar.Classical.forall_intro lemma_BitwiseXorCancel;
FStar.Classical.forall_intro lemma_BitwiseXorCancel64;
FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_quad32_xor () =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
xor_lemmas()
(*
let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) =
let q' = quad32_xor q q in
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
// REVIEW: Why are these necessary?
assert (q'.lo0 == nat32_xor q.lo0 q.lo0);
assert (q'.lo1 == nat32_xor q.lo1 q.lo1);
assert (q'.hi2 == nat32_xor q.hi2 q.hi2);
assert (q'.hi3 == nat32_xor q.hi3 q.hi3);
xor_lemmas()
in
FStar.Classical.forall_intro helper
*)
#pop-options
let lemma_reverse_reverse_bytes_nat32 (n:nat32) :
Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n)
=
reverse_bytes_nat32_reveal ();
let r = reverse_seq (nat32_to_be_bytes n) in
be_bytes_to_nat32_to_be_bytes r;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_reverse_bytes_quad32 (q:quad32) =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
reveal_reverse_bytes_quad32 q;
reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q);
()
#pop-options
let lemma_reverse_bytes_nat32 (_:unit) : Lemma
(reverse_bytes_nat32 0 == 0)
=
reverse_bytes_nat32_reveal ();
assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0);
()
let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma
(let z = Mkfour 0 0 0 0 in
reverse_bytes_quad32 z == z)
=
let z = Mkfour 0 0 0 0 in
calc (==) {
reverse_bytes_quad32 z;
== { reveal_reverse_bytes_quad32 z }
four_reverse (four_map reverse_bytes_nat32 z);
== { lemma_reverse_bytes_nat32() }
z;
};
()
let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) :
Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s)
=
reveal_reverse_bytes_nat32_seq s;
reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s);
assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s)
(*
let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) :
Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\
( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\
((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF))
=
if n.lo == 0 /\ n.hi == 0 then (
assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0);
()
) else (
()
);
()
let lemma_equality_check_helper_lo (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1);
()
let lemma_equality_check_helper_hi (q:quad32) :
Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3);
()
*)
let lemma_insert_nat64_properties (q:quad32) (n:nat64) :
Lemma ( (let q' = insert_nat64 q n 0 in
q'.hi2 == q.hi2 /\
q'.hi3 == q.hi3) /\
(let q' = insert_nat64 q n 1 in
q'.lo0 == q.lo0 /\
q'.lo1 == q.lo1))
=
insert_nat64_reveal ();
()
let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) :
Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 ==
Mkfour n0 n1 q.hi2 q.hi3 /\
insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 ==
Mkfour q.lo0 q.lo1 n0 n1 )
=
let open Vale.Def.Words.Two in
insert_nat64_reveal ();
()
let lemma_lo64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1))
=
lo64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_hi64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1))
=
hi64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma
(reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0)))
=
reverse_bytes_nat64_reveal ()
let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma
(requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1)
(ensures final == reverse_bytes_quad32 src)
=
reverse_bytes_nat64_reveal ();
let Mkfour x0 x1 x2 x3 = src in
let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in
let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in
calc (==) {
reverse_bytes_quad32 src;
== { reveal_reverse_bytes_quad32 src }
four_reverse (four_map reverse_bytes_nat32 src);
== {}
four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3));
== {}
Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0);
== { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3)
(reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) }
insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1;
== { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) }
insert_nat64 (insert_nat64 orig two32 0) two10 1;
};
calc (==) {
reverse_bytes_nat64 (hi64 src);
== { hi64_reveal ()}
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3));
== { lemma_reverse_bytes_nat64_32 x2 x3 }
two32;
};
calc (==) {
reverse_bytes_nat64 (lo64 src);
== { lo64_reveal () }
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1));
== { lemma_reverse_bytes_nat64_32 x0 x1 }
two10;
};
()
let lemma_equality_check_helper (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)
)
=
// lemma_equality_check_helper_lo q;
// lemma_equality_check_helper_hi q;
lo64_reveal ();
hi64_reveal ();
assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x);
()
let push_pop_xmm (x y:quad32) : Lemma
(let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in
x == x')
=
// assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1);
insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_insrq_extrq_relations (x y:quad32) :
Lemma (let z = insert_nat64 x (lo64 y) 0 in
z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\
(let z = insert_nat64 x (hi64 y) 1 in
z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3))
=
let open Vale.Def.Words.Two in
let z = insert_nat64 x (lo64 y) 0 in
insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
assert (z == insert_nat64_def x (lo64_def y) 0);
//assert (q'.hi2 == q.hi2);
//assert (q'.hi3 == q.hi3);
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0));
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0));
let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in
nat_to_two_to_nat n1 n2;
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0));
//assert (q'.lo1 == q.lo1);
//assert (q == q');
()
open Vale.Def.Words.Two
let le_bytes_to_nat64_to_bytes s =
le_nat64_to_bytes_reveal ();
le_bytes_to_nat64_reveal ()
let le_nat64_to_bytes_to_nat64 n =
le_nat64_to_bytes_reveal ();
le_bytes_to_nat64_reveal ()
let le_bytes_to_seq_quad32_empty () :
Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
()
let be_bytes_to_seq_quad32_empty () :
Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
()
#reset-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'"
let le_bytes_to_seq_quad32_to_bytes_one_quad b =
calc (==) {
le_bytes_to_seq_quad32 (le_quad32_to_bytes b);
== {reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32}
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_quad32_to_bytes b));
== {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes}
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))));
== {}
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)))));
== {seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))}
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_LE b)));
== {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_LE b)}
seq_to_seq_four_LE (four_to_seq_LE b);
== {four_to_seq_LE_is_seq_four_to_seq_LE b}
seq_to_seq_four_LE (seq_four_to_seq_LE (create 1 b));
== {}
create 1 b;
}
let be_bytes_to_seq_quad32_to_bytes_one_quad b =
calc (==) {
be_bytes_to_seq_quad32 (be_quad32_to_bytes b);
== {reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32}
seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (be_quad32_to_bytes b));
== {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes}
seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))));
== {}
seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b)))));
== {seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))}
seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_BE b)));
== {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE b)}
seq_to_seq_four_BE (four_to_seq_BE b);
== {four_to_seq_BE_is_seq_four_to_seq_BE b}
seq_to_seq_four_BE (seq_four_to_seq_BE (create 1 b));
== {}
create 1 b;
}
let le_bytes_to_seq_quad32_to_bytes (s:seq quad32) :
Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s)
(* This expands into showing:
le_bytes_to_seq_quad32 (le_quad32_to_bytes s)
== { definition of le_bytes_to_seq_quad32 }
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_seq_quad32_to_bytes s))
== { definition of le_seq_quad32_to_bytes }
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s)))
== { definition of seq_nat8_to_seq_nat32_LE }
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s))))
== { definition of seq_nat32_to_seq_nat8_LE }
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)))))
*)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_seq_quad32_to_bytes_reveal ();
seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_LE s);
seq_to_seq_four_to_seq_LE (s) ;
()
let be_bytes_to_seq_quad32_to_bytes (s:seq quad32) :
Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_BE s);
seq_to_seq_four_to_seq_BE (s) ;
()
let le_seq_quad32_to_bytes_to_seq_quad32 s =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_seq_quad32_to_bytes_reveal ();
calc (==) {
le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 s);
(==) { }
seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE (seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s)));
(==) { }
s;
}
(*
le_quad32_to_bytes (le_bytes_to_quad32 s)
== { definition of le_quad32_to_bytes }
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (le_bytes_to_quad32 s)))
== { definition of le_bytes_to_quad32 }
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)))))
*)
let le_quad32_to_bytes_to_quad32 s =
calc (==) {
le_quad32_to_bytes (le_bytes_to_quad32 s);
== {le_bytes_to_quad32_reveal ()}
le_quad32_to_bytes (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)));
== {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes}
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)))));
== {four_to_seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))}
seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)));
== {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_LE s)}
seq_four_to_seq_LE (seq_to_seq_four_LE s);
== {}
s;
}
let be_quad32_to_bytes_to_quad32 s =
calc (==) {
be_quad32_to_bytes (be_bytes_to_quad32 s);
== {be_bytes_to_quad32_reveal ()}
be_quad32_to_bytes (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)));
== {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes}
seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)))));
== {four_to_seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))}
seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)));
== {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_BE s)}
seq_four_to_seq_BE (seq_to_seq_four_BE s);
== {}
s;
}
let le_seq_quad32_to_bytes_of_singleton (q:quad32) :
Lemma (le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q))
=
le_seq_quad32_to_bytes_reveal ();
reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes;
four_to_seq_LE_is_seq_four_to_seq_LE q;
()
let be_seq_quad32_to_bytes_of_singleton (q:quad32) :
Lemma (be_quad32_to_bytes q == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 q)))
=
reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes;
four_to_seq_BE_is_seq_four_to_seq_BE q;
()
let le_quad32_to_bytes_injective ():
Lemma (forall b b' . le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b')
=
reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes;
let helper (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') =
if le_quad32_to_bytes b = le_quad32_to_bytes b' then (
let b1 = seq_map (nat_to_four 8) (four_to_seq_LE b) in
let b1' = seq_map (nat_to_four 8) (four_to_seq_LE b') in
assert (le_quad32_to_bytes b == seq_four_to_seq_LE b1);
assert (le_quad32_to_bytes b' == seq_four_to_seq_LE b1');
seq_four_to_seq_LE_injective_specific b1 b1';
assert (b1 == b1');
nat_to_four_8_injective();
seq_map_injective (nat_to_four 8) (four_to_seq_LE b) (four_to_seq_LE b');
assert ((four_to_seq_LE b) == (four_to_seq_LE b'));
four_to_seq_LE_injective nat32;
()
) else
()
in
FStar.Classical.forall_intro_2 helper
let be_quad32_to_bytes_injective ():
Lemma (forall b b' . be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b')
=
reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes;
let helper (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') =
if be_quad32_to_bytes b = be_quad32_to_bytes b' then (
let b1 = seq_map (nat_to_four 8) (four_to_seq_BE b) in
let b1' = seq_map (nat_to_four 8) (four_to_seq_BE b') in
assert (be_quad32_to_bytes b == seq_four_to_seq_BE b1);
assert (be_quad32_to_bytes b' == seq_four_to_seq_BE b1');
seq_four_to_seq_BE_injective_specific b1 b1';
assert (b1 == b1');
nat_to_four_8_injective();
seq_map_injective (nat_to_four 8) (four_to_seq_BE b) (four_to_seq_BE b');
assert ((four_to_seq_BE b) == (four_to_seq_BE b'));
four_to_seq_BE_injective nat32;
()
) else
()
in
FStar.Classical.forall_intro_2 helper
let le_quad32_to_bytes_injective_specific (b b':quad32) :
Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b')
=
le_quad32_to_bytes_injective()
let be_quad32_to_bytes_injective_specific (b b':quad32) :
Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b')
=
be_quad32_to_bytes_injective()
let le_seq_quad32_to_bytes_injective (b b':seq quad32) =
le_seq_quad32_to_bytes_reveal ();
seq_four_to_seq_LE_injective nat8;
nat_to_four_8_injective();
seq_map_injective (nat_to_four 8) (seq_four_to_seq_LE b) (seq_four_to_seq_LE b');
seq_four_to_seq_LE_injective_specific b b';
assert (equal b b')
let seq_to_four_LE_is_seq_to_seq_four_LE (#a:Type) (s:seq4 a) : Lemma
(create 1 (seq_to_four_LE s) == seq_to_seq_four_LE s)
=
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a);
assert (equal (create 1 (seq_to_four_LE s)) (seq_to_seq_four_LE s));
()
let seq_to_four_BE_is_seq_to_seq_four_BE (#a:Type) (s:seq4 a) : Lemma
(create 1 (seq_to_four_BE s) == seq_to_seq_four_BE s)
=
reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a);
assert (equal (create 1 (seq_to_four_BE s)) (seq_to_seq_four_BE s));
()
let le_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma
(requires q == le_bytes_to_quad32 b)
(ensures create 1 q == le_bytes_to_seq_quad32 b)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_bytes_to_quad32_reveal ();
seq_to_four_LE_is_seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b));
// q == le_bytes_to_quad32 b
// == seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b))
//
// == seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b))
// le_bytes_to_seq_quad32 b == seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE b)
()
let be_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma
(requires q == be_bytes_to_quad32 b)
(ensures create 1 q == be_bytes_to_seq_quad32 b)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
be_bytes_to_quad32_reveal ();
seq_to_four_BE_is_seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE b));
()
let le_bytes_to_quad32_to_bytes (q:quad32) :
Lemma(le_bytes_to_quad32 (le_quad32_to_bytes q) == q)
=
le_seq_quad32_to_bytes_of_singleton q; // ==> le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q)
let b = le_quad32_to_bytes q in
let q' = le_bytes_to_quad32 b in
le_bytes_to_seq_quad_of_singleton q' b; // ==> create 1 q' == le_bytes_to_seq_quad32 b
// == le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes (create 1 q))
le_bytes_to_seq_quad32_to_bytes (create 1 q); // == create 1 q
//assert (create 1 q == create 1 q');
//assert (equal (create 1 q) (create 1 q'));
assert (q == index (create 1 q) 0); // OBSERVE
assert (q == q');
()
let be_bytes_to_quad32_to_bytes (q:quad32) :
Lemma (be_bytes_to_quad32 (be_quad32_to_bytes q) == q)
=
be_bytes_to_quad32_reveal ();
let q':quad32 = be_bytes_to_quad32 (be_quad32_to_bytes q) in
seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE q));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE q);
seq_to_four_to_seq_BE q;
()
let lemma_reverse_reverse_bytes_nat32_quad32 (s:quad32) :
Lemma (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s) == s)
[SMTPat (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s))]
=
let s' = reverse_bytes_nat32_quad32 s in
let s''= reverse_bytes_nat32_quad32 s' in
assert (s''.lo0 == reverse_bytes_nat32 (reverse_bytes_nat32 s.lo0)); // OBSERVE
assert (s''.lo1 == reverse_bytes_nat32 (reverse_bytes_nat32 s.lo1)); // OBSERVE
assert (s''.hi2 == reverse_bytes_nat32 (reverse_bytes_nat32 s.hi2)); // OBSERVE
assert (s''.hi3 == reverse_bytes_nat32 (reverse_bytes_nat32 s.hi3)); // OBSERVE
()
let lemma_reverse_reverse_bytes_nat32_quad32_seq (s:seq quad32) :
Lemma (reverse_bytes_nat32_quad32_seq (reverse_bytes_nat32_quad32_seq s) == s)
[SMTPat (reverse_bytes_nat32_quad32_seq (reverse_bytes_nat32_quad32_seq s))]
=
seq_map_inverses reverse_bytes_nat32_quad32 reverse_bytes_nat32_quad32 s
let lemma_reverse_reverse_bytes_quad32_seq (s:seq quad32) :
Lemma (reverse_bytes_quad32_seq (reverse_bytes_quad32_seq s) == s)
[SMTPat (reverse_bytes_quad32_seq (reverse_bytes_quad32_seq s))]
=
seq_map_inverses reverse_bytes_quad32 reverse_bytes_quad32 s
let lemma_le_seq_quad32_to_bytes_length (s:seq quad32) :
Lemma(length (le_seq_quad32_to_bytes s) == (length s) * 16)
=
()
let lemma_be_seq_quad32_to_bytes_length (s:seq quad32) :
Lemma(length (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == (length s) * 16)
=
()
let slice_commutes_seq_four_to_seq_LE (#a:Type) (s:seq (four a)) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) :
Lemma(slice (seq_four_to_seq_LE s) (n * 4) (n' * 4) ==
seq_four_to_seq_LE (slice s n n'))
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a);
assert (equal (slice (seq_four_to_seq_LE s) (n * 4) (n' * 4))
(seq_four_to_seq_LE (slice s n n')));
()
let slice_commutes_seq_four_to_seq_BE (#a:Type) (s:seq (four a)) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) :
Lemma(slice (seq_four_to_seq_BE s) (n * 4) (n' * 4) ==
seq_four_to_seq_BE (slice s n n'))
=
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a);
assert (equal (slice (seq_four_to_seq_BE s) (n * 4) (n' * 4))
(seq_four_to_seq_BE (slice s n n')));
()
let slice_commutes_le_seq_quad32_to_bytes (s:seq quad32) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) :
Lemma(slice (le_seq_quad32_to_bytes s) (n * 16) (n' * 16) ==
le_seq_quad32_to_bytes (slice s n n')) | false | false | Vale.Arch.Types.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val slice_commutes_le_seq_quad32_to_bytes (s:seq quad32) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) :
Lemma(slice (le_seq_quad32_to_bytes s) (n * 16) (n' * 16) ==
le_seq_quad32_to_bytes (slice s n n')) | [] | Vale.Arch.Types.slice_commutes_le_seq_quad32_to_bytes | {
"file_name": "vale/code/arch/Vale.Arch.Types.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
s: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
n: Prims.nat{n <= FStar.Seq.Base.length s} ->
n': Prims.nat{n <= n' /\ n' <= FStar.Seq.Base.length s}
-> FStar.Pervasives.Lemma
(ensures
FStar.Seq.Base.slice (Vale.Def.Types_s.le_seq_quad32_to_bytes s) (n * 16) (n' * 16) ==
Vale.Def.Types_s.le_seq_quad32_to_bytes (FStar.Seq.Base.slice s n n')) | {
"end_col": 4,
"end_line": 650,
"start_col": 2,
"start_line": 636
} |
FStar.Pervasives.Lemma | val slice_commutes_be_seq_quad32_to_bytes (s:seq quad32) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) :
Lemma(slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (n * 16) (n' * 16) ==
seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice s n n'))) | [
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let slice_commutes_be_seq_quad32_to_bytes (s:seq quad32) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) :
Lemma(slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (n * 16) (n' * 16) ==
seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice s n n')))
=
slice_commutes_seq_four_to_seq_BE s n n';
assert (slice (seq_four_to_seq_BE s) (n * 4) (n' * 4) == seq_four_to_seq_BE (slice s n n'));
slice_seq_map_commute (nat_to_four 8) (seq_four_to_seq_BE s) (n*4) (n'*4);
let s_inner = (seq_map (nat_to_four 8) (seq_four_to_seq_BE s)) in
slice_commutes_seq_four_to_seq_BE s_inner (n * 4) (n' * 4);
() | val slice_commutes_be_seq_quad32_to_bytes (s:seq quad32) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) :
Lemma(slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (n * 16) (n' * 16) ==
seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice s n n')))
let slice_commutes_be_seq_quad32_to_bytes
(s: seq quad32)
(n: nat{n <= length s})
(n': nat{n <= n' /\ n' <= length s})
: Lemma
(slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (n * 16) (n' * 16) ==
seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice s n n'))) = | false | null | true | slice_commutes_seq_four_to_seq_BE s n n';
assert (slice (seq_four_to_seq_BE s) (n * 4) (n' * 4) == seq_four_to_seq_BE (slice s n n'));
slice_seq_map_commute (nat_to_four 8) (seq_four_to_seq_BE s) (n * 4) (n' * 4);
let s_inner = (seq_map (nat_to_four 8) (seq_four_to_seq_BE s)) in
slice_commutes_seq_four_to_seq_BE s_inner (n * 4) (n' * 4);
() | {
"checked_file": "Vale.Arch.Types.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Arch.Types.fst"
} | [
"lemma"
] | [
"FStar.Seq.Base.seq",
"Vale.Def.Types_s.quad32",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.Seq.Base.length",
"Prims.l_and",
"Prims.unit",
"Vale.Arch.Types.slice_commutes_seq_four_to_seq_BE",
"Vale.Def.Words_s.natN",
"Prims.pow2",
"FStar.Mul.op_Star",
"Vale.Def.Words_s.four",
"Vale.Lib.Seqs_s.seq_map",
"Vale.Def.Types_s.nat32",
"Vale.Def.Words.Four_s.nat_to_four",
"Vale.Def.Words.Seq_s.seq_four_to_seq_BE",
"Vale.Lib.Seqs.slice_seq_map_commute",
"Prims._assert",
"Prims.eq2",
"FStar.Seq.Base.slice",
"Prims.l_True",
"Prims.squash",
"Vale.Def.Words_s.nat8",
"Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.Arch.Types
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.TypesNative
open Vale.Lib.Seqs
open Vale.Def.Words_s
open Vale.Def.Words.Two
open FStar.Calc
let lemma_nat_to_two32 () =
assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000))
let lemma_BitwiseXorCommutative x y =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ y) (y *^ x)
let lemma_BitwiseXorWithZero n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ 0) n
let lemma_BitwiseXorCancel n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ n) 0
let lemma_BitwiseXorCancel64 (n:nat64) =
lemma_ixor_nth_all 64;
lemma_zero_nth 64;
lemma_equal_nth 64 (ixor n n) 0
let lemma_BitwiseXorAssociative x y z =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z)
let xor_lemmas () =
FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative;
FStar.Classical.forall_intro lemma_BitwiseXorWithZero;
FStar.Classical.forall_intro lemma_BitwiseXorCancel;
FStar.Classical.forall_intro lemma_BitwiseXorCancel64;
FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_quad32_xor () =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
xor_lemmas()
(*
let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) =
let q' = quad32_xor q q in
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
// REVIEW: Why are these necessary?
assert (q'.lo0 == nat32_xor q.lo0 q.lo0);
assert (q'.lo1 == nat32_xor q.lo1 q.lo1);
assert (q'.hi2 == nat32_xor q.hi2 q.hi2);
assert (q'.hi3 == nat32_xor q.hi3 q.hi3);
xor_lemmas()
in
FStar.Classical.forall_intro helper
*)
#pop-options
let lemma_reverse_reverse_bytes_nat32 (n:nat32) :
Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n)
=
reverse_bytes_nat32_reveal ();
let r = reverse_seq (nat32_to_be_bytes n) in
be_bytes_to_nat32_to_be_bytes r;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_reverse_bytes_quad32 (q:quad32) =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
reveal_reverse_bytes_quad32 q;
reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q);
()
#pop-options
let lemma_reverse_bytes_nat32 (_:unit) : Lemma
(reverse_bytes_nat32 0 == 0)
=
reverse_bytes_nat32_reveal ();
assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0);
()
let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma
(let z = Mkfour 0 0 0 0 in
reverse_bytes_quad32 z == z)
=
let z = Mkfour 0 0 0 0 in
calc (==) {
reverse_bytes_quad32 z;
== { reveal_reverse_bytes_quad32 z }
four_reverse (four_map reverse_bytes_nat32 z);
== { lemma_reverse_bytes_nat32() }
z;
};
()
let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) :
Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s)
=
reveal_reverse_bytes_nat32_seq s;
reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s);
assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s)
(*
let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) :
Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\
( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\
((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF))
=
if n.lo == 0 /\ n.hi == 0 then (
assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0);
()
) else (
()
);
()
let lemma_equality_check_helper_lo (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1);
()
let lemma_equality_check_helper_hi (q:quad32) :
Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3);
()
*)
let lemma_insert_nat64_properties (q:quad32) (n:nat64) :
Lemma ( (let q' = insert_nat64 q n 0 in
q'.hi2 == q.hi2 /\
q'.hi3 == q.hi3) /\
(let q' = insert_nat64 q n 1 in
q'.lo0 == q.lo0 /\
q'.lo1 == q.lo1))
=
insert_nat64_reveal ();
()
let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) :
Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 ==
Mkfour n0 n1 q.hi2 q.hi3 /\
insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 ==
Mkfour q.lo0 q.lo1 n0 n1 )
=
let open Vale.Def.Words.Two in
insert_nat64_reveal ();
()
let lemma_lo64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1))
=
lo64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_hi64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1))
=
hi64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma
(reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0)))
=
reverse_bytes_nat64_reveal ()
let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma
(requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1)
(ensures final == reverse_bytes_quad32 src)
=
reverse_bytes_nat64_reveal ();
let Mkfour x0 x1 x2 x3 = src in
let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in
let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in
calc (==) {
reverse_bytes_quad32 src;
== { reveal_reverse_bytes_quad32 src }
four_reverse (four_map reverse_bytes_nat32 src);
== {}
four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3));
== {}
Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0);
== { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3)
(reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) }
insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1;
== { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) }
insert_nat64 (insert_nat64 orig two32 0) two10 1;
};
calc (==) {
reverse_bytes_nat64 (hi64 src);
== { hi64_reveal ()}
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3));
== { lemma_reverse_bytes_nat64_32 x2 x3 }
two32;
};
calc (==) {
reverse_bytes_nat64 (lo64 src);
== { lo64_reveal () }
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1));
== { lemma_reverse_bytes_nat64_32 x0 x1 }
two10;
};
()
let lemma_equality_check_helper (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)
)
=
// lemma_equality_check_helper_lo q;
// lemma_equality_check_helper_hi q;
lo64_reveal ();
hi64_reveal ();
assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x);
()
let push_pop_xmm (x y:quad32) : Lemma
(let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in
x == x')
=
// assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1);
insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_insrq_extrq_relations (x y:quad32) :
Lemma (let z = insert_nat64 x (lo64 y) 0 in
z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\
(let z = insert_nat64 x (hi64 y) 1 in
z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3))
=
let open Vale.Def.Words.Two in
let z = insert_nat64 x (lo64 y) 0 in
insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
assert (z == insert_nat64_def x (lo64_def y) 0);
//assert (q'.hi2 == q.hi2);
//assert (q'.hi3 == q.hi3);
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0));
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0));
let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in
nat_to_two_to_nat n1 n2;
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0));
//assert (q'.lo1 == q.lo1);
//assert (q == q');
()
open Vale.Def.Words.Two
let le_bytes_to_nat64_to_bytes s =
le_nat64_to_bytes_reveal ();
le_bytes_to_nat64_reveal ()
let le_nat64_to_bytes_to_nat64 n =
le_nat64_to_bytes_reveal ();
le_bytes_to_nat64_reveal ()
let le_bytes_to_seq_quad32_empty () :
Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
()
let be_bytes_to_seq_quad32_empty () :
Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
()
#reset-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'"
let le_bytes_to_seq_quad32_to_bytes_one_quad b =
calc (==) {
le_bytes_to_seq_quad32 (le_quad32_to_bytes b);
== {reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32}
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_quad32_to_bytes b));
== {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes}
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))));
== {}
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)))));
== {seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))}
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_LE b)));
== {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_LE b)}
seq_to_seq_four_LE (four_to_seq_LE b);
== {four_to_seq_LE_is_seq_four_to_seq_LE b}
seq_to_seq_four_LE (seq_four_to_seq_LE (create 1 b));
== {}
create 1 b;
}
let be_bytes_to_seq_quad32_to_bytes_one_quad b =
calc (==) {
be_bytes_to_seq_quad32 (be_quad32_to_bytes b);
== {reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32}
seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (be_quad32_to_bytes b));
== {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes}
seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))));
== {}
seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b)))));
== {seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))}
seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_BE b)));
== {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE b)}
seq_to_seq_four_BE (four_to_seq_BE b);
== {four_to_seq_BE_is_seq_four_to_seq_BE b}
seq_to_seq_four_BE (seq_four_to_seq_BE (create 1 b));
== {}
create 1 b;
}
let le_bytes_to_seq_quad32_to_bytes (s:seq quad32) :
Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s)
(* This expands into showing:
le_bytes_to_seq_quad32 (le_quad32_to_bytes s)
== { definition of le_bytes_to_seq_quad32 }
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_seq_quad32_to_bytes s))
== { definition of le_seq_quad32_to_bytes }
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s)))
== { definition of seq_nat8_to_seq_nat32_LE }
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s))))
== { definition of seq_nat32_to_seq_nat8_LE }
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)))))
*)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_seq_quad32_to_bytes_reveal ();
seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_LE s);
seq_to_seq_four_to_seq_LE (s) ;
()
let be_bytes_to_seq_quad32_to_bytes (s:seq quad32) :
Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_BE s);
seq_to_seq_four_to_seq_BE (s) ;
()
let le_seq_quad32_to_bytes_to_seq_quad32 s =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_seq_quad32_to_bytes_reveal ();
calc (==) {
le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 s);
(==) { }
seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE (seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s)));
(==) { }
s;
}
(*
le_quad32_to_bytes (le_bytes_to_quad32 s)
== { definition of le_quad32_to_bytes }
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (le_bytes_to_quad32 s)))
== { definition of le_bytes_to_quad32 }
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)))))
*)
let le_quad32_to_bytes_to_quad32 s =
calc (==) {
le_quad32_to_bytes (le_bytes_to_quad32 s);
== {le_bytes_to_quad32_reveal ()}
le_quad32_to_bytes (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)));
== {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes}
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)))));
== {four_to_seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))}
seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)));
== {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_LE s)}
seq_four_to_seq_LE (seq_to_seq_four_LE s);
== {}
s;
}
let be_quad32_to_bytes_to_quad32 s =
calc (==) {
be_quad32_to_bytes (be_bytes_to_quad32 s);
== {be_bytes_to_quad32_reveal ()}
be_quad32_to_bytes (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)));
== {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes}
seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)))));
== {four_to_seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))}
seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)));
== {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_BE s)}
seq_four_to_seq_BE (seq_to_seq_four_BE s);
== {}
s;
}
let le_seq_quad32_to_bytes_of_singleton (q:quad32) :
Lemma (le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q))
=
le_seq_quad32_to_bytes_reveal ();
reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes;
four_to_seq_LE_is_seq_four_to_seq_LE q;
()
let be_seq_quad32_to_bytes_of_singleton (q:quad32) :
Lemma (be_quad32_to_bytes q == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 q)))
=
reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes;
four_to_seq_BE_is_seq_four_to_seq_BE q;
()
let le_quad32_to_bytes_injective ():
Lemma (forall b b' . le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b')
=
reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes;
let helper (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') =
if le_quad32_to_bytes b = le_quad32_to_bytes b' then (
let b1 = seq_map (nat_to_four 8) (four_to_seq_LE b) in
let b1' = seq_map (nat_to_four 8) (four_to_seq_LE b') in
assert (le_quad32_to_bytes b == seq_four_to_seq_LE b1);
assert (le_quad32_to_bytes b' == seq_four_to_seq_LE b1');
seq_four_to_seq_LE_injective_specific b1 b1';
assert (b1 == b1');
nat_to_four_8_injective();
seq_map_injective (nat_to_four 8) (four_to_seq_LE b) (four_to_seq_LE b');
assert ((four_to_seq_LE b) == (four_to_seq_LE b'));
four_to_seq_LE_injective nat32;
()
) else
()
in
FStar.Classical.forall_intro_2 helper
let be_quad32_to_bytes_injective ():
Lemma (forall b b' . be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b')
=
reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes;
let helper (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') =
if be_quad32_to_bytes b = be_quad32_to_bytes b' then (
let b1 = seq_map (nat_to_four 8) (four_to_seq_BE b) in
let b1' = seq_map (nat_to_four 8) (four_to_seq_BE b') in
assert (be_quad32_to_bytes b == seq_four_to_seq_BE b1);
assert (be_quad32_to_bytes b' == seq_four_to_seq_BE b1');
seq_four_to_seq_BE_injective_specific b1 b1';
assert (b1 == b1');
nat_to_four_8_injective();
seq_map_injective (nat_to_four 8) (four_to_seq_BE b) (four_to_seq_BE b');
assert ((four_to_seq_BE b) == (four_to_seq_BE b'));
four_to_seq_BE_injective nat32;
()
) else
()
in
FStar.Classical.forall_intro_2 helper
let le_quad32_to_bytes_injective_specific (b b':quad32) :
Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b')
=
le_quad32_to_bytes_injective()
let be_quad32_to_bytes_injective_specific (b b':quad32) :
Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b')
=
be_quad32_to_bytes_injective()
let le_seq_quad32_to_bytes_injective (b b':seq quad32) =
le_seq_quad32_to_bytes_reveal ();
seq_four_to_seq_LE_injective nat8;
nat_to_four_8_injective();
seq_map_injective (nat_to_four 8) (seq_four_to_seq_LE b) (seq_four_to_seq_LE b');
seq_four_to_seq_LE_injective_specific b b';
assert (equal b b')
let seq_to_four_LE_is_seq_to_seq_four_LE (#a:Type) (s:seq4 a) : Lemma
(create 1 (seq_to_four_LE s) == seq_to_seq_four_LE s)
=
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a);
assert (equal (create 1 (seq_to_four_LE s)) (seq_to_seq_four_LE s));
()
let seq_to_four_BE_is_seq_to_seq_four_BE (#a:Type) (s:seq4 a) : Lemma
(create 1 (seq_to_four_BE s) == seq_to_seq_four_BE s)
=
reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a);
assert (equal (create 1 (seq_to_four_BE s)) (seq_to_seq_four_BE s));
()
let le_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma
(requires q == le_bytes_to_quad32 b)
(ensures create 1 q == le_bytes_to_seq_quad32 b)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_bytes_to_quad32_reveal ();
seq_to_four_LE_is_seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b));
// q == le_bytes_to_quad32 b
// == seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b))
//
// == seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b))
// le_bytes_to_seq_quad32 b == seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE b)
()
let be_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma
(requires q == be_bytes_to_quad32 b)
(ensures create 1 q == be_bytes_to_seq_quad32 b)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
be_bytes_to_quad32_reveal ();
seq_to_four_BE_is_seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE b));
()
let le_bytes_to_quad32_to_bytes (q:quad32) :
Lemma(le_bytes_to_quad32 (le_quad32_to_bytes q) == q)
=
le_seq_quad32_to_bytes_of_singleton q; // ==> le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q)
let b = le_quad32_to_bytes q in
let q' = le_bytes_to_quad32 b in
le_bytes_to_seq_quad_of_singleton q' b; // ==> create 1 q' == le_bytes_to_seq_quad32 b
// == le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes (create 1 q))
le_bytes_to_seq_quad32_to_bytes (create 1 q); // == create 1 q
//assert (create 1 q == create 1 q');
//assert (equal (create 1 q) (create 1 q'));
assert (q == index (create 1 q) 0); // OBSERVE
assert (q == q');
()
let be_bytes_to_quad32_to_bytes (q:quad32) :
Lemma (be_bytes_to_quad32 (be_quad32_to_bytes q) == q)
=
be_bytes_to_quad32_reveal ();
let q':quad32 = be_bytes_to_quad32 (be_quad32_to_bytes q) in
seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE q));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE q);
seq_to_four_to_seq_BE q;
()
let lemma_reverse_reverse_bytes_nat32_quad32 (s:quad32) :
Lemma (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s) == s)
[SMTPat (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s))]
=
let s' = reverse_bytes_nat32_quad32 s in
let s''= reverse_bytes_nat32_quad32 s' in
assert (s''.lo0 == reverse_bytes_nat32 (reverse_bytes_nat32 s.lo0)); // OBSERVE
assert (s''.lo1 == reverse_bytes_nat32 (reverse_bytes_nat32 s.lo1)); // OBSERVE
assert (s''.hi2 == reverse_bytes_nat32 (reverse_bytes_nat32 s.hi2)); // OBSERVE
assert (s''.hi3 == reverse_bytes_nat32 (reverse_bytes_nat32 s.hi3)); // OBSERVE
()
let lemma_reverse_reverse_bytes_nat32_quad32_seq (s:seq quad32) :
Lemma (reverse_bytes_nat32_quad32_seq (reverse_bytes_nat32_quad32_seq s) == s)
[SMTPat (reverse_bytes_nat32_quad32_seq (reverse_bytes_nat32_quad32_seq s))]
=
seq_map_inverses reverse_bytes_nat32_quad32 reverse_bytes_nat32_quad32 s
let lemma_reverse_reverse_bytes_quad32_seq (s:seq quad32) :
Lemma (reverse_bytes_quad32_seq (reverse_bytes_quad32_seq s) == s)
[SMTPat (reverse_bytes_quad32_seq (reverse_bytes_quad32_seq s))]
=
seq_map_inverses reverse_bytes_quad32 reverse_bytes_quad32 s
let lemma_le_seq_quad32_to_bytes_length (s:seq quad32) :
Lemma(length (le_seq_quad32_to_bytes s) == (length s) * 16)
=
()
let lemma_be_seq_quad32_to_bytes_length (s:seq quad32) :
Lemma(length (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == (length s) * 16)
=
()
let slice_commutes_seq_four_to_seq_LE (#a:Type) (s:seq (four a)) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) :
Lemma(slice (seq_four_to_seq_LE s) (n * 4) (n' * 4) ==
seq_four_to_seq_LE (slice s n n'))
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a);
assert (equal (slice (seq_four_to_seq_LE s) (n * 4) (n' * 4))
(seq_four_to_seq_LE (slice s n n')));
()
let slice_commutes_seq_four_to_seq_BE (#a:Type) (s:seq (four a)) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) :
Lemma(slice (seq_four_to_seq_BE s) (n * 4) (n' * 4) ==
seq_four_to_seq_BE (slice s n n'))
=
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a);
assert (equal (slice (seq_four_to_seq_BE s) (n * 4) (n' * 4))
(seq_four_to_seq_BE (slice s n n')));
()
let slice_commutes_le_seq_quad32_to_bytes (s:seq quad32) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) :
Lemma(slice (le_seq_quad32_to_bytes s) (n * 16) (n' * 16) ==
le_seq_quad32_to_bytes (slice s n n'))
=
le_seq_quad32_to_bytes_reveal ();
slice_commutes_seq_four_to_seq_LE s n n';
assert (slice (seq_four_to_seq_LE s) (n * 4) (n' * 4) == seq_four_to_seq_LE (slice s n n'));
(*
le_seq_quad32_to_bytes (slice s n n') == seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE (slice s n n')));
== seq_four_to_seq_LE (seq_map (nat_to_four 8) (slice (seq_four_to_seq_LE s) (n * 4) (n' * 4))
slice (le_seq_quad32_to_bytes s) (n * 16) (n' * 16)
== slice (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s))) (n * 16) (n' * 16)
== seq_four_to_seq_LE (slice (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)) (n * 4) (n' * 4))
*)
slice_seq_map_commute (nat_to_four 8) (seq_four_to_seq_LE s) (n*4) (n'*4);
let s_inner = (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)) in
slice_commutes_seq_four_to_seq_LE s_inner (n * 4) (n' * 4);
()
let slice_commutes_be_seq_quad32_to_bytes (s:seq quad32) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) :
Lemma(slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (n * 16) (n' * 16) ==
seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice s n n'))) | false | false | Vale.Arch.Types.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val slice_commutes_be_seq_quad32_to_bytes (s:seq quad32) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) :
Lemma(slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (n * 16) (n' * 16) ==
seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice s n n'))) | [] | Vale.Arch.Types.slice_commutes_be_seq_quad32_to_bytes | {
"file_name": "vale/code/arch/Vale.Arch.Types.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
s: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
n: Prims.nat{n <= FStar.Seq.Base.length s} ->
n': Prims.nat{n <= n' /\ n' <= FStar.Seq.Base.length s}
-> FStar.Pervasives.Lemma
(ensures
FStar.Seq.Base.slice (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE
s))
(n * 16)
(n' * 16) ==
Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE (FStar.Seq.Base.slice
s
n
n'))) | {
"end_col": 4,
"end_line": 662,
"start_col": 2,
"start_line": 656
} |
FStar.Pervasives.Lemma | val slice_commutes_seq_four_to_seq_LE (#a:Type) (s:seq (four a)) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) :
Lemma(slice (seq_four_to_seq_LE s) (n * 4) (n' * 4) ==
seq_four_to_seq_LE (slice s n n')) | [
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let slice_commutes_seq_four_to_seq_LE (#a:Type) (s:seq (four a)) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) :
Lemma(slice (seq_four_to_seq_LE s) (n * 4) (n' * 4) ==
seq_four_to_seq_LE (slice s n n'))
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a);
assert (equal (slice (seq_four_to_seq_LE s) (n * 4) (n' * 4))
(seq_four_to_seq_LE (slice s n n')));
() | val slice_commutes_seq_four_to_seq_LE (#a:Type) (s:seq (four a)) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) :
Lemma(slice (seq_four_to_seq_LE s) (n * 4) (n' * 4) ==
seq_four_to_seq_LE (slice s n n'))
let slice_commutes_seq_four_to_seq_LE
(#a: Type)
(s: seq (four a))
(n: nat{n <= length s})
(n': nat{n <= n' /\ n' <= length s})
: Lemma (slice (seq_four_to_seq_LE s) (n * 4) (n' * 4) == seq_four_to_seq_LE (slice s n n')) = | false | null | true | reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a);
assert (equal (slice (seq_four_to_seq_LE s) (n * 4) (n' * 4)) (seq_four_to_seq_LE (slice s n n')));
() | {
"checked_file": "Vale.Arch.Types.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Arch.Types.fst"
} | [
"lemma"
] | [
"FStar.Seq.Base.seq",
"Vale.Def.Words_s.four",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.Seq.Base.length",
"Prims.l_and",
"Prims.unit",
"Prims._assert",
"FStar.Seq.Base.equal",
"FStar.Seq.Base.slice",
"Vale.Def.Words.Seq_s.seq_four_to_seq_LE",
"FStar.Mul.op_Star",
"FStar.Pervasives.reveal_opaque",
"Prims.eq2",
"Prims.int",
"Prims.l_True",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.Arch.Types
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.TypesNative
open Vale.Lib.Seqs
open Vale.Def.Words_s
open Vale.Def.Words.Two
open FStar.Calc
let lemma_nat_to_two32 () =
assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000))
let lemma_BitwiseXorCommutative x y =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ y) (y *^ x)
let lemma_BitwiseXorWithZero n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ 0) n
let lemma_BitwiseXorCancel n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ n) 0
let lemma_BitwiseXorCancel64 (n:nat64) =
lemma_ixor_nth_all 64;
lemma_zero_nth 64;
lemma_equal_nth 64 (ixor n n) 0
let lemma_BitwiseXorAssociative x y z =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z)
let xor_lemmas () =
FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative;
FStar.Classical.forall_intro lemma_BitwiseXorWithZero;
FStar.Classical.forall_intro lemma_BitwiseXorCancel;
FStar.Classical.forall_intro lemma_BitwiseXorCancel64;
FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_quad32_xor () =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
xor_lemmas()
(*
let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) =
let q' = quad32_xor q q in
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
// REVIEW: Why are these necessary?
assert (q'.lo0 == nat32_xor q.lo0 q.lo0);
assert (q'.lo1 == nat32_xor q.lo1 q.lo1);
assert (q'.hi2 == nat32_xor q.hi2 q.hi2);
assert (q'.hi3 == nat32_xor q.hi3 q.hi3);
xor_lemmas()
in
FStar.Classical.forall_intro helper
*)
#pop-options
let lemma_reverse_reverse_bytes_nat32 (n:nat32) :
Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n)
=
reverse_bytes_nat32_reveal ();
let r = reverse_seq (nat32_to_be_bytes n) in
be_bytes_to_nat32_to_be_bytes r;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_reverse_bytes_quad32 (q:quad32) =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
reveal_reverse_bytes_quad32 q;
reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q);
()
#pop-options
let lemma_reverse_bytes_nat32 (_:unit) : Lemma
(reverse_bytes_nat32 0 == 0)
=
reverse_bytes_nat32_reveal ();
assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0);
()
let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma
(let z = Mkfour 0 0 0 0 in
reverse_bytes_quad32 z == z)
=
let z = Mkfour 0 0 0 0 in
calc (==) {
reverse_bytes_quad32 z;
== { reveal_reverse_bytes_quad32 z }
four_reverse (four_map reverse_bytes_nat32 z);
== { lemma_reverse_bytes_nat32() }
z;
};
()
let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) :
Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s)
=
reveal_reverse_bytes_nat32_seq s;
reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s);
assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s)
(*
let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) :
Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\
( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\
((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF))
=
if n.lo == 0 /\ n.hi == 0 then (
assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0);
()
) else (
()
);
()
let lemma_equality_check_helper_lo (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1);
()
let lemma_equality_check_helper_hi (q:quad32) :
Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3);
()
*)
let lemma_insert_nat64_properties (q:quad32) (n:nat64) :
Lemma ( (let q' = insert_nat64 q n 0 in
q'.hi2 == q.hi2 /\
q'.hi3 == q.hi3) /\
(let q' = insert_nat64 q n 1 in
q'.lo0 == q.lo0 /\
q'.lo1 == q.lo1))
=
insert_nat64_reveal ();
()
let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) :
Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 ==
Mkfour n0 n1 q.hi2 q.hi3 /\
insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 ==
Mkfour q.lo0 q.lo1 n0 n1 )
=
let open Vale.Def.Words.Two in
insert_nat64_reveal ();
()
let lemma_lo64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1))
=
lo64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_hi64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1))
=
hi64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma
(reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0)))
=
reverse_bytes_nat64_reveal ()
let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma
(requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1)
(ensures final == reverse_bytes_quad32 src)
=
reverse_bytes_nat64_reveal ();
let Mkfour x0 x1 x2 x3 = src in
let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in
let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in
calc (==) {
reverse_bytes_quad32 src;
== { reveal_reverse_bytes_quad32 src }
four_reverse (four_map reverse_bytes_nat32 src);
== {}
four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3));
== {}
Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0);
== { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3)
(reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) }
insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1;
== { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) }
insert_nat64 (insert_nat64 orig two32 0) two10 1;
};
calc (==) {
reverse_bytes_nat64 (hi64 src);
== { hi64_reveal ()}
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3));
== { lemma_reverse_bytes_nat64_32 x2 x3 }
two32;
};
calc (==) {
reverse_bytes_nat64 (lo64 src);
== { lo64_reveal () }
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1));
== { lemma_reverse_bytes_nat64_32 x0 x1 }
two10;
};
()
let lemma_equality_check_helper (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)
)
=
// lemma_equality_check_helper_lo q;
// lemma_equality_check_helper_hi q;
lo64_reveal ();
hi64_reveal ();
assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x);
()
let push_pop_xmm (x y:quad32) : Lemma
(let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in
x == x')
=
// assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1);
insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_insrq_extrq_relations (x y:quad32) :
Lemma (let z = insert_nat64 x (lo64 y) 0 in
z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\
(let z = insert_nat64 x (hi64 y) 1 in
z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3))
=
let open Vale.Def.Words.Two in
let z = insert_nat64 x (lo64 y) 0 in
insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
assert (z == insert_nat64_def x (lo64_def y) 0);
//assert (q'.hi2 == q.hi2);
//assert (q'.hi3 == q.hi3);
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0));
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0));
let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in
nat_to_two_to_nat n1 n2;
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0));
//assert (q'.lo1 == q.lo1);
//assert (q == q');
()
open Vale.Def.Words.Two
let le_bytes_to_nat64_to_bytes s =
le_nat64_to_bytes_reveal ();
le_bytes_to_nat64_reveal ()
let le_nat64_to_bytes_to_nat64 n =
le_nat64_to_bytes_reveal ();
le_bytes_to_nat64_reveal ()
let le_bytes_to_seq_quad32_empty () :
Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
()
let be_bytes_to_seq_quad32_empty () :
Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
()
#reset-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'"
let le_bytes_to_seq_quad32_to_bytes_one_quad b =
calc (==) {
le_bytes_to_seq_quad32 (le_quad32_to_bytes b);
== {reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32}
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_quad32_to_bytes b));
== {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes}
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))));
== {}
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)))));
== {seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))}
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_LE b)));
== {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_LE b)}
seq_to_seq_four_LE (four_to_seq_LE b);
== {four_to_seq_LE_is_seq_four_to_seq_LE b}
seq_to_seq_four_LE (seq_four_to_seq_LE (create 1 b));
== {}
create 1 b;
}
let be_bytes_to_seq_quad32_to_bytes_one_quad b =
calc (==) {
be_bytes_to_seq_quad32 (be_quad32_to_bytes b);
== {reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32}
seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (be_quad32_to_bytes b));
== {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes}
seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))));
== {}
seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b)))));
== {seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))}
seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_BE b)));
== {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE b)}
seq_to_seq_four_BE (four_to_seq_BE b);
== {four_to_seq_BE_is_seq_four_to_seq_BE b}
seq_to_seq_four_BE (seq_four_to_seq_BE (create 1 b));
== {}
create 1 b;
}
let le_bytes_to_seq_quad32_to_bytes (s:seq quad32) :
Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s)
(* This expands into showing:
le_bytes_to_seq_quad32 (le_quad32_to_bytes s)
== { definition of le_bytes_to_seq_quad32 }
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_seq_quad32_to_bytes s))
== { definition of le_seq_quad32_to_bytes }
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s)))
== { definition of seq_nat8_to_seq_nat32_LE }
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s))))
== { definition of seq_nat32_to_seq_nat8_LE }
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)))))
*)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_seq_quad32_to_bytes_reveal ();
seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_LE s);
seq_to_seq_four_to_seq_LE (s) ;
()
let be_bytes_to_seq_quad32_to_bytes (s:seq quad32) :
Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_BE s);
seq_to_seq_four_to_seq_BE (s) ;
()
let le_seq_quad32_to_bytes_to_seq_quad32 s =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_seq_quad32_to_bytes_reveal ();
calc (==) {
le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 s);
(==) { }
seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE (seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s)));
(==) { }
s;
}
(*
le_quad32_to_bytes (le_bytes_to_quad32 s)
== { definition of le_quad32_to_bytes }
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (le_bytes_to_quad32 s)))
== { definition of le_bytes_to_quad32 }
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)))))
*)
let le_quad32_to_bytes_to_quad32 s =
calc (==) {
le_quad32_to_bytes (le_bytes_to_quad32 s);
== {le_bytes_to_quad32_reveal ()}
le_quad32_to_bytes (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)));
== {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes}
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)))));
== {four_to_seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))}
seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)));
== {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_LE s)}
seq_four_to_seq_LE (seq_to_seq_four_LE s);
== {}
s;
}
let be_quad32_to_bytes_to_quad32 s =
calc (==) {
be_quad32_to_bytes (be_bytes_to_quad32 s);
== {be_bytes_to_quad32_reveal ()}
be_quad32_to_bytes (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)));
== {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes}
seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)))));
== {four_to_seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))}
seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)));
== {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_BE s)}
seq_four_to_seq_BE (seq_to_seq_four_BE s);
== {}
s;
}
let le_seq_quad32_to_bytes_of_singleton (q:quad32) :
Lemma (le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q))
=
le_seq_quad32_to_bytes_reveal ();
reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes;
four_to_seq_LE_is_seq_four_to_seq_LE q;
()
let be_seq_quad32_to_bytes_of_singleton (q:quad32) :
Lemma (be_quad32_to_bytes q == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 q)))
=
reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes;
four_to_seq_BE_is_seq_four_to_seq_BE q;
()
let le_quad32_to_bytes_injective ():
Lemma (forall b b' . le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b')
=
reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes;
let helper (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') =
if le_quad32_to_bytes b = le_quad32_to_bytes b' then (
let b1 = seq_map (nat_to_four 8) (four_to_seq_LE b) in
let b1' = seq_map (nat_to_four 8) (four_to_seq_LE b') in
assert (le_quad32_to_bytes b == seq_four_to_seq_LE b1);
assert (le_quad32_to_bytes b' == seq_four_to_seq_LE b1');
seq_four_to_seq_LE_injective_specific b1 b1';
assert (b1 == b1');
nat_to_four_8_injective();
seq_map_injective (nat_to_four 8) (four_to_seq_LE b) (four_to_seq_LE b');
assert ((four_to_seq_LE b) == (four_to_seq_LE b'));
four_to_seq_LE_injective nat32;
()
) else
()
in
FStar.Classical.forall_intro_2 helper
let be_quad32_to_bytes_injective ():
Lemma (forall b b' . be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b')
=
reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes;
let helper (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') =
if be_quad32_to_bytes b = be_quad32_to_bytes b' then (
let b1 = seq_map (nat_to_four 8) (four_to_seq_BE b) in
let b1' = seq_map (nat_to_four 8) (four_to_seq_BE b') in
assert (be_quad32_to_bytes b == seq_four_to_seq_BE b1);
assert (be_quad32_to_bytes b' == seq_four_to_seq_BE b1');
seq_four_to_seq_BE_injective_specific b1 b1';
assert (b1 == b1');
nat_to_four_8_injective();
seq_map_injective (nat_to_four 8) (four_to_seq_BE b) (four_to_seq_BE b');
assert ((four_to_seq_BE b) == (four_to_seq_BE b'));
four_to_seq_BE_injective nat32;
()
) else
()
in
FStar.Classical.forall_intro_2 helper
let le_quad32_to_bytes_injective_specific (b b':quad32) :
Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b')
=
le_quad32_to_bytes_injective()
let be_quad32_to_bytes_injective_specific (b b':quad32) :
Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b')
=
be_quad32_to_bytes_injective()
let le_seq_quad32_to_bytes_injective (b b':seq quad32) =
le_seq_quad32_to_bytes_reveal ();
seq_four_to_seq_LE_injective nat8;
nat_to_four_8_injective();
seq_map_injective (nat_to_four 8) (seq_four_to_seq_LE b) (seq_four_to_seq_LE b');
seq_four_to_seq_LE_injective_specific b b';
assert (equal b b')
let seq_to_four_LE_is_seq_to_seq_four_LE (#a:Type) (s:seq4 a) : Lemma
(create 1 (seq_to_four_LE s) == seq_to_seq_four_LE s)
=
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a);
assert (equal (create 1 (seq_to_four_LE s)) (seq_to_seq_four_LE s));
()
let seq_to_four_BE_is_seq_to_seq_four_BE (#a:Type) (s:seq4 a) : Lemma
(create 1 (seq_to_four_BE s) == seq_to_seq_four_BE s)
=
reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a);
assert (equal (create 1 (seq_to_four_BE s)) (seq_to_seq_four_BE s));
()
let le_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma
(requires q == le_bytes_to_quad32 b)
(ensures create 1 q == le_bytes_to_seq_quad32 b)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_bytes_to_quad32_reveal ();
seq_to_four_LE_is_seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b));
// q == le_bytes_to_quad32 b
// == seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b))
//
// == seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b))
// le_bytes_to_seq_quad32 b == seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE b)
()
let be_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma
(requires q == be_bytes_to_quad32 b)
(ensures create 1 q == be_bytes_to_seq_quad32 b)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
be_bytes_to_quad32_reveal ();
seq_to_four_BE_is_seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE b));
()
let le_bytes_to_quad32_to_bytes (q:quad32) :
Lemma(le_bytes_to_quad32 (le_quad32_to_bytes q) == q)
=
le_seq_quad32_to_bytes_of_singleton q; // ==> le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q)
let b = le_quad32_to_bytes q in
let q' = le_bytes_to_quad32 b in
le_bytes_to_seq_quad_of_singleton q' b; // ==> create 1 q' == le_bytes_to_seq_quad32 b
// == le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes (create 1 q))
le_bytes_to_seq_quad32_to_bytes (create 1 q); // == create 1 q
//assert (create 1 q == create 1 q');
//assert (equal (create 1 q) (create 1 q'));
assert (q == index (create 1 q) 0); // OBSERVE
assert (q == q');
()
let be_bytes_to_quad32_to_bytes (q:quad32) :
Lemma (be_bytes_to_quad32 (be_quad32_to_bytes q) == q)
=
be_bytes_to_quad32_reveal ();
let q':quad32 = be_bytes_to_quad32 (be_quad32_to_bytes q) in
seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE q));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE q);
seq_to_four_to_seq_BE q;
()
let lemma_reverse_reverse_bytes_nat32_quad32 (s:quad32) :
Lemma (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s) == s)
[SMTPat (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s))]
=
let s' = reverse_bytes_nat32_quad32 s in
let s''= reverse_bytes_nat32_quad32 s' in
assert (s''.lo0 == reverse_bytes_nat32 (reverse_bytes_nat32 s.lo0)); // OBSERVE
assert (s''.lo1 == reverse_bytes_nat32 (reverse_bytes_nat32 s.lo1)); // OBSERVE
assert (s''.hi2 == reverse_bytes_nat32 (reverse_bytes_nat32 s.hi2)); // OBSERVE
assert (s''.hi3 == reverse_bytes_nat32 (reverse_bytes_nat32 s.hi3)); // OBSERVE
()
let lemma_reverse_reverse_bytes_nat32_quad32_seq (s:seq quad32) :
Lemma (reverse_bytes_nat32_quad32_seq (reverse_bytes_nat32_quad32_seq s) == s)
[SMTPat (reverse_bytes_nat32_quad32_seq (reverse_bytes_nat32_quad32_seq s))]
=
seq_map_inverses reverse_bytes_nat32_quad32 reverse_bytes_nat32_quad32 s
let lemma_reverse_reverse_bytes_quad32_seq (s:seq quad32) :
Lemma (reverse_bytes_quad32_seq (reverse_bytes_quad32_seq s) == s)
[SMTPat (reverse_bytes_quad32_seq (reverse_bytes_quad32_seq s))]
=
seq_map_inverses reverse_bytes_quad32 reverse_bytes_quad32 s
let lemma_le_seq_quad32_to_bytes_length (s:seq quad32) :
Lemma(length (le_seq_quad32_to_bytes s) == (length s) * 16)
=
()
let lemma_be_seq_quad32_to_bytes_length (s:seq quad32) :
Lemma(length (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == (length s) * 16)
=
()
let slice_commutes_seq_four_to_seq_LE (#a:Type) (s:seq (four a)) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) :
Lemma(slice (seq_four_to_seq_LE s) (n * 4) (n' * 4) ==
seq_four_to_seq_LE (slice s n n')) | false | false | Vale.Arch.Types.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val slice_commutes_seq_four_to_seq_LE (#a:Type) (s:seq (four a)) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) :
Lemma(slice (seq_four_to_seq_LE s) (n * 4) (n' * 4) ==
seq_four_to_seq_LE (slice s n n')) | [] | Vale.Arch.Types.slice_commutes_seq_four_to_seq_LE | {
"file_name": "vale/code/arch/Vale.Arch.Types.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
s: FStar.Seq.Base.seq (Vale.Def.Words_s.four a) ->
n: Prims.nat{n <= FStar.Seq.Base.length s} ->
n': Prims.nat{n <= n' /\ n' <= FStar.Seq.Base.length s}
-> FStar.Pervasives.Lemma
(ensures
FStar.Seq.Base.slice (Vale.Def.Words.Seq_s.seq_four_to_seq_LE s) (n * 4) (n' * 4) ==
Vale.Def.Words.Seq_s.seq_four_to_seq_LE (FStar.Seq.Base.slice s n n')) | {
"end_col": 4,
"end_line": 621,
"start_col": 2,
"start_line": 618
} |
FStar.Pervasives.Lemma | val be_quad32_to_bytes_injective: unit ->
Lemma (forall b b' . be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') | [
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let be_quad32_to_bytes_injective ():
Lemma (forall b b' . be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b')
=
reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes;
let helper (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') =
if be_quad32_to_bytes b = be_quad32_to_bytes b' then (
let b1 = seq_map (nat_to_four 8) (four_to_seq_BE b) in
let b1' = seq_map (nat_to_four 8) (four_to_seq_BE b') in
assert (be_quad32_to_bytes b == seq_four_to_seq_BE b1);
assert (be_quad32_to_bytes b' == seq_four_to_seq_BE b1');
seq_four_to_seq_BE_injective_specific b1 b1';
assert (b1 == b1');
nat_to_four_8_injective();
seq_map_injective (nat_to_four 8) (four_to_seq_BE b) (four_to_seq_BE b');
assert ((four_to_seq_BE b) == (four_to_seq_BE b'));
four_to_seq_BE_injective nat32;
()
) else
()
in
FStar.Classical.forall_intro_2 helper | val be_quad32_to_bytes_injective: unit ->
Lemma (forall b b' . be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b')
let be_quad32_to_bytes_injective ()
: Lemma (forall b b'. be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = | false | null | true | reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes;
let helper (b b': quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') =
if be_quad32_to_bytes b = be_quad32_to_bytes b'
then
(let b1 = seq_map (nat_to_four 8) (four_to_seq_BE b) in
let b1' = seq_map (nat_to_four 8) (four_to_seq_BE b') in
assert (be_quad32_to_bytes b == seq_four_to_seq_BE b1);
assert (be_quad32_to_bytes b' == seq_four_to_seq_BE b1');
seq_four_to_seq_BE_injective_specific b1 b1';
assert (b1 == b1');
nat_to_four_8_injective ();
seq_map_injective (nat_to_four 8) (four_to_seq_BE b) (four_to_seq_BE b');
assert ((four_to_seq_BE b) == (four_to_seq_BE b'));
four_to_seq_BE_injective nat32;
())
in
FStar.Classical.forall_intro_2 helper | {
"checked_file": "Vale.Arch.Types.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Arch.Types.fst"
} | [
"lemma"
] | [
"Prims.unit",
"FStar.Classical.forall_intro_2",
"Vale.Def.Types_s.quad32",
"Prims.l_imp",
"Prims.eq2",
"Vale.Def.Words.Seq_s.seq16",
"Vale.Def.Words_s.nat8",
"Vale.Arch.Types.be_quad32_to_bytes",
"Prims.l_True",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern",
"Prims.op_Equality",
"Vale.Def.Words.Seq.four_to_seq_BE_injective",
"Vale.Def.Words_s.nat32",
"Prims._assert",
"Vale.Def.Words.Seq_s.seq4",
"Vale.Def.Types_s.nat32",
"Vale.Def.Words.Seq_s.four_to_seq_BE",
"Vale.Lib.Seqs.seq_map_injective",
"Vale.Def.Words_s.four",
"Vale.Def.Words_s.natN",
"Prims.pow2",
"Vale.Def.Words.Four_s.nat_to_four",
"Vale.Def.Words.Seq.nat_to_four_8_injective",
"FStar.Seq.Base.seq",
"Vale.Def.Words.Seq.seq_four_to_seq_BE_injective_specific",
"Prims.l_or",
"Prims.int",
"FStar.Seq.Base.length",
"FStar.Mul.op_Star",
"Prims.nat",
"Vale.Def.Words.Seq_s.seq_four_to_seq_BE",
"Vale.Lib.Seqs_s.seq_map",
"Prims.bool",
"FStar.Pervasives.reveal_opaque",
"Prims.l_Forall"
] | [] | module Vale.Arch.Types
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.TypesNative
open Vale.Lib.Seqs
open Vale.Def.Words_s
open Vale.Def.Words.Two
open FStar.Calc
let lemma_nat_to_two32 () =
assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000))
let lemma_BitwiseXorCommutative x y =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ y) (y *^ x)
let lemma_BitwiseXorWithZero n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ 0) n
let lemma_BitwiseXorCancel n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ n) 0
let lemma_BitwiseXorCancel64 (n:nat64) =
lemma_ixor_nth_all 64;
lemma_zero_nth 64;
lemma_equal_nth 64 (ixor n n) 0
let lemma_BitwiseXorAssociative x y z =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z)
let xor_lemmas () =
FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative;
FStar.Classical.forall_intro lemma_BitwiseXorWithZero;
FStar.Classical.forall_intro lemma_BitwiseXorCancel;
FStar.Classical.forall_intro lemma_BitwiseXorCancel64;
FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_quad32_xor () =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
xor_lemmas()
(*
let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) =
let q' = quad32_xor q q in
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
// REVIEW: Why are these necessary?
assert (q'.lo0 == nat32_xor q.lo0 q.lo0);
assert (q'.lo1 == nat32_xor q.lo1 q.lo1);
assert (q'.hi2 == nat32_xor q.hi2 q.hi2);
assert (q'.hi3 == nat32_xor q.hi3 q.hi3);
xor_lemmas()
in
FStar.Classical.forall_intro helper
*)
#pop-options
let lemma_reverse_reverse_bytes_nat32 (n:nat32) :
Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n)
=
reverse_bytes_nat32_reveal ();
let r = reverse_seq (nat32_to_be_bytes n) in
be_bytes_to_nat32_to_be_bytes r;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_reverse_bytes_quad32 (q:quad32) =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
reveal_reverse_bytes_quad32 q;
reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q);
()
#pop-options
let lemma_reverse_bytes_nat32 (_:unit) : Lemma
(reverse_bytes_nat32 0 == 0)
=
reverse_bytes_nat32_reveal ();
assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0);
()
let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma
(let z = Mkfour 0 0 0 0 in
reverse_bytes_quad32 z == z)
=
let z = Mkfour 0 0 0 0 in
calc (==) {
reverse_bytes_quad32 z;
== { reveal_reverse_bytes_quad32 z }
four_reverse (four_map reverse_bytes_nat32 z);
== { lemma_reverse_bytes_nat32() }
z;
};
()
let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) :
Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s)
=
reveal_reverse_bytes_nat32_seq s;
reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s);
assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s)
(*
let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) :
Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\
( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\
((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF))
=
if n.lo == 0 /\ n.hi == 0 then (
assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0);
()
) else (
()
);
()
let lemma_equality_check_helper_lo (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1);
()
let lemma_equality_check_helper_hi (q:quad32) :
Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3);
()
*)
let lemma_insert_nat64_properties (q:quad32) (n:nat64) :
Lemma ( (let q' = insert_nat64 q n 0 in
q'.hi2 == q.hi2 /\
q'.hi3 == q.hi3) /\
(let q' = insert_nat64 q n 1 in
q'.lo0 == q.lo0 /\
q'.lo1 == q.lo1))
=
insert_nat64_reveal ();
()
let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) :
Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 ==
Mkfour n0 n1 q.hi2 q.hi3 /\
insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 ==
Mkfour q.lo0 q.lo1 n0 n1 )
=
let open Vale.Def.Words.Two in
insert_nat64_reveal ();
()
let lemma_lo64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1))
=
lo64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_hi64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1))
=
hi64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma
(reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0)))
=
reverse_bytes_nat64_reveal ()
let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma
(requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1)
(ensures final == reverse_bytes_quad32 src)
=
reverse_bytes_nat64_reveal ();
let Mkfour x0 x1 x2 x3 = src in
let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in
let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in
calc (==) {
reverse_bytes_quad32 src;
== { reveal_reverse_bytes_quad32 src }
four_reverse (four_map reverse_bytes_nat32 src);
== {}
four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3));
== {}
Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0);
== { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3)
(reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) }
insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1;
== { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) }
insert_nat64 (insert_nat64 orig two32 0) two10 1;
};
calc (==) {
reverse_bytes_nat64 (hi64 src);
== { hi64_reveal ()}
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3));
== { lemma_reverse_bytes_nat64_32 x2 x3 }
two32;
};
calc (==) {
reverse_bytes_nat64 (lo64 src);
== { lo64_reveal () }
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1));
== { lemma_reverse_bytes_nat64_32 x0 x1 }
two10;
};
()
let lemma_equality_check_helper (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)
)
=
// lemma_equality_check_helper_lo q;
// lemma_equality_check_helper_hi q;
lo64_reveal ();
hi64_reveal ();
assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x);
()
let push_pop_xmm (x y:quad32) : Lemma
(let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in
x == x')
=
// assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1);
insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_insrq_extrq_relations (x y:quad32) :
Lemma (let z = insert_nat64 x (lo64 y) 0 in
z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\
(let z = insert_nat64 x (hi64 y) 1 in
z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3))
=
let open Vale.Def.Words.Two in
let z = insert_nat64 x (lo64 y) 0 in
insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
assert (z == insert_nat64_def x (lo64_def y) 0);
//assert (q'.hi2 == q.hi2);
//assert (q'.hi3 == q.hi3);
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0));
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0));
let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in
nat_to_two_to_nat n1 n2;
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0));
//assert (q'.lo1 == q.lo1);
//assert (q == q');
()
open Vale.Def.Words.Two
let le_bytes_to_nat64_to_bytes s =
le_nat64_to_bytes_reveal ();
le_bytes_to_nat64_reveal ()
let le_nat64_to_bytes_to_nat64 n =
le_nat64_to_bytes_reveal ();
le_bytes_to_nat64_reveal ()
let le_bytes_to_seq_quad32_empty () :
Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
()
let be_bytes_to_seq_quad32_empty () :
Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
()
#reset-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'"
let le_bytes_to_seq_quad32_to_bytes_one_quad b =
calc (==) {
le_bytes_to_seq_quad32 (le_quad32_to_bytes b);
== {reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32}
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_quad32_to_bytes b));
== {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes}
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))));
== {}
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)))));
== {seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))}
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_LE b)));
== {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_LE b)}
seq_to_seq_four_LE (four_to_seq_LE b);
== {four_to_seq_LE_is_seq_four_to_seq_LE b}
seq_to_seq_four_LE (seq_four_to_seq_LE (create 1 b));
== {}
create 1 b;
}
let be_bytes_to_seq_quad32_to_bytes_one_quad b =
calc (==) {
be_bytes_to_seq_quad32 (be_quad32_to_bytes b);
== {reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32}
seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (be_quad32_to_bytes b));
== {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes}
seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))));
== {}
seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b)))));
== {seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))}
seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_BE b)));
== {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE b)}
seq_to_seq_four_BE (four_to_seq_BE b);
== {four_to_seq_BE_is_seq_four_to_seq_BE b}
seq_to_seq_four_BE (seq_four_to_seq_BE (create 1 b));
== {}
create 1 b;
}
let le_bytes_to_seq_quad32_to_bytes (s:seq quad32) :
Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s)
(* This expands into showing:
le_bytes_to_seq_quad32 (le_quad32_to_bytes s)
== { definition of le_bytes_to_seq_quad32 }
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_seq_quad32_to_bytes s))
== { definition of le_seq_quad32_to_bytes }
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s)))
== { definition of seq_nat8_to_seq_nat32_LE }
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s))))
== { definition of seq_nat32_to_seq_nat8_LE }
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)))))
*)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_seq_quad32_to_bytes_reveal ();
seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_LE s);
seq_to_seq_four_to_seq_LE (s) ;
()
let be_bytes_to_seq_quad32_to_bytes (s:seq quad32) :
Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_BE s);
seq_to_seq_four_to_seq_BE (s) ;
()
let le_seq_quad32_to_bytes_to_seq_quad32 s =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_seq_quad32_to_bytes_reveal ();
calc (==) {
le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 s);
(==) { }
seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE (seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s)));
(==) { }
s;
}
(*
le_quad32_to_bytes (le_bytes_to_quad32 s)
== { definition of le_quad32_to_bytes }
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (le_bytes_to_quad32 s)))
== { definition of le_bytes_to_quad32 }
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)))))
*)
let le_quad32_to_bytes_to_quad32 s =
calc (==) {
le_quad32_to_bytes (le_bytes_to_quad32 s);
== {le_bytes_to_quad32_reveal ()}
le_quad32_to_bytes (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)));
== {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes}
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)))));
== {four_to_seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))}
seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)));
== {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_LE s)}
seq_four_to_seq_LE (seq_to_seq_four_LE s);
== {}
s;
}
let be_quad32_to_bytes_to_quad32 s =
calc (==) {
be_quad32_to_bytes (be_bytes_to_quad32 s);
== {be_bytes_to_quad32_reveal ()}
be_quad32_to_bytes (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)));
== {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes}
seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)))));
== {four_to_seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))}
seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)));
== {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_BE s)}
seq_four_to_seq_BE (seq_to_seq_four_BE s);
== {}
s;
}
let le_seq_quad32_to_bytes_of_singleton (q:quad32) :
Lemma (le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q))
=
le_seq_quad32_to_bytes_reveal ();
reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes;
four_to_seq_LE_is_seq_four_to_seq_LE q;
()
let be_seq_quad32_to_bytes_of_singleton (q:quad32) :
Lemma (be_quad32_to_bytes q == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 q)))
=
reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes;
four_to_seq_BE_is_seq_four_to_seq_BE q;
()
let le_quad32_to_bytes_injective ():
Lemma (forall b b' . le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b')
=
reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes;
let helper (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') =
if le_quad32_to_bytes b = le_quad32_to_bytes b' then (
let b1 = seq_map (nat_to_four 8) (four_to_seq_LE b) in
let b1' = seq_map (nat_to_four 8) (four_to_seq_LE b') in
assert (le_quad32_to_bytes b == seq_four_to_seq_LE b1);
assert (le_quad32_to_bytes b' == seq_four_to_seq_LE b1');
seq_four_to_seq_LE_injective_specific b1 b1';
assert (b1 == b1');
nat_to_four_8_injective();
seq_map_injective (nat_to_four 8) (four_to_seq_LE b) (four_to_seq_LE b');
assert ((four_to_seq_LE b) == (four_to_seq_LE b'));
four_to_seq_LE_injective nat32;
()
) else
()
in
FStar.Classical.forall_intro_2 helper
let be_quad32_to_bytes_injective ():
Lemma (forall b b' . be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') | false | false | Vale.Arch.Types.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val be_quad32_to_bytes_injective: unit ->
Lemma (forall b b' . be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') | [] | Vale.Arch.Types.be_quad32_to_bytes_injective | {
"file_name": "vale/code/arch/Vale.Arch.Types.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | _: Prims.unit
-> FStar.Pervasives.Lemma
(ensures
forall (b: Vale.Def.Types_s.quad32) (b': Vale.Def.Types_s.quad32).
Vale.Arch.Types.be_quad32_to_bytes b == Vale.Arch.Types.be_quad32_to_bytes b' ==> b == b') | {
"end_col": 39,
"end_line": 497,
"start_col": 2,
"start_line": 480
} |
FStar.Pervasives.Lemma | val append_distributes_le_bytes_to_seq_quad32 (s1:seq nat8 { length s1 % 16 == 0 }) (s2:seq nat8 { length s2 % 16 == 0 }) :
Lemma(le_bytes_to_seq_quad32 (s1 @| s2) == (le_bytes_to_seq_quad32 s1) @| (le_bytes_to_seq_quad32 s2)) | [
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let append_distributes_le_bytes_to_seq_quad32 (s1:seq nat8 { length s1 % 16 == 0 }) (s2:seq nat8 { length s2 % 16 == 0 }) :
Lemma(le_bytes_to_seq_quad32 (s1 @| s2) == (le_bytes_to_seq_quad32 s1) @| (le_bytes_to_seq_quad32 s2))
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
let s1' = seq_nat8_to_seq_nat32_LE s1 in
let s2' = seq_nat8_to_seq_nat32_LE s2 in
// (le_bytes_to_seq_quad32 s1) @| (le_bytes_to_seq_quad32 s2))
// = { Definition of le_bytes_to_seq_quad32 }
// seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s1) @| seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s2)
append_distributes_seq_to_seq_four_LE s1' s2';
// =
// seq_to_seq_four_LE ((seq_nat8_to_seq_nat32_LE s1) @| (seq_nat8_to_seq_nat32_LE s2))
append_distributes_seq_map (four_to_nat 8) (seq_to_seq_four_LE s1) (seq_to_seq_four_LE s2);
// seq_to_seq_four_LE (seq_map (four_to_nat 8) ((seq_to_seq_four_LE s1) @| (seq_to_seq_four_LE s2)))
append_distributes_seq_to_seq_four_LE s1 s2;
// seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (s1 @| s2)))
// le_bytes_to_seq_quad32 (s1 @| s2)
() | val append_distributes_le_bytes_to_seq_quad32 (s1:seq nat8 { length s1 % 16 == 0 }) (s2:seq nat8 { length s2 % 16 == 0 }) :
Lemma(le_bytes_to_seq_quad32 (s1 @| s2) == (le_bytes_to_seq_quad32 s1) @| (le_bytes_to_seq_quad32 s2))
let append_distributes_le_bytes_to_seq_quad32
(s1: seq nat8 {length s1 % 16 == 0})
(s2: seq nat8 {length s2 % 16 == 0})
: Lemma
(le_bytes_to_seq_quad32 (s1 @| s2) == (le_bytes_to_seq_quad32 s1) @| (le_bytes_to_seq_quad32 s2)
) = | false | null | true | reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
let s1' = seq_nat8_to_seq_nat32_LE s1 in
let s2' = seq_nat8_to_seq_nat32_LE s2 in
append_distributes_seq_to_seq_four_LE s1' s2';
append_distributes_seq_map (four_to_nat 8) (seq_to_seq_four_LE s1) (seq_to_seq_four_LE s2);
append_distributes_seq_to_seq_four_LE s1 s2;
() | {
"checked_file": "Vale.Arch.Types.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Arch.Types.fst"
} | [
"lemma"
] | [
"FStar.Seq.Base.seq",
"Vale.Def.Words_s.nat8",
"Prims.eq2",
"Prims.int",
"Prims.op_Modulus",
"FStar.Seq.Base.length",
"Prims.unit",
"Vale.Def.Words.Seq.append_distributes_seq_to_seq_four_LE",
"Vale.Lib.Seqs.append_distributes_seq_map",
"Vale.Def.Words_s.four",
"Vale.Def.Words_s.natN",
"Prims.pow2",
"FStar.Mul.op_Star",
"Vale.Def.Words.Four_s.four_to_nat",
"Vale.Def.Words.Seq_s.seq_to_seq_four_LE",
"Vale.Def.Words_s.nat32",
"Vale.Def.Words.Seq_s.seq_nat8_to_seq_nat32_LE",
"FStar.Pervasives.reveal_opaque",
"Vale.Def.Types_s.nat8",
"Vale.Def.Types_s.quad32",
"Prims.l_True",
"Vale.Def.Types_s.le_bytes_to_seq_quad32",
"Prims.squash",
"FStar.Seq.Base.op_At_Bar",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.Arch.Types
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.TypesNative
open Vale.Lib.Seqs
open Vale.Def.Words_s
open Vale.Def.Words.Two
open FStar.Calc
let lemma_nat_to_two32 () =
assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000))
let lemma_BitwiseXorCommutative x y =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ y) (y *^ x)
let lemma_BitwiseXorWithZero n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ 0) n
let lemma_BitwiseXorCancel n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ n) 0
let lemma_BitwiseXorCancel64 (n:nat64) =
lemma_ixor_nth_all 64;
lemma_zero_nth 64;
lemma_equal_nth 64 (ixor n n) 0
let lemma_BitwiseXorAssociative x y z =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z)
let xor_lemmas () =
FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative;
FStar.Classical.forall_intro lemma_BitwiseXorWithZero;
FStar.Classical.forall_intro lemma_BitwiseXorCancel;
FStar.Classical.forall_intro lemma_BitwiseXorCancel64;
FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_quad32_xor () =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
xor_lemmas()
(*
let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) =
let q' = quad32_xor q q in
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
// REVIEW: Why are these necessary?
assert (q'.lo0 == nat32_xor q.lo0 q.lo0);
assert (q'.lo1 == nat32_xor q.lo1 q.lo1);
assert (q'.hi2 == nat32_xor q.hi2 q.hi2);
assert (q'.hi3 == nat32_xor q.hi3 q.hi3);
xor_lemmas()
in
FStar.Classical.forall_intro helper
*)
#pop-options
let lemma_reverse_reverse_bytes_nat32 (n:nat32) :
Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n)
=
reverse_bytes_nat32_reveal ();
let r = reverse_seq (nat32_to_be_bytes n) in
be_bytes_to_nat32_to_be_bytes r;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_reverse_bytes_quad32 (q:quad32) =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
reveal_reverse_bytes_quad32 q;
reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q);
()
#pop-options
let lemma_reverse_bytes_nat32 (_:unit) : Lemma
(reverse_bytes_nat32 0 == 0)
=
reverse_bytes_nat32_reveal ();
assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0);
()
let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma
(let z = Mkfour 0 0 0 0 in
reverse_bytes_quad32 z == z)
=
let z = Mkfour 0 0 0 0 in
calc (==) {
reverse_bytes_quad32 z;
== { reveal_reverse_bytes_quad32 z }
four_reverse (four_map reverse_bytes_nat32 z);
== { lemma_reverse_bytes_nat32() }
z;
};
()
let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) :
Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s)
=
reveal_reverse_bytes_nat32_seq s;
reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s);
assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s)
(*
let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) :
Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\
( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\
((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF))
=
if n.lo == 0 /\ n.hi == 0 then (
assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0);
()
) else (
()
);
()
let lemma_equality_check_helper_lo (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1);
()
let lemma_equality_check_helper_hi (q:quad32) :
Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3);
()
*)
let lemma_insert_nat64_properties (q:quad32) (n:nat64) :
Lemma ( (let q' = insert_nat64 q n 0 in
q'.hi2 == q.hi2 /\
q'.hi3 == q.hi3) /\
(let q' = insert_nat64 q n 1 in
q'.lo0 == q.lo0 /\
q'.lo1 == q.lo1))
=
insert_nat64_reveal ();
()
let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) :
Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 ==
Mkfour n0 n1 q.hi2 q.hi3 /\
insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 ==
Mkfour q.lo0 q.lo1 n0 n1 )
=
let open Vale.Def.Words.Two in
insert_nat64_reveal ();
()
let lemma_lo64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1))
=
lo64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_hi64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1))
=
hi64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma
(reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0)))
=
reverse_bytes_nat64_reveal ()
let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma
(requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1)
(ensures final == reverse_bytes_quad32 src)
=
reverse_bytes_nat64_reveal ();
let Mkfour x0 x1 x2 x3 = src in
let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in
let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in
calc (==) {
reverse_bytes_quad32 src;
== { reveal_reverse_bytes_quad32 src }
four_reverse (four_map reverse_bytes_nat32 src);
== {}
four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3));
== {}
Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0);
== { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3)
(reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) }
insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1;
== { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) }
insert_nat64 (insert_nat64 orig two32 0) two10 1;
};
calc (==) {
reverse_bytes_nat64 (hi64 src);
== { hi64_reveal ()}
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3));
== { lemma_reverse_bytes_nat64_32 x2 x3 }
two32;
};
calc (==) {
reverse_bytes_nat64 (lo64 src);
== { lo64_reveal () }
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1));
== { lemma_reverse_bytes_nat64_32 x0 x1 }
two10;
};
()
let lemma_equality_check_helper (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)
)
=
// lemma_equality_check_helper_lo q;
// lemma_equality_check_helper_hi q;
lo64_reveal ();
hi64_reveal ();
assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x);
()
let push_pop_xmm (x y:quad32) : Lemma
(let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in
x == x')
=
// assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1);
insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_insrq_extrq_relations (x y:quad32) :
Lemma (let z = insert_nat64 x (lo64 y) 0 in
z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\
(let z = insert_nat64 x (hi64 y) 1 in
z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3))
=
let open Vale.Def.Words.Two in
let z = insert_nat64 x (lo64 y) 0 in
insert_nat64_reveal ();
lo64_reveal ();
hi64_reveal ();
assert (z == insert_nat64_def x (lo64_def y) 0);
//assert (q'.hi2 == q.hi2);
//assert (q'.hi3 == q.hi3);
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0));
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0));
let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in
nat_to_two_to_nat n1 n2;
//assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0));
//assert (q'.lo1 == q.lo1);
//assert (q == q');
()
open Vale.Def.Words.Two
let le_bytes_to_nat64_to_bytes s =
le_nat64_to_bytes_reveal ();
le_bytes_to_nat64_reveal ()
let le_nat64_to_bytes_to_nat64 n =
le_nat64_to_bytes_reveal ();
le_bytes_to_nat64_reveal ()
let le_bytes_to_seq_quad32_empty () :
Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
()
let be_bytes_to_seq_quad32_empty () :
Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
()
#reset-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'"
let le_bytes_to_seq_quad32_to_bytes_one_quad b =
calc (==) {
le_bytes_to_seq_quad32 (le_quad32_to_bytes b);
== {reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32}
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_quad32_to_bytes b));
== {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes}
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))));
== {}
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)))));
== {seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))}
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_LE b)));
== {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_LE b)}
seq_to_seq_four_LE (four_to_seq_LE b);
== {four_to_seq_LE_is_seq_four_to_seq_LE b}
seq_to_seq_four_LE (seq_four_to_seq_LE (create 1 b));
== {}
create 1 b;
}
let be_bytes_to_seq_quad32_to_bytes_one_quad b =
calc (==) {
be_bytes_to_seq_quad32 (be_quad32_to_bytes b);
== {reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32}
seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (be_quad32_to_bytes b));
== {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes}
seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))));
== {}
seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b)))));
== {seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))}
seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_BE b)));
== {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE b)}
seq_to_seq_four_BE (four_to_seq_BE b);
== {four_to_seq_BE_is_seq_four_to_seq_BE b}
seq_to_seq_four_BE (seq_four_to_seq_BE (create 1 b));
== {}
create 1 b;
}
let le_bytes_to_seq_quad32_to_bytes (s:seq quad32) :
Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s)
(* This expands into showing:
le_bytes_to_seq_quad32 (le_quad32_to_bytes s)
== { definition of le_bytes_to_seq_quad32 }
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_seq_quad32_to_bytes s))
== { definition of le_seq_quad32_to_bytes }
seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s)))
== { definition of seq_nat8_to_seq_nat32_LE }
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s))))
== { definition of seq_nat32_to_seq_nat8_LE }
seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)))))
*)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_seq_quad32_to_bytes_reveal ();
seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_LE s);
seq_to_seq_four_to_seq_LE (s) ;
()
let be_bytes_to_seq_quad32_to_bytes (s:seq quad32) :
Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_BE s);
seq_to_seq_four_to_seq_BE (s) ;
()
let le_seq_quad32_to_bytes_to_seq_quad32 s =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_seq_quad32_to_bytes_reveal ();
calc (==) {
le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 s);
(==) { }
seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE (seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s)));
(==) { }
s;
}
(*
le_quad32_to_bytes (le_bytes_to_quad32 s)
== { definition of le_quad32_to_bytes }
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (le_bytes_to_quad32 s)))
== { definition of le_bytes_to_quad32 }
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)))))
*)
let le_quad32_to_bytes_to_quad32 s =
calc (==) {
le_quad32_to_bytes (le_bytes_to_quad32 s);
== {le_bytes_to_quad32_reveal ()}
le_quad32_to_bytes (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)));
== {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes}
seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)))));
== {four_to_seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))}
seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)));
== {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_LE s)}
seq_four_to_seq_LE (seq_to_seq_four_LE s);
== {}
s;
}
let be_quad32_to_bytes_to_quad32 s =
calc (==) {
be_quad32_to_bytes (be_bytes_to_quad32 s);
== {be_bytes_to_quad32_reveal ()}
be_quad32_to_bytes (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)));
== {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes}
seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)))));
== {four_to_seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))}
seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)));
== {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_BE s)}
seq_four_to_seq_BE (seq_to_seq_four_BE s);
== {}
s;
}
let le_seq_quad32_to_bytes_of_singleton (q:quad32) :
Lemma (le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q))
=
le_seq_quad32_to_bytes_reveal ();
reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes;
four_to_seq_LE_is_seq_four_to_seq_LE q;
()
let be_seq_quad32_to_bytes_of_singleton (q:quad32) :
Lemma (be_quad32_to_bytes q == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 q)))
=
reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes;
four_to_seq_BE_is_seq_four_to_seq_BE q;
()
let le_quad32_to_bytes_injective ():
Lemma (forall b b' . le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b')
=
reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes;
let helper (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') =
if le_quad32_to_bytes b = le_quad32_to_bytes b' then (
let b1 = seq_map (nat_to_four 8) (four_to_seq_LE b) in
let b1' = seq_map (nat_to_four 8) (four_to_seq_LE b') in
assert (le_quad32_to_bytes b == seq_four_to_seq_LE b1);
assert (le_quad32_to_bytes b' == seq_four_to_seq_LE b1');
seq_four_to_seq_LE_injective_specific b1 b1';
assert (b1 == b1');
nat_to_four_8_injective();
seq_map_injective (nat_to_four 8) (four_to_seq_LE b) (four_to_seq_LE b');
assert ((four_to_seq_LE b) == (four_to_seq_LE b'));
four_to_seq_LE_injective nat32;
()
) else
()
in
FStar.Classical.forall_intro_2 helper
let be_quad32_to_bytes_injective ():
Lemma (forall b b' . be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b')
=
reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes;
let helper (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') =
if be_quad32_to_bytes b = be_quad32_to_bytes b' then (
let b1 = seq_map (nat_to_four 8) (four_to_seq_BE b) in
let b1' = seq_map (nat_to_four 8) (four_to_seq_BE b') in
assert (be_quad32_to_bytes b == seq_four_to_seq_BE b1);
assert (be_quad32_to_bytes b' == seq_four_to_seq_BE b1');
seq_four_to_seq_BE_injective_specific b1 b1';
assert (b1 == b1');
nat_to_four_8_injective();
seq_map_injective (nat_to_four 8) (four_to_seq_BE b) (four_to_seq_BE b');
assert ((four_to_seq_BE b) == (four_to_seq_BE b'));
four_to_seq_BE_injective nat32;
()
) else
()
in
FStar.Classical.forall_intro_2 helper
let le_quad32_to_bytes_injective_specific (b b':quad32) :
Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b')
=
le_quad32_to_bytes_injective()
let be_quad32_to_bytes_injective_specific (b b':quad32) :
Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b')
=
be_quad32_to_bytes_injective()
let le_seq_quad32_to_bytes_injective (b b':seq quad32) =
le_seq_quad32_to_bytes_reveal ();
seq_four_to_seq_LE_injective nat8;
nat_to_four_8_injective();
seq_map_injective (nat_to_four 8) (seq_four_to_seq_LE b) (seq_four_to_seq_LE b');
seq_four_to_seq_LE_injective_specific b b';
assert (equal b b')
let seq_to_four_LE_is_seq_to_seq_four_LE (#a:Type) (s:seq4 a) : Lemma
(create 1 (seq_to_four_LE s) == seq_to_seq_four_LE s)
=
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a);
assert (equal (create 1 (seq_to_four_LE s)) (seq_to_seq_four_LE s));
()
let seq_to_four_BE_is_seq_to_seq_four_BE (#a:Type) (s:seq4 a) : Lemma
(create 1 (seq_to_four_BE s) == seq_to_seq_four_BE s)
=
reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a);
assert (equal (create 1 (seq_to_four_BE s)) (seq_to_seq_four_BE s));
()
let le_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma
(requires q == le_bytes_to_quad32 b)
(ensures create 1 q == le_bytes_to_seq_quad32 b)
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
le_bytes_to_quad32_reveal ();
seq_to_four_LE_is_seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b));
// q == le_bytes_to_quad32 b
// == seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b))
//
// == seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b))
// le_bytes_to_seq_quad32 b == seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE b)
()
let be_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma
(requires q == be_bytes_to_quad32 b)
(ensures create 1 q == be_bytes_to_seq_quad32 b)
=
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32;
be_bytes_to_quad32_reveal ();
seq_to_four_BE_is_seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE b));
()
let le_bytes_to_quad32_to_bytes (q:quad32) :
Lemma(le_bytes_to_quad32 (le_quad32_to_bytes q) == q)
=
le_seq_quad32_to_bytes_of_singleton q; // ==> le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q)
let b = le_quad32_to_bytes q in
let q' = le_bytes_to_quad32 b in
le_bytes_to_seq_quad_of_singleton q' b; // ==> create 1 q' == le_bytes_to_seq_quad32 b
// == le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes (create 1 q))
le_bytes_to_seq_quad32_to_bytes (create 1 q); // == create 1 q
//assert (create 1 q == create 1 q');
//assert (equal (create 1 q) (create 1 q'));
assert (q == index (create 1 q) 0); // OBSERVE
assert (q == q');
()
let be_bytes_to_quad32_to_bytes (q:quad32) :
Lemma (be_bytes_to_quad32 (be_quad32_to_bytes q) == q)
=
be_bytes_to_quad32_reveal ();
let q':quad32 = be_bytes_to_quad32 (be_quad32_to_bytes q) in
seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE q));
seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE q);
seq_to_four_to_seq_BE q;
()
let lemma_reverse_reverse_bytes_nat32_quad32 (s:quad32) :
Lemma (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s) == s)
[SMTPat (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s))]
=
let s' = reverse_bytes_nat32_quad32 s in
let s''= reverse_bytes_nat32_quad32 s' in
assert (s''.lo0 == reverse_bytes_nat32 (reverse_bytes_nat32 s.lo0)); // OBSERVE
assert (s''.lo1 == reverse_bytes_nat32 (reverse_bytes_nat32 s.lo1)); // OBSERVE
assert (s''.hi2 == reverse_bytes_nat32 (reverse_bytes_nat32 s.hi2)); // OBSERVE
assert (s''.hi3 == reverse_bytes_nat32 (reverse_bytes_nat32 s.hi3)); // OBSERVE
()
let lemma_reverse_reverse_bytes_nat32_quad32_seq (s:seq quad32) :
Lemma (reverse_bytes_nat32_quad32_seq (reverse_bytes_nat32_quad32_seq s) == s)
[SMTPat (reverse_bytes_nat32_quad32_seq (reverse_bytes_nat32_quad32_seq s))]
=
seq_map_inverses reverse_bytes_nat32_quad32 reverse_bytes_nat32_quad32 s
let lemma_reverse_reverse_bytes_quad32_seq (s:seq quad32) :
Lemma (reverse_bytes_quad32_seq (reverse_bytes_quad32_seq s) == s)
[SMTPat (reverse_bytes_quad32_seq (reverse_bytes_quad32_seq s))]
=
seq_map_inverses reverse_bytes_quad32 reverse_bytes_quad32 s
let lemma_le_seq_quad32_to_bytes_length (s:seq quad32) :
Lemma(length (le_seq_quad32_to_bytes s) == (length s) * 16)
=
()
let lemma_be_seq_quad32_to_bytes_length (s:seq quad32) :
Lemma(length (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == (length s) * 16)
=
()
let slice_commutes_seq_four_to_seq_LE (#a:Type) (s:seq (four a)) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) :
Lemma(slice (seq_four_to_seq_LE s) (n * 4) (n' * 4) ==
seq_four_to_seq_LE (slice s n n'))
=
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a);
assert (equal (slice (seq_four_to_seq_LE s) (n * 4) (n' * 4))
(seq_four_to_seq_LE (slice s n n')));
()
let slice_commutes_seq_four_to_seq_BE (#a:Type) (s:seq (four a)) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) :
Lemma(slice (seq_four_to_seq_BE s) (n * 4) (n' * 4) ==
seq_four_to_seq_BE (slice s n n'))
=
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a);
assert (equal (slice (seq_four_to_seq_BE s) (n * 4) (n' * 4))
(seq_four_to_seq_BE (slice s n n')));
()
let slice_commutes_le_seq_quad32_to_bytes (s:seq quad32) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) :
Lemma(slice (le_seq_quad32_to_bytes s) (n * 16) (n' * 16) ==
le_seq_quad32_to_bytes (slice s n n'))
=
le_seq_quad32_to_bytes_reveal ();
slice_commutes_seq_four_to_seq_LE s n n';
assert (slice (seq_four_to_seq_LE s) (n * 4) (n' * 4) == seq_four_to_seq_LE (slice s n n'));
(*
le_seq_quad32_to_bytes (slice s n n') == seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE (slice s n n')));
== seq_four_to_seq_LE (seq_map (nat_to_four 8) (slice (seq_four_to_seq_LE s) (n * 4) (n' * 4))
slice (le_seq_quad32_to_bytes s) (n * 16) (n' * 16)
== slice (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s))) (n * 16) (n' * 16)
== seq_four_to_seq_LE (slice (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)) (n * 4) (n' * 4))
*)
slice_seq_map_commute (nat_to_four 8) (seq_four_to_seq_LE s) (n*4) (n'*4);
let s_inner = (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)) in
slice_commutes_seq_four_to_seq_LE s_inner (n * 4) (n' * 4);
()
let slice_commutes_be_seq_quad32_to_bytes (s:seq quad32) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) :
Lemma(slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (n * 16) (n' * 16) ==
seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice s n n')))
=
slice_commutes_seq_four_to_seq_BE s n n';
assert (slice (seq_four_to_seq_BE s) (n * 4) (n' * 4) == seq_four_to_seq_BE (slice s n n'));
slice_seq_map_commute (nat_to_four 8) (seq_four_to_seq_BE s) (n*4) (n'*4);
let s_inner = (seq_map (nat_to_four 8) (seq_four_to_seq_BE s)) in
slice_commutes_seq_four_to_seq_BE s_inner (n * 4) (n' * 4);
()
let slice_commutes_le_seq_quad32_to_bytes0 (s:seq quad32) (n:nat{n <= length s}) :
Lemma(slice (le_seq_quad32_to_bytes s) 0 (n * 16) ==
le_seq_quad32_to_bytes (slice s 0 n))
=
slice_commutes_le_seq_quad32_to_bytes s 0 n
let slice_commutes_be_seq_quad32_to_bytes0 (s:seq quad32) (n:nat{n <= length s}) :
Lemma(slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 (n * 16) ==
seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice s 0 n)))
=
slice_commutes_be_seq_quad32_to_bytes s 0 n
#reset-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'"
let append_distributes_le_bytes_to_seq_quad32 (s1:seq nat8 { length s1 % 16 == 0 }) (s2:seq nat8 { length s2 % 16 == 0 }) :
Lemma(le_bytes_to_seq_quad32 (s1 @| s2) == (le_bytes_to_seq_quad32 s1) @| (le_bytes_to_seq_quad32 s2)) | false | false | Vale.Arch.Types.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val append_distributes_le_bytes_to_seq_quad32 (s1:seq nat8 { length s1 % 16 == 0 }) (s2:seq nat8 { length s2 % 16 == 0 }) :
Lemma(le_bytes_to_seq_quad32 (s1 @| s2) == (le_bytes_to_seq_quad32 s1) @| (le_bytes_to_seq_quad32 s2)) | [] | Vale.Arch.Types.append_distributes_le_bytes_to_seq_quad32 | {
"file_name": "vale/code/arch/Vale.Arch.Types.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
s1: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 {FStar.Seq.Base.length s1 % 16 == 0} ->
s2: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 {FStar.Seq.Base.length s2 % 16 == 0}
-> FStar.Pervasives.Lemma
(ensures
Vale.Def.Types_s.le_bytes_to_seq_quad32 (s1 @| s2) ==
Vale.Def.Types_s.le_bytes_to_seq_quad32 s1 @| Vale.Def.Types_s.le_bytes_to_seq_quad32 s2) | {
"end_col": 4,
"end_line": 694,
"start_col": 2,
"start_line": 680
} |
FStar.Pervasives.Lemma | val lemma_equality_check_helper (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)
) | [
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_equality_check_helper (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)
)
=
// lemma_equality_check_helper_lo q;
// lemma_equality_check_helper_hi q;
lo64_reveal ();
hi64_reveal ();
assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x);
() | val lemma_equality_check_helper (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)
)
let lemma_equality_check_helper (q: quad32)
: Lemma
((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)) = | false | null | true | lo64_reveal ();
hi64_reveal ();
assert (forall (x: two nat32). {:pattern (two_to_nat 32 x)}
two_to_nat 32 x == two_to_nat_unfold 32 x);
() | {
"checked_file": "Vale.Arch.Types.fst.checked",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Arch.Types.fst"
} | [
"lemma"
] | [
"Vale.Def.Types_s.quad32",
"Prims.unit",
"Prims._assert",
"Prims.l_Forall",
"Vale.Def.Words_s.two",
"Vale.Def.Words_s.nat32",
"Prims.eq2",
"Vale.Def.Words_s.natN",
"Prims.pow2",
"FStar.Mul.op_Star",
"Vale.Def.Words.Two_s.two_to_nat",
"Vale.Def.Words.Two_s.two_to_nat_unfold",
"Vale.Arch.Types.hi64_reveal",
"Vale.Arch.Types.lo64_reveal",
"Prims.l_True",
"Prims.squash",
"Prims.l_and",
"Prims.l_imp",
"Prims.int",
"Vale.Def.Words_s.__proj__Mkfour__item__lo0",
"Vale.Def.Types_s.nat32",
"Vale.Def.Words_s.__proj__Mkfour__item__lo1",
"Vale.Arch.Types.lo64",
"Prims.l_or",
"Prims.b2t",
"Prims.op_Negation",
"Prims.op_Equality",
"Vale.Def.Words_s.__proj__Mkfour__item__hi2",
"Vale.Def.Words_s.__proj__Mkfour__item__hi3",
"Vale.Arch.Types.hi64",
"Prims.l_not",
"Prims.l_iff",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.Arch.Types
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.TypesNative
open Vale.Lib.Seqs
open Vale.Def.Words_s
open Vale.Def.Words.Two
open FStar.Calc
let lemma_nat_to_two32 () =
assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000))
let lemma_BitwiseXorCommutative x y =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ y) (y *^ x)
let lemma_BitwiseXorWithZero n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ 0) n
let lemma_BitwiseXorCancel n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ n) 0
let lemma_BitwiseXorCancel64 (n:nat64) =
lemma_ixor_nth_all 64;
lemma_zero_nth 64;
lemma_equal_nth 64 (ixor n n) 0
let lemma_BitwiseXorAssociative x y z =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z)
let xor_lemmas () =
FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative;
FStar.Classical.forall_intro lemma_BitwiseXorWithZero;
FStar.Classical.forall_intro lemma_BitwiseXorCancel;
FStar.Classical.forall_intro lemma_BitwiseXorCancel64;
FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_quad32_xor () =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
xor_lemmas()
(*
let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) =
let q' = quad32_xor q q in
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
// REVIEW: Why are these necessary?
assert (q'.lo0 == nat32_xor q.lo0 q.lo0);
assert (q'.lo1 == nat32_xor q.lo1 q.lo1);
assert (q'.hi2 == nat32_xor q.hi2 q.hi2);
assert (q'.hi3 == nat32_xor q.hi3 q.hi3);
xor_lemmas()
in
FStar.Classical.forall_intro helper
*)
#pop-options
let lemma_reverse_reverse_bytes_nat32 (n:nat32) :
Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n)
=
reverse_bytes_nat32_reveal ();
let r = reverse_seq (nat32_to_be_bytes n) in
be_bytes_to_nat32_to_be_bytes r;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_reverse_bytes_quad32 (q:quad32) =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
reveal_reverse_bytes_quad32 q;
reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q);
()
#pop-options
let lemma_reverse_bytes_nat32 (_:unit) : Lemma
(reverse_bytes_nat32 0 == 0)
=
reverse_bytes_nat32_reveal ();
assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0);
()
let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma
(let z = Mkfour 0 0 0 0 in
reverse_bytes_quad32 z == z)
=
let z = Mkfour 0 0 0 0 in
calc (==) {
reverse_bytes_quad32 z;
== { reveal_reverse_bytes_quad32 z }
four_reverse (four_map reverse_bytes_nat32 z);
== { lemma_reverse_bytes_nat32() }
z;
};
()
let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) :
Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s)
=
reveal_reverse_bytes_nat32_seq s;
reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s);
assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s)
(*
let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) :
Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\
( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\
((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF))
=
if n.lo == 0 /\ n.hi == 0 then (
assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0);
()
) else (
()
);
()
let lemma_equality_check_helper_lo (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1);
()
let lemma_equality_check_helper_hi (q:quad32) :
Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3);
()
*)
let lemma_insert_nat64_properties (q:quad32) (n:nat64) :
Lemma ( (let q' = insert_nat64 q n 0 in
q'.hi2 == q.hi2 /\
q'.hi3 == q.hi3) /\
(let q' = insert_nat64 q n 1 in
q'.lo0 == q.lo0 /\
q'.lo1 == q.lo1))
=
insert_nat64_reveal ();
()
let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) :
Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 ==
Mkfour n0 n1 q.hi2 q.hi3 /\
insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 ==
Mkfour q.lo0 q.lo1 n0 n1 )
=
let open Vale.Def.Words.Two in
insert_nat64_reveal ();
()
let lemma_lo64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1))
=
lo64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_hi64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1))
=
hi64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma
(reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0)))
=
reverse_bytes_nat64_reveal ()
let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma
(requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1)
(ensures final == reverse_bytes_quad32 src)
=
reverse_bytes_nat64_reveal ();
let Mkfour x0 x1 x2 x3 = src in
let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in
let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in
calc (==) {
reverse_bytes_quad32 src;
== { reveal_reverse_bytes_quad32 src }
four_reverse (four_map reverse_bytes_nat32 src);
== {}
four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3));
== {}
Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0);
== { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3)
(reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) }
insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1;
== { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) }
insert_nat64 (insert_nat64 orig two32 0) two10 1;
};
calc (==) {
reverse_bytes_nat64 (hi64 src);
== { hi64_reveal ()}
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3));
== { lemma_reverse_bytes_nat64_32 x2 x3 }
two32;
};
calc (==) {
reverse_bytes_nat64 (lo64 src);
== { lo64_reveal () }
reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0));
== {}
reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1));
== { lemma_reverse_bytes_nat64_32 x0 x1 }
two10;
};
()
let lemma_equality_check_helper (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)
)
=
// lemma_equality_check_helper_lo q; | false | false | Vale.Arch.Types.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_equality_check_helper (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)
) | [] | Vale.Arch.Types.lemma_equality_check_helper | {
"file_name": "vale/code/arch/Vale.Arch.Types.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | q: Vale.Def.Types_s.quad32
-> FStar.Pervasives.Lemma
(ensures
(Mkfour?.lo0 q == 0 /\ Mkfour?.lo1 q == 0 ==> Vale.Arch.Types.lo64 q == 0) /\
(Prims.op_Negation (Mkfour?.lo0 q = 0) \/ Prims.op_Negation (Mkfour?.lo1 q = 0) ==>
Prims.op_Negation (Vale.Arch.Types.lo64 q = 0)) /\
(Mkfour?.hi2 q == 0 /\ Mkfour?.hi3 q == 0 ==> Vale.Arch.Types.hi64 q == 0) /\
(~(Mkfour?.hi2 q = 0) \/ ~(Mkfour?.hi3 q = 0) ==> ~(Vale.Arch.Types.hi64 q = 0)) /\
(Mkfour?.lo0 q == 0xFFFFFFFF /\ Mkfour?.lo1 q == 0xFFFFFFFF <==>
Vale.Arch.Types.lo64 q == 0xFFFFFFFFFFFFFFFF) /\
(Mkfour?.hi2 q == 0xFFFFFFFF /\ Mkfour?.hi3 q == 0xFFFFFFFF <==>
Vale.Arch.Types.hi64 q == 0xFFFFFFFFFFFFFFFF)) | {
"end_col": 4,
"end_line": 260,
"start_col": 2,
"start_line": 257
} |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.