content
stringlengths
7
928k
avg_line_length
float64
3.5
33.8k
max_line_length
int64
6
139k
alphanum_fraction
float64
0.08
0.96
licenses
sequence
repository_name
stringlengths
7
104
path
stringlengths
4
230
size
int64
7
928k
lang
stringclasses
1 value
from collections import defaultdict game = defaultdict(list) tuple_list_county = [('US', 'Visconsin'), ('Germany', 'Bavaria'), ('UK', 'Bradfordshire'), ('India', 'punjab'), ('China', 'Shandong'), ('Canada', 'Nova Scotia')] print game["any_value"] for k,v in tuple_list_county: game[k].append(v) print game
26.25
162
0.669841
[ "MIT" ]
LuisPereda/Learning_Python
Chapter10/default_dict_list_of_tuples.py
315
Python
def pixel(num): def f(s): return s + '\033[{}m \033[0m'.format(num) return f def new_line(s): return s + u"\n" def build(*steps, string=""): for step in steps: string = step(string) return string def main(): cyan = pixel(46) space = pixel('08') heart = [new_line, space, space, cyan, cyan, space, space, space, cyan, cyan, new_line, space, cyan, cyan, cyan, cyan, space, cyan, cyan, cyan, cyan, new_line, cyan, cyan, cyan, cyan, cyan, cyan, cyan, cyan, cyan, cyan, cyan, new_line, cyan, cyan, cyan, cyan, cyan, cyan, cyan, cyan, cyan, cyan, cyan, new_line, cyan, cyan, cyan, cyan, cyan, cyan, cyan, cyan, cyan, cyan, cyan, new_line, space, cyan, cyan, cyan, cyan, cyan, cyan, cyan, cyan, cyan, new_line, space, space, cyan, cyan, cyan, cyan, cyan, cyan, cyan, new_line, space, space, space, cyan, cyan, cyan, cyan, cyan, new_line, space, space, space, space, cyan, cyan, cyan, new_line, space, space, space, space, space, cyan, new_line] print(build(*heart)) if __name__ == '__main__': main()
36.6875
87
0.579216
[ "MIT" ]
xxninjabunnyxx/pixel-pop-heart-challenge
heart.py
1,174
Python
class AdminCatalogHelper: def __init__(self, app): self.app = app def go_though_each_product_and_print_browser_log(self): for i in range(len(self.app.wd.find_elements_by_css_selector('.dataTable td:nth-of-type(3) a[href*="&product_id="]'))): self.app.wd.find_elements_by_css_selector('.dataTable td:nth-of-type(3) a[href*="&product_id="]')[i].click() [print(log) for log in self.app.wd.get_log("browser")] self.app.wait_for_element_to_be_visible('#tab-general') self.app.wd.find_element_by_css_selector('button[name="cancel"]').click()
50.833333
127
0.678689
[ "MIT" ]
spcartman/selenium_full_course
v_python/fixture/admin_catalog.py
610
Python
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. from msccl.collectives import * from msccl.algorithm import * from msccl.instance import * from msccl.topologies import * def _alltoall_subproblem(local_nodes, num_copies): remote_node = local_nodes local_end = local_nodes * local_nodes num_remote_pairs = (num_copies - 1) * local_nodes * local_nodes remote_out_end = local_end + num_remote_pairs num_chunks = remote_out_end + num_remote_pairs def cases(chunk, local,remote_out,remote_in): if chunk < local_end: return local(chunk) elif chunk < remote_out_end: return remote_out(chunk - local_end) else: return remote_in(chunk - remote_out_end) def pre(rank, chunk): return cases(chunk, lambda c: rank == c % local_nodes, lambda c: rank == (c // (num_copies - 1)) % local_nodes, lambda c: rank == remote_node) def post(rank, chunk): return cases(chunk, lambda c: rank == c // local_nodes, lambda c: rank == remote_node, lambda c: rank == (c // (num_copies - 1)) // local_nodes) def trigger(rank, chunk): if rank == remote_node: return cases(chunk, lambda c: None, lambda c: chunk + num_remote_pairs, lambda c: chunk - num_remote_pairs) else: return None return build_collective(f'AlltoallSubproblem(n={local_nodes},copies={num_copies})', local_nodes + 1, num_chunks, pre, post, trigger=trigger) def make_alltoall_subproblem_collective_and_topology(topology, num_copies, relay_nodes, bw = 1, share_bw = False): local_nodes = topology.num_nodes() remote_node = local_nodes links = [[0 for _ in range(local_nodes + 1)] for _ in range(local_nodes + 1)] for src in range(local_nodes): for dst in range(local_nodes): links[dst][src] = topology.link(src, dst) for relay in relay_nodes: links[remote_node][relay] = bw links[relay][remote_node] = bw switches = topology.switches.copy() if share_bw: switches.append((relay_nodes, [num_nodes + 1], bw, 'remote_out')) switches.append(([num_nodes + 1], relay_nodes, bw, 'remote_in')) collective = _alltoall_subproblem(local_nodes, num_copies) topology = Topology(f'Subtopo(local={topology.name},relays=({",".join(str(i) for i in relay_nodes)}))', links, topology.switches) return collective, topology def synthesize_alltoall_subproblem(subproblem_algo, num_copies, logging=False): if subproblem_algo.is_pipelined(): raise ValueError('Pipelining is not supported.') local_topology = subproblem_algo.topology chunks = subproblem_algo.instance.chunks local_nodes = local_topology.num_nodes() - 1 remote_node = local_nodes nodes = local_nodes * num_copies collective = alltoall(nodes).chunk_up(chunks) # Create a distributed topology where copies of relay nodes that connect to the remote node in the subproblem # topology are connected to all the relay nodes in the other copies. links = [[0 for _ in range(nodes)] for _ in range(nodes)] for dst in range(nodes): for src in range(nodes): local_src = src % local_nodes local_dst = dst % local_nodes if src // local_nodes != dst // local_nodes: bw = min(local_topology.link(local_src, remote_node), local_topology.link(remote_node, local_dst)) links[dst][src] = bw else: links[dst][src] = local_topology.link(local_src, local_dst) # Also make copies of switches with a similar expansion of the remote node into the nodes of other copies. switches = [] for srcs, dsts, bw, name in local_topology.switches: for i in range(num_copies): def to_dist(ranks): for rank in ranks: if rank < remote_node: # Non-remote nodes are just translated to the distributed numbering of ranks. yield rank + i * local_nodes else: # Include all remote nodes in the switch. This is fine because the links already limit # connectivity to just the relay nodes. for r in range(nodes): if r // local_nodes != i: yield r dist_srcs = list(to_dist(srcs)) dist_dsts = list(to_dist(dsts)) switches.append((dist_srcs, dist_dsts, bw, f'copy_{i}_{name}_local')) topology = Topology(f'Stiched(sub={local_topology.name},copies={num_copies})', links, switches) def nth_chunk_for_pair(src, dst, idx): # The following chunk calculation respects both the _scattered and _transpose # pre/postconditions in Alltoall. When substituting it in: # -the precondition (chunk % self.num_nodes) simplifies to src # -the postcondition ((chunk // self.num_nodes) % self.num_nodes) simplifies to dst return (src + dst * collective.num_nodes) * chunks + idx steps = [] # Calculate the ranges of the differently handled chunks local_end = local_nodes * local_nodes num_remote_pairs = (num_copies - 1) * local_nodes * local_nodes remote_out_end = local_end + num_remote_pairs num_chunks = remote_out_end + num_remote_pairs for local_step in subproblem_algo.steps: sends = [] # These are used to track operations involving remote nodes that get matched with another operation in the same # step. unmatched_sends = {} unmatched_recvs = {} # Stitch together copies of the subproblem algorithm for chunk, src, dst in local_step.sends: for i in range(num_copies): def to_dist(rank): # Translates ranks from the local to the distributed topology return rank + i * local_nodes def other_start(c): # Given a relative remote chunk return local rank 0 in the copy it corresponds to other_i = c % (num_copies - 1) if other_i >= i: other_i += 1 return other_i * local_nodes # Calculate origin and target ranks that match the Alltoall pre/postconditions if chunk < local_end: assert src != remote_node and dst != remote_node origin = to_dist((chunk // chunks) % local_nodes) target = to_dist((chunk // chunks) // local_nodes) # Check that the origin and target calculation match the local collective assert subproblem_algo.collective.precondition(origin % local_nodes, chunk) assert subproblem_algo.collective.postcondition(target % local_nodes, chunk) elif chunk < remote_out_end: c = chunk - local_end local_origin = ((c // chunks) // (num_copies - 1)) % local_nodes origin = to_dist(local_origin) target = other_start(c) + ((c // (num_copies - 1))) // local_nodes # Check that the origin and target calculation match the local collective assert subproblem_algo.collective.precondition(local_origin, chunk) assert subproblem_algo.collective.postcondition(target % local_nodes, chunk + num_remote_pairs) else: assert chunk < num_chunks c = chunk - remote_out_end local_target = ((c // chunks) // (num_copies - 1)) // local_nodes target = to_dist(local_target) origin = other_start(c) + ((c // (num_copies - 1))) % local_nodes # Check that the origin and target calculation match the local collective assert subproblem_algo.collective.precondition(origin % local_nodes, chunk - num_remote_pairs) assert subproblem_algo.collective.postcondition(local_target, chunk) # Get the chunk number in the distributed algorithm chunk_idx = chunk % chunks # Translate send src and dst to distributed space and add the send to the distributed algorithm dist_chunk = nth_chunk_for_pair(origin, target, chunk_idx) if dst == remote_node: assert chunk < remote_out_end # Sends to remote nodes have to find a matched receive if dist_chunk in unmatched_recvs: dist_dst = unmatched_recvs.pop(dist_chunk) sends.append((dist_chunk, to_dist(src), dist_dst)) else: unmatched_sends[dist_chunk] = to_dist(src) elif src == remote_node: assert chunk < num_chunks # Receives from remote nodes have to find a matched send if dist_chunk in unmatched_sends: dist_src = unmatched_sends.pop(dist_chunk) sends.append((dist_chunk, dist_src, to_dist(dst))) else: unmatched_recvs[dist_chunk] = to_dist(dst) else: # Sends locally are just translated to the new distributed space of ranks sends.append((dist_chunk, to_dist(src), to_dist(dst))) if len(unmatched_sends) > 0 or len(unmatched_recvs) > 0: raise ValueError('Subproblem algorithm has unpaired sends/recvs.') steps.append(Step(local_step.rounds, sends)) instance = Instance( steps=len(steps), extra_rounds=sum(step.rounds - 1 for step in steps), chunks=chunks, ) return Algorithm.make_implementation(collective, topology, instance, steps)
45.267857
133
0.60355
[ "MIT" ]
angelica-moreira/sccl
msccl/distributors/alltoall_subproblem.py
10,140
Python
import logging from collections import OrderedDict from pathlib import Path from typing import List, Optional, Set, Tuple, Union import numpy as np import torch from sklearn.metrics.pairwise import cosine_similarity from sklearn.preprocessing import minmax_scale from tqdm import tqdm import flair from flair.data import Dictionary, Sentence, Span, SpanLabel from flair.datasets import DataLoader, FlairDatapointDataset from flair.embeddings import ( TokenEmbeddings, TransformerDocumentEmbeddings, TransformerWordEmbeddings, ) from flair.file_utils import cached_path from flair.models.sequence_tagger_model import SequenceTagger from flair.models.text_classification_model import TextClassifier from flair.training_utils import store_embeddings log = logging.getLogger("flair") class FewshotClassifier(flair.nn.Classifier[Sentence]): def __init__(self): self._current_task = None self._task_specific_attributes = {} self.label_nearest_map = None self.tars_model: flair.nn.Classifier[Sentence] super(FewshotClassifier, self).__init__() def forward_loss( self, data_points: Union[List[Sentence], Sentence] ) -> Union[torch.Tensor, Tuple[torch.Tensor, int]]: if not isinstance(data_points, list): data_points = [data_points] # Transform input data into TARS format sentences = self._get_tars_formatted_sentences(data_points) loss = self.tars_model.forward_loss(sentences) return loss @property def tars_embeddings(self): raise NotImplementedError def _get_tars_formatted_sentence(self, label, sentence): raise NotImplementedError def _get_tars_formatted_sentences(self, sentences: List[Sentence]): label_text_pairs = [] all_labels = [label.decode("utf-8") for label in self.get_current_label_dictionary().idx2item] for sentence in sentences: label_text_pairs_for_sentence = [] if self.training and self.num_negative_labels_to_sample is not None: positive_labels = list( OrderedDict.fromkeys([label.value for label in sentence.get_labels(self.label_type)]) ) sampled_negative_labels = self._get_nearest_labels_for(positive_labels) for label in positive_labels: label_text_pairs_for_sentence.append(self._get_tars_formatted_sentence(label, sentence)) for label in sampled_negative_labels: label_text_pairs_for_sentence.append(self._get_tars_formatted_sentence(label, sentence)) else: for label in all_labels: label_text_pairs_for_sentence.append(self._get_tars_formatted_sentence(label, sentence)) label_text_pairs.extend(label_text_pairs_for_sentence) return label_text_pairs def _get_nearest_labels_for(self, labels): # if there are no labels, return a random sample as negatives if len(labels) == 0: tags = self.get_current_label_dictionary().get_items() import random sample = random.sample(tags, k=self.num_negative_labels_to_sample) return sample already_sampled_negative_labels = set() # otherwise, go through all labels for label in labels: plausible_labels = [] plausible_label_probabilities = [] for plausible_label in self.label_nearest_map[label]: if plausible_label in already_sampled_negative_labels or plausible_label in labels: continue else: plausible_labels.append(plausible_label) plausible_label_probabilities.append(self.label_nearest_map[label][plausible_label]) # make sure the probabilities always sum up to 1 plausible_label_probabilities = np.array(plausible_label_probabilities, dtype="float64") plausible_label_probabilities += 1e-08 plausible_label_probabilities /= np.sum(plausible_label_probabilities) if len(plausible_labels) > 0: num_samples = min(self.num_negative_labels_to_sample, len(plausible_labels)) sampled_negative_labels = np.random.choice( plausible_labels, num_samples, replace=False, p=plausible_label_probabilities, ) already_sampled_negative_labels.update(sampled_negative_labels) return already_sampled_negative_labels def train(self, mode=True): """Populate label similarity map based on cosine similarity before running epoch If the `num_negative_labels_to_sample` is set to an integer value then before starting each epoch the model would create a similarity measure between the label names based on cosine distances between their BERT encoded embeddings. """ if mode and self.num_negative_labels_to_sample is not None: self._compute_label_similarity_for_current_epoch() super().train(mode) super().train(mode) def _compute_label_similarity_for_current_epoch(self): """ Compute the similarity between all labels for better sampling of negatives """ # get and embed all labels by making a Sentence object that contains only the label text all_labels = [label.decode("utf-8") for label in self.get_current_label_dictionary().idx2item] label_sentences = [Sentence(label) for label in all_labels] self.tars_embeddings.eval() # TODO: check if this is necessary self.tars_embeddings.embed(label_sentences) self.tars_embeddings.train() # get each label embedding and scale between 0 and 1 if isinstance(self.tars_embeddings, TokenEmbeddings): encodings_np = [sentence[0].get_embedding().cpu().detach().numpy() for sentence in label_sentences] else: encodings_np = [sentence.get_embedding().cpu().detach().numpy() for sentence in label_sentences] normalized_encoding = minmax_scale(encodings_np) # compute similarity matrix similarity_matrix = cosine_similarity(normalized_encoding) # the higher the similarity, the greater the chance that a label is # sampled as negative example negative_label_probabilities = {} for row_index, label in enumerate(all_labels): negative_label_probabilities[label] = {} for column_index, other_label in enumerate(all_labels): if label != other_label: negative_label_probabilities[label][other_label] = similarity_matrix[row_index][column_index] self.label_nearest_map = negative_label_probabilities def get_current_label_dictionary(self): label_dictionary = self._task_specific_attributes[self._current_task]["label_dictionary"] return label_dictionary def get_current_label_type(self): return self._task_specific_attributes[self._current_task]["label_type"] def is_current_task_multi_label(self): return self._task_specific_attributes[self._current_task]["multi_label"] def add_and_switch_to_new_task( self, task_name, label_dictionary: Union[List, Set, Dictionary, str], label_type: str, multi_label: bool = True, force_switch: bool = False, ): """ Adds a new task to an existing TARS model. Sets necessary attributes and finally 'switches' to the new task. Parameters are similar to the constructor except for model choice, batch size and negative sampling. This method does not store the resultant model onto disk. :param task_name: a string depicting the name of the task :param label_dictionary: dictionary of the labels you want to predict :param label_type: string to identify the label type ('ner', 'sentiment', etc.) :param multi_label: whether this task is a multi-label prediction problem :param force_switch: if True, will overwrite existing task with same name """ if task_name in self._task_specific_attributes and not force_switch: log.warning("Task `%s` already exists in TARS model. Switching to it.", task_name) else: # make label dictionary if no Dictionary object is passed if isinstance(label_dictionary, Dictionary): label_dictionary = label_dictionary.get_items() if type(label_dictionary) == str: label_dictionary = [label_dictionary] # prepare dictionary of tags (without B- I- prefixes and without UNK) tag_dictionary = Dictionary(add_unk=False) for tag in label_dictionary: if tag == "<unk>" or tag == "O": continue if tag[1] == "-": tag = tag[2:] tag_dictionary.add_item(tag) else: tag_dictionary.add_item(tag) self._task_specific_attributes[task_name] = { "label_dictionary": tag_dictionary, "label_type": label_type, "multi_label": multi_label, } self.switch_to_task(task_name) def list_existing_tasks(self) -> Set[str]: """ Lists existing tasks in the loaded TARS model on the console. """ return set(self._task_specific_attributes.keys()) def switch_to_task(self, task_name): """ Switches to a task which was previously added. """ if task_name not in self._task_specific_attributes: log.error( "Provided `%s` does not exist in the model. Consider calling " "`add_and_switch_to_new_task` first.", task_name, ) else: self._current_task = task_name def _drop_task(self, task_name): if task_name in self._task_specific_attributes: if self._current_task == task_name: log.error( "`%s` is the current task." " Switch to some other task before dropping this.", task_name, ) else: self._task_specific_attributes.pop(task_name) else: log.warning("No task exists with the name `%s`.", task_name) @staticmethod def _filter_empty_sentences(sentences: List[Sentence]) -> List[Sentence]: filtered_sentences = [sentence for sentence in sentences if sentence.tokens] if len(sentences) != len(filtered_sentences): log.warning(f"Ignore {len(sentences) - len(filtered_sentences)} sentence(s) with no tokens.") return filtered_sentences @property def label_type(self): return self.get_current_label_type() def predict_zero_shot( self, sentences: Union[List[Sentence], Sentence], candidate_label_set: Union[List[str], Set[str], str], multi_label: bool = True, ): """ Method to make zero shot predictions from the TARS model :param sentences: input sentence objects to classify :param candidate_label_set: set of candidate labels :param multi_label: indicates whether multi-label or single class prediction. Defaults to True. """ # check if candidate_label_set is empty if candidate_label_set is None or len(candidate_label_set) == 0: log.warning("Provided candidate_label_set is empty") return # make list if only one candidate label is passed if isinstance(candidate_label_set, str): candidate_label_set = {candidate_label_set} # create label dictionary label_dictionary = Dictionary(add_unk=False) for label in candidate_label_set: label_dictionary.add_item(label) # note current task existing_current_task = self._current_task # create a temporary task self.add_and_switch_to_new_task( task_name="ZeroShot", label_dictionary=label_dictionary, label_type="-".join(label_dictionary.get_items()), multi_label=multi_label, ) try: # make zero shot predictions self.predict(sentences) finally: # switch to the pre-existing task self.switch_to_task(existing_current_task) self._drop_task("ZeroShot") return class TARSTagger(FewshotClassifier): """ TARS model for sequence tagging. In the backend, the model uses a BERT based 5-class sequence labeler which given a <label, text> pair predicts the probability for each word to belong to one of the BIOES classes. The input data is a usual Sentence object which is inflated by the model internally before pushing it through the transformer stack of BERT. """ static_label_type = "tars_label" def __init__( self, task_name: Optional[str] = None, label_dictionary: Optional[Dictionary] = None, label_type: Optional[str] = None, embeddings: Union[TransformerWordEmbeddings, str] = "bert-base-uncased", num_negative_labels_to_sample: int = 2, prefix: bool = True, **tagger_args, ): """ Initializes a TextClassifier :param task_name: a string depicting the name of the task :param label_dictionary: dictionary of labels you want to predict :param embeddings: name of the pre-trained transformer model e.g., 'bert-base-uncased' etc :param num_negative_labels_to_sample: number of negative labels to sample for each positive labels against a sentence during training. Defaults to 2 negative labels for each positive label. The model would sample all the negative labels if None is passed. That slows down the training considerably. """ super(TARSTagger, self).__init__() if isinstance(embeddings, str): embeddings = TransformerWordEmbeddings( model=embeddings, fine_tune=True, layers="-1", layer_mean=False, ) # prepare TARS dictionary tars_dictionary = Dictionary(add_unk=False) tars_dictionary.add_item("entity") tars_dictionary.span_labels = True # initialize a bare-bones sequence tagger self.tars_model: SequenceTagger = SequenceTagger( hidden_size=123, embeddings=embeddings, tag_dictionary=tars_dictionary, tag_type=self.static_label_type, use_crf=False, use_rnn=False, reproject_embeddings=False, **tagger_args, ) # transformer separator self.separator = str(self.tars_embeddings.tokenizer.sep_token) if self.tars_embeddings.tokenizer._bos_token: self.separator += str(self.tars_embeddings.tokenizer.bos_token) self.prefix = prefix self.num_negative_labels_to_sample = num_negative_labels_to_sample if task_name and label_dictionary and label_type: # Store task specific labels since TARS can handle multiple tasks self.add_and_switch_to_new_task(task_name, label_dictionary, label_type) else: log.info( "TARS initialized without a task. You need to call .add_and_switch_to_new_task() " "before training this model" ) def _get_tars_formatted_sentence(self, label, sentence): original_text = sentence.to_tokenized_string() label_text_pair = ( f"{label} {self.separator} {original_text}" if self.prefix else f"{original_text} {self.separator} {label}" ) label_length = 0 if not self.prefix else len(label.split(" ")) + len(self.separator.split(" ")) # make a tars sentence where all labels are O by default tars_sentence = Sentence(label_text_pair, use_tokenizer=False) for entity_label in sentence.get_labels(self.label_type): if entity_label.value == label: new_span = [tars_sentence.get_token(token.idx + label_length) for token in entity_label.span] tars_sentence.add_complex_label(self.static_label_type, SpanLabel(Span(new_span), value="entity")) return tars_sentence def _get_state_dict(self): model_state = { "state_dict": self.state_dict(), "current_task": self._current_task, "tag_type": self.get_current_label_type(), "tag_dictionary": self.get_current_label_dictionary(), "tars_model": self.tars_model, "num_negative_labels_to_sample": self.num_negative_labels_to_sample, "prefix": self.prefix, "task_specific_attributes": self._task_specific_attributes, } return model_state @staticmethod def _fetch_model(model_name) -> str: if model_name == "tars-ner": cache_dir = Path("models") model_name = cached_path( "https://nlp.informatik.hu-berlin.de/resources/models/tars-ner/tars-ner.pt", cache_dir=cache_dir, ) return model_name @staticmethod def _init_model_with_state_dict(state): # init new TARS classifier model = TARSTagger( task_name=state["current_task"], label_dictionary=state["tag_dictionary"], label_type=state["tag_type"], embeddings=state["tars_model"].embeddings, num_negative_labels_to_sample=state["num_negative_labels_to_sample"], prefix=state["prefix"], ) # set all task information model._task_specific_attributes = state["task_specific_attributes"] # linear layers of internal classifier model.load_state_dict(state["state_dict"]) return model @property def tars_embeddings(self): return self.tars_model.embeddings def predict( self, sentences: Union[List[Sentence], Sentence], mini_batch_size=32, return_probabilities_for_all_classes: bool = False, verbose: bool = False, label_name: Optional[str] = None, return_loss=False, embedding_storage_mode="none", most_probable_first: bool = True, ): # return """ Predict sequence tags for Named Entity Recognition task :param sentences: a Sentence or a List of Sentence :param mini_batch_size: size of the minibatch, usually bigger is more rapid but consume more memory, up to a point when it has no more effect. :param all_tag_prob: True to compute the score for each tag on each token, otherwise only the score of the best tag is returned :param verbose: set to True to display a progress bar :param return_loss: set to True to return loss :param label_name: set this to change the name of the label type that is predicted :param embedding_storage_mode: default is 'none' which is always best. Only set to 'cpu' or 'gpu' if you wish to not only predict, but also keep the generated embeddings in CPU or GPU memory respectively. 'gpu' to store embeddings in GPU memory. """ if label_name is None: label_name = self.get_current_label_type() # with torch.no_grad(): if not sentences: return sentences if not isinstance(sentences, list): sentences = [sentences] reordered_sentences = sorted(sentences, key=lambda s: len(s), reverse=True) dataloader = DataLoader( dataset=FlairDatapointDataset(reordered_sentences), batch_size=mini_batch_size, ) # progress bar for verbosity if verbose: dataloader = tqdm(dataloader) overall_loss = 0 overall_count = 0 with torch.no_grad(): for batch in dataloader: batch = self._filter_empty_sentences(batch) # stop if all sentences are empty if not batch: continue # go through each sentence in the batch for sentence in batch: # always remove tags first sentence.remove_labels(label_name) all_labels = [label.decode("utf-8") for label in self.get_current_label_dictionary().idx2item] all_detected = {} for label in all_labels: tars_sentence = self._get_tars_formatted_sentence(label, sentence) loss_and_count = self.tars_model.predict( tars_sentence, label_name=label_name, return_loss=True, ) overall_loss += loss_and_count[0].item() overall_count += loss_and_count[1] for predicted in tars_sentence.get_labels(label_name): predicted.value = label all_detected[predicted] = predicted.score if most_probable_first: import operator already_set_indices: List[int] = [] sorted_x = sorted(all_detected.items(), key=operator.itemgetter(1)) sorted_x.reverse() for tuple in sorted_x: # get the span and its label label = tuple[0] # label = span.get_labels("tars_temp_label")[0].value label_length = ( 0 if not self.prefix else len(label.value.split(" ")) + len(self.separator.split(" ")) ) # determine whether tokens in this span already have a label tag_this = True for token in label.span: corresponding_token = sentence.get_token(token.idx - label_length) if corresponding_token is None: tag_this = False continue if token.idx in already_set_indices: tag_this = False continue # only add if all tokens have no label if tag_this: already_set_indices.extend(token.idx for token in label.span) predicted_span = [sentence.get_token(token.idx - label_length) for token in label.span] sentence.add_complex_label( label_name, label=SpanLabel(Span(predicted_span), value=label.value, score=label.score), ) # clearing token embeddings to save memory store_embeddings(batch, storage_mode=embedding_storage_mode) if return_loss: return overall_loss, overall_count class TARSClassifier(FewshotClassifier): """ TARS model for text classification. In the backend, the model uses a BERT based binary text classifier which given a <label, text> pair predicts the probability of two classes "True", and "False". The input data is a usual Sentence object which is inflated by the model internally before pushing it through the transformer stack of BERT. """ static_label_type = "tars_label" LABEL_MATCH = "YES" LABEL_NO_MATCH = "NO" def __init__( self, task_name: Optional[str] = None, label_dictionary: Optional[Dictionary] = None, label_type: Optional[str] = None, embeddings: Union[TransformerDocumentEmbeddings, str] = "bert-base-uncased", num_negative_labels_to_sample: int = 2, prefix: bool = True, **tagger_args, ): """ Initializes a TextClassifier :param task_name: a string depicting the name of the task :param label_dictionary: dictionary of labels you want to predict :param embeddings: name of the pre-trained transformer model e.g., 'bert-base-uncased' etc :param num_negative_labels_to_sample: number of negative labels to sample for each positive labels against a sentence during training. Defaults to 2 negative labels for each positive label. The model would sample all the negative labels if None is passed. That slows down the training considerably. :param multi_label: auto-detected by default, but you can set this to True to force multi-label predictionor False to force single-label prediction :param multi_label_threshold: If multi-label you can set the threshold to make predictions :param beta: Parameter for F-beta score for evaluation and training annealing """ super(TARSClassifier, self).__init__() if isinstance(embeddings, str): embeddings = TransformerDocumentEmbeddings( model=embeddings, fine_tune=True, layers="-1", layer_mean=False, ) # prepare TARS dictionary tars_dictionary = Dictionary(add_unk=False) tars_dictionary.add_item(self.LABEL_NO_MATCH) tars_dictionary.add_item(self.LABEL_MATCH) # initialize a bare-bones sequence tagger self.tars_model = TextClassifier( document_embeddings=embeddings, label_dictionary=tars_dictionary, label_type=self.static_label_type, **tagger_args, ) # transformer separator self.separator = str(self.tars_embeddings.tokenizer.sep_token) if self.tars_embeddings.tokenizer._bos_token: self.separator += str(self.tars_embeddings.tokenizer.bos_token) self.prefix = prefix self.num_negative_labels_to_sample = num_negative_labels_to_sample if task_name and label_dictionary and label_type: # Store task specific labels since TARS can handle multiple tasks self.add_and_switch_to_new_task(task_name, label_dictionary, label_type) else: log.info( "TARS initialized without a task. You need to call .add_and_switch_to_new_task() " "before training this model" ) self.clean_up_labels = True def _clean(self, label_value: str) -> str: if self.clean_up_labels: return label_value.replace("_", " ") else: return label_value def _get_tars_formatted_sentence(self, label, sentence): label = self._clean(label) original_text = sentence.to_tokenized_string() label_text_pair = ( f"{label} {self.separator} {original_text}" if self.prefix else f"{original_text} {self.separator} {label}" ) sentence_labels = [self._clean(label.value) for label in sentence.get_labels(self.get_current_label_type())] tars_label = self.LABEL_MATCH if label in sentence_labels else self.LABEL_NO_MATCH tars_sentence = Sentence(label_text_pair, use_tokenizer=False).add_label(self.static_label_type, tars_label) return tars_sentence def _get_state_dict(self): model_state = { "state_dict": self.state_dict(), "current_task": self._current_task, "label_type": self.get_current_label_type(), "label_dictionary": self.get_current_label_dictionary(), "tars_model": self.tars_model, "num_negative_labels_to_sample": self.num_negative_labels_to_sample, "task_specific_attributes": self._task_specific_attributes, } return model_state @staticmethod def _init_model_with_state_dict(state): # init new TARS classifier label_dictionary = state["label_dictionary"] label_type = "default_label" if not state["label_type"] else state["label_type"] model: TARSClassifier = TARSClassifier( task_name=state["current_task"], label_dictionary=label_dictionary, label_type=label_type, embeddings=state["tars_model"].document_embeddings, num_negative_labels_to_sample=state["num_negative_labels_to_sample"], ) # set all task information model._task_specific_attributes = state["task_specific_attributes"] # linear layers of internal classifier model.load_state_dict(state["state_dict"]) return model @staticmethod def _fetch_model(model_name) -> str: model_map = {} hu_path: str = "https://nlp.informatik.hu-berlin.de/resources/models" model_map["tars-base"] = "/".join([hu_path, "tars-base", "tars-base-v8.pt"]) cache_dir = Path("models") if model_name in model_map: model_name = cached_path(model_map[model_name], cache_dir=cache_dir) return model_name @property def tars_embeddings(self): return self.tars_model.document_embeddings def predict( self, sentences: Union[List[Sentence], Sentence], mini_batch_size=32, return_probabilities_for_all_classes: bool = False, verbose: bool = False, label_name: Optional[str] = None, return_loss=False, embedding_storage_mode="none", label_threshold: float = 0.5, multi_label: Optional[bool] = None, ): """ Predict sequence tags for Named Entity Recognition task :param sentences: a Sentence or a List of Sentence :param mini_batch_size: size of the minibatch, usually bigger is more rapid but consume more memory, up to a point when it has no more effect. :param all_tag_prob: True to compute the score for each tag on each token, otherwise only the score of the best tag is returned :param verbose: set to True to display a progress bar :param return_loss: set to True to return loss :param label_name: set this to change the name of the label type that is predicted :param embedding_storage_mode: default is 'none' which is always best. Only set to 'cpu' or 'gpu' if you wish to not only predict, but also keep the generated embeddings in CPU or GPU memory respectively. 'gpu' to store embeddings in GPU memory. """ if label_name is None: label_name = self.get_current_label_type() if multi_label is None: multi_label = self.is_current_task_multi_label() # with torch.no_grad(): if not sentences: return sentences if isinstance(sentences, Sentence): sentences = [sentences] # set context if not set already previous_sentence = None for sentence in sentences: if sentence.is_context_set(): continue sentence._previous_sentence = previous_sentence sentence._next_sentence = None if previous_sentence: previous_sentence._next_sentence = sentence previous_sentence = sentence reordered_sentences = sorted(sentences, key=lambda s: len(s), reverse=True) dataloader = DataLoader( dataset=FlairDatapointDataset(reordered_sentences), batch_size=mini_batch_size, ) # progress bar for verbosity if verbose: progressbar = tqdm(dataloader) progressbar.set_description("Batch inference") dataloader = progressbar overall_loss = 0 overall_count = 0 batch_no = 0 with torch.no_grad(): for batch in dataloader: batch_no += 1 batch = self._filter_empty_sentences(batch) # stop if all sentences are empty if not batch: continue # go through each sentence in the batch for sentence in batch: # always remove tags first sentence.remove_labels(label_name) all_labels = [label.decode("utf-8") for label in self.get_current_label_dictionary().idx2item] best_label = None for label in all_labels: tars_sentence = self._get_tars_formatted_sentence(label, sentence) loss_and_count = self.tars_model.predict( tars_sentence, label_name=label_name, return_loss=True, return_probabilities_for_all_classes=True if label_threshold < 0.5 else False, ) overall_loss += loss_and_count[0].item() overall_count += loss_and_count[1] # add all labels that according to TARS match the text and are above threshold for predicted_tars_label in tars_sentence.get_labels(label_name): if ( predicted_tars_label.value == self.LABEL_MATCH and predicted_tars_label.score > label_threshold ): # do not add labels below confidence threshold sentence.add_label(label_name, label, predicted_tars_label.score) # only use label with highest confidence if enforcing single-label predictions if not multi_label: if len(sentence.get_labels(label_name)) > 0: # get all label scores and do an argmax to get the best label label_scores = torch.tensor( [label.score for label in sentence.get_labels(label_name)], dtype=torch.float, ) best_label = sentence.get_labels(label_name)[torch.argmax(label_scores)] # remove previously added labels and only add the best label sentence.remove_labels(label_name) sentence.add_label( typename=label_name, value=best_label.value, score=best_label.score, ) # clearing token embeddings to save memory store_embeddings(batch, storage_mode=embedding_storage_mode) if return_loss: return overall_loss, overall_count
40.6947
119
0.621436
[ "MIT" ]
garciaeduardo7143/flair
flair/models/tars_model.py
35,323
Python
# -*- coding: utf-8 -*- """Console script for python_learn.""" import sys import click @click.command() def main(args=None): """Console script for python_learn.""" click.echo("Replace this message by putting your code into " "python_learn.cli.main") click.echo("See click documentation at http://click.pocoo.org/") return 0 if __name__ == "__main__": sys.exit(main()) # pragma: no cover
22.526316
68
0.649533
[ "MIT" ]
Zhazhanan/python_learn
python_learn/cli.py
428
Python
# ------------------------------------------------------------------------- # Copyright (C) 2018 BMW Car IT GmbH # ------------------------------------------------------------------------- # This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at https://mozilla.org/MPL/2.0/. # ------------------------------------------------------------------------- """ Contains configurations constants """ G_WARNING_COUNT = 0 G_PROP_FILES = [ 'proprietary', 'scripts/integration_tests/proprietary', 'scripts/integration_tests/run_smoke_tests_as_bat_tests.py', 'zuul.d' ] G_LICENSE_TEMPLATE_OPEN = """ ------------------------------------------------------------------------- Copyright (C) [YYYY] BMW XXXX ------------------------------------------------------------------------- This Source Code Form is subject to the terms of the Mozilla Public License, v. 2.0. If a copy of the MPL was not distributed with this file, You can obtain one at https://mozilla.org/MPL/2.0/. ------------------------------------------------------------------------- """ G_LICENSE_TEMPLATE_PROP = """ ------------------------------------------------------------------------- Copyright (C) [YYYY] BMW XXXX All rights reserved. ------------------------------------------------------------------------- This document contains proprietary information belonging to BMW XXXX. Passing on and copying of this document, use and communication of its contents is not permitted without prior written authorization. ------------------------------------------------------------------------- """
40.023256
76
0.440442
[ "MPL-2.0", "MPL-2.0-no-copyleft-exception" ]
Yuehai-Zhou/GENIVI
scripts/code_style_checker/common_modules/config.py
1,721
Python
import time import random import highfive # This is the remote worker for the sum example. Here, we define what the # workers do when they get a call from the master. All we need is a single # function which takes the call, does some processing, and returns a response. # An interesting way to play with the workers is to spin some up, then shut # them down before the job set running on the master is complete. The jobs # which the workers are running will be requeued on the master so that when # more workers connect, the jobs will be tried again. This makes network # problems no big deal as long as you reconnect the workers at some point. # In our case, we take in a pair of numbers and return their sum. To make # it easier to watch the progress of the job set in real time, we sleep for # anywhere between 0 and 1/4 seconds before the sum to simulate heavy # processing. def delayed_sum(numbers): time.sleep(random.random() / 4) return sum(numbers) # Now we can easily start a worker pool to connect to a local HighFive master. # We can also add a `host=<host name>` and `port=<port number>` to connect to a # remote HighFive master. By default, `run_worker_pool()` creates a worker # process for each available CPU core to maximize CPU utilization, but we can # we can limit this with `max_workers=<number of workers>`. if __name__ == "__main__": try: highfive.run_worker_pool(delayed_sum) except KeyboardInterrupt: print("keyboard interrupt")
38.333333
79
0.745819
[ "MIT" ]
abau171/highfive
examples/sum_worker.py
1,495
Python
import datetime import inspect import os import pprint as pretty_print import jinja2 from jinja2 import Environment, FileSystemLoader DEFAULT_TEMPLATE_FOLDERS = ["templates"] def get_log_errors(logs): return [e for e in logs.list() if e["level"] >= 40] def make_list(obj): return list(obj) def pprint(obj): return pretty_print.pformat(obj) def format_time(time): if not isinstance(time, datetime.timedelta): time = datetime.timedelta(seconds=int(time / 1000.0)) return ":".join(str(time).split(":")[:2]) + "h" FILTERS = { "pprint": pprint, "list": make_list, "get_log_errors": get_log_errors, "format_time": format_time, } GLOBALS = {"datetime": datetime, "str": str} def get_environment(paths): loader = FileSystemLoader(paths) environment = Environment(loader=loader, lstrip_blocks=True, trim_blocks=True) for filter_name, filter in FILTERS.items(): environment.filters[filter_name] = filter for global_name, global_value in GLOBALS.items(): environment.globals[global_name] = global_value return environment class TemplateLoader: def __init__(self): self.paths = [] self.reload_env() def add_path(self, path): if path not in self.paths and os.path.isdir(path): self.paths.append(path) self.reload_env() def auto_discover(self, path=None, folder=None): caller_folder = os.path.dirname(inspect.stack()[1][1]) if path: caller_folder = os.path.join(caller_folder, path) if folder: self.add_path(os.path.join(caller_folder, folder)) else: self.discover_folder(caller_folder) def discover_folder(self, candidate_folder): for folder in [ os.path.join(candidate_folder, dir) for dir in DEFAULT_TEMPLATE_FOLDERS ]: self.add_path(folder) def reload_env(self): self.env = get_environment(self.paths) def get_template(self, name): if os.path.isabs(name): # If provided an absolute path to a template environment = get_environment(os.path.dirname(name)) template = environment.get_template(os.path.basename(name)) else: template = self.env.get_template(name) return template template_loader = TemplateLoader()
26.449438
83
0.661852
[ "BSD-3-Clause" ]
ankitjavalkar/spidermon
spidermon/templates.py
2,354
Python
# -*- coding: utf-8 -*- # # github-cli documentation build configuration file, created by # sphinx-quickstart on Tue May 5 17:40:34 2009. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys, os # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.append(os.path.abspath('.')) # -- General configuration ----------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = [] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8' # The master toctree document. master_doc = 'index' # General information about the project. project = u'github-cli' copyright = u'2009-2012, Sander Smits' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '1.0' # The full version, including alpha/beta/rc tags. release = '1.0.0' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of documents that shouldn't be included in the build. #unused_docs = [] # List of directories, relative to source directory, that shouldn't be searched # for source files. exclude_trees = [] # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. Major themes that come with # Sphinx are currently 'default' and 'sphinxdoc'. html_theme = 'sphinxdoc' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_use_modindex = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # If nonempty, this is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = '' # Output file base name for HTML help builder. htmlhelp_basename = 'github-clidoc' # -- Options for LaTeX output -------------------------------------------------- # The paper size ('letter' or 'a4'). #latex_paper_size = 'letter' # The font size ('10pt', '11pt' or '12pt'). #latex_font_size = '10pt' # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'github-cli.tex', u'github-cli Documentation', u'Sander Smits', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # Additional stuff for the LaTeX preamble. #latex_preamble = '' # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_use_modindex = True
32.34359
80
0.722531
[ "BSD-3-Clause" ]
jsmits/github-cli
docs/source/conf.py
6,307
Python
from __future__ import print_function import argparse import os import pickle import sys import cv2 import numpy as np import torch import vlfeat # calls constructor from sklearn.cluster import MiniBatchKMeans from src.utils.cluster.eval_metrics import _hungarian_match, _original_match, \ _acc from src.utils.segmentation.data import make_Coco_dataloaders, \ make_Potsdam_dataloaders SIFT_DLEN = 128 SIFT_STEP = 10 def _get_vectorised_sift_samples(archetype_config, dataloader): # returns num unmasked pixels x SIFT_DLEN, in uint8 format # operates on greyscale 128 bit images num_batches, batch_sz = len(dataloader), archetype_config.dataloader_batch_sz num_imgs_max = num_batches * batch_sz # estimate img_sz = archetype_config.input_sz # cluster individual (box central) pixels desc_side = int(img_sz / SIFT_STEP) print("img sz %d, desc_side %d" % (img_sz, desc_side)) sys.stdout.flush() descs_all = np.zeros((num_imgs_max, desc_side * desc_side, SIFT_DLEN), dtype=np.uint8) masks_all = np.zeros((num_imgs_max, desc_side * desc_side), dtype=np.bool) labels_all = None actual_num_imgs = 0 # when descriptor matrix flattened, goes along rows first (rows change slow) central_inds_h = (np.arange(desc_side) * SIFT_STEP + (SIFT_STEP / 2)).reshape((desc_side, 1)).repeat(desc_side, axis=1) central_inds_w = (np.arange(desc_side) * SIFT_STEP + (SIFT_STEP / 2)).reshape((1, desc_side)).repeat(desc_side, axis=0) central_inds_h, central_inds_w = central_inds_h.reshape(-1), \ central_inds_w.reshape(-1) for b_i, batch in enumerate(dataloader): if len(batch) == 3: # test dataloader store_labels = True if (labels_all is None): labels_all = np.zeros((num_imgs_max, desc_side * desc_side), dtype=np.int32) imgs, labels, masks = batch labels = labels.cpu().numpy().astype(np.int32) else: # training dataloader store_labels = False imgs, _, _, masks = batch # imgs currently channel first, [0-1] range, floats imgs = (imgs * 255.).permute(0, 2, 3, 1).cpu().numpy().astype(np.uint8) masks = masks.cpu().numpy().astype(np.bool) curr_batch_sz, h, w, c = imgs.shape assert (h == archetype_config.input_sz and w == archetype_config.input_sz and c == archetype_config.in_channels) if b_i < num_batches - 1: assert (batch_sz == curr_batch_sz) start = b_i * batch_sz for i in range(curr_batch_sz): grey_img = cv2.cvtColor(imgs[i, :, :, :], cv2.COLOR_RGB2GRAY) locs, descs = vlfeat.vl_dsift(grey_img, step=SIFT_STEP) descs = descs.transpose((1, 0)) # 40*40, 128 descs = descs.reshape(-1, SIFT_DLEN) # rows change slowest # get the corresponding box central mask/label mask = masks[i][central_inds_h, central_inds_w] offset = start + i descs_all[offset, :, :] = descs masks_all[offset, :] = mask if store_labels: label = labels[i][central_inds_h, central_inds_w] labels_all[offset, :] = label actual_num_imgs += curr_batch_sz descs_all = descs_all[:actual_num_imgs, :, :] masks_all = masks_all[:actual_num_imgs, :] num_unmasked = masks_all.sum() if store_labels: labels_all = labels_all[:actual_num_imgs, :] samples_labels = labels_all[masks_all].reshape(-1) assert (samples_labels.shape[0] == num_unmasked) samples = descs_all[masks_all, :].reshape(-1, SIFT_DLEN) assert (samples.shape[0] == num_unmasked) if not store_labels: return samples else: return samples, samples_labels def _get_vectorised_colour_samples(archetype_config, dataloader): num_batches, batch_sz = len(dataloader), archetype_config.dataloader_batch_sz num_imgs_max = num_batches * batch_sz # estimate img_sz = archetype_config.input_sz # cluster individual pixels imgs_all = np.zeros( (num_imgs_max, img_sz, img_sz, archetype_config.in_channels), dtype=np.uint8) masks_all = np.zeros((num_imgs_max, img_sz, img_sz), dtype=np.bool) labels_all = None actual_num_imgs = 0 for b_i, batch in enumerate(dataloader): if len(batch) == 3: store_labels = True if (labels_all is None): labels_all = np.zeros((num_imgs_max, img_sz, img_sz), dtype=np.int32) imgs, labels, masks = batch labels = labels.cpu().numpy().astype(np.int32) else: store_labels = False imgs, _, _, masks = batch # channels last imgs = (imgs * 255.).permute(0, 2, 3, 1).cpu().numpy().astype(np.uint8) masks = masks.cpu().numpy().astype(np.bool) curr_batch_sz, h, w, c = imgs.shape assert (h == archetype_config.input_sz and w == archetype_config.input_sz and c == archetype_config.in_channels) if b_i < num_batches - 1: assert (batch_sz == curr_batch_sz) start = b_i * batch_sz imgs_all[start:(start + curr_batch_sz), :, :, :] = imgs masks_all[start:(start + curr_batch_sz), :, :] = masks if store_labels: labels_all[start:(start + curr_batch_sz), :, :] = labels actual_num_imgs += curr_batch_sz imgs_all = imgs_all[:actual_num_imgs, :, :, :] masks_all = masks_all[:actual_num_imgs, :, :] num_unmasked = masks_all.sum() if store_labels: labels_all = labels_all[:actual_num_imgs, :, :] samples_labels = labels_all[masks_all].reshape(-1) assert (samples_labels.shape[0] == num_unmasked) samples = imgs_all[masks_all, :].reshape(-1, archetype_config.in_channels) assert (samples.shape[0] == num_unmasked) if not store_labels: return samples else: return samples, samples_labels def main(): # based on segmentation_multioutput_twohead - we pass in the config of the # IID run we are comparing against, so the settings can be copied parser = argparse.ArgumentParser() parser.add_argument("--model_ind", type=int, required=True) parser.add_argument("--out_root", type=str, default="/scratch/shared/slow/xuji/iid_private") parser.add_argument("--IID_model_ind", type=int, required=True) parser.add_argument("--max_num_train", type=int, required=True) parser.add_argument("--test_code", default=False, action="store_true") parser.add_argument("--do_sift", default=False, action="store_true") config = parser.parse_args() config.out_dir = os.path.join(config.out_root, str(config.model_ind)) if not os.path.exists(config.out_dir): os.makedirs(config.out_dir) archetype_config_path = os.path.join(config.out_root, str(config.IID_model_ind), "config.pickle") print("Loading archetype config from: %s" % archetype_config_path) with open(archetype_config_path, "rb") as config_f: archetype_config = pickle.load(config_f) assert (config.IID_model_ind == archetype_config.model_ind) assert (archetype_config.mode == "IID") # compare against fully unsup sample_fn = _get_vectorised_colour_samples if config.do_sift: sample_fn = _get_vectorised_sift_samples # set it to be only rgb (and ir if nec) but no sobel - we're clustering # single pixel colours archetype_config.include_rgb = True archetype_config.no_sobel = True if "Coco" in archetype_config.dataset: assert (not archetype_config.using_IR) archetype_config.in_channels = 3 elif archetype_config.dataset == "Potsdam": # IR assert (archetype_config.using_IR) archetype_config.in_channels = 4 # Data # ------------------------------------------------------------------------- if "Coco" in archetype_config.dataset: dataloaders_head_A, mapping_assignment_dataloader, \ mapping_test_dataloader = \ make_Coco_dataloaders(archetype_config) elif archetype_config.dataset == "Potsdam": dataloaders_head_A, mapping_assignment_dataloader, \ mapping_test_dataloader = \ make_Potsdam_dataloaders(archetype_config) else: raise NotImplementedError # unlike in clustering script for STL - isn't any data from unknown classes dataloaders_head_B = dataloaders_head_A # networks and optimisers # ------------------------------------------------------ assert (archetype_config.num_dataloaders == 1) dataloader = dataloaders_head_B[0] samples = sample_fn(archetype_config, dataloader) print("got training samples") sys.stdout.flush() if config.test_code: print("testing code, taking 10000 samples only") samples = samples[:10000, :] else: num_samples_train = min(samples.shape[0], config.max_num_train) print("taking %d samples" % num_samples_train) chosen_inds = np.random.choice(samples.shape[0], size=num_samples_train, replace=False) samples = samples[chosen_inds, :] print(samples.shape) sys.stdout.flush() kmeans = MiniBatchKMeans(n_clusters=archetype_config.gt_k, verbose=1).fit( samples) print("trained kmeans") sys.stdout.flush() # use mapping assign to assign output_k=gt_k to gt_k # and also assess on its predictions, since it's identical to # mapping_test_dataloader assign_samples, assign_labels = sample_fn(archetype_config, mapping_assignment_dataloader) num_samples = assign_samples.shape[0] assign_preds = kmeans.predict(assign_samples) print("finished prediction for mapping assign/test data") sys.stdout.flush() assign_preds = torch.from_numpy(assign_preds).cuda() assign_labels = torch.from_numpy(assign_labels).cuda() if archetype_config.eval_mode == "hung": match = _hungarian_match(assign_preds, assign_labels, preds_k=archetype_config.gt_k, targets_k=archetype_config.gt_k) elif archetype_config.eval_mode == "orig": # flat! match = _original_match(assign_preds, assign_labels, preds_k=archetype_config.gt_k, targets_k=archetype_config.gt_k) elif archetype_config.eval_mode == "orig_soft": assert (False) # not used # reorder predictions to be same cluster assignments as gt_k found = torch.zeros(archetype_config.gt_k) reordered_preds = torch.zeros(num_samples).to(torch.int32).cuda() for pred_i, target_i in match: reordered_preds[assign_preds == pred_i] = target_i found[pred_i] = 1 assert (found.sum() == archetype_config.gt_k) # each output_k must get mapped acc = _acc(reordered_preds, assign_labels, archetype_config.gt_k) print("got acc %f" % acc) config.epoch_acc = [acc] config.centroids = kmeans.cluster_centers_ config.match = match # write results and centroids to model_ind output file with open(os.path.join(config.out_dir, "config.pickle"), "w") as outfile: pickle.dump(config, outfile) with open(os.path.join(config.out_dir, "config.txt"), "w") as text_file: text_file.write("%s" % config) if __name__ == "__main__": main()
36.618421
80
0.676967
[ "MIT" ]
THinnerichs/MiS-Information-Clustering
src/scripts/segmentation/baselines/kmeans_and_sift.py
11,132
Python
from ruamel import yaml import great_expectations as ge if __name__ == "__main__": context = ge.get_context() datasource_config = { "name": "my_notion_pandas_data_source", "class_name": "Datasource", "module_name": "great_expectations.datasource", "execution_engine": { "module_name": "great_expectations.execution_engine", "class_name": "PandasExecutionEngine", }, "data_connectors": { "my_notion_pandas_data_connector": { "class_name": "RuntimeDataConnector", "module_name": "great_expectations.datasource.data_connector", "batch_identifiers": ["default_identifier_name"], }, }, } context.test_yaml_config(yaml.dump(datasource_config)) context.add_datasource(**datasource_config)
31.777778
78
0.630536
[ "MIT" ]
datarootsio/notion-dbs-data-quality
src/build_data_source.py
858
Python
from django.db import models from django.template.defaultfilters import truncatechars from django.utils import timezone from camper.sked.models import Event, Session from camper.twit.threads import SendTweetThread class TweetTooLongError(Exception): def __init__(self, msg=None): self.msg = msg if not self.msg: self.msg = 'Adding this session would result in a tweet longer than 140 characters.' class AlreadyAssignedError(Exception): def __init__(self, msg=None): self.msg = msg if not self.msg: self.msg = 'This session already belongs to a tweet in this sequence.' class Tweet(models.Model): sent_at = models.DateTimeField(blank=True, null=True) class Meta: abstract = True def send(self): # ''' This is weird. It can only be called from the first tweet in # a series, raising NotImplementedError if called on a non-initial tweet. # It spins off a thread to make the actual api calls, which # manages state within the series. # ''' if self.previous: raise NotImplementedError('Serial tweets can only be sent from the beginning.') SendTweetThread(self).start() @property def is_sent(self): return self.sent_at is not None class SessionBlockTweetManager(models.Manager): def unsent(qs): return qs.filter(sent_at=None, previous=None) class SessionBlockTweet(Tweet): timeslot = models.DateTimeField() event = models.ForeignKey(Event, related_name="session_tweets") session_ids = models.CommaSeparatedIntegerField(max_length=128, blank=True, default="") previous = models.OneToOneField('SessionBlockTweet', blank=True, null=True, unique=True, related_name="next") objects = SessionBlockTweetManager() class Meta: ordering = ('-timeslot', 'id') def __unicode__(self): try: return 'Tweet %s of %s for %s at %s' % ( self.index + 1, self.total, self.timeslot, self.event) except: return 'Tweet for %s at %s' % (self.timeslot, self.event) def touch(self): self._seq = None self._sessions = None def get_sequence(self): try: if self._seq is not None: return self._seq except AttributeError: pass seq = [] cursor = self while cursor.previous: cursor = cursor.previous seq.append(cursor) while True: try: cursor = cursor.next seq.append(cursor) except SessionBlockTweet.DoesNotExist: break self._seq = seq return self.get_sequence() def first_in_sequence(self): seq = self.get_sequence() return seq[0] def get_session_ids(self): try: return [int(id) for id in self.session_ids.split(',')] except: return [] def add_session(self, session): if self.length < 140: assigned = [id for tweet in self.get_sequence() for id in tweet.get_session_ids()] if session.id in assigned: raise AlreadyAssignedError() locally_assigned = self.get_session_ids() locally_assigned.append(session.id) self.session_ids = ','.join([str(id) for id in locally_assigned]) self.touch() if self.length > 140: if self.sessions.count() > 1: self.remove_session(session) raise TweetTooLongError() else: raise TweetTooLongError() def remove_session(self, session): self.session_ids = ','.join([str(id) for id in self.get_session_ids() if id != session.id]) self.touch() @property def sessions(self): try: if self._sessions is not None: return self._sessions except AttributeError: pass try: self._sessions = Session.objects.filter(id__in=self.get_session_ids()) except ValueError: self._sessions = Session.objects.none() return self.sessions @property def index(self): seq = self.get_sequence() return seq.index(self) @property def is_first(self): return self.previous is None @property def is_last(self): try: return self.next is None except SessionBlockTweet.DoesNotExist: return True @property def total(self): seq = self.get_sequence() return len(seq) @property def text(self): txt = u'' if self.is_first: txt += u'Coming up at %s: ' % (self.timeslot .astimezone(timezone.get_current_timezone()) .strftime('%-I:%M')) txt += u', '.join(['%s (%s)' % (truncatechars(s.title, 120) if self.sessions.count() is 1 else s.title, s.location.name) for s in self.sessions]) return txt @property def length(self): return len(self.text)
30.58427
96
0.560434
[ "BSD-3-Clause" ]
drinks/camper
camper/twit/models.py
5,444
Python
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from __future__ import unicode_literals from __future__ import absolute_import import re import logging from itertools import groupby from six.moves.cPickle import dumps, loads from collections import defaultdict from six.moves.urllib.parse import unquote import bson import pymongo from tg import tmpl_context as c from ming import collection, Field, Index from ming import schema as S from ming.utils import LazyProperty from ming.orm import session, mapper from ming.orm import ForeignIdProperty, RelationProperty from allura.lib import helpers as h from .session import main_doc_session, main_orm_session from .project import Project import six log = logging.getLogger(__name__) # Collection definitions ArtifactReferenceDoc = collection( str('artifact_reference'), main_doc_session, Field('_id', str), Field('artifact_reference', dict( cls=S.Binary(), project_id=S.ObjectId(), app_config_id=S.ObjectId(), artifact_id=S.Anything(if_missing=None))), Field('references', [str], index=True), Index('artifact_reference.project_id'), # used in ReindexCommand ) ShortlinkDoc = collection( str('shortlink'), main_doc_session, Field('_id', S.ObjectId()), # index needed for from_artifact() and index_tasks.py:del_artifacts Field('ref_id', str, index=True), Field('project_id', S.ObjectId()), Field('app_config_id', S.ObjectId()), Field('link', str), Field('url', str), # used by from_links() More helpful to have project_id first, for other # queries Index('project_id', 'link'), ) # Class definitions class ArtifactReference(object): @classmethod def from_artifact(cls, artifact): '''Upsert logic to generate an ArtifactReference object from an artifact''' obj = cls.query.get(_id=artifact.index_id()) if obj is not None: return obj try: obj = cls( _id=artifact.index_id(), artifact_reference=dict( cls=bson.Binary(dumps(artifact.__class__, protocol=2)), project_id=artifact.app_config.project_id, app_config_id=artifact.app_config._id, artifact_id=artifact._id)) session(obj).flush(obj) return obj except pymongo.errors.DuplicateKeyError: # pragma no cover session(obj).expunge(obj) return cls.query.get(_id=artifact.index_id()) @LazyProperty def artifact(self): '''Look up the artifact referenced''' aref = self.artifact_reference try: cls = loads(six.binary_type(aref.cls)) with h.push_context(aref.project_id): return cls.query.get(_id=aref.artifact_id) except Exception: log.exception('Error loading artifact for %s: %r', self._id, aref) class Shortlink(object): '''Collection mapping shorthand_ids for artifacts to ArtifactReferences''' # Regexes used to find shortlinks _core_re = r'''(\[ (?:(?P<project_id>.*?):)? # optional project ID (?:(?P<app_id>.*?):)? # optional tool ID (?P<artifact_id>.*) # artifact ID \])''' re_link_1 = re.compile(r'\s' + _core_re, re.VERBOSE) re_link_2 = re.compile(r'^' + _core_re, re.VERBOSE) def __repr__(self): return '<Shortlink %s %s %s -> %s>' % ( self.project_id, self.app_config_id, self.link, self.ref_id) @classmethod def lookup(cls, link): return cls.from_links(link)[link] @classmethod def from_artifact(cls, a): result = cls.query.get(ref_id=a.index_id()) if result is None: try: result = cls( ref_id=a.index_id(), project_id=a.app_config.project_id, app_config_id=a.app_config._id) session(result).flush(result) except pymongo.errors.DuplicateKeyError: # pragma no cover session(result).expunge(result) result = cls.query.get(ref_id=a.index_id()) result.link = a.shorthand_id() result.url = a.url() if result.link is None: result.delete() return None return result @classmethod def from_links(cls, *links): '''Convert a sequence of shortlinks to the matching Shortlink objects''' if len(links): result = {} # Parse all the links parsed_links = dict((link, cls._parse_link(link)) for link in links) links_by_artifact = defaultdict(list) project_ids = set() for link, d in list(parsed_links.items()): if d: project_ids.add(d['project_id']) links_by_artifact[unquote(d['artifact'])].append(d) else: result[link] = parsed_links.pop(link) q = cls.query.find( dict( link={'$in': list(links_by_artifact.keys())}, project_id={'$in': list(project_ids)} ), validate=False, sort=[('_id', pymongo.DESCENDING)], # if happen to be multiple (ticket move?) have newest first ) matches_by_artifact = dict( (link, list(matches)) for link, matches in groupby(q, key=lambda s: unquote(s.link))) for link, d in six.iteritems(parsed_links): matches = matches_by_artifact.get(unquote(d['artifact']), []) matches = ( m for m in matches if m.project.shortname == d['project'] and m.project.neighborhood_id == d['nbhd'] and m.app_config is not None and m.project.app_instance(m.app_config.options.mount_point)) if d['app']: matches = ( m for m in matches if m.app_config.options.mount_point == d['app']) result[link] = cls._get_correct_match(link, list(matches)) return result else: return {} @classmethod def _get_correct_match(cls, link, matches): result = None if len(matches) == 1: result = matches[0] elif len(matches) > 1 and getattr(c, 'app', None): # use current app's link for m in matches: if m.app_config_id == c.app.config._id: result = m break if not result: cls.log_ambiguous_link('Can not remove ambiguity for link %s with c.app %s', matches, link, c.app) result = matches[0] elif len(matches) > 1 and not getattr(c, 'app', None): cls.log_ambiguous_link('Ambiguous link to %s and c.app is not present to remove ambiguity', matches, link) result = matches[0] return result @classmethod def log_ambiguous_link(cls, msg, matches, *args): log.warn(msg, *args) for m in matches: log.warn('... %r', m) @classmethod def _parse_link(cls, s): '''Parse a shortlink into its nbhd/project/app/artifact parts''' s = s.strip() if s.startswith('['): s = s[1:] if s.endswith(']'): s = s[:-1] parts = s.split(':') p_shortname = None p_id = None p_nbhd = None if getattr(c, 'project', None): p_shortname = getattr(c.project, 'shortname', None) p_id = getattr(c.project, '_id', None) p_nbhd = c.project.neighborhood_id if len(parts) == 3: p = Project.query.get(shortname=parts[0], neighborhood_id=p_nbhd) if p: p_id = p._id return dict( nbhd=p_nbhd, project=parts[0], project_id=p_id, app=parts[1], artifact=parts[2]) elif len(parts) == 2: return dict( nbhd=p_nbhd, project=p_shortname, project_id=p_id, app=parts[0], artifact=parts[1]) elif len(parts) == 1: return dict( nbhd=p_nbhd, project=p_shortname, project_id=p_id, app=None, artifact=parts[0]) else: return None # Mapper definitions mapper(ArtifactReference, ArtifactReferenceDoc, main_orm_session) mapper(Shortlink, ShortlinkDoc, main_orm_session, properties=dict( ref_id=ForeignIdProperty(ArtifactReference), project_id=ForeignIdProperty('Project'), app_config_id=ForeignIdProperty('AppConfig'), project=RelationProperty('Project'), app_config=RelationProperty('AppConfig'), ref=RelationProperty(ArtifactReference)))
36.225455
118
0.57639
[ "Apache-2.0" ]
brondsem/allura
Allura/allura/model/index.py
9,962
Python
import os, sys sys.path.insert(0, os.path.join("..","..")) from nodebox.graphics.context import * from nodebox.graphics import * from nodebox.graphics.geometry import coordinates from nodebox.graphics.shader import dropshadow, OffscreenBuffer, transparent, stretch from time import time flower = Image("cell.png") shadow = dropshadow(flower, alpha=1.0) # = image(blur(flower), color=(0,0,0,1)) # Each "flower" is drawn with a shadow underneath to add some depth. # The global shadow layer is at the bottom of the plant. # Ideally, each growing root would have its own shadow, # but it is faster this way using only one offscreen buffer for all global shadows # and a pre-rendered shadow image for each individual flower. class Root: def __init__(self, x, y, angle=90, radius=20, step=60, time=1.0, color=Color(0)): self.x = x self.y = y self.angle = angle self.radius = radius # Segment length. self.step = step # Maximum left or right rotation from current angle. self.time = time self.color = color def copy(self): return Root( self.x, self.y, self.angle, self.radius, self.step, self.time, self.color.copy()) def update(self): # The performance trick is that we don't keep a history, # e.g. no list with all the previous segments in the growing root. # We simply keep the position and heading of the last segment. # The previous segments have been rendered in a texture, i.e. they are "frozen". self.x, self.y = coordinates(self.x, self.y, self.radius, self.angle) self.angle += random(-self.step, self.step) self.time *= 0.8 + random(0.2) def draw(self): push() translate(self.x, self.y) strokewidth(2) stroke( self.color.r, self.color.g, self.color.b, self.color.a * self.time) # More transparent over time. ellipse(0, 0, width = 0.2+ 0.5 * self.time * self.radius, height = 0.2+ 0.5 * self.time * self.radius) # Smaller over time. rotate(self.angle) line(0, 0, self.radius, 0) scale(0.2 + self.time) image(shadow, -15, -15, width=20, height=20, alpha=0.5) image(flower, -10, -10, width=20, height=20, alpha=0.5, color=(canvas.mouse.relative_x*0.5+0.5, 1, self.time+0.5, 1)) pop() CLR = Color(0.27,0.29,0.36) CLR = lighter(CLR, 0.3) plant = [Root(200, -50, color=CLR) for i in range(10)] def grow(plant=[], branch=0.01): """ Updates each root in the given list to a new position. Roots can branch and will disappear over time. Returns the updated list. """ new = [] for root in plant: root.update() if root.time > 0.05: new.append(root) elif len(plant) < 50: # Replace the disappeared root with a new one. # Vary the time (=lifespan) so new roots appear at irregular intervals. x, y, angle = choice(( (200 + random(50), -50, 90+random(-10,10)), #(-50, random(50), 0) )) new.append(Root(x, y, angle=angle, color=CLR, time=random(0.5, 3.5, bias=0.3))) if random() < branch: new.append(root.copy()) return new # Roots are drawn into an offscreen buffer instead of directly to the screen. # This way we get an image with a transparent background, which we can use # to generate a dropshadow on-the-fly. # The bigger the size of the buffer, the more pixels and the slower it gets. # We work at a lower resolution and then scale the buffer up to the size of the screen. RESOLUTION = 0.5 buffer = OffscreenBuffer( RESOLUTION * canvas.screen.width, RESOLUTION * canvas.screen.height) def draw(canvas): # It takes some juggling with the contrast of the colors to avoid artefacts. colorplane(0, 0, canvas.width, canvas.height, lighter(color(0.14, 0.13, 0.18)), color(0.07, 0.06, 0.14), color(0.14, 0.20, 0.18), color(0.07, 0.06, 0.14)) global plant plant = grow(plant) # Draw each root in the offscreen texture. # The texture already contains whatever was drawn in it previous frame. buffer.push() for root in plant: root.draw() root.step = canvas.mouse.relative_x * 60 root.radius = canvas.mouse.relative_y * 30 buffer.pop() # Every few frames, make the buffered image more transparent, # so that old content fades away. if canvas.frame % 2 == 0 and not canvas.mouse.pressed: buffer.texture = transparent(buffer.texture, 0.9).texture # Scale up the buffered image to the screen size. # Draw the image with a dropshadow effect. # Since the offscreen buffer is scaled, the edges will look rough. # Apply a small blur effect to smoothen them. img = buffer.texture #img = mirror(img, vertical=True, dx=0.35, dy=0) # Interesting patterns. image(dropshadow(img, alpha=1.0, amount=1), 0, -50, width = canvas.width, height = canvas.height+50) # Hypnotizing breathing effect: img = stretch(img, 0.2, 0.1, radius=0.75, zoom=0.4-cos(canvas.frame*0.01)*0.4) image(img, 0, 0, width = canvas.width, height = canvas.height, )#filter = blurred(scale=0.75)) canvas.fps = 20 canvas.size = 800, 600 canvas.fullscreen = True canvas.run(draw)
37.304636
91
0.606071
[ "BSD-3-Clause" ]
pepsipepsi/nodebox_opengl_python3
examples/07-filter/09-buffer.py
5,633
Python
import tkinter as tk from PIL import Image, ImageTk # The Custom Variable Widgets class MyBar(tk.Canvas) : def __init__(self, master:object, shape:object, value=0, maximum=100, bg="#231303", trough_color='#8a7852', bar_color='#f7f4bf'): """Creating the alpha mask and creating a custom widget of the given shape and dimensions.""" # open shape mask with PIL im_shape_alpha = Image.open(shape).convert('L') # create bar shape image with the choosen backgroound color im_shape = Image.new('RGBA', im_shape_alpha.size, bg) # apply shape as alpha mask to "cut out" the bar shape im_shape.putalpha(im_shape_alpha) width, height = im_shape_alpha.size # create the canvas tk.Canvas.__init__(self, master, bg=trough_color, width=width, height=height, highlightthickness=0) self._value = value # bar value self.maximum = maximum # maximum value # bar width and height self.height = height self.width = width # create tkinter image for the shape from the PIL Image self.img_trough = ImageTk.PhotoImage(im_shape, master=self) # create bar to display the value self.create_rectangle(0, height, width, height * (1 - value/self.maximum), width=0, fill=bar_color, tags='pbar') # display shape on top self.create_image(0, 0, anchor='nw', image=self.img_trough) @property def value(self): """Return bar's value.""" return self._value @value.setter def value(self, value:int): """Set bar's value.""" self._value = value # adjust bar height to value self.coords('pbar', 0, self.height, self.width, self.height*(1 - value/self.maximum))
40.409091
120
0.644544
[ "MIT" ]
1337-inc/Captain
Scripts/mybar.py
1,778
Python
from typing import List, Generator def n_gons(partial: List[int], size: int, sums: int=None) -> \ Generator[List[int], None, None]: length = len(partial) if length == size * 2: yield partial for i in range(1, size * 2 + 1): if i in partial: continue partial.append(i) if length == 2: sums = sum(partial[0: 3]) elif (length > 2 and length % 2 == 0 and sums != sum(partial[-1: -4: -1]))\ or \ (length == size * 2 - 1 and sums != partial[1] + partial[-1] + partial[-2]): partial.pop() continue yield from n_gons(list(partial), size, sums) partial.pop() def n_gon_to_representation(n_gon: List[int]) -> int: n_gon_str = [str(n) for n in n_gon] size = len(n_gon_str) // 2 result = '' minimal = min(n_gon[0], *n_gon[3::2]) index = n_gon.index(minimal) start = n_gon.index(minimal) // 2 if index >= 3 else 0 for i in range(start, start + size): current = i % size if current == 0: result += ''.join(n_gon_str[0:3]) elif current == size - 1: result += ''.join([n_gon_str[-1], n_gon_str[-2], n_gon_str[1]]) else: result += ''.join([n_gon_str[current * 2 + 1], n_gon_str[current * 2], n_gon_str[current * 2 + 2]]) return int(result) def solve() -> int: return max([n_gon_to_representation(n_gon) for n_gon in n_gons([], 5) if n_gon_to_representation(n_gon) < 10 ** 16])
27.147541
75
0.504227
[ "MIT" ]
cryvate/project-euler
project_euler/solutions/problem_68.py
1,656
Python
#!/usr/bin/env python3 #-*- coding: utf-8 -*- '''btDown.py - Download resource for HTTP/HTTPS/FTP/Thunder/Magnet/BT Usage: python3 btDown.py <url> [path] Required: url HTTP/HTTPS/FTP/Thunder/MagNet/BT downloading URL Optionals: path The store path for the downloaded file Notice: Python3 required for btDown.py Author: zanran ([email protected]) CreatedAt: Mon Oct 8 21:27:28 CST 2018 ''' import os import sys import requests import time import re import enum import base64 from urllib import parse, request def usage(err=None): if err: print(err) print(__doc__) sys.exit(0) @enum.unique class PROTROL_TYEP(enum.Enum): UNKNOWN = 0 HTTP = 1 # HTTP/HTTPS下载 FTP = 2 # FTP下载 BT = 3 # BT下载 MAGNET = 4 # 磁力下载 THUNDER = 5 # 讯雷下载 class BtDown(object): def __init__(self, url, path = None): self.origin_url = url self.dest_path = path def detectProtrolType(self, url): bt_type = PROTROL_TYEP.UNKNOWN if (re.match('^ftp://', url, re.IGNORECASE)): bt_type = PROTROL_TYEP.FTP elif (re.match('^thunder://', url, re.IGNORECASE)): bt_type = PROTROL_TYEP.THUNDER elif (re.match('^magnet:?', url, re.IGNORECASE)): bt_type = PROTROL_TYEP.MAGNET elif (re.search(r'\.torrent$', url, re.IGNORECASE)): bt_type = PROTROL_TYEP.BT # http/https detect must be after torrent elif (re.match('^https?://', url, re.IGNORECASE)): bt_type = PROTROL_TYEP.HTTP return bt_type def _parserThunderUrl(self, url): thunder_url = re.sub('^thunder://', '', url, re.IGNORECASE) normalize_url = base64.b64decode(thunder_url).decode() normalize_url = re.sub('^AA', '', normalize_url) normalize_url = re.sub('ZZ$', '', normalize_url) return normalize_url def _parserMagnetUrl(self, url): return '' def parseUrlProtrol(self, url): normalize_url = url bt_type = self.detectProtrolType(url) if bt_type in [PROTROL_TYEP.THUNDER]: normalize_url = self._parserThunderUrl(url) elif bt_type in [PROTROL_TYEP.MAGNET]: normalize_url = self._parserMagnetUrl(url) elif bt_type in [PROTROL_TYEP.BT]: raise Exception('BT (torrent) is unsupported by now !') return normalize_url def getTitle(self, url): title = 'unnamed_file' bt_type = self.detectProtrolType(url) if bt_type in [PROTROL_TYEP.HTTP, PROTROL_TYEP.FTP]: last_slash = url.rfind('/') if last_slash != -1: title = url[last_slash + 1:].strip() if title.count('%') > 1: title = parse.unquote(title) return title def _showDownloadProgress(self, file, percent): base_file = os.path.basename(file) if(percent > 100): percent = 100 message = '\r Downloading %s ...... %2.f%%' % (base_file, percent) print(message, end='') return def _download_http(self, url, dest_file): res = requests.get(url, stream=True) max_file_bytes = int(res.headers['Content-Length']) chunk_size = 1024*1024*4 downloaded_size = 0 f = open(dest_file, 'wb') for data in res.iter_content(chunk_size): downloaded_size += len(data) percent = downloaded_size / max_file_bytes * 100 self._showDownloadProgress(dest_file, percent) f.write(data) f.close() def _download_ftp(self, url, dest_file): def _report(blocknum, blocksize, totalsize): if not totalsize: return percent = 100.0 * blocknum * blocksize / totalsize self._showDownloadProgress(dest_file, percent) url = parse.quote(url, safe=':/@') request.urlretrieve(url, dest_file, _report) def download(self): print('Start downloading %s' % self.origin_url) normalize_url = self.parseUrlProtrol(self.origin_url) print('Parse real url %s' % normalize_url) title = self.getTitle(normalize_url) dest_file = title if self.dest_path: if not os.path.exists(self.dest_path): os.makedirs(self.dest_path) dest_file = os.path.join(self.dest_path, title) if os.path.exists(dest_file): os.remove(dest_file) bt_type = self.detectProtrolType(normalize_url) if bt_type in [PROTROL_TYEP.HTTP]: self._download_http(normalize_url, dest_file) elif bt_type in [PROTROL_TYEP.FTP]: self._download_ftp(normalize_url, dest_file) else: raise Exception('Unknown protrol type detected !') print('\nSaved file: %s' % dest_file) return def main(): if len(sys.argv) not in [2, 3]: usage() url = sys.argv[1] path = None if len(sys.argv) > 2: path = sys.argv[2] bt = BtDown(url, path) bt.download() print('------------------ Well done ------------------') if __name__ == '__main__': main()
31.760736
75
0.596871
[ "MIT" ]
tianxiaxi/iDown
btDown.py
5,205
Python
"""Commands for starting daemons.""" from __future__ import division from __future__ import absolute_import from __future__ import print_function from __future__ import unicode_literals import argparse import pprint import confpy.api import confpy.core.option from .. import messages cfg = confpy.api.Configuration( transport=confpy.api.Namespace( description='Message transport options.', source=confpy.core.option.Option( description='The transport to fetch new requests from.', required=True, ), error=confpy.core.option.Option( description='The transport to which errors are written.', required=True, ), result=confpy.core.option.Option( description='The transport to which results are written.', required=True, ), ), daemon=confpy.api.Namespace( description='Long running daemon options.', profiler=confpy.core.option.Option( description='The profiler implementation to use.', required=True, ), process=confpy.core.option.Option( description='The daemon interface implemention to use.', required=True, ), pidfile=confpy.api.StringOption( description='The location to use as a pidfile.', required=True, ), ), ) def _common_args(): """ArgumentParser setup for all CLI commands.""" parser = argparse.ArgumentParser( description='Start a new profiler process.' ) parser.add_argument( '--config', required=True, help='The Python configuration file for the process.', ) return parser def profiler_main(): """Manage a profiler daemon.""" parser = _common_args() parser.add_argument( '--action', required=True, choices=('start', 'stop', 'restart'), ) args, _ = parser.parse_known_args() cfg = confpy.api.parse_options(files=(args.config,), env_prefix='PYPERF') proc = cfg.daemon.process( source_transport=cfg.transport.source, error_transport=cfg.transport.error, results_transport=cfg.transport.result, profiler=cfg.daemon.profiler, pidfile=cfg.daemon.pidfile, ) if args.action == 'stop': proc.stop() if args.action == 'start': proc.start() if args.action == 'restart': proc.restart() def send_request(): """Send a profile request to the daemon.""" parser = _common_args() parser.add_argument( '--identifier', required=True, help='The unique message identifier.', ) parser.add_argument( '--setup', default='pass', help='Any setup code if needed for the profile.', ) parser.add_argument( '--code', required=True, help='The code to profile.', ) args, _ = parser.parse_known_args() cfg = confpy.api.parse_options(files=(args.config,), env_prefix='PYPERF') cfg.transport.source().send( messages.ProfileRequest( identifier=args.identifier, setup=args.setup, code=args.code, ), ) def fetch_result(): """Fetch a result from the transport.""" parser = _common_args() args, _ = parser.parse_known_args() cfg = confpy.api.parse_options(files=(args.config,), env_prefix='PYPERF') transport = cfg.transport.result() msg = transport.fetch() if msg is not None: transport.complete(msg) pprint.pprint(msg.json) def fetch_error(): """Fetch an error from the transport.""" parser = _common_args() args, _ = parser.parse_known_args() cfg = confpy.api.parse_options(files=(args.config,), env_prefix='PYPERF') transport = cfg.transport.error() msg = transport.fetch() if msg is not None: transport.complete(msg) pprint.pprint(msg.json)
25.74026
77
0.619324
[ "Apache-2.0" ]
kevinconway/PyPerf
pyperf/cmd/daemons.py
3,964
Python
from kat.harness import Query, EDGE_STACK from abstract_tests import AmbassadorTest, HTTP from abstract_tests import ServiceType from selfsigned import TLSCerts from kat.utils import namespace_manifest ##### # XXX This file is annoying. # # RedirectTestsWithProxyProto and RedirectTestsInvalidSecret used to be subclasses of RedirectTests, # which makes a certain amount of sense. Problem is that when I wanted to modify just RedirectTests # to have secrets defined, that ended up affecting the two subclasses in bad ways. There's basically # no way to subclass an AmbassadorTest without having your base class be run separately, which isn't # what I wanted here. Sigh. class RedirectTests(AmbassadorTest): target: ServiceType edge_stack_cleartext_host = False def init(self): if EDGE_STACK: self.xfail = "Not yet supported in Edge Stack" self.xfail = "FIXME: IHA" self.target = HTTP() def requirements(self): # only check https urls since test readiness will only end up barfing on redirect yield from (r for r in super().requirements() if r[0] == "url" and r[1].url.startswith("https")) def manifests(self): return namespace_manifest("redirect-namespace") + f""" --- apiVersion: v1 kind: Secret metadata: name: redirect-cert namespace: redirect-namespace type: kubernetes.io/tls data: tls.crt: {TLSCerts["localhost"].k8s_crt} tls.key: {TLSCerts["localhost"].k8s_key} --- apiVersion: v1 kind: Secret metadata: name: redirect-cert type: kubernetes.io/tls data: tls.crt: {TLSCerts["localhost"].k8s_crt} tls.key: {TLSCerts["localhost"].k8s_key} """ + super().manifests() def config(self): # Use self here, not self.target, because we want the TLS module to # be annotated on the Ambassador itself. yield self, self.format(""" --- apiVersion: getambassador.io/v3alpha1 kind: Module name: tls ambassador_id: [{self.ambassador_id}] config: server: enabled: True secret: redirect-cert redirect_cleartext_from: 8080 """) yield self.target, self.format(""" --- apiVersion: getambassador.io/v3alpha1 kind: Mapping name: tls_target_mapping hostname: "*" prefix: /tls-target/ service: {self.target.path.fqdn} """) def queries(self): # [0] yield Query(self.url("tls-target/", scheme="http"), expected=301) # [1] -- PHASE 2 yield Query(self.url("ambassador/v0/diag/?json=true&filter=errors", scheme="https"), insecure=True, phase=2) def check(self): # For query 0, check the redirection target. assert len(self.results[0].headers['Location']) > 0 assert self.results[0].headers['Location'][0].find('/tls-target/') > 0 # For query 1, we require no errors. # XXX Ew. If self.results[1].json is empty, the harness won't convert it to a response. errors = self.results[1].json assert(len(errors) == 0) class RedirectTestsWithProxyProto(AmbassadorTest): target: ServiceType def init(self): self.xfail = "FIXME: IHA" self.target = HTTP() def requirements(self): # only check https urls since test readiness will only end up barfing on redirect yield from (r for r in super().requirements() if r[0] == "url" and r[1].url.startswith("https")) def config(self): yield self, self.format(""" --- apiVersion: getambassador.io/v3alpha1 kind: Module name: ambassador config: use_proxy_proto: true enable_ipv6: true """) yield self.target, self.format(""" --- apiVersion: getambassador.io/v3alpha1 kind: Mapping name: tls_target_mapping hostname: "*" prefix: /tls-target/ service: {self.target.path.fqdn} """) def queries(self): # TODO (concaf): FWIW, this query only covers one side of the story. This tests that this is the correct # deviation from the normal behavior (301 response), but does not test a 301 when proxy proto is actually sent. # This is because net/http does not yet support adding proxy proto to HTTP requests, and hence it's difficult # to test with kat. We will need to open a raw TCP connection (e.g. telnet/nc) and send the entire HTTP Request # in plaintext to test this behavior (or use curl with --haproxy-protocol). yield Query(self.url("tls-target/"), error=[ "EOF", "connection reset by peer" ]) # We can't do the error check until we have the PROXY client mentioned above. # # [1] -- PHASE 2 # yield Query(self.url("ambassador/v0/diag/?json=true&filter=errors"), phase=2) # # def check(self): # # We don't have to check anything about query 0, the "expected" clause is enough. # # # For query 1, we require no errors. # # XXX Ew. If self.results[1].json is empty, the harness won't convert it to a response. # errors = self.results[1].json # assert(len(errors) == 0) class RedirectTestsInvalidSecret(AmbassadorTest): """ This test tests that even if the specified secret is invalid, the rest of TLS Context should go through. In this case, even though the secret does not exist, redirect_cleartext_from should still take effect. """ target: ServiceType def init(self): if EDGE_STACK: self.xfail = "Not yet supported in Edge Stack" self.xfail = "FIXME: IHA" self.target = HTTP() def requirements(self): # only check https urls since test readiness will only end up barfing on redirect yield from (r for r in super().requirements() if r[0] == "url" and r[1].url.startswith("https")) def config(self): yield self, self.format(""" --- apiVersion: getambassador.io/v3alpha1 kind: Module name: tls ambassador_id: [{self.ambassador_id}] config: server: enabled: True secret: does-not-exist-secret redirect_cleartext_from: 8080 """) yield self.target, self.format(""" --- apiVersion: getambassador.io/v3alpha1 kind: Mapping name: tls_target_mapping hostname: "*" prefix: /tls-target/ service: {self.target.path.fqdn} """) def queries(self): # [0] yield Query(self.url("tls-target/"), expected=301) # There's kind of no way to do this. Looks like we need to speak HTTP to the port on which we # think the server is listening for HTTPS? This is a bad config all the way around, really. # # [1] -- PHASE 2 # yield Query(self.url("ambassador/v0/diag/?json=true&filter=errors", scheme="https"), phase=2) # # def check(self): # # We don't have to check anything about query 0, the "expected" clause is enough. # # # For query 1, we require no errors. # # XXX Ew. If self.results[1].json is empty, the harness won't convert it to a response. # errors = self.results[1].json # assert(len(errors) == 0) class XFPRedirect(AmbassadorTest): parent: AmbassadorTest target: ServiceType edge_stack_cleartext_host = False def init(self): if EDGE_STACK: self.xfail = "Not yet supported in Edge Stack" self.target = HTTP() self.add_default_http_listener = False self.add_default_https_listener = False def manifests(self): return self.format(''' --- apiVersion: getambassador.io/v3alpha1 kind: Listener metadata: name: ambassador-listener-8080 spec: ambassador_id: [{self.ambassador_id}] port: 8080 protocol: HTTP securityModel: XFP l7Depth: 1 hostBinding: namespace: from: ALL --- apiVersion: getambassador.io/v3alpha1 kind: Host metadata: name: weird-xfp-test-host spec: ambassador_id: [{self.ambassador_id}] requestPolicy: insecure: action: Redirect ''') + super().manifests() def config(self): yield self.target, self.format(""" kind: Module name: ambassador config: use_remote_address: false --- apiVersion: getambassador.io/v3alpha1 kind: Mapping name: {self.name} hostname: "*" prefix: /{self.name}/ service: {self.target.path.fqdn} """) def queries(self): # [0] yield Query(self.url(self.name + "/target/"), headers={ "X-Forwarded-Proto": "http" }, expected=301) # [1] yield Query(self.url(self.name + "/target/"), headers={ "X-Forwarded-Proto": "https" }, expected=200) # [2] -- PHASE 2 yield Query(self.url("ambassador/v0/diag/?json=true&filter=errors"), headers={ "X-Forwarded-Proto": "https" }, phase=2) def check(self): # For query 0, check the redirection target. expected_location = ["https://" + self.path.fqdn + "/" + self.name + "/target/"] actual_location = self.results[0].headers['Location'] assert actual_location == expected_location, "Expected redirect location to be {}, got {} instead".format( expected_location, actual_location ) # For query 1, we don't have to check anything, the "expected" clause is enough. # For query 2, we require no errors. # XXX Ew. If self.results[2].json is empty, the harness won't convert it to a response. errors = self.results[2].json assert(len(errors) == 0) def requirements(self): # We're replacing super()'s requirements deliberately here: we need the XFP header or they can't work. yield ("url", Query(self.url("ambassador/v0/check_ready"), headers={"X-Forwarded-Proto": "https"})) yield ("url", Query(self.url("ambassador/v0/check_alive"), headers={"X-Forwarded-Proto": "https"}))
31.398693
127
0.658097
[ "Apache-2.0" ]
DoodleScheduling/emissary
python/tests/kat/t_redirect.py
9,608
Python
#!/usr/bin/env python3 # Copyright (C) 2019 - Virtual Open Systems SAS # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # author = Teodora Sechkova # author_email = [email protected] import bjointsp.api.placement as placement # Start the placement server def main(): placement.api.app.run(host='localhost', port=3800, debug=True) if __name__ == '__main__': main()
31.344828
74
0.731573
[ "Apache-2.0" ]
5GCity/5GCity-resource-placement
src/bjointsp/main.py
909
Python
""" A simple Line class. NOTE: This is NOT rosegraphics -- it is your OWN Line class. Authors: David Mutchler, Vibha Alangar, Matt Boutell, Dave Fisher, Mark Hays, Amanda Stouder, Aaron Wilkin, their colleagues, and Jacob Jarski. """ # DONE: 1. PUT YOUR NAME IN THE ABOVE LINE. import math import m1t_test_Line as m1t ############################################################################### # IMPORTANT: # Your instructor will help you get started on this exercise. ############################################################################### # ----------------------------------------------------------------------------- # DONE: 2. Right-click on the src folder and # Mark Directory as ... Sources Root, # if you have not already done so. # # Then, with your instructor, READ THE INSTRUCTIONS in file # m0_INSTRUCTIONS.txt # asking questions as needed. Once you understand the instructions, # mark this _TODO_ as DONE. # ----------------------------------------------------------------------------- ############################################################################### # NOTE: For ALL of the methods that you implement, the method is allowed # to have additional side effects as needed by it and/or other methods. ############################################################################### def main(): """ Calls the TEST functions in this module, but ONLY if the method to be tested has at least a partial implementation. That is, a TEST function will not be called until you begin work on the code that it is testing. """ if m1t.is_implemented('__init__'): run_test_init() if m1t.is_implemented('clone'): run_test_clone() if m1t.is_implemented('reverse'): run_test_reverse() if m1t.is_implemented('slope'): run_test_slope() if m1t.is_implemented('length'): run_test_length() if m1t.is_implemented('get_number_of_clones'): run_test_get_number_of_clones() if m1t.is_implemented('line_plus'): run_test_line_plus() if m1t.is_implemented('line_minus'): run_test_line_minus() if m1t.is_implemented('midpoint'): run_test_midpoint() if m1t.is_implemented('is_parallel'): run_test_is_parallel() if m1t.is_implemented('reset'): run_test_reset() ############################################################################### # Students: # Do NOT touch the following Point class - it has no TO DO. # Do NOT copy code from the methods in this Point class. # # DO ** READ ** this Point class, # asking questions about any of it that you do not understand. # # DO ** CALL ** methods in this Point class as needed # in implementing and testing the methods of the ** Line ** class. # # IMPORTANT, IMPORTANT, IMPORTANT: # *** In your ** Line ** class methods, you should NEVER have code # *** that a ** Point ** class method could do for you. ############################################################################### # The Point class (and its methods) begins here. ############################################################################### class Point(object): """ Represents a point in 2-dimensional space. """ def __init__(self, x, y): """ Sets instance variables x and y to the given coordinates. """ self.x = x self.y = y def __repr__(self): """ Returns a string representation of this Point. For each coordinate (x and y), the representation: - Uses no decimal points if the number is close to an integer, - Else it uses 2 decimal places after the decimal point. Examples: Point(10, 3.14) Point(3.01, 2.99) """ decimal_places = 2 # Use 2 places after the decimal point formats = [] numbers = [] for coordinate in (self.x, self.y): if abs(coordinate - round(coordinate)) < (10 ** -decimal_places): # Treat it as an integer: formats.append('{}') numbers.append(round(coordinate)) else: # Treat it as a float to decimal_places decimal places: formats.append('{:.' + str(decimal_places) + 'f}') numbers.append(round(coordinate, decimal_places)) format_string = 'Point(' + formats[0] + ', ' + formats[1] + ')' return format_string.format(numbers[0], numbers[1]) def __eq__(self, p2): """ Defines == for Points: a == b is equivalent to a.__eq__(b). Treats two numbers as "equal" if they are within 6 decimal places of each other for both x and y coordinates. """ return (round(self.x, 6) == round(p2.x, 6) and round(self.y, 6) == round(p2.y, 6)) def clone(self): """ Returns a new Point at the same (x, y) as this Point. """ return Point(self.x, self.y) def distance_from(self, p2): """ Returns the distance this Point is from the given Point. """ dx_squared = (self.x - p2.x) ** 2 dy_squared = (self.y - p2.y) ** 2 return math.sqrt(dx_squared + dy_squared) def halfway_to(self, p2): """ Given another Point object p2, returns a new Point that is half-way between this Point and the given Point (p2). """ return Point((self.x + p2.x) / 2, (self.y + p2.y) / 2) def plus(self, p2): """ Returns a Point whose coordinates are those of this Point PLUS the given Point. For example: p1 = Point(500, 20) p2 = Point(100, 13) p3 = p1.plus(p2) print(p3) would print: Point(600, 33) """ return Point(self.x + p2.x, self.y + p2.y) def minus(self, p2): """ Returns a Point whose coordinates are those of this Point MINUS the given Point. For example: p1 = Point(500, 20) p2 = Point(100, 13) p3 = p1.minus(p2) print(p3) would print: Point(400, 7) """ return Point(self.x - p2.x, self.y - p2.y) ############################################################################### # The Line class (and its methods) begins here. ############################################################################### class Line(object): """ Represents a line segment in 2-dimensional space. """ def __init__(self, start, end): self.start = start.clone() self.originalstart = start.clone() self.end = end.clone() self.originalend = end.clone() self.timescloned = 0 """ What comes in: -- self -- a Point object named start -- a Point object named end where the two Points are to be the initial start and end points, respectively, of this Line. What goes out: Nothing (i.e., None). Side effects: MUTATEs this Line by setting two instance variables named: -- start -- end to CLONES of the two Point arguments, respectively. Other methods must maintain those instance variables as needed so that they always indicate the CURRENT start and end points of this Line. Also, initializes other instance variables as needed by other Line methods. Example: This __init__ method runs when one constructs a Line. So the 3rd of the following statements invokes the __init__ method of this Line class: p1 = Point(30, 17) p2 = Point(50, 80) line = Line(p1, p2) # Causes __init__ to run print(line.start) # Should print Point(30, 17) print(line.end) # Should print Point(50, 80) print(line.start == p1) # Should print True print(line.start is p1) # Should print False Type hints: :type start: Point :type end: Point """ # --------------------------------------------------------------------- # DONE: 3. # a. READ the above specification, including the Example. # ** ASK QUESTIONS AS NEEDED. ** # ** Be sure you understand it, ESPECIALLY the Example. # b. Implement and test this method. # The tests are already written (below). # They include the Example in the above doc-string. # --------------------------------------------------------------------- def __repr__(self): """ What comes in: -- self What goes out: Returns a string representation of this Line, in the form: Line[(x1, y1), (x2, y2)] Side effects: None. Note: print(BLAH) causes BLAH's __repr__ to be called. BLAH's __repr__ returns a string, which the print function then prints. Example: Since the print function calls __repr__ on the object to be printed: p1 = Point(30, 17) p2 = Point(50, 80) line = Line(p1, p2) # Causes __init__ to run # The following statement causes __repr__ to run, # hence should print: Line[(30, 17), (50, 80)] print(line) Type hints: :rtype: str """ # --------------------------------------------------------------------- # We have already implemented this __repr__ function for you. # Do NOT modify it. # --------------------------------------------------------------------- start = repr(self.start).replace('Point', '') end = repr(self.end).replace('Point', '') return 'Line[{}, {}]'.format(start, end) def __eq__(self, line2): """ What comes in: -- self -- a Line object What goes out: Returns True if: this Line's start point is equal to line2's start point AND this Line's end point is equal to line2's end point. Returns False otherwise. Side effects: None. Note: a == b is equivalent to a.__eq__(b). Examples: p1 = Point(30, 17) p2 = Point(50, 80) line1 = Line(p1, p2) line2 = Line(p1, p2) line3 = Line(p2, p1) print(line1 == line1) # Should print: True print(line1 == line2) # Should print: True print(line1 == line3) # Should print: False line1.start = Point(0, 0) print(line1 == line2) # Should now print: False Type hints: :type line2: Line :rtype: bool """ # --------------------------------------------------------------------- # We have already implemented this __eq__ function for you. # Do NOT modify it. # --------------------------------------------------------------------- return (self.start == line2.start) and (self.end == line2.end) def clone(self): self.timescloned = self.timescloned + 1 clone = Line(self.start, self.end) return clone """ What comes in: -- self What goes out: Returns a new Line whose START is a clone of this Line's START and whose END is a clone of this Line's END. Side effects: None. Example: p1 = Point(30, 17) p2 = Point(50, 80) line1 = Line(p1, p2) line2 = line1.clone() print(line1) # Should print: Line[(30, 17), (50, 80)] print(line2) # Should print: Line[(30, 17), (50, 80)] print(line1 == line2) # Should print: True print(line1 is line2) # Should print: False print(line1.start is line2.start) # Should print: False print(line1.end is line2.end) # Should print: False line1.start = Point(11, 12) print(line1) # Should print: Line[(11, 12), (50, 80)] print(line2) # Should print: Line[(30, 17), (50, 80)] print(line1 == line2) # Should now print: False Type hints: :rtype: Line """ # --------------------------------------------------------------------- # DONE: 4. # a. READ the above specification, including the Example. # ** ASK QUESTIONS AS NEEDED. ** # ** Be sure you understand it, ESPECIALLY the Example. # b. Implement and test this method. # The tests are already written (below). # They include the Example in the above doc-string. # --------------------------------------------------------------------- def reverse(self): reversestart = self.end reverseend = self.start self.start = reversestart self.end = reverseend """ What comes in: -- self What goes out: Nothing (i.e., None). Side effects: MUTATES this Line so that its direction is reversed (that is, its start and end points are swapped). ** Must NOT mutate its start and end points -- just SWAP them. ** Examples: p1 = Point(30, 17) p2 = Point(50, 80) line1 = Line(p1, p2) line2 = line1.clone() print(line1) # Should print: Line[(30, 17), (50, 80)] line1.reverse() print(line1) # Should print: Line[(50, 80), (30, 17)] print(line1 == line2) # Should print: False line1.reverse() print(line1 == line2) # Should now print: True """ # --------------------------------------------------------------------- # DONE: 5. # a. READ the above specification, including the Example. # ** ASK QUESTIONS AS NEEDED. ** # ** Be sure you understand it, ESPECIALLY the Example. # b. Implement and test this method. # The tests are already written (below). # They include the Example in the above doc-string. # --------------------------------------------------------------------- def slope(self): slopex = (self.end.x-self.start.x) slopey = (self.end.y-self.start.y) if slopex == 0: return math.inf else: return slopey/slopex """ What comes in: -- self What goes out: Returns the slope of this Line, or math.inf if the line is vertical (i.e., has "infinite" slope). Side effects: None. Examples: p1 = Point(30, 3) p2 = Point(50, 8) line1 = Line(p1, p2) # Since the slope is (8 - 3) / (50 - 30) , which is 0.25: print(line1.slope()) # Should print [approximately]: 0.25 line2 = Line(Point(10, 10), Point(10, 5)) print(line2.slope()) # Should print: inf # math.inf is NOT the STRING 'inf', so: print(line2.slope() == 'inf') # Should print False Type hints: :rtype: float """ # --------------------------------------------------------------------- # DONE: 6. # a. READ the above specification, including the Example. # ** ASK QUESTIONS AS NEEDED. ** # ** Be sure you understand it, ESPECIALLY the Example. # b. Implement and test this method. # The tests are already written (below). # They include the Example in the above doc-string. # --------------------------------------------------------------------- def length(self): length = math.sqrt(((self.start.x- self.end.x) ** 2) + ((self.start.y - self.end.y) ** 2)) return length """ What comes in: -- self What goes out: Returns the length of this Line. Side effects: None. Example: p1 = Point(166, 10) p2 = Point(100, 10) line1 = Line(p1, p2) # Since the distance from p1 to p2 is 66: print(line1.length()) # Should print: 66.0 p3 = Point(0, 0) p4 = Point(3, 4) line2 = Line(p3, p4) print(line2.length()) # Should print about 5.0 Type hints: :rtype: float """ # --------------------------------------------------------------------- # DONE: 7. # a. READ the above specification, including the Example. # ** ASK QUESTIONS AS NEEDED. ** # ** Be sure you understand it, ESPECIALLY the Example. # b. Implement and test this method. # The tests are already written (below). # They include the Example in the above doc-string. # --------------------------------------------------------------------- def get_number_of_clones(self): return self.timescloned """ What comes in: -- self What goes out: -- Returns the number of times that this Line has been cloned (via the clone method). Side effects: None. Example: line1 = Line(Point(500, 20), Point(100, 8)) line2 = line1.clone() line3 = line1.clone() line4 = line3.clone() line5 = line1.clone() print(line1.get_number_of_clones()) print(line2.get_number_of_clones()) print(line3.get_number_of_clones()) print(line4.get_number_of_clones()) print(line5.get_number_of_clones()) would print: 3 [since there are three line1.clone() statements] 0 [since there are no line2.clone() statements] 1 [since there is one line3.clone() statement] 0 [since there are no line4.clone() statements] 0 [since there are no line5.clone() statements] Type hints: :rtype: int: """ # --------------------------------------------------------------------- # DONE: 8. # a. READ the above specification, including the Example. # ** ASK QUESTIONS AS NEEDED. ** # ** Be sure you understand it, ESPECIALLY the Example. # b. Implement and test this method. # The tests are already written (below). # They include the Example in the above doc-string. # --------------------------------------------------------------------- def line_plus(self, other_line): """ What comes in: -- self -- another Line object What goes out: -- Returns a Line whose: -- start is the sum of this Line's start (a Point) and the other_line's start (another Point). -- end is the sum of this Line's end (a Point) and the other_line's end (another Point). Side effects: None. Example: line1 = Line(Point(500, 20), Point(100, 8)) line2 = Line(Point(100, 13), Point(400, 8)) line3 = line1.line_plus(line2) print(line3) would print: Line[(600, 33), (500, 16)] Type hints: :type other_line: Line :rtype: Line: """ # --------------------------------------------------------------------- # DONE: 9. # a. READ the above specification, including the Example. # ** ASK QUESTIONS AS NEEDED. ** # ** Be sure you understand it, ESPECIALLY the Example. # b. Implement and test this method. # The tests are already written (below). # They include the Example in the above doc-string. # --------------------------------------------------------------------- start = Point(self.start.x + other_line.start.x, self.start.y + other_line.start.y) end = Point(self.end.x + other_line.end.x, self.end.y + other_line.end.y) line_plus = Line(start, end) return line_plus def line_minus(self, other_line): """ What comes in: -- self -- another Line object What goes out: -- Returns a Line whose: -- start is this Line's start (a Point) minus the other_line's start (another Point). -- end is this Line's end (a Point) minus the other_line's end (another Point). Side effects: None. Example: line1 = Line(Point(500, 20), Point(100, 8)) line2 = Line(Point(100, 13), Point(400, 8)) line3 = line1.line_minus(line2) print(line3) would print: Line[(400, 7), (-300, 0)] Type hints: :type other_line: Line :rtype: Line: """ # --------------------------------------------------------------------- # DONE: 10. # a. READ the above specification, including the Example. # ** ASK QUESTIONS AS NEEDED. ** # ** Be sure you understand it, ESPECIALLY the Example. # b. Implement and test this method. # The tests are already written (below). # They include the Example in the above doc-string. # --------------------------------------------------------------------- start = Point(self.start.x - other_line.start.x, self.start.y - other_line.start.y) end = Point(self.end.x - other_line.end.x, self.end.y - other_line.end.y) line_minus = Line(start, end) return line_minus def midpoint(self): """ What comes in: -- self What goes out: returns a Point at the midpoint of this Line. Side effects: None. Example: p1 = Point(3, 10) p2 = Point(9, 20) line1 = Line(p1, p2) print(line1.midpoint()) # Should print: Point(6, 15) Type hints: :rtype: Point """ # --------------------------------------------------------------------- # DONE: 11. # a. READ the above specification, including the Example. # ** ASK QUESTIONS AS NEEDED. ** # ** Be sure you understand it, ESPECIALLY the Example. # b. Implement and test this method. # The tests are already written (below). # They include the Example in the above doc-string. # --------------------------------------------------------------------- midpoint = Point((self.end.x + self.start.x)/2, (self.end.y + self.start.y)/2) return midpoint def is_parallel(self, line2): """ What comes in: -- self -- another Line object (line2) What goes out: Returns True if this Line is parallel to the given Line (line2). Returns False otherwise. *** SEE THE IMPORTANT NOTE BELOW, re ROUNDING numbers. Side effects: None. Examples: line1 = Line(Point(15, 30), Point(17, 50)) # slope is 10.0 line2 = Line(Point(10, 10), Point(15, 60)) # slope is 10.0 line3 = Line(Point(10, 10), Point(80, 80)) # slope is 7.0 line4 = Line(Point(10, 10), Point(10, 20)) # slope is inf print(line1.is_parallel(line2)) # Should print: True print(line2.is_parallel(line1)) # Should print: True print(line1.is_parallel(line3)) # Should print: False print(line1.is_parallel(line4)) # Should print: False print(line1.is_parallel(line1)) # Should print: True print(line4.is_parallel(line4)) # Should print: True Type hints: :type line2: Line :rtype: bool """ selfslopex = (self.end.x - self.start.x) line2slopex = (line2.end.x - line2.start.x) if line2slopex == 0: if line2slopex == selfslopex: return True else: return False if selfslopex == 0: return False selfslope =((self.end.y - self.start.y)/(self.end.x - self.start.x)) line2slope = ((line2.end.y - line2.start.y)/ (line2.end.x - line2.start.x)) if round(line2slope, 10) == round(selfslope, 10): return True else: return False # --------------------------------------------------------------------- # DONE: 12. # a. READ the above specification, including the Example. # ** ASK QUESTIONS AS NEEDED. ** # ** Be sure you understand it, ESPECIALLY the Example. # b. Implement and test this method. # The tests are already written (below). # They include the Example in the above doc-string. # --------------------------------------------------------------------- ####################################################################### # # IMPORTANT: When you test whether two FLOATING POINT numbers # are "equal", you must deal with the imprecision # of floating-point arithmetic. For example, in REAL arithmetic, # 1 / (24 * math.pi - 20 * math.pi) # and # 3 / (72 * math.pi - 60 * math.pi) # are equal. But in FLOATING point arithmetic, they are: # 0.07957747154594767 # and # 0.07957747154594765 # respectively (hence NOT equal). # Try it out if you don't believe me! # ####################################################################### # IMPORTANT BOTTOM-LINE: When you want to test whether two # FLOATING POINT numbers a and b are the same, as in this method, # DON'T use: a == b # INSTEAD use: round(a, 12) == round(b, 12) ######################################################################## # # The latter compares the numbers rounded to 12 decimal places. # In the context of this exercise, doing so is adequate to ignore # floating-point errors while distinguishing numbers that really # are different from each other. ####################################################################### def reset(self): self.start = self.originalstart self.end = self.originalend """ What comes in: -- self What goes out: Nothing (i.e., None). Side effects: MUTATES this Line so that its start and end points revert to what they were when this Line was constructed. Examples: p1 = Point(-3, -4) p2 = Point(3, 4) line1 = Line(p1, p2) line2 = Line(Point(0, 1), Point(10, 20)) ... [various actions, including some like these:] line1.start = Point(100, 300) line2.end = Point(99, 4) line1.reverse() # Should print: Line[(x1, y1), (x2, y2)] where (x1, y1) and # (x2, y2) are the CURRENT coordinates of line1's endpoints. print(line1) print(line2) # Similarly for line2 line1.reset() line2.reset() print(line1) # Should print: Line[(-3, -4), (3, 4)] print(line2) # Should print: Line[(0, 1), (10, 20)] """ # --------------------------------------------------------------------- # DONE: 13. # a. READ the above specification, including the Example. # ** ASK QUESTIONS AS NEEDED. ** # ** Be sure you understand it, ESPECIALLY the Example. # b. Implement and test this method. # The tests are already written (below). # They include the Example in the above doc-string. # --------------------------------------------------------------------- ############################################################################### # The TEST functions for the Line class begin here. # # We have already written the TEST functions. They all take the form: # -- m1t.run_test_BLAH() # This runs OUR tests. # -- One more test (or set of tests) that came directly from the Example # in the specification. ############################################################################### def run_test_init(): """ Tests the __init__ method of the Line class. """ m1t.run_test_init() # This runs OUR tests. # ------------------------------------------------------------------------- # One ADDITIONAL test (or set of tests). # ------------------------------------------------------------------------- p1 = Point(30, 17) p2 = Point(50, 80) line = Line(p1, p2) # Causes __init__ to run print(line.start) # Should print Point(30, 17) print(line.end) # Should print Point(50, 80) print(line.start == p1) # Should print True print(line.start is p1) # Should print False print('The above should print:') print(' Point(30, 17)') print(' Point(50, 80)') print(' True') print(' False') def run_test_clone(): """ Tests the clone method of the Line class. """ m1t.run_test_clone() # This runs OUR tests. # ------------------------------------------------------------------------- # One ADDITIONAL test (or set of tests). # ------------------------------------------------------------------------- p1 = Point(30, 17) p2 = Point(50, 80) line1 = Line(p1, p2) line2 = line1.clone() print(line1) # Should print: Line[(30, 17), (50, 80)] print(line2) # Should print: Line[(30, 17), (50, 80)] print(line1 == line2) # Should print: True print(line1 is line2) # Should print: False print(line1.start is line2.start) # Should print: False print(line1.end is line2.end) # Should print: False line1.start = Point(11, 12) print(line1) # Should print: Line[(11, 12), (50, 80)] print(line2) # Should print: Line[(30, 17), (50, 80)] print(line1 == line2) # Should now print: False print('The above should print:') print(' Line[(30, 17), (50, 80)]') print(' Line[(30, 17), (50, 80)]') print(' True') print(' False') print(' False') print(' False') print(' Line[(11, 12), (50, 80)]') print(' Line[(30, 17), (50, 80)') print(' False') def run_test_reverse(): """ Tests the reverse method of the Line class. """ m1t.run_test_reverse() # This runs OUR tests. # ------------------------------------------------------------------------- # One ADDITIONAL test (or set of tests). # ------------------------------------------------------------------------- p1 = Point(30, 17) p2 = Point(50, 80) line1 = Line(p1, p2) line2 = line1.clone() print(line1) # Should print: Line[(30, 17), (50, 80)] line1.reverse() print(line1) # Should print: Line[(50, 80), (30, 17)] print(line1 == line2) # Should print: False line1.reverse() print(line1 == line2) # Should now print: True print('The above should print:') print(' Line[(30, 17), (50, 80)]') print(' Line[(50, 80), (30, 17)') print(' False') print(' True') def run_test_slope(): """ Tests the slope method of the Line class. """ m1t.run_test_slope() # This runs OUR tests. # ------------------------------------------------------------------------- # One ADDITIONAL test (or set of tests). # ------------------------------------------------------------------------- p1 = Point(30, 3) p2 = Point(50, 8) line1 = Line(p1, p2) # Since the slope is (8 - 3) / (50 - 30) , which is 0.25: print(line1.slope()) # Should print [approximately]: 0.25 line2 = Line(Point(10, 10), Point(10, 5)) print(line2.slope()) # Should print: inf # math.inf is NOT the STRING 'inf', so: print(line2.slope() == 'inf') # Should print False print('The above should print:') print(' 0.25 (approximately)') print(' inf') print(' False') def run_test_length(): """ Tests the length method of the Line class. """ m1t.run_test_length() # This runs OUR tests. # ------------------------------------------------------------------------- # One ADDITIONAL test (or set of tests). # ------------------------------------------------------------------------- p1 = Point(166, 10) p2 = Point(100, 10) line1 = Line(p1, p2) # Since the distance from p1 to p2 is 66: print(line1.length()) # Should print: 66.0 p3 = Point(0, 0) p4 = Point(3, 4) line2 = Line(p3, p4) print(line2.length()) # Should print about 5.0 print('The above should print:') print(' 66.0') print(' 5.0 (approximately)') def run_test_get_number_of_clones(): """ Tests the get_number_of_clones method of the Line class. """ m1t.run_test_get_number_of_clones() # This runs OUR tests. # ------------------------------------------------------------------------- # One ADDITIONAL test (or set of tests). # ------------------------------------------------------------------------- line1 = Line(Point(500, 20), Point(100, 8)) line2 = line1.clone() line3 = line1.clone() line4 = line3.clone() line5 = line1.clone() print(line1.get_number_of_clones()) print(line2.get_number_of_clones()) print(line3.get_number_of_clones()) print(line4.get_number_of_clones()) print(line5.get_number_of_clones()) print('The above should print 3, then 0, then 1, then 0, then 0.') def run_test_line_plus(): """ Tests the line_plus method of the Line class. """ m1t.run_test_line_plus() # This runs OUR tests. # ------------------------------------------------------------------------- # One ADDITIONAL test (or set of tests). # ------------------------------------------------------------------------- line1 = Line(Point(500, 20), Point(100, 8)) line2 = Line(Point(100, 13), Point(400, 8)) line3 = line1.line_plus(line2) print(line3) print('The above should print: Line[(600, 33), (500, 16)]') def run_test_line_minus(): """ Tests the line_minus method of the Line class. """ m1t.run_test_line_minus() # This runs OUR tests. # ------------------------------------------------------------------------- # One ADDITIONAL test (or set of tests). # ------------------------------------------------------------------------- line1 = Line(Point(500, 20), Point(100, 8)) line2 = Line(Point(100, 13), Point(400, 8)) line3 = line1.line_minus(line2) print(line3) print('The above should print: Line[(400, 7), (-300, 0)]') def run_test_midpoint(): """ Tests the midpoint method of the Line class. """ m1t.run_test_midpoint() # This runs OUR tests. # ------------------------------------------------------------------------- # One ADDITIONAL test (or set of tests). # ------------------------------------------------------------------------- p1 = Point(3, 10) p2 = Point(9, 20) line1 = Line(p1, p2) print(line1.midpoint()) # Should print: Point(6, 15) print('The above should print: Point(6, 15)') def run_test_is_parallel(): """ Tests the is_parallel method of the Line class. """ m1t.run_test_is_parallel() # This runs OUR tests. # ------------------------------------------------------------------------- # One ADDITIONAL test (or set of tests). # ------------------------------------------------------------------------- line1 = Line(Point(15, 30), Point(17, 50)) # slope is 10.0 line2 = Line(Point(10, 10), Point(15, 60)) # slope is 10.0 line3 = Line(Point(10, 10), Point(80, 80)) # slope is 7.0 line4 = Line(Point(10, 10), Point(10, 20)) # slope is inf print(line1.is_parallel(line2)) # Should print: True print(line2.is_parallel(line1)) # Should print: True print(line1.is_parallel(line3)) # Should print: False print(line1.is_parallel(line4)) # Should print: False print(line1.is_parallel(line1)) # Should print: True print(line4.is_parallel(line4)) # Should print: True print('The above should print:') print(' True, True, False, False, True, True') def run_test_reset(): """ Tests the reset method of the Line class. """ m1t.run_test_reset() # This runs OUR tests. # ------------------------------------------------------------------------- # One ADDITIONAL test (or set of tests). # ------------------------------------------------------------------------- p1 = Point(-3, -4) p2 = Point(3, 4) line1 = Line(p1, p2) line2 = Line(Point(0, 1), Point(10, 20)) line1.start = Point(100, 300) line2.end = Point(99, 4) line1.reverse() # Should print: Line[(x1, y1), (x2, y2)] where (x1, y1) and # (x2, y2) are the CURRENT coordinates of line1's endpoints. print(line1) print(line2) # Similarly for line2 line1.reset() line2.reset() print(line1) # Should print: Line[(-3, -4), (3, 4)] print(line2) # Should print: Line[(0, 1), (10, 20)] print('The above should print:') print(' Line[(3, 4), (100, 300)]') print(' Line[(0, 1), (99, 4)]') print(' Line[(-3, -4), (3, 4)]') print(' Line[(0, 1), (10, 20)]') # ----------------------------------------------------------------------------- # If this module is running at the top level (as opposed to being # imported by another module), then call the 'main' function. # It is necessary here to enable the automatic testing in m1t_test_Line.py. # ----------------------------------------------------------------------------- if __name__ == '__main__': main()
38.270729
98
0.479757
[ "MIT" ]
jarskijr/10-MoreImplementingClasses
src/m1_Line.py
38,309
Python
# Auto generated by generator.py. Delete this line if you make modification. from scrapy.spiders import Rule from scrapy.linkextractors import LinkExtractor XPATH = { 'name' : "//div[@class='product-name']/h1", 'price' : "//p[@class='special-price']/span[@class='price']|//span[@class='regular-price']/span[@class='price']", 'category' : "//div[@class='breadcrumbs']/ul/li/a", 'description' : "//div[@class='box-collateral box-description']/div[@id='details-area']", 'images' : "//p[@class='product-image']/a/@href", 'canonical' : "", 'base_url' : "", 'brand' : "", 'in_stock' : "", 'guarantee' : "", 'promotion' : "" } name = 'azora.vn' allowed_domains = ['azora.vn'] start_urls = ['http://azora.vn/'] tracking_url = '' sitemap_urls = [''] sitemap_rules = [('', 'parse_item')] sitemap_follow = [''] rules = [ #Rule(LinkExtractor(), 'parse_item'), #Rule(LinkExtractor(), 'parse'), Rule(LinkExtractor(allow=['/[a-zA-Z0-9-]+\.html($|\?p=\d+$)']), 'parse_item_and_links'), ]
34.3
117
0.609329
[ "MIT" ]
chongiadung/choinho
scraper/storage_spiders/azoravn.py
1,029
Python
#!/usr/bin/env python # -*- coding: utf-8 -*- # # This file is subject to the terms and conditions defined in # file 'LICENSE.md', which is part of this source code package. # import re import base64 import json import os import tempfile import requests import urllib3 from kubernetes_py.utils.ConvertData import convert from six.moves.urllib.parse import urlencode RE_VALID_SSL_IP = re.compile( r'^https://(([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])') class HttpRequest: def __init__(self, method='GET', host='localhost:80', url='/', data=None, auth=None, cert=None, ca_cert=None, ca_cert_data=None, token=None): self.http_method = method self.http_host = host self.url = url self.data = data self.auth = auth self.cert = cert self.ca_cert = ca_cert self.ca_cert_data = ca_cert_data self.token = token def send(self): state = dict(success=False, reason=None, status=None, data=None) http_headers = dict() http_headers['Accept'] = 'application/json' if self.http_method in ['PUT', 'POST', 'PATCH']: http_headers['Content-type'] = 'application/json' if self.token is not None: http_headers['Authorization'] = 'Bearer {token}'.format(token=self.token) if self.data is not None and self.http_method in ['GET']: url = "{0}?{1}".format(self.url, urlencode(self.data)) self.url = url self.url = self.http_host + self.url temp = None verify = False if self.ca_cert is not None: verify = self.ca_cert if self.ca_cert_data is not None: temp = tempfile.NamedTemporaryFile(delete=False) data = base64.b64decode(self.ca_cert_data) temp.write(data) temp.close() verify = temp.name # TODO: TLS issue with Python 2.7 and urllib3 when hostname is an IP address # A better fix should be found but I can't think of anything else for now. search_result = RE_VALID_SSL_IP.search(self.http_host) if search_result: verify = False urllib3.disable_warnings() try: response = requests.request( method=self.http_method, url=self.url, auth=self.auth, cert=self.cert, headers=http_headers, data="" if self.data is None else json.dumps(self.data), verify=verify ) except Exception as err: raise err finally: if temp is not None: os.unlink(temp.name) state['status'] = response.status_code state['reason'] = response.reason # There was an issue with "kubectl logs" type requests where returned content is "text/plain" and # we do have characters of unknown origin. try: resp_data = response.content.decode('utf-8') except UnicodeDecodeError: resp_data = response.content if len(resp_data) > 0: try: state['data'] = convert(data=json.loads(resp_data)) except Exception: state['data'] = resp_data if 200 <= state['status'] <= 299: state['success'] = True return state
31.327273
120
0.578642
[ "Apache-2.0" ]
ThinkIQ/kubernetes-py
kubernetes_py/utils/HttpRequest.py
3,446
Python
""" The code below crawls the annotations of the MADE 1.0 Train Data and stores them as Corpus ID, Annotation ID, Type, Length, Offset, Text in the CSV_Annotations.csv file. Input Files: All xml files in the annotations folder in the made_train_data folder Output Files: CSV_Annotations.csv Note: Make sure to delete the CSV_Annotations.csv file if already existing in the folder as this code appends to the existing file. """ # Importing required Files import os import xml.etree.ElementTree as ET import csv final =list() final.append(["Content ID", "Annotation ID", "Type", "Length", "Offset", "Text"]) # Reading required files path ="C:\\Project_NLP_Final\\Project Dataset\\made_train_data\\annotations\\" dirListing = os.listdir(path) for item in dirListing: tree = ET.parse(path + '\\' + item) root = tree.getroot() annot = dict() for i in root.findall('./document/passage'): flag = 0 for doc in i.findall('./annotation'): annot=list() annot.append(item[0:-9]) annot.append(doc.get('id')) for typ in doc: if typ.tag =='infon': annot.append(typ.text) elif typ.tag =='location': annot.append(typ.get('length')) annot.append(typ.get('offset')) elif typ.tag == 'text': annot.append(typ.text) final.append(annot) flag = 1 if flag == 0: annot = [item[0:-9], None, None, None, None, None] final.append(annot) # Writing the required files with open("C:\\Project_NLP_Final\\Project Dataset\\PreProcessing\\Regex\\CSV_Annotations.csv",'a', encoding = 'utf8', newline='') as outcsv: writer = csv.writer(outcsv, delimiter=',',quotechar = '"') for row in final: writer.writerow(row)
34.890909
143
0.600313
[ "MIT" ]
avsharma96/Named-Entity-Recognition
Code/PreProcessing/Regex/annotation_crawling.py
1,919
Python
import matplotlib.pyplot as plt import numpy as np from prmlmy.util import cv_, norm2s, calc_range def plot_decision_boundary(model, X_train, y_train=None, x1_range=None, x2_range=None, points=300, title=None, pad_ratio=0.2, ax=None): ax = ax or plt x1_range = x1_range or calc_range(X_train[:, 0], pad_ratio=pad_ratio) x2_range = x2_range or calc_range(X_train[:, 1], pad_ratio=pad_ratio) if y_train is None: y_train = np.zeros(X_train.shape[0]) x1s = np.linspace(x1_range[0], x1_range[1], num=points) x2s = np.linspace(x2_range[0], x2_range[1], num=points) x1, x2 = np.meshgrid(x1s, x2s) x = np.array([x1, x2]).reshape(2, -1).T y = model.predict(x).reshape(points, points) ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train) ax.contourf(x1, x2, y, alpha=0.2) if title: ax.set_title(title) def plot_decision_proba(model, X_train, y_train=None, x1_range=None, x2_range=None, points=300, title=None, pad_ratio=0.2, ax=None): ax = ax or plt x1_range = x1_range or calc_range(X_train[:, 0], pad_ratio=pad_ratio) x2_range = x2_range or calc_range(X_train[:, 1], pad_ratio=pad_ratio) if y_train is None: y_train = np.zeros(X_train.shape[0]) x1s = np.linspace(x1_range[0], x1_range[1], num=points) x2s = np.linspace(x2_range[0], x2_range[1], num=points) x1, x2 = np.meshgrid(x1s, x2s) x = np.array([x1, x2]).reshape(2, -1).T y = model.proba(x).reshape(points, points) ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train) ax.contourf(x1, x2, y, np.linspace(0, 1, 5), alpha=0.2) if title: ax.set_title(title) def get_figsize_default(ncols, nrows): width = ncols * 5 + 1 height = nrows * 4 + 1 return width, height def grid_plot(rows, cols, plot_func, row_names=None, col_names=None, figsize=None, *args, **kwargs): row_names = row_names or [str(row) for row in rows] col_names = col_names or [str(col) for col in cols] figsize = figsize or get_figsize_default(len(cols), len(rows)) fig, axs = plt.subplots(nrows=len(rows), ncols=len(cols), figsize=figsize) axs = axs.reshape(len(rows), len(cols)) for row_axs, row, row_name in zip(axs, rows, row_names): for ax, col, col_name in zip(row_axs, cols, col_names): title = ":".join([row_name, col_name]) plot_func(row, col, title, ax=ax, *args, **kwargs)
39.516129
100
0.647347
[ "MIT" ]
jms7446/PRML
prmlmy/plot_util.py
2,450
Python
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ One of the trickier parts of creating a mock btrfs filesystem is tracking the structures of the write forks, respecting `truncate`, `write`, and `clone` operations. We achieve this as follows: - Sequentially apply `btrfs send` operations to create & update: * `IncompleteInode`s and their `Extent`s, * the path -> `IncompleteInode` mapping. - Run `extents_to_chunks_with_clones()` to summarize which files clone which other files. A quick clarificaiton of the notation: * `Extent` is actually a tree of extents, which captures the history of how the file's sequence of extents was created. Refer to `extent.py`. * `Chunk` more directly corresponds to a filesystem extent. It's either data or a hole of a given length. A file is just a contiguous sequence of `Chunk`s. Beyond recording the kind, and the length, each `Chunk` records precisely how other files clone from it. So `extents_to_chunks_with_clones()` flattens the history-preserving, clone-aware tree in `Extent` objects into a test-friendly list of `Chunk`s. For testing, it is important to produce a representation that is as normalized as possible: our output should deterministically and uniquely capture the information we wish to test, and omit everything else[1]. We do NOT want our output to depend on the order of the operations that created the filesystem, but only on the final filesystem state. Specifically: * For any byte offset[2] in the file, we need to know whether it's a `HOLE`, or it contains `DATA` (see `Extent.Kind`). An offset -> kind map is too verbose to use in manual tests, so we merge adjacent offsets with the same `Extent.Kind` into `Chunk`s. * For any offset in the file, we need to know whether it is a clone of any other file locations (i.e. copy-on-write sharing of underlying storage). For this reason, each `Chunk` has a set of `ChunkClones`, which form a normalized[3] description of the shared-storage links on the filesystem. To give an example -- let's say that columns are byte offsets, and we have this 10-byte extent, parts of which were cloned to make files `A`, `B`, and `C`: 0123456789 # offsets on disk BBBBBAAA # some part of file `B` includes offsets 1-5; `A` -- 6-8 AAACCCCC # `A` ALSO includes 0-2, possibly separated from its 6-8 (Aside: `test_extents_to_chunks_with_clones` also uses such figures) Reading this figure, we see that: - A has a 6-byte DATA `Chunk` with two `ChunkClones`: * From `offset` 1 into B at `offset` 0 with length 2, aka `B:0+2@1` * From `offset` 3 into C at `offset` 3 with length 2, aka `C:3+2@3' - B has a 5-byte DATA `Chunk` with two `ChunkClones`: * From `offset` 0 into A at `offset` 1 with length 2, aka `A:1+2@0` * From `offset` 2 into C at `offset` 0 with length 3, aka `C:0+3@2' - C has a 5-byte DATA `Chunk` with two `ChunkClones`: * From `offset` 0 into B at `offset` 2 with length 3, aka `B:2+3@0` * From `offset` 3 into A at `offset` 3 with length 2, aka `A:3+2@3' You can see that our representation of "a set of `ChunkClone`s for every `Chunk`" is NOT parsimonious. If the same range of bytes is cloned into N `Chunk`s, each of those `Chunk`s will refer to every other `Chunk`, for a total of N*(N-1)/2 references. This is far less efficient than a spanning tree with `N - 1` references. E.g. in the above example, N = 4, and we stored 6 `ChunkClones`: {'A': {'B:0+2@1', 'C:3+2@3'}, 'B': {'A:1+2@0', 'C:0+3@2'}, 'C': {'B:2+3@0', 'A:3+2@3'}} The redundancy is obvious, e.g. each of these pairs are mirror images: - 'A': 'B:0+2@1' versus 'B': 'A:1+2@0' - 'A': 'C:3+2@3' versus 'C': 'A:3+2@3' - 'B': 'C:0+3@2' versus 'C': 'B:2+3@0' Picking one ChunkClone from each line would make a 3-edge spanning tree. Using an inefficient presentation is an intentional design decision. In most test filesystems, the copy number of any Chunk will be low, so the cost of enumerating all references is minimal. The upside of this quadratic representation is that it is unique and simple. In contrast, presenting the clone structure via a spanning tree breaks the symmetry, and then each test author has to understand the process by which the N-1 spanning tree edges are selected. It's easy to make such a process deterministic, but it still adds cognitive load. [1] The current code tracks clones of HOLEs, because it makes no effort to ignore them. I would guess that btrfs lacks this tracking, since such clones would save no space. Once this is confirmed, it would be very easy to either ignore, or leave unpopulated the `chunk_clones` field for `Chunk` object with `kind == Extent.Kind.HOLE`. [2] I refer to "bytes" throughout, but in actuality filesystems are block-oriented. To deal with this, divide all lengths and offsets by your block size to get the sense of "bytes" used here. [3] The current code does NOT merge adjacent ChunkClones that were created by separate `clone` operations. This is easy to fix once it comes up in real applications. Tested in `test_cannot_merge_adjacent_clones()`. """ # Future: frozentypes instead of NamedTuples can permit some cleanups below. import functools from collections import defaultdict from typing import Dict, Iterable, NamedTuple, Sequence, Tuple from .extent import Extent from .inode import Chunk, ChunkClone, Clone from .inode_id import InodeID class _CloneExtentRef(NamedTuple): """ Connects a part of a HOLE/DATA leaf Extent to a location in an Inode. Although the Extent is shared between many inodes and/or disjoint locations in the same inode, each _CloneExtentRef object is specific to one occurrence of this Extent in the `gen_trimmed_leaves` of one inode. We initially create a _CloneExtentRef for every piece of every inode, but later we only retain those have some inter-inode overlap within their `.extent`, thus identifying cloned chunks of inodes. Aside: Unlike the simplified data model in `inode.py`, the Extent's object identity captures the original reason that parts of some inodes became identified via a clone relationship. We mostly use this for assertions. Future: With `frozentype`, __new__ could assert that `offset` and `clone.length` are sane with respect to `extent`. """ clone: Clone # `clone.length` trims `extent` extent: Extent offset: int # Trims `extent` # The position in `gen_trimmed_leaves` of the specific trimmed leaf that # is being connected to another inode. # # It is possible for a Inode to have two instances of the same Extent # with the same offset & length in its `gen_trimmed_leaves` stream, see # e.g. `test_multi_extent`. In that case, we cannot correctly assign # `ChunkClone`s to their trimmed leaves solely based on the content of # the trimmed leaf: `(offset, length, extent)`. # # You might ask why the `ChunkClone` lists would differ between # identical trimmed extents? Here is why: the first has to refer to the # second, but not to itself, and conversely, the second must refer to # the first, but not to itself. # # We could avoid this denormalization by keying `CloneChunk`s on # `(inode_offset, offset, length, extent)`, which is unique. And # `extents_to_chunks_with_clones` does already track `inode_offset`. # However, the denormalized approach seemed cleaner. leaf_idx: int def __repr__(self): # pragma: no cover return ( f"{self.clone.inode_id}:{self.clone.offset}" f"+{self.clone.length}:{id(self.extent)}" # Extent is too noisy ) # If these change, we have to update `_clone_op_compare_key` assert Clone._fields.index("inode_id") == 0 assert _CloneExtentRef._fields.index("clone") == 0 # Our _CloneOp ordering obeys the following invariants: # - sort by position first # - sort by action second, putting POPs before PUSHes (see their def'ns) # We do not need finer-grained ordering because: # (1) we only do work on POPs, # (2) the work done on all the POPs at one position does not depend on the # order of the _CloneOps -- we symmetrically record the relationship in # both directions: # (just-popped op, each unpopped op) # (each unpopped op, just-popped op) # # We could get the desired ordering implicitly by: # - relying on the order of field declaration in `_CloneOp` (not bad) # - making `Inode`s comparable (a bit ugly, comparing Extents is pricy, # comparing InodeIDs would require some comparator boilerplate) # Luckily, being explicit is not *that* painful. def _clone_op_compare_key(c: "_CloneOp"): return ( # The preceding asserts make these [1:] hacks tolerable. c.pos, c.action, c.ref[1:], c.ref.clone[1:], c.ref.clone.inode_id.id, ) def _clone_op_compare(fn): @functools.wraps(fn) def cmp(self: "_CloneOp", other: "_CloneOp"): assert isinstance(other, _CloneOp) # We only compare ops within one extent. The tests assume this to # justify focusing on single-extent examples, so check it. assert self.ref.extent is other.ref.extent # All our items are distinct, since `clone.offset` is `inode_offset`, # which is strictly increasing in each inode. We have no business # comparing a _CloneOp with itself. assert tuple.__ne__(self, other) return fn(_clone_op_compare_key(self), _clone_op_compare_key(other)) return cmp class _CloneOp(NamedTuple): PUSH = "push" POP = "pop" assert POP < PUSH # We want to sort all POPs before any PUSHes pos: int action: str ref: _CloneExtentRef # NamedTuple confuses functools.total_ordering, so define all 6 comparators __eq__ = _clone_op_compare(tuple.__eq__) __ne__ = _clone_op_compare(tuple.__ne__) __lt__ = _clone_op_compare(tuple.__lt__) __le__ = _clone_op_compare(tuple.__le__) __gt__ = _clone_op_compare(tuple.__gt__) __ge__ = _clone_op_compare(tuple.__ge__) def _leaf_extent_id_to_clone_ops( ids_and_extents: Iterable[Tuple[InodeID, Extent]] ): """ To collect the parts of a Chunk that are cloned, we will run a variation on the standard interval-overlap algorithm. We first sort the starts & ends of each interval, and then do a sequential scan that uses starts to add, and ends to remove, a tracking object from a "current intervals" structure. This function simply prepares the set of interval starts & ends for each InodeID, the computation is in `_leaf_ref_to_chunk_clones_from_clone_ops`. """ leaf_extent_id_to_clone_ops = defaultdict(list) for ino_id, extent in ids_and_extents: file_offset = 0 for leaf_idx, (offset, length, leaf_extent) in enumerate( extent.gen_trimmed_leaves() ): ref = _CloneExtentRef( clone=Clone(inode_id=ino_id, offset=file_offset, length=length), extent=leaf_extent, offset=offset, leaf_idx=leaf_idx, ) leaf_extent_id_to_clone_ops[id(leaf_extent)].extend( [ _CloneOp(pos=offset, action=_CloneOp.PUSH, ref=ref), _CloneOp(pos=offset + length, action=_CloneOp.POP, ref=ref), ] ) file_offset += length return leaf_extent_id_to_clone_ops def _leaf_ref_to_chunk_clones_from_clone_ops( extent_id: int, clone_ops: Iterable[_CloneOp] ): "As per `_leaf_extent_id_to_clone_ops`, this computes interval overlaps" active_ops: Dict[_CloneExtentRef, _CloneOp] = {} # Tracks open intervals leaf_ref_to_chunk_clones = defaultdict(list) for op in sorted(clone_ops): # Whenever an interval (aka an Inode's Extent's "trimmed leaf") # ends, we create `ChunkClone` objects **to** and **from** all the # concurrently open intervals. if op.action is _CloneOp.POP: pushed_op = active_ops.pop(op.ref) assert pushed_op.ref is op.ref assert id(op.ref.extent) == extent_id assert pushed_op.pos == op.ref.offset assert pushed_op.pos + op.ref.clone.length == op.pos for clone_op in active_ops.values(): assert op.ref.extent is clone_op.ref.extent # The cloned portion's extent offset is the larger of the 2 bigger_offset = max(clone_op.ref.offset, op.ref.offset) # Record that `clone_op` clones part of `op`'s inode. leaf_ref_to_chunk_clones[op.ref].append( ChunkClone( offset=bigger_offset, clone=Clone( inode_id=clone_op.ref.clone.inode_id, offset=clone_op.ref.clone.offset + (bigger_offset - clone_op.ref.offset), length=op.pos - bigger_offset, ), ) ) # Record that `op` clones part of `clone_op`'s inode. leaf_ref_to_chunk_clones[clone_op.ref].append( ChunkClone( offset=bigger_offset, clone=Clone( inode_id=op.ref.clone.inode_id, offset=op.ref.clone.offset + (bigger_offset - op.ref.offset), length=op.pos - bigger_offset, # Same length ), ) ) # Sorting guarantees all POPs for `pos` are handled before PUSHes elif op.action == _CloneOp.PUSH: assert op.ref not in active_ops active_ops[op.ref] = op else: raise AssertionError(op) # pragma: no cover return leaf_ref_to_chunk_clones def _id_to_leaf_idx_to_chunk_clones( ids_and_extents: Iterable[Tuple[InodeID, Extent]] ): 'Aggregates newly created ChunkClones per InodeID, and per "trimmed leaf"' id_to_leaf_idx_to_chunk_clones = defaultdict(dict) for extent_id, clone_ops in _leaf_extent_id_to_clone_ops( ids_and_extents ).items(): leaf_ref_to_chunk_clones = _leaf_ref_to_chunk_clones_from_clone_ops( extent_id, clone_ops ) for leaf_ref, offsets_clones in leaf_ref_to_chunk_clones.items(): d = id_to_leaf_idx_to_chunk_clones[leaf_ref.clone.inode_id] # A `leaf_idx` from a specific inode ID refers to one extent, # and each extent is handled in one iteration, so it cannot be # that two iterations contribute to the same `leaf_idx` key. assert leaf_ref.leaf_idx not in d # `leaf_idx` is the position in `gen_trimmed_leaves` of the # chunk, whose clones we computed. That fully specifies where # `extents_to_chunks_with_clones` should put the clones. d[leaf_ref.leaf_idx] = offsets_clones return id_to_leaf_idx_to_chunk_clones def extents_to_chunks_with_clones( ids_and_extents: Sequence[Tuple[InodeID, Extent]] ) -> Iterable[Tuple[InodeID, Sequence[Chunk]]]: """ Converts the nested, history-preserving `Extent` structures into flat sequences of `Chunk`s, while being careful to annotate cloned parts as described in this file's docblock. The `InodeID`s are needed to ensure that the `Chunk`s' `Clone` objects refer to the appropriate files. """ id_to_leaf_idx_to_chunk_clones = _id_to_leaf_idx_to_chunk_clones( ids_and_extents ) for ino_id, extent in ids_and_extents: leaf_to_chunk_clones = id_to_leaf_idx_to_chunk_clones.get(ino_id, {}) new_chunks = [] for leaf_idx, (offset, length, extent) in enumerate( extent.gen_trimmed_leaves() ): chunk_clones = leaf_to_chunk_clones.get(leaf_idx, []) assert isinstance(extent.content, Extent.Kind) # If the chunk kind matches, merge into the previous chunk. if new_chunks and new_chunks[-1].kind == extent.content: prev_length = new_chunks[-1].length prev_clones = new_chunks[-1].chunk_clones else: # Otherwise, make a new one. prev_length = 0 prev_clones = set() new_chunks.append(None) new_chunks[-1] = Chunk( kind=extent.content, length=length + prev_length, chunk_clones=prev_clones, ) new_chunks[-1].chunk_clones.update( # Future: when switching to frozentype, __new__ should # validate that clone offset & length are sane relative # to the trimmed extent. ChunkClone( clone=clone, # Subtract `offset` because `ChunkClone.offset` is # Extent-relative, but in the actual file layout, the # leaf Extent is trimmed further. offset=clone_offset + prev_length - offset, ) for clone_offset, clone in chunk_clones ) # Future: `deepfrozen` was made for this: yield ino_id, tuple( Chunk( kind=c.kind, length=c.length, chunk_clones=frozenset(c.chunk_clones), ) for c in new_chunks )
43.310263
80
0.648372
[ "MIT" ]
SaurabhAgarwala/antlir
antlir/btrfs_diff/extents_to_chunks.py
18,147
Python
from sympy.vector.coordsysrect import CoordSysCartesian from sympy.vector.scalar import BaseScalar from sympy import sin, cos, pi, ImmutableMatrix as Matrix, \ symbols, simplify, zeros, expand from sympy.vector.functions import express from sympy.vector.point import Point from sympy.vector.vector import Vector from sympy.vector.orienters import (AxisOrienter, BodyOrienter, SpaceOrienter, QuaternionOrienter) a, b, c, q = symbols('a b c q') q1, q2, q3, q4 = symbols('q1 q2 q3 q4') def test_func_args(): A = CoordSysCartesian('A') assert A.x.func(*A.x.args) == A.x expr = 3*A.x + 4*A.y assert expr.func(*expr.args) == expr assert A.i.func(*A.i.args) == A.i v = A.x*A.i + A.y*A.j + A.z*A.k assert v.func(*v.args) == v assert A.origin.func(*A.origin.args) == A.origin def test_coordsyscartesian_equivalence(): A = CoordSysCartesian('A') A1 = CoordSysCartesian('A') assert A1 == A B = CoordSysCartesian('B') assert A != B def test_orienters(): A = CoordSysCartesian('A') axis_orienter = AxisOrienter(a, A.k) body_orienter = BodyOrienter(a, b, c, '123') space_orienter = SpaceOrienter(a, b, c, '123') q_orienter = QuaternionOrienter(q1, q2, q3, q4) assert axis_orienter.rotation_matrix(A) == Matrix([ [ cos(a), sin(a), 0], [-sin(a), cos(a), 0], [ 0, 0, 1]]) assert body_orienter.rotation_matrix() == Matrix([ [ cos(b)*cos(c), sin(a)*sin(b)*cos(c) + sin(c)*cos(a), sin(a)*sin(c) - sin(b)*cos(a)*cos(c)], [-sin(c)*cos(b), -sin(a)*sin(b)*sin(c) + cos(a)*cos(c), sin(a)*cos(c) + sin(b)*sin(c)*cos(a)], [ sin(b), -sin(a)*cos(b), cos(a)*cos(b)]]) assert space_orienter.rotation_matrix() == Matrix([ [cos(b)*cos(c), sin(c)*cos(b), -sin(b)], [sin(a)*sin(b)*cos(c) - sin(c)*cos(a), sin(a)*sin(b)*sin(c) + cos(a)*cos(c), sin(a)*cos(b)], [sin(a)*sin(c) + sin(b)*cos(a)*cos(c), -sin(a)*cos(c) + sin(b)*sin(c)*cos(a), cos(a)*cos(b)]]) assert q_orienter.rotation_matrix() == Matrix([ [q1**2 + q2**2 - q3**2 - q4**2, 2*q1*q4 + 2*q2*q3, -2*q1*q3 + 2*q2*q4], [-2*q1*q4 + 2*q2*q3, q1**2 - q2**2 + q3**2 - q4**2, 2*q1*q2 + 2*q3*q4], [2*q1*q3 + 2*q2*q4, -2*q1*q2 + 2*q3*q4, q1**2 - q2**2 - q3**2 + q4**2]]) def test_coordinate_vars(): """ Tests the coordinate variables functionality with respect to reorientation of coordinate systems. """ A = CoordSysCartesian('A') # Note that the name given on the lhs is different from A.x._name assert BaseScalar('A.x', 0, A, 'A_x', r'\mathbf{{x}_{A}}') == A.x assert BaseScalar('A.y', 1, A, 'A_y', r'\mathbf{{y}_{A}}') == A.y assert BaseScalar('A.z', 2, A, 'A_z', r'\mathbf{{z}_{A}}') == A.z assert BaseScalar('A.x', 0, A, 'A_x', r'\mathbf{{x}_{A}}').__hash__() == A.x.__hash__() assert isinstance(A.x, BaseScalar) and \ isinstance(A.y, BaseScalar) and \ isinstance(A.z, BaseScalar) assert A.x*A.y == A.y*A.x assert A.scalar_map(A) == {A.x: A.x, A.y: A.y, A.z: A.z} assert A.x.system == A assert A.x.diff(A.x) == 1 B = A.orient_new_axis('B', q, A.k) assert B.scalar_map(A) == {B.z: A.z, B.y: -A.x*sin(q) + A.y*cos(q), B.x: A.x*cos(q) + A.y*sin(q)} assert A.scalar_map(B) == {A.x: B.x*cos(q) - B.y*sin(q), A.y: B.x*sin(q) + B.y*cos(q), A.z: B.z} assert express(B.x, A, variables=True) == A.x*cos(q) + A.y*sin(q) assert express(B.y, A, variables=True) == -A.x*sin(q) + A.y*cos(q) assert express(B.z, A, variables=True) == A.z assert expand(express(B.x*B.y*B.z, A, variables=True)) == \ expand(A.z*(-A.x*sin(q) + A.y*cos(q))*(A.x*cos(q) + A.y*sin(q))) assert express(B.x*B.i + B.y*B.j + B.z*B.k, A) == \ (B.x*cos(q) - B.y*sin(q))*A.i + (B.x*sin(q) + \ B.y*cos(q))*A.j + B.z*A.k assert simplify(express(B.x*B.i + B.y*B.j + B.z*B.k, A, \ variables=True)) == \ A.x*A.i + A.y*A.j + A.z*A.k assert express(A.x*A.i + A.y*A.j + A.z*A.k, B) == \ (A.x*cos(q) + A.y*sin(q))*B.i + \ (-A.x*sin(q) + A.y*cos(q))*B.j + A.z*B.k assert simplify(express(A.x*A.i + A.y*A.j + A.z*A.k, B, \ variables=True)) == \ B.x*B.i + B.y*B.j + B.z*B.k N = B.orient_new_axis('N', -q, B.k) assert N.scalar_map(A) == \ {N.x: A.x, N.z: A.z, N.y: A.y} C = A.orient_new_axis('C', q, A.i + A.j + A.k) mapping = A.scalar_map(C) assert mapping[A.x] == (C.x*(2*cos(q) + 1)/3 + C.y*(-2*sin(q + pi/6) + 1)/3 + C.z*(-2*cos(q + pi/3) + 1)/3) assert mapping[A.y] == (C.x*(-2*cos(q + pi/3) + 1)/3 + C.y*(2*cos(q) + 1)/3 + C.z*(-2*sin(q + pi/6) + 1)/3) assert mapping[A.z] == (C.x*(-2*sin(q + pi/6) + 1)/3 + C.y*(-2*cos(q + pi/3) + 1)/3 + C.z*(2*cos(q) + 1)/3) D = A.locate_new('D', a*A.i + b*A.j + c*A.k) assert D.scalar_map(A) == {D.z: A.z - c, D.x: A.x - a, D.y: A.y - b} E = A.orient_new_axis('E', a, A.k, a*A.i + b*A.j + c*A.k) assert A.scalar_map(E) == {A.z: E.z + c, A.x: E.x*cos(a) - E.y*sin(a) + a, A.y: E.x*sin(a) + E.y*cos(a) + b} assert E.scalar_map(A) == {E.x: (A.x - a)*cos(a) + (A.y - b)*sin(a), E.y: (-A.x + a)*sin(a) + (A.y - b)*cos(a), E.z: A.z - c} F = A.locate_new('F', Vector.zero) assert A.scalar_map(F) == {A.z: F.z, A.x: F.x, A.y: F.y} def test_rotation_matrix(): N = CoordSysCartesian('N') A = N.orient_new_axis('A', q1, N.k) B = A.orient_new_axis('B', q2, A.i) C = B.orient_new_axis('C', q3, B.j) D = N.orient_new_axis('D', q4, N.j) E = N.orient_new_space('E', q1, q2, q3, '123') F = N.orient_new_quaternion('F', q1, q2, q3, q4) G = N.orient_new_body('G', q1, q2, q3, '123') assert N.rotation_matrix(C) == Matrix([ [- sin(q1) * sin(q2) * sin(q3) + cos(q1) * cos(q3), - sin(q1) * cos(q2), sin(q1) * sin(q2) * cos(q3) + sin(q3) * cos(q1)], \ [sin(q1) * cos(q3) + sin(q2) * sin(q3) * cos(q1), \ cos(q1) * cos(q2), sin(q1) * sin(q3) - sin(q2) * cos(q1) * \ cos(q3)], [- sin(q3) * cos(q2), sin(q2), cos(q2) * cos(q3)]]) test_mat = D.rotation_matrix(C) - Matrix( [[cos(q1) * cos(q3) * cos(q4) - sin(q3) * (- sin(q4) * cos(q2) + sin(q1) * sin(q2) * cos(q4)), - sin(q2) * sin(q4) - sin(q1) * cos(q2) * cos(q4), sin(q3) * cos(q1) * cos(q4) + cos(q3) * \ (- sin(q4) * cos(q2) + sin(q1) * sin(q2) * cos(q4))], \ [sin(q1) * cos(q3) + sin(q2) * sin(q3) * cos(q1), cos(q1) * \ cos(q2), sin(q1) * sin(q3) - sin(q2) * cos(q1) * cos(q3)], \ [sin(q4) * cos(q1) * cos(q3) - sin(q3) * (cos(q2) * cos(q4) + \ sin(q1) * sin(q2) * \ sin(q4)), sin(q2) * cos(q4) - sin(q1) * sin(q4) * cos(q2), sin(q3) * \ sin(q4) * cos(q1) + cos(q3) * (cos(q2) * cos(q4) + \ sin(q1) * sin(q2) * sin(q4))]]) assert test_mat.expand() == zeros(3, 3) assert E.rotation_matrix(N) == Matrix( [[cos(q2)*cos(q3), sin(q3)*cos(q2), -sin(q2)], [sin(q1)*sin(q2)*cos(q3) - sin(q3)*cos(q1), \ sin(q1)*sin(q2)*sin(q3) + cos(q1)*cos(q3), sin(q1)*cos(q2)], \ [sin(q1)*sin(q3) + sin(q2)*cos(q1)*cos(q3), - \ sin(q1)*cos(q3) + sin(q2)*sin(q3)*cos(q1), cos(q1)*cos(q2)]]) assert F.rotation_matrix(N) == Matrix([[ q1**2 + q2**2 - q3**2 - q4**2, 2*q1*q4 + 2*q2*q3, -2*q1*q3 + 2*q2*q4],[ -2*q1*q4 + 2*q2*q3, q1**2 - q2**2 + q3**2 - q4**2, 2*q1*q2 + 2*q3*q4], [2*q1*q3 + 2*q2*q4, -2*q1*q2 + 2*q3*q4, q1**2 - q2**2 - q3**2 + q4**2]]) assert G.rotation_matrix(N) == Matrix([[ cos(q2)*cos(q3), sin(q1)*sin(q2)*cos(q3) + sin(q3)*cos(q1), sin(q1)*sin(q3) - sin(q2)*cos(q1)*cos(q3)], [ -sin(q3)*cos(q2), -sin(q1)*sin(q2)*sin(q3) + cos(q1)*cos(q3), sin(q1)*cos(q3) + sin(q2)*sin(q3)*cos(q1)],[ sin(q2), -sin(q1)*cos(q2), cos(q1)*cos(q2)]]) def test_vector(): """ Tests the effects of orientation of coordinate systems on basic vector operations. """ N = CoordSysCartesian('N') A = N.orient_new_axis('A', q1, N.k) B = A.orient_new_axis('B', q2, A.i) C = B.orient_new_axis('C', q3, B.j) #Test to_matrix v1 = a*N.i + b*N.j + c*N.k assert v1.to_matrix(A) == Matrix([[ a*cos(q1) + b*sin(q1)], [-a*sin(q1) + b*cos(q1)], [ c]]) #Test dot assert N.i.dot(A.i) == cos(q1) assert N.i.dot(A.j) == -sin(q1) assert N.i.dot(A.k) == 0 assert N.j.dot(A.i) == sin(q1) assert N.j.dot(A.j) == cos(q1) assert N.j.dot(A.k) == 0 assert N.k.dot(A.i) == 0 assert N.k.dot(A.j) == 0 assert N.k.dot(A.k) == 1 assert N.i.dot(A.i + A.j) == -sin(q1) + cos(q1) == \ (A.i + A.j).dot(N.i) assert A.i.dot(C.i) == cos(q3) assert A.i.dot(C.j) == 0 assert A.i.dot(C.k) == sin(q3) assert A.j.dot(C.i) == sin(q2)*sin(q3) assert A.j.dot(C.j) == cos(q2) assert A.j.dot(C.k) == -sin(q2)*cos(q3) assert A.k.dot(C.i) == -cos(q2)*sin(q3) assert A.k.dot(C.j) == sin(q2) assert A.k.dot(C.k) == cos(q2)*cos(q3) #Test cross assert N.i.cross(A.i) == sin(q1)*A.k assert N.i.cross(A.j) == cos(q1)*A.k assert N.i.cross(A.k) == -sin(q1)*A.i - cos(q1)*A.j assert N.j.cross(A.i) == -cos(q1)*A.k assert N.j.cross(A.j) == sin(q1)*A.k assert N.j.cross(A.k) == cos(q1)*A.i - sin(q1)*A.j assert N.k.cross(A.i) == A.j assert N.k.cross(A.j) == -A.i assert N.k.cross(A.k) == Vector.zero assert N.i.cross(A.i) == sin(q1)*A.k assert N.i.cross(A.j) == cos(q1)*A.k assert N.i.cross(A.i + A.j) == sin(q1)*A.k + cos(q1)*A.k assert (A.i + A.j).cross(N.i) == (-sin(q1) - cos(q1))*N.k assert A.i.cross(C.i) == sin(q3)*C.j assert A.i.cross(C.j) == -sin(q3)*C.i + cos(q3)*C.k assert A.i.cross(C.k) == -cos(q3)*C.j assert C.i.cross(A.i) == (-sin(q3)*cos(q2))*A.j + \ (-sin(q2)*sin(q3))*A.k assert C.j.cross(A.i) == (sin(q2))*A.j + (-cos(q2))*A.k assert express(C.k.cross(A.i), C).trigsimp() == cos(q3)*C.j def test_orient_new_methods(): N = CoordSysCartesian('N') orienter1 = AxisOrienter(q4, N.j) orienter2 = SpaceOrienter(q1, q2, q3, '123') orienter3 = QuaternionOrienter(q1, q2, q3, q4) orienter4 = BodyOrienter(q1, q2, q3, '123') D = N.orient_new('D', (orienter1, )) E = N.orient_new('E', (orienter2, )) F = N.orient_new('F', (orienter3, )) G = N.orient_new('G', (orienter4, )) assert D == N.orient_new_axis('D', q4, N.j) assert E == N.orient_new_space('E', q1, q2, q3, '123') assert F == N.orient_new_quaternion('F', q1, q2, q3, q4) assert G == N.orient_new_body('G', q1, q2, q3, '123') def test_locatenew_point(): """ Tests Point class, and locate_new method in CoordSysCartesian. """ A = CoordSysCartesian('A') assert isinstance(A.origin, Point) v = a*A.i + b*A.j + c*A.k C = A.locate_new('C', v) assert C.origin.position_wrt(A) == \ C.position_wrt(A) == \ C.origin.position_wrt(A.origin) == v assert A.origin.position_wrt(C) == \ A.position_wrt(C) == \ A.origin.position_wrt(C.origin) == -v assert A.origin.express_coordinates(C) == (-a, -b, -c) p = A.origin.locate_new('p', -v) assert p.express_coordinates(A) == (-a, -b, -c) assert p.position_wrt(C.origin) == p.position_wrt(C) == \ -2 * v p1 = p.locate_new('p1', 2*v) assert p1.position_wrt(C.origin) == Vector.zero assert p1.express_coordinates(C) == (0, 0, 0) p2 = p.locate_new('p2', A.i) assert p1.position_wrt(p2) == 2*v - A.i assert p2.express_coordinates(C) == (-2*a + 1, -2*b, -2*c) def test_evalf(): A = CoordSysCartesian('A') v = 3*A.i + 4*A.j + a*A.k assert v.n() == v.evalf() assert v.evalf(subs={a:1}) == v.subs(a, 1).evalf()
43.071186
91
0.488745
[ "BSD-3-Clause" ]
Anshnrag02/sympy
sympy/vector/tests/test_coordsysrect.py
12,706
Python
# Webhooks for external integrations. from django.http import HttpRequest, HttpResponse from django.utils.translation import ugettext as _ from zerver.models import get_client from zerver.lib.actions import check_send_stream_message from zerver.lib.response import json_success, json_error from zerver.decorator import REQ, has_request_variables, api_key_only_webhook_view from zerver.models import UserProfile import ujson from typing import Any, Dict @api_key_only_webhook_view('Semaphore') @has_request_variables def api_semaphore_webhook(request, user_profile, payload=REQ(argument_type='body'), stream=REQ(default='builds')): # type: (HttpRequest, UserProfile, Dict[str, Any], str) -> HttpResponse # semaphore only gives the last commit, even if there were multiple commits # since the last build branch_name = payload["branch_name"] project_name = payload["project_name"] result = payload["result"] event = payload["event"] commit_id = payload["commit"]["id"] commit_url = payload["commit"]["url"] author_email = payload["commit"]["author_email"] message = payload["commit"]["message"] if event == "build": build_url = payload["build_url"] build_number = payload["build_number"] content = u"[build %s](%s): %s\n" % (build_number, build_url, result) elif event == "deploy": build_url = payload["build_html_url"] build_number = payload["build_number"] deploy_url = payload["html_url"] deploy_number = payload["number"] server_name = payload["server_name"] content = u"[deploy %s](%s) of [build %s](%s) on server %s: %s\n" % \ (deploy_number, deploy_url, build_number, build_url, server_name, result) else: # should never get here content = u"%s: %s\n" % (event, result) content += "!avatar(%s) [`%s`](%s): %s" % (author_email, commit_id[:7], commit_url, message) subject = u"%s/%s" % (project_name, branch_name) check_send_stream_message(user_profile, request.client, stream, subject, content) return json_success()
38.614035
91
0.664244
[ "Apache-2.0" ]
Rishabh570/zulip
zerver/webhooks/semaphore/view.py
2,201
Python
#!/usr/bin/env python #$Id: rotate_molecule.py,v 1.2.10.1 2016/02/11 09:24:08 annao Exp $ import os from MolKit import Read from MolKit.pdbWriter import PdbWriter, PdbqsWriter, PdbqWriter, PdbqtWriter from mglutil.math.rotax import rotax import numpy if __name__ == '__main__': import sys import getopt def usage(): "Print helpful, accurate usage statement to stdout." print("Usage: rotate_molecule.py -f filename") print() print(" Description of command...") print(" [-f] filename") print(" Optional parameters:") print(" [-o] alternative output filename") print(" (default is 'rotated_' +filename)") print(" [-y] rotate around the y axis") print(" (default is rotation around the z axis)") print(" [-x] rotate around the x axis") print(" (default is rotation around the z axis)") print(" [-u] user-defined axis of rotation '1.0,2.0,-6.2'") print(" (default is rotation around the z axis)") print(" [-a] angle for rotation about axis ") print(" (default is rotation around the z axis)") print(" [-v] verbose output") # process command arguments try: opt_list, args = getopt.getopt(sys.argv[1:], 'f:o:xyu:a:v') except getopt.GetoptError as msg: print('rotate_molecule.py: %s' %msg) usage() sys.exit(2) # initialize required parameters #-f: pdb_filename_stem filename = None # optional parameters verbose = None outputfilename = None rotation = 'z' #arbitrary axis angle for rotation axis = None angle = None #'f:o:v' for o, a in opt_list: print("o=", o, " a=",a) if o in ('-f', '--f'): filename = a if verbose: print('set filename to ', filename) outputfilename = 'rotated_' + filename if o in ('-o', '--o'): outputfilename = a if verbose: print('set output outputfilename to ', a) if o in ('-x', '--x'): rotation = 'x' if verbose: print('set rotation to ', rotation) if o in ('-y', '--y'): rotation = 'y' if verbose: print('set rotation to ', rotation) if o in ('-u', '--u'): axis = a if verbose: print('set user-defined axis to ', axis) if o in ('-a', '--a'): angle = a if verbose: print('set angle for rotation to ', angle) if o in ('-v', '--v'): verbose = True if verbose: print('set verbose to ', True) if o in ('-h', '--'): usage() sys.exit() if not filename: print('rotate_molecule: filename must be specified.') usage() sys.exit() mol = Read(filename)[0] if verbose: print('read ', filename) filetype = os.path.splitext(os.path.basename(filename))[1] if verbose: print("filetype=", filetype) writer = None if filetype=='.pdbqt': writer = PdbqtWriter() elif filetype=='.pdbq': writer = PdbqWriter() elif filetype=='.pdbqs': writer = PdbqsWriter() elif filetype=='.pdb': writer = PdbWriter() else: print('Sorry! Unable to write this filetype->', filetype) center = numpy.add.reduce(mol.allAtoms.coords)/len(mol.allAtoms) crds = numpy.array(mol.allAtoms.coords) center = numpy.add.reduce(crds)/len(mol.allAtoms) crds = crds - center crds = crds.tolist() mol.allAtoms.updateCoords(crds) lenCoords = len(crds) #rotate the atoms here if axis is not None and angle is not None: rot = (float(angle)* 3.14159/180.)%(2 * numpy.pi) x = numpy.array([0.,0.,0.]) y = numpy.array(list(map(float,axis.split(',')))) matrix = rotax(x,y, rot) _ones = numpy.ones(lenCoords, 'f') _ones.shape = (lenCoords,1) mov_coords = numpy.concatenate((crds, _ones),1) newcoords = numpy.dot(mov_coords, matrix) nc = newcoords[:,:3].astype('f') for i in range(lenCoords): mol.allAtoms[i]._coords[0] = nc[i].tolist() else: if rotation=='z': #for rotation around z-axis: for a in mol.allAtoms: a._coords[0][0] = -1.*a._coords[0][0] a._coords[0][1] = -1.*a._coords[0][1] elif rotation=='y': #for rotation around y-axis: for a in mol.allAtoms: a._coords[0][0] = -1.*a._coords[0][0] a._coords[0][2] = -1.*a._coords[0][2] elif rotation=='x': #for rotation around x-axis: for a in mol.allAtoms: a._coords[0][1] = -1.*a._coords[0][1] a._coords[0][2] = -1.*a._coords[0][2] ncrds = numpy.array(mol.allAtoms.coords) ncrds = ncrds + center ncrds = ncrds.tolist() mol.allAtoms.updateCoords(ncrds) if writer: outptr = open(outputfilename, 'w') liglines = mol.parser.allLines ctr = 0 for l in liglines: if l.find("ATOM")!=0 and l.find("HETATM")!=0: outptr.write(l) else: writer.write_atom(outptr, mol.allAtoms[ctr]) ctr += 1 outptr.close() # To execute this command type: # rotate_molecule.py -f filename [-o outputfilename -u axis -a angle to rotate] -v
33.6
82
0.537879
[ "BSD-3-Clause" ]
e-mayo/autodocktools-prepare-py3k
AutoDockTools/Utilities24/rotate_molecule.py
5,544
Python
import subprocess import socket import tempfile import redis import time import os import itertools import sys # Environment variable pointing to the redis executable REDIS_PATH_ENVVAR = 'REDIS_PATH' def get_random_port(): sock = socket.socket() sock.listen(0) _, port = sock.getsockname() sock.close() return port class DisposableRedis(object): def __init__(self, port=None, path='redis-server', **extra_args): """ :param port: port number to start the redis server on. Specify none to automatically generate :type port: int|None :param extra_args: any extra arguments kwargs will be passed to redis server as --key val """ self._port = port # this will hold the actual port the redis is listening on. It's equal to `_port` unless `_port` is None # in that case `port` is randomly generated self.port = None self.extra_args = list(itertools.chain( *(('--%s'%k, v) for k, v in extra_args.items()) )) self.path = os.getenv(REDIS_PATH_ENVVAR, path) def __enter__(self): if self._port is None: self.port = get_random_port() else: self.port = self._port args = [self.path, '--port', str(self.port), '--dir', tempfile.gettempdir(), '--save', ''] + self.extra_args self.process = subprocess.Popen( args, #cwd=os.getcwd(), stdin=subprocess.PIPE, stdout=open(os.devnull, 'w') # stdout=sys.stdout, # env=os.environ.copy() ) while True: try: self.client().ping() break except redis.ConnectionError: self.process.poll() if self.process.returncode is not None: raise RuntimeError("Process has exited") time.sleep(0.1) return self.client() def __exit__(self, exc_type, exc_val, exc_tb): self.process.terminate() def client(self): """ :rtype: redis.StrictRedis """ return redis.StrictRedis(port=self.port, decode_responses=True)
27.439024
112
0.569333
[ "BSD-2-Clause" ]
MPalarya/RAMP
RAMP/disposableredis/__init__.py
2,250
Python
# Copyright (c) 2020, RTE (https://www.rte-france.com) # See AUTHORS.txt # This Source Code Form is subject to the terms of the Mozilla Public License, version 2.0. # If a copy of the Mozilla Public License, version 2.0 was not distributed with this file, # you can obtain one at http://mozilla.org/MPL/2.0/. # SPDX-License-Identifier: MPL-2.0 # This file is part of LightSim2grid, LightSim2grid implements a c++ backend targeting the Grid2Op platform. import unittest import numpy as np import pdb import pandapower.networks as pn from lightsim2grid_cpp import PandaPowerConverter class MakeTests(unittest.TestCase): def setUp(self): self.converter = PandaPowerConverter() self.tol = 1e-8 def assert_equal(self, tmp, ref): assert np.max(np.abs(tmp - ref)) <= self.tol assert np.sum(np.abs(tmp - ref)) <= tmp.shape[0] * self.tol def test_case6_data(self): net = pn.case6ww() self.converter.set_sn_mva(net.sn_mva) # TODO raise an error if not set ! self.converter.set_f_hz(net.f_hz) line_r, line_x, line_h = self.converter.get_line_param( net.line["r_ohm_per_km"].values * net.line["length_km"].values, net.line["x_ohm_per_km"].values * net.line["length_km"].values, net.line["c_nf_per_km"].values * net.line["length_km"].values, net.line["g_us_per_km"].values * net.line["length_km"].values, net.bus.loc[net.line["from_bus"]]["vn_kv"], net.bus.loc[net.line["to_bus"]]["vn_kv"] ) res_r = np.array([0.001, 0.0005, 0.001, 0.0008, 0.0005, 0.0005, 0.001, 0.0007, 0.0012, 0.0002, 0.002]) res_x = np.array([0.002, 0.002, 0.003, 0.003, 0.0025, 0.001, 0.003, 0.002, 0.0026, 0.001, 0.004]) res_h = np.array([4.+0.j, 4.+0.j, 6.+0.j, 6.+0.j, 6.+0.j, 2.+0.j, 4.+0.j, 5.+0.j, 5.+0.j, 2.+0.j, 8.+0.j]) self.assert_equal(line_r, res_r) self.assert_equal(line_x, res_x) self.assert_equal(line_h, res_h) def test_case30_data(self): net = pn.case30() self.converter.set_sn_mva(net.sn_mva) # TODO raise an error if not set ! self.converter.set_f_hz(net.f_hz) line_r, line_x, line_h = self.converter.get_line_param( net.line["r_ohm_per_km"].values * net.line["length_km"].values, net.line["x_ohm_per_km"].values * net.line["length_km"].values, net.line["c_nf_per_km"].values * net.line["length_km"].values, net.line["g_us_per_km"].values * net.line["length_km"].values, net.bus.loc[net.line["from_bus"]]["vn_kv"], net.bus.loc[net.line["to_bus"]]["vn_kv"] ) res_r = np.array([0.0002, 0.0005, 0. , 0. , 0. , 0. , 0. , 0. , 0.0012, 0.0007, 0.0009, 0.0022, 0.0006, 0.0008, 0.0011, 0.0006, 0.0003, 0.0009, 0.0003, 0.0003, 0.0007, 0.0001, 0.001 , 0.0001, 0.0012, 0.0013, 0.0019, 0.0025, 0.0011, 0. , 0.0022, 0.0032, 0.0024, 0.0006, 0.0005, 0.0002, 0.0006, 0.0001, 0.0005, 0.0003, 0.0001]) res_x = np.array([0.0006, 0.0019, 0.0021, 0.0056, 0.0021, 0.0011, 0.0026, 0.0014, 0.0026, 0.0013, 0.002 , 0.002 , 0.0017, 0.0019, 0.0022, 0.0013, 0.0007, 0.0021, 0.0008, 0.0007, 0.0015, 0.0002, 0.002 , 0.0004, 0.0018, 0.0027, 0.0033, 0.0038, 0.0021, 0.004 , 0.0042, 0.006 , 0.0045, 0.002 , 0.002 , 0.0006, 0.0018, 0.0004, 0.0012, 0.0008, 0.0004]) res_h = np.array([3.+0.j, 2.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 2.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 2.+0.j, 2.+0.j, 1.+0.j, 2.+0.j, 0.+0.j, 1.+0.j, 1.+0.j, 0.+0.j]) self.assert_equal(line_r, res_r) self.assert_equal(line_x, res_x) self.assert_equal(line_h, res_h) def test_case118_data(self): net = pn.case118() self.converter.set_sn_mva(net.sn_mva) # TODO raise an error if not set ! self.converter.set_f_hz(net.f_hz) line_r, line_x, line_h = self.converter.get_line_param( net.line["r_ohm_per_km"].values * net.line["length_km"].values, net.line["x_ohm_per_km"].values * net.line["length_km"].values, net.line["c_nf_per_km"].values * net.line["length_km"].values, net.line["g_us_per_km"].values * net.line["length_km"].values, net.bus.loc[net.line["from_bus"]]["vn_kv"], net.bus.loc[net.line["to_bus"]]["vn_kv"] ) res_r = np.array([3.030e-04, 1.290e-04, 5.950e-05, 8.820e-05, 4.880e-04, 4.460e-04, 8.660e-05, 4.010e-04, 4.280e-04, 4.050e-04, 1.230e-04, 4.440e-04, 3.090e-04, 1.870e-04, 6.010e-04, 3.760e-05, 5.460e-05, 1.700e-04, 2.940e-04, 1.560e-04, 2.980e-04, 1.120e-04, 6.250e-04, 4.300e-04, 4.840e-04, 3.020e-04, 3.500e-04, 2.000e-04, 2.390e-04, 1.390e-04, 5.180e-04, 2.380e-04, 2.540e-04, 9.900e-05, 3.930e-04, 8.620e-05, 3.870e-04, 2.580e-04, 4.810e-04, 2.230e-04, 1.320e-04, 3.560e-04, 1.620e-04, 2.690e-04, 1.830e-04, 2.380e-04, 2.225e-04, 4.540e-04, 6.480e-04, 1.780e-04, 1.710e-04, 1.730e-04, 3.970e-04, 1.800e-04, 2.770e-04, 1.230e-04, 2.460e-04, 2.150e-04, 1.600e-04, 4.510e-04, 4.660e-04, 5.350e-04, 6.050e-04, 9.940e-05, 1.400e-04, 5.300e-04, 2.610e-04, 5.300e-04, 7.440e-04, 1.050e-04, 3.906e-04, 2.780e-04, 2.200e-04, 2.470e-04, 9.130e-05, 6.150e-04, 1.350e-04, 1.640e-04, 2.300e-05, 5.950e-04, 3.290e-04, 1.450e-04, 1.640e-04, 2.120e-04, 1.320e-04, 1.760e-05, 4.540e-04, 1.230e-04, 1.119e-04, 2.520e-04, 1.200e-04, 1.830e-04, 2.090e-04, 3.420e-04, 1.350e-04, 1.560e-04, 2.410e-04, 3.180e-04, 1.913e-04, 2.370e-04, 4.310e-05, 7.990e-05, 4.740e-04, 1.080e-04, 3.170e-04, 2.980e-04, 2.290e-04, 1.190e-04, 3.800e-04, 7.520e-04, 2.240e-05, 1.100e-04, 4.150e-04, 8.710e-05, 2.560e-05, 3.210e-04, 5.930e-04, 4.640e-05, 4.590e-05, 1.840e-04, 1.450e-04, 5.550e-04, 4.100e-04, 6.080e-04, 4.130e-04, 2.240e-04, 4.000e-04, 3.800e-04, 6.010e-04, 2.440e-05, 1.910e-04, 7.150e-04, 7.150e-04, 6.840e-04, 1.790e-04, 2.670e-04, 4.860e-04, 2.030e-04, 4.050e-04, 2.630e-04, 2.580e-05, 7.300e-04, 8.690e-04, 1.690e-04, 2.750e-05, 4.880e-05, 3.430e-04, 4.740e-04, 3.430e-04, 2.550e-04, 5.030e-04, 2.090e-04, 8.250e-04, 8.030e-04, 4.739e-04, 3.170e-04, 3.280e-04, 2.640e-05, 1.230e-04, 8.240e-05, 1.720e-05, 9.010e-05, 2.030e-04, 2.690e-05, 1.800e-04, 1.800e-04, 4.820e-04, 2.580e-04, 2.240e-04, 8.440e-04, 9.850e-04, 3.000e-04, 2.210e-05]) res_x = np.array([9.990e-04, 4.240e-04, 1.960e-04, 3.550e-04, 1.960e-03, 1.800e-03, 4.540e-04, 1.323e-03, 1.410e-03, 1.220e-03, 4.060e-04, 1.480e-03, 1.010e-03, 6.160e-04, 1.999e-03, 1.240e-04, 2.440e-04, 4.850e-04, 1.050e-03, 7.040e-04, 8.530e-04, 3.665e-04, 1.320e-03, 1.480e-03, 1.600e-03, 6.410e-04, 1.230e-03, 1.020e-03, 1.730e-03, 7.120e-04, 1.880e-03, 9.970e-04, 8.360e-04, 5.050e-04, 1.581e-03, 3.400e-04, 1.272e-03, 8.480e-04, 1.580e-03, 7.320e-04, 4.340e-04, 1.820e-03, 5.300e-04, 8.690e-04, 9.340e-04, 1.080e-03, 7.310e-04, 2.060e-03, 2.950e-03, 5.800e-04, 5.470e-04, 8.850e-04, 1.790e-03, 8.130e-04, 1.262e-03, 5.590e-04, 1.120e-03, 7.070e-04, 5.250e-04, 2.040e-03, 1.584e-03, 1.625e-03, 2.290e-03, 3.780e-04, 5.470e-04, 1.830e-03, 7.030e-04, 1.830e-03, 2.444e-03, 2.880e-04, 1.813e-03, 7.620e-04, 7.550e-04, 6.400e-04, 3.010e-04, 2.030e-03, 6.120e-04, 7.410e-04, 1.040e-04, 1.950e-03, 1.400e-03, 4.810e-04, 5.440e-04, 8.340e-04, 4.370e-04, 7.980e-05, 1.801e-03, 5.050e-04, 4.930e-04, 1.170e-03, 3.940e-04, 8.490e-04, 9.700e-04, 1.590e-03, 4.920e-04, 8.000e-04, 1.080e-03, 1.630e-03, 8.550e-04, 9.430e-04, 5.040e-04, 8.600e-04, 1.563e-03, 3.310e-04, 1.153e-03, 9.850e-04, 7.550e-04, 5.400e-04, 1.244e-03, 2.470e-03, 1.020e-04, 4.970e-04, 1.420e-03, 2.680e-04, 9.400e-05, 1.060e-03, 1.680e-03, 5.400e-04, 2.080e-04, 6.050e-04, 4.870e-04, 1.830e-03, 1.350e-03, 2.454e-03, 1.681e-03, 9.010e-04, 1.356e-03, 1.270e-03, 1.890e-03, 3.050e-04, 6.250e-04, 3.230e-03, 3.230e-03, 1.860e-03, 5.050e-04, 7.520e-04, 1.370e-03, 5.880e-04, 1.635e-03, 1.220e-03, 3.220e-04, 2.890e-03, 2.910e-03, 7.070e-04, 9.550e-05, 1.510e-04, 9.660e-04, 1.340e-03, 9.660e-04, 7.190e-04, 2.293e-03, 6.880e-04, 2.510e-03, 2.390e-03, 2.158e-03, 1.450e-03, 1.500e-03, 1.350e-04, 5.610e-04, 3.760e-04, 2.000e-04, 9.860e-04, 6.820e-04, 3.020e-04, 9.190e-04, 9.190e-04, 2.180e-03, 1.170e-03, 1.015e-03, 2.778e-03, 3.240e-03, 1.270e-03, 4.115e-03]) res_h = np.array([ 2.54 +0.j, 1.082+0.j, 0.502+0.j, 0.878+0.j, 4.88 +0.j, 4.444+0.j, 1.178+0.j, 3.368+0.j, 3.6 +0.j, 12.4 +0.j, 1.034+0.j, 3.68 +0.j, 10.38 +0.j, 1.572+0.j, 4.978+0.j, 1.264+0.j, 0.648+0.j, 4.72 +0.j, 2.28 +0.j, 1.87 +0.j, 8.174+0.j, 3.796+0.j, 2.58 +0.j, 3.48 +0.j, 4.06 +0.j, 1.234+0.j, 2.76 +0.j, 2.76 +0.j, 4.7 +0.j, 1.934+0.j, 5.28 +0.j, 10.6 +0.j, 2.14 +0.j, 5.48 +0.j, 4.14 +0.j, 0.874+0.j, 3.268+0.j, 2.18 +0.j, 4.06 +0.j, 1.876+0.j, 1.11 +0.j, 4.94 +0.j, 5.44 +0.j, 2.3 +0.j, 2.54 +0.j, 2.86 +0.j, 1.876+0.j, 5.46 +0.j, 4.72 +0.j, 6.04 +0.j, 1.474+0.j, 2.4 +0.j, 4.76 +0.j, 2.16 +0.j, 3.28 +0.j, 1.464+0.j, 2.94 +0.j, 1.816+0.j, 5.36 +0.j, 5.41 +0.j, 4.07 +0.j, 4.08 +0.j, 6.2 +0.j, 0.986+0.j, 1.434+0.j, 4.72 +0.j, 1.844+0.j, 4.72 +0.j, 6.268+0.j, 0.76 +0.j, 4.61 +0.j, 2.02 +0.j, 2. +0.j, 6.2 +0.j, 0.768+0.j, 5.18 +0.j, 1.628+0.j, 1.972+0.j, 0.276+0.j, 5.02 +0.j, 3.58 +0.j, 1.198+0.j, 1.356+0.j, 2.14 +0.j, 4.44 +0.j, 0.21 +0.j, 4.66 +0.j, 1.298+0.j, 1.142+0.j, 2.98 +0.j, 1.01 +0.j, 2.16 +0.j, 2.46 +0.j, 4.04 +0.j, 4.98 +0.j, 8.64 +0.j, 2.84 +0.j, 17.64 +0.j, 2.16 +0.j, 2.38 +0.j, 51.4 +0.j, 90.8 +0.j, 3.99 +0.j, 0.83 +0.j, 11.73 +0.j, 2.51 +0.j, 1.926+0.j, 1.426+0.j, 3.194+0.j, 6.32 +0.j, 0.268+0.j, 1.318+0.j, 3.66 +0.j, 0.568+0.j, 0.984+0.j, 2.7 +0.j, 4.2 +0.j, 42.2 +0.j, 0.55 +0.j, 1.552+0.j, 1.222+0.j, 4.66 +0.j, 3.44 +0.j, 6.068+0.j, 4.226+0.j, 2.24 +0.j, 3.32 +0.j, 3.16 +0.j, 4.72 +0.j, 116.2 +0.j, 1.604+0.j, 8.6 +0.j, 8.6 +0.j, 4.44 +0.j, 1.258+0.j, 1.874+0.j, 3.42 +0.j, 1.396+0.j, 4.058+0.j, 3.1 +0.j, 123. +0.j, 7.38 +0.j, 7.3 +0.j, 2.02 +0.j, 0.732+0.j, 0.374+0.j, 2.42 +0.j, 3.32 +0.j, 2.42 +0.j, 1.788+0.j, 5.98 +0.j, 1.748+0.j, 5.69 +0.j, 5.36 +0.j, 5.646+0.j, 3.76 +0.j, 3.88 +0.j, 1.456+0.j, 1.468+0.j, 0.98 +0.j, 21.6 +0.j, 104.6 +0.j, 1.738+0.j, 38. +0.j, 2.48 +0.j, 2.48 +0.j, 5.78 +0.j, 3.1 +0.j, 2.682+0.j, 7.092+0.j, 8.28 +0.j, 12.2 +0.j, 10.198+0.j]) self.assert_equal(line_r, res_r) self.assert_equal(line_x, res_x) self.assert_equal(line_h, res_h) pp_net = net # fix the missing values tap_step_pct = 1.0 * pp_net.trafo["tap_step_percent"].values tap_step_pct[~np.isfinite(tap_step_pct)] = 0. tap_pos = 1.0 * pp_net.trafo["tap_pos"].values tap_pos[~np.isfinite(tap_pos)] = 0. is_tap_hv_side = pp_net.trafo["tap_side"].values == "hv" is_tap_hv_side[~np.isfinite(is_tap_hv_side)] = True tap_angles_ = 1.0 * pp_net.trafo["tap_step_degree"].values tap_angles_[~np.isfinite(tap_angles_)] = 0. tap_angles_ = np.deg2rad(tap_angles_) trafo_r, trafo_x, trafo_b = self.converter.get_trafo_param(tap_step_pct, tap_pos, tap_angles_, # in radian ! is_tap_hv_side, pp_net.bus.loc[pp_net.trafo["hv_bus"]]["vn_kv"], pp_net.bus.loc[pp_net.trafo["lv_bus"]]["vn_kv"], pp_net.trafo["vk_percent"].values, pp_net.trafo["vkr_percent"].values, pp_net.trafo["sn_mva"].values, pp_net.trafo["pfe_kw"].values, pp_net.trafo["i0_percent"].values, ) trafo_r_res = np.array([0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 2.81494977e-04, 3.39887086e-06, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.37295648e-05, 0.00000000e+00, 1.73571860e-05]) trafo_x_res = np.array([2.67000000e-04, 3.82000000e-04, 3.70000000e-04, 2.06930358e-03, 4.04933224e-05, 3.88000000e-04, 3.75000000e-04, 3.86000000e-04, 2.68000000e-04, 3.70000000e-04, 1.59594718e-04, 3.70000000e-04, 2.01181945e-04]) trafo_h_res = np.array([ 0. -0.j , 0. -0.j , 0. -0.j , 4.4602909 -0.00140652j, 16.40272367-0.00022869j, 0. -0.j , 0. -0.j , 0. -0.j , 0. -0.j , 0. -0.j , 63.96323106-0.01411497j, 0. -0.j , 81.1310369 -0.02879733j]) self.assert_equal(trafo_r, trafo_r_res) self.assert_equal(trafo_x, trafo_x_res) self.assert_equal(trafo_b, trafo_h_res) if __name__ == "__main__": unittest.main()
71.242553
115
0.443256
[ "MPL-2.0", "MPL-2.0-no-copyleft-exception" ]
BDonnot/lightsim2grid
lightsim2grid/tests/test_DataConverter.py
16,742
Python
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. from .video_record import VideoRecord from datetime import timedelta import time def timestamp_to_sec(timestamp): x = time.strptime(timestamp, '%H:%M:%S.%f') sec = float(timedelta(hours=x.tm_hour, minutes=x.tm_min, seconds=x.tm_sec).total_seconds()) + float( timestamp.split('.')[-1]) / 100 return sec class EpicKitchensVideoRecord(VideoRecord): def __init__(self, tup): self._index = str(tup[0]) self._series = tup[1] @property def participant(self): return self._series['participant_id'] @property def untrimmed_video_name(self): return self._series['video_id'] @property def start_frame(self): return int(round(timestamp_to_sec(self._series['start_timestamp']) * self.fps)) @property def end_frame(self): return int(round(timestamp_to_sec(self._series['stop_timestamp']) * self.fps)) @property def fps(self): is_100 = len(self.untrimmed_video_name.split('_')[1]) == 3 return 50 if is_100 else 60 @property def num_frames(self): return self.end_frame - self.start_frame @property def label(self): return {'verb': self._series['verb_class'] if 'verb_class' in self._series else -1, 'noun': self._series['noun_class'] if 'noun_class' in self._series else -1} @property def metadata(self): return {'narration_id': self._index}
28.672727
91
0.637286
[ "Apache-2.0" ]
Lucaweihs/Motionformer
slowfast/datasets/epickitchens_record.py
1,577
Python
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import unittest import torch import torch.nn as nn from opacus import PerSampleGradientClipper from opacus.dp_model_inspector import DPModelInspector from opacus.layers import DPLSTM, DPMultiheadAttention, SequenceBias from opacus.utils.clipping import ConstantFlatClipper class LayersGradTest(unittest.TestCase): def setUp(self): self.validator = DPModelInspector() def _reset_seeds(self): torch.manual_seed(1337) torch.cuda.manual_seed(1337) def _run_once(self, layer, criterion, *args): self._reset_seeds() layer.zero_grad() output = layer(*args) if isinstance(output, tuple): output = output[0] output = output.squeeze() y = torch.zeros_like(output) loss = criterion(output, y) loss.backward() def _check_one_layer(self, layer, *args, **kwargs): self._check_one_layer_with_criterion( layer, nn.L1Loss(reduction="mean"), *args, **kwargs ) self._check_one_layer_with_criterion( layer, nn.L1Loss(reduction="sum"), *args, **kwargs ) def _check_one_layer_with_criterion(self, layer, criterion, *args, **kwargs): self.validator.validate(layer) for name, param in layer.named_parameters(): if ("weight" in name) or ("bias" in name): nn.init.uniform_(param, -1.0, 1.0) # run without DP self._run_once(layer, criterion, *args) vanilla_run_grads = [ (name, p.grad.detach()) for (name, p) in layer.named_parameters() if p.requires_grad ] # run with DP clipper = PerSampleGradientClipper( layer, ConstantFlatClipper(1e9), batch_first=kwargs.get("batch_first", True), loss_reduction=criterion.reduction, ) self._run_once(layer, criterion, *args) for param_name, param in layer.named_parameters(): if param.requires_grad: self.assertTrue( hasattr(param, "grad_sample"), f"Per-sample gradients haven't been computed for {param_name}", ) clipper.clip_and_accumulate() clipper.pre_step() private_run_grads = [ (name, p.grad.detach()) for (name, p) in layer.named_parameters() if p.requires_grad ] # compare for (vanilla_name, vanilla_grad), (private_name, private_grad) in zip( vanilla_run_grads, private_run_grads ): assert vanilla_name == private_name self.assertTrue( torch.allclose(vanilla_grad, private_grad, atol=10e-5, rtol=10e-3), f"Gradient mismatch. Parameter: {layer}.{vanilla_name}, loss: {criterion.reduction}", ) clipper.close() def test_conv1d(self): x = torch.randn(64, 16, 24) layer = nn.Conv1d(16, 32, 3, 1) self._check_one_layer(layer, x) def test_conv2d(self): x = torch.randn(64, 16, 24, 24) layer = nn.Conv2d(16, 32, 3, 1) self._check_one_layer(layer, x) def test_linear(self): self._check_one_layer(nn.Linear(8, 4), torch.randn(16, 8)) self._check_one_layer(nn.Linear(8, 4), torch.randn(16, 8, 8)) def test_layernorm(self): x = torch.randn(64, 16, 24, 24) self._check_one_layer(nn.LayerNorm(24), x) self._check_one_layer(nn.LayerNorm((24, 24)), x) self._check_one_layer(nn.LayerNorm((16, 24, 24)), x) def test_groupnorm(self): self._check_one_layer(nn.GroupNorm(4, 16), torch.randn(64, 16, 10)) self._check_one_layer(nn.GroupNorm(4, 16), torch.randn(64, 16, 10, 9)) self._check_one_layer(nn.GroupNorm(4, 16), torch.randn(64, 16, 10, 9, 8)) def test_instancenorm(self): self._check_one_layer( nn.InstanceNorm1d(16, affine=True), torch.randn(64, 16, 10) ) self._check_one_layer( nn.InstanceNorm2d(16, affine=True), torch.randn(64, 16, 10, 9) ) self._check_one_layer( nn.InstanceNorm3d(16, affine=True), torch.randn(64, 16, 10, 9, 8) ) def test_sequence_bias(self): x = torch.randn(4, 3, 2) layer = SequenceBias(2) self._check_one_layer(layer, x, batch_first=False) def test_multihead_attention(self): x = torch.randn(16, 24, 32) layer = DPMultiheadAttention(32, 1) self._check_one_layer(layer, x, x, x, batch_first=False) layer = DPMultiheadAttention(32, 1, bias=True, add_bias_kv=True, dropout=0.05) self._check_one_layer(layer, x, x, x, batch_first=False) layer = DPMultiheadAttention(32, 1, bias=True, add_bias_kv=True) self._check_one_layer(layer, x, x, x, batch_first=False) layer = DPMultiheadAttention( 32, 1, bias=True, add_bias_kv=True, add_zero_attn=True ) self._check_one_layer(layer, x, x, x, batch_first=False) q = torch.randn(16, 24, 32) k = torch.randn(20, 24, 28) v = torch.randn(20, 24, 28) layer = DPMultiheadAttention( 32, 1, bias=True, add_bias_kv=True, add_zero_attn=True, kdim=28, vdim=28 ) self._check_one_layer(layer, q, k, v, batch_first=False) def test_embedding(self): layer = nn.Embedding(256, 100) x1 = torch.randint(0, 255, (128, 42)).long() x2 = torch.randint(0, 255, (64,)).long() self._check_one_layer(layer, x1) self._check_one_layer(layer, x2) def test_lstm_batch_first(self): # input size : 25 output size : 12 minibatch : 30 sequence length : 20 # Test batch_first=True case layer = DPLSTM(25, 12, 1, batch_first=True) x = torch.randn(30, 20, 25) self._check_one_layer(layer, x, batch_first=True) def test_lstm_batch_second(self): # input size : 25 output size : 12 minibatch : 30 sequence length : 20 # Test batch_first=False case layer = DPLSTM(25, 12, 1, batch_first=False) x = torch.randn(20, 30, 25) self._check_one_layer(layer, x, batch_first=False)
34.326087
101
0.611146
[ "Apache-2.0" ]
RosaYen/DP_FL_recreation
DP_FL_recreate/opacus/tests/layers_grad_test.py
6,316
Python
import yaml class HdcpSource: def __init__(self, conf_yaml): f = open(conf_yaml, "r") conf = yaml.load(f) f.close() def process_request(req): msg_type, msg = req if __name__ == "__main__": HdcpSource("yaml/rx1.yaml")
14.157895
34
0.583643
[ "MIT" ]
imamotts/hdcp_test
src/hdcp_source.py
269
Python
import os import shutil import yaml from mock import patch from dsl_parser.exceptions import DSLParsingLogicException from .. import cfy from ... import env from ...config import config from ...commands import init from .test_base import CliCommandTest from .constants import BLUEPRINTS_DIR, SAMPLE_INPUTS_PATH, \ DEFAULT_BLUEPRINT_FILE_NAME, SAMPLE_CUSTOM_NAME_ARCHIVE class InitTest(CliCommandTest): def test_init_initialized_directory(self): self.use_manager() self.invoke( 'cfy init', err_str_segment='Environment is already initialized') def test_init_overwrite(self): # Config values shouldn't change between init resets with open(config.CLOUDIFY_CONFIG_PATH) as f: conf = yaml.safe_load(f.read()) self.assertFalse(conf['colors']) with open(config.CLOUDIFY_CONFIG_PATH, 'w') as f: conf['colors'] = True f.write(yaml.safe_dump(conf)) cfy.invoke('init -r') with open(config.CLOUDIFY_CONFIG_PATH) as f: conf = yaml.safe_load(f.read()) self.assertTrue(conf['colors']) def test_init_overwrite_hard(self): # Config values should change between hard init resets with open(config.CLOUDIFY_CONFIG_PATH) as f: conf = yaml.safe_load(f.read()) self.assertFalse(conf['colors']) with open(config.CLOUDIFY_CONFIG_PATH, 'w') as f: conf['colors'] = True f.write(yaml.safe_dump(conf)) self.invoke('cfy init -r --hard') with open(config.CLOUDIFY_CONFIG_PATH) as f: conf = yaml.safe_load(f.read()) self.assertFalse(conf['colors']) def test_init_overwrite_on_initial_init(self): # Simply verifying the overwrite flag doesn't break the first init cfy.purge_dot_cloudify() self.invoke('cfy init -r') def test_init_invalid_blueprint_path(self): self.invoke( 'cfy init idonotexist.yaml', err_str_segment='You must provide either a path to a local file', ) def test_init_default_outputs(self): blueprint_path = os.path.join( BLUEPRINTS_DIR, 'local', DEFAULT_BLUEPRINT_FILE_NAME ) self.invoke('cfy init {0}'.format(blueprint_path)) cfy.register_commands() output = self.invoke( 'cfy deployments outputs -b local').logs.split('\n') self.assertIn(' "key1": "default_val1", ', output) self.assertIn(' "key2": "default_val2", ', output) self.assertIn(' "key3": "default_val3", ', output) self.assertIn(' "param": null, ', output) self.assertIn(' "custom_param": null, ', output) self.assertIn(' "provider_context": null', output) def test_init_default_inputs(self): blueprint_path = os.path.join( BLUEPRINTS_DIR, 'local', DEFAULT_BLUEPRINT_FILE_NAME ) command = 'cfy init {0}'.format(blueprint_path) self.invoke(command) cfy.register_commands() output = self.invoke( 'cfy deployments inputs -b local').logs.split('\n') self.assertIn(' "key1": "default_val1", ', output) self.assertIn(' "key2": "default_val2", ', output) self.assertIn(' "key3": "default_val3"', output) def test_init_with_inputs(self): blueprint_path = os.path.join( BLUEPRINTS_DIR, 'local', DEFAULT_BLUEPRINT_FILE_NAME ) command = 'cfy init {0} -i {1} -i key3=val3'.format( blueprint_path, SAMPLE_INPUTS_PATH ) self.invoke(command) cfy.register_commands() output = self.invoke( 'cfy deployments inputs -b local').logs.split('\n') self.assertIn(' "key1": "val1", ', output) self.assertIn(' "key2": "val2", ', output) self.assertIn(' "key3": "val3"', output) def test_init_validate_definitions_version_false(self): with open(config.CLOUDIFY_CONFIG_PATH) as f: conf = yaml.safe_load(f.read()) with open(config.CLOUDIFY_CONFIG_PATH, 'w') as f: conf['validate_definitions_version'] = False f.write(yaml.safe_dump(conf)) self.invoke( 'cfy init {0}/local/blueprint_validate_definitions_version.yaml' .format(BLUEPRINTS_DIR) ) def test_init_validate_definitions_version_true(self): self.invoke( 'cfy init {0}/local/blueprint_validate_definitions_version.yaml' .format(BLUEPRINTS_DIR), err_str_segment='description not supported in version', exception=DSLParsingLogicException ) @patch('cloudify.workflows.local.init_env') @patch('cloudify_cli.local._install_plugins') def test_init_install_plugins(self, install_plugins_mock, *_): blueprint_path = os.path.join( BLUEPRINTS_DIR, 'local', 'blueprint_with_plugins.yaml' ) command = 'cfy init {0} --install-plugins'.format(blueprint_path) self.invoke(command) install_plugins_mock.assert_called_with(blueprint_path=blueprint_path) @patch('cloudify.workflows.local.init_env') def test_init_with_empty_requirements(self, *_): blueprint_path = os.path.join( BLUEPRINTS_DIR, 'local', 'blueprint_without_plugins.yaml' ) command = 'cfy init {0} --install-plugins'.format(blueprint_path) self.invoke(command) def test_init_missing_plugins(self): # TODO: put back possible solutions blueprint_path = os.path.join( BLUEPRINTS_DIR, 'local', 'blueprint_with_plugins.yaml' ) self.invoke( 'cfy init {0}'.format(blueprint_path), err_str_segment='mapping error: No module named tasks', exception=ImportError ) def test_no_init(self): # make sure no error is thrown cfy.purge_dot_cloudify() self.invoke('cfy profiles list') def test_init_blueprint_archive_default_name(self): self.invoke( 'cfy init {0}'.format(SAMPLE_CUSTOM_NAME_ARCHIVE), err_str_segment='Could not find `blueprint.yaml`' ) def test_init_blueprint_archive(self): self.invoke( 'cfy init {0} -b local -n simple_blueprint.yaml' .format(SAMPLE_CUSTOM_NAME_ARCHIVE) ) cfy.register_commands() output = self.invoke( 'cfy deployments inputs -b local').logs.split('\n') self.assertIn(' "key1": "default_val1", ', output) self.assertIn(' "key2": "default_val2", ', output) self.assertIn(' "key3": "default_val3"', output) def test_set_config(self): shutil.rmtree(env.CLOUDIFY_WORKDIR) os.makedirs(env.CLOUDIFY_WORKDIR) self.assertFalse(os.path.isfile( os.path.join(env.CLOUDIFY_WORKDIR, 'config.yaml'))) init.set_config() self.assertTrue(os.path.isfile( os.path.join(env.CLOUDIFY_WORKDIR, 'config.yaml')))
33.882629
78
0.618678
[ "Apache-2.0" ]
TS-at-WS/cloudify-cli
cloudify_cli/tests/commands/test_init.py
7,217
Python
from django.db import migrations, models import django_simple_file_handler.models class Migration(migrations.Migration): dependencies = [ ('django_simple_file_handler', '0002_auto_20180521_1545'), ] operations = [ migrations.AlterField( model_name='privatedocument', name='saved_file', field=models.FileField(max_length=254, upload_to=django_simple_file_handler.models.create_file_path, verbose_name='uploaded file'), ), migrations.AlterField( model_name='privatepdf', name='saved_file', field=models.FileField(max_length=254, upload_to=django_simple_file_handler.models.create_file_path, verbose_name='uploaded file'), ), migrations.AlterField( model_name='processedimage', name='saved_file', field=models.FileField(max_length=254, upload_to=django_simple_file_handler.models.create_file_path, verbose_name='uploaded file'), ), migrations.AlterField( model_name='publicdocument', name='saved_file', field=models.FileField(max_length=254, upload_to=django_simple_file_handler.models.create_file_path, verbose_name='uploaded file'), ), migrations.AlterField( model_name='publicpdf', name='saved_file', field=models.FileField(max_length=254, upload_to=django_simple_file_handler.models.create_file_path, verbose_name='uploaded file'), ), migrations.AlterField( model_name='temporarydocument', name='saved_file', field=models.FileField(max_length=254, upload_to=django_simple_file_handler.models.create_file_path, verbose_name='uploaded file'), ), migrations.AlterField( model_name='temporarypdf', name='saved_file', field=models.FileField(max_length=254, upload_to=django_simple_file_handler.models.create_file_path, verbose_name='uploaded file'), ), migrations.AlterField( model_name='unprocessedimage', name='saved_file', field=models.FileField(max_length=254, upload_to=django_simple_file_handler.models.create_file_path, verbose_name='uploaded file'), ), ]
43.45283
143
0.671733
[ "MIT" ]
jonathanrickard/django-simple-file-handler
django_simple_file_handler/migrations/0003_auto_20180525_1035.py
2,303
Python
import atexit import logging import multiprocessing import gc import os from sys import exit import warnings import click import dask from distributed import Nanny, Worker from distributed.security import Security from distributed.cli.utils import check_python_3, install_signal_handlers from distributed.comm import get_address_host_port from distributed.preloading import validate_preload_argv from distributed.proctitle import ( enable_proctitle_on_children, enable_proctitle_on_current, ) from toolz import valmap from tornado.ioloop import IOLoop, TimeoutError from tornado import gen logger = logging.getLogger("distributed.dask_worker") pem_file_option_type = click.Path(exists=True, resolve_path=True) @click.command(context_settings=dict(ignore_unknown_options=True)) @click.argument("scheduler", type=str, required=False) @click.option( "--tls-ca-file", type=pem_file_option_type, default=None, help="CA cert(s) file for TLS (in PEM format)", ) @click.option( "--tls-cert", type=pem_file_option_type, default=None, help="certificate file for TLS (in PEM format)", ) @click.option( "--tls-key", type=pem_file_option_type, default=None, help="private key file for TLS (in PEM format)", ) @click.option( "--worker-port", type=int, default=0, help="Serving computation port, defaults to random", ) @click.option( "--nanny-port", type=int, default=0, help="Serving nanny port, defaults to random" ) @click.option( "--bokeh-port", type=int, default=None, help="Deprecated. See --dashboard-address" ) @click.option( "--dashboard-address", type=str, default=":0", help="Address on which to listen for diagnostics dashboard", ) @click.option( "--dashboard/--no-dashboard", "dashboard", default=True, required=False, help="Launch the Dashboard [default: --dashboard]", ) @click.option( "--bokeh/--no-bokeh", "bokeh", default=None, help="Deprecated. See --dashboard/--no-dashboard.", required=False, ) @click.option( "--listen-address", type=str, default=None, help="The address to which the worker binds. Example: tcp://0.0.0.0:9000", ) @click.option( "--contact-address", type=str, default=None, help="The address the worker advertises to the scheduler for " "communication with it and other workers. " "Example: tcp://127.0.0.1:9000", ) @click.option( "--host", type=str, default=None, help="Serving host. Should be an ip address that is" " visible to the scheduler and other workers. " "See --listen-address and --contact-address if you " "need different listen and contact addresses. " "See --interface.", ) @click.option( "--interface", type=str, default=None, help="Network interface like 'eth0' or 'ib0'" ) @click.option( "--protocol", type=str, default=None, help="Protocol like tcp, tls, or ucx" ) @click.option("--nthreads", type=int, default=0, help="Number of threads per process.") @click.option( "--nprocs", type=int, default=1, show_default=True, help="Number of worker processes to launch.", ) @click.option( "--name", type=str, default=None, help="A unique name for this worker like 'worker-1'. " "If used with --nprocs then the process number " "will be appended like name-0, name-1, name-2, ...", ) @click.option( "--memory-limit", default="auto", show_default=True, help="Bytes of memory per process that the worker can use. " "This can be an integer (bytes), " "float (fraction of total system memory), " "string (like 5GB or 5000M), " "'auto', or zero for no memory management", ) @click.option( "--reconnect/--no-reconnect", default=True, help="Reconnect to scheduler if disconnected [default: --reconnect]", ) @click.option( "--nanny/--no-nanny", default=True, help="Start workers in nanny process for management [default: --nanny]", ) @click.option("--pid-file", type=str, default="", help="File to write the process PID") @click.option( "--local-directory", default="", type=str, help="Directory to place worker files" ) @click.option( "--resources", type=str, default="", help='Resources for task constraints like "GPU=2 MEM=10e9". ' "Resources are applied separately to each worker process " "(only relevant when starting multiple worker processes with '--nprocs').", ) @click.option( "--scheduler-file", type=str, default="", help="Filename to JSON encoded scheduler information. " "Use with dask-scheduler --scheduler-file", ) @click.option( "--death-timeout", type=str, default=None, help="Seconds to wait for a scheduler before closing", ) @click.option( "--dashboard-prefix", type=str, default="", help="Prefix for the dashboard" ) @click.option( "--lifetime", type=str, default="", help="If provided, shut down the worker after this duration.", ) @click.option( "--lifetime-stagger", type=str, default="0 seconds", show_default=True, help="Random amount by which to stagger lifetime values", ) @click.option( "--lifetime-restart/--no-lifetime-restart", "lifetime_restart", default=False, show_default=True, required=False, help="Whether or not to restart the worker after the lifetime lapses. " "This assumes that you are using the --lifetime and --nanny keywords", ) @click.option( "--preload", type=str, multiple=True, is_eager=True, help="Module that should be loaded by each worker process " 'like "foo.bar" or "/path/to/foo.py"', ) @click.argument( "preload_argv", nargs=-1, type=click.UNPROCESSED, callback=validate_preload_argv ) @click.version_option() def main( scheduler, host, worker_port, listen_address, contact_address, nanny_port, nthreads, nprocs, nanny, name, pid_file, resources, dashboard, bokeh, bokeh_port, scheduler_file, dashboard_prefix, tls_ca_file, tls_cert, tls_key, dashboard_address, **kwargs ): g0, g1, g2 = gc.get_threshold() # https://github.com/dask/distributed/issues/1653 gc.set_threshold(g0 * 3, g1 * 3, g2 * 3) enable_proctitle_on_current() enable_proctitle_on_children() if bokeh_port is not None: warnings.warn( "The --bokeh-port flag has been renamed to --dashboard-address. " "Consider adding ``--dashboard-address :%d`` " % bokeh_port ) dashboard_address = bokeh_port if bokeh is not None: warnings.warn( "The --bokeh/--no-bokeh flag has been renamed to --dashboard/--no-dashboard. " ) dashboard = bokeh sec = Security( **{ k: v for k, v in [ ("tls_ca_file", tls_ca_file), ("tls_worker_cert", tls_cert), ("tls_worker_key", tls_key), ] if v is not None } ) if nprocs > 1 and worker_port != 0: logger.error( "Failed to launch worker. You cannot use the --port argument when nprocs > 1." ) exit(1) if nprocs > 1 and not nanny: logger.error( "Failed to launch worker. You cannot use the --no-nanny argument when nprocs > 1." ) exit(1) if contact_address and not listen_address: logger.error( "Failed to launch worker. " "Must specify --listen-address when --contact-address is given" ) exit(1) if nprocs > 1 and listen_address: logger.error( "Failed to launch worker. " "You cannot specify --listen-address when nprocs > 1." ) exit(1) if (worker_port or host) and listen_address: logger.error( "Failed to launch worker. " "You cannot specify --listen-address when --worker-port or --host is given." ) exit(1) try: if listen_address: (host, worker_port) = get_address_host_port(listen_address, strict=True) if contact_address: # we only need this to verify it is getting parsed (_, _) = get_address_host_port(contact_address, strict=True) else: # if contact address is not present we use the listen_address for contact contact_address = listen_address except ValueError as e: logger.error("Failed to launch worker. " + str(e)) exit(1) if nanny: port = nanny_port else: port = worker_port if not nthreads: nthreads = multiprocessing.cpu_count() // nprocs if pid_file: with open(pid_file, "w") as f: f.write(str(os.getpid())) def del_pid_file(): if os.path.exists(pid_file): os.remove(pid_file) atexit.register(del_pid_file) if resources: resources = resources.replace(",", " ").split() resources = dict(pair.split("=") for pair in resources) resources = valmap(float, resources) else: resources = None loop = IOLoop.current() if nanny: kwargs.update({"worker_port": worker_port, "listen_address": listen_address}) t = Nanny else: if nanny_port: kwargs["service_ports"] = {"nanny": nanny_port} t = Worker if ( not scheduler and not scheduler_file and dask.config.get("scheduler-address", None) is None ): raise ValueError( "Need to provide scheduler address like\n" "dask-worker SCHEDULER_ADDRESS:8786" ) nannies = [ t( scheduler, scheduler_file=scheduler_file, nthreads=nthreads, loop=loop, resources=resources, security=sec, contact_address=contact_address, host=host, port=port, dashboard_address=dashboard_address if dashboard else None, service_kwargs={"dashboard": {"prefix": dashboard_prefix}}, name=name if nprocs == 1 or not name else name + "-" + str(i), **kwargs ) for i in range(nprocs) ] @gen.coroutine def close_all(): # Unregister all workers from scheduler if nanny: yield [n.close(timeout=2) for n in nannies] def on_signal(signum): logger.info("Exiting on signal %d", signum) close_all() @gen.coroutine def run(): yield nannies yield [n.finished() for n in nannies] install_signal_handlers(loop, cleanup=on_signal) try: loop.run_sync(run) except TimeoutError: # We already log the exception in nanny / worker. Don't do it again. raise TimeoutError("Timed out starting worker.") from None except KeyboardInterrupt: pass finally: logger.info("End worker") def go(): check_python_3() main() if __name__ == "__main__": go()
26.997567
95
0.62518
[ "BSD-3-Clause" ]
MdSalih/distributed
distributed/cli/dask_worker.py
11,096
Python
# --- Imports --- # import torch import torch.nn.functional as F # --- Perceptual loss network --- # class LossNetwork(torch.nn.Module): def __init__(self, vgg_model): super(LossNetwork, self).__init__() self.vgg_layers = vgg_model self.layer_name_mapping = { '3': "relu1_2", '8': "relu2_2", '15': "relu3_3" } def output_features(self, x): output = {} for name, module in self.vgg_layers._modules.items(): x = module(x) if name in self.layer_name_mapping: output[self.layer_name_mapping[name]] = x return list(output.values()) def forward(self, dehaze, gt): loss = [] dehaze_features = self.output_features(dehaze) gt_features = self.output_features(gt) for dehaze_feature, gt_feature in zip(dehaze_features, gt_features): loss.append(F.mse_loss(dehaze_feature, gt_feature)) return sum(loss)/len(loss)
33.366667
76
0.598402
[ "MIT" ]
liuh127/NTIRE-2021-Dehazing-Two-branch
perceptual.py
1,001
Python
import heapq import math import random as rnd from functools import partial from .core import Bag def sample(population, k): """Chooses k unique random elements from a bag. Returns a new bag containing elements from the population while leaving the original population unchanged. Parameters ---------- population: Bag Elements to sample. k: integer, optional Number of elements to sample. Examples -------- >>> import dask.bag as db # doctest: +SKIP ... from dask.bag import random ... ... b = db.from_sequence(range(5), npartitions=2) ... list(random.sample(b, 3).compute()) [1, 3, 5] """ return _sample(population=population, k=k, replace=False) def choices(population, k=1): """ Return a k sized list of elements chosen with replacement. Parameters ---------- population: Bag Elements to sample. k: integer, optional Number of elements to sample. Examples -------- >>> import dask.bag as db # doctest: +SKIP ... from dask.bag import random ... ... b = db.from_sequence(range(5), npartitions=2) ... list(random.choices(b, 3).compute()) [1, 1, 5] """ return _sample(population=population, k=k, replace=True) def _sample(population, k, replace=False): return population.reduction( partial(_sample_map_partitions, k=k, replace=replace), partial(_sample_reduce, k=k, replace=replace), out_type=Bag, ) def _sample_map_partitions(population, k, replace): """ Map function used on the sample and choices functions. Parameters ---------- population : list List of elements to sample. k : int, optional Number of elements to sample. Default is 1. Returns ------- sample: list List of sampled elements from the partition. lx: int Number of elements on the partition. k: int Number of elements to sample. """ lx = len(population) real_k = k if k <= lx else lx sample_func = rnd.choices if replace else rnd.sample # because otherwise it raises IndexError: sampled = [] if real_k == 0 else sample_func(population=population, k=real_k) return sampled, lx def _sample_reduce(reduce_iter, k, replace): """ Reduce function used on the sample and choice functions. Parameters ---------- reduce_iter : iterable Each element is a tuple coming generated by the _sample_map_partitions function. Returns a sequence of uniformly distributed samples; """ ns_ks = [] s = [] n = 0 # unfolding reduce outputs for i in reduce_iter: (s_i, n_i) = i s.extend(s_i) n += n_i k_i = len(s_i) ns_ks.append((n_i, k_i)) if k < 0 or (k > n and not replace): raise ValueError("Sample larger than population or is negative") # creating the probability array p = [] for n_i, k_i in ns_ks: if k_i > 0: p_i = n_i / (k_i * n) p += [p_i] * k_i sample_func = rnd.choices if replace else _weighted_sampling_without_replacement return sample_func(population=s, weights=p, k=k) def _weighted_sampling_without_replacement(population, weights, k): """ Source: Weighted random sampling with a reservoir, Pavlos S. Efraimidis, Paul G. Spirakis """ elt = [(math.log(rnd.random()) / weights[i], i) for i in range(len(weights))] return [population[x[1]] for x in heapq.nlargest(k, elt)]
26.117647
89
0.623592
[ "MIT" ]
CDU55/FakeNews
ServerComponent/venv/Lib/site-packages/dask/bag/random.py
3,552
Python
from django.db.models.fields import Field from django.urls import NoReverseMatch from django.urls import reverse from polymorphic.managers import PolymorphicManager from common.business_rules import NoBlankDescription from common.business_rules import UpdateValidity from common.models.mixins.validity import ValidityStartMixin from common.models.mixins.validity import ValidityStartQueryset from common.models.records import TrackedModelQuerySet from common.util import classproperty class DescriptionQueryset(ValidityStartQueryset, TrackedModelQuerySet): pass class DescriptionMixin(ValidityStartMixin): objects = PolymorphicManager.from_queryset(DescriptionQueryset)() business_rules = ( NoBlankDescription, UpdateValidity, ) @classproperty def described_object_field(cls) -> Field: for rel in cls.relations.keys(): if rel.name.startswith("described_"): return rel raise TypeError(f"{cls} should have a described field.") @classproperty def validity_over(cls): return cls.described_object_field.name def get_described_object(self): return getattr(self, self.described_object_field.name) def get_url(self, action="detail"): kwargs = {} if action != "list": kwargs = self.get_identifying_fields() described_object = self.get_described_object() for field, value in described_object.get_identifying_fields().items(): kwargs[f"{self.described_object_field.name}__{field}"] = value try: return reverse( f"{self.get_url_pattern_name_prefix()}-ui-{action}", kwargs=kwargs, ) except NoReverseMatch: return def __str__(self): return self.identifying_fields_to_string( identifying_fields=( self.described_object_field.name, "validity_start", ), ) class Meta: abstract = True
31.307692
82
0.679607
[ "MIT" ]
uktrade/tamato
common/models/mixins/description.py
2,035
Python
#!/usr/bin/env python # -*- coding: utf-8 -*- # pip install nvidia-ml-py3 --user import pynvml try: pynvml.nvmlInit() except pynvml.NVMLError as error: print(error) # Driver Not Loaded 驱动加载失败(没装驱动或者驱动有问题) # Insufficent Permission 没有以管理员权限运行 pynvml.NVMLError_DriverNotLoaded: Driver Not Loaded exit() try: print(pynvml.nvmlDeviceGetCount()) except pynvml.NVMLError as error: print(error) print(pynvml.nvmlDeviceGetCount())# total gpu count = 1 print(pynvml.nvmlSystemGetDriverVersion()) # 396.54 GPU_ID = 0 handle = pynvml.nvmlDeviceGetHandleByIndex(GPU_ID) print(pynvml.nvmlDeviceGetName(handle)) # GeForce GTX 1060 meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle) MB_SIZE = 1024*1024 print(meminfo.total/MB_SIZE) # 6078 MB print(meminfo.used/MB_SIZE) # 531 MB print(meminfo.free/MB_SIZE) # 5546 MB pynvml.nvmlShutdown()
25.441176
92
0.746821
[ "MIT" ]
forwardmeasure/kubeflow
setup/nvidia/nvml-test.py
919
Python
# Time: O(n * n!/(c_a!*...*c_z!), n is the length of A, B, # c_a...c_z is the count of each alphabet, # n = sum(c_a...c_z) # Space: O(n * n!/(c_a!*...*c_z!) # 854 # Strings A and B are K-similar (for some non-negative integer K) # if we can swap the positions of two letters # in A exactly K times so that the resulting string equals B. # # Given two anagrams A and B, return the smallest K for which A and B are # K-similar. # # Example 1: # # Input: A = "ab", B = "ba" # Output: 1 # Example 2: # # Input: A = "abc", B = "bca" # Output: 2 # Example 3: # # Input: A = "abac", B = "baca" # Output: 2 # Example 4: # # Input: A = "aabc", B = "abca" # Output: 2 # Note: # - 1 <= A.length == B.length <= 20 # - A and B contain only lowercase letters from # the set {'a', 'b', 'c', 'd', 'e', 'f'} # Solution Framework: # The underlying graph of the problem is a graph with 6 nodes 'a', 'b', ..., 'f' and the edges A[i] -> B[i]. # Our goal is for this graph to have only self-edges (edges of the form a -> a.) # If A = 'ca...' and B = 'ab...', then the first two edges of the underlying graph are c -> a and a -> b; # and a swap between A[1] and A[0] changes these two edges to the single edge c -> b. Let's call this type # of operation 'cutting corners'. Intuitively, our optimal swap schedule always increases the # of matches # (A[i] == B[i]s) for each swap, so cutting corners is the only type of operation we need to consider. # (This is essentially the happy swap assumption, proved in 765 - Couples Holding Hands) # # Now consider 'cycle decomposition' of the underlying graph. [This decomposition (or the # of cycles), # is not necessarily unique.] Through operations of cutting corners, we'll delete all the (non-self) edges. # Each cycle of length k requires k-1 operations to delete. Thus, the answer is just the minimum possible # value of sum(C_k - 1), where C_1,... C_k are the lengths of the cycles in some cycle decomposition of # the underlying graph. This can be re-written as (# of non-self edges) - (# of cycles). # Hence, we want to maximize the # of cycles in a cycle decomposition of the underlying graph. import collections try: xrange # Python 2 except NameError: xrange = range # Python 3 class Solution(object): def kSimilarity(self, A, B): """ :type A: str :type B: str :rtype: int """ # Perform a regular breadth-first search: the neighbors to each node string S are all the strings # reachable with 1 swap to get the first unmatched character in S matched. # we can prove that an optimal solution swaps the left-most unmatched character A[i] with an # appropriate match A[j] which equals to B[i] (j > i), as this increases # of self-edges. # Time complexity: This reduces the # of "neighbors" of a node (string state) from O(N^2) to O(N): # O(N^2): swap any pair of chars in the string, # O(N): only swap the first unmatched char. def neighbors(s): for i, c in enumerate(s): if c != B[i]: break t = list(s) for j in xrange(i+1, len(s)): if t[j] == B[i]: t[i], t[j] = t[j], t[i] yield "".join(t) t[j], t[i] = t[i], t[j] q = collections.deque([A]) steps = {A:0} # we need a set to remove repeatedness anyway, so put 'steps' together while q: s = q.popleft() if s == B: return steps[s] for t in neighbors(s): if t not in steps: steps[t] = steps[s] + 1 q.append(t) print(Solution().kSimilarity('abac', 'baca'))
39.309278
108
0.586415
[ "MIT" ]
RideGreg/LeetCode
Python/k-similar-strings.py
3,813
Python
# Licensed under a 3-clause BSD style license - see LICENSE.rst from __future__ import absolute_import, division, print_function, unicode_literals import logging import subprocess from ..utils.scripts import make_path from ..utils.testing import Checker from .obs_table import ObservationTable from .hdu_index_table import HDUIndexTable from .obs_table import ObservationTableChecker from .observations import DataStoreObservation, Observations, ObservationChecker __all__ = ["DataStore"] log = logging.getLogger(__name__) class DataStore(object): """IACT data store. The data selection and access happens using an observation and an HDU index file as described at :ref:`gadf:iact-storage`. See :gp-extra-notebook:`cta_1dc_introduction` for usage examples. Parameters ---------- hdu_table : `~gammapy.data.HDUIndexTable` HDU index table obs_table : `~gammapy.data.ObservationTable` Observation index table Examples -------- Here's an example how to create a `DataStore` to access H.E.S.S. data: >>> from gammapy.data import DataStore >>> data_store = DataStore.from_dir('$GAMMAPY_DATA/hess-dl3-dr1') >>> data_store.info() """ DEFAULT_HDU_TABLE = "hdu-index.fits.gz" """Default HDU table filename.""" DEFAULT_OBS_TABLE = "obs-index.fits.gz" """Default observation table filename.""" def __init__(self, hdu_table=None, obs_table=None): self.hdu_table = hdu_table self.obs_table = obs_table def __str__(self): return self.info(show=False) @classmethod def from_file(cls, filename, hdu_hdu="HDU_INDEX", hdu_obs="OBS_INDEX"): """Create from a FITS file. The FITS file must contain both index files. Parameters ---------- filename : str, Path FITS filename hdu_hdu : str or int FITS HDU name or number for the HDU index table hdu_obs : str or int FITS HDU name or number for the observation index table """ filename = make_path(filename) hdu_table = HDUIndexTable.read(filename, hdu=hdu_hdu, format="fits") obs_table = ObservationTable.read(filename, hdu=hdu_obs, format="fits") return cls(hdu_table=hdu_table, obs_table=obs_table) @classmethod def from_dir(cls, base_dir, hdu_table_filename=None, obs_table_filename=None): """Create from a directory. Parameters ---------- base_dir : str, Path Base directory of the data files. hdu_table_filename : str, Path Filename of the HDU index file. May be specified either relative to `base_dir` or as an absolute path. If None, the default filename will be looked for. obs_table_filename : str, Path Filename of the observation index file. May be specified either relative to `base_dir` or as an absolute path. If None, the default filename will be looked for. """ base_dir = make_path(base_dir) if hdu_table_filename: hdu_table_filename = make_path(hdu_table_filename) if (base_dir / hdu_table_filename).exists(): hdu_table_filename = base_dir / hdu_table_filename else: hdu_table_filename = base_dir / cls.DEFAULT_HDU_TABLE if obs_table_filename: obs_table_filename = make_path(obs_table_filename) if (base_dir / obs_table_filename).exists(): obs_table_filename = base_dir / obs_table_filename else: obs_table_filename = base_dir / cls.DEFAULT_OBS_TABLE if not hdu_table_filename.exists(): raise IOError("File not found: {}".format(hdu_table_filename)) log.debug("Reading {}".format(hdu_table_filename)) hdu_table = HDUIndexTable.read(str(hdu_table_filename), format="fits") hdu_table.meta["BASE_DIR"] = str(base_dir) if not obs_table_filename.exists(): raise IOError("File not found: {}".format(obs_table_filename)) log.debug("Reading {}".format(str(obs_table_filename))) obs_table = ObservationTable.read(str(obs_table_filename), format="fits") return cls(hdu_table=hdu_table, obs_table=obs_table) @classmethod def from_config(cls, config): """Create from a config dict.""" base_dir = config["base_dir"] hdu_table_filename = config.get("hduindx", cls.DEFAULT_HDU_TABLE) obs_table_filename = config.get("obsindx", cls.DEFAULT_OBS_TABLE) hdu_table_filename = cls._find_file(hdu_table_filename, base_dir) obs_table_filename = cls._find_file(obs_table_filename, base_dir) return cls.from_files( base_dir=base_dir, hdu_table_filename=hdu_table_filename, obs_table_filename=obs_table_filename, ) @staticmethod def _find_file(filename, dir): """Find a file at an absolute or relative location. - First tries ``Path(filename)`` - Second tries ``Path(dir) / filename`` - Raises ``OSError`` if both don't exist. """ path1 = make_path(filename) path2 = make_path(dir) / filename if path1.is_file(): filename = path1 elif path2.is_file(): filename = path2 else: raise OSError("File not found at {} or {}".format(path1, path2)) return filename def info(self, show=True): """Print some info.""" s = "Data store:\n" s += self.hdu_table.summary() s += "\n\n" s += self.obs_table.summary() if show: print(s) else: return s def obs(self, obs_id): """Access a given `~gammapy.data.DataStoreObservation`. Parameters ---------- obs_id : int Observation ID. Returns ------- observation : `~gammapy.data.DataStoreObservation` Observation container """ return DataStoreObservation(obs_id=int(obs_id), data_store=self) def get_observations(self, obs_id, skip_missing=False): """Generate a `~gammapy.data.Observations`. Parameters ---------- obs_id : list Observation IDs. skip_missing : bool, optional Skip missing observations, default: False Returns ------- observations : `~gammapy.data.Observations` Container holding a list of `~gammapy.data.DataStoreObservation` """ obs_list = [] for _ in obs_id: try: obs = self.obs(_) except ValueError as err: if skip_missing: log.warning("Skipping missing obs_id: {!r}".format(_)) continue else: raise err else: obs_list.append(obs) return Observations(obs_list) def copy_obs(self, obs_id, outdir, hdu_class=None, verbose=False, overwrite=False): """Create a new `~gammapy.data.DataStore` containing a subset of observations. Parameters ---------- obs_id : array-like, `~gammapy.data.ObservationTable` List of observations to copy outdir : str, Path Directory for the new store hdu_class : list of str see :attr:`gammapy.data.HDUIndexTable.VALID_HDU_CLASS` verbose : bool Print copied files overwrite : bool Overwrite """ # TODO : Does rsync give any benefits here? outdir = make_path(outdir) if isinstance(obs_id, ObservationTable): obs_id = obs_id["OBS_ID"].data hdutable = self.hdu_table hdutable.add_index("OBS_ID") with hdutable.index_mode("discard_on_copy"): subhdutable = hdutable.loc[obs_id] if hdu_class is not None: subhdutable.add_index("HDU_CLASS") with subhdutable.index_mode("discard_on_copy"): subhdutable = subhdutable.loc[hdu_class] subobstable = self.obs_table.select_obs_id(obs_id) for idx in range(len(subhdutable)): # Changes to the file structure could be made here loc = subhdutable.location_info(idx) targetdir = outdir / loc.file_dir targetdir.mkdir(exist_ok=True, parents=True) cmd = ["cp", "-v"] if verbose else ["cp"] if not overwrite: cmd += ["-n"] cmd += [str(loc.path()), str(targetdir)] subprocess.call(cmd) filename = str(outdir / self.DEFAULT_HDU_TABLE) subhdutable.write(filename, format="fits", overwrite=overwrite) filename = str(outdir / self.DEFAULT_OBS_TABLE) subobstable.write(filename, format="fits", overwrite=overwrite) def check(self, checks="all"): """Check index tables and data files. This is a generator that yields a list of dicts. """ checker = DataStoreChecker(self) return checker.run(checks=checks) class DataStoreChecker(Checker): """Check data store. Checks data format and a bit about the content. """ CHECKS = { "obs_table": "check_obs_table", "hdu_table": "check_hdu_table", "observations": "check_observations", "consistency": "check_consistency", } def __init__(self, data_store): self.data_store = data_store def check_obs_table(self): """Checks for the observation index table.""" checker = ObservationTableChecker(self.data_store.obs_table) for record in checker.run(): yield record def check_hdu_table(self): """Checks for the HDU index table.""" t = self.data_store.hdu_table m = t.meta if m.get("HDUCLAS1", "") != "INDEX": yield { "level": "error", "hdu": "hdu-index", "msg": "Invalid header key. Must have HDUCLAS1=INDEX", } if m.get("HDUCLAS2", "") != "HDU": yield { "level": "error", "hdu": "hdu-index", "msg": "Invalid header key. Must have HDUCLAS2=HDU", } # Check that all HDU in the data files exist for idx in range(len(t)): location_info = t.location_info(idx) try: location_info.get_hdu() except KeyError: yield { "level": "error", "msg": "HDU not found: {!r}".format(location_info.__dict__), } def check_consistency(self): """Consistency checks between multiple HDUs""" # obs and HDU index should have the same OBS_ID obs_table_obs_id = set(self.data_store.obs_table["OBS_ID"]) hdu_table_obs_id = set(self.data_store.hdu_table["OBS_ID"]) if not obs_table_obs_id == hdu_table_obs_id: yield { "level": "error", "msg": "Inconsistent OBS_ID in obs and HDU index tables", } # TODO: obs table and events header should have the same times def check_observations(self): """Perform some sanity checks for all observations.""" for obs_id in self.data_store.obs_table["OBS_ID"]: obs = self.data_store.obs(obs_id) for record in ObservationChecker(obs).run(): yield record
33.871345
87
0.601865
[ "BSD-3-Clause" ]
qpiel/gammapy
gammapy/data/data_store.py
11,584
Python
from typing import Optional import django_admin_relation_links from adminutils import options from authtools import admin as authtools_admin from django.contrib import admin from enumfields.admin import EnumFieldListFilter from rangefilter.filter import DateRangeFilter from solo.admin import SingletonModelAdmin from eahub.base import models from eahub.base.models import User from eahub.profiles.models import Profile @admin.register(models.User) class UserAdmin( django_admin_relation_links.AdminChangeLinksMixin, authtools_admin.UserAdmin ): list_select_related = ["profile"] list_display = [ "is_active", "email", "profile_link", "is_profile_approved", "date_joined", "last_login", "is_superuser", "is_staff", "get_visibility", ] change_links = ["profile"] list_filter = [ "is_superuser", "is_staff", "is_active", "profile__is_approved", ("profile__visibility", EnumFieldListFilter), ("date_joined", DateRangeFilter), ("last_login", DateRangeFilter), ] search_fields = ["email", "profile__first_name", "profile__last_name"] @options(desc="Approved", boolean=True) def is_profile_approved(self, user) -> Optional[bool]: profile = get_profile(user) if profile is None: return None return profile.is_approved @options(desc="Visibility") def get_visibility(self, user) -> str: profile = get_profile(user) if profile is None: return "" return profile.visibility.value def get_profile(user: User) -> Optional[Profile]: try: return user.profile except Profile.DoesNotExist: return None @admin.register(models.MessagingLog) class MessagingLogAdmin(admin.ModelAdmin): list_display = [ "sender_email", "recipient_email", "recipient_type", "send_action_uuid", "time", ] list_filter = [ "recipient_type", ("time", DateRangeFilter), ] search_fields = ["sender", "recipient"] admin.site.register(models.FeedbackURLConfig, SingletonModelAdmin)
26.433735
80
0.667274
[ "MIT" ]
rtcharity/eahub.org
eahub/base/admin.py
2,194
Python
class Pessoa(): def criar_lista(self, n, id_ade, sexo, saude): lista = [] qunt = int(input('quantas pessoas são: ')) for c in range(qunt): n = input('digite seu nome: ') lista.append(n) idade = int(input('digite sua idade: ')) while idade < 0: print('idade invalida, digite novamente:') idade = int(input('digite sua idade: ')) sexo = input('digite seu sexo: F ou M ').upper() while sexo != 'F' and sexo != 'M': print('sexo invalido, digite novamente: ') sexo = input('digite seu sexo: F ou M ').upper() saude = input('diga como está sua saúde: boa ou ruim ').upper() while saude != 'BOA' and saude != 'RUIM': print('opção de saude invalida. Digite novamente') saude = input('diga como está sua saúde: boa ou ruim ').upper() if idade < 18: print('voce nao está apta a cumprir o serviço militar obrigatório!') continue elif sexo == 'F': print('voce nao está apta a cumprir o serviço militar obrigatório!') continue elif saude == 'RUIM': print('voce nao está apta a cumprir o serviço militar obrigatório! Cuide da sua saude primeiro.') continue else: print('parabens, voce ESTÁ apta a cumprir o serviço militar obrigatório!') pessoa = Pessoa() pessoa.criar_lista(None, int, None, None)
39.875
113
0.523511
[ "MIT" ]
Felipe-Gs/Dupla-2-F
ex3.py
1,614
Python
# -*- coding: utf-8 -*- from django import forms from django.contrib.auth import get_user_model from django.utils.translation import ugettext_lazy as _ from tcms.core.utils import string_to_list from tcms.core.forms.fields import UserField from tcms.management.models import Product, Version, Build from tcms.testplans.models import TestPlan from tcms.testcases.models import TestCase # =========== Forms for search/filter ============== class SearchProductForm(forms.Form): """ Includes *only* fields used in search.html b/c the actual search is now done via JSON RPC. """ name_product = forms.CharField(label='Product', max_length=100, required=False)
34.25
83
0.734307
[ "MIT" ]
YangKaiting/kiwitcms-telemetry-failed-test-cases
telemetryPlugin/forms.py
685
Python
# pylint: disable=no-member from logging.config import fileConfig from sqlalchemy import engine_from_config from sqlalchemy import pool from alembic import context from playthrough-bot.models import ModelBase, get_engine # this is the Alembic Config object, which provides # access to the values within the .ini file in use. config = context.config config.set_main_option("sqlalchemy.url", str(get_engine().url)) # Interpret the config file for Python logging. # This line sets up loggers basically. fileConfig(config.config_file_name) # add your model's MetaData object here # for 'autogenerate' support # from myapp import mymodel # target_metadata = mymodel.Base.metadata target_metadata = ModelBase.metadata # other values from the config, defined by the needs of env.py, # can be acquired: # my_important_option = config.get_main_option("my_important_option") # ... etc. def run_migrations_offline(): """Run migrations in 'offline' mode. This configures the context with just a URL and not an Engine, though an Engine is acceptable here as well. By skipping the Engine creation we don't even need a DBAPI to be available. Calls to context.execute() here emit the given string to the script output. """ url = config.get_main_option("sqlalchemy.url") context.configure( url=url, target_metadata=target_metadata, literal_binds=True, dialect_opts={"paramstyle": "named"}, ) with context.begin_transaction(): context.run_migrations() def run_migrations_online(): """Run migrations in 'online' mode. In this scenario we need to create an Engine and associate a connection with the context. """ connectable = engine_from_config( config.get_section(config.config_ini_section), prefix="sqlalchemy.", poolclass=pool.NullPool, ) with connectable.connect() as connection: context.configure( connection=connection, target_metadata=target_metadata, render_as_batch=config.get_main_option("sqlalchemy.url").startswith( "sqlite:" ), ) with context.begin_transaction(): context.run_migrations() if context.is_offline_mode(): run_migrations_offline() else: run_migrations_online()
26.885057
80
0.70714
[ "MIT" ]
Rain288/playthrough-bot
src/playthrough-bot/models/alembic/env.py
2,339
Python
""" Experimemtal code for trimming primers & polyA tails from high error rate long reads """ import os, sys, pdb from csv import DictWriter from collections import namedtuple from multiprocessing import Process from Bio.Seq import Seq from Bio import SeqIO import parasail ScoreTuple = namedtuple('ScoreTuple', ['score5', 'end5', 'score3', 'end3', 'endA']) # for ONT using Clontech #SEQ_5P = 'AAGCAGTGGTATCAACGCAGAGTACATGGGG' #SEQ_3P_REV = 'GTATCAACGCAGAGTAC' ISOSEQ_5P = 'GCAATGAAGTCGCAGGGTTGGG' ISOSEQ_3P = 'GTACTCTGCGTTGATACCACTGCTT' #SEQ_5P = 'GCAATGAAGTCGCAGGGTTGGGG' #SEQ_5P = 'CAGGAAACAGCTATGACC' #SEQ_3P_REV = 'AAGCAGTGGTATCAACGCAGAGTAC' #SEQ_3P_REV = 'ACTGGCCGTCGTTTTAC' MINSCORE_5P = 20 MINSCORE_3P = 20 MIN_A_LEN = 20 SCOREMAT = parasail.matrix_create("ACGT", 2, -5) def trim5p3p_helper(r, seq_5p, seq_3p_rev): """ Search for 5' and 3' in the first and last 100 bp window """ s1 = str(r.seq[:100]) s2 = str(r.reverse_complement().seq[:100]) o1 = parasail.sg_qx_trace(s1, seq_5p, 3, 1, SCOREMAT) o2 = parasail.sg_qe_db_trace(s2, seq_3p_rev, 3, 1, SCOREMAT) lenA = None if o2.score >= MINSCORE_3P: lenA = trimA(s2[o2.end_query + 1:]) if MIN_A_LEN == 0: end3 = len(r.seq) - o2.end_query - 1 return ScoreTuple(score5=o1.score, end5=o1.end_query, score3=o2.score, end3=end3, endA=end3) elif lenA is not None: end3 = len(r.seq) - o2.end_query - 1 endA = end3 - lenA + 1 return ScoreTuple(score5=o1.score, end5=o1.end_query, score3=o2.score, end3=end3, endA=endA) else: end3 = len(r.seq) - o2.end_query - 1 return ScoreTuple(score5=o1.score, end5=o1.end_query, score3=o2.score, end3=end3, endA=end3) def trimA(rev_seq): if len(rev_seq) == 0: return None n_rev_seq = len(rev_seq) mismatch = 0 i = 0 while mismatch < 2 and i < n_rev_seq: if rev_seq[i]!='T': mismatch += 1 i += 1 i -= 1 if i >= MIN_A_LEN: return i else: return None def trim5p3p_multithreaded(fastq_filename, output_prefix, seq_5p, seq_3p_rev, chunks): # first figure out how many records there are and record positions num_lines = 0 for line in open(fastq_filename, 'r'): num_lines += 1 num_records = num_lines // 4 chunk_size = (num_records//chunks) + (num_records%chunks>0) print("{0} has {1} records, {2} per chunk".format(fastq_filename, num_records, chunk_size)) pools = [] records = [] count = 0 i = 1 for r in SeqIO.parse(open(fastq_filename), 'fastq'): count += 1 records.append(r) if count >= chunk_size: p = Process(target=trim5p3p, args=(records, output_prefix+'.'+str(i), seq_5p, seq_3p_rev)) p.start() print("Starting worker {0}...".format(i)) pools.append(p) records = [] count = 0 i += 1 p = Process(target=trim5p3p, args=(records, output_prefix + '.' + str(i), seq_5p, seq_3p_rev)) p.start() print("Starting worker {0}...".format(i)) pools.append(p) for p in pools: p.join() # now combine all the files f_FL = open(output_prefix+'.fl.fasta', 'w') f_FL_clips = open(output_prefix+'.fl.clips', 'w') f_nFL = open(output_prefix+'.nfl.fasta', 'w') f_csv = open(output_prefix+'.csv', 'w') for j in range(1, i+1): p = output_prefix + '.' + str(j) with open(p + '.fl.fasta') as h: f_FL.write(h.read()) print("writing {0} into {1}...".format(h.name, f_FL.name)) with open(p + '.fl.clips') as h: f_FL_clips.write(h.read()) print("writing {0} into {1}...".format(h.name, f_FL_clips.name)) with open(p + '.nfl.fasta') as h: f_nFL.write(h.read()) print("writing {0} into {1}...".format(h.name, f_nFL.name)) with open(p + '.csv') as h: f_csv.write(h.read()) print("writing {0} into {1}...".format(h.name, f_csv.name)) os.remove(p + '.fl.fasta') os.remove(p + '.fl.clips') os.remove(p + '.nfl.fasta') os.remove(p + '.csv') f_csv.close() f_FL.close() f_FL_clips.close() f_nFL.close() def trim5p3p(records, output_prefix, seq_5p, seq_3p_rev): f_FL = open(output_prefix+'.fl.fasta', 'w') f_FL_clips = open(output_prefix+'.fl.clips', 'w') f_nFL = open(output_prefix+'.nfl.fasta', 'w') f_csv = open(output_prefix+'.csv', 'w') writer = DictWriter(f_csv, fieldnames=['id', 'end5', 'end3', 'endA', 'strand']) writer.writeheader() for r in records: r2 = r.reverse_complement() r2.id = r.id t1 = trim5p3p_helper(r, seq_5p, seq_3p_rev) t2 = trim5p3p_helper(r2, seq_5p, seq_3p_rev) is_fl_flag1 = t1.score5 >= MINSCORE_5P and t1.score3 >= MINSCORE_3P and (MIN_A_LEN == 0 or t1.endA!=t1.end3) is_fl_flag2 = t2.score5 >= MINSCORE_5P and t2.score3 >= MINSCORE_3P and (MIN_A_LEN == 0 or t2.endA!=t2.end3) if is_fl_flag1: if is_fl_flag2: if t1.score5+t1.score3 > t2.score5+t2.score3: strand = '+' else: strand = '-' else: # pick t1 strand = '+' elif is_fl_flag2: strand = '-' else: strand = 'NA' info = {'id': r.id, 'end5': 'NA', 'end3': 'NA', 'endA': 'NA', 'strand': 'NA'} if strand == '+': info['strand'] = '+' info['end5'] = t1.end5 info['end3'] = t1.end3 info['endA'] = t1.endA f_FL.write(">{0}\n{1}\n".format(r.id, r.seq[t1.end5:t1.endA])) f_FL_clips.write(">{0}_5p strand:+ score:{1}\n{2}\n".format(r.id, t1.score5, r.seq[:t1.end5])) f_FL_clips.write(">{0}_3p strand:+ score:{1}\n{2}\n".format(r.id, t1.score3, r.seq[t1.endA:])) elif strand == '-': info['strand'] = '-' info['end5'] = t2.end5 info['end3'] = t2.end3 info['endA'] = t2.endA f_FL.write(">{0}\n{1}\n".format(r2.id, r2.seq[t2.end5:t2.endA])) f_FL_clips.write(">{0}_5p strand:- score:{1}\n{2}\n".format(r.id, t2.score5, r2.seq[:t2.end5])) f_FL_clips.write(">{0}_3p strand:- score:{1}\n{2}\n".format(r.id, t2.score3, r2.seq[t2.endA:])) else: # non-fL, but we still wanna trim away the stuff if t1.score5+t1.score3 > t2.score5+t2.score3: f_nFL.write(">{0} strand:+?\n{1}\n".format(r.id, r.seq[t1.end5:t1.endA])) else: f_nFL.write(">{0} strand:-?\n{1}\n".format(r2.id, r2.seq[t2.end5:t2.endA])) writer.writerow(info) f_csv.close() f_FL.close() f_FL_clips.close() f_nFL.close() if __name__ == "__main__": from argparse import ArgumentParser parser = ArgumentParser() parser.add_argument("fastq_filename") parser.add_argument("output_prefix") parser.add_argument("-p", "--primer_fasta", default=None, help="Primer fasta file (if not given, use IsoSeq defaults)") parser.add_argument("-n", "--chunks", default=10, type=int, help="Number of chunks (CPUs) to use, default 10") args = parser.parse_args() if args.primer_fasta is None: seq_5p = ISOSEQ_5P seq_3p = ISOSEQ_3P print(f"Using Iso-Seq default 5' primer sequence: {seq_5p}") print(f"Using Iso-Seq default 3' primer sequence: {seq_3p}") else: reader = SeqIO.parse(open(args.primer_fasta), 'fasta') r = next(reader) if r.seqid!='5p': print("ERROR: the first entry in {0} should be >5p! Abort!".format(args.primer_fasta)) sys.exit(-1) seq_5p = str(r.seq) r = next(reader) if r.seqid!='3p': print("ERROR: the second entry in {0} should be >3p! Abort!".format(args.primer_fasta)) sys.exit(-1) seq_3p = str(r.seq) print(f"Reading in 5' primer sequence: {seq_5p}") print(f"Reading in 3' primer sequence: {seq_3p}") seq_3p_rev = str(Seq(seq_3p).reverse_complement()) trim5p3p_multithreaded(args.fastq_filename, args.output_prefix, seq_5p, seq_3p_rev, args.chunks)
36.344978
123
0.58104
[ "BSD-3-Clause-Clear" ]
ArthurDondi/cDNA_Cupcake
beta/trim_primers.py
8,323
Python
#!/usr/bin/env python """ Tests for ohsome client """ import os import pandas as pd from nose.tools import raises import geojson import geopandas as gpd import ohsome @raises(ohsome.OhsomeException) def test_handle_multiple_responses_throw_timeouterror(): """ Tests counting elements within a bounding box for two timestamps :return: """ # GIVEN bboxes = [8.67066,49.41423,8.68177,49.4204] time = "2010-01-01/2011-01-01/P1Y" keys = ["building"] values = [""] # WHEN client = ohsome.OhsomeClientParallel() response = client.elements.count.post(bboxes=bboxes, time=time, keys=keys, values=values, timeout=2) del client def test_elements_count(): """ Tests counting elements within a bounding box for two timestamps :return: """ # GIVEN bboxes = [8.67066,49.41423,8.68177,49.4204] time = "2010-01-01/2011-01-01/P1Y" keys = ["building"] values = [""] timestamps = ["2010-01-01T00:00:00Z", "2011-01-01T00:00:00Z"] counts = [53.0, 256.0] expected = pd.DataFrame({"timestamp": timestamps, "value": counts}) # WHEN client = ohsome.OhsomeClient() response = client.elements.count.post(bboxes=bboxes, time=time, keys=keys, values=values) result = response.as_dataframe() del client # THEN assert expected.equals(result) def test_elements_count_group_by_key(): """ Tests counting elements within a bounding box and grouping them by keys :return: """ #GIVEN bboxes = "8.67066,49.41423,8.68177,49.4204" time = "2010-01-01/2011-01-01/P1Y" groupByKeys = ["building"] timestamps = ["2010-01-01T00:00:00Z", "2011-01-01T00:00:00Z", "2010-01-01T00:00:00Z", "2011-01-01T00:00:00Z"] counts = [482.0, 628.0, 53.0, 256.0] keys = ["remainder", "remainder", "building", "building"] expected = pd.DataFrame({"key": keys, "timestamp": timestamps, "value": counts}) expected.set_index(["key", "timestamp"], inplace=True) # WHEN client = ohsome.OhsomeClient() response = client.elements.count.groupBy.key.post(bboxes=bboxes, groupByKeys=groupByKeys, time=time) results = response.as_dataframe() # THEN assert expected.equals(results) def test_elemets_count_ratio(): """ Tests count ratio :return: """ bboxes = "8.67066,49.41423,8.68177,49.4204" time = "2010-01-01" keys = ["building"] keys2 = ["addr:city"] values = [""] values2 = [""] expected = 365.0 client = ohsome.OhsomeClient() response = client.elements.count.ratio.post(bboxes=bboxes, time=time, keys=keys, keys2=keys2, values=values, values2=values2) #results = response.as_dataframe() # Cache is disabled """ def test_use_cache_dir(): # GIVEN bboxes = "8.67066,49.41423,8.68177,49.4204" time = "2010-01-01/2018-01-01/P1Y" keys = ["building"] values = [""] cache_dir = "./tmp" timestamps = ["2010-01-01T00:00:00Z", "2011-01-01T00:00:00Z"] counts = [53.0, 256.0] expected = pd.DataFrame({"timestamp": timestamps, "value": counts}) # WHEN client = ohsome.OhsomeClient(cache_dir=cache_dir) assert os.path.exists(cache_dir) response = client.elements.count.post(bboxes=bboxes, time=time, keys=keys, values=values) result = response.as_dataframe() #del client """ @raises(AssertionError) def test_elements_count_exception(): """ Tests whether a TypeError is raised if the result cannot be converted to a geodataframe object :return: """ # GIVEN bboxes = "8.67066,49.41423,8.68177,49.4204" time = "2010-01-01/2011-01-01/P1Y" keys = ["building"] values = [""] # WHEN client = ohsome.OhsomeClient() response = client.elements.count.post(bboxes=bboxes, time=time, keys=keys, values=values) response.as_geodataframe() def test_elements_geometry(): """ Tests whether the result of an elements/geometry query can be converted to a geodataframe :return: """ # GIVEN bboxes = "8.67066,49.41423,8.68177,49.4204" time = "2010-01-01" keys = ["landuse"] values = ["grass"] # WHEN client = ohsome.OhsomeClient() response = client.elements.geometry.post(bboxes=bboxes, time=time, keys=keys, values=values) result = response.as_geodataframe() del client # THEN assert len(result.geometry) == 9 def test_to_file_assert_filetype(): """ Asserts whether an error is thrown if the output file is not json or geojson :return: """ output_file = "./out.shp" def test_format_coordinates(): """ Asserts that coordinates of a MultiPolygon are concerted correctly :return: """ # GIVEN bpolys = geojson.FeatureCollection([{"type": "Feature", "geometry": {"coordinates": [[[[13,51], [13,51.1], [13.1,51.1], [13.1,51], [13,51]], [[13,51], [14,51.1], [14.1,51.1], [14.1,51], [14,51]]]], "type": "MultiPolygon"}}]) time = "2018-01-01" keys = ["landuse"] values = ["grass"] # WHEN client = ohsome.OhsomeClient() response = client.elements.geometry.post(bpolys=ohsome.format_coordinates(bpolys), time=time, keys=keys, values=values) result = response.as_geodataframe() del client # THEN assert len(result.geometry) == 74 def test_format_geodataframe(): # GIVEN bpolys = geojson.FeatureCollection([{"type": "Feature", "properties": {"id": 0}, "geometry": {"coordinates": [ [[[13, 51], [13, 51.1], [13.1, 51.1], [13.1, 51], [13, 51]]], [[[14, 51], [14, 51.1], [14.1, 51.1], [14.1, 51], [14, 51]]]], "type": "MultiPolygon"}}]) bpolys_df = gpd.GeoDataFrame().from_features(bpolys) time = "2018-01-01" keys = ["amenity"] values = [""] format = "geojson" properties = ["tags", "metadata"] # WHEN client = ohsome.OhsomeClient() response = client.elements.count.groupBy.boundary.post(bpolys=bpolys_df, time=time, keys=keys, values=values, format=format, properties=properties) result = response.as_geodataframe() del client # THEN assert result["value"][0] == 538 def test_parallel_user(): # GIVEN bpolys = geojson.FeatureCollection([{"type": "Feature", "properties": {"id": 0}, "geometry": {"coordinates": [ [[[13, 51], [13, 51.1], [13.1, 51.1], [13.1, 51], [13, 51]]], [[[14, 51], [14, 51.1], [14.1, 51.1], [14.1, 51], [14, 51]]]], "type": "MultiPolygon"}}, {"type": "Feature", "properties": {"id": 1}, "geometry": {"coordinates": [ [[[13, 51], [13, 51.1], [13.1, 51.1], [13.1, 51], [13, 51]]], [[[14, 51], [14, 51.1], [14.1, 51.1], [14.1, 51], [14, 51]]]], "type": "MultiPolygon"}} ]) bpolys_df = gpd.GeoDataFrame().from_features(bpolys) timeperiod = "2017-01-01,2018-01-01" keys = ["amenity"] values = [""] format = "json" properties = ["metadata"] # WHEN client = ohsome.OhsomeClientParallel(chunksize=1) response = client.users.count.groupBy.boundary.post(bpolys=bpolys_df, time=timeperiod, keys=keys, values=values, format=format, properties=properties) result = response.as_dataframe() del client # THEN assert result["value"][0] == 33.
32.628
125
0.55388
[ "BSD-3-Clause" ]
redfrexx/osm_association_rules
src/ohsome/tests/test_ohsome_client.py
8,157
Python
import os, sys, glob, argparse import logging import types from collections import OrderedDict import torch import torch.nn.functional as F import utils import models import main as entry os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"]="0" def export_onnx(args): model_name = args.model if model_name in models.model_zoo: model, args = models.get_model(args) else: print("model(%s) not support, available models: %r" % (model_name, models.model_zoo)) return if utils.check_file(args.old): print("load pretrained from %s" % args.old) if torch.cuda.is_available(): checkpoint = torch.load(args.old) else: # force cpu mode checkpoint = torch.load(args.old, map_location='cpu') print("load pretrained ==> last epoch: %d" % checkpoint.get('epoch', 0)) print("load pretrained ==> last best_acc: %f" % checkpoint.get('best_acc', 0)) print("load pretrained ==> last learning_rate: %f" % checkpoint.get('learning_rate', 0)) try: utils.load_state_dict(model, checkpoint.get('state_dict', None)) except RuntimeError: print("Loading pretrained model failed") else: print("no pretrained file exists({}), init model with default initlizer". format(args.old)) onnx_model = torch.nn.Sequential(OrderedDict([ ('network', model), ('softmax', torch.nn.Softmax()), ])) onnx_path = "onnx/" + model_name if not os.path.exists(onnx_path): os.makedirs(onnx_path) onnx_save = onnx_path + "/" + model_name + '.onnx' input_names = ["input"] dummy_input = torch.zeros((1, 3, args.input_size, args.input_size)) output_names = ['prob'] torch.onnx.export( onnx_model, dummy_input, onnx_save, verbose=True, input_names=input_names, output_names=output_names, opset_version=7, keep_initializers_as_inputs=True ) def inference(args): from models.quant import custom_conv def init(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=False, args=None, force_fp=False, feature_stride=1): super(custom_conv, self).__init__(in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias) self.args = args self.force_fp = True custom_conv.__init__ = init model_name = args.model if model_name in models.model_zoo: model, args = models.get_model(args) else: print("model(%s) not support, available models: %r" % (model_name, models.model_zoo)) return def forward(self, x): print(x.shape, self.weight.shape, self.kernel_size, self.stride, self.padding, self.dilation, self.groups) output = F.conv2d(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups) return output for m in model.modules(): if isinstance(m, torch.nn.Conv2d): m.forward = types.MethodType(forward, m) input = torch.rand(1, 3, args.input_size, args.input_size) model.forward(input) def get_parameter(): parser = entry.get_parser() parser.add_argument('--old', type=str, default='') parser.add_argument('--new', type=str, default='') parser.add_argument('--mapping_from', '--mf', type=str, default='') parser.add_argument('--mapping_to', '--mt', type=str, default='') parser.add_argument('--verbose_list', default='ratio,sep', type=str) args = parser.parse_args() if isinstance(args.verbose_list, str): args.verbose_list = [x.strip() for x in args.verbose_list.split(',')] if isinstance(args.keyword, str): args.keyword = [x.strip() for x in args.keyword.split(',')] return args def main(): args = get_parameter() args.weights_dir = os.path.join(args.weights_dir, args.model) utils.check_folder(args.weights_dir) if os.path.exists(args.log_dir): utils.setup_logging(os.path.join(args.log_dir, 'tools.txt'), resume=True) config = dict() for i in args.keyword: config[i] = True if 'export_onnx' in config.keys(): export_onnx(args) if 'inference' in config.keys(): inference(args) if 'verbose' in config.keys(): if torch.cuda.is_available(): checkpoint = torch.load(args.old) else: # force cpu mode checkpoint = torch.load(args.old, map_location='cpu') if 'state_dict' in checkpoint: checkpoint = checkpoint['state_dict'] if 'model' in checkpoint: checkpoint = checkpoint['model'] for name, value in checkpoint.items(): if ('quant_activation' in name or 'quant_weight' in name) and name.split('.')[-1] in args.verbose_list: print(name, value.shape, value.requires_grad) print(value.data) elif "all" in args.verbose_list: if 'num_batches_tracked' not in name: if isinstance(value, torch.Tensor): print(name, value.shape, value.requires_grad) elif isinstance(value, int) or isinstance(value, float) or isinstance(value, str): print(name, value, type(value)) else: print(name, type(value)) if 'load' in config.keys() or 'save' in config.keys(): model_name = args.model if model_name in models.model_zoo: model, args = models.get_model(args) else: print("model(%s) not support, available models: %r" % (model_name, models.model_zoo)) return if utils.check_file(args.old): raw = 'raw' in config.keys() if torch.cuda.is_available(): checkpoint = torch.load(args.old) else: # force cpu mode checkpoint = torch.load(args.old, map_location='cpu') try: utils.load_state_dict(model, checkpoint.get('state_dict', None) if not raw else checkpoint, verbose=False) except RuntimeError: print("Loading pretrained model failed") print("Loading pretrained model OK") if 'save' in config.keys() and args.new != '': torch.save(model.state_dict(), args.new) print("Save pretrained model into %s" % args.new) else: print("file not exist %s" % args.old) if 'update' in config.keys(): mapping_from = [] mapping_to = [] if os.path.isfile(args.mapping_from): with open(args.mapping_from) as f: mapping_from = f.readlines() f.close() if os.path.isfile(args.mapping_to): with open(args.mapping_to) as f: mapping_to = f.readlines() f.close() mapping_from = [ i.strip().strip('\n').strip('"').strip("'") for i in mapping_from] mapping_from = [ i for i in mapping_from if len(i) > 0 and i[0] != '#'] mapping_to = [ i.strip().strip('\n').strip('"').strip("'") for i in mapping_to] mapping_to = [ i for i in mapping_to if len(i) > 0 and i[0] != '#'] if len(mapping_to) != len(mapping_from) or len(mapping_to) == 0 or len(mapping_from) == 0: mapping = None logging.info('no valid mapping') else: mapping = dict() for i, k in enumerate(mapping_from): if '{' in k and '}' in k and '{' in mapping_to[i] and '}' in mapping_to[i]: item = k.split('{') for v in item[1].strip('}').split(","): v = v.strip() mapping[item[0] + v] = mapping_to[i].split('{')[0] + v else: mapping[k] = mapping_to[i] raw = 'raw' in config.keys() if not os.path.isfile(args.old): args.old = args.pretrained utils.import_state_dict(args.old, args.new, mapping, raw, raw_prefix=args.case) if 'det-load' in config.keys(): from third_party.checkpoint import DetectionCheckpointer model_name = args.model if model_name in models.model_zoo: model, args = models.get_model(args) else: print("model(%s) not support, available models: %r" % (model_name, models.model_zoo)) return split = os.path.split(args.old) checkpointer = DetectionCheckpointer(model, split[0], save_to_disk=True) checkpointer.resume_or_load(args.old, resume=True) checkpointer.save(split[1]) if 'swap' in config.keys(): mapping_from = [] if os.path.isfile(args.mapping_from): with open(args.mapping_from) as f: mapping_from = f.readlines() f.close() mapping_from = [ i.strip().strip('\n').strip('"').strip("'") for i in mapping_from] mapping_from = [ i for i in mapping_from if len(i) > 0 and i[0] != '#'] lists = args.verbose_list for i in lists: item = i.split('/') interval = (int)(item[0]) index = item[1].split('-') index = [(int)(x) for x in index] if len(mapping_from) % interval == 0 and len(index) <= interval: mapping_to = mapping_from.copy() for j, k in enumerate(index): k = k % interval mapping_to[j::interval] = mapping_from[k::interval] mapping_to= [ i + '\n' for i in mapping_to] with open(args.mapping_from + "-swap", 'w') as f: f.writelines(mapping_to) f.close() if 'sort' in config.keys(): mapping_from = [] if os.path.isfile(args.mapping_from): with open(args.mapping_from) as f: mapping_from = f.readlines() f.close() mapping_from.sort() with open(args.mapping_from + "-sort", 'w') as f: f.writelines(mapping_from) f.close() if 'verify-data' in config.keys() or 'verify-image' in config.keys(): if 'verify-image' in config.keys(): lists = args.verbose_list else: with open(os.path.join(args.root, 'train.txt')) as f: lists = f.readlines() f.close() from PIL import Image from threading import Thread print("going to check %d files" % len(lists)) def check(lists, start, end, index): for i, item in enumerate(lists[start:end]): try: items = item.split() if len(items) >= 1: path = items[0].strip().strip('\n') else: print("skip line %s" % i) continue path = os.path.join(args.root, os.path.join("train", path)) imgs = Image.open(path) imgs.resize((256,256)) if index == 0: print(i, end ="\r", file=sys.stderr) except (RuntimeError, IOError): print("\nError when read image %s" % path) print("\nFinish checking", index) #lists = lists[45000:] num = min(len(lists), 20) for i in range(num): start = len(lists) // num * i end = min(start + len(lists) // num, len(lists)) th = Thread(target=check, args=(lists, start, end, i)) th.start() if __name__ == '__main__': main()
40.234694
158
0.563108
[ "BSD-2-Clause" ]
billhhh/model-quantization-1
tools.py
11,829
Python
from selenium import webdriver #import itertools from openpyxl import Workbook, load_workbook import re import datetime driver = webdriver.Firefox() driver.get("https://www.worldometers.info/coronavirus/") countries = [] cases = [] newCases = [] data = [] casesInt = [] newCasesInt = [] cells = [] cellsB = [] datez = datetime.datetime.now() nowDate = datez.strftime("%d%b%y") for country in range(2,22): countries.append(driver.find_element_by_xpath("//table/tbody[1]/tr[" + str(country) + "]/td[1]").text) for case in range(2,22): cases.append(driver.find_element_by_xpath("//table/tbody[1]/tr[" + str(case) + "]/td[2]").text) for newCase in range(2,22): newCases.append(driver.find_element_by_xpath("//table/tbody[1]/tr[" + str(newCase) + "]/td[3]").text) data = dict(zip(countries, zip(cases, newCases))) #print(data) for case in cases: case = re.sub(r'\D', '', case) casesInt.append(int(case)) for newCase in newCases: if newCase: newCase = re.sub(r'\D', '', newCase) newCasesInt.append(int(newCase)) else: newCasesInt.append(1) percentages = [] for caseInt,newCase in zip(casesInt, newCasesInt): result = caseInt - newCase percentage = round((newCase/result)*100, 2) percentages.append(percentage) #for country, percentage in zip(countries, percentages): # print(country, ":", percentage) wb = Workbook() wb = load_workbook(filename='corona.xlsx') ws = wb.active #for countries column for i in range(2,22): i = str(i) appendValue = 'A' + i appendValueB = 'B' + i cells.append(appendValue) cellsB.append(appendValueB) for i in range(20): ws['A' + str(i+2)] = countries[i] ws['B' + str(i+2)] = percentages[i] wb.save(filename="corona" + nowDate + ".xlsx")
27.672131
103
0.695498
[ "MIT" ]
stephengarn/coronavirus
corona.py
1,688
Python
import glob import os import librosa import numpy as np import tensorflow as tf import sounddevice from sklearn.preprocessing import StandardScaler duration = 0.1 # seconds sample_rate=44100 '''0 = air_conditioner 1 = car_horn 2 = children_playing 3 = dog_bark 4 = drilling 5 = engine_idling 6 = gun_shot 7 = jackhammer 8 = siren 9 = street_music''' def extract_features(): X = sounddevice.rec(int(duration * sample_rate), samplerate=sample_rate, channels=1) sounddevice.wait() X= np.squeeze(X) stft = np.abs(librosa.stft(X)) mfccs = np.array(librosa.feature.mfcc(y=X, sr=sample_rate, n_mfcc=8).T) chroma = np.array(librosa.feature.chroma_stft(S=stft, sr=sample_rate).T) mel = np.array(librosa.feature.melspectrogram(X, sr=sample_rate).T) contrast = np.array(librosa.feature.spectral_contrast(S=stft, sr=sample_rate).T) tonnetz = np.array(librosa.feature.tonnetz(y=librosa.effects.harmonic(X), sr=sample_rate).T) ext_features = np.hstack([mfccs,chroma,mel,contrast,tonnetz]) features = np.vstack([features,ext_features]) return features model_path = "model" fit_params = np.load('fit_params.npy') sc = StandardScaler() sc.fit(fit_params) n_dim = 161 n_classes = 10 n_hidden_units_one = 256 n_hidden_units_two = 256 sd = 1 / np.sqrt(n_dim) learning_rate = 0.01 X = tf.placeholder(tf.float32,[None,n_dim]) Y = tf.placeholder(tf.float32,[None,n_classes]) W_1 = tf.Variable(tf.random_normal([n_dim,n_hidden_units_one], mean = 0, stddev=sd)) b_1 = tf.Variable(tf.random_normal([n_hidden_units_one], mean = 0, stddev=sd)) h_1 = tf.nn.tanh(tf.matmul(X,W_1) + b_1) W_2 = tf.Variable(tf.random_normal([n_hidden_units_one,n_hidden_units_two], mean = 0, stddev=sd)) b_2 = tf.Variable(tf.random_normal([n_hidden_units_two], mean = 0, stddev=sd)) h_2 = tf.nn.sigmoid(tf.matmul(h_1,W_2) + b_2) W = tf.Variable(tf.random_normal([n_hidden_units_two,n_classes], mean = 0, stddev=sd)) b = tf.Variable(tf.random_normal([n_classes], mean = 0, stddev=sd)) y_ = tf.nn.softmax(tf.matmul(h_2,W) + b) init = tf.global_variables_initializer() saver = tf.train.Saver() y_true, y_pred = None, None with tf.Session() as sess: saver.restore(sess, model_path) print "Model loaded" sess.run(tf.global_variables()) while 1: feat = extract_features() feat = sc.transform(feat) y_pred = sess.run(tf.argmax(y_, 1), feed_dict={X: feat}) print y_pred
28.08046
97
0.715104
[ "MIT" ]
GianlucaPaolocci/SMProject
classiPi.py
2,443
Python
import epaper2in13 from machine import Pin,SPI from time import sleep_ms # SPI #2 on ESP32 spi = SPI(2,baudrate=2000000, polarity=0, phase=0) # miso=Pin(12), mosi=Pin(23), sck=Pin(18)) cs = Pin(5) dc = Pin(2) rst = Pin(15) busy = Pin(4) e = epaper2in13.EPD(spi, cs, dc, rst, busy) e.init(e.FULL_UPDATE) y_start = 6 # Y addresses start at 6 due to the memory layout import framebuf buf = bytearray(e.width * e.height // 8) fb = framebuf.FrameBuffer(buf, e.height, e.width, framebuf.MONO_VLSB) # -------------------- fb.fill(0) fb.text('MicroPython!', 2, y_start + 2, 0xffff) fb.rect(0, y_start, 250, 122, 0xffff) e.set_frame_memory(buf,0,0,e.width,e.height) e.display_frame() sleep_ms(2000) # wait for 2 seconds before doing a partial update # -------------------- e.init(e.PART_UPDATE) fb = framebuf.FrameBuffer(buf, 200, 32, framebuf.MONO_VLSB) fb.fill(0x0) for i in range(0,32/2-1,2): fb.rect(i, i, 200-i*2, 32-i*2, 0xffff) e.set_frame_memory(buf,8,32,32,200) # 8px from bottom, 25px from left e.display_frame()
23
93
0.671498
[ "MIT" ]
piratebriggs/micropython-waveshare-epaper
examples/2in13-hello-world/test.py
1,035
Python
import datetime import os import typing from dataclasses import dataclass import pandas import pytest from dataclasses_json import dataclass_json import flytekit from flytekit import ContainerTask, SQLTask, dynamic, kwtypes, maptask from flytekit.common.translator import get_serializable from flytekit.core import context_manager, launch_plan, promise from flytekit.core.condition import conditional from flytekit.core.context_manager import ExecutionState, Image, ImageConfig from flytekit.core.node import Node from flytekit.core.promise import NodeOutput, Promise, VoidPromise from flytekit.core.resources import Resources from flytekit.core.task import TaskMetadata, task from flytekit.core.testing import patch, task_mock from flytekit.core.type_engine import RestrictedTypeError, TypeEngine from flytekit.core.workflow import workflow from flytekit.interfaces.data.data_proxy import FileAccessProvider from flytekit.models.core import types as _core_types from flytekit.models.interface import Parameter from flytekit.models.task import Resources as _resource_models from flytekit.models.types import LiteralType from flytekit.types.schema import FlyteSchema, SchemaOpenMode def test_default_wf_params_works(): @task def my_task(a: int): wf_params = flytekit.current_context() assert wf_params.execution_id == "ex:local:local:local" my_task(a=3) def test_simple_input_output(): @task def my_task(a: int) -> typing.NamedTuple("OutputsBC", b=int, c=str): ctx = flytekit.current_context() assert ctx.execution_id == "ex:local:local:local" return a + 2, "hello world" assert my_task(a=3) == (5, "hello world") def test_simple_input_no_output(): @task def my_task(a: int): pass assert my_task(a=3) is None ctx = context_manager.FlyteContext.current_context() with ctx.new_compilation_context() as ctx: outputs = my_task(a=3) assert isinstance(outputs, VoidPromise) def test_single_output(): @task def my_task() -> str: return "Hello world" assert my_task() == "Hello world" ctx = context_manager.FlyteContext.current_context() with ctx.new_compilation_context() as ctx: outputs = my_task() assert ctx.compilation_state is not None nodes = ctx.compilation_state.nodes assert len(nodes) == 1 assert outputs.is_ready is False assert outputs.ref.node is nodes[0] def test_engine_file_output(): basic_blob_type = _core_types.BlobType(format="", dimensionality=_core_types.BlobType.BlobDimensionality.SINGLE,) fs = FileAccessProvider(local_sandbox_dir="/tmp/flytetesting") with context_manager.FlyteContext.current_context().new_file_access_context(file_access_provider=fs) as ctx: # Write some text to a file not in that directory above test_file_location = "/tmp/sample.txt" with open(test_file_location, "w") as fh: fh.write("Hello World\n") lit = TypeEngine.to_literal(ctx, test_file_location, os.PathLike, LiteralType(blob=basic_blob_type)) # Since we're using local as remote, we should be able to just read the file from the 'remote' location. with open(lit.scalar.blob.uri, "r") as fh: assert fh.readline() == "Hello World\n" # We should also be able to turn the thing back into regular python native thing. redownloaded_local_file_location = TypeEngine.to_python_value(ctx, lit, os.PathLike) with open(redownloaded_local_file_location, "r") as fh: assert fh.readline() == "Hello World\n" def test_wf1(): @task def t1(a: int) -> typing.NamedTuple("OutputsBC", t1_int_output=int, c=str): return a + 2, "world" @task def t2(a: str, b: str) -> str: return b + a @workflow def my_wf(a: int, b: str) -> (int, str): x, y = t1(a=a) d = t2(a=y, b=b) return x, d assert len(my_wf._nodes) == 2 assert my_wf._nodes[0].id == "n0" assert my_wf._nodes[1]._upstream_nodes[0] is my_wf._nodes[0] assert len(my_wf._output_bindings) == 2 assert my_wf._output_bindings[0].var == "o0" assert my_wf._output_bindings[0].binding.promise.var == "t1_int_output" nt = typing.NamedTuple("SingleNT", t1_int_output=float) @task def t3(a: int) -> nt: return (a + 2,) assert t3.python_interface.output_tuple_name == "SingleNT" assert t3.interface.outputs["t1_int_output"] is not None def test_wf1_run(): @task def t1(a: int) -> typing.NamedTuple("OutputsBC", t1_int_output=int, c=str): return a + 2, "world" @task def t2(a: str, b: str) -> str: return b + a @workflow def my_wf(a: int, b: str) -> (int, str): x, y = t1(a=a) d = t2(a=y, b=b) return x, d x = my_wf(a=5, b="hello ") assert x == (7, "hello world") @workflow def my_wf2(a: int, b: str) -> (int, str): tup = t1(a=a) d = t2(a=tup.c, b=b) return tup.t1_int_output, d x = my_wf2(a=5, b="hello ") assert x == (7, "hello world") def test_wf1_with_overrides(): @task def t1(a: int) -> typing.NamedTuple("OutputsBC", t1_int_output=int, c=str): return a + 2, "world" @task def t2(a: str, b: str) -> str: return b + a @workflow def my_wf(a: int, b: str) -> (int, str): x, y = t1(a=a).with_overrides(name="x") d = t2(a=y, b=b).with_overrides() return x, d x = my_wf(a=5, b="hello ") assert x == (7, "hello world") def test_wf1_with_list_of_inputs(): @task def t1(a: int) -> typing.NamedTuple("OutputsBC", t1_int_output=int, c=str): return a + 2, "world" @task def t2(a: typing.List[str]) -> str: return " ".join(a) @workflow def my_wf(a: int, b: str) -> (int, str): xx, yy = t1(a=a) d = t2(a=[b, yy]) return xx, d x = my_wf(a=5, b="hello") assert x == (7, "hello world") @workflow def my_wf2(a: int, b: str) -> int: x, y = t1(a=a) t2(a=[b, y]) return x x = my_wf2(a=5, b="hello") assert x == 7 def test_wf_output_mismatch(): with pytest.raises(AssertionError): @workflow def my_wf(a: int, b: str) -> (int, str): return a with pytest.raises(AssertionError): @workflow def my_wf2(a: int, b: str) -> int: return a, b @workflow def my_wf3(a: int, b: str) -> int: return (a,) my_wf3(a=10, b="hello") def test_promise_return(): """ Testing that when a workflow is local executed but a local wf execution context already exists, Promise objects are returned wrapping Flyte literals instead of the unpacked dict. """ @task def t1(a: int) -> typing.NamedTuple("OutputsBC", t1_int_output=int, c=str): a = a + 2 return a, "world-" + str(a) @workflow def mimic_sub_wf(a: int) -> (str, str): x, y = t1(a=a) u, v = t1(a=x) return y, v ctx = context_manager.FlyteContext.current_context() with ctx.new_execution_context(mode=ExecutionState.Mode.LOCAL_WORKFLOW_EXECUTION) as ctx: a, b = mimic_sub_wf(a=3) assert isinstance(a, promise.Promise) assert isinstance(b, promise.Promise) assert a.val.scalar.value.string_value == "world-5" assert b.val.scalar.value.string_value == "world-7" def test_wf1_with_sql(): sql = SQLTask( "my-query", query_template="SELECT * FROM hive.city.fact_airport_sessions WHERE ds = '{{ .Inputs.ds }}' LIMIT 10", inputs=kwtypes(ds=datetime.datetime), outputs=kwtypes(results=FlyteSchema), metadata=TaskMetadata(retries=2), ) @task def t1() -> datetime.datetime: return datetime.datetime.now() @workflow def my_wf() -> FlyteSchema: dt = t1() return sql(ds=dt) with task_mock(sql) as mock: mock.return_value = pandas.DataFrame(data={"x": [1, 2], "y": ["3", "4"]}) assert (my_wf().open().all() == pandas.DataFrame(data={"x": [1, 2], "y": ["3", "4"]})).all().all() def test_wf1_with_sql_with_patch(): sql = SQLTask( "my-query", query_template="SELECT * FROM hive.city.fact_airport_sessions WHERE ds = '{{ .Inputs.ds }}' LIMIT 10", inputs=kwtypes(ds=datetime.datetime), outputs=kwtypes(results=FlyteSchema), metadata=TaskMetadata(retries=2), ) @task def t1() -> datetime.datetime: return datetime.datetime.now() @workflow def my_wf() -> FlyteSchema: dt = t1() return sql(ds=dt) @patch(sql) def test_user_demo_test(mock_sql): mock_sql.return_value = pandas.DataFrame(data={"x": [1, 2], "y": ["3", "4"]}) assert (my_wf().open().all() == pandas.DataFrame(data={"x": [1, 2], "y": ["3", "4"]})).all().all() # Have to call because tests inside tests don't run test_user_demo_test() def test_wf1_with_map(): @task def t1(a: int) -> typing.NamedTuple("OutputsBC", t1_int_output=int, c=str): a = a + 2 return a, "world-" + str(a) @task def t2(a: typing.List[int], b: typing.List[str]) -> (int, str): ra = 0 for x in a: ra += x rb = "" for x in b: rb += x return ra, rb @workflow def my_wf(a: typing.List[int]) -> (int, str): x, y = maptask(t1, metadata=TaskMetadata(retries=1))(a=a) return t2(a=x, b=y) x = my_wf(a=[5, 6]) assert x == (15, "world-7world-8") def test_wf1_compile_time_constant_vars(): @task def t1(a: int) -> typing.NamedTuple("OutputsBC", t1_int_output=int, c=str): return a + 2, "world" @task def t2(a: str, b: str) -> str: return b + a @workflow def my_wf(a: int, b: str) -> (int, str): x, y = t1(a=a) d = t2(a="This is my way", b=b) return x, d x = my_wf(a=5, b="hello ") assert x == (7, "hello This is my way") def test_wf1_with_constant_return(): @task def t1(a: int) -> typing.NamedTuple("OutputsBC", t1_int_output=int, c=str): return a + 2, "world" @task def t2(a: str, b: str) -> str: return b + a @workflow def my_wf(a: int, b: str) -> (int, str): x, y = t1(a=a) t2(a="This is my way", b=b) return x, "A constant output" x = my_wf(a=5, b="hello ") assert x == (7, "A constant output") @workflow def my_wf2(a: int, b: str) -> int: t1(a=a) t2(a="This is my way", b=b) return 10 assert my_wf2(a=5, b="hello ") == 10 def test_wf1_with_dynamic(): @task def t1(a: int) -> str: a = a + 2 return "world-" + str(a) @task def t2(a: str, b: str) -> str: return b + a @dynamic def my_subwf(a: int) -> typing.List[str]: s = [] for i in range(a): s.append(t1(a=i)) return s @workflow def my_wf(a: int, b: str) -> (str, typing.List[str]): x = t2(a=b, b=b) v = my_subwf(a=a) return x, v v = 5 x = my_wf(a=v, b="hello ") assert x == ("hello hello ", ["world-" + str(i) for i in range(2, v + 2)]) with context_manager.FlyteContext.current_context().new_serialization_settings( serialization_settings=context_manager.SerializationSettings( project="test_proj", domain="test_domain", version="abc", image_config=ImageConfig(Image(name="name", fqn="image", tag="name")), env={}, ) ) as ctx: with ctx.new_execution_context(mode=ExecutionState.Mode.TASK_EXECUTION) as ctx: dynamic_job_spec = my_subwf.compile_into_workflow(ctx, my_subwf._task_function, a=5) assert len(dynamic_job_spec._nodes) == 5 def test_list_output(): @task def t1(a: int) -> str: a = a + 2 return "world-" + str(a) @workflow def lister() -> typing.List[str]: s = [] # FYI: For users who happen to look at this, keep in mind this is only run once at compile time. for i in range(10): s.append(t1(a=i)) return s assert len(lister.interface.outputs) == 1 binding_data = lister._output_bindings[0].binding # the property should be named binding_data assert binding_data.collection is not None assert len(binding_data.collection.bindings) == 10 def test_comparison_refs(): def dummy_node(node_id) -> Node: n = Node( node_id, metadata=None, bindings=[], upstream_nodes=[], flyte_entity=SQLTask(name="x", query_template="x", inputs={}), ) n._id = node_id return n px = Promise("x", NodeOutput(var="x", node=dummy_node("n1"))) py = Promise("y", NodeOutput(var="y", node=dummy_node("n2"))) def print_expr(expr): print(f"{expr} is type {type(expr)}") print_expr(px == py) print_expr(px < py) print_expr((px == py) & (px < py)) print_expr(((px == py) & (px < py)) | (px > py)) print_expr(px < 5) print_expr(px >= 5) def test_comparison_lits(): px = Promise("x", TypeEngine.to_literal(None, 5, int, None)) py = Promise("y", TypeEngine.to_literal(None, 8, int, None)) def eval_expr(expr, expected: bool): print(f"{expr} evals to {expr.eval()}") assert expected == expr.eval() eval_expr(px == py, False) eval_expr(px < py, True) eval_expr((px == py) & (px < py), False) eval_expr(((px == py) & (px < py)) | (px > py), False) eval_expr(px < 5, False) eval_expr(px >= 5, True) eval_expr(py >= 5, True) def test_wf1_branches(): @task def t1(a: int) -> typing.NamedTuple("OutputsBC", t1_int_output=int, c=str): return a + 2, "world" @task def t2(a: str) -> str: return a @workflow def my_wf(a: int, b: str) -> (int, str): x, y = t1(a=a) d = ( conditional("test1") .if_(x == 4) .then(t2(a=b)) .elif_(x >= 5) .then(t2(a=y)) .else_() .fail("Unable to choose branch") ) f = conditional("test2").if_(d == "hello ").then(t2(a="It is hello")).else_().then(t2(a="Not Hello!")) return x, f x = my_wf(a=5, b="hello ") assert x == (7, "Not Hello!") x = my_wf(a=2, b="hello ") assert x == (4, "It is hello") def test_wf1_branches_no_else(): with pytest.raises(NotImplementedError): def foo(): @task def t1(a: int) -> typing.NamedTuple("OutputsBC", t1_int_output=int, c=str): return a + 2, "world" @task def t2(a: str) -> str: return a @workflow def my_wf(a: int, b: str) -> (int, str): x, y = t1(a=a) d = conditional("test1").if_(x == 4).then(t2(a=b)).elif_(x >= 5).then(t2(a=y)) conditional("test2").if_(x == 4).then(t2(a=b)).elif_(x >= 5).then(t2(a=y)).else_().fail("blah") return x, d foo() def test_wf1_branches_failing(): @task def t1(a: int) -> typing.NamedTuple("OutputsBC", t1_int_output=int, c=str): return a + 2, "world" @task def t2(a: str) -> str: return a @workflow def my_wf(a: int, b: str) -> (int, str): x, y = t1(a=a) d = ( conditional("test1") .if_(x == 4) .then(t2(a=b)) .elif_(x >= 5) .then(t2(a=y)) .else_() .fail("All Branches failed") ) return x, d with pytest.raises(ValueError): my_wf(a=1, b="hello ") def test_cant_use_normal_tuples(): with pytest.raises(RestrictedTypeError): @task def t1(a: str) -> tuple: return (a, 3) def test_wf1_df(): @task def t1(a: int) -> pandas.DataFrame: return pandas.DataFrame(data={"col1": [a, 2], "col2": [a, 4]}) @task def t2(df: pandas.DataFrame) -> pandas.DataFrame: return df.append(pandas.DataFrame(data={"col1": [5, 10], "col2": [5, 10]})) @workflow def my_wf(a: int) -> pandas.DataFrame: df = t1(a=a) return t2(df=df) x = my_wf(a=20) assert isinstance(x, pandas.DataFrame) result_df = x.reset_index(drop=True) == pandas.DataFrame( data={"col1": [20, 2, 5, 10], "col2": [20, 4, 5, 10]} ).reset_index(drop=True) assert result_df.all().all() def test_lp_serialize(): @task def t1(a: int) -> typing.NamedTuple("OutputsBC", t1_int_output=int, c=str): a = a + 2 return a, "world-" + str(a) @task def t2(a: str, b: str) -> str: return b + a @workflow def my_subwf(a: int) -> (str, str): x, y = t1(a=a) u, v = t1(a=x) return y, v lp = launch_plan.LaunchPlan.create("serialize_test1", my_subwf) lp_with_defaults = launch_plan.LaunchPlan.create("serialize_test2", my_subwf, default_inputs={"a": 3}) serialization_settings = context_manager.SerializationSettings( project="proj", domain="dom", version="123", image_config=ImageConfig(Image(name="name", fqn="asdf/fdsa", tag="123")), env={}, ) sdk_lp = get_serializable(serialization_settings, lp) assert len(sdk_lp.default_inputs.parameters) == 0 assert len(sdk_lp.fixed_inputs.literals) == 0 sdk_lp = get_serializable(serialization_settings, lp_with_defaults) assert len(sdk_lp.default_inputs.parameters) == 1 assert len(sdk_lp.fixed_inputs.literals) == 0 # Adding a check to make sure oneof is respected. Tricky with booleans... if a default is specified, the # required field needs to be None, not False. parameter_a = sdk_lp.default_inputs.parameters["a"] parameter_a = Parameter.from_flyte_idl(parameter_a.to_flyte_idl()) assert parameter_a.default is not None def test_wf_container_task(): @task def t1(a: int) -> (int, str): return a + 2, str(a) + "-HELLO" t2 = ContainerTask( "raw", image="alpine", inputs=kwtypes(a=int, b=str), input_data_dir="/tmp", output_data_dir="/tmp", command=["cat"], arguments=["/tmp/a"], ) def wf(a: int): x, y = t1(a=a) t2(a=x, b=y) with task_mock(t2) as mock: mock.side_effect = lambda a, b: None assert t2(a=10, b="hello") is None wf(a=10) def test_wf_container_task_multiple(): square = ContainerTask( name="square", input_data_dir="/var/inputs", output_data_dir="/var/outputs", inputs=kwtypes(val=int), outputs=kwtypes(out=int), image="alpine", command=["sh", "-c", "echo $(( {{.Inputs.val}} * {{.Inputs.val}} )) | tee /var/outputs/out"], ) sum = ContainerTask( name="sum", input_data_dir="/var/flyte/inputs", output_data_dir="/var/flyte/outputs", inputs=kwtypes(x=int, y=int), outputs=kwtypes(out=int), image="alpine", command=["sh", "-c", "echo $(( {{.Inputs.x}} + {{.Inputs.y}} )) | tee /var/flyte/outputs/out"], ) @workflow def raw_container_wf(val1: int, val2: int) -> int: return sum(x=square(val=val1), y=square(val=val2)) with task_mock(square) as square_mock, task_mock(sum) as sum_mock: square_mock.side_effect = lambda val: val * val assert square(val=10) == 100 sum_mock.side_effect = lambda x, y: x + y assert sum(x=10, y=10) == 20 assert raw_container_wf(val1=10, val2=10) == 200 def test_wf_tuple_fails(): with pytest.raises(RestrictedTypeError): @task def t1(a: tuple) -> (int, str): return a[0] + 2, str(a) + "-HELLO" def test_wf_typed_schema(): schema1 = FlyteSchema[kwtypes(x=int, y=str)] @task def t1() -> schema1: s = schema1() s.open().write(pandas.DataFrame(data={"x": [1, 2], "y": ["3", "4"]})) return s @task def t2(s: FlyteSchema[kwtypes(x=int, y=str)]) -> FlyteSchema[kwtypes(x=int)]: df = s.open().all() return df[s.column_names()[:-1]] @workflow def wf() -> FlyteSchema[kwtypes(x=int)]: return t2(s=t1()) w = t1() assert w is not None df = w.open(override_mode=SchemaOpenMode.READ).all() result_df = df.reset_index(drop=True) == pandas.DataFrame(data={"x": [1, 2], "y": ["3", "4"]}).reset_index( drop=True ) assert result_df.all().all() df = t2(s=w.as_readonly()) assert df is not None result_df = df.reset_index(drop=True) == pandas.DataFrame(data={"x": [1, 2]}).reset_index(drop=True) assert result_df.all().all() x = wf() df = x.open().all() result_df = df.reset_index(drop=True) == pandas.DataFrame(data={"x": [1, 2]}).reset_index(drop=True) assert result_df.all().all() def test_wf_schema_to_df(): schema1 = FlyteSchema[kwtypes(x=int, y=str)] @task def t1() -> schema1: s = schema1() s.open().write(pandas.DataFrame(data={"x": [1, 2], "y": ["3", "4"]})) return s @task def t2(df: pandas.DataFrame) -> int: return len(df.columns.values) @workflow def wf() -> int: return t2(df=t1()) x = wf() assert x == 2 def test_dict_wf_with_constants(): @task def t1(a: int) -> typing.NamedTuple("OutputsBC", t1_int_output=int, c=str): return a + 2, "world" @task def t2(a: typing.Dict[str, str]) -> str: return " ".join([v for k, v in a.items()]) @workflow def my_wf(a: int, b: str) -> (int, str): x, y = t1(a=a) d = t2(a={"key1": b, "key2": y}) return x, d x = my_wf(a=5, b="hello") assert x == (7, "hello world") def test_dict_wf_with_conversion(): @task def t1(a: int) -> typing.Dict[str, str]: return {"a": str(a)} @task def t2(a: dict) -> str: print(f"HAHAH {a}") return " ".join([v for k, v in a.items()]) @workflow def my_wf(a: int) -> str: return t2(a=t1(a=a)) with pytest.raises(TypeError): my_wf(a=5) def test_wf_with_empty_dict(): @task def t1() -> typing.Dict: return {} @task def t2(d: typing.Dict): assert d == {} @workflow def wf(): d = t1() t2(d=d) wf() def test_wf_with_catching_no_return(): @task def t1() -> typing.Dict: return {} @task def t2(d: typing.Dict): assert d == {} @task def t3(s: str): pass with pytest.raises(AssertionError): @workflow def wf(): d = t1() # The following statement is wrong, this should not be allowed to pass to another task x = t2(d=d) # Passing x is wrong in this case t3(s=x) wf() def test_wf_custom_types_missing_dataclass_json(): with pytest.raises(AssertionError): @dataclass class MyCustomType(object): pass @task def t1(a: int) -> MyCustomType: return MyCustomType() def test_wf_custom_types(): @dataclass_json @dataclass class MyCustomType(object): x: int y: str @task def t1(a: int) -> MyCustomType: return MyCustomType(x=a, y="t1") @task def t2(a: MyCustomType, b: str) -> (MyCustomType, int): return MyCustomType(x=a.x, y=f"{a.y} {b}"), 5 @workflow def my_wf(a: int, b: str) -> (MyCustomType, int): return t2(a=t1(a=a), b=b) c, v = my_wf(a=10, b="hello") assert v == 5 assert c.x == 10 assert c.y == "t1 hello" def test_arbit_class(): class Foo(object): pass with pytest.raises(ValueError): @task def t1(a: int) -> Foo: return Foo() def test_dataclass_more(): @dataclass_json @dataclass class Datum(object): x: int y: str z: typing.Dict[int, str] @task def stringify(x: int) -> Datum: return Datum(x=x, y=str(x), z={x: str(x)}) @task def add(x: Datum, y: Datum) -> Datum: x.z.update(y.z) return Datum(x=x.x + y.x, y=x.y + y.y, z=x.z) @workflow def wf(x: int, y: int) -> Datum: return add(x=stringify(x=x), y=stringify(x=y)) wf(x=10, y=20) def test_environment(): @task(environment={"FOO": "foofoo", "BAZ": "baz"}) def t1(a: int) -> str: a = a + 2 return "now it's " + str(a) @workflow def my_wf(a: int) -> str: x = t1(a=a) return x serialization_settings = context_manager.SerializationSettings( project="test_proj", domain="test_domain", version="abc", image_config=ImageConfig(Image(name="name", fqn="image", tag="name")), env={"FOO": "foo", "BAR": "bar"}, ) with context_manager.FlyteContext.current_context().new_compilation_context(): sdk_task = get_serializable(serialization_settings, t1) assert sdk_task.container.env == {"FOO": "foofoo", "BAR": "bar", "BAZ": "baz"} def test_resources(): @task(requests=Resources(cpu="1"), limits=Resources(cpu="2", mem="400M")) def t1(a: int) -> str: a = a + 2 return "now it's " + str(a) @task(requests=Resources(cpu="3")) def t2(a: int) -> str: a = a + 200 return "now it's " + str(a) @workflow def my_wf(a: int) -> str: x = t1(a=a) return x serialization_settings = context_manager.SerializationSettings( project="test_proj", domain="test_domain", version="abc", image_config=ImageConfig(Image(name="name", fqn="image", tag="name")), env={}, ) with context_manager.FlyteContext.current_context().new_compilation_context(): sdk_task = get_serializable(serialization_settings, t1) assert sdk_task.container.resources.requests == [ _resource_models.ResourceEntry(_resource_models.ResourceName.CPU, "1") ] assert sdk_task.container.resources.limits == [ _resource_models.ResourceEntry(_resource_models.ResourceName.CPU, "2"), _resource_models.ResourceEntry(_resource_models.ResourceName.MEMORY, "400M"), ] sdk_task2 = get_serializable(serialization_settings, t2) assert sdk_task2.container.resources.requests == [ _resource_models.ResourceEntry(_resource_models.ResourceName.CPU, "3") ] assert sdk_task2.container.resources.limits == [] def test_wf_explicitly_returning_empty_task(): @task def t1(): ... @workflow def my_subwf(): return t1() # This forces the wf _local_execute to handle VoidPromises assert my_subwf() is None
27.333333
117
0.5814
[ "Apache-2.0" ]
ThomVett/flytek
tests/flytekit/unit/core/test_type_hints.py
26,978
Python
# coding=utf-8 # *** WARNING: this file was generated by pulumigen. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from ... import meta as _meta __all__ = ['CSIStorageCapacityArgs', 'CSIStorageCapacity'] @pulumi.input_type class CSIStorageCapacityArgs: def __init__(__self__, *, storage_class_name: pulumi.Input[str], api_version: Optional[pulumi.Input[str]] = None, capacity: Optional[pulumi.Input[str]] = None, kind: Optional[pulumi.Input[str]] = None, maximum_volume_size: Optional[pulumi.Input[str]] = None, metadata: Optional[pulumi.Input['_meta.v1.ObjectMetaArgs']] = None, node_topology: Optional[pulumi.Input['_meta.v1.LabelSelectorArgs']] = None): """ The set of arguments for constructing a CSIStorageCapacity resource. :param pulumi.Input[str] storage_class_name: The name of the StorageClass that the reported capacity applies to. It must meet the same requirements as the name of a StorageClass object (non-empty, DNS subdomain). If that object no longer exists, the CSIStorageCapacity object is obsolete and should be removed by its creator. This field is immutable. :param pulumi.Input[str] api_version: APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#resources :param pulumi.Input[str] capacity: Capacity is the value reported by the CSI driver in its GetCapacityResponse for a GetCapacityRequest with topology and parameters that match the previous fields. The semantic is currently (CSI spec 1.2) defined as: The available capacity, in bytes, of the storage that can be used to provision volumes. If not set, that information is currently unavailable and treated like zero capacity. :param pulumi.Input[str] kind: Kind is a string value representing the REST resource this object represents. Servers may infer this from the endpoint the client submits requests to. Cannot be updated. In CamelCase. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds :param pulumi.Input[str] maximum_volume_size: MaximumVolumeSize is the value reported by the CSI driver in its GetCapacityResponse for a GetCapacityRequest with topology and parameters that match the previous fields. This is defined since CSI spec 1.4.0 as the largest size that may be used in a CreateVolumeRequest.capacity_range.required_bytes field to create a volume with the same parameters as those in GetCapacityRequest. The corresponding value in the Kubernetes API is ResourceRequirements.Requests in a volume claim. :param pulumi.Input['_meta.v1.ObjectMetaArgs'] metadata: Standard object's metadata. The name has no particular meaning. It must be be a DNS subdomain (dots allowed, 253 characters). To ensure that there are no conflicts with other CSI drivers on the cluster, the recommendation is to use csisc-<uuid>, a generated name, or a reverse-domain name which ends with the unique CSI driver name. Objects are namespaced. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata :param pulumi.Input['_meta.v1.LabelSelectorArgs'] node_topology: NodeTopology defines which nodes have access to the storage for which capacity was reported. If not set, the storage is not accessible from any node in the cluster. If empty, the storage is accessible from all nodes. This field is immutable. """ pulumi.set(__self__, "storage_class_name", storage_class_name) if api_version is not None: pulumi.set(__self__, "api_version", 'storage.k8s.io/v1beta1') if capacity is not None: pulumi.set(__self__, "capacity", capacity) if kind is not None: pulumi.set(__self__, "kind", 'CSIStorageCapacity') if maximum_volume_size is not None: pulumi.set(__self__, "maximum_volume_size", maximum_volume_size) if metadata is not None: pulumi.set(__self__, "metadata", metadata) if node_topology is not None: pulumi.set(__self__, "node_topology", node_topology) @property @pulumi.getter(name="storageClassName") def storage_class_name(self) -> pulumi.Input[str]: """ The name of the StorageClass that the reported capacity applies to. It must meet the same requirements as the name of a StorageClass object (non-empty, DNS subdomain). If that object no longer exists, the CSIStorageCapacity object is obsolete and should be removed by its creator. This field is immutable. """ return pulumi.get(self, "storage_class_name") @storage_class_name.setter def storage_class_name(self, value: pulumi.Input[str]): pulumi.set(self, "storage_class_name", value) @property @pulumi.getter(name="apiVersion") def api_version(self) -> Optional[pulumi.Input[str]]: """ APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#resources """ return pulumi.get(self, "api_version") @api_version.setter def api_version(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "api_version", value) @property @pulumi.getter def capacity(self) -> Optional[pulumi.Input[str]]: """ Capacity is the value reported by the CSI driver in its GetCapacityResponse for a GetCapacityRequest with topology and parameters that match the previous fields. The semantic is currently (CSI spec 1.2) defined as: The available capacity, in bytes, of the storage that can be used to provision volumes. If not set, that information is currently unavailable and treated like zero capacity. """ return pulumi.get(self, "capacity") @capacity.setter def capacity(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "capacity", value) @property @pulumi.getter def kind(self) -> Optional[pulumi.Input[str]]: """ Kind is a string value representing the REST resource this object represents. Servers may infer this from the endpoint the client submits requests to. Cannot be updated. In CamelCase. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds """ return pulumi.get(self, "kind") @kind.setter def kind(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "kind", value) @property @pulumi.getter(name="maximumVolumeSize") def maximum_volume_size(self) -> Optional[pulumi.Input[str]]: """ MaximumVolumeSize is the value reported by the CSI driver in its GetCapacityResponse for a GetCapacityRequest with topology and parameters that match the previous fields. This is defined since CSI spec 1.4.0 as the largest size that may be used in a CreateVolumeRequest.capacity_range.required_bytes field to create a volume with the same parameters as those in GetCapacityRequest. The corresponding value in the Kubernetes API is ResourceRequirements.Requests in a volume claim. """ return pulumi.get(self, "maximum_volume_size") @maximum_volume_size.setter def maximum_volume_size(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "maximum_volume_size", value) @property @pulumi.getter def metadata(self) -> Optional[pulumi.Input['_meta.v1.ObjectMetaArgs']]: """ Standard object's metadata. The name has no particular meaning. It must be be a DNS subdomain (dots allowed, 253 characters). To ensure that there are no conflicts with other CSI drivers on the cluster, the recommendation is to use csisc-<uuid>, a generated name, or a reverse-domain name which ends with the unique CSI driver name. Objects are namespaced. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata """ return pulumi.get(self, "metadata") @metadata.setter def metadata(self, value: Optional[pulumi.Input['_meta.v1.ObjectMetaArgs']]): pulumi.set(self, "metadata", value) @property @pulumi.getter(name="nodeTopology") def node_topology(self) -> Optional[pulumi.Input['_meta.v1.LabelSelectorArgs']]: """ NodeTopology defines which nodes have access to the storage for which capacity was reported. If not set, the storage is not accessible from any node in the cluster. If empty, the storage is accessible from all nodes. This field is immutable. """ return pulumi.get(self, "node_topology") @node_topology.setter def node_topology(self, value: Optional[pulumi.Input['_meta.v1.LabelSelectorArgs']]): pulumi.set(self, "node_topology", value) class CSIStorageCapacity(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, api_version: Optional[pulumi.Input[str]] = None, capacity: Optional[pulumi.Input[str]] = None, kind: Optional[pulumi.Input[str]] = None, maximum_volume_size: Optional[pulumi.Input[str]] = None, metadata: Optional[pulumi.Input[pulumi.InputType['_meta.v1.ObjectMetaArgs']]] = None, node_topology: Optional[pulumi.Input[pulumi.InputType['_meta.v1.LabelSelectorArgs']]] = None, storage_class_name: Optional[pulumi.Input[str]] = None, __props__=None): """ CSIStorageCapacity stores the result of one CSI GetCapacity call. For a given StorageClass, this describes the available capacity in a particular topology segment. This can be used when considering where to instantiate new PersistentVolumes. For example this can express things like: - StorageClass "standard" has "1234 GiB" available in "topology.kubernetes.io/zone=us-east1" - StorageClass "localssd" has "10 GiB" available in "kubernetes.io/hostname=knode-abc123" The following three cases all imply that no capacity is available for a certain combination: - no object exists with suitable topology and storage class name - such an object exists, but the capacity is unset - such an object exists, but the capacity is zero The producer of these objects can decide which approach is more suitable. They are consumed by the kube-scheduler if the CSIStorageCapacity beta feature gate is enabled there and a CSI driver opts into capacity-aware scheduling with CSIDriver.StorageCapacity. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] api_version: APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#resources :param pulumi.Input[str] capacity: Capacity is the value reported by the CSI driver in its GetCapacityResponse for a GetCapacityRequest with topology and parameters that match the previous fields. The semantic is currently (CSI spec 1.2) defined as: The available capacity, in bytes, of the storage that can be used to provision volumes. If not set, that information is currently unavailable and treated like zero capacity. :param pulumi.Input[str] kind: Kind is a string value representing the REST resource this object represents. Servers may infer this from the endpoint the client submits requests to. Cannot be updated. In CamelCase. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds :param pulumi.Input[str] maximum_volume_size: MaximumVolumeSize is the value reported by the CSI driver in its GetCapacityResponse for a GetCapacityRequest with topology and parameters that match the previous fields. This is defined since CSI spec 1.4.0 as the largest size that may be used in a CreateVolumeRequest.capacity_range.required_bytes field to create a volume with the same parameters as those in GetCapacityRequest. The corresponding value in the Kubernetes API is ResourceRequirements.Requests in a volume claim. :param pulumi.Input[pulumi.InputType['_meta.v1.ObjectMetaArgs']] metadata: Standard object's metadata. The name has no particular meaning. It must be be a DNS subdomain (dots allowed, 253 characters). To ensure that there are no conflicts with other CSI drivers on the cluster, the recommendation is to use csisc-<uuid>, a generated name, or a reverse-domain name which ends with the unique CSI driver name. Objects are namespaced. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata :param pulumi.Input[pulumi.InputType['_meta.v1.LabelSelectorArgs']] node_topology: NodeTopology defines which nodes have access to the storage for which capacity was reported. If not set, the storage is not accessible from any node in the cluster. If empty, the storage is accessible from all nodes. This field is immutable. :param pulumi.Input[str] storage_class_name: The name of the StorageClass that the reported capacity applies to. It must meet the same requirements as the name of a StorageClass object (non-empty, DNS subdomain). If that object no longer exists, the CSIStorageCapacity object is obsolete and should be removed by its creator. This field is immutable. """ ... @overload def __init__(__self__, resource_name: str, args: CSIStorageCapacityArgs, opts: Optional[pulumi.ResourceOptions] = None): """ CSIStorageCapacity stores the result of one CSI GetCapacity call. For a given StorageClass, this describes the available capacity in a particular topology segment. This can be used when considering where to instantiate new PersistentVolumes. For example this can express things like: - StorageClass "standard" has "1234 GiB" available in "topology.kubernetes.io/zone=us-east1" - StorageClass "localssd" has "10 GiB" available in "kubernetes.io/hostname=knode-abc123" The following three cases all imply that no capacity is available for a certain combination: - no object exists with suitable topology and storage class name - such an object exists, but the capacity is unset - such an object exists, but the capacity is zero The producer of these objects can decide which approach is more suitable. They are consumed by the kube-scheduler if the CSIStorageCapacity beta feature gate is enabled there and a CSI driver opts into capacity-aware scheduling with CSIDriver.StorageCapacity. :param str resource_name: The name of the resource. :param CSIStorageCapacityArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(CSIStorageCapacityArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, api_version: Optional[pulumi.Input[str]] = None, capacity: Optional[pulumi.Input[str]] = None, kind: Optional[pulumi.Input[str]] = None, maximum_volume_size: Optional[pulumi.Input[str]] = None, metadata: Optional[pulumi.Input[pulumi.InputType['_meta.v1.ObjectMetaArgs']]] = None, node_topology: Optional[pulumi.Input[pulumi.InputType['_meta.v1.LabelSelectorArgs']]] = None, storage_class_name: Optional[pulumi.Input[str]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = CSIStorageCapacityArgs.__new__(CSIStorageCapacityArgs) __props__.__dict__["api_version"] = 'storage.k8s.io/v1beta1' __props__.__dict__["capacity"] = capacity __props__.__dict__["kind"] = 'CSIStorageCapacity' __props__.__dict__["maximum_volume_size"] = maximum_volume_size __props__.__dict__["metadata"] = metadata __props__.__dict__["node_topology"] = node_topology if storage_class_name is None and not opts.urn: raise TypeError("Missing required property 'storage_class_name'") __props__.__dict__["storage_class_name"] = storage_class_name alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="kubernetes:storage.k8s.io/v1alpha1:CSIStorageCapacity")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(CSIStorageCapacity, __self__).__init__( 'kubernetes:storage.k8s.io/v1beta1:CSIStorageCapacity', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'CSIStorageCapacity': """ Get an existing CSIStorageCapacity resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = CSIStorageCapacityArgs.__new__(CSIStorageCapacityArgs) __props__.__dict__["api_version"] = None __props__.__dict__["capacity"] = None __props__.__dict__["kind"] = None __props__.__dict__["maximum_volume_size"] = None __props__.__dict__["metadata"] = None __props__.__dict__["node_topology"] = None __props__.__dict__["storage_class_name"] = None return CSIStorageCapacity(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="apiVersion") def api_version(self) -> pulumi.Output[Optional[str]]: """ APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#resources """ return pulumi.get(self, "api_version") @property @pulumi.getter def capacity(self) -> pulumi.Output[Optional[str]]: """ Capacity is the value reported by the CSI driver in its GetCapacityResponse for a GetCapacityRequest with topology and parameters that match the previous fields. The semantic is currently (CSI spec 1.2) defined as: The available capacity, in bytes, of the storage that can be used to provision volumes. If not set, that information is currently unavailable and treated like zero capacity. """ return pulumi.get(self, "capacity") @property @pulumi.getter def kind(self) -> pulumi.Output[Optional[str]]: """ Kind is a string value representing the REST resource this object represents. Servers may infer this from the endpoint the client submits requests to. Cannot be updated. In CamelCase. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds """ return pulumi.get(self, "kind") @property @pulumi.getter(name="maximumVolumeSize") def maximum_volume_size(self) -> pulumi.Output[Optional[str]]: """ MaximumVolumeSize is the value reported by the CSI driver in its GetCapacityResponse for a GetCapacityRequest with topology and parameters that match the previous fields. This is defined since CSI spec 1.4.0 as the largest size that may be used in a CreateVolumeRequest.capacity_range.required_bytes field to create a volume with the same parameters as those in GetCapacityRequest. The corresponding value in the Kubernetes API is ResourceRequirements.Requests in a volume claim. """ return pulumi.get(self, "maximum_volume_size") @property @pulumi.getter def metadata(self) -> pulumi.Output[Optional['_meta.v1.outputs.ObjectMeta']]: """ Standard object's metadata. The name has no particular meaning. It must be be a DNS subdomain (dots allowed, 253 characters). To ensure that there are no conflicts with other CSI drivers on the cluster, the recommendation is to use csisc-<uuid>, a generated name, or a reverse-domain name which ends with the unique CSI driver name. Objects are namespaced. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata """ return pulumi.get(self, "metadata") @property @pulumi.getter(name="nodeTopology") def node_topology(self) -> pulumi.Output[Optional['_meta.v1.outputs.LabelSelector']]: """ NodeTopology defines which nodes have access to the storage for which capacity was reported. If not set, the storage is not accessible from any node in the cluster. If empty, the storage is accessible from all nodes. This field is immutable. """ return pulumi.get(self, "node_topology") @property @pulumi.getter(name="storageClassName") def storage_class_name(self) -> pulumi.Output[str]: """ The name of the StorageClass that the reported capacity applies to. It must meet the same requirements as the name of a StorageClass object (non-empty, DNS subdomain). If that object no longer exists, the CSIStorageCapacity object is obsolete and should be removed by its creator. This field is immutable. """ return pulumi.get(self, "storage_class_name")
68.014368
415
0.713634
[ "Apache-2.0" ]
Teshel/pulumi-kubernetes
sdk/python/pulumi_kubernetes/storage/v1beta1/CSIStorageCapacity.py
23,669
Python
# -*- coding: utf-8 -*- # Generated by Django 1.10.2 on 2017-10-15 15:04 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('ContestAnalyzerOnline', '0006_auto_20171015_1445'), ] operations = [ migrations.DeleteModel( name='Comment', ), ]
19.736842
61
0.64
[ "MIT" ]
rogercaminal/HamToolsManager
ContestAnalyzerOnline/utils/migrations/0007_delete_comment.py
375
Python
#!/usr/bin/env python # Licensed to Cloudera, Inc. under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. Cloudera, Inc. licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import base64 import json import logging import struct from django.http import Http404 from django.utils.translation import ugettext as _ from django.views.decorators.http import require_POST from desktop.lib.django_util import JsonResponse from desktop.lib.i18n import force_unicode from desktop.models import Document2 from libsentry.privilege_checker import MissingSentryPrivilegeException from notebook.api import _get_statement from notebook.models import Notebook from metadata.optimizer_client import OptimizerApi, NavOptException, _get_table_name, _clean_query from metadata.conf import OPTIMIZER from desktop.auth.backend import is_admin LOG = logging.getLogger(__name__) try: from beeswax.api import get_table_stats from beeswax.design import hql_query from metastore.views import _get_db except ImportError, e: LOG.warn("Hive lib not enabled") def error_handler(view_fn): def decorator(*args, **kwargs): try: return view_fn(*args, **kwargs) except Http404, e: raise e except NavOptException, e: LOG.exception(e) response = { 'status': -1, 'message': e.message } except MissingSentryPrivilegeException, e: LOG.exception(e) response = { 'status': -1, 'message': 'Missing privileges for %s' % force_unicode(str(e)) } except Exception, e: LOG.exception(e) response = { 'status': -1, 'message': force_unicode(str(e)) } return JsonResponse(response, status=500) return decorator @require_POST @error_handler def get_tenant(request): response = {'status': -1} cluster_id = request.POST.get('cluster_id') api = OptimizerApi(request.user) data = api.get_tenant(cluster_id=cluster_id) if data: response['status'] = 0 response['data'] = data['tenant'] else: response['message'] = 'Optimizer: %s' % data['details'] return JsonResponse(response) @require_POST @error_handler def top_tables(request): response = {'status': -1} database = request.POST.get('database', 'default') limit = request.POST.get('len', 1000) api = OptimizerApi(user=request.user) data = api.top_tables(database_name=database, page_size=limit) tables = [{ 'eid': table['eid'], 'database': _get_table_name(table['name'])['database'], 'name': _get_table_name(table['name'])['table'], 'popularity': table['workloadPercent'], 'column_count': table['columnCount'], 'patternCount': table['patternCount'], 'total': table['total'], 'is_fact': table['type'] != 'Dimension' } for table in data['results'] ] response['top_tables'] = tables response['status'] = 0 return JsonResponse(response) @require_POST @error_handler def table_details(request): response = {'status': -1} database_name = request.POST.get('databaseName') table_name = request.POST.get('tableName') api = OptimizerApi(request.user) data = api.table_details(database_name=database_name, table_name=table_name) if data: response['status'] = 0 response['details'] = data else: response['message'] = 'Optimizer: %s' % data['details'] return JsonResponse(response) @require_POST @error_handler def query_compatibility(request): response = {'status': -1} source_platform = request.POST.get('sourcePlatform') target_platform = request.POST.get('targetPlatform') query = request.POST.get('query') api = OptimizerApi(request.user) data = api.query_compatibility(source_platform=source_platform, target_platform=target_platform, query=query) if data: response['status'] = 0 response['query_compatibility'] = data else: response['message'] = 'Optimizer: %s' % data return JsonResponse(response) @require_POST @error_handler def query_risk(request): response = {'status': -1} query = json.loads(request.POST.get('query')) source_platform = request.POST.get('sourcePlatform') db_name = request.POST.get('dbName') api = OptimizerApi(request.user) data = api.query_risk(query=query, source_platform=source_platform, db_name=db_name) if data: response['status'] = 0 response['query_risk'] = data else: response['message'] = 'Optimizer: %s' % data return JsonResponse(response) @require_POST @error_handler def similar_queries(request): response = {'status': -1} source_platform = request.POST.get('sourcePlatform') query = json.loads(request.POST.get('query')) api = OptimizerApi(request.user) data = api.similar_queries(source_platform=source_platform, query=query) if data: response['status'] = 0 response['similar_queries'] = data else: response['message'] = 'Optimizer: %s' % data return JsonResponse(response) @require_POST @error_handler def top_filters(request): response = {'status': -1} db_tables = json.loads(request.POST.get('dbTables'), '[]') column_name = request.POST.get('columnName') # Unused api = OptimizerApi(request.user) data = api.top_filters(db_tables=db_tables) if data: response['status'] = 0 response['values'] = data['results'] else: response['message'] = 'Optimizer: %s' % data return JsonResponse(response) @require_POST @error_handler def top_joins(request): response = {'status': -1} db_tables = json.loads(request.POST.get('dbTables'), '[]') api = OptimizerApi(request.user) data = api.top_joins(db_tables=db_tables) if data: response['status'] = 0 response['values'] = data['results'] else: response['message'] = 'Optimizer: %s' % data return JsonResponse(response) @require_POST @error_handler def top_aggs(request): response = {'status': -1} db_tables = json.loads(request.POST.get('dbTables'), '[]') api = OptimizerApi(request.user) data = api.top_aggs(db_tables=db_tables) if data: response['status'] = 0 response['values'] = data['results'] else: response['message'] = 'Optimizer: %s' % data return JsonResponse(response) @require_POST @error_handler def top_databases(request): response = {'status': -1} api = OptimizerApi(request.user) data = api.top_databases() if data: response['status'] = 0 response['values'] = data['results'] else: response['message'] = 'Optimizer: %s' % data return JsonResponse(response) @require_POST @error_handler def top_columns(request): response = {'status': -1} db_tables = json.loads(request.POST.get('dbTables'), '[]') api = OptimizerApi(request.user) data = api.top_columns(db_tables=db_tables) if data: response['status'] = 0 response['values'] = data else: response['message'] = 'Optimizer: %s' % data return JsonResponse(response) def _convert_queries(queries_data): queries = [] for query_data in queries_data: try: snippet = query_data['snippets'][0] if 'guid' in snippet['result']['handle']: # Not failed query original_query_id = '%s:%s' % struct.unpack(b"QQ", base64.decodestring(snippet['result']['handle']['guid'])) # unpack_guid uses '%016x:%016x' while optmizer api uses '%s:%s'. execution_time = snippet['result']['executionTime'] * 100 if snippet['status'] in ('available', 'expired') else -1 statement = _clean_query(_get_statement(query_data)) queries.append((original_query_id, execution_time, statement, snippet.get('database', 'default').strip())) except Exception, e: LOG.warning('Skipping upload of %s: %s' % (query_data['uuid'], e)) return queries @require_POST @error_handler def upload_history(request): response = {'status': -1} if is_admin(request.user): api = OptimizerApi(request.user) histories = [] upload_stats = {} if request.POST.get('sourcePlatform'): n = min(request.POST.get('n', OPTIMIZER.QUERY_HISTORY_UPLOAD_LIMIT.get())) source_platform = request.POST.get('sourcePlatform', 'hive') histories = [(source_platform, Document2.objects.get_history(doc_type='query-%s' % source_platform, user=request.user)[:n])] elif OPTIMIZER.QUERY_HISTORY_UPLOAD_LIMIT.get() > 0: histories = [ (source_platform, Document2.objects.filter(type='query-%s' % source_platform, is_history=True, is_managed=False, is_trashed=False).order_by('-last_modified')[:OPTIMIZER.QUERY_HISTORY_UPLOAD_LIMIT.get()]) for source_platform in ['hive', 'impala'] ] for source_platform, history in histories: queries = _convert_queries([Notebook(document=doc).get_data() for doc in history]) upload_stats[source_platform] = api.upload(data=queries, data_type='queries', source_platform=source_platform) response['upload_history'] = upload_stats response['status'] = 0 else: response['message'] = _('Query history upload requires Admin privileges or feature is disabled.') return JsonResponse(response) @require_POST @error_handler def upload_query(request): response = {'status': -1} source_platform = request.POST.get('sourcePlatform', 'default') query_id = request.POST.get('query_id') if OPTIMIZER.AUTO_UPLOAD_QUERIES.get() and source_platform in ('hive', 'impala') and query_id: try: doc = Document2.objects.document(request.user, doc_id=query_id) query_data = Notebook(document=doc).get_data() queries = _convert_queries([query_data]) source_platform = query_data['snippets'][0]['type'] api = OptimizerApi(request.user) response['query_upload'] = api.upload(data=queries, data_type='queries', source_platform=source_platform) except Document2.DoesNotExist: response['query_upload'] = _('Skipped as task query') else: response['query_upload'] = _('Skipped') response['status'] = 0 return JsonResponse(response) @require_POST @error_handler def upload_table_stats(request): response = {'status': -1} db_tables = json.loads(request.POST.get('db_tables'), '[]') source_platform = json.loads(request.POST.get('sourcePlatform', '"hive"')) with_ddl = json.loads(request.POST.get('with_ddl', 'false')) with_table_stats = json.loads(request.POST.get('with_table', 'false')) with_columns_stats = json.loads(request.POST.get('with_columns', 'false')) table_ddls = [] table_stats = [] column_stats = [] if not OPTIMIZER.AUTO_UPLOAD_DDL.get(): with_ddl = False if not OPTIMIZER.AUTO_UPLOAD_STATS.get(): with_table_stats = with_columns_stats = False for db_table in db_tables: path = _get_table_name(db_table) try: if with_ddl: db = _get_db(request.user, source_type=source_platform) query = hql_query('SHOW CREATE TABLE `%(database)s`.`%(table)s`' % path) handle = db.execute_and_wait(query, timeout_sec=5.0) if handle: result = db.fetch(handle, rows=5000) db.close(handle) table_ddls.append((0, 0, ' '.join([row[0] for row in result.rows()]), path['database'])) if with_table_stats: mock_request = MockRequest(user=request.user, source_platform=source_platform) full_table_stats = json.loads(get_table_stats(mock_request, database=path['database'], table=path['table']).content) stats = dict((stat['data_type'], stat['comment']) for stat in full_table_stats['stats']) table_stats.append({ 'table_name': '%(database)s.%(table)s' % path, # DB Prefix 'num_rows': stats.get('numRows', -1), 'last_modified_time': stats.get('transient_lastDdlTime', -1), 'total_size': stats.get('totalSize', -1), 'raw_data_size': stats.get('rawDataSize', -1), 'num_files': stats.get('numFiles', -1), 'num_partitions': stats.get('numPartitions', -1), # bytes_cached # cache_replication # format }) if with_columns_stats: if source_platform == 'impala': colum_stats = json.loads(get_table_stats(mock_request, database=path['database'], table=path['table'], column=-1).content)['stats'] else: colum_stats = [ json.loads(get_table_stats(mock_request, database=path['database'], table=path['table'], column=col).content)['stats'] for col in full_table_stats['columns'][:25] ] raw_column_stats = [dict([(key, val if val is not None else '') for col_stat in col for key, val in col_stat.iteritems()]) for col in colum_stats] for col_stats in raw_column_stats: column_stats.append({ 'table_name': '%(database)s.%(table)s' % path, # DB Prefix 'column_name': col_stats['col_name'], 'data_type': col_stats['data_type'], "num_distinct": int(col_stats.get('distinct_count')) if col_stats.get('distinct_count') != '' else -1, "num_nulls": int(col_stats['num_nulls']) if col_stats['num_nulls'] != '' else -1, "avg_col_len": int(float(col_stats['avg_col_len'])) if col_stats['avg_col_len'] != '' else -1, "max_size": int(float(col_stats['max_col_len'])) if col_stats['max_col_len'] != '' else -1, "min": col_stats['min'] if col_stats.get('min', '') != '' else -1, "max": col_stats['max'] if col_stats.get('max', '') != '' else -1, "num_trues": col_stats['num_trues'] if col_stats.get('num_trues', '') != '' else -1, "num_falses": col_stats['num_falses'] if col_stats.get('num_falses', '') != '' else -1, }) except Exception, e: LOG.exception('Skipping upload of %s: %s' % (db_table, e)) api = OptimizerApi(request.user) response['status'] = 0 if table_stats: response['upload_table_stats'] = api.upload(data=table_stats, data_type='table_stats', source_platform=source_platform) response['upload_table_stats_status'] = 0 if response['upload_table_stats']['status']['state'] in ('WAITING', 'FINISHED', 'IN_PROGRESS') else -1 response['status'] = response['upload_table_stats_status'] if column_stats: response['upload_cols_stats'] = api.upload(data=column_stats, data_type='cols_stats', source_platform=source_platform) response['upload_cols_stats_status'] = response['status'] if response['upload_cols_stats']['status']['state'] in ('WAITING', 'FINISHED', 'IN_PROGRESS') else -1 if response['upload_cols_stats_status'] != 0: response['status'] = response['upload_cols_stats_status'] if table_ddls: response['upload_table_ddl'] = api.upload(data=table_ddls, data_type='queries', source_platform=source_platform) response['upload_table_ddl_status'] = response['status'] if response['upload_table_ddl']['status']['state'] in ('WAITING', 'FINISHED', 'IN_PROGRESS') else -1 if response['upload_table_ddl_status'] != 0: response['status'] = response['upload_table_ddl_status'] return JsonResponse(response) @require_POST @error_handler def upload_status(request): response = {'status': -1} workload_id = request.POST.get('workloadId') api = OptimizerApi(request.user) response['upload_status'] = api.upload_status(workload_id=workload_id) response['status'] = 0 return JsonResponse(response) class MockRequest(): def __init__(self, user, source_platform): self.user = user self.path = '/%s/' % source_platform if source_platform != 'hive' else 'beeswax'
31.506876
211
0.685477
[ "Apache-2.0" ]
apoorvanand/hue
desktop/libs/metadata/src/metadata/optimizer_api.py
16,037
Python
# -*- coding: utf-8 -*- """ walle-web :copyright: © 2015-2019 walle-web.io :created time: 2019-02-24 10:47:53 :author: [email protected] """ import os import re import os.path as osp import git as PyGit from git import Repo as PyRepo class Repo: path = None def __init__(self, path=None): self.path = path def is_git_dir(self): ''' 判断是否为git目录 @param path: @return: ''' d = self.path + '/.git' if osp.isdir(d): if osp.isdir(osp.join(d, 'objects')) and osp.isdir(osp.join(d, 'refs')): headref = osp.join(d, 'HEAD') return osp.isfile(headref) or \ (osp.islink(headref) and os.readlink(headref).startswith('refs')) elif (osp.isfile(osp.join(d, 'gitdir')) and osp.isfile(osp.join(d, 'commondir')) and osp.isfile(osp.join(d, 'gitfile'))): return False return False def init(self, url): # 创建目录 if not os.path.exists(self.path): os.makedirs(self.path) # git clone if self.is_git_dir(): return self.pull() else: return self.clone(url) def clone(self, url): ''' 检出项目 @param branch: @param kwargs: @return: ''' return PyRepo.clone_from(url, self.path) def pull(self): ''' 更新项目 @param branch: @param kwargs: @return: ''' repo = PyRepo(self.path) return repo.remote().pull() def checkout_2_branch(self, branch): PyRepo(self.path).git.checkout(branch) def checkout_2_commit(self, branch, commit): ''' @todo 未完成 @param branch: @param commit: @return: ''' PyRepo(self.path).git.checkout(branch) # PyRepo(self.path).head.set_reference(branch) # 方法有问题,只是做了reset,没有checkout PyRepo(self.path).head.set_commit(commit) def checkout_2_tag(self, tag): PyRepo(self.path).git.checkout(tag) def branches(self): ''' 获取所有分支 @param branch: @param kwargs: @return: ''' # 去除 origin/HEAD -> 当前指向 # 去除远端前缀 branches = PyRepo(self.path).remote().refs # fixbug https://github.com/meolu/walle-web/issues/705 return [str(branch).strip().lstrip('origin').lstrip('/') for branch in branches if not str(branch).strip().startswith('origin/HEAD')] def tags(self): ''' 获取所有tag @param branch: @param kwargs: @return: ''' return [str(tag) for tag in PyRepo(self.path).tags] def commits(self, branch): ''' 获取分支的commits @param branch: @param kwargs: @return: ''' self.checkout_2_branch(branch) commit_log = PyGit.Git(self.path).log('--pretty=%h #@_@# %an #@_@# %s', max_count=50) commit_list = commit_log.split('\n') commits = [] for commit in commit_list: if not re.search('^.+ #@_@# .+ #@_@# .*$', commit): continue commit_dict = commit.split(' #@_@# ') from flask import current_app current_app.logger.info(commit_dict) commits.append({ 'id': commit_dict[0], 'name': commit_dict[1], 'message': commit_dict[2], }) return commits
24.744828
93
0.510033
[ "Apache-2.0" ]
lgq9220/walle-web
walle/service/git/repo.py
3,713
Python
# This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. import datetime import logging import os import time import isodate from testlib import mini_poster logger = logging.getLogger(__name__) def utc_now(): return datetime.datetime.now(isodate.UTC) class CrashVerifier: def raw_crash_key(self, crash_id): return 'v2/raw_crash/{entropy}/{date}/{crashid}'.format( entropy=crash_id[0:3], date='20' + crash_id[-6:], crashid=crash_id ) def dump_names_key(self, crash_id): return 'v1/dump_names/{crashid}'.format( crashid=crash_id ) def dump_key(self, crash_id, name): if name in (None, '', 'upload_file_minidump'): name = 'dump' return 'v1/{name}/{crashid}'.format( name=name, crashid=crash_id ) def verify_stored_data(self, crash_id, raw_crash, dumps, s3conn): # Verify the raw crash file made it key = self.raw_crash_key(crash_id) assert key in s3conn.list_objects(prefix=key) # Verify the dump_names file made it key = self.dump_names_key(crash_id) assert key in s3conn.list_objects(prefix=key) # Verify the dumps made it for name, dump in dumps.items(): key = self.dump_key(crash_id, name) assert key in s3conn.list_objects(prefix=key) def verify_published_data(self, crash_id, pubsub): # Verify crash id was published--this might pick up a bunch of stuff, # so we just verify it's one of the things we picked up if 'PUBSUB_EMULATOR_HOST' in os.environ: crash_ids = [crash_id.decode('utf-8') for crash_id in pubsub.list_crashids()] assert crash_id in crash_ids else: print('SKIPPING PUBLISH CHECK--NOT USING EMULATOR') def content_to_crashid(content): if not isinstance(content, str): content = str(content, encoding='utf-8') crash_id = content.strip() crash_id = crash_id[len('CrashID=bp-'):] return crash_id # Gives Antenna time to save things before we check SLEEP_TIME = 5 class TestPostCrash: def test_regular(self, posturl, s3conn, pubsub, crash_generator): """Post a valid crash and verify the contents made it to S3.""" raw_crash, dumps = crash_generator.generate() crash_payload = mini_poster.assemble_crash_payload_dict(raw_crash, dumps) resp = mini_poster.post_crash(posturl, crash_payload, dumps) # Sleep to give Antenna time to save things time.sleep(SLEEP_TIME) crash_id = content_to_crashid(resp.content) logger.debug('Crash ID is: %s', crash_id) logger.debug('S3conn: %s', s3conn.get_config()) # Verify stored and published crash data verifier = CrashVerifier() verifier.verify_stored_data(crash_id, raw_crash, dumps, s3conn) verifier.verify_published_data(crash_id, pubsub) def test_compressed_crash(self, posturl, s3conn, pubsub, crash_generator): """Post a compressed crash and verify contents made it to S3.""" raw_crash, dumps = crash_generator.generate() crash_payload = mini_poster.assemble_crash_payload_dict(raw_crash, dumps) resp = mini_poster.post_crash(posturl, crash_payload, compressed=True) # Sleep to give Antenna time to save things time.sleep(SLEEP_TIME) crash_id = content_to_crashid(resp.content) logger.debug('Crash ID is: %s', crash_id) logger.debug('S3conn: %s', s3conn.get_config()) # Verify stored and published crash data verifier = CrashVerifier() verifier.verify_stored_data(crash_id, raw_crash, dumps, s3conn) verifier.verify_published_data(crash_id, pubsub)
33.649573
89
0.665481
[ "MPL-2.0", "MPL-2.0-no-copyleft-exception" ]
Mozilla-GitHub-Standards/ca053cb8c97310481ca4524f115cd80002b8bbd773c6bdc00eb9955dd3d48e83
tests/systemtest/test_post_crash.py
3,937
Python
import requests import argparse import logging import coloredlogs import threading from flask import Flask, request, jsonify from flask_swagger import swagger from waitress import serve import subprocess import json from kafka import KafkaConsumer from threading import Thread from threading import Timer from datetime import timedelta import psycopg2 import time app = Flask(__name__) logger = logging.getLogger("DCSRestClient") signalling_metric_infrastructure = {'expId': 'internal', 'topic': 'signalling.metric.infrastructure'} signalling_metric_application = {'expId': 'internal', 'topic': 'signalling.metric.application'} signalling_kpi = {'expId': 'internal', 'topic': 'signalling.kpi'} dcm_port = "8090" dcm_subscribe_url = "/dcm/subscribe" dcm_unsubscribe_url = "/dcm/unsubscribe" dcs_dashboard_url = "http://127.0.0.1:8080/portal/dcs/dashboard" signalling_start = False @app.route('/', methods=['GET']) def server_status(): """ Get status. --- describe: get status responses: 200: description: OK """ logger.info("GET /") return '', 200 @app.route("/spec", methods=['GET']) def spec(): """ Get swagger specification. --- describe: get swagger specification responses: swagger: description: swagger specification """ swag = swagger(app) swag['info']['version'] = "1.0" swag['info']['title'] = "DCS REST API" return jsonify(swag) def kafka_consumer_refresh_dashboard_handler(topic, value): logger.info("Creating Kafka Consumer for %s topic", topic) consumer = KafkaConsumer( topic, bootstrap_servers=[dcm_ip_address + ":9092"], auto_offset_reset='earliest', enable_auto_commit=True, group_id=None, value_deserializer=lambda x: json.loads(x.decode('utf-8'))) message_received = False while not message_received: message = consumer.poll(timeout_ms=1000) if message != {}: logger.info("Message received in %s topic: %s", topic, message) message_received = True time.sleep(5) logger.info("Creating dashboard for topic: %s", topic) r = requests.post(dcs_dashboard_url, json={'records': [ { 'value': json.loads(value) }]}) logger.info("Response: Code %s", r) # This call seems that is not needed as the dashboard is generated when data is present. #time.sleep(2) #logger.info("Refreshing dashboard for %s topic", topic) #subprocess.call(['/bin/bash', '/usr/bin/dcs/refresh_dashboard.sh', topic]) logger.info("Closing Kafka Consumer for %s topic", topic) consumer.close() def index_cleaner(topic, value): logger.info("Time to delete the dashboard for topic %s", topic) r = requests.delete(dcs_dashboard_url, json={'records': [ { 'value': json.loads(value) }]}) logger.info("Response: Code %s", r) logger.info("Time to delete the Elasticsearch index for topic %s", topic) subprocess.call(['/bin/bash', '/usr/bin/dcs/delete_logstash_pipeline.sh', topic, 'yes']) def kafka_consumer_signalling_topic_handler(signalling_topic_data): logger.info("Creating Kafka Consumer for %s topic", signalling_topic_data["topic"]) consumer = KafkaConsumer( signalling_topic_data["topic"], bootstrap_servers=[dcm_ip_address + ":9092"], auto_offset_reset='earliest', enable_auto_commit=True, group_id=None, value_deserializer=lambda x: json.loads(x.decode('utf-8'))) while signalling_start: message = consumer.poll(timeout_ms=1000) if message != {}: logger.info("Message received in %s topic: %s", signalling_topic_data["topic"], message) for tp, messages in message.items(): for msg in messages: logger.info("Value: %s", msg.value) topic = json.loads(msg.value)["topic"] if json.loads(msg.value)["action"] == "subscribe": logger.info("Create Logstash pipeline for topic %s", topic) subprocess.call(['/bin/bash', '/usr/bin/dcs/create_logstash_pipeline.sh', topic]) # Dashboard creation is commented because it will be created when data is published in the topic. #r = requests.post(dcs_dashboard_url, json={'records': [ { 'value': json.loads(msg.value) }]}) #logger.info("Response: Code %s", r) # Create Kafka consumer to wait for the first message received in the topic and, then, refresh the dashboard. thread = threading.Thread(target = kafka_consumer_refresh_dashboard_handler, args = [topic, msg.value]) thread.start() # Finally, save topic in DB try: connection = psycopg2.connect(user = "eve", password = eve_db_password, host = "localhost", port = "5432", dbname="pipelines") logger.info("Inserting %s topic in database", topic) cursor = connection.cursor() cursor.execute("INSERT INTO pipeline VALUES ( %s )", (topic,)) connection.commit() logger.info("Topic %s inserted in database", topic) cursor.close() connection.close() except (Exception, psycopg2.Error) as error: logger.error("Error while connecting to PostgreSQL: ", error) elif json.loads(msg.value)["action"] == "unsubscribe": logger.info("Delete Logstash pipeline for topic %s", topic) subprocess.call(['/bin/bash', '/usr/bin/dcs/delete_logstash_pipeline.sh', topic, 'no']) # Schedule the removal of Kibana dashboard and Elasticsearch index (retention time of 14 days) scheduled_thread = threading.Timer(timedelta(days=14).total_seconds(), index_cleaner, args = [topic, msg.value]) # This call is for testing purposes, to be commented when unused: #scheduled_thread = threading.Timer(timedelta(seconds=30).total_seconds(), index_cleaner, args = [topic, msg.value]) scheduled_thread.start() logger.info("Data removal for topic %s scheduled in 14 days", topic) # Finally, delete topic in DB try: connection = psycopg2.connect(user = "eve", password = eve_db_password, host = "localhost", port = "5432", dbname="pipelines") logger.info("Deleting %s topic in database", topic) cursor = connection.cursor() cursor.execute("DELETE FROM pipeline WHERE topic = %s", (topic,)) connection.commit() logger.info("Topic %s deleted in database", topic) cursor.close() connection.close() except (Exception, psycopg2.Error) as error: logger.error("Error while connecting to PostgreSQL: ", error) else: logger.error("Action not allowed") logger.info("Closing Kafka Consumer for %s topic", signalling_topic_data["topic"]) consumer.close() def start_consuming_signalling_topic(signalling_topic_data): signalling_topic_data = json.loads(signalling_topic_data) logger.info("Starting %s topic", signalling_topic_data["topic"]) logger.info("Sending POST request to %s", url_subscribe) # Send the request to the DCM. r = requests.post(url_subscribe, json=signalling_topic_data) logger.info("Response: Code %s", r) # Create Kafka consumer. global signalling_start signalling_start = True thread = threading.Thread(target = kafka_consumer_signalling_topic_handler, args = [signalling_topic_data]) thread.start() @app.route('/portal/dcs/start_signalling/', methods=['POST']) def start_dcs(): """ Start signalling topics. --- describe: start signalling topics responses: 201: description: accepted request 400: description: error processing the request """ logger.info("Request received - POST /portal/dcs/start_signalling/") try: start_consuming_signalling_topic(json.dumps(signalling_metric_infrastructure)) start_consuming_signalling_topic(json.dumps(signalling_metric_application)) start_consuming_signalling_topic(json.dumps(signalling_kpi)) except Exception as e: logger.error("Error while parsing request") logger.exception(e) return str(e), 400 return '', 201 def stop_consuming_signalling_topic(signalling_topic_data): signalling_topic_data = json.loads(signalling_topic_data) logger.info("Stopping %s topic", signalling_topic_data["topic"]) logger.info("Sending DELETE request to %s", url_unsubscribe) # Send the request to the DCM. r = requests.delete(url_unsubscribe, json=signalling_topic_data) logger.info("Response: Code %s", r) # Delete Kafka consumer. global signalling_start # Put signalling_start to False, and then threads will finish their execution. signalling_start = False @app.route('/portal/dcs/stop_signalling/', methods=['DELETE']) def stop_dcs(): """ Stop signalling topics. --- describe: stop signalling topics responses: 201: description: accepted request 400: description: error processing the request """ logger.info("Request received - DELETE /portal/dcs/stop_signalling/") try: stop_consuming_signalling_topic(json.dumps(signalling_metric_infrastructure)) stop_consuming_signalling_topic(json.dumps(signalling_metric_application)) stop_consuming_signalling_topic(json.dumps(signalling_kpi)) except Exception as e: logger.error("Error while parsing request") logger.exception(e) return str(e), 400 return '', 201 def checkValidPort(value): ivalue = int(value) # RFC 793 if ivalue < 0 or ivalue > 65535: raise argparse.ArgumentTypeError("%s is not a valid port" % value) return value if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--dcm_ip_address", help='DCM IP address, default IP is localhost', default='localhost') parser.add_argument( "--eve_db_password", help='DB password for eve user') parser.add_argument( "--port", type=checkValidPort, help='The port you want to use as an endpoint, default port is 8091', default="8091") parser.add_argument( "--log", help='Sets the Log Level output, default level is "info"', choices=[ "info", "debug", "error", "warning"], nargs='?', default='info') args = parser.parse_args() numeric_level = getattr(logging, str(args.log).upper(), None) if not isinstance(numeric_level, int): raise ValueError('Invalid log level: %s' % loglevel) coloredlogs.install( fmt='%(asctime)s %(levelname)s %(message)s', datefmt='%d/%m/%Y %H:%M:%S', level=numeric_level) logging.basicConfig(filename='/var/log/dcs_rest_client.log') logging.getLogger("DCSRestClient").setLevel(numeric_level) logging.getLogger("requests.packages.urllib3").setLevel(logging.ERROR) args = parser.parse_args() logger.info("Serving DCSRestClient on port %s", str(args.port)) global dcm_ip_address dcm_ip_address= str(args.dcm_ip_address) global url_subscribe url_subscribe = "http://" + dcm_ip_address + ":" + dcm_port + dcm_subscribe_url global url_unsubscribe url_unsubscribe = "http://" + dcm_ip_address + ":" + dcm_port + dcm_unsubscribe_url global eve_db_password eve_db_password= str(args.eve_db_password) #TODO: advanced feature - connect to the database and make sure that Logstash pipelines are created for the topics saved in the DB. serve(app, host='0.0.0.0', port=args.port)
42.132203
154
0.629898
[ "Apache-2.0" ]
5GEVE/5geve-wp4-dcs-signalling-topic-handler
dcs_rest_client.py
12,429
Python
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Jan 21 19:14:52 2020 @author: prachi """ import pickle import numpy as np der='swbd_diar/exp_new/callhome/plda_oracle/der.scp' der_pickle = 'swbd_diar/exp_new/callhome/plda_oracle/derdict' der=open(der,'r').readlines() DER={} for line in der[2:-1]: fname = line.split()[0] val = float(line.split()[1]) DER[fname] = val pickleobj=open(der_pickle,'wb') pickle.dump(DER,pickleobj) pickleobj.close()
20.875
62
0.658683
[ "Apache-2.0" ]
iiscleap/self_supervised_AHC
services/gen_der_dict.py
501
Python
# coding=utf-8 # Copyright 2014 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import absolute_import, division, print_function, unicode_literals import os import sys from six import StringIO from pants.base.workunit import WorkUnitLabel from pants.reporting.html_reporter import HtmlReporter from pants.reporting.invalidation_report import InvalidationReport from pants.reporting.plaintext_reporter import LabelFormat, PlainTextReporter, ToolOutputFormat from pants.reporting.quiet_reporter import QuietReporter from pants.reporting.report import Report from pants.reporting.reporter import ReporterDestination from pants.reporting.reporting_server import ReportingServerManager from pants.subsystem.subsystem import Subsystem from pants.util.dirutil import relative_symlink, safe_mkdir class Reporting(Subsystem): options_scope = 'reporting' @classmethod def register_options(cls, register): super(Reporting, cls).register_options(register) register('--invalidation-report', type=bool, help='Write a formatted report on the invalid objects to the specified path.') register('--reports-dir', advanced=True, metavar='<dir>', default=os.path.join(register.bootstrap.pants_workdir, 'reports'), help='Write reports to this dir.') register('--template-dir', advanced=True, metavar='<dir>', default=None, help='Find templates for rendering in this dir.') register('--console-label-format', advanced=True, type=dict, default=PlainTextReporter.LABEL_FORMATTING, help='Controls the printing of workunit labels to the console. Workunit types are ' '{workunits}. Possible formatting values are {formats}'.format( workunits=WorkUnitLabel.keys(), formats=LabelFormat.keys())) register('--console-tool-output-format', advanced=True, type=dict, default=PlainTextReporter.TOOL_OUTPUT_FORMATTING, help='Controls the printing of workunit tool output to the console. Workunit types are ' '{workunits}. Possible formatting values are {formats}'.format( workunits=WorkUnitLabel.keys(), formats=ToolOutputFormat.keys())) def initialize(self, run_tracker, start_time=None): """Initialize with the given RunTracker. TODO: See `RunTracker.start`. """ run_id = run_tracker.initialize() run_dir = os.path.join(self.get_options().reports_dir, run_id) html_dir = os.path.join(run_dir, 'html') safe_mkdir(html_dir) relative_symlink(run_dir, os.path.join(self.get_options().reports_dir, 'latest')) report = Report() # Capture initial console reporting into a buffer. We'll do something with it once # we know what the cmd-line flag settings are. outfile = StringIO() errfile = StringIO() capturing_reporter_settings = PlainTextReporter.Settings( outfile=outfile, errfile=errfile, log_level=Report.INFO, color=False, indent=True, timing=False, cache_stats=False, label_format=self.get_options().console_label_format, tool_output_format=self.get_options().console_tool_output_format) capturing_reporter = PlainTextReporter(run_tracker, capturing_reporter_settings) report.add_reporter('capturing', capturing_reporter) # Set up HTML reporting. We always want that. html_reporter_settings = HtmlReporter.Settings(log_level=Report.INFO, html_dir=html_dir, template_dir=self.get_options().template_dir) html_reporter = HtmlReporter(run_tracker, html_reporter_settings) report.add_reporter('html', html_reporter) # Add some useful RunInfo. run_tracker.run_info.add_info('default_report', html_reporter.report_path()) port = ReportingServerManager().socket if port: run_tracker.run_info.add_info('report_url', 'http://localhost:{}/run/{}'.format(port, run_id)) # And start tracking the run. run_tracker.start(report, start_time) def _get_invalidation_report(self): return InvalidationReport() if self.get_options().invalidation_report else None @staticmethod def _consume_stringio(f): f.flush() buffered_output = f.getvalue() f.close() return buffered_output def update_reporting(self, global_options, is_quiet, run_tracker): """Updates reporting config once we've parsed cmd-line flags.""" # Get any output silently buffered in the old console reporter, and remove it. removed_reporter = run_tracker.report.remove_reporter('capturing') buffered_out = self._consume_stringio(removed_reporter.settings.outfile) buffered_err = self._consume_stringio(removed_reporter.settings.errfile) log_level = Report.log_level_from_string(global_options.level or 'info') # Ideally, we'd use terminfo or somesuch to discover whether a # terminal truly supports color, but most that don't set TERM=dumb. color = global_options.colors and (os.getenv('TERM') != 'dumb') timing = global_options.time cache_stats = global_options.time # TODO: Separate flag for this? if is_quiet: console_reporter = QuietReporter(run_tracker, QuietReporter.Settings(log_level=log_level, color=color, timing=timing, cache_stats=cache_stats)) else: # Set up the new console reporter. settings = PlainTextReporter.Settings(log_level=log_level, outfile=sys.stdout, errfile=sys.stderr, color=color, indent=True, timing=timing, cache_stats=cache_stats, label_format=self.get_options().console_label_format, tool_output_format=self.get_options().console_tool_output_format) console_reporter = PlainTextReporter(run_tracker, settings) console_reporter.emit(buffered_out, dest=ReporterDestination.OUT) console_reporter.emit(buffered_err, dest=ReporterDestination.ERR) console_reporter.flush() run_tracker.report.add_reporter('console', console_reporter) if global_options.logdir: # Also write plaintext logs to a file. This is completely separate from the html reports. safe_mkdir(global_options.logdir) run_id = run_tracker.run_info.get_info('id') outfile = open(os.path.join(global_options.logdir, '{}.log'.format(run_id)), 'w') errfile = open(os.path.join(global_options.logdir, '{}.err.log'.format(run_id)), 'w') settings = PlainTextReporter.Settings(log_level=log_level, outfile=outfile, errfile=errfile, color=False, indent=True, timing=True, cache_stats=True, label_format=self.get_options().console_label_format, tool_output_format=self.get_options().console_tool_output_format) logfile_reporter = PlainTextReporter(run_tracker, settings) logfile_reporter.emit(buffered_out, dest=ReporterDestination.OUT) logfile_reporter.emit(buffered_err, dest=ReporterDestination.ERR) logfile_reporter.flush() run_tracker.report.add_reporter('logfile', logfile_reporter) invalidation_report = self._get_invalidation_report() if invalidation_report: run_id = run_tracker.run_info.get_info('id') outfile = os.path.join(self.get_options().reports_dir, run_id, 'invalidation-report.csv') invalidation_report.set_filename(outfile) return invalidation_report
49.416667
109
0.705928
[ "Apache-2.0" ]
GoingTharn/pants
src/python/pants/reporting/reporting.py
7,709
Python
import numpy as np import pygame as pg from numba import njit def main(): size = np.random.randint(20,60) # size of the map posx, posy, posz = 1.5, np.random.uniform(1, size -1), 0.5 rot, rot_v = (np.pi/4, 0) lx, ly, lz = (size*20, size*30, 1000) mr, mg, mb, maph, mapr, exitx, exity, mapt, maps = maze_generator(int(posx), int(posy), size) enx, eny, seenx, seeny, lock = np.random.uniform(2, size-3 ), np.random.uniform(2, size-3), 0, 0, 0 maph[int(enx)][int(eny)] = 0 shoot, sx, sy, sdir = 1, -1, -1, rot res, res_o = 5, [96, 112, 160, 192, 224, 260, 300, 340, 400, 480, 540, 600, 800] width, height, mod, inc, rr, gg, bb = adjust_resol(24) running = True pg.init() font = pg.font.SysFont("Arial", 18) font2 = pg.font.SysFont("Impact", 48) screen = pg.display.set_mode((800, 600)) rr, gg, bb = np.linspace(0,0.8, width*height), np.linspace(0.5,.1, width*height), np.linspace(1,0.1, width*height) pixels = np.dstack((rr,gg,bb)) pixels = np.reshape(pixels, (height,width,3)) surf = pg.surfarray.make_surface((np.rot90(pixels*255)).astype('uint8')) surf = pg.transform.scale(surf, (750, 550)) screen.blit(surf, (25, 25)) screen.blit(font2.render(" FinFET's PyTracing Maze ", 1, pg.Color("red")),(45,95)) screen.blit(font2.render(" FinFET's PyTracing Maze ", 1, pg.Color("blue")),(55,105)) screen.blit(font2.render(" FinFET's PyTracing Maze ", 1, pg.Color("white")),(50,100)) screen.blit(font2.render(" Loading, please wait... ", 1, pg.Color("black"), pg.Color("grey")),(50,300)) pg.display.update() clock = pg.time.Clock() pg.mouse.set_visible(False) et = 0.1 mplayer = np.zeros([size, size]) enx, eny, mplayer, et, shoot, sx, sy, sdir, seenx, seeny, lock = agents(enx, eny, maph, posx, posy, rot, et, shoot, sx, sy, sdir, mplayer, seenx, seeny, lock) sstart, timer, count, autores, smooth = None, 0, -100, 1, 0 pause = 0 pg.mixer.set_num_channels(3) ambient = pg.mixer.Sound('soundfx/HauntSilentPartner.mp3') ambient.set_volume(0.5) runfx = pg.mixer.Sound('soundfx/run.mp3') shotfx = pg.mixer.Sound('soundfx/slap.mp3') killfx = pg.mixer.Sound('soundfx/shutdown.mp3') respawnfx = pg.mixer.Sound('soundfx/respawn.mp3') successfx = pg.mixer.Sound('soundfx/success.mp3') failfx = pg.mixer.Sound('soundfx/fail.mp3') pg.mixer.Channel(0).play(ambient, -1) pg.mixer.Channel(1).play(respawnfx) run = 1 score = 0 ticks = pg.time.get_ticks()/100000 while running: count += 1 for event in pg.event.get(): if event.type == pg.QUIT or (event.type == pg.KEYDOWN and event.key == pg.K_ESCAPE): if not pause: pause = 1 pg.mixer.Channel(1).play(respawnfx) endmsg = " Game paused. Current score: " + str(score) else: endmsg = " Thanks for playing! Total score: " + str(score) pg.mixer.Channel(1).play(killfx) running = False if sstart == None and(event.type == pg.MOUSEBUTTONDOWN or event.type == pg.MOUSEBUTTONUP): shoot = 1 if event.type == pg.KEYDOWN: if event.key == ord('p'): # pause if not pause: pause = 1 endmsg = " Game paused. Current score: " + str(score) elif (int(posx) != exitx or int(posy) != exity): pause = 0 if pause and event.key == ord('n'): # new game pause = 0 size = np.random.randint(20,60) posx, posy, posz = 1.5, np.random.uniform(1, size -1), 0.5 rot, rot_v = (np.pi/4, 0) mr, mg, mb, maph, mapr, exitx, exity, mapt, maps = maze_generator(int(posx), int(posy), size) enx, eny, seenx, seeny, lock, run = 0, 0, 0, 0, 0, 1 shoot, sx, sy, sstart = 0, -1, -1, None mplayer = np.zeros([size, size]) et = 0.1 enx, eny, mplayer, et, shoot, sx, sy, sdir, seenx, seeny, lock = agents(enx, eny, maph, posx, posy, rot, et, shoot, sx, sy, sdir, mplayer, seenx, seeny, lock) count = -100 if autores: width, height, mod, inc, rr, gg, bb = adjust_resol(24) pg.mixer.Channel(1).play(respawnfx) if event.key == ord('t'): # toggle auto resolution autores = not(autores) if event.key == ord('y'): # toggle auto resolution smooth = not(smooth) if not autores: if event.key == ord('q'): # manually change resolution if res > 0 : res = res-1 width, height, mod, inc, rr, gg, bb = adjust_resol(res_o[res]) if event.key == ord('e'): if res < len(res_o)-1 : res = res+1 width, height, mod, inc, rr, gg, bb = adjust_resol(res_o[res]) if not pause: rr, gg, bb = super_fast(width, height, mod, inc, posx, posy, posz, rot, rot_v, mr, mg, mb, lx, ly, lz, mplayer, exitx, exity, mapr, mapt, maps, rr, gg, bb, enx, eny, sx, sy, size) pixels = np.dstack((rr,gg,bb)) pixels = np.reshape(pixels, (height,width,3)) surf = pg.surfarray.make_surface((np.rot90(pixels*255)).astype('uint8')) if shoot or smooth: surf = pg.transform.smoothscale(surf, (800, 600)) else: surf = pg.transform.scale(surf, (800, 600)) screen.blit(surf, (0, 0)) ## fpss = int(clock.get_fps())pg.time.get_ticks()/100000 fpss = int(1000/(pg.time.get_ticks() - ticks*100000)) fps = font.render(str(fpss)+' w: '+ str(width) + ' Score: '+str(score), 1, pg.Color("coral")) screen.blit(fps,(10,0)) if autores and count > 10: #auto adjust render resolution if fpss < 50 and width > 100: count = 0 width, height, mod, inc, rr, gg, bb = adjust_resol(int(width*0.8)) if fpss > 65 and width < 728: count = 0 width, height, mod, inc, rr, gg, bb = adjust_resol(int(width*1.1)) # player's movement if (int(posx) == exitx and int(posy) == exity): endmsg = " You escaped safely! " pg.mixer.Channel(1).play(successfx) score += 1 pause = 1 pressed_keys = pg.key.get_pressed() et = clock.tick()/500 if et > 0.5: et = 0.5 if shoot or sstart != None: if sstart == None: pg.mixer.Channel(2).play(shotfx) if fpss < 60 and autores: count = -50 width, height, mod, inc, rr, gg, bb = adjust_resol(int(width*0.8)) sstart = pg.time.get_ticks() elif pg.time.get_ticks() - sstart > 500: shoot, sx, sy, sstart = 0, -1, -1, None if enx == 0: if not run: pg.mixer.Channel(1).play(killfx) run = 1 if np.random.uniform() > 0.999: cos, sin = np.cos(rot), np.sin(rot) for ee in range(100): enx = np.clip(np.random.normal(posx, 5), 1, size-2) eny = np.clip(np.random.normal(posy, 5), 1, size-2) dtp = (enx-posx)**2 + (eny-posy)**2 if maph[int(enx)][int(eny)] == 0 and dtp > 16 and dtp < 49: break if maph[int(enx)][int(eny)] != 0: enx, eny = 0, 0 else: seenx, seeny, lock = enx, eny, 0 screen.blit(font2.render(" Enemy Respawning! ", 1, pg.Color("red"), pg.Color("grey")),(300,50)) pg.mixer.Channel(1).play(respawnfx) else: dtp = (enx-posx)**2 + (eny-posy)**2 if dtp < 1: score -= 1 endmsg = " You died! Current score: " + str(score) pg.mixer.Channel(1).play(failfx) enx, eny, seenx, seeny, lock = 0, 0, 0, 0, 0 pause = 1 surf = pg.surfarray.make_surface((np.rot90(255-pixels*255)).astype('uint8')) surf = pg.transform.smoothscale(surf, (800, 600)) screen.blit(surf, (0, 0)) elif dtp > 300: enx, eny, seenx, seeny, lock = 0, 0, 0, 0, 0 run = 0 ticks = pg.time.get_ticks()/100000 lx = size/2 + 1000*np.cos(ticks) ly = size/2 + 1000*np.sin(ticks) posx, posy, rot, rot_v, shoot = movement(pressed_keys,posx, posy, rot, rot_v, maph, et, shoot, sstart) pg.mouse.set_pos([400, 300]) mplayer = np.zeros([size, size]) enx, eny, mplayer, et, shoot, sx, sy, sdir,seenx, seeny, lock = agents(enx, eny, maph, posx, posy, rot, et, shoot, sx, sy, sdir, mplayer, seenx, seeny, lock) if run and (seenx == posx or seeny == posy): run = False pg.mixer.Channel(1).play(runfx) else: clock.tick(30) screen.blit(font2.render(" FinFET's PyTracing Maze ", 1, pg.Color("red")),(45,45)) screen.blit(font2.render(" FinFET's PyTracing Maze ", 1, pg.Color("blue")),(55,55)) screen.blit(font2.render(" FinFET's PyTracing Maze ", 1, pg.Color("white")),(50,50)) screen.blit(font2.render(endmsg, 1, pg.Color("salmon"), (100, 34, 60)),(50,320)) if (int(posx) == exitx and int(posy) == exity): screen.blit(font2.render(" Your current score is "+str(score), 1, pg.Color("grey"), (80, 34, 80)),(50,390)) else: screen.blit(font2.render(" Press P to continue ", 1, pg.Color("grey"), (80, 34, 80)),(50,390)) screen.blit(font2.render(" Press N for a new game ", 1, pg.Color("grey"), (45, 34, 100)),(50,460)) screen.blit(font2.render(" Press ESC to leave ", 1, pg.Color("grey"), (13, 34, 139)),(50,530)) pg.display.update() screen.blit(font2.render(endmsg, 1, pg.Color("salmon"), (100, 34, 60)),(50,320)) pg.mixer.fadeout(1000) pg.display.update() print(endmsg) pg.time.wait(2000) pg.quit() def maze_generator(x, y, size): mr = np.random.uniform(0,1, (size,size)) mg = np.random.uniform(0,1, (size,size)) mb = np.random.uniform(0,1, (size,size)) mapr = np.random.choice([0, 0, 0, 0, 1], (size,size)) maps = np.random.choice([0, 0, 0, 0, 1], (size,size)) mapt = np.random.choice([0, 0, 0, 1, 2], (size,size)) maptemp = np.random.choice([0,0, 1], (size,size)) maph = np.random.uniform(0.25, 0.99, (size,size)) maph[np.where(maptemp == 0)] = 0 maph[0,:], maph[size-1,:], maph[:,0], maph[:,size-1] = (1,1,1,1) maps[0,:], maps[size-1,:], maps[:,0], maps[:,size-1] = (0,0,0,0) maph[x][y], mapr[x][y] = (0, 0) count = 0 while 1: testx, testy = (x, y) if np.random.uniform() > 0.5: testx = testx + np.random.choice([-1, 1]) else: testy = testy + np.random.choice([-1, 1]) if testx > 0 and testx < size -1 and testy > 0 and testy < size -1: if maph[testx][testy] == 0 or count > 5: count = 0 x, y = (testx, testy) maph[x][y], mapr[x][y] = (0, 0) if x == size-2: exitx, exity = (x, y) break else: count = count+1 return mr, mg, mb, maph, mapr, exitx, exity, mapt, maps def movement(pressed_keys,posx, posy, rot, rot_v, maph, et, shoot, sstart): x, y = (posx, posy) p_mouse = pg.mouse.get_pos() rot, rot_v = rot - np.clip((p_mouse[0]-400)/200, -0.2, .2), rot_v -(p_mouse[1]-300)/400 rot_v = np.clip(rot_v, -1, 1) if pressed_keys[pg.K_UP] or pressed_keys[ord('w')]: x, y = (x + et*np.cos(rot), y + et*np.sin(rot)) if pressed_keys[pg.K_DOWN] or pressed_keys[ord('s')]: x, y = (x - et*np.cos(rot), y - et*np.sin(rot)) if pressed_keys[pg.K_LEFT] or pressed_keys[ord('a')]: x, y = (x - et*np.sin(rot), y + et*np.cos(rot)) if pressed_keys[pg.K_RIGHT] or pressed_keys[ord('d')]: x, y = (x + et*np.sin(rot), y - et*np.cos(rot)) if maph[int(x)][int(y)] == 0: posx, posy = (x, y) if not shoot and sstart == None and pressed_keys[pg.K_SPACE]: shoot = 1 return posx, posy, rot, rot_v, shoot @njit(fastmath=True) def super_fast(width, height, mod, inc, posx, posy, posz, rot, rot_v, mr, mg, mb, lx, ly, lz, maph, exitx, exity, mapr, mapt, maps, pr, pg, pb, enx, eny, sx, sy, size): texture=[[ .95, .99, .97, .8], # brick wall [ .97, .95, .96, .85], [.8, .85, .8, .8], [ .93, .8, .98, .96], [ .99, .8, .97, .95], [.8, .85, .8, .8]] idx = 0 for j in range(height): #vertical loop rot_j = rot_v + np.deg2rad(24 - j/mod) sinzo = inc*np.sin(rot_j) coszo = inc*np.sqrt(abs(np.cos(rot_j))) for i in range(width): #horizontal vision loop rot_i = rot + np.deg2rad(i/mod - 30) x, y, z = (posx, posy, posz) sin, cos, sinz = coszo*np.sin(rot_i), coszo*np.cos(rot_i), sinzo modr = 1 cx, cy, c1r, c2r, c3r = 1, 1, 1, 1, 1 shot, enem, mapv = 0, 0, 0 dtp = np.random.uniform(0.002,0.01) while 1: if (mapv == 0 or (sinz > 0 and (z > mapv or (mapv==6 and (z>0.4 or z <0.2)) or(z > 0.57 and mapv > 1)))): ## LoDev DDA for optimization norm = np.sqrt(cos**2 + sin**2 + sinz**2) rayDirX, rayDirY, rayDirZ = cos/norm + 1e-16, sin/norm + 1e-16, sinz/norm + 1e-16 mapX, mapY = int(x), int(y) deltaDistX, deltaDistY, deltaDistZ= abs(1/rayDirX), abs(1/rayDirY), abs(1/rayDirZ) if (rayDirX < 0): stepX, sideDistX = -1, (x - mapX) * deltaDistX else: stepX, sideDistX = 1, (mapX + 1.0 - x) * deltaDistX if (rayDirY < 0): stepY, sideDistY = -1, (y - mapY) * deltaDistY else: stepY, sideDistY = 1, (mapY + 1 - y) * deltaDistY if (rayDirZ < 0): sideDistZ = z*deltaDistZ; else: sideDistZ = (1-z)*deltaDistZ while (1): if (sideDistX < sideDistY): sideDistX += deltaDistX; mapX += stepX dist = sideDistX; side = 0 if mapX < 1 or mapX > size-2: break else: sideDistY += deltaDistY; mapY += stepY dist = sideDistY; side = 1 if mapY < 1 or mapY > size-2: break if (maph[mapX][mapY] != 0): break if (side): dist = dist - deltaDistY else: dist = dist - deltaDistX if (dist > sideDistZ): dist = sideDistZ x = x + rayDirX*dist - cos/2 y = y + rayDirY*dist - sin/2 z = z + rayDirZ*dist - sinz/2 ## end of LoDev DDA x += cos; y += sin; z += sinz if (z > 1 or z < 0): # check ceiling and floor break mapv = maph[int(x)][int(y)] if mapv > 1 and z < 0.57: if mapv == 2 or mapv == 8: if z> 0.45 and (x-posx)**2 + (y-posy)**2 + (z-0.5)**2 < 0.005 : break if z < 0.45 and z > 0.3 and (x-posx)**2 + (y-posy)**2 < (z/10 - 0.02): break if z < 0.3 and (x-posx)**2 + (y-posy)**2 + (z-0.15)**2 < 0.023 : break if mapv == 3 or mapv == 9: enem = 1 if z> 0.45 and (x-enx)**2 + (y-eny)**2 + (z-0.5)**2 < 0.005 : break if z < 0.45 and z > 0.3 and (x-enx)**2 + (y-eny)**2 < (z/10 - 0.02): break if z < 0.3 and (x-enx)**2 + (y-eny)**2 + (z-0.15)**2 < 0.023 : break if mapv > 5 and z < 0.4 and z > 0.2: if ((x-sx)**2 + (y-sy)**2 + (z-0.3)**2 < dtp):#0.01): shot = 1 break if mapv > z and mapv < 2: # check walls if maps[int(x)][int(y)]: # check spheres if ((x-int(x)-0.5)**2 + (y-int(y)-0.5)**2 + (z-int(z)-0.5)**2 < 0.25): if (mapr[int(x)][int(y)]): # spherical mirror if (modr == 1): cx, cy = int(x), int(y) modr = modr*0.7 if (modr < 0.2): break if (mapv - z <= abs(sinz) ): ## horizontal surface sinz = -sinz else: nx = (x-int(x)-0.5)/0.5; ny = (y-int(y)-0.5)/0.5; nz =(z-int(z)-0.5)/0.5 dot = 2*(cos*nx + sin*ny + sinz*nz) cos = (cos - nx*dot); sin = (sin - ny*dot); sinz = (sinz - nz*dot) x += cos; y += sin; z += sinz else: break elif mapr[int(x)][int(y)]: # check reflections if modr == 1: cx, cy = int(x), int(y) modr = modr*0.7 if modr < 0.2: break if abs(z-maph[int(x)][int(y)]) < abs(sinz): sinz = -sinz elif maph[int(x+cos)][int(y-sin)] == maph[int(x)][int(y)]: cos = -cos else: sin = -sin else: break if z > 1: # ceiling deltaDistZ = (lz-z)*deltaDistZ x += deltaDistZ*rayDirX; y += deltaDistZ*rayDirY; z = lz dtol = np.sqrt((x-lx)**2+(y-ly)**2) if dtol < 50: #light source shot = 1 c1, c2, c3 = 1, 1, 0.5 else: angle = np.rad2deg(np.arctan((y-ly)/(x-lx)))/np.random.uniform(12,15) sh = (0.8+ abs(angle - int(angle))/5)/(dtol/1000) if sh > 1: sh = 1 if int(angle)%2 == 1: c1, c2, c3 = 0.8*(1-sh), 0.86*(1-sh/4), (1-sh/10) else: c1, c2, c3 = 0.8*(1-sh), 0.9*(1-sh/4), (1-sh/10) if sx != -1: c1, c2, c3 = 0.7*c1, 0.7*c2, 0.7*c3 elif z < 0: # floor z = 0 if int(x*2)%2 == int(y*2)%2: c1, c2, c3 = .8,.8,.8 else: if int(x) == exitx and int(y) == exity: #exit c1, c2, c3 = 0,0,.6 else: c1, c2, c3 = .1,.1,.1 elif mapv < 2: # walls c1, c2, c3 = mr[int(x)][int(y)], mg[int(x)][int(y)], mg[int(x)][int(y)] if mapt[int(x)][int(y)]: # textured walls if y%1 < 0.05 or y%1 > 0.95: ww = int((x*3)%1*4) else: ww = int((y*3)%1*4) if x%1 < 0.95 and x%1 > 0.05 and y%1 < 0.95 and y%1 > 0.05: zz = int(x*5%1*6) else: zz = int(z*5%1*6) text = texture[zz][ww] c1, c2, c3 = c1*text, c2*text, c3*text if mapv - z <= abs(sinz): z = mapv elif not maps[int(x)][int(y)]: if int(x-cos) != int(x): x = max(int(x-cos), int(x)) modr = modr*0.80 else: y = max(int(y-sin), int(y)) modr = modr*0.9 else: if shot: sh = ((x-sx)**2 + (y-sy)**2 + (z-0.3)**2)/0.012 c1, c2, c3 = 1, 0.6*sh+0.2 , 0.2*sh+0.1 # shot elif z> 0.45: c1, c2, c3 = 0.6, 0.3, 0.3 # Head elif z > 0.3: c1, c2, c3 = 0.3, 0.5, 0.5 # Chest else: if enem: c1, c2, c3 = 1, 0.2, 0.2 # Roller red else: c1, c2, c3 = 0.2, 0.2, 1 # Roller blue if modr <= 0.7 and not shot: c1r, c2r, c3r = mr[cx][cy], mg[cx][cy], mg[cx][cy] if not shot and z < 1: dtp = np.sqrt((x-posx)**2+(y-posy)**2+(z-posz)**2) if dtp > 7: modr = modr/np.log((dtp-6)/4+np.e) if z < 1: # shadows if sx != -1 and maph[int(sx)][int(sy)] > 1: shot, c3 = 1, c3 * 0.9 dtol = np.sqrt((x-sx)**2+(y-sy)**2+(z-0.35)**2) cos, sin, sinz = .01*(sx-x)/dtol, .01*(sy-y)/dtol, .01*(0.35-z)/dtol else: dtol = np.sqrt((x-lx)**2+(y-ly)**2+(z-lz)**2) cos, sin, sinz = .01*(lx-x)/dtol, .01*(ly-y)/dtol, .01*(lz-z)/dtol x += cos; y += sin; z += sinz mapv = maph[int(x)][int(y)] if z < mapv and mapv < 1 and not maps[int(x)][int(y)]: modr = modr*0.39 while modr > 0.45: if (mapv == 0) or not shot and ((z > mapv) or (z > 0.57 and mapv > 1)): ## LoDev DDA for optimization norm = np.sqrt(cos**2 + sin**2 + sinz**2) rayDirX, rayDirY, rayDirZ = cos/norm + 1e-16, sin/norm + 1e-16, sinz/norm + 1e-16 mapX, mapY = int(x), int(y) deltaDistX, deltaDistY, deltaDistZ= abs(1/rayDirX), abs(1/rayDirY), abs(1/rayDirZ) if (rayDirX < 0): stepX, sideDistX = -1, (x - mapX) * deltaDistX else: stepX, sideDistX = 1, (mapX + 1.0 - x) * deltaDistX if (rayDirY < 0): stepY, sideDistY = -1, (y - mapY) * deltaDistY else: stepY, sideDistY = 1, (mapY + 1 - y) * deltaDistY if (rayDirZ < 0): sideDistZ = z*deltaDistZ; else: sideDistZ = (1-z)*deltaDistZ while (1): if (sideDistX < sideDistY): sideDistX += deltaDistX; mapX += stepX dist = sideDistX; side = 0 if mapX < 1 or mapX > size-2: break else: sideDistY += deltaDistY; mapY += stepY dist = sideDistY; side = 1 if mapY < 1 or mapY > size-2: break if (maph[mapX][mapY] != 0): break if (side): dist = dist - deltaDistY else: dist = dist - deltaDistX if (dist > sideDistZ): dist = sideDistZ x = x + rayDirX*dist - cos/2 y = y + rayDirY*dist - sin/2 z = z + rayDirZ*dist - sinz/2 ## end of LoDev DDA x += cos; y += sin; z += sinz mapv = maph[int(x)][int(y)] if shot: if mapv > 5 or (sinz > 0 and z > 0.35) or (sinz < 0 and z < 0.35): break elif z >1: break if z < 0.57 and mapv > 1: if mapv == 3 or mapv == 9: if z> 0.45 and (x-enx)**2 + (y-eny)**2 + (z-0.5)**2 < 0.005 : modr = modr*0.67 elif z < 0.45 and z > 0.3 and (x-enx)**2 + (y-eny)**2 < (z/10 - 0.02): modr = modr*0.67 elif z < 0.3 and (x-enx)**2 + (y-eny)**2 + (z-0.15)**2 < 0.023 : modr = modr*0.67 elif mapv == 2 or mapv == 8: if z> 0.45 and (x-posx)**2 + (y-posy)**2 + (z-0.5)**2 < 0.005 : modr = modr*0.67 elif z < 0.45 and z > 0.3 and (x-posx)**2 + (y-posy)**2 < (z/10 - 0.02): modr = modr*0.67 elif z < 0.3 and (x-posx)**2 + (y-posy)**2 + (z-0.15)**2 < 0.023 : modr = modr*0.67 if mapv > 0 and z <= mapv and mapv < 2: if maps[int(x)][int(y)]: # check spheres if ((x-int(x)-0.5)**2 + (y-int(y)-0.5)**2 + (z-int(z)-0.5)**2 < 0.25): modr = modr*0.9 else: modr = modr*0.9 pr[idx] = modr*np.sqrt(c1*c1r) pg[idx] = modr*np.sqrt(c2*c2r) pb[idx] = modr*np.sqrt(c3*c3r) idx += 1 return pr, pg, pb def adjust_resol(width): height = int(0.75*width) mod = width/64 inc = 0.02/mod rr = np.random.uniform(0,1,width * height) gg = np.random.uniform(0,1,width * height) bb = np.random.uniform(0,1,width * height) ## print('Resolution: ', width, height) return width, height, mod, inc, rr, gg, bb @njit(fastmath=True) def agents(enx, eny, maph, posx, posy, rot, et, shoot, sx, sy, sdir, mplayer, seenx, seeny, lock): if enx != 0: if not lock or np.random.uniform(0,1) > 0.99: dtp = np.sqrt((enx-posx)**2 + (eny-posy)**2) cos, sin = (posx-enx)/dtp, (posy-eny)/dtp x, y = enx, eny for i in range(300): x += 0.04*cos; y += 0.04*sin if maph[int(x)][int(y)] != 0: lock = 0 break if(int(x) == int(posx) and int(y) == int(posy)): seenx, seeny = posx, posy lock = 1 break if int(enx) == int(seenx) and int(eny) == int(seeny): if not lock: if shoot: seenx, seeny = np.random.uniform(enx, posx), np.random.uniform(eny, posy) else: seenx, seeny = np.random.normal(enx, 2), np.random.normal(eny, 2) else: seenx, seeny = np.random.normal(posx, 2), np.random.normal(posy, 2) dtp = np.sqrt((enx-seenx)**2 + (eny-seeny)**2) cos, sin = (seenx-enx)/dtp, (seeny-eny)/dtp x, y = enx + et*(cos+np.random.normal(0,.5)), eny + et*(sin+np.random.normal(0,.5)) if maph[int(x)][int(y)] == 0: enx, eny = x, y else: if np.random.uniform(0,1) > 0.5: x, y = enx - et*(sin+np.random.normal(0,.5)), eny + et*(cos+np.random.normal(0,.5)) else: x, y = enx + et*(sin+np.random.normal(0,.5)), eny - et*(cos+np.random.normal(0,.5)) if maph[int(x)][int(y)] == 0: enx, eny = x, y else: seenx, seeny = enx+np.random.normal(0,3), eny+np.random.normal(0,3) lock = 0 mplayer[int(enx)][int(eny)] = 3 mplayer[int(posx)][int(posy)] = 2 if shoot: if sx == -1: sdir = rot+np.random.uniform(-.1,.1) sx, sy = posx + .5*np.cos(sdir), posy + .5*np.sin(sdir) sx, sy = sx + 5*et*np.cos(sdir), sy + 5*et*np.sin(sdir) if enx != 0 and (sx - enx)**2 + (sy - eny)**2 < 0.02: shoot, sx, sy, enx, eny, seenx, seeny = 0, -1, -1, 0, 0, 0, 0 if maph[int(sx)][int(sy)] != 0: shoot, sx, sy = 0, -1, -1 else: mplayer[int(sx)][int(sy)] += 6 mplayer = maph + mplayer return(enx, eny, mplayer, et, shoot, sx, sy, sdir, seenx, seeny, lock) if __name__ == '__main__': main()
47.337778
192
0.393234
[ "MIT" ]
FinFetChannel/PytracingMaze
RayTracingMazeEnem.py
31,953
Python
# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries # SPDX-License-Identifier: MIT # Analog to digital converter example. # Will loop forever printing ADC channel 1 raw and mV values every second. # NOTE the ADC can only read voltages in the range of ~900mV to 1800mV! import time import board import busio import adafruit_lis3dh # Uncomment if using SPI # import digitalio # Hardware I2C setup. Use the CircuitPlayground built-in accelerometer if available; # otherwise check I2C pins. if hasattr(board, "ACCELEROMETER_SCL"): i2c = busio.I2C(board.ACCELEROMETER_SCL, board.ACCELEROMETER_SDA) lis3dh = adafruit_lis3dh.LIS3DH_I2C(i2c, address=0x19) else: i2c = busio.I2C(board.SCL, board.SDA) lis3dh = adafruit_lis3dh.LIS3DH_I2C(i2c) # Hardware SPI setup: # spi = busio.SPI(board.SCK, board.MOSI, board.MISO) # cs = digitalio.DigitalInOut(board.D5) # Set to correct CS pin! # lis3dh = adafruit_lis3dh.LIS3DH_SPI(spi, cs) # PyGamer I2C Setup: # i2c = busio.I2C(board.SCL, board.SDA) # lis3dh = adafruit_lis3dh.LIS3DH_I2C(i2c, address=0x19) # Loop forever printing ADC readings. while True: # Read raw ADC value. Specify which ADC to read: 1, 2, or 3. adc1_raw = lis3dh.read_adc_raw(1) # Or read the ADC value in millivolts: adc1_mV = lis3dh.read_adc_mV(1) print("ADC 1 = {} ({} mV)".format(adc1_raw, adc1_mV)) time.sleep(1)
32.431818
85
0.715487
[ "Apache-2.0" ]
IanSMoyes/SpiderPi
Lights/adafruit-circuitpython-bundle-6.x-mpy-20210310/examples/lis3dh_adc.py
1,427
Python
import datetime from datetime import datetime, timedelta from time import sleep from app.search import add_to_index, delete_index, create_index, query_index from app import db from app.models import Post, User from tests.BaseDbTest import BaseDbTest class SearchTest(BaseDbTest): index_name = "test_index" def setUp(self): super(SearchTest, self).setUp() create_index(SearchTest.index_name) def tearDown(self): super(SearchTest, self).tearDown() delete_index(SearchTest.index_name) def test_index_posts(self): # create four users u1 = User(username='john', email='[email protected]') u2 = User(username='susan', email='[email protected]') db.session.add_all([u1, u2]) # create four posts now = datetime.utcnow() p1 = Post(body="post post1 from john", author=u1, timestamp=now + timedelta(seconds=1)) p2 = Post(body="post post2 from susan", author=u2, timestamp=now + timedelta(seconds=4)) p3 = Post(body="post post3 from john", author=u1, timestamp=now + timedelta(seconds=3)) p4 = Post(body="post post4 from john", author=u1, timestamp=now + timedelta(seconds=2)) db.session.add_all([p1, p2, p3, p4]) db.session.commit() add_to_index(SearchTest.index_name, p1) add_to_index(SearchTest.index_name, p2) add_to_index(SearchTest.index_name, p3) add_to_index(SearchTest.index_name, p4) sleep(1) ids, total = query_index(SearchTest.index_name, "post1", 1, 20) self.assertEqual(1, total) self.assertEqual(p1.id, ids[0]) ids, total = query_index(SearchTest.index_name, "post", 1, 20) self.assertEqual(4, total)
32.357143
76
0.640177
[ "MIT" ]
cuongbm/microblog
tests/SearchTest.py
1,812
Python
# --------------------------------------------------------------------- # CPE check # --------------------------------------------------------------------- # Copyright (C) 2007-2019 The NOC Project # See LICENSE for details # --------------------------------------------------------------------- # Python modules import datetime # NOC modules from noc.services.discovery.jobs.base import DiscoveryCheck from noc.sa.models.managedobject import ManagedObject from noc.sa.models.profile import Profile class CPECheck(DiscoveryCheck): """ CPE check @todo: Remove stale CPE """ name = "cpe" required_script = "get_cpe" required_capabilities = ["CPE | Controller"] def handler(self): self.logger.info("Checking CPEs") now = datetime.datetime.now() result = self.object.scripts.get_cpe() for cpe in result: if cpe["status"] != "active": self.logger.debug( "[%s|%s] CPE status is '%s'. Skipping", cpe["id"], cpe["global_id"], cpe["status"], ) continue mo = self.find_cpe(cpe["global_id"]) if mo: changes = self.update_if_changed( mo, { "controller": self.object, "local_cpe_id": cpe["id"], "global_cpe_id": cpe["global_id"], "address": cpe["ip"], "last_seen": now, }, ) if changes: self.logger.info( "[%s|%s] Changed: %s", cpe["id"], cpe["global_id"], ", ".join("%s='%s'" % c for c in changes), ) else: name = cpe.get("name") or "cpe-%s" % cpe["global_id"] if ManagedObject.objects.filter(name=name).exists(): name = "cpe-%s" % cpe["global_id"] self.logger.info("[%s|%s] Created CPE %s", cpe["id"], cpe["global_id"], name) mo = ManagedObject( name=name, pool=self.object.pool, profile=Profile.get_by_id(Profile.get_generic_profile_id()), object_profile=self.object.object_profile.cpe_profile or self.object.object_profile, administrative_domain=self.object.administrative_domain, scheme=self.object.scheme, segment=self.object.segment, auth_profile=self.object.object_profile.cpe_auth_profile or self.object.auth_profile, address=cpe.get("ip") or "0.0.0.0", controller=self.object, last_seen=now, local_cpe_id=cpe["id"], global_cpe_id=cpe["global_id"], ) mo.save() @classmethod def find_cpe(cls, global_id): try: return ManagedObject.objects.get(global_cpe_id=global_id) except ManagedObject.DoesNotExist: return None
36.910112
93
0.448706
[ "BSD-3-Clause" ]
nocproject/noc
services/discovery/jobs/box/cpe.py
3,285
Python
"""The tests for the Entity component helper.""" # pylint: disable=protected-access import asyncio from collections import OrderedDict import logging import unittest from unittest.mock import patch, Mock from datetime import timedelta import pytest import homeassistant.core as ha import homeassistant.loader as loader from homeassistant.exceptions import PlatformNotReady from homeassistant.components import group from homeassistant.helpers.entity_component import EntityComponent from homeassistant.setup import setup_component, async_setup_component from homeassistant.helpers import discovery import homeassistant.util.dt as dt_util from tests.common import ( get_test_home_assistant, MockPlatform, MockModule, mock_coro, async_fire_time_changed, MockEntity, MockConfigEntry, mock_entity_platform, mock_integration) _LOGGER = logging.getLogger(__name__) DOMAIN = "test_domain" class TestHelpersEntityComponent(unittest.TestCase): """Test homeassistant.helpers.entity_component module.""" def setUp(self): # pylint: disable=invalid-name """Initialize a test Home Assistant instance.""" self.hass = get_test_home_assistant() def tearDown(self): # pylint: disable=invalid-name """Clean up the test Home Assistant instance.""" self.hass.stop() def test_setting_up_group(self): """Set up the setting of a group.""" setup_component(self.hass, 'group', {'group': {}}) component = EntityComponent(_LOGGER, DOMAIN, self.hass, group_name='everyone') # No group after setup assert len(self.hass.states.entity_ids()) == 0 component.add_entities([MockEntity()]) self.hass.block_till_done() # group exists assert len(self.hass.states.entity_ids()) == 2 assert self.hass.states.entity_ids('group') == ['group.everyone'] group = self.hass.states.get('group.everyone') assert group.attributes.get('entity_id') == \ ('test_domain.unnamed_device',) # group extended component.add_entities([MockEntity(name='goodbye')]) self.hass.block_till_done() assert len(self.hass.states.entity_ids()) == 3 group = self.hass.states.get('group.everyone') # Ordered in order of added to the group assert group.attributes.get('entity_id') == \ ('test_domain.goodbye', 'test_domain.unnamed_device') def test_setup_loads_platforms(self): """Test the loading of the platforms.""" component_setup = Mock(return_value=True) platform_setup = Mock(return_value=None) mock_integration(self.hass, MockModule('test_component', setup=component_setup)) # mock the dependencies mock_integration(self.hass, MockModule('mod2', dependencies=['test_component'])) mock_entity_platform(self.hass, 'test_domain.mod2', MockPlatform(platform_setup)) component = EntityComponent(_LOGGER, DOMAIN, self.hass) assert not component_setup.called assert not platform_setup.called component.setup({ DOMAIN: { 'platform': 'mod2', } }) self.hass.block_till_done() assert component_setup.called assert platform_setup.called def test_setup_recovers_when_setup_raises(self): """Test the setup if exceptions are happening.""" platform1_setup = Mock(side_effect=Exception('Broken')) platform2_setup = Mock(return_value=None) mock_entity_platform(self.hass, 'test_domain.mod1', MockPlatform(platform1_setup)) mock_entity_platform(self.hass, 'test_domain.mod2', MockPlatform(platform2_setup)) component = EntityComponent(_LOGGER, DOMAIN, self.hass) assert not platform1_setup.called assert not platform2_setup.called component.setup(OrderedDict([ (DOMAIN, {'platform': 'mod1'}), ("{} 2".format(DOMAIN), {'platform': 'non_exist'}), ("{} 3".format(DOMAIN), {'platform': 'mod2'}), ])) self.hass.block_till_done() assert platform1_setup.called assert platform2_setup.called @patch('homeassistant.helpers.entity_component.EntityComponent' '._async_setup_platform', return_value=mock_coro()) @patch('homeassistant.setup.async_setup_component', return_value=mock_coro(True)) def test_setup_does_discovery(self, mock_setup_component, mock_setup): """Test setup for discovery.""" component = EntityComponent(_LOGGER, DOMAIN, self.hass) component.setup({}) discovery.load_platform(self.hass, DOMAIN, 'platform_test', {'msg': 'discovery_info'}, {DOMAIN: {}}) self.hass.block_till_done() assert mock_setup.called assert ('platform_test', {}, {'msg': 'discovery_info'}) == \ mock_setup.call_args[0] @patch('homeassistant.helpers.entity_platform.' 'async_track_time_interval') def test_set_scan_interval_via_config(self, mock_track): """Test the setting of the scan interval via configuration.""" def platform_setup(hass, config, add_entities, discovery_info=None): """Test the platform setup.""" add_entities([MockEntity(should_poll=True)]) mock_entity_platform(self.hass, 'test_domain.platform', MockPlatform(platform_setup)) component = EntityComponent(_LOGGER, DOMAIN, self.hass) component.setup({ DOMAIN: { 'platform': 'platform', 'scan_interval': timedelta(seconds=30), } }) self.hass.block_till_done() assert mock_track.called assert timedelta(seconds=30) == mock_track.call_args[0][2] def test_set_entity_namespace_via_config(self): """Test setting an entity namespace.""" def platform_setup(hass, config, add_entities, discovery_info=None): """Test the platform setup.""" add_entities([ MockEntity(name='beer'), MockEntity(name=None), ]) platform = MockPlatform(platform_setup) mock_entity_platform(self.hass, 'test_domain.platform', platform) component = EntityComponent(_LOGGER, DOMAIN, self.hass) component.setup({ DOMAIN: { 'platform': 'platform', 'entity_namespace': 'yummy' } }) self.hass.block_till_done() assert sorted(self.hass.states.entity_ids()) == \ ['test_domain.yummy_beer', 'test_domain.yummy_unnamed_device'] @asyncio.coroutine def test_extract_from_service_available_device(hass): """Test the extraction of entity from service and device is available.""" component = EntityComponent(_LOGGER, DOMAIN, hass) yield from component.async_add_entities([ MockEntity(name='test_1'), MockEntity(name='test_2', available=False), MockEntity(name='test_3'), MockEntity(name='test_4', available=False), ]) call_1 = ha.ServiceCall('test', 'service') assert ['test_domain.test_1', 'test_domain.test_3'] == \ sorted(ent.entity_id for ent in (yield from component.async_extract_from_service(call_1))) call_2 = ha.ServiceCall('test', 'service', data={ 'entity_id': ['test_domain.test_3', 'test_domain.test_4'], }) assert ['test_domain.test_3'] == \ sorted(ent.entity_id for ent in (yield from component.async_extract_from_service(call_2))) @asyncio.coroutine def test_platform_not_ready(hass): """Test that we retry when platform not ready.""" platform1_setup = Mock(side_effect=[PlatformNotReady, PlatformNotReady, None]) loader.set_component(hass, 'mod1', MockModule('mod1')) loader.set_component(hass, 'mod1.test_domain', MockPlatform(platform1_setup)) component = EntityComponent(_LOGGER, DOMAIN, hass) yield from component.async_setup({ DOMAIN: { 'platform': 'mod1' } }) assert len(platform1_setup.mock_calls) == 1 assert 'test_domain.mod1' not in hass.config.components utcnow = dt_util.utcnow() with patch('homeassistant.util.dt.utcnow', return_value=utcnow): # Should not trigger attempt 2 async_fire_time_changed(hass, utcnow + timedelta(seconds=29)) yield from hass.async_block_till_done() assert len(platform1_setup.mock_calls) == 1 # Should trigger attempt 2 async_fire_time_changed(hass, utcnow + timedelta(seconds=30)) yield from hass.async_block_till_done() assert len(platform1_setup.mock_calls) == 2 assert 'test_domain.mod1' not in hass.config.components # This should not trigger attempt 3 async_fire_time_changed(hass, utcnow + timedelta(seconds=59)) yield from hass.async_block_till_done() assert len(platform1_setup.mock_calls) == 2 # Trigger attempt 3, which succeeds async_fire_time_changed(hass, utcnow + timedelta(seconds=60)) yield from hass.async_block_till_done() assert len(platform1_setup.mock_calls) == 3 assert 'test_domain.mod1' in hass.config.components @asyncio.coroutine def test_extract_from_service_returns_all_if_no_entity_id(hass): """Test the extraction of everything from service.""" component = EntityComponent(_LOGGER, DOMAIN, hass) yield from component.async_add_entities([ MockEntity(name='test_1'), MockEntity(name='test_2'), ]) call = ha.ServiceCall('test', 'service') assert ['test_domain.test_1', 'test_domain.test_2'] == \ sorted(ent.entity_id for ent in (yield from component.async_extract_from_service(call))) @asyncio.coroutine def test_extract_from_service_filter_out_non_existing_entities(hass): """Test the extraction of non existing entities from service.""" component = EntityComponent(_LOGGER, DOMAIN, hass) yield from component.async_add_entities([ MockEntity(name='test_1'), MockEntity(name='test_2'), ]) call = ha.ServiceCall('test', 'service', { 'entity_id': ['test_domain.test_2', 'test_domain.non_exist'] }) assert ['test_domain.test_2'] == \ [ent.entity_id for ent in (yield from component.async_extract_from_service(call))] @asyncio.coroutine def test_extract_from_service_no_group_expand(hass): """Test not expanding a group.""" component = EntityComponent(_LOGGER, DOMAIN, hass) test_group = yield from group.Group.async_create_group( hass, 'test_group', ['light.Ceiling', 'light.Kitchen']) yield from component.async_add_entities([test_group]) call = ha.ServiceCall('test', 'service', { 'entity_id': ['group.test_group'] }) extracted = yield from component.async_extract_from_service( call, expand_group=False) assert extracted == [test_group] @asyncio.coroutine def test_setup_dependencies_platform(hass): """Test we setup the dependencies of a platform. We're explictely testing that we process dependencies even if a component with the same name has already been loaded. """ loader.set_component(hass, 'test_component', MockModule('test_component', dependencies=['test_component2'])) loader.set_component(hass, 'test_component2', MockModule('test_component2')) loader.set_component(hass, 'test_component.test_domain', MockPlatform()) component = EntityComponent(_LOGGER, DOMAIN, hass) yield from component.async_setup({ DOMAIN: { 'platform': 'test_component', } }) assert 'test_component' in hass.config.components assert 'test_component2' in hass.config.components assert 'test_domain.test_component' in hass.config.components async def test_setup_entry(hass): """Test setup entry calls async_setup_entry on platform.""" mock_setup_entry = Mock(return_value=mock_coro(True)) mock_entity_platform( hass, 'test_domain.entry_domain', MockPlatform(async_setup_entry=mock_setup_entry, scan_interval=timedelta(seconds=5))) component = EntityComponent(_LOGGER, DOMAIN, hass) entry = MockConfigEntry(domain='entry_domain') assert await component.async_setup_entry(entry) assert len(mock_setup_entry.mock_calls) == 1 p_hass, p_entry, p_add_entities = mock_setup_entry.mock_calls[0][1] assert p_hass is hass assert p_entry is entry assert component._platforms[entry.entry_id].scan_interval == \ timedelta(seconds=5) async def test_setup_entry_platform_not_exist(hass): """Test setup entry fails if platform doesnt exist.""" component = EntityComponent(_LOGGER, DOMAIN, hass) entry = MockConfigEntry(domain='non_existing') assert (await component.async_setup_entry(entry)) is False async def test_setup_entry_fails_duplicate(hass): """Test we don't allow setting up a config entry twice.""" mock_setup_entry = Mock(return_value=mock_coro(True)) mock_entity_platform( hass, 'test_domain.entry_domain', MockPlatform(async_setup_entry=mock_setup_entry)) component = EntityComponent(_LOGGER, DOMAIN, hass) entry = MockConfigEntry(domain='entry_domain') assert await component.async_setup_entry(entry) with pytest.raises(ValueError): await component.async_setup_entry(entry) async def test_unload_entry_resets_platform(hass): """Test unloading an entry removes all entities.""" mock_setup_entry = Mock(return_value=mock_coro(True)) mock_entity_platform( hass, 'test_domain.entry_domain', MockPlatform(async_setup_entry=mock_setup_entry)) component = EntityComponent(_LOGGER, DOMAIN, hass) entry = MockConfigEntry(domain='entry_domain') assert await component.async_setup_entry(entry) assert len(mock_setup_entry.mock_calls) == 1 add_entities = mock_setup_entry.mock_calls[0][1][2] add_entities([MockEntity()]) await hass.async_block_till_done() assert len(hass.states.async_entity_ids()) == 1 assert await component.async_unload_entry(entry) assert len(hass.states.async_entity_ids()) == 0 async def test_unload_entry_fails_if_never_loaded(hass): """.""" component = EntityComponent(_LOGGER, DOMAIN, hass) entry = MockConfigEntry(domain='entry_domain') with pytest.raises(ValueError): await component.async_unload_entry(entry) async def test_update_entity(hass): """Test that we can update an entity with the helper.""" component = EntityComponent(_LOGGER, DOMAIN, hass) entity = MockEntity() entity.async_update_ha_state = Mock(return_value=mock_coro()) await component.async_add_entities([entity]) # Called as part of async_add_entities assert len(entity.async_update_ha_state.mock_calls) == 1 await hass.helpers.entity_component.async_update_entity(entity.entity_id) assert len(entity.async_update_ha_state.mock_calls) == 2 assert entity.async_update_ha_state.mock_calls[-1][1][0] is True async def test_set_service_race(hass): """Test race condition on setting service.""" exception = False def async_loop_exception_handler(_, _2) -> None: """Handle all exception inside the core loop.""" nonlocal exception exception = True hass.loop.set_exception_handler(async_loop_exception_handler) await async_setup_component(hass, 'group', {}) component = EntityComponent(_LOGGER, DOMAIN, hass, group_name='yo') for i in range(2): hass.async_create_task(component.async_add_entities([MockEntity()])) await hass.async_block_till_done() assert not exception async def test_extract_all_omit_entity_id(hass, caplog): """Test extract all with None and *.""" component = EntityComponent(_LOGGER, DOMAIN, hass) await component.async_add_entities([ MockEntity(name='test_1'), MockEntity(name='test_2'), ]) call = ha.ServiceCall('test', 'service') assert ['test_domain.test_1', 'test_domain.test_2'] == \ sorted(ent.entity_id for ent in await component.async_extract_from_service(call)) assert ('Not passing an entity ID to a service to target all entities is ' 'deprecated') in caplog.text async def test_extract_all_use_match_all(hass, caplog): """Test extract all with None and *.""" component = EntityComponent(_LOGGER, DOMAIN, hass) await component.async_add_entities([ MockEntity(name='test_1'), MockEntity(name='test_2'), ]) call = ha.ServiceCall('test', 'service', {'entity_id': 'all'}) assert ['test_domain.test_1', 'test_domain.test_2'] == \ sorted(ent.entity_id for ent in await component.async_extract_from_service(call)) assert ('Not passing an entity ID to a service to target all entities is ' 'deprecated') not in caplog.text
35.230769
78
0.673006
[ "Apache-2.0" ]
BobbyBleacher/home-assistant
tests/helpers/test_entity_component.py
17,404
Python
#!/usr/bin/env python """ Copyright 2012 GroupDocs. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ class GetBillingAddressResponse: """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually.""" def __init__(self): self.swaggerTypes = { 'result': 'GetBillingAddressResult', 'status': 'str', 'error_message': 'str', 'composedOn': 'long' } self.result = None # GetBillingAddressResult self.status = None # str self.error_message = None # str self.composedOn = None # long
29.974359
77
0.656116
[ "Apache-2.0" ]
groupdocs-legacy-sdk/python
groupdocs/models/GetBillingAddressResponse.py
1,169
Python
from setuptools import setup, find_packages setup( name='wtouch', version='0.0.1', description='Create a file in current folder.', url='https://github.com/Frederick-S/wtouch', packages=find_packages(exclude=['tests']), entry_points={ 'console_scripts': [ 'wtouch = wtouch.main:main' ] }, include_package_data=True, test_suite="tests" )
23.588235
51
0.628429
[ "MIT" ]
Frederick-S/wtouch
setup.py
401
Python
# Generated by Django 3.0.4 on 2020-03-29 13:08 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('analyzer', '0004_auto_20200328_1750'), ] operations = [ migrations.AddField( model_name='diseasestats', name='country', field=models.ForeignKey(default=0, on_delete=django.db.models.deletion.PROTECT, to='analyzer.Country'), preserve_default=False, ), migrations.AlterUniqueTogether( name='diseasestats', unique_together={('disease_season', 'country', 'stats_date')}, ), ]
27.4
115
0.626277
[ "MIT" ]
4elovek37/diseases_risk_analysing
analyzer/migrations/0005_auto_20200329_1308.py
685
Python
import sys import os if len(sys.argv) > 1: folder = sys.argv[1] jsfile = open("./" + folder + ".js", "w+") images = [f[:len(f)-4] for f in os.listdir("./" + folder) if f.endswith(".svg")] varnames = [] for i in images: varname = "svg_" + i.replace('-', '_'); varnames.append(varname) jsfile.write("import " + varname + " from './" + folder + "/" + i + ".svg';\n") jsfile.write("\n") jsfile.write("const " + folder + " = [" + ", ".join(varnames) + "];\n") jsfile.write("\n") jsfile.write("export default " + folder + ";") jsfile.close()
33.388889
87
0.515807
[ "MIT" ]
pdyxs/WhereTheHeartIs
src/js/components/Map/svg/makeimport.py
601
Python
# encoding=utf8 # This is temporary fix to import module from parent folder # It will be removed when package is published on PyPI import sys sys.path.append('../') # End of fix import random from NiaPy.algorithms.basic import MultiStrategyDifferentialEvolution from NiaPy.util import StoppingTask, OptimizationType from NiaPy.benchmarks import Sphere #we will run Differential Evolution for 5 independent runs for i in range(5): task = StoppingTask(D=10, nFES=1000, optType=OptimizationType.MINIMIZATION, benchmark=Sphere()) algo = MultiStrategyDifferentialEvolution(NP=50, F=0.5, CR=0.9) best = algo.run(task=task) print('%s -> %s' % (best[0].x, best[1]))
35.578947
99
0.755917
[ "MIT" ]
kozulic/NiaPy
examples/run_msde.py
676
Python
from json import load import os import argparse import random from copy import deepcopy import torchvision import torchvision.transforms as transforms from torch import nn import sys import torch import numpy as np import cvxopt torch.manual_seed(0) from fedlab.core.client.serial_trainer import SubsetSerialTrainer from fedlab.utils.aggregator import Aggregators from fedlab.utils.serialization import SerializationTool from fedlab.utils.functional import evaluate from fedlab.utils.functional import get_best_gpu, load_dict sys.path.append("../") from models.cnn import CNN_MNIST def quadprog(Q, q, G, h, A, b): """ Input: Numpy arrays, the format follows MATLAB quadprog function: https://www.mathworks.com/help/optim/ug/quadprog.html Output: Numpy array of the solution """ Q = cvxopt.matrix(Q.tolist()) q = cvxopt.matrix(q.tolist(), tc='d') G = cvxopt.matrix(G.tolist()) h = cvxopt.matrix(h.tolist()) A = cvxopt.matrix(A.tolist()) b = cvxopt.matrix(b.tolist(), tc='d') sol = cvxopt.solvers.qp(Q, q.T, G.T, h.T, A.T, b) return np.array(sol['x']) def optim_lambdas(gradients, lambda0): epsilon = 0.5 n = len(gradients) J_t = [grad.numpy() for grad in gradients] J_t = np.array(J_t) # target function Q = 2 * np.dot(J_t, J_t.T) q = np.array([[0] for i in range(n)]) # equality constrint A = np.ones(n).T b = np.array([1]) # boundary lb = np.array([max(0, lambda0[i] - epsilon) for i in range(n)]) ub = np.array([min(1, lambda0[i] + epsilon) for i in range(n)]) G = np.zeros((2 * n, n)) for i in range(n): G[i][i] = -1 G[n + i][i] = 1 h = np.zeros((2 * n, 1)) for i in range(n): h[i] = -lb[i] h[n + i] = ub[i] res = quadprog(Q, q, G, h, A, b) return res # python standalone.py --sample_ratio 0.1 --batch_size 10 --epochs 5 --partition iid # configuration parser = argparse.ArgumentParser(description="Standalone training example") parser.add_argument("--total_client", type=int, default=10) parser.add_argument("--com_round", type=int, default=5) parser.add_argument("--sample_ratio", type=float) parser.add_argument("--batch_size", type=int) parser.add_argument("--lr", type=float) parser.add_argument("--epochs", type=int) args = parser.parse_args() # get raw dataset root = "../datasets/mnist/" trainset = torchvision.datasets.MNIST(root=root, train=True, download=True, transform=transforms.ToTensor()) testset = torchvision.datasets.MNIST(root=root, train=False, download=True, transform=transforms.ToTensor()) test_loader = torch.utils.data.DataLoader(testset, batch_size=len(testset), drop_last=False, shuffle=False) # setup os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3" gpu = get_best_gpu() model = CNN_MNIST().cuda(gpu) # FL settings num_per_round = int(args.total_client * args.sample_ratio) aggregator = Aggregators.fedavg_aggregate total_client_num = args.total_client # client总数 data_indices = load_dict("./mnist_noniid.pkl") # fedlab setup local_model = deepcopy(model) trainer = SubsetSerialTrainer(model=local_model, dataset=trainset, data_slices=data_indices, aggregator=aggregator, args={ "batch_size": args.batch_size, "epochs": args.epochs, "lr": args.lr }) dynamic_lambdas = np.ones(num_per_round) * 1.0 / num_per_round # train procedure to_select = [i for i in range(total_client_num)] for round in range(args.com_round): model_parameters = SerializationTool.serialize_model(model) selection = random.sample(to_select, num_per_round) parameters = trainer.train(model_parameters=model_parameters, id_list=selection, aggregate=False) gradients = [model_parameters - model for model in parameters] for i, grad in enumerate(gradients): gradients[i] = grad / grad.norm() print(len(gradients)) print(gradients[0].shape) # calculate lamda lambda0 = [1.0 / num_per_round for _ in range(num_per_round)] dynamic_lambdas = torch.Tensor(optim_lambdas(gradients, lambda0)).view(-1) dt = Aggregators.fedavg_aggregate(gradients, dynamic_lambdas) serialized_parameters = model_parameters - dt * args.lr SerializationTool.deserialize_model(model, serialized_parameters) criterion = nn.CrossEntropyLoss() loss, acc = evaluate(model, criterion, test_loader) print("loss: {:.4f}, acc: {:.2f}".format(loss, acc))
34.689655
123
0.615706
[ "Apache-2.0" ]
KarhouTam/FedLab-benchmarks
fedlab_benchmarks/fedmgda+/standalone.py
5,034
Python
from shoppinglist.models import Ingredient from rest_framework import serializers class IngredientSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = Ingredient fields = ('account', 'member', 'ref_date', 'ref_meal', 'ingredient', 'created', 'ingredient_there')
35.555556
67
0.709375
[ "MIT" ]
christiankuhl/foodplanner
shoppinglist/serializers.py
320
Python
""" NNAPI Systrace parser - tracking of call tree based on trace lines See contract-between-code-and-parser.txt for the specification (cases in the specification are referred to with SPEC). """ import re import sys from parser.naming import (subphases, translate_hidl_mark_to_nn_and_tag, get_function_name_from_mark, make_tag) from parser.naming import LAYER_CPU, LAYER_DRIVER, LAYER_RUNTIME, LAYER_APPLICATION from parser.naming import MARKER_SWITCH, MARKER_SUBTRACT from parser.naming import PHASE_EXECUTION, PHASE_OVERALL, PHASE_WARMUP, PHASE_BENCHMARK from parser.tree import SingleThreadCallTree class AppPhase(object): """ Class to track the overall phase of the program. Used to split up warmup and benchmark. Needs to be separate from the call trees to propagate the difference to driver. """ def __init__(self): self.reset() def current(self): if self.stack: return self.stack[-1] else: return PHASE_OVERALL def push(self, phase): self.stack.append(phase) def pop(self): self.stack.pop() def reset(self): self.stack = [] class Tracker(object): """ Class to track the stack trace of a single thread and feed it into a SingleThreadCallTree as well as keeping track of entry and exit times for functions. Exposes statistics for a single thread, transforming the call tree as needed. All statistics are in milliseconds. Layer Runtime, Phase Execution (LR_PE) is special-cased, see comment in get_stat(). Subphases of Execution are aggregated towards the overall Execution phase as needed. """ def __init__(self, tgid, is_driver, app_phase): self.tgid = tgid self.is_driver = is_driver self.app_phase = app_phase # Match the trace string # "[NN_LA_PP]funcE1" in "B|<thread1>|[NN_LA_PP]funcE1" # "[NN_LC_PCO]funcC1" in "B|<thread1>|[SW][NN_LC_PCO]funcC1" self.matcher = re.compile(r"B\|\d+\|.*\[([^]]+)\]\[?([^]])\]?") self.reset() def reset(self): self.stats = {} self.items = {} self.mytree = SingleThreadCallTree() self.begins_and_ends_ms = {} self.la_pe_counts = {} self.debugstring = "\n" def handle_mark(self, time, mark): """ Handle a single trace item (scoped entry and exit). Translates: - Automatically generated HIDL traces into NNTRACE layers and phases - SPEC:Switch phase during function into dummy items - SPEC:Subtracting time when nesting is violated into "subtract" markers - CPU/Driver layer distinction based on whether the process is the driver or an application This function is called multiple times for a single application run, afterwards the statistics can be calculated. """ if mark[0] == "B": switch = False subtract = False # Workarounds for wrong tracepoints in early versions # TODO(mikie): remove later if ("ANeuralNetworksEvent_free" in mark) or ("ANeuralNetworksExecution_free" in mark): mark = mark.replace("_PT", "_PE") # Workarounds for trace marker for getSupportedExtensions (fixed in ag/9484333) if ("getSupportedExtensions" in mark): mark = mark.replace("_PC", "_PI") elif ("[SW][NN_LA_PR]executeWithCompilation" in mark): mark = mark.replace("[SW]", "") if MARKER_SWITCH in mark: switch = True if MARKER_SUBTRACT in mark: subtract = True if switch: # End previous item self.handle_mark(time, "E") # Push a placeholder item that will get popped by the 'real' end of the # previous item. self.mytree.push_dummy(time) m = self.matcher.search(mark) if m is None: tag = translate_hidl_mark_to_nn_and_tag(mark) if tag is None: raise Exception("Couldn't parse mark " + mark) else: tag = m.group(1) [_, layer, phase] = tag.split("_") if layer == LAYER_APPLICATION and phase in [PHASE_WARMUP, PHASE_BENCHMARK]: self.app_phase.push(phase) if not self.is_driver: layer = layer.replace(LAYER_DRIVER, LAYER_CPU) else: layer = layer.replace(LAYER_CPU, LAYER_DRIVER) if layer == LAYER_APPLICATION and phase == PHASE_EXECUTION: self.la_pe_counts[self.app_phase.current()] = ( self.la_pe_counts.get(self.app_phase.current(), 0) + 1) self.mytree.push(time, mark, layer, phase, self.app_phase.current(), subtract) elif mark[0] == "E": try: node = self.mytree.pop(time) if node.is_dummy(): # Placeholder item pass else: if node.layer == LAYER_APPLICATION and node.phase in [PHASE_WARMUP, PHASE_BENCHMARK]: self.app_phase.pop() function = node.app_phase + "::" + get_function_name_from_mark(node.mark) self.begins_and_ends_ms[function] = (self.begins_and_ends_ms.get(function, []) + [[float(node.start_time_s) * 1000.0, float(node.end_time_s) * 1000.0]]) except IndexError as e: raise Exception("Unable to process a trace termination mark, please check that the collected trace are including full application lifecycles.\n") from e def is_complete(self): """ Checks if we've seen all end tracepoints for the begin tracepoints. """ return self.mytree.current.is_root() def calculate_stats(self): assert self.is_complete() self.mytree.remove_ignored() self.mytree.remove_dummies() self.mytree.copy_subtracted_init_and_wrong_la() self.mytree.add_missing_la_nodes() # self.mytree.print() self.mytree.validate_nesting() def recurse(node, prev_layer, prev_phase, indent, in_pe_layers): [begun, mark, layer, phase] = [ node.start_time_s, node.mark, node.layer, node.phase()] time = node.end_time_s tag = None elapsed0 = "DETAIL" elapsed1 = node.elapsed_less_subtracted_ms() if elapsed1 is None: raise Exception("Elapsed for {} returned None".format(node.to_str())) if not node.is_added_detail() and not node.subtract: tag = node.app_phase + "_" + layer + "_" + phase elapsed0 = elapsed1 self.stats[tag] = self.stats.get(tag, 0.0) + elapsed0 self.items[tag] = self.items.get(tag, []) + [ mark + " " + str(elapsed0) + " " + str(elapsed1) + " " + tag] if phase in subphases[PHASE_EXECUTION]: if not in_pe_layers.get(layer): pe_tag = node.app_phase + "_" + make_tag(layer, PHASE_EXECUTION) self.stats[pe_tag] = self.stats.get(pe_tag, 0.0) + elapsed0 self.items[pe_tag] = self.items.get(pe_tag, []) + [ mark + " " + str(elapsed0) + " " + str(elapsed1) + " " + pe_tag] if phase == PHASE_EXECUTION: in_pe_layers[layer] = in_pe_layers.get(layer, 0) + 1 for c in node.children: recurse(c, layer or prev_layer, phase or prev_phase, indent + " ", in_pe_layers) if phase == PHASE_EXECUTION: in_pe_layers[layer] = in_pe_layers[layer] - 1 return for top in self.mytree.root.children: recurse(top, None, None, "", {}) self.debugstring = self.mytree.to_str() # We need to special case the driver execution time because: # - The existing drivers don't have tracing, so we rely on HIDL traces # - Best we can do is to take the start of the HIDL server side call as # the starting point (which includes a bit of overhead, but not much) and # the start of the callback as the end point (which should be pretty # accurate) # Note that the begin and end may be on different threads, hence the # calculation needs to happen in aggregation rather than here. def get_ld_pe_begins(self, app_phase): return self.get_begins(app_phase, "HIDL::IPreparedModel::execute::server") def get_ld_pe_ends(self, app_phase): return self.get_begins(app_phase, "HIDL::IExecutionCallback::notify::client") def get_stat(self, tag, app_phase, special_case_pe=True): if not self.stats and not self.mytree.is_empty(): self.calculate_stats() if tag == make_tag(LAYER_RUNTIME, PHASE_EXECUTION) and special_case_pe: # Execution is exposed as an asynchronous event from the runtime, we # calculate the runtime time as starting from when the async operation is # kicked off until wait finishes + synchronous setup and teardown calls. # This has two limitations: # - multithreaded usage will not work correctly # - should the application spend so much time before calling wait that # execution has already finished, the time would get allocated to the # runtime incorrectly async_starts = self.get_begins(app_phase, "ANeuralNetworksExecution_startCompute") async_ends = self.get_ends(app_phase, "ANeuralNetworksEvent_wait") elapsed = 0.0 for i in range(0, len(async_starts)): elapsed = elapsed + (async_ends[i] - async_starts[i]) for sync in ["ANeuralNetworksExecution_create", "ANeuralNetworksExecution_free", "ANeuralNetworksEvent_create", "ANeuralNetworksEvent_free", "ANeuralNetworksExecution_setInput", "ANeuralNetworksExecution_setOutput", "ANeuralNetworksExecution_setInputFromMemory", "ANeuralNetworksExecution_setOutputFromMemory"]: sync_starts = self.get_begins(app_phase, sync) sync_ends = self.get_ends(app_phase, sync) for i in range(0, len(sync_starts)): elapsed = elapsed + (sync_ends[i] - sync_starts[i]) return elapsed return self.stats.get(app_phase + "_" + tag, 0.0) def get_execution_count(self, app_phase): # ANeuralNetworksExecution_create is reliable and comes from the runtime, # but not available pre-P count = len(self.get_begins(app_phase, "ANeuralNetworksExecution_create")) if count > 0: return count # Application may have added tracepoints return self.la_pe_counts.get(app_phase, 0) def get_begins(self, app_phase, function): name = app_phase + "::" + function return [begin_and_end[0] for begin_and_end in self.begins_and_ends_ms.get(name, [])] def get_ends(self, app_phase, function): name = app_phase + "::" + function return [begin_and_end[1] for begin_and_end in self.begins_and_ends_ms.get(name, [])] def print_stats(self): if not self.stats: self.calculate_stats() print(self.tgid, "Driver" if self.is_driver else "App") for tag in self.stats: print(tag, self.stats[tag]) if self.items.get(tag): for item in self.items[tag]: print(" ", item) else: print(" ", "calculated only") def print(self): self.mytree.print()
42.11583
160
0.660799
[ "Apache-2.0" ]
PotatoProject-next/ackages_modules_NeuralNetworks
tools/systrace_parser/parser/tracker.py
10,908
Python
from __future__ import print_function import os import percy from percy import errors from percy import utils __all__ = ['Runner'] class Runner(object): def __init__(self, loader=None, config=None, client=None): self.loader = loader self.config = config or percy.Config() self.client = client or percy.Client(config=self.config) self._current_build = None self._is_enabled = os.getenv('PERCY_ENABLE', '1') == '1' # Sanity check environment and auth setup. If in CI and Percy is disabled, print an error. if self._is_enabled: try: self.client.config.access_token except errors.AuthError: if self.client.environment.current_ci: utils.print_error('[percy] Warning: Percy is disabled, no PERCY_TOKEN set.') self._is_enabled = False def initialize_build(self, **kwargs): # Silently pass if Percy is disabled. if not self._is_enabled: return build_resources = [] build_resources = self.loader.build_resources if self.loader else [] sha_to_build_resource = {} for build_resource in build_resources: sha_to_build_resource[build_resource.sha] = build_resource self._current_build = self.client.create_build(resources=build_resources, **kwargs) try: missing_resources = self._current_build['data']['relationships']['missing-resources'] missing_resources = missing_resources.get('data', []) for missing_resource in missing_resources: sha = missing_resource['id'] resource = sha_to_build_resource.get(sha) # This resource should always exist, but if by chance it doesn't we make it safe here. # A nicer error will be raised by the finalize API when the resource is still missing. if resource: print('Uploading new build resource: {}'.format(resource.resource_url)) # Optimization: we don't hold all build resources in memory. Instead we store a # "local_path" variable that be used to read the file again if it is needed. if resource.local_path: with open(resource.local_path, 'rb') as f: content = f.read() else: content = resource.content self.client.upload_resource(self._current_build['data']['id'], content) except KeyError: print(self._current_build) def snapshot(self, **kwargs): # Silently pass if Percy is disabled. if not self._is_enabled: return if not self._current_build: raise errors.UninitializedBuildError('Cannot call snapshot before build is initialized') root_resource = self.loader.snapshot_resources[0] build_id = self._current_build['data']['id'] snapshot_data = self.client.create_snapshot(build_id, [root_resource], **kwargs) missing_resources = snapshot_data['data']['relationships']['missing-resources'] missing_resources = missing_resources.get('data', []) if missing_resources: # There can only be one missing resource in this case, the root_resource. self.client.upload_resource(build_id, root_resource.content) self.client.finalize_snapshot(snapshot_data['data']['id']) def finalize_build(self): # Silently pass if Percy is disabled. if not self._is_enabled: return if not self._current_build: raise errors.UninitializedBuildError( 'Cannot finalize_build before build is initialized.') self.client.finalize_build(self._current_build['data']['id']) self._current_build = None
41.094737
102
0.627561
[ "MIT" ]
getsentry/python-percy-client
percy/runner.py
3,904
Python
# Copyright 2019 TerraPower, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from armi.materials.water import SaturatedWater, SaturatedSteam """ unit tests for water materials """ class Test_Water(unittest.TestCase): """ unit tests for water materials """ def test_water_at_freezing(self): """ Reproduce verification results from IAPWS-IF97 for water at 0C http://www.iapws.org/relguide/supsat.pdf """ water = SaturatedWater() steam = SaturatedSteam() Tk = 273.16 ref_vapor_pressure = 611.657 ref_dp_dT = 44.436693 ref_saturated_water_rho = 999.789 ref_saturated_steam_rho = 0.00485426 ref_alpha = -11.529101 ref_saturated_water_enthalpy = 0.611786 ref_saturated_steam_enthalpy = 2500.5e3 ref_phi = -0.04 ref_saturated_water_entropy = 0 ref_saturated_steam_entropy = 9.154e3 self.assertAlmostEqual(ref_vapor_pressure, water.vaporPressure(Tk=Tk), 3) self.assertAlmostEqual(ref_vapor_pressure, steam.vaporPressure(Tk=Tk), 3) self.assertAlmostEqual(ref_dp_dT, water.vaporPressurePrime(Tk=Tk), 3) self.assertAlmostEqual(ref_dp_dT, steam.vaporPressurePrime(Tk=Tk), 3) self.assertAlmostEqual(ref_saturated_water_rho, water.densityKgM3(Tk=Tk), 0) self.assertAlmostEqual(ref_saturated_steam_rho, steam.densityKgM3(Tk=Tk), 0) self.assertAlmostEqual( ref_alpha, water.auxiliaryQuantitySpecificEnthalpy(Tk=Tk), 3 ) self.assertAlmostEqual( ref_alpha, steam.auxiliaryQuantitySpecificEnthalpy(Tk=Tk), 3 ) self.assertAlmostEqual(ref_saturated_water_enthalpy, water.enthalpy(Tk=Tk), 2) self.assertAlmostEqual( ref_saturated_steam_enthalpy / steam.enthalpy(Tk=Tk), 1, 2 ) self.assertAlmostEqual( ref_phi, water.auxiliaryQuantitySpecificEntropy(Tk=Tk), 2 ) self.assertAlmostEqual( ref_phi, steam.auxiliaryQuantitySpecificEntropy(Tk=Tk), 2 ) self.assertAlmostEqual(ref_saturated_water_entropy, water.entropy(Tk=Tk), 3) self.assertAlmostEqual(ref_saturated_steam_entropy / steam.entropy(Tk=Tk), 1, 3) def test_water_at_boiling(self): """ Reproduce verification results from IAPWS-IF97 for water at 100C http://www.iapws.org/relguide/supsat.pdf """ water = SaturatedWater() steam = SaturatedSteam() Tk = 373.1243 ref_vapor_pressure = 0.101325e6 ref_dp_dT = 3.616e3 ref_saturated_water_rho = 958.365 ref_saturated_steam_rho = 0.597586 ref_alpha = 417.65e3 ref_saturated_water_enthalpy = 417.05e3 ref_saturated_steam_enthalpy = 2675.7e3 ref_phi = 1.303e3 ref_saturated_water_entropy = 1.307e3 ref_saturated_steam_entropy = 7.355e3 self.assertAlmostEqual(ref_vapor_pressure / water.vaporPressure(Tk=Tk), 1, 3) self.assertAlmostEqual(ref_vapor_pressure / steam.vaporPressure(Tk=Tk), 1, 3) self.assertAlmostEqual(ref_dp_dT / water.vaporPressurePrime(Tk=Tk), 1, 3) self.assertAlmostEqual(ref_dp_dT / steam.vaporPressurePrime(Tk=Tk), 1, 3) self.assertAlmostEqual(ref_saturated_water_rho, water.densityKgM3(Tk=Tk), 0) self.assertAlmostEqual(ref_saturated_steam_rho, steam.densityKgM3(Tk=Tk), 0) self.assertAlmostEqual( ref_alpha / water.auxiliaryQuantitySpecificEnthalpy(Tk=Tk), 1, 3 ) self.assertAlmostEqual( ref_alpha / steam.auxiliaryQuantitySpecificEnthalpy(Tk=Tk), 1, 3 ) self.assertAlmostEqual( ref_saturated_water_enthalpy / water.enthalpy(Tk=Tk), 1, 2 ) self.assertAlmostEqual( ref_saturated_steam_enthalpy / steam.enthalpy(Tk=Tk), 1, 2 ) self.assertAlmostEqual( ref_phi / water.auxiliaryQuantitySpecificEntropy(Tk=Tk), 1, 3 ) self.assertAlmostEqual( ref_phi / steam.auxiliaryQuantitySpecificEntropy(Tk=Tk), 1, 3 ) self.assertAlmostEqual(ref_saturated_water_entropy / water.entropy(Tk=Tk), 1, 3) self.assertAlmostEqual(ref_saturated_steam_entropy / steam.entropy(Tk=Tk), 1, 3) def test_water_at_critcalPoint(self): """ Reproduce verification results from IAPWS-IF97 for water at 647.096K http://www.iapws.org/relguide/supsat.pdf """ water = SaturatedWater() steam = SaturatedSteam() Tk = 647.096 ref_vapor_pressure = 22.064e6 ref_dp_dT = 268e3 ref_saturated_water_rho = 322 ref_saturated_steam_rho = 322 ref_alpha = 1548e3 ref_saturated_water_enthalpy = 2086.6e3 ref_saturated_steam_enthalpy = 2086.6e3 ref_phi = 3.578e3 ref_saturated_water_entropy = 4.410e3 ref_saturated_steam_entropy = 4.410e3 self.assertAlmostEqual(ref_vapor_pressure / water.vaporPressure(Tk=Tk), 1, 3) self.assertAlmostEqual(ref_vapor_pressure / steam.vaporPressure(Tk=Tk), 1, 3) self.assertAlmostEqual(ref_dp_dT / water.vaporPressurePrime(Tk=Tk), 1, 3) self.assertAlmostEqual(ref_dp_dT / steam.vaporPressurePrime(Tk=Tk), 1, 3) self.assertAlmostEqual(ref_saturated_water_rho, water.densityKgM3(Tk=Tk), 0) self.assertAlmostEqual(ref_saturated_steam_rho, steam.densityKgM3(Tk=Tk), 0) self.assertAlmostEqual( ref_alpha / water.auxiliaryQuantitySpecificEnthalpy(Tk=Tk), 1, 3 ) self.assertAlmostEqual( ref_alpha / steam.auxiliaryQuantitySpecificEnthalpy(Tk=Tk), 1, 3 ) self.assertAlmostEqual( ref_saturated_water_enthalpy / water.enthalpy(Tk=Tk), 1, 2 ) self.assertAlmostEqual( ref_saturated_steam_enthalpy / steam.enthalpy(Tk=Tk), 1, 2 ) self.assertAlmostEqual( ref_phi / water.auxiliaryQuantitySpecificEntropy(Tk=Tk), 1, 3 ) self.assertAlmostEqual( ref_phi / steam.auxiliaryQuantitySpecificEntropy(Tk=Tk), 1, 3 ) self.assertAlmostEqual(ref_saturated_water_entropy / water.entropy(Tk=Tk), 1, 3) self.assertAlmostEqual(ref_saturated_steam_entropy / steam.entropy(Tk=Tk), 1, 3) if __name__ == "__main__": unittest.main()
36.114583
88
0.675224
[ "Apache-2.0" ]
youngmit/armi
armi/materials/tests/test_water.py
6,934
Python
# Fix the code so that there's no error! def count_evens(start, end): """Returns the number of even numbers between start and end.""" counter = start num_evens = 0 while counter <= end: if counter % 2 == 0: num_evens += 1 counter += 1 return num_evens def count_multiples(start, end, divisor): """Returns the number of multiples of divisor between start and end.""" counter = start num_multiples = 0 while counter <= end: if counter % divisor == 0: num_multiples += 1 counter += 1 return num_multiples count_both = count_evens(10, 20) + count_multiples(10, 20, 3)
25.625
73
0.666667
[ "MIT" ]
annezola/gdi-python
exercise_brokencounts_solution.py
615
Python
"""My nifty plot-level RGB algorithm """ # Importing modules. Please add any additional import statements below import numpy as np # Definitions # Please replace these definitions' values with the correct ones VERSION = '1.0' # Information on the creator of this algorithm ALGORITHM_AUTHOR = 'Unknown' ALGORITHM_AUTHOR_EMAIL = '' ALGORITHM_CONTRIBUTORS = [""] ALGORITHM_NAME = 'my nifty one' ALGORITHM_DESCRIPTION = 'This algorithm calculates the niftyness of RGB plot-level images' # Citation information for publication (more information in HOW_TO.md) CITATION_AUTHOR = 'unknown' CITATION_TITLE = '' CITATION_YEAR = '' # The name of one or more variables returned by the algorithm, separated by commas (more information in HOW_TO.md) # If only one name is specified, no comma's are used. # Note that variable names cannot have comma's in them: use a different separator instead. Also, # all white space is kept intact; don't add any extra whitespace since it may cause name comparisons # to fail. # !! Replace the content of this string with your variable names VARIABLE_NAMES = 'size of image channels' # Variable units matching the order of VARIABLE_NAMES, also comma-separated. # For each variable name in VARIABLE_NAMES add the unit of measurement the value represents. # !! Replace the content of this string with your variables' unit VARIABLE_UNITS = 'pixels' # Variable labels matching the order of VARIABLE_NAMES, also comma-separated. # This is an optional definition and can be left empty. VARIABLE_LABELS = '' # Optional override for the generation of a BETYdb compatible csv file # Set to False to suppress the creation of a compatible file WRITE_BETYDB_CSV = True # Optional override for the generation of a TERRA REF Geostreams compatible csv file # Set to False to suppress the creation of a compatible file WRITE_GEOSTREAMS_CSV = True # Entry point for plot-level RBG algorithm def calculate(pxarray: np.ndarray): """Calculates one or more values from plot-level RGB data Arguments: pxarray: Array of RGB data for a single plot Return: Returns one or more calculated values """ # ALGORITHM: replace the following lines with your algorithm channel_size = pxarray[:, :, 1].size # RETURN: replace the following return with your calculated values. Be sure to order them as defined in VARIABLE_NAMES above return channel_size
38.095238
128
0.768333
[ "BSD-3-Clause" ]
AgPipeline/plot-base-rgb
.github/workflows/algorithm_rgb.py
2,400
Python
"""Implementation of Rule L042.""" from sqlfluff.core.rules.base import BaseCrawler, LintResult from sqlfluff.core.rules.doc_decorators import document_configuration @document_configuration class Rule_L042(BaseCrawler): """Join/From clauses should not contain subqueries. Use CTEs instead. By default this rule is configured to allow subqueries within `FROM` clauses but not within `JOIN` clauses. If you prefer a stricter lint then this is configurable. NB: Some dialects don't allow CTEs, and for those dialects this rule makes no sense and should be disabled. | **Anti-pattern** .. code-block:: sql select a.x, a.y, b.z from a join ( select x, z from b ) using(x) | **Best practice** .. code-block:: sql with c as ( select x, z from b ) select a.x, a.y, c.z from a join c using(x) """ config_keywords = ["forbid_subquery_in"] _config_mapping = { "join": ["join_clause"], "from": ["from_clause"], "both": ["join_clause", "from_clause"], } def _eval(self, segment, **kwargs): """Join/From clauses should not contain subqueries. Use CTEs instead. NB: No fix for this routine because it would be very complex to implement reliably. """ parent_types = self._config_mapping[self.forbid_subquery_in] for parent_type in parent_types: if segment.is_type(parent_type): # Get the referenced table segment table_expression = segment.get_child("table_expression") if not table_expression: return None # There isn't one. We're done. # Get the main bit table_expression = table_expression.get_child("main_table_expression") if not table_expression: return None # There isn't one. We're done. # If any of the following are found, raise an issue. # If not, we're fine. problem_children = [ "with_compound_statement", "set_expression", "select_statement", ] for seg_type in problem_children: seg = table_expression.get_child(seg_type) if seg: return LintResult( anchor=seg, description=f"{parent_type} clauses should not contain subqueries. Use CTEs instead", )
31.559524
113
0.562429
[ "MIT" ]
Jophish/sqlfluff
src/sqlfluff/core/rules/std/L042.py
2,651
Python
#!/usr/bin/env python """ More complex demonstration of what's possible with the progress bar. """ import threading import time from quo.text import Text from quo.progress import ProgressBar def main(): with ProgressBar( title=Text("<b>Example of many parallel tasks.</b>"), bottom_toolbar=Text("<b>[Control-L]</b> clear <b>[Control-C]</b> abort"), ) as pb: def run_task(label, total, sleep_time): for i in pb(range(total), label=label): time.sleep(sleep_time) threads = [ threading.Thread(target=run_task, args=("First task", 50, 0.1)), threading.Thread(target=run_task, args=("Second task", 100, 0.1)), threading.Thread(target=run_task, args=("Third task", 8, 3)), threading.Thread(target=run_task, args=("Fourth task", 200, 0.1)), threading.Thread(target=run_task, args=("Fifth task", 40, 0.2)), threading.Thread(target=run_task, args=("Sixth task", 220, 0.1)), threading.Thread(target=run_task, args=("Seventh task", 85, 0.05)), threading.Thread(target=run_task, args=("Eight task", 200, 0.05)), ] for t in threads: t.daemon = True t.start() # Wait for the threads to finish. We use a timeout for the join() call, # because on Windows, join cannot be interrupted by Control-C or any other # signal. for t in threads: while t.is_alive(): t.join(timeout=0.5) if __name__ == "__main__": main()
34.173913
82
0.592875
[ "MIT" ]
scalabli/quo
examples/progress/many-parallel-tasks.py
1,572
Python
import math import lavalink import ksoftapi import discord from discord.ext import commands class Music(commands.Cog): def __init__(self, bot): self.bot = bot self.kclient = bot.kclient if not hasattr(bot, 'lavalink'): bot.lavalink = lavalink.Client(bot.user.id) bot.lavalink.add_node('localhost', 1616, 'proto', 'in', 'default-node') # Host, Port, Password, Region, Name bot.add_listener(bot.lavalink.voice_update_handler, 'on_socket_response') lavalink.add_event_hook(self.track_hook) def cog_unload(self): """ Cog unload handler. This removes any event hooks that were registered. """ self.bot.lavalink._event_hooks.clear() async def cog_command_error(self, ctx, error): if isinstance(error, commands.CommandInvokeError): await ctx.send(error.original) async def track_hook(self, event): if isinstance(event, lavalink.events.QueueEndEvent): guild_id = int(event.player.guild_id) await self.connect_to(guild_id, None) await self.bot.change_presence(status=discord.Status.idle, activity=discord.Game(name="Nothing")) async def cog_before_invoke(self, ctx): """ Command before-invoke handler. """ guild_check = ctx.guild is not None if guild_check: await self.ensure_voice(ctx) # Ensure that the bot and command author share a mutual voicechannel. return guild_check async def ensure_voice(self, ctx): """ This check ensures that the bot and command author are in the same voicechannel. """ player = self.bot.lavalink.player_manager.create(ctx.guild.id, endpoint=str(ctx.guild.region)) should_connect = ctx.command.name in ('play',) if not ctx.author.voice or not ctx.author.voice.channel: raise commands.CommandInvokeError('Join a voice channel first :loud_sound:') if not player.is_connected: if not should_connect: raise commands.CommandInvokeError('Not connected :mute:') permissions = ctx.author.voice.channel.permissions_for(ctx.me) if not permissions.connect or not permissions.speak: # Check user limit too? raise commands.CommandInvokeError('I need the `CONNECT` and `SPEAK` permissions. :disappointed_relieved:') player.store('channel', ctx.channel.id) await self.connect_to(ctx.guild.id, str(ctx.author.voice.channel.id)) else: if int(player.channel_id) != ctx.author.voice.channel.id: raise commands.CommandInvokeError('You need to be in my voice channel :loud_sound:') async def connect_to(self, guild_id: int, channel_id: str): """ Connects to the given voicechannel ID. A channel_id of `None` means disconnect. """ ws = self.bot._connection._get_websocket(guild_id) await ws.voice_state(str(guild_id), channel_id) @commands.command(name='play', aliases=['p', 'sing']) async def play(self, ctx, *, query): player = self.bot.lavalink.player_manager.get(ctx.guild.id) query = query.strip('<>') if not query.startswith('http'): query = f'ytsearch:{query}' results = await player.node.get_tracks(query) if not results or not results['tracks']: return await ctx.send('Song not found :x: Please try again :mag_right:') em = discord.Embed(colour=discord.Colour(0x59FFC8)) if results['loadType'] == 'PLAYLIST_LOADED': tracks = results['tracks'] for track in tracks: # Add all of the tracks from the playlist to the queue. player.add(requester=ctx.author.id, track=track) em.title = 'Playlist Enqueued!' em.description = f'{results["playlistInfo"]["name"]} - {len(tracks)} tracks' else: track = results['tracks'][0] em.title = 'Track Enqueued' em.description = f'[{track["info"]["title"]}]({track["info"]["uri"]})' em.set_thumbnail(url=f"http://i.ytimg.com/vi/{track['info']['identifier']}/hqdefault.jpg") em.add_field(name='Channel', value=track['info']['author']) if track['info']['isStream']: duration = 'Live' else: duration = lavalink.format_time(track['info']['length']).lstrip('00:') em.add_field(name='Duration', value=duration) track = lavalink.models.AudioTrack(track, ctx.author.id, recommended=True) player.add(requester=ctx.author.id, track=track) msg = await ctx.send(embed=em) if not player.is_playing: await player.play() await player.reset_equalizer() await msg.delete(delay=1) await self.now(ctx) await self.bot.change_presence(activity=discord.Activity(type=discord.ActivityType.listening, name=player.current.title)) @commands.command(name='seek') async def seek(self, ctx, seconds=None): player = self.bot.lavalink.player_manager.get(ctx.guild.id) if not player.is_playing: return await ctx.send('Not playing anything :mute:') if not seconds: return await ctx.send('You need to specify the amount of seconds to seek :fast_forward:') try: track_time = player.position + int(seconds) * 1000 await player.seek(track_time) except ValueError: return await ctx.send('Specify valid amount of seconds :clock3:') await ctx.send(f'Moved track to **{lavalink.format_time(track_time)}**') @commands.command(name='skip', aliases=['forceskip', 'fs', 'next']) async def skip(self, ctx): player = self.bot.lavalink.player_manager.get(ctx.guild.id) if not player.is_playing: return await ctx.send('Not playing anything :mute:') await ctx.send('⏭ | Skipped.') await player.skip() @commands.command(name='now', aliases=['current', 'currentsong', 'playing', 'np']) async def now(self, ctx): player = self.bot.lavalink.player_manager.get(ctx.guild.id) song = 'Nothing' if player.current: if player.current.stream: dur = 'LIVE' pos = '' count = total = 1 else: count = player.position pos = lavalink.format_time(count) total = player.current.duration dur = lavalink.format_time(total) if pos == dur: # When called immediatly after enqueue count = 0 pos = '00:00:00' dur = dur.lstrip('00:') pos = pos[-len(dur):] bar_len = 30 # bar length filled_len = int(bar_len * count // float(total)) bar = '═' * filled_len + '◈' + '─' * (bar_len - filled_len) song = f'[{player.current.title}]({player.current.uri})\n`{pos} {bar} {dur}`' em = discord.Embed(colour=discord.Colour(0x59FFC8), description=song) em.set_author(name="Now Playing 🎵", icon_url="https://i.ibb.co/DGsmTvh/star.gif") em.set_thumbnail(url=f"http://i.ytimg.com/vi/{player.current.identifier}/hqdefault.jpg") requester = ctx.guild.get_member(player.current.requester) em.set_footer(text=f"Requested by: {requester}", icon_url=requester.avatar_url) await ctx.send(embed=em) await self.bot.change_presence(activity=discord.Activity(type=discord.ActivityType.listening, name=player.current.title)) else: await ctx.send('Not playing anything :mute:') @commands.command(name='save', aliases=['star']) async def savetodm(self, ctx): player = self.bot.lavalink.player_manager.get(ctx.guild.id) if player.current: if player.current.stream: dur = 'Live' else: dur = lavalink.format_time(player.current.duration).lstrip('00:') song = f'[{player.current.title}]({player.current.uri})' em = discord.Embed(colour=discord.Colour(0x59FFC8), description=song) em.set_author(name="Now Playing 🎵", icon_url="https://i.ibb.co/DGsmTvh/star.gif") em.set_thumbnail(url=f"http://i.ytimg.com/vi/{player.current.identifier}/hqdefault.jpg") em.add_field(name='Channel', value=player.current.author) em.add_field(name='Duration', value=dur) user = ctx.author await user.send(embed=em) await ctx.send(f"Current song has been sent to you {ctx.author.mention} :floppy_disk:") else: await ctx.send('Not playing anything :mute:') @commands.command(name='queue', aliases=['q', 'playlist']) async def queue(self, ctx, page: int=1): player = self.bot.lavalink.player_manager.get(ctx.guild.id) if not player.queue: return await ctx.send('Queue empty! Why not queue something? :cd:') items_per_page = 10 pages = math.ceil(len(player.queue) / items_per_page) start = (page - 1) * items_per_page end = start + items_per_page queue_list = '' for i, track in enumerate(player.queue[start:end], start=start): queue_list += f'`{i + 1}.` [**{track.title}**]({track.uri})\n' embed = discord.Embed(colour=ctx.guild.me.top_role.colour, description=f'**{len(player.queue)} tracks**\n\n{queue_list}') embed.set_footer(text=f'Viewing page {page}/{pages}') await ctx.send(embed=embed) @commands.command(name='pause', aliases=['resume']) async def pause(self, ctx): player = self.bot.lavalink.player_manager.get(ctx.guild.id) if not player.is_playing: return await ctx.send('Not playing anything :mute:') if player.paused: await player.set_pause(False) await ctx.message.add_reaction('▶') else: await player.set_pause(True) await ctx.message.add_reaction('⏸') @commands.command(name='volume', aliases=['vol']) async def volume(self, ctx, volume: int=None): player = self.bot.lavalink.player_manager.get(ctx.guild.id) if not volume: return await ctx.send(f'🔈 | {player.volume}%') await player.set_volume(volume) await ctx.send(f'🔈 | Set to {player.volume}%') @commands.command(name='shuffle') async def shuffle(self, ctx): player = self.bot.lavalink.player_manager.get(ctx.guild.id) if not player.is_playing: return await ctx.send('Not playing anything :mute:') player.shuffle = not player.shuffle await ctx.send('🔀 | Shuffle ' + ('enabled' if player.shuffle else 'disabled')) @commands.command(name='repeat') async def repeat(self, ctx): player = self.bot.lavalink.player_manager.get(ctx.guild.id) if not player.is_playing: return await ctx.send('Not playing anything :mute:') player.repeat = not player.repeat await ctx.send('🔁 | Repeat ' + ('enabled' if player.repeat else 'disabled')) @commands.command(name='remove', aliases=['dequeue', 'pop']) async def remove(self, ctx, index: int): player = self.bot.lavalink.player_manager.get(ctx.guild.id) if not player.queue: return await ctx.send('Nothing queued :cd:') if index > len(player.queue) or index < 1: return await ctx.send('Index has to be >=1 and <=queue size') index = index - 1 removed = player.queue.pop(index) await ctx.send('Removed **' + removed.title + '** from the queue.') @commands.command(name='disconnect', aliases=['dis', 'stop', 'leave']) async def disconnect(self, ctx): player = self.bot.lavalink.player_manager.get(ctx.guild.id) if not ctx.author.voice or (player.is_connected and ctx.author.voice.channel.id != int(player.channel_id)): return await ctx.send('You\'re not in my voice channel :loud_sound:') if not player.is_connected: return await ctx.send('Not connected :mute:') player.queue.clear() # Stop the current track so Lavalink consumes less resources. await player.stop() # Disconnect from the voice channel. await self.connect_to(ctx.guild.id, None) await ctx.send('Disconnected :mute:') await self.bot.change_presence(status=discord.Status.idle, activity=discord.Game(name="Nothing")) @commands.command(name='lyrics', aliases=['ly']) async def get_lyrics(self, ctx, *, query: str=""): """Get lyrics of current song""" if not query: player = self.bot.lavalink.player_manager.get(ctx.guild.id) if not player.is_playing: return await ctx.send('I\'m not currently playing anything :warning:') query = player.current.title try: async with ctx.typing(): results = await self.kclient.music.lyrics(query, limit=1) except ksoftapi.NoResults: await ctx.send(f'No lyrics found for `{query}`') else: lyrics = results[0].lyrics result = results[0] embed = discord.Embed(title=f'{result.name} - {result.artist}', color=discord.Color(0xCCFF00), description=lyrics[:2048]) embed.set_thumbnail(url=result.album_art) embed.set_author(name="Lyrics:") lyrics = lyrics[2048:] embeds = [embed] # create embeds' list for long lyrics while len(lyrics) > 0 and len(embeds) < 10: # limiting embeds to 10 embed = discord.Embed(color=discord.Color(0xCCFF00), description=lyrics[:2048]) lyrics = lyrics[len(embeds)*2048:] embeds.append(embed) embeds[-1].set_footer(text="Source: KSoft.Si") # set footer for last embed for embed in embeds: await ctx.send(embed=embed) @commands.command(name='equalizer', aliases=['eq']) async def equalizer(self, ctx, *args): """Equalizer""" player = self.bot.lavalink.player_manager.get(ctx.guild.id) if len(args) == 0: await ctx.send('Specify `band gain` or `preset` to change frequencies :control_knobs:') elif len(args) == 1: presets ={ 'reset': 'Default', 'bassboost': [0.08, 0.12, 0.2, 0.18, 0.15, 0.1, 0.05, 0.0, 0.02, -0.04, -0.06, -0.08, -0.10, -0.12, -0.14], 'jazz': [-0.13, -0.11, -0.1, -0.1, 0.14, 0.2, -0.18, 0.0, 0.24, 0.22, 0.2, 0.0, 0.0, 0.0, 0.0], 'pop': [-0.02, -0.01, 0.08, 0.1, 0.15, 0.1, 0.03, -0.02, -0.035, -0.05, -0.05, -0.05, -0.05, -0.05, -0.05], 'treble': [-0.1, -0.12, -0.12, -0.12, -0.08, -0.04, 0.0, 0.3, 0.34, 0.4, 0.35, 0.3, 0.3, 0.3, 0.3] } preset = args[0].lower() if preset in ['reset', 'default']: await player.reset_equalizer() elif preset in presets: gain_list = enumerate(presets[preset]) await player.set_gains(*gain_list) elif preset == '--list': em = discord.Embed(title=':control_knobs: EQ presets:', color=discord.Color(0xFF6EFF), description='\n'.join(presets.keys())) return await ctx.send(embed=em) else: return await ctx.send('Invalid preset specified :control_knobs:\nType `~eq --list` for all presets') elif len(args) == 2: try: band = int(args[0]) gain = float(args[1]) await player.set_gain(band, gain) except ValueError: return await ctx.send('Specify valid `band gain` values :control_knobs:') else: return await ctx.send('Specify `band gain` or `preset` :control_knobs:') # Print final EQ settings eq_frequencies = [f"`{gain}`" for gain in player.equalizer] await ctx.send(":level_slider: Current Values:\n" + ' '.join(eq_frequencies)) def setup(bot): bot.add_cog(Music(bot))
42.798956
141
0.596694
[ "MIT" ]
1Prototype1/HexBot
cogs/music.py
16,422
Python
import math class MinStack: def __init__(self): """ initialize your data structure here. """ self.stack = [] self.min = math.inf def push(self, x: int) -> None: self.x = x self.stack.append(x) if x < self.min: self.min = x def pop(self) -> None: t = self.stack.pop() if t == self.min and len(self.stack): self.min = min(self.stack) elif t == self.min and not len(self.stack): self.min = math.inf def top(self) -> int: return self.stack[-1] def getMin(self) -> int: return self.min # Your MinStack object will be instantiated and called as such: # obj = MinStack() # obj.push(x) # obj.pop() # param_3 = obj.top() # param_4 = obj.getMin()
21.184211
63
0.532919
[ "MIT" ]
bgoonz/INTERVIEW-PREP-COMPLETE
notes-n-resources/Data-Structures-N-Algo/_DS-n-Algos/Interview-Problems/LeetCode/MinStack.py
805
Python
import argparse import json import os from collections import Counter, defaultdict from helper import _is_token_alnum THRESHOLD = 0.01 GAP = 10 def get_full_mapping(src_filename, trg_filename, align_filename, mapping_filename, reverse_src2trg=False, lowercase=True): """ Get full mapping give align. Args: src_filename: trg_filename: align_filename: mapping_filename: reverse_src2trg: lowercase: Returns: """ print('src: {}, trg: {}, align: {}, mapping: {}, reverse: {}'.format( src_filename, trg_filename, align_filename, mapping_filename, reverse_src2trg)) src2trg_mapping = defaultdict(lambda: defaultdict(int)) processed_line = 0 with open(src_filename) as fs, open(trg_filename) as ft, open( align_filename) as fa: for ls, lt, la in zip(fs, ft, fa): if lowercase: ls = ls.lower() lt = lt.lower() processed_line += 1 ls_words = ls.split() lt_words = lt.split() la_aligns = la.split() src_pos_counter = Counter() trg_pos_counter = Counter() valid_src_pos = set() valid_trg_pos = set() for align in la_aligns: # only consider one-to-one mapping src_pos, trg_pos = align.split('-') src_pos = int(src_pos) trg_pos = int(trg_pos) # only consider alpha number token if _is_token_alnum(ls_words[src_pos]): src_pos_counter[src_pos] += 1 if _is_token_alnum(lt_words[trg_pos]): trg_pos_counter[trg_pos] += 1 # ignore token that aligned twice for pos, c in src_pos_counter.items(): if c == 1: valid_src_pos.add(pos) for pos, c in trg_pos_counter.items(): if c == 1: valid_trg_pos.add(pos) for align in la_aligns: src_pos, trg_pos = align.split('-') src_pos = int(src_pos) trg_pos = int(trg_pos) if _is_token_alnum(ls_words[src_pos]) and _is_token_alnum( lt_words[trg_pos]) and (src_pos in valid_src_pos) and ( trg_pos in valid_trg_pos): if reverse_src2trg: src2trg_mapping[lt_words[trg_pos]][ ls_words[src_pos]] += 1 else: src2trg_mapping[ls_words[src_pos]][ lt_words[trg_pos]] += 1 if processed_line % 1000000 == 0: print('{} done.'.format(processed_line)) with open(mapping_filename, 'w') as fw: print('dump to {} ...'.format(mapping_filename)) json.dump(src2trg_mapping, fw) return src2trg_mapping def refine_dict(full_mapping, clean_dict_filename, threshold, ignore_gap): """ Clean dictionary based on frequency and gap of frequency. For example, {'s1': ['t1': 999, 't2': 199, 't3':1], 's2': ['m1': 2000, 'm2': 100]} => {'s1': ['t1': 999, 't2': 199], 's2': ['m1': 2000]} Args: full_mapping: clean_dict_filename: threshold: ignore_gap: Returns: """ print('Refine dict to {}, threshold: {}, ignore_gap: {} ...'.format( clean_dict_filename, threshold, ignore_gap)) full_mapping = sorted( full_mapping.items(), key=lambda x: sum(x[1].values()), reverse=True) with open(clean_dict_filename, 'w') as fw: for idx, src2trg in enumerate(full_mapping): src = src2trg[0] trg = sorted(src2trg[1].items(), key=lambda x: x[1], reverse=True) total_count = sum(c[1] for c in trg) clean_trg = dict() p = trg[0][1] for w, c in trg: if c / total_count < threshold: # too rare break if (p / c > ignore_gap) and (c / total_count < THRESHOLD * 5): # large gap break p = c clean_trg.update({w: round(c / total_count, 3)}) fw.write('{}\n'.format(json.dumps({src: clean_trg}, ensure_ascii=False))) if __name__ == '__main__': parser = argparse.ArgumentParser( description='Process alignments and do filter') parser.add_argument('--src_filename', help='Origin src file name before bsp', type=str, required=True) parser.add_argument('--trg_filename', help='Origin trg file name before bsp', type=str, required=True) parser.add_argument('--align_filename', help='align file name by atools', type=str, required=True) parser.add_argument('--dict_filename', help='clean dict file name', type=str, required=True) parser.add_argument('--threshold', help='threshold of ignore frequency', type=float, default=THRESHOLD) parser.add_argument('--ignore_gap', help='gap of ignore frequency', type=float, default=GAP) parser.add_argument( '--overwrite', dest='overwrite', action='store_true', help='Overwrite existing output files') args = parser.parse_args() if args.overwrite: print('Overwrite existing file') src2trg_mapping_filename = '{}.{}'.format(args.align_filename, 'src2trg_mapping') trg2src_mapping_filename = '{}.{}'.format(args.align_filename, 'trg2src_mapping') if os.path.isfile(src2trg_mapping_filename) and (not args.overwrite): print('loading mapping: {}'.format(src2trg_mapping_filename)) with open(src2trg_mapping_filename) as f: full_src2trg_mapping = json.load(f) else: print('creating mapping: {}'.format(src2trg_mapping_filename)) full_src2trg_mapping = get_full_mapping(args.src_filename, args.trg_filename, args.align_filename, src2trg_mapping_filename, False) if os.path.isfile(trg2src_mapping_filename) and (not args.overwrite): print('loading mapping: {}'.format(trg2src_mapping_filename)) with open(trg2src_mapping_filename) as f: full_trg2src_mapping = json.load(f) else: print('creating mapping: {}'.format(trg2src_mapping_filename)) full_trg2src_mapping = get_full_mapping(args.src_filename, args.trg_filename, args.align_filename, trg2src_mapping_filename, True) src2trg_clean_dict_filename = '{}.{}'.format(args.dict_filename, 'src2trg') refine_dict(full_src2trg_mapping, src2trg_clean_dict_filename, args.threshold, args.ignore_gap) trg2src_clean_dict_filename = '{}.{}'.format(args.dict_filename, 'trg2src') refine_dict(full_trg2src_mapping, trg2src_clean_dict_filename, args.threshold, args.ignore_gap)
37.918269
85
0.52035
[ "Apache-2.0" ]
JiangtaoFeng/ParaGen
examples/wmt/tools/align/extract_bilingual_vocabulary.py
7,887
Python
#!/usr/bin/env python # coding: utf-8 """ Multi-Sensor Moving Platform Simulation Example =============================================== This example looks at how multiple sensors can be mounted on a single moving platform and exploiting a defined moving platform as a sensor target. """ # %% # Building a Simulated Multi-Sensor Moving Platform # ------------------------------------------------- # The focus of this example is to show how to setup and configure a simulation environment in order to provide a # multi-sensor moving platform, as such the application of a tracker will not be covered in detail. For more information # about trackers and how to configure them review of the tutorials and demonstrations is recommended. # # This example makes use of Stone Soup :class:`~.MovingPlatform`, :class:`~.MultiTransitionMovingPlatform` and # :class:`~.Sensor` objects. # # In order to configure platforms, sensors and the simulation we will need to import some specific Stone Soup objects. # As these have been introduced in previous tutorials they are imported upfront. New functionality within this example # will be imported at the relevant point in order to draw attention to the new features. # Some general imports and set up from datetime import datetime from datetime import timedelta from matplotlib import pyplot as plt import numpy as np # Stone Soup imports: from stonesoup.types.state import State, GaussianState from stonesoup.types.array import StateVector from stonesoup.types.array import CovarianceMatrix from stonesoup.models.transition.linear import ( CombinedLinearGaussianTransitionModel, ConstantVelocity) from stonesoup.predictor.particle import ParticlePredictor from stonesoup.resampler.particle import SystematicResampler from stonesoup.updater.particle import ParticleUpdater from stonesoup.measures import Mahalanobis from stonesoup.hypothesiser.distance import DistanceHypothesiser from stonesoup.dataassociator.neighbour import GNNWith2DAssignment from stonesoup.tracker.simple import SingleTargetTracker # Define the simulation start time start_time = datetime.now() # %% # Create a multi-sensor platform # ------------------------------ # We have previously demonstrated how to create a :class:`~.FixedPlatform` which exploited a # :class:`~.RadarRangeBearingElevation` *Sensor* in order to detect and track targets generated within a # :class:`~.MultiTargetGroundTruthSimulator`. # # In this example we are going to create a moving platform which will be mounted with a pair of sensors and moves within # a 6 dimensional state space according to the following :math:`\mathbf{x}`. # # .. math:: # \mathbf{x} = \begin{bmatrix} # x\\ \dot{x}\\ y\\ \dot{y}\\ z\\ \dot{z} \end{bmatrix} # = \begin{bmatrix} # 0\\ 0\\ 0\\ 50\\ 8000\\ 0 \end{bmatrix} # # The platform will be initiated with a near constant velocity model which has been parameterised to have zero noise. # Therefore the platform location at time :math:`k` is given by :math:`F_{k}x_{k-1}` where :math:`F_{k}` is given by: # # .. math:: # F_{k} = \begin{bmatrix} # 1 & \triangle k & 0 & 0 & 0 & 0\\ # 0 & 1 & 0 & 0 & 0 & 0\\ # 0 & 0 & 1 & \triangle k & 0 & 0\\ # 0 & 0 & 0 & 1 & 0 & 0\\ # 0 & 0 & 0 & 0 & 1 & \triangle k \\ # 0 & 0 & 0 & 0 & 0 & 1\\ # \end{bmatrix} # First import the Moving platform from stonesoup.platform.base import MovingPlatform # Define the initial platform position, in this case the origin initial_loc = StateVector([[0], [0], [0], [50], [8000], [0]]) initial_state = State(initial_loc, start_time) # Define transition model and position for 3D platform transition_model = CombinedLinearGaussianTransitionModel( [ConstantVelocity(0.), ConstantVelocity(0.), ConstantVelocity(0.)]) # create our fixed platform sensor_platform = MovingPlatform(states=initial_state, position_mapping=(0, 2, 4), velocity_mapping=(1, 3, 5), transition_model=transition_model) # %% # With our platform generated we now need to build a set of sensors which will be mounted onto the platform. In this # case we will exploit a :class:`~.RadarElevationBearingRangeRate` and a :class:`~.PassiveElevationBearing` sensor # (e.g. an optical sensor, which has no capability to directly measure range). # # First we will create a radar which is capable of measuring bearing (:math:`\phi`), elevation (:math:`\theta`), range # (:math:`r`) and range-rate (:math:`\dot{r}`) of the target platform. # Import a range rate bearing elevation capable radar from stonesoup.sensor.radar.radar import RadarElevationBearingRangeRate # Create a radar sensor radar_noise_covar = CovarianceMatrix(np.diag( np.array([np.deg2rad(3), # Elevation np.deg2rad(3), # Bearing 100., # Range 25.]))) # Range Rate # radar mountings radar_mounting_offsets = StateVector([10, 0, 0]) # e.g. nose cone radar_rotation_offsets = StateVector([0, 0, 0]) # Mount the radar onto the platform radar = RadarElevationBearingRangeRate(ndim_state=6, position_mapping=(0, 2, 4), velocity_mapping=(1, 3, 5), noise_covar=radar_noise_covar, mounting_offset=radar_mounting_offsets, rotation_offset=radar_rotation_offsets, ) sensor_platform.add_sensor(radar) # %% # Our second sensor is a passive sensor, capable of measuring the bearing (:math:`\phi`) and elevation (:math:`\theta`) # of the target platform. For the purposes of this example we will assume that the passive sensor is an imager. # The imager sensor model is described by the following equations: # # .. math:: # \mathbf{z}_k = h(\mathbf{x}_k, \dot{\mathbf{x}}_k) # # where: # # * :math:`\mathbf{z}_k` is a measurement vector of the form: # # .. math:: # \mathbf{z}_k = \begin{bmatrix} \theta \\ \phi \end{bmatrix} # # * :math:`h` is a non - linear model function of the form: # # .. math:: # h(\mathbf{x}_k,\dot{\mathbf{x}}_k) = \begin{bmatrix} # \arcsin(\mathcal{z} /\sqrt{\mathcal{x} ^ 2 + \mathcal{y} ^ 2 +\mathcal{z} ^ 2}) \\ # \arctan(\mathcal{y},\mathcal{x}) \ \ # \end{bmatrix} + \dot{\mathbf{x}}_k # # * :math:`\mathbf{z}_k` is Gaussian distributed with covariance :math:`R`, i.e.: # # .. math:: # \mathbf{z}_k \sim \mathcal{N}(0, R) # # .. math:: # R = \begin{bmatrix} # \sigma_{\theta}^2 & 0 \\ # 0 & \sigma_{\phi}^2 \\ # \end{bmatrix} # Import a passive sensor capability from stonesoup.sensor.passive import PassiveElevationBearing imager_noise_covar = CovarianceMatrix(np.diag(np.array([np.deg2rad(0.05), # Elevation np.deg2rad(0.05)]))) # Bearing # imager mounting offset imager_mounting_offsets = StateVector([0, 8, -1]) # e.g. wing mounted imaging pod imager_rotation_offsets = StateVector([0, 0, 0]) # Mount the imager onto the platform imager = PassiveElevationBearing(ndim_state=6, mapping=(0, 2, 4), noise_covar=imager_noise_covar, mounting_offset=imager_mounting_offsets, rotation_offset=imager_rotation_offsets, ) sensor_platform.add_sensor(imager) # %% # Notice that we have added sensors to specific locations on the aircraft, defined by the mounting_offset parameter. # The values in this array are defined in the platforms local coordinate frame of reference. So in this case an offset # of :math:`[0, 8, -1]` means the sensor is located 8 meters to the right and 1 meter below the center point of the # platform. # # Now that we have mounted the two sensors we can see that the platform object has both associated with it: sensor_platform.sensors # %% # Create a Target Platform # ------------------------ # There are two ways of generating a target in Stone Soup. Firstly, we can use the inbuilt ground-truth generator # functionality within Stone Soup, which we demonstrated in the previous example, and creates a random target based on # our selected parameters. The second method provides a means to generate a target which will perform specific # behaviours, this is the approach we will take here. # # In order to create a target which moves in pre-defined sequences we exploit the fact that platforms can be used as # sensor targets within a simulation, coupled with the :class:`~.MultiTransitionMovingPlatform` which enables a platform # to be provided with a pre-defined list of transition models and transition times. The platform will continue to loop # over the transition sequence provided until the simulation ends. # # When simulating sensor platforms it is important to note that within the simulation Stone Soup treats all platforms as # potential targets. Therefore if we created multiple sensor platforms they would each *sense* all other platforms # within the simulation (sensor-target geometry dependant). # # For this example we will create an air target which will fly a sequence of straight and level followed by a # coordinated turn in the :math:`x-y` plane. This is configured such that the target will perform each manoeuvre for 8 # seconds, and it will turn through 45 degrees over the course of the turn manoeuvre. # Import a Constant Turn model to enable target to perform basic manoeuvre from stonesoup.models.transition.linear import ConstantTurn straight_level = CombinedLinearGaussianTransitionModel( [ConstantVelocity(0.), ConstantVelocity(0.), ConstantVelocity(0.)]) # Configure the aircraft turn behaviour turn_noise_diff_coeffs = np.array([0., 0.]) turn_rate = np.pi/32 # specified in radians per seconds... turn_model = ConstantTurn(turn_noise_diff_coeffs=turn_noise_diff_coeffs, turn_rate=turn_rate) # Configure turn model to maintain current altitude turning = CombinedLinearGaussianTransitionModel( [turn_model, ConstantVelocity(0.)]) manoeuvre_list = [straight_level, turning] manoeuvre_times = [timedelta(seconds=8), timedelta(seconds=8)] # %% # Now that we have created a list of manoeuvre behaviours and durations we can build our multi-transition moving # platform. Because we intend for this platform to be a target we do not need to attach any sensors to it. # Import a multi-transition moving platform from stonesoup.platform.base import MultiTransitionMovingPlatform initial_target_location = StateVector([[0], [-40], [1800], [0], [8000], [0]]) initial_target_state = State(initial_target_location, start_time) target = MultiTransitionMovingPlatform(transition_models=manoeuvre_list, transition_times=manoeuvre_times, states=initial_target_state, position_mapping=(0, 2, 4), velocity_mapping=(1, 3, 5), sensors=None) # %% # Creating the simulator # ---------------------- # Now that we have build our sensor platform and a target platform we need to wrap them in a simulator. Because we do # not want any additional ground truth objects, which is how most simulators work in Stone Soup, we need to use a # :class:`~.DummyGroundTruthSimulator` which returns a set of empty ground truth paths with timestamps. These are then # feed into a :class:`~.PlatformDetectionSimulator` with the two platforms we have already built. # Import the required simulators from stonesoup.simulator.simple import DummyGroundTruthSimulator from stonesoup.simulator.platform import PlatformDetectionSimulator # %% # We now need to create an array of timestamps which starts at *datetime.now()* and enable the simulator to run for # 25 seconds. times = np.arange(0, 24, 1) # 25 seconds timestamps = [start_time + timedelta(seconds=float(elapsed_time)) for elapsed_time in times] truths = DummyGroundTruthSimulator(times=timestamps) sim = PlatformDetectionSimulator(groundtruth=truths, platforms=[sensor_platform, target]) # %% # Create a Tracker # ------------------------------------ # Now that we have setup our sensor platform, target and simulation we need to create a tracker. For this example we # will use a Particle Filter as this enables us to handle the non-linear nature of the imaging sensor. In this example # we will use an inflated constant noise model to account for target motion uncertainty. # # Note that we don't add a measurement model to the updater, this is because each sensor adds their measurement model to # each detection they generate. The tracker handles this internally by checking for a measurement model with each # detection it receives and applying only the relevant measurement model. target_transition_model = CombinedLinearGaussianTransitionModel( [ConstantVelocity(5), ConstantVelocity(5), ConstantVelocity(1)]) # First add a Particle Predictor predictor = ParticlePredictor(target_transition_model) # Now create a resampler and particle updater resampler = SystematicResampler() updater = ParticleUpdater(measurement_model=None, resampler=resampler) # Create a particle initiator from stonesoup.initiator.simple import GaussianParticleInitiator, SinglePointInitiator single_point_initiator = SinglePointInitiator( GaussianState([[0], [-40], [2000], [0], [8000], [0]], np.diag([10000, 1000, 10000, 1000, 10000, 1000])), None) initiator = GaussianParticleInitiator(number_particles=500, initiator=single_point_initiator) hypothesiser = DistanceHypothesiser(predictor, updater, measure=Mahalanobis(), missed_distance=np.inf) data_associator = GNNWith2DAssignment(hypothesiser) from stonesoup.deleter.time import UpdateTimeStepsDeleter deleter = UpdateTimeStepsDeleter(time_steps_since_update=10) # Create a Kalman single-target tracker tracker = SingleTargetTracker( initiator=initiator, deleter=deleter, detector=sim, data_associator=data_associator, updater=updater ) # %% # The final step is to iterate our tracker over the simulation and plot out the results. Because we have a bearing # only sensor it does not make sense to plot out the detections without animating the resulting plot. This # animation shows the sensor platform (blue) moving towards the true target position (red). The estimated target # position is shown in black, radar detections are shown in yellow while the bearing only imager detections are # coloured green. from matplotlib import animation import matplotlib matplotlib.rcParams['animation.html'] = 'jshtml' from stonesoup.models.measurement.nonlinear import CartesianToElevationBearingRangeRate from stonesoup.functions import sphere2cart fig = plt.figure(figsize=(10, 6)) ax = fig.add_subplot(1, 1, 1) frames = [] for time, ctracks in tracker: artists = [] ax.set_xlabel("$East$") ax.set_ylabel("$North$") ax.set_ylim(0, 2250) ax.set_xlim(-1000, 1000) X = [state.state_vector[0] for state in sensor_platform] Y = [state.state_vector[2] for state in sensor_platform] artists.extend(ax.plot(X, Y, color='b')) for detection in sim.detections: if isinstance(detection.measurement_model, CartesianToElevationBearingRangeRate): x, y = detection.measurement_model.inverse_function(detection)[[0, 2]] color = 'y' else: r = 10000000 # extract the platform rotation offsets _, el_offset, az_offset = sensor_platform.orientation # obtain measurement angles and map to cartesian e, a = detection.state_vector x, y, _ = sphere2cart(r, a + az_offset, e + el_offset) color = 'g' X = [sensor_platform.state_vector[0], x] Y = [sensor_platform.state_vector[2], y] artists.extend(ax.plot(X, Y, color=color)) X = [state.state_vector[0] for state in target] Y = [state.state_vector[2] for state in target] artists.extend(ax.plot(X, Y, color='r')) for track in ctracks: X = [state.state_vector[0] for state in track] Y = [state.state_vector[2] for state in track] artists.extend(ax.plot(X, Y, color='k')) frames.append(artists) animation.ArtistAnimation(fig, frames) # %% # To increase your confidence with simulated platform targets it would be good practice to modify the target to fly # pre-defined shapes, a race track oval for example. You could also experiment with different sensor performance levels # in order to see at what point the tracker is no longer able to generate a reasonable estimate of the target location. # %% # Key points # ---------- # 1. Platforms, static or moving, can be used as targets for sensor platforms. # 2. Simulations can be built with only known platform behaviours when you want to test specific scenarios. # 3. A tracker can be configured to exploit all sensor data created in a simulation.
44.452685
120
0.693976
[ "MIT" ]
GitRooky/Stone-Soup
docs/examples/Moving_Platform_Simulation.py
17,381
Python
#!/usr/bin/env python import unittest from weblogo.seq_io._nexus import Nexus from . import data_stream class test_nexus(unittest.TestCase): def test_create(self): n = Nexus() self.assertNotEqual(n, None) def test_parse_f0(self): f = data_stream("nexus/test_Nexus_input.nex") n = Nexus(f) # self.output_basics(n) expected = [ "t1", "t2 the name", "isn'that [a] strange name?", "one should be punished, for (that)!", "t5", "t6", "t7", "t8", "t9", ] taxa = n.taxlabels self.assertEqual(taxa, expected) f.close() def test_parse_protein(self): f = data_stream("nexus/protein.nex") Nexus(f) f.close() def test_parse_dna(self): f = data_stream("nexus/dna.nex") n = Nexus(f) taxa = n.taxlabels taxa.sort() self.assertEqual(len(taxa), 10) self.assertEqual(taxa[0], "Carp") self.assertEqual(taxa[-1], "Whale") f.close() def test_TreeTest1(self): """Test Tree module.""" f = data_stream("nexus/test_Nexus_input.nex") n = Nexus(f) t3 = n.trees[2] n.trees[2] t3.root_with_outgroup(["t1", "t5"]) # Return node_id of common ancestor if # taxon_list is monophyletic, -1 otherwise. self.assertEqual(t3.is_monophyletic(["t1", "t5"]), 13) t3.split(parent_id=t3.search_taxon("t9")) f.close() if __name__ == "__main__": unittest.main()
23.463768
62
0.536751
[ "MIT" ]
WebLogo/weblogo
tests/test_nexus.py
1,619
Python
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 import numpy as np import GPy from emukit.quadrature.methods.vanilla_bq import VanillaBayesianQuadrature from emukit.quadrature.loop.quadrature_loop import VanillaBayesianQuadratureLoop from emukit.core.loop.user_function import UserFunctionWrapper from emukit.model_wrappers.gpy_quadrature_wrappers import QuadratureRBF, RBFGPy, BaseGaussianProcessGPy from numpy.testing import assert_array_equal def func(x): return np.ones((x.shape[0], 1)) def test_vanilla_bq_loop(): init_size = 5 x_init = np.random.rand(init_size, 2) y_init = np.random.rand(init_size, 1) bounds = [(-1, 1), (0, 1)] gpy_model = GPy.models.GPRegression(X=x_init, Y=y_init, kernel=GPy.kern.RBF(input_dim=x_init.shape[1], lengthscale=1., variance=1.)) emukit_qrbf = QuadratureRBF(RBFGPy(gpy_model.kern), integral_bounds=bounds) emukit_model = BaseGaussianProcessGPy(kern=emukit_qrbf, gpy_model=gpy_model) emukit_method = VanillaBayesianQuadrature(base_gp=emukit_model) emukit_loop = VanillaBayesianQuadratureLoop(model=emukit_method) num_iter = 5 emukit_loop.run_loop(user_function=UserFunctionWrapper(func), stopping_condition=num_iter) assert emukit_loop.loop_state.X.shape[0] == num_iter + init_size assert emukit_loop.loop_state.Y.shape[0] == num_iter + init_size def test_vanilla_bq_loop_initial_state(): x_init = np.random.rand(5, 2) y_init = np.random.rand(5, 1) bounds = [(-1, 1), (0, 1)] gpy_model = GPy.models.GPRegression(X=x_init, Y=y_init, kernel=GPy.kern.RBF(input_dim=x_init.shape[1], lengthscale=1., variance=1.)) emukit_qrbf = QuadratureRBF(RBFGPy(gpy_model.kern), integral_bounds=bounds) emukit_model = BaseGaussianProcessGPy(kern=emukit_qrbf, gpy_model=gpy_model) emukit_method = VanillaBayesianQuadrature(base_gp=emukit_model) emukit_loop = VanillaBayesianQuadratureLoop(model=emukit_method) assert_array_equal(emukit_loop.loop_state.X, x_init) assert_array_equal(emukit_loop.loop_state.Y, y_init) assert emukit_loop.loop_state.iteration == 0
41.428571
109
0.721121
[ "Apache-2.0" ]
DavidJanz/emukit
integration_tests/emukit/quadrature/test_vanilla_bq_loop.py
2,320
Python
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.response.AlipayResponse import AlipayResponse class AlipayCommerceAntestCaselistQueryResponse(AlipayResponse): def __init__(self): super(AlipayCommerceAntestCaselistQueryResponse, self).__init__() self._data = None @property def data(self): return self._data @data.setter def data(self, value): self._data = value def parse_response_content(self, response_content): response = super(AlipayCommerceAntestCaselistQueryResponse, self).parse_response_content(response_content) if 'data' in response: self.data = response['data']
26.692308
114
0.706052
[ "Apache-2.0" ]
Anning01/alipay-sdk-python-all
alipay/aop/api/response/AlipayCommerceAntestCaselistQueryResponse.py
694
Python
from markovp import Markov from src.forms import Markov_Form from flask import Flask, render_template, request, redirect, url_for, Blueprint, make_response home = Blueprint("home", __name__) @home.route("/") def index(): #{ form = Markov_Form() return render_template('form.html', form = form) #} # The submission page. @home.route("/submit", methods=["GET"]) def submit(): #{ if request.method == "GET": #{ if request.args.get('submit_button'): #{ # Get form values. # http://stackoverflow.com/a/20341272/5415895 text = request.args.get("input_text") # We have to cast text as a string, otherwise C++ complains. mark = Markov(str(text), 1) output = mark.generate() return render_template("output.html", input = str(text), output = output) #} else: #{ # Make sure nobody can access the submit path without submitting. return redirect(url_for('index')) #} #} else: #{ return redirect(url_for('index')) #} #}
27.073171
94
0.583784
[ "MIT" ]
TexAgg/MarkovTextGenerator
web/src/views/home.py
1,110
Python
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Construct the Kronecker product of one or more `LinearOperators`.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import common_shapes from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops.linalg import linalg_impl as linalg from tensorflow.python.ops.linalg import linear_operator def _vec(x): """Stacks column of matrix to form a single column.""" return array_ops.reshape( array_ops.matrix_transpose(x), array_ops.concat( [array_ops.shape(x)[:-2], [-1]], axis=0)) def _unvec_by(y, num_col): """Unstack vector to form a matrix, with a specified amount of columns.""" return array_ops.matrix_transpose( array_ops.reshape( y, array_ops.concat( [array_ops.shape(y)[:-1], [num_col, -1]], axis=0))) def _rotate_last_dim(x, rotate_right=False): """Rotate the last dimension either left or right.""" ndims = array_ops.rank(x) if rotate_right: transpose_perm = array_ops.concat( [[ndims - 1], math_ops.range(0, ndims - 1)], axis=0) else: transpose_perm = array_ops.concat( [math_ops.range(1, ndims), [0]], axis=0) return array_ops.transpose(x, transpose_perm) class LinearOperatorKronecker(linear_operator.LinearOperator): """Kronecker product between two `LinearOperators`. This operator composes one or more linear operators `[op1,...,opJ]`, building a new `LinearOperator` representing the Kronecker product: `op1 x op2 x .. opJ` (we omit parentheses as the Kronecker product is associative). If `opj` has shape `batch_shape_j` + [M_j, N_j`, then the composed operator will have shape equal to `broadcast_batch_shape + [prod M_j, prod N_j]`, where the product is over all operators. ```python # Create a 4 x 4 linear operator composed of two 2 x 2 operators. operator_1 = LinearOperatorFullMatrix([[1., 2.], [3., 4.]]) operator_2 = LinearOperatorFullMatrix([[1., 0.], [2., 1.]]) operator = LinearOperatorKronecker([operator_1, operator_2]) operator.to_dense() ==> [[1., 2., 0., 0.], [3., 4., 0., 0.], [2., 4., 1., 2.], [6., 8., 3., 4.]] operator.shape ==> [4, 4] operator.log_abs_determinant() ==> scalar Tensor x = ... Shape [4, 2] Tensor operator.matmul(x) ==> Shape [4, 2] Tensor # Create a [2, 3] batch of 4 x 5 linear operators. matrix_45 = tf.random_normal(shape=[2, 3, 4, 5]) operator_45 = LinearOperatorFullMatrix(matrix) # Create a [2, 3] batch of 5 x 6 linear operators. matrix_56 = tf.random_normal(shape=[2, 3, 5, 6]) operator_56 = LinearOperatorFullMatrix(matrix_56) # Compose to create a [2, 3] batch of 20 x 30 operators. operator_large = LinearOperatorKronecker([operator_45, operator_56]) # Create a shape [2, 3, 20, 2] vector. x = tf.random_normal(shape=[2, 3, 6, 2]) operator_large.matmul(x) ==> Shape [2, 3, 30, 2] Tensor ``` #### Performance The performance of `LinearOperatorKronecker` on any operation is equal to the sum of the individual operators' operations. #### Matrix property hints This `LinearOperator` is initialized with boolean flags of the form `is_X`, for `X = non_singular, self_adjoint, positive_definite, square`. These have the following meaning: * If `is_X == True`, callers should expect the operator to have the property `X`. This is a promise that should be fulfilled, but is *not* a runtime assert. For example, finite floating point precision may result in these promises being violated. * If `is_X == False`, callers should expect the operator to not have `X`. * If `is_X == None` (the default), callers should have no expectation either way. """ def __init__(self, operators, is_non_singular=None, is_self_adjoint=None, is_positive_definite=None, is_square=None, name=None): r"""Initialize a `LinearOperatorKronecker`. `LinearOperatorKronecker` is initialized with a list of operators `[op_1,...,op_J]`. Args: operators: Iterable of `LinearOperator` objects, each with the same `dtype` and composable shape, representing the Kronecker factors. is_non_singular: Expect that this operator is non-singular. is_self_adjoint: Expect that this operator is equal to its hermitian transpose. is_positive_definite: Expect that this operator is positive definite, meaning the quadratic form `x^H A x` has positive real part for all nonzero `x`. Note that we do not require the operator to be self-adjoint to be positive-definite. See: https://en.wikipedia.org/wiki/Positive-definite_matrix\ #Extension_for_non_symmetric_matrices is_square: Expect that this operator acts like square [batch] matrices. name: A name for this `LinearOperator`. Default is the individual operators names joined with `_x_`. Raises: TypeError: If all operators do not have the same `dtype`. ValueError: If `operators` is empty. """ # Validate operators. check_ops.assert_proper_iterable(operators) operators = list(operators) if not operators: raise ValueError( "Expected a list of >=1 operators. Found: %s" % operators) self._operators = operators # Validate dtype. dtype = operators[0].dtype for operator in operators: if operator.dtype != dtype: name_type = (str((o.name, o.dtype)) for o in operators) raise TypeError( "Expected all operators to have the same dtype. Found %s" % " ".join(name_type)) # Auto-set and check hints. # A Kronecker product is invertible, if and only if all factors are # invertible. if all(operator.is_non_singular for operator in operators): if is_non_singular is False: raise ValueError( "The Kronecker product of non-singular operators is always " "non-singular.") is_non_singular = True if all(operator.is_self_adjoint for operator in operators): if is_self_adjoint is False: raise ValueError( "The Kronecker product of self-adjoint operators is always " "self-adjoint.") is_self_adjoint = True # The eigenvalues of a Kronecker product are equal to the products of eigen # values of the corresponding factors. if all(operator.is_positive_definite for operator in operators): if is_positive_definite is False: raise ValueError("The Kronecker product of positive-definite operators " "is always positive-definite.") is_positive_definite = True # Initialization. graph_parents = [] for operator in operators: graph_parents.extend(operator.graph_parents) if name is None: name = operators[0].name for operator in operators[1:]: name += "_x_" + operator.name with ops.name_scope(name, values=graph_parents): super(LinearOperatorKronecker, self).__init__( dtype=dtype, graph_parents=graph_parents, is_non_singular=is_non_singular, is_self_adjoint=is_self_adjoint, is_positive_definite=is_positive_definite, is_square=is_square, name=name) @property def operators(self): return self._operators def _shape(self): # Get final matrix shape. domain_dimension = self.operators[0].domain_dimension for operator in self.operators[1:]: domain_dimension *= operator.domain_dimension range_dimension = self.operators[0].range_dimension for operator in self.operators[1:]: range_dimension *= operator.range_dimension matrix_shape = tensor_shape.TensorShape([ range_dimension, domain_dimension]) # Get broadcast batch shape. # broadcast_shape checks for compatibility. batch_shape = self.operators[0].batch_shape for operator in self.operators[1:]: batch_shape = common_shapes.broadcast_shape( batch_shape, operator.batch_shape) return batch_shape.concatenate(matrix_shape) def _shape_tensor(self): domain_dimension = self.operators[0].domain_dimension_tensor() for operator in self.operators[1:]: domain_dimension *= operator.domain_dimension_tensor() range_dimension = self.operators[0].range_dimension_tensor() for operator in self.operators[1:]: range_dimension *= operator.range_dimension_tensor() matrix_shape = [range_dimension, domain_dimension] # Get broadcast batch shape. # broadcast_shape checks for compatibility. batch_shape = self.operators[0].batch_shape_tensor() for operator in self.operators[1:]: batch_shape = array_ops.broadcast_dynamic_shape( batch_shape, operator.batch_shape_tensor()) return array_ops.concat((batch_shape, matrix_shape), 0) def _matmul(self, x, adjoint=False, adjoint_arg=False): # Here we heavily rely on Roth's column Lemma [1]: # (A x B) * vec X = vec BXA^T, # where vec stacks all the columns of the matrix under each other. In our # case, x represents a batch of vec X (i.e. we think of x as a batch of # column vectors, rather than a matrix). Each member of the batch can be # reshaped to a matrix (hence we get a batch of matrices). # We can iteratively apply this lemma by noting that if B is a Kronecker # product, then we can apply the lemma again. # [1] W. E. Roth, "On direct product matrices," # Bulletin of the American Mathematical Society, vol. 40, pp. 461-468, # 1934 # Efficiency # Naively doing the Kronecker product, by calculating the dense matrix and # applying it will can take cubic time in the size of domain_dimension # (assuming a square matrix). The other issue is that calculating the dense # matrix can be prohibitively expensive, in that it can take a large amount # of memory. # # This implementation avoids this memory blow up by only computing matmuls # with the factors. In this way, we don't have to realize the dense matrix. # In terms of complexity, if we have Kronecker Factors of size: # (n1, n1), (n2, n2), (n3, n3), ... (nJ, nJ), with N = \prod n_i, and we # have as input a [N, M] matrix, the naive approach would take O(N^2 M). # With this approach (ignoring reshaping of tensors and transposes for now), # the time complexity can be O(M * (\sum n_i) * N). There is also the # benefit of batched multiplication (In this example, the batch size is # roughly M * N) so this can be much faster. However, not factored in are # the costs of the several transposing of tensors, which can affect cache # behavior. # Below we document the shape manipulation for adjoint=False, # adjoint_arg=False, but the general case of different adjoints is still # handled. if adjoint_arg: x = linalg.adjoint(x) # Always add a batch dimension to enable broadcasting to work. batch_shape = array_ops.concat( [array_ops.ones_like(self.batch_shape_tensor()), [1, 1]], 0) x += array_ops.zeros(batch_shape, dtype=x.dtype.base_dtype) # x has shape [B, R, C], where B represent some number of batch dimensions, # R represents the number of rows, and C represents the number of columns. # In order to apply Roth's column lemma, we need to operate on a batch of # column vectors, so we reshape into a batch of column vectors. We put it # at the front to ensure that broadcasting between operators to the batch # dimensions B still works. output = _rotate_last_dim(x, rotate_right=True) # Also expand the shape to be [A, C, B, R]. The first dimension will be # used to accumulate dimensions from each operator matmul. output = output[array_ops.newaxis, ...] # In this loop, A is going to refer to the value of the accumulated # dimension. A = 1 at the start, and will end up being self.range_dimension. # V will refer to the last dimension. V = R at the start, and will end up # being 1 in the end. for operator in self.operators[:-1]: # Reshape output from [A, C, B, V] to be # [A, C, B, V / op.domain_dimension, op.domain_dimension] if adjoint: operator_dimension = operator.range_dimension_tensor() else: operator_dimension = operator.domain_dimension_tensor() output = _unvec_by(output, operator_dimension) # We are computing (XA^T) = (AX^T)^T. # output has [A, C, B, V / op.domain_dimension, op.domain_dimension], # which is being converted to: # [A, C, B, V / op.domain_dimension, op.range_dimension] output = array_ops.matrix_transpose(output) output = operator.matmul(output, adjoint=adjoint, adjoint_arg=False) output = array_ops.matrix_transpose(output) # Rearrange it to [A * op.range_dimension, C, B, V / op.domain_dimension] output = _rotate_last_dim(output, rotate_right=False) output = _vec(output) output = _rotate_last_dim(output, rotate_right=True) # After the loop, we will have # A = self.range_dimension / op[-1].range_dimension # V = op[-1].domain_dimension # We convert that using matvec to get: # [A, C, B, op[-1].range_dimension] output = self.operators[-1].matvec(output, adjoint=adjoint) # Rearrange shape to be [B1, ... Bn, self.range_dimension, C] output = _rotate_last_dim(output, rotate_right=False) output = _vec(output) output = _rotate_last_dim(output, rotate_right=False) if x.shape.is_fully_defined(): column_dim = x.shape[-1] broadcast_batch_shape = common_shapes.broadcast_shape( x.shape[:-2], self.batch_shape) if adjoint: matrix_dimensions = [self.domain_dimension, column_dim] else: matrix_dimensions = [self.range_dimension, column_dim] print("x: ", x) print("bathc_shape:", self.batch_shape) print("self.shape:", self.shape) print("output: ", output) output.set_shape(broadcast_batch_shape.concatenate( matrix_dimensions)) return output def _determinant(self): # Note that we have |X1 x X2| = |X1| ** n * |X2| ** m, where X1 is an m x m # matrix, and X2 is an n x n matrix. We can iteratively apply this property # to get the determinant of |X1 x X2 x X3 ...|. If T is the product of the # domain dimension of all operators, then we have: # |X1 x X2 x X3 ...| = # |X1| ** (T / m) * |X2 x X3 ... | ** m = # |X1| ** (T / m) * |X2| ** (m * (T / m) / n) * ... = # |X1| ** (T / m) * |X2| ** (T / n) * | X3 x X4... | ** (m * n) # And by doing induction we have product(|X_i| ** (T / dim(X_i))). total = self.domain_dimension_tensor() determinant = 1. for operator in self.operators: determinant *= operator.determinant() ** math_ops.cast( total / operator.domain_dimension_tensor(), dtype=operator.dtype) return determinant def _log_abs_determinant(self): # This will be sum((total / dim(x_i)) * log |X_i|) total = self.domain_dimension_tensor() log_abs_det = 0. for operator in self.operators: log_abs_det += operator.log_abs_determinant() * math_ops.cast( total / operator.domain_dimension_tensor(), dtype=operator.dtype) return log_abs_det def _trace(self): # tr(A x B) = tr(A) * tr(B) trace = 1. for operator in self.operators: trace *= operator.trace() return trace def _solve(self, rhs, adjoint=False, adjoint_arg=False): # Here we follow the same use of Roth's column lemma as in `matmul`, with # the key difference that we replace all `matmul` instances with `solve`. # This follows from the property that inv(A x B) = inv(A) x inv(B). # Below we document the shape manipulation for adjoint=False, # adjoint_arg=False, but the general case of different adjoints is still # handled. if adjoint_arg: rhs = linalg.adjoint(rhs) # Always add a batch dimension to enable broadcasting to work. batch_shape = array_ops.concat( [array_ops.ones_like(self.batch_shape_tensor()), [1, 1]], 0) rhs += array_ops.zeros(batch_shape, dtype=rhs.dtype.base_dtype) # rhs has shape [B, R, C], where B represent some number of batch # dimensions, # R represents the number of rows, and C represents the number of columns. # In order to apply Roth's column lemma, we need to operate on a batch of # column vectors, so we reshape into a batch of column vectors. We put it # at the front to ensure that broadcasting between operators to the batch # dimensions B still works. output = _rotate_last_dim(rhs, rotate_right=True) # Also expand the shape to be [A, C, B, R]. The first dimension will be # used to accumulate dimensions from each operator matmul. output = output[array_ops.newaxis, ...] # In this loop, A is going to refer to the value of the accumulated # dimension. A = 1 at the start, and will end up being self.range_dimension. # V will refer to the last dimension. V = R at the start, and will end up # being 1 in the end. for operator in self.operators[:-1]: # Reshape output from [A, C, B, V] to be # [A, C, B, V / op.domain_dimension, op.domain_dimension] if adjoint: operator_dimension = operator.range_dimension_tensor() else: operator_dimension = operator.domain_dimension_tensor() output = _unvec_by(output, operator_dimension) # We are computing (XA^-1^T) = (A^-1 X^T)^T. # output has [A, C, B, V / op.domain_dimension, op.domain_dimension], # which is being converted to: # [A, C, B, V / op.domain_dimension, op.range_dimension] output = array_ops.matrix_transpose(output) output = operator.solve(output, adjoint=adjoint, adjoint_arg=False) output = array_ops.matrix_transpose(output) # Rearrange it to [A * op.range_dimension, C, B, V / op.domain_dimension] output = _rotate_last_dim(output, rotate_right=False) output = _vec(output) output = _rotate_last_dim(output, rotate_right=True) # After the loop, we will have # A = self.range_dimension / op[-1].range_dimension # V = op[-1].domain_dimension # We convert that using matvec to get: # [A, C, B, op[-1].range_dimension] output = self.operators[-1].solvevec(output, adjoint=adjoint) # Rearrange shape to be [B1, ... Bn, self.range_dimension, C] output = _rotate_last_dim(output, rotate_right=False) output = _vec(output) output = _rotate_last_dim(output, rotate_right=False) if rhs.shape.is_fully_defined(): column_dim = rhs.shape[-1] broadcast_batch_shape = common_shapes.broadcast_shape( rhs.shape[:-2], self.batch_shape) if adjoint: matrix_dimensions = [self.domain_dimension, column_dim] else: matrix_dimensions = [self.range_dimension, column_dim] output.set_shape(broadcast_batch_shape.concatenate( matrix_dimensions)) return output def _diag_part(self): diag_part = self.operators[0].diag_part() for operator in self.operators[1:]: diag_part = diag_part[..., :, array_ops.newaxis] op_diag_part = operator.diag_part()[..., array_ops.newaxis, :] diag_part *= op_diag_part diag_part = array_ops.reshape( diag_part, shape=array_ops.concat( [array_ops.shape(diag_part)[:-2], [-1]], axis=0)) if self.range_dimension > self.domain_dimension: diag_dimension = self.domain_dimension else: diag_dimension = self.range_dimension diag_part.set_shape( self.batch_shape.concatenate(diag_dimension)) return diag_part def _to_dense(self): product = self.operators[0].to_dense() for operator in self.operators[1:]: # Product has shape [B, R1, 1, C1]. product = product[ ..., :, array_ops.newaxis, :, array_ops.newaxis] # Operator has shape [B, 1, R2, 1, C2]. op_to_mul = operator.to_dense()[ ..., array_ops.newaxis, :, array_ops.newaxis, :] # This is now [B, R1, R2, C1, C2]. product *= op_to_mul # Now merge together dimensions to get [B, R1 * R2, C1 * C2]. product = array_ops.reshape( product, shape=array_ops.concat( [array_ops.shape(product)[:-4], [array_ops.shape(product)[-4] * array_ops.shape(product)[-3], array_ops.shape(product)[-2] * array_ops.shape(product)[-1]] ], axis=0)) product.set_shape(self.shape) return product def _assert_non_singular(self): if all(operator.is_square for operator in self.operators): asserts = [operator.assert_non_singular() for operator in self.operators] return control_flow_ops.group(asserts) else: raise errors.InvalidArgumentError( node_def=None, op=None, message="All Kronecker factors must be " "square for the product to be invertible.") def _assert_self_adjoint(self): if all(operator.is_square for operator in self.operators): asserts = [operator.assert_self_adjoint() for operator in self.operators] return control_flow_ops.group(asserts) else: raise errors.InvalidArgumentError( node_def=None, op=None, message="All Kronecker factors must be " "square for the product to be self adjoint.")
40.215686
80
0.673685
[ "Apache-2.0" ]
ADiegoCAlonso/tensorflow
tensorflow/contrib/linalg/python/ops/linear_operator_kronecker.py
22,561
Python
import threading import sys class ThreadHandler(object): def __init__(self, name, callable, *args, **kwargs): # Set up exception handling self.exception = None def wrapper(*args, **kwargs): try: callable(*args, **kwargs) except BaseException: self.exception = sys.exc_info() # Kick off thread thread = threading.Thread(None, wrapper, name, args, kwargs) thread.setDaemon(True) thread.start() # Make thread available to instantiator self.thread = thread
28
68
0.588435
[ "BSD-2-Clause" ]
akheron/fabric
fabric/thread_handling.py
588
Python
# -*- coding: utf-8 -*- # =============================================================== # Author: Rodolfo Ferro # Email: [email protected] # Twitter: @FerroRodolfo # # ABOUT COPYING OR USING PARTIAL INFORMATION: # This script was originally created by Rodolfo Ferro, for # his workshop in HackSureste 2019 at Universidad Modelo # in Mérida. Any explicit usage of this script or its # contents is granted according to the license provided and # its conditions. # =============================================================== from flask import Flask, jsonify, request, render_template from iris import iris_classifier from pprint import pprint import numpy as np import requests import json # Main app: app = Flask(__name__) # Global: version = 'v0.0' classifier = iris_classifier() species = { '0': 'I. setosa', '1': 'I. versicolor', '2': 'I. virginica' } # Static website: @app.route('/') def index(): return render_template("index.html") # API MAIN STRUCTURE: @app.route('/api/' + version, methods=['GET']) def test(): """ GET method to test the API. """ # Output message: message = { "response": [ { "text": "Hello world!" } ] } return jsonify(message) @app.route('/api/' + version + '/predict', methods=['POST']) def predict(): """ POST method to predict with our classification model. """ # Get data from JSON object in POST method: req_data = request.get_json() # Parse data from JSON: sl = req_data['sepal_length'] sw = req_data['sepal_width'] pl = req_data['petal_length'] pw = req_data['petal_width'] # Predict with model: input_data = np.array([[sl, sw, pl, pw]]) prediction = classifier.predict(input_data) print(prediction) # Output message: message = {"response": [ {"input": { 'sepal_length': sl, 'sepal_width': sw, 'petal_length': pl, 'petal_width': pw }}, {"prediction": int(prediction[0])}, {"species": species[str(prediction[0])]}]} return jsonify(message) @app.errorhandler(404) def not_found(error=None): message = { 'status': 404, 'message': 'Not Found: ' + request.url, } response = jsonify(message) response.status_code = 404 return response if __name__ == '__main__': app.run(debug=True, port=5000)
22.518519
65
0.581003
[ "MIT" ]
RodolfoFerro/iris-api
app.py
2,433
Python
from pydantic import BaseModel from .utils import BaseEvent class MainPublisherEvent(BaseEvent): pass class CheckStatus(MainPublisherEvent): channel: str class WaitLiveVideo(MainPublisherEvent): pass class WaitStream(MainPublisherEvent): time: int class DownloaderEvent(BaseEvent): pass class StartDownloading(DownloaderEvent): id: str class PlaylistUpdate(DownloaderEvent): total_size: int to_load: int class DownloadedChunk(DownloaderEvent): pass class StopDownloading(DownloaderEvent): pass class DownloadingProgress(BaseModel): # type: ignore total_segments: int = 0 total_downloaded_segments: int = 0 last_chunk_size: int = 0 downloaded_segments: int = 0 def chunk_loaded(self) -> None: self.downloaded_segments += 1 self.total_downloaded_segments += 1 class ExceptionEvent(BaseEvent): message: str
16.232143
53
0.733773
[ "MIT" ]
tausackhn/twlived
twlived/events.py
909
Python
from argparse import Action, Namespace from typing import (List) from .switch_config import SwitchConfigCLI from ..switch import SwitchChip class EraseConfigCLI(SwitchConfigCLI): """ The "erase" action that removes all stored items from the EEPROM memory. """ def __init__(self, subparsers: Action, switch: SwitchChip) -> None: super().__init__(subparsers, switch) self._subparser = self._subparsers.add_parser( "erase", help="Erase all configuration", ) self._subparser.set_defaults(execute=self.apply) def apply(self, args: Namespace) -> SwitchConfigCLI: return self def create_configuration(self) -> List[List[int]]: return [[101, 0, 0, 0]]
28.692308
76
0.670241
[ "MIT" ]
ararobotique/botblox-manager-software
botblox_config/data_manager/erase.py
746
Python
# Copyright 2020 The FedLearner Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # coding: utf-8 from flatten_dict import flatten from fedlearner_webconsole.proto.workflow_definition_pb2 import Slot from fedlearner_webconsole.workflow_template.template_validaor \ import YamlTemplate class _YamlTemplate(YamlTemplate): # Which placeholders in the template should be interpreted idpattern = r'Slot_[a-z0-9_]*' def substitute(self, mapping): return super()._substitute(mapping, fixed_placeholder=None, ignore_invalid=True) def format_yaml(yaml, **kwargs): """Formats a yaml template. Example usage: format_yaml('{"abc": ${x.y}}', x={'y': 123}) output should be '{"abc": 123}' """ template = _YamlTemplate(yaml) try: return template.substitute(flatten(kwargs or {}, reducer='dot')) except KeyError as e: raise RuntimeError( 'Unknown placeholder: {}'.format(e.args[0])) from e def generate_yaml_template(base_yaml, slots_proto): """ Args: base_yaml: A string representation of one type job's base yaml. slots_proto: A proto map object representation of modification template's operable smallest units. Returns: string: A yaml_template """ slots = {} for key in slots_proto: if slots_proto[key].reference_type == Slot.ReferenceType.DEFAULT: slots[key] = slots_proto[key].default else: slots[key] = f'${{{slots_proto[key].reference}}}' return format_yaml(base_yaml, **slots)
34.484375
74
0.663344
[ "Apache-2.0" ]
duanbing/fedlearner
web_console_v2/api/fedlearner_webconsole/workflow_template/slots_formatter.py
2,207
Python
from dataclasses import dataclass, field from enum import Enum from typing import ( Callable, Dict, List, Optional, Union ) import weakref import threading import torch import torch.distributed as dist from torch.distributed import rpc from torch.distributed import distributed_c10d from torch.distributed._sharding_spec import ( ChunkShardingSpec, EnumerableShardingSpec, ShardMetadata, ShardingSpec, ) from torch.distributed._sharding_spec._internals import ( check_tensor, get_split_size, get_chunked_dim_size, validate_non_overlapping_shards_metadata, ) from torch.types import Number from .metadata import TensorProperties, ShardedTensorMetadata from .shard import Shard from .utils import ( get_current_process_group, _flatten_tensor_size, _parse_and_validate_remote_device, _validate_output_tensor_for_gather, build_metadata_from_local_shards, build_global_metadata ) # Tracking for sharded tensor objects. _sharded_tensor_lock = threading.Lock() _sharded_tensor_current_id = 0 _sharded_tensor_map: Dict[int, 'weakref.ReferenceType[ShardedTensor]'] = {} # Custom sharded ops _SHARDED_OPS: Dict[str, Callable] = {} def _register_sharded_op(op, func): from inspect import signature if len(signature(func).parameters) != 4: raise TypeError( f'Custom sharded op function expects signature: ' f'(types, args, kwargs, process_group), but received ' f'signature: {signature(func)}') global _SHARDED_OPS _SHARDED_OPS[op] = func def _register_remote_shards(sharded_tensor_id: int, rrefs: List[rpc.RRef[Shard]], rpc_rank: int): with _sharded_tensor_lock: if sharded_tensor_id not in _sharded_tensor_map: raise RuntimeError( f'Could not find sharded_tensor_id: {sharded_tensor_id} in map: {_sharded_tensor_map.keys()}') sharded_tensor = _sharded_tensor_map[sharded_tensor_id]() if sharded_tensor is None: raise RuntimeError('ShardedTensor weakref has been deallocated') else: sharded_tensor._register_remote_shards(rrefs, rpc_rank) class CreateOp(Enum): EMPTY = 0 FULL = 1 ONES = 2 RAND = 3 ZEROS = 4 @dataclass class TensorInitParams(object): """ Container for list of common params to create new local tensor. """ create_op: CreateOp # needed when create_op is FULL # default set to False (not None) since None is incompatible with Number. fill_value: Number = field(default=False) tensor_properties: TensorProperties = field( default=TensorProperties(dtype=torch.get_default_dtype(), layout=torch.strided, requires_grad=False, memory_format=torch.contiguous_format, pin_memory=False)) class ShardedTensor(object): """ ShardedTensor is an abstraction to represent Tensors that are sharded across multiple devices and multiple processes. ShardedTensor is initialized in an SPMD like fashion where each rank initializes the ShardedTensor. The ShardedTensor object on each rank then only stores the local shard for the Tensor and provides global metadata for all the shards. ShardedTensor doesn't provide any Tensor like operations but is a wrapper providing the Tensor representing the local shard and the global metadata. Using these, users can build their custom distributed sharded computations on top of this primitive. The local shards are all initialized using the create_op specified by tensor_init_params.create_op, e.g., torch.ones, or torch.empty Args: sharding_spec (:class:`torch.distributed._sharding_spec.ShardingSpec`): The specification describing how to shard the Tensor. size (int...): a sequence of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple. Keyword args: tensor_init_params (:class: `TensorInitParams`): common params to create tensor. init_rrefs (bool, optional): Whether or not to initialize :class:`torch.distributed.rpc.RRef`s pointing to remote shards. Need to initialize the RPC Framework if specified as ``True``. Default: ``False``. .. note:: ShardedTensor uses collectives to do various operations, i.e. it uses all_gather to do cross rank validations. For NCCL-based processed groups, internal tensor representations of objects must be moved to the GPU device before communication takes place. In this case, the device used is given by ``torch.cuda.current_device()`` and it is the user's responsiblity to ensure that this is set so that each rank has an individual GPU, via ``torch.cuda.set_device()`` """ def __new__(cls, *args, **kwargs): # Use __new__ for logging purposes. torch._C._log_api_usage_once("torch.distributed.sharded_tensor") return super(ShardedTensor, cls).__new__(cls) def __init__( self, sharding_spec: ShardingSpec, *size, tensor_init_params: TensorInitParams, process_group=None, init_rrefs=False, ): # prepare initialization, initialize fields like # _process_group, _local_shards, etc. self._prepare_init(process_group=process_group, init_rrefs=init_rrefs) if tensor_init_params.tensor_properties is None: raise ValueError('tensor_properties must not be None.') if tensor_init_params.tensor_properties.dtype is None: tensor_init_params.tensor_properties.dtype = torch.get_default_dtype() if tensor_init_params.tensor_properties.layout != torch.strided: raise ValueError('Only torch.strided layout is currently supported') if tensor_init_params.tensor_properties.memory_format != torch.contiguous_format: raise ValueError('Only torch.contiguous_format memory_format is currently supported') dims = _flatten_tensor_size(size) self._sharding_spec = sharding_spec if isinstance(self._sharding_spec, ChunkShardingSpec): self._init_chunked(dims, tensor_init_params) elif isinstance(self._sharding_spec, EnumerableShardingSpec): self._init_enumerable(dims, tensor_init_params) else: raise ValueError(f'Unsupported sharding_spec: {self._sharding_spec}') # do post initialization (i.e. register sharded_tensor_id, initialize_rpc) self._post_init() def _prepare_init(self, process_group=None, init_rrefs=False): self._init_rrefs = init_rrefs self._sharded_tensor_id = None self._process_group = ( process_group if process_group is not None else distributed_c10d._get_default_group() ) self._local_shards: List[Shard] = [] self._remote_shards: Dict[int, List[rpc.RRef[Shard]]] = {} def _post_init(self): # Initialize RPC if available. if self._init_rrefs: with _sharded_tensor_lock: global _sharded_tensor_current_id, _sharded_tensor_map self._sharded_tensor_id = _sharded_tensor_current_id _sharded_tensor_map[self._sharded_tensor_id] = weakref.ref(self) _sharded_tensor_current_id += 1 if not rpc._is_current_rpc_agent_set(): raise RuntimeError( 'RPC Framework needs to be initialized using' ' torch.distributed.rpc.init_rpc if init_rrefs is set to True') self._init_rpc() def __del__(self): # Clean up the global map. with _sharded_tensor_lock: global _sharded_tensor_current_id, _sharded_tensor_map if self._sharded_tensor_id in _sharded_tensor_map: _sharded_tensor_map.pop(self._sharded_tensor_id) # type: ignore[call-overload] def _init_rpc(self): # Validate PG and RPC ranks match. pg_rank = dist.get_rank() rpc_rank = rpc.get_worker_info().id if pg_rank != rpc_rank: raise ValueError( f'Default ProcessGroup and RPC ranks must be ' f'the same for ShardedTensor, found process group rank: ' f'{pg_rank} and RPC rank: {rpc_rank}' ) self._remote_shards = {} # Gather all the sharded tensor ids. worker_infos = rpc._get_current_rpc_agent().get_worker_infos() rank_to_name = {} name_to_rank = {} for worker_info in worker_infos: rank_to_name[worker_info.id] = worker_info.name name_to_rank[worker_info.name] = worker_info.id all_tensor_ids = rpc.api._all_gather(self._sharded_tensor_id) # Share the local shards to the entire world. futs = [] rpc_rank = rpc.get_worker_info().id for rank in range(dist.get_world_size()): # Skip self. if rank == dist.get_rank(): continue if len(self.local_shards()) != 0: rrefs: List[rpc.RRef[Shard]] = [rpc.RRef(shard) for shard in self.local_shards()] fut = rpc.rpc_async( rank, _register_remote_shards, args=(all_tensor_ids[rank_to_name[rank]], rrefs, rpc_rank)) futs.append(fut) torch.futures.wait_all(futs) # Barrier for all RPCs to finish on all ranks. rpc.api._all_gather(None) def gather( self, dst: int = 0, out: Optional[torch.Tensor] = None, ) -> None: """ Creates a full :class:`Tensor` on rank ``dst`` by gathering all shards of the sharded tensor. The API needs to be called on all ranks in SPMD fashion. All ranks should have the same ``dst``. ``out`` should be a tensor of the same size as the overall size of the sharded tensor on ``dst`` and ``None`` on all other ranks. Args: dst(int): The rank where full tensor is constructed. Default: 0 out (:class `torch.Tensor`, optional): The output full tensor. Must to be provided ONLY on ``dst`` rank. Default: ``None`` """ rank = dist.get_rank(self._process_group) full_size = self.metadata().size _validate_output_tensor_for_gather(rank, dst, full_size, out) local_shards = self.local_shards() world_size = dist.get_world_size(self._process_group) gathered_shards = [None] * world_size # will revise this part with CPU support and use dist.gather() # once NCCL support for gather() is ready # https://github.com/pytorch/pytorch/issues/66187 dist.all_gather_object( obj=local_shards, object_list=gathered_shards, group=self._process_group, ) if rank == dst: dims = len(full_size) for shards in gathered_shards: if shards is None: raise RuntimeError( 'Gathered shards cannot be None on dst rank {dst}' ) for shard in shards: metadata = shard.metadata tensor = shard.tensor out_narrow_view = out for dim in range(dims): out_narrow_view = out_narrow_view.narrow( dim, metadata.shard_offsets[dim], metadata.shard_sizes[dim], ) out_narrow_view.copy_(tensor) @classmethod def _init_from_local_shards( cls, local_shards: List[Shard], *global_size, process_group=None, init_rrefs=False, ): # STEP 1: Validate the Shardmetadatas locally process_group = ( process_group if process_group is not None else distributed_c10d._get_default_group() ) current_rank = dist.get_rank(process_group) world_size = dist.get_world_size(process_group) local_sharded_tensor_metadata: Optional[ShardedTensorMetadata] = None global_tensor_size = _flatten_tensor_size(global_size) if len(local_shards) > 0: local_sharded_tensor_metadata = \ build_metadata_from_local_shards(local_shards, global_tensor_size, current_rank, process_group) # STEP 2. Validate metadata across ranks, and build a global sharded tensor # metadata by gathering local ShardedTensorMetadata gathered_metadatas: List[Optional[ShardedTensorMetadata]] = [] if world_size > 1: gathered_metadatas = [None for _ in range(world_size)] dist.all_gather_object( gathered_metadatas, local_sharded_tensor_metadata, group=process_group ) else: gathered_metadatas = [local_sharded_tensor_metadata] global_sharded_tensor_metadata = build_global_metadata(gathered_metadatas) # STEP 3: Validation done, create the actual ShardedTensor and populate fields # prepare initialization sharded_tensor = cls.__new__(cls) sharded_tensor._prepare_init(process_group=process_group, init_rrefs=init_rrefs) # add to metadata and local_shards sharded_tensor._metadata = global_sharded_tensor_metadata sharded_tensor._local_shards = local_shards # make a EnumerableShardingSpec for sharded tensors that initialized from this API. # TODO: make sharding spec a ChunkShardingSpec by inferring from the metadata list. # see issue https://github.com/pytorch/pytorch/issues/67244 sharded_tensor._sharding_spec = EnumerableShardingSpec(global_sharded_tensor_metadata.shards_metadata) # run post initialization, i.e. map registration, rpc initialization sharded_tensor._post_init() return sharded_tensor @classmethod def _init_from_local_shards_and_global_metadata( cls, local_shards: List[Shard], sharded_tensor_metadata: ShardedTensorMetadata, process_group=None, init_rrefs=False, ) -> "ShardedTensor": """ Initialize a ShardedTensor with local shards and a global ShardedTensorMetadata built on each rank. Warning: This API is experimental and subject to change. It does not do cross rank validations, and fully rely on the user for the correctness of sharded_tensor_metadata on each rank """ process_group = ( process_group if process_group is not None else distributed_c10d._get_default_group() ) current_rank = dist.get_rank(process_group) shards_metadata = sharded_tensor_metadata.shards_metadata tensor_properties = sharded_tensor_metadata.tensor_properties if len(shards_metadata) == 0: raise ValueError("shards_metadata must not be empty!") if tensor_properties.layout != torch.strided: raise ValueError('Only torch.strided layout is currently supported') sharded_tensor = cls.__new__(cls) sharded_tensor._prepare_init(process_group=process_group, init_rrefs=init_rrefs) sharded_tensor._metadata = sharded_tensor_metadata local_shard_metadatas = [] def _raise_if_mismatch(expected, actual, prop_name, rank, is_property=False): tensor_property_or_metadata = "tensor property" if is_property else "local ShardMetadata" if expected != actual: raise ValueError(f"Local shards' tensor {prop_name} property is incompatible with " f"{tensor_property_or_metadata} on rank {rank}: " f"{tensor_property_or_metadata} {prop_name}={expected}, " f"local shard tensor {prop_name}={actual}.") # collect local shard metadatas from the global sharded_tensor_metadata for shard_metadata in shards_metadata: # type: ignore[attr-defined] rank, local_device = _parse_and_validate_remote_device(sharded_tensor._process_group, shard_metadata.placement) if current_rank == rank: local_shard_metadatas.append(shard_metadata) if len(local_shards) != len(local_shard_metadatas): raise RuntimeError( f'Number of local shards ({len(local_shards)}) does not match number of local ' f'shards metadata in sharded_tensor_metadata ({len(local_shard_metadatas)}) ' f'on rank ({current_rank}) ' ) for shard in local_shards: shard_meta = shard.metadata local_shard_tensor = shard.tensor rank, local_device = _parse_and_validate_remote_device(sharded_tensor._process_group, shard_meta.placement) # validate if shard_meta in the metadatas collected from sharded_tensor_metadata assert shard_meta in local_shard_metadatas, \ "local shard metadata not in sharded_tensor_metadata!" _raise_if_mismatch(tensor_properties.layout, local_shard_tensor.layout, "layout", current_rank, True) if not local_shard_tensor.is_contiguous(): raise ValueError('Only torch.contiguous_format memory_format is currently supported') _raise_if_mismatch(shard_meta.shard_sizes, list(local_shard_tensor.size()), "size", current_rank) _raise_if_mismatch(tensor_properties.pin_memory, local_shard_tensor.is_pinned(), "pin_memory", current_rank, True) _raise_if_mismatch(local_device, local_shard_tensor.device, "device", current_rank) _raise_if_mismatch(tensor_properties.dtype, local_shard_tensor.dtype, "dtype", current_rank, True) _raise_if_mismatch( tensor_properties.requires_grad, local_shard_tensor.requires_grad, "requires_grad", current_rank, True) # check if shards_metadata have overlap shards validate_non_overlapping_shards_metadata(shards_metadata) # check if the shards_metadata is compatible with overall size of the sharded tensor. check_tensor(shards_metadata, list(sharded_tensor_metadata.size)) # done validation, add local_shards sharded_tensor._local_shards = local_shards # make a EnumerableShardingSpec for sharded tensors that initialized from this API. # TODO: make sharding spec a ChunkShardingSpec by inferring from the metadata list. # see issue https://github.com/pytorch/pytorch/issues/67244 sharded_tensor._sharding_spec = EnumerableShardingSpec(shards_metadata) # run post initialization, i.e. map registration, rpc initialization sharded_tensor._post_init() return sharded_tensor def _init_chunked(self, dims, tensor_init_params: TensorInitParams, ): current_rank = dist.get_rank(self._process_group) sharding_dim = self._sharding_spec.dim # type: ignore[attr-defined] # Validate the sharding spec. if not isinstance(sharding_dim, int): raise ValueError( f"Sharding dim needs to be an integer, found: {sharding_dim}" ) if sharding_dim >= len(dims) or sharding_dim < -len(dims): raise ValueError(f"Invalid sharding dim: {sharding_dim}") dim_size = dims[sharding_dim] remote_devices = self._sharding_spec.placements # type: ignore[attr-defined] chunks = len(remote_devices) # split_size computed similar to 'torch.chunk' split_size = get_split_size(dim_size, chunks) shards_metadata = [] for idx, remote_device in enumerate(remote_devices): rank, local_device = _parse_and_validate_remote_device(self._process_group, remote_device) # Adjust the sharding dim for this rank. sharded_dim_size = get_chunked_dim_size(dim_size, split_size, idx) if sharded_dim_size > 0: # Build sharding_metadata. # deepcopy for modification. rank_dims = dims.copy() rank_offsets = [0] * len(dims) rank_offsets[sharding_dim] = split_size * idx rank_dims[sharding_dim] = sharded_dim_size shard_metadata = ShardMetadata(rank_offsets, rank_dims, remote_device) shards_metadata.append(shard_metadata) # Build the local shard for the current rank if it is involved in the sharding spec. if current_rank == rank: # Initialize the local shard. local_shard = _create_tensor_from_params( *rank_dims, local_device=local_device, tensor_init_params=tensor_init_params) self._local_shards.append(Shard(local_shard, shard_metadata)) # Build overall metadata self._metadata = ShardedTensorMetadata( shards_metadata, dims, tensor_init_params.tensor_properties, ) def _init_enumerable(self, dims, tensor_init_params: TensorInitParams): # Validate the sharding spec is compatible with the tensor. check_tensor(self._sharding_spec.shards, dims) # type: ignore[attr-defined] current_rank = dist.get_rank(self._process_group) shards_metadata = [] for shard_metadata in self._sharding_spec.shards: # type: ignore[attr-defined] rank, local_device = _parse_and_validate_remote_device(self._process_group, shard_metadata.placement) shards_metadata.append(shard_metadata) if current_rank == rank: # Initialize the local shard. local_shard = _create_tensor_from_params( *shard_metadata.shard_sizes, local_device=local_device, tensor_init_params=tensor_init_params) self._local_shards.append(Shard(local_shard, shard_metadata)) # Build overall metadata self._metadata = ShardedTensorMetadata( shards_metadata, dims, tensor_init_params.tensor_properties, ) def sharding_spec(self) -> ShardingSpec: """ Returns the ShardingSpec for the tensor. """ return self._sharding_spec def __torch_function__(self, func, types, args=(), kwargs=None): if func in _SHARDED_OPS: return _SHARDED_OPS[func](types, args, kwargs, self._process_group) raise RuntimeError( f"torch function '{func.__name__}', with args: {args} and " f"kwargs: {kwargs} not supported for ShardedTensor!") def metadata(self) -> ShardedTensorMetadata: """ Returns a :class:`ShardedTensorMetadata` object corresponding to the metadata for the entire tensor. """ return self._metadata def local_shards(self) -> List[Shard]: """ Returns a list of :class:`Shard' corresponding to the local shards for this rank. Returns an empty list if the current rank does not host any shards for this Tensor. """ return self._local_shards def size(self, dim: int = None) -> Union[torch.Size, int]: """ Returns a :Union:`[torch.Size, int]` which represents the size of the tensor. The dimension can be specified. Args: dim (int, optional): the dimension over which the size represents. If specified, it returns the size of the given dimension. If not, it returns a subclass of tuple. Default: ``None`` Returns: A :Union:`[torch.Size, int]` represents the size of the tensor. """ size = self._metadata.size if dim is None: return size if dim < 0 or dim >= len(size): raise ValueError( f"Argument ``dim`` must be within the range of tensor dimensions [0, {len(size)})" ) return size[dim] def is_pinned(self) -> bool: """ Returns True if the sharded tensor (each local shard) resides in pinned memory. """ return self._metadata.tensor_properties.pin_memory def is_contiguous(self) -> bool: """ Returns True if the sharded tensor (each local shard) is contiguous in memory in the order specified by memory format. """ return self._metadata.tensor_properties.memory_format == torch.contiguous_format @property def shape(self): return self._metadata.size @property def requires_grad(self): return self._metadata.tensor_properties.requires_grad @property def dtype(self): return self._metadata.tensor_properties.dtype @property def layout(self): return self._metadata.tensor_properties.layout def _register_remote_shards(self, remote_shards: List[rpc.RRef[Shard]], rpc_rank: int): self._remote_shards[rpc_rank] = remote_shards def remote_shards(self) -> Dict[int, List[rpc.RRef[Shard]]]: """ Returns a Dict[int, RRef] with keys being the RPC rank and values being RRefs to shards on that rank. Need to initialize the RPC framework for this functionality. Raises an exception if ShardedTensor was created with ``init_rrefs=False`` """ if not self._init_rrefs: raise RuntimeError( 'ShardedTensor created with init_rrefs=False, no RRefs to remote shards available' ) return self._remote_shards def __hash__(self): return id(self) def __repr__(self): return f'ShardedTensor({self._metadata})' @dataclass class ProcessGroupState: """ State for ser-de of process group """ local_rank: int global_rank: int local_world_size: int global_world_size: int def __getstate__(self): pg_state = ShardedTensor.ProcessGroupState( distributed_c10d.get_rank(self._process_group), distributed_c10d.get_rank(), distributed_c10d.get_world_size(self._process_group), distributed_c10d.get_world_size(), ) return self._local_shards, self._metadata, pg_state, self._sharding_spec, self._init_rrefs def __setstate__(self, state): self._sharded_tensor_id = None if not distributed_c10d.is_initialized(): raise RuntimeError( 'Need to initialize default process group using ' '"init_process_group" before loading ShardedTensor') self._local_shards, self._metadata, pg_state, self._sharding_spec, self._init_rrefs = state # Setup process group self._process_group = get_current_process_group() # Validate process group. local_rank = distributed_c10d.get_rank(self._process_group) if pg_state.local_rank != local_rank: raise RuntimeError( f'Local rank at save time was {pg_state.local_rank}, but at ' f'load time was {local_rank}') global_rank = distributed_c10d.get_rank() if pg_state.global_rank != global_rank: raise RuntimeError( f'Global rank at save time was {pg_state.global_rank}, but at ' f'load time was {global_rank}') local_world_size = distributed_c10d.get_world_size(self._process_group) if pg_state.local_world_size != local_world_size: raise RuntimeError( f'Local world size at save time was {pg_state.local_world_size}, ' f'but at load time was {local_world_size}') global_world_size = distributed_c10d.get_world_size() if pg_state.global_world_size != global_world_size: raise RuntimeError( f'Global world size at save time was {pg_state.global_world_size}, ' f'but at load time was {global_world_size}') self._post_init() def _create_tensor_from_params(*size, local_device, tensor_init_params: TensorInitParams): """ Helper to construct tensor from size, device and common params. """ create_op = tensor_init_params.create_op dtype = tensor_init_params.tensor_properties.dtype layout = tensor_init_params.tensor_properties.layout requires_grad = tensor_init_params.tensor_properties.requires_grad memory_format = tensor_init_params.tensor_properties.memory_format pin_memory = tensor_init_params.tensor_properties.pin_memory if create_op == CreateOp.ONES: return torch.ones(*size, dtype=dtype, layout=layout, device=local_device, pin_memory=pin_memory, requires_grad=requires_grad,) elif create_op == CreateOp.EMPTY: return torch.empty(*size, dtype=dtype, layout=layout, device=local_device, requires_grad=requires_grad, # NB: memory_format param is not accepted by torch.ones memory_format=memory_format, pin_memory=pin_memory,) elif tensor_init_params.create_op == CreateOp.ZEROS: return torch.zeros(*size, dtype=dtype, layout=layout, device=local_device, pin_memory=pin_memory, requires_grad=requires_grad,) elif tensor_init_params.create_op == CreateOp.RAND: return torch.rand(*size, dtype=dtype, layout=layout, device=local_device, pin_memory=pin_memory, requires_grad=requires_grad,) elif tensor_init_params.create_op == CreateOp.FULL: return torch.full(size=size, fill_value=tensor_init_params.fill_value, layout=layout, dtype=dtype, requires_grad=requires_grad, device=local_device, ) else: raise ValueError(f'Unsupported create_op: {tensor_init_params.create_op}')
40.637931
126
0.649163
[ "Apache-2.0" ]
dannis999/tensorflow
torch/distributed/_sharded_tensor/api.py
30,641
Python
# -*- coding: utf-8 -*- from CuAsm.CuInsAssemblerRepos import CuInsAssemblerRepos from CuAsm.CuInsFeeder import CuInsFeeder def constructReposFromFile(sassname, savname=None, arch='sm_75'): # initialize a feeder with sass feeder = CuInsFeeder(sassname, arch=arch) # initialize an empty repos repos = CuInsAssemblerRepos(arch=arch)# # Update the repos with instructions from feeder repos.update(feeder) # reset the feeder back to start # feeder.restart() # verify the repos # actually the codes is already verifed during repos construction # repos.verify(feeder) if savname is not None: repos.save2file(savname) return repos def verifyReposFromFile(sassname, reposfile, arch='sm_75'): # initialize a feeder with sass feeder = CuInsFeeder(sassname, arch=arch) # initialize an empty repos repos = CuInsAssemblerRepos(reposfile, arch=arch)# # verify the repos repos.verify(feeder) if __name__ == '__main__': sassname = r"G:\\Temp\\NVSASS\\cudnn64_7.sm_50.sass" # sassname = r'G:\\Temp\\Program.45.sm_50.sass' reposfile = r'InsAsmRepos.sm_50.txt' arch = 'sm_50' constructReposFromFile(sassname, reposfile, arch=arch) print('### Construction done!') # verifyReposFromFile(sassname, reposfile, arch=arch) # print('### Verification done!')
27.307692
70
0.672535
[ "MIT" ]
cloudcores/CuAssembler
Tests/test_CuInsAsmRepos_sm50.py
1,420
Python
from cumulusci.core.config import ConnectedAppOAuthConfig from django.conf import settings def get_connected_app(): return ConnectedAppOAuthConfig( { "callback_url": settings.CONNECTED_APP_CALLBACK_URL, "client_id": settings.CONNECTED_APP_CLIENT_ID, "client_secret": settings.CONNECTED_APP_CLIENT_SECRET, } )
28.538462
66
0.708895
[ "BSD-3-Clause" ]
abhishekalgo/metaci
metaci/cumulusci/utils.py
371
Python
import re, multiprocessing from tqdm import tqdm import numpy as np class Cleaner(): def __init__(self, num_threads=1): # right now, it's single threaded self.num_threads = min(num_threads, int(multiprocessing.cpu_count()/2)) """ S- ar putea să fie necesar să- l recitiţi. """ self.r1 = re.compile(r"([\w]+-)[\s]([\w]+)", re.IGNORECASE) """ {LL/ AAAA} Humalog Mix50 100 U/ ml """ self.r2 = re.compile(r"([\w]+/)\s([\w]+)", re.IGNORECASE) """ All unicode dashes to normal '-', see https://www.fileformat.info/info/unicode/category/Pd/list.htm includes bull : • \u2022 """ self.r3 = re.compile(r"([■\u2022\u007E\u00AD\u058A\u05BE\u1400\u1806\u2010\u2011\u2012\u2013\u2014\u2015\u2053\u207B\u208B\u2212\u2E17\u2E3A\u2E3B\u301C\u3030\u30A0\uFE31\uFE32\uFE63\uFF0D]+)", re.UNICODE) """ spaces after comma in numbers: 1, 4% -> 1,4% """ self.r4 = re.compile(r"([\d]+,)\s([\d]+)", re.IGNORECASE) """ soft hyphens #\u00AD """ self.r5 = re.compile(r"[\u00AD]") """ remove URLS """ self.r6 = re.compile(r'(?:www|http)\S+|<\S+|\w+\/*>') """ remove emails """ self.r7 = re.compile(r'([^@]+@[^@]+\.[^@]+)') """ table separators """ self.r8 = re.compile(r'[\─\─]+') self.r9 = re.compile(r'[\-\-]+') """ multiple spaces """ self.space = re.compile(' +') """ forbiden chars that cause a lot of bad sentences """ self.forbidden_chars = "ºþÈ™ÓÑÄÈîƒ" def process(self, lines, percent_max_numeric=0.7, percent_max_non_ascii=0.40, min_line_length=20, verbose=False, disable_pbar=True): skipped_because_min_length = np.array([0,0], dtype=np.uint64) skipped_alpha_count = np.array([0,0], dtype=np.uint64) skipped_because_max_numeric = np.array([0,0], dtype=np.uint64) skipped_because_max_non_ascii = np.array([0,0], dtype=np.uint64) skipped_because_forbidden_chars = np.array([0,0], dtype=np.uint64) total_original_length = 0 total_clean_length = 0 output = [] for line in tqdm(lines, disable = disable_pbar): line = line.strip() # get stats about line length = len(line) total_original_length += length if length < min_line_length: skipped_because_min_length += np.array([1,length], dtype=np.uint64) continue line = bytes(line, 'utf-8').decode('utf-8', 'ignore') # strip not utf-8 chars digit_count = 0 alpha_count = 0 ascii_count = 0 forbidden_char = False for char in line: if char in self.forbidden_chars: forbidden_char = True break if char.isnumeric(): digit_count+=1 if char.isalpha(): alpha_count+=1 if char.isascii(): ascii_count+=1 # reject if forbidden char if forbidden_char: skipped_because_forbidden_chars += np.array([1,length], dtype=np.uint64) continue # reject if number of letters is too small if alpha_count == 0 or alpha_count / length < 0.5: skipped_alpha_count += np.array([1,length], dtype=np.uint64) if verbose: print("Skipping alpha={:.3f}: [{}]".format(alpha_count / length, line)) continue # reject if too many numbers if digit_count / alpha_count >= percent_max_numeric and digit_count > 6: skipped_because_max_numeric += np.array([1,length], dtype=np.uint64) if verbose: print("Skipping digit={:.3f}: [{}]".format(digit_count / alpha_count, line)) continue # reject if too many non-ascii if ascii_count / alpha_count < percent_max_non_ascii and length > 15: skipped_because_max_non_ascii += np.array([1,length], dtype=np.uint64) if verbose: print("Skipping ascii={:.3f}: [{}]".format(digit_count / alpha_count, line)) continue #skip lines that appear to be ascii tables │ if (line.strip()[0] == '|' and line.count('|') > 2) or (line.strip()[0] == '│' and line.count('│') > 2): skipped_because_forbidden_chars += np.array([1,length], dtype=np.uint64) if verbose: print("Skipping table line: [{}]".format(line)) continue # clean line #print("\nbef: {}".format(line)) line = self.r1.sub(r"\1\2", line) line = self.r2.sub(r"\1\2", line) line = self.r3.sub("-", line) line = self.r4.sub(r"\1\2", line) line = self.r5.sub("", line) line = self.r6.sub("", line) line = self.r7.sub("", line) # separators line = self.r8.sub("", line) line = self.r9.sub("", line) line = line.replace("( ă)", "(ă)") line = line.replace("ţ", "ț") line = line.replace("ş", "ș") line = line.replace("Ţ", "Ț") line = line.replace("Ş", "Ș") line = line.replace("â", "â") #print("aft: {}".format(line)) line = self.space.sub(' ', line).strip() # check that after processing the line is not too short if len(line) < min_line_length: skipped_because_min_length += np.array([1,length], dtype=np.uint64) continue total_clean_length += len(line) output.append(line+"\n") # pack stats stats = {} stats["skipped_because_min_length"] = skipped_because_min_length stats["skipped_alpha_count"] = skipped_alpha_count stats["skipped_because_max_numeric"] = skipped_because_max_numeric stats["skipped_because_max_non_ascii"] = skipped_because_max_non_ascii stats["skipped_because_forbidden_chars"] = skipped_because_forbidden_chars stats["total_original_length"] = total_original_length stats["total_clean_length"] = total_clean_length return output, stats def add_stats(self, a, b): """ Add two stats dict that are returned by the process function. This is used for multiple files :param a: stats dict :param b: stats dict :return: stats dict """ stats = {} stats["skipped_because_min_length"] = a["skipped_because_min_length"] + b["skipped_because_min_length"] stats["skipped_alpha_count"] = a["skipped_alpha_count"] + b["skipped_alpha_count"] stats["skipped_because_max_numeric"] = a["skipped_because_max_numeric"] + b["skipped_because_max_numeric"] stats["skipped_because_max_non_ascii"] = a["skipped_because_max_non_ascii"] + b["skipped_because_max_non_ascii"] stats["skipped_because_forbidden_chars"] = a["skipped_because_forbidden_chars"] + b["skipped_because_forbidden_chars"] stats["total_original_length"] = a["total_original_length"] + b["total_original_length"] stats["total_clean_length"] = a["total_clean_length"] + b["total_clean_length"] return stats def print_stats(self, stats): print("\nCleaning statistics:") print("Total original length (chars) = {}".format(stats["total_original_length"])) print("Total length after cleaning (chars) = {}".format(stats["total_clean_length"])) print("Percent data kept = {:.3f} %".format(100.*stats["total_clean_length"]/stats["total_original_length"])) print("Skipped because line length was below minimum (lines/chars): {} ".format(stats["skipped_because_min_length"])) print("Skipped because line had forbidden characters (lines/chars): {} ".format(stats["skipped_because_forbidden_chars"])) print("Skipped because alpha count was below minimum (lines/chars): {} ".format(stats["skipped_alpha_count"])) print("Skipped because digit count was above maximum (lines/chars): {} ".format(stats["skipped_because_max_numeric"])) print("Skipped because too many non-ascii characters (lines/chars): {} ".format(stats["skipped_because_max_non_ascii"])) text = [" - ~~~~~Păstraţi acest prospect. S- ar putea să fie necesar să- l recitiţi.", "- Dacă aveţi orice întrebări suplimentare, adresaţi- vă medicului dumneavoastră sau farmacistului.\n", "{LL/ AAAA}\n", "MANUALUL UTILIZATORULUI\n", "Vezi textul manualului mai jos.\n", "303 Informaţii detaliate privind acest medicament sunt disponibile pe website- ul Agenţiei Europene a Medicamentului (EMEA): http: // www. emea. europa. eu /.\n", "304 PROSPECT:­ \n", "INFORMAŢII PENTRU UTILIZATOR", "Humalog Mix50 100 U/ ml • • • ~~~~", "Τηλ: +30 210 629 4600 España Lilly S. A.", "Tel: + 34- 91 663 50 00 France Lilly France S. A. S.", "Tél: +33 - (0) 1 55 49 34 34 Ireland Eli Lilly and Company (Ireland) Limited Tel: + 353 - (0) 1 661 4377 Ísland Icepharma hf.", "Sími + 354 540 8000 Italia Eli Lilly Italia S. p. A.", "Tel: + 39 - 055 42571 Κύπρος Phadisco Ltd Τηλ: +357 22 715000 ", "Luxembourg/ Luxemburg Eli Lilly Benelux S. A.", "Tél/ Tel: + 32 - (0) 2 548 84 84 Magyarország Lilly Hungária Kft.", "Tel: + 36 1 328 5100 Malta Charles de Giorgio Ltd.", "Κύπρος Βαρνάβας Χατζηπαναγής Λτδ 7 Ανδροκλέους CY- 1060 Λευκωσία Tηλ"] #tt = [] #for i in range(100000): # tt.extend(text) #print(len(tt)) """ c = Cleaner(1) lines, s1 = c.process(text) lines, s2 = c.process(text) stats = c.add_stats(s1, s2) c.print_stats(s1) c.print_stats(s2) c.print_stats(stats) print("DONE") """
40.946721
212
0.586828
[ "MIT" ]
senisioi/Romanian-Transformers
corpus/text_cleaner.py
10,124
Python