effect
stringclasses
48 values
original_source_type
stringlengths
0
23k
opens_and_abbrevs
listlengths
2
92
isa_cross_project_example
bool
1 class
source_definition
stringlengths
9
57.9k
partial_definition
stringlengths
7
23.3k
is_div
bool
2 classes
is_type
null
is_proof
bool
2 classes
completed_definiton
stringlengths
1
250k
dependencies
dict
effect_flags
sequencelengths
0
2
ideal_premises
sequencelengths
0
236
mutual_with
sequencelengths
0
11
file_context
stringlengths
0
407k
interleaved
bool
1 class
is_simply_typed
bool
2 classes
file_name
stringlengths
5
48
vconfig
dict
is_simple_lemma
null
source_type
stringlengths
10
23k
proof_features
sequencelengths
0
1
name
stringlengths
8
95
source
dict
verbose_type
stringlengths
1
7.42k
source_range
dict
Prims.Tot
val bn_get_top_index: #t:_ -> len:_ -> bn_get_top_index_st t len
[ { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Lib", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_get_top_index #t = match t with | U32 -> bn_get_top_index_u32 | U64 -> bn_get_top_index_u64
val bn_get_top_index: #t:_ -> len:_ -> bn_get_top_index_st t len let bn_get_top_index #t =
false
null
false
match t with | U32 -> bn_get_top_index_u32 | U64 -> bn_get_top_index_u64
{ "checked_file": "Hacl.Bignum.Lib.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Lib.fst" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Hacl.Bignum.Lib.bn_get_top_index_u32", "Hacl.Bignum.Lib.bn_get_top_index_u64", "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Bignum.Lib.bn_get_top_index_st" ]
[]
module Hacl.Bignum.Lib open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Base open Hacl.Bignum.Definitions module S = Hacl.Spec.Bignum.Lib module ST = FStar.HyperStack.ST module Loops = Lib.LoopCombinators module LSeq = Lib.Sequence #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// /// Get and set i-th bit of a bignum /// inline_for_extraction noextract val bn_get_ith_bit: #t:limb_t -> len:size_t -> b:lbignum t len -> i:size_t{v i / bits t < v len} -> Stack (limb t) (requires fun h -> live h b) (ensures fun h0 r h1 -> h0 == h1 /\ r == S.bn_get_ith_bit (as_seq h0 b) (v i)) let bn_get_ith_bit #t len input ind = [@inline_let] let pbits = size (bits t) in let i = ind /. pbits in assert (v i == v ind / bits t); let j = ind %. pbits in assert (v j == v ind % bits t); let tmp = input.(i) in (tmp >>. j) &. uint #t 1 inline_for_extraction noextract val bn_set_ith_bit: #t:limb_t -> len:size_t -> b:lbignum t len -> i:size_t{v i / bits t < v len} -> Stack unit (requires fun h -> live h b) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ as_seq h1 b == S.bn_set_ith_bit (as_seq h0 b) (v i)) let bn_set_ith_bit #t len input ind = [@inline_let] let pbits = size (bits t) in let i = ind /. pbits in assert (v i == v ind / bits t); let j = ind %. pbits in assert (v j == v ind % bits t); input.(i) <- input.(i) |. (uint #t 1 <<. j) inline_for_extraction noextract val cswap2_st: #t:limb_t -> len:size_t -> bit:limb t -> b1:lbignum t len -> b2:lbignum t len -> Stack unit (requires fun h -> live h b1 /\ live h b2 /\ disjoint b1 b2) (ensures fun h0 _ h1 -> modifies (loc b1 |+| loc b2) h0 h1 /\ (as_seq h1 b1, as_seq h1 b2) == S.cswap2 bit (as_seq h0 b1) (as_seq h0 b2)) let cswap2_st #t len bit b1 b2 = [@inline_let] let mask = uint #t 0 -. bit in [@inline_let] let spec h0 = S.cswap2_f mask in let h0 = ST.get () in loop2 h0 len b1 b2 spec (fun i -> Loops.unfold_repeati (v len) (spec h0) (as_seq h0 b1, as_seq h0 b2) (v i); let dummy = mask &. (b1.(i) ^. b2.(i)) in b1.(i) <- b1.(i) ^. dummy; b2.(i) <- b2.(i) ^. dummy ) inline_for_extraction noextract let bn_get_top_index_st (t:limb_t) (len:size_t{0 < v len}) = b:lbignum t len -> Stack (limb t) (requires fun h -> live h b) (ensures fun h0 r h1 -> modifies0 h0 h1 /\ v r == S.bn_get_top_index (as_seq h0 b)) inline_for_extraction noextract val mk_bn_get_top_index: #t:limb_t -> len:size_t{0 < v len} -> bn_get_top_index_st t len let mk_bn_get_top_index #t len b = push_frame (); let priv = create 1ul (uint #t 0) in let h0 = ST.get () in [@ inline_let] let refl h i = v (LSeq.index (as_seq h priv) 0) in [@ inline_let] let spec h0 = S.bn_get_top_index_f (as_seq h0 b) in [@ inline_let] let inv h (i:nat{i <= v len}) = modifies1 priv h0 h /\ live h priv /\ live h b /\ disjoint priv b /\ refl h i == Loops.repeat_gen i (S.bn_get_top_index_t (v len)) (spec h0) (refl h0 0) in Loops.eq_repeat_gen0 (v len) (S.bn_get_top_index_t (v len)) (spec h0) (refl h0 0); Lib.Loops.for 0ul len inv (fun i -> Loops.unfold_repeat_gen (v len) (S.bn_get_top_index_t (v len)) (spec h0) (refl h0 0) (v i); let mask = eq_mask b.(i) (zeros t SEC) in let h1 = ST.get () in priv.(0ul) <- mask_select mask priv.(0ul) (size_to_limb i); mask_select_lemma mask (LSeq.index (as_seq h1 priv) 0) (size_to_limb i)); let res = priv.(0ul) in pop_frame (); res let bn_get_top_index_u32 len: bn_get_top_index_st U32 len = mk_bn_get_top_index #U32 len let bn_get_top_index_u64 len: bn_get_top_index_st U64 len = mk_bn_get_top_index #U64 len inline_for_extraction noextract val bn_get_top_index: #t:_ -> len:_ -> bn_get_top_index_st t len
false
false
Hacl.Bignum.Lib.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_get_top_index: #t:_ -> len:_ -> bn_get_top_index_st t len
[]
Hacl.Bignum.Lib.bn_get_top_index
{ "file_name": "code/bignum/Hacl.Bignum.Lib.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
len: Lib.IntTypes.size_t{0 < Lib.IntTypes.v len} -> Hacl.Bignum.Lib.bn_get_top_index_st t len
{ "end_col": 31, "end_line": 145, "start_col": 2, "start_line": 143 }
Prims.Tot
[ { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Lib", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_get_top_index_st (t:limb_t) (len:size_t{0 < v len}) = b:lbignum t len -> Stack (limb t) (requires fun h -> live h b) (ensures fun h0 r h1 -> modifies0 h0 h1 /\ v r == S.bn_get_top_index (as_seq h0 b))
let bn_get_top_index_st (t: limb_t) (len: size_t{0 < v len}) =
false
null
false
b: lbignum t len -> Stack (limb t) (requires fun h -> live h b) (ensures fun h0 r h1 -> modifies0 h0 h1 /\ v r == S.bn_get_top_index (as_seq h0 b))
{ "checked_file": "Hacl.Bignum.Lib.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Lib.fst" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Bignum.Definitions.lbignum", "Hacl.Bignum.Definitions.limb", "FStar.Monotonic.HyperStack.mem", "Lib.Buffer.live", "Lib.Buffer.MUT", "Prims.l_and", "Lib.Buffer.modifies0", "Prims.eq2", "Prims.int", "Prims.l_or", "Lib.IntTypes.range", "Prims.op_GreaterThanOrEqual", "Prims.op_LessThanOrEqual", "Lib.IntTypes.max_size_t", "Lib.IntTypes.SEC", "Hacl.Spec.Bignum.Lib.bn_get_top_index", "Lib.Buffer.as_seq" ]
[]
module Hacl.Bignum.Lib open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Base open Hacl.Bignum.Definitions module S = Hacl.Spec.Bignum.Lib module ST = FStar.HyperStack.ST module Loops = Lib.LoopCombinators module LSeq = Lib.Sequence #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// /// Get and set i-th bit of a bignum /// inline_for_extraction noextract val bn_get_ith_bit: #t:limb_t -> len:size_t -> b:lbignum t len -> i:size_t{v i / bits t < v len} -> Stack (limb t) (requires fun h -> live h b) (ensures fun h0 r h1 -> h0 == h1 /\ r == S.bn_get_ith_bit (as_seq h0 b) (v i)) let bn_get_ith_bit #t len input ind = [@inline_let] let pbits = size (bits t) in let i = ind /. pbits in assert (v i == v ind / bits t); let j = ind %. pbits in assert (v j == v ind % bits t); let tmp = input.(i) in (tmp >>. j) &. uint #t 1 inline_for_extraction noextract val bn_set_ith_bit: #t:limb_t -> len:size_t -> b:lbignum t len -> i:size_t{v i / bits t < v len} -> Stack unit (requires fun h -> live h b) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ as_seq h1 b == S.bn_set_ith_bit (as_seq h0 b) (v i)) let bn_set_ith_bit #t len input ind = [@inline_let] let pbits = size (bits t) in let i = ind /. pbits in assert (v i == v ind / bits t); let j = ind %. pbits in assert (v j == v ind % bits t); input.(i) <- input.(i) |. (uint #t 1 <<. j) inline_for_extraction noextract val cswap2_st: #t:limb_t -> len:size_t -> bit:limb t -> b1:lbignum t len -> b2:lbignum t len -> Stack unit (requires fun h -> live h b1 /\ live h b2 /\ disjoint b1 b2) (ensures fun h0 _ h1 -> modifies (loc b1 |+| loc b2) h0 h1 /\ (as_seq h1 b1, as_seq h1 b2) == S.cswap2 bit (as_seq h0 b1) (as_seq h0 b2)) let cswap2_st #t len bit b1 b2 = [@inline_let] let mask = uint #t 0 -. bit in [@inline_let] let spec h0 = S.cswap2_f mask in let h0 = ST.get () in loop2 h0 len b1 b2 spec (fun i -> Loops.unfold_repeati (v len) (spec h0) (as_seq h0 b1, as_seq h0 b2) (v i); let dummy = mask &. (b1.(i) ^. b2.(i)) in b1.(i) <- b1.(i) ^. dummy; b2.(i) <- b2.(i) ^. dummy ) inline_for_extraction noextract
false
false
Hacl.Bignum.Lib.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_get_top_index_st : t: Hacl.Bignum.Definitions.limb_t -> len: Lib.IntTypes.size_t{0 < Lib.IntTypes.v len} -> Type0
[]
Hacl.Bignum.Lib.bn_get_top_index_st
{ "file_name": "code/bignum/Hacl.Bignum.Lib.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
t: Hacl.Bignum.Definitions.limb_t -> len: Lib.IntTypes.size_t{0 < Lib.IntTypes.v len} -> Type0
{ "end_col": 44, "end_line": 102, "start_col": 2, "start_line": 98 }
Prims.Tot
[ { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Lib", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_get_bits_st (t:limb_t) = len:size_t -> b:lbignum t len -> i:size_t -> l:size_t{v l < bits t /\ v i / bits t < v len} -> Stack (limb t) (requires fun h -> live h b) (ensures fun h0 r h1 -> h0 == h1 /\ r == S.bn_get_bits (as_seq h0 b) (v i) (v l))
let bn_get_bits_st (t: limb_t) =
false
null
false
len: size_t -> b: lbignum t len -> i: size_t -> l: size_t{v l < bits t /\ v i / bits t < v len} -> Stack (limb t) (requires fun h -> live h b) (ensures fun h0 r h1 -> h0 == h1 /\ r == S.bn_get_bits (as_seq h0 b) (v i) (v l))
{ "checked_file": "Hacl.Bignum.Lib.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Lib.fst" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Lib.IntTypes.size_t", "Hacl.Bignum.Definitions.lbignum", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.IntTypes.bits", "Prims.op_Division", "Hacl.Bignum.Definitions.limb", "FStar.Monotonic.HyperStack.mem", "Lib.Buffer.live", "Lib.Buffer.MUT", "Prims.eq2", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.Lib.bn_get_bits", "Lib.Buffer.as_seq" ]
[]
module Hacl.Bignum.Lib open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Base open Hacl.Bignum.Definitions module S = Hacl.Spec.Bignum.Lib module ST = FStar.HyperStack.ST module Loops = Lib.LoopCombinators module LSeq = Lib.Sequence #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// /// Get and set i-th bit of a bignum /// inline_for_extraction noextract val bn_get_ith_bit: #t:limb_t -> len:size_t -> b:lbignum t len -> i:size_t{v i / bits t < v len} -> Stack (limb t) (requires fun h -> live h b) (ensures fun h0 r h1 -> h0 == h1 /\ r == S.bn_get_ith_bit (as_seq h0 b) (v i)) let bn_get_ith_bit #t len input ind = [@inline_let] let pbits = size (bits t) in let i = ind /. pbits in assert (v i == v ind / bits t); let j = ind %. pbits in assert (v j == v ind % bits t); let tmp = input.(i) in (tmp >>. j) &. uint #t 1 inline_for_extraction noextract val bn_set_ith_bit: #t:limb_t -> len:size_t -> b:lbignum t len -> i:size_t{v i / bits t < v len} -> Stack unit (requires fun h -> live h b) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ as_seq h1 b == S.bn_set_ith_bit (as_seq h0 b) (v i)) let bn_set_ith_bit #t len input ind = [@inline_let] let pbits = size (bits t) in let i = ind /. pbits in assert (v i == v ind / bits t); let j = ind %. pbits in assert (v j == v ind % bits t); input.(i) <- input.(i) |. (uint #t 1 <<. j) inline_for_extraction noextract val cswap2_st: #t:limb_t -> len:size_t -> bit:limb t -> b1:lbignum t len -> b2:lbignum t len -> Stack unit (requires fun h -> live h b1 /\ live h b2 /\ disjoint b1 b2) (ensures fun h0 _ h1 -> modifies (loc b1 |+| loc b2) h0 h1 /\ (as_seq h1 b1, as_seq h1 b2) == S.cswap2 bit (as_seq h0 b1) (as_seq h0 b2)) let cswap2_st #t len bit b1 b2 = [@inline_let] let mask = uint #t 0 -. bit in [@inline_let] let spec h0 = S.cswap2_f mask in let h0 = ST.get () in loop2 h0 len b1 b2 spec (fun i -> Loops.unfold_repeati (v len) (spec h0) (as_seq h0 b1, as_seq h0 b2) (v i); let dummy = mask &. (b1.(i) ^. b2.(i)) in b1.(i) <- b1.(i) ^. dummy; b2.(i) <- b2.(i) ^. dummy ) inline_for_extraction noextract let bn_get_top_index_st (t:limb_t) (len:size_t{0 < v len}) = b:lbignum t len -> Stack (limb t) (requires fun h -> live h b) (ensures fun h0 r h1 -> modifies0 h0 h1 /\ v r == S.bn_get_top_index (as_seq h0 b)) inline_for_extraction noextract val mk_bn_get_top_index: #t:limb_t -> len:size_t{0 < v len} -> bn_get_top_index_st t len let mk_bn_get_top_index #t len b = push_frame (); let priv = create 1ul (uint #t 0) in let h0 = ST.get () in [@ inline_let] let refl h i = v (LSeq.index (as_seq h priv) 0) in [@ inline_let] let spec h0 = S.bn_get_top_index_f (as_seq h0 b) in [@ inline_let] let inv h (i:nat{i <= v len}) = modifies1 priv h0 h /\ live h priv /\ live h b /\ disjoint priv b /\ refl h i == Loops.repeat_gen i (S.bn_get_top_index_t (v len)) (spec h0) (refl h0 0) in Loops.eq_repeat_gen0 (v len) (S.bn_get_top_index_t (v len)) (spec h0) (refl h0 0); Lib.Loops.for 0ul len inv (fun i -> Loops.unfold_repeat_gen (v len) (S.bn_get_top_index_t (v len)) (spec h0) (refl h0 0) (v i); let mask = eq_mask b.(i) (zeros t SEC) in let h1 = ST.get () in priv.(0ul) <- mask_select mask priv.(0ul) (size_to_limb i); mask_select_lemma mask (LSeq.index (as_seq h1 priv) 0) (size_to_limb i)); let res = priv.(0ul) in pop_frame (); res let bn_get_top_index_u32 len: bn_get_top_index_st U32 len = mk_bn_get_top_index #U32 len let bn_get_top_index_u64 len: bn_get_top_index_st U64 len = mk_bn_get_top_index #U64 len inline_for_extraction noextract val bn_get_top_index: #t:_ -> len:_ -> bn_get_top_index_st t len let bn_get_top_index #t = match t with | U32 -> bn_get_top_index_u32 | U64 -> bn_get_top_index_u64 inline_for_extraction noextract val bn_get_bits_limb: #t:limb_t -> len:size_t -> n:lbignum t len -> ind:size_t{v ind / bits t < v len} -> Stack (limb t) (requires fun h -> live h n) (ensures fun h0 r h1 -> h0 == h1 /\ r == S.bn_get_bits_limb (as_seq h0 n) (v ind)) let bn_get_bits_limb #t len n ind = [@inline_let] let pbits = size (bits t) in let i = ind /. pbits in assert (v i == v ind / bits t); let j = ind %. pbits in assert (v j == v ind % bits t); let p1 = n.(i) >>. j in if i +! 1ul <. len && 0ul <. j then p1 |. (n.(i +! 1ul) <<. (pbits -! j)) else p1 inline_for_extraction noextract
false
true
Hacl.Bignum.Lib.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_get_bits_st : t: Hacl.Bignum.Definitions.limb_t -> Type0
[]
Hacl.Bignum.Lib.bn_get_bits_st
{ "file_name": "code/bignum/Hacl.Bignum.Lib.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
t: Hacl.Bignum.Definitions.limb_t -> Type0
{ "end_col": 49, "end_line": 182, "start_col": 4, "start_line": 175 }
Prims.Tot
val bn_get_bits: #t:_ -> bn_get_bits_st t
[ { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Lib", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_get_bits #t = match t with | U32 -> bn_get_bits_u32 | U64 -> bn_get_bits_u64
val bn_get_bits: #t:_ -> bn_get_bits_st t let bn_get_bits #t =
false
null
false
match t with | U32 -> bn_get_bits_u32 | U64 -> bn_get_bits_u64
{ "checked_file": "Hacl.Bignum.Lib.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Lib.fst" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Hacl.Bignum.Lib.bn_get_bits_u32", "Hacl.Bignum.Lib.bn_get_bits_u64", "Hacl.Bignum.Lib.bn_get_bits_st" ]
[]
module Hacl.Bignum.Lib open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Base open Hacl.Bignum.Definitions module S = Hacl.Spec.Bignum.Lib module ST = FStar.HyperStack.ST module Loops = Lib.LoopCombinators module LSeq = Lib.Sequence #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// /// Get and set i-th bit of a bignum /// inline_for_extraction noextract val bn_get_ith_bit: #t:limb_t -> len:size_t -> b:lbignum t len -> i:size_t{v i / bits t < v len} -> Stack (limb t) (requires fun h -> live h b) (ensures fun h0 r h1 -> h0 == h1 /\ r == S.bn_get_ith_bit (as_seq h0 b) (v i)) let bn_get_ith_bit #t len input ind = [@inline_let] let pbits = size (bits t) in let i = ind /. pbits in assert (v i == v ind / bits t); let j = ind %. pbits in assert (v j == v ind % bits t); let tmp = input.(i) in (tmp >>. j) &. uint #t 1 inline_for_extraction noextract val bn_set_ith_bit: #t:limb_t -> len:size_t -> b:lbignum t len -> i:size_t{v i / bits t < v len} -> Stack unit (requires fun h -> live h b) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ as_seq h1 b == S.bn_set_ith_bit (as_seq h0 b) (v i)) let bn_set_ith_bit #t len input ind = [@inline_let] let pbits = size (bits t) in let i = ind /. pbits in assert (v i == v ind / bits t); let j = ind %. pbits in assert (v j == v ind % bits t); input.(i) <- input.(i) |. (uint #t 1 <<. j) inline_for_extraction noextract val cswap2_st: #t:limb_t -> len:size_t -> bit:limb t -> b1:lbignum t len -> b2:lbignum t len -> Stack unit (requires fun h -> live h b1 /\ live h b2 /\ disjoint b1 b2) (ensures fun h0 _ h1 -> modifies (loc b1 |+| loc b2) h0 h1 /\ (as_seq h1 b1, as_seq h1 b2) == S.cswap2 bit (as_seq h0 b1) (as_seq h0 b2)) let cswap2_st #t len bit b1 b2 = [@inline_let] let mask = uint #t 0 -. bit in [@inline_let] let spec h0 = S.cswap2_f mask in let h0 = ST.get () in loop2 h0 len b1 b2 spec (fun i -> Loops.unfold_repeati (v len) (spec h0) (as_seq h0 b1, as_seq h0 b2) (v i); let dummy = mask &. (b1.(i) ^. b2.(i)) in b1.(i) <- b1.(i) ^. dummy; b2.(i) <- b2.(i) ^. dummy ) inline_for_extraction noextract let bn_get_top_index_st (t:limb_t) (len:size_t{0 < v len}) = b:lbignum t len -> Stack (limb t) (requires fun h -> live h b) (ensures fun h0 r h1 -> modifies0 h0 h1 /\ v r == S.bn_get_top_index (as_seq h0 b)) inline_for_extraction noextract val mk_bn_get_top_index: #t:limb_t -> len:size_t{0 < v len} -> bn_get_top_index_st t len let mk_bn_get_top_index #t len b = push_frame (); let priv = create 1ul (uint #t 0) in let h0 = ST.get () in [@ inline_let] let refl h i = v (LSeq.index (as_seq h priv) 0) in [@ inline_let] let spec h0 = S.bn_get_top_index_f (as_seq h0 b) in [@ inline_let] let inv h (i:nat{i <= v len}) = modifies1 priv h0 h /\ live h priv /\ live h b /\ disjoint priv b /\ refl h i == Loops.repeat_gen i (S.bn_get_top_index_t (v len)) (spec h0) (refl h0 0) in Loops.eq_repeat_gen0 (v len) (S.bn_get_top_index_t (v len)) (spec h0) (refl h0 0); Lib.Loops.for 0ul len inv (fun i -> Loops.unfold_repeat_gen (v len) (S.bn_get_top_index_t (v len)) (spec h0) (refl h0 0) (v i); let mask = eq_mask b.(i) (zeros t SEC) in let h1 = ST.get () in priv.(0ul) <- mask_select mask priv.(0ul) (size_to_limb i); mask_select_lemma mask (LSeq.index (as_seq h1 priv) 0) (size_to_limb i)); let res = priv.(0ul) in pop_frame (); res let bn_get_top_index_u32 len: bn_get_top_index_st U32 len = mk_bn_get_top_index #U32 len let bn_get_top_index_u64 len: bn_get_top_index_st U64 len = mk_bn_get_top_index #U64 len inline_for_extraction noextract val bn_get_top_index: #t:_ -> len:_ -> bn_get_top_index_st t len let bn_get_top_index #t = match t with | U32 -> bn_get_top_index_u32 | U64 -> bn_get_top_index_u64 inline_for_extraction noextract val bn_get_bits_limb: #t:limb_t -> len:size_t -> n:lbignum t len -> ind:size_t{v ind / bits t < v len} -> Stack (limb t) (requires fun h -> live h n) (ensures fun h0 r h1 -> h0 == h1 /\ r == S.bn_get_bits_limb (as_seq h0 n) (v ind)) let bn_get_bits_limb #t len n ind = [@inline_let] let pbits = size (bits t) in let i = ind /. pbits in assert (v i == v ind / bits t); let j = ind %. pbits in assert (v j == v ind % bits t); let p1 = n.(i) >>. j in if i +! 1ul <. len && 0ul <. j then p1 |. (n.(i +! 1ul) <<. (pbits -! j)) else p1 inline_for_extraction noextract let bn_get_bits_st (t:limb_t) = len:size_t -> b:lbignum t len -> i:size_t -> l:size_t{v l < bits t /\ v i / bits t < v len} -> Stack (limb t) (requires fun h -> live h b) (ensures fun h0 r h1 -> h0 == h1 /\ r == S.bn_get_bits (as_seq h0 b) (v i) (v l)) inline_for_extraction noextract val mk_bn_get_bits: #t:limb_t -> bn_get_bits_st t let mk_bn_get_bits #t len b i l = [@inline_let] let mask_l = (uint #t #SEC 1 <<. l) -. uint #t 1 in bn_get_bits_limb len b i &. mask_l [@CInline] let bn_get_bits_u32: bn_get_bits_st U32 = mk_bn_get_bits [@CInline] let bn_get_bits_u64: bn_get_bits_st U64 = mk_bn_get_bits inline_for_extraction noextract val bn_get_bits: #t:_ -> bn_get_bits_st t
false
false
Hacl.Bignum.Lib.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_get_bits: #t:_ -> bn_get_bits_st t
[]
Hacl.Bignum.Lib.bn_get_bits
{ "file_name": "code/bignum/Hacl.Bignum.Lib.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Hacl.Bignum.Lib.bn_get_bits_st t
{ "end_col": 26, "end_line": 202, "start_col": 2, "start_line": 200 }
Prims.Tot
val mk_bn_get_bits: #t:limb_t -> bn_get_bits_st t
[ { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Lib", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mk_bn_get_bits #t len b i l = [@inline_let] let mask_l = (uint #t #SEC 1 <<. l) -. uint #t 1 in bn_get_bits_limb len b i &. mask_l
val mk_bn_get_bits: #t:limb_t -> bn_get_bits_st t let mk_bn_get_bits #t len b i l =
false
null
false
[@@ inline_let ]let mask_l = (uint #t #SEC 1 <<. l) -. uint #t 1 in bn_get_bits_limb len b i &. mask_l
{ "checked_file": "Hacl.Bignum.Lib.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Lib.fst" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Lib.IntTypes.size_t", "Hacl.Bignum.Definitions.lbignum", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.IntTypes.bits", "Prims.op_Division", "Lib.IntTypes.op_Amp_Dot", "Lib.IntTypes.SEC", "Hacl.Bignum.Definitions.limb", "Lib.IntTypes.int_t", "Hacl.Bignum.Lib.bn_get_bits_limb", "Lib.IntTypes.op_Subtraction_Dot", "Lib.IntTypes.op_Less_Less_Dot", "Lib.IntTypes.uint" ]
[]
module Hacl.Bignum.Lib open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Base open Hacl.Bignum.Definitions module S = Hacl.Spec.Bignum.Lib module ST = FStar.HyperStack.ST module Loops = Lib.LoopCombinators module LSeq = Lib.Sequence #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// /// Get and set i-th bit of a bignum /// inline_for_extraction noextract val bn_get_ith_bit: #t:limb_t -> len:size_t -> b:lbignum t len -> i:size_t{v i / bits t < v len} -> Stack (limb t) (requires fun h -> live h b) (ensures fun h0 r h1 -> h0 == h1 /\ r == S.bn_get_ith_bit (as_seq h0 b) (v i)) let bn_get_ith_bit #t len input ind = [@inline_let] let pbits = size (bits t) in let i = ind /. pbits in assert (v i == v ind / bits t); let j = ind %. pbits in assert (v j == v ind % bits t); let tmp = input.(i) in (tmp >>. j) &. uint #t 1 inline_for_extraction noextract val bn_set_ith_bit: #t:limb_t -> len:size_t -> b:lbignum t len -> i:size_t{v i / bits t < v len} -> Stack unit (requires fun h -> live h b) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ as_seq h1 b == S.bn_set_ith_bit (as_seq h0 b) (v i)) let bn_set_ith_bit #t len input ind = [@inline_let] let pbits = size (bits t) in let i = ind /. pbits in assert (v i == v ind / bits t); let j = ind %. pbits in assert (v j == v ind % bits t); input.(i) <- input.(i) |. (uint #t 1 <<. j) inline_for_extraction noextract val cswap2_st: #t:limb_t -> len:size_t -> bit:limb t -> b1:lbignum t len -> b2:lbignum t len -> Stack unit (requires fun h -> live h b1 /\ live h b2 /\ disjoint b1 b2) (ensures fun h0 _ h1 -> modifies (loc b1 |+| loc b2) h0 h1 /\ (as_seq h1 b1, as_seq h1 b2) == S.cswap2 bit (as_seq h0 b1) (as_seq h0 b2)) let cswap2_st #t len bit b1 b2 = [@inline_let] let mask = uint #t 0 -. bit in [@inline_let] let spec h0 = S.cswap2_f mask in let h0 = ST.get () in loop2 h0 len b1 b2 spec (fun i -> Loops.unfold_repeati (v len) (spec h0) (as_seq h0 b1, as_seq h0 b2) (v i); let dummy = mask &. (b1.(i) ^. b2.(i)) in b1.(i) <- b1.(i) ^. dummy; b2.(i) <- b2.(i) ^. dummy ) inline_for_extraction noextract let bn_get_top_index_st (t:limb_t) (len:size_t{0 < v len}) = b:lbignum t len -> Stack (limb t) (requires fun h -> live h b) (ensures fun h0 r h1 -> modifies0 h0 h1 /\ v r == S.bn_get_top_index (as_seq h0 b)) inline_for_extraction noextract val mk_bn_get_top_index: #t:limb_t -> len:size_t{0 < v len} -> bn_get_top_index_st t len let mk_bn_get_top_index #t len b = push_frame (); let priv = create 1ul (uint #t 0) in let h0 = ST.get () in [@ inline_let] let refl h i = v (LSeq.index (as_seq h priv) 0) in [@ inline_let] let spec h0 = S.bn_get_top_index_f (as_seq h0 b) in [@ inline_let] let inv h (i:nat{i <= v len}) = modifies1 priv h0 h /\ live h priv /\ live h b /\ disjoint priv b /\ refl h i == Loops.repeat_gen i (S.bn_get_top_index_t (v len)) (spec h0) (refl h0 0) in Loops.eq_repeat_gen0 (v len) (S.bn_get_top_index_t (v len)) (spec h0) (refl h0 0); Lib.Loops.for 0ul len inv (fun i -> Loops.unfold_repeat_gen (v len) (S.bn_get_top_index_t (v len)) (spec h0) (refl h0 0) (v i); let mask = eq_mask b.(i) (zeros t SEC) in let h1 = ST.get () in priv.(0ul) <- mask_select mask priv.(0ul) (size_to_limb i); mask_select_lemma mask (LSeq.index (as_seq h1 priv) 0) (size_to_limb i)); let res = priv.(0ul) in pop_frame (); res let bn_get_top_index_u32 len: bn_get_top_index_st U32 len = mk_bn_get_top_index #U32 len let bn_get_top_index_u64 len: bn_get_top_index_st U64 len = mk_bn_get_top_index #U64 len inline_for_extraction noextract val bn_get_top_index: #t:_ -> len:_ -> bn_get_top_index_st t len let bn_get_top_index #t = match t with | U32 -> bn_get_top_index_u32 | U64 -> bn_get_top_index_u64 inline_for_extraction noextract val bn_get_bits_limb: #t:limb_t -> len:size_t -> n:lbignum t len -> ind:size_t{v ind / bits t < v len} -> Stack (limb t) (requires fun h -> live h n) (ensures fun h0 r h1 -> h0 == h1 /\ r == S.bn_get_bits_limb (as_seq h0 n) (v ind)) let bn_get_bits_limb #t len n ind = [@inline_let] let pbits = size (bits t) in let i = ind /. pbits in assert (v i == v ind / bits t); let j = ind %. pbits in assert (v j == v ind % bits t); let p1 = n.(i) >>. j in if i +! 1ul <. len && 0ul <. j then p1 |. (n.(i +! 1ul) <<. (pbits -! j)) else p1 inline_for_extraction noextract let bn_get_bits_st (t:limb_t) = len:size_t -> b:lbignum t len -> i:size_t -> l:size_t{v l < bits t /\ v i / bits t < v len} -> Stack (limb t) (requires fun h -> live h b) (ensures fun h0 r h1 -> h0 == h1 /\ r == S.bn_get_bits (as_seq h0 b) (v i) (v l)) inline_for_extraction noextract val mk_bn_get_bits: #t:limb_t -> bn_get_bits_st t
false
false
Hacl.Bignum.Lib.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mk_bn_get_bits: #t:limb_t -> bn_get_bits_st t
[]
Hacl.Bignum.Lib.mk_bn_get_bits
{ "file_name": "code/bignum/Hacl.Bignum.Lib.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Hacl.Bignum.Lib.bn_get_bits_st t
{ "end_col": 36, "end_line": 189, "start_col": 2, "start_line": 188 }
FStar.HyperStack.ST.Stack
val cswap2_st: #t:limb_t -> len:size_t -> bit:limb t -> b1:lbignum t len -> b2:lbignum t len -> Stack unit (requires fun h -> live h b1 /\ live h b2 /\ disjoint b1 b2) (ensures fun h0 _ h1 -> modifies (loc b1 |+| loc b2) h0 h1 /\ (as_seq h1 b1, as_seq h1 b2) == S.cswap2 bit (as_seq h0 b1) (as_seq h0 b2))
[ { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Lib", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let cswap2_st #t len bit b1 b2 = [@inline_let] let mask = uint #t 0 -. bit in [@inline_let] let spec h0 = S.cswap2_f mask in let h0 = ST.get () in loop2 h0 len b1 b2 spec (fun i -> Loops.unfold_repeati (v len) (spec h0) (as_seq h0 b1, as_seq h0 b2) (v i); let dummy = mask &. (b1.(i) ^. b2.(i)) in b1.(i) <- b1.(i) ^. dummy; b2.(i) <- b2.(i) ^. dummy )
val cswap2_st: #t:limb_t -> len:size_t -> bit:limb t -> b1:lbignum t len -> b2:lbignum t len -> Stack unit (requires fun h -> live h b1 /\ live h b2 /\ disjoint b1 b2) (ensures fun h0 _ h1 -> modifies (loc b1 |+| loc b2) h0 h1 /\ (as_seq h1 b1, as_seq h1 b2) == S.cswap2 bit (as_seq h0 b1) (as_seq h0 b2)) let cswap2_st #t len bit b1 b2 =
true
null
false
[@@ inline_let ]let mask = uint #t 0 -. bit in [@@ inline_let ]let spec h0 = S.cswap2_f mask in let h0 = ST.get () in loop2 h0 len b1 b2 spec (fun i -> Loops.unfold_repeati (v len) (spec h0) (as_seq h0 b1, as_seq h0 b2) (v i); let dummy = mask &. (b1.(i) ^. b2.(i)) in b1.(i) <- b1.(i) ^. dummy; b2.(i) <- b2.(i) ^. dummy)
{ "checked_file": "Hacl.Bignum.Lib.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Lib.fst" }
[]
[ "Hacl.Bignum.Definitions.limb_t", "Lib.IntTypes.size_t", "Hacl.Bignum.Definitions.limb", "Hacl.Bignum.Definitions.lbignum", "Lib.Buffer.loop2", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.Buffer.op_Array_Assignment", "Prims.unit", "Lib.IntTypes.op_Hat_Dot", "Lib.IntTypes.SEC", "Lib.IntTypes.int_t", "Lib.Buffer.op_Array_Access", "Lib.Buffer.MUT", "Lib.IntTypes.op_Amp_Dot", "Lib.LoopCombinators.unfold_repeati", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.Definitions.lbignum", "FStar.Pervasives.Native.Mktuple2", "Lib.Buffer.as_seq", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Prims.nat", "Hacl.Spec.Bignum.Lib.cswap2_f", "Lib.IntTypes.op_Subtraction_Dot", "Lib.IntTypes.uint" ]
[]
module Hacl.Bignum.Lib open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Base open Hacl.Bignum.Definitions module S = Hacl.Spec.Bignum.Lib module ST = FStar.HyperStack.ST module Loops = Lib.LoopCombinators module LSeq = Lib.Sequence #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// /// Get and set i-th bit of a bignum /// inline_for_extraction noextract val bn_get_ith_bit: #t:limb_t -> len:size_t -> b:lbignum t len -> i:size_t{v i / bits t < v len} -> Stack (limb t) (requires fun h -> live h b) (ensures fun h0 r h1 -> h0 == h1 /\ r == S.bn_get_ith_bit (as_seq h0 b) (v i)) let bn_get_ith_bit #t len input ind = [@inline_let] let pbits = size (bits t) in let i = ind /. pbits in assert (v i == v ind / bits t); let j = ind %. pbits in assert (v j == v ind % bits t); let tmp = input.(i) in (tmp >>. j) &. uint #t 1 inline_for_extraction noextract val bn_set_ith_bit: #t:limb_t -> len:size_t -> b:lbignum t len -> i:size_t{v i / bits t < v len} -> Stack unit (requires fun h -> live h b) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ as_seq h1 b == S.bn_set_ith_bit (as_seq h0 b) (v i)) let bn_set_ith_bit #t len input ind = [@inline_let] let pbits = size (bits t) in let i = ind /. pbits in assert (v i == v ind / bits t); let j = ind %. pbits in assert (v j == v ind % bits t); input.(i) <- input.(i) |. (uint #t 1 <<. j) inline_for_extraction noextract val cswap2_st: #t:limb_t -> len:size_t -> bit:limb t -> b1:lbignum t len -> b2:lbignum t len -> Stack unit (requires fun h -> live h b1 /\ live h b2 /\ disjoint b1 b2) (ensures fun h0 _ h1 -> modifies (loc b1 |+| loc b2) h0 h1 /\ (as_seq h1 b1, as_seq h1 b2) == S.cswap2 bit (as_seq h0 b1) (as_seq h0 b2))
false
false
Hacl.Bignum.Lib.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val cswap2_st: #t:limb_t -> len:size_t -> bit:limb t -> b1:lbignum t len -> b2:lbignum t len -> Stack unit (requires fun h -> live h b1 /\ live h b2 /\ disjoint b1 b2) (ensures fun h0 _ h1 -> modifies (loc b1 |+| loc b2) h0 h1 /\ (as_seq h1 b1, as_seq h1 b2) == S.cswap2 bit (as_seq h0 b1) (as_seq h0 b2))
[]
Hacl.Bignum.Lib.cswap2_st
{ "file_name": "code/bignum/Hacl.Bignum.Lib.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
len: Lib.IntTypes.size_t -> bit: Hacl.Bignum.Definitions.limb t -> b1: Hacl.Bignum.Definitions.lbignum t len -> b2: Hacl.Bignum.Definitions.lbignum t len -> FStar.HyperStack.ST.Stack Prims.unit
{ "end_col": 3, "end_line": 93, "start_col": 2, "start_line": 81 }
FStar.HyperStack.ST.Stack
val bn_set_ith_bit: #t:limb_t -> len:size_t -> b:lbignum t len -> i:size_t{v i / bits t < v len} -> Stack unit (requires fun h -> live h b) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ as_seq h1 b == S.bn_set_ith_bit (as_seq h0 b) (v i))
[ { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Lib", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_set_ith_bit #t len input ind = [@inline_let] let pbits = size (bits t) in let i = ind /. pbits in assert (v i == v ind / bits t); let j = ind %. pbits in assert (v j == v ind % bits t); input.(i) <- input.(i) |. (uint #t 1 <<. j)
val bn_set_ith_bit: #t:limb_t -> len:size_t -> b:lbignum t len -> i:size_t{v i / bits t < v len} -> Stack unit (requires fun h -> live h b) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ as_seq h1 b == S.bn_set_ith_bit (as_seq h0 b) (v i)) let bn_set_ith_bit #t len input ind =
true
null
false
[@@ inline_let ]let pbits = size (bits t) in let i = ind /. pbits in assert (v i == v ind / bits t); let j = ind %. pbits in assert (v j == v ind % bits t); input.(i) <- input.(i) |. (uint #t 1 <<. j)
{ "checked_file": "Hacl.Bignum.Lib.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Lib.fst" }
[]
[ "Hacl.Bignum.Definitions.limb_t", "Lib.IntTypes.size_t", "Hacl.Bignum.Definitions.lbignum", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Division", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.IntTypes.bits", "Lib.Buffer.op_Array_Assignment", "Hacl.Bignum.Definitions.limb", "Prims.unit", "Lib.IntTypes.op_Bar_Dot", "Lib.IntTypes.SEC", "Lib.IntTypes.op_Less_Less_Dot", "Lib.IntTypes.uint", "Lib.IntTypes.int_t", "Lib.Buffer.op_Array_Access", "Lib.Buffer.MUT", "Prims._assert", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "Lib.IntTypes.op_Percent_Dot", "Lib.IntTypes.op_Slash_Dot", "Lib.IntTypes.size" ]
[]
module Hacl.Bignum.Lib open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Base open Hacl.Bignum.Definitions module S = Hacl.Spec.Bignum.Lib module ST = FStar.HyperStack.ST module Loops = Lib.LoopCombinators module LSeq = Lib.Sequence #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// /// Get and set i-th bit of a bignum /// inline_for_extraction noextract val bn_get_ith_bit: #t:limb_t -> len:size_t -> b:lbignum t len -> i:size_t{v i / bits t < v len} -> Stack (limb t) (requires fun h -> live h b) (ensures fun h0 r h1 -> h0 == h1 /\ r == S.bn_get_ith_bit (as_seq h0 b) (v i)) let bn_get_ith_bit #t len input ind = [@inline_let] let pbits = size (bits t) in let i = ind /. pbits in assert (v i == v ind / bits t); let j = ind %. pbits in assert (v j == v ind % bits t); let tmp = input.(i) in (tmp >>. j) &. uint #t 1 inline_for_extraction noextract val bn_set_ith_bit: #t:limb_t -> len:size_t -> b:lbignum t len -> i:size_t{v i / bits t < v len} -> Stack unit (requires fun h -> live h b) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ as_seq h1 b == S.bn_set_ith_bit (as_seq h0 b) (v i))
false
false
Hacl.Bignum.Lib.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_set_ith_bit: #t:limb_t -> len:size_t -> b:lbignum t len -> i:size_t{v i / bits t < v len} -> Stack unit (requires fun h -> live h b) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ as_seq h1 b == S.bn_set_ith_bit (as_seq h0 b) (v i))
[]
Hacl.Bignum.Lib.bn_set_ith_bit
{ "file_name": "code/bignum/Hacl.Bignum.Lib.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
len: Lib.IntTypes.size_t -> b: Hacl.Bignum.Definitions.lbignum t len -> i: Lib.IntTypes.size_t{Lib.IntTypes.v i / Lib.IntTypes.bits t < Lib.IntTypes.v len} -> FStar.HyperStack.ST.Stack Prims.unit
{ "end_col": 45, "end_line": 65, "start_col": 2, "start_line": 59 }
FStar.HyperStack.ST.Stack
val bn_get_ith_bit: #t:limb_t -> len:size_t -> b:lbignum t len -> i:size_t{v i / bits t < v len} -> Stack (limb t) (requires fun h -> live h b) (ensures fun h0 r h1 -> h0 == h1 /\ r == S.bn_get_ith_bit (as_seq h0 b) (v i))
[ { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Lib", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_get_ith_bit #t len input ind = [@inline_let] let pbits = size (bits t) in let i = ind /. pbits in assert (v i == v ind / bits t); let j = ind %. pbits in assert (v j == v ind % bits t); let tmp = input.(i) in (tmp >>. j) &. uint #t 1
val bn_get_ith_bit: #t:limb_t -> len:size_t -> b:lbignum t len -> i:size_t{v i / bits t < v len} -> Stack (limb t) (requires fun h -> live h b) (ensures fun h0 r h1 -> h0 == h1 /\ r == S.bn_get_ith_bit (as_seq h0 b) (v i)) let bn_get_ith_bit #t len input ind =
true
null
false
[@@ inline_let ]let pbits = size (bits t) in let i = ind /. pbits in assert (v i == v ind / bits t); let j = ind %. pbits in assert (v j == v ind % bits t); let tmp = input.(i) in (tmp >>. j) &. uint #t 1
{ "checked_file": "Hacl.Bignum.Lib.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Lib.fst" }
[]
[ "Hacl.Bignum.Definitions.limb_t", "Lib.IntTypes.size_t", "Hacl.Bignum.Definitions.lbignum", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Division", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.IntTypes.bits", "Lib.IntTypes.op_Amp_Dot", "Lib.IntTypes.SEC", "Lib.IntTypes.op_Greater_Greater_Dot", "Lib.IntTypes.uint", "Hacl.Bignum.Definitions.limb", "Lib.Buffer.op_Array_Access", "Lib.Buffer.MUT", "Prims.unit", "Prims._assert", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Percent_Dot", "Lib.IntTypes.op_Slash_Dot", "Lib.IntTypes.size" ]
[]
module Hacl.Bignum.Lib open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Base open Hacl.Bignum.Definitions module S = Hacl.Spec.Bignum.Lib module ST = FStar.HyperStack.ST module Loops = Lib.LoopCombinators module LSeq = Lib.Sequence #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// /// Get and set i-th bit of a bignum /// inline_for_extraction noextract val bn_get_ith_bit: #t:limb_t -> len:size_t -> b:lbignum t len -> i:size_t{v i / bits t < v len} -> Stack (limb t) (requires fun h -> live h b) (ensures fun h0 r h1 -> h0 == h1 /\ r == S.bn_get_ith_bit (as_seq h0 b) (v i))
false
false
Hacl.Bignum.Lib.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_get_ith_bit: #t:limb_t -> len:size_t -> b:lbignum t len -> i:size_t{v i / bits t < v len} -> Stack (limb t) (requires fun h -> live h b) (ensures fun h0 r h1 -> h0 == h1 /\ r == S.bn_get_ith_bit (as_seq h0 b) (v i))
[]
Hacl.Bignum.Lib.bn_get_ith_bit
{ "file_name": "code/bignum/Hacl.Bignum.Lib.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
len: Lib.IntTypes.size_t -> b: Hacl.Bignum.Definitions.lbignum t len -> i: Lib.IntTypes.size_t{Lib.IntTypes.v i / Lib.IntTypes.bits t < Lib.IntTypes.v len} -> FStar.HyperStack.ST.Stack (Hacl.Bignum.Definitions.limb t)
{ "end_col": 26, "end_line": 44, "start_col": 2, "start_line": 37 }
FStar.HyperStack.ST.Stack
val bn_get_bits_limb: #t:limb_t -> len:size_t -> n:lbignum t len -> ind:size_t{v ind / bits t < v len} -> Stack (limb t) (requires fun h -> live h n) (ensures fun h0 r h1 -> h0 == h1 /\ r == S.bn_get_bits_limb (as_seq h0 n) (v ind))
[ { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Lib", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_get_bits_limb #t len n ind = [@inline_let] let pbits = size (bits t) in let i = ind /. pbits in assert (v i == v ind / bits t); let j = ind %. pbits in assert (v j == v ind % bits t); let p1 = n.(i) >>. j in if i +! 1ul <. len && 0ul <. j then p1 |. (n.(i +! 1ul) <<. (pbits -! j)) else p1
val bn_get_bits_limb: #t:limb_t -> len:size_t -> n:lbignum t len -> ind:size_t{v ind / bits t < v len} -> Stack (limb t) (requires fun h -> live h n) (ensures fun h0 r h1 -> h0 == h1 /\ r == S.bn_get_bits_limb (as_seq h0 n) (v ind)) let bn_get_bits_limb #t len n ind =
true
null
false
[@@ inline_let ]let pbits = size (bits t) in let i = ind /. pbits in assert (v i == v ind / bits t); let j = ind %. pbits in assert (v j == v ind % bits t); let p1 = n.(i) >>. j in if i +! 1ul <. len && 0ul <. j then p1 |. (n.(i +! 1ul) <<. (pbits -! j)) else p1
{ "checked_file": "Hacl.Bignum.Lib.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Lib.fst" }
[]
[ "Hacl.Bignum.Definitions.limb_t", "Lib.IntTypes.size_t", "Hacl.Bignum.Definitions.lbignum", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Division", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.IntTypes.bits", "Prims.op_AmpAmp", "Lib.IntTypes.op_Less_Dot", "Lib.IntTypes.op_Plus_Bang", "FStar.UInt32.__uint_to_t", "Lib.IntTypes.op_Bar_Dot", "Lib.IntTypes.SEC", "Hacl.Bignum.Definitions.limb", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Less_Less_Dot", "Lib.IntTypes.op_Subtraction_Bang", "Lib.Buffer.op_Array_Access", "Lib.Buffer.MUT", "Prims.bool", "Lib.IntTypes.op_Greater_Greater_Dot", "Prims.unit", "Prims._assert", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "Lib.IntTypes.op_Percent_Dot", "Lib.IntTypes.op_Slash_Dot", "Lib.IntTypes.size" ]
[]
module Hacl.Bignum.Lib open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Base open Hacl.Bignum.Definitions module S = Hacl.Spec.Bignum.Lib module ST = FStar.HyperStack.ST module Loops = Lib.LoopCombinators module LSeq = Lib.Sequence #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// /// Get and set i-th bit of a bignum /// inline_for_extraction noextract val bn_get_ith_bit: #t:limb_t -> len:size_t -> b:lbignum t len -> i:size_t{v i / bits t < v len} -> Stack (limb t) (requires fun h -> live h b) (ensures fun h0 r h1 -> h0 == h1 /\ r == S.bn_get_ith_bit (as_seq h0 b) (v i)) let bn_get_ith_bit #t len input ind = [@inline_let] let pbits = size (bits t) in let i = ind /. pbits in assert (v i == v ind / bits t); let j = ind %. pbits in assert (v j == v ind % bits t); let tmp = input.(i) in (tmp >>. j) &. uint #t 1 inline_for_extraction noextract val bn_set_ith_bit: #t:limb_t -> len:size_t -> b:lbignum t len -> i:size_t{v i / bits t < v len} -> Stack unit (requires fun h -> live h b) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ as_seq h1 b == S.bn_set_ith_bit (as_seq h0 b) (v i)) let bn_set_ith_bit #t len input ind = [@inline_let] let pbits = size (bits t) in let i = ind /. pbits in assert (v i == v ind / bits t); let j = ind %. pbits in assert (v j == v ind % bits t); input.(i) <- input.(i) |. (uint #t 1 <<. j) inline_for_extraction noextract val cswap2_st: #t:limb_t -> len:size_t -> bit:limb t -> b1:lbignum t len -> b2:lbignum t len -> Stack unit (requires fun h -> live h b1 /\ live h b2 /\ disjoint b1 b2) (ensures fun h0 _ h1 -> modifies (loc b1 |+| loc b2) h0 h1 /\ (as_seq h1 b1, as_seq h1 b2) == S.cswap2 bit (as_seq h0 b1) (as_seq h0 b2)) let cswap2_st #t len bit b1 b2 = [@inline_let] let mask = uint #t 0 -. bit in [@inline_let] let spec h0 = S.cswap2_f mask in let h0 = ST.get () in loop2 h0 len b1 b2 spec (fun i -> Loops.unfold_repeati (v len) (spec h0) (as_seq h0 b1, as_seq h0 b2) (v i); let dummy = mask &. (b1.(i) ^. b2.(i)) in b1.(i) <- b1.(i) ^. dummy; b2.(i) <- b2.(i) ^. dummy ) inline_for_extraction noextract let bn_get_top_index_st (t:limb_t) (len:size_t{0 < v len}) = b:lbignum t len -> Stack (limb t) (requires fun h -> live h b) (ensures fun h0 r h1 -> modifies0 h0 h1 /\ v r == S.bn_get_top_index (as_seq h0 b)) inline_for_extraction noextract val mk_bn_get_top_index: #t:limb_t -> len:size_t{0 < v len} -> bn_get_top_index_st t len let mk_bn_get_top_index #t len b = push_frame (); let priv = create 1ul (uint #t 0) in let h0 = ST.get () in [@ inline_let] let refl h i = v (LSeq.index (as_seq h priv) 0) in [@ inline_let] let spec h0 = S.bn_get_top_index_f (as_seq h0 b) in [@ inline_let] let inv h (i:nat{i <= v len}) = modifies1 priv h0 h /\ live h priv /\ live h b /\ disjoint priv b /\ refl h i == Loops.repeat_gen i (S.bn_get_top_index_t (v len)) (spec h0) (refl h0 0) in Loops.eq_repeat_gen0 (v len) (S.bn_get_top_index_t (v len)) (spec h0) (refl h0 0); Lib.Loops.for 0ul len inv (fun i -> Loops.unfold_repeat_gen (v len) (S.bn_get_top_index_t (v len)) (spec h0) (refl h0 0) (v i); let mask = eq_mask b.(i) (zeros t SEC) in let h1 = ST.get () in priv.(0ul) <- mask_select mask priv.(0ul) (size_to_limb i); mask_select_lemma mask (LSeq.index (as_seq h1 priv) 0) (size_to_limb i)); let res = priv.(0ul) in pop_frame (); res let bn_get_top_index_u32 len: bn_get_top_index_st U32 len = mk_bn_get_top_index #U32 len let bn_get_top_index_u64 len: bn_get_top_index_st U64 len = mk_bn_get_top_index #U64 len inline_for_extraction noextract val bn_get_top_index: #t:_ -> len:_ -> bn_get_top_index_st t len let bn_get_top_index #t = match t with | U32 -> bn_get_top_index_u32 | U64 -> bn_get_top_index_u64 inline_for_extraction noextract val bn_get_bits_limb: #t:limb_t -> len:size_t -> n:lbignum t len -> ind:size_t{v ind / bits t < v len} -> Stack (limb t) (requires fun h -> live h n) (ensures fun h0 r h1 -> h0 == h1 /\ r == S.bn_get_bits_limb (as_seq h0 n) (v ind))
false
false
Hacl.Bignum.Lib.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_get_bits_limb: #t:limb_t -> len:size_t -> n:lbignum t len -> ind:size_t{v ind / bits t < v len} -> Stack (limb t) (requires fun h -> live h n) (ensures fun h0 r h1 -> h0 == h1 /\ r == S.bn_get_bits_limb (as_seq h0 n) (v ind))
[]
Hacl.Bignum.Lib.bn_get_bits_limb
{ "file_name": "code/bignum/Hacl.Bignum.Lib.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
len: Lib.IntTypes.size_t -> n: Hacl.Bignum.Definitions.lbignum t len -> ind: Lib.IntTypes.size_t{Lib.IntTypes.v ind / Lib.IntTypes.bits t < Lib.IntTypes.v len} -> FStar.HyperStack.ST.Stack (Hacl.Bignum.Definitions.limb t)
{ "end_col": 6, "end_line": 170, "start_col": 2, "start_line": 160 }
Prims.Tot
val mk_bn_get_top_index: #t:limb_t -> len:size_t{0 < v len} -> bn_get_top_index_st t len
[ { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Lib", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mk_bn_get_top_index #t len b = push_frame (); let priv = create 1ul (uint #t 0) in let h0 = ST.get () in [@ inline_let] let refl h i = v (LSeq.index (as_seq h priv) 0) in [@ inline_let] let spec h0 = S.bn_get_top_index_f (as_seq h0 b) in [@ inline_let] let inv h (i:nat{i <= v len}) = modifies1 priv h0 h /\ live h priv /\ live h b /\ disjoint priv b /\ refl h i == Loops.repeat_gen i (S.bn_get_top_index_t (v len)) (spec h0) (refl h0 0) in Loops.eq_repeat_gen0 (v len) (S.bn_get_top_index_t (v len)) (spec h0) (refl h0 0); Lib.Loops.for 0ul len inv (fun i -> Loops.unfold_repeat_gen (v len) (S.bn_get_top_index_t (v len)) (spec h0) (refl h0 0) (v i); let mask = eq_mask b.(i) (zeros t SEC) in let h1 = ST.get () in priv.(0ul) <- mask_select mask priv.(0ul) (size_to_limb i); mask_select_lemma mask (LSeq.index (as_seq h1 priv) 0) (size_to_limb i)); let res = priv.(0ul) in pop_frame (); res
val mk_bn_get_top_index: #t:limb_t -> len:size_t{0 < v len} -> bn_get_top_index_st t len let mk_bn_get_top_index #t len b =
false
null
false
push_frame (); let priv = create 1ul (uint #t 0) in let h0 = ST.get () in [@@ inline_let ]let refl h i = v (LSeq.index (as_seq h priv) 0) in [@@ inline_let ]let spec h0 = S.bn_get_top_index_f (as_seq h0 b) in [@@ inline_let ]let inv h (i: nat{i <= v len}) = modifies1 priv h0 h /\ live h priv /\ live h b /\ disjoint priv b /\ refl h i == Loops.repeat_gen i (S.bn_get_top_index_t (v len)) (spec h0) (refl h0 0) in Loops.eq_repeat_gen0 (v len) (S.bn_get_top_index_t (v len)) (spec h0) (refl h0 0); Lib.Loops.for 0ul len inv (fun i -> Loops.unfold_repeat_gen (v len) (S.bn_get_top_index_t (v len)) (spec h0) (refl h0 0) (v i); let mask = eq_mask b.(i) (zeros t SEC) in let h1 = ST.get () in priv.(0ul) <- mask_select mask priv.(0ul) (size_to_limb i); mask_select_lemma mask (LSeq.index (as_seq h1 priv) 0) (size_to_limb i)); let res = priv.(0ul) in pop_frame (); res
{ "checked_file": "Hacl.Bignum.Lib.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Lib.fst" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Bignum.Definitions.lbignum", "Hacl.Bignum.Definitions.limb", "Prims.unit", "FStar.HyperStack.ST.pop_frame", "Lib.IntTypes.int_t", "Lib.IntTypes.SEC", "Lib.Buffer.op_Array_Access", "Lib.Buffer.MUT", "FStar.UInt32.__uint_to_t", "Lib.Loops.for", "Prims.l_and", "Prims.op_LessThanOrEqual", "Hacl.Spec.Bignum.Base.mask_select_lemma", "Lib.Sequence.index", "Lib.Buffer.as_seq", "Hacl.Spec.Bignum.Base.size_to_limb", "Lib.Buffer.op_Array_Assignment", "Hacl.Spec.Bignum.Base.mask_select", "Hacl.Spec.Bignum.Definitions.limb", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Lib.IntTypes.eq_mask", "Lib.IntTypes.zeros", "Lib.LoopCombinators.unfold_repeat_gen", "Hacl.Spec.Bignum.Lib.bn_get_top_index_t", "Lib.LoopCombinators.eq_repeat_gen0", "Prims.nat", "Prims.logical", "Lib.Buffer.modifies1", "Lib.Buffer.live", "Lib.Buffer.disjoint", "Prims.eq2", "Prims.int", "Prims.l_or", "Prims.op_GreaterThanOrEqual", "Lib.IntTypes.range", "Lib.LoopCombinators.repeat_gen", "Prims.op_Addition", "Hacl.Spec.Bignum.Lib.bn_get_top_index_f", "Lib.Buffer.lbuffer_t", "FStar.UInt32.uint_to_t", "FStar.UInt32.t", "Lib.Buffer.create", "Lib.IntTypes.uint", "Lib.Buffer.lbuffer", "FStar.HyperStack.ST.push_frame" ]
[]
module Hacl.Bignum.Lib open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Base open Hacl.Bignum.Definitions module S = Hacl.Spec.Bignum.Lib module ST = FStar.HyperStack.ST module Loops = Lib.LoopCombinators module LSeq = Lib.Sequence #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// /// Get and set i-th bit of a bignum /// inline_for_extraction noextract val bn_get_ith_bit: #t:limb_t -> len:size_t -> b:lbignum t len -> i:size_t{v i / bits t < v len} -> Stack (limb t) (requires fun h -> live h b) (ensures fun h0 r h1 -> h0 == h1 /\ r == S.bn_get_ith_bit (as_seq h0 b) (v i)) let bn_get_ith_bit #t len input ind = [@inline_let] let pbits = size (bits t) in let i = ind /. pbits in assert (v i == v ind / bits t); let j = ind %. pbits in assert (v j == v ind % bits t); let tmp = input.(i) in (tmp >>. j) &. uint #t 1 inline_for_extraction noextract val bn_set_ith_bit: #t:limb_t -> len:size_t -> b:lbignum t len -> i:size_t{v i / bits t < v len} -> Stack unit (requires fun h -> live h b) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ as_seq h1 b == S.bn_set_ith_bit (as_seq h0 b) (v i)) let bn_set_ith_bit #t len input ind = [@inline_let] let pbits = size (bits t) in let i = ind /. pbits in assert (v i == v ind / bits t); let j = ind %. pbits in assert (v j == v ind % bits t); input.(i) <- input.(i) |. (uint #t 1 <<. j) inline_for_extraction noextract val cswap2_st: #t:limb_t -> len:size_t -> bit:limb t -> b1:lbignum t len -> b2:lbignum t len -> Stack unit (requires fun h -> live h b1 /\ live h b2 /\ disjoint b1 b2) (ensures fun h0 _ h1 -> modifies (loc b1 |+| loc b2) h0 h1 /\ (as_seq h1 b1, as_seq h1 b2) == S.cswap2 bit (as_seq h0 b1) (as_seq h0 b2)) let cswap2_st #t len bit b1 b2 = [@inline_let] let mask = uint #t 0 -. bit in [@inline_let] let spec h0 = S.cswap2_f mask in let h0 = ST.get () in loop2 h0 len b1 b2 spec (fun i -> Loops.unfold_repeati (v len) (spec h0) (as_seq h0 b1, as_seq h0 b2) (v i); let dummy = mask &. (b1.(i) ^. b2.(i)) in b1.(i) <- b1.(i) ^. dummy; b2.(i) <- b2.(i) ^. dummy ) inline_for_extraction noextract let bn_get_top_index_st (t:limb_t) (len:size_t{0 < v len}) = b:lbignum t len -> Stack (limb t) (requires fun h -> live h b) (ensures fun h0 r h1 -> modifies0 h0 h1 /\ v r == S.bn_get_top_index (as_seq h0 b)) inline_for_extraction noextract val mk_bn_get_top_index: #t:limb_t -> len:size_t{0 < v len} -> bn_get_top_index_st t len
false
false
Hacl.Bignum.Lib.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mk_bn_get_top_index: #t:limb_t -> len:size_t{0 < v len} -> bn_get_top_index_st t len
[]
Hacl.Bignum.Lib.mk_bn_get_top_index
{ "file_name": "code/bignum/Hacl.Bignum.Lib.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
len: Lib.IntTypes.size_t{0 < Lib.IntTypes.v len} -> Hacl.Bignum.Lib.bn_get_top_index_st t len
{ "end_col": 5, "end_line": 133, "start_col": 2, "start_line": 108 }
Prims.Tot
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": true, "full_module": "Spec.Agile.AEAD", "short_module": "AEAD" }, { "abbrev": true, "full_module": "Spec.Agile.DH", "short_module": "DH" }, { "abbrev": true, "full_module": "Spec.Agile.HPKE", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Impl.HPKE", "short_module": null }, { "abbrev": false, "full_module": "Hacl.HPKE", "short_module": null }, { "abbrev": false, "full_module": "Hacl.HPKE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let vale_p = Vale.X64.CPU_Features_s.(adx_enabled /\ bmi2_enabled)
let vale_p =
false
null
false
let open Vale.X64.CPU_Features_s in adx_enabled /\ bmi2_enabled
{ "checked_file": "Hacl.HPKE.Curve64_CP256_SHA256.fsti.checked", "dependencies": [ "Vale.X64.CPU_Features_s.fst.checked", "Spec.Agile.HPKE.fsti.checked", "Spec.Agile.Hash.fsti.checked", "Spec.Agile.DH.fst.checked", "Spec.Agile.AEAD.fsti.checked", "prims.fst.checked", "Hacl.Impl.HPKE.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Hacl.HPKE.Curve64_CP256_SHA256.fsti" }
[ "total" ]
[ "Prims.l_and", "Prims.b2t", "Vale.X64.CPU_Features_s.adx_enabled", "Vale.X64.CPU_Features_s.bmi2_enabled" ]
[]
module Hacl.HPKE.Curve64_CP256_SHA256 open Hacl.Impl.HPKE module S = Spec.Agile.HPKE module DH = Spec.Agile.DH module AEAD = Spec.Agile.AEAD module Hash = Spec.Agile.Hash noextract unfold let cs:S.ciphersuite = (DH.DH_Curve25519, Hash.SHA2_256, S.Seal AEAD.CHACHA20_POLY1305, Hash.SHA2_256)
false
true
Hacl.HPKE.Curve64_CP256_SHA256.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val vale_p : Prims.logical
[]
Hacl.HPKE.Curve64_CP256_SHA256.vale_p
{ "file_name": "code/hpke/Hacl.HPKE.Curve64_CP256_SHA256.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Prims.logical
{ "end_col": 65, "end_line": 13, "start_col": 38, "start_line": 13 }
Prims.Tot
val cs:S.ciphersuite
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": true, "full_module": "Spec.Agile.AEAD", "short_module": "AEAD" }, { "abbrev": true, "full_module": "Spec.Agile.DH", "short_module": "DH" }, { "abbrev": true, "full_module": "Spec.Agile.HPKE", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Impl.HPKE", "short_module": null }, { "abbrev": false, "full_module": "Hacl.HPKE", "short_module": null }, { "abbrev": false, "full_module": "Hacl.HPKE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let cs:S.ciphersuite = (DH.DH_Curve25519, Hash.SHA2_256, S.Seal AEAD.CHACHA20_POLY1305, Hash.SHA2_256)
val cs:S.ciphersuite let cs:S.ciphersuite =
false
null
false
(DH.DH_Curve25519, Hash.SHA2_256, S.Seal AEAD.CHACHA20_POLY1305, Hash.SHA2_256)
{ "checked_file": "Hacl.HPKE.Curve64_CP256_SHA256.fsti.checked", "dependencies": [ "Vale.X64.CPU_Features_s.fst.checked", "Spec.Agile.HPKE.fsti.checked", "Spec.Agile.Hash.fsti.checked", "Spec.Agile.DH.fst.checked", "Spec.Agile.AEAD.fsti.checked", "prims.fst.checked", "Hacl.Impl.HPKE.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Hacl.HPKE.Curve64_CP256_SHA256.fsti" }
[ "total" ]
[ "FStar.Pervasives.Native.Mktuple4", "Spec.Agile.DH.algorithm", "Spec.Agile.HPKE.hash_algorithm", "Spec.Agile.HPKE.aead", "Spec.Hash.Definitions.hash_alg", "Spec.Agile.DH.DH_Curve25519", "Spec.Hash.Definitions.SHA2_256", "Spec.Agile.HPKE.Seal", "Spec.Agile.AEAD.CHACHA20_POLY1305" ]
[]
module Hacl.HPKE.Curve64_CP256_SHA256 open Hacl.Impl.HPKE module S = Spec.Agile.HPKE module DH = Spec.Agile.DH module AEAD = Spec.Agile.AEAD module Hash = Spec.Agile.Hash
false
true
Hacl.HPKE.Curve64_CP256_SHA256.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val cs:S.ciphersuite
[]
Hacl.HPKE.Curve64_CP256_SHA256.cs
{ "file_name": "code/hpke/Hacl.HPKE.Curve64_CP256_SHA256.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Spec.Agile.HPKE.ciphersuite
{ "end_col": 102, "end_line": 10, "start_col": 23, "start_line": 10 }
Prims.Tot
val unsquash_well_founded (#a:Type u#a) (r:binrel u#a u#r a) (wf_r:well_founded (squash_binrel r)) : well_founded u#a u#r r
[ { "abbrev": false, "full_module": "FStar.WellFounded", "short_module": null }, { "abbrev": false, "full_module": "FStar.WellFounded", "short_module": null }, { "abbrev": false, "full_module": "FStar.WellFounded", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let unsquash_well_founded (#a:Type u#a) (r:binrel u#a u#r a) (wf_r:well_founded (squash_binrel r)) : well_founded u#a u#r r = let rec f (x:a) : Tot (acc r x) (decreases {:well-founded (lift_binrel_squashed_as_well_founded_relation wf_r) (| a, x |)}) = AccIntro (let g_smaller (y: a) (u: r y x) : acc r y = lift_binrel_squashed_intro wf_r y x (FStar.Squash.return_squash u); f y in g_smaller) in f
val unsquash_well_founded (#a:Type u#a) (r:binrel u#a u#r a) (wf_r:well_founded (squash_binrel r)) : well_founded u#a u#r r let unsquash_well_founded (#a: Type u#a) (r: binrel u#a u#r a) (wf_r: well_founded (squash_binrel r)) : well_founded u#a u#r r =
false
null
false
let rec f (x: a) : Tot (acc r x) (decreases {:well-founded (lift_binrel_squashed_as_well_founded_relation wf_r) (| a, x |) }) = AccIntro (let g_smaller (y: a) (u: r y x) : acc r y = lift_binrel_squashed_intro wf_r y x (FStar.Squash.return_squash u); f y in g_smaller) in f
{ "checked_file": "FStar.WellFounded.Util.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.WellFounded.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Squash.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.WellFounded.Util.fst" }
[ "total" ]
[ "FStar.WellFounded.binrel", "FStar.WellFounded.well_founded", "FStar.WellFounded.Util.squash_binrel", "FStar.WellFounded.acc", "FStar.WellFounded.Util.lift_binrel_squashed_as_well_founded_relation", "Prims.Mkdtuple2", "FStar.WellFounded.AccIntro", "Prims.unit", "FStar.WellFounded.Util.lift_binrel_squashed_intro", "FStar.Squash.return_squash" ]
[]
module FStar.WellFounded.Util open FStar.WellFounded #push-options "--warn_error -242" //inner let recs not encoded to SMT; ok let intro_lift_binrel (#a:Type) (r:binrel a) (y:a) (x:a) : Lemma (requires r y x) (ensures lift_binrel r (| a, y |) (| a, x |)) = let t0 : top = (| a, y |) in let t1 : top = (| a, x |) in let pf1 : squash (dfst t0 == a /\ dfst t1 == a) = () in let pf2 : squash (r (dsnd t0) (dsnd t1)) = () in let pf : squash (lift_binrel r t0 t1) = FStar.Squash.bind_squash pf1 (fun (pf1: (dfst t0 == a /\ dfst t1 == a)) -> FStar.Squash.bind_squash pf2 (fun (pf2: (r (dsnd t0) (dsnd t1))) -> let p : lift_binrel r t0 t1 = (| pf1, pf2 |) in FStar.Squash.return_squash p)) in () let elim_lift_binrel (#a:Type) (r:binrel a) (y:top) (x:a) : Lemma (requires lift_binrel r y (| a, x |)) (ensures dfst y == a /\ r (dsnd y) x) = let s : squash (lift_binrel r y (| a, x |)) = FStar.Squash.get_proof (lift_binrel r y (| a, x |)) in let s : squash (dfst y == a /\ r (dsnd y) x) = FStar.Squash.bind_squash s (fun (pf:lift_binrel r y (|a, x|)) -> let p1 : (dfst y == a /\ a == a) = dfst pf in let p2 : r (dsnd y) x = dsnd pf in introduce dfst y == a /\ r (dsnd y) x with eliminate dfst y == a /\ a == a returns _ with l r. l and FStar.Squash.return_squash p2) in () let lower_binrel (#a:Type) (#r:binrel a) (x y:top) (p:lift_binrel r x y) : r (dsnd x) (dsnd y) = dsnd p let lift_binrel_well_founded (#a:Type u#a) (#r:binrel u#a u#r a) (wf_r:well_founded r) : well_founded (lift_binrel r) = let rec aux (y:top{dfst y == a}) (pf:acc r (dsnd y)) : Tot (acc (lift_binrel r) y) (decreases pf) = AccIntro (fun (z:top) (p:lift_binrel r z y) -> aux z (pf.access_smaller (dsnd z) (lower_binrel z y p))) in let aux' (y:top{dfst y =!= a}) : acc (lift_binrel r) y = AccIntro (fun y p -> false_elim ()) in fun (x:top) -> let b = FStar.StrongExcludedMiddle.strong_excluded_middle (dfst x == a) in if b then aux x (wf_r (dsnd x)) else aux' x let lower_binrel_squashed (#a:Type u#a) (#r:binrel u#a u#r a) (x y:top u#a) (p:lift_binrel_squashed r x y) : squash (r (dsnd x) (dsnd y)) = assert (dfst x==a /\ dfst y==a /\ squash (r (dsnd x) (dsnd y))) by FStar.Tactics.(exact (quote (FStar.Squash.return_squash p))) let lift_binrel_squashed_well_founded (#a:Type u#a) (#r:binrel u#a u#r a) (wf_r:well_founded (squash_binrel r)) : well_founded (lift_binrel_squashed r) = let rec aux (y:top{dfst y == a}) (pf:acc (squash_binrel r) (dsnd y)) : Tot (acc (lift_binrel_squashed r) y) (decreases pf) = AccIntro (fun (z:top) (p:lift_binrel_squashed r z y) -> let p = lower_binrel_squashed z y p in aux z (pf.access_smaller (dsnd z) (FStar.Squash.join_squash p))) in let aux' (y:top{dfst y =!= a}) : acc (lift_binrel_squashed r) y = AccIntro (fun y p -> false_elim ()) in fun (x:top) -> let b = FStar.StrongExcludedMiddle.strong_excluded_middle (dfst x == a) in if b then aux x (wf_r (dsnd x)) else aux' x let lift_binrel_squashed_intro (#a:Type) (#r:binrel a) (wf_r:well_founded (squash_binrel r)) (x y:a) (sqr:squash (r x y)) : Lemma (ensures lift_binrel_squashed r (|a, x|) (|a, y|)) = assert (lift_binrel_squashed r (| a, x |) (| a , y |)) by FStar.Tactics.( norm [delta_only [`%lift_binrel_squashed]]; split(); split(); trefl(); trefl(); mapply (`FStar.Squash.join_squash) ) let unsquash_well_founded (#a:Type u#a) (r:binrel u#a u#r a) (wf_r:well_founded (squash_binrel r))
false
false
FStar.WellFounded.Util.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val unsquash_well_founded (#a:Type u#a) (r:binrel u#a u#r a) (wf_r:well_founded (squash_binrel r)) : well_founded u#a u#r r
[]
FStar.WellFounded.Util.unsquash_well_founded
{ "file_name": "ulib/FStar.WellFounded.Util.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
r: FStar.WellFounded.binrel a -> wf_r: FStar.WellFounded.well_founded (FStar.WellFounded.Util.squash_binrel r) -> FStar.WellFounded.well_founded r
{ "end_col": 5, "end_line": 121, "start_col": 3, "start_line": 113 }
FStar.Pervasives.Lemma
val intro_lift_binrel (#a:Type) (r:binrel a) (y:a) (x:a) : Lemma (requires r y x) (ensures lift_binrel r (| a, y |) (| a, x |))
[ { "abbrev": false, "full_module": "FStar.WellFounded", "short_module": null }, { "abbrev": false, "full_module": "FStar.WellFounded", "short_module": null }, { "abbrev": false, "full_module": "FStar.WellFounded", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let intro_lift_binrel (#a:Type) (r:binrel a) (y:a) (x:a) : Lemma (requires r y x) (ensures lift_binrel r (| a, y |) (| a, x |)) = let t0 : top = (| a, y |) in let t1 : top = (| a, x |) in let pf1 : squash (dfst t0 == a /\ dfst t1 == a) = () in let pf2 : squash (r (dsnd t0) (dsnd t1)) = () in let pf : squash (lift_binrel r t0 t1) = FStar.Squash.bind_squash pf1 (fun (pf1: (dfst t0 == a /\ dfst t1 == a)) -> FStar.Squash.bind_squash pf2 (fun (pf2: (r (dsnd t0) (dsnd t1))) -> let p : lift_binrel r t0 t1 = (| pf1, pf2 |) in FStar.Squash.return_squash p)) in ()
val intro_lift_binrel (#a:Type) (r:binrel a) (y:a) (x:a) : Lemma (requires r y x) (ensures lift_binrel r (| a, y |) (| a, x |)) let intro_lift_binrel (#a: Type) (r: binrel a) (y x: a) : Lemma (requires r y x) (ensures lift_binrel r (| a, y |) (| a, x |)) =
false
null
true
let t0:top = (| a, y |) in let t1:top = (| a, x |) in let pf1:squash (dfst t0 == a /\ dfst t1 == a) = () in let pf2:squash (r (dsnd t0) (dsnd t1)) = () in let pf:squash (lift_binrel r t0 t1) = FStar.Squash.bind_squash pf1 (fun (pf1: (dfst t0 == a /\ dfst t1 == a)) -> FStar.Squash.bind_squash pf2 (fun (pf2: (r (dsnd t0) (dsnd t1))) -> let p:lift_binrel r t0 t1 = (| pf1, pf2 |) in FStar.Squash.return_squash p)) in ()
{ "checked_file": "FStar.WellFounded.Util.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.WellFounded.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Squash.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.WellFounded.Util.fst" }
[ "lemma" ]
[ "FStar.WellFounded.binrel", "Prims.squash", "FStar.WellFounded.Util.lift_binrel", "FStar.Squash.bind_squash", "Prims.l_and", "Prims.eq2", "FStar.Pervasives.dfst", "FStar.Pervasives.dsnd", "FStar.Squash.return_squash", "Prims.Mkdtuple2", "FStar.WellFounded.Util.top", "Prims.unit", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module FStar.WellFounded.Util open FStar.WellFounded #push-options "--warn_error -242" //inner let recs not encoded to SMT; ok let intro_lift_binrel (#a:Type) (r:binrel a) (y:a) (x:a) : Lemma (requires r y x)
false
false
FStar.WellFounded.Util.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val intro_lift_binrel (#a:Type) (r:binrel a) (y:a) (x:a) : Lemma (requires r y x) (ensures lift_binrel r (| a, y |) (| a, x |))
[]
FStar.WellFounded.Util.intro_lift_binrel
{ "file_name": "ulib/FStar.WellFounded.Util.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
r: FStar.WellFounded.binrel a -> y: a -> x: a -> FStar.Pervasives.Lemma (requires r y x) (ensures FStar.WellFounded.Util.lift_binrel r (| a, y |) (| a, x |))
{ "end_col": 6, "end_line": 20, "start_col": 3, "start_line": 10 }
Prims.Tot
val lift_binrel_well_founded (#a:Type u#a) (#r:binrel u#a u#r a) (wf_r:well_founded r) : well_founded (lift_binrel r)
[ { "abbrev": false, "full_module": "FStar.WellFounded", "short_module": null }, { "abbrev": false, "full_module": "FStar.WellFounded", "short_module": null }, { "abbrev": false, "full_module": "FStar.WellFounded", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lift_binrel_well_founded (#a:Type u#a) (#r:binrel u#a u#r a) (wf_r:well_founded r) : well_founded (lift_binrel r) = let rec aux (y:top{dfst y == a}) (pf:acc r (dsnd y)) : Tot (acc (lift_binrel r) y) (decreases pf) = AccIntro (fun (z:top) (p:lift_binrel r z y) -> aux z (pf.access_smaller (dsnd z) (lower_binrel z y p))) in let aux' (y:top{dfst y =!= a}) : acc (lift_binrel r) y = AccIntro (fun y p -> false_elim ()) in fun (x:top) -> let b = FStar.StrongExcludedMiddle.strong_excluded_middle (dfst x == a) in if b then aux x (wf_r (dsnd x)) else aux' x
val lift_binrel_well_founded (#a:Type u#a) (#r:binrel u#a u#r a) (wf_r:well_founded r) : well_founded (lift_binrel r) let lift_binrel_well_founded (#a: Type u#a) (#r: binrel u#a u#r a) (wf_r: well_founded r) : well_founded (lift_binrel r) =
false
null
false
let rec aux (y: top{dfst y == a}) (pf: acc r (dsnd y)) : Tot (acc (lift_binrel r) y) (decreases pf) = AccIntro (fun (z: top) (p: lift_binrel r z y) -> aux z (pf.access_smaller (dsnd z) (lower_binrel z y p))) in let aux' (y: top{dfst y =!= a}) : acc (lift_binrel r) y = AccIntro (fun y p -> false_elim ()) in fun (x: top) -> let b = FStar.StrongExcludedMiddle.strong_excluded_middle (dfst x == a) in if b then aux x (wf_r (dsnd x)) else aux' x
{ "checked_file": "FStar.WellFounded.Util.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.WellFounded.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Squash.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.WellFounded.Util.fst" }
[ "total" ]
[ "FStar.WellFounded.binrel", "FStar.WellFounded.well_founded", "FStar.WellFounded.Util.top", "FStar.Pervasives.dsnd", "Prims.bool", "FStar.WellFounded.acc", "FStar.WellFounded.Util.lift_binrel", "Prims.l_iff", "Prims.b2t", "Prims.op_Equality", "Prims.eq2", "FStar.Pervasives.dfst", "FStar.StrongExcludedMiddle.strong_excluded_middle", "Prims.l_not", "FStar.WellFounded.AccIntro", "FStar.Pervasives.false_elim", "FStar.WellFounded.__proj__AccIntro__item__access_smaller", "FStar.WellFounded.Util.lower_binrel" ]
[]
module FStar.WellFounded.Util open FStar.WellFounded #push-options "--warn_error -242" //inner let recs not encoded to SMT; ok let intro_lift_binrel (#a:Type) (r:binrel a) (y:a) (x:a) : Lemma (requires r y x) (ensures lift_binrel r (| a, y |) (| a, x |)) = let t0 : top = (| a, y |) in let t1 : top = (| a, x |) in let pf1 : squash (dfst t0 == a /\ dfst t1 == a) = () in let pf2 : squash (r (dsnd t0) (dsnd t1)) = () in let pf : squash (lift_binrel r t0 t1) = FStar.Squash.bind_squash pf1 (fun (pf1: (dfst t0 == a /\ dfst t1 == a)) -> FStar.Squash.bind_squash pf2 (fun (pf2: (r (dsnd t0) (dsnd t1))) -> let p : lift_binrel r t0 t1 = (| pf1, pf2 |) in FStar.Squash.return_squash p)) in () let elim_lift_binrel (#a:Type) (r:binrel a) (y:top) (x:a) : Lemma (requires lift_binrel r y (| a, x |)) (ensures dfst y == a /\ r (dsnd y) x) = let s : squash (lift_binrel r y (| a, x |)) = FStar.Squash.get_proof (lift_binrel r y (| a, x |)) in let s : squash (dfst y == a /\ r (dsnd y) x) = FStar.Squash.bind_squash s (fun (pf:lift_binrel r y (|a, x|)) -> let p1 : (dfst y == a /\ a == a) = dfst pf in let p2 : r (dsnd y) x = dsnd pf in introduce dfst y == a /\ r (dsnd y) x with eliminate dfst y == a /\ a == a returns _ with l r. l and FStar.Squash.return_squash p2) in () let lower_binrel (#a:Type) (#r:binrel a) (x y:top) (p:lift_binrel r x y) : r (dsnd x) (dsnd y) = dsnd p let lift_binrel_well_founded (#a:Type u#a) (#r:binrel u#a u#r a) (wf_r:well_founded r)
false
false
FStar.WellFounded.Util.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lift_binrel_well_founded (#a:Type u#a) (#r:binrel u#a u#r a) (wf_r:well_founded r) : well_founded (lift_binrel r)
[]
FStar.WellFounded.Util.lift_binrel_well_founded
{ "file_name": "ulib/FStar.WellFounded.Util.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
wf_r: FStar.WellFounded.well_founded r -> FStar.WellFounded.well_founded (FStar.WellFounded.Util.lift_binrel r)
{ "end_col": 17, "end_line": 65, "start_col": 3, "start_line": 50 }
Prims.Tot
val lift_binrel_squashed_well_founded (#a:Type u#a) (#r:binrel u#a u#r a) (wf_r:well_founded (squash_binrel r)) : well_founded (lift_binrel_squashed r)
[ { "abbrev": false, "full_module": "FStar.WellFounded", "short_module": null }, { "abbrev": false, "full_module": "FStar.WellFounded", "short_module": null }, { "abbrev": false, "full_module": "FStar.WellFounded", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lift_binrel_squashed_well_founded (#a:Type u#a) (#r:binrel u#a u#r a) (wf_r:well_founded (squash_binrel r)) : well_founded (lift_binrel_squashed r) = let rec aux (y:top{dfst y == a}) (pf:acc (squash_binrel r) (dsnd y)) : Tot (acc (lift_binrel_squashed r) y) (decreases pf) = AccIntro (fun (z:top) (p:lift_binrel_squashed r z y) -> let p = lower_binrel_squashed z y p in aux z (pf.access_smaller (dsnd z) (FStar.Squash.join_squash p))) in let aux' (y:top{dfst y =!= a}) : acc (lift_binrel_squashed r) y = AccIntro (fun y p -> false_elim ()) in fun (x:top) -> let b = FStar.StrongExcludedMiddle.strong_excluded_middle (dfst x == a) in if b then aux x (wf_r (dsnd x)) else aux' x
val lift_binrel_squashed_well_founded (#a:Type u#a) (#r:binrel u#a u#r a) (wf_r:well_founded (squash_binrel r)) : well_founded (lift_binrel_squashed r) let lift_binrel_squashed_well_founded (#a: Type u#a) (#r: binrel u#a u#r a) (wf_r: well_founded (squash_binrel r)) : well_founded (lift_binrel_squashed r) =
false
null
false
let rec aux (y: top{dfst y == a}) (pf: acc (squash_binrel r) (dsnd y)) : Tot (acc (lift_binrel_squashed r) y) (decreases pf) = AccIntro (fun (z: top) (p: lift_binrel_squashed r z y) -> let p = lower_binrel_squashed z y p in aux z (pf.access_smaller (dsnd z) (FStar.Squash.join_squash p))) in let aux' (y: top{dfst y =!= a}) : acc (lift_binrel_squashed r) y = AccIntro (fun y p -> false_elim ()) in fun (x: top) -> let b = FStar.StrongExcludedMiddle.strong_excluded_middle (dfst x == a) in if b then aux x (wf_r (dsnd x)) else aux' x
{ "checked_file": "FStar.WellFounded.Util.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.WellFounded.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Squash.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.WellFounded.Util.fst" }
[ "total" ]
[ "FStar.WellFounded.binrel", "FStar.WellFounded.well_founded", "FStar.WellFounded.Util.squash_binrel", "FStar.WellFounded.Util.top", "FStar.Pervasives.dsnd", "Prims.bool", "FStar.WellFounded.acc", "FStar.WellFounded.Util.lift_binrel_squashed", "Prims.l_iff", "Prims.b2t", "Prims.op_Equality", "Prims.eq2", "FStar.Pervasives.dfst", "FStar.StrongExcludedMiddle.strong_excluded_middle", "Prims.l_not", "FStar.WellFounded.AccIntro", "FStar.Pervasives.false_elim", "FStar.WellFounded.__proj__AccIntro__item__access_smaller", "FStar.Squash.join_squash", "Prims.squash", "FStar.WellFounded.Util.lower_binrel_squashed" ]
[]
module FStar.WellFounded.Util open FStar.WellFounded #push-options "--warn_error -242" //inner let recs not encoded to SMT; ok let intro_lift_binrel (#a:Type) (r:binrel a) (y:a) (x:a) : Lemma (requires r y x) (ensures lift_binrel r (| a, y |) (| a, x |)) = let t0 : top = (| a, y |) in let t1 : top = (| a, x |) in let pf1 : squash (dfst t0 == a /\ dfst t1 == a) = () in let pf2 : squash (r (dsnd t0) (dsnd t1)) = () in let pf : squash (lift_binrel r t0 t1) = FStar.Squash.bind_squash pf1 (fun (pf1: (dfst t0 == a /\ dfst t1 == a)) -> FStar.Squash.bind_squash pf2 (fun (pf2: (r (dsnd t0) (dsnd t1))) -> let p : lift_binrel r t0 t1 = (| pf1, pf2 |) in FStar.Squash.return_squash p)) in () let elim_lift_binrel (#a:Type) (r:binrel a) (y:top) (x:a) : Lemma (requires lift_binrel r y (| a, x |)) (ensures dfst y == a /\ r (dsnd y) x) = let s : squash (lift_binrel r y (| a, x |)) = FStar.Squash.get_proof (lift_binrel r y (| a, x |)) in let s : squash (dfst y == a /\ r (dsnd y) x) = FStar.Squash.bind_squash s (fun (pf:lift_binrel r y (|a, x|)) -> let p1 : (dfst y == a /\ a == a) = dfst pf in let p2 : r (dsnd y) x = dsnd pf in introduce dfst y == a /\ r (dsnd y) x with eliminate dfst y == a /\ a == a returns _ with l r. l and FStar.Squash.return_squash p2) in () let lower_binrel (#a:Type) (#r:binrel a) (x y:top) (p:lift_binrel r x y) : r (dsnd x) (dsnd y) = dsnd p let lift_binrel_well_founded (#a:Type u#a) (#r:binrel u#a u#r a) (wf_r:well_founded r) : well_founded (lift_binrel r) = let rec aux (y:top{dfst y == a}) (pf:acc r (dsnd y)) : Tot (acc (lift_binrel r) y) (decreases pf) = AccIntro (fun (z:top) (p:lift_binrel r z y) -> aux z (pf.access_smaller (dsnd z) (lower_binrel z y p))) in let aux' (y:top{dfst y =!= a}) : acc (lift_binrel r) y = AccIntro (fun y p -> false_elim ()) in fun (x:top) -> let b = FStar.StrongExcludedMiddle.strong_excluded_middle (dfst x == a) in if b then aux x (wf_r (dsnd x)) else aux' x let lower_binrel_squashed (#a:Type u#a) (#r:binrel u#a u#r a) (x y:top u#a) (p:lift_binrel_squashed r x y) : squash (r (dsnd x) (dsnd y)) = assert (dfst x==a /\ dfst y==a /\ squash (r (dsnd x) (dsnd y))) by FStar.Tactics.(exact (quote (FStar.Squash.return_squash p))) let lift_binrel_squashed_well_founded (#a:Type u#a) (#r:binrel u#a u#r a) (wf_r:well_founded (squash_binrel r))
false
false
FStar.WellFounded.Util.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lift_binrel_squashed_well_founded (#a:Type u#a) (#r:binrel u#a u#r a) (wf_r:well_founded (squash_binrel r)) : well_founded (lift_binrel_squashed r)
[]
FStar.WellFounded.Util.lift_binrel_squashed_well_founded
{ "file_name": "ulib/FStar.WellFounded.Util.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
wf_r: FStar.WellFounded.well_founded (FStar.WellFounded.Util.squash_binrel r) -> FStar.WellFounded.well_founded (FStar.WellFounded.Util.lift_binrel_squashed r)
{ "end_col": 17, "end_line": 96, "start_col": 3, "start_line": 80 }
Prims.Tot
val lower_binrel (#a:Type) (#r:binrel a) (x y:top) (p:lift_binrel r x y) : r (dsnd x) (dsnd y)
[ { "abbrev": false, "full_module": "FStar.WellFounded", "short_module": null }, { "abbrev": false, "full_module": "FStar.WellFounded", "short_module": null }, { "abbrev": false, "full_module": "FStar.WellFounded", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lower_binrel (#a:Type) (#r:binrel a) (x y:top) (p:lift_binrel r x y) : r (dsnd x) (dsnd y) = dsnd p
val lower_binrel (#a:Type) (#r:binrel a) (x y:top) (p:lift_binrel r x y) : r (dsnd x) (dsnd y) let lower_binrel (#a: Type) (#r: binrel a) (x y: top) (p: lift_binrel r x y) : r (dsnd x) (dsnd y) =
false
null
false
dsnd p
{ "checked_file": "FStar.WellFounded.Util.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.WellFounded.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Squash.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.WellFounded.Util.fst" }
[ "total" ]
[ "FStar.WellFounded.binrel", "FStar.WellFounded.Util.top", "FStar.WellFounded.Util.lift_binrel", "FStar.Pervasives.dsnd", "Prims.l_and", "Prims.eq2", "FStar.Pervasives.dfst" ]
[]
module FStar.WellFounded.Util open FStar.WellFounded #push-options "--warn_error -242" //inner let recs not encoded to SMT; ok let intro_lift_binrel (#a:Type) (r:binrel a) (y:a) (x:a) : Lemma (requires r y x) (ensures lift_binrel r (| a, y |) (| a, x |)) = let t0 : top = (| a, y |) in let t1 : top = (| a, x |) in let pf1 : squash (dfst t0 == a /\ dfst t1 == a) = () in let pf2 : squash (r (dsnd t0) (dsnd t1)) = () in let pf : squash (lift_binrel r t0 t1) = FStar.Squash.bind_squash pf1 (fun (pf1: (dfst t0 == a /\ dfst t1 == a)) -> FStar.Squash.bind_squash pf2 (fun (pf2: (r (dsnd t0) (dsnd t1))) -> let p : lift_binrel r t0 t1 = (| pf1, pf2 |) in FStar.Squash.return_squash p)) in () let elim_lift_binrel (#a:Type) (r:binrel a) (y:top) (x:a) : Lemma (requires lift_binrel r y (| a, x |)) (ensures dfst y == a /\ r (dsnd y) x) = let s : squash (lift_binrel r y (| a, x |)) = FStar.Squash.get_proof (lift_binrel r y (| a, x |)) in let s : squash (dfst y == a /\ r (dsnd y) x) = FStar.Squash.bind_squash s (fun (pf:lift_binrel r y (|a, x|)) -> let p1 : (dfst y == a /\ a == a) = dfst pf in let p2 : r (dsnd y) x = dsnd pf in introduce dfst y == a /\ r (dsnd y) x with eliminate dfst y == a /\ a == a returns _ with l r. l and FStar.Squash.return_squash p2) in () let lower_binrel (#a:Type) (#r:binrel a) (x y:top) (p:lift_binrel r x y)
false
false
FStar.WellFounded.Util.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lower_binrel (#a:Type) (#r:binrel a) (x y:top) (p:lift_binrel r x y) : r (dsnd x) (dsnd y)
[]
FStar.WellFounded.Util.lower_binrel
{ "file_name": "ulib/FStar.WellFounded.Util.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.WellFounded.Util.top -> y: FStar.WellFounded.Util.top -> p: FStar.WellFounded.Util.lift_binrel r x y -> r (FStar.Pervasives.dsnd x) (FStar.Pervasives.dsnd y)
{ "end_col": 10, "end_line": 43, "start_col": 4, "start_line": 43 }
FStar.Pervasives.Lemma
val lift_binrel_squashed_intro (#a:Type) (#r:binrel a) (wf_r:well_founded (squash_binrel r)) (x y:a) (sqr:squash (r x y)) : Lemma (ensures lift_binrel_squashed r (|a, x|) (|a, y|))
[ { "abbrev": false, "full_module": "FStar.WellFounded", "short_module": null }, { "abbrev": false, "full_module": "FStar.WellFounded", "short_module": null }, { "abbrev": false, "full_module": "FStar.WellFounded", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lift_binrel_squashed_intro (#a:Type) (#r:binrel a) (wf_r:well_founded (squash_binrel r)) (x y:a) (sqr:squash (r x y)) : Lemma (ensures lift_binrel_squashed r (|a, x|) (|a, y|)) = assert (lift_binrel_squashed r (| a, x |) (| a , y |)) by FStar.Tactics.( norm [delta_only [`%lift_binrel_squashed]]; split(); split(); trefl(); trefl(); mapply (`FStar.Squash.join_squash) )
val lift_binrel_squashed_intro (#a:Type) (#r:binrel a) (wf_r:well_founded (squash_binrel r)) (x y:a) (sqr:squash (r x y)) : Lemma (ensures lift_binrel_squashed r (|a, x|) (|a, y|)) let lift_binrel_squashed_intro (#a: Type) (#r: binrel a) (wf_r: well_founded (squash_binrel r)) (x y: a) (sqr: squash (r x y)) : Lemma (ensures lift_binrel_squashed r (| a, x |) (| a, y |)) =
false
null
true
FStar.Tactics.Effect.assert_by_tactic (lift_binrel_squashed r (| a, x |) (| a, y |)) (fun _ -> (); let open FStar.Tactics in norm [delta_only [`%lift_binrel_squashed]]; split (); split (); trefl (); trefl (); mapply (`FStar.Squash.join_squash))
{ "checked_file": "FStar.WellFounded.Util.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.WellFounded.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Squash.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.WellFounded.Util.fst" }
[ "lemma" ]
[ "FStar.WellFounded.binrel", "FStar.WellFounded.well_founded", "FStar.WellFounded.Util.squash_binrel", "Prims.squash", "FStar.Tactics.Effect.assert_by_tactic", "FStar.WellFounded.Util.lift_binrel_squashed", "Prims.Mkdtuple2", "Prims.unit", "FStar.Tactics.V1.Derived.mapply", "FStar.Tactics.V1.Derived.trefl", "FStar.Tactics.V1.Logic.split", "FStar.Tactics.V1.Builtins.norm", "Prims.Cons", "FStar.Pervasives.norm_step", "FStar.Pervasives.delta_only", "Prims.string", "Prims.Nil", "Prims.l_True", "FStar.Pervasives.pattern" ]
[]
module FStar.WellFounded.Util open FStar.WellFounded #push-options "--warn_error -242" //inner let recs not encoded to SMT; ok let intro_lift_binrel (#a:Type) (r:binrel a) (y:a) (x:a) : Lemma (requires r y x) (ensures lift_binrel r (| a, y |) (| a, x |)) = let t0 : top = (| a, y |) in let t1 : top = (| a, x |) in let pf1 : squash (dfst t0 == a /\ dfst t1 == a) = () in let pf2 : squash (r (dsnd t0) (dsnd t1)) = () in let pf : squash (lift_binrel r t0 t1) = FStar.Squash.bind_squash pf1 (fun (pf1: (dfst t0 == a /\ dfst t1 == a)) -> FStar.Squash.bind_squash pf2 (fun (pf2: (r (dsnd t0) (dsnd t1))) -> let p : lift_binrel r t0 t1 = (| pf1, pf2 |) in FStar.Squash.return_squash p)) in () let elim_lift_binrel (#a:Type) (r:binrel a) (y:top) (x:a) : Lemma (requires lift_binrel r y (| a, x |)) (ensures dfst y == a /\ r (dsnd y) x) = let s : squash (lift_binrel r y (| a, x |)) = FStar.Squash.get_proof (lift_binrel r y (| a, x |)) in let s : squash (dfst y == a /\ r (dsnd y) x) = FStar.Squash.bind_squash s (fun (pf:lift_binrel r y (|a, x|)) -> let p1 : (dfst y == a /\ a == a) = dfst pf in let p2 : r (dsnd y) x = dsnd pf in introduce dfst y == a /\ r (dsnd y) x with eliminate dfst y == a /\ a == a returns _ with l r. l and FStar.Squash.return_squash p2) in () let lower_binrel (#a:Type) (#r:binrel a) (x y:top) (p:lift_binrel r x y) : r (dsnd x) (dsnd y) = dsnd p let lift_binrel_well_founded (#a:Type u#a) (#r:binrel u#a u#r a) (wf_r:well_founded r) : well_founded (lift_binrel r) = let rec aux (y:top{dfst y == a}) (pf:acc r (dsnd y)) : Tot (acc (lift_binrel r) y) (decreases pf) = AccIntro (fun (z:top) (p:lift_binrel r z y) -> aux z (pf.access_smaller (dsnd z) (lower_binrel z y p))) in let aux' (y:top{dfst y =!= a}) : acc (lift_binrel r) y = AccIntro (fun y p -> false_elim ()) in fun (x:top) -> let b = FStar.StrongExcludedMiddle.strong_excluded_middle (dfst x == a) in if b then aux x (wf_r (dsnd x)) else aux' x let lower_binrel_squashed (#a:Type u#a) (#r:binrel u#a u#r a) (x y:top u#a) (p:lift_binrel_squashed r x y) : squash (r (dsnd x) (dsnd y)) = assert (dfst x==a /\ dfst y==a /\ squash (r (dsnd x) (dsnd y))) by FStar.Tactics.(exact (quote (FStar.Squash.return_squash p))) let lift_binrel_squashed_well_founded (#a:Type u#a) (#r:binrel u#a u#r a) (wf_r:well_founded (squash_binrel r)) : well_founded (lift_binrel_squashed r) = let rec aux (y:top{dfst y == a}) (pf:acc (squash_binrel r) (dsnd y)) : Tot (acc (lift_binrel_squashed r) y) (decreases pf) = AccIntro (fun (z:top) (p:lift_binrel_squashed r z y) -> let p = lower_binrel_squashed z y p in aux z (pf.access_smaller (dsnd z) (FStar.Squash.join_squash p))) in let aux' (y:top{dfst y =!= a}) : acc (lift_binrel_squashed r) y = AccIntro (fun y p -> false_elim ()) in fun (x:top) -> let b = FStar.StrongExcludedMiddle.strong_excluded_middle (dfst x == a) in if b then aux x (wf_r (dsnd x)) else aux' x let lift_binrel_squashed_intro (#a:Type) (#r:binrel a) (wf_r:well_founded (squash_binrel r)) (x y:a) (sqr:squash (r x y)) : Lemma
false
false
FStar.WellFounded.Util.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lift_binrel_squashed_intro (#a:Type) (#r:binrel a) (wf_r:well_founded (squash_binrel r)) (x y:a) (sqr:squash (r x y)) : Lemma (ensures lift_binrel_squashed r (|a, x|) (|a, y|))
[]
FStar.WellFounded.Util.lift_binrel_squashed_intro
{ "file_name": "ulib/FStar.WellFounded.Util.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
wf_r: FStar.WellFounded.well_founded (FStar.WellFounded.Util.squash_binrel r) -> x: a -> y: a -> sqr: Prims.squash (r x y) -> FStar.Pervasives.Lemma (ensures FStar.WellFounded.Util.lift_binrel_squashed r (| a, x |) (| a, y |))
{ "end_col": 12, "end_line": 109, "start_col": 4, "start_line": 104 }
Prims.Tot
val lower_binrel_squashed (#a:Type u#a) (#r:binrel u#a u#r a) (x y:top u#a) (p:lift_binrel_squashed r x y) : squash (r (dsnd x) (dsnd y))
[ { "abbrev": false, "full_module": "FStar.WellFounded", "short_module": null }, { "abbrev": false, "full_module": "FStar.WellFounded", "short_module": null }, { "abbrev": false, "full_module": "FStar.WellFounded", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lower_binrel_squashed (#a:Type u#a) (#r:binrel u#a u#r a) (x y:top u#a) (p:lift_binrel_squashed r x y) : squash (r (dsnd x) (dsnd y)) = assert (dfst x==a /\ dfst y==a /\ squash (r (dsnd x) (dsnd y))) by FStar.Tactics.(exact (quote (FStar.Squash.return_squash p)))
val lower_binrel_squashed (#a:Type u#a) (#r:binrel u#a u#r a) (x y:top u#a) (p:lift_binrel_squashed r x y) : squash (r (dsnd x) (dsnd y)) let lower_binrel_squashed (#a: Type u#a) (#r: binrel u#a u#r a) (x y: top u#a) (p: lift_binrel_squashed r x y) : squash (r (dsnd x) (dsnd y)) =
false
null
true
FStar.Tactics.Effect.assert_by_tactic (dfst x == a /\ dfst y == a /\ squash (r (dsnd x) (dsnd y))) (fun _ -> (); let open FStar.Tactics in exact (quote (FStar.Squash.return_squash p)))
{ "checked_file": "FStar.WellFounded.Util.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.WellFounded.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Squash.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.WellFounded.Util.fst" }
[ "total" ]
[ "FStar.WellFounded.binrel", "FStar.WellFounded.Util.top", "FStar.WellFounded.Util.lift_binrel_squashed", "FStar.Tactics.Effect.assert_by_tactic", "Prims.l_and", "Prims.eq2", "FStar.Pervasives.dfst", "Prims.squash", "FStar.Pervasives.dsnd", "Prims.unit", "FStar.Tactics.V1.Derived.exact", "FStar.Reflection.Types.term", "FStar.Squash.return_squash" ]
[]
module FStar.WellFounded.Util open FStar.WellFounded #push-options "--warn_error -242" //inner let recs not encoded to SMT; ok let intro_lift_binrel (#a:Type) (r:binrel a) (y:a) (x:a) : Lemma (requires r y x) (ensures lift_binrel r (| a, y |) (| a, x |)) = let t0 : top = (| a, y |) in let t1 : top = (| a, x |) in let pf1 : squash (dfst t0 == a /\ dfst t1 == a) = () in let pf2 : squash (r (dsnd t0) (dsnd t1)) = () in let pf : squash (lift_binrel r t0 t1) = FStar.Squash.bind_squash pf1 (fun (pf1: (dfst t0 == a /\ dfst t1 == a)) -> FStar.Squash.bind_squash pf2 (fun (pf2: (r (dsnd t0) (dsnd t1))) -> let p : lift_binrel r t0 t1 = (| pf1, pf2 |) in FStar.Squash.return_squash p)) in () let elim_lift_binrel (#a:Type) (r:binrel a) (y:top) (x:a) : Lemma (requires lift_binrel r y (| a, x |)) (ensures dfst y == a /\ r (dsnd y) x) = let s : squash (lift_binrel r y (| a, x |)) = FStar.Squash.get_proof (lift_binrel r y (| a, x |)) in let s : squash (dfst y == a /\ r (dsnd y) x) = FStar.Squash.bind_squash s (fun (pf:lift_binrel r y (|a, x|)) -> let p1 : (dfst y == a /\ a == a) = dfst pf in let p2 : r (dsnd y) x = dsnd pf in introduce dfst y == a /\ r (dsnd y) x with eliminate dfst y == a /\ a == a returns _ with l r. l and FStar.Squash.return_squash p2) in () let lower_binrel (#a:Type) (#r:binrel a) (x y:top) (p:lift_binrel r x y) : r (dsnd x) (dsnd y) = dsnd p let lift_binrel_well_founded (#a:Type u#a) (#r:binrel u#a u#r a) (wf_r:well_founded r) : well_founded (lift_binrel r) = let rec aux (y:top{dfst y == a}) (pf:acc r (dsnd y)) : Tot (acc (lift_binrel r) y) (decreases pf) = AccIntro (fun (z:top) (p:lift_binrel r z y) -> aux z (pf.access_smaller (dsnd z) (lower_binrel z y p))) in let aux' (y:top{dfst y =!= a}) : acc (lift_binrel r) y = AccIntro (fun y p -> false_elim ()) in fun (x:top) -> let b = FStar.StrongExcludedMiddle.strong_excluded_middle (dfst x == a) in if b then aux x (wf_r (dsnd x)) else aux' x let lower_binrel_squashed (#a:Type u#a) (#r:binrel u#a u#r a) (x y:top u#a) (p:lift_binrel_squashed r x y)
false
false
FStar.WellFounded.Util.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lower_binrel_squashed (#a:Type u#a) (#r:binrel u#a u#r a) (x y:top u#a) (p:lift_binrel_squashed r x y) : squash (r (dsnd x) (dsnd y))
[]
FStar.WellFounded.Util.lower_binrel_squashed
{ "file_name": "ulib/FStar.WellFounded.Util.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.WellFounded.Util.top -> y: FStar.WellFounded.Util.top -> p: FStar.WellFounded.Util.lift_binrel_squashed r x y -> Prims.squash (r (FStar.Pervasives.dsnd x) (FStar.Pervasives.dsnd y))
{ "end_col": 71, "end_line": 73, "start_col": 4, "start_line": 72 }
FStar.Pervasives.Lemma
val elim_lift_binrel (#a:Type) (r:binrel a) (y:top) (x:a) : Lemma (requires lift_binrel r y (| a, x |)) (ensures dfst y == a /\ r (dsnd y) x)
[ { "abbrev": false, "full_module": "FStar.WellFounded", "short_module": null }, { "abbrev": false, "full_module": "FStar.WellFounded", "short_module": null }, { "abbrev": false, "full_module": "FStar.WellFounded", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let elim_lift_binrel (#a:Type) (r:binrel a) (y:top) (x:a) : Lemma (requires lift_binrel r y (| a, x |)) (ensures dfst y == a /\ r (dsnd y) x) = let s : squash (lift_binrel r y (| a, x |)) = FStar.Squash.get_proof (lift_binrel r y (| a, x |)) in let s : squash (dfst y == a /\ r (dsnd y) x) = FStar.Squash.bind_squash s (fun (pf:lift_binrel r y (|a, x|)) -> let p1 : (dfst y == a /\ a == a) = dfst pf in let p2 : r (dsnd y) x = dsnd pf in introduce dfst y == a /\ r (dsnd y) x with eliminate dfst y == a /\ a == a returns _ with l r. l and FStar.Squash.return_squash p2) in ()
val elim_lift_binrel (#a:Type) (r:binrel a) (y:top) (x:a) : Lemma (requires lift_binrel r y (| a, x |)) (ensures dfst y == a /\ r (dsnd y) x) let elim_lift_binrel (#a: Type) (r: binrel a) (y: top) (x: a) : Lemma (requires lift_binrel r y (| a, x |)) (ensures dfst y == a /\ r (dsnd y) x) =
false
null
true
let s:squash (lift_binrel r y (| a, x |)) = FStar.Squash.get_proof (lift_binrel r y (| a, x |)) in let s:squash (dfst y == a /\ r (dsnd y) x) = FStar.Squash.bind_squash s (fun (pf: lift_binrel r y (| a, x |)) -> let p1:(dfst y == a /\ a == a) = dfst pf in let p2:r (dsnd y) x = dsnd pf in introduce dfst y == a /\ r (dsnd y) x with eliminate dfst y == a /\ a == a returns _ with l r . l and FStar.Squash.return_squash p2) in ()
{ "checked_file": "FStar.WellFounded.Util.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.WellFounded.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Squash.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.WellFounded.Util.fst" }
[ "lemma" ]
[ "FStar.WellFounded.binrel", "FStar.WellFounded.Util.top", "Prims.squash", "Prims.l_and", "Prims.eq2", "FStar.Pervasives.dfst", "FStar.Pervasives.dsnd", "FStar.Squash.bind_squash", "FStar.WellFounded.Util.lift_binrel", "Prims.Mkdtuple2", "FStar.Classical.Sugar.and_intro", "Prims.unit", "FStar.Classical.Sugar.and_elim", "FStar.Squash.return_squash", "FStar.Squash.get_proof", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module FStar.WellFounded.Util open FStar.WellFounded #push-options "--warn_error -242" //inner let recs not encoded to SMT; ok let intro_lift_binrel (#a:Type) (r:binrel a) (y:a) (x:a) : Lemma (requires r y x) (ensures lift_binrel r (| a, y |) (| a, x |)) = let t0 : top = (| a, y |) in let t1 : top = (| a, x |) in let pf1 : squash (dfst t0 == a /\ dfst t1 == a) = () in let pf2 : squash (r (dsnd t0) (dsnd t1)) = () in let pf : squash (lift_binrel r t0 t1) = FStar.Squash.bind_squash pf1 (fun (pf1: (dfst t0 == a /\ dfst t1 == a)) -> FStar.Squash.bind_squash pf2 (fun (pf2: (r (dsnd t0) (dsnd t1))) -> let p : lift_binrel r t0 t1 = (| pf1, pf2 |) in FStar.Squash.return_squash p)) in () let elim_lift_binrel (#a:Type) (r:binrel a) (y:top) (x:a) : Lemma (requires lift_binrel r y (| a, x |))
false
false
FStar.WellFounded.Util.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val elim_lift_binrel (#a:Type) (r:binrel a) (y:top) (x:a) : Lemma (requires lift_binrel r y (| a, x |)) (ensures dfst y == a /\ r (dsnd y) x)
[]
FStar.WellFounded.Util.elim_lift_binrel
{ "file_name": "ulib/FStar.WellFounded.Util.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
r: FStar.WellFounded.binrel a -> y: FStar.WellFounded.Util.top -> x: a -> FStar.Pervasives.Lemma (requires FStar.WellFounded.Util.lift_binrel r y (| a, x |)) (ensures FStar.Pervasives.dfst y == a /\ r (FStar.Pervasives.dsnd y) x)
{ "end_col": 6, "end_line": 36, "start_col": 3, "start_line": 26 }
Prims.Tot
val is_permutation (#a:Type) (s0:seq a) (s1:seq a) (f:index_fun s0) : prop
[ { "abbrev": true, "full_module": "FStar.Sequence", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Sequence.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": true, "full_module": "FStar.Sequence", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Sequence.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let is_permutation (#a:Type) (s0:seq a) (s1:seq a) (f:index_fun s0) = S.length s0 == S.length s1 /\ (forall x y. // {:pattern f x; f y} x <> y ==> f x <> f y) /\ (forall (i:nat{i < S.length s0}). // {:pattern (S.index s1 (f i))} S.index s0 i == S.index s1 (f i))
val is_permutation (#a:Type) (s0:seq a) (s1:seq a) (f:index_fun s0) : prop let is_permutation (#a: Type) (s0 s1: seq a) (f: index_fun s0) =
false
null
false
S.length s0 == S.length s1 /\ (forall x y. x <> y ==> f x <> f y) /\ (forall (i: nat{i < S.length s0}). S.index s0 i == S.index s1 (f i))
{ "checked_file": "FStar.Sequence.Permutation.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Sequence.Util.fst.checked", "FStar.Sequence.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Permutation.fst" }
[ "total" ]
[ "FStar.Sequence.Base.seq", "FStar.Sequence.Permutation.index_fun", "Prims.l_and", "Prims.eq2", "Prims.nat", "FStar.Sequence.Base.length", "Prims.l_Forall", "FStar.Sequence.Permutation.nat_at_most", "Prims.l_imp", "Prims.b2t", "Prims.op_disEquality", "Prims.op_LessThan", "FStar.Sequence.Base.index", "Prims.prop" ]
[]
(* Copyright 2021 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: N. Swamy *) module FStar.Sequence.Permutation open FStar.Sequence open FStar.Calc open FStar.Sequence.Util module S = FStar.Sequence //////////////////////////////////////////////////////////////////////////////// [@@"opaque_to_smt"]
false
false
FStar.Sequence.Permutation.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val is_permutation (#a:Type) (s0:seq a) (s1:seq a) (f:index_fun s0) : prop
[]
FStar.Sequence.Permutation.is_permutation
{ "file_name": "ulib/experimental/FStar.Sequence.Permutation.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s0: FStar.Sequence.Base.seq a -> s1: FStar.Sequence.Base.seq a -> f: FStar.Sequence.Permutation.index_fun s0 -> Prims.prop
{ "end_col": 39, "end_line": 31, "start_col": 2, "start_line": 27 }
FStar.Pervasives.Lemma
val count_head (#a: eqtype) (x: seq a {S.length x > 0}) : Lemma (count (head x) x > 0)
[ { "abbrev": true, "full_module": "FStar.Sequence", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Sequence.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": true, "full_module": "FStar.Sequence", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Sequence.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let count_head (#a:eqtype) (x:seq a{ S.length x > 0 }) : Lemma (count (head x) x > 0) = reveal_opaque (`%count) (count #a)
val count_head (#a: eqtype) (x: seq a {S.length x > 0}) : Lemma (count (head x) x > 0) let count_head (#a: eqtype) (x: seq a {S.length x > 0}) : Lemma (count (head x) x > 0) =
false
null
true
reveal_opaque (`%count) (count #a)
{ "checked_file": "FStar.Sequence.Permutation.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Sequence.Util.fst.checked", "FStar.Sequence.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Permutation.fst" }
[ "lemma" ]
[ "Prims.eqtype", "FStar.Sequence.Base.seq", "Prims.b2t", "Prims.op_GreaterThan", "FStar.Sequence.Base.length", "FStar.Pervasives.reveal_opaque", "Prims.nat", "FStar.Sequence.Util.count", "Prims.unit", "Prims.l_True", "Prims.squash", "FStar.Sequence.Util.head", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2021 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: N. Swamy *) module FStar.Sequence.Permutation open FStar.Sequence open FStar.Calc open FStar.Sequence.Util module S = FStar.Sequence //////////////////////////////////////////////////////////////////////////////// [@@"opaque_to_smt"] let is_permutation (#a:Type) (s0:seq a) (s1:seq a) (f:index_fun s0) = S.length s0 == S.length s1 /\ (forall x y. // {:pattern f x; f y} x <> y ==> f x <> f y) /\ (forall (i:nat{i < S.length s0}). // {:pattern (S.index s1 (f i))} S.index s0 i == S.index s1 (f i)) let reveal_is_permutation #a (s0 s1:seq a) (f:index_fun s0) = reveal_opaque (`%is_permutation) (is_permutation s0 s1 f) let reveal_is_permutation_nopats (#a:Type) (s0 s1:seq a) (f:index_fun s0) : Lemma (is_permutation s0 s1 f <==> S.length s0 == S.length s1 /\ (forall x y. x <> y ==> f x <> f y) /\ (forall (i:nat{i < S.length s0}). S.index s0 i == S.index s1 (f i))) = reveal_is_permutation s0 s1 f let split3_index (#a:eqtype) (s0:seq a) (x:a) (s1:seq a) (j:nat) : Lemma (requires j < S.length (S.append s0 s1)) (ensures ( let s = S.append s0 (cons x s1) in let s' = S.append s0 s1 in let n = S.length s0 in if j < n then S.index s' j == S.index s j else S.index s' j == S.index s (j + 1) )) = let n = S.length (S.append s0 s1) in if j < n then () else () let rec find (#a:eqtype) (x:a) (s:seq a{ count x s > 0 }) : Tot (frags:(seq a & seq a) { let s' = S.append (fst frags) (snd frags) in let n = S.length (fst frags) in s `S.equal` S.append (fst frags) (cons x (snd frags)) }) (decreases (S.length s)) = reveal_opaque (`%count) (count #a); if head s = x then S.empty, tail s else ( let pfx, sfx = find x (tail s) in assert (S.equal (tail s) (S.append pfx (cons x sfx))); assert (S.equal s (cons (head s) (tail s))); cons (head s) pfx, sfx ) let count_singleton_one (#a:eqtype) (x:a) : Lemma (count x (singleton x) == 1) = reveal_opaque (`%count) (count #a) let count_singleton_zero (#a:eqtype) (x y:a) : Lemma (x =!= y ==> count x (singleton y) == 0) = reveal_opaque (`%count) (count #a) let equal_counts_empty (#a:eqtype) (s0 s1:seq a) : Lemma (requires S.length s0 == 0 /\ (forall x. count x s0 == count x s1)) (ensures S.length s1 == 0) = reveal_opaque (`%count) (count #a); if S.length s1 > 0 then assert (count (head s1) s1 > 0) let count_head (#a:eqtype) (x:seq a{ S.length x > 0 })
false
false
FStar.Sequence.Permutation.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val count_head (#a: eqtype) (x: seq a {S.length x > 0}) : Lemma (count (head x) x > 0)
[]
FStar.Sequence.Permutation.count_head
{ "file_name": "ulib/experimental/FStar.Sequence.Permutation.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.Sequence.Base.seq a {FStar.Sequence.Base.length x > 0} -> FStar.Pervasives.Lemma (ensures FStar.Sequence.Util.count (FStar.Sequence.Util.head x) x > 0)
{ "end_col": 38, "end_line": 97, "start_col": 4, "start_line": 97 }
FStar.Pervasives.Lemma
val foldm_back_sym (#a:Type) (m:CM.cm a) (s1 s2: seq a) : Lemma (ensures foldm_back m (append s1 s2) == foldm_back m (append s2 s1))
[ { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid", "short_module": "CM" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid", "short_module": "CM" }, { "abbrev": true, "full_module": "FStar.Sequence", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Sequence.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": true, "full_module": "FStar.Sequence", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Sequence.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let foldm_back_sym #a (m:CM.cm a) (s1 s2: seq a) : Lemma (ensures foldm_back m (append s1 s2) == foldm_back m (append s2 s1)) = elim_monoid_laws m; foldm_back_append m s1 s2; foldm_back_append m s2 s1
val foldm_back_sym (#a:Type) (m:CM.cm a) (s1 s2: seq a) : Lemma (ensures foldm_back m (append s1 s2) == foldm_back m (append s2 s1)) let foldm_back_sym #a (m: CM.cm a) (s1: seq a) (s2: seq a) : Lemma (ensures foldm_back m (append s1 s2) == foldm_back m (append s2 s1)) =
false
null
true
elim_monoid_laws m; foldm_back_append m s1 s2; foldm_back_append m s2 s1
{ "checked_file": "FStar.Sequence.Permutation.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Sequence.Util.fst.checked", "FStar.Sequence.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Permutation.fst" }
[ "lemma" ]
[ "FStar.Algebra.CommMonoid.cm", "FStar.Sequence.Base.seq", "FStar.Sequence.Permutation.foldm_back_append", "Prims.unit", "FStar.Sequence.Permutation.elim_monoid_laws", "Prims.l_True", "Prims.squash", "Prims.eq2", "FStar.Sequence.Permutation.foldm_back", "FStar.Sequence.Base.append", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2021 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: N. Swamy *) module FStar.Sequence.Permutation open FStar.Sequence open FStar.Calc open FStar.Sequence.Util module S = FStar.Sequence //////////////////////////////////////////////////////////////////////////////// [@@"opaque_to_smt"] let is_permutation (#a:Type) (s0:seq a) (s1:seq a) (f:index_fun s0) = S.length s0 == S.length s1 /\ (forall x y. // {:pattern f x; f y} x <> y ==> f x <> f y) /\ (forall (i:nat{i < S.length s0}). // {:pattern (S.index s1 (f i))} S.index s0 i == S.index s1 (f i)) let reveal_is_permutation #a (s0 s1:seq a) (f:index_fun s0) = reveal_opaque (`%is_permutation) (is_permutation s0 s1 f) let reveal_is_permutation_nopats (#a:Type) (s0 s1:seq a) (f:index_fun s0) : Lemma (is_permutation s0 s1 f <==> S.length s0 == S.length s1 /\ (forall x y. x <> y ==> f x <> f y) /\ (forall (i:nat{i < S.length s0}). S.index s0 i == S.index s1 (f i))) = reveal_is_permutation s0 s1 f let split3_index (#a:eqtype) (s0:seq a) (x:a) (s1:seq a) (j:nat) : Lemma (requires j < S.length (S.append s0 s1)) (ensures ( let s = S.append s0 (cons x s1) in let s' = S.append s0 s1 in let n = S.length s0 in if j < n then S.index s' j == S.index s j else S.index s' j == S.index s (j + 1) )) = let n = S.length (S.append s0 s1) in if j < n then () else () let rec find (#a:eqtype) (x:a) (s:seq a{ count x s > 0 }) : Tot (frags:(seq a & seq a) { let s' = S.append (fst frags) (snd frags) in let n = S.length (fst frags) in s `S.equal` S.append (fst frags) (cons x (snd frags)) }) (decreases (S.length s)) = reveal_opaque (`%count) (count #a); if head s = x then S.empty, tail s else ( let pfx, sfx = find x (tail s) in assert (S.equal (tail s) (S.append pfx (cons x sfx))); assert (S.equal s (cons (head s) (tail s))); cons (head s) pfx, sfx ) let count_singleton_one (#a:eqtype) (x:a) : Lemma (count x (singleton x) == 1) = reveal_opaque (`%count) (count #a) let count_singleton_zero (#a:eqtype) (x y:a) : Lemma (x =!= y ==> count x (singleton y) == 0) = reveal_opaque (`%count) (count #a) let equal_counts_empty (#a:eqtype) (s0 s1:seq a) : Lemma (requires S.length s0 == 0 /\ (forall x. count x s0 == count x s1)) (ensures S.length s1 == 0) = reveal_opaque (`%count) (count #a); if S.length s1 > 0 then assert (count (head s1) s1 > 0) let count_head (#a:eqtype) (x:seq a{ S.length x > 0 }) : Lemma (count (head x) x > 0) = reveal_opaque (`%count) (count #a) #push-options "--fuel 0 --ifuel 0 --z3rlimit_factor 2" let rec permutation_from_equal_counts (#a:eqtype) (s0:seq a) (s1:seq a{(forall x. count x s0 == count x s1)}) : Tot (seqperm s0 s1) (decreases (S.length s0)) = if S.length s0 = 0 then ( count_empty s0; assert (forall x. count x s0 = 0); let f : index_fun s0 = fun i -> i in reveal_is_permutation_nopats s0 s1 f; equal_counts_empty s0 s1; f ) else ( count_head s0; let pfx, sfx = find (head s0) s1 in introduce forall x. count x (tail s0) == count x (S.append pfx sfx) with ( if x = head s0 then ( calc (eq2 #int) { count x (tail s0) <: int; (==) { assert (s0 `S.equal` cons (head s0) (tail s0)); lemma_append_count_aux (head s0) (S.singleton (head s0)) (tail s0); count_singleton_one x } count x s0 - 1 <: int; (==) {} count x s1 - 1 <: int; (==) {} count x (S.append pfx (cons (head s0) sfx)) - 1 <: int; (==) { lemma_append_count_aux x pfx (cons (head s0) sfx) } count x pfx + count x (cons (head s0) sfx) - 1 <: int; (==) { lemma_append_count_aux x (S.singleton (head s0)) sfx } count x pfx + (count x (S.singleton (head s0)) + count x sfx) - 1 <: int; (==) { count_singleton_one x } count x pfx + count x sfx <: int; (==) { lemma_append_count_aux x pfx sfx } count x (S.append pfx sfx) <: int; } ) else ( calc (==) { count x (tail s0); (==) { assert (s0 `S.equal` cons (head s0) (tail s0)); lemma_append_count_aux x (S.singleton (head s0)) (tail s0); count_singleton_zero x (head s0) } count x s0; (==) { } count x s1; (==) { } count x (S.append pfx (cons (head s0) sfx)); (==) { lemma_append_count_aux x pfx (cons (head s0) sfx) } count x pfx + count x (cons (head s0) sfx); (==) { lemma_append_count_aux x (S.singleton (head s0)) sfx } count x pfx + (count x (S.singleton (head s0)) + count x sfx) ; (==) { count_singleton_zero x (head s0) } count x pfx + count x sfx; (==) { lemma_append_count_aux x pfx sfx } count x (S.append pfx sfx); } ) ); let s1' = (S.append pfx sfx) in let f' = permutation_from_equal_counts (tail s0) s1' in reveal_is_permutation_nopats (tail s0) s1' f'; let n = S.length pfx in let f : index_fun s0 = fun i -> if i = 0 then n else if f' (i - 1) < n then f' (i - 1) else f' (i - 1) + 1 in assert (S.length s0 == S.length s1); assert (forall x y. x <> y ==> f' x <> f' y); introduce forall x y. x <> y ==> f x <> f y with (introduce _ ==> _ with _. ( if f x = n || f y = n then () else if f' (x - 1) < n then ( assert (f x == f' (x - 1)); if f' (y - 1) < n then assert (f y == f' (y - 1)) else assert (f y == f' (y - 1) + 1) ) else ( assert (f x == f' (x - 1) + 1); if f' (y - 1) < n then assert (f y == f' (y - 1)) else assert (f y == f' (y - 1) + 1) ) ) ); reveal_is_permutation_nopats s0 s1 f; f) module CM = FStar.Algebra.CommMonoid let elim_monoid_laws #a (m:CM.cm a) : Lemma ( (forall x y. {:pattern m.mult x y} m.mult x y == m.mult y x) /\ (forall x y z.{:pattern (m.mult x (m.mult y z))} m.mult x (m.mult y z) == m.mult (m.mult x y) z) /\ (forall x.{:pattern (m.mult x m.unit)} m.mult x m.unit == x) ) = introduce forall x y. m.mult x y == m.mult y x with ( m.commutativity x y ); introduce forall x y z. m.mult x (m.mult y z) == m.mult (m.mult x y) z with ( m.associativity x y z ); introduce forall x. m.mult x m.unit == x with ( m.identity x ) #push-options "--fuel 1 --ifuel 0" let rec foldm_back_append #a (m:CM.cm a) (s1 s2: seq a) : Lemma (ensures foldm_back m (append s1 s2) == m.mult (foldm_back m s1) (foldm_back m s2)) (decreases (S.length s2)) = elim_monoid_laws m; if S.length s2 = 0 then ( assert (S.append s1 s2 `S.equal` s1); assert (foldm_back m s2 == m.unit) ) else ( let s2', last = un_build s2 in calc (==) { foldm_back m (append s1 s2); (==) { assert (S.equal (append s1 s2) (S.build (append s1 s2') last)) } foldm_back m (S.build (append s1 s2') last); (==) { assert (S.equal (fst (un_build (append s1 s2))) (append s1 s2')) } m.mult last (foldm_back m (append s1 s2')); (==) { foldm_back_append m s1 s2' } m.mult last (m.mult (foldm_back m s1) (foldm_back m s2')); (==) { } m.mult (foldm_back m s1) (m.mult last (foldm_back m s2')); (==) { } m.mult (foldm_back m s1) (foldm_back m s2); } ) let foldm_back_sym #a (m:CM.cm a) (s1 s2: seq a) : Lemma
false
false
FStar.Sequence.Permutation.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 2, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val foldm_back_sym (#a:Type) (m:CM.cm a) (s1 s2: seq a) : Lemma (ensures foldm_back m (append s1 s2) == foldm_back m (append s2 s1))
[]
FStar.Sequence.Permutation.foldm_back_sym
{ "file_name": "ulib/experimental/FStar.Sequence.Permutation.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
m: FStar.Algebra.CommMonoid.cm a -> s1: FStar.Sequence.Base.seq a -> s2: FStar.Sequence.Base.seq a -> FStar.Pervasives.Lemma (ensures FStar.Sequence.Permutation.foldm_back m (FStar.Sequence.Base.append s1 s2) == FStar.Sequence.Permutation.foldm_back m (FStar.Sequence.Base.append s2 s1))
{ "end_col": 29, "end_line": 253, "start_col": 4, "start_line": 251 }
FStar.Pervasives.Lemma
val seqperm_len (#a: _) (s0 s1: seq a) (p: seqperm s0 s1) : Lemma (ensures S.length s0 == S.length s1)
[ { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid", "short_module": "CM" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid", "short_module": "CM" }, { "abbrev": true, "full_module": "FStar.Sequence", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Sequence.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": true, "full_module": "FStar.Sequence", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Sequence.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let seqperm_len #a (s0 s1:seq a) (p:seqperm s0 s1) : Lemma (ensures S.length s0 == S.length s1) = reveal_is_permutation s0 s1 p
val seqperm_len (#a: _) (s0 s1: seq a) (p: seqperm s0 s1) : Lemma (ensures S.length s0 == S.length s1) let seqperm_len #a (s0: seq a) (s1: seq a) (p: seqperm s0 s1) : Lemma (ensures S.length s0 == S.length s1) =
false
null
true
reveal_is_permutation s0 s1 p
{ "checked_file": "FStar.Sequence.Permutation.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Sequence.Util.fst.checked", "FStar.Sequence.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Permutation.fst" }
[ "lemma" ]
[ "FStar.Sequence.Base.seq", "FStar.Sequence.Permutation.seqperm", "FStar.Sequence.Permutation.reveal_is_permutation", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.nat", "FStar.Sequence.Base.length", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2021 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: N. Swamy *) module FStar.Sequence.Permutation open FStar.Sequence open FStar.Calc open FStar.Sequence.Util module S = FStar.Sequence //////////////////////////////////////////////////////////////////////////////// [@@"opaque_to_smt"] let is_permutation (#a:Type) (s0:seq a) (s1:seq a) (f:index_fun s0) = S.length s0 == S.length s1 /\ (forall x y. // {:pattern f x; f y} x <> y ==> f x <> f y) /\ (forall (i:nat{i < S.length s0}). // {:pattern (S.index s1 (f i))} S.index s0 i == S.index s1 (f i)) let reveal_is_permutation #a (s0 s1:seq a) (f:index_fun s0) = reveal_opaque (`%is_permutation) (is_permutation s0 s1 f) let reveal_is_permutation_nopats (#a:Type) (s0 s1:seq a) (f:index_fun s0) : Lemma (is_permutation s0 s1 f <==> S.length s0 == S.length s1 /\ (forall x y. x <> y ==> f x <> f y) /\ (forall (i:nat{i < S.length s0}). S.index s0 i == S.index s1 (f i))) = reveal_is_permutation s0 s1 f let split3_index (#a:eqtype) (s0:seq a) (x:a) (s1:seq a) (j:nat) : Lemma (requires j < S.length (S.append s0 s1)) (ensures ( let s = S.append s0 (cons x s1) in let s' = S.append s0 s1 in let n = S.length s0 in if j < n then S.index s' j == S.index s j else S.index s' j == S.index s (j + 1) )) = let n = S.length (S.append s0 s1) in if j < n then () else () let rec find (#a:eqtype) (x:a) (s:seq a{ count x s > 0 }) : Tot (frags:(seq a & seq a) { let s' = S.append (fst frags) (snd frags) in let n = S.length (fst frags) in s `S.equal` S.append (fst frags) (cons x (snd frags)) }) (decreases (S.length s)) = reveal_opaque (`%count) (count #a); if head s = x then S.empty, tail s else ( let pfx, sfx = find x (tail s) in assert (S.equal (tail s) (S.append pfx (cons x sfx))); assert (S.equal s (cons (head s) (tail s))); cons (head s) pfx, sfx ) let count_singleton_one (#a:eqtype) (x:a) : Lemma (count x (singleton x) == 1) = reveal_opaque (`%count) (count #a) let count_singleton_zero (#a:eqtype) (x y:a) : Lemma (x =!= y ==> count x (singleton y) == 0) = reveal_opaque (`%count) (count #a) let equal_counts_empty (#a:eqtype) (s0 s1:seq a) : Lemma (requires S.length s0 == 0 /\ (forall x. count x s0 == count x s1)) (ensures S.length s1 == 0) = reveal_opaque (`%count) (count #a); if S.length s1 > 0 then assert (count (head s1) s1 > 0) let count_head (#a:eqtype) (x:seq a{ S.length x > 0 }) : Lemma (count (head x) x > 0) = reveal_opaque (`%count) (count #a) #push-options "--fuel 0 --ifuel 0 --z3rlimit_factor 2" let rec permutation_from_equal_counts (#a:eqtype) (s0:seq a) (s1:seq a{(forall x. count x s0 == count x s1)}) : Tot (seqperm s0 s1) (decreases (S.length s0)) = if S.length s0 = 0 then ( count_empty s0; assert (forall x. count x s0 = 0); let f : index_fun s0 = fun i -> i in reveal_is_permutation_nopats s0 s1 f; equal_counts_empty s0 s1; f ) else ( count_head s0; let pfx, sfx = find (head s0) s1 in introduce forall x. count x (tail s0) == count x (S.append pfx sfx) with ( if x = head s0 then ( calc (eq2 #int) { count x (tail s0) <: int; (==) { assert (s0 `S.equal` cons (head s0) (tail s0)); lemma_append_count_aux (head s0) (S.singleton (head s0)) (tail s0); count_singleton_one x } count x s0 - 1 <: int; (==) {} count x s1 - 1 <: int; (==) {} count x (S.append pfx (cons (head s0) sfx)) - 1 <: int; (==) { lemma_append_count_aux x pfx (cons (head s0) sfx) } count x pfx + count x (cons (head s0) sfx) - 1 <: int; (==) { lemma_append_count_aux x (S.singleton (head s0)) sfx } count x pfx + (count x (S.singleton (head s0)) + count x sfx) - 1 <: int; (==) { count_singleton_one x } count x pfx + count x sfx <: int; (==) { lemma_append_count_aux x pfx sfx } count x (S.append pfx sfx) <: int; } ) else ( calc (==) { count x (tail s0); (==) { assert (s0 `S.equal` cons (head s0) (tail s0)); lemma_append_count_aux x (S.singleton (head s0)) (tail s0); count_singleton_zero x (head s0) } count x s0; (==) { } count x s1; (==) { } count x (S.append pfx (cons (head s0) sfx)); (==) { lemma_append_count_aux x pfx (cons (head s0) sfx) } count x pfx + count x (cons (head s0) sfx); (==) { lemma_append_count_aux x (S.singleton (head s0)) sfx } count x pfx + (count x (S.singleton (head s0)) + count x sfx) ; (==) { count_singleton_zero x (head s0) } count x pfx + count x sfx; (==) { lemma_append_count_aux x pfx sfx } count x (S.append pfx sfx); } ) ); let s1' = (S.append pfx sfx) in let f' = permutation_from_equal_counts (tail s0) s1' in reveal_is_permutation_nopats (tail s0) s1' f'; let n = S.length pfx in let f : index_fun s0 = fun i -> if i = 0 then n else if f' (i - 1) < n then f' (i - 1) else f' (i - 1) + 1 in assert (S.length s0 == S.length s1); assert (forall x y. x <> y ==> f' x <> f' y); introduce forall x y. x <> y ==> f x <> f y with (introduce _ ==> _ with _. ( if f x = n || f y = n then () else if f' (x - 1) < n then ( assert (f x == f' (x - 1)); if f' (y - 1) < n then assert (f y == f' (y - 1)) else assert (f y == f' (y - 1) + 1) ) else ( assert (f x == f' (x - 1) + 1); if f' (y - 1) < n then assert (f y == f' (y - 1)) else assert (f y == f' (y - 1) + 1) ) ) ); reveal_is_permutation_nopats s0 s1 f; f) module CM = FStar.Algebra.CommMonoid let elim_monoid_laws #a (m:CM.cm a) : Lemma ( (forall x y. {:pattern m.mult x y} m.mult x y == m.mult y x) /\ (forall x y z.{:pattern (m.mult x (m.mult y z))} m.mult x (m.mult y z) == m.mult (m.mult x y) z) /\ (forall x.{:pattern (m.mult x m.unit)} m.mult x m.unit == x) ) = introduce forall x y. m.mult x y == m.mult y x with ( m.commutativity x y ); introduce forall x y z. m.mult x (m.mult y z) == m.mult (m.mult x y) z with ( m.associativity x y z ); introduce forall x. m.mult x m.unit == x with ( m.identity x ) #push-options "--fuel 1 --ifuel 0" let rec foldm_back_append #a (m:CM.cm a) (s1 s2: seq a) : Lemma (ensures foldm_back m (append s1 s2) == m.mult (foldm_back m s1) (foldm_back m s2)) (decreases (S.length s2)) = elim_monoid_laws m; if S.length s2 = 0 then ( assert (S.append s1 s2 `S.equal` s1); assert (foldm_back m s2 == m.unit) ) else ( let s2', last = un_build s2 in calc (==) { foldm_back m (append s1 s2); (==) { assert (S.equal (append s1 s2) (S.build (append s1 s2') last)) } foldm_back m (S.build (append s1 s2') last); (==) { assert (S.equal (fst (un_build (append s1 s2))) (append s1 s2')) } m.mult last (foldm_back m (append s1 s2')); (==) { foldm_back_append m s1 s2' } m.mult last (m.mult (foldm_back m s1) (foldm_back m s2')); (==) { } m.mult (foldm_back m s1) (m.mult last (foldm_back m s2')); (==) { } m.mult (foldm_back m s1) (foldm_back m s2); } ) let foldm_back_sym #a (m:CM.cm a) (s1 s2: seq a) : Lemma (ensures foldm_back m (append s1 s2) == foldm_back m (append s2 s1)) = elim_monoid_laws m; foldm_back_append m s1 s2; foldm_back_append m s2 s1 #push-options "--fuel 2" let foldm_back_singleton (#a:_) (m:CM.cm a) (x:a) : Lemma (foldm_back m (singleton x) == x) = elim_monoid_laws m #pop-options #push-options "--fuel 0" let foldm_back3 #a (m:CM.cm a) (s1:seq a) (x:a) (s2:seq a) : Lemma (foldm_back m (S.append s1 (cons x s2)) == m.mult x (foldm_back m (S.append s1 s2))) = calc (==) { foldm_back m (S.append s1 (cons x s2)); (==) { foldm_back_append m s1 (cons x s2) } m.mult (foldm_back m s1) (foldm_back m (cons x s2)); (==) { foldm_back_append m (singleton x) s2 } m.mult (foldm_back m s1) (m.mult (foldm_back m (singleton x)) (foldm_back m s2)); (==) { foldm_back_singleton m x } m.mult (foldm_back m s1) (m.mult x (foldm_back m s2)); (==) { elim_monoid_laws m } m.mult x (m.mult (foldm_back m s1) (foldm_back m s2)); (==) { foldm_back_append m s1 s2 } m.mult x (foldm_back m (S.append s1 s2)); } #pop-options let remove_i #a (s:seq a) (i:nat{i < S.length s}) : a & seq a = let s0, s1 = split s i in head s1, append s0 (tail s1) let shift_perm' #a (s0 s1:seq a) (_:squash (S.length s0 == S.length s1 /\ S.length s0 > 0)) (p:seqperm s0 s1) : Tot (seqperm (fst (un_build s0)) (snd (remove_i s1 (p (S.length s0 - 1))))) = reveal_is_permutation s0 s1 p; let s0', last = un_build s0 in let n = S.length s0' in let p' (i:nat{ i < n }) : j:nat{ j < n } = if p i < p n then p i else p i - 1 in let _, s1' = remove_i s1 (p n) in reveal_is_permutation_nopats s0' s1' p'; p' let shift_perm #a (s0 s1:seq a) (_:squash (S.length s0 == S.length s1 /\ S.length s0 > 0)) (p:seqperm s0 s1) : Pure (seqperm (fst (un_build s0)) (snd (remove_i s1 (p (S.length s0 - 1))))) (requires True) (ensures fun _ -> let n = S.length s0 - 1 in S.index s1 (p n) == S.index s0 n) = reveal_is_permutation s0 s1 p; shift_perm' s0 s1 () p let seqperm_len #a (s0 s1:seq a) (p:seqperm s0 s1) : Lemma
false
false
FStar.Sequence.Permutation.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 2, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val seqperm_len (#a: _) (s0 s1: seq a) (p: seqperm s0 s1) : Lemma (ensures S.length s0 == S.length s1)
[]
FStar.Sequence.Permutation.seqperm_len
{ "file_name": "ulib/experimental/FStar.Sequence.Permutation.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s0: FStar.Sequence.Base.seq a -> s1: FStar.Sequence.Base.seq a -> p: FStar.Sequence.Permutation.seqperm s0 s1 -> FStar.Pervasives.Lemma (ensures FStar.Sequence.Base.length s0 == FStar.Sequence.Base.length s1)
{ "end_col": 33, "end_line": 321, "start_col": 4, "start_line": 321 }
Prims.Tot
val remove_i (#a: _) (s: seq a) (i: nat{i < S.length s}) : a & seq a
[ { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid", "short_module": "CM" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid", "short_module": "CM" }, { "abbrev": true, "full_module": "FStar.Sequence", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Sequence.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": true, "full_module": "FStar.Sequence", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Sequence.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let remove_i #a (s:seq a) (i:nat{i < S.length s}) : a & seq a = let s0, s1 = split s i in head s1, append s0 (tail s1)
val remove_i (#a: _) (s: seq a) (i: nat{i < S.length s}) : a & seq a let remove_i #a (s: seq a) (i: nat{i < S.length s}) : a & seq a =
false
null
false
let s0, s1 = split s i in head s1, append s0 (tail s1)
{ "checked_file": "FStar.Sequence.Permutation.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Sequence.Util.fst.checked", "FStar.Sequence.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Permutation.fst" }
[ "total" ]
[ "FStar.Sequence.Base.seq", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.Sequence.Base.length", "FStar.Pervasives.Native.Mktuple2", "FStar.Sequence.Util.head", "FStar.Sequence.Base.append", "FStar.Sequence.Util.tail", "FStar.Pervasives.Native.tuple2", "FStar.Sequence.Util.split" ]
[]
(* Copyright 2021 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: N. Swamy *) module FStar.Sequence.Permutation open FStar.Sequence open FStar.Calc open FStar.Sequence.Util module S = FStar.Sequence //////////////////////////////////////////////////////////////////////////////// [@@"opaque_to_smt"] let is_permutation (#a:Type) (s0:seq a) (s1:seq a) (f:index_fun s0) = S.length s0 == S.length s1 /\ (forall x y. // {:pattern f x; f y} x <> y ==> f x <> f y) /\ (forall (i:nat{i < S.length s0}). // {:pattern (S.index s1 (f i))} S.index s0 i == S.index s1 (f i)) let reveal_is_permutation #a (s0 s1:seq a) (f:index_fun s0) = reveal_opaque (`%is_permutation) (is_permutation s0 s1 f) let reveal_is_permutation_nopats (#a:Type) (s0 s1:seq a) (f:index_fun s0) : Lemma (is_permutation s0 s1 f <==> S.length s0 == S.length s1 /\ (forall x y. x <> y ==> f x <> f y) /\ (forall (i:nat{i < S.length s0}). S.index s0 i == S.index s1 (f i))) = reveal_is_permutation s0 s1 f let split3_index (#a:eqtype) (s0:seq a) (x:a) (s1:seq a) (j:nat) : Lemma (requires j < S.length (S.append s0 s1)) (ensures ( let s = S.append s0 (cons x s1) in let s' = S.append s0 s1 in let n = S.length s0 in if j < n then S.index s' j == S.index s j else S.index s' j == S.index s (j + 1) )) = let n = S.length (S.append s0 s1) in if j < n then () else () let rec find (#a:eqtype) (x:a) (s:seq a{ count x s > 0 }) : Tot (frags:(seq a & seq a) { let s' = S.append (fst frags) (snd frags) in let n = S.length (fst frags) in s `S.equal` S.append (fst frags) (cons x (snd frags)) }) (decreases (S.length s)) = reveal_opaque (`%count) (count #a); if head s = x then S.empty, tail s else ( let pfx, sfx = find x (tail s) in assert (S.equal (tail s) (S.append pfx (cons x sfx))); assert (S.equal s (cons (head s) (tail s))); cons (head s) pfx, sfx ) let count_singleton_one (#a:eqtype) (x:a) : Lemma (count x (singleton x) == 1) = reveal_opaque (`%count) (count #a) let count_singleton_zero (#a:eqtype) (x y:a) : Lemma (x =!= y ==> count x (singleton y) == 0) = reveal_opaque (`%count) (count #a) let equal_counts_empty (#a:eqtype) (s0 s1:seq a) : Lemma (requires S.length s0 == 0 /\ (forall x. count x s0 == count x s1)) (ensures S.length s1 == 0) = reveal_opaque (`%count) (count #a); if S.length s1 > 0 then assert (count (head s1) s1 > 0) let count_head (#a:eqtype) (x:seq a{ S.length x > 0 }) : Lemma (count (head x) x > 0) = reveal_opaque (`%count) (count #a) #push-options "--fuel 0 --ifuel 0 --z3rlimit_factor 2" let rec permutation_from_equal_counts (#a:eqtype) (s0:seq a) (s1:seq a{(forall x. count x s0 == count x s1)}) : Tot (seqperm s0 s1) (decreases (S.length s0)) = if S.length s0 = 0 then ( count_empty s0; assert (forall x. count x s0 = 0); let f : index_fun s0 = fun i -> i in reveal_is_permutation_nopats s0 s1 f; equal_counts_empty s0 s1; f ) else ( count_head s0; let pfx, sfx = find (head s0) s1 in introduce forall x. count x (tail s0) == count x (S.append pfx sfx) with ( if x = head s0 then ( calc (eq2 #int) { count x (tail s0) <: int; (==) { assert (s0 `S.equal` cons (head s0) (tail s0)); lemma_append_count_aux (head s0) (S.singleton (head s0)) (tail s0); count_singleton_one x } count x s0 - 1 <: int; (==) {} count x s1 - 1 <: int; (==) {} count x (S.append pfx (cons (head s0) sfx)) - 1 <: int; (==) { lemma_append_count_aux x pfx (cons (head s0) sfx) } count x pfx + count x (cons (head s0) sfx) - 1 <: int; (==) { lemma_append_count_aux x (S.singleton (head s0)) sfx } count x pfx + (count x (S.singleton (head s0)) + count x sfx) - 1 <: int; (==) { count_singleton_one x } count x pfx + count x sfx <: int; (==) { lemma_append_count_aux x pfx sfx } count x (S.append pfx sfx) <: int; } ) else ( calc (==) { count x (tail s0); (==) { assert (s0 `S.equal` cons (head s0) (tail s0)); lemma_append_count_aux x (S.singleton (head s0)) (tail s0); count_singleton_zero x (head s0) } count x s0; (==) { } count x s1; (==) { } count x (S.append pfx (cons (head s0) sfx)); (==) { lemma_append_count_aux x pfx (cons (head s0) sfx) } count x pfx + count x (cons (head s0) sfx); (==) { lemma_append_count_aux x (S.singleton (head s0)) sfx } count x pfx + (count x (S.singleton (head s0)) + count x sfx) ; (==) { count_singleton_zero x (head s0) } count x pfx + count x sfx; (==) { lemma_append_count_aux x pfx sfx } count x (S.append pfx sfx); } ) ); let s1' = (S.append pfx sfx) in let f' = permutation_from_equal_counts (tail s0) s1' in reveal_is_permutation_nopats (tail s0) s1' f'; let n = S.length pfx in let f : index_fun s0 = fun i -> if i = 0 then n else if f' (i - 1) < n then f' (i - 1) else f' (i - 1) + 1 in assert (S.length s0 == S.length s1); assert (forall x y. x <> y ==> f' x <> f' y); introduce forall x y. x <> y ==> f x <> f y with (introduce _ ==> _ with _. ( if f x = n || f y = n then () else if f' (x - 1) < n then ( assert (f x == f' (x - 1)); if f' (y - 1) < n then assert (f y == f' (y - 1)) else assert (f y == f' (y - 1) + 1) ) else ( assert (f x == f' (x - 1) + 1); if f' (y - 1) < n then assert (f y == f' (y - 1)) else assert (f y == f' (y - 1) + 1) ) ) ); reveal_is_permutation_nopats s0 s1 f; f) module CM = FStar.Algebra.CommMonoid let elim_monoid_laws #a (m:CM.cm a) : Lemma ( (forall x y. {:pattern m.mult x y} m.mult x y == m.mult y x) /\ (forall x y z.{:pattern (m.mult x (m.mult y z))} m.mult x (m.mult y z) == m.mult (m.mult x y) z) /\ (forall x.{:pattern (m.mult x m.unit)} m.mult x m.unit == x) ) = introduce forall x y. m.mult x y == m.mult y x with ( m.commutativity x y ); introduce forall x y z. m.mult x (m.mult y z) == m.mult (m.mult x y) z with ( m.associativity x y z ); introduce forall x. m.mult x m.unit == x with ( m.identity x ) #push-options "--fuel 1 --ifuel 0" let rec foldm_back_append #a (m:CM.cm a) (s1 s2: seq a) : Lemma (ensures foldm_back m (append s1 s2) == m.mult (foldm_back m s1) (foldm_back m s2)) (decreases (S.length s2)) = elim_monoid_laws m; if S.length s2 = 0 then ( assert (S.append s1 s2 `S.equal` s1); assert (foldm_back m s2 == m.unit) ) else ( let s2', last = un_build s2 in calc (==) { foldm_back m (append s1 s2); (==) { assert (S.equal (append s1 s2) (S.build (append s1 s2') last)) } foldm_back m (S.build (append s1 s2') last); (==) { assert (S.equal (fst (un_build (append s1 s2))) (append s1 s2')) } m.mult last (foldm_back m (append s1 s2')); (==) { foldm_back_append m s1 s2' } m.mult last (m.mult (foldm_back m s1) (foldm_back m s2')); (==) { } m.mult (foldm_back m s1) (m.mult last (foldm_back m s2')); (==) { } m.mult (foldm_back m s1) (foldm_back m s2); } ) let foldm_back_sym #a (m:CM.cm a) (s1 s2: seq a) : Lemma (ensures foldm_back m (append s1 s2) == foldm_back m (append s2 s1)) = elim_monoid_laws m; foldm_back_append m s1 s2; foldm_back_append m s2 s1 #push-options "--fuel 2" let foldm_back_singleton (#a:_) (m:CM.cm a) (x:a) : Lemma (foldm_back m (singleton x) == x) = elim_monoid_laws m #pop-options #push-options "--fuel 0" let foldm_back3 #a (m:CM.cm a) (s1:seq a) (x:a) (s2:seq a) : Lemma (foldm_back m (S.append s1 (cons x s2)) == m.mult x (foldm_back m (S.append s1 s2))) = calc (==) { foldm_back m (S.append s1 (cons x s2)); (==) { foldm_back_append m s1 (cons x s2) } m.mult (foldm_back m s1) (foldm_back m (cons x s2)); (==) { foldm_back_append m (singleton x) s2 } m.mult (foldm_back m s1) (m.mult (foldm_back m (singleton x)) (foldm_back m s2)); (==) { foldm_back_singleton m x } m.mult (foldm_back m s1) (m.mult x (foldm_back m s2)); (==) { elim_monoid_laws m } m.mult x (m.mult (foldm_back m s1) (foldm_back m s2)); (==) { foldm_back_append m s1 s2 } m.mult x (foldm_back m (S.append s1 s2)); } #pop-options let remove_i #a (s:seq a) (i:nat{i < S.length s})
false
false
FStar.Sequence.Permutation.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 2, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val remove_i (#a: _) (s: seq a) (i: nat{i < S.length s}) : a & seq a
[]
FStar.Sequence.Permutation.remove_i
{ "file_name": "ulib/experimental/FStar.Sequence.Permutation.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: FStar.Sequence.Base.seq a -> i: Prims.nat{i < FStar.Sequence.Base.length s} -> a * FStar.Sequence.Base.seq a
{ "end_col": 32, "end_line": 285, "start_col": 3, "start_line": 284 }
FStar.Pervasives.Lemma
val reveal_is_permutation (#a:Type) (s0 s1:seq a) (f:index_fun s0) : Lemma (is_permutation s0 s1 f <==> (* lengths of the sequences are the same *) S.length s0 == S.length s1 /\ (* f is injective *) (forall x y. {:pattern f x; f y} x <> y ==> f x <> f y) /\ (* and f relates equal items in s0 and s1 *) (forall (i:nat{i < S.length s0}).{:pattern (S.index s1 (f i))} S.index s0 i == S.index s1 (f i)))
[ { "abbrev": true, "full_module": "FStar.Sequence", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Sequence.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": true, "full_module": "FStar.Sequence", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Sequence.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let reveal_is_permutation #a (s0 s1:seq a) (f:index_fun s0) = reveal_opaque (`%is_permutation) (is_permutation s0 s1 f)
val reveal_is_permutation (#a:Type) (s0 s1:seq a) (f:index_fun s0) : Lemma (is_permutation s0 s1 f <==> (* lengths of the sequences are the same *) S.length s0 == S.length s1 /\ (* f is injective *) (forall x y. {:pattern f x; f y} x <> y ==> f x <> f y) /\ (* and f relates equal items in s0 and s1 *) (forall (i:nat{i < S.length s0}).{:pattern (S.index s1 (f i))} S.index s0 i == S.index s1 (f i))) let reveal_is_permutation #a (s0: seq a) (s1: seq a) (f: index_fun s0) =
false
null
true
reveal_opaque (`%is_permutation) (is_permutation s0 s1 f)
{ "checked_file": "FStar.Sequence.Permutation.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Sequence.Util.fst.checked", "FStar.Sequence.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Permutation.fst" }
[ "lemma" ]
[ "FStar.Sequence.Base.seq", "FStar.Sequence.Permutation.index_fun", "FStar.Pervasives.reveal_opaque", "Prims.prop", "FStar.Sequence.Permutation.is_permutation", "Prims.unit" ]
[]
(* Copyright 2021 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: N. Swamy *) module FStar.Sequence.Permutation open FStar.Sequence open FStar.Calc open FStar.Sequence.Util module S = FStar.Sequence //////////////////////////////////////////////////////////////////////////////// [@@"opaque_to_smt"] let is_permutation (#a:Type) (s0:seq a) (s1:seq a) (f:index_fun s0) = S.length s0 == S.length s1 /\ (forall x y. // {:pattern f x; f y} x <> y ==> f x <> f y) /\ (forall (i:nat{i < S.length s0}). // {:pattern (S.index s1 (f i))} S.index s0 i == S.index s1 (f i))
false
false
FStar.Sequence.Permutation.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val reveal_is_permutation (#a:Type) (s0 s1:seq a) (f:index_fun s0) : Lemma (is_permutation s0 s1 f <==> (* lengths of the sequences are the same *) S.length s0 == S.length s1 /\ (* f is injective *) (forall x y. {:pattern f x; f y} x <> y ==> f x <> f y) /\ (* and f relates equal items in s0 and s1 *) (forall (i:nat{i < S.length s0}).{:pattern (S.index s1 (f i))} S.index s0 i == S.index s1 (f i)))
[]
FStar.Sequence.Permutation.reveal_is_permutation
{ "file_name": "ulib/experimental/FStar.Sequence.Permutation.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s0: FStar.Sequence.Base.seq a -> s1: FStar.Sequence.Base.seq a -> f: FStar.Sequence.Permutation.index_fun s0 -> FStar.Pervasives.Lemma (ensures FStar.Sequence.Permutation.is_permutation s0 s1 f <==> FStar.Sequence.Base.length s0 == FStar.Sequence.Base.length s1 /\ (forall (x: FStar.Sequence.Permutation.nat_at_most (FStar.Sequence.Base.length s0)) (y: FStar.Sequence.Permutation.nat_at_most (FStar.Sequence.Base.length s0)). {:pattern f x; f y} x <> y ==> f x <> f y) /\ (forall (i: Prims.nat{i < FStar.Sequence.Base.length s0}). {:pattern FStar.Sequence.Base.index s1 (f i)} FStar.Sequence.Base.index s0 i == FStar.Sequence.Base.index s1 (f i)))
{ "end_col": 61, "end_line": 34, "start_col": 4, "start_line": 34 }
FStar.Pervasives.Lemma
val reveal_is_permutation_nopats (#a: Type) (s0 s1: seq a) (f: index_fun s0) : Lemma (is_permutation s0 s1 f <==> S.length s0 == S.length s1 /\ (forall x y. x <> y ==> f x <> f y) /\ (forall (i: nat{i < S.length s0}). S.index s0 i == S.index s1 (f i)))
[ { "abbrev": true, "full_module": "FStar.Sequence", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Sequence.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": true, "full_module": "FStar.Sequence", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Sequence.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let reveal_is_permutation_nopats (#a:Type) (s0 s1:seq a) (f:index_fun s0) : Lemma (is_permutation s0 s1 f <==> S.length s0 == S.length s1 /\ (forall x y. x <> y ==> f x <> f y) /\ (forall (i:nat{i < S.length s0}). S.index s0 i == S.index s1 (f i))) = reveal_is_permutation s0 s1 f
val reveal_is_permutation_nopats (#a: Type) (s0 s1: seq a) (f: index_fun s0) : Lemma (is_permutation s0 s1 f <==> S.length s0 == S.length s1 /\ (forall x y. x <> y ==> f x <> f y) /\ (forall (i: nat{i < S.length s0}). S.index s0 i == S.index s1 (f i))) let reveal_is_permutation_nopats (#a: Type) (s0 s1: seq a) (f: index_fun s0) : Lemma (is_permutation s0 s1 f <==> S.length s0 == S.length s1 /\ (forall x y. x <> y ==> f x <> f y) /\ (forall (i: nat{i < S.length s0}). S.index s0 i == S.index s1 (f i))) =
false
null
true
reveal_is_permutation s0 s1 f
{ "checked_file": "FStar.Sequence.Permutation.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Sequence.Util.fst.checked", "FStar.Sequence.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Permutation.fst" }
[ "lemma" ]
[ "FStar.Sequence.Base.seq", "FStar.Sequence.Permutation.index_fun", "FStar.Sequence.Permutation.reveal_is_permutation", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.l_iff", "FStar.Sequence.Permutation.is_permutation", "Prims.l_and", "Prims.eq2", "Prims.nat", "FStar.Sequence.Base.length", "Prims.l_Forall", "FStar.Sequence.Permutation.nat_at_most", "Prims.l_imp", "Prims.b2t", "Prims.op_disEquality", "Prims.op_LessThan", "FStar.Sequence.Base.index", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2021 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: N. Swamy *) module FStar.Sequence.Permutation open FStar.Sequence open FStar.Calc open FStar.Sequence.Util module S = FStar.Sequence //////////////////////////////////////////////////////////////////////////////// [@@"opaque_to_smt"] let is_permutation (#a:Type) (s0:seq a) (s1:seq a) (f:index_fun s0) = S.length s0 == S.length s1 /\ (forall x y. // {:pattern f x; f y} x <> y ==> f x <> f y) /\ (forall (i:nat{i < S.length s0}). // {:pattern (S.index s1 (f i))} S.index s0 i == S.index s1 (f i)) let reveal_is_permutation #a (s0 s1:seq a) (f:index_fun s0) = reveal_opaque (`%is_permutation) (is_permutation s0 s1 f) let reveal_is_permutation_nopats (#a:Type) (s0 s1:seq a) (f:index_fun s0) : Lemma (is_permutation s0 s1 f <==> S.length s0 == S.length s1 /\ (forall x y. x <> y ==> f x <> f y) /\ (forall (i:nat{i < S.length s0}).
false
false
FStar.Sequence.Permutation.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val reveal_is_permutation_nopats (#a: Type) (s0 s1: seq a) (f: index_fun s0) : Lemma (is_permutation s0 s1 f <==> S.length s0 == S.length s1 /\ (forall x y. x <> y ==> f x <> f y) /\ (forall (i: nat{i < S.length s0}). S.index s0 i == S.index s1 (f i)))
[]
FStar.Sequence.Permutation.reveal_is_permutation_nopats
{ "file_name": "ulib/experimental/FStar.Sequence.Permutation.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s0: FStar.Sequence.Base.seq a -> s1: FStar.Sequence.Base.seq a -> f: FStar.Sequence.Permutation.index_fun s0 -> FStar.Pervasives.Lemma (ensures FStar.Sequence.Permutation.is_permutation s0 s1 f <==> FStar.Sequence.Base.length s0 == FStar.Sequence.Base.length s1 /\ (forall (x: FStar.Sequence.Permutation.nat_at_most (FStar.Sequence.Base.length s0)) (y: FStar.Sequence.Permutation.nat_at_most (FStar.Sequence.Base.length s0)). x <> y ==> f x <> f y) /\ (forall (i: Prims.nat{i < FStar.Sequence.Base.length s0}). FStar.Sequence.Base.index s0 i == FStar.Sequence.Base.index s1 (f i)))
{ "end_col": 34, "end_line": 45, "start_col": 5, "start_line": 45 }
FStar.Pervasives.Lemma
val foldm_back_singleton (#a: _) (m: CM.cm a) (x: a) : Lemma (foldm_back m (singleton x) == x)
[ { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid", "short_module": "CM" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid", "short_module": "CM" }, { "abbrev": true, "full_module": "FStar.Sequence", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Sequence.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": true, "full_module": "FStar.Sequence", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Sequence.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let foldm_back_singleton (#a:_) (m:CM.cm a) (x:a) : Lemma (foldm_back m (singleton x) == x) = elim_monoid_laws m
val foldm_back_singleton (#a: _) (m: CM.cm a) (x: a) : Lemma (foldm_back m (singleton x) == x) let foldm_back_singleton (#a: _) (m: CM.cm a) (x: a) : Lemma (foldm_back m (singleton x) == x) =
false
null
true
elim_monoid_laws m
{ "checked_file": "FStar.Sequence.Permutation.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Sequence.Util.fst.checked", "FStar.Sequence.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Permutation.fst" }
[ "lemma" ]
[ "FStar.Algebra.CommMonoid.cm", "FStar.Sequence.Permutation.elim_monoid_laws", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "FStar.Sequence.Permutation.foldm_back", "FStar.Sequence.Base.singleton", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2021 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: N. Swamy *) module FStar.Sequence.Permutation open FStar.Sequence open FStar.Calc open FStar.Sequence.Util module S = FStar.Sequence //////////////////////////////////////////////////////////////////////////////// [@@"opaque_to_smt"] let is_permutation (#a:Type) (s0:seq a) (s1:seq a) (f:index_fun s0) = S.length s0 == S.length s1 /\ (forall x y. // {:pattern f x; f y} x <> y ==> f x <> f y) /\ (forall (i:nat{i < S.length s0}). // {:pattern (S.index s1 (f i))} S.index s0 i == S.index s1 (f i)) let reveal_is_permutation #a (s0 s1:seq a) (f:index_fun s0) = reveal_opaque (`%is_permutation) (is_permutation s0 s1 f) let reveal_is_permutation_nopats (#a:Type) (s0 s1:seq a) (f:index_fun s0) : Lemma (is_permutation s0 s1 f <==> S.length s0 == S.length s1 /\ (forall x y. x <> y ==> f x <> f y) /\ (forall (i:nat{i < S.length s0}). S.index s0 i == S.index s1 (f i))) = reveal_is_permutation s0 s1 f let split3_index (#a:eqtype) (s0:seq a) (x:a) (s1:seq a) (j:nat) : Lemma (requires j < S.length (S.append s0 s1)) (ensures ( let s = S.append s0 (cons x s1) in let s' = S.append s0 s1 in let n = S.length s0 in if j < n then S.index s' j == S.index s j else S.index s' j == S.index s (j + 1) )) = let n = S.length (S.append s0 s1) in if j < n then () else () let rec find (#a:eqtype) (x:a) (s:seq a{ count x s > 0 }) : Tot (frags:(seq a & seq a) { let s' = S.append (fst frags) (snd frags) in let n = S.length (fst frags) in s `S.equal` S.append (fst frags) (cons x (snd frags)) }) (decreases (S.length s)) = reveal_opaque (`%count) (count #a); if head s = x then S.empty, tail s else ( let pfx, sfx = find x (tail s) in assert (S.equal (tail s) (S.append pfx (cons x sfx))); assert (S.equal s (cons (head s) (tail s))); cons (head s) pfx, sfx ) let count_singleton_one (#a:eqtype) (x:a) : Lemma (count x (singleton x) == 1) = reveal_opaque (`%count) (count #a) let count_singleton_zero (#a:eqtype) (x y:a) : Lemma (x =!= y ==> count x (singleton y) == 0) = reveal_opaque (`%count) (count #a) let equal_counts_empty (#a:eqtype) (s0 s1:seq a) : Lemma (requires S.length s0 == 0 /\ (forall x. count x s0 == count x s1)) (ensures S.length s1 == 0) = reveal_opaque (`%count) (count #a); if S.length s1 > 0 then assert (count (head s1) s1 > 0) let count_head (#a:eqtype) (x:seq a{ S.length x > 0 }) : Lemma (count (head x) x > 0) = reveal_opaque (`%count) (count #a) #push-options "--fuel 0 --ifuel 0 --z3rlimit_factor 2" let rec permutation_from_equal_counts (#a:eqtype) (s0:seq a) (s1:seq a{(forall x. count x s0 == count x s1)}) : Tot (seqperm s0 s1) (decreases (S.length s0)) = if S.length s0 = 0 then ( count_empty s0; assert (forall x. count x s0 = 0); let f : index_fun s0 = fun i -> i in reveal_is_permutation_nopats s0 s1 f; equal_counts_empty s0 s1; f ) else ( count_head s0; let pfx, sfx = find (head s0) s1 in introduce forall x. count x (tail s0) == count x (S.append pfx sfx) with ( if x = head s0 then ( calc (eq2 #int) { count x (tail s0) <: int; (==) { assert (s0 `S.equal` cons (head s0) (tail s0)); lemma_append_count_aux (head s0) (S.singleton (head s0)) (tail s0); count_singleton_one x } count x s0 - 1 <: int; (==) {} count x s1 - 1 <: int; (==) {} count x (S.append pfx (cons (head s0) sfx)) - 1 <: int; (==) { lemma_append_count_aux x pfx (cons (head s0) sfx) } count x pfx + count x (cons (head s0) sfx) - 1 <: int; (==) { lemma_append_count_aux x (S.singleton (head s0)) sfx } count x pfx + (count x (S.singleton (head s0)) + count x sfx) - 1 <: int; (==) { count_singleton_one x } count x pfx + count x sfx <: int; (==) { lemma_append_count_aux x pfx sfx } count x (S.append pfx sfx) <: int; } ) else ( calc (==) { count x (tail s0); (==) { assert (s0 `S.equal` cons (head s0) (tail s0)); lemma_append_count_aux x (S.singleton (head s0)) (tail s0); count_singleton_zero x (head s0) } count x s0; (==) { } count x s1; (==) { } count x (S.append pfx (cons (head s0) sfx)); (==) { lemma_append_count_aux x pfx (cons (head s0) sfx) } count x pfx + count x (cons (head s0) sfx); (==) { lemma_append_count_aux x (S.singleton (head s0)) sfx } count x pfx + (count x (S.singleton (head s0)) + count x sfx) ; (==) { count_singleton_zero x (head s0) } count x pfx + count x sfx; (==) { lemma_append_count_aux x pfx sfx } count x (S.append pfx sfx); } ) ); let s1' = (S.append pfx sfx) in let f' = permutation_from_equal_counts (tail s0) s1' in reveal_is_permutation_nopats (tail s0) s1' f'; let n = S.length pfx in let f : index_fun s0 = fun i -> if i = 0 then n else if f' (i - 1) < n then f' (i - 1) else f' (i - 1) + 1 in assert (S.length s0 == S.length s1); assert (forall x y. x <> y ==> f' x <> f' y); introduce forall x y. x <> y ==> f x <> f y with (introduce _ ==> _ with _. ( if f x = n || f y = n then () else if f' (x - 1) < n then ( assert (f x == f' (x - 1)); if f' (y - 1) < n then assert (f y == f' (y - 1)) else assert (f y == f' (y - 1) + 1) ) else ( assert (f x == f' (x - 1) + 1); if f' (y - 1) < n then assert (f y == f' (y - 1)) else assert (f y == f' (y - 1) + 1) ) ) ); reveal_is_permutation_nopats s0 s1 f; f) module CM = FStar.Algebra.CommMonoid let elim_monoid_laws #a (m:CM.cm a) : Lemma ( (forall x y. {:pattern m.mult x y} m.mult x y == m.mult y x) /\ (forall x y z.{:pattern (m.mult x (m.mult y z))} m.mult x (m.mult y z) == m.mult (m.mult x y) z) /\ (forall x.{:pattern (m.mult x m.unit)} m.mult x m.unit == x) ) = introduce forall x y. m.mult x y == m.mult y x with ( m.commutativity x y ); introduce forall x y z. m.mult x (m.mult y z) == m.mult (m.mult x y) z with ( m.associativity x y z ); introduce forall x. m.mult x m.unit == x with ( m.identity x ) #push-options "--fuel 1 --ifuel 0" let rec foldm_back_append #a (m:CM.cm a) (s1 s2: seq a) : Lemma (ensures foldm_back m (append s1 s2) == m.mult (foldm_back m s1) (foldm_back m s2)) (decreases (S.length s2)) = elim_monoid_laws m; if S.length s2 = 0 then ( assert (S.append s1 s2 `S.equal` s1); assert (foldm_back m s2 == m.unit) ) else ( let s2', last = un_build s2 in calc (==) { foldm_back m (append s1 s2); (==) { assert (S.equal (append s1 s2) (S.build (append s1 s2') last)) } foldm_back m (S.build (append s1 s2') last); (==) { assert (S.equal (fst (un_build (append s1 s2))) (append s1 s2')) } m.mult last (foldm_back m (append s1 s2')); (==) { foldm_back_append m s1 s2' } m.mult last (m.mult (foldm_back m s1) (foldm_back m s2')); (==) { } m.mult (foldm_back m s1) (m.mult last (foldm_back m s2')); (==) { } m.mult (foldm_back m s1) (foldm_back m s2); } ) let foldm_back_sym #a (m:CM.cm a) (s1 s2: seq a) : Lemma (ensures foldm_back m (append s1 s2) == foldm_back m (append s2 s1)) = elim_monoid_laws m; foldm_back_append m s1 s2; foldm_back_append m s2 s1 #push-options "--fuel 2" let foldm_back_singleton (#a:_) (m:CM.cm a) (x:a)
false
false
FStar.Sequence.Permutation.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 2, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 2, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val foldm_back_singleton (#a: _) (m: CM.cm a) (x: a) : Lemma (foldm_back m (singleton x) == x)
[]
FStar.Sequence.Permutation.foldm_back_singleton
{ "file_name": "ulib/experimental/FStar.Sequence.Permutation.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
m: FStar.Algebra.CommMonoid.cm a -> x: a -> FStar.Pervasives.Lemma (ensures FStar.Sequence.Permutation.foldm_back m (FStar.Sequence.Base.singleton x) == x)
{ "end_col": 22, "end_line": 258, "start_col": 4, "start_line": 258 }
FStar.Pervasives.Lemma
val elim_monoid_laws (#a: _) (m: CM.cm a) : Lemma ((forall x y. {:pattern m.mult x y} m.mult x y == m.mult y x) /\ (forall x y z. {:pattern (m.mult x (m.mult y z))} m.mult x (m.mult y z) == m.mult (m.mult x y) z) /\ (forall x. {:pattern (m.mult x m.unit)} m.mult x m.unit == x))
[ { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid", "short_module": "CM" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid", "short_module": "CM" }, { "abbrev": true, "full_module": "FStar.Sequence", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Sequence.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": true, "full_module": "FStar.Sequence", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Sequence.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let elim_monoid_laws #a (m:CM.cm a) : Lemma ( (forall x y. {:pattern m.mult x y} m.mult x y == m.mult y x) /\ (forall x y z.{:pattern (m.mult x (m.mult y z))} m.mult x (m.mult y z) == m.mult (m.mult x y) z) /\ (forall x.{:pattern (m.mult x m.unit)} m.mult x m.unit == x) ) = introduce forall x y. m.mult x y == m.mult y x with ( m.commutativity x y ); introduce forall x y z. m.mult x (m.mult y z) == m.mult (m.mult x y) z with ( m.associativity x y z ); introduce forall x. m.mult x m.unit == x with ( m.identity x )
val elim_monoid_laws (#a: _) (m: CM.cm a) : Lemma ((forall x y. {:pattern m.mult x y} m.mult x y == m.mult y x) /\ (forall x y z. {:pattern (m.mult x (m.mult y z))} m.mult x (m.mult y z) == m.mult (m.mult x y) z) /\ (forall x. {:pattern (m.mult x m.unit)} m.mult x m.unit == x)) let elim_monoid_laws #a (m: CM.cm a) : Lemma ((forall x y. {:pattern m.mult x y} m.mult x y == m.mult y x) /\ (forall x y z. {:pattern (m.mult x (m.mult y z))} m.mult x (m.mult y z) == m.mult (m.mult x y) z) /\ (forall x. {:pattern (m.mult x m.unit)} m.mult x m.unit == x)) =
false
null
true
introduce forall x y . m.mult x y == m.mult y x with (m.commutativity x y); introduce forall x y z . m.mult x (m.mult y z) == m.mult (m.mult x y) z with (m.associativity x y z); introduce forall x . m.mult x m.unit == x with (m.identity x)
{ "checked_file": "FStar.Sequence.Permutation.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Sequence.Util.fst.checked", "FStar.Sequence.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Permutation.fst" }
[ "lemma" ]
[ "FStar.Algebra.CommMonoid.cm", "FStar.Classical.Sugar.forall_intro", "Prims.eq2", "FStar.Algebra.CommMonoid.__proj__CM__item__mult", "FStar.Algebra.CommMonoid.__proj__CM__item__unit", "FStar.Algebra.CommMonoid.__proj__CM__item__identity", "Prims.squash", "Prims.unit", "Prims.l_Forall", "FStar.Algebra.CommMonoid.__proj__CM__item__associativity", "FStar.Algebra.CommMonoid.__proj__CM__item__commutativity", "Prims.l_True", "Prims.l_and", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2021 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: N. Swamy *) module FStar.Sequence.Permutation open FStar.Sequence open FStar.Calc open FStar.Sequence.Util module S = FStar.Sequence //////////////////////////////////////////////////////////////////////////////// [@@"opaque_to_smt"] let is_permutation (#a:Type) (s0:seq a) (s1:seq a) (f:index_fun s0) = S.length s0 == S.length s1 /\ (forall x y. // {:pattern f x; f y} x <> y ==> f x <> f y) /\ (forall (i:nat{i < S.length s0}). // {:pattern (S.index s1 (f i))} S.index s0 i == S.index s1 (f i)) let reveal_is_permutation #a (s0 s1:seq a) (f:index_fun s0) = reveal_opaque (`%is_permutation) (is_permutation s0 s1 f) let reveal_is_permutation_nopats (#a:Type) (s0 s1:seq a) (f:index_fun s0) : Lemma (is_permutation s0 s1 f <==> S.length s0 == S.length s1 /\ (forall x y. x <> y ==> f x <> f y) /\ (forall (i:nat{i < S.length s0}). S.index s0 i == S.index s1 (f i))) = reveal_is_permutation s0 s1 f let split3_index (#a:eqtype) (s0:seq a) (x:a) (s1:seq a) (j:nat) : Lemma (requires j < S.length (S.append s0 s1)) (ensures ( let s = S.append s0 (cons x s1) in let s' = S.append s0 s1 in let n = S.length s0 in if j < n then S.index s' j == S.index s j else S.index s' j == S.index s (j + 1) )) = let n = S.length (S.append s0 s1) in if j < n then () else () let rec find (#a:eqtype) (x:a) (s:seq a{ count x s > 0 }) : Tot (frags:(seq a & seq a) { let s' = S.append (fst frags) (snd frags) in let n = S.length (fst frags) in s `S.equal` S.append (fst frags) (cons x (snd frags)) }) (decreases (S.length s)) = reveal_opaque (`%count) (count #a); if head s = x then S.empty, tail s else ( let pfx, sfx = find x (tail s) in assert (S.equal (tail s) (S.append pfx (cons x sfx))); assert (S.equal s (cons (head s) (tail s))); cons (head s) pfx, sfx ) let count_singleton_one (#a:eqtype) (x:a) : Lemma (count x (singleton x) == 1) = reveal_opaque (`%count) (count #a) let count_singleton_zero (#a:eqtype) (x y:a) : Lemma (x =!= y ==> count x (singleton y) == 0) = reveal_opaque (`%count) (count #a) let equal_counts_empty (#a:eqtype) (s0 s1:seq a) : Lemma (requires S.length s0 == 0 /\ (forall x. count x s0 == count x s1)) (ensures S.length s1 == 0) = reveal_opaque (`%count) (count #a); if S.length s1 > 0 then assert (count (head s1) s1 > 0) let count_head (#a:eqtype) (x:seq a{ S.length x > 0 }) : Lemma (count (head x) x > 0) = reveal_opaque (`%count) (count #a) #push-options "--fuel 0 --ifuel 0 --z3rlimit_factor 2" let rec permutation_from_equal_counts (#a:eqtype) (s0:seq a) (s1:seq a{(forall x. count x s0 == count x s1)}) : Tot (seqperm s0 s1) (decreases (S.length s0)) = if S.length s0 = 0 then ( count_empty s0; assert (forall x. count x s0 = 0); let f : index_fun s0 = fun i -> i in reveal_is_permutation_nopats s0 s1 f; equal_counts_empty s0 s1; f ) else ( count_head s0; let pfx, sfx = find (head s0) s1 in introduce forall x. count x (tail s0) == count x (S.append pfx sfx) with ( if x = head s0 then ( calc (eq2 #int) { count x (tail s0) <: int; (==) { assert (s0 `S.equal` cons (head s0) (tail s0)); lemma_append_count_aux (head s0) (S.singleton (head s0)) (tail s0); count_singleton_one x } count x s0 - 1 <: int; (==) {} count x s1 - 1 <: int; (==) {} count x (S.append pfx (cons (head s0) sfx)) - 1 <: int; (==) { lemma_append_count_aux x pfx (cons (head s0) sfx) } count x pfx + count x (cons (head s0) sfx) - 1 <: int; (==) { lemma_append_count_aux x (S.singleton (head s0)) sfx } count x pfx + (count x (S.singleton (head s0)) + count x sfx) - 1 <: int; (==) { count_singleton_one x } count x pfx + count x sfx <: int; (==) { lemma_append_count_aux x pfx sfx } count x (S.append pfx sfx) <: int; } ) else ( calc (==) { count x (tail s0); (==) { assert (s0 `S.equal` cons (head s0) (tail s0)); lemma_append_count_aux x (S.singleton (head s0)) (tail s0); count_singleton_zero x (head s0) } count x s0; (==) { } count x s1; (==) { } count x (S.append pfx (cons (head s0) sfx)); (==) { lemma_append_count_aux x pfx (cons (head s0) sfx) } count x pfx + count x (cons (head s0) sfx); (==) { lemma_append_count_aux x (S.singleton (head s0)) sfx } count x pfx + (count x (S.singleton (head s0)) + count x sfx) ; (==) { count_singleton_zero x (head s0) } count x pfx + count x sfx; (==) { lemma_append_count_aux x pfx sfx } count x (S.append pfx sfx); } ) ); let s1' = (S.append pfx sfx) in let f' = permutation_from_equal_counts (tail s0) s1' in reveal_is_permutation_nopats (tail s0) s1' f'; let n = S.length pfx in let f : index_fun s0 = fun i -> if i = 0 then n else if f' (i - 1) < n then f' (i - 1) else f' (i - 1) + 1 in assert (S.length s0 == S.length s1); assert (forall x y. x <> y ==> f' x <> f' y); introduce forall x y. x <> y ==> f x <> f y with (introduce _ ==> _ with _. ( if f x = n || f y = n then () else if f' (x - 1) < n then ( assert (f x == f' (x - 1)); if f' (y - 1) < n then assert (f y == f' (y - 1)) else assert (f y == f' (y - 1) + 1) ) else ( assert (f x == f' (x - 1) + 1); if f' (y - 1) < n then assert (f y == f' (y - 1)) else assert (f y == f' (y - 1) + 1) ) ) ); reveal_is_permutation_nopats s0 s1 f; f) module CM = FStar.Algebra.CommMonoid let elim_monoid_laws #a (m:CM.cm a) : Lemma ( (forall x y. {:pattern m.mult x y} m.mult x y == m.mult y x) /\ (forall x y z.{:pattern (m.mult x (m.mult y z))} m.mult x (m.mult y z) == m.mult (m.mult x y) z) /\ (forall x.{:pattern (m.mult x m.unit)} m.mult x m.unit == x)
false
false
FStar.Sequence.Permutation.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 2, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val elim_monoid_laws (#a: _) (m: CM.cm a) : Lemma ((forall x y. {:pattern m.mult x y} m.mult x y == m.mult y x) /\ (forall x y z. {:pattern (m.mult x (m.mult y z))} m.mult x (m.mult y z) == m.mult (m.mult x y) z) /\ (forall x. {:pattern (m.mult x m.unit)} m.mult x m.unit == x))
[]
FStar.Sequence.Permutation.elim_monoid_laws
{ "file_name": "ulib/experimental/FStar.Sequence.Permutation.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
m: FStar.Algebra.CommMonoid.cm a -> FStar.Pervasives.Lemma (ensures (forall (x: a) (y: a). {:pattern CM?.mult m x y} CM?.mult m x y == CM?.mult m y x) /\ (forall (x: a) (y: a) (z: a). {:pattern CM?.mult m x (CM?.mult m y z)} CM?.mult m x (CM?.mult m y z) == CM?.mult m (CM?.mult m x y) z) /\ (forall (x: a). {:pattern CM?.mult m x (CM?.unit m)} CM?.mult m x (CM?.unit m) == x))
{ "end_col": 25, "end_line": 215, "start_col": 4, "start_line": 208 }
FStar.Pervasives.Lemma
val count_singleton_zero (#a: eqtype) (x y: a) : Lemma (x =!= y ==> count x (singleton y) == 0)
[ { "abbrev": true, "full_module": "FStar.Sequence", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Sequence.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": true, "full_module": "FStar.Sequence", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Sequence.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let count_singleton_zero (#a:eqtype) (x y:a) : Lemma (x =!= y ==> count x (singleton y) == 0) = reveal_opaque (`%count) (count #a)
val count_singleton_zero (#a: eqtype) (x y: a) : Lemma (x =!= y ==> count x (singleton y) == 0) let count_singleton_zero (#a: eqtype) (x y: a) : Lemma (x =!= y ==> count x (singleton y) == 0) =
false
null
true
reveal_opaque (`%count) (count #a)
{ "checked_file": "FStar.Sequence.Permutation.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Sequence.Util.fst.checked", "FStar.Sequence.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Permutation.fst" }
[ "lemma" ]
[ "Prims.eqtype", "FStar.Pervasives.reveal_opaque", "FStar.Sequence.Base.seq", "Prims.nat", "FStar.Sequence.Util.count", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.l_imp", "Prims.l_not", "Prims.eq2", "Prims.int", "FStar.Sequence.Base.singleton", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2021 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: N. Swamy *) module FStar.Sequence.Permutation open FStar.Sequence open FStar.Calc open FStar.Sequence.Util module S = FStar.Sequence //////////////////////////////////////////////////////////////////////////////// [@@"opaque_to_smt"] let is_permutation (#a:Type) (s0:seq a) (s1:seq a) (f:index_fun s0) = S.length s0 == S.length s1 /\ (forall x y. // {:pattern f x; f y} x <> y ==> f x <> f y) /\ (forall (i:nat{i < S.length s0}). // {:pattern (S.index s1 (f i))} S.index s0 i == S.index s1 (f i)) let reveal_is_permutation #a (s0 s1:seq a) (f:index_fun s0) = reveal_opaque (`%is_permutation) (is_permutation s0 s1 f) let reveal_is_permutation_nopats (#a:Type) (s0 s1:seq a) (f:index_fun s0) : Lemma (is_permutation s0 s1 f <==> S.length s0 == S.length s1 /\ (forall x y. x <> y ==> f x <> f y) /\ (forall (i:nat{i < S.length s0}). S.index s0 i == S.index s1 (f i))) = reveal_is_permutation s0 s1 f let split3_index (#a:eqtype) (s0:seq a) (x:a) (s1:seq a) (j:nat) : Lemma (requires j < S.length (S.append s0 s1)) (ensures ( let s = S.append s0 (cons x s1) in let s' = S.append s0 s1 in let n = S.length s0 in if j < n then S.index s' j == S.index s j else S.index s' j == S.index s (j + 1) )) = let n = S.length (S.append s0 s1) in if j < n then () else () let rec find (#a:eqtype) (x:a) (s:seq a{ count x s > 0 }) : Tot (frags:(seq a & seq a) { let s' = S.append (fst frags) (snd frags) in let n = S.length (fst frags) in s `S.equal` S.append (fst frags) (cons x (snd frags)) }) (decreases (S.length s)) = reveal_opaque (`%count) (count #a); if head s = x then S.empty, tail s else ( let pfx, sfx = find x (tail s) in assert (S.equal (tail s) (S.append pfx (cons x sfx))); assert (S.equal s (cons (head s) (tail s))); cons (head s) pfx, sfx ) let count_singleton_one (#a:eqtype) (x:a) : Lemma (count x (singleton x) == 1) = reveal_opaque (`%count) (count #a) let count_singleton_zero (#a:eqtype) (x y:a)
false
false
FStar.Sequence.Permutation.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val count_singleton_zero (#a: eqtype) (x y: a) : Lemma (x =!= y ==> count x (singleton y) == 0)
[]
FStar.Sequence.Permutation.count_singleton_zero
{ "file_name": "ulib/experimental/FStar.Sequence.Permutation.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: a -> y: a -> FStar.Pervasives.Lemma (ensures ~(x == y) ==> FStar.Sequence.Util.count x (FStar.Sequence.Base.singleton y) == 0)
{ "end_col": 38, "end_line": 87, "start_col": 4, "start_line": 87 }
FStar.Pervasives.Lemma
val count_singleton_one (#a: eqtype) (x: a) : Lemma (count x (singleton x) == 1)
[ { "abbrev": true, "full_module": "FStar.Sequence", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Sequence.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": true, "full_module": "FStar.Sequence", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Sequence.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let count_singleton_one (#a:eqtype) (x:a) : Lemma (count x (singleton x) == 1) = reveal_opaque (`%count) (count #a)
val count_singleton_one (#a: eqtype) (x: a) : Lemma (count x (singleton x) == 1) let count_singleton_one (#a: eqtype) (x: a) : Lemma (count x (singleton x) == 1) =
false
null
true
reveal_opaque (`%count) (count #a)
{ "checked_file": "FStar.Sequence.Permutation.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Sequence.Util.fst.checked", "FStar.Sequence.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Permutation.fst" }
[ "lemma" ]
[ "Prims.eqtype", "FStar.Pervasives.reveal_opaque", "FStar.Sequence.Base.seq", "Prims.nat", "FStar.Sequence.Util.count", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.int", "FStar.Sequence.Base.singleton", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2021 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: N. Swamy *) module FStar.Sequence.Permutation open FStar.Sequence open FStar.Calc open FStar.Sequence.Util module S = FStar.Sequence //////////////////////////////////////////////////////////////////////////////// [@@"opaque_to_smt"] let is_permutation (#a:Type) (s0:seq a) (s1:seq a) (f:index_fun s0) = S.length s0 == S.length s1 /\ (forall x y. // {:pattern f x; f y} x <> y ==> f x <> f y) /\ (forall (i:nat{i < S.length s0}). // {:pattern (S.index s1 (f i))} S.index s0 i == S.index s1 (f i)) let reveal_is_permutation #a (s0 s1:seq a) (f:index_fun s0) = reveal_opaque (`%is_permutation) (is_permutation s0 s1 f) let reveal_is_permutation_nopats (#a:Type) (s0 s1:seq a) (f:index_fun s0) : Lemma (is_permutation s0 s1 f <==> S.length s0 == S.length s1 /\ (forall x y. x <> y ==> f x <> f y) /\ (forall (i:nat{i < S.length s0}). S.index s0 i == S.index s1 (f i))) = reveal_is_permutation s0 s1 f let split3_index (#a:eqtype) (s0:seq a) (x:a) (s1:seq a) (j:nat) : Lemma (requires j < S.length (S.append s0 s1)) (ensures ( let s = S.append s0 (cons x s1) in let s' = S.append s0 s1 in let n = S.length s0 in if j < n then S.index s' j == S.index s j else S.index s' j == S.index s (j + 1) )) = let n = S.length (S.append s0 s1) in if j < n then () else () let rec find (#a:eqtype) (x:a) (s:seq a{ count x s > 0 }) : Tot (frags:(seq a & seq a) { let s' = S.append (fst frags) (snd frags) in let n = S.length (fst frags) in s `S.equal` S.append (fst frags) (cons x (snd frags)) }) (decreases (S.length s)) = reveal_opaque (`%count) (count #a); if head s = x then S.empty, tail s else ( let pfx, sfx = find x (tail s) in assert (S.equal (tail s) (S.append pfx (cons x sfx))); assert (S.equal s (cons (head s) (tail s))); cons (head s) pfx, sfx ) let count_singleton_one (#a:eqtype) (x:a)
false
false
FStar.Sequence.Permutation.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val count_singleton_one (#a: eqtype) (x: a) : Lemma (count x (singleton x) == 1)
[]
FStar.Sequence.Permutation.count_singleton_one
{ "file_name": "ulib/experimental/FStar.Sequence.Permutation.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: a -> FStar.Pervasives.Lemma (ensures FStar.Sequence.Util.count x (FStar.Sequence.Base.singleton x) == 1)
{ "end_col": 38, "end_line": 84, "start_col": 4, "start_line": 84 }
FStar.Pervasives.Lemma
val equal_counts_empty (#a: eqtype) (s0 s1: seq a) : Lemma (requires S.length s0 == 0 /\ (forall x. count x s0 == count x s1)) (ensures S.length s1 == 0)
[ { "abbrev": true, "full_module": "FStar.Sequence", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Sequence.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": true, "full_module": "FStar.Sequence", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Sequence.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let equal_counts_empty (#a:eqtype) (s0 s1:seq a) : Lemma (requires S.length s0 == 0 /\ (forall x. count x s0 == count x s1)) (ensures S.length s1 == 0) = reveal_opaque (`%count) (count #a); if S.length s1 > 0 then assert (count (head s1) s1 > 0)
val equal_counts_empty (#a: eqtype) (s0 s1: seq a) : Lemma (requires S.length s0 == 0 /\ (forall x. count x s0 == count x s1)) (ensures S.length s1 == 0) let equal_counts_empty (#a: eqtype) (s0 s1: seq a) : Lemma (requires S.length s0 == 0 /\ (forall x. count x s0 == count x s1)) (ensures S.length s1 == 0) =
false
null
true
reveal_opaque (`%count) (count #a); if S.length s1 > 0 then assert (count (head s1) s1 > 0)
{ "checked_file": "FStar.Sequence.Permutation.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Sequence.Util.fst.checked", "FStar.Sequence.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Permutation.fst" }
[ "lemma" ]
[ "Prims.eqtype", "FStar.Sequence.Base.seq", "Prims.op_GreaterThan", "FStar.Sequence.Base.length", "Prims._assert", "Prims.b2t", "FStar.Sequence.Util.count", "FStar.Sequence.Util.head", "Prims.bool", "Prims.unit", "FStar.Pervasives.reveal_opaque", "Prims.nat", "Prims.l_and", "Prims.eq2", "Prims.int", "Prims.l_Forall", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2021 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: N. Swamy *) module FStar.Sequence.Permutation open FStar.Sequence open FStar.Calc open FStar.Sequence.Util module S = FStar.Sequence //////////////////////////////////////////////////////////////////////////////// [@@"opaque_to_smt"] let is_permutation (#a:Type) (s0:seq a) (s1:seq a) (f:index_fun s0) = S.length s0 == S.length s1 /\ (forall x y. // {:pattern f x; f y} x <> y ==> f x <> f y) /\ (forall (i:nat{i < S.length s0}). // {:pattern (S.index s1 (f i))} S.index s0 i == S.index s1 (f i)) let reveal_is_permutation #a (s0 s1:seq a) (f:index_fun s0) = reveal_opaque (`%is_permutation) (is_permutation s0 s1 f) let reveal_is_permutation_nopats (#a:Type) (s0 s1:seq a) (f:index_fun s0) : Lemma (is_permutation s0 s1 f <==> S.length s0 == S.length s1 /\ (forall x y. x <> y ==> f x <> f y) /\ (forall (i:nat{i < S.length s0}). S.index s0 i == S.index s1 (f i))) = reveal_is_permutation s0 s1 f let split3_index (#a:eqtype) (s0:seq a) (x:a) (s1:seq a) (j:nat) : Lemma (requires j < S.length (S.append s0 s1)) (ensures ( let s = S.append s0 (cons x s1) in let s' = S.append s0 s1 in let n = S.length s0 in if j < n then S.index s' j == S.index s j else S.index s' j == S.index s (j + 1) )) = let n = S.length (S.append s0 s1) in if j < n then () else () let rec find (#a:eqtype) (x:a) (s:seq a{ count x s > 0 }) : Tot (frags:(seq a & seq a) { let s' = S.append (fst frags) (snd frags) in let n = S.length (fst frags) in s `S.equal` S.append (fst frags) (cons x (snd frags)) }) (decreases (S.length s)) = reveal_opaque (`%count) (count #a); if head s = x then S.empty, tail s else ( let pfx, sfx = find x (tail s) in assert (S.equal (tail s) (S.append pfx (cons x sfx))); assert (S.equal s (cons (head s) (tail s))); cons (head s) pfx, sfx ) let count_singleton_one (#a:eqtype) (x:a) : Lemma (count x (singleton x) == 1) = reveal_opaque (`%count) (count #a) let count_singleton_zero (#a:eqtype) (x y:a) : Lemma (x =!= y ==> count x (singleton y) == 0) = reveal_opaque (`%count) (count #a) let equal_counts_empty (#a:eqtype) (s0 s1:seq a) : Lemma (requires S.length s0 == 0 /\ (forall x. count x s0 == count x s1))
false
false
FStar.Sequence.Permutation.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val equal_counts_empty (#a: eqtype) (s0 s1: seq a) : Lemma (requires S.length s0 == 0 /\ (forall x. count x s0 == count x s1)) (ensures S.length s1 == 0)
[]
FStar.Sequence.Permutation.equal_counts_empty
{ "file_name": "ulib/experimental/FStar.Sequence.Permutation.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s0: FStar.Sequence.Base.seq a -> s1: FStar.Sequence.Base.seq a -> FStar.Pervasives.Lemma (requires FStar.Sequence.Base.length s0 == 0 /\ (forall (x: a). FStar.Sequence.Util.count x s0 == FStar.Sequence.Util.count x s1)) (ensures FStar.Sequence.Base.length s1 == 0)
{ "end_col": 35, "end_line": 94, "start_col": 4, "start_line": 92 }
FStar.Pervasives.Lemma
val foldm_back3 (#a: _) (m: CM.cm a) (s1: seq a) (x: a) (s2: seq a) : Lemma (foldm_back m (S.append s1 (cons x s2)) == m.mult x (foldm_back m (S.append s1 s2)))
[ { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid", "short_module": "CM" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid", "short_module": "CM" }, { "abbrev": true, "full_module": "FStar.Sequence", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Sequence.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": true, "full_module": "FStar.Sequence", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Sequence.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let foldm_back3 #a (m:CM.cm a) (s1:seq a) (x:a) (s2:seq a) : Lemma (foldm_back m (S.append s1 (cons x s2)) == m.mult x (foldm_back m (S.append s1 s2))) = calc (==) { foldm_back m (S.append s1 (cons x s2)); (==) { foldm_back_append m s1 (cons x s2) } m.mult (foldm_back m s1) (foldm_back m (cons x s2)); (==) { foldm_back_append m (singleton x) s2 } m.mult (foldm_back m s1) (m.mult (foldm_back m (singleton x)) (foldm_back m s2)); (==) { foldm_back_singleton m x } m.mult (foldm_back m s1) (m.mult x (foldm_back m s2)); (==) { elim_monoid_laws m } m.mult x (m.mult (foldm_back m s1) (foldm_back m s2)); (==) { foldm_back_append m s1 s2 } m.mult x (foldm_back m (S.append s1 s2)); }
val foldm_back3 (#a: _) (m: CM.cm a) (s1: seq a) (x: a) (s2: seq a) : Lemma (foldm_back m (S.append s1 (cons x s2)) == m.mult x (foldm_back m (S.append s1 s2))) let foldm_back3 #a (m: CM.cm a) (s1: seq a) (x: a) (s2: seq a) : Lemma (foldm_back m (S.append s1 (cons x s2)) == m.mult x (foldm_back m (S.append s1 s2))) =
false
null
true
calc ( == ) { foldm_back m (S.append s1 (cons x s2)); ( == ) { foldm_back_append m s1 (cons x s2) } m.mult (foldm_back m s1) (foldm_back m (cons x s2)); ( == ) { foldm_back_append m (singleton x) s2 } m.mult (foldm_back m s1) (m.mult (foldm_back m (singleton x)) (foldm_back m s2)); ( == ) { foldm_back_singleton m x } m.mult (foldm_back m s1) (m.mult x (foldm_back m s2)); ( == ) { elim_monoid_laws m } m.mult x (m.mult (foldm_back m s1) (foldm_back m s2)); ( == ) { foldm_back_append m s1 s2 } m.mult x (foldm_back m (S.append s1 s2)); }
{ "checked_file": "FStar.Sequence.Permutation.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Sequence.Util.fst.checked", "FStar.Sequence.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Permutation.fst" }
[ "lemma" ]
[ "FStar.Algebra.CommMonoid.cm", "FStar.Sequence.Base.seq", "FStar.Calc.calc_finish", "Prims.eq2", "FStar.Sequence.Permutation.foldm_back", "FStar.Sequence.Base.append", "FStar.Sequence.Util.cons", "FStar.Algebra.CommMonoid.__proj__CM__item__mult", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Sequence.Base.singleton", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Sequence.Permutation.foldm_back_append", "Prims.squash", "FStar.Sequence.Permutation.foldm_back_singleton", "FStar.Sequence.Permutation.elim_monoid_laws", "Prims.l_True", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2021 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: N. Swamy *) module FStar.Sequence.Permutation open FStar.Sequence open FStar.Calc open FStar.Sequence.Util module S = FStar.Sequence //////////////////////////////////////////////////////////////////////////////// [@@"opaque_to_smt"] let is_permutation (#a:Type) (s0:seq a) (s1:seq a) (f:index_fun s0) = S.length s0 == S.length s1 /\ (forall x y. // {:pattern f x; f y} x <> y ==> f x <> f y) /\ (forall (i:nat{i < S.length s0}). // {:pattern (S.index s1 (f i))} S.index s0 i == S.index s1 (f i)) let reveal_is_permutation #a (s0 s1:seq a) (f:index_fun s0) = reveal_opaque (`%is_permutation) (is_permutation s0 s1 f) let reveal_is_permutation_nopats (#a:Type) (s0 s1:seq a) (f:index_fun s0) : Lemma (is_permutation s0 s1 f <==> S.length s0 == S.length s1 /\ (forall x y. x <> y ==> f x <> f y) /\ (forall (i:nat{i < S.length s0}). S.index s0 i == S.index s1 (f i))) = reveal_is_permutation s0 s1 f let split3_index (#a:eqtype) (s0:seq a) (x:a) (s1:seq a) (j:nat) : Lemma (requires j < S.length (S.append s0 s1)) (ensures ( let s = S.append s0 (cons x s1) in let s' = S.append s0 s1 in let n = S.length s0 in if j < n then S.index s' j == S.index s j else S.index s' j == S.index s (j + 1) )) = let n = S.length (S.append s0 s1) in if j < n then () else () let rec find (#a:eqtype) (x:a) (s:seq a{ count x s > 0 }) : Tot (frags:(seq a & seq a) { let s' = S.append (fst frags) (snd frags) in let n = S.length (fst frags) in s `S.equal` S.append (fst frags) (cons x (snd frags)) }) (decreases (S.length s)) = reveal_opaque (`%count) (count #a); if head s = x then S.empty, tail s else ( let pfx, sfx = find x (tail s) in assert (S.equal (tail s) (S.append pfx (cons x sfx))); assert (S.equal s (cons (head s) (tail s))); cons (head s) pfx, sfx ) let count_singleton_one (#a:eqtype) (x:a) : Lemma (count x (singleton x) == 1) = reveal_opaque (`%count) (count #a) let count_singleton_zero (#a:eqtype) (x y:a) : Lemma (x =!= y ==> count x (singleton y) == 0) = reveal_opaque (`%count) (count #a) let equal_counts_empty (#a:eqtype) (s0 s1:seq a) : Lemma (requires S.length s0 == 0 /\ (forall x. count x s0 == count x s1)) (ensures S.length s1 == 0) = reveal_opaque (`%count) (count #a); if S.length s1 > 0 then assert (count (head s1) s1 > 0) let count_head (#a:eqtype) (x:seq a{ S.length x > 0 }) : Lemma (count (head x) x > 0) = reveal_opaque (`%count) (count #a) #push-options "--fuel 0 --ifuel 0 --z3rlimit_factor 2" let rec permutation_from_equal_counts (#a:eqtype) (s0:seq a) (s1:seq a{(forall x. count x s0 == count x s1)}) : Tot (seqperm s0 s1) (decreases (S.length s0)) = if S.length s0 = 0 then ( count_empty s0; assert (forall x. count x s0 = 0); let f : index_fun s0 = fun i -> i in reveal_is_permutation_nopats s0 s1 f; equal_counts_empty s0 s1; f ) else ( count_head s0; let pfx, sfx = find (head s0) s1 in introduce forall x. count x (tail s0) == count x (S.append pfx sfx) with ( if x = head s0 then ( calc (eq2 #int) { count x (tail s0) <: int; (==) { assert (s0 `S.equal` cons (head s0) (tail s0)); lemma_append_count_aux (head s0) (S.singleton (head s0)) (tail s0); count_singleton_one x } count x s0 - 1 <: int; (==) {} count x s1 - 1 <: int; (==) {} count x (S.append pfx (cons (head s0) sfx)) - 1 <: int; (==) { lemma_append_count_aux x pfx (cons (head s0) sfx) } count x pfx + count x (cons (head s0) sfx) - 1 <: int; (==) { lemma_append_count_aux x (S.singleton (head s0)) sfx } count x pfx + (count x (S.singleton (head s0)) + count x sfx) - 1 <: int; (==) { count_singleton_one x } count x pfx + count x sfx <: int; (==) { lemma_append_count_aux x pfx sfx } count x (S.append pfx sfx) <: int; } ) else ( calc (==) { count x (tail s0); (==) { assert (s0 `S.equal` cons (head s0) (tail s0)); lemma_append_count_aux x (S.singleton (head s0)) (tail s0); count_singleton_zero x (head s0) } count x s0; (==) { } count x s1; (==) { } count x (S.append pfx (cons (head s0) sfx)); (==) { lemma_append_count_aux x pfx (cons (head s0) sfx) } count x pfx + count x (cons (head s0) sfx); (==) { lemma_append_count_aux x (S.singleton (head s0)) sfx } count x pfx + (count x (S.singleton (head s0)) + count x sfx) ; (==) { count_singleton_zero x (head s0) } count x pfx + count x sfx; (==) { lemma_append_count_aux x pfx sfx } count x (S.append pfx sfx); } ) ); let s1' = (S.append pfx sfx) in let f' = permutation_from_equal_counts (tail s0) s1' in reveal_is_permutation_nopats (tail s0) s1' f'; let n = S.length pfx in let f : index_fun s0 = fun i -> if i = 0 then n else if f' (i - 1) < n then f' (i - 1) else f' (i - 1) + 1 in assert (S.length s0 == S.length s1); assert (forall x y. x <> y ==> f' x <> f' y); introduce forall x y. x <> y ==> f x <> f y with (introduce _ ==> _ with _. ( if f x = n || f y = n then () else if f' (x - 1) < n then ( assert (f x == f' (x - 1)); if f' (y - 1) < n then assert (f y == f' (y - 1)) else assert (f y == f' (y - 1) + 1) ) else ( assert (f x == f' (x - 1) + 1); if f' (y - 1) < n then assert (f y == f' (y - 1)) else assert (f y == f' (y - 1) + 1) ) ) ); reveal_is_permutation_nopats s0 s1 f; f) module CM = FStar.Algebra.CommMonoid let elim_monoid_laws #a (m:CM.cm a) : Lemma ( (forall x y. {:pattern m.mult x y} m.mult x y == m.mult y x) /\ (forall x y z.{:pattern (m.mult x (m.mult y z))} m.mult x (m.mult y z) == m.mult (m.mult x y) z) /\ (forall x.{:pattern (m.mult x m.unit)} m.mult x m.unit == x) ) = introduce forall x y. m.mult x y == m.mult y x with ( m.commutativity x y ); introduce forall x y z. m.mult x (m.mult y z) == m.mult (m.mult x y) z with ( m.associativity x y z ); introduce forall x. m.mult x m.unit == x with ( m.identity x ) #push-options "--fuel 1 --ifuel 0" let rec foldm_back_append #a (m:CM.cm a) (s1 s2: seq a) : Lemma (ensures foldm_back m (append s1 s2) == m.mult (foldm_back m s1) (foldm_back m s2)) (decreases (S.length s2)) = elim_monoid_laws m; if S.length s2 = 0 then ( assert (S.append s1 s2 `S.equal` s1); assert (foldm_back m s2 == m.unit) ) else ( let s2', last = un_build s2 in calc (==) { foldm_back m (append s1 s2); (==) { assert (S.equal (append s1 s2) (S.build (append s1 s2') last)) } foldm_back m (S.build (append s1 s2') last); (==) { assert (S.equal (fst (un_build (append s1 s2))) (append s1 s2')) } m.mult last (foldm_back m (append s1 s2')); (==) { foldm_back_append m s1 s2' } m.mult last (m.mult (foldm_back m s1) (foldm_back m s2')); (==) { } m.mult (foldm_back m s1) (m.mult last (foldm_back m s2')); (==) { } m.mult (foldm_back m s1) (foldm_back m s2); } ) let foldm_back_sym #a (m:CM.cm a) (s1 s2: seq a) : Lemma (ensures foldm_back m (append s1 s2) == foldm_back m (append s2 s1)) = elim_monoid_laws m; foldm_back_append m s1 s2; foldm_back_append m s2 s1 #push-options "--fuel 2" let foldm_back_singleton (#a:_) (m:CM.cm a) (x:a) : Lemma (foldm_back m (singleton x) == x) = elim_monoid_laws m #pop-options #push-options "--fuel 0" let foldm_back3 #a (m:CM.cm a) (s1:seq a) (x:a) (s2:seq a) : Lemma (foldm_back m (S.append s1 (cons x s2)) ==
false
false
FStar.Sequence.Permutation.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 2, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val foldm_back3 (#a: _) (m: CM.cm a) (s1: seq a) (x: a) (s2: seq a) : Lemma (foldm_back m (S.append s1 (cons x s2)) == m.mult x (foldm_back m (S.append s1 s2)))
[]
FStar.Sequence.Permutation.foldm_back3
{ "file_name": "ulib/experimental/FStar.Sequence.Permutation.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
m: FStar.Algebra.CommMonoid.cm a -> s1: FStar.Sequence.Base.seq a -> x: a -> s2: FStar.Sequence.Base.seq a -> FStar.Pervasives.Lemma (ensures FStar.Sequence.Permutation.foldm_back m (FStar.Sequence.Base.append s1 (FStar.Sequence.Util.cons x s2)) == CM?.mult m x (FStar.Sequence.Permutation.foldm_back m (FStar.Sequence.Base.append s1 s2)))
{ "end_col": 5, "end_line": 278, "start_col": 4, "start_line": 265 }
FStar.Pervasives.Lemma
val split3_index (#a: eqtype) (s0: seq a) (x: a) (s1: seq a) (j: nat) : Lemma (requires j < S.length (S.append s0 s1)) (ensures (let s = S.append s0 (cons x s1) in let s' = S.append s0 s1 in let n = S.length s0 in if j < n then S.index s' j == S.index s j else S.index s' j == S.index s (j + 1)))
[ { "abbrev": true, "full_module": "FStar.Sequence", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Sequence.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": true, "full_module": "FStar.Sequence", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Sequence.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let split3_index (#a:eqtype) (s0:seq a) (x:a) (s1:seq a) (j:nat) : Lemma (requires j < S.length (S.append s0 s1)) (ensures ( let s = S.append s0 (cons x s1) in let s' = S.append s0 s1 in let n = S.length s0 in if j < n then S.index s' j == S.index s j else S.index s' j == S.index s (j + 1) )) = let n = S.length (S.append s0 s1) in if j < n then () else ()
val split3_index (#a: eqtype) (s0: seq a) (x: a) (s1: seq a) (j: nat) : Lemma (requires j < S.length (S.append s0 s1)) (ensures (let s = S.append s0 (cons x s1) in let s' = S.append s0 s1 in let n = S.length s0 in if j < n then S.index s' j == S.index s j else S.index s' j == S.index s (j + 1))) let split3_index (#a: eqtype) (s0: seq a) (x: a) (s1: seq a) (j: nat) : Lemma (requires j < S.length (S.append s0 s1)) (ensures (let s = S.append s0 (cons x s1) in let s' = S.append s0 s1 in let n = S.length s0 in if j < n then S.index s' j == S.index s j else S.index s' j == S.index s (j + 1))) =
false
null
true
let n = S.length (S.append s0 s1) in if j < n then ()
{ "checked_file": "FStar.Sequence.Permutation.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Sequence.Util.fst.checked", "FStar.Sequence.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Permutation.fst" }
[ "lemma" ]
[ "Prims.eqtype", "FStar.Sequence.Base.seq", "Prims.nat", "Prims.op_LessThan", "Prims.bool", "Prims.unit", "FStar.Sequence.Base.length", "FStar.Sequence.Base.append", "Prims.b2t", "Prims.squash", "Prims.eq2", "FStar.Sequence.Base.index", "Prims.op_Addition", "FStar.Sequence.Util.cons", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2021 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: N. Swamy *) module FStar.Sequence.Permutation open FStar.Sequence open FStar.Calc open FStar.Sequence.Util module S = FStar.Sequence //////////////////////////////////////////////////////////////////////////////// [@@"opaque_to_smt"] let is_permutation (#a:Type) (s0:seq a) (s1:seq a) (f:index_fun s0) = S.length s0 == S.length s1 /\ (forall x y. // {:pattern f x; f y} x <> y ==> f x <> f y) /\ (forall (i:nat{i < S.length s0}). // {:pattern (S.index s1 (f i))} S.index s0 i == S.index s1 (f i)) let reveal_is_permutation #a (s0 s1:seq a) (f:index_fun s0) = reveal_opaque (`%is_permutation) (is_permutation s0 s1 f) let reveal_is_permutation_nopats (#a:Type) (s0 s1:seq a) (f:index_fun s0) : Lemma (is_permutation s0 s1 f <==> S.length s0 == S.length s1 /\ (forall x y. x <> y ==> f x <> f y) /\ (forall (i:nat{i < S.length s0}). S.index s0 i == S.index s1 (f i))) = reveal_is_permutation s0 s1 f let split3_index (#a:eqtype) (s0:seq a) (x:a) (s1:seq a) (j:nat) : Lemma (requires j < S.length (S.append s0 s1)) (ensures ( let s = S.append s0 (cons x s1) in let s' = S.append s0 s1 in let n = S.length s0 in if j < n then S.index s' j == S.index s j else S.index s' j == S.index s (j + 1)
false
false
FStar.Sequence.Permutation.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val split3_index (#a: eqtype) (s0: seq a) (x: a) (s1: seq a) (j: nat) : Lemma (requires j < S.length (S.append s0 s1)) (ensures (let s = S.append s0 (cons x s1) in let s' = S.append s0 s1 in let n = S.length s0 in if j < n then S.index s' j == S.index s j else S.index s' j == S.index s (j + 1)))
[]
FStar.Sequence.Permutation.split3_index
{ "file_name": "ulib/experimental/FStar.Sequence.Permutation.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s0: FStar.Sequence.Base.seq a -> x: a -> s1: FStar.Sequence.Base.seq a -> j: Prims.nat -> FStar.Pervasives.Lemma (requires j < FStar.Sequence.Base.length (FStar.Sequence.Base.append s0 s1)) (ensures (let s = FStar.Sequence.Base.append s0 (FStar.Sequence.Util.cons x s1) in let s' = FStar.Sequence.Base.append s0 s1 in let n = FStar.Sequence.Base.length s0 in (match j < n with | true -> FStar.Sequence.Base.index s' j == FStar.Sequence.Base.index s j | _ -> FStar.Sequence.Base.index s' j == FStar.Sequence.Base.index s (j + 1)) <: Type0))
{ "end_col": 11, "end_line": 61, "start_col": 3, "start_line": 59 }
Prims.Pure
val shift_perm: #a: _ -> s0: seq a -> s1: seq a -> squash (S.length s0 == S.length s1 /\ S.length s0 > 0) -> p: seqperm s0 s1 -> Pure (seqperm (fst (un_build s0)) (snd (remove_i s1 (p (S.length s0 - 1))))) (requires True) (ensures fun _ -> let n = S.length s0 - 1 in S.index s1 (p n) == S.index s0 n)
[ { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid", "short_module": "CM" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid", "short_module": "CM" }, { "abbrev": true, "full_module": "FStar.Sequence", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Sequence.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": true, "full_module": "FStar.Sequence", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Sequence.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let shift_perm #a (s0 s1:seq a) (_:squash (S.length s0 == S.length s1 /\ S.length s0 > 0)) (p:seqperm s0 s1) : Pure (seqperm (fst (un_build s0)) (snd (remove_i s1 (p (S.length s0 - 1))))) (requires True) (ensures fun _ -> let n = S.length s0 - 1 in S.index s1 (p n) == S.index s0 n) = reveal_is_permutation s0 s1 p; shift_perm' s0 s1 () p
val shift_perm: #a: _ -> s0: seq a -> s1: seq a -> squash (S.length s0 == S.length s1 /\ S.length s0 > 0) -> p: seqperm s0 s1 -> Pure (seqperm (fst (un_build s0)) (snd (remove_i s1 (p (S.length s0 - 1))))) (requires True) (ensures fun _ -> let n = S.length s0 - 1 in S.index s1 (p n) == S.index s0 n) let shift_perm #a (s0: seq a) (s1: seq a) (_: squash (S.length s0 == S.length s1 /\ S.length s0 > 0)) (p: seqperm s0 s1) : Pure (seqperm (fst (un_build s0)) (snd (remove_i s1 (p (S.length s0 - 1))))) (requires True) (ensures fun _ -> let n = S.length s0 - 1 in S.index s1 (p n) == S.index s0 n) =
false
null
false
reveal_is_permutation s0 s1 p; shift_perm' s0 s1 () p
{ "checked_file": "FStar.Sequence.Permutation.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Sequence.Util.fst.checked", "FStar.Sequence.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Permutation.fst" }
[]
[ "FStar.Sequence.Base.seq", "Prims.squash", "Prims.l_and", "Prims.eq2", "Prims.nat", "FStar.Sequence.Base.length", "Prims.b2t", "Prims.op_GreaterThan", "FStar.Sequence.Permutation.seqperm", "FStar.Sequence.Permutation.shift_perm'", "Prims.unit", "FStar.Sequence.Permutation.reveal_is_permutation", "FStar.Pervasives.Native.fst", "FStar.Sequence.Util.un_build", "FStar.Pervasives.Native.snd", "FStar.Sequence.Permutation.remove_i", "Prims.op_Subtraction", "Prims.l_True", "FStar.Sequence.Base.index", "Prims.int" ]
[]
(* Copyright 2021 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: N. Swamy *) module FStar.Sequence.Permutation open FStar.Sequence open FStar.Calc open FStar.Sequence.Util module S = FStar.Sequence //////////////////////////////////////////////////////////////////////////////// [@@"opaque_to_smt"] let is_permutation (#a:Type) (s0:seq a) (s1:seq a) (f:index_fun s0) = S.length s0 == S.length s1 /\ (forall x y. // {:pattern f x; f y} x <> y ==> f x <> f y) /\ (forall (i:nat{i < S.length s0}). // {:pattern (S.index s1 (f i))} S.index s0 i == S.index s1 (f i)) let reveal_is_permutation #a (s0 s1:seq a) (f:index_fun s0) = reveal_opaque (`%is_permutation) (is_permutation s0 s1 f) let reveal_is_permutation_nopats (#a:Type) (s0 s1:seq a) (f:index_fun s0) : Lemma (is_permutation s0 s1 f <==> S.length s0 == S.length s1 /\ (forall x y. x <> y ==> f x <> f y) /\ (forall (i:nat{i < S.length s0}). S.index s0 i == S.index s1 (f i))) = reveal_is_permutation s0 s1 f let split3_index (#a:eqtype) (s0:seq a) (x:a) (s1:seq a) (j:nat) : Lemma (requires j < S.length (S.append s0 s1)) (ensures ( let s = S.append s0 (cons x s1) in let s' = S.append s0 s1 in let n = S.length s0 in if j < n then S.index s' j == S.index s j else S.index s' j == S.index s (j + 1) )) = let n = S.length (S.append s0 s1) in if j < n then () else () let rec find (#a:eqtype) (x:a) (s:seq a{ count x s > 0 }) : Tot (frags:(seq a & seq a) { let s' = S.append (fst frags) (snd frags) in let n = S.length (fst frags) in s `S.equal` S.append (fst frags) (cons x (snd frags)) }) (decreases (S.length s)) = reveal_opaque (`%count) (count #a); if head s = x then S.empty, tail s else ( let pfx, sfx = find x (tail s) in assert (S.equal (tail s) (S.append pfx (cons x sfx))); assert (S.equal s (cons (head s) (tail s))); cons (head s) pfx, sfx ) let count_singleton_one (#a:eqtype) (x:a) : Lemma (count x (singleton x) == 1) = reveal_opaque (`%count) (count #a) let count_singleton_zero (#a:eqtype) (x y:a) : Lemma (x =!= y ==> count x (singleton y) == 0) = reveal_opaque (`%count) (count #a) let equal_counts_empty (#a:eqtype) (s0 s1:seq a) : Lemma (requires S.length s0 == 0 /\ (forall x. count x s0 == count x s1)) (ensures S.length s1 == 0) = reveal_opaque (`%count) (count #a); if S.length s1 > 0 then assert (count (head s1) s1 > 0) let count_head (#a:eqtype) (x:seq a{ S.length x > 0 }) : Lemma (count (head x) x > 0) = reveal_opaque (`%count) (count #a) #push-options "--fuel 0 --ifuel 0 --z3rlimit_factor 2" let rec permutation_from_equal_counts (#a:eqtype) (s0:seq a) (s1:seq a{(forall x. count x s0 == count x s1)}) : Tot (seqperm s0 s1) (decreases (S.length s0)) = if S.length s0 = 0 then ( count_empty s0; assert (forall x. count x s0 = 0); let f : index_fun s0 = fun i -> i in reveal_is_permutation_nopats s0 s1 f; equal_counts_empty s0 s1; f ) else ( count_head s0; let pfx, sfx = find (head s0) s1 in introduce forall x. count x (tail s0) == count x (S.append pfx sfx) with ( if x = head s0 then ( calc (eq2 #int) { count x (tail s0) <: int; (==) { assert (s0 `S.equal` cons (head s0) (tail s0)); lemma_append_count_aux (head s0) (S.singleton (head s0)) (tail s0); count_singleton_one x } count x s0 - 1 <: int; (==) {} count x s1 - 1 <: int; (==) {} count x (S.append pfx (cons (head s0) sfx)) - 1 <: int; (==) { lemma_append_count_aux x pfx (cons (head s0) sfx) } count x pfx + count x (cons (head s0) sfx) - 1 <: int; (==) { lemma_append_count_aux x (S.singleton (head s0)) sfx } count x pfx + (count x (S.singleton (head s0)) + count x sfx) - 1 <: int; (==) { count_singleton_one x } count x pfx + count x sfx <: int; (==) { lemma_append_count_aux x pfx sfx } count x (S.append pfx sfx) <: int; } ) else ( calc (==) { count x (tail s0); (==) { assert (s0 `S.equal` cons (head s0) (tail s0)); lemma_append_count_aux x (S.singleton (head s0)) (tail s0); count_singleton_zero x (head s0) } count x s0; (==) { } count x s1; (==) { } count x (S.append pfx (cons (head s0) sfx)); (==) { lemma_append_count_aux x pfx (cons (head s0) sfx) } count x pfx + count x (cons (head s0) sfx); (==) { lemma_append_count_aux x (S.singleton (head s0)) sfx } count x pfx + (count x (S.singleton (head s0)) + count x sfx) ; (==) { count_singleton_zero x (head s0) } count x pfx + count x sfx; (==) { lemma_append_count_aux x pfx sfx } count x (S.append pfx sfx); } ) ); let s1' = (S.append pfx sfx) in let f' = permutation_from_equal_counts (tail s0) s1' in reveal_is_permutation_nopats (tail s0) s1' f'; let n = S.length pfx in let f : index_fun s0 = fun i -> if i = 0 then n else if f' (i - 1) < n then f' (i - 1) else f' (i - 1) + 1 in assert (S.length s0 == S.length s1); assert (forall x y. x <> y ==> f' x <> f' y); introduce forall x y. x <> y ==> f x <> f y with (introduce _ ==> _ with _. ( if f x = n || f y = n then () else if f' (x - 1) < n then ( assert (f x == f' (x - 1)); if f' (y - 1) < n then assert (f y == f' (y - 1)) else assert (f y == f' (y - 1) + 1) ) else ( assert (f x == f' (x - 1) + 1); if f' (y - 1) < n then assert (f y == f' (y - 1)) else assert (f y == f' (y - 1) + 1) ) ) ); reveal_is_permutation_nopats s0 s1 f; f) module CM = FStar.Algebra.CommMonoid let elim_monoid_laws #a (m:CM.cm a) : Lemma ( (forall x y. {:pattern m.mult x y} m.mult x y == m.mult y x) /\ (forall x y z.{:pattern (m.mult x (m.mult y z))} m.mult x (m.mult y z) == m.mult (m.mult x y) z) /\ (forall x.{:pattern (m.mult x m.unit)} m.mult x m.unit == x) ) = introduce forall x y. m.mult x y == m.mult y x with ( m.commutativity x y ); introduce forall x y z. m.mult x (m.mult y z) == m.mult (m.mult x y) z with ( m.associativity x y z ); introduce forall x. m.mult x m.unit == x with ( m.identity x ) #push-options "--fuel 1 --ifuel 0" let rec foldm_back_append #a (m:CM.cm a) (s1 s2: seq a) : Lemma (ensures foldm_back m (append s1 s2) == m.mult (foldm_back m s1) (foldm_back m s2)) (decreases (S.length s2)) = elim_monoid_laws m; if S.length s2 = 0 then ( assert (S.append s1 s2 `S.equal` s1); assert (foldm_back m s2 == m.unit) ) else ( let s2', last = un_build s2 in calc (==) { foldm_back m (append s1 s2); (==) { assert (S.equal (append s1 s2) (S.build (append s1 s2') last)) } foldm_back m (S.build (append s1 s2') last); (==) { assert (S.equal (fst (un_build (append s1 s2))) (append s1 s2')) } m.mult last (foldm_back m (append s1 s2')); (==) { foldm_back_append m s1 s2' } m.mult last (m.mult (foldm_back m s1) (foldm_back m s2')); (==) { } m.mult (foldm_back m s1) (m.mult last (foldm_back m s2')); (==) { } m.mult (foldm_back m s1) (foldm_back m s2); } ) let foldm_back_sym #a (m:CM.cm a) (s1 s2: seq a) : Lemma (ensures foldm_back m (append s1 s2) == foldm_back m (append s2 s1)) = elim_monoid_laws m; foldm_back_append m s1 s2; foldm_back_append m s2 s1 #push-options "--fuel 2" let foldm_back_singleton (#a:_) (m:CM.cm a) (x:a) : Lemma (foldm_back m (singleton x) == x) = elim_monoid_laws m #pop-options #push-options "--fuel 0" let foldm_back3 #a (m:CM.cm a) (s1:seq a) (x:a) (s2:seq a) : Lemma (foldm_back m (S.append s1 (cons x s2)) == m.mult x (foldm_back m (S.append s1 s2))) = calc (==) { foldm_back m (S.append s1 (cons x s2)); (==) { foldm_back_append m s1 (cons x s2) } m.mult (foldm_back m s1) (foldm_back m (cons x s2)); (==) { foldm_back_append m (singleton x) s2 } m.mult (foldm_back m s1) (m.mult (foldm_back m (singleton x)) (foldm_back m s2)); (==) { foldm_back_singleton m x } m.mult (foldm_back m s1) (m.mult x (foldm_back m s2)); (==) { elim_monoid_laws m } m.mult x (m.mult (foldm_back m s1) (foldm_back m s2)); (==) { foldm_back_append m s1 s2 } m.mult x (foldm_back m (S.append s1 s2)); } #pop-options let remove_i #a (s:seq a) (i:nat{i < S.length s}) : a & seq a = let s0, s1 = split s i in head s1, append s0 (tail s1) let shift_perm' #a (s0 s1:seq a) (_:squash (S.length s0 == S.length s1 /\ S.length s0 > 0)) (p:seqperm s0 s1) : Tot (seqperm (fst (un_build s0)) (snd (remove_i s1 (p (S.length s0 - 1))))) = reveal_is_permutation s0 s1 p; let s0', last = un_build s0 in let n = S.length s0' in let p' (i:nat{ i < n }) : j:nat{ j < n } = if p i < p n then p i else p i - 1 in let _, s1' = remove_i s1 (p n) in reveal_is_permutation_nopats s0' s1' p'; p' let shift_perm #a (s0 s1:seq a) (_:squash (S.length s0 == S.length s1 /\ S.length s0 > 0)) (p:seqperm s0 s1) : Pure (seqperm (fst (un_build s0)) (snd (remove_i s1 (p (S.length s0 - 1))))) (requires True) (ensures fun _ -> let n = S.length s0 - 1 in S.index s1 (p n) ==
false
false
FStar.Sequence.Permutation.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 2, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val shift_perm: #a: _ -> s0: seq a -> s1: seq a -> squash (S.length s0 == S.length s1 /\ S.length s0 > 0) -> p: seqperm s0 s1 -> Pure (seqperm (fst (un_build s0)) (snd (remove_i s1 (p (S.length s0 - 1))))) (requires True) (ensures fun _ -> let n = S.length s0 - 1 in S.index s1 (p n) == S.index s0 n)
[]
FStar.Sequence.Permutation.shift_perm
{ "file_name": "ulib/experimental/FStar.Sequence.Permutation.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s0: FStar.Sequence.Base.seq a -> s1: FStar.Sequence.Base.seq a -> _: Prims.squash (FStar.Sequence.Base.length s0 == FStar.Sequence.Base.length s1 /\ FStar.Sequence.Base.length s0 > 0) -> p: FStar.Sequence.Permutation.seqperm s0 s1 -> Prims.Pure (FStar.Sequence.Permutation.seqperm (FStar.Pervasives.Native.fst (FStar.Sequence.Util.un_build s0 )) (FStar.Pervasives.Native.snd (FStar.Sequence.Permutation.remove_i s1 (p (FStar.Sequence.Base.length s0 - 1)))))
{ "end_col": 26, "end_line": 315, "start_col": 4, "start_line": 314 }
Prims.Tot
val find (#a: eqtype) (x: a) (s: seq a {count x s > 0}) : Tot (frags: (seq a & seq a) { let s' = S.append (fst frags) (snd frags) in let n = S.length (fst frags) in s `S.equal` (S.append (fst frags) (cons x (snd frags))) }) (decreases (S.length s))
[ { "abbrev": true, "full_module": "FStar.Sequence", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Sequence.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": true, "full_module": "FStar.Sequence", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Sequence.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec find (#a:eqtype) (x:a) (s:seq a{ count x s > 0 }) : Tot (frags:(seq a & seq a) { let s' = S.append (fst frags) (snd frags) in let n = S.length (fst frags) in s `S.equal` S.append (fst frags) (cons x (snd frags)) }) (decreases (S.length s)) = reveal_opaque (`%count) (count #a); if head s = x then S.empty, tail s else ( let pfx, sfx = find x (tail s) in assert (S.equal (tail s) (S.append pfx (cons x sfx))); assert (S.equal s (cons (head s) (tail s))); cons (head s) pfx, sfx )
val find (#a: eqtype) (x: a) (s: seq a {count x s > 0}) : Tot (frags: (seq a & seq a) { let s' = S.append (fst frags) (snd frags) in let n = S.length (fst frags) in s `S.equal` (S.append (fst frags) (cons x (snd frags))) }) (decreases (S.length s)) let rec find (#a: eqtype) (x: a) (s: seq a {count x s > 0}) : Tot (frags: (seq a & seq a) { let s' = S.append (fst frags) (snd frags) in let n = S.length (fst frags) in s `S.equal` (S.append (fst frags) (cons x (snd frags))) }) (decreases (S.length s)) =
false
null
false
reveal_opaque (`%count) (count #a); if head s = x then S.empty, tail s else (let pfx, sfx = find x (tail s) in assert (S.equal (tail s) (S.append pfx (cons x sfx))); assert (S.equal s (cons (head s) (tail s))); cons (head s) pfx, sfx)
{ "checked_file": "FStar.Sequence.Permutation.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Sequence.Util.fst.checked", "FStar.Sequence.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Permutation.fst" }
[ "total", "" ]
[ "Prims.eqtype", "FStar.Sequence.Base.seq", "Prims.b2t", "Prims.op_GreaterThan", "FStar.Sequence.Util.count", "Prims.op_Equality", "FStar.Sequence.Util.head", "FStar.Pervasives.Native.Mktuple2", "FStar.Sequence.Base.empty", "FStar.Sequence.Util.tail", "Prims.bool", "FStar.Sequence.Util.cons", "Prims.unit", "Prims._assert", "FStar.Sequence.Base.equal", "FStar.Sequence.Base.append", "FStar.Pervasives.Native.tuple2", "FStar.Pervasives.Native.fst", "FStar.Pervasives.Native.snd", "Prims.nat", "FStar.Sequence.Base.length", "FStar.Sequence.Permutation.find", "FStar.Pervasives.reveal_opaque" ]
[]
(* Copyright 2021 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: N. Swamy *) module FStar.Sequence.Permutation open FStar.Sequence open FStar.Calc open FStar.Sequence.Util module S = FStar.Sequence //////////////////////////////////////////////////////////////////////////////// [@@"opaque_to_smt"] let is_permutation (#a:Type) (s0:seq a) (s1:seq a) (f:index_fun s0) = S.length s0 == S.length s1 /\ (forall x y. // {:pattern f x; f y} x <> y ==> f x <> f y) /\ (forall (i:nat{i < S.length s0}). // {:pattern (S.index s1 (f i))} S.index s0 i == S.index s1 (f i)) let reveal_is_permutation #a (s0 s1:seq a) (f:index_fun s0) = reveal_opaque (`%is_permutation) (is_permutation s0 s1 f) let reveal_is_permutation_nopats (#a:Type) (s0 s1:seq a) (f:index_fun s0) : Lemma (is_permutation s0 s1 f <==> S.length s0 == S.length s1 /\ (forall x y. x <> y ==> f x <> f y) /\ (forall (i:nat{i < S.length s0}). S.index s0 i == S.index s1 (f i))) = reveal_is_permutation s0 s1 f let split3_index (#a:eqtype) (s0:seq a) (x:a) (s1:seq a) (j:nat) : Lemma (requires j < S.length (S.append s0 s1)) (ensures ( let s = S.append s0 (cons x s1) in let s' = S.append s0 s1 in let n = S.length s0 in if j < n then S.index s' j == S.index s j else S.index s' j == S.index s (j + 1) )) = let n = S.length (S.append s0 s1) in if j < n then () else () let rec find (#a:eqtype) (x:a) (s:seq a{ count x s > 0 }) : Tot (frags:(seq a & seq a) { let s' = S.append (fst frags) (snd frags) in let n = S.length (fst frags) in s `S.equal` S.append (fst frags) (cons x (snd frags))
false
false
FStar.Sequence.Permutation.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val find (#a: eqtype) (x: a) (s: seq a {count x s > 0}) : Tot (frags: (seq a & seq a) { let s' = S.append (fst frags) (snd frags) in let n = S.length (fst frags) in s `S.equal` (S.append (fst frags) (cons x (snd frags))) }) (decreases (S.length s))
[ "recursion" ]
FStar.Sequence.Permutation.find
{ "file_name": "ulib/experimental/FStar.Sequence.Permutation.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: a -> s: FStar.Sequence.Base.seq a {FStar.Sequence.Util.count x s > 0} -> Prims.Tot (frags: (FStar.Sequence.Base.seq a * FStar.Sequence.Base.seq a) { let s' = FStar.Sequence.Base.append (FStar.Pervasives.Native.fst frags) (FStar.Pervasives.Native.snd frags) in let n = FStar.Sequence.Base.length (FStar.Pervasives.Native.fst frags) in FStar.Sequence.Base.equal s (FStar.Sequence.Base.append (FStar.Pervasives.Native.fst frags) (FStar.Sequence.Util.cons x (FStar.Pervasives.Native.snd frags))) })
{ "end_col": 5, "end_line": 80, "start_col": 4, "start_line": 70 }
Prims.Tot
val shift_perm': #a: _ -> s0: seq a -> s1: seq a -> squash (S.length s0 == S.length s1 /\ S.length s0 > 0) -> p: seqperm s0 s1 -> Tot (seqperm (fst (un_build s0)) (snd (remove_i s1 (p (S.length s0 - 1)))))
[ { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid", "short_module": "CM" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid", "short_module": "CM" }, { "abbrev": true, "full_module": "FStar.Sequence", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Sequence.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": true, "full_module": "FStar.Sequence", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Sequence.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let shift_perm' #a (s0 s1:seq a) (_:squash (S.length s0 == S.length s1 /\ S.length s0 > 0)) (p:seqperm s0 s1) : Tot (seqperm (fst (un_build s0)) (snd (remove_i s1 (p (S.length s0 - 1))))) = reveal_is_permutation s0 s1 p; let s0', last = un_build s0 in let n = S.length s0' in let p' (i:nat{ i < n }) : j:nat{ j < n } = if p i < p n then p i else p i - 1 in let _, s1' = remove_i s1 (p n) in reveal_is_permutation_nopats s0' s1' p'; p'
val shift_perm': #a: _ -> s0: seq a -> s1: seq a -> squash (S.length s0 == S.length s1 /\ S.length s0 > 0) -> p: seqperm s0 s1 -> Tot (seqperm (fst (un_build s0)) (snd (remove_i s1 (p (S.length s0 - 1))))) let shift_perm' #a (s0: seq a) (s1: seq a) (_: squash (S.length s0 == S.length s1 /\ S.length s0 > 0)) (p: seqperm s0 s1) : Tot (seqperm (fst (un_build s0)) (snd (remove_i s1 (p (S.length s0 - 1))))) =
false
null
false
reveal_is_permutation s0 s1 p; let s0', last = un_build s0 in let n = S.length s0' in let p' (i: nat{i < n}) : j: nat{j < n} = if p i < p n then p i else p i - 1 in let _, s1' = remove_i s1 (p n) in reveal_is_permutation_nopats s0' s1' p'; p'
{ "checked_file": "FStar.Sequence.Permutation.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Sequence.Util.fst.checked", "FStar.Sequence.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Permutation.fst" }
[ "total" ]
[ "FStar.Sequence.Base.seq", "Prims.squash", "Prims.l_and", "Prims.eq2", "Prims.nat", "FStar.Sequence.Base.length", "Prims.b2t", "Prims.op_GreaterThan", "FStar.Sequence.Permutation.seqperm", "Prims.unit", "FStar.Sequence.Permutation.reveal_is_permutation_nopats", "FStar.Pervasives.Native.fst", "FStar.Sequence.Util.un_build", "FStar.Pervasives.Native.snd", "FStar.Sequence.Permutation.remove_i", "Prims.op_Subtraction", "FStar.Pervasives.Native.tuple2", "Prims.op_LessThan", "Prims.bool", "FStar.Sequence.Permutation.reveal_is_permutation" ]
[]
(* Copyright 2021 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: N. Swamy *) module FStar.Sequence.Permutation open FStar.Sequence open FStar.Calc open FStar.Sequence.Util module S = FStar.Sequence //////////////////////////////////////////////////////////////////////////////// [@@"opaque_to_smt"] let is_permutation (#a:Type) (s0:seq a) (s1:seq a) (f:index_fun s0) = S.length s0 == S.length s1 /\ (forall x y. // {:pattern f x; f y} x <> y ==> f x <> f y) /\ (forall (i:nat{i < S.length s0}). // {:pattern (S.index s1 (f i))} S.index s0 i == S.index s1 (f i)) let reveal_is_permutation #a (s0 s1:seq a) (f:index_fun s0) = reveal_opaque (`%is_permutation) (is_permutation s0 s1 f) let reveal_is_permutation_nopats (#a:Type) (s0 s1:seq a) (f:index_fun s0) : Lemma (is_permutation s0 s1 f <==> S.length s0 == S.length s1 /\ (forall x y. x <> y ==> f x <> f y) /\ (forall (i:nat{i < S.length s0}). S.index s0 i == S.index s1 (f i))) = reveal_is_permutation s0 s1 f let split3_index (#a:eqtype) (s0:seq a) (x:a) (s1:seq a) (j:nat) : Lemma (requires j < S.length (S.append s0 s1)) (ensures ( let s = S.append s0 (cons x s1) in let s' = S.append s0 s1 in let n = S.length s0 in if j < n then S.index s' j == S.index s j else S.index s' j == S.index s (j + 1) )) = let n = S.length (S.append s0 s1) in if j < n then () else () let rec find (#a:eqtype) (x:a) (s:seq a{ count x s > 0 }) : Tot (frags:(seq a & seq a) { let s' = S.append (fst frags) (snd frags) in let n = S.length (fst frags) in s `S.equal` S.append (fst frags) (cons x (snd frags)) }) (decreases (S.length s)) = reveal_opaque (`%count) (count #a); if head s = x then S.empty, tail s else ( let pfx, sfx = find x (tail s) in assert (S.equal (tail s) (S.append pfx (cons x sfx))); assert (S.equal s (cons (head s) (tail s))); cons (head s) pfx, sfx ) let count_singleton_one (#a:eqtype) (x:a) : Lemma (count x (singleton x) == 1) = reveal_opaque (`%count) (count #a) let count_singleton_zero (#a:eqtype) (x y:a) : Lemma (x =!= y ==> count x (singleton y) == 0) = reveal_opaque (`%count) (count #a) let equal_counts_empty (#a:eqtype) (s0 s1:seq a) : Lemma (requires S.length s0 == 0 /\ (forall x. count x s0 == count x s1)) (ensures S.length s1 == 0) = reveal_opaque (`%count) (count #a); if S.length s1 > 0 then assert (count (head s1) s1 > 0) let count_head (#a:eqtype) (x:seq a{ S.length x > 0 }) : Lemma (count (head x) x > 0) = reveal_opaque (`%count) (count #a) #push-options "--fuel 0 --ifuel 0 --z3rlimit_factor 2" let rec permutation_from_equal_counts (#a:eqtype) (s0:seq a) (s1:seq a{(forall x. count x s0 == count x s1)}) : Tot (seqperm s0 s1) (decreases (S.length s0)) = if S.length s0 = 0 then ( count_empty s0; assert (forall x. count x s0 = 0); let f : index_fun s0 = fun i -> i in reveal_is_permutation_nopats s0 s1 f; equal_counts_empty s0 s1; f ) else ( count_head s0; let pfx, sfx = find (head s0) s1 in introduce forall x. count x (tail s0) == count x (S.append pfx sfx) with ( if x = head s0 then ( calc (eq2 #int) { count x (tail s0) <: int; (==) { assert (s0 `S.equal` cons (head s0) (tail s0)); lemma_append_count_aux (head s0) (S.singleton (head s0)) (tail s0); count_singleton_one x } count x s0 - 1 <: int; (==) {} count x s1 - 1 <: int; (==) {} count x (S.append pfx (cons (head s0) sfx)) - 1 <: int; (==) { lemma_append_count_aux x pfx (cons (head s0) sfx) } count x pfx + count x (cons (head s0) sfx) - 1 <: int; (==) { lemma_append_count_aux x (S.singleton (head s0)) sfx } count x pfx + (count x (S.singleton (head s0)) + count x sfx) - 1 <: int; (==) { count_singleton_one x } count x pfx + count x sfx <: int; (==) { lemma_append_count_aux x pfx sfx } count x (S.append pfx sfx) <: int; } ) else ( calc (==) { count x (tail s0); (==) { assert (s0 `S.equal` cons (head s0) (tail s0)); lemma_append_count_aux x (S.singleton (head s0)) (tail s0); count_singleton_zero x (head s0) } count x s0; (==) { } count x s1; (==) { } count x (S.append pfx (cons (head s0) sfx)); (==) { lemma_append_count_aux x pfx (cons (head s0) sfx) } count x pfx + count x (cons (head s0) sfx); (==) { lemma_append_count_aux x (S.singleton (head s0)) sfx } count x pfx + (count x (S.singleton (head s0)) + count x sfx) ; (==) { count_singleton_zero x (head s0) } count x pfx + count x sfx; (==) { lemma_append_count_aux x pfx sfx } count x (S.append pfx sfx); } ) ); let s1' = (S.append pfx sfx) in let f' = permutation_from_equal_counts (tail s0) s1' in reveal_is_permutation_nopats (tail s0) s1' f'; let n = S.length pfx in let f : index_fun s0 = fun i -> if i = 0 then n else if f' (i - 1) < n then f' (i - 1) else f' (i - 1) + 1 in assert (S.length s0 == S.length s1); assert (forall x y. x <> y ==> f' x <> f' y); introduce forall x y. x <> y ==> f x <> f y with (introduce _ ==> _ with _. ( if f x = n || f y = n then () else if f' (x - 1) < n then ( assert (f x == f' (x - 1)); if f' (y - 1) < n then assert (f y == f' (y - 1)) else assert (f y == f' (y - 1) + 1) ) else ( assert (f x == f' (x - 1) + 1); if f' (y - 1) < n then assert (f y == f' (y - 1)) else assert (f y == f' (y - 1) + 1) ) ) ); reveal_is_permutation_nopats s0 s1 f; f) module CM = FStar.Algebra.CommMonoid let elim_monoid_laws #a (m:CM.cm a) : Lemma ( (forall x y. {:pattern m.mult x y} m.mult x y == m.mult y x) /\ (forall x y z.{:pattern (m.mult x (m.mult y z))} m.mult x (m.mult y z) == m.mult (m.mult x y) z) /\ (forall x.{:pattern (m.mult x m.unit)} m.mult x m.unit == x) ) = introduce forall x y. m.mult x y == m.mult y x with ( m.commutativity x y ); introduce forall x y z. m.mult x (m.mult y z) == m.mult (m.mult x y) z with ( m.associativity x y z ); introduce forall x. m.mult x m.unit == x with ( m.identity x ) #push-options "--fuel 1 --ifuel 0" let rec foldm_back_append #a (m:CM.cm a) (s1 s2: seq a) : Lemma (ensures foldm_back m (append s1 s2) == m.mult (foldm_back m s1) (foldm_back m s2)) (decreases (S.length s2)) = elim_monoid_laws m; if S.length s2 = 0 then ( assert (S.append s1 s2 `S.equal` s1); assert (foldm_back m s2 == m.unit) ) else ( let s2', last = un_build s2 in calc (==) { foldm_back m (append s1 s2); (==) { assert (S.equal (append s1 s2) (S.build (append s1 s2') last)) } foldm_back m (S.build (append s1 s2') last); (==) { assert (S.equal (fst (un_build (append s1 s2))) (append s1 s2')) } m.mult last (foldm_back m (append s1 s2')); (==) { foldm_back_append m s1 s2' } m.mult last (m.mult (foldm_back m s1) (foldm_back m s2')); (==) { } m.mult (foldm_back m s1) (m.mult last (foldm_back m s2')); (==) { } m.mult (foldm_back m s1) (foldm_back m s2); } ) let foldm_back_sym #a (m:CM.cm a) (s1 s2: seq a) : Lemma (ensures foldm_back m (append s1 s2) == foldm_back m (append s2 s1)) = elim_monoid_laws m; foldm_back_append m s1 s2; foldm_back_append m s2 s1 #push-options "--fuel 2" let foldm_back_singleton (#a:_) (m:CM.cm a) (x:a) : Lemma (foldm_back m (singleton x) == x) = elim_monoid_laws m #pop-options #push-options "--fuel 0" let foldm_back3 #a (m:CM.cm a) (s1:seq a) (x:a) (s2:seq a) : Lemma (foldm_back m (S.append s1 (cons x s2)) == m.mult x (foldm_back m (S.append s1 s2))) = calc (==) { foldm_back m (S.append s1 (cons x s2)); (==) { foldm_back_append m s1 (cons x s2) } m.mult (foldm_back m s1) (foldm_back m (cons x s2)); (==) { foldm_back_append m (singleton x) s2 } m.mult (foldm_back m s1) (m.mult (foldm_back m (singleton x)) (foldm_back m s2)); (==) { foldm_back_singleton m x } m.mult (foldm_back m s1) (m.mult x (foldm_back m s2)); (==) { elim_monoid_laws m } m.mult x (m.mult (foldm_back m s1) (foldm_back m s2)); (==) { foldm_back_append m s1 s2 } m.mult x (foldm_back m (S.append s1 s2)); } #pop-options let remove_i #a (s:seq a) (i:nat{i < S.length s}) : a & seq a = let s0, s1 = split s i in head s1, append s0 (tail s1) let shift_perm' #a (s0 s1:seq a) (_:squash (S.length s0 == S.length s1 /\ S.length s0 > 0)) (p:seqperm s0 s1) : Tot (seqperm (fst (un_build s0))
false
false
FStar.Sequence.Permutation.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 2, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val shift_perm': #a: _ -> s0: seq a -> s1: seq a -> squash (S.length s0 == S.length s1 /\ S.length s0 > 0) -> p: seqperm s0 s1 -> Tot (seqperm (fst (un_build s0)) (snd (remove_i s1 (p (S.length s0 - 1)))))
[]
FStar.Sequence.Permutation.shift_perm'
{ "file_name": "ulib/experimental/FStar.Sequence.Permutation.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s0: FStar.Sequence.Base.seq a -> s1: FStar.Sequence.Base.seq a -> _: Prims.squash (FStar.Sequence.Base.length s0 == FStar.Sequence.Base.length s1 /\ FStar.Sequence.Base.length s0 > 0) -> p: FStar.Sequence.Permutation.seqperm s0 s1 -> FStar.Sequence.Permutation.seqperm (FStar.Pervasives.Native.fst (FStar.Sequence.Util.un_build s0 )) (FStar.Pervasives.Native.snd (FStar.Sequence.Permutation.remove_i s1 (p (FStar.Sequence.Base.length s0 - 1))))
{ "end_col": 6, "end_line": 302, "start_col": 4, "start_line": 293 }
FStar.Pervasives.Lemma
val foldm_back_perm (#a:_) (m:CM.cm a) (s0:seq a) (s1:seq a) (p:seqperm s0 s1) : Lemma (ensures foldm_back m s0 == foldm_back m s1)
[ { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid", "short_module": "CM" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid", "short_module": "CM" }, { "abbrev": true, "full_module": "FStar.Sequence", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Sequence.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": true, "full_module": "FStar.Sequence", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Sequence.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec foldm_back_perm #a m s0 s1 p : Lemma (ensures foldm_back m s0 == foldm_back m s1) (decreases (S.length s0)) = seqperm_len s0 s1 p; if S.length s0 = 0 then ( assert (S.equal s0 s1) ) else ( let n0 = S.length s0 - 1 in let prefix, last = un_build s0 in let prefix', suffix' = split s1 (p n0) in let last', suffix' = suffix' $@ 0, drop suffix' 1 in let s1' = snd (remove_i s1 (p n0)) in let p' : seqperm prefix s1' = shift_perm s0 s1 () p in assert (last == last'); calc (==) { foldm_back m s1; (==) { assert (s1 `S.equal` S.append prefix' (cons last' suffix')) } foldm_back m (S.append prefix' (cons last' suffix')); (==) { foldm_back3 m prefix' last' suffix' } m.mult last' (foldm_back m (append prefix' suffix')); (==) { assert (S.equal (append prefix' suffix') s1') } m.mult last' (foldm_back m s1'); (==) { foldm_back_perm m prefix s1' p' } m.mult last' (foldm_back m prefix); (==) { } foldm_back m s0; } )
val foldm_back_perm (#a:_) (m:CM.cm a) (s0:seq a) (s1:seq a) (p:seqperm s0 s1) : Lemma (ensures foldm_back m s0 == foldm_back m s1) let rec foldm_back_perm #a m s0 s1 p : Lemma (ensures foldm_back m s0 == foldm_back m s1) (decreases (S.length s0)) =
false
null
true
seqperm_len s0 s1 p; if S.length s0 = 0 then (assert (S.equal s0 s1)) else (let n0 = S.length s0 - 1 in let prefix, last = un_build s0 in let prefix', suffix' = split s1 (p n0) in let last', suffix' = suffix' $@ 0, drop suffix' 1 in let s1' = snd (remove_i s1 (p n0)) in let p':seqperm prefix s1' = shift_perm s0 s1 () p in assert (last == last'); calc ( == ) { foldm_back m s1; ( == ) { assert (s1 `S.equal` (S.append prefix' (cons last' suffix'))) } foldm_back m (S.append prefix' (cons last' suffix')); ( == ) { foldm_back3 m prefix' last' suffix' } m.mult last' (foldm_back m (append prefix' suffix')); ( == ) { assert (S.equal (append prefix' suffix') s1') } m.mult last' (foldm_back m s1'); ( == ) { foldm_back_perm m prefix s1' p' } m.mult last' (foldm_back m prefix); ( == ) { () } foldm_back m s0; })
{ "checked_file": "FStar.Sequence.Permutation.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Sequence.Util.fst.checked", "FStar.Sequence.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Permutation.fst" }
[ "", "lemma" ]
[ "FStar.Algebra.CommMonoid.cm", "FStar.Sequence.Base.seq", "FStar.Sequence.Permutation.seqperm", "Prims.op_Equality", "Prims.int", "FStar.Sequence.Base.length", "Prims._assert", "FStar.Sequence.Base.equal", "Prims.bool", "FStar.Calc.calc_finish", "Prims.eq2", "FStar.Sequence.Permutation.foldm_back", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Algebra.CommMonoid.__proj__CM__item__mult", "FStar.Sequence.Base.append", "FStar.Sequence.Util.cons", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "FStar.Sequence.Permutation.foldm_back3", "FStar.Sequence.Permutation.foldm_back_perm", "FStar.Sequence.Permutation.shift_perm", "FStar.Pervasives.Native.snd", "FStar.Sequence.Permutation.remove_i", "FStar.Pervasives.Native.tuple2", "FStar.Pervasives.Native.Mktuple2", "FStar.Sequence.Base.op_Dollar_At", "FStar.Sequence.Base.drop", "FStar.Sequence.Util.split", "FStar.Sequence.Util.un_build", "Prims.op_Subtraction", "FStar.Sequence.Permutation.seqperm_len", "Prims.l_True", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2021 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: N. Swamy *) module FStar.Sequence.Permutation open FStar.Sequence open FStar.Calc open FStar.Sequence.Util module S = FStar.Sequence //////////////////////////////////////////////////////////////////////////////// [@@"opaque_to_smt"] let is_permutation (#a:Type) (s0:seq a) (s1:seq a) (f:index_fun s0) = S.length s0 == S.length s1 /\ (forall x y. // {:pattern f x; f y} x <> y ==> f x <> f y) /\ (forall (i:nat{i < S.length s0}). // {:pattern (S.index s1 (f i))} S.index s0 i == S.index s1 (f i)) let reveal_is_permutation #a (s0 s1:seq a) (f:index_fun s0) = reveal_opaque (`%is_permutation) (is_permutation s0 s1 f) let reveal_is_permutation_nopats (#a:Type) (s0 s1:seq a) (f:index_fun s0) : Lemma (is_permutation s0 s1 f <==> S.length s0 == S.length s1 /\ (forall x y. x <> y ==> f x <> f y) /\ (forall (i:nat{i < S.length s0}). S.index s0 i == S.index s1 (f i))) = reveal_is_permutation s0 s1 f let split3_index (#a:eqtype) (s0:seq a) (x:a) (s1:seq a) (j:nat) : Lemma (requires j < S.length (S.append s0 s1)) (ensures ( let s = S.append s0 (cons x s1) in let s' = S.append s0 s1 in let n = S.length s0 in if j < n then S.index s' j == S.index s j else S.index s' j == S.index s (j + 1) )) = let n = S.length (S.append s0 s1) in if j < n then () else () let rec find (#a:eqtype) (x:a) (s:seq a{ count x s > 0 }) : Tot (frags:(seq a & seq a) { let s' = S.append (fst frags) (snd frags) in let n = S.length (fst frags) in s `S.equal` S.append (fst frags) (cons x (snd frags)) }) (decreases (S.length s)) = reveal_opaque (`%count) (count #a); if head s = x then S.empty, tail s else ( let pfx, sfx = find x (tail s) in assert (S.equal (tail s) (S.append pfx (cons x sfx))); assert (S.equal s (cons (head s) (tail s))); cons (head s) pfx, sfx ) let count_singleton_one (#a:eqtype) (x:a) : Lemma (count x (singleton x) == 1) = reveal_opaque (`%count) (count #a) let count_singleton_zero (#a:eqtype) (x y:a) : Lemma (x =!= y ==> count x (singleton y) == 0) = reveal_opaque (`%count) (count #a) let equal_counts_empty (#a:eqtype) (s0 s1:seq a) : Lemma (requires S.length s0 == 0 /\ (forall x. count x s0 == count x s1)) (ensures S.length s1 == 0) = reveal_opaque (`%count) (count #a); if S.length s1 > 0 then assert (count (head s1) s1 > 0) let count_head (#a:eqtype) (x:seq a{ S.length x > 0 }) : Lemma (count (head x) x > 0) = reveal_opaque (`%count) (count #a) #push-options "--fuel 0 --ifuel 0 --z3rlimit_factor 2" let rec permutation_from_equal_counts (#a:eqtype) (s0:seq a) (s1:seq a{(forall x. count x s0 == count x s1)}) : Tot (seqperm s0 s1) (decreases (S.length s0)) = if S.length s0 = 0 then ( count_empty s0; assert (forall x. count x s0 = 0); let f : index_fun s0 = fun i -> i in reveal_is_permutation_nopats s0 s1 f; equal_counts_empty s0 s1; f ) else ( count_head s0; let pfx, sfx = find (head s0) s1 in introduce forall x. count x (tail s0) == count x (S.append pfx sfx) with ( if x = head s0 then ( calc (eq2 #int) { count x (tail s0) <: int; (==) { assert (s0 `S.equal` cons (head s0) (tail s0)); lemma_append_count_aux (head s0) (S.singleton (head s0)) (tail s0); count_singleton_one x } count x s0 - 1 <: int; (==) {} count x s1 - 1 <: int; (==) {} count x (S.append pfx (cons (head s0) sfx)) - 1 <: int; (==) { lemma_append_count_aux x pfx (cons (head s0) sfx) } count x pfx + count x (cons (head s0) sfx) - 1 <: int; (==) { lemma_append_count_aux x (S.singleton (head s0)) sfx } count x pfx + (count x (S.singleton (head s0)) + count x sfx) - 1 <: int; (==) { count_singleton_one x } count x pfx + count x sfx <: int; (==) { lemma_append_count_aux x pfx sfx } count x (S.append pfx sfx) <: int; } ) else ( calc (==) { count x (tail s0); (==) { assert (s0 `S.equal` cons (head s0) (tail s0)); lemma_append_count_aux x (S.singleton (head s0)) (tail s0); count_singleton_zero x (head s0) } count x s0; (==) { } count x s1; (==) { } count x (S.append pfx (cons (head s0) sfx)); (==) { lemma_append_count_aux x pfx (cons (head s0) sfx) } count x pfx + count x (cons (head s0) sfx); (==) { lemma_append_count_aux x (S.singleton (head s0)) sfx } count x pfx + (count x (S.singleton (head s0)) + count x sfx) ; (==) { count_singleton_zero x (head s0) } count x pfx + count x sfx; (==) { lemma_append_count_aux x pfx sfx } count x (S.append pfx sfx); } ) ); let s1' = (S.append pfx sfx) in let f' = permutation_from_equal_counts (tail s0) s1' in reveal_is_permutation_nopats (tail s0) s1' f'; let n = S.length pfx in let f : index_fun s0 = fun i -> if i = 0 then n else if f' (i - 1) < n then f' (i - 1) else f' (i - 1) + 1 in assert (S.length s0 == S.length s1); assert (forall x y. x <> y ==> f' x <> f' y); introduce forall x y. x <> y ==> f x <> f y with (introduce _ ==> _ with _. ( if f x = n || f y = n then () else if f' (x - 1) < n then ( assert (f x == f' (x - 1)); if f' (y - 1) < n then assert (f y == f' (y - 1)) else assert (f y == f' (y - 1) + 1) ) else ( assert (f x == f' (x - 1) + 1); if f' (y - 1) < n then assert (f y == f' (y - 1)) else assert (f y == f' (y - 1) + 1) ) ) ); reveal_is_permutation_nopats s0 s1 f; f) module CM = FStar.Algebra.CommMonoid let elim_monoid_laws #a (m:CM.cm a) : Lemma ( (forall x y. {:pattern m.mult x y} m.mult x y == m.mult y x) /\ (forall x y z.{:pattern (m.mult x (m.mult y z))} m.mult x (m.mult y z) == m.mult (m.mult x y) z) /\ (forall x.{:pattern (m.mult x m.unit)} m.mult x m.unit == x) ) = introduce forall x y. m.mult x y == m.mult y x with ( m.commutativity x y ); introduce forall x y z. m.mult x (m.mult y z) == m.mult (m.mult x y) z with ( m.associativity x y z ); introduce forall x. m.mult x m.unit == x with ( m.identity x ) #push-options "--fuel 1 --ifuel 0" let rec foldm_back_append #a (m:CM.cm a) (s1 s2: seq a) : Lemma (ensures foldm_back m (append s1 s2) == m.mult (foldm_back m s1) (foldm_back m s2)) (decreases (S.length s2)) = elim_monoid_laws m; if S.length s2 = 0 then ( assert (S.append s1 s2 `S.equal` s1); assert (foldm_back m s2 == m.unit) ) else ( let s2', last = un_build s2 in calc (==) { foldm_back m (append s1 s2); (==) { assert (S.equal (append s1 s2) (S.build (append s1 s2') last)) } foldm_back m (S.build (append s1 s2') last); (==) { assert (S.equal (fst (un_build (append s1 s2))) (append s1 s2')) } m.mult last (foldm_back m (append s1 s2')); (==) { foldm_back_append m s1 s2' } m.mult last (m.mult (foldm_back m s1) (foldm_back m s2')); (==) { } m.mult (foldm_back m s1) (m.mult last (foldm_back m s2')); (==) { } m.mult (foldm_back m s1) (foldm_back m s2); } ) let foldm_back_sym #a (m:CM.cm a) (s1 s2: seq a) : Lemma (ensures foldm_back m (append s1 s2) == foldm_back m (append s2 s1)) = elim_monoid_laws m; foldm_back_append m s1 s2; foldm_back_append m s2 s1 #push-options "--fuel 2" let foldm_back_singleton (#a:_) (m:CM.cm a) (x:a) : Lemma (foldm_back m (singleton x) == x) = elim_monoid_laws m #pop-options #push-options "--fuel 0" let foldm_back3 #a (m:CM.cm a) (s1:seq a) (x:a) (s2:seq a) : Lemma (foldm_back m (S.append s1 (cons x s2)) == m.mult x (foldm_back m (S.append s1 s2))) = calc (==) { foldm_back m (S.append s1 (cons x s2)); (==) { foldm_back_append m s1 (cons x s2) } m.mult (foldm_back m s1) (foldm_back m (cons x s2)); (==) { foldm_back_append m (singleton x) s2 } m.mult (foldm_back m s1) (m.mult (foldm_back m (singleton x)) (foldm_back m s2)); (==) { foldm_back_singleton m x } m.mult (foldm_back m s1) (m.mult x (foldm_back m s2)); (==) { elim_monoid_laws m } m.mult x (m.mult (foldm_back m s1) (foldm_back m s2)); (==) { foldm_back_append m s1 s2 } m.mult x (foldm_back m (S.append s1 s2)); } #pop-options let remove_i #a (s:seq a) (i:nat{i < S.length s}) : a & seq a = let s0, s1 = split s i in head s1, append s0 (tail s1) let shift_perm' #a (s0 s1:seq a) (_:squash (S.length s0 == S.length s1 /\ S.length s0 > 0)) (p:seqperm s0 s1) : Tot (seqperm (fst (un_build s0)) (snd (remove_i s1 (p (S.length s0 - 1))))) = reveal_is_permutation s0 s1 p; let s0', last = un_build s0 in let n = S.length s0' in let p' (i:nat{ i < n }) : j:nat{ j < n } = if p i < p n then p i else p i - 1 in let _, s1' = remove_i s1 (p n) in reveal_is_permutation_nopats s0' s1' p'; p' let shift_perm #a (s0 s1:seq a) (_:squash (S.length s0 == S.length s1 /\ S.length s0 > 0)) (p:seqperm s0 s1) : Pure (seqperm (fst (un_build s0)) (snd (remove_i s1 (p (S.length s0 - 1))))) (requires True) (ensures fun _ -> let n = S.length s0 - 1 in S.index s1 (p n) == S.index s0 n) = reveal_is_permutation s0 s1 p; shift_perm' s0 s1 () p let seqperm_len #a (s0 s1:seq a) (p:seqperm s0 s1) : Lemma (ensures S.length s0 == S.length s1) = reveal_is_permutation s0 s1 p let rec foldm_back_perm #a m s0 s1 p : Lemma (ensures foldm_back m s0 == foldm_back m s1)
false
false
FStar.Sequence.Permutation.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 2, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val foldm_back_perm (#a:_) (m:CM.cm a) (s0:seq a) (s1:seq a) (p:seqperm s0 s1) : Lemma (ensures foldm_back m s0 == foldm_back m s1)
[ "recursion" ]
FStar.Sequence.Permutation.foldm_back_perm
{ "file_name": "ulib/experimental/FStar.Sequence.Permutation.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
m: FStar.Algebra.CommMonoid.cm a -> s0: FStar.Sequence.Base.seq a -> s1: FStar.Sequence.Base.seq a -> p: FStar.Sequence.Permutation.seqperm s0 s1 -> FStar.Pervasives.Lemma (ensures FStar.Sequence.Permutation.foldm_back m s0 == FStar.Sequence.Permutation.foldm_back m s1) (decreases FStar.Sequence.Base.length s0)
{ "end_col": 5, "end_line": 354, "start_col": 4, "start_line": 327 }
Prims.Tot
val permutation_from_equal_counts (#a:eqtype) (s0:seq a) (s1:seq a{(forall x. count x s0 == count x s1)}) : Tot (seqperm s0 s1)
[ { "abbrev": true, "full_module": "FStar.Sequence", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Sequence.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": true, "full_module": "FStar.Sequence", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Sequence.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec permutation_from_equal_counts (#a:eqtype) (s0:seq a) (s1:seq a{(forall x. count x s0 == count x s1)}) : Tot (seqperm s0 s1) (decreases (S.length s0)) = if S.length s0 = 0 then ( count_empty s0; assert (forall x. count x s0 = 0); let f : index_fun s0 = fun i -> i in reveal_is_permutation_nopats s0 s1 f; equal_counts_empty s0 s1; f ) else ( count_head s0; let pfx, sfx = find (head s0) s1 in introduce forall x. count x (tail s0) == count x (S.append pfx sfx) with ( if x = head s0 then ( calc (eq2 #int) { count x (tail s0) <: int; (==) { assert (s0 `S.equal` cons (head s0) (tail s0)); lemma_append_count_aux (head s0) (S.singleton (head s0)) (tail s0); count_singleton_one x } count x s0 - 1 <: int; (==) {} count x s1 - 1 <: int; (==) {} count x (S.append pfx (cons (head s0) sfx)) - 1 <: int; (==) { lemma_append_count_aux x pfx (cons (head s0) sfx) } count x pfx + count x (cons (head s0) sfx) - 1 <: int; (==) { lemma_append_count_aux x (S.singleton (head s0)) sfx } count x pfx + (count x (S.singleton (head s0)) + count x sfx) - 1 <: int; (==) { count_singleton_one x } count x pfx + count x sfx <: int; (==) { lemma_append_count_aux x pfx sfx } count x (S.append pfx sfx) <: int; } ) else ( calc (==) { count x (tail s0); (==) { assert (s0 `S.equal` cons (head s0) (tail s0)); lemma_append_count_aux x (S.singleton (head s0)) (tail s0); count_singleton_zero x (head s0) } count x s0; (==) { } count x s1; (==) { } count x (S.append pfx (cons (head s0) sfx)); (==) { lemma_append_count_aux x pfx (cons (head s0) sfx) } count x pfx + count x (cons (head s0) sfx); (==) { lemma_append_count_aux x (S.singleton (head s0)) sfx } count x pfx + (count x (S.singleton (head s0)) + count x sfx) ; (==) { count_singleton_zero x (head s0) } count x pfx + count x sfx; (==) { lemma_append_count_aux x pfx sfx } count x (S.append pfx sfx); } ) ); let s1' = (S.append pfx sfx) in let f' = permutation_from_equal_counts (tail s0) s1' in reveal_is_permutation_nopats (tail s0) s1' f'; let n = S.length pfx in let f : index_fun s0 = fun i -> if i = 0 then n else if f' (i - 1) < n then f' (i - 1) else f' (i - 1) + 1 in assert (S.length s0 == S.length s1); assert (forall x y. x <> y ==> f' x <> f' y); introduce forall x y. x <> y ==> f x <> f y with (introduce _ ==> _ with _. ( if f x = n || f y = n then () else if f' (x - 1) < n then ( assert (f x == f' (x - 1)); if f' (y - 1) < n then assert (f y == f' (y - 1)) else assert (f y == f' (y - 1) + 1) ) else ( assert (f x == f' (x - 1) + 1); if f' (y - 1) < n then assert (f y == f' (y - 1)) else assert (f y == f' (y - 1) + 1) ) ) ); reveal_is_permutation_nopats s0 s1 f; f)
val permutation_from_equal_counts (#a:eqtype) (s0:seq a) (s1:seq a{(forall x. count x s0 == count x s1)}) : Tot (seqperm s0 s1) let rec permutation_from_equal_counts (#a: eqtype) (s0: seq a) (s1: seq a {(forall x. count x s0 == count x s1)}) : Tot (seqperm s0 s1) (decreases (S.length s0)) =
false
null
false
if S.length s0 = 0 then (count_empty s0; assert (forall x. count x s0 = 0); let f:index_fun s0 = fun i -> i in reveal_is_permutation_nopats s0 s1 f; equal_counts_empty s0 s1; f) else (count_head s0; let pfx, sfx = find (head s0) s1 in introduce forall x . count x (tail s0) == count x (S.append pfx sfx) with (if x = head s0 then (calc (eq2 #int) { count x (tail s0) <: int; ( == ) { (assert (s0 `S.equal` (cons (head s0) (tail s0))); lemma_append_count_aux (head s0) (S.singleton (head s0)) (tail s0); count_singleton_one x) } count x s0 - 1 <: int; ( == ) { () } count x s1 - 1 <: int; ( == ) { () } count x (S.append pfx (cons (head s0) sfx)) - 1 <: int; ( == ) { lemma_append_count_aux x pfx (cons (head s0) sfx) } count x pfx + count x (cons (head s0) sfx) - 1 <: int; ( == ) { lemma_append_count_aux x (S.singleton (head s0)) sfx } count x pfx + (count x (S.singleton (head s0)) + count x sfx) - 1 <: int; ( == ) { count_singleton_one x } count x pfx + count x sfx <: int; ( == ) { lemma_append_count_aux x pfx sfx } count x (S.append pfx sfx) <: int; }) else (calc ( == ) { count x (tail s0); ( == ) { (assert (s0 `S.equal` (cons (head s0) (tail s0))); lemma_append_count_aux x (S.singleton (head s0)) (tail s0); count_singleton_zero x (head s0)) } count x s0; ( == ) { () } count x s1; ( == ) { () } count x (S.append pfx (cons (head s0) sfx)); ( == ) { lemma_append_count_aux x pfx (cons (head s0) sfx) } count x pfx + count x (cons (head s0) sfx); ( == ) { lemma_append_count_aux x (S.singleton (head s0)) sfx } count x pfx + (count x (S.singleton (head s0)) + count x sfx); ( == ) { count_singleton_zero x (head s0) } count x pfx + count x sfx; ( == ) { lemma_append_count_aux x pfx sfx } count x (S.append pfx sfx); })); let s1' = (S.append pfx sfx) in let f' = permutation_from_equal_counts (tail s0) s1' in reveal_is_permutation_nopats (tail s0) s1' f'; let n = S.length pfx in let f:index_fun s0 = fun i -> if i = 0 then n else if f' (i - 1) < n then f' (i - 1) else f' (i - 1) + 1 in assert (S.length s0 == S.length s1); assert (forall x y. x <> y ==> f' x <> f' y); introduce forall x y . x <> y ==> f x <> f y with (introduce _ ==> _ with _. (if f x = n || f y = n then () else if f' (x - 1) < n then (assert (f x == f' (x - 1)); if f' (y - 1) < n then assert (f y == f' (y - 1)) else assert (f y == f' (y - 1) + 1)) else (assert (f x == f' (x - 1) + 1); if f' (y - 1) < n then assert (f y == f' (y - 1)) else assert (f y == f' (y - 1) + 1)) )); reveal_is_permutation_nopats s0 s1 f; f)
{ "checked_file": "FStar.Sequence.Permutation.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Sequence.Util.fst.checked", "FStar.Sequence.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Permutation.fst" }
[ "", "total" ]
[ "Prims.eqtype", "FStar.Sequence.Base.seq", "Prims.l_Forall", "Prims.eq2", "Prims.nat", "FStar.Sequence.Util.count", "Prims.op_Equality", "Prims.int", "FStar.Sequence.Base.length", "Prims.unit", "FStar.Sequence.Permutation.equal_counts_empty", "FStar.Sequence.Permutation.reveal_is_permutation_nopats", "FStar.Sequence.Permutation.index_fun", "FStar.Sequence.Permutation.nat_at_most", "Prims._assert", "Prims.b2t", "FStar.Sequence.Util.count_empty", "Prims.bool", "FStar.Classical.Sugar.forall_intro", "Prims.l_imp", "Prims.op_disEquality", "FStar.Classical.Sugar.implies_intro", "Prims.squash", "Prims.op_BarBar", "Prims.op_LessThan", "Prims.op_Subtraction", "Prims.l_or", "FStar.Sequence.Util.tail", "Prims.op_Addition", "FStar.Sequence.Permutation.seqperm", "FStar.Sequence.Permutation.permutation_from_equal_counts", "FStar.Sequence.Base.append", "FStar.Sequence.Util.head", "FStar.Calc.calc_finish", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "FStar.Sequence.Base.singleton", "FStar.Sequence.Util.cons", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Sequence.Permutation.count_singleton_one", "FStar.Sequence.Util.lemma_append_count_aux", "FStar.Sequence.Base.equal", "FStar.Sequence.Permutation.count_singleton_zero", "FStar.Pervasives.Native.tuple2", "FStar.Pervasives.Native.fst", "FStar.Pervasives.Native.snd", "FStar.Sequence.Permutation.find", "FStar.Sequence.Permutation.count_head" ]
[]
(* Copyright 2021 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: N. Swamy *) module FStar.Sequence.Permutation open FStar.Sequence open FStar.Calc open FStar.Sequence.Util module S = FStar.Sequence //////////////////////////////////////////////////////////////////////////////// [@@"opaque_to_smt"] let is_permutation (#a:Type) (s0:seq a) (s1:seq a) (f:index_fun s0) = S.length s0 == S.length s1 /\ (forall x y. // {:pattern f x; f y} x <> y ==> f x <> f y) /\ (forall (i:nat{i < S.length s0}). // {:pattern (S.index s1 (f i))} S.index s0 i == S.index s1 (f i)) let reveal_is_permutation #a (s0 s1:seq a) (f:index_fun s0) = reveal_opaque (`%is_permutation) (is_permutation s0 s1 f) let reveal_is_permutation_nopats (#a:Type) (s0 s1:seq a) (f:index_fun s0) : Lemma (is_permutation s0 s1 f <==> S.length s0 == S.length s1 /\ (forall x y. x <> y ==> f x <> f y) /\ (forall (i:nat{i < S.length s0}). S.index s0 i == S.index s1 (f i))) = reveal_is_permutation s0 s1 f let split3_index (#a:eqtype) (s0:seq a) (x:a) (s1:seq a) (j:nat) : Lemma (requires j < S.length (S.append s0 s1)) (ensures ( let s = S.append s0 (cons x s1) in let s' = S.append s0 s1 in let n = S.length s0 in if j < n then S.index s' j == S.index s j else S.index s' j == S.index s (j + 1) )) = let n = S.length (S.append s0 s1) in if j < n then () else () let rec find (#a:eqtype) (x:a) (s:seq a{ count x s > 0 }) : Tot (frags:(seq a & seq a) { let s' = S.append (fst frags) (snd frags) in let n = S.length (fst frags) in s `S.equal` S.append (fst frags) (cons x (snd frags)) }) (decreases (S.length s)) = reveal_opaque (`%count) (count #a); if head s = x then S.empty, tail s else ( let pfx, sfx = find x (tail s) in assert (S.equal (tail s) (S.append pfx (cons x sfx))); assert (S.equal s (cons (head s) (tail s))); cons (head s) pfx, sfx ) let count_singleton_one (#a:eqtype) (x:a) : Lemma (count x (singleton x) == 1) = reveal_opaque (`%count) (count #a) let count_singleton_zero (#a:eqtype) (x y:a) : Lemma (x =!= y ==> count x (singleton y) == 0) = reveal_opaque (`%count) (count #a) let equal_counts_empty (#a:eqtype) (s0 s1:seq a) : Lemma (requires S.length s0 == 0 /\ (forall x. count x s0 == count x s1)) (ensures S.length s1 == 0) = reveal_opaque (`%count) (count #a); if S.length s1 > 0 then assert (count (head s1) s1 > 0) let count_head (#a:eqtype) (x:seq a{ S.length x > 0 }) : Lemma (count (head x) x > 0) = reveal_opaque (`%count) (count #a) #push-options "--fuel 0 --ifuel 0 --z3rlimit_factor 2" let rec permutation_from_equal_counts (#a:eqtype) (s0:seq a) (s1:seq a{(forall x. count x s0 == count x s1)}) : Tot (seqperm s0 s1)
false
false
FStar.Sequence.Permutation.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 2, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val permutation_from_equal_counts (#a:eqtype) (s0:seq a) (s1:seq a{(forall x. count x s0 == count x s1)}) : Tot (seqperm s0 s1)
[ "recursion" ]
FStar.Sequence.Permutation.permutation_from_equal_counts
{ "file_name": "ulib/experimental/FStar.Sequence.Permutation.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s0: FStar.Sequence.Base.seq a -> s1: FStar.Sequence.Base.seq a {forall (x: a). FStar.Sequence.Util.count x s0 == FStar.Sequence.Util.count x s1} -> Prims.Tot (FStar.Sequence.Permutation.seqperm s0 s1)
{ "end_col": 46, "end_line": 199, "start_col": 4, "start_line": 103 }
Prims.Tot
val pow_mod: #m:pos{1 < m} -> a:nat_mod m -> b:nat -> nat_mod m
[ { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.Math.Fermat", "short_module": "Fermat" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pow_mod #m a b = pow_mod_ #m a b
val pow_mod: #m:pos{1 < m} -> a:nat_mod m -> b:nat -> nat_mod m let pow_mod #m a b =
false
null
false
pow_mod_ #m a b
{ "checked_file": "Lib.NatMod.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.NatMod.fst" }
[ "total" ]
[ "Prims.pos", "Prims.b2t", "Prims.op_LessThan", "Lib.NatMod.nat_mod", "Prims.nat", "Lib.NatMod.pow_mod_" ]
[]
module Lib.NatMod module LE = Lib.Exponentiation.Definition #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" #push-options "--fuel 2" let lemma_pow0 a = () let lemma_pow1 a = () let lemma_pow_unfold a b = () #pop-options let rec lemma_pow_gt_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_gt_zero a (b - 1) end let rec lemma_pow_ge_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_ge_zero a (b - 1) end let rec lemma_pow_nat_is_pow a b = let k = mk_nat_comm_monoid in if b = 0 then begin lemma_pow0 a; LE.lemma_pow0 k a end else begin lemma_pow_unfold a b; lemma_pow_nat_is_pow a (b - 1); LE.lemma_pow_unfold k a b; () end let lemma_pow_zero b = lemma_pow_unfold 0 b let lemma_pow_one b = let k = mk_nat_comm_monoid in LE.lemma_pow_one k b; lemma_pow_nat_is_pow 1 b let lemma_pow_add x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_add k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow x m; lemma_pow_nat_is_pow x (n + m) let lemma_pow_mul x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_mul k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow (pow x n) m; lemma_pow_nat_is_pow x (n * m) let lemma_pow_double a b = let k = mk_nat_comm_monoid in LE.lemma_pow_double k a b; lemma_pow_nat_is_pow (a * a) b; lemma_pow_nat_is_pow a (b + b) let lemma_pow_mul_base a b n = let k = mk_nat_comm_monoid in LE.lemma_pow_mul_base k a b n; lemma_pow_nat_is_pow a n; lemma_pow_nat_is_pow b n; lemma_pow_nat_is_pow (a * b) n let rec lemma_pow_mod_base a b n = if b = 0 then begin lemma_pow0 a; lemma_pow0 (a % n) end else begin calc (==) { pow a b % n; (==) { lemma_pow_unfold a b } a * pow a (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n } a * (pow a (b - 1) % n) % n; (==) { lemma_pow_mod_base a (b - 1) n } a * (pow (a % n) (b - 1) % n) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow (a % n) (b - 1)) n } a * pow (a % n) (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l a (pow (a % n) (b - 1)) n } a % n * pow (a % n) (b - 1) % n; (==) { lemma_pow_unfold (a % n) b } pow (a % n) b % n; }; assert (pow a b % n == pow (a % n) b % n) end let lemma_mul_mod_one #m a = () let lemma_mul_mod_assoc #m a b c = calc (==) { (a * b % m) * c % m; (==) { Math.Lemmas.lemma_mod_mul_distr_l (a * b) c m } (a * b) * c % m; (==) { Math.Lemmas.paren_mul_right a b c } a * (b * c) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b * c) m } a * (b * c % m) % m; } let lemma_mul_mod_comm #m a b = ()
false
false
Lib.NatMod.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pow_mod: #m:pos{1 < m} -> a:nat_mod m -> b:nat -> nat_mod m
[]
Lib.NatMod.pow_mod
{ "file_name": "lib/Lib.NatMod.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.NatMod.nat_mod m -> b: Prims.nat -> Lib.NatMod.nat_mod m
{ "end_col": 36, "end_line": 122, "start_col": 21, "start_line": 122 }
FStar.Pervasives.Lemma
val lemma_pow_double: a:int -> b:nat -> Lemma (pow (a * a) b == pow a (b + b))
[ { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.Math.Fermat", "short_module": "Fermat" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_pow_double a b = let k = mk_nat_comm_monoid in LE.lemma_pow_double k a b; lemma_pow_nat_is_pow (a * a) b; lemma_pow_nat_is_pow a (b + b)
val lemma_pow_double: a:int -> b:nat -> Lemma (pow (a * a) b == pow a (b + b)) let lemma_pow_double a b =
false
null
true
let k = mk_nat_comm_monoid in LE.lemma_pow_double k a b; lemma_pow_nat_is_pow (a * a) b; lemma_pow_nat_is_pow a (b + b)
{ "checked_file": "Lib.NatMod.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.NatMod.fst" }
[ "lemma" ]
[ "Prims.int", "Prims.nat", "Lib.NatMod.lemma_pow_nat_is_pow", "Prims.op_Addition", "Prims.unit", "FStar.Mul.op_Star", "Lib.Exponentiation.Definition.lemma_pow_double", "Lib.Exponentiation.Definition.comm_monoid", "Lib.NatMod.mk_nat_comm_monoid" ]
[]
module Lib.NatMod module LE = Lib.Exponentiation.Definition #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" #push-options "--fuel 2" let lemma_pow0 a = () let lemma_pow1 a = () let lemma_pow_unfold a b = () #pop-options let rec lemma_pow_gt_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_gt_zero a (b - 1) end let rec lemma_pow_ge_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_ge_zero a (b - 1) end let rec lemma_pow_nat_is_pow a b = let k = mk_nat_comm_monoid in if b = 0 then begin lemma_pow0 a; LE.lemma_pow0 k a end else begin lemma_pow_unfold a b; lemma_pow_nat_is_pow a (b - 1); LE.lemma_pow_unfold k a b; () end let lemma_pow_zero b = lemma_pow_unfold 0 b let lemma_pow_one b = let k = mk_nat_comm_monoid in LE.lemma_pow_one k b; lemma_pow_nat_is_pow 1 b let lemma_pow_add x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_add k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow x m; lemma_pow_nat_is_pow x (n + m) let lemma_pow_mul x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_mul k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow (pow x n) m; lemma_pow_nat_is_pow x (n * m)
false
false
Lib.NatMod.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_pow_double: a:int -> b:nat -> Lemma (pow (a * a) b == pow a (b + b))
[]
Lib.NatMod.lemma_pow_double
{ "file_name": "lib/Lib.NatMod.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Prims.int -> b: Prims.nat -> FStar.Pervasives.Lemma (ensures Lib.NatMod.pow (a * a) b == Lib.NatMod.pow a (b + b))
{ "end_col": 32, "end_line": 71, "start_col": 26, "start_line": 67 }
FStar.Pervasives.Lemma
val lemma_mod_distributivity_add_left: #m:pos -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m -> Lemma (mul_mod (add_mod a b) c == add_mod (mul_mod a c) (mul_mod b c))
[ { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.Math.Fermat", "short_module": "Fermat" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_mod_distributivity_add_left #m a b c = lemma_mod_distributivity_add_right c a b
val lemma_mod_distributivity_add_left: #m:pos -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m -> Lemma (mul_mod (add_mod a b) c == add_mod (mul_mod a c) (mul_mod b c)) let lemma_mod_distributivity_add_left #m a b c =
false
null
true
lemma_mod_distributivity_add_right c a b
{ "checked_file": "Lib.NatMod.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.NatMod.fst" }
[ "lemma" ]
[ "Prims.pos", "Lib.NatMod.nat_mod", "Lib.NatMod.lemma_mod_distributivity_add_right", "Prims.unit" ]
[]
module Lib.NatMod module LE = Lib.Exponentiation.Definition #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" #push-options "--fuel 2" let lemma_pow0 a = () let lemma_pow1 a = () let lemma_pow_unfold a b = () #pop-options let rec lemma_pow_gt_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_gt_zero a (b - 1) end let rec lemma_pow_ge_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_ge_zero a (b - 1) end let rec lemma_pow_nat_is_pow a b = let k = mk_nat_comm_monoid in if b = 0 then begin lemma_pow0 a; LE.lemma_pow0 k a end else begin lemma_pow_unfold a b; lemma_pow_nat_is_pow a (b - 1); LE.lemma_pow_unfold k a b; () end let lemma_pow_zero b = lemma_pow_unfold 0 b let lemma_pow_one b = let k = mk_nat_comm_monoid in LE.lemma_pow_one k b; lemma_pow_nat_is_pow 1 b let lemma_pow_add x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_add k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow x m; lemma_pow_nat_is_pow x (n + m) let lemma_pow_mul x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_mul k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow (pow x n) m; lemma_pow_nat_is_pow x (n * m) let lemma_pow_double a b = let k = mk_nat_comm_monoid in LE.lemma_pow_double k a b; lemma_pow_nat_is_pow (a * a) b; lemma_pow_nat_is_pow a (b + b) let lemma_pow_mul_base a b n = let k = mk_nat_comm_monoid in LE.lemma_pow_mul_base k a b n; lemma_pow_nat_is_pow a n; lemma_pow_nat_is_pow b n; lemma_pow_nat_is_pow (a * b) n let rec lemma_pow_mod_base a b n = if b = 0 then begin lemma_pow0 a; lemma_pow0 (a % n) end else begin calc (==) { pow a b % n; (==) { lemma_pow_unfold a b } a * pow a (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n } a * (pow a (b - 1) % n) % n; (==) { lemma_pow_mod_base a (b - 1) n } a * (pow (a % n) (b - 1) % n) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow (a % n) (b - 1)) n } a * pow (a % n) (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l a (pow (a % n) (b - 1)) n } a % n * pow (a % n) (b - 1) % n; (==) { lemma_pow_unfold (a % n) b } pow (a % n) b % n; }; assert (pow a b % n == pow (a % n) b % n) end let lemma_mul_mod_one #m a = () let lemma_mul_mod_assoc #m a b c = calc (==) { (a * b % m) * c % m; (==) { Math.Lemmas.lemma_mod_mul_distr_l (a * b) c m } (a * b) * c % m; (==) { Math.Lemmas.paren_mul_right a b c } a * (b * c) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b * c) m } a * (b * c % m) % m; } let lemma_mul_mod_comm #m a b = () let pow_mod #m a b = pow_mod_ #m a b let pow_mod_def #m a b = () #push-options "--fuel 2" val lemma_pow_mod0: #n:pos{1 < n} -> a:nat_mod n -> Lemma (pow_mod #n a 0 == 1) let lemma_pow_mod0 #n a = () val lemma_pow_mod_unfold0: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 0} -> Lemma (pow_mod #n a b == pow_mod (mul_mod a a) (b / 2)) let lemma_pow_mod_unfold0 n a b = () val lemma_pow_mod_unfold1: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 1} -> Lemma (pow_mod #n a b == mul_mod a (pow_mod (mul_mod a a) (b / 2))) let lemma_pow_mod_unfold1 n a b = () #pop-options val lemma_pow_mod_: n:pos{1 < n} -> a:nat_mod n -> b:nat -> Lemma (ensures (pow_mod #n a b == pow a b % n)) (decreases b) let rec lemma_pow_mod_ n a b = if b = 0 then begin lemma_pow0 a; lemma_pow_mod0 a end else begin if b % 2 = 0 then begin calc (==) { pow_mod #n a b; (==) { lemma_pow_mod_unfold0 n a b } pow_mod #n (mul_mod #n a a) (b / 2); (==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) } pow (mul_mod #n a a) (b / 2) % n; (==) { lemma_pow_mod_base (a * a) (b / 2) n } pow (a * a) (b / 2) % n; (==) { lemma_pow_double a (b / 2) } pow a b % n; }; assert (pow_mod #n a b == pow a b % n) end else begin calc (==) { pow_mod #n a b; (==) { lemma_pow_mod_unfold1 n a b } mul_mod a (pow_mod (mul_mod #n a a) (b / 2)); (==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) } mul_mod a (pow (mul_mod #n a a) (b / 2) % n); (==) { lemma_pow_mod_base (a * a) (b / 2) n } mul_mod a (pow (a * a) (b / 2) % n); (==) { lemma_pow_double a (b / 2) } mul_mod a (pow a (b / 2 * 2) % n); (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b / 2 * 2)) n } a * pow a (b / 2 * 2) % n; (==) { lemma_pow1 a } pow a 1 * pow a (b / 2 * 2) % n; (==) { lemma_pow_add a 1 (b / 2 * 2) } pow a (b / 2 * 2 + 1) % n; (==) { Math.Lemmas.euclidean_division_definition b 2 } pow a b % n; }; assert (pow_mod #n a b == pow a b % n) end end let lemma_pow_mod #n a b = lemma_pow_mod_ n a b let rec lemma_pow_nat_mod_is_pow #n a b = let k = mk_nat_mod_comm_monoid n in if b = 0 then begin lemma_pow0 a; LE.lemma_pow0 k a end else begin calc (==) { pow a b % n; (==) { lemma_pow_unfold a b } a * pow a (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n } a * (pow a (b - 1) % n) % n; (==) { lemma_pow_nat_mod_is_pow #n a (b - 1) } a * LE.pow k a (b - 1) % n; (==) { } k.LE.mul a (LE.pow k a (b - 1)); (==) { LE.lemma_pow_unfold k a b } LE.pow k a b; }; () end let lemma_add_mod_one #m a = Math.Lemmas.small_mod a m let lemma_add_mod_assoc #m a b c = calc (==) { add_mod (add_mod a b) c; (==) { Math.Lemmas.lemma_mod_plus_distr_l (a + b) c m } ((a + b) + c) % m; (==) { } (a + (b + c)) % m; (==) { Math.Lemmas.lemma_mod_plus_distr_r a (b + c) m } add_mod a (add_mod b c); } let lemma_add_mod_comm #m a b = () let lemma_mod_distributivity_add_right #m a b c = calc (==) { mul_mod a (add_mod b c); (==) { } a * ((b + c) % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b + c) m } a * (b + c) % m; (==) { Math.Lemmas.distributivity_add_right a b c } (a * b + a * c) % m; (==) { Math.Lemmas.modulo_distributivity (a * b) (a * c) m } add_mod (mul_mod a b) (mul_mod a c); }
false
false
Lib.NatMod.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_mod_distributivity_add_left: #m:pos -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m -> Lemma (mul_mod (add_mod a b) c == add_mod (mul_mod a c) (mul_mod b c))
[]
Lib.NatMod.lemma_mod_distributivity_add_left
{ "file_name": "lib/Lib.NatMod.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.NatMod.nat_mod m -> b: Lib.NatMod.nat_mod m -> c: Lib.NatMod.nat_mod m -> FStar.Pervasives.Lemma (ensures Lib.NatMod.mul_mod (Lib.NatMod.add_mod a b) c == Lib.NatMod.add_mod (Lib.NatMod.mul_mod a c) (Lib.NatMod.mul_mod b c))
{ "end_col": 42, "end_line": 244, "start_col": 2, "start_line": 244 }
FStar.Pervasives.Lemma
val lemma_pow_mul_base: a:int -> b:int -> n:nat -> Lemma (pow a n * pow b n == pow (a * b) n)
[ { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.Math.Fermat", "short_module": "Fermat" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_pow_mul_base a b n = let k = mk_nat_comm_monoid in LE.lemma_pow_mul_base k a b n; lemma_pow_nat_is_pow a n; lemma_pow_nat_is_pow b n; lemma_pow_nat_is_pow (a * b) n
val lemma_pow_mul_base: a:int -> b:int -> n:nat -> Lemma (pow a n * pow b n == pow (a * b) n) let lemma_pow_mul_base a b n =
false
null
true
let k = mk_nat_comm_monoid in LE.lemma_pow_mul_base k a b n; lemma_pow_nat_is_pow a n; lemma_pow_nat_is_pow b n; lemma_pow_nat_is_pow (a * b) n
{ "checked_file": "Lib.NatMod.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.NatMod.fst" }
[ "lemma" ]
[ "Prims.int", "Prims.nat", "Lib.NatMod.lemma_pow_nat_is_pow", "FStar.Mul.op_Star", "Prims.unit", "Lib.Exponentiation.Definition.lemma_pow_mul_base", "Lib.Exponentiation.Definition.comm_monoid", "Lib.NatMod.mk_nat_comm_monoid" ]
[]
module Lib.NatMod module LE = Lib.Exponentiation.Definition #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" #push-options "--fuel 2" let lemma_pow0 a = () let lemma_pow1 a = () let lemma_pow_unfold a b = () #pop-options let rec lemma_pow_gt_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_gt_zero a (b - 1) end let rec lemma_pow_ge_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_ge_zero a (b - 1) end let rec lemma_pow_nat_is_pow a b = let k = mk_nat_comm_monoid in if b = 0 then begin lemma_pow0 a; LE.lemma_pow0 k a end else begin lemma_pow_unfold a b; lemma_pow_nat_is_pow a (b - 1); LE.lemma_pow_unfold k a b; () end let lemma_pow_zero b = lemma_pow_unfold 0 b let lemma_pow_one b = let k = mk_nat_comm_monoid in LE.lemma_pow_one k b; lemma_pow_nat_is_pow 1 b let lemma_pow_add x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_add k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow x m; lemma_pow_nat_is_pow x (n + m) let lemma_pow_mul x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_mul k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow (pow x n) m; lemma_pow_nat_is_pow x (n * m) let lemma_pow_double a b = let k = mk_nat_comm_monoid in LE.lemma_pow_double k a b; lemma_pow_nat_is_pow (a * a) b; lemma_pow_nat_is_pow a (b + b)
false
false
Lib.NatMod.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_pow_mul_base: a:int -> b:int -> n:nat -> Lemma (pow a n * pow b n == pow (a * b) n)
[]
Lib.NatMod.lemma_pow_mul_base
{ "file_name": "lib/Lib.NatMod.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Prims.int -> b: Prims.int -> n: Prims.nat -> FStar.Pervasives.Lemma (ensures Lib.NatMod.pow a n * Lib.NatMod.pow b n == Lib.NatMod.pow (a * b) n)
{ "end_col": 32, "end_line": 79, "start_col": 30, "start_line": 74 }
FStar.Pervasives.Lemma
val lemma_pow_mod_prime_zero: #m:prime -> a:nat_mod m -> b:pos -> Lemma (pow_mod #m a b = 0 <==> a = 0)
[ { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.Math.Fermat", "short_module": "Fermat" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_pow_mod_prime_zero #m a b = lemma_pow_mod #m a b; Classical.move_requires_2 lemma_pow_mod_prime_zero_ a b; Classical.move_requires lemma_pow_zero b
val lemma_pow_mod_prime_zero: #m:prime -> a:nat_mod m -> b:pos -> Lemma (pow_mod #m a b = 0 <==> a = 0) let lemma_pow_mod_prime_zero #m a b =
false
null
true
lemma_pow_mod #m a b; Classical.move_requires_2 lemma_pow_mod_prime_zero_ a b; Classical.move_requires lemma_pow_zero b
{ "checked_file": "Lib.NatMod.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.NatMod.fst" }
[ "lemma" ]
[ "Lib.NatMod.prime", "Lib.NatMod.nat_mod", "Prims.pos", "FStar.Classical.move_requires", "Prims.l_True", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Lib.NatMod.pow", "Lib.NatMod.lemma_pow_zero", "Prims.unit", "FStar.Classical.move_requires_2", "Prims.op_Modulus", "Lib.NatMod.lemma_pow_mod_prime_zero_", "Lib.NatMod.lemma_pow_mod" ]
[]
module Lib.NatMod module LE = Lib.Exponentiation.Definition #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" #push-options "--fuel 2" let lemma_pow0 a = () let lemma_pow1 a = () let lemma_pow_unfold a b = () #pop-options let rec lemma_pow_gt_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_gt_zero a (b - 1) end let rec lemma_pow_ge_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_ge_zero a (b - 1) end let rec lemma_pow_nat_is_pow a b = let k = mk_nat_comm_monoid in if b = 0 then begin lemma_pow0 a; LE.lemma_pow0 k a end else begin lemma_pow_unfold a b; lemma_pow_nat_is_pow a (b - 1); LE.lemma_pow_unfold k a b; () end let lemma_pow_zero b = lemma_pow_unfold 0 b let lemma_pow_one b = let k = mk_nat_comm_monoid in LE.lemma_pow_one k b; lemma_pow_nat_is_pow 1 b let lemma_pow_add x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_add k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow x m; lemma_pow_nat_is_pow x (n + m) let lemma_pow_mul x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_mul k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow (pow x n) m; lemma_pow_nat_is_pow x (n * m) let lemma_pow_double a b = let k = mk_nat_comm_monoid in LE.lemma_pow_double k a b; lemma_pow_nat_is_pow (a * a) b; lemma_pow_nat_is_pow a (b + b) let lemma_pow_mul_base a b n = let k = mk_nat_comm_monoid in LE.lemma_pow_mul_base k a b n; lemma_pow_nat_is_pow a n; lemma_pow_nat_is_pow b n; lemma_pow_nat_is_pow (a * b) n let rec lemma_pow_mod_base a b n = if b = 0 then begin lemma_pow0 a; lemma_pow0 (a % n) end else begin calc (==) { pow a b % n; (==) { lemma_pow_unfold a b } a * pow a (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n } a * (pow a (b - 1) % n) % n; (==) { lemma_pow_mod_base a (b - 1) n } a * (pow (a % n) (b - 1) % n) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow (a % n) (b - 1)) n } a * pow (a % n) (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l a (pow (a % n) (b - 1)) n } a % n * pow (a % n) (b - 1) % n; (==) { lemma_pow_unfold (a % n) b } pow (a % n) b % n; }; assert (pow a b % n == pow (a % n) b % n) end let lemma_mul_mod_one #m a = () let lemma_mul_mod_assoc #m a b c = calc (==) { (a * b % m) * c % m; (==) { Math.Lemmas.lemma_mod_mul_distr_l (a * b) c m } (a * b) * c % m; (==) { Math.Lemmas.paren_mul_right a b c } a * (b * c) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b * c) m } a * (b * c % m) % m; } let lemma_mul_mod_comm #m a b = () let pow_mod #m a b = pow_mod_ #m a b let pow_mod_def #m a b = () #push-options "--fuel 2" val lemma_pow_mod0: #n:pos{1 < n} -> a:nat_mod n -> Lemma (pow_mod #n a 0 == 1) let lemma_pow_mod0 #n a = () val lemma_pow_mod_unfold0: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 0} -> Lemma (pow_mod #n a b == pow_mod (mul_mod a a) (b / 2)) let lemma_pow_mod_unfold0 n a b = () val lemma_pow_mod_unfold1: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 1} -> Lemma (pow_mod #n a b == mul_mod a (pow_mod (mul_mod a a) (b / 2))) let lemma_pow_mod_unfold1 n a b = () #pop-options val lemma_pow_mod_: n:pos{1 < n} -> a:nat_mod n -> b:nat -> Lemma (ensures (pow_mod #n a b == pow a b % n)) (decreases b) let rec lemma_pow_mod_ n a b = if b = 0 then begin lemma_pow0 a; lemma_pow_mod0 a end else begin if b % 2 = 0 then begin calc (==) { pow_mod #n a b; (==) { lemma_pow_mod_unfold0 n a b } pow_mod #n (mul_mod #n a a) (b / 2); (==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) } pow (mul_mod #n a a) (b / 2) % n; (==) { lemma_pow_mod_base (a * a) (b / 2) n } pow (a * a) (b / 2) % n; (==) { lemma_pow_double a (b / 2) } pow a b % n; }; assert (pow_mod #n a b == pow a b % n) end else begin calc (==) { pow_mod #n a b; (==) { lemma_pow_mod_unfold1 n a b } mul_mod a (pow_mod (mul_mod #n a a) (b / 2)); (==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) } mul_mod a (pow (mul_mod #n a a) (b / 2) % n); (==) { lemma_pow_mod_base (a * a) (b / 2) n } mul_mod a (pow (a * a) (b / 2) % n); (==) { lemma_pow_double a (b / 2) } mul_mod a (pow a (b / 2 * 2) % n); (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b / 2 * 2)) n } a * pow a (b / 2 * 2) % n; (==) { lemma_pow1 a } pow a 1 * pow a (b / 2 * 2) % n; (==) { lemma_pow_add a 1 (b / 2 * 2) } pow a (b / 2 * 2 + 1) % n; (==) { Math.Lemmas.euclidean_division_definition b 2 } pow a b % n; }; assert (pow_mod #n a b == pow a b % n) end end let lemma_pow_mod #n a b = lemma_pow_mod_ n a b let rec lemma_pow_nat_mod_is_pow #n a b = let k = mk_nat_mod_comm_monoid n in if b = 0 then begin lemma_pow0 a; LE.lemma_pow0 k a end else begin calc (==) { pow a b % n; (==) { lemma_pow_unfold a b } a * pow a (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n } a * (pow a (b - 1) % n) % n; (==) { lemma_pow_nat_mod_is_pow #n a (b - 1) } a * LE.pow k a (b - 1) % n; (==) { } k.LE.mul a (LE.pow k a (b - 1)); (==) { LE.lemma_pow_unfold k a b } LE.pow k a b; }; () end let lemma_add_mod_one #m a = Math.Lemmas.small_mod a m let lemma_add_mod_assoc #m a b c = calc (==) { add_mod (add_mod a b) c; (==) { Math.Lemmas.lemma_mod_plus_distr_l (a + b) c m } ((a + b) + c) % m; (==) { } (a + (b + c)) % m; (==) { Math.Lemmas.lemma_mod_plus_distr_r a (b + c) m } add_mod a (add_mod b c); } let lemma_add_mod_comm #m a b = () let lemma_mod_distributivity_add_right #m a b c = calc (==) { mul_mod a (add_mod b c); (==) { } a * ((b + c) % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b + c) m } a * (b + c) % m; (==) { Math.Lemmas.distributivity_add_right a b c } (a * b + a * c) % m; (==) { Math.Lemmas.modulo_distributivity (a * b) (a * c) m } add_mod (mul_mod a b) (mul_mod a c); } let lemma_mod_distributivity_add_left #m a b c = lemma_mod_distributivity_add_right c a b let lemma_mod_distributivity_sub_right #m a b c = calc (==) { mul_mod a (sub_mod b c); (==) { } a * ((b - c) % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b - c) m } a * (b - c) % m; (==) { Math.Lemmas.distributivity_sub_right a b c } (a * b - a * c) % m; (==) { Math.Lemmas.lemma_mod_plus_distr_l (a * b) (- a * c) m } (mul_mod a b - a * c) % m; (==) { Math.Lemmas.lemma_mod_sub_distr (mul_mod a b) (a * c) m } sub_mod (mul_mod a b) (mul_mod a c); } let lemma_mod_distributivity_sub_left #m a b c = lemma_mod_distributivity_sub_right c a b let lemma_inv_mod_both #m a b = let p1 = pow a (m - 2) in let p2 = pow b (m - 2) in calc (==) { mul_mod (inv_mod a) (inv_mod b); (==) { lemma_pow_mod #m a (m - 2); lemma_pow_mod #m b (m - 2) } p1 % m * (p2 % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_l p1 (p2 % m) m } p1 * (p2 % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r p1 p2 m } p1 * p2 % m; (==) { lemma_pow_mul_base a b (m - 2) } pow (a * b) (m - 2) % m; (==) { lemma_pow_mod_base (a * b) (m - 2) m } pow (mul_mod a b) (m - 2) % m; (==) { lemma_pow_mod #m (mul_mod a b) (m - 2) } inv_mod (mul_mod a b); } #push-options "--fuel 1" val pow_eq: a:nat -> n:nat -> Lemma (Fermat.pow a n == pow a n) let rec pow_eq a n = if n = 0 then () else pow_eq a (n - 1) #pop-options let lemma_div_mod_prime #m a = Math.Lemmas.small_mod a m; assert (a == a % m); assert (a <> 0 /\ a % m <> 0); calc (==) { pow_mod #m a (m - 2) * a % m; (==) { lemma_pow_mod #m a (m - 2) } pow a (m - 2) % m * a % m; (==) { Math.Lemmas.lemma_mod_mul_distr_l (pow a (m - 2)) a m } pow a (m - 2) * a % m; (==) { lemma_pow1 a; lemma_pow_add a (m - 2) 1 } pow a (m - 1) % m; (==) { pow_eq a (m - 1) } Fermat.pow a (m - 1) % m; (==) { Fermat.fermat_alt m a } 1; } let lemma_div_mod_prime_one #m a = lemma_pow_mod #m 1 (m - 2); lemma_pow_one (m - 2); Math.Lemmas.small_mod 1 m let lemma_div_mod_prime_cancel #m a b c = calc (==) { mul_mod (mul_mod a c) (inv_mod (mul_mod c b)); (==) { lemma_inv_mod_both c b } mul_mod (mul_mod a c) (mul_mod (inv_mod c) (inv_mod b)); (==) { lemma_mul_mod_assoc (mul_mod a c) (inv_mod c) (inv_mod b) } mul_mod (mul_mod (mul_mod a c) (inv_mod c)) (inv_mod b); (==) { lemma_mul_mod_assoc a c (inv_mod c) } mul_mod (mul_mod a (mul_mod c (inv_mod c))) (inv_mod b); (==) { lemma_div_mod_prime c } mul_mod (mul_mod a 1) (inv_mod b); (==) { Math.Lemmas.small_mod a m } mul_mod a (inv_mod b); } let lemma_div_mod_prime_to_one_denominator #m a b c d = calc (==) { mul_mod (div_mod a c) (div_mod b d); (==) { } mul_mod (mul_mod a (inv_mod c)) (mul_mod b (inv_mod d)); (==) { lemma_mul_mod_comm #m b (inv_mod d); lemma_mul_mod_assoc #m (mul_mod a (inv_mod c)) (inv_mod d) b } mul_mod (mul_mod (mul_mod a (inv_mod c)) (inv_mod d)) b; (==) { lemma_mul_mod_assoc #m a (inv_mod c) (inv_mod d) } mul_mod (mul_mod a (mul_mod (inv_mod c) (inv_mod d))) b; (==) { lemma_inv_mod_both c d } mul_mod (mul_mod a (inv_mod (mul_mod c d))) b; (==) { lemma_mul_mod_assoc #m a (inv_mod (mul_mod c d)) b; lemma_mul_mod_comm #m (inv_mod (mul_mod c d)) b; lemma_mul_mod_assoc #m a b (inv_mod (mul_mod c d)) } mul_mod (mul_mod a b) (inv_mod (mul_mod c d)); } val lemma_div_mod_eq_mul_mod1: #m:prime -> a:nat_mod m -> b:nat_mod m{b <> 0} -> c:nat_mod m -> Lemma (div_mod a b = c ==> a = mul_mod c b) let lemma_div_mod_eq_mul_mod1 #m a b c = if div_mod a b = c then begin assert (mul_mod (div_mod a b) b = mul_mod c b); calc (==) { mul_mod (div_mod a b) b; (==) { lemma_div_mod_prime_one b } mul_mod (div_mod a b) (div_mod b 1); (==) { lemma_div_mod_prime_to_one_denominator a b b 1 } div_mod (mul_mod a b) (mul_mod b 1); (==) { lemma_div_mod_prime_cancel a 1 b } div_mod a 1; (==) { lemma_div_mod_prime_one a } a; } end else () val lemma_div_mod_eq_mul_mod2: #m:prime -> a:nat_mod m -> b:nat_mod m{b <> 0} -> c:nat_mod m -> Lemma (a = mul_mod c b ==> div_mod a b = c) let lemma_div_mod_eq_mul_mod2 #m a b c = if a = mul_mod c b then begin assert (div_mod a b == div_mod (mul_mod c b) b); calc (==) { div_mod (mul_mod c b) b; (==) { Math.Lemmas.small_mod b m } div_mod (mul_mod c b) (mul_mod b 1); (==) { lemma_div_mod_prime_cancel c 1 b } div_mod c 1; (==) { lemma_div_mod_prime_one c } c; } end else () let lemma_div_mod_eq_mul_mod #m a b c = lemma_div_mod_eq_mul_mod1 a b c; lemma_div_mod_eq_mul_mod2 a b c val lemma_mul_mod_zero2: n:pos -> x:int -> y:int -> Lemma (requires x % n == 0 \/ y % n == 0) (ensures x * y % n == 0) let lemma_mul_mod_zero2 n x y = if x % n = 0 then Math.Lemmas.lemma_mod_mul_distr_l x y n else Math.Lemmas.lemma_mod_mul_distr_r x y n let lemma_mul_mod_prime_zero #m a b = Classical.move_requires_3 Euclid.euclid_prime m a b; Classical.move_requires_3 lemma_mul_mod_zero2 m a b val lemma_pow_mod_prime_zero_: #m:prime -> a:nat_mod m -> b:pos -> Lemma (requires pow a b % m = 0) (ensures a = 0) let rec lemma_pow_mod_prime_zero_ #m a b = if b = 1 then lemma_pow1 a else begin let r1 = pow a (b - 1) % m in lemma_pow_unfold a b; assert (a * pow a (b - 1) % m = 0); Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) m; lemma_mul_mod_prime_zero #m a r1; //assert (a = 0 \/ r1 = 0); if a = 0 then () else lemma_pow_mod_prime_zero_ #m a (b - 1) end
false
false
Lib.NatMod.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_pow_mod_prime_zero: #m:prime -> a:nat_mod m -> b:pos -> Lemma (pow_mod #m a b = 0 <==> a = 0)
[]
Lib.NatMod.lemma_pow_mod_prime_zero
{ "file_name": "lib/Lib.NatMod.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.NatMod.nat_mod m -> b: Prims.pos -> FStar.Pervasives.Lemma (ensures Lib.NatMod.pow_mod a b = 0 <==> a = 0)
{ "end_col": 42, "end_line": 437, "start_col": 2, "start_line": 435 }
FStar.Pervasives.Lemma
val lemma_pow_mul: x:int -> n:nat -> m:nat -> Lemma (pow (pow x n) m = pow x (n * m))
[ { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.Math.Fermat", "short_module": "Fermat" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_pow_mul x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_mul k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow (pow x n) m; lemma_pow_nat_is_pow x (n * m)
val lemma_pow_mul: x:int -> n:nat -> m:nat -> Lemma (pow (pow x n) m = pow x (n * m)) let lemma_pow_mul x n m =
false
null
true
let k = mk_nat_comm_monoid in LE.lemma_pow_mul k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow (pow x n) m; lemma_pow_nat_is_pow x (n * m)
{ "checked_file": "Lib.NatMod.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.NatMod.fst" }
[ "lemma" ]
[ "Prims.int", "Prims.nat", "Lib.NatMod.lemma_pow_nat_is_pow", "FStar.Mul.op_Star", "Prims.unit", "Lib.NatMod.pow", "Lib.Exponentiation.Definition.lemma_pow_mul", "Lib.Exponentiation.Definition.comm_monoid", "Lib.NatMod.mk_nat_comm_monoid" ]
[]
module Lib.NatMod module LE = Lib.Exponentiation.Definition #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" #push-options "--fuel 2" let lemma_pow0 a = () let lemma_pow1 a = () let lemma_pow_unfold a b = () #pop-options let rec lemma_pow_gt_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_gt_zero a (b - 1) end let rec lemma_pow_ge_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_ge_zero a (b - 1) end let rec lemma_pow_nat_is_pow a b = let k = mk_nat_comm_monoid in if b = 0 then begin lemma_pow0 a; LE.lemma_pow0 k a end else begin lemma_pow_unfold a b; lemma_pow_nat_is_pow a (b - 1); LE.lemma_pow_unfold k a b; () end let lemma_pow_zero b = lemma_pow_unfold 0 b let lemma_pow_one b = let k = mk_nat_comm_monoid in LE.lemma_pow_one k b; lemma_pow_nat_is_pow 1 b let lemma_pow_add x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_add k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow x m; lemma_pow_nat_is_pow x (n + m)
false
false
Lib.NatMod.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_pow_mul: x:int -> n:nat -> m:nat -> Lemma (pow (pow x n) m = pow x (n * m))
[]
Lib.NatMod.lemma_pow_mul
{ "file_name": "lib/Lib.NatMod.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Prims.int -> n: Prims.nat -> m: Prims.nat -> FStar.Pervasives.Lemma (ensures Lib.NatMod.pow (Lib.NatMod.pow x n) m = Lib.NatMod.pow x (n * m))
{ "end_col": 32, "end_line": 64, "start_col": 25, "start_line": 59 }
FStar.Pervasives.Lemma
val lemma_mod_distributivity_sub_left: #m:pos -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m -> Lemma (mul_mod (sub_mod a b) c == sub_mod (mul_mod a c) (mul_mod b c))
[ { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.Math.Fermat", "short_module": "Fermat" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_mod_distributivity_sub_left #m a b c = lemma_mod_distributivity_sub_right c a b
val lemma_mod_distributivity_sub_left: #m:pos -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m -> Lemma (mul_mod (sub_mod a b) c == sub_mod (mul_mod a c) (mul_mod b c)) let lemma_mod_distributivity_sub_left #m a b c =
false
null
true
lemma_mod_distributivity_sub_right c a b
{ "checked_file": "Lib.NatMod.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.NatMod.fst" }
[ "lemma" ]
[ "Prims.pos", "Lib.NatMod.nat_mod", "Lib.NatMod.lemma_mod_distributivity_sub_right", "Prims.unit" ]
[]
module Lib.NatMod module LE = Lib.Exponentiation.Definition #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" #push-options "--fuel 2" let lemma_pow0 a = () let lemma_pow1 a = () let lemma_pow_unfold a b = () #pop-options let rec lemma_pow_gt_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_gt_zero a (b - 1) end let rec lemma_pow_ge_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_ge_zero a (b - 1) end let rec lemma_pow_nat_is_pow a b = let k = mk_nat_comm_monoid in if b = 0 then begin lemma_pow0 a; LE.lemma_pow0 k a end else begin lemma_pow_unfold a b; lemma_pow_nat_is_pow a (b - 1); LE.lemma_pow_unfold k a b; () end let lemma_pow_zero b = lemma_pow_unfold 0 b let lemma_pow_one b = let k = mk_nat_comm_monoid in LE.lemma_pow_one k b; lemma_pow_nat_is_pow 1 b let lemma_pow_add x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_add k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow x m; lemma_pow_nat_is_pow x (n + m) let lemma_pow_mul x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_mul k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow (pow x n) m; lemma_pow_nat_is_pow x (n * m) let lemma_pow_double a b = let k = mk_nat_comm_monoid in LE.lemma_pow_double k a b; lemma_pow_nat_is_pow (a * a) b; lemma_pow_nat_is_pow a (b + b) let lemma_pow_mul_base a b n = let k = mk_nat_comm_monoid in LE.lemma_pow_mul_base k a b n; lemma_pow_nat_is_pow a n; lemma_pow_nat_is_pow b n; lemma_pow_nat_is_pow (a * b) n let rec lemma_pow_mod_base a b n = if b = 0 then begin lemma_pow0 a; lemma_pow0 (a % n) end else begin calc (==) { pow a b % n; (==) { lemma_pow_unfold a b } a * pow a (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n } a * (pow a (b - 1) % n) % n; (==) { lemma_pow_mod_base a (b - 1) n } a * (pow (a % n) (b - 1) % n) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow (a % n) (b - 1)) n } a * pow (a % n) (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l a (pow (a % n) (b - 1)) n } a % n * pow (a % n) (b - 1) % n; (==) { lemma_pow_unfold (a % n) b } pow (a % n) b % n; }; assert (pow a b % n == pow (a % n) b % n) end let lemma_mul_mod_one #m a = () let lemma_mul_mod_assoc #m a b c = calc (==) { (a * b % m) * c % m; (==) { Math.Lemmas.lemma_mod_mul_distr_l (a * b) c m } (a * b) * c % m; (==) { Math.Lemmas.paren_mul_right a b c } a * (b * c) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b * c) m } a * (b * c % m) % m; } let lemma_mul_mod_comm #m a b = () let pow_mod #m a b = pow_mod_ #m a b let pow_mod_def #m a b = () #push-options "--fuel 2" val lemma_pow_mod0: #n:pos{1 < n} -> a:nat_mod n -> Lemma (pow_mod #n a 0 == 1) let lemma_pow_mod0 #n a = () val lemma_pow_mod_unfold0: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 0} -> Lemma (pow_mod #n a b == pow_mod (mul_mod a a) (b / 2)) let lemma_pow_mod_unfold0 n a b = () val lemma_pow_mod_unfold1: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 1} -> Lemma (pow_mod #n a b == mul_mod a (pow_mod (mul_mod a a) (b / 2))) let lemma_pow_mod_unfold1 n a b = () #pop-options val lemma_pow_mod_: n:pos{1 < n} -> a:nat_mod n -> b:nat -> Lemma (ensures (pow_mod #n a b == pow a b % n)) (decreases b) let rec lemma_pow_mod_ n a b = if b = 0 then begin lemma_pow0 a; lemma_pow_mod0 a end else begin if b % 2 = 0 then begin calc (==) { pow_mod #n a b; (==) { lemma_pow_mod_unfold0 n a b } pow_mod #n (mul_mod #n a a) (b / 2); (==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) } pow (mul_mod #n a a) (b / 2) % n; (==) { lemma_pow_mod_base (a * a) (b / 2) n } pow (a * a) (b / 2) % n; (==) { lemma_pow_double a (b / 2) } pow a b % n; }; assert (pow_mod #n a b == pow a b % n) end else begin calc (==) { pow_mod #n a b; (==) { lemma_pow_mod_unfold1 n a b } mul_mod a (pow_mod (mul_mod #n a a) (b / 2)); (==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) } mul_mod a (pow (mul_mod #n a a) (b / 2) % n); (==) { lemma_pow_mod_base (a * a) (b / 2) n } mul_mod a (pow (a * a) (b / 2) % n); (==) { lemma_pow_double a (b / 2) } mul_mod a (pow a (b / 2 * 2) % n); (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b / 2 * 2)) n } a * pow a (b / 2 * 2) % n; (==) { lemma_pow1 a } pow a 1 * pow a (b / 2 * 2) % n; (==) { lemma_pow_add a 1 (b / 2 * 2) } pow a (b / 2 * 2 + 1) % n; (==) { Math.Lemmas.euclidean_division_definition b 2 } pow a b % n; }; assert (pow_mod #n a b == pow a b % n) end end let lemma_pow_mod #n a b = lemma_pow_mod_ n a b let rec lemma_pow_nat_mod_is_pow #n a b = let k = mk_nat_mod_comm_monoid n in if b = 0 then begin lemma_pow0 a; LE.lemma_pow0 k a end else begin calc (==) { pow a b % n; (==) { lemma_pow_unfold a b } a * pow a (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n } a * (pow a (b - 1) % n) % n; (==) { lemma_pow_nat_mod_is_pow #n a (b - 1) } a * LE.pow k a (b - 1) % n; (==) { } k.LE.mul a (LE.pow k a (b - 1)); (==) { LE.lemma_pow_unfold k a b } LE.pow k a b; }; () end let lemma_add_mod_one #m a = Math.Lemmas.small_mod a m let lemma_add_mod_assoc #m a b c = calc (==) { add_mod (add_mod a b) c; (==) { Math.Lemmas.lemma_mod_plus_distr_l (a + b) c m } ((a + b) + c) % m; (==) { } (a + (b + c)) % m; (==) { Math.Lemmas.lemma_mod_plus_distr_r a (b + c) m } add_mod a (add_mod b c); } let lemma_add_mod_comm #m a b = () let lemma_mod_distributivity_add_right #m a b c = calc (==) { mul_mod a (add_mod b c); (==) { } a * ((b + c) % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b + c) m } a * (b + c) % m; (==) { Math.Lemmas.distributivity_add_right a b c } (a * b + a * c) % m; (==) { Math.Lemmas.modulo_distributivity (a * b) (a * c) m } add_mod (mul_mod a b) (mul_mod a c); } let lemma_mod_distributivity_add_left #m a b c = lemma_mod_distributivity_add_right c a b let lemma_mod_distributivity_sub_right #m a b c = calc (==) { mul_mod a (sub_mod b c); (==) { } a * ((b - c) % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b - c) m } a * (b - c) % m; (==) { Math.Lemmas.distributivity_sub_right a b c } (a * b - a * c) % m; (==) { Math.Lemmas.lemma_mod_plus_distr_l (a * b) (- a * c) m } (mul_mod a b - a * c) % m; (==) { Math.Lemmas.lemma_mod_sub_distr (mul_mod a b) (a * c) m } sub_mod (mul_mod a b) (mul_mod a c); }
false
false
Lib.NatMod.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_mod_distributivity_sub_left: #m:pos -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m -> Lemma (mul_mod (sub_mod a b) c == sub_mod (mul_mod a c) (mul_mod b c))
[]
Lib.NatMod.lemma_mod_distributivity_sub_left
{ "file_name": "lib/Lib.NatMod.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.NatMod.nat_mod m -> b: Lib.NatMod.nat_mod m -> c: Lib.NatMod.nat_mod m -> FStar.Pervasives.Lemma (ensures Lib.NatMod.mul_mod (Lib.NatMod.sub_mod a b) c == Lib.NatMod.sub_mod (Lib.NatMod.mul_mod a c) (Lib.NatMod.mul_mod b c))
{ "end_col": 42, "end_line": 264, "start_col": 2, "start_line": 264 }
FStar.Pervasives.Lemma
val lemma_pow_mod: #m:pos{1 < m} -> a:nat_mod m -> b:nat -> Lemma (pow a b % m == pow_mod #m a b)
[ { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.Math.Fermat", "short_module": "Fermat" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_pow_mod #n a b = lemma_pow_mod_ n a b
val lemma_pow_mod: #m:pos{1 < m} -> a:nat_mod m -> b:nat -> Lemma (pow a b % m == pow_mod #m a b) let lemma_pow_mod #n a b =
false
null
true
lemma_pow_mod_ n a b
{ "checked_file": "Lib.NatMod.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.NatMod.fst" }
[ "lemma" ]
[ "Prims.pos", "Prims.b2t", "Prims.op_LessThan", "Lib.NatMod.nat_mod", "Prims.nat", "Lib.NatMod.lemma_pow_mod_", "Prims.unit" ]
[]
module Lib.NatMod module LE = Lib.Exponentiation.Definition #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" #push-options "--fuel 2" let lemma_pow0 a = () let lemma_pow1 a = () let lemma_pow_unfold a b = () #pop-options let rec lemma_pow_gt_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_gt_zero a (b - 1) end let rec lemma_pow_ge_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_ge_zero a (b - 1) end let rec lemma_pow_nat_is_pow a b = let k = mk_nat_comm_monoid in if b = 0 then begin lemma_pow0 a; LE.lemma_pow0 k a end else begin lemma_pow_unfold a b; lemma_pow_nat_is_pow a (b - 1); LE.lemma_pow_unfold k a b; () end let lemma_pow_zero b = lemma_pow_unfold 0 b let lemma_pow_one b = let k = mk_nat_comm_monoid in LE.lemma_pow_one k b; lemma_pow_nat_is_pow 1 b let lemma_pow_add x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_add k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow x m; lemma_pow_nat_is_pow x (n + m) let lemma_pow_mul x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_mul k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow (pow x n) m; lemma_pow_nat_is_pow x (n * m) let lemma_pow_double a b = let k = mk_nat_comm_monoid in LE.lemma_pow_double k a b; lemma_pow_nat_is_pow (a * a) b; lemma_pow_nat_is_pow a (b + b) let lemma_pow_mul_base a b n = let k = mk_nat_comm_monoid in LE.lemma_pow_mul_base k a b n; lemma_pow_nat_is_pow a n; lemma_pow_nat_is_pow b n; lemma_pow_nat_is_pow (a * b) n let rec lemma_pow_mod_base a b n = if b = 0 then begin lemma_pow0 a; lemma_pow0 (a % n) end else begin calc (==) { pow a b % n; (==) { lemma_pow_unfold a b } a * pow a (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n } a * (pow a (b - 1) % n) % n; (==) { lemma_pow_mod_base a (b - 1) n } a * (pow (a % n) (b - 1) % n) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow (a % n) (b - 1)) n } a * pow (a % n) (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l a (pow (a % n) (b - 1)) n } a % n * pow (a % n) (b - 1) % n; (==) { lemma_pow_unfold (a % n) b } pow (a % n) b % n; }; assert (pow a b % n == pow (a % n) b % n) end let lemma_mul_mod_one #m a = () let lemma_mul_mod_assoc #m a b c = calc (==) { (a * b % m) * c % m; (==) { Math.Lemmas.lemma_mod_mul_distr_l (a * b) c m } (a * b) * c % m; (==) { Math.Lemmas.paren_mul_right a b c } a * (b * c) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b * c) m } a * (b * c % m) % m; } let lemma_mul_mod_comm #m a b = () let pow_mod #m a b = pow_mod_ #m a b let pow_mod_def #m a b = () #push-options "--fuel 2" val lemma_pow_mod0: #n:pos{1 < n} -> a:nat_mod n -> Lemma (pow_mod #n a 0 == 1) let lemma_pow_mod0 #n a = () val lemma_pow_mod_unfold0: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 0} -> Lemma (pow_mod #n a b == pow_mod (mul_mod a a) (b / 2)) let lemma_pow_mod_unfold0 n a b = () val lemma_pow_mod_unfold1: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 1} -> Lemma (pow_mod #n a b == mul_mod a (pow_mod (mul_mod a a) (b / 2))) let lemma_pow_mod_unfold1 n a b = () #pop-options val lemma_pow_mod_: n:pos{1 < n} -> a:nat_mod n -> b:nat -> Lemma (ensures (pow_mod #n a b == pow a b % n)) (decreases b) let rec lemma_pow_mod_ n a b = if b = 0 then begin lemma_pow0 a; lemma_pow_mod0 a end else begin if b % 2 = 0 then begin calc (==) { pow_mod #n a b; (==) { lemma_pow_mod_unfold0 n a b } pow_mod #n (mul_mod #n a a) (b / 2); (==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) } pow (mul_mod #n a a) (b / 2) % n; (==) { lemma_pow_mod_base (a * a) (b / 2) n } pow (a * a) (b / 2) % n; (==) { lemma_pow_double a (b / 2) } pow a b % n; }; assert (pow_mod #n a b == pow a b % n) end else begin calc (==) { pow_mod #n a b; (==) { lemma_pow_mod_unfold1 n a b } mul_mod a (pow_mod (mul_mod #n a a) (b / 2)); (==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) } mul_mod a (pow (mul_mod #n a a) (b / 2) % n); (==) { lemma_pow_mod_base (a * a) (b / 2) n } mul_mod a (pow (a * a) (b / 2) % n); (==) { lemma_pow_double a (b / 2) } mul_mod a (pow a (b / 2 * 2) % n); (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b / 2 * 2)) n } a * pow a (b / 2 * 2) % n; (==) { lemma_pow1 a } pow a 1 * pow a (b / 2 * 2) % n; (==) { lemma_pow_add a 1 (b / 2 * 2) } pow a (b / 2 * 2 + 1) % n; (==) { Math.Lemmas.euclidean_division_definition b 2 } pow a b % n; }; assert (pow_mod #n a b == pow a b % n) end end
false
false
Lib.NatMod.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_pow_mod: #m:pos{1 < m} -> a:nat_mod m -> b:nat -> Lemma (pow a b % m == pow_mod #m a b)
[]
Lib.NatMod.lemma_pow_mod
{ "file_name": "lib/Lib.NatMod.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.NatMod.nat_mod m -> b: Prims.nat -> FStar.Pervasives.Lemma (ensures Lib.NatMod.pow a b % m == Lib.NatMod.pow_mod a b)
{ "end_col": 47, "end_line": 186, "start_col": 27, "start_line": 186 }
FStar.Pervasives.Lemma
val pow_eq: a:nat -> n:nat -> Lemma (Fermat.pow a n == pow a n)
[ { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.Math.Fermat", "short_module": "Fermat" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec pow_eq a n = if n = 0 then () else pow_eq a (n - 1)
val pow_eq: a:nat -> n:nat -> Lemma (Fermat.pow a n == pow a n) let rec pow_eq a n =
false
null
true
if n = 0 then () else pow_eq a (n - 1)
{ "checked_file": "Lib.NatMod.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.NatMod.fst" }
[ "lemma" ]
[ "Prims.nat", "Prims.op_Equality", "Prims.int", "Prims.bool", "Lib.NatMod.pow_eq", "Prims.op_Subtraction", "Prims.unit" ]
[]
module Lib.NatMod module LE = Lib.Exponentiation.Definition #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" #push-options "--fuel 2" let lemma_pow0 a = () let lemma_pow1 a = () let lemma_pow_unfold a b = () #pop-options let rec lemma_pow_gt_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_gt_zero a (b - 1) end let rec lemma_pow_ge_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_ge_zero a (b - 1) end let rec lemma_pow_nat_is_pow a b = let k = mk_nat_comm_monoid in if b = 0 then begin lemma_pow0 a; LE.lemma_pow0 k a end else begin lemma_pow_unfold a b; lemma_pow_nat_is_pow a (b - 1); LE.lemma_pow_unfold k a b; () end let lemma_pow_zero b = lemma_pow_unfold 0 b let lemma_pow_one b = let k = mk_nat_comm_monoid in LE.lemma_pow_one k b; lemma_pow_nat_is_pow 1 b let lemma_pow_add x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_add k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow x m; lemma_pow_nat_is_pow x (n + m) let lemma_pow_mul x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_mul k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow (pow x n) m; lemma_pow_nat_is_pow x (n * m) let lemma_pow_double a b = let k = mk_nat_comm_monoid in LE.lemma_pow_double k a b; lemma_pow_nat_is_pow (a * a) b; lemma_pow_nat_is_pow a (b + b) let lemma_pow_mul_base a b n = let k = mk_nat_comm_monoid in LE.lemma_pow_mul_base k a b n; lemma_pow_nat_is_pow a n; lemma_pow_nat_is_pow b n; lemma_pow_nat_is_pow (a * b) n let rec lemma_pow_mod_base a b n = if b = 0 then begin lemma_pow0 a; lemma_pow0 (a % n) end else begin calc (==) { pow a b % n; (==) { lemma_pow_unfold a b } a * pow a (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n } a * (pow a (b - 1) % n) % n; (==) { lemma_pow_mod_base a (b - 1) n } a * (pow (a % n) (b - 1) % n) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow (a % n) (b - 1)) n } a * pow (a % n) (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l a (pow (a % n) (b - 1)) n } a % n * pow (a % n) (b - 1) % n; (==) { lemma_pow_unfold (a % n) b } pow (a % n) b % n; }; assert (pow a b % n == pow (a % n) b % n) end let lemma_mul_mod_one #m a = () let lemma_mul_mod_assoc #m a b c = calc (==) { (a * b % m) * c % m; (==) { Math.Lemmas.lemma_mod_mul_distr_l (a * b) c m } (a * b) * c % m; (==) { Math.Lemmas.paren_mul_right a b c } a * (b * c) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b * c) m } a * (b * c % m) % m; } let lemma_mul_mod_comm #m a b = () let pow_mod #m a b = pow_mod_ #m a b let pow_mod_def #m a b = () #push-options "--fuel 2" val lemma_pow_mod0: #n:pos{1 < n} -> a:nat_mod n -> Lemma (pow_mod #n a 0 == 1) let lemma_pow_mod0 #n a = () val lemma_pow_mod_unfold0: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 0} -> Lemma (pow_mod #n a b == pow_mod (mul_mod a a) (b / 2)) let lemma_pow_mod_unfold0 n a b = () val lemma_pow_mod_unfold1: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 1} -> Lemma (pow_mod #n a b == mul_mod a (pow_mod (mul_mod a a) (b / 2))) let lemma_pow_mod_unfold1 n a b = () #pop-options val lemma_pow_mod_: n:pos{1 < n} -> a:nat_mod n -> b:nat -> Lemma (ensures (pow_mod #n a b == pow a b % n)) (decreases b) let rec lemma_pow_mod_ n a b = if b = 0 then begin lemma_pow0 a; lemma_pow_mod0 a end else begin if b % 2 = 0 then begin calc (==) { pow_mod #n a b; (==) { lemma_pow_mod_unfold0 n a b } pow_mod #n (mul_mod #n a a) (b / 2); (==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) } pow (mul_mod #n a a) (b / 2) % n; (==) { lemma_pow_mod_base (a * a) (b / 2) n } pow (a * a) (b / 2) % n; (==) { lemma_pow_double a (b / 2) } pow a b % n; }; assert (pow_mod #n a b == pow a b % n) end else begin calc (==) { pow_mod #n a b; (==) { lemma_pow_mod_unfold1 n a b } mul_mod a (pow_mod (mul_mod #n a a) (b / 2)); (==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) } mul_mod a (pow (mul_mod #n a a) (b / 2) % n); (==) { lemma_pow_mod_base (a * a) (b / 2) n } mul_mod a (pow (a * a) (b / 2) % n); (==) { lemma_pow_double a (b / 2) } mul_mod a (pow a (b / 2 * 2) % n); (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b / 2 * 2)) n } a * pow a (b / 2 * 2) % n; (==) { lemma_pow1 a } pow a 1 * pow a (b / 2 * 2) % n; (==) { lemma_pow_add a 1 (b / 2 * 2) } pow a (b / 2 * 2 + 1) % n; (==) { Math.Lemmas.euclidean_division_definition b 2 } pow a b % n; }; assert (pow_mod #n a b == pow a b % n) end end let lemma_pow_mod #n a b = lemma_pow_mod_ n a b let rec lemma_pow_nat_mod_is_pow #n a b = let k = mk_nat_mod_comm_monoid n in if b = 0 then begin lemma_pow0 a; LE.lemma_pow0 k a end else begin calc (==) { pow a b % n; (==) { lemma_pow_unfold a b } a * pow a (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n } a * (pow a (b - 1) % n) % n; (==) { lemma_pow_nat_mod_is_pow #n a (b - 1) } a * LE.pow k a (b - 1) % n; (==) { } k.LE.mul a (LE.pow k a (b - 1)); (==) { LE.lemma_pow_unfold k a b } LE.pow k a b; }; () end let lemma_add_mod_one #m a = Math.Lemmas.small_mod a m let lemma_add_mod_assoc #m a b c = calc (==) { add_mod (add_mod a b) c; (==) { Math.Lemmas.lemma_mod_plus_distr_l (a + b) c m } ((a + b) + c) % m; (==) { } (a + (b + c)) % m; (==) { Math.Lemmas.lemma_mod_plus_distr_r a (b + c) m } add_mod a (add_mod b c); } let lemma_add_mod_comm #m a b = () let lemma_mod_distributivity_add_right #m a b c = calc (==) { mul_mod a (add_mod b c); (==) { } a * ((b + c) % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b + c) m } a * (b + c) % m; (==) { Math.Lemmas.distributivity_add_right a b c } (a * b + a * c) % m; (==) { Math.Lemmas.modulo_distributivity (a * b) (a * c) m } add_mod (mul_mod a b) (mul_mod a c); } let lemma_mod_distributivity_add_left #m a b c = lemma_mod_distributivity_add_right c a b let lemma_mod_distributivity_sub_right #m a b c = calc (==) { mul_mod a (sub_mod b c); (==) { } a * ((b - c) % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b - c) m } a * (b - c) % m; (==) { Math.Lemmas.distributivity_sub_right a b c } (a * b - a * c) % m; (==) { Math.Lemmas.lemma_mod_plus_distr_l (a * b) (- a * c) m } (mul_mod a b - a * c) % m; (==) { Math.Lemmas.lemma_mod_sub_distr (mul_mod a b) (a * c) m } sub_mod (mul_mod a b) (mul_mod a c); } let lemma_mod_distributivity_sub_left #m a b c = lemma_mod_distributivity_sub_right c a b let lemma_inv_mod_both #m a b = let p1 = pow a (m - 2) in let p2 = pow b (m - 2) in calc (==) { mul_mod (inv_mod a) (inv_mod b); (==) { lemma_pow_mod #m a (m - 2); lemma_pow_mod #m b (m - 2) } p1 % m * (p2 % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_l p1 (p2 % m) m } p1 * (p2 % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r p1 p2 m } p1 * p2 % m; (==) { lemma_pow_mul_base a b (m - 2) } pow (a * b) (m - 2) % m; (==) { lemma_pow_mod_base (a * b) (m - 2) m } pow (mul_mod a b) (m - 2) % m; (==) { lemma_pow_mod #m (mul_mod a b) (m - 2) } inv_mod (mul_mod a b); } #push-options "--fuel 1" val pow_eq: a:nat -> n:nat -> Lemma (Fermat.pow a n == pow a n)
false
false
Lib.NatMod.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pow_eq: a:nat -> n:nat -> Lemma (Fermat.pow a n == pow a n)
[ "recursion" ]
Lib.NatMod.pow_eq
{ "file_name": "lib/Lib.NatMod.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Prims.nat -> n: Prims.nat -> FStar.Pervasives.Lemma (ensures FStar.Math.Fermat.pow a n == Lib.NatMod.pow a n)
{ "end_col": 23, "end_line": 292, "start_col": 2, "start_line": 291 }
FStar.Pervasives.Lemma
val lemma_pow_ge_zero: a:nat -> b:nat -> Lemma (pow a b >= 0) [SMTPat (pow a b)]
[ { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.Math.Fermat", "short_module": "Fermat" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec lemma_pow_ge_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_ge_zero a (b - 1) end
val lemma_pow_ge_zero: a:nat -> b:nat -> Lemma (pow a b >= 0) [SMTPat (pow a b)] let rec lemma_pow_ge_zero a b =
false
null
true
if b = 0 then lemma_pow0 a else (lemma_pow_unfold a b; lemma_pow_ge_zero a (b - 1))
{ "checked_file": "Lib.NatMod.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.NatMod.fst" }
[ "lemma" ]
[ "Prims.nat", "Prims.op_Equality", "Prims.int", "Lib.NatMod.lemma_pow0", "Prims.bool", "Lib.NatMod.lemma_pow_ge_zero", "Prims.op_Subtraction", "Prims.unit", "Lib.NatMod.lemma_pow_unfold" ]
[]
module Lib.NatMod module LE = Lib.Exponentiation.Definition #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" #push-options "--fuel 2" let lemma_pow0 a = () let lemma_pow1 a = () let lemma_pow_unfold a b = () #pop-options let rec lemma_pow_gt_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_gt_zero a (b - 1) end
false
false
Lib.NatMod.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_pow_ge_zero: a:nat -> b:nat -> Lemma (pow a b >= 0) [SMTPat (pow a b)]
[ "recursion" ]
Lib.NatMod.lemma_pow_ge_zero
{ "file_name": "lib/Lib.NatMod.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Prims.nat -> b: Prims.nat -> FStar.Pervasives.Lemma (ensures Lib.NatMod.pow a b >= 0) [SMTPat (Lib.NatMod.pow a b)]
{ "end_col": 35, "end_line": 26, "start_col": 2, "start_line": 23 }
FStar.Pervasives.Lemma
val lemma_pow_nat_is_pow: a:int -> b:nat -> Lemma (pow a b == LE.pow mk_nat_comm_monoid a b)
[ { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.Math.Fermat", "short_module": "Fermat" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec lemma_pow_nat_is_pow a b = let k = mk_nat_comm_monoid in if b = 0 then begin lemma_pow0 a; LE.lemma_pow0 k a end else begin lemma_pow_unfold a b; lemma_pow_nat_is_pow a (b - 1); LE.lemma_pow_unfold k a b; () end
val lemma_pow_nat_is_pow: a:int -> b:nat -> Lemma (pow a b == LE.pow mk_nat_comm_monoid a b) let rec lemma_pow_nat_is_pow a b =
false
null
true
let k = mk_nat_comm_monoid in if b = 0 then (lemma_pow0 a; LE.lemma_pow0 k a) else (lemma_pow_unfold a b; lemma_pow_nat_is_pow a (b - 1); LE.lemma_pow_unfold k a b; ())
{ "checked_file": "Lib.NatMod.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.NatMod.fst" }
[ "lemma" ]
[ "Prims.int", "Prims.nat", "Prims.op_Equality", "Lib.Exponentiation.Definition.lemma_pow0", "Prims.unit", "Lib.NatMod.lemma_pow0", "Prims.bool", "Lib.Exponentiation.Definition.lemma_pow_unfold", "Lib.NatMod.lemma_pow_nat_is_pow", "Prims.op_Subtraction", "Lib.NatMod.lemma_pow_unfold", "Lib.Exponentiation.Definition.comm_monoid", "Lib.NatMod.mk_nat_comm_monoid" ]
[]
module Lib.NatMod module LE = Lib.Exponentiation.Definition #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" #push-options "--fuel 2" let lemma_pow0 a = () let lemma_pow1 a = () let lemma_pow_unfold a b = () #pop-options let rec lemma_pow_gt_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_gt_zero a (b - 1) end let rec lemma_pow_ge_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_ge_zero a (b - 1) end
false
false
Lib.NatMod.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_pow_nat_is_pow: a:int -> b:nat -> Lemma (pow a b == LE.pow mk_nat_comm_monoid a b)
[ "recursion" ]
Lib.NatMod.lemma_pow_nat_is_pow
{ "file_name": "lib/Lib.NatMod.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Prims.int -> b: Prims.nat -> FStar.Pervasives.Lemma (ensures Lib.NatMod.pow a b == Lib.Exponentiation.Definition.pow Lib.NatMod.mk_nat_comm_monoid a b)
{ "end_col": 10, "end_line": 38, "start_col": 34, "start_line": 29 }
FStar.Pervasives.Lemma
val lemma_pow_one: b:nat -> Lemma (pow 1 b = 1)
[ { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.Math.Fermat", "short_module": "Fermat" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_pow_one b = let k = mk_nat_comm_monoid in LE.lemma_pow_one k b; lemma_pow_nat_is_pow 1 b
val lemma_pow_one: b:nat -> Lemma (pow 1 b = 1) let lemma_pow_one b =
false
null
true
let k = mk_nat_comm_monoid in LE.lemma_pow_one k b; lemma_pow_nat_is_pow 1 b
{ "checked_file": "Lib.NatMod.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.NatMod.fst" }
[ "lemma" ]
[ "Prims.nat", "Lib.NatMod.lemma_pow_nat_is_pow", "Prims.unit", "Lib.Exponentiation.Definition.lemma_pow_one", "Prims.int", "Lib.Exponentiation.Definition.comm_monoid", "Lib.NatMod.mk_nat_comm_monoid" ]
[]
module Lib.NatMod module LE = Lib.Exponentiation.Definition #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" #push-options "--fuel 2" let lemma_pow0 a = () let lemma_pow1 a = () let lemma_pow_unfold a b = () #pop-options let rec lemma_pow_gt_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_gt_zero a (b - 1) end let rec lemma_pow_ge_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_ge_zero a (b - 1) end let rec lemma_pow_nat_is_pow a b = let k = mk_nat_comm_monoid in if b = 0 then begin lemma_pow0 a; LE.lemma_pow0 k a end else begin lemma_pow_unfold a b; lemma_pow_nat_is_pow a (b - 1); LE.lemma_pow_unfold k a b; () end let lemma_pow_zero b = lemma_pow_unfold 0 b
false
false
Lib.NatMod.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_pow_one: b:nat -> Lemma (pow 1 b = 1)
[]
Lib.NatMod.lemma_pow_one
{ "file_name": "lib/Lib.NatMod.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
b: Prims.nat -> FStar.Pervasives.Lemma (ensures Lib.NatMod.pow 1 b = 1)
{ "end_col": 26, "end_line": 48, "start_col": 21, "start_line": 45 }
FStar.Pervasives.Lemma
val lemma_pow_gt_zero: a:pos -> b:nat -> Lemma (pow a b > 0) [SMTPat (pow a b)]
[ { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.Math.Fermat", "short_module": "Fermat" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec lemma_pow_gt_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_gt_zero a (b - 1) end
val lemma_pow_gt_zero: a:pos -> b:nat -> Lemma (pow a b > 0) [SMTPat (pow a b)] let rec lemma_pow_gt_zero a b =
false
null
true
if b = 0 then lemma_pow0 a else (lemma_pow_unfold a b; lemma_pow_gt_zero a (b - 1))
{ "checked_file": "Lib.NatMod.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.NatMod.fst" }
[ "lemma" ]
[ "Prims.pos", "Prims.nat", "Prims.op_Equality", "Prims.int", "Lib.NatMod.lemma_pow0", "Prims.bool", "Lib.NatMod.lemma_pow_gt_zero", "Prims.op_Subtraction", "Prims.unit", "Lib.NatMod.lemma_pow_unfold" ]
[]
module Lib.NatMod module LE = Lib.Exponentiation.Definition #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" #push-options "--fuel 2" let lemma_pow0 a = () let lemma_pow1 a = () let lemma_pow_unfold a b = () #pop-options
false
false
Lib.NatMod.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_pow_gt_zero: a:pos -> b:nat -> Lemma (pow a b > 0) [SMTPat (pow a b)]
[ "recursion" ]
Lib.NatMod.lemma_pow_gt_zero
{ "file_name": "lib/Lib.NatMod.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Prims.pos -> b: Prims.nat -> FStar.Pervasives.Lemma (ensures Lib.NatMod.pow a b > 0) [SMTPat (Lib.NatMod.pow a b)]
{ "end_col": 35, "end_line": 19, "start_col": 2, "start_line": 16 }
FStar.Pervasives.Lemma
val lemma_div_mod_prime_is_zero2: #m:prime{2 < m} -> a:nat_mod m -> b:nat_mod m -> Lemma (requires div_mod a b = 0) (ensures a = 0 || b = 0)
[ { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.Math.Fermat", "short_module": "Fermat" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_div_mod_prime_is_zero2 #m a b = lemma_mul_mod_prime_zero a (inv_mod b); assert (a = 0 || inv_mod b = 0); lemma_pow_mod_prime_zero #m b (m - 2)
val lemma_div_mod_prime_is_zero2: #m:prime{2 < m} -> a:nat_mod m -> b:nat_mod m -> Lemma (requires div_mod a b = 0) (ensures a = 0 || b = 0) let lemma_div_mod_prime_is_zero2 #m a b =
false
null
true
lemma_mul_mod_prime_zero a (inv_mod b); assert (a = 0 || inv_mod b = 0); lemma_pow_mod_prime_zero #m b (m - 2)
{ "checked_file": "Lib.NatMod.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.NatMod.fst" }
[ "lemma" ]
[ "Lib.NatMod.prime", "Prims.b2t", "Prims.op_LessThan", "Lib.NatMod.nat_mod", "Lib.NatMod.lemma_pow_mod_prime_zero", "Prims.op_Subtraction", "Prims.unit", "Prims._assert", "Prims.op_BarBar", "Prims.op_Equality", "Prims.int", "Lib.NatMod.inv_mod", "Lib.NatMod.lemma_mul_mod_prime_zero" ]
[]
module Lib.NatMod module LE = Lib.Exponentiation.Definition #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" #push-options "--fuel 2" let lemma_pow0 a = () let lemma_pow1 a = () let lemma_pow_unfold a b = () #pop-options let rec lemma_pow_gt_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_gt_zero a (b - 1) end let rec lemma_pow_ge_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_ge_zero a (b - 1) end let rec lemma_pow_nat_is_pow a b = let k = mk_nat_comm_monoid in if b = 0 then begin lemma_pow0 a; LE.lemma_pow0 k a end else begin lemma_pow_unfold a b; lemma_pow_nat_is_pow a (b - 1); LE.lemma_pow_unfold k a b; () end let lemma_pow_zero b = lemma_pow_unfold 0 b let lemma_pow_one b = let k = mk_nat_comm_monoid in LE.lemma_pow_one k b; lemma_pow_nat_is_pow 1 b let lemma_pow_add x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_add k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow x m; lemma_pow_nat_is_pow x (n + m) let lemma_pow_mul x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_mul k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow (pow x n) m; lemma_pow_nat_is_pow x (n * m) let lemma_pow_double a b = let k = mk_nat_comm_monoid in LE.lemma_pow_double k a b; lemma_pow_nat_is_pow (a * a) b; lemma_pow_nat_is_pow a (b + b) let lemma_pow_mul_base a b n = let k = mk_nat_comm_monoid in LE.lemma_pow_mul_base k a b n; lemma_pow_nat_is_pow a n; lemma_pow_nat_is_pow b n; lemma_pow_nat_is_pow (a * b) n let rec lemma_pow_mod_base a b n = if b = 0 then begin lemma_pow0 a; lemma_pow0 (a % n) end else begin calc (==) { pow a b % n; (==) { lemma_pow_unfold a b } a * pow a (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n } a * (pow a (b - 1) % n) % n; (==) { lemma_pow_mod_base a (b - 1) n } a * (pow (a % n) (b - 1) % n) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow (a % n) (b - 1)) n } a * pow (a % n) (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l a (pow (a % n) (b - 1)) n } a % n * pow (a % n) (b - 1) % n; (==) { lemma_pow_unfold (a % n) b } pow (a % n) b % n; }; assert (pow a b % n == pow (a % n) b % n) end let lemma_mul_mod_one #m a = () let lemma_mul_mod_assoc #m a b c = calc (==) { (a * b % m) * c % m; (==) { Math.Lemmas.lemma_mod_mul_distr_l (a * b) c m } (a * b) * c % m; (==) { Math.Lemmas.paren_mul_right a b c } a * (b * c) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b * c) m } a * (b * c % m) % m; } let lemma_mul_mod_comm #m a b = () let pow_mod #m a b = pow_mod_ #m a b let pow_mod_def #m a b = () #push-options "--fuel 2" val lemma_pow_mod0: #n:pos{1 < n} -> a:nat_mod n -> Lemma (pow_mod #n a 0 == 1) let lemma_pow_mod0 #n a = () val lemma_pow_mod_unfold0: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 0} -> Lemma (pow_mod #n a b == pow_mod (mul_mod a a) (b / 2)) let lemma_pow_mod_unfold0 n a b = () val lemma_pow_mod_unfold1: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 1} -> Lemma (pow_mod #n a b == mul_mod a (pow_mod (mul_mod a a) (b / 2))) let lemma_pow_mod_unfold1 n a b = () #pop-options val lemma_pow_mod_: n:pos{1 < n} -> a:nat_mod n -> b:nat -> Lemma (ensures (pow_mod #n a b == pow a b % n)) (decreases b) let rec lemma_pow_mod_ n a b = if b = 0 then begin lemma_pow0 a; lemma_pow_mod0 a end else begin if b % 2 = 0 then begin calc (==) { pow_mod #n a b; (==) { lemma_pow_mod_unfold0 n a b } pow_mod #n (mul_mod #n a a) (b / 2); (==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) } pow (mul_mod #n a a) (b / 2) % n; (==) { lemma_pow_mod_base (a * a) (b / 2) n } pow (a * a) (b / 2) % n; (==) { lemma_pow_double a (b / 2) } pow a b % n; }; assert (pow_mod #n a b == pow a b % n) end else begin calc (==) { pow_mod #n a b; (==) { lemma_pow_mod_unfold1 n a b } mul_mod a (pow_mod (mul_mod #n a a) (b / 2)); (==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) } mul_mod a (pow (mul_mod #n a a) (b / 2) % n); (==) { lemma_pow_mod_base (a * a) (b / 2) n } mul_mod a (pow (a * a) (b / 2) % n); (==) { lemma_pow_double a (b / 2) } mul_mod a (pow a (b / 2 * 2) % n); (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b / 2 * 2)) n } a * pow a (b / 2 * 2) % n; (==) { lemma_pow1 a } pow a 1 * pow a (b / 2 * 2) % n; (==) { lemma_pow_add a 1 (b / 2 * 2) } pow a (b / 2 * 2 + 1) % n; (==) { Math.Lemmas.euclidean_division_definition b 2 } pow a b % n; }; assert (pow_mod #n a b == pow a b % n) end end let lemma_pow_mod #n a b = lemma_pow_mod_ n a b let rec lemma_pow_nat_mod_is_pow #n a b = let k = mk_nat_mod_comm_monoid n in if b = 0 then begin lemma_pow0 a; LE.lemma_pow0 k a end else begin calc (==) { pow a b % n; (==) { lemma_pow_unfold a b } a * pow a (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n } a * (pow a (b - 1) % n) % n; (==) { lemma_pow_nat_mod_is_pow #n a (b - 1) } a * LE.pow k a (b - 1) % n; (==) { } k.LE.mul a (LE.pow k a (b - 1)); (==) { LE.lemma_pow_unfold k a b } LE.pow k a b; }; () end let lemma_add_mod_one #m a = Math.Lemmas.small_mod a m let lemma_add_mod_assoc #m a b c = calc (==) { add_mod (add_mod a b) c; (==) { Math.Lemmas.lemma_mod_plus_distr_l (a + b) c m } ((a + b) + c) % m; (==) { } (a + (b + c)) % m; (==) { Math.Lemmas.lemma_mod_plus_distr_r a (b + c) m } add_mod a (add_mod b c); } let lemma_add_mod_comm #m a b = () let lemma_mod_distributivity_add_right #m a b c = calc (==) { mul_mod a (add_mod b c); (==) { } a * ((b + c) % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b + c) m } a * (b + c) % m; (==) { Math.Lemmas.distributivity_add_right a b c } (a * b + a * c) % m; (==) { Math.Lemmas.modulo_distributivity (a * b) (a * c) m } add_mod (mul_mod a b) (mul_mod a c); } let lemma_mod_distributivity_add_left #m a b c = lemma_mod_distributivity_add_right c a b let lemma_mod_distributivity_sub_right #m a b c = calc (==) { mul_mod a (sub_mod b c); (==) { } a * ((b - c) % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b - c) m } a * (b - c) % m; (==) { Math.Lemmas.distributivity_sub_right a b c } (a * b - a * c) % m; (==) { Math.Lemmas.lemma_mod_plus_distr_l (a * b) (- a * c) m } (mul_mod a b - a * c) % m; (==) { Math.Lemmas.lemma_mod_sub_distr (mul_mod a b) (a * c) m } sub_mod (mul_mod a b) (mul_mod a c); } let lemma_mod_distributivity_sub_left #m a b c = lemma_mod_distributivity_sub_right c a b let lemma_inv_mod_both #m a b = let p1 = pow a (m - 2) in let p2 = pow b (m - 2) in calc (==) { mul_mod (inv_mod a) (inv_mod b); (==) { lemma_pow_mod #m a (m - 2); lemma_pow_mod #m b (m - 2) } p1 % m * (p2 % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_l p1 (p2 % m) m } p1 * (p2 % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r p1 p2 m } p1 * p2 % m; (==) { lemma_pow_mul_base a b (m - 2) } pow (a * b) (m - 2) % m; (==) { lemma_pow_mod_base (a * b) (m - 2) m } pow (mul_mod a b) (m - 2) % m; (==) { lemma_pow_mod #m (mul_mod a b) (m - 2) } inv_mod (mul_mod a b); } #push-options "--fuel 1" val pow_eq: a:nat -> n:nat -> Lemma (Fermat.pow a n == pow a n) let rec pow_eq a n = if n = 0 then () else pow_eq a (n - 1) #pop-options let lemma_div_mod_prime #m a = Math.Lemmas.small_mod a m; assert (a == a % m); assert (a <> 0 /\ a % m <> 0); calc (==) { pow_mod #m a (m - 2) * a % m; (==) { lemma_pow_mod #m a (m - 2) } pow a (m - 2) % m * a % m; (==) { Math.Lemmas.lemma_mod_mul_distr_l (pow a (m - 2)) a m } pow a (m - 2) * a % m; (==) { lemma_pow1 a; lemma_pow_add a (m - 2) 1 } pow a (m - 1) % m; (==) { pow_eq a (m - 1) } Fermat.pow a (m - 1) % m; (==) { Fermat.fermat_alt m a } 1; } let lemma_div_mod_prime_one #m a = lemma_pow_mod #m 1 (m - 2); lemma_pow_one (m - 2); Math.Lemmas.small_mod 1 m let lemma_div_mod_prime_cancel #m a b c = calc (==) { mul_mod (mul_mod a c) (inv_mod (mul_mod c b)); (==) { lemma_inv_mod_both c b } mul_mod (mul_mod a c) (mul_mod (inv_mod c) (inv_mod b)); (==) { lemma_mul_mod_assoc (mul_mod a c) (inv_mod c) (inv_mod b) } mul_mod (mul_mod (mul_mod a c) (inv_mod c)) (inv_mod b); (==) { lemma_mul_mod_assoc a c (inv_mod c) } mul_mod (mul_mod a (mul_mod c (inv_mod c))) (inv_mod b); (==) { lemma_div_mod_prime c } mul_mod (mul_mod a 1) (inv_mod b); (==) { Math.Lemmas.small_mod a m } mul_mod a (inv_mod b); } let lemma_div_mod_prime_to_one_denominator #m a b c d = calc (==) { mul_mod (div_mod a c) (div_mod b d); (==) { } mul_mod (mul_mod a (inv_mod c)) (mul_mod b (inv_mod d)); (==) { lemma_mul_mod_comm #m b (inv_mod d); lemma_mul_mod_assoc #m (mul_mod a (inv_mod c)) (inv_mod d) b } mul_mod (mul_mod (mul_mod a (inv_mod c)) (inv_mod d)) b; (==) { lemma_mul_mod_assoc #m a (inv_mod c) (inv_mod d) } mul_mod (mul_mod a (mul_mod (inv_mod c) (inv_mod d))) b; (==) { lemma_inv_mod_both c d } mul_mod (mul_mod a (inv_mod (mul_mod c d))) b; (==) { lemma_mul_mod_assoc #m a (inv_mod (mul_mod c d)) b; lemma_mul_mod_comm #m (inv_mod (mul_mod c d)) b; lemma_mul_mod_assoc #m a b (inv_mod (mul_mod c d)) } mul_mod (mul_mod a b) (inv_mod (mul_mod c d)); } val lemma_div_mod_eq_mul_mod1: #m:prime -> a:nat_mod m -> b:nat_mod m{b <> 0} -> c:nat_mod m -> Lemma (div_mod a b = c ==> a = mul_mod c b) let lemma_div_mod_eq_mul_mod1 #m a b c = if div_mod a b = c then begin assert (mul_mod (div_mod a b) b = mul_mod c b); calc (==) { mul_mod (div_mod a b) b; (==) { lemma_div_mod_prime_one b } mul_mod (div_mod a b) (div_mod b 1); (==) { lemma_div_mod_prime_to_one_denominator a b b 1 } div_mod (mul_mod a b) (mul_mod b 1); (==) { lemma_div_mod_prime_cancel a 1 b } div_mod a 1; (==) { lemma_div_mod_prime_one a } a; } end else () val lemma_div_mod_eq_mul_mod2: #m:prime -> a:nat_mod m -> b:nat_mod m{b <> 0} -> c:nat_mod m -> Lemma (a = mul_mod c b ==> div_mod a b = c) let lemma_div_mod_eq_mul_mod2 #m a b c = if a = mul_mod c b then begin assert (div_mod a b == div_mod (mul_mod c b) b); calc (==) { div_mod (mul_mod c b) b; (==) { Math.Lemmas.small_mod b m } div_mod (mul_mod c b) (mul_mod b 1); (==) { lemma_div_mod_prime_cancel c 1 b } div_mod c 1; (==) { lemma_div_mod_prime_one c } c; } end else () let lemma_div_mod_eq_mul_mod #m a b c = lemma_div_mod_eq_mul_mod1 a b c; lemma_div_mod_eq_mul_mod2 a b c val lemma_mul_mod_zero2: n:pos -> x:int -> y:int -> Lemma (requires x % n == 0 \/ y % n == 0) (ensures x * y % n == 0) let lemma_mul_mod_zero2 n x y = if x % n = 0 then Math.Lemmas.lemma_mod_mul_distr_l x y n else Math.Lemmas.lemma_mod_mul_distr_r x y n let lemma_mul_mod_prime_zero #m a b = Classical.move_requires_3 Euclid.euclid_prime m a b; Classical.move_requires_3 lemma_mul_mod_zero2 m a b val lemma_pow_mod_prime_zero_: #m:prime -> a:nat_mod m -> b:pos -> Lemma (requires pow a b % m = 0) (ensures a = 0) let rec lemma_pow_mod_prime_zero_ #m a b = if b = 1 then lemma_pow1 a else begin let r1 = pow a (b - 1) % m in lemma_pow_unfold a b; assert (a * pow a (b - 1) % m = 0); Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) m; lemma_mul_mod_prime_zero #m a r1; //assert (a = 0 \/ r1 = 0); if a = 0 then () else lemma_pow_mod_prime_zero_ #m a (b - 1) end let lemma_pow_mod_prime_zero #m a b = lemma_pow_mod #m a b; Classical.move_requires_2 lemma_pow_mod_prime_zero_ a b; Classical.move_requires lemma_pow_zero b val lemma_div_mod_is_zero1: #m:pos{2 < m} -> a:nat_mod m -> b:nat_mod m -> Lemma (requires a = 0 || b = 0) (ensures div_mod a b = 0) let lemma_div_mod_is_zero1 #m a b = if a = 0 then () else begin lemma_pow_mod #m b (m - 2); lemma_pow_zero (m - 2) end val lemma_div_mod_prime_is_zero2: #m:prime{2 < m} -> a:nat_mod m -> b:nat_mod m -> Lemma (requires div_mod a b = 0) (ensures a = 0 || b = 0)
false
false
Lib.NatMod.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_div_mod_prime_is_zero2: #m:prime{2 < m} -> a:nat_mod m -> b:nat_mod m -> Lemma (requires div_mod a b = 0) (ensures a = 0 || b = 0)
[]
Lib.NatMod.lemma_div_mod_prime_is_zero2
{ "file_name": "lib/Lib.NatMod.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.NatMod.nat_mod m -> b: Lib.NatMod.nat_mod m -> FStar.Pervasives.Lemma (requires Lib.NatMod.div_mod a b = 0) (ensures a = 0 || b = 0)
{ "end_col": 39, "end_line": 457, "start_col": 2, "start_line": 455 }
FStar.Pervasives.Lemma
val lemma_pow_zero: b:pos -> Lemma (pow 0 b = 0)
[ { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.Math.Fermat", "short_module": "Fermat" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_pow_zero b = lemma_pow_unfold 0 b
val lemma_pow_zero: b:pos -> Lemma (pow 0 b = 0) let lemma_pow_zero b =
false
null
true
lemma_pow_unfold 0 b
{ "checked_file": "Lib.NatMod.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.NatMod.fst" }
[ "lemma" ]
[ "Prims.pos", "Lib.NatMod.lemma_pow_unfold", "Prims.unit" ]
[]
module Lib.NatMod module LE = Lib.Exponentiation.Definition #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" #push-options "--fuel 2" let lemma_pow0 a = () let lemma_pow1 a = () let lemma_pow_unfold a b = () #pop-options let rec lemma_pow_gt_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_gt_zero a (b - 1) end let rec lemma_pow_ge_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_ge_zero a (b - 1) end let rec lemma_pow_nat_is_pow a b = let k = mk_nat_comm_monoid in if b = 0 then begin lemma_pow0 a; LE.lemma_pow0 k a end else begin lemma_pow_unfold a b; lemma_pow_nat_is_pow a (b - 1); LE.lemma_pow_unfold k a b; () end
false
false
Lib.NatMod.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_pow_zero: b:pos -> Lemma (pow 0 b = 0)
[]
Lib.NatMod.lemma_pow_zero
{ "file_name": "lib/Lib.NatMod.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
b: Prims.pos -> FStar.Pervasives.Lemma (ensures Lib.NatMod.pow 0 b = 0)
{ "end_col": 22, "end_line": 42, "start_col": 2, "start_line": 42 }
FStar.Pervasives.Lemma
val lemma_div_mod_eq_mul_mod: #m:prime -> a:nat_mod m -> b:nat_mod m{b <> 0} -> c:nat_mod m -> Lemma ((div_mod a b = c) == (a = mul_mod c b))
[ { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.Math.Fermat", "short_module": "Fermat" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_div_mod_eq_mul_mod #m a b c = lemma_div_mod_eq_mul_mod1 a b c; lemma_div_mod_eq_mul_mod2 a b c
val lemma_div_mod_eq_mul_mod: #m:prime -> a:nat_mod m -> b:nat_mod m{b <> 0} -> c:nat_mod m -> Lemma ((div_mod a b = c) == (a = mul_mod c b)) let lemma_div_mod_eq_mul_mod #m a b c =
false
null
true
lemma_div_mod_eq_mul_mod1 a b c; lemma_div_mod_eq_mul_mod2 a b c
{ "checked_file": "Lib.NatMod.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.NatMod.fst" }
[ "lemma" ]
[ "Lib.NatMod.prime", "Lib.NatMod.nat_mod", "Prims.b2t", "Prims.op_disEquality", "Prims.int", "Lib.NatMod.lemma_div_mod_eq_mul_mod2", "Prims.unit", "Lib.NatMod.lemma_div_mod_eq_mul_mod1" ]
[]
module Lib.NatMod module LE = Lib.Exponentiation.Definition #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" #push-options "--fuel 2" let lemma_pow0 a = () let lemma_pow1 a = () let lemma_pow_unfold a b = () #pop-options let rec lemma_pow_gt_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_gt_zero a (b - 1) end let rec lemma_pow_ge_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_ge_zero a (b - 1) end let rec lemma_pow_nat_is_pow a b = let k = mk_nat_comm_monoid in if b = 0 then begin lemma_pow0 a; LE.lemma_pow0 k a end else begin lemma_pow_unfold a b; lemma_pow_nat_is_pow a (b - 1); LE.lemma_pow_unfold k a b; () end let lemma_pow_zero b = lemma_pow_unfold 0 b let lemma_pow_one b = let k = mk_nat_comm_monoid in LE.lemma_pow_one k b; lemma_pow_nat_is_pow 1 b let lemma_pow_add x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_add k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow x m; lemma_pow_nat_is_pow x (n + m) let lemma_pow_mul x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_mul k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow (pow x n) m; lemma_pow_nat_is_pow x (n * m) let lemma_pow_double a b = let k = mk_nat_comm_monoid in LE.lemma_pow_double k a b; lemma_pow_nat_is_pow (a * a) b; lemma_pow_nat_is_pow a (b + b) let lemma_pow_mul_base a b n = let k = mk_nat_comm_monoid in LE.lemma_pow_mul_base k a b n; lemma_pow_nat_is_pow a n; lemma_pow_nat_is_pow b n; lemma_pow_nat_is_pow (a * b) n let rec lemma_pow_mod_base a b n = if b = 0 then begin lemma_pow0 a; lemma_pow0 (a % n) end else begin calc (==) { pow a b % n; (==) { lemma_pow_unfold a b } a * pow a (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n } a * (pow a (b - 1) % n) % n; (==) { lemma_pow_mod_base a (b - 1) n } a * (pow (a % n) (b - 1) % n) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow (a % n) (b - 1)) n } a * pow (a % n) (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l a (pow (a % n) (b - 1)) n } a % n * pow (a % n) (b - 1) % n; (==) { lemma_pow_unfold (a % n) b } pow (a % n) b % n; }; assert (pow a b % n == pow (a % n) b % n) end let lemma_mul_mod_one #m a = () let lemma_mul_mod_assoc #m a b c = calc (==) { (a * b % m) * c % m; (==) { Math.Lemmas.lemma_mod_mul_distr_l (a * b) c m } (a * b) * c % m; (==) { Math.Lemmas.paren_mul_right a b c } a * (b * c) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b * c) m } a * (b * c % m) % m; } let lemma_mul_mod_comm #m a b = () let pow_mod #m a b = pow_mod_ #m a b let pow_mod_def #m a b = () #push-options "--fuel 2" val lemma_pow_mod0: #n:pos{1 < n} -> a:nat_mod n -> Lemma (pow_mod #n a 0 == 1) let lemma_pow_mod0 #n a = () val lemma_pow_mod_unfold0: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 0} -> Lemma (pow_mod #n a b == pow_mod (mul_mod a a) (b / 2)) let lemma_pow_mod_unfold0 n a b = () val lemma_pow_mod_unfold1: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 1} -> Lemma (pow_mod #n a b == mul_mod a (pow_mod (mul_mod a a) (b / 2))) let lemma_pow_mod_unfold1 n a b = () #pop-options val lemma_pow_mod_: n:pos{1 < n} -> a:nat_mod n -> b:nat -> Lemma (ensures (pow_mod #n a b == pow a b % n)) (decreases b) let rec lemma_pow_mod_ n a b = if b = 0 then begin lemma_pow0 a; lemma_pow_mod0 a end else begin if b % 2 = 0 then begin calc (==) { pow_mod #n a b; (==) { lemma_pow_mod_unfold0 n a b } pow_mod #n (mul_mod #n a a) (b / 2); (==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) } pow (mul_mod #n a a) (b / 2) % n; (==) { lemma_pow_mod_base (a * a) (b / 2) n } pow (a * a) (b / 2) % n; (==) { lemma_pow_double a (b / 2) } pow a b % n; }; assert (pow_mod #n a b == pow a b % n) end else begin calc (==) { pow_mod #n a b; (==) { lemma_pow_mod_unfold1 n a b } mul_mod a (pow_mod (mul_mod #n a a) (b / 2)); (==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) } mul_mod a (pow (mul_mod #n a a) (b / 2) % n); (==) { lemma_pow_mod_base (a * a) (b / 2) n } mul_mod a (pow (a * a) (b / 2) % n); (==) { lemma_pow_double a (b / 2) } mul_mod a (pow a (b / 2 * 2) % n); (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b / 2 * 2)) n } a * pow a (b / 2 * 2) % n; (==) { lemma_pow1 a } pow a 1 * pow a (b / 2 * 2) % n; (==) { lemma_pow_add a 1 (b / 2 * 2) } pow a (b / 2 * 2 + 1) % n; (==) { Math.Lemmas.euclidean_division_definition b 2 } pow a b % n; }; assert (pow_mod #n a b == pow a b % n) end end let lemma_pow_mod #n a b = lemma_pow_mod_ n a b let rec lemma_pow_nat_mod_is_pow #n a b = let k = mk_nat_mod_comm_monoid n in if b = 0 then begin lemma_pow0 a; LE.lemma_pow0 k a end else begin calc (==) { pow a b % n; (==) { lemma_pow_unfold a b } a * pow a (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n } a * (pow a (b - 1) % n) % n; (==) { lemma_pow_nat_mod_is_pow #n a (b - 1) } a * LE.pow k a (b - 1) % n; (==) { } k.LE.mul a (LE.pow k a (b - 1)); (==) { LE.lemma_pow_unfold k a b } LE.pow k a b; }; () end let lemma_add_mod_one #m a = Math.Lemmas.small_mod a m let lemma_add_mod_assoc #m a b c = calc (==) { add_mod (add_mod a b) c; (==) { Math.Lemmas.lemma_mod_plus_distr_l (a + b) c m } ((a + b) + c) % m; (==) { } (a + (b + c)) % m; (==) { Math.Lemmas.lemma_mod_plus_distr_r a (b + c) m } add_mod a (add_mod b c); } let lemma_add_mod_comm #m a b = () let lemma_mod_distributivity_add_right #m a b c = calc (==) { mul_mod a (add_mod b c); (==) { } a * ((b + c) % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b + c) m } a * (b + c) % m; (==) { Math.Lemmas.distributivity_add_right a b c } (a * b + a * c) % m; (==) { Math.Lemmas.modulo_distributivity (a * b) (a * c) m } add_mod (mul_mod a b) (mul_mod a c); } let lemma_mod_distributivity_add_left #m a b c = lemma_mod_distributivity_add_right c a b let lemma_mod_distributivity_sub_right #m a b c = calc (==) { mul_mod a (sub_mod b c); (==) { } a * ((b - c) % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b - c) m } a * (b - c) % m; (==) { Math.Lemmas.distributivity_sub_right a b c } (a * b - a * c) % m; (==) { Math.Lemmas.lemma_mod_plus_distr_l (a * b) (- a * c) m } (mul_mod a b - a * c) % m; (==) { Math.Lemmas.lemma_mod_sub_distr (mul_mod a b) (a * c) m } sub_mod (mul_mod a b) (mul_mod a c); } let lemma_mod_distributivity_sub_left #m a b c = lemma_mod_distributivity_sub_right c a b let lemma_inv_mod_both #m a b = let p1 = pow a (m - 2) in let p2 = pow b (m - 2) in calc (==) { mul_mod (inv_mod a) (inv_mod b); (==) { lemma_pow_mod #m a (m - 2); lemma_pow_mod #m b (m - 2) } p1 % m * (p2 % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_l p1 (p2 % m) m } p1 * (p2 % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r p1 p2 m } p1 * p2 % m; (==) { lemma_pow_mul_base a b (m - 2) } pow (a * b) (m - 2) % m; (==) { lemma_pow_mod_base (a * b) (m - 2) m } pow (mul_mod a b) (m - 2) % m; (==) { lemma_pow_mod #m (mul_mod a b) (m - 2) } inv_mod (mul_mod a b); } #push-options "--fuel 1" val pow_eq: a:nat -> n:nat -> Lemma (Fermat.pow a n == pow a n) let rec pow_eq a n = if n = 0 then () else pow_eq a (n - 1) #pop-options let lemma_div_mod_prime #m a = Math.Lemmas.small_mod a m; assert (a == a % m); assert (a <> 0 /\ a % m <> 0); calc (==) { pow_mod #m a (m - 2) * a % m; (==) { lemma_pow_mod #m a (m - 2) } pow a (m - 2) % m * a % m; (==) { Math.Lemmas.lemma_mod_mul_distr_l (pow a (m - 2)) a m } pow a (m - 2) * a % m; (==) { lemma_pow1 a; lemma_pow_add a (m - 2) 1 } pow a (m - 1) % m; (==) { pow_eq a (m - 1) } Fermat.pow a (m - 1) % m; (==) { Fermat.fermat_alt m a } 1; } let lemma_div_mod_prime_one #m a = lemma_pow_mod #m 1 (m - 2); lemma_pow_one (m - 2); Math.Lemmas.small_mod 1 m let lemma_div_mod_prime_cancel #m a b c = calc (==) { mul_mod (mul_mod a c) (inv_mod (mul_mod c b)); (==) { lemma_inv_mod_both c b } mul_mod (mul_mod a c) (mul_mod (inv_mod c) (inv_mod b)); (==) { lemma_mul_mod_assoc (mul_mod a c) (inv_mod c) (inv_mod b) } mul_mod (mul_mod (mul_mod a c) (inv_mod c)) (inv_mod b); (==) { lemma_mul_mod_assoc a c (inv_mod c) } mul_mod (mul_mod a (mul_mod c (inv_mod c))) (inv_mod b); (==) { lemma_div_mod_prime c } mul_mod (mul_mod a 1) (inv_mod b); (==) { Math.Lemmas.small_mod a m } mul_mod a (inv_mod b); } let lemma_div_mod_prime_to_one_denominator #m a b c d = calc (==) { mul_mod (div_mod a c) (div_mod b d); (==) { } mul_mod (mul_mod a (inv_mod c)) (mul_mod b (inv_mod d)); (==) { lemma_mul_mod_comm #m b (inv_mod d); lemma_mul_mod_assoc #m (mul_mod a (inv_mod c)) (inv_mod d) b } mul_mod (mul_mod (mul_mod a (inv_mod c)) (inv_mod d)) b; (==) { lemma_mul_mod_assoc #m a (inv_mod c) (inv_mod d) } mul_mod (mul_mod a (mul_mod (inv_mod c) (inv_mod d))) b; (==) { lemma_inv_mod_both c d } mul_mod (mul_mod a (inv_mod (mul_mod c d))) b; (==) { lemma_mul_mod_assoc #m a (inv_mod (mul_mod c d)) b; lemma_mul_mod_comm #m (inv_mod (mul_mod c d)) b; lemma_mul_mod_assoc #m a b (inv_mod (mul_mod c d)) } mul_mod (mul_mod a b) (inv_mod (mul_mod c d)); } val lemma_div_mod_eq_mul_mod1: #m:prime -> a:nat_mod m -> b:nat_mod m{b <> 0} -> c:nat_mod m -> Lemma (div_mod a b = c ==> a = mul_mod c b) let lemma_div_mod_eq_mul_mod1 #m a b c = if div_mod a b = c then begin assert (mul_mod (div_mod a b) b = mul_mod c b); calc (==) { mul_mod (div_mod a b) b; (==) { lemma_div_mod_prime_one b } mul_mod (div_mod a b) (div_mod b 1); (==) { lemma_div_mod_prime_to_one_denominator a b b 1 } div_mod (mul_mod a b) (mul_mod b 1); (==) { lemma_div_mod_prime_cancel a 1 b } div_mod a 1; (==) { lemma_div_mod_prime_one a } a; } end else () val lemma_div_mod_eq_mul_mod2: #m:prime -> a:nat_mod m -> b:nat_mod m{b <> 0} -> c:nat_mod m -> Lemma (a = mul_mod c b ==> div_mod a b = c) let lemma_div_mod_eq_mul_mod2 #m a b c = if a = mul_mod c b then begin assert (div_mod a b == div_mod (mul_mod c b) b); calc (==) { div_mod (mul_mod c b) b; (==) { Math.Lemmas.small_mod b m } div_mod (mul_mod c b) (mul_mod b 1); (==) { lemma_div_mod_prime_cancel c 1 b } div_mod c 1; (==) { lemma_div_mod_prime_one c } c; } end else ()
false
false
Lib.NatMod.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_div_mod_eq_mul_mod: #m:prime -> a:nat_mod m -> b:nat_mod m{b <> 0} -> c:nat_mod m -> Lemma ((div_mod a b = c) == (a = mul_mod c b))
[]
Lib.NatMod.lemma_div_mod_eq_mul_mod
{ "file_name": "lib/Lib.NatMod.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.NatMod.nat_mod m -> b: Lib.NatMod.nat_mod m {b <> 0} -> c: Lib.NatMod.nat_mod m -> FStar.Pervasives.Lemma (ensures Lib.NatMod.div_mod a b = c == (a = Lib.NatMod.mul_mod c b))
{ "end_col": 33, "end_line": 399, "start_col": 2, "start_line": 398 }
FStar.Pervasives.Lemma
val lemma_div_mod_prime_is_zero: #m:prime{2 < m} -> a:nat_mod m -> b:nat_mod m -> Lemma ((div_mod a b = 0) <==> (a = 0 || b = 0))
[ { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.Math.Fermat", "short_module": "Fermat" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_div_mod_prime_is_zero #m a b = Classical.move_requires_2 lemma_div_mod_is_zero1 a b; Classical.move_requires_2 lemma_div_mod_prime_is_zero2 a b
val lemma_div_mod_prime_is_zero: #m:prime{2 < m} -> a:nat_mod m -> b:nat_mod m -> Lemma ((div_mod a b = 0) <==> (a = 0 || b = 0)) let lemma_div_mod_prime_is_zero #m a b =
false
null
true
Classical.move_requires_2 lemma_div_mod_is_zero1 a b; Classical.move_requires_2 lemma_div_mod_prime_is_zero2 a b
{ "checked_file": "Lib.NatMod.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.NatMod.fst" }
[ "lemma" ]
[ "Lib.NatMod.prime", "Prims.b2t", "Prims.op_LessThan", "Lib.NatMod.nat_mod", "FStar.Classical.move_requires_2", "Prims.op_Equality", "Prims.int", "Lib.NatMod.div_mod", "Prims.op_BarBar", "Lib.NatMod.lemma_div_mod_prime_is_zero2", "Prims.unit", "Lib.NatMod.lemma_div_mod_is_zero1" ]
[]
module Lib.NatMod module LE = Lib.Exponentiation.Definition #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" #push-options "--fuel 2" let lemma_pow0 a = () let lemma_pow1 a = () let lemma_pow_unfold a b = () #pop-options let rec lemma_pow_gt_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_gt_zero a (b - 1) end let rec lemma_pow_ge_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_ge_zero a (b - 1) end let rec lemma_pow_nat_is_pow a b = let k = mk_nat_comm_monoid in if b = 0 then begin lemma_pow0 a; LE.lemma_pow0 k a end else begin lemma_pow_unfold a b; lemma_pow_nat_is_pow a (b - 1); LE.lemma_pow_unfold k a b; () end let lemma_pow_zero b = lemma_pow_unfold 0 b let lemma_pow_one b = let k = mk_nat_comm_monoid in LE.lemma_pow_one k b; lemma_pow_nat_is_pow 1 b let lemma_pow_add x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_add k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow x m; lemma_pow_nat_is_pow x (n + m) let lemma_pow_mul x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_mul k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow (pow x n) m; lemma_pow_nat_is_pow x (n * m) let lemma_pow_double a b = let k = mk_nat_comm_monoid in LE.lemma_pow_double k a b; lemma_pow_nat_is_pow (a * a) b; lemma_pow_nat_is_pow a (b + b) let lemma_pow_mul_base a b n = let k = mk_nat_comm_monoid in LE.lemma_pow_mul_base k a b n; lemma_pow_nat_is_pow a n; lemma_pow_nat_is_pow b n; lemma_pow_nat_is_pow (a * b) n let rec lemma_pow_mod_base a b n = if b = 0 then begin lemma_pow0 a; lemma_pow0 (a % n) end else begin calc (==) { pow a b % n; (==) { lemma_pow_unfold a b } a * pow a (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n } a * (pow a (b - 1) % n) % n; (==) { lemma_pow_mod_base a (b - 1) n } a * (pow (a % n) (b - 1) % n) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow (a % n) (b - 1)) n } a * pow (a % n) (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l a (pow (a % n) (b - 1)) n } a % n * pow (a % n) (b - 1) % n; (==) { lemma_pow_unfold (a % n) b } pow (a % n) b % n; }; assert (pow a b % n == pow (a % n) b % n) end let lemma_mul_mod_one #m a = () let lemma_mul_mod_assoc #m a b c = calc (==) { (a * b % m) * c % m; (==) { Math.Lemmas.lemma_mod_mul_distr_l (a * b) c m } (a * b) * c % m; (==) { Math.Lemmas.paren_mul_right a b c } a * (b * c) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b * c) m } a * (b * c % m) % m; } let lemma_mul_mod_comm #m a b = () let pow_mod #m a b = pow_mod_ #m a b let pow_mod_def #m a b = () #push-options "--fuel 2" val lemma_pow_mod0: #n:pos{1 < n} -> a:nat_mod n -> Lemma (pow_mod #n a 0 == 1) let lemma_pow_mod0 #n a = () val lemma_pow_mod_unfold0: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 0} -> Lemma (pow_mod #n a b == pow_mod (mul_mod a a) (b / 2)) let lemma_pow_mod_unfold0 n a b = () val lemma_pow_mod_unfold1: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 1} -> Lemma (pow_mod #n a b == mul_mod a (pow_mod (mul_mod a a) (b / 2))) let lemma_pow_mod_unfold1 n a b = () #pop-options val lemma_pow_mod_: n:pos{1 < n} -> a:nat_mod n -> b:nat -> Lemma (ensures (pow_mod #n a b == pow a b % n)) (decreases b) let rec lemma_pow_mod_ n a b = if b = 0 then begin lemma_pow0 a; lemma_pow_mod0 a end else begin if b % 2 = 0 then begin calc (==) { pow_mod #n a b; (==) { lemma_pow_mod_unfold0 n a b } pow_mod #n (mul_mod #n a a) (b / 2); (==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) } pow (mul_mod #n a a) (b / 2) % n; (==) { lemma_pow_mod_base (a * a) (b / 2) n } pow (a * a) (b / 2) % n; (==) { lemma_pow_double a (b / 2) } pow a b % n; }; assert (pow_mod #n a b == pow a b % n) end else begin calc (==) { pow_mod #n a b; (==) { lemma_pow_mod_unfold1 n a b } mul_mod a (pow_mod (mul_mod #n a a) (b / 2)); (==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) } mul_mod a (pow (mul_mod #n a a) (b / 2) % n); (==) { lemma_pow_mod_base (a * a) (b / 2) n } mul_mod a (pow (a * a) (b / 2) % n); (==) { lemma_pow_double a (b / 2) } mul_mod a (pow a (b / 2 * 2) % n); (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b / 2 * 2)) n } a * pow a (b / 2 * 2) % n; (==) { lemma_pow1 a } pow a 1 * pow a (b / 2 * 2) % n; (==) { lemma_pow_add a 1 (b / 2 * 2) } pow a (b / 2 * 2 + 1) % n; (==) { Math.Lemmas.euclidean_division_definition b 2 } pow a b % n; }; assert (pow_mod #n a b == pow a b % n) end end let lemma_pow_mod #n a b = lemma_pow_mod_ n a b let rec lemma_pow_nat_mod_is_pow #n a b = let k = mk_nat_mod_comm_monoid n in if b = 0 then begin lemma_pow0 a; LE.lemma_pow0 k a end else begin calc (==) { pow a b % n; (==) { lemma_pow_unfold a b } a * pow a (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n } a * (pow a (b - 1) % n) % n; (==) { lemma_pow_nat_mod_is_pow #n a (b - 1) } a * LE.pow k a (b - 1) % n; (==) { } k.LE.mul a (LE.pow k a (b - 1)); (==) { LE.lemma_pow_unfold k a b } LE.pow k a b; }; () end let lemma_add_mod_one #m a = Math.Lemmas.small_mod a m let lemma_add_mod_assoc #m a b c = calc (==) { add_mod (add_mod a b) c; (==) { Math.Lemmas.lemma_mod_plus_distr_l (a + b) c m } ((a + b) + c) % m; (==) { } (a + (b + c)) % m; (==) { Math.Lemmas.lemma_mod_plus_distr_r a (b + c) m } add_mod a (add_mod b c); } let lemma_add_mod_comm #m a b = () let lemma_mod_distributivity_add_right #m a b c = calc (==) { mul_mod a (add_mod b c); (==) { } a * ((b + c) % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b + c) m } a * (b + c) % m; (==) { Math.Lemmas.distributivity_add_right a b c } (a * b + a * c) % m; (==) { Math.Lemmas.modulo_distributivity (a * b) (a * c) m } add_mod (mul_mod a b) (mul_mod a c); } let lemma_mod_distributivity_add_left #m a b c = lemma_mod_distributivity_add_right c a b let lemma_mod_distributivity_sub_right #m a b c = calc (==) { mul_mod a (sub_mod b c); (==) { } a * ((b - c) % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b - c) m } a * (b - c) % m; (==) { Math.Lemmas.distributivity_sub_right a b c } (a * b - a * c) % m; (==) { Math.Lemmas.lemma_mod_plus_distr_l (a * b) (- a * c) m } (mul_mod a b - a * c) % m; (==) { Math.Lemmas.lemma_mod_sub_distr (mul_mod a b) (a * c) m } sub_mod (mul_mod a b) (mul_mod a c); } let lemma_mod_distributivity_sub_left #m a b c = lemma_mod_distributivity_sub_right c a b let lemma_inv_mod_both #m a b = let p1 = pow a (m - 2) in let p2 = pow b (m - 2) in calc (==) { mul_mod (inv_mod a) (inv_mod b); (==) { lemma_pow_mod #m a (m - 2); lemma_pow_mod #m b (m - 2) } p1 % m * (p2 % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_l p1 (p2 % m) m } p1 * (p2 % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r p1 p2 m } p1 * p2 % m; (==) { lemma_pow_mul_base a b (m - 2) } pow (a * b) (m - 2) % m; (==) { lemma_pow_mod_base (a * b) (m - 2) m } pow (mul_mod a b) (m - 2) % m; (==) { lemma_pow_mod #m (mul_mod a b) (m - 2) } inv_mod (mul_mod a b); } #push-options "--fuel 1" val pow_eq: a:nat -> n:nat -> Lemma (Fermat.pow a n == pow a n) let rec pow_eq a n = if n = 0 then () else pow_eq a (n - 1) #pop-options let lemma_div_mod_prime #m a = Math.Lemmas.small_mod a m; assert (a == a % m); assert (a <> 0 /\ a % m <> 0); calc (==) { pow_mod #m a (m - 2) * a % m; (==) { lemma_pow_mod #m a (m - 2) } pow a (m - 2) % m * a % m; (==) { Math.Lemmas.lemma_mod_mul_distr_l (pow a (m - 2)) a m } pow a (m - 2) * a % m; (==) { lemma_pow1 a; lemma_pow_add a (m - 2) 1 } pow a (m - 1) % m; (==) { pow_eq a (m - 1) } Fermat.pow a (m - 1) % m; (==) { Fermat.fermat_alt m a } 1; } let lemma_div_mod_prime_one #m a = lemma_pow_mod #m 1 (m - 2); lemma_pow_one (m - 2); Math.Lemmas.small_mod 1 m let lemma_div_mod_prime_cancel #m a b c = calc (==) { mul_mod (mul_mod a c) (inv_mod (mul_mod c b)); (==) { lemma_inv_mod_both c b } mul_mod (mul_mod a c) (mul_mod (inv_mod c) (inv_mod b)); (==) { lemma_mul_mod_assoc (mul_mod a c) (inv_mod c) (inv_mod b) } mul_mod (mul_mod (mul_mod a c) (inv_mod c)) (inv_mod b); (==) { lemma_mul_mod_assoc a c (inv_mod c) } mul_mod (mul_mod a (mul_mod c (inv_mod c))) (inv_mod b); (==) { lemma_div_mod_prime c } mul_mod (mul_mod a 1) (inv_mod b); (==) { Math.Lemmas.small_mod a m } mul_mod a (inv_mod b); } let lemma_div_mod_prime_to_one_denominator #m a b c d = calc (==) { mul_mod (div_mod a c) (div_mod b d); (==) { } mul_mod (mul_mod a (inv_mod c)) (mul_mod b (inv_mod d)); (==) { lemma_mul_mod_comm #m b (inv_mod d); lemma_mul_mod_assoc #m (mul_mod a (inv_mod c)) (inv_mod d) b } mul_mod (mul_mod (mul_mod a (inv_mod c)) (inv_mod d)) b; (==) { lemma_mul_mod_assoc #m a (inv_mod c) (inv_mod d) } mul_mod (mul_mod a (mul_mod (inv_mod c) (inv_mod d))) b; (==) { lemma_inv_mod_both c d } mul_mod (mul_mod a (inv_mod (mul_mod c d))) b; (==) { lemma_mul_mod_assoc #m a (inv_mod (mul_mod c d)) b; lemma_mul_mod_comm #m (inv_mod (mul_mod c d)) b; lemma_mul_mod_assoc #m a b (inv_mod (mul_mod c d)) } mul_mod (mul_mod a b) (inv_mod (mul_mod c d)); } val lemma_div_mod_eq_mul_mod1: #m:prime -> a:nat_mod m -> b:nat_mod m{b <> 0} -> c:nat_mod m -> Lemma (div_mod a b = c ==> a = mul_mod c b) let lemma_div_mod_eq_mul_mod1 #m a b c = if div_mod a b = c then begin assert (mul_mod (div_mod a b) b = mul_mod c b); calc (==) { mul_mod (div_mod a b) b; (==) { lemma_div_mod_prime_one b } mul_mod (div_mod a b) (div_mod b 1); (==) { lemma_div_mod_prime_to_one_denominator a b b 1 } div_mod (mul_mod a b) (mul_mod b 1); (==) { lemma_div_mod_prime_cancel a 1 b } div_mod a 1; (==) { lemma_div_mod_prime_one a } a; } end else () val lemma_div_mod_eq_mul_mod2: #m:prime -> a:nat_mod m -> b:nat_mod m{b <> 0} -> c:nat_mod m -> Lemma (a = mul_mod c b ==> div_mod a b = c) let lemma_div_mod_eq_mul_mod2 #m a b c = if a = mul_mod c b then begin assert (div_mod a b == div_mod (mul_mod c b) b); calc (==) { div_mod (mul_mod c b) b; (==) { Math.Lemmas.small_mod b m } div_mod (mul_mod c b) (mul_mod b 1); (==) { lemma_div_mod_prime_cancel c 1 b } div_mod c 1; (==) { lemma_div_mod_prime_one c } c; } end else () let lemma_div_mod_eq_mul_mod #m a b c = lemma_div_mod_eq_mul_mod1 a b c; lemma_div_mod_eq_mul_mod2 a b c val lemma_mul_mod_zero2: n:pos -> x:int -> y:int -> Lemma (requires x % n == 0 \/ y % n == 0) (ensures x * y % n == 0) let lemma_mul_mod_zero2 n x y = if x % n = 0 then Math.Lemmas.lemma_mod_mul_distr_l x y n else Math.Lemmas.lemma_mod_mul_distr_r x y n let lemma_mul_mod_prime_zero #m a b = Classical.move_requires_3 Euclid.euclid_prime m a b; Classical.move_requires_3 lemma_mul_mod_zero2 m a b val lemma_pow_mod_prime_zero_: #m:prime -> a:nat_mod m -> b:pos -> Lemma (requires pow a b % m = 0) (ensures a = 0) let rec lemma_pow_mod_prime_zero_ #m a b = if b = 1 then lemma_pow1 a else begin let r1 = pow a (b - 1) % m in lemma_pow_unfold a b; assert (a * pow a (b - 1) % m = 0); Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) m; lemma_mul_mod_prime_zero #m a r1; //assert (a = 0 \/ r1 = 0); if a = 0 then () else lemma_pow_mod_prime_zero_ #m a (b - 1) end let lemma_pow_mod_prime_zero #m a b = lemma_pow_mod #m a b; Classical.move_requires_2 lemma_pow_mod_prime_zero_ a b; Classical.move_requires lemma_pow_zero b val lemma_div_mod_is_zero1: #m:pos{2 < m} -> a:nat_mod m -> b:nat_mod m -> Lemma (requires a = 0 || b = 0) (ensures div_mod a b = 0) let lemma_div_mod_is_zero1 #m a b = if a = 0 then () else begin lemma_pow_mod #m b (m - 2); lemma_pow_zero (m - 2) end val lemma_div_mod_prime_is_zero2: #m:prime{2 < m} -> a:nat_mod m -> b:nat_mod m -> Lemma (requires div_mod a b = 0) (ensures a = 0 || b = 0) let lemma_div_mod_prime_is_zero2 #m a b = lemma_mul_mod_prime_zero a (inv_mod b); assert (a = 0 || inv_mod b = 0); lemma_pow_mod_prime_zero #m b (m - 2)
false
false
Lib.NatMod.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_div_mod_prime_is_zero: #m:prime{2 < m} -> a:nat_mod m -> b:nat_mod m -> Lemma ((div_mod a b = 0) <==> (a = 0 || b = 0))
[]
Lib.NatMod.lemma_div_mod_prime_is_zero
{ "file_name": "lib/Lib.NatMod.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.NatMod.nat_mod m -> b: Lib.NatMod.nat_mod m -> FStar.Pervasives.Lemma (ensures Lib.NatMod.div_mod a b = 0 <==> a = 0 || b = 0)
{ "end_col": 60, "end_line": 462, "start_col": 2, "start_line": 461 }
FStar.Pervasives.Lemma
val lemma_add_mod_assoc: #m:pos -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m -> Lemma (add_mod (add_mod a b) c == add_mod a (add_mod b c))
[ { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.Math.Fermat", "short_module": "Fermat" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_add_mod_assoc #m a b c = calc (==) { add_mod (add_mod a b) c; (==) { Math.Lemmas.lemma_mod_plus_distr_l (a + b) c m } ((a + b) + c) % m; (==) { } (a + (b + c)) % m; (==) { Math.Lemmas.lemma_mod_plus_distr_r a (b + c) m } add_mod a (add_mod b c); }
val lemma_add_mod_assoc: #m:pos -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m -> Lemma (add_mod (add_mod a b) c == add_mod a (add_mod b c)) let lemma_add_mod_assoc #m a b c =
false
null
true
calc ( == ) { add_mod (add_mod a b) c; ( == ) { Math.Lemmas.lemma_mod_plus_distr_l (a + b) c m } ((a + b) + c) % m; ( == ) { () } (a + (b + c)) % m; ( == ) { Math.Lemmas.lemma_mod_plus_distr_r a (b + c) m } add_mod a (add_mod b c); }
{ "checked_file": "Lib.NatMod.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.NatMod.fst" }
[ "lemma" ]
[ "Prims.pos", "Lib.NatMod.nat_mod", "FStar.Calc.calc_finish", "Prims.eq2", "Lib.NatMod.add_mod", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "Prims.op_Modulus", "Prims.op_Addition", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.lemma_mod_plus_distr_l", "Prims.squash", "FStar.Math.Lemmas.lemma_mod_plus_distr_r" ]
[]
module Lib.NatMod module LE = Lib.Exponentiation.Definition #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" #push-options "--fuel 2" let lemma_pow0 a = () let lemma_pow1 a = () let lemma_pow_unfold a b = () #pop-options let rec lemma_pow_gt_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_gt_zero a (b - 1) end let rec lemma_pow_ge_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_ge_zero a (b - 1) end let rec lemma_pow_nat_is_pow a b = let k = mk_nat_comm_monoid in if b = 0 then begin lemma_pow0 a; LE.lemma_pow0 k a end else begin lemma_pow_unfold a b; lemma_pow_nat_is_pow a (b - 1); LE.lemma_pow_unfold k a b; () end let lemma_pow_zero b = lemma_pow_unfold 0 b let lemma_pow_one b = let k = mk_nat_comm_monoid in LE.lemma_pow_one k b; lemma_pow_nat_is_pow 1 b let lemma_pow_add x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_add k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow x m; lemma_pow_nat_is_pow x (n + m) let lemma_pow_mul x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_mul k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow (pow x n) m; lemma_pow_nat_is_pow x (n * m) let lemma_pow_double a b = let k = mk_nat_comm_monoid in LE.lemma_pow_double k a b; lemma_pow_nat_is_pow (a * a) b; lemma_pow_nat_is_pow a (b + b) let lemma_pow_mul_base a b n = let k = mk_nat_comm_monoid in LE.lemma_pow_mul_base k a b n; lemma_pow_nat_is_pow a n; lemma_pow_nat_is_pow b n; lemma_pow_nat_is_pow (a * b) n let rec lemma_pow_mod_base a b n = if b = 0 then begin lemma_pow0 a; lemma_pow0 (a % n) end else begin calc (==) { pow a b % n; (==) { lemma_pow_unfold a b } a * pow a (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n } a * (pow a (b - 1) % n) % n; (==) { lemma_pow_mod_base a (b - 1) n } a * (pow (a % n) (b - 1) % n) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow (a % n) (b - 1)) n } a * pow (a % n) (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l a (pow (a % n) (b - 1)) n } a % n * pow (a % n) (b - 1) % n; (==) { lemma_pow_unfold (a % n) b } pow (a % n) b % n; }; assert (pow a b % n == pow (a % n) b % n) end let lemma_mul_mod_one #m a = () let lemma_mul_mod_assoc #m a b c = calc (==) { (a * b % m) * c % m; (==) { Math.Lemmas.lemma_mod_mul_distr_l (a * b) c m } (a * b) * c % m; (==) { Math.Lemmas.paren_mul_right a b c } a * (b * c) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b * c) m } a * (b * c % m) % m; } let lemma_mul_mod_comm #m a b = () let pow_mod #m a b = pow_mod_ #m a b let pow_mod_def #m a b = () #push-options "--fuel 2" val lemma_pow_mod0: #n:pos{1 < n} -> a:nat_mod n -> Lemma (pow_mod #n a 0 == 1) let lemma_pow_mod0 #n a = () val lemma_pow_mod_unfold0: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 0} -> Lemma (pow_mod #n a b == pow_mod (mul_mod a a) (b / 2)) let lemma_pow_mod_unfold0 n a b = () val lemma_pow_mod_unfold1: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 1} -> Lemma (pow_mod #n a b == mul_mod a (pow_mod (mul_mod a a) (b / 2))) let lemma_pow_mod_unfold1 n a b = () #pop-options val lemma_pow_mod_: n:pos{1 < n} -> a:nat_mod n -> b:nat -> Lemma (ensures (pow_mod #n a b == pow a b % n)) (decreases b) let rec lemma_pow_mod_ n a b = if b = 0 then begin lemma_pow0 a; lemma_pow_mod0 a end else begin if b % 2 = 0 then begin calc (==) { pow_mod #n a b; (==) { lemma_pow_mod_unfold0 n a b } pow_mod #n (mul_mod #n a a) (b / 2); (==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) } pow (mul_mod #n a a) (b / 2) % n; (==) { lemma_pow_mod_base (a * a) (b / 2) n } pow (a * a) (b / 2) % n; (==) { lemma_pow_double a (b / 2) } pow a b % n; }; assert (pow_mod #n a b == pow a b % n) end else begin calc (==) { pow_mod #n a b; (==) { lemma_pow_mod_unfold1 n a b } mul_mod a (pow_mod (mul_mod #n a a) (b / 2)); (==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) } mul_mod a (pow (mul_mod #n a a) (b / 2) % n); (==) { lemma_pow_mod_base (a * a) (b / 2) n } mul_mod a (pow (a * a) (b / 2) % n); (==) { lemma_pow_double a (b / 2) } mul_mod a (pow a (b / 2 * 2) % n); (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b / 2 * 2)) n } a * pow a (b / 2 * 2) % n; (==) { lemma_pow1 a } pow a 1 * pow a (b / 2 * 2) % n; (==) { lemma_pow_add a 1 (b / 2 * 2) } pow a (b / 2 * 2 + 1) % n; (==) { Math.Lemmas.euclidean_division_definition b 2 } pow a b % n; }; assert (pow_mod #n a b == pow a b % n) end end let lemma_pow_mod #n a b = lemma_pow_mod_ n a b let rec lemma_pow_nat_mod_is_pow #n a b = let k = mk_nat_mod_comm_monoid n in if b = 0 then begin lemma_pow0 a; LE.lemma_pow0 k a end else begin calc (==) { pow a b % n; (==) { lemma_pow_unfold a b } a * pow a (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n } a * (pow a (b - 1) % n) % n; (==) { lemma_pow_nat_mod_is_pow #n a (b - 1) } a * LE.pow k a (b - 1) % n; (==) { } k.LE.mul a (LE.pow k a (b - 1)); (==) { LE.lemma_pow_unfold k a b } LE.pow k a b; }; () end let lemma_add_mod_one #m a = Math.Lemmas.small_mod a m
false
false
Lib.NatMod.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_add_mod_assoc: #m:pos -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m -> Lemma (add_mod (add_mod a b) c == add_mod a (add_mod b c))
[]
Lib.NatMod.lemma_add_mod_assoc
{ "file_name": "lib/Lib.NatMod.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.NatMod.nat_mod m -> b: Lib.NatMod.nat_mod m -> c: Lib.NatMod.nat_mod m -> FStar.Pervasives.Lemma (ensures Lib.NatMod.add_mod (Lib.NatMod.add_mod a b) c == Lib.NatMod.add_mod a (Lib.NatMod.add_mod b c) )
{ "end_col": 3, "end_line": 223, "start_col": 2, "start_line": 215 }
FStar.Pervasives.Lemma
val lemma_pow_add: x:int -> n:nat -> m:nat -> Lemma (pow x n * pow x m = pow x (n + m))
[ { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.Math.Fermat", "short_module": "Fermat" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_pow_add x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_add k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow x m; lemma_pow_nat_is_pow x (n + m)
val lemma_pow_add: x:int -> n:nat -> m:nat -> Lemma (pow x n * pow x m = pow x (n + m)) let lemma_pow_add x n m =
false
null
true
let k = mk_nat_comm_monoid in LE.lemma_pow_add k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow x m; lemma_pow_nat_is_pow x (n + m)
{ "checked_file": "Lib.NatMod.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.NatMod.fst" }
[ "lemma" ]
[ "Prims.int", "Prims.nat", "Lib.NatMod.lemma_pow_nat_is_pow", "Prims.op_Addition", "Prims.unit", "Lib.Exponentiation.Definition.lemma_pow_add", "Lib.Exponentiation.Definition.comm_monoid", "Lib.NatMod.mk_nat_comm_monoid" ]
[]
module Lib.NatMod module LE = Lib.Exponentiation.Definition #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" #push-options "--fuel 2" let lemma_pow0 a = () let lemma_pow1 a = () let lemma_pow_unfold a b = () #pop-options let rec lemma_pow_gt_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_gt_zero a (b - 1) end let rec lemma_pow_ge_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_ge_zero a (b - 1) end let rec lemma_pow_nat_is_pow a b = let k = mk_nat_comm_monoid in if b = 0 then begin lemma_pow0 a; LE.lemma_pow0 k a end else begin lemma_pow_unfold a b; lemma_pow_nat_is_pow a (b - 1); LE.lemma_pow_unfold k a b; () end let lemma_pow_zero b = lemma_pow_unfold 0 b let lemma_pow_one b = let k = mk_nat_comm_monoid in LE.lemma_pow_one k b; lemma_pow_nat_is_pow 1 b
false
false
Lib.NatMod.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_pow_add: x:int -> n:nat -> m:nat -> Lemma (pow x n * pow x m = pow x (n + m))
[]
Lib.NatMod.lemma_pow_add
{ "file_name": "lib/Lib.NatMod.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Prims.int -> n: Prims.nat -> m: Prims.nat -> FStar.Pervasives.Lemma (ensures Lib.NatMod.pow x n * Lib.NatMod.pow x m = Lib.NatMod.pow x (n + m))
{ "end_col": 32, "end_line": 56, "start_col": 25, "start_line": 51 }
FStar.Pervasives.Lemma
val lemma_add_mod_one: #m:pos -> a:nat_mod m -> Lemma (add_mod a 0 == a)
[ { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.Math.Fermat", "short_module": "Fermat" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_add_mod_one #m a = Math.Lemmas.small_mod a m
val lemma_add_mod_one: #m:pos -> a:nat_mod m -> Lemma (add_mod a 0 == a) let lemma_add_mod_one #m a =
false
null
true
Math.Lemmas.small_mod a m
{ "checked_file": "Lib.NatMod.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.NatMod.fst" }
[ "lemma" ]
[ "Prims.pos", "Lib.NatMod.nat_mod", "FStar.Math.Lemmas.small_mod", "Prims.unit" ]
[]
module Lib.NatMod module LE = Lib.Exponentiation.Definition #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" #push-options "--fuel 2" let lemma_pow0 a = () let lemma_pow1 a = () let lemma_pow_unfold a b = () #pop-options let rec lemma_pow_gt_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_gt_zero a (b - 1) end let rec lemma_pow_ge_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_ge_zero a (b - 1) end let rec lemma_pow_nat_is_pow a b = let k = mk_nat_comm_monoid in if b = 0 then begin lemma_pow0 a; LE.lemma_pow0 k a end else begin lemma_pow_unfold a b; lemma_pow_nat_is_pow a (b - 1); LE.lemma_pow_unfold k a b; () end let lemma_pow_zero b = lemma_pow_unfold 0 b let lemma_pow_one b = let k = mk_nat_comm_monoid in LE.lemma_pow_one k b; lemma_pow_nat_is_pow 1 b let lemma_pow_add x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_add k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow x m; lemma_pow_nat_is_pow x (n + m) let lemma_pow_mul x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_mul k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow (pow x n) m; lemma_pow_nat_is_pow x (n * m) let lemma_pow_double a b = let k = mk_nat_comm_monoid in LE.lemma_pow_double k a b; lemma_pow_nat_is_pow (a * a) b; lemma_pow_nat_is_pow a (b + b) let lemma_pow_mul_base a b n = let k = mk_nat_comm_monoid in LE.lemma_pow_mul_base k a b n; lemma_pow_nat_is_pow a n; lemma_pow_nat_is_pow b n; lemma_pow_nat_is_pow (a * b) n let rec lemma_pow_mod_base a b n = if b = 0 then begin lemma_pow0 a; lemma_pow0 (a % n) end else begin calc (==) { pow a b % n; (==) { lemma_pow_unfold a b } a * pow a (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n } a * (pow a (b - 1) % n) % n; (==) { lemma_pow_mod_base a (b - 1) n } a * (pow (a % n) (b - 1) % n) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow (a % n) (b - 1)) n } a * pow (a % n) (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l a (pow (a % n) (b - 1)) n } a % n * pow (a % n) (b - 1) % n; (==) { lemma_pow_unfold (a % n) b } pow (a % n) b % n; }; assert (pow a b % n == pow (a % n) b % n) end let lemma_mul_mod_one #m a = () let lemma_mul_mod_assoc #m a b c = calc (==) { (a * b % m) * c % m; (==) { Math.Lemmas.lemma_mod_mul_distr_l (a * b) c m } (a * b) * c % m; (==) { Math.Lemmas.paren_mul_right a b c } a * (b * c) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b * c) m } a * (b * c % m) % m; } let lemma_mul_mod_comm #m a b = () let pow_mod #m a b = pow_mod_ #m a b let pow_mod_def #m a b = () #push-options "--fuel 2" val lemma_pow_mod0: #n:pos{1 < n} -> a:nat_mod n -> Lemma (pow_mod #n a 0 == 1) let lemma_pow_mod0 #n a = () val lemma_pow_mod_unfold0: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 0} -> Lemma (pow_mod #n a b == pow_mod (mul_mod a a) (b / 2)) let lemma_pow_mod_unfold0 n a b = () val lemma_pow_mod_unfold1: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 1} -> Lemma (pow_mod #n a b == mul_mod a (pow_mod (mul_mod a a) (b / 2))) let lemma_pow_mod_unfold1 n a b = () #pop-options val lemma_pow_mod_: n:pos{1 < n} -> a:nat_mod n -> b:nat -> Lemma (ensures (pow_mod #n a b == pow a b % n)) (decreases b) let rec lemma_pow_mod_ n a b = if b = 0 then begin lemma_pow0 a; lemma_pow_mod0 a end else begin if b % 2 = 0 then begin calc (==) { pow_mod #n a b; (==) { lemma_pow_mod_unfold0 n a b } pow_mod #n (mul_mod #n a a) (b / 2); (==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) } pow (mul_mod #n a a) (b / 2) % n; (==) { lemma_pow_mod_base (a * a) (b / 2) n } pow (a * a) (b / 2) % n; (==) { lemma_pow_double a (b / 2) } pow a b % n; }; assert (pow_mod #n a b == pow a b % n) end else begin calc (==) { pow_mod #n a b; (==) { lemma_pow_mod_unfold1 n a b } mul_mod a (pow_mod (mul_mod #n a a) (b / 2)); (==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) } mul_mod a (pow (mul_mod #n a a) (b / 2) % n); (==) { lemma_pow_mod_base (a * a) (b / 2) n } mul_mod a (pow (a * a) (b / 2) % n); (==) { lemma_pow_double a (b / 2) } mul_mod a (pow a (b / 2 * 2) % n); (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b / 2 * 2)) n } a * pow a (b / 2 * 2) % n; (==) { lemma_pow1 a } pow a 1 * pow a (b / 2 * 2) % n; (==) { lemma_pow_add a 1 (b / 2 * 2) } pow a (b / 2 * 2 + 1) % n; (==) { Math.Lemmas.euclidean_division_definition b 2 } pow a b % n; }; assert (pow_mod #n a b == pow a b % n) end end let lemma_pow_mod #n a b = lemma_pow_mod_ n a b let rec lemma_pow_nat_mod_is_pow #n a b = let k = mk_nat_mod_comm_monoid n in if b = 0 then begin lemma_pow0 a; LE.lemma_pow0 k a end else begin calc (==) { pow a b % n; (==) { lemma_pow_unfold a b } a * pow a (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n } a * (pow a (b - 1) % n) % n; (==) { lemma_pow_nat_mod_is_pow #n a (b - 1) } a * LE.pow k a (b - 1) % n; (==) { } k.LE.mul a (LE.pow k a (b - 1)); (==) { LE.lemma_pow_unfold k a b } LE.pow k a b; }; () end
false
false
Lib.NatMod.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_add_mod_one: #m:pos -> a:nat_mod m -> Lemma (add_mod a 0 == a)
[]
Lib.NatMod.lemma_add_mod_one
{ "file_name": "lib/Lib.NatMod.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.NatMod.nat_mod m -> FStar.Pervasives.Lemma (ensures Lib.NatMod.add_mod a 0 == a)
{ "end_col": 27, "end_line": 211, "start_col": 2, "start_line": 211 }
FStar.Pervasives.Lemma
val lemma_mul_mod_prime_zero: #m:prime -> a:nat_mod m -> b:nat_mod m -> Lemma (a * b % m == 0 <==> (a % m == 0 \/ b % m == 0))
[ { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.Math.Fermat", "short_module": "Fermat" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_mul_mod_prime_zero #m a b = Classical.move_requires_3 Euclid.euclid_prime m a b; Classical.move_requires_3 lemma_mul_mod_zero2 m a b
val lemma_mul_mod_prime_zero: #m:prime -> a:nat_mod m -> b:nat_mod m -> Lemma (a * b % m == 0 <==> (a % m == 0 \/ b % m == 0)) let lemma_mul_mod_prime_zero #m a b =
false
null
true
Classical.move_requires_3 Euclid.euclid_prime m a b; Classical.move_requires_3 lemma_mul_mod_zero2 m a b
{ "checked_file": "Lib.NatMod.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.NatMod.fst" }
[ "lemma" ]
[ "Lib.NatMod.prime", "Lib.NatMod.nat_mod", "FStar.Classical.move_requires_3", "Prims.pos", "Prims.int", "Prims.l_or", "Prims.eq2", "Prims.op_Modulus", "FStar.Mul.op_Star", "Lib.NatMod.lemma_mul_mod_zero2", "Prims.unit", "FStar.Math.Euclid.is_prime", "Prims.b2t", "Prims.op_Equality", "FStar.Math.Euclid.euclid_prime" ]
[]
module Lib.NatMod module LE = Lib.Exponentiation.Definition #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" #push-options "--fuel 2" let lemma_pow0 a = () let lemma_pow1 a = () let lemma_pow_unfold a b = () #pop-options let rec lemma_pow_gt_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_gt_zero a (b - 1) end let rec lemma_pow_ge_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_ge_zero a (b - 1) end let rec lemma_pow_nat_is_pow a b = let k = mk_nat_comm_monoid in if b = 0 then begin lemma_pow0 a; LE.lemma_pow0 k a end else begin lemma_pow_unfold a b; lemma_pow_nat_is_pow a (b - 1); LE.lemma_pow_unfold k a b; () end let lemma_pow_zero b = lemma_pow_unfold 0 b let lemma_pow_one b = let k = mk_nat_comm_monoid in LE.lemma_pow_one k b; lemma_pow_nat_is_pow 1 b let lemma_pow_add x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_add k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow x m; lemma_pow_nat_is_pow x (n + m) let lemma_pow_mul x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_mul k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow (pow x n) m; lemma_pow_nat_is_pow x (n * m) let lemma_pow_double a b = let k = mk_nat_comm_monoid in LE.lemma_pow_double k a b; lemma_pow_nat_is_pow (a * a) b; lemma_pow_nat_is_pow a (b + b) let lemma_pow_mul_base a b n = let k = mk_nat_comm_monoid in LE.lemma_pow_mul_base k a b n; lemma_pow_nat_is_pow a n; lemma_pow_nat_is_pow b n; lemma_pow_nat_is_pow (a * b) n let rec lemma_pow_mod_base a b n = if b = 0 then begin lemma_pow0 a; lemma_pow0 (a % n) end else begin calc (==) { pow a b % n; (==) { lemma_pow_unfold a b } a * pow a (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n } a * (pow a (b - 1) % n) % n; (==) { lemma_pow_mod_base a (b - 1) n } a * (pow (a % n) (b - 1) % n) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow (a % n) (b - 1)) n } a * pow (a % n) (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l a (pow (a % n) (b - 1)) n } a % n * pow (a % n) (b - 1) % n; (==) { lemma_pow_unfold (a % n) b } pow (a % n) b % n; }; assert (pow a b % n == pow (a % n) b % n) end let lemma_mul_mod_one #m a = () let lemma_mul_mod_assoc #m a b c = calc (==) { (a * b % m) * c % m; (==) { Math.Lemmas.lemma_mod_mul_distr_l (a * b) c m } (a * b) * c % m; (==) { Math.Lemmas.paren_mul_right a b c } a * (b * c) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b * c) m } a * (b * c % m) % m; } let lemma_mul_mod_comm #m a b = () let pow_mod #m a b = pow_mod_ #m a b let pow_mod_def #m a b = () #push-options "--fuel 2" val lemma_pow_mod0: #n:pos{1 < n} -> a:nat_mod n -> Lemma (pow_mod #n a 0 == 1) let lemma_pow_mod0 #n a = () val lemma_pow_mod_unfold0: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 0} -> Lemma (pow_mod #n a b == pow_mod (mul_mod a a) (b / 2)) let lemma_pow_mod_unfold0 n a b = () val lemma_pow_mod_unfold1: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 1} -> Lemma (pow_mod #n a b == mul_mod a (pow_mod (mul_mod a a) (b / 2))) let lemma_pow_mod_unfold1 n a b = () #pop-options val lemma_pow_mod_: n:pos{1 < n} -> a:nat_mod n -> b:nat -> Lemma (ensures (pow_mod #n a b == pow a b % n)) (decreases b) let rec lemma_pow_mod_ n a b = if b = 0 then begin lemma_pow0 a; lemma_pow_mod0 a end else begin if b % 2 = 0 then begin calc (==) { pow_mod #n a b; (==) { lemma_pow_mod_unfold0 n a b } pow_mod #n (mul_mod #n a a) (b / 2); (==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) } pow (mul_mod #n a a) (b / 2) % n; (==) { lemma_pow_mod_base (a * a) (b / 2) n } pow (a * a) (b / 2) % n; (==) { lemma_pow_double a (b / 2) } pow a b % n; }; assert (pow_mod #n a b == pow a b % n) end else begin calc (==) { pow_mod #n a b; (==) { lemma_pow_mod_unfold1 n a b } mul_mod a (pow_mod (mul_mod #n a a) (b / 2)); (==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) } mul_mod a (pow (mul_mod #n a a) (b / 2) % n); (==) { lemma_pow_mod_base (a * a) (b / 2) n } mul_mod a (pow (a * a) (b / 2) % n); (==) { lemma_pow_double a (b / 2) } mul_mod a (pow a (b / 2 * 2) % n); (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b / 2 * 2)) n } a * pow a (b / 2 * 2) % n; (==) { lemma_pow1 a } pow a 1 * pow a (b / 2 * 2) % n; (==) { lemma_pow_add a 1 (b / 2 * 2) } pow a (b / 2 * 2 + 1) % n; (==) { Math.Lemmas.euclidean_division_definition b 2 } pow a b % n; }; assert (pow_mod #n a b == pow a b % n) end end let lemma_pow_mod #n a b = lemma_pow_mod_ n a b let rec lemma_pow_nat_mod_is_pow #n a b = let k = mk_nat_mod_comm_monoid n in if b = 0 then begin lemma_pow0 a; LE.lemma_pow0 k a end else begin calc (==) { pow a b % n; (==) { lemma_pow_unfold a b } a * pow a (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n } a * (pow a (b - 1) % n) % n; (==) { lemma_pow_nat_mod_is_pow #n a (b - 1) } a * LE.pow k a (b - 1) % n; (==) { } k.LE.mul a (LE.pow k a (b - 1)); (==) { LE.lemma_pow_unfold k a b } LE.pow k a b; }; () end let lemma_add_mod_one #m a = Math.Lemmas.small_mod a m let lemma_add_mod_assoc #m a b c = calc (==) { add_mod (add_mod a b) c; (==) { Math.Lemmas.lemma_mod_plus_distr_l (a + b) c m } ((a + b) + c) % m; (==) { } (a + (b + c)) % m; (==) { Math.Lemmas.lemma_mod_plus_distr_r a (b + c) m } add_mod a (add_mod b c); } let lemma_add_mod_comm #m a b = () let lemma_mod_distributivity_add_right #m a b c = calc (==) { mul_mod a (add_mod b c); (==) { } a * ((b + c) % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b + c) m } a * (b + c) % m; (==) { Math.Lemmas.distributivity_add_right a b c } (a * b + a * c) % m; (==) { Math.Lemmas.modulo_distributivity (a * b) (a * c) m } add_mod (mul_mod a b) (mul_mod a c); } let lemma_mod_distributivity_add_left #m a b c = lemma_mod_distributivity_add_right c a b let lemma_mod_distributivity_sub_right #m a b c = calc (==) { mul_mod a (sub_mod b c); (==) { } a * ((b - c) % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b - c) m } a * (b - c) % m; (==) { Math.Lemmas.distributivity_sub_right a b c } (a * b - a * c) % m; (==) { Math.Lemmas.lemma_mod_plus_distr_l (a * b) (- a * c) m } (mul_mod a b - a * c) % m; (==) { Math.Lemmas.lemma_mod_sub_distr (mul_mod a b) (a * c) m } sub_mod (mul_mod a b) (mul_mod a c); } let lemma_mod_distributivity_sub_left #m a b c = lemma_mod_distributivity_sub_right c a b let lemma_inv_mod_both #m a b = let p1 = pow a (m - 2) in let p2 = pow b (m - 2) in calc (==) { mul_mod (inv_mod a) (inv_mod b); (==) { lemma_pow_mod #m a (m - 2); lemma_pow_mod #m b (m - 2) } p1 % m * (p2 % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_l p1 (p2 % m) m } p1 * (p2 % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r p1 p2 m } p1 * p2 % m; (==) { lemma_pow_mul_base a b (m - 2) } pow (a * b) (m - 2) % m; (==) { lemma_pow_mod_base (a * b) (m - 2) m } pow (mul_mod a b) (m - 2) % m; (==) { lemma_pow_mod #m (mul_mod a b) (m - 2) } inv_mod (mul_mod a b); } #push-options "--fuel 1" val pow_eq: a:nat -> n:nat -> Lemma (Fermat.pow a n == pow a n) let rec pow_eq a n = if n = 0 then () else pow_eq a (n - 1) #pop-options let lemma_div_mod_prime #m a = Math.Lemmas.small_mod a m; assert (a == a % m); assert (a <> 0 /\ a % m <> 0); calc (==) { pow_mod #m a (m - 2) * a % m; (==) { lemma_pow_mod #m a (m - 2) } pow a (m - 2) % m * a % m; (==) { Math.Lemmas.lemma_mod_mul_distr_l (pow a (m - 2)) a m } pow a (m - 2) * a % m; (==) { lemma_pow1 a; lemma_pow_add a (m - 2) 1 } pow a (m - 1) % m; (==) { pow_eq a (m - 1) } Fermat.pow a (m - 1) % m; (==) { Fermat.fermat_alt m a } 1; } let lemma_div_mod_prime_one #m a = lemma_pow_mod #m 1 (m - 2); lemma_pow_one (m - 2); Math.Lemmas.small_mod 1 m let lemma_div_mod_prime_cancel #m a b c = calc (==) { mul_mod (mul_mod a c) (inv_mod (mul_mod c b)); (==) { lemma_inv_mod_both c b } mul_mod (mul_mod a c) (mul_mod (inv_mod c) (inv_mod b)); (==) { lemma_mul_mod_assoc (mul_mod a c) (inv_mod c) (inv_mod b) } mul_mod (mul_mod (mul_mod a c) (inv_mod c)) (inv_mod b); (==) { lemma_mul_mod_assoc a c (inv_mod c) } mul_mod (mul_mod a (mul_mod c (inv_mod c))) (inv_mod b); (==) { lemma_div_mod_prime c } mul_mod (mul_mod a 1) (inv_mod b); (==) { Math.Lemmas.small_mod a m } mul_mod a (inv_mod b); } let lemma_div_mod_prime_to_one_denominator #m a b c d = calc (==) { mul_mod (div_mod a c) (div_mod b d); (==) { } mul_mod (mul_mod a (inv_mod c)) (mul_mod b (inv_mod d)); (==) { lemma_mul_mod_comm #m b (inv_mod d); lemma_mul_mod_assoc #m (mul_mod a (inv_mod c)) (inv_mod d) b } mul_mod (mul_mod (mul_mod a (inv_mod c)) (inv_mod d)) b; (==) { lemma_mul_mod_assoc #m a (inv_mod c) (inv_mod d) } mul_mod (mul_mod a (mul_mod (inv_mod c) (inv_mod d))) b; (==) { lemma_inv_mod_both c d } mul_mod (mul_mod a (inv_mod (mul_mod c d))) b; (==) { lemma_mul_mod_assoc #m a (inv_mod (mul_mod c d)) b; lemma_mul_mod_comm #m (inv_mod (mul_mod c d)) b; lemma_mul_mod_assoc #m a b (inv_mod (mul_mod c d)) } mul_mod (mul_mod a b) (inv_mod (mul_mod c d)); } val lemma_div_mod_eq_mul_mod1: #m:prime -> a:nat_mod m -> b:nat_mod m{b <> 0} -> c:nat_mod m -> Lemma (div_mod a b = c ==> a = mul_mod c b) let lemma_div_mod_eq_mul_mod1 #m a b c = if div_mod a b = c then begin assert (mul_mod (div_mod a b) b = mul_mod c b); calc (==) { mul_mod (div_mod a b) b; (==) { lemma_div_mod_prime_one b } mul_mod (div_mod a b) (div_mod b 1); (==) { lemma_div_mod_prime_to_one_denominator a b b 1 } div_mod (mul_mod a b) (mul_mod b 1); (==) { lemma_div_mod_prime_cancel a 1 b } div_mod a 1; (==) { lemma_div_mod_prime_one a } a; } end else () val lemma_div_mod_eq_mul_mod2: #m:prime -> a:nat_mod m -> b:nat_mod m{b <> 0} -> c:nat_mod m -> Lemma (a = mul_mod c b ==> div_mod a b = c) let lemma_div_mod_eq_mul_mod2 #m a b c = if a = mul_mod c b then begin assert (div_mod a b == div_mod (mul_mod c b) b); calc (==) { div_mod (mul_mod c b) b; (==) { Math.Lemmas.small_mod b m } div_mod (mul_mod c b) (mul_mod b 1); (==) { lemma_div_mod_prime_cancel c 1 b } div_mod c 1; (==) { lemma_div_mod_prime_one c } c; } end else () let lemma_div_mod_eq_mul_mod #m a b c = lemma_div_mod_eq_mul_mod1 a b c; lemma_div_mod_eq_mul_mod2 a b c val lemma_mul_mod_zero2: n:pos -> x:int -> y:int -> Lemma (requires x % n == 0 \/ y % n == 0) (ensures x * y % n == 0) let lemma_mul_mod_zero2 n x y = if x % n = 0 then Math.Lemmas.lemma_mod_mul_distr_l x y n else Math.Lemmas.lemma_mod_mul_distr_r x y n
false
false
Lib.NatMod.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_mul_mod_prime_zero: #m:prime -> a:nat_mod m -> b:nat_mod m -> Lemma (a * b % m == 0 <==> (a % m == 0 \/ b % m == 0))
[]
Lib.NatMod.lemma_mul_mod_prime_zero
{ "file_name": "lib/Lib.NatMod.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.NatMod.nat_mod m -> b: Lib.NatMod.nat_mod m -> FStar.Pervasives.Lemma (ensures a * b % m == 0 <==> a % m == 0 \/ b % m == 0)
{ "end_col": 53, "end_line": 415, "start_col": 2, "start_line": 414 }
FStar.Pervasives.Lemma
val lemma_div_mod_is_zero1: #m:pos{2 < m} -> a:nat_mod m -> b:nat_mod m -> Lemma (requires a = 0 || b = 0) (ensures div_mod a b = 0)
[ { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.Math.Fermat", "short_module": "Fermat" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_div_mod_is_zero1 #m a b = if a = 0 then () else begin lemma_pow_mod #m b (m - 2); lemma_pow_zero (m - 2) end
val lemma_div_mod_is_zero1: #m:pos{2 < m} -> a:nat_mod m -> b:nat_mod m -> Lemma (requires a = 0 || b = 0) (ensures div_mod a b = 0) let lemma_div_mod_is_zero1 #m a b =
false
null
true
if a = 0 then () else (lemma_pow_mod #m b (m - 2); lemma_pow_zero (m - 2))
{ "checked_file": "Lib.NatMod.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.NatMod.fst" }
[ "lemma" ]
[ "Prims.pos", "Prims.b2t", "Prims.op_LessThan", "Lib.NatMod.nat_mod", "Prims.op_Equality", "Prims.int", "Prims.bool", "Lib.NatMod.lemma_pow_zero", "Prims.op_Subtraction", "Prims.unit", "Lib.NatMod.lemma_pow_mod" ]
[]
module Lib.NatMod module LE = Lib.Exponentiation.Definition #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" #push-options "--fuel 2" let lemma_pow0 a = () let lemma_pow1 a = () let lemma_pow_unfold a b = () #pop-options let rec lemma_pow_gt_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_gt_zero a (b - 1) end let rec lemma_pow_ge_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_ge_zero a (b - 1) end let rec lemma_pow_nat_is_pow a b = let k = mk_nat_comm_monoid in if b = 0 then begin lemma_pow0 a; LE.lemma_pow0 k a end else begin lemma_pow_unfold a b; lemma_pow_nat_is_pow a (b - 1); LE.lemma_pow_unfold k a b; () end let lemma_pow_zero b = lemma_pow_unfold 0 b let lemma_pow_one b = let k = mk_nat_comm_monoid in LE.lemma_pow_one k b; lemma_pow_nat_is_pow 1 b let lemma_pow_add x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_add k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow x m; lemma_pow_nat_is_pow x (n + m) let lemma_pow_mul x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_mul k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow (pow x n) m; lemma_pow_nat_is_pow x (n * m) let lemma_pow_double a b = let k = mk_nat_comm_monoid in LE.lemma_pow_double k a b; lemma_pow_nat_is_pow (a * a) b; lemma_pow_nat_is_pow a (b + b) let lemma_pow_mul_base a b n = let k = mk_nat_comm_monoid in LE.lemma_pow_mul_base k a b n; lemma_pow_nat_is_pow a n; lemma_pow_nat_is_pow b n; lemma_pow_nat_is_pow (a * b) n let rec lemma_pow_mod_base a b n = if b = 0 then begin lemma_pow0 a; lemma_pow0 (a % n) end else begin calc (==) { pow a b % n; (==) { lemma_pow_unfold a b } a * pow a (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n } a * (pow a (b - 1) % n) % n; (==) { lemma_pow_mod_base a (b - 1) n } a * (pow (a % n) (b - 1) % n) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow (a % n) (b - 1)) n } a * pow (a % n) (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l a (pow (a % n) (b - 1)) n } a % n * pow (a % n) (b - 1) % n; (==) { lemma_pow_unfold (a % n) b } pow (a % n) b % n; }; assert (pow a b % n == pow (a % n) b % n) end let lemma_mul_mod_one #m a = () let lemma_mul_mod_assoc #m a b c = calc (==) { (a * b % m) * c % m; (==) { Math.Lemmas.lemma_mod_mul_distr_l (a * b) c m } (a * b) * c % m; (==) { Math.Lemmas.paren_mul_right a b c } a * (b * c) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b * c) m } a * (b * c % m) % m; } let lemma_mul_mod_comm #m a b = () let pow_mod #m a b = pow_mod_ #m a b let pow_mod_def #m a b = () #push-options "--fuel 2" val lemma_pow_mod0: #n:pos{1 < n} -> a:nat_mod n -> Lemma (pow_mod #n a 0 == 1) let lemma_pow_mod0 #n a = () val lemma_pow_mod_unfold0: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 0} -> Lemma (pow_mod #n a b == pow_mod (mul_mod a a) (b / 2)) let lemma_pow_mod_unfold0 n a b = () val lemma_pow_mod_unfold1: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 1} -> Lemma (pow_mod #n a b == mul_mod a (pow_mod (mul_mod a a) (b / 2))) let lemma_pow_mod_unfold1 n a b = () #pop-options val lemma_pow_mod_: n:pos{1 < n} -> a:nat_mod n -> b:nat -> Lemma (ensures (pow_mod #n a b == pow a b % n)) (decreases b) let rec lemma_pow_mod_ n a b = if b = 0 then begin lemma_pow0 a; lemma_pow_mod0 a end else begin if b % 2 = 0 then begin calc (==) { pow_mod #n a b; (==) { lemma_pow_mod_unfold0 n a b } pow_mod #n (mul_mod #n a a) (b / 2); (==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) } pow (mul_mod #n a a) (b / 2) % n; (==) { lemma_pow_mod_base (a * a) (b / 2) n } pow (a * a) (b / 2) % n; (==) { lemma_pow_double a (b / 2) } pow a b % n; }; assert (pow_mod #n a b == pow a b % n) end else begin calc (==) { pow_mod #n a b; (==) { lemma_pow_mod_unfold1 n a b } mul_mod a (pow_mod (mul_mod #n a a) (b / 2)); (==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) } mul_mod a (pow (mul_mod #n a a) (b / 2) % n); (==) { lemma_pow_mod_base (a * a) (b / 2) n } mul_mod a (pow (a * a) (b / 2) % n); (==) { lemma_pow_double a (b / 2) } mul_mod a (pow a (b / 2 * 2) % n); (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b / 2 * 2)) n } a * pow a (b / 2 * 2) % n; (==) { lemma_pow1 a } pow a 1 * pow a (b / 2 * 2) % n; (==) { lemma_pow_add a 1 (b / 2 * 2) } pow a (b / 2 * 2 + 1) % n; (==) { Math.Lemmas.euclidean_division_definition b 2 } pow a b % n; }; assert (pow_mod #n a b == pow a b % n) end end let lemma_pow_mod #n a b = lemma_pow_mod_ n a b let rec lemma_pow_nat_mod_is_pow #n a b = let k = mk_nat_mod_comm_monoid n in if b = 0 then begin lemma_pow0 a; LE.lemma_pow0 k a end else begin calc (==) { pow a b % n; (==) { lemma_pow_unfold a b } a * pow a (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n } a * (pow a (b - 1) % n) % n; (==) { lemma_pow_nat_mod_is_pow #n a (b - 1) } a * LE.pow k a (b - 1) % n; (==) { } k.LE.mul a (LE.pow k a (b - 1)); (==) { LE.lemma_pow_unfold k a b } LE.pow k a b; }; () end let lemma_add_mod_one #m a = Math.Lemmas.small_mod a m let lemma_add_mod_assoc #m a b c = calc (==) { add_mod (add_mod a b) c; (==) { Math.Lemmas.lemma_mod_plus_distr_l (a + b) c m } ((a + b) + c) % m; (==) { } (a + (b + c)) % m; (==) { Math.Lemmas.lemma_mod_plus_distr_r a (b + c) m } add_mod a (add_mod b c); } let lemma_add_mod_comm #m a b = () let lemma_mod_distributivity_add_right #m a b c = calc (==) { mul_mod a (add_mod b c); (==) { } a * ((b + c) % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b + c) m } a * (b + c) % m; (==) { Math.Lemmas.distributivity_add_right a b c } (a * b + a * c) % m; (==) { Math.Lemmas.modulo_distributivity (a * b) (a * c) m } add_mod (mul_mod a b) (mul_mod a c); } let lemma_mod_distributivity_add_left #m a b c = lemma_mod_distributivity_add_right c a b let lemma_mod_distributivity_sub_right #m a b c = calc (==) { mul_mod a (sub_mod b c); (==) { } a * ((b - c) % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b - c) m } a * (b - c) % m; (==) { Math.Lemmas.distributivity_sub_right a b c } (a * b - a * c) % m; (==) { Math.Lemmas.lemma_mod_plus_distr_l (a * b) (- a * c) m } (mul_mod a b - a * c) % m; (==) { Math.Lemmas.lemma_mod_sub_distr (mul_mod a b) (a * c) m } sub_mod (mul_mod a b) (mul_mod a c); } let lemma_mod_distributivity_sub_left #m a b c = lemma_mod_distributivity_sub_right c a b let lemma_inv_mod_both #m a b = let p1 = pow a (m - 2) in let p2 = pow b (m - 2) in calc (==) { mul_mod (inv_mod a) (inv_mod b); (==) { lemma_pow_mod #m a (m - 2); lemma_pow_mod #m b (m - 2) } p1 % m * (p2 % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_l p1 (p2 % m) m } p1 * (p2 % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r p1 p2 m } p1 * p2 % m; (==) { lemma_pow_mul_base a b (m - 2) } pow (a * b) (m - 2) % m; (==) { lemma_pow_mod_base (a * b) (m - 2) m } pow (mul_mod a b) (m - 2) % m; (==) { lemma_pow_mod #m (mul_mod a b) (m - 2) } inv_mod (mul_mod a b); } #push-options "--fuel 1" val pow_eq: a:nat -> n:nat -> Lemma (Fermat.pow a n == pow a n) let rec pow_eq a n = if n = 0 then () else pow_eq a (n - 1) #pop-options let lemma_div_mod_prime #m a = Math.Lemmas.small_mod a m; assert (a == a % m); assert (a <> 0 /\ a % m <> 0); calc (==) { pow_mod #m a (m - 2) * a % m; (==) { lemma_pow_mod #m a (m - 2) } pow a (m - 2) % m * a % m; (==) { Math.Lemmas.lemma_mod_mul_distr_l (pow a (m - 2)) a m } pow a (m - 2) * a % m; (==) { lemma_pow1 a; lemma_pow_add a (m - 2) 1 } pow a (m - 1) % m; (==) { pow_eq a (m - 1) } Fermat.pow a (m - 1) % m; (==) { Fermat.fermat_alt m a } 1; } let lemma_div_mod_prime_one #m a = lemma_pow_mod #m 1 (m - 2); lemma_pow_one (m - 2); Math.Lemmas.small_mod 1 m let lemma_div_mod_prime_cancel #m a b c = calc (==) { mul_mod (mul_mod a c) (inv_mod (mul_mod c b)); (==) { lemma_inv_mod_both c b } mul_mod (mul_mod a c) (mul_mod (inv_mod c) (inv_mod b)); (==) { lemma_mul_mod_assoc (mul_mod a c) (inv_mod c) (inv_mod b) } mul_mod (mul_mod (mul_mod a c) (inv_mod c)) (inv_mod b); (==) { lemma_mul_mod_assoc a c (inv_mod c) } mul_mod (mul_mod a (mul_mod c (inv_mod c))) (inv_mod b); (==) { lemma_div_mod_prime c } mul_mod (mul_mod a 1) (inv_mod b); (==) { Math.Lemmas.small_mod a m } mul_mod a (inv_mod b); } let lemma_div_mod_prime_to_one_denominator #m a b c d = calc (==) { mul_mod (div_mod a c) (div_mod b d); (==) { } mul_mod (mul_mod a (inv_mod c)) (mul_mod b (inv_mod d)); (==) { lemma_mul_mod_comm #m b (inv_mod d); lemma_mul_mod_assoc #m (mul_mod a (inv_mod c)) (inv_mod d) b } mul_mod (mul_mod (mul_mod a (inv_mod c)) (inv_mod d)) b; (==) { lemma_mul_mod_assoc #m a (inv_mod c) (inv_mod d) } mul_mod (mul_mod a (mul_mod (inv_mod c) (inv_mod d))) b; (==) { lemma_inv_mod_both c d } mul_mod (mul_mod a (inv_mod (mul_mod c d))) b; (==) { lemma_mul_mod_assoc #m a (inv_mod (mul_mod c d)) b; lemma_mul_mod_comm #m (inv_mod (mul_mod c d)) b; lemma_mul_mod_assoc #m a b (inv_mod (mul_mod c d)) } mul_mod (mul_mod a b) (inv_mod (mul_mod c d)); } val lemma_div_mod_eq_mul_mod1: #m:prime -> a:nat_mod m -> b:nat_mod m{b <> 0} -> c:nat_mod m -> Lemma (div_mod a b = c ==> a = mul_mod c b) let lemma_div_mod_eq_mul_mod1 #m a b c = if div_mod a b = c then begin assert (mul_mod (div_mod a b) b = mul_mod c b); calc (==) { mul_mod (div_mod a b) b; (==) { lemma_div_mod_prime_one b } mul_mod (div_mod a b) (div_mod b 1); (==) { lemma_div_mod_prime_to_one_denominator a b b 1 } div_mod (mul_mod a b) (mul_mod b 1); (==) { lemma_div_mod_prime_cancel a 1 b } div_mod a 1; (==) { lemma_div_mod_prime_one a } a; } end else () val lemma_div_mod_eq_mul_mod2: #m:prime -> a:nat_mod m -> b:nat_mod m{b <> 0} -> c:nat_mod m -> Lemma (a = mul_mod c b ==> div_mod a b = c) let lemma_div_mod_eq_mul_mod2 #m a b c = if a = mul_mod c b then begin assert (div_mod a b == div_mod (mul_mod c b) b); calc (==) { div_mod (mul_mod c b) b; (==) { Math.Lemmas.small_mod b m } div_mod (mul_mod c b) (mul_mod b 1); (==) { lemma_div_mod_prime_cancel c 1 b } div_mod c 1; (==) { lemma_div_mod_prime_one c } c; } end else () let lemma_div_mod_eq_mul_mod #m a b c = lemma_div_mod_eq_mul_mod1 a b c; lemma_div_mod_eq_mul_mod2 a b c val lemma_mul_mod_zero2: n:pos -> x:int -> y:int -> Lemma (requires x % n == 0 \/ y % n == 0) (ensures x * y % n == 0) let lemma_mul_mod_zero2 n x y = if x % n = 0 then Math.Lemmas.lemma_mod_mul_distr_l x y n else Math.Lemmas.lemma_mod_mul_distr_r x y n let lemma_mul_mod_prime_zero #m a b = Classical.move_requires_3 Euclid.euclid_prime m a b; Classical.move_requires_3 lemma_mul_mod_zero2 m a b val lemma_pow_mod_prime_zero_: #m:prime -> a:nat_mod m -> b:pos -> Lemma (requires pow a b % m = 0) (ensures a = 0) let rec lemma_pow_mod_prime_zero_ #m a b = if b = 1 then lemma_pow1 a else begin let r1 = pow a (b - 1) % m in lemma_pow_unfold a b; assert (a * pow a (b - 1) % m = 0); Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) m; lemma_mul_mod_prime_zero #m a r1; //assert (a = 0 \/ r1 = 0); if a = 0 then () else lemma_pow_mod_prime_zero_ #m a (b - 1) end let lemma_pow_mod_prime_zero #m a b = lemma_pow_mod #m a b; Classical.move_requires_2 lemma_pow_mod_prime_zero_ a b; Classical.move_requires lemma_pow_zero b val lemma_div_mod_is_zero1: #m:pos{2 < m} -> a:nat_mod m -> b:nat_mod m -> Lemma (requires a = 0 || b = 0) (ensures div_mod a b = 0)
false
false
Lib.NatMod.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_div_mod_is_zero1: #m:pos{2 < m} -> a:nat_mod m -> b:nat_mod m -> Lemma (requires a = 0 || b = 0) (ensures div_mod a b = 0)
[]
Lib.NatMod.lemma_div_mod_is_zero1
{ "file_name": "lib/Lib.NatMod.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.NatMod.nat_mod m -> b: Lib.NatMod.nat_mod m -> FStar.Pervasives.Lemma (requires a = 0 || b = 0) (ensures Lib.NatMod.div_mod a b = 0)
{ "end_col": 30, "end_line": 448, "start_col": 2, "start_line": 445 }
FStar.Pervasives.Lemma
val lemma_div_mod_eq_mul_mod2: #m:prime -> a:nat_mod m -> b:nat_mod m{b <> 0} -> c:nat_mod m -> Lemma (a = mul_mod c b ==> div_mod a b = c)
[ { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.Math.Fermat", "short_module": "Fermat" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_div_mod_eq_mul_mod2 #m a b c = if a = mul_mod c b then begin assert (div_mod a b == div_mod (mul_mod c b) b); calc (==) { div_mod (mul_mod c b) b; (==) { Math.Lemmas.small_mod b m } div_mod (mul_mod c b) (mul_mod b 1); (==) { lemma_div_mod_prime_cancel c 1 b } div_mod c 1; (==) { lemma_div_mod_prime_one c } c; } end else ()
val lemma_div_mod_eq_mul_mod2: #m:prime -> a:nat_mod m -> b:nat_mod m{b <> 0} -> c:nat_mod m -> Lemma (a = mul_mod c b ==> div_mod a b = c) let lemma_div_mod_eq_mul_mod2 #m a b c =
false
null
true
if a = mul_mod c b then (assert (div_mod a b == div_mod (mul_mod c b) b); calc ( == ) { div_mod (mul_mod c b) b; ( == ) { Math.Lemmas.small_mod b m } div_mod (mul_mod c b) (mul_mod b 1); ( == ) { lemma_div_mod_prime_cancel c 1 b } div_mod c 1; ( == ) { lemma_div_mod_prime_one c } c; })
{ "checked_file": "Lib.NatMod.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.NatMod.fst" }
[ "lemma" ]
[ "Lib.NatMod.prime", "Lib.NatMod.nat_mod", "Prims.b2t", "Prims.op_disEquality", "Prims.int", "Prims.op_Equality", "Lib.NatMod.mul_mod", "FStar.Calc.calc_finish", "Prims.eq2", "Lib.NatMod.div_mod", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.small_mod", "Prims.squash", "Lib.NatMod.lemma_div_mod_prime_cancel", "Lib.NatMod.lemma_div_mod_prime_one", "Prims._assert", "Prims.bool" ]
[]
module Lib.NatMod module LE = Lib.Exponentiation.Definition #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" #push-options "--fuel 2" let lemma_pow0 a = () let lemma_pow1 a = () let lemma_pow_unfold a b = () #pop-options let rec lemma_pow_gt_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_gt_zero a (b - 1) end let rec lemma_pow_ge_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_ge_zero a (b - 1) end let rec lemma_pow_nat_is_pow a b = let k = mk_nat_comm_monoid in if b = 0 then begin lemma_pow0 a; LE.lemma_pow0 k a end else begin lemma_pow_unfold a b; lemma_pow_nat_is_pow a (b - 1); LE.lemma_pow_unfold k a b; () end let lemma_pow_zero b = lemma_pow_unfold 0 b let lemma_pow_one b = let k = mk_nat_comm_monoid in LE.lemma_pow_one k b; lemma_pow_nat_is_pow 1 b let lemma_pow_add x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_add k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow x m; lemma_pow_nat_is_pow x (n + m) let lemma_pow_mul x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_mul k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow (pow x n) m; lemma_pow_nat_is_pow x (n * m) let lemma_pow_double a b = let k = mk_nat_comm_monoid in LE.lemma_pow_double k a b; lemma_pow_nat_is_pow (a * a) b; lemma_pow_nat_is_pow a (b + b) let lemma_pow_mul_base a b n = let k = mk_nat_comm_monoid in LE.lemma_pow_mul_base k a b n; lemma_pow_nat_is_pow a n; lemma_pow_nat_is_pow b n; lemma_pow_nat_is_pow (a * b) n let rec lemma_pow_mod_base a b n = if b = 0 then begin lemma_pow0 a; lemma_pow0 (a % n) end else begin calc (==) { pow a b % n; (==) { lemma_pow_unfold a b } a * pow a (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n } a * (pow a (b - 1) % n) % n; (==) { lemma_pow_mod_base a (b - 1) n } a * (pow (a % n) (b - 1) % n) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow (a % n) (b - 1)) n } a * pow (a % n) (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l a (pow (a % n) (b - 1)) n } a % n * pow (a % n) (b - 1) % n; (==) { lemma_pow_unfold (a % n) b } pow (a % n) b % n; }; assert (pow a b % n == pow (a % n) b % n) end let lemma_mul_mod_one #m a = () let lemma_mul_mod_assoc #m a b c = calc (==) { (a * b % m) * c % m; (==) { Math.Lemmas.lemma_mod_mul_distr_l (a * b) c m } (a * b) * c % m; (==) { Math.Lemmas.paren_mul_right a b c } a * (b * c) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b * c) m } a * (b * c % m) % m; } let lemma_mul_mod_comm #m a b = () let pow_mod #m a b = pow_mod_ #m a b let pow_mod_def #m a b = () #push-options "--fuel 2" val lemma_pow_mod0: #n:pos{1 < n} -> a:nat_mod n -> Lemma (pow_mod #n a 0 == 1) let lemma_pow_mod0 #n a = () val lemma_pow_mod_unfold0: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 0} -> Lemma (pow_mod #n a b == pow_mod (mul_mod a a) (b / 2)) let lemma_pow_mod_unfold0 n a b = () val lemma_pow_mod_unfold1: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 1} -> Lemma (pow_mod #n a b == mul_mod a (pow_mod (mul_mod a a) (b / 2))) let lemma_pow_mod_unfold1 n a b = () #pop-options val lemma_pow_mod_: n:pos{1 < n} -> a:nat_mod n -> b:nat -> Lemma (ensures (pow_mod #n a b == pow a b % n)) (decreases b) let rec lemma_pow_mod_ n a b = if b = 0 then begin lemma_pow0 a; lemma_pow_mod0 a end else begin if b % 2 = 0 then begin calc (==) { pow_mod #n a b; (==) { lemma_pow_mod_unfold0 n a b } pow_mod #n (mul_mod #n a a) (b / 2); (==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) } pow (mul_mod #n a a) (b / 2) % n; (==) { lemma_pow_mod_base (a * a) (b / 2) n } pow (a * a) (b / 2) % n; (==) { lemma_pow_double a (b / 2) } pow a b % n; }; assert (pow_mod #n a b == pow a b % n) end else begin calc (==) { pow_mod #n a b; (==) { lemma_pow_mod_unfold1 n a b } mul_mod a (pow_mod (mul_mod #n a a) (b / 2)); (==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) } mul_mod a (pow (mul_mod #n a a) (b / 2) % n); (==) { lemma_pow_mod_base (a * a) (b / 2) n } mul_mod a (pow (a * a) (b / 2) % n); (==) { lemma_pow_double a (b / 2) } mul_mod a (pow a (b / 2 * 2) % n); (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b / 2 * 2)) n } a * pow a (b / 2 * 2) % n; (==) { lemma_pow1 a } pow a 1 * pow a (b / 2 * 2) % n; (==) { lemma_pow_add a 1 (b / 2 * 2) } pow a (b / 2 * 2 + 1) % n; (==) { Math.Lemmas.euclidean_division_definition b 2 } pow a b % n; }; assert (pow_mod #n a b == pow a b % n) end end let lemma_pow_mod #n a b = lemma_pow_mod_ n a b let rec lemma_pow_nat_mod_is_pow #n a b = let k = mk_nat_mod_comm_monoid n in if b = 0 then begin lemma_pow0 a; LE.lemma_pow0 k a end else begin calc (==) { pow a b % n; (==) { lemma_pow_unfold a b } a * pow a (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n } a * (pow a (b - 1) % n) % n; (==) { lemma_pow_nat_mod_is_pow #n a (b - 1) } a * LE.pow k a (b - 1) % n; (==) { } k.LE.mul a (LE.pow k a (b - 1)); (==) { LE.lemma_pow_unfold k a b } LE.pow k a b; }; () end let lemma_add_mod_one #m a = Math.Lemmas.small_mod a m let lemma_add_mod_assoc #m a b c = calc (==) { add_mod (add_mod a b) c; (==) { Math.Lemmas.lemma_mod_plus_distr_l (a + b) c m } ((a + b) + c) % m; (==) { } (a + (b + c)) % m; (==) { Math.Lemmas.lemma_mod_plus_distr_r a (b + c) m } add_mod a (add_mod b c); } let lemma_add_mod_comm #m a b = () let lemma_mod_distributivity_add_right #m a b c = calc (==) { mul_mod a (add_mod b c); (==) { } a * ((b + c) % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b + c) m } a * (b + c) % m; (==) { Math.Lemmas.distributivity_add_right a b c } (a * b + a * c) % m; (==) { Math.Lemmas.modulo_distributivity (a * b) (a * c) m } add_mod (mul_mod a b) (mul_mod a c); } let lemma_mod_distributivity_add_left #m a b c = lemma_mod_distributivity_add_right c a b let lemma_mod_distributivity_sub_right #m a b c = calc (==) { mul_mod a (sub_mod b c); (==) { } a * ((b - c) % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b - c) m } a * (b - c) % m; (==) { Math.Lemmas.distributivity_sub_right a b c } (a * b - a * c) % m; (==) { Math.Lemmas.lemma_mod_plus_distr_l (a * b) (- a * c) m } (mul_mod a b - a * c) % m; (==) { Math.Lemmas.lemma_mod_sub_distr (mul_mod a b) (a * c) m } sub_mod (mul_mod a b) (mul_mod a c); } let lemma_mod_distributivity_sub_left #m a b c = lemma_mod_distributivity_sub_right c a b let lemma_inv_mod_both #m a b = let p1 = pow a (m - 2) in let p2 = pow b (m - 2) in calc (==) { mul_mod (inv_mod a) (inv_mod b); (==) { lemma_pow_mod #m a (m - 2); lemma_pow_mod #m b (m - 2) } p1 % m * (p2 % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_l p1 (p2 % m) m } p1 * (p2 % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r p1 p2 m } p1 * p2 % m; (==) { lemma_pow_mul_base a b (m - 2) } pow (a * b) (m - 2) % m; (==) { lemma_pow_mod_base (a * b) (m - 2) m } pow (mul_mod a b) (m - 2) % m; (==) { lemma_pow_mod #m (mul_mod a b) (m - 2) } inv_mod (mul_mod a b); } #push-options "--fuel 1" val pow_eq: a:nat -> n:nat -> Lemma (Fermat.pow a n == pow a n) let rec pow_eq a n = if n = 0 then () else pow_eq a (n - 1) #pop-options let lemma_div_mod_prime #m a = Math.Lemmas.small_mod a m; assert (a == a % m); assert (a <> 0 /\ a % m <> 0); calc (==) { pow_mod #m a (m - 2) * a % m; (==) { lemma_pow_mod #m a (m - 2) } pow a (m - 2) % m * a % m; (==) { Math.Lemmas.lemma_mod_mul_distr_l (pow a (m - 2)) a m } pow a (m - 2) * a % m; (==) { lemma_pow1 a; lemma_pow_add a (m - 2) 1 } pow a (m - 1) % m; (==) { pow_eq a (m - 1) } Fermat.pow a (m - 1) % m; (==) { Fermat.fermat_alt m a } 1; } let lemma_div_mod_prime_one #m a = lemma_pow_mod #m 1 (m - 2); lemma_pow_one (m - 2); Math.Lemmas.small_mod 1 m let lemma_div_mod_prime_cancel #m a b c = calc (==) { mul_mod (mul_mod a c) (inv_mod (mul_mod c b)); (==) { lemma_inv_mod_both c b } mul_mod (mul_mod a c) (mul_mod (inv_mod c) (inv_mod b)); (==) { lemma_mul_mod_assoc (mul_mod a c) (inv_mod c) (inv_mod b) } mul_mod (mul_mod (mul_mod a c) (inv_mod c)) (inv_mod b); (==) { lemma_mul_mod_assoc a c (inv_mod c) } mul_mod (mul_mod a (mul_mod c (inv_mod c))) (inv_mod b); (==) { lemma_div_mod_prime c } mul_mod (mul_mod a 1) (inv_mod b); (==) { Math.Lemmas.small_mod a m } mul_mod a (inv_mod b); } let lemma_div_mod_prime_to_one_denominator #m a b c d = calc (==) { mul_mod (div_mod a c) (div_mod b d); (==) { } mul_mod (mul_mod a (inv_mod c)) (mul_mod b (inv_mod d)); (==) { lemma_mul_mod_comm #m b (inv_mod d); lemma_mul_mod_assoc #m (mul_mod a (inv_mod c)) (inv_mod d) b } mul_mod (mul_mod (mul_mod a (inv_mod c)) (inv_mod d)) b; (==) { lemma_mul_mod_assoc #m a (inv_mod c) (inv_mod d) } mul_mod (mul_mod a (mul_mod (inv_mod c) (inv_mod d))) b; (==) { lemma_inv_mod_both c d } mul_mod (mul_mod a (inv_mod (mul_mod c d))) b; (==) { lemma_mul_mod_assoc #m a (inv_mod (mul_mod c d)) b; lemma_mul_mod_comm #m (inv_mod (mul_mod c d)) b; lemma_mul_mod_assoc #m a b (inv_mod (mul_mod c d)) } mul_mod (mul_mod a b) (inv_mod (mul_mod c d)); } val lemma_div_mod_eq_mul_mod1: #m:prime -> a:nat_mod m -> b:nat_mod m{b <> 0} -> c:nat_mod m -> Lemma (div_mod a b = c ==> a = mul_mod c b) let lemma_div_mod_eq_mul_mod1 #m a b c = if div_mod a b = c then begin assert (mul_mod (div_mod a b) b = mul_mod c b); calc (==) { mul_mod (div_mod a b) b; (==) { lemma_div_mod_prime_one b } mul_mod (div_mod a b) (div_mod b 1); (==) { lemma_div_mod_prime_to_one_denominator a b b 1 } div_mod (mul_mod a b) (mul_mod b 1); (==) { lemma_div_mod_prime_cancel a 1 b } div_mod a 1; (==) { lemma_div_mod_prime_one a } a; } end else () val lemma_div_mod_eq_mul_mod2: #m:prime -> a:nat_mod m -> b:nat_mod m{b <> 0} -> c:nat_mod m -> Lemma (a = mul_mod c b ==> div_mod a b = c)
false
false
Lib.NatMod.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_div_mod_eq_mul_mod2: #m:prime -> a:nat_mod m -> b:nat_mod m{b <> 0} -> c:nat_mod m -> Lemma (a = mul_mod c b ==> div_mod a b = c)
[]
Lib.NatMod.lemma_div_mod_eq_mul_mod2
{ "file_name": "lib/Lib.NatMod.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.NatMod.nat_mod m -> b: Lib.NatMod.nat_mod m {b <> 0} -> c: Lib.NatMod.nat_mod m -> FStar.Pervasives.Lemma (ensures a = Lib.NatMod.mul_mod c b ==> Lib.NatMod.div_mod a b = c)
{ "end_col": 9, "end_line": 394, "start_col": 2, "start_line": 383 }
FStar.Pervasives.Lemma
val lemma_mod_distributivity_add_right: #m:pos -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m -> Lemma (mul_mod a (add_mod b c) == add_mod (mul_mod a b) (mul_mod a c))
[ { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.Math.Fermat", "short_module": "Fermat" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_mod_distributivity_add_right #m a b c = calc (==) { mul_mod a (add_mod b c); (==) { } a * ((b + c) % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b + c) m } a * (b + c) % m; (==) { Math.Lemmas.distributivity_add_right a b c } (a * b + a * c) % m; (==) { Math.Lemmas.modulo_distributivity (a * b) (a * c) m } add_mod (mul_mod a b) (mul_mod a c); }
val lemma_mod_distributivity_add_right: #m:pos -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m -> Lemma (mul_mod a (add_mod b c) == add_mod (mul_mod a b) (mul_mod a c)) let lemma_mod_distributivity_add_right #m a b c =
false
null
true
calc ( == ) { mul_mod a (add_mod b c); ( == ) { () } a * ((b + c) % m) % m; ( == ) { Math.Lemmas.lemma_mod_mul_distr_r a (b + c) m } a * (b + c) % m; ( == ) { Math.Lemmas.distributivity_add_right a b c } (a * b + a * c) % m; ( == ) { Math.Lemmas.modulo_distributivity (a * b) (a * c) m } add_mod (mul_mod a b) (mul_mod a c); }
{ "checked_file": "Lib.NatMod.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.NatMod.fst" }
[ "lemma" ]
[ "Prims.pos", "Lib.NatMod.nat_mod", "FStar.Calc.calc_finish", "Prims.eq2", "Lib.NatMod.mul_mod", "Lib.NatMod.add_mod", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "Prims.op_Modulus", "Prims.op_Addition", "FStar.Mul.op_Star", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "FStar.Math.Lemmas.lemma_mod_mul_distr_r", "FStar.Math.Lemmas.distributivity_add_right", "FStar.Math.Lemmas.modulo_distributivity" ]
[]
module Lib.NatMod module LE = Lib.Exponentiation.Definition #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" #push-options "--fuel 2" let lemma_pow0 a = () let lemma_pow1 a = () let lemma_pow_unfold a b = () #pop-options let rec lemma_pow_gt_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_gt_zero a (b - 1) end let rec lemma_pow_ge_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_ge_zero a (b - 1) end let rec lemma_pow_nat_is_pow a b = let k = mk_nat_comm_monoid in if b = 0 then begin lemma_pow0 a; LE.lemma_pow0 k a end else begin lemma_pow_unfold a b; lemma_pow_nat_is_pow a (b - 1); LE.lemma_pow_unfold k a b; () end let lemma_pow_zero b = lemma_pow_unfold 0 b let lemma_pow_one b = let k = mk_nat_comm_monoid in LE.lemma_pow_one k b; lemma_pow_nat_is_pow 1 b let lemma_pow_add x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_add k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow x m; lemma_pow_nat_is_pow x (n + m) let lemma_pow_mul x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_mul k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow (pow x n) m; lemma_pow_nat_is_pow x (n * m) let lemma_pow_double a b = let k = mk_nat_comm_monoid in LE.lemma_pow_double k a b; lemma_pow_nat_is_pow (a * a) b; lemma_pow_nat_is_pow a (b + b) let lemma_pow_mul_base a b n = let k = mk_nat_comm_monoid in LE.lemma_pow_mul_base k a b n; lemma_pow_nat_is_pow a n; lemma_pow_nat_is_pow b n; lemma_pow_nat_is_pow (a * b) n let rec lemma_pow_mod_base a b n = if b = 0 then begin lemma_pow0 a; lemma_pow0 (a % n) end else begin calc (==) { pow a b % n; (==) { lemma_pow_unfold a b } a * pow a (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n } a * (pow a (b - 1) % n) % n; (==) { lemma_pow_mod_base a (b - 1) n } a * (pow (a % n) (b - 1) % n) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow (a % n) (b - 1)) n } a * pow (a % n) (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l a (pow (a % n) (b - 1)) n } a % n * pow (a % n) (b - 1) % n; (==) { lemma_pow_unfold (a % n) b } pow (a % n) b % n; }; assert (pow a b % n == pow (a % n) b % n) end let lemma_mul_mod_one #m a = () let lemma_mul_mod_assoc #m a b c = calc (==) { (a * b % m) * c % m; (==) { Math.Lemmas.lemma_mod_mul_distr_l (a * b) c m } (a * b) * c % m; (==) { Math.Lemmas.paren_mul_right a b c } a * (b * c) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b * c) m } a * (b * c % m) % m; } let lemma_mul_mod_comm #m a b = () let pow_mod #m a b = pow_mod_ #m a b let pow_mod_def #m a b = () #push-options "--fuel 2" val lemma_pow_mod0: #n:pos{1 < n} -> a:nat_mod n -> Lemma (pow_mod #n a 0 == 1) let lemma_pow_mod0 #n a = () val lemma_pow_mod_unfold0: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 0} -> Lemma (pow_mod #n a b == pow_mod (mul_mod a a) (b / 2)) let lemma_pow_mod_unfold0 n a b = () val lemma_pow_mod_unfold1: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 1} -> Lemma (pow_mod #n a b == mul_mod a (pow_mod (mul_mod a a) (b / 2))) let lemma_pow_mod_unfold1 n a b = () #pop-options val lemma_pow_mod_: n:pos{1 < n} -> a:nat_mod n -> b:nat -> Lemma (ensures (pow_mod #n a b == pow a b % n)) (decreases b) let rec lemma_pow_mod_ n a b = if b = 0 then begin lemma_pow0 a; lemma_pow_mod0 a end else begin if b % 2 = 0 then begin calc (==) { pow_mod #n a b; (==) { lemma_pow_mod_unfold0 n a b } pow_mod #n (mul_mod #n a a) (b / 2); (==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) } pow (mul_mod #n a a) (b / 2) % n; (==) { lemma_pow_mod_base (a * a) (b / 2) n } pow (a * a) (b / 2) % n; (==) { lemma_pow_double a (b / 2) } pow a b % n; }; assert (pow_mod #n a b == pow a b % n) end else begin calc (==) { pow_mod #n a b; (==) { lemma_pow_mod_unfold1 n a b } mul_mod a (pow_mod (mul_mod #n a a) (b / 2)); (==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) } mul_mod a (pow (mul_mod #n a a) (b / 2) % n); (==) { lemma_pow_mod_base (a * a) (b / 2) n } mul_mod a (pow (a * a) (b / 2) % n); (==) { lemma_pow_double a (b / 2) } mul_mod a (pow a (b / 2 * 2) % n); (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b / 2 * 2)) n } a * pow a (b / 2 * 2) % n; (==) { lemma_pow1 a } pow a 1 * pow a (b / 2 * 2) % n; (==) { lemma_pow_add a 1 (b / 2 * 2) } pow a (b / 2 * 2 + 1) % n; (==) { Math.Lemmas.euclidean_division_definition b 2 } pow a b % n; }; assert (pow_mod #n a b == pow a b % n) end end let lemma_pow_mod #n a b = lemma_pow_mod_ n a b let rec lemma_pow_nat_mod_is_pow #n a b = let k = mk_nat_mod_comm_monoid n in if b = 0 then begin lemma_pow0 a; LE.lemma_pow0 k a end else begin calc (==) { pow a b % n; (==) { lemma_pow_unfold a b } a * pow a (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n } a * (pow a (b - 1) % n) % n; (==) { lemma_pow_nat_mod_is_pow #n a (b - 1) } a * LE.pow k a (b - 1) % n; (==) { } k.LE.mul a (LE.pow k a (b - 1)); (==) { LE.lemma_pow_unfold k a b } LE.pow k a b; }; () end let lemma_add_mod_one #m a = Math.Lemmas.small_mod a m let lemma_add_mod_assoc #m a b c = calc (==) { add_mod (add_mod a b) c; (==) { Math.Lemmas.lemma_mod_plus_distr_l (a + b) c m } ((a + b) + c) % m; (==) { } (a + (b + c)) % m; (==) { Math.Lemmas.lemma_mod_plus_distr_r a (b + c) m } add_mod a (add_mod b c); } let lemma_add_mod_comm #m a b = ()
false
false
Lib.NatMod.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_mod_distributivity_add_right: #m:pos -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m -> Lemma (mul_mod a (add_mod b c) == add_mod (mul_mod a b) (mul_mod a c))
[]
Lib.NatMod.lemma_mod_distributivity_add_right
{ "file_name": "lib/Lib.NatMod.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.NatMod.nat_mod m -> b: Lib.NatMod.nat_mod m -> c: Lib.NatMod.nat_mod m -> FStar.Pervasives.Lemma (ensures Lib.NatMod.mul_mod a (Lib.NatMod.add_mod b c) == Lib.NatMod.add_mod (Lib.NatMod.mul_mod a b) (Lib.NatMod.mul_mod a c))
{ "end_col": 5, "end_line": 240, "start_col": 2, "start_line": 230 }
FStar.Pervasives.Lemma
val lemma_mul_mod_assoc: #m:pos -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m -> Lemma (mul_mod (mul_mod a b) c == mul_mod a (mul_mod b c))
[ { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.Math.Fermat", "short_module": "Fermat" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_mul_mod_assoc #m a b c = calc (==) { (a * b % m) * c % m; (==) { Math.Lemmas.lemma_mod_mul_distr_l (a * b) c m } (a * b) * c % m; (==) { Math.Lemmas.paren_mul_right a b c } a * (b * c) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b * c) m } a * (b * c % m) % m; }
val lemma_mul_mod_assoc: #m:pos -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m -> Lemma (mul_mod (mul_mod a b) c == mul_mod a (mul_mod b c)) let lemma_mul_mod_assoc #m a b c =
false
null
true
calc ( == ) { (a * b % m) * c % m; ( == ) { Math.Lemmas.lemma_mod_mul_distr_l (a * b) c m } (a * b) * c % m; ( == ) { Math.Lemmas.paren_mul_right a b c } a * (b * c) % m; ( == ) { Math.Lemmas.lemma_mod_mul_distr_r a (b * c) m } a * (b * c % m) % m; }
{ "checked_file": "Lib.NatMod.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.NatMod.fst" }
[ "lemma" ]
[ "Prims.pos", "Lib.NatMod.nat_mod", "FStar.Calc.calc_finish", "Prims.int", "Prims.eq2", "Prims.op_Modulus", "FStar.Mul.op_Star", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.lemma_mod_mul_distr_l", "Prims.squash", "FStar.Math.Lemmas.paren_mul_right", "FStar.Math.Lemmas.lemma_mod_mul_distr_r" ]
[]
module Lib.NatMod module LE = Lib.Exponentiation.Definition #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" #push-options "--fuel 2" let lemma_pow0 a = () let lemma_pow1 a = () let lemma_pow_unfold a b = () #pop-options let rec lemma_pow_gt_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_gt_zero a (b - 1) end let rec lemma_pow_ge_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_ge_zero a (b - 1) end let rec lemma_pow_nat_is_pow a b = let k = mk_nat_comm_monoid in if b = 0 then begin lemma_pow0 a; LE.lemma_pow0 k a end else begin lemma_pow_unfold a b; lemma_pow_nat_is_pow a (b - 1); LE.lemma_pow_unfold k a b; () end let lemma_pow_zero b = lemma_pow_unfold 0 b let lemma_pow_one b = let k = mk_nat_comm_monoid in LE.lemma_pow_one k b; lemma_pow_nat_is_pow 1 b let lemma_pow_add x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_add k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow x m; lemma_pow_nat_is_pow x (n + m) let lemma_pow_mul x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_mul k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow (pow x n) m; lemma_pow_nat_is_pow x (n * m) let lemma_pow_double a b = let k = mk_nat_comm_monoid in LE.lemma_pow_double k a b; lemma_pow_nat_is_pow (a * a) b; lemma_pow_nat_is_pow a (b + b) let lemma_pow_mul_base a b n = let k = mk_nat_comm_monoid in LE.lemma_pow_mul_base k a b n; lemma_pow_nat_is_pow a n; lemma_pow_nat_is_pow b n; lemma_pow_nat_is_pow (a * b) n let rec lemma_pow_mod_base a b n = if b = 0 then begin lemma_pow0 a; lemma_pow0 (a % n) end else begin calc (==) { pow a b % n; (==) { lemma_pow_unfold a b } a * pow a (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n } a * (pow a (b - 1) % n) % n; (==) { lemma_pow_mod_base a (b - 1) n } a * (pow (a % n) (b - 1) % n) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow (a % n) (b - 1)) n } a * pow (a % n) (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l a (pow (a % n) (b - 1)) n } a % n * pow (a % n) (b - 1) % n; (==) { lemma_pow_unfold (a % n) b } pow (a % n) b % n; }; assert (pow a b % n == pow (a % n) b % n) end let lemma_mul_mod_one #m a = ()
false
false
Lib.NatMod.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_mul_mod_assoc: #m:pos -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m -> Lemma (mul_mod (mul_mod a b) c == mul_mod a (mul_mod b c))
[]
Lib.NatMod.lemma_mul_mod_assoc
{ "file_name": "lib/Lib.NatMod.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.NatMod.nat_mod m -> b: Lib.NatMod.nat_mod m -> c: Lib.NatMod.nat_mod m -> FStar.Pervasives.Lemma (ensures Lib.NatMod.mul_mod (Lib.NatMod.mul_mod a b) c == Lib.NatMod.mul_mod a (Lib.NatMod.mul_mod b c) )
{ "end_col": 5, "end_line": 118, "start_col": 2, "start_line": 110 }
FStar.Pervasives.Lemma
val lemma_mul_mod_zero2: n:pos -> x:int -> y:int -> Lemma (requires x % n == 0 \/ y % n == 0) (ensures x * y % n == 0)
[ { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.Math.Fermat", "short_module": "Fermat" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_mul_mod_zero2 n x y = if x % n = 0 then Math.Lemmas.lemma_mod_mul_distr_l x y n else Math.Lemmas.lemma_mod_mul_distr_r x y n
val lemma_mul_mod_zero2: n:pos -> x:int -> y:int -> Lemma (requires x % n == 0 \/ y % n == 0) (ensures x * y % n == 0) let lemma_mul_mod_zero2 n x y =
false
null
true
if x % n = 0 then Math.Lemmas.lemma_mod_mul_distr_l x y n else Math.Lemmas.lemma_mod_mul_distr_r x y n
{ "checked_file": "Lib.NatMod.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.NatMod.fst" }
[ "lemma" ]
[ "Prims.pos", "Prims.int", "Prims.op_Equality", "Prims.op_Modulus", "FStar.Math.Lemmas.lemma_mod_mul_distr_l", "Prims.bool", "FStar.Math.Lemmas.lemma_mod_mul_distr_r", "Prims.unit" ]
[]
module Lib.NatMod module LE = Lib.Exponentiation.Definition #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" #push-options "--fuel 2" let lemma_pow0 a = () let lemma_pow1 a = () let lemma_pow_unfold a b = () #pop-options let rec lemma_pow_gt_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_gt_zero a (b - 1) end let rec lemma_pow_ge_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_ge_zero a (b - 1) end let rec lemma_pow_nat_is_pow a b = let k = mk_nat_comm_monoid in if b = 0 then begin lemma_pow0 a; LE.lemma_pow0 k a end else begin lemma_pow_unfold a b; lemma_pow_nat_is_pow a (b - 1); LE.lemma_pow_unfold k a b; () end let lemma_pow_zero b = lemma_pow_unfold 0 b let lemma_pow_one b = let k = mk_nat_comm_monoid in LE.lemma_pow_one k b; lemma_pow_nat_is_pow 1 b let lemma_pow_add x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_add k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow x m; lemma_pow_nat_is_pow x (n + m) let lemma_pow_mul x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_mul k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow (pow x n) m; lemma_pow_nat_is_pow x (n * m) let lemma_pow_double a b = let k = mk_nat_comm_monoid in LE.lemma_pow_double k a b; lemma_pow_nat_is_pow (a * a) b; lemma_pow_nat_is_pow a (b + b) let lemma_pow_mul_base a b n = let k = mk_nat_comm_monoid in LE.lemma_pow_mul_base k a b n; lemma_pow_nat_is_pow a n; lemma_pow_nat_is_pow b n; lemma_pow_nat_is_pow (a * b) n let rec lemma_pow_mod_base a b n = if b = 0 then begin lemma_pow0 a; lemma_pow0 (a % n) end else begin calc (==) { pow a b % n; (==) { lemma_pow_unfold a b } a * pow a (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n } a * (pow a (b - 1) % n) % n; (==) { lemma_pow_mod_base a (b - 1) n } a * (pow (a % n) (b - 1) % n) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow (a % n) (b - 1)) n } a * pow (a % n) (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l a (pow (a % n) (b - 1)) n } a % n * pow (a % n) (b - 1) % n; (==) { lemma_pow_unfold (a % n) b } pow (a % n) b % n; }; assert (pow a b % n == pow (a % n) b % n) end let lemma_mul_mod_one #m a = () let lemma_mul_mod_assoc #m a b c = calc (==) { (a * b % m) * c % m; (==) { Math.Lemmas.lemma_mod_mul_distr_l (a * b) c m } (a * b) * c % m; (==) { Math.Lemmas.paren_mul_right a b c } a * (b * c) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b * c) m } a * (b * c % m) % m; } let lemma_mul_mod_comm #m a b = () let pow_mod #m a b = pow_mod_ #m a b let pow_mod_def #m a b = () #push-options "--fuel 2" val lemma_pow_mod0: #n:pos{1 < n} -> a:nat_mod n -> Lemma (pow_mod #n a 0 == 1) let lemma_pow_mod0 #n a = () val lemma_pow_mod_unfold0: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 0} -> Lemma (pow_mod #n a b == pow_mod (mul_mod a a) (b / 2)) let lemma_pow_mod_unfold0 n a b = () val lemma_pow_mod_unfold1: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 1} -> Lemma (pow_mod #n a b == mul_mod a (pow_mod (mul_mod a a) (b / 2))) let lemma_pow_mod_unfold1 n a b = () #pop-options val lemma_pow_mod_: n:pos{1 < n} -> a:nat_mod n -> b:nat -> Lemma (ensures (pow_mod #n a b == pow a b % n)) (decreases b) let rec lemma_pow_mod_ n a b = if b = 0 then begin lemma_pow0 a; lemma_pow_mod0 a end else begin if b % 2 = 0 then begin calc (==) { pow_mod #n a b; (==) { lemma_pow_mod_unfold0 n a b } pow_mod #n (mul_mod #n a a) (b / 2); (==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) } pow (mul_mod #n a a) (b / 2) % n; (==) { lemma_pow_mod_base (a * a) (b / 2) n } pow (a * a) (b / 2) % n; (==) { lemma_pow_double a (b / 2) } pow a b % n; }; assert (pow_mod #n a b == pow a b % n) end else begin calc (==) { pow_mod #n a b; (==) { lemma_pow_mod_unfold1 n a b } mul_mod a (pow_mod (mul_mod #n a a) (b / 2)); (==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) } mul_mod a (pow (mul_mod #n a a) (b / 2) % n); (==) { lemma_pow_mod_base (a * a) (b / 2) n } mul_mod a (pow (a * a) (b / 2) % n); (==) { lemma_pow_double a (b / 2) } mul_mod a (pow a (b / 2 * 2) % n); (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b / 2 * 2)) n } a * pow a (b / 2 * 2) % n; (==) { lemma_pow1 a } pow a 1 * pow a (b / 2 * 2) % n; (==) { lemma_pow_add a 1 (b / 2 * 2) } pow a (b / 2 * 2 + 1) % n; (==) { Math.Lemmas.euclidean_division_definition b 2 } pow a b % n; }; assert (pow_mod #n a b == pow a b % n) end end let lemma_pow_mod #n a b = lemma_pow_mod_ n a b let rec lemma_pow_nat_mod_is_pow #n a b = let k = mk_nat_mod_comm_monoid n in if b = 0 then begin lemma_pow0 a; LE.lemma_pow0 k a end else begin calc (==) { pow a b % n; (==) { lemma_pow_unfold a b } a * pow a (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n } a * (pow a (b - 1) % n) % n; (==) { lemma_pow_nat_mod_is_pow #n a (b - 1) } a * LE.pow k a (b - 1) % n; (==) { } k.LE.mul a (LE.pow k a (b - 1)); (==) { LE.lemma_pow_unfold k a b } LE.pow k a b; }; () end let lemma_add_mod_one #m a = Math.Lemmas.small_mod a m let lemma_add_mod_assoc #m a b c = calc (==) { add_mod (add_mod a b) c; (==) { Math.Lemmas.lemma_mod_plus_distr_l (a + b) c m } ((a + b) + c) % m; (==) { } (a + (b + c)) % m; (==) { Math.Lemmas.lemma_mod_plus_distr_r a (b + c) m } add_mod a (add_mod b c); } let lemma_add_mod_comm #m a b = () let lemma_mod_distributivity_add_right #m a b c = calc (==) { mul_mod a (add_mod b c); (==) { } a * ((b + c) % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b + c) m } a * (b + c) % m; (==) { Math.Lemmas.distributivity_add_right a b c } (a * b + a * c) % m; (==) { Math.Lemmas.modulo_distributivity (a * b) (a * c) m } add_mod (mul_mod a b) (mul_mod a c); } let lemma_mod_distributivity_add_left #m a b c = lemma_mod_distributivity_add_right c a b let lemma_mod_distributivity_sub_right #m a b c = calc (==) { mul_mod a (sub_mod b c); (==) { } a * ((b - c) % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b - c) m } a * (b - c) % m; (==) { Math.Lemmas.distributivity_sub_right a b c } (a * b - a * c) % m; (==) { Math.Lemmas.lemma_mod_plus_distr_l (a * b) (- a * c) m } (mul_mod a b - a * c) % m; (==) { Math.Lemmas.lemma_mod_sub_distr (mul_mod a b) (a * c) m } sub_mod (mul_mod a b) (mul_mod a c); } let lemma_mod_distributivity_sub_left #m a b c = lemma_mod_distributivity_sub_right c a b let lemma_inv_mod_both #m a b = let p1 = pow a (m - 2) in let p2 = pow b (m - 2) in calc (==) { mul_mod (inv_mod a) (inv_mod b); (==) { lemma_pow_mod #m a (m - 2); lemma_pow_mod #m b (m - 2) } p1 % m * (p2 % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_l p1 (p2 % m) m } p1 * (p2 % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r p1 p2 m } p1 * p2 % m; (==) { lemma_pow_mul_base a b (m - 2) } pow (a * b) (m - 2) % m; (==) { lemma_pow_mod_base (a * b) (m - 2) m } pow (mul_mod a b) (m - 2) % m; (==) { lemma_pow_mod #m (mul_mod a b) (m - 2) } inv_mod (mul_mod a b); } #push-options "--fuel 1" val pow_eq: a:nat -> n:nat -> Lemma (Fermat.pow a n == pow a n) let rec pow_eq a n = if n = 0 then () else pow_eq a (n - 1) #pop-options let lemma_div_mod_prime #m a = Math.Lemmas.small_mod a m; assert (a == a % m); assert (a <> 0 /\ a % m <> 0); calc (==) { pow_mod #m a (m - 2) * a % m; (==) { lemma_pow_mod #m a (m - 2) } pow a (m - 2) % m * a % m; (==) { Math.Lemmas.lemma_mod_mul_distr_l (pow a (m - 2)) a m } pow a (m - 2) * a % m; (==) { lemma_pow1 a; lemma_pow_add a (m - 2) 1 } pow a (m - 1) % m; (==) { pow_eq a (m - 1) } Fermat.pow a (m - 1) % m; (==) { Fermat.fermat_alt m a } 1; } let lemma_div_mod_prime_one #m a = lemma_pow_mod #m 1 (m - 2); lemma_pow_one (m - 2); Math.Lemmas.small_mod 1 m let lemma_div_mod_prime_cancel #m a b c = calc (==) { mul_mod (mul_mod a c) (inv_mod (mul_mod c b)); (==) { lemma_inv_mod_both c b } mul_mod (mul_mod a c) (mul_mod (inv_mod c) (inv_mod b)); (==) { lemma_mul_mod_assoc (mul_mod a c) (inv_mod c) (inv_mod b) } mul_mod (mul_mod (mul_mod a c) (inv_mod c)) (inv_mod b); (==) { lemma_mul_mod_assoc a c (inv_mod c) } mul_mod (mul_mod a (mul_mod c (inv_mod c))) (inv_mod b); (==) { lemma_div_mod_prime c } mul_mod (mul_mod a 1) (inv_mod b); (==) { Math.Lemmas.small_mod a m } mul_mod a (inv_mod b); } let lemma_div_mod_prime_to_one_denominator #m a b c d = calc (==) { mul_mod (div_mod a c) (div_mod b d); (==) { } mul_mod (mul_mod a (inv_mod c)) (mul_mod b (inv_mod d)); (==) { lemma_mul_mod_comm #m b (inv_mod d); lemma_mul_mod_assoc #m (mul_mod a (inv_mod c)) (inv_mod d) b } mul_mod (mul_mod (mul_mod a (inv_mod c)) (inv_mod d)) b; (==) { lemma_mul_mod_assoc #m a (inv_mod c) (inv_mod d) } mul_mod (mul_mod a (mul_mod (inv_mod c) (inv_mod d))) b; (==) { lemma_inv_mod_both c d } mul_mod (mul_mod a (inv_mod (mul_mod c d))) b; (==) { lemma_mul_mod_assoc #m a (inv_mod (mul_mod c d)) b; lemma_mul_mod_comm #m (inv_mod (mul_mod c d)) b; lemma_mul_mod_assoc #m a b (inv_mod (mul_mod c d)) } mul_mod (mul_mod a b) (inv_mod (mul_mod c d)); } val lemma_div_mod_eq_mul_mod1: #m:prime -> a:nat_mod m -> b:nat_mod m{b <> 0} -> c:nat_mod m -> Lemma (div_mod a b = c ==> a = mul_mod c b) let lemma_div_mod_eq_mul_mod1 #m a b c = if div_mod a b = c then begin assert (mul_mod (div_mod a b) b = mul_mod c b); calc (==) { mul_mod (div_mod a b) b; (==) { lemma_div_mod_prime_one b } mul_mod (div_mod a b) (div_mod b 1); (==) { lemma_div_mod_prime_to_one_denominator a b b 1 } div_mod (mul_mod a b) (mul_mod b 1); (==) { lemma_div_mod_prime_cancel a 1 b } div_mod a 1; (==) { lemma_div_mod_prime_one a } a; } end else () val lemma_div_mod_eq_mul_mod2: #m:prime -> a:nat_mod m -> b:nat_mod m{b <> 0} -> c:nat_mod m -> Lemma (a = mul_mod c b ==> div_mod a b = c) let lemma_div_mod_eq_mul_mod2 #m a b c = if a = mul_mod c b then begin assert (div_mod a b == div_mod (mul_mod c b) b); calc (==) { div_mod (mul_mod c b) b; (==) { Math.Lemmas.small_mod b m } div_mod (mul_mod c b) (mul_mod b 1); (==) { lemma_div_mod_prime_cancel c 1 b } div_mod c 1; (==) { lemma_div_mod_prime_one c } c; } end else () let lemma_div_mod_eq_mul_mod #m a b c = lemma_div_mod_eq_mul_mod1 a b c; lemma_div_mod_eq_mul_mod2 a b c val lemma_mul_mod_zero2: n:pos -> x:int -> y:int -> Lemma (requires x % n == 0 \/ y % n == 0) (ensures x * y % n == 0)
false
false
Lib.NatMod.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_mul_mod_zero2: n:pos -> x:int -> y:int -> Lemma (requires x % n == 0 \/ y % n == 0) (ensures x * y % n == 0)
[]
Lib.NatMod.lemma_mul_mod_zero2
{ "file_name": "lib/Lib.NatMod.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
n: Prims.pos -> x: Prims.int -> y: Prims.int -> FStar.Pervasives.Lemma (requires x % n == 0 \/ y % n == 0) (ensures x * y % n == 0)
{ "end_col": 43, "end_line": 410, "start_col": 2, "start_line": 407 }
FStar.Pervasives.Lemma
val lemma_div_mod_prime_to_one_denominator: #m:pos{1 < m} -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m{c <> 0} -> d:nat_mod m{d <> 0} -> Lemma (mul_mod (div_mod a c) (div_mod b d) == div_mod (mul_mod a b) (mul_mod c d))
[ { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.Math.Fermat", "short_module": "Fermat" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_div_mod_prime_to_one_denominator #m a b c d = calc (==) { mul_mod (div_mod a c) (div_mod b d); (==) { } mul_mod (mul_mod a (inv_mod c)) (mul_mod b (inv_mod d)); (==) { lemma_mul_mod_comm #m b (inv_mod d); lemma_mul_mod_assoc #m (mul_mod a (inv_mod c)) (inv_mod d) b } mul_mod (mul_mod (mul_mod a (inv_mod c)) (inv_mod d)) b; (==) { lemma_mul_mod_assoc #m a (inv_mod c) (inv_mod d) } mul_mod (mul_mod a (mul_mod (inv_mod c) (inv_mod d))) b; (==) { lemma_inv_mod_both c d } mul_mod (mul_mod a (inv_mod (mul_mod c d))) b; (==) { lemma_mul_mod_assoc #m a (inv_mod (mul_mod c d)) b; lemma_mul_mod_comm #m (inv_mod (mul_mod c d)) b; lemma_mul_mod_assoc #m a b (inv_mod (mul_mod c d)) } mul_mod (mul_mod a b) (inv_mod (mul_mod c d)); }
val lemma_div_mod_prime_to_one_denominator: #m:pos{1 < m} -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m{c <> 0} -> d:nat_mod m{d <> 0} -> Lemma (mul_mod (div_mod a c) (div_mod b d) == div_mod (mul_mod a b) (mul_mod c d)) let lemma_div_mod_prime_to_one_denominator #m a b c d =
false
null
true
calc ( == ) { mul_mod (div_mod a c) (div_mod b d); ( == ) { () } mul_mod (mul_mod a (inv_mod c)) (mul_mod b (inv_mod d)); ( == ) { (lemma_mul_mod_comm #m b (inv_mod d); lemma_mul_mod_assoc #m (mul_mod a (inv_mod c)) (inv_mod d) b) } mul_mod (mul_mod (mul_mod a (inv_mod c)) (inv_mod d)) b; ( == ) { lemma_mul_mod_assoc #m a (inv_mod c) (inv_mod d) } mul_mod (mul_mod a (mul_mod (inv_mod c) (inv_mod d))) b; ( == ) { lemma_inv_mod_both c d } mul_mod (mul_mod a (inv_mod (mul_mod c d))) b; ( == ) { (lemma_mul_mod_assoc #m a (inv_mod (mul_mod c d)) b; lemma_mul_mod_comm #m (inv_mod (mul_mod c d)) b; lemma_mul_mod_assoc #m a b (inv_mod (mul_mod c d))) } mul_mod (mul_mod a b) (inv_mod (mul_mod c d)); }
{ "checked_file": "Lib.NatMod.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.NatMod.fst" }
[ "lemma" ]
[ "Prims.pos", "Prims.b2t", "Prims.op_LessThan", "Lib.NatMod.nat_mod", "Prims.op_disEquality", "Prims.int", "FStar.Calc.calc_finish", "Prims.eq2", "Lib.NatMod.mul_mod", "Lib.NatMod.div_mod", "Lib.NatMod.inv_mod", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "Lib.NatMod.lemma_mul_mod_assoc", "Lib.NatMod.lemma_mul_mod_comm", "Lib.NatMod.lemma_inv_mod_both" ]
[]
module Lib.NatMod module LE = Lib.Exponentiation.Definition #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" #push-options "--fuel 2" let lemma_pow0 a = () let lemma_pow1 a = () let lemma_pow_unfold a b = () #pop-options let rec lemma_pow_gt_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_gt_zero a (b - 1) end let rec lemma_pow_ge_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_ge_zero a (b - 1) end let rec lemma_pow_nat_is_pow a b = let k = mk_nat_comm_monoid in if b = 0 then begin lemma_pow0 a; LE.lemma_pow0 k a end else begin lemma_pow_unfold a b; lemma_pow_nat_is_pow a (b - 1); LE.lemma_pow_unfold k a b; () end let lemma_pow_zero b = lemma_pow_unfold 0 b let lemma_pow_one b = let k = mk_nat_comm_monoid in LE.lemma_pow_one k b; lemma_pow_nat_is_pow 1 b let lemma_pow_add x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_add k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow x m; lemma_pow_nat_is_pow x (n + m) let lemma_pow_mul x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_mul k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow (pow x n) m; lemma_pow_nat_is_pow x (n * m) let lemma_pow_double a b = let k = mk_nat_comm_monoid in LE.lemma_pow_double k a b; lemma_pow_nat_is_pow (a * a) b; lemma_pow_nat_is_pow a (b + b) let lemma_pow_mul_base a b n = let k = mk_nat_comm_monoid in LE.lemma_pow_mul_base k a b n; lemma_pow_nat_is_pow a n; lemma_pow_nat_is_pow b n; lemma_pow_nat_is_pow (a * b) n let rec lemma_pow_mod_base a b n = if b = 0 then begin lemma_pow0 a; lemma_pow0 (a % n) end else begin calc (==) { pow a b % n; (==) { lemma_pow_unfold a b } a * pow a (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n } a * (pow a (b - 1) % n) % n; (==) { lemma_pow_mod_base a (b - 1) n } a * (pow (a % n) (b - 1) % n) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow (a % n) (b - 1)) n } a * pow (a % n) (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l a (pow (a % n) (b - 1)) n } a % n * pow (a % n) (b - 1) % n; (==) { lemma_pow_unfold (a % n) b } pow (a % n) b % n; }; assert (pow a b % n == pow (a % n) b % n) end let lemma_mul_mod_one #m a = () let lemma_mul_mod_assoc #m a b c = calc (==) { (a * b % m) * c % m; (==) { Math.Lemmas.lemma_mod_mul_distr_l (a * b) c m } (a * b) * c % m; (==) { Math.Lemmas.paren_mul_right a b c } a * (b * c) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b * c) m } a * (b * c % m) % m; } let lemma_mul_mod_comm #m a b = () let pow_mod #m a b = pow_mod_ #m a b let pow_mod_def #m a b = () #push-options "--fuel 2" val lemma_pow_mod0: #n:pos{1 < n} -> a:nat_mod n -> Lemma (pow_mod #n a 0 == 1) let lemma_pow_mod0 #n a = () val lemma_pow_mod_unfold0: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 0} -> Lemma (pow_mod #n a b == pow_mod (mul_mod a a) (b / 2)) let lemma_pow_mod_unfold0 n a b = () val lemma_pow_mod_unfold1: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 1} -> Lemma (pow_mod #n a b == mul_mod a (pow_mod (mul_mod a a) (b / 2))) let lemma_pow_mod_unfold1 n a b = () #pop-options val lemma_pow_mod_: n:pos{1 < n} -> a:nat_mod n -> b:nat -> Lemma (ensures (pow_mod #n a b == pow a b % n)) (decreases b) let rec lemma_pow_mod_ n a b = if b = 0 then begin lemma_pow0 a; lemma_pow_mod0 a end else begin if b % 2 = 0 then begin calc (==) { pow_mod #n a b; (==) { lemma_pow_mod_unfold0 n a b } pow_mod #n (mul_mod #n a a) (b / 2); (==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) } pow (mul_mod #n a a) (b / 2) % n; (==) { lemma_pow_mod_base (a * a) (b / 2) n } pow (a * a) (b / 2) % n; (==) { lemma_pow_double a (b / 2) } pow a b % n; }; assert (pow_mod #n a b == pow a b % n) end else begin calc (==) { pow_mod #n a b; (==) { lemma_pow_mod_unfold1 n a b } mul_mod a (pow_mod (mul_mod #n a a) (b / 2)); (==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) } mul_mod a (pow (mul_mod #n a a) (b / 2) % n); (==) { lemma_pow_mod_base (a * a) (b / 2) n } mul_mod a (pow (a * a) (b / 2) % n); (==) { lemma_pow_double a (b / 2) } mul_mod a (pow a (b / 2 * 2) % n); (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b / 2 * 2)) n } a * pow a (b / 2 * 2) % n; (==) { lemma_pow1 a } pow a 1 * pow a (b / 2 * 2) % n; (==) { lemma_pow_add a 1 (b / 2 * 2) } pow a (b / 2 * 2 + 1) % n; (==) { Math.Lemmas.euclidean_division_definition b 2 } pow a b % n; }; assert (pow_mod #n a b == pow a b % n) end end let lemma_pow_mod #n a b = lemma_pow_mod_ n a b let rec lemma_pow_nat_mod_is_pow #n a b = let k = mk_nat_mod_comm_monoid n in if b = 0 then begin lemma_pow0 a; LE.lemma_pow0 k a end else begin calc (==) { pow a b % n; (==) { lemma_pow_unfold a b } a * pow a (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n } a * (pow a (b - 1) % n) % n; (==) { lemma_pow_nat_mod_is_pow #n a (b - 1) } a * LE.pow k a (b - 1) % n; (==) { } k.LE.mul a (LE.pow k a (b - 1)); (==) { LE.lemma_pow_unfold k a b } LE.pow k a b; }; () end let lemma_add_mod_one #m a = Math.Lemmas.small_mod a m let lemma_add_mod_assoc #m a b c = calc (==) { add_mod (add_mod a b) c; (==) { Math.Lemmas.lemma_mod_plus_distr_l (a + b) c m } ((a + b) + c) % m; (==) { } (a + (b + c)) % m; (==) { Math.Lemmas.lemma_mod_plus_distr_r a (b + c) m } add_mod a (add_mod b c); } let lemma_add_mod_comm #m a b = () let lemma_mod_distributivity_add_right #m a b c = calc (==) { mul_mod a (add_mod b c); (==) { } a * ((b + c) % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b + c) m } a * (b + c) % m; (==) { Math.Lemmas.distributivity_add_right a b c } (a * b + a * c) % m; (==) { Math.Lemmas.modulo_distributivity (a * b) (a * c) m } add_mod (mul_mod a b) (mul_mod a c); } let lemma_mod_distributivity_add_left #m a b c = lemma_mod_distributivity_add_right c a b let lemma_mod_distributivity_sub_right #m a b c = calc (==) { mul_mod a (sub_mod b c); (==) { } a * ((b - c) % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b - c) m } a * (b - c) % m; (==) { Math.Lemmas.distributivity_sub_right a b c } (a * b - a * c) % m; (==) { Math.Lemmas.lemma_mod_plus_distr_l (a * b) (- a * c) m } (mul_mod a b - a * c) % m; (==) { Math.Lemmas.lemma_mod_sub_distr (mul_mod a b) (a * c) m } sub_mod (mul_mod a b) (mul_mod a c); } let lemma_mod_distributivity_sub_left #m a b c = lemma_mod_distributivity_sub_right c a b let lemma_inv_mod_both #m a b = let p1 = pow a (m - 2) in let p2 = pow b (m - 2) in calc (==) { mul_mod (inv_mod a) (inv_mod b); (==) { lemma_pow_mod #m a (m - 2); lemma_pow_mod #m b (m - 2) } p1 % m * (p2 % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_l p1 (p2 % m) m } p1 * (p2 % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r p1 p2 m } p1 * p2 % m; (==) { lemma_pow_mul_base a b (m - 2) } pow (a * b) (m - 2) % m; (==) { lemma_pow_mod_base (a * b) (m - 2) m } pow (mul_mod a b) (m - 2) % m; (==) { lemma_pow_mod #m (mul_mod a b) (m - 2) } inv_mod (mul_mod a b); } #push-options "--fuel 1" val pow_eq: a:nat -> n:nat -> Lemma (Fermat.pow a n == pow a n) let rec pow_eq a n = if n = 0 then () else pow_eq a (n - 1) #pop-options let lemma_div_mod_prime #m a = Math.Lemmas.small_mod a m; assert (a == a % m); assert (a <> 0 /\ a % m <> 0); calc (==) { pow_mod #m a (m - 2) * a % m; (==) { lemma_pow_mod #m a (m - 2) } pow a (m - 2) % m * a % m; (==) { Math.Lemmas.lemma_mod_mul_distr_l (pow a (m - 2)) a m } pow a (m - 2) * a % m; (==) { lemma_pow1 a; lemma_pow_add a (m - 2) 1 } pow a (m - 1) % m; (==) { pow_eq a (m - 1) } Fermat.pow a (m - 1) % m; (==) { Fermat.fermat_alt m a } 1; } let lemma_div_mod_prime_one #m a = lemma_pow_mod #m 1 (m - 2); lemma_pow_one (m - 2); Math.Lemmas.small_mod 1 m let lemma_div_mod_prime_cancel #m a b c = calc (==) { mul_mod (mul_mod a c) (inv_mod (mul_mod c b)); (==) { lemma_inv_mod_both c b } mul_mod (mul_mod a c) (mul_mod (inv_mod c) (inv_mod b)); (==) { lemma_mul_mod_assoc (mul_mod a c) (inv_mod c) (inv_mod b) } mul_mod (mul_mod (mul_mod a c) (inv_mod c)) (inv_mod b); (==) { lemma_mul_mod_assoc a c (inv_mod c) } mul_mod (mul_mod a (mul_mod c (inv_mod c))) (inv_mod b); (==) { lemma_div_mod_prime c } mul_mod (mul_mod a 1) (inv_mod b); (==) { Math.Lemmas.small_mod a m } mul_mod a (inv_mod b); }
false
false
Lib.NatMod.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_div_mod_prime_to_one_denominator: #m:pos{1 < m} -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m{c <> 0} -> d:nat_mod m{d <> 0} -> Lemma (mul_mod (div_mod a c) (div_mod b d) == div_mod (mul_mod a b) (mul_mod c d))
[]
Lib.NatMod.lemma_div_mod_prime_to_one_denominator
{ "file_name": "lib/Lib.NatMod.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.NatMod.nat_mod m -> b: Lib.NatMod.nat_mod m -> c: Lib.NatMod.nat_mod m {c <> 0} -> d: Lib.NatMod.nat_mod m {d <> 0} -> FStar.Pervasives.Lemma (ensures Lib.NatMod.mul_mod (Lib.NatMod.div_mod a c) (Lib.NatMod.div_mod b d) == Lib.NatMod.div_mod (Lib.NatMod.mul_mod a b) (Lib.NatMod.mul_mod c d))
{ "end_col": 5, "end_line": 356, "start_col": 2, "start_line": 339 }
FStar.Pervasives.Lemma
val lemma_mod_distributivity_sub_right: #m:pos -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m -> Lemma (mul_mod a (sub_mod b c) == sub_mod (mul_mod a b) (mul_mod a c))
[ { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.Math.Fermat", "short_module": "Fermat" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_mod_distributivity_sub_right #m a b c = calc (==) { mul_mod a (sub_mod b c); (==) { } a * ((b - c) % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b - c) m } a * (b - c) % m; (==) { Math.Lemmas.distributivity_sub_right a b c } (a * b - a * c) % m; (==) { Math.Lemmas.lemma_mod_plus_distr_l (a * b) (- a * c) m } (mul_mod a b - a * c) % m; (==) { Math.Lemmas.lemma_mod_sub_distr (mul_mod a b) (a * c) m } sub_mod (mul_mod a b) (mul_mod a c); }
val lemma_mod_distributivity_sub_right: #m:pos -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m -> Lemma (mul_mod a (sub_mod b c) == sub_mod (mul_mod a b) (mul_mod a c)) let lemma_mod_distributivity_sub_right #m a b c =
false
null
true
calc ( == ) { mul_mod a (sub_mod b c); ( == ) { () } a * ((b - c) % m) % m; ( == ) { Math.Lemmas.lemma_mod_mul_distr_r a (b - c) m } a * (b - c) % m; ( == ) { Math.Lemmas.distributivity_sub_right a b c } (a * b - a * c) % m; ( == ) { Math.Lemmas.lemma_mod_plus_distr_l (a * b) (- a * c) m } (mul_mod a b - a * c) % m; ( == ) { Math.Lemmas.lemma_mod_sub_distr (mul_mod a b) (a * c) m } sub_mod (mul_mod a b) (mul_mod a c); }
{ "checked_file": "Lib.NatMod.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.NatMod.fst" }
[ "lemma" ]
[ "Prims.pos", "Lib.NatMod.nat_mod", "FStar.Calc.calc_finish", "Prims.eq2", "Lib.NatMod.mul_mod", "Lib.NatMod.sub_mod", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "Prims.op_Modulus", "Prims.op_Subtraction", "FStar.Mul.op_Star", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "FStar.Math.Lemmas.lemma_mod_mul_distr_r", "FStar.Math.Lemmas.distributivity_sub_right", "FStar.Math.Lemmas.lemma_mod_plus_distr_l", "Prims.op_Minus", "FStar.Math.Lemmas.lemma_mod_sub_distr" ]
[]
module Lib.NatMod module LE = Lib.Exponentiation.Definition #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" #push-options "--fuel 2" let lemma_pow0 a = () let lemma_pow1 a = () let lemma_pow_unfold a b = () #pop-options let rec lemma_pow_gt_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_gt_zero a (b - 1) end let rec lemma_pow_ge_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_ge_zero a (b - 1) end let rec lemma_pow_nat_is_pow a b = let k = mk_nat_comm_monoid in if b = 0 then begin lemma_pow0 a; LE.lemma_pow0 k a end else begin lemma_pow_unfold a b; lemma_pow_nat_is_pow a (b - 1); LE.lemma_pow_unfold k a b; () end let lemma_pow_zero b = lemma_pow_unfold 0 b let lemma_pow_one b = let k = mk_nat_comm_monoid in LE.lemma_pow_one k b; lemma_pow_nat_is_pow 1 b let lemma_pow_add x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_add k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow x m; lemma_pow_nat_is_pow x (n + m) let lemma_pow_mul x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_mul k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow (pow x n) m; lemma_pow_nat_is_pow x (n * m) let lemma_pow_double a b = let k = mk_nat_comm_monoid in LE.lemma_pow_double k a b; lemma_pow_nat_is_pow (a * a) b; lemma_pow_nat_is_pow a (b + b) let lemma_pow_mul_base a b n = let k = mk_nat_comm_monoid in LE.lemma_pow_mul_base k a b n; lemma_pow_nat_is_pow a n; lemma_pow_nat_is_pow b n; lemma_pow_nat_is_pow (a * b) n let rec lemma_pow_mod_base a b n = if b = 0 then begin lemma_pow0 a; lemma_pow0 (a % n) end else begin calc (==) { pow a b % n; (==) { lemma_pow_unfold a b } a * pow a (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n } a * (pow a (b - 1) % n) % n; (==) { lemma_pow_mod_base a (b - 1) n } a * (pow (a % n) (b - 1) % n) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow (a % n) (b - 1)) n } a * pow (a % n) (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l a (pow (a % n) (b - 1)) n } a % n * pow (a % n) (b - 1) % n; (==) { lemma_pow_unfold (a % n) b } pow (a % n) b % n; }; assert (pow a b % n == pow (a % n) b % n) end let lemma_mul_mod_one #m a = () let lemma_mul_mod_assoc #m a b c = calc (==) { (a * b % m) * c % m; (==) { Math.Lemmas.lemma_mod_mul_distr_l (a * b) c m } (a * b) * c % m; (==) { Math.Lemmas.paren_mul_right a b c } a * (b * c) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b * c) m } a * (b * c % m) % m; } let lemma_mul_mod_comm #m a b = () let pow_mod #m a b = pow_mod_ #m a b let pow_mod_def #m a b = () #push-options "--fuel 2" val lemma_pow_mod0: #n:pos{1 < n} -> a:nat_mod n -> Lemma (pow_mod #n a 0 == 1) let lemma_pow_mod0 #n a = () val lemma_pow_mod_unfold0: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 0} -> Lemma (pow_mod #n a b == pow_mod (mul_mod a a) (b / 2)) let lemma_pow_mod_unfold0 n a b = () val lemma_pow_mod_unfold1: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 1} -> Lemma (pow_mod #n a b == mul_mod a (pow_mod (mul_mod a a) (b / 2))) let lemma_pow_mod_unfold1 n a b = () #pop-options val lemma_pow_mod_: n:pos{1 < n} -> a:nat_mod n -> b:nat -> Lemma (ensures (pow_mod #n a b == pow a b % n)) (decreases b) let rec lemma_pow_mod_ n a b = if b = 0 then begin lemma_pow0 a; lemma_pow_mod0 a end else begin if b % 2 = 0 then begin calc (==) { pow_mod #n a b; (==) { lemma_pow_mod_unfold0 n a b } pow_mod #n (mul_mod #n a a) (b / 2); (==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) } pow (mul_mod #n a a) (b / 2) % n; (==) { lemma_pow_mod_base (a * a) (b / 2) n } pow (a * a) (b / 2) % n; (==) { lemma_pow_double a (b / 2) } pow a b % n; }; assert (pow_mod #n a b == pow a b % n) end else begin calc (==) { pow_mod #n a b; (==) { lemma_pow_mod_unfold1 n a b } mul_mod a (pow_mod (mul_mod #n a a) (b / 2)); (==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) } mul_mod a (pow (mul_mod #n a a) (b / 2) % n); (==) { lemma_pow_mod_base (a * a) (b / 2) n } mul_mod a (pow (a * a) (b / 2) % n); (==) { lemma_pow_double a (b / 2) } mul_mod a (pow a (b / 2 * 2) % n); (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b / 2 * 2)) n } a * pow a (b / 2 * 2) % n; (==) { lemma_pow1 a } pow a 1 * pow a (b / 2 * 2) % n; (==) { lemma_pow_add a 1 (b / 2 * 2) } pow a (b / 2 * 2 + 1) % n; (==) { Math.Lemmas.euclidean_division_definition b 2 } pow a b % n; }; assert (pow_mod #n a b == pow a b % n) end end let lemma_pow_mod #n a b = lemma_pow_mod_ n a b let rec lemma_pow_nat_mod_is_pow #n a b = let k = mk_nat_mod_comm_monoid n in if b = 0 then begin lemma_pow0 a; LE.lemma_pow0 k a end else begin calc (==) { pow a b % n; (==) { lemma_pow_unfold a b } a * pow a (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n } a * (pow a (b - 1) % n) % n; (==) { lemma_pow_nat_mod_is_pow #n a (b - 1) } a * LE.pow k a (b - 1) % n; (==) { } k.LE.mul a (LE.pow k a (b - 1)); (==) { LE.lemma_pow_unfold k a b } LE.pow k a b; }; () end let lemma_add_mod_one #m a = Math.Lemmas.small_mod a m let lemma_add_mod_assoc #m a b c = calc (==) { add_mod (add_mod a b) c; (==) { Math.Lemmas.lemma_mod_plus_distr_l (a + b) c m } ((a + b) + c) % m; (==) { } (a + (b + c)) % m; (==) { Math.Lemmas.lemma_mod_plus_distr_r a (b + c) m } add_mod a (add_mod b c); } let lemma_add_mod_comm #m a b = () let lemma_mod_distributivity_add_right #m a b c = calc (==) { mul_mod a (add_mod b c); (==) { } a * ((b + c) % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b + c) m } a * (b + c) % m; (==) { Math.Lemmas.distributivity_add_right a b c } (a * b + a * c) % m; (==) { Math.Lemmas.modulo_distributivity (a * b) (a * c) m } add_mod (mul_mod a b) (mul_mod a c); } let lemma_mod_distributivity_add_left #m a b c = lemma_mod_distributivity_add_right c a b
false
false
Lib.NatMod.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_mod_distributivity_sub_right: #m:pos -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m -> Lemma (mul_mod a (sub_mod b c) == sub_mod (mul_mod a b) (mul_mod a c))
[]
Lib.NatMod.lemma_mod_distributivity_sub_right
{ "file_name": "lib/Lib.NatMod.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.NatMod.nat_mod m -> b: Lib.NatMod.nat_mod m -> c: Lib.NatMod.nat_mod m -> FStar.Pervasives.Lemma (ensures Lib.NatMod.mul_mod a (Lib.NatMod.sub_mod b c) == Lib.NatMod.sub_mod (Lib.NatMod.mul_mod a b) (Lib.NatMod.mul_mod a c))
{ "end_col": 5, "end_line": 260, "start_col": 2, "start_line": 248 }
FStar.Pervasives.Lemma
val lemma_div_mod_prime_one: #m:pos{1 < m} -> a:nat_mod m -> Lemma (div_mod a 1 == a)
[ { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.Math.Fermat", "short_module": "Fermat" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_div_mod_prime_one #m a = lemma_pow_mod #m 1 (m - 2); lemma_pow_one (m - 2); Math.Lemmas.small_mod 1 m
val lemma_div_mod_prime_one: #m:pos{1 < m} -> a:nat_mod m -> Lemma (div_mod a 1 == a) let lemma_div_mod_prime_one #m a =
false
null
true
lemma_pow_mod #m 1 (m - 2); lemma_pow_one (m - 2); Math.Lemmas.small_mod 1 m
{ "checked_file": "Lib.NatMod.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.NatMod.fst" }
[ "lemma" ]
[ "Prims.pos", "Prims.b2t", "Prims.op_LessThan", "Lib.NatMod.nat_mod", "FStar.Math.Lemmas.small_mod", "Prims.unit", "Lib.NatMod.lemma_pow_one", "Prims.op_Subtraction", "Lib.NatMod.lemma_pow_mod" ]
[]
module Lib.NatMod module LE = Lib.Exponentiation.Definition #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" #push-options "--fuel 2" let lemma_pow0 a = () let lemma_pow1 a = () let lemma_pow_unfold a b = () #pop-options let rec lemma_pow_gt_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_gt_zero a (b - 1) end let rec lemma_pow_ge_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_ge_zero a (b - 1) end let rec lemma_pow_nat_is_pow a b = let k = mk_nat_comm_monoid in if b = 0 then begin lemma_pow0 a; LE.lemma_pow0 k a end else begin lemma_pow_unfold a b; lemma_pow_nat_is_pow a (b - 1); LE.lemma_pow_unfold k a b; () end let lemma_pow_zero b = lemma_pow_unfold 0 b let lemma_pow_one b = let k = mk_nat_comm_monoid in LE.lemma_pow_one k b; lemma_pow_nat_is_pow 1 b let lemma_pow_add x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_add k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow x m; lemma_pow_nat_is_pow x (n + m) let lemma_pow_mul x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_mul k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow (pow x n) m; lemma_pow_nat_is_pow x (n * m) let lemma_pow_double a b = let k = mk_nat_comm_monoid in LE.lemma_pow_double k a b; lemma_pow_nat_is_pow (a * a) b; lemma_pow_nat_is_pow a (b + b) let lemma_pow_mul_base a b n = let k = mk_nat_comm_monoid in LE.lemma_pow_mul_base k a b n; lemma_pow_nat_is_pow a n; lemma_pow_nat_is_pow b n; lemma_pow_nat_is_pow (a * b) n let rec lemma_pow_mod_base a b n = if b = 0 then begin lemma_pow0 a; lemma_pow0 (a % n) end else begin calc (==) { pow a b % n; (==) { lemma_pow_unfold a b } a * pow a (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n } a * (pow a (b - 1) % n) % n; (==) { lemma_pow_mod_base a (b - 1) n } a * (pow (a % n) (b - 1) % n) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow (a % n) (b - 1)) n } a * pow (a % n) (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l a (pow (a % n) (b - 1)) n } a % n * pow (a % n) (b - 1) % n; (==) { lemma_pow_unfold (a % n) b } pow (a % n) b % n; }; assert (pow a b % n == pow (a % n) b % n) end let lemma_mul_mod_one #m a = () let lemma_mul_mod_assoc #m a b c = calc (==) { (a * b % m) * c % m; (==) { Math.Lemmas.lemma_mod_mul_distr_l (a * b) c m } (a * b) * c % m; (==) { Math.Lemmas.paren_mul_right a b c } a * (b * c) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b * c) m } a * (b * c % m) % m; } let lemma_mul_mod_comm #m a b = () let pow_mod #m a b = pow_mod_ #m a b let pow_mod_def #m a b = () #push-options "--fuel 2" val lemma_pow_mod0: #n:pos{1 < n} -> a:nat_mod n -> Lemma (pow_mod #n a 0 == 1) let lemma_pow_mod0 #n a = () val lemma_pow_mod_unfold0: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 0} -> Lemma (pow_mod #n a b == pow_mod (mul_mod a a) (b / 2)) let lemma_pow_mod_unfold0 n a b = () val lemma_pow_mod_unfold1: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 1} -> Lemma (pow_mod #n a b == mul_mod a (pow_mod (mul_mod a a) (b / 2))) let lemma_pow_mod_unfold1 n a b = () #pop-options val lemma_pow_mod_: n:pos{1 < n} -> a:nat_mod n -> b:nat -> Lemma (ensures (pow_mod #n a b == pow a b % n)) (decreases b) let rec lemma_pow_mod_ n a b = if b = 0 then begin lemma_pow0 a; lemma_pow_mod0 a end else begin if b % 2 = 0 then begin calc (==) { pow_mod #n a b; (==) { lemma_pow_mod_unfold0 n a b } pow_mod #n (mul_mod #n a a) (b / 2); (==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) } pow (mul_mod #n a a) (b / 2) % n; (==) { lemma_pow_mod_base (a * a) (b / 2) n } pow (a * a) (b / 2) % n; (==) { lemma_pow_double a (b / 2) } pow a b % n; }; assert (pow_mod #n a b == pow a b % n) end else begin calc (==) { pow_mod #n a b; (==) { lemma_pow_mod_unfold1 n a b } mul_mod a (pow_mod (mul_mod #n a a) (b / 2)); (==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) } mul_mod a (pow (mul_mod #n a a) (b / 2) % n); (==) { lemma_pow_mod_base (a * a) (b / 2) n } mul_mod a (pow (a * a) (b / 2) % n); (==) { lemma_pow_double a (b / 2) } mul_mod a (pow a (b / 2 * 2) % n); (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b / 2 * 2)) n } a * pow a (b / 2 * 2) % n; (==) { lemma_pow1 a } pow a 1 * pow a (b / 2 * 2) % n; (==) { lemma_pow_add a 1 (b / 2 * 2) } pow a (b / 2 * 2 + 1) % n; (==) { Math.Lemmas.euclidean_division_definition b 2 } pow a b % n; }; assert (pow_mod #n a b == pow a b % n) end end let lemma_pow_mod #n a b = lemma_pow_mod_ n a b let rec lemma_pow_nat_mod_is_pow #n a b = let k = mk_nat_mod_comm_monoid n in if b = 0 then begin lemma_pow0 a; LE.lemma_pow0 k a end else begin calc (==) { pow a b % n; (==) { lemma_pow_unfold a b } a * pow a (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n } a * (pow a (b - 1) % n) % n; (==) { lemma_pow_nat_mod_is_pow #n a (b - 1) } a * LE.pow k a (b - 1) % n; (==) { } k.LE.mul a (LE.pow k a (b - 1)); (==) { LE.lemma_pow_unfold k a b } LE.pow k a b; }; () end let lemma_add_mod_one #m a = Math.Lemmas.small_mod a m let lemma_add_mod_assoc #m a b c = calc (==) { add_mod (add_mod a b) c; (==) { Math.Lemmas.lemma_mod_plus_distr_l (a + b) c m } ((a + b) + c) % m; (==) { } (a + (b + c)) % m; (==) { Math.Lemmas.lemma_mod_plus_distr_r a (b + c) m } add_mod a (add_mod b c); } let lemma_add_mod_comm #m a b = () let lemma_mod_distributivity_add_right #m a b c = calc (==) { mul_mod a (add_mod b c); (==) { } a * ((b + c) % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b + c) m } a * (b + c) % m; (==) { Math.Lemmas.distributivity_add_right a b c } (a * b + a * c) % m; (==) { Math.Lemmas.modulo_distributivity (a * b) (a * c) m } add_mod (mul_mod a b) (mul_mod a c); } let lemma_mod_distributivity_add_left #m a b c = lemma_mod_distributivity_add_right c a b let lemma_mod_distributivity_sub_right #m a b c = calc (==) { mul_mod a (sub_mod b c); (==) { } a * ((b - c) % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b - c) m } a * (b - c) % m; (==) { Math.Lemmas.distributivity_sub_right a b c } (a * b - a * c) % m; (==) { Math.Lemmas.lemma_mod_plus_distr_l (a * b) (- a * c) m } (mul_mod a b - a * c) % m; (==) { Math.Lemmas.lemma_mod_sub_distr (mul_mod a b) (a * c) m } sub_mod (mul_mod a b) (mul_mod a c); } let lemma_mod_distributivity_sub_left #m a b c = lemma_mod_distributivity_sub_right c a b let lemma_inv_mod_both #m a b = let p1 = pow a (m - 2) in let p2 = pow b (m - 2) in calc (==) { mul_mod (inv_mod a) (inv_mod b); (==) { lemma_pow_mod #m a (m - 2); lemma_pow_mod #m b (m - 2) } p1 % m * (p2 % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_l p1 (p2 % m) m } p1 * (p2 % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r p1 p2 m } p1 * p2 % m; (==) { lemma_pow_mul_base a b (m - 2) } pow (a * b) (m - 2) % m; (==) { lemma_pow_mod_base (a * b) (m - 2) m } pow (mul_mod a b) (m - 2) % m; (==) { lemma_pow_mod #m (mul_mod a b) (m - 2) } inv_mod (mul_mod a b); } #push-options "--fuel 1" val pow_eq: a:nat -> n:nat -> Lemma (Fermat.pow a n == pow a n) let rec pow_eq a n = if n = 0 then () else pow_eq a (n - 1) #pop-options let lemma_div_mod_prime #m a = Math.Lemmas.small_mod a m; assert (a == a % m); assert (a <> 0 /\ a % m <> 0); calc (==) { pow_mod #m a (m - 2) * a % m; (==) { lemma_pow_mod #m a (m - 2) } pow a (m - 2) % m * a % m; (==) { Math.Lemmas.lemma_mod_mul_distr_l (pow a (m - 2)) a m } pow a (m - 2) * a % m; (==) { lemma_pow1 a; lemma_pow_add a (m - 2) 1 } pow a (m - 1) % m; (==) { pow_eq a (m - 1) } Fermat.pow a (m - 1) % m; (==) { Fermat.fermat_alt m a } 1; }
false
false
Lib.NatMod.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_div_mod_prime_one: #m:pos{1 < m} -> a:nat_mod m -> Lemma (div_mod a 1 == a)
[]
Lib.NatMod.lemma_div_mod_prime_one
{ "file_name": "lib/Lib.NatMod.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.NatMod.nat_mod m -> FStar.Pervasives.Lemma (ensures Lib.NatMod.div_mod a 1 == a)
{ "end_col": 27, "end_line": 319, "start_col": 2, "start_line": 317 }
FStar.Pervasives.Lemma
val lemma_inv_mod_both: #m:pos{1 < m} -> a:nat_mod m -> b:nat_mod m -> Lemma (inv_mod (mul_mod a b) == mul_mod (inv_mod a) (inv_mod b))
[ { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.Math.Fermat", "short_module": "Fermat" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_inv_mod_both #m a b = let p1 = pow a (m - 2) in let p2 = pow b (m - 2) in calc (==) { mul_mod (inv_mod a) (inv_mod b); (==) { lemma_pow_mod #m a (m - 2); lemma_pow_mod #m b (m - 2) } p1 % m * (p2 % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_l p1 (p2 % m) m } p1 * (p2 % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r p1 p2 m } p1 * p2 % m; (==) { lemma_pow_mul_base a b (m - 2) } pow (a * b) (m - 2) % m; (==) { lemma_pow_mod_base (a * b) (m - 2) m } pow (mul_mod a b) (m - 2) % m; (==) { lemma_pow_mod #m (mul_mod a b) (m - 2) } inv_mod (mul_mod a b); }
val lemma_inv_mod_both: #m:pos{1 < m} -> a:nat_mod m -> b:nat_mod m -> Lemma (inv_mod (mul_mod a b) == mul_mod (inv_mod a) (inv_mod b)) let lemma_inv_mod_both #m a b =
false
null
true
let p1 = pow a (m - 2) in let p2 = pow b (m - 2) in calc ( == ) { mul_mod (inv_mod a) (inv_mod b); ( == ) { (lemma_pow_mod #m a (m - 2); lemma_pow_mod #m b (m - 2)) } (p1 % m) * (p2 % m) % m; ( == ) { Math.Lemmas.lemma_mod_mul_distr_l p1 (p2 % m) m } p1 * (p2 % m) % m; ( == ) { Math.Lemmas.lemma_mod_mul_distr_r p1 p2 m } p1 * p2 % m; ( == ) { lemma_pow_mul_base a b (m - 2) } pow (a * b) (m - 2) % m; ( == ) { lemma_pow_mod_base (a * b) (m - 2) m } pow (mul_mod a b) (m - 2) % m; ( == ) { lemma_pow_mod #m (mul_mod a b) (m - 2) } inv_mod (mul_mod a b); }
{ "checked_file": "Lib.NatMod.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.NatMod.fst" }
[ "lemma" ]
[ "Prims.pos", "Prims.b2t", "Prims.op_LessThan", "Lib.NatMod.nat_mod", "FStar.Calc.calc_finish", "Prims.eq2", "Lib.NatMod.mul_mod", "Lib.NatMod.inv_mod", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "Prims.op_Modulus", "Lib.NatMod.pow", "Prims.op_Subtraction", "FStar.Mul.op_Star", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Lib.NatMod.lemma_pow_mod", "Prims.squash", "FStar.Math.Lemmas.lemma_mod_mul_distr_l", "FStar.Math.Lemmas.lemma_mod_mul_distr_r", "Lib.NatMod.lemma_pow_mul_base", "Lib.NatMod.lemma_pow_mod_base", "Prims.int" ]
[]
module Lib.NatMod module LE = Lib.Exponentiation.Definition #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" #push-options "--fuel 2" let lemma_pow0 a = () let lemma_pow1 a = () let lemma_pow_unfold a b = () #pop-options let rec lemma_pow_gt_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_gt_zero a (b - 1) end let rec lemma_pow_ge_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_ge_zero a (b - 1) end let rec lemma_pow_nat_is_pow a b = let k = mk_nat_comm_monoid in if b = 0 then begin lemma_pow0 a; LE.lemma_pow0 k a end else begin lemma_pow_unfold a b; lemma_pow_nat_is_pow a (b - 1); LE.lemma_pow_unfold k a b; () end let lemma_pow_zero b = lemma_pow_unfold 0 b let lemma_pow_one b = let k = mk_nat_comm_monoid in LE.lemma_pow_one k b; lemma_pow_nat_is_pow 1 b let lemma_pow_add x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_add k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow x m; lemma_pow_nat_is_pow x (n + m) let lemma_pow_mul x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_mul k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow (pow x n) m; lemma_pow_nat_is_pow x (n * m) let lemma_pow_double a b = let k = mk_nat_comm_monoid in LE.lemma_pow_double k a b; lemma_pow_nat_is_pow (a * a) b; lemma_pow_nat_is_pow a (b + b) let lemma_pow_mul_base a b n = let k = mk_nat_comm_monoid in LE.lemma_pow_mul_base k a b n; lemma_pow_nat_is_pow a n; lemma_pow_nat_is_pow b n; lemma_pow_nat_is_pow (a * b) n let rec lemma_pow_mod_base a b n = if b = 0 then begin lemma_pow0 a; lemma_pow0 (a % n) end else begin calc (==) { pow a b % n; (==) { lemma_pow_unfold a b } a * pow a (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n } a * (pow a (b - 1) % n) % n; (==) { lemma_pow_mod_base a (b - 1) n } a * (pow (a % n) (b - 1) % n) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow (a % n) (b - 1)) n } a * pow (a % n) (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l a (pow (a % n) (b - 1)) n } a % n * pow (a % n) (b - 1) % n; (==) { lemma_pow_unfold (a % n) b } pow (a % n) b % n; }; assert (pow a b % n == pow (a % n) b % n) end let lemma_mul_mod_one #m a = () let lemma_mul_mod_assoc #m a b c = calc (==) { (a * b % m) * c % m; (==) { Math.Lemmas.lemma_mod_mul_distr_l (a * b) c m } (a * b) * c % m; (==) { Math.Lemmas.paren_mul_right a b c } a * (b * c) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b * c) m } a * (b * c % m) % m; } let lemma_mul_mod_comm #m a b = () let pow_mod #m a b = pow_mod_ #m a b let pow_mod_def #m a b = () #push-options "--fuel 2" val lemma_pow_mod0: #n:pos{1 < n} -> a:nat_mod n -> Lemma (pow_mod #n a 0 == 1) let lemma_pow_mod0 #n a = () val lemma_pow_mod_unfold0: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 0} -> Lemma (pow_mod #n a b == pow_mod (mul_mod a a) (b / 2)) let lemma_pow_mod_unfold0 n a b = () val lemma_pow_mod_unfold1: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 1} -> Lemma (pow_mod #n a b == mul_mod a (pow_mod (mul_mod a a) (b / 2))) let lemma_pow_mod_unfold1 n a b = () #pop-options val lemma_pow_mod_: n:pos{1 < n} -> a:nat_mod n -> b:nat -> Lemma (ensures (pow_mod #n a b == pow a b % n)) (decreases b) let rec lemma_pow_mod_ n a b = if b = 0 then begin lemma_pow0 a; lemma_pow_mod0 a end else begin if b % 2 = 0 then begin calc (==) { pow_mod #n a b; (==) { lemma_pow_mod_unfold0 n a b } pow_mod #n (mul_mod #n a a) (b / 2); (==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) } pow (mul_mod #n a a) (b / 2) % n; (==) { lemma_pow_mod_base (a * a) (b / 2) n } pow (a * a) (b / 2) % n; (==) { lemma_pow_double a (b / 2) } pow a b % n; }; assert (pow_mod #n a b == pow a b % n) end else begin calc (==) { pow_mod #n a b; (==) { lemma_pow_mod_unfold1 n a b } mul_mod a (pow_mod (mul_mod #n a a) (b / 2)); (==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) } mul_mod a (pow (mul_mod #n a a) (b / 2) % n); (==) { lemma_pow_mod_base (a * a) (b / 2) n } mul_mod a (pow (a * a) (b / 2) % n); (==) { lemma_pow_double a (b / 2) } mul_mod a (pow a (b / 2 * 2) % n); (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b / 2 * 2)) n } a * pow a (b / 2 * 2) % n; (==) { lemma_pow1 a } pow a 1 * pow a (b / 2 * 2) % n; (==) { lemma_pow_add a 1 (b / 2 * 2) } pow a (b / 2 * 2 + 1) % n; (==) { Math.Lemmas.euclidean_division_definition b 2 } pow a b % n; }; assert (pow_mod #n a b == pow a b % n) end end let lemma_pow_mod #n a b = lemma_pow_mod_ n a b let rec lemma_pow_nat_mod_is_pow #n a b = let k = mk_nat_mod_comm_monoid n in if b = 0 then begin lemma_pow0 a; LE.lemma_pow0 k a end else begin calc (==) { pow a b % n; (==) { lemma_pow_unfold a b } a * pow a (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n } a * (pow a (b - 1) % n) % n; (==) { lemma_pow_nat_mod_is_pow #n a (b - 1) } a * LE.pow k a (b - 1) % n; (==) { } k.LE.mul a (LE.pow k a (b - 1)); (==) { LE.lemma_pow_unfold k a b } LE.pow k a b; }; () end let lemma_add_mod_one #m a = Math.Lemmas.small_mod a m let lemma_add_mod_assoc #m a b c = calc (==) { add_mod (add_mod a b) c; (==) { Math.Lemmas.lemma_mod_plus_distr_l (a + b) c m } ((a + b) + c) % m; (==) { } (a + (b + c)) % m; (==) { Math.Lemmas.lemma_mod_plus_distr_r a (b + c) m } add_mod a (add_mod b c); } let lemma_add_mod_comm #m a b = () let lemma_mod_distributivity_add_right #m a b c = calc (==) { mul_mod a (add_mod b c); (==) { } a * ((b + c) % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b + c) m } a * (b + c) % m; (==) { Math.Lemmas.distributivity_add_right a b c } (a * b + a * c) % m; (==) { Math.Lemmas.modulo_distributivity (a * b) (a * c) m } add_mod (mul_mod a b) (mul_mod a c); } let lemma_mod_distributivity_add_left #m a b c = lemma_mod_distributivity_add_right c a b let lemma_mod_distributivity_sub_right #m a b c = calc (==) { mul_mod a (sub_mod b c); (==) { } a * ((b - c) % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b - c) m } a * (b - c) % m; (==) { Math.Lemmas.distributivity_sub_right a b c } (a * b - a * c) % m; (==) { Math.Lemmas.lemma_mod_plus_distr_l (a * b) (- a * c) m } (mul_mod a b - a * c) % m; (==) { Math.Lemmas.lemma_mod_sub_distr (mul_mod a b) (a * c) m } sub_mod (mul_mod a b) (mul_mod a c); } let lemma_mod_distributivity_sub_left #m a b c = lemma_mod_distributivity_sub_right c a b
false
false
Lib.NatMod.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_inv_mod_both: #m:pos{1 < m} -> a:nat_mod m -> b:nat_mod m -> Lemma (inv_mod (mul_mod a b) == mul_mod (inv_mod a) (inv_mod b))
[]
Lib.NatMod.lemma_inv_mod_both
{ "file_name": "lib/Lib.NatMod.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.NatMod.nat_mod m -> b: Lib.NatMod.nat_mod m -> FStar.Pervasives.Lemma (ensures Lib.NatMod.inv_mod (Lib.NatMod.mul_mod a b) == Lib.NatMod.mul_mod (Lib.NatMod.inv_mod a) (Lib.NatMod.inv_mod b))
{ "end_col": 5, "end_line": 285, "start_col": 31, "start_line": 267 }
FStar.Pervasives.Lemma
val lemma_div_mod_eq_mul_mod1: #m:prime -> a:nat_mod m -> b:nat_mod m{b <> 0} -> c:nat_mod m -> Lemma (div_mod a b = c ==> a = mul_mod c b)
[ { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.Math.Fermat", "short_module": "Fermat" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_div_mod_eq_mul_mod1 #m a b c = if div_mod a b = c then begin assert (mul_mod (div_mod a b) b = mul_mod c b); calc (==) { mul_mod (div_mod a b) b; (==) { lemma_div_mod_prime_one b } mul_mod (div_mod a b) (div_mod b 1); (==) { lemma_div_mod_prime_to_one_denominator a b b 1 } div_mod (mul_mod a b) (mul_mod b 1); (==) { lemma_div_mod_prime_cancel a 1 b } div_mod a 1; (==) { lemma_div_mod_prime_one a } a; } end else ()
val lemma_div_mod_eq_mul_mod1: #m:prime -> a:nat_mod m -> b:nat_mod m{b <> 0} -> c:nat_mod m -> Lemma (div_mod a b = c ==> a = mul_mod c b) let lemma_div_mod_eq_mul_mod1 #m a b c =
false
null
true
if div_mod a b = c then (assert (mul_mod (div_mod a b) b = mul_mod c b); calc ( == ) { mul_mod (div_mod a b) b; ( == ) { lemma_div_mod_prime_one b } mul_mod (div_mod a b) (div_mod b 1); ( == ) { lemma_div_mod_prime_to_one_denominator a b b 1 } div_mod (mul_mod a b) (mul_mod b 1); ( == ) { lemma_div_mod_prime_cancel a 1 b } div_mod a 1; ( == ) { lemma_div_mod_prime_one a } a; })
{ "checked_file": "Lib.NatMod.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.NatMod.fst" }
[ "lemma" ]
[ "Lib.NatMod.prime", "Lib.NatMod.nat_mod", "Prims.b2t", "Prims.op_disEquality", "Prims.int", "Prims.op_Equality", "Lib.NatMod.div_mod", "FStar.Calc.calc_finish", "Prims.eq2", "Lib.NatMod.mul_mod", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Lib.NatMod.lemma_div_mod_prime_one", "Prims.squash", "Lib.NatMod.lemma_div_mod_prime_to_one_denominator", "Lib.NatMod.lemma_div_mod_prime_cancel", "Prims._assert", "Prims.bool" ]
[]
module Lib.NatMod module LE = Lib.Exponentiation.Definition #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" #push-options "--fuel 2" let lemma_pow0 a = () let lemma_pow1 a = () let lemma_pow_unfold a b = () #pop-options let rec lemma_pow_gt_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_gt_zero a (b - 1) end let rec lemma_pow_ge_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_ge_zero a (b - 1) end let rec lemma_pow_nat_is_pow a b = let k = mk_nat_comm_monoid in if b = 0 then begin lemma_pow0 a; LE.lemma_pow0 k a end else begin lemma_pow_unfold a b; lemma_pow_nat_is_pow a (b - 1); LE.lemma_pow_unfold k a b; () end let lemma_pow_zero b = lemma_pow_unfold 0 b let lemma_pow_one b = let k = mk_nat_comm_monoid in LE.lemma_pow_one k b; lemma_pow_nat_is_pow 1 b let lemma_pow_add x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_add k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow x m; lemma_pow_nat_is_pow x (n + m) let lemma_pow_mul x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_mul k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow (pow x n) m; lemma_pow_nat_is_pow x (n * m) let lemma_pow_double a b = let k = mk_nat_comm_monoid in LE.lemma_pow_double k a b; lemma_pow_nat_is_pow (a * a) b; lemma_pow_nat_is_pow a (b + b) let lemma_pow_mul_base a b n = let k = mk_nat_comm_monoid in LE.lemma_pow_mul_base k a b n; lemma_pow_nat_is_pow a n; lemma_pow_nat_is_pow b n; lemma_pow_nat_is_pow (a * b) n let rec lemma_pow_mod_base a b n = if b = 0 then begin lemma_pow0 a; lemma_pow0 (a % n) end else begin calc (==) { pow a b % n; (==) { lemma_pow_unfold a b } a * pow a (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n } a * (pow a (b - 1) % n) % n; (==) { lemma_pow_mod_base a (b - 1) n } a * (pow (a % n) (b - 1) % n) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow (a % n) (b - 1)) n } a * pow (a % n) (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l a (pow (a % n) (b - 1)) n } a % n * pow (a % n) (b - 1) % n; (==) { lemma_pow_unfold (a % n) b } pow (a % n) b % n; }; assert (pow a b % n == pow (a % n) b % n) end let lemma_mul_mod_one #m a = () let lemma_mul_mod_assoc #m a b c = calc (==) { (a * b % m) * c % m; (==) { Math.Lemmas.lemma_mod_mul_distr_l (a * b) c m } (a * b) * c % m; (==) { Math.Lemmas.paren_mul_right a b c } a * (b * c) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b * c) m } a * (b * c % m) % m; } let lemma_mul_mod_comm #m a b = () let pow_mod #m a b = pow_mod_ #m a b let pow_mod_def #m a b = () #push-options "--fuel 2" val lemma_pow_mod0: #n:pos{1 < n} -> a:nat_mod n -> Lemma (pow_mod #n a 0 == 1) let lemma_pow_mod0 #n a = () val lemma_pow_mod_unfold0: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 0} -> Lemma (pow_mod #n a b == pow_mod (mul_mod a a) (b / 2)) let lemma_pow_mod_unfold0 n a b = () val lemma_pow_mod_unfold1: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 1} -> Lemma (pow_mod #n a b == mul_mod a (pow_mod (mul_mod a a) (b / 2))) let lemma_pow_mod_unfold1 n a b = () #pop-options val lemma_pow_mod_: n:pos{1 < n} -> a:nat_mod n -> b:nat -> Lemma (ensures (pow_mod #n a b == pow a b % n)) (decreases b) let rec lemma_pow_mod_ n a b = if b = 0 then begin lemma_pow0 a; lemma_pow_mod0 a end else begin if b % 2 = 0 then begin calc (==) { pow_mod #n a b; (==) { lemma_pow_mod_unfold0 n a b } pow_mod #n (mul_mod #n a a) (b / 2); (==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) } pow (mul_mod #n a a) (b / 2) % n; (==) { lemma_pow_mod_base (a * a) (b / 2) n } pow (a * a) (b / 2) % n; (==) { lemma_pow_double a (b / 2) } pow a b % n; }; assert (pow_mod #n a b == pow a b % n) end else begin calc (==) { pow_mod #n a b; (==) { lemma_pow_mod_unfold1 n a b } mul_mod a (pow_mod (mul_mod #n a a) (b / 2)); (==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) } mul_mod a (pow (mul_mod #n a a) (b / 2) % n); (==) { lemma_pow_mod_base (a * a) (b / 2) n } mul_mod a (pow (a * a) (b / 2) % n); (==) { lemma_pow_double a (b / 2) } mul_mod a (pow a (b / 2 * 2) % n); (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b / 2 * 2)) n } a * pow a (b / 2 * 2) % n; (==) { lemma_pow1 a } pow a 1 * pow a (b / 2 * 2) % n; (==) { lemma_pow_add a 1 (b / 2 * 2) } pow a (b / 2 * 2 + 1) % n; (==) { Math.Lemmas.euclidean_division_definition b 2 } pow a b % n; }; assert (pow_mod #n a b == pow a b % n) end end let lemma_pow_mod #n a b = lemma_pow_mod_ n a b let rec lemma_pow_nat_mod_is_pow #n a b = let k = mk_nat_mod_comm_monoid n in if b = 0 then begin lemma_pow0 a; LE.lemma_pow0 k a end else begin calc (==) { pow a b % n; (==) { lemma_pow_unfold a b } a * pow a (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n } a * (pow a (b - 1) % n) % n; (==) { lemma_pow_nat_mod_is_pow #n a (b - 1) } a * LE.pow k a (b - 1) % n; (==) { } k.LE.mul a (LE.pow k a (b - 1)); (==) { LE.lemma_pow_unfold k a b } LE.pow k a b; }; () end let lemma_add_mod_one #m a = Math.Lemmas.small_mod a m let lemma_add_mod_assoc #m a b c = calc (==) { add_mod (add_mod a b) c; (==) { Math.Lemmas.lemma_mod_plus_distr_l (a + b) c m } ((a + b) + c) % m; (==) { } (a + (b + c)) % m; (==) { Math.Lemmas.lemma_mod_plus_distr_r a (b + c) m } add_mod a (add_mod b c); } let lemma_add_mod_comm #m a b = () let lemma_mod_distributivity_add_right #m a b c = calc (==) { mul_mod a (add_mod b c); (==) { } a * ((b + c) % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b + c) m } a * (b + c) % m; (==) { Math.Lemmas.distributivity_add_right a b c } (a * b + a * c) % m; (==) { Math.Lemmas.modulo_distributivity (a * b) (a * c) m } add_mod (mul_mod a b) (mul_mod a c); } let lemma_mod_distributivity_add_left #m a b c = lemma_mod_distributivity_add_right c a b let lemma_mod_distributivity_sub_right #m a b c = calc (==) { mul_mod a (sub_mod b c); (==) { } a * ((b - c) % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b - c) m } a * (b - c) % m; (==) { Math.Lemmas.distributivity_sub_right a b c } (a * b - a * c) % m; (==) { Math.Lemmas.lemma_mod_plus_distr_l (a * b) (- a * c) m } (mul_mod a b - a * c) % m; (==) { Math.Lemmas.lemma_mod_sub_distr (mul_mod a b) (a * c) m } sub_mod (mul_mod a b) (mul_mod a c); } let lemma_mod_distributivity_sub_left #m a b c = lemma_mod_distributivity_sub_right c a b let lemma_inv_mod_both #m a b = let p1 = pow a (m - 2) in let p2 = pow b (m - 2) in calc (==) { mul_mod (inv_mod a) (inv_mod b); (==) { lemma_pow_mod #m a (m - 2); lemma_pow_mod #m b (m - 2) } p1 % m * (p2 % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_l p1 (p2 % m) m } p1 * (p2 % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r p1 p2 m } p1 * p2 % m; (==) { lemma_pow_mul_base a b (m - 2) } pow (a * b) (m - 2) % m; (==) { lemma_pow_mod_base (a * b) (m - 2) m } pow (mul_mod a b) (m - 2) % m; (==) { lemma_pow_mod #m (mul_mod a b) (m - 2) } inv_mod (mul_mod a b); } #push-options "--fuel 1" val pow_eq: a:nat -> n:nat -> Lemma (Fermat.pow a n == pow a n) let rec pow_eq a n = if n = 0 then () else pow_eq a (n - 1) #pop-options let lemma_div_mod_prime #m a = Math.Lemmas.small_mod a m; assert (a == a % m); assert (a <> 0 /\ a % m <> 0); calc (==) { pow_mod #m a (m - 2) * a % m; (==) { lemma_pow_mod #m a (m - 2) } pow a (m - 2) % m * a % m; (==) { Math.Lemmas.lemma_mod_mul_distr_l (pow a (m - 2)) a m } pow a (m - 2) * a % m; (==) { lemma_pow1 a; lemma_pow_add a (m - 2) 1 } pow a (m - 1) % m; (==) { pow_eq a (m - 1) } Fermat.pow a (m - 1) % m; (==) { Fermat.fermat_alt m a } 1; } let lemma_div_mod_prime_one #m a = lemma_pow_mod #m 1 (m - 2); lemma_pow_one (m - 2); Math.Lemmas.small_mod 1 m let lemma_div_mod_prime_cancel #m a b c = calc (==) { mul_mod (mul_mod a c) (inv_mod (mul_mod c b)); (==) { lemma_inv_mod_both c b } mul_mod (mul_mod a c) (mul_mod (inv_mod c) (inv_mod b)); (==) { lemma_mul_mod_assoc (mul_mod a c) (inv_mod c) (inv_mod b) } mul_mod (mul_mod (mul_mod a c) (inv_mod c)) (inv_mod b); (==) { lemma_mul_mod_assoc a c (inv_mod c) } mul_mod (mul_mod a (mul_mod c (inv_mod c))) (inv_mod b); (==) { lemma_div_mod_prime c } mul_mod (mul_mod a 1) (inv_mod b); (==) { Math.Lemmas.small_mod a m } mul_mod a (inv_mod b); } let lemma_div_mod_prime_to_one_denominator #m a b c d = calc (==) { mul_mod (div_mod a c) (div_mod b d); (==) { } mul_mod (mul_mod a (inv_mod c)) (mul_mod b (inv_mod d)); (==) { lemma_mul_mod_comm #m b (inv_mod d); lemma_mul_mod_assoc #m (mul_mod a (inv_mod c)) (inv_mod d) b } mul_mod (mul_mod (mul_mod a (inv_mod c)) (inv_mod d)) b; (==) { lemma_mul_mod_assoc #m a (inv_mod c) (inv_mod d) } mul_mod (mul_mod a (mul_mod (inv_mod c) (inv_mod d))) b; (==) { lemma_inv_mod_both c d } mul_mod (mul_mod a (inv_mod (mul_mod c d))) b; (==) { lemma_mul_mod_assoc #m a (inv_mod (mul_mod c d)) b; lemma_mul_mod_comm #m (inv_mod (mul_mod c d)) b; lemma_mul_mod_assoc #m a b (inv_mod (mul_mod c d)) } mul_mod (mul_mod a b) (inv_mod (mul_mod c d)); } val lemma_div_mod_eq_mul_mod1: #m:prime -> a:nat_mod m -> b:nat_mod m{b <> 0} -> c:nat_mod m -> Lemma (div_mod a b = c ==> a = mul_mod c b)
false
false
Lib.NatMod.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_div_mod_eq_mul_mod1: #m:prime -> a:nat_mod m -> b:nat_mod m{b <> 0} -> c:nat_mod m -> Lemma (div_mod a b = c ==> a = mul_mod c b)
[]
Lib.NatMod.lemma_div_mod_eq_mul_mod1
{ "file_name": "lib/Lib.NatMod.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.NatMod.nat_mod m -> b: Lib.NatMod.nat_mod m {b <> 0} -> c: Lib.NatMod.nat_mod m -> FStar.Pervasives.Lemma (ensures Lib.NatMod.div_mod a b = c ==> a = Lib.NatMod.mul_mod c b)
{ "end_col": 9, "end_line": 376, "start_col": 2, "start_line": 363 }
FStar.Pervasives.Lemma
val lemma_div_mod_prime_cancel: #m:prime -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m{c <> 0} -> Lemma (div_mod (mul_mod a c) (mul_mod c b) == div_mod a b)
[ { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.Math.Fermat", "short_module": "Fermat" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_div_mod_prime_cancel #m a b c = calc (==) { mul_mod (mul_mod a c) (inv_mod (mul_mod c b)); (==) { lemma_inv_mod_both c b } mul_mod (mul_mod a c) (mul_mod (inv_mod c) (inv_mod b)); (==) { lemma_mul_mod_assoc (mul_mod a c) (inv_mod c) (inv_mod b) } mul_mod (mul_mod (mul_mod a c) (inv_mod c)) (inv_mod b); (==) { lemma_mul_mod_assoc a c (inv_mod c) } mul_mod (mul_mod a (mul_mod c (inv_mod c))) (inv_mod b); (==) { lemma_div_mod_prime c } mul_mod (mul_mod a 1) (inv_mod b); (==) { Math.Lemmas.small_mod a m } mul_mod a (inv_mod b); }
val lemma_div_mod_prime_cancel: #m:prime -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m{c <> 0} -> Lemma (div_mod (mul_mod a c) (mul_mod c b) == div_mod a b) let lemma_div_mod_prime_cancel #m a b c =
false
null
true
calc ( == ) { mul_mod (mul_mod a c) (inv_mod (mul_mod c b)); ( == ) { lemma_inv_mod_both c b } mul_mod (mul_mod a c) (mul_mod (inv_mod c) (inv_mod b)); ( == ) { lemma_mul_mod_assoc (mul_mod a c) (inv_mod c) (inv_mod b) } mul_mod (mul_mod (mul_mod a c) (inv_mod c)) (inv_mod b); ( == ) { lemma_mul_mod_assoc a c (inv_mod c) } mul_mod (mul_mod a (mul_mod c (inv_mod c))) (inv_mod b); ( == ) { lemma_div_mod_prime c } mul_mod (mul_mod a 1) (inv_mod b); ( == ) { Math.Lemmas.small_mod a m } mul_mod a (inv_mod b); }
{ "checked_file": "Lib.NatMod.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.NatMod.fst" }
[ "lemma" ]
[ "Lib.NatMod.prime", "Lib.NatMod.nat_mod", "Prims.b2t", "Prims.op_disEquality", "Prims.int", "FStar.Calc.calc_finish", "Prims.eq2", "Lib.NatMod.mul_mod", "Lib.NatMod.inv_mod", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Lib.NatMod.lemma_inv_mod_both", "Prims.squash", "Lib.NatMod.lemma_mul_mod_assoc", "Lib.NatMod.lemma_div_mod_prime", "FStar.Math.Lemmas.small_mod" ]
[]
module Lib.NatMod module LE = Lib.Exponentiation.Definition #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" #push-options "--fuel 2" let lemma_pow0 a = () let lemma_pow1 a = () let lemma_pow_unfold a b = () #pop-options let rec lemma_pow_gt_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_gt_zero a (b - 1) end let rec lemma_pow_ge_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_ge_zero a (b - 1) end let rec lemma_pow_nat_is_pow a b = let k = mk_nat_comm_monoid in if b = 0 then begin lemma_pow0 a; LE.lemma_pow0 k a end else begin lemma_pow_unfold a b; lemma_pow_nat_is_pow a (b - 1); LE.lemma_pow_unfold k a b; () end let lemma_pow_zero b = lemma_pow_unfold 0 b let lemma_pow_one b = let k = mk_nat_comm_monoid in LE.lemma_pow_one k b; lemma_pow_nat_is_pow 1 b let lemma_pow_add x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_add k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow x m; lemma_pow_nat_is_pow x (n + m) let lemma_pow_mul x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_mul k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow (pow x n) m; lemma_pow_nat_is_pow x (n * m) let lemma_pow_double a b = let k = mk_nat_comm_monoid in LE.lemma_pow_double k a b; lemma_pow_nat_is_pow (a * a) b; lemma_pow_nat_is_pow a (b + b) let lemma_pow_mul_base a b n = let k = mk_nat_comm_monoid in LE.lemma_pow_mul_base k a b n; lemma_pow_nat_is_pow a n; lemma_pow_nat_is_pow b n; lemma_pow_nat_is_pow (a * b) n let rec lemma_pow_mod_base a b n = if b = 0 then begin lemma_pow0 a; lemma_pow0 (a % n) end else begin calc (==) { pow a b % n; (==) { lemma_pow_unfold a b } a * pow a (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n } a * (pow a (b - 1) % n) % n; (==) { lemma_pow_mod_base a (b - 1) n } a * (pow (a % n) (b - 1) % n) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow (a % n) (b - 1)) n } a * pow (a % n) (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l a (pow (a % n) (b - 1)) n } a % n * pow (a % n) (b - 1) % n; (==) { lemma_pow_unfold (a % n) b } pow (a % n) b % n; }; assert (pow a b % n == pow (a % n) b % n) end let lemma_mul_mod_one #m a = () let lemma_mul_mod_assoc #m a b c = calc (==) { (a * b % m) * c % m; (==) { Math.Lemmas.lemma_mod_mul_distr_l (a * b) c m } (a * b) * c % m; (==) { Math.Lemmas.paren_mul_right a b c } a * (b * c) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b * c) m } a * (b * c % m) % m; } let lemma_mul_mod_comm #m a b = () let pow_mod #m a b = pow_mod_ #m a b let pow_mod_def #m a b = () #push-options "--fuel 2" val lemma_pow_mod0: #n:pos{1 < n} -> a:nat_mod n -> Lemma (pow_mod #n a 0 == 1) let lemma_pow_mod0 #n a = () val lemma_pow_mod_unfold0: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 0} -> Lemma (pow_mod #n a b == pow_mod (mul_mod a a) (b / 2)) let lemma_pow_mod_unfold0 n a b = () val lemma_pow_mod_unfold1: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 1} -> Lemma (pow_mod #n a b == mul_mod a (pow_mod (mul_mod a a) (b / 2))) let lemma_pow_mod_unfold1 n a b = () #pop-options val lemma_pow_mod_: n:pos{1 < n} -> a:nat_mod n -> b:nat -> Lemma (ensures (pow_mod #n a b == pow a b % n)) (decreases b) let rec lemma_pow_mod_ n a b = if b = 0 then begin lemma_pow0 a; lemma_pow_mod0 a end else begin if b % 2 = 0 then begin calc (==) { pow_mod #n a b; (==) { lemma_pow_mod_unfold0 n a b } pow_mod #n (mul_mod #n a a) (b / 2); (==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) } pow (mul_mod #n a a) (b / 2) % n; (==) { lemma_pow_mod_base (a * a) (b / 2) n } pow (a * a) (b / 2) % n; (==) { lemma_pow_double a (b / 2) } pow a b % n; }; assert (pow_mod #n a b == pow a b % n) end else begin calc (==) { pow_mod #n a b; (==) { lemma_pow_mod_unfold1 n a b } mul_mod a (pow_mod (mul_mod #n a a) (b / 2)); (==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) } mul_mod a (pow (mul_mod #n a a) (b / 2) % n); (==) { lemma_pow_mod_base (a * a) (b / 2) n } mul_mod a (pow (a * a) (b / 2) % n); (==) { lemma_pow_double a (b / 2) } mul_mod a (pow a (b / 2 * 2) % n); (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b / 2 * 2)) n } a * pow a (b / 2 * 2) % n; (==) { lemma_pow1 a } pow a 1 * pow a (b / 2 * 2) % n; (==) { lemma_pow_add a 1 (b / 2 * 2) } pow a (b / 2 * 2 + 1) % n; (==) { Math.Lemmas.euclidean_division_definition b 2 } pow a b % n; }; assert (pow_mod #n a b == pow a b % n) end end let lemma_pow_mod #n a b = lemma_pow_mod_ n a b let rec lemma_pow_nat_mod_is_pow #n a b = let k = mk_nat_mod_comm_monoid n in if b = 0 then begin lemma_pow0 a; LE.lemma_pow0 k a end else begin calc (==) { pow a b % n; (==) { lemma_pow_unfold a b } a * pow a (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n } a * (pow a (b - 1) % n) % n; (==) { lemma_pow_nat_mod_is_pow #n a (b - 1) } a * LE.pow k a (b - 1) % n; (==) { } k.LE.mul a (LE.pow k a (b - 1)); (==) { LE.lemma_pow_unfold k a b } LE.pow k a b; }; () end let lemma_add_mod_one #m a = Math.Lemmas.small_mod a m let lemma_add_mod_assoc #m a b c = calc (==) { add_mod (add_mod a b) c; (==) { Math.Lemmas.lemma_mod_plus_distr_l (a + b) c m } ((a + b) + c) % m; (==) { } (a + (b + c)) % m; (==) { Math.Lemmas.lemma_mod_plus_distr_r a (b + c) m } add_mod a (add_mod b c); } let lemma_add_mod_comm #m a b = () let lemma_mod_distributivity_add_right #m a b c = calc (==) { mul_mod a (add_mod b c); (==) { } a * ((b + c) % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b + c) m } a * (b + c) % m; (==) { Math.Lemmas.distributivity_add_right a b c } (a * b + a * c) % m; (==) { Math.Lemmas.modulo_distributivity (a * b) (a * c) m } add_mod (mul_mod a b) (mul_mod a c); } let lemma_mod_distributivity_add_left #m a b c = lemma_mod_distributivity_add_right c a b let lemma_mod_distributivity_sub_right #m a b c = calc (==) { mul_mod a (sub_mod b c); (==) { } a * ((b - c) % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b - c) m } a * (b - c) % m; (==) { Math.Lemmas.distributivity_sub_right a b c } (a * b - a * c) % m; (==) { Math.Lemmas.lemma_mod_plus_distr_l (a * b) (- a * c) m } (mul_mod a b - a * c) % m; (==) { Math.Lemmas.lemma_mod_sub_distr (mul_mod a b) (a * c) m } sub_mod (mul_mod a b) (mul_mod a c); } let lemma_mod_distributivity_sub_left #m a b c = lemma_mod_distributivity_sub_right c a b let lemma_inv_mod_both #m a b = let p1 = pow a (m - 2) in let p2 = pow b (m - 2) in calc (==) { mul_mod (inv_mod a) (inv_mod b); (==) { lemma_pow_mod #m a (m - 2); lemma_pow_mod #m b (m - 2) } p1 % m * (p2 % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_l p1 (p2 % m) m } p1 * (p2 % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r p1 p2 m } p1 * p2 % m; (==) { lemma_pow_mul_base a b (m - 2) } pow (a * b) (m - 2) % m; (==) { lemma_pow_mod_base (a * b) (m - 2) m } pow (mul_mod a b) (m - 2) % m; (==) { lemma_pow_mod #m (mul_mod a b) (m - 2) } inv_mod (mul_mod a b); } #push-options "--fuel 1" val pow_eq: a:nat -> n:nat -> Lemma (Fermat.pow a n == pow a n) let rec pow_eq a n = if n = 0 then () else pow_eq a (n - 1) #pop-options let lemma_div_mod_prime #m a = Math.Lemmas.small_mod a m; assert (a == a % m); assert (a <> 0 /\ a % m <> 0); calc (==) { pow_mod #m a (m - 2) * a % m; (==) { lemma_pow_mod #m a (m - 2) } pow a (m - 2) % m * a % m; (==) { Math.Lemmas.lemma_mod_mul_distr_l (pow a (m - 2)) a m } pow a (m - 2) * a % m; (==) { lemma_pow1 a; lemma_pow_add a (m - 2) 1 } pow a (m - 1) % m; (==) { pow_eq a (m - 1) } Fermat.pow a (m - 1) % m; (==) { Fermat.fermat_alt m a } 1; } let lemma_div_mod_prime_one #m a = lemma_pow_mod #m 1 (m - 2); lemma_pow_one (m - 2); Math.Lemmas.small_mod 1 m
false
false
Lib.NatMod.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_div_mod_prime_cancel: #m:prime -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m{c <> 0} -> Lemma (div_mod (mul_mod a c) (mul_mod c b) == div_mod a b)
[]
Lib.NatMod.lemma_div_mod_prime_cancel
{ "file_name": "lib/Lib.NatMod.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.NatMod.nat_mod m -> b: Lib.NatMod.nat_mod m -> c: Lib.NatMod.nat_mod m {c <> 0} -> FStar.Pervasives.Lemma (ensures Lib.NatMod.div_mod (Lib.NatMod.mul_mod a c) (Lib.NatMod.mul_mod c b) == Lib.NatMod.div_mod a b )
{ "end_col": 5, "end_line": 335, "start_col": 2, "start_line": 323 }
FStar.Pervasives.Lemma
val lemma_pow_mod_base: a:int -> b:nat -> n:pos -> Lemma (pow a b % n == pow (a % n) b % n)
[ { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.Math.Fermat", "short_module": "Fermat" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec lemma_pow_mod_base a b n = if b = 0 then begin lemma_pow0 a; lemma_pow0 (a % n) end else begin calc (==) { pow a b % n; (==) { lemma_pow_unfold a b } a * pow a (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n } a * (pow a (b - 1) % n) % n; (==) { lemma_pow_mod_base a (b - 1) n } a * (pow (a % n) (b - 1) % n) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow (a % n) (b - 1)) n } a * pow (a % n) (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l a (pow (a % n) (b - 1)) n } a % n * pow (a % n) (b - 1) % n; (==) { lemma_pow_unfold (a % n) b } pow (a % n) b % n; }; assert (pow a b % n == pow (a % n) b % n) end
val lemma_pow_mod_base: a:int -> b:nat -> n:pos -> Lemma (pow a b % n == pow (a % n) b % n) let rec lemma_pow_mod_base a b n =
false
null
true
if b = 0 then (lemma_pow0 a; lemma_pow0 (a % n)) else (calc ( == ) { pow a b % n; ( == ) { lemma_pow_unfold a b } a * pow a (b - 1) % n; ( == ) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n } a * (pow a (b - 1) % n) % n; ( == ) { lemma_pow_mod_base a (b - 1) n } a * (pow (a % n) (b - 1) % n) % n; ( == ) { Math.Lemmas.lemma_mod_mul_distr_r a (pow (a % n) (b - 1)) n } a * pow (a % n) (b - 1) % n; ( == ) { Math.Lemmas.lemma_mod_mul_distr_l a (pow (a % n) (b - 1)) n } (a % n) * pow (a % n) (b - 1) % n; ( == ) { lemma_pow_unfold (a % n) b } pow (a % n) b % n; }; assert (pow a b % n == pow (a % n) b % n))
{ "checked_file": "Lib.NatMod.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.NatMod.fst" }
[ "lemma" ]
[ "Prims.int", "Prims.nat", "Prims.pos", "Prims.op_Equality", "Lib.NatMod.lemma_pow0", "Prims.op_Modulus", "Prims.unit", "Prims.bool", "Prims._assert", "Prims.eq2", "Lib.NatMod.pow", "FStar.Calc.calc_finish", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "FStar.Mul.op_Star", "Prims.op_Subtraction", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Lib.NatMod.lemma_pow_unfold", "Prims.squash", "FStar.Math.Lemmas.lemma_mod_mul_distr_r", "Lib.NatMod.lemma_pow_mod_base", "FStar.Math.Lemmas.lemma_mod_mul_distr_l" ]
[]
module Lib.NatMod module LE = Lib.Exponentiation.Definition #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" #push-options "--fuel 2" let lemma_pow0 a = () let lemma_pow1 a = () let lemma_pow_unfold a b = () #pop-options let rec lemma_pow_gt_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_gt_zero a (b - 1) end let rec lemma_pow_ge_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_ge_zero a (b - 1) end let rec lemma_pow_nat_is_pow a b = let k = mk_nat_comm_monoid in if b = 0 then begin lemma_pow0 a; LE.lemma_pow0 k a end else begin lemma_pow_unfold a b; lemma_pow_nat_is_pow a (b - 1); LE.lemma_pow_unfold k a b; () end let lemma_pow_zero b = lemma_pow_unfold 0 b let lemma_pow_one b = let k = mk_nat_comm_monoid in LE.lemma_pow_one k b; lemma_pow_nat_is_pow 1 b let lemma_pow_add x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_add k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow x m; lemma_pow_nat_is_pow x (n + m) let lemma_pow_mul x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_mul k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow (pow x n) m; lemma_pow_nat_is_pow x (n * m) let lemma_pow_double a b = let k = mk_nat_comm_monoid in LE.lemma_pow_double k a b; lemma_pow_nat_is_pow (a * a) b; lemma_pow_nat_is_pow a (b + b) let lemma_pow_mul_base a b n = let k = mk_nat_comm_monoid in LE.lemma_pow_mul_base k a b n; lemma_pow_nat_is_pow a n; lemma_pow_nat_is_pow b n; lemma_pow_nat_is_pow (a * b) n
false
false
Lib.NatMod.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_pow_mod_base: a:int -> b:nat -> n:pos -> Lemma (pow a b % n == pow (a % n) b % n)
[ "recursion" ]
Lib.NatMod.lemma_pow_mod_base
{ "file_name": "lib/Lib.NatMod.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Prims.int -> b: Prims.nat -> n: Prims.pos -> FStar.Pervasives.Lemma (ensures Lib.NatMod.pow a b % n == Lib.NatMod.pow (a % n) b % n)
{ "end_col": 5, "end_line": 103, "start_col": 2, "start_line": 83 }
FStar.Pervasives.Lemma
val lemma_pow_nat_mod_is_pow: #n:pos{1 < n} -> a:nat_mod n -> b:nat -> Lemma (pow a b % n == LE.pow (mk_nat_mod_comm_monoid n) a b)
[ { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.Math.Fermat", "short_module": "Fermat" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec lemma_pow_nat_mod_is_pow #n a b = let k = mk_nat_mod_comm_monoid n in if b = 0 then begin lemma_pow0 a; LE.lemma_pow0 k a end else begin calc (==) { pow a b % n; (==) { lemma_pow_unfold a b } a * pow a (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n } a * (pow a (b - 1) % n) % n; (==) { lemma_pow_nat_mod_is_pow #n a (b - 1) } a * LE.pow k a (b - 1) % n; (==) { } k.LE.mul a (LE.pow k a (b - 1)); (==) { LE.lemma_pow_unfold k a b } LE.pow k a b; }; () end
val lemma_pow_nat_mod_is_pow: #n:pos{1 < n} -> a:nat_mod n -> b:nat -> Lemma (pow a b % n == LE.pow (mk_nat_mod_comm_monoid n) a b) let rec lemma_pow_nat_mod_is_pow #n a b =
false
null
true
let k = mk_nat_mod_comm_monoid n in if b = 0 then (lemma_pow0 a; LE.lemma_pow0 k a) else (calc ( == ) { pow a b % n; ( == ) { lemma_pow_unfold a b } a * pow a (b - 1) % n; ( == ) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n } a * (pow a (b - 1) % n) % n; ( == ) { lemma_pow_nat_mod_is_pow #n a (b - 1) } a * LE.pow k a (b - 1) % n; ( == ) { () } k.LE.mul a (LE.pow k a (b - 1)); ( == ) { LE.lemma_pow_unfold k a b } LE.pow k a b; }; ())
{ "checked_file": "Lib.NatMod.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.NatMod.fst" }
[ "lemma" ]
[ "Prims.pos", "Prims.b2t", "Prims.op_LessThan", "Lib.NatMod.nat_mod", "Prims.nat", "Prims.op_Equality", "Prims.int", "Lib.Exponentiation.Definition.lemma_pow0", "Prims.unit", "Lib.NatMod.lemma_pow0", "Prims.bool", "FStar.Calc.calc_finish", "Prims.eq2", "Prims.op_Modulus", "Lib.NatMod.pow", "Lib.Exponentiation.Definition.pow", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "Lib.Exponentiation.Definition.__proj__Mkcomm_monoid__item__mul", "Prims.op_Subtraction", "FStar.Mul.op_Star", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Lib.NatMod.lemma_pow_unfold", "Prims.squash", "FStar.Math.Lemmas.lemma_mod_mul_distr_r", "Lib.NatMod.lemma_pow_nat_mod_is_pow", "Lib.Exponentiation.Definition.lemma_pow_unfold", "Lib.Exponentiation.Definition.comm_monoid", "Lib.NatMod.mk_nat_mod_comm_monoid" ]
[]
module Lib.NatMod module LE = Lib.Exponentiation.Definition #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" #push-options "--fuel 2" let lemma_pow0 a = () let lemma_pow1 a = () let lemma_pow_unfold a b = () #pop-options let rec lemma_pow_gt_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_gt_zero a (b - 1) end let rec lemma_pow_ge_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_ge_zero a (b - 1) end let rec lemma_pow_nat_is_pow a b = let k = mk_nat_comm_monoid in if b = 0 then begin lemma_pow0 a; LE.lemma_pow0 k a end else begin lemma_pow_unfold a b; lemma_pow_nat_is_pow a (b - 1); LE.lemma_pow_unfold k a b; () end let lemma_pow_zero b = lemma_pow_unfold 0 b let lemma_pow_one b = let k = mk_nat_comm_monoid in LE.lemma_pow_one k b; lemma_pow_nat_is_pow 1 b let lemma_pow_add x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_add k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow x m; lemma_pow_nat_is_pow x (n + m) let lemma_pow_mul x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_mul k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow (pow x n) m; lemma_pow_nat_is_pow x (n * m) let lemma_pow_double a b = let k = mk_nat_comm_monoid in LE.lemma_pow_double k a b; lemma_pow_nat_is_pow (a * a) b; lemma_pow_nat_is_pow a (b + b) let lemma_pow_mul_base a b n = let k = mk_nat_comm_monoid in LE.lemma_pow_mul_base k a b n; lemma_pow_nat_is_pow a n; lemma_pow_nat_is_pow b n; lemma_pow_nat_is_pow (a * b) n let rec lemma_pow_mod_base a b n = if b = 0 then begin lemma_pow0 a; lemma_pow0 (a % n) end else begin calc (==) { pow a b % n; (==) { lemma_pow_unfold a b } a * pow a (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n } a * (pow a (b - 1) % n) % n; (==) { lemma_pow_mod_base a (b - 1) n } a * (pow (a % n) (b - 1) % n) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow (a % n) (b - 1)) n } a * pow (a % n) (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l a (pow (a % n) (b - 1)) n } a % n * pow (a % n) (b - 1) % n; (==) { lemma_pow_unfold (a % n) b } pow (a % n) b % n; }; assert (pow a b % n == pow (a % n) b % n) end let lemma_mul_mod_one #m a = () let lemma_mul_mod_assoc #m a b c = calc (==) { (a * b % m) * c % m; (==) { Math.Lemmas.lemma_mod_mul_distr_l (a * b) c m } (a * b) * c % m; (==) { Math.Lemmas.paren_mul_right a b c } a * (b * c) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b * c) m } a * (b * c % m) % m; } let lemma_mul_mod_comm #m a b = () let pow_mod #m a b = pow_mod_ #m a b let pow_mod_def #m a b = () #push-options "--fuel 2" val lemma_pow_mod0: #n:pos{1 < n} -> a:nat_mod n -> Lemma (pow_mod #n a 0 == 1) let lemma_pow_mod0 #n a = () val lemma_pow_mod_unfold0: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 0} -> Lemma (pow_mod #n a b == pow_mod (mul_mod a a) (b / 2)) let lemma_pow_mod_unfold0 n a b = () val lemma_pow_mod_unfold1: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 1} -> Lemma (pow_mod #n a b == mul_mod a (pow_mod (mul_mod a a) (b / 2))) let lemma_pow_mod_unfold1 n a b = () #pop-options val lemma_pow_mod_: n:pos{1 < n} -> a:nat_mod n -> b:nat -> Lemma (ensures (pow_mod #n a b == pow a b % n)) (decreases b) let rec lemma_pow_mod_ n a b = if b = 0 then begin lemma_pow0 a; lemma_pow_mod0 a end else begin if b % 2 = 0 then begin calc (==) { pow_mod #n a b; (==) { lemma_pow_mod_unfold0 n a b } pow_mod #n (mul_mod #n a a) (b / 2); (==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) } pow (mul_mod #n a a) (b / 2) % n; (==) { lemma_pow_mod_base (a * a) (b / 2) n } pow (a * a) (b / 2) % n; (==) { lemma_pow_double a (b / 2) } pow a b % n; }; assert (pow_mod #n a b == pow a b % n) end else begin calc (==) { pow_mod #n a b; (==) { lemma_pow_mod_unfold1 n a b } mul_mod a (pow_mod (mul_mod #n a a) (b / 2)); (==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) } mul_mod a (pow (mul_mod #n a a) (b / 2) % n); (==) { lemma_pow_mod_base (a * a) (b / 2) n } mul_mod a (pow (a * a) (b / 2) % n); (==) { lemma_pow_double a (b / 2) } mul_mod a (pow a (b / 2 * 2) % n); (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b / 2 * 2)) n } a * pow a (b / 2 * 2) % n; (==) { lemma_pow1 a } pow a 1 * pow a (b / 2 * 2) % n; (==) { lemma_pow_add a 1 (b / 2 * 2) } pow a (b / 2 * 2 + 1) % n; (==) { Math.Lemmas.euclidean_division_definition b 2 } pow a b % n; }; assert (pow_mod #n a b == pow a b % n) end end let lemma_pow_mod #n a b = lemma_pow_mod_ n a b
false
false
Lib.NatMod.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_pow_nat_mod_is_pow: #n:pos{1 < n} -> a:nat_mod n -> b:nat -> Lemma (pow a b % n == LE.pow (mk_nat_mod_comm_monoid n) a b)
[ "recursion" ]
Lib.NatMod.lemma_pow_nat_mod_is_pow
{ "file_name": "lib/Lib.NatMod.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.NatMod.nat_mod n -> b: Prims.nat -> FStar.Pervasives.Lemma (ensures Lib.NatMod.pow a b % n == Lib.Exponentiation.Definition.pow (Lib.NatMod.mk_nat_mod_comm_monoid n) a b)
{ "end_col": 15, "end_line": 207, "start_col": 41, "start_line": 189 }
FStar.Pervasives.Lemma
val lemma_div_mod_prime: #m:prime -> a:nat_mod m{a <> 0} -> Lemma (div_mod a a == 1)
[ { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.Math.Fermat", "short_module": "Fermat" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_div_mod_prime #m a = Math.Lemmas.small_mod a m; assert (a == a % m); assert (a <> 0 /\ a % m <> 0); calc (==) { pow_mod #m a (m - 2) * a % m; (==) { lemma_pow_mod #m a (m - 2) } pow a (m - 2) % m * a % m; (==) { Math.Lemmas.lemma_mod_mul_distr_l (pow a (m - 2)) a m } pow a (m - 2) * a % m; (==) { lemma_pow1 a; lemma_pow_add a (m - 2) 1 } pow a (m - 1) % m; (==) { pow_eq a (m - 1) } Fermat.pow a (m - 1) % m; (==) { Fermat.fermat_alt m a } 1; }
val lemma_div_mod_prime: #m:prime -> a:nat_mod m{a <> 0} -> Lemma (div_mod a a == 1) let lemma_div_mod_prime #m a =
false
null
true
Math.Lemmas.small_mod a m; assert (a == a % m); assert (a <> 0 /\ a % m <> 0); calc ( == ) { pow_mod #m a (m - 2) * a % m; ( == ) { lemma_pow_mod #m a (m - 2) } (pow a (m - 2) % m) * a % m; ( == ) { Math.Lemmas.lemma_mod_mul_distr_l (pow a (m - 2)) a m } pow a (m - 2) * a % m; ( == ) { (lemma_pow1 a; lemma_pow_add a (m - 2) 1) } pow a (m - 1) % m; ( == ) { pow_eq a (m - 1) } Fermat.pow a (m - 1) % m; ( == ) { Fermat.fermat_alt m a } 1; }
{ "checked_file": "Lib.NatMod.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.NatMod.fst" }
[ "lemma" ]
[ "Lib.NatMod.prime", "Lib.NatMod.nat_mod", "Prims.b2t", "Prims.op_disEquality", "Prims.int", "FStar.Calc.calc_finish", "Prims.eq2", "Prims.op_Modulus", "FStar.Mul.op_Star", "Lib.NatMod.pow_mod", "Prims.op_Subtraction", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Math.Fermat.pow", "Lib.NatMod.pow", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Lib.NatMod.lemma_pow_mod", "Prims.squash", "FStar.Math.Lemmas.lemma_mod_mul_distr_l", "Lib.NatMod.lemma_pow_add", "Lib.NatMod.lemma_pow1", "Lib.NatMod.pow_eq", "FStar.Math.Fermat.fermat_alt", "Prims._assert", "Prims.l_and", "FStar.Math.Lemmas.small_mod" ]
[]
module Lib.NatMod module LE = Lib.Exponentiation.Definition #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" #push-options "--fuel 2" let lemma_pow0 a = () let lemma_pow1 a = () let lemma_pow_unfold a b = () #pop-options let rec lemma_pow_gt_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_gt_zero a (b - 1) end let rec lemma_pow_ge_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_ge_zero a (b - 1) end let rec lemma_pow_nat_is_pow a b = let k = mk_nat_comm_monoid in if b = 0 then begin lemma_pow0 a; LE.lemma_pow0 k a end else begin lemma_pow_unfold a b; lemma_pow_nat_is_pow a (b - 1); LE.lemma_pow_unfold k a b; () end let lemma_pow_zero b = lemma_pow_unfold 0 b let lemma_pow_one b = let k = mk_nat_comm_monoid in LE.lemma_pow_one k b; lemma_pow_nat_is_pow 1 b let lemma_pow_add x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_add k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow x m; lemma_pow_nat_is_pow x (n + m) let lemma_pow_mul x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_mul k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow (pow x n) m; lemma_pow_nat_is_pow x (n * m) let lemma_pow_double a b = let k = mk_nat_comm_monoid in LE.lemma_pow_double k a b; lemma_pow_nat_is_pow (a * a) b; lemma_pow_nat_is_pow a (b + b) let lemma_pow_mul_base a b n = let k = mk_nat_comm_monoid in LE.lemma_pow_mul_base k a b n; lemma_pow_nat_is_pow a n; lemma_pow_nat_is_pow b n; lemma_pow_nat_is_pow (a * b) n let rec lemma_pow_mod_base a b n = if b = 0 then begin lemma_pow0 a; lemma_pow0 (a % n) end else begin calc (==) { pow a b % n; (==) { lemma_pow_unfold a b } a * pow a (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n } a * (pow a (b - 1) % n) % n; (==) { lemma_pow_mod_base a (b - 1) n } a * (pow (a % n) (b - 1) % n) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow (a % n) (b - 1)) n } a * pow (a % n) (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l a (pow (a % n) (b - 1)) n } a % n * pow (a % n) (b - 1) % n; (==) { lemma_pow_unfold (a % n) b } pow (a % n) b % n; }; assert (pow a b % n == pow (a % n) b % n) end let lemma_mul_mod_one #m a = () let lemma_mul_mod_assoc #m a b c = calc (==) { (a * b % m) * c % m; (==) { Math.Lemmas.lemma_mod_mul_distr_l (a * b) c m } (a * b) * c % m; (==) { Math.Lemmas.paren_mul_right a b c } a * (b * c) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b * c) m } a * (b * c % m) % m; } let lemma_mul_mod_comm #m a b = () let pow_mod #m a b = pow_mod_ #m a b let pow_mod_def #m a b = () #push-options "--fuel 2" val lemma_pow_mod0: #n:pos{1 < n} -> a:nat_mod n -> Lemma (pow_mod #n a 0 == 1) let lemma_pow_mod0 #n a = () val lemma_pow_mod_unfold0: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 0} -> Lemma (pow_mod #n a b == pow_mod (mul_mod a a) (b / 2)) let lemma_pow_mod_unfold0 n a b = () val lemma_pow_mod_unfold1: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 1} -> Lemma (pow_mod #n a b == mul_mod a (pow_mod (mul_mod a a) (b / 2))) let lemma_pow_mod_unfold1 n a b = () #pop-options val lemma_pow_mod_: n:pos{1 < n} -> a:nat_mod n -> b:nat -> Lemma (ensures (pow_mod #n a b == pow a b % n)) (decreases b) let rec lemma_pow_mod_ n a b = if b = 0 then begin lemma_pow0 a; lemma_pow_mod0 a end else begin if b % 2 = 0 then begin calc (==) { pow_mod #n a b; (==) { lemma_pow_mod_unfold0 n a b } pow_mod #n (mul_mod #n a a) (b / 2); (==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) } pow (mul_mod #n a a) (b / 2) % n; (==) { lemma_pow_mod_base (a * a) (b / 2) n } pow (a * a) (b / 2) % n; (==) { lemma_pow_double a (b / 2) } pow a b % n; }; assert (pow_mod #n a b == pow a b % n) end else begin calc (==) { pow_mod #n a b; (==) { lemma_pow_mod_unfold1 n a b } mul_mod a (pow_mod (mul_mod #n a a) (b / 2)); (==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) } mul_mod a (pow (mul_mod #n a a) (b / 2) % n); (==) { lemma_pow_mod_base (a * a) (b / 2) n } mul_mod a (pow (a * a) (b / 2) % n); (==) { lemma_pow_double a (b / 2) } mul_mod a (pow a (b / 2 * 2) % n); (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b / 2 * 2)) n } a * pow a (b / 2 * 2) % n; (==) { lemma_pow1 a } pow a 1 * pow a (b / 2 * 2) % n; (==) { lemma_pow_add a 1 (b / 2 * 2) } pow a (b / 2 * 2 + 1) % n; (==) { Math.Lemmas.euclidean_division_definition b 2 } pow a b % n; }; assert (pow_mod #n a b == pow a b % n) end end let lemma_pow_mod #n a b = lemma_pow_mod_ n a b let rec lemma_pow_nat_mod_is_pow #n a b = let k = mk_nat_mod_comm_monoid n in if b = 0 then begin lemma_pow0 a; LE.lemma_pow0 k a end else begin calc (==) { pow a b % n; (==) { lemma_pow_unfold a b } a * pow a (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n } a * (pow a (b - 1) % n) % n; (==) { lemma_pow_nat_mod_is_pow #n a (b - 1) } a * LE.pow k a (b - 1) % n; (==) { } k.LE.mul a (LE.pow k a (b - 1)); (==) { LE.lemma_pow_unfold k a b } LE.pow k a b; }; () end let lemma_add_mod_one #m a = Math.Lemmas.small_mod a m let lemma_add_mod_assoc #m a b c = calc (==) { add_mod (add_mod a b) c; (==) { Math.Lemmas.lemma_mod_plus_distr_l (a + b) c m } ((a + b) + c) % m; (==) { } (a + (b + c)) % m; (==) { Math.Lemmas.lemma_mod_plus_distr_r a (b + c) m } add_mod a (add_mod b c); } let lemma_add_mod_comm #m a b = () let lemma_mod_distributivity_add_right #m a b c = calc (==) { mul_mod a (add_mod b c); (==) { } a * ((b + c) % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b + c) m } a * (b + c) % m; (==) { Math.Lemmas.distributivity_add_right a b c } (a * b + a * c) % m; (==) { Math.Lemmas.modulo_distributivity (a * b) (a * c) m } add_mod (mul_mod a b) (mul_mod a c); } let lemma_mod_distributivity_add_left #m a b c = lemma_mod_distributivity_add_right c a b let lemma_mod_distributivity_sub_right #m a b c = calc (==) { mul_mod a (sub_mod b c); (==) { } a * ((b - c) % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b - c) m } a * (b - c) % m; (==) { Math.Lemmas.distributivity_sub_right a b c } (a * b - a * c) % m; (==) { Math.Lemmas.lemma_mod_plus_distr_l (a * b) (- a * c) m } (mul_mod a b - a * c) % m; (==) { Math.Lemmas.lemma_mod_sub_distr (mul_mod a b) (a * c) m } sub_mod (mul_mod a b) (mul_mod a c); } let lemma_mod_distributivity_sub_left #m a b c = lemma_mod_distributivity_sub_right c a b let lemma_inv_mod_both #m a b = let p1 = pow a (m - 2) in let p2 = pow b (m - 2) in calc (==) { mul_mod (inv_mod a) (inv_mod b); (==) { lemma_pow_mod #m a (m - 2); lemma_pow_mod #m b (m - 2) } p1 % m * (p2 % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_l p1 (p2 % m) m } p1 * (p2 % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r p1 p2 m } p1 * p2 % m; (==) { lemma_pow_mul_base a b (m - 2) } pow (a * b) (m - 2) % m; (==) { lemma_pow_mod_base (a * b) (m - 2) m } pow (mul_mod a b) (m - 2) % m; (==) { lemma_pow_mod #m (mul_mod a b) (m - 2) } inv_mod (mul_mod a b); } #push-options "--fuel 1" val pow_eq: a:nat -> n:nat -> Lemma (Fermat.pow a n == pow a n) let rec pow_eq a n = if n = 0 then () else pow_eq a (n - 1) #pop-options
false
false
Lib.NatMod.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_div_mod_prime: #m:prime -> a:nat_mod m{a <> 0} -> Lemma (div_mod a a == 1)
[]
Lib.NatMod.lemma_div_mod_prime
{ "file_name": "lib/Lib.NatMod.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.NatMod.nat_mod m {a <> 0} -> FStar.Pervasives.Lemma (ensures Lib.NatMod.div_mod a a == 1)
{ "end_col": 5, "end_line": 313, "start_col": 2, "start_line": 297 }
FStar.Pervasives.Lemma
val lemma_pow_mod_: n:pos{1 < n} -> a:nat_mod n -> b:nat -> Lemma (ensures (pow_mod #n a b == pow a b % n)) (decreases b)
[ { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.Math.Fermat", "short_module": "Fermat" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec lemma_pow_mod_ n a b = if b = 0 then begin lemma_pow0 a; lemma_pow_mod0 a end else begin if b % 2 = 0 then begin calc (==) { pow_mod #n a b; (==) { lemma_pow_mod_unfold0 n a b } pow_mod #n (mul_mod #n a a) (b / 2); (==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) } pow (mul_mod #n a a) (b / 2) % n; (==) { lemma_pow_mod_base (a * a) (b / 2) n } pow (a * a) (b / 2) % n; (==) { lemma_pow_double a (b / 2) } pow a b % n; }; assert (pow_mod #n a b == pow a b % n) end else begin calc (==) { pow_mod #n a b; (==) { lemma_pow_mod_unfold1 n a b } mul_mod a (pow_mod (mul_mod #n a a) (b / 2)); (==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) } mul_mod a (pow (mul_mod #n a a) (b / 2) % n); (==) { lemma_pow_mod_base (a * a) (b / 2) n } mul_mod a (pow (a * a) (b / 2) % n); (==) { lemma_pow_double a (b / 2) } mul_mod a (pow a (b / 2 * 2) % n); (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b / 2 * 2)) n } a * pow a (b / 2 * 2) % n; (==) { lemma_pow1 a } pow a 1 * pow a (b / 2 * 2) % n; (==) { lemma_pow_add a 1 (b / 2 * 2) } pow a (b / 2 * 2 + 1) % n; (==) { Math.Lemmas.euclidean_division_definition b 2 } pow a b % n; }; assert (pow_mod #n a b == pow a b % n) end end
val lemma_pow_mod_: n:pos{1 < n} -> a:nat_mod n -> b:nat -> Lemma (ensures (pow_mod #n a b == pow a b % n)) (decreases b) let rec lemma_pow_mod_ n a b =
false
null
true
if b = 0 then (lemma_pow0 a; lemma_pow_mod0 a) else if b % 2 = 0 then (calc ( == ) { pow_mod #n a b; ( == ) { lemma_pow_mod_unfold0 n a b } pow_mod #n (mul_mod #n a a) (b / 2); ( == ) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) } pow (mul_mod #n a a) (b / 2) % n; ( == ) { lemma_pow_mod_base (a * a) (b / 2) n } pow (a * a) (b / 2) % n; ( == ) { lemma_pow_double a (b / 2) } pow a b % n; }; assert (pow_mod #n a b == pow a b % n)) else (calc ( == ) { pow_mod #n a b; ( == ) { lemma_pow_mod_unfold1 n a b } mul_mod a (pow_mod (mul_mod #n a a) (b / 2)); ( == ) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) } mul_mod a (pow (mul_mod #n a a) (b / 2) % n); ( == ) { lemma_pow_mod_base (a * a) (b / 2) n } mul_mod a (pow (a * a) (b / 2) % n); ( == ) { lemma_pow_double a (b / 2) } mul_mod a (pow a ((b / 2) * 2) % n); ( == ) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a ((b / 2) * 2)) n } a * pow a ((b / 2) * 2) % n; ( == ) { lemma_pow1 a } pow a 1 * pow a ((b / 2) * 2) % n; ( == ) { lemma_pow_add a 1 ((b / 2) * 2) } pow a ((b / 2) * 2 + 1) % n; ( == ) { Math.Lemmas.euclidean_division_definition b 2 } pow a b % n; }; assert (pow_mod #n a b == pow a b % n))
{ "checked_file": "Lib.NatMod.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.NatMod.fst" }
[ "lemma", "" ]
[ "Prims.pos", "Prims.b2t", "Prims.op_LessThan", "Lib.NatMod.nat_mod", "Prims.nat", "Prims.op_Equality", "Prims.int", "Lib.NatMod.lemma_pow_mod0", "Prims.unit", "Lib.NatMod.lemma_pow0", "Prims.bool", "Prims.op_Modulus", "Prims._assert", "Prims.eq2", "Lib.NatMod.pow_mod", "Lib.NatMod.pow", "FStar.Calc.calc_finish", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "FStar.Mul.op_Star", "Prims.op_Division", "Lib.NatMod.mul_mod", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Lib.NatMod.lemma_pow_mod_unfold0", "Prims.squash", "Lib.NatMod.lemma_pow_mod_", "Lib.NatMod.lemma_pow_mod_base", "Lib.NatMod.lemma_pow_double", "Prims.op_Addition", "Lib.NatMod.lemma_pow_mod_unfold1", "FStar.Math.Lemmas.lemma_mod_mul_distr_r", "Lib.NatMod.lemma_pow1", "Lib.NatMod.lemma_pow_add", "FStar.Math.Lemmas.euclidean_division_definition" ]
[]
module Lib.NatMod module LE = Lib.Exponentiation.Definition #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" #push-options "--fuel 2" let lemma_pow0 a = () let lemma_pow1 a = () let lemma_pow_unfold a b = () #pop-options let rec lemma_pow_gt_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_gt_zero a (b - 1) end let rec lemma_pow_ge_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_ge_zero a (b - 1) end let rec lemma_pow_nat_is_pow a b = let k = mk_nat_comm_monoid in if b = 0 then begin lemma_pow0 a; LE.lemma_pow0 k a end else begin lemma_pow_unfold a b; lemma_pow_nat_is_pow a (b - 1); LE.lemma_pow_unfold k a b; () end let lemma_pow_zero b = lemma_pow_unfold 0 b let lemma_pow_one b = let k = mk_nat_comm_monoid in LE.lemma_pow_one k b; lemma_pow_nat_is_pow 1 b let lemma_pow_add x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_add k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow x m; lemma_pow_nat_is_pow x (n + m) let lemma_pow_mul x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_mul k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow (pow x n) m; lemma_pow_nat_is_pow x (n * m) let lemma_pow_double a b = let k = mk_nat_comm_monoid in LE.lemma_pow_double k a b; lemma_pow_nat_is_pow (a * a) b; lemma_pow_nat_is_pow a (b + b) let lemma_pow_mul_base a b n = let k = mk_nat_comm_monoid in LE.lemma_pow_mul_base k a b n; lemma_pow_nat_is_pow a n; lemma_pow_nat_is_pow b n; lemma_pow_nat_is_pow (a * b) n let rec lemma_pow_mod_base a b n = if b = 0 then begin lemma_pow0 a; lemma_pow0 (a % n) end else begin calc (==) { pow a b % n; (==) { lemma_pow_unfold a b } a * pow a (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n } a * (pow a (b - 1) % n) % n; (==) { lemma_pow_mod_base a (b - 1) n } a * (pow (a % n) (b - 1) % n) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow (a % n) (b - 1)) n } a * pow (a % n) (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l a (pow (a % n) (b - 1)) n } a % n * pow (a % n) (b - 1) % n; (==) { lemma_pow_unfold (a % n) b } pow (a % n) b % n; }; assert (pow a b % n == pow (a % n) b % n) end let lemma_mul_mod_one #m a = () let lemma_mul_mod_assoc #m a b c = calc (==) { (a * b % m) * c % m; (==) { Math.Lemmas.lemma_mod_mul_distr_l (a * b) c m } (a * b) * c % m; (==) { Math.Lemmas.paren_mul_right a b c } a * (b * c) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b * c) m } a * (b * c % m) % m; } let lemma_mul_mod_comm #m a b = () let pow_mod #m a b = pow_mod_ #m a b let pow_mod_def #m a b = () #push-options "--fuel 2" val lemma_pow_mod0: #n:pos{1 < n} -> a:nat_mod n -> Lemma (pow_mod #n a 0 == 1) let lemma_pow_mod0 #n a = () val lemma_pow_mod_unfold0: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 0} -> Lemma (pow_mod #n a b == pow_mod (mul_mod a a) (b / 2)) let lemma_pow_mod_unfold0 n a b = () val lemma_pow_mod_unfold1: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 1} -> Lemma (pow_mod #n a b == mul_mod a (pow_mod (mul_mod a a) (b / 2))) let lemma_pow_mod_unfold1 n a b = () #pop-options val lemma_pow_mod_: n:pos{1 < n} -> a:nat_mod n -> b:nat -> Lemma (ensures (pow_mod #n a b == pow a b % n)) (decreases b)
false
false
Lib.NatMod.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_pow_mod_: n:pos{1 < n} -> a:nat_mod n -> b:nat -> Lemma (ensures (pow_mod #n a b == pow a b % n)) (decreases b)
[ "recursion" ]
Lib.NatMod.lemma_pow_mod_
{ "file_name": "lib/Lib.NatMod.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
n: Prims.pos{1 < n} -> a: Lib.NatMod.nat_mod n -> b: Prims.nat -> FStar.Pervasives.Lemma (ensures Lib.NatMod.pow_mod a b == Lib.NatMod.pow a b % n) (decreases b)
{ "end_col": 5, "end_line": 184, "start_col": 2, "start_line": 146 }
FStar.Pervasives.Lemma
val lemma_pow_mod_prime_zero_: #m:prime -> a:nat_mod m -> b:pos -> Lemma (requires pow a b % m = 0) (ensures a = 0)
[ { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.Math.Fermat", "short_module": "Fermat" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec lemma_pow_mod_prime_zero_ #m a b = if b = 1 then lemma_pow1 a else begin let r1 = pow a (b - 1) % m in lemma_pow_unfold a b; assert (a * pow a (b - 1) % m = 0); Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) m; lemma_mul_mod_prime_zero #m a r1; //assert (a = 0 \/ r1 = 0); if a = 0 then () else lemma_pow_mod_prime_zero_ #m a (b - 1) end
val lemma_pow_mod_prime_zero_: #m:prime -> a:nat_mod m -> b:pos -> Lemma (requires pow a b % m = 0) (ensures a = 0) let rec lemma_pow_mod_prime_zero_ #m a b =
false
null
true
if b = 1 then lemma_pow1 a else let r1 = pow a (b - 1) % m in lemma_pow_unfold a b; assert (a * pow a (b - 1) % m = 0); Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) m; lemma_mul_mod_prime_zero #m a r1; if a = 0 then () else lemma_pow_mod_prime_zero_ #m a (b - 1)
{ "checked_file": "Lib.NatMod.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.NatMod.fst" }
[ "lemma" ]
[ "Lib.NatMod.prime", "Lib.NatMod.nat_mod", "Prims.pos", "Prims.op_Equality", "Prims.int", "Lib.NatMod.lemma_pow1", "Prims.bool", "Lib.NatMod.lemma_pow_mod_prime_zero_", "Prims.op_Subtraction", "Prims.unit", "Lib.NatMod.lemma_mul_mod_prime_zero", "FStar.Math.Lemmas.lemma_mod_mul_distr_r", "Lib.NatMod.pow", "Prims._assert", "Prims.b2t", "Prims.op_Modulus", "FStar.Mul.op_Star", "Lib.NatMod.lemma_pow_unfold" ]
[]
module Lib.NatMod module LE = Lib.Exponentiation.Definition #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" #push-options "--fuel 2" let lemma_pow0 a = () let lemma_pow1 a = () let lemma_pow_unfold a b = () #pop-options let rec lemma_pow_gt_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_gt_zero a (b - 1) end let rec lemma_pow_ge_zero a b = if b = 0 then lemma_pow0 a else begin lemma_pow_unfold a b; lemma_pow_ge_zero a (b - 1) end let rec lemma_pow_nat_is_pow a b = let k = mk_nat_comm_monoid in if b = 0 then begin lemma_pow0 a; LE.lemma_pow0 k a end else begin lemma_pow_unfold a b; lemma_pow_nat_is_pow a (b - 1); LE.lemma_pow_unfold k a b; () end let lemma_pow_zero b = lemma_pow_unfold 0 b let lemma_pow_one b = let k = mk_nat_comm_monoid in LE.lemma_pow_one k b; lemma_pow_nat_is_pow 1 b let lemma_pow_add x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_add k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow x m; lemma_pow_nat_is_pow x (n + m) let lemma_pow_mul x n m = let k = mk_nat_comm_monoid in LE.lemma_pow_mul k x n m; lemma_pow_nat_is_pow x n; lemma_pow_nat_is_pow (pow x n) m; lemma_pow_nat_is_pow x (n * m) let lemma_pow_double a b = let k = mk_nat_comm_monoid in LE.lemma_pow_double k a b; lemma_pow_nat_is_pow (a * a) b; lemma_pow_nat_is_pow a (b + b) let lemma_pow_mul_base a b n = let k = mk_nat_comm_monoid in LE.lemma_pow_mul_base k a b n; lemma_pow_nat_is_pow a n; lemma_pow_nat_is_pow b n; lemma_pow_nat_is_pow (a * b) n let rec lemma_pow_mod_base a b n = if b = 0 then begin lemma_pow0 a; lemma_pow0 (a % n) end else begin calc (==) { pow a b % n; (==) { lemma_pow_unfold a b } a * pow a (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n } a * (pow a (b - 1) % n) % n; (==) { lemma_pow_mod_base a (b - 1) n } a * (pow (a % n) (b - 1) % n) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow (a % n) (b - 1)) n } a * pow (a % n) (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_l a (pow (a % n) (b - 1)) n } a % n * pow (a % n) (b - 1) % n; (==) { lemma_pow_unfold (a % n) b } pow (a % n) b % n; }; assert (pow a b % n == pow (a % n) b % n) end let lemma_mul_mod_one #m a = () let lemma_mul_mod_assoc #m a b c = calc (==) { (a * b % m) * c % m; (==) { Math.Lemmas.lemma_mod_mul_distr_l (a * b) c m } (a * b) * c % m; (==) { Math.Lemmas.paren_mul_right a b c } a * (b * c) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b * c) m } a * (b * c % m) % m; } let lemma_mul_mod_comm #m a b = () let pow_mod #m a b = pow_mod_ #m a b let pow_mod_def #m a b = () #push-options "--fuel 2" val lemma_pow_mod0: #n:pos{1 < n} -> a:nat_mod n -> Lemma (pow_mod #n a 0 == 1) let lemma_pow_mod0 #n a = () val lemma_pow_mod_unfold0: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 0} -> Lemma (pow_mod #n a b == pow_mod (mul_mod a a) (b / 2)) let lemma_pow_mod_unfold0 n a b = () val lemma_pow_mod_unfold1: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 1} -> Lemma (pow_mod #n a b == mul_mod a (pow_mod (mul_mod a a) (b / 2))) let lemma_pow_mod_unfold1 n a b = () #pop-options val lemma_pow_mod_: n:pos{1 < n} -> a:nat_mod n -> b:nat -> Lemma (ensures (pow_mod #n a b == pow a b % n)) (decreases b) let rec lemma_pow_mod_ n a b = if b = 0 then begin lemma_pow0 a; lemma_pow_mod0 a end else begin if b % 2 = 0 then begin calc (==) { pow_mod #n a b; (==) { lemma_pow_mod_unfold0 n a b } pow_mod #n (mul_mod #n a a) (b / 2); (==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) } pow (mul_mod #n a a) (b / 2) % n; (==) { lemma_pow_mod_base (a * a) (b / 2) n } pow (a * a) (b / 2) % n; (==) { lemma_pow_double a (b / 2) } pow a b % n; }; assert (pow_mod #n a b == pow a b % n) end else begin calc (==) { pow_mod #n a b; (==) { lemma_pow_mod_unfold1 n a b } mul_mod a (pow_mod (mul_mod #n a a) (b / 2)); (==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) } mul_mod a (pow (mul_mod #n a a) (b / 2) % n); (==) { lemma_pow_mod_base (a * a) (b / 2) n } mul_mod a (pow (a * a) (b / 2) % n); (==) { lemma_pow_double a (b / 2) } mul_mod a (pow a (b / 2 * 2) % n); (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b / 2 * 2)) n } a * pow a (b / 2 * 2) % n; (==) { lemma_pow1 a } pow a 1 * pow a (b / 2 * 2) % n; (==) { lemma_pow_add a 1 (b / 2 * 2) } pow a (b / 2 * 2 + 1) % n; (==) { Math.Lemmas.euclidean_division_definition b 2 } pow a b % n; }; assert (pow_mod #n a b == pow a b % n) end end let lemma_pow_mod #n a b = lemma_pow_mod_ n a b let rec lemma_pow_nat_mod_is_pow #n a b = let k = mk_nat_mod_comm_monoid n in if b = 0 then begin lemma_pow0 a; LE.lemma_pow0 k a end else begin calc (==) { pow a b % n; (==) { lemma_pow_unfold a b } a * pow a (b - 1) % n; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n } a * (pow a (b - 1) % n) % n; (==) { lemma_pow_nat_mod_is_pow #n a (b - 1) } a * LE.pow k a (b - 1) % n; (==) { } k.LE.mul a (LE.pow k a (b - 1)); (==) { LE.lemma_pow_unfold k a b } LE.pow k a b; }; () end let lemma_add_mod_one #m a = Math.Lemmas.small_mod a m let lemma_add_mod_assoc #m a b c = calc (==) { add_mod (add_mod a b) c; (==) { Math.Lemmas.lemma_mod_plus_distr_l (a + b) c m } ((a + b) + c) % m; (==) { } (a + (b + c)) % m; (==) { Math.Lemmas.lemma_mod_plus_distr_r a (b + c) m } add_mod a (add_mod b c); } let lemma_add_mod_comm #m a b = () let lemma_mod_distributivity_add_right #m a b c = calc (==) { mul_mod a (add_mod b c); (==) { } a * ((b + c) % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b + c) m } a * (b + c) % m; (==) { Math.Lemmas.distributivity_add_right a b c } (a * b + a * c) % m; (==) { Math.Lemmas.modulo_distributivity (a * b) (a * c) m } add_mod (mul_mod a b) (mul_mod a c); } let lemma_mod_distributivity_add_left #m a b c = lemma_mod_distributivity_add_right c a b let lemma_mod_distributivity_sub_right #m a b c = calc (==) { mul_mod a (sub_mod b c); (==) { } a * ((b - c) % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r a (b - c) m } a * (b - c) % m; (==) { Math.Lemmas.distributivity_sub_right a b c } (a * b - a * c) % m; (==) { Math.Lemmas.lemma_mod_plus_distr_l (a * b) (- a * c) m } (mul_mod a b - a * c) % m; (==) { Math.Lemmas.lemma_mod_sub_distr (mul_mod a b) (a * c) m } sub_mod (mul_mod a b) (mul_mod a c); } let lemma_mod_distributivity_sub_left #m a b c = lemma_mod_distributivity_sub_right c a b let lemma_inv_mod_both #m a b = let p1 = pow a (m - 2) in let p2 = pow b (m - 2) in calc (==) { mul_mod (inv_mod a) (inv_mod b); (==) { lemma_pow_mod #m a (m - 2); lemma_pow_mod #m b (m - 2) } p1 % m * (p2 % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_l p1 (p2 % m) m } p1 * (p2 % m) % m; (==) { Math.Lemmas.lemma_mod_mul_distr_r p1 p2 m } p1 * p2 % m; (==) { lemma_pow_mul_base a b (m - 2) } pow (a * b) (m - 2) % m; (==) { lemma_pow_mod_base (a * b) (m - 2) m } pow (mul_mod a b) (m - 2) % m; (==) { lemma_pow_mod #m (mul_mod a b) (m - 2) } inv_mod (mul_mod a b); } #push-options "--fuel 1" val pow_eq: a:nat -> n:nat -> Lemma (Fermat.pow a n == pow a n) let rec pow_eq a n = if n = 0 then () else pow_eq a (n - 1) #pop-options let lemma_div_mod_prime #m a = Math.Lemmas.small_mod a m; assert (a == a % m); assert (a <> 0 /\ a % m <> 0); calc (==) { pow_mod #m a (m - 2) * a % m; (==) { lemma_pow_mod #m a (m - 2) } pow a (m - 2) % m * a % m; (==) { Math.Lemmas.lemma_mod_mul_distr_l (pow a (m - 2)) a m } pow a (m - 2) * a % m; (==) { lemma_pow1 a; lemma_pow_add a (m - 2) 1 } pow a (m - 1) % m; (==) { pow_eq a (m - 1) } Fermat.pow a (m - 1) % m; (==) { Fermat.fermat_alt m a } 1; } let lemma_div_mod_prime_one #m a = lemma_pow_mod #m 1 (m - 2); lemma_pow_one (m - 2); Math.Lemmas.small_mod 1 m let lemma_div_mod_prime_cancel #m a b c = calc (==) { mul_mod (mul_mod a c) (inv_mod (mul_mod c b)); (==) { lemma_inv_mod_both c b } mul_mod (mul_mod a c) (mul_mod (inv_mod c) (inv_mod b)); (==) { lemma_mul_mod_assoc (mul_mod a c) (inv_mod c) (inv_mod b) } mul_mod (mul_mod (mul_mod a c) (inv_mod c)) (inv_mod b); (==) { lemma_mul_mod_assoc a c (inv_mod c) } mul_mod (mul_mod a (mul_mod c (inv_mod c))) (inv_mod b); (==) { lemma_div_mod_prime c } mul_mod (mul_mod a 1) (inv_mod b); (==) { Math.Lemmas.small_mod a m } mul_mod a (inv_mod b); } let lemma_div_mod_prime_to_one_denominator #m a b c d = calc (==) { mul_mod (div_mod a c) (div_mod b d); (==) { } mul_mod (mul_mod a (inv_mod c)) (mul_mod b (inv_mod d)); (==) { lemma_mul_mod_comm #m b (inv_mod d); lemma_mul_mod_assoc #m (mul_mod a (inv_mod c)) (inv_mod d) b } mul_mod (mul_mod (mul_mod a (inv_mod c)) (inv_mod d)) b; (==) { lemma_mul_mod_assoc #m a (inv_mod c) (inv_mod d) } mul_mod (mul_mod a (mul_mod (inv_mod c) (inv_mod d))) b; (==) { lemma_inv_mod_both c d } mul_mod (mul_mod a (inv_mod (mul_mod c d))) b; (==) { lemma_mul_mod_assoc #m a (inv_mod (mul_mod c d)) b; lemma_mul_mod_comm #m (inv_mod (mul_mod c d)) b; lemma_mul_mod_assoc #m a b (inv_mod (mul_mod c d)) } mul_mod (mul_mod a b) (inv_mod (mul_mod c d)); } val lemma_div_mod_eq_mul_mod1: #m:prime -> a:nat_mod m -> b:nat_mod m{b <> 0} -> c:nat_mod m -> Lemma (div_mod a b = c ==> a = mul_mod c b) let lemma_div_mod_eq_mul_mod1 #m a b c = if div_mod a b = c then begin assert (mul_mod (div_mod a b) b = mul_mod c b); calc (==) { mul_mod (div_mod a b) b; (==) { lemma_div_mod_prime_one b } mul_mod (div_mod a b) (div_mod b 1); (==) { lemma_div_mod_prime_to_one_denominator a b b 1 } div_mod (mul_mod a b) (mul_mod b 1); (==) { lemma_div_mod_prime_cancel a 1 b } div_mod a 1; (==) { lemma_div_mod_prime_one a } a; } end else () val lemma_div_mod_eq_mul_mod2: #m:prime -> a:nat_mod m -> b:nat_mod m{b <> 0} -> c:nat_mod m -> Lemma (a = mul_mod c b ==> div_mod a b = c) let lemma_div_mod_eq_mul_mod2 #m a b c = if a = mul_mod c b then begin assert (div_mod a b == div_mod (mul_mod c b) b); calc (==) { div_mod (mul_mod c b) b; (==) { Math.Lemmas.small_mod b m } div_mod (mul_mod c b) (mul_mod b 1); (==) { lemma_div_mod_prime_cancel c 1 b } div_mod c 1; (==) { lemma_div_mod_prime_one c } c; } end else () let lemma_div_mod_eq_mul_mod #m a b c = lemma_div_mod_eq_mul_mod1 a b c; lemma_div_mod_eq_mul_mod2 a b c val lemma_mul_mod_zero2: n:pos -> x:int -> y:int -> Lemma (requires x % n == 0 \/ y % n == 0) (ensures x * y % n == 0) let lemma_mul_mod_zero2 n x y = if x % n = 0 then Math.Lemmas.lemma_mod_mul_distr_l x y n else Math.Lemmas.lemma_mod_mul_distr_r x y n let lemma_mul_mod_prime_zero #m a b = Classical.move_requires_3 Euclid.euclid_prime m a b; Classical.move_requires_3 lemma_mul_mod_zero2 m a b val lemma_pow_mod_prime_zero_: #m:prime -> a:nat_mod m -> b:pos -> Lemma (requires pow a b % m = 0) (ensures a = 0)
false
false
Lib.NatMod.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_pow_mod_prime_zero_: #m:prime -> a:nat_mod m -> b:pos -> Lemma (requires pow a b % m = 0) (ensures a = 0)
[ "recursion" ]
Lib.NatMod.lemma_pow_mod_prime_zero_
{ "file_name": "lib/Lib.NatMod.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.NatMod.nat_mod m -> b: Prims.pos -> FStar.Pervasives.Lemma (requires Lib.NatMod.pow a b % m = 0) (ensures a = 0)
{ "end_col": 68, "end_line": 431, "start_col": 2, "start_line": 423 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let n = 8
let n =
false
null
false
8
{ "checked_file": "FStar.UInt8.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt8.fsti" }
[ "total" ]
[]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt8 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
false
true
FStar.UInt8.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val n : Prims.int
[]
FStar.UInt8.n
{ "file_name": "ulib/FStar.UInt8.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
Prims.int
{ "end_col": 16, "end_line": 20, "start_col": 15, "start_line": 20 }
Prims.Tot
val lt (a b: t) : Tot bool
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
val lt (a b: t) : Tot bool let lt (a b: t) : Tot bool =
false
null
false
lt #n (v a) (v b)
{ "checked_file": "FStar.UInt8.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt8.fsti" }
[ "total" ]
[ "FStar.UInt8.t", "FStar.UInt.lt", "FStar.UInt8.n", "FStar.UInt8.v", "Prims.bool" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt8 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 8 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
false
true
FStar.UInt8.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lt (a b: t) : Tot bool
[]
FStar.UInt8.lt
{ "file_name": "ulib/FStar.UInt8.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.bool
{ "end_col": 49, "end_line": 232, "start_col": 32, "start_line": 232 }
Prims.Pure
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Plus_Question_Hat = add_underspec
let op_Plus_Question_Hat =
false
null
false
add_underspec
{ "checked_file": "FStar.UInt8.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt8.fsti" }
[]
[ "FStar.UInt8.add_underspec" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt8 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 8 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *)
false
false
FStar.UInt8.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Plus_Question_Hat : a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t
[]
FStar.UInt8.op_Plus_Question_Hat
{ "file_name": "ulib/FStar.UInt8.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t
{ "end_col": 47, "end_line": 316, "start_col": 34, "start_line": 316 }
Prims.Tot
val gt (a b: t) : Tot bool
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
val gt (a b: t) : Tot bool let gt (a b: t) : Tot bool =
false
null
false
gt #n (v a) (v b)
{ "checked_file": "FStar.UInt8.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt8.fsti" }
[ "total" ]
[ "FStar.UInt8.t", "FStar.UInt.gt", "FStar.UInt8.n", "FStar.UInt8.v", "Prims.bool" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt8 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 8 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
false
true
FStar.UInt8.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val gt (a b: t) : Tot bool
[]
FStar.UInt8.gt
{ "file_name": "ulib/FStar.UInt8.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.bool
{ "end_col": 49, "end_line": 226, "start_col": 32, "start_line": 226 }
Prims.Tot
val gte (a b: t) : Tot bool
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
val gte (a b: t) : Tot bool let gte (a b: t) : Tot bool =
false
null
false
gte #n (v a) (v b)
{ "checked_file": "FStar.UInt8.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt8.fsti" }
[ "total" ]
[ "FStar.UInt8.t", "FStar.UInt.gte", "FStar.UInt8.n", "FStar.UInt8.v", "Prims.bool" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt8 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 8 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
false
true
FStar.UInt8.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val gte (a b: t) : Tot bool
[]
FStar.UInt8.gte
{ "file_name": "ulib/FStar.UInt8.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.bool
{ "end_col": 51, "end_line": 229, "start_col": 33, "start_line": 229 }
Prims.Tot
val eq (a b: t) : Tot bool
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
val eq (a b: t) : Tot bool let eq (a b: t) : Tot bool =
false
null
false
eq #n (v a) (v b)
{ "checked_file": "FStar.UInt8.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt8.fsti" }
[ "total" ]
[ "FStar.UInt8.t", "FStar.UInt.eq", "FStar.UInt8.n", "FStar.UInt8.v", "Prims.bool" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt8 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 8 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality
false
true
FStar.UInt8.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val eq (a b: t) : Tot bool
[]
FStar.UInt8.eq
{ "file_name": "ulib/FStar.UInt8.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.bool
{ "end_col": 49, "end_line": 223, "start_col": 32, "start_line": 223 }
Prims.Pure
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Subtraction_Question_Hat = sub_underspec
let op_Subtraction_Question_Hat =
false
null
false
sub_underspec
{ "checked_file": "FStar.UInt8.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt8.fsti" }
[]
[ "FStar.UInt8.sub_underspec" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt8 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 8 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod
false
false
FStar.UInt8.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Subtraction_Question_Hat : a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t
[]
FStar.UInt8.op_Subtraction_Question_Hat
{ "file_name": "ulib/FStar.UInt8.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t
{ "end_col": 54, "end_line": 319, "start_col": 41, "start_line": 319 }
Prims.Pure
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Plus_Hat = add
let op_Plus_Hat =
false
null
false
add
{ "checked_file": "FStar.UInt8.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt8.fsti" }
[]
[ "FStar.UInt8.add" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt8 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 8 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options
false
false
FStar.UInt8.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Plus_Hat : a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t
[]
FStar.UInt8.op_Plus_Hat
{ "file_name": "ulib/FStar.UInt8.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t
{ "end_col": 28, "end_line": 315, "start_col": 25, "start_line": 315 }
Prims.Tot
val lte (a b: t) : Tot bool
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
val lte (a b: t) : Tot bool let lte (a b: t) : Tot bool =
false
null
false
lte #n (v a) (v b)
{ "checked_file": "FStar.UInt8.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt8.fsti" }
[ "total" ]
[ "FStar.UInt8.t", "FStar.UInt.lte", "FStar.UInt8.n", "FStar.UInt8.v", "Prims.bool" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt8 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 8 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
false
true
FStar.UInt8.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lte (a b: t) : Tot bool
[]
FStar.UInt8.lte
{ "file_name": "ulib/FStar.UInt8.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.bool
{ "end_col": 51, "end_line": 235, "start_col": 33, "start_line": 235 }
Prims.Pure
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Percent_Hat = rem
let op_Percent_Hat =
false
null
false
rem
{ "checked_file": "FStar.UInt8.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt8.fsti" }
[]
[ "FStar.UInt8.rem" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt8 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 8 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub unfold let op_Subtraction_Question_Hat = sub_underspec unfold let op_Subtraction_Percent_Hat = sub_mod unfold let op_Star_Hat = mul unfold let op_Star_Question_Hat = mul_underspec unfold let op_Star_Percent_Hat = mul_mod
false
false
FStar.UInt8.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Percent_Hat : a: FStar.UInt8.t -> b: FStar.UInt8.t{FStar.UInt8.v b <> 0} -> Prims.Pure FStar.UInt8.t
[]
FStar.UInt8.op_Percent_Hat
{ "file_name": "ulib/FStar.UInt8.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt8.t -> b: FStar.UInt8.t{FStar.UInt8.v b <> 0} -> Prims.Pure FStar.UInt8.t
{ "end_col": 31, "end_line": 325, "start_col": 28, "start_line": 325 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Greater_Hat = gt
let op_Greater_Hat =
false
null
false
gt
{ "checked_file": "FStar.UInt8.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt8.fsti" }
[ "total" ]
[ "FStar.UInt8.gt" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt8 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 8 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub unfold let op_Subtraction_Question_Hat = sub_underspec unfold let op_Subtraction_Percent_Hat = sub_mod unfold let op_Star_Hat = mul unfold let op_Star_Question_Hat = mul_underspec unfold let op_Star_Percent_Hat = mul_mod unfold let op_Slash_Hat = div unfold let op_Percent_Hat = rem unfold let op_Hat_Hat = logxor unfold let op_Amp_Hat = logand unfold let op_Bar_Hat = logor unfold let op_Less_Less_Hat = shift_left unfold let op_Greater_Greater_Hat = shift_right
false
true
FStar.UInt8.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Greater_Hat : a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.bool
[]
FStar.UInt8.op_Greater_Hat
{ "file_name": "ulib/FStar.UInt8.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.bool
{ "end_col": 30, "end_line": 332, "start_col": 28, "start_line": 332 }
Prims.Pure
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Amp_Hat = logand
let op_Amp_Hat =
false
null
false
logand
{ "checked_file": "FStar.UInt8.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt8.fsti" }
[]
[ "FStar.UInt8.logand" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt8 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 8 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub unfold let op_Subtraction_Question_Hat = sub_underspec unfold let op_Subtraction_Percent_Hat = sub_mod unfold let op_Star_Hat = mul unfold let op_Star_Question_Hat = mul_underspec unfold let op_Star_Percent_Hat = mul_mod unfold let op_Slash_Hat = div unfold let op_Percent_Hat = rem
false
false
FStar.UInt8.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Amp_Hat : x: FStar.UInt8.t -> y: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t
[]
FStar.UInt8.op_Amp_Hat
{ "file_name": "ulib/FStar.UInt8.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.UInt8.t -> y: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t
{ "end_col": 30, "end_line": 327, "start_col": 24, "start_line": 327 }
Prims.Pure
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Plus_Percent_Hat = add_mod
let op_Plus_Percent_Hat =
false
null
false
add_mod
{ "checked_file": "FStar.UInt8.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt8.fsti" }
[]
[ "FStar.UInt8.add_mod" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt8 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 8 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add
false
false
FStar.UInt8.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Plus_Percent_Hat : a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t
[]
FStar.UInt8.op_Plus_Percent_Hat
{ "file_name": "ulib/FStar.UInt8.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t
{ "end_col": 40, "end_line": 317, "start_col": 33, "start_line": 317 }
Prims.Pure
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Subtraction_Percent_Hat = sub_mod
let op_Subtraction_Percent_Hat =
false
null
false
sub_mod
{ "checked_file": "FStar.UInt8.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt8.fsti" }
[]
[ "FStar.UInt8.sub_mod" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt8 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 8 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub
false
false
FStar.UInt8.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Subtraction_Percent_Hat : a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t
[]
FStar.UInt8.op_Subtraction_Percent_Hat
{ "file_name": "ulib/FStar.UInt8.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t
{ "end_col": 47, "end_line": 320, "start_col": 40, "start_line": 320 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Equals_Hat = eq
let op_Equals_Hat =
false
null
false
eq
{ "checked_file": "FStar.UInt8.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt8.fsti" }
[ "total" ]
[ "FStar.UInt8.eq" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt8 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 8 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub unfold let op_Subtraction_Question_Hat = sub_underspec unfold let op_Subtraction_Percent_Hat = sub_mod unfold let op_Star_Hat = mul unfold let op_Star_Question_Hat = mul_underspec unfold let op_Star_Percent_Hat = mul_mod unfold let op_Slash_Hat = div unfold let op_Percent_Hat = rem unfold let op_Hat_Hat = logxor unfold let op_Amp_Hat = logand unfold let op_Bar_Hat = logor unfold let op_Less_Less_Hat = shift_left
false
true
FStar.UInt8.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Equals_Hat : a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.bool
[]
FStar.UInt8.op_Equals_Hat
{ "file_name": "ulib/FStar.UInt8.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.bool
{ "end_col": 29, "end_line": 331, "start_col": 27, "start_line": 331 }
Prims.Pure
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Slash_Hat = div
let op_Slash_Hat =
false
null
false
div
{ "checked_file": "FStar.UInt8.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt8.fsti" }
[]
[ "FStar.UInt8.div" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt8 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 8 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub unfold let op_Subtraction_Question_Hat = sub_underspec unfold let op_Subtraction_Percent_Hat = sub_mod unfold let op_Star_Hat = mul unfold let op_Star_Question_Hat = mul_underspec
false
false
FStar.UInt8.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Slash_Hat : a: FStar.UInt8.t -> b: FStar.UInt8.t{FStar.UInt8.v b <> 0} -> Prims.Pure FStar.UInt8.t
[]
FStar.UInt8.op_Slash_Hat
{ "file_name": "ulib/FStar.UInt8.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt8.t -> b: FStar.UInt8.t{FStar.UInt8.v b <> 0} -> Prims.Pure FStar.UInt8.t
{ "end_col": 29, "end_line": 324, "start_col": 26, "start_line": 324 }
Prims.Pure
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Bar_Hat = logor
let op_Bar_Hat =
false
null
false
logor
{ "checked_file": "FStar.UInt8.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt8.fsti" }
[]
[ "FStar.UInt8.logor" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt8 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 8 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub unfold let op_Subtraction_Question_Hat = sub_underspec unfold let op_Subtraction_Percent_Hat = sub_mod unfold let op_Star_Hat = mul unfold let op_Star_Question_Hat = mul_underspec unfold let op_Star_Percent_Hat = mul_mod unfold let op_Slash_Hat = div unfold let op_Percent_Hat = rem unfold let op_Hat_Hat = logxor
false
false
FStar.UInt8.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Bar_Hat : x: FStar.UInt8.t -> y: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t
[]
FStar.UInt8.op_Bar_Hat
{ "file_name": "ulib/FStar.UInt8.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.UInt8.t -> y: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t
{ "end_col": 29, "end_line": 328, "start_col": 24, "start_line": 328 }
Prims.Pure
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Subtraction_Hat = sub
let op_Subtraction_Hat =
false
null
false
sub
{ "checked_file": "FStar.UInt8.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt8.fsti" }
[]
[ "FStar.UInt8.sub" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt8 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 8 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec
false
false
FStar.UInt8.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Subtraction_Hat : a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t
[]
FStar.UInt8.op_Subtraction_Hat
{ "file_name": "ulib/FStar.UInt8.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t
{ "end_col": 35, "end_line": 318, "start_col": 32, "start_line": 318 }
Prims.Pure
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Star_Question_Hat = mul_underspec
let op_Star_Question_Hat =
false
null
false
mul_underspec
{ "checked_file": "FStar.UInt8.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt8.fsti" }
[]
[ "FStar.UInt8.mul_underspec" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt8 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 8 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub unfold let op_Subtraction_Question_Hat = sub_underspec unfold let op_Subtraction_Percent_Hat = sub_mod
false
false
FStar.UInt8.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Star_Question_Hat : a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t
[]
FStar.UInt8.op_Star_Question_Hat
{ "file_name": "ulib/FStar.UInt8.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t
{ "end_col": 47, "end_line": 322, "start_col": 34, "start_line": 322 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Less_Equals_Hat = lte
let op_Less_Equals_Hat =
false
null
false
lte
{ "checked_file": "FStar.UInt8.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt8.fsti" }
[ "total" ]
[ "FStar.UInt8.lte" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt8 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 8 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub unfold let op_Subtraction_Question_Hat = sub_underspec unfold let op_Subtraction_Percent_Hat = sub_mod unfold let op_Star_Hat = mul unfold let op_Star_Question_Hat = mul_underspec unfold let op_Star_Percent_Hat = mul_mod unfold let op_Slash_Hat = div unfold let op_Percent_Hat = rem unfold let op_Hat_Hat = logxor unfold let op_Amp_Hat = logand unfold let op_Bar_Hat = logor unfold let op_Less_Less_Hat = shift_left unfold let op_Greater_Greater_Hat = shift_right unfold let op_Equals_Hat = eq unfold let op_Greater_Hat = gt unfold let op_Greater_Equals_Hat = gte
false
true
FStar.UInt8.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Less_Equals_Hat : a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.bool
[]
FStar.UInt8.op_Less_Equals_Hat
{ "file_name": "ulib/FStar.UInt8.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.bool
{ "end_col": 35, "end_line": 335, "start_col": 32, "start_line": 335 }
Prims.Pure
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Star_Percent_Hat = mul_mod
let op_Star_Percent_Hat =
false
null
false
mul_mod
{ "checked_file": "FStar.UInt8.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt8.fsti" }
[]
[ "FStar.UInt8.mul_mod" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt8 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 8 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub unfold let op_Subtraction_Question_Hat = sub_underspec unfold let op_Subtraction_Percent_Hat = sub_mod unfold let op_Star_Hat = mul
false
false
FStar.UInt8.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Star_Percent_Hat : a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t
[]
FStar.UInt8.op_Star_Percent_Hat
{ "file_name": "ulib/FStar.UInt8.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t
{ "end_col": 40, "end_line": 323, "start_col": 33, "start_line": 323 }
Prims.Pure
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Hat_Hat = logxor
let op_Hat_Hat =
false
null
false
logxor
{ "checked_file": "FStar.UInt8.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt8.fsti" }
[]
[ "FStar.UInt8.logxor" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt8 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 8 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub unfold let op_Subtraction_Question_Hat = sub_underspec unfold let op_Subtraction_Percent_Hat = sub_mod unfold let op_Star_Hat = mul unfold let op_Star_Question_Hat = mul_underspec unfold let op_Star_Percent_Hat = mul_mod unfold let op_Slash_Hat = div
false
false
FStar.UInt8.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Hat_Hat : x: FStar.UInt8.t -> y: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t
[]
FStar.UInt8.op_Hat_Hat
{ "file_name": "ulib/FStar.UInt8.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.UInt8.t -> y: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t
{ "end_col": 30, "end_line": 326, "start_col": 24, "start_line": 326 }
Prims.Pure
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Star_Hat = mul
let op_Star_Hat =
false
null
false
mul
{ "checked_file": "FStar.UInt8.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt8.fsti" }
[]
[ "FStar.UInt8.mul" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt8 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 8 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub unfold let op_Subtraction_Question_Hat = sub_underspec
false
false
FStar.UInt8.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Star_Hat : a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t
[]
FStar.UInt8.op_Star_Hat
{ "file_name": "ulib/FStar.UInt8.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t
{ "end_col": 28, "end_line": 321, "start_col": 25, "start_line": 321 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Less_Hat = lt
let op_Less_Hat =
false
null
false
lt
{ "checked_file": "FStar.UInt8.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt8.fsti" }
[ "total" ]
[ "FStar.UInt8.lt" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt8 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 8 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub unfold let op_Subtraction_Question_Hat = sub_underspec unfold let op_Subtraction_Percent_Hat = sub_mod unfold let op_Star_Hat = mul unfold let op_Star_Question_Hat = mul_underspec unfold let op_Star_Percent_Hat = mul_mod unfold let op_Slash_Hat = div unfold let op_Percent_Hat = rem unfold let op_Hat_Hat = logxor unfold let op_Amp_Hat = logand unfold let op_Bar_Hat = logor unfold let op_Less_Less_Hat = shift_left unfold let op_Greater_Greater_Hat = shift_right unfold let op_Equals_Hat = eq unfold let op_Greater_Hat = gt
false
true
FStar.UInt8.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Less_Hat : a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.bool
[]
FStar.UInt8.op_Less_Hat
{ "file_name": "ulib/FStar.UInt8.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.bool
{ "end_col": 27, "end_line": 334, "start_col": 25, "start_line": 334 }