content
stringlengths
7
928k
avg_line_length
float64
3.5
33.8k
max_line_length
int64
6
139k
alphanum_fraction
float64
0.08
0.96
licenses
sequence
repository_name
stringlengths
7
104
path
stringlengths
4
230
size
int64
7
928k
lang
stringclasses
1 value
#!/usr/bin/env python # import general use modules import os from pprint import pprint as pp # import nornir specifics from nornir import InitNornir from nornir.plugins.functions.text import print_result from nornir.core.filter import F nr = InitNornir() hosts = nr.inventory.hosts arista1_filter = nr.filter(name="arista1") arista1 = arista1_filter.inventory.hosts #print(hosts) print(arista1) wan_filter = nr.filter(role="WAN") wan_filter = wan_filter.inventory.hosts print(wan_filter) wan_port_filter = nr.filter(role="WAN").filter(port=22) wan_port_filter = wan_port_filter.inventory.hosts print(wan_port_filter) sfo_filter = nr.filter(F(groups__contains="sfo")) sfo_filter = sfo_filter.inventory.hosts print(sfo_filter)
21.617647
55
0.794558
[ "MIT" ]
papri-entropy/nornir-course
class3/exercise2/exercise2.py
735
Python
# -*- coding: utf-8 -*- # # Political Dynamics documentation build configuration file, created by # sphinx-quickstart. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import os import sys # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # sys.path.insert(0, os.path.abspath('.')) # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = [] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. # source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'Political Dynamics' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '0.1' # The full version, including alpha/beta/rc tags. release = '0.1' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # today = '' # Else, today_fmt is used as the format for a strftime call. # today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all documents. # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'default' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. # html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". # html_title = None # A shorter title for the navigation bar. Default is the same as html_title. # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. # html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. # html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. # html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. # html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. # html_additional_pages = {} # If false, no module index is generated. # html_domain_indices = True # If false, no index is generated. # html_use_index = True # If true, the index is split into individual pages for each letter. # html_split_index = False # If true, links to the reST sources are added to the pages. # html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. # html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. # html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'political-dynamicsdoc' # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # 'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'political-dynamics.tex', u'Political Dynamics Documentation', u"Arya D. McCarthy", 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. # latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # latex_use_parts = False # If true, show page references after internal links. # latex_show_pagerefs = False # If true, show URL addresses after external links. # latex_show_urls = False # Documents to append as an appendix to all manuals. # latex_appendices = [] # If false, no module index is generated. # latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'political-dynamics', u'Political Dynamics Documentation', [u"Arya D. McCarthy"], 1) ] # If true, show URL addresses after external links. # man_show_urls = False # -- Options for Texinfo output ------------------------------------------------ # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'political-dynamics', u'Political Dynamics Documentation', u"Arya D. McCarthy", 'Political Dynamics', 'A differential equations perspective on American National Election Studies (ANES) over time.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. # texinfo_appendices = [] # If false, no module index is generated. # texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. # texinfo_show_urls = 'footnote'
32.420408
127
0.709178
[ "MIT" ]
aryamccarthy/ANES
docs/conf.py
7,943
Python
# Copyright 2020 University of New South Wales, University of Sydney, Ingham Institute # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import SimpleITK as sitk import numpy as np from loguru import logger from platipy.imaging.registration.utils import apply_transform, convert_mask_to_reg_structure from platipy.imaging.registration.linear import ( linear_registration, ) from platipy.imaging.registration.deformable import ( fast_symmetric_forces_demons_registration, ) from platipy.imaging.label.fusion import ( process_probability_image, compute_weight_map, combine_labels, ) from platipy.imaging.label.iar import run_iar from platipy.imaging.utils.vessel import vessel_spline_generation from platipy.imaging.utils.valve import ( generate_valve_from_great_vessel, generate_valve_using_cylinder, ) from platipy.imaging.utils.conduction import ( geometric_sinoatrialnode, geometric_atrioventricularnode, ) from platipy.imaging.utils.crop import label_to_roi, crop_to_roi from platipy.imaging.generation.mask import extend_mask from platipy.imaging.label.utils import binary_encode_structure_list, correct_volume_overlap ATLAS_PATH = "/atlas" if "ATLAS_PATH" in os.environ: ATLAS_PATH = os.environ["ATLAS_PATH"] CARDIAC_SETTINGS_DEFAULTS = { "atlas_settings": { "atlas_id_list": [ "03", "05", "08", "10", "11", "12", "13", "16", "24", "35", ], "atlas_structure_list": [ "AORTICVALVE", "ASCENDINGAORTA", "LANTDESCARTERY", "LCIRCUMFLEXARTERY", "LCORONARYARTERY", "LEFTATRIUM", "LEFTVENTRICLE", "MITRALVALVE", "PULMONARYARTERY", "PULMONICVALVE", "RCORONARYARTERY", "RIGHTATRIUM", "RIGHTVENTRICLE", "SVC", "TRICUSPIDVALVE", "WHOLEHEART", ], "atlas_path": ATLAS_PATH, "atlas_image_format": "Case_{0}/Images/Case_{0}_CROP.nii.gz", "atlas_label_format": "Case_{0}/Structures/Case_{0}_{1}_CROP.nii.gz", "crop_atlas_to_structures": False, "crop_atlas_expansion_mm": (20, 20, 40), "guide_structure_name": "WHOLEHEART", "superior_extension": 30, }, "auto_crop_target_image_settings": { "expansion_mm": [20, 20, 40], }, "linear_registration_settings": { "reg_method": "affine", "shrink_factors": [16, 8, 4], "smooth_sigmas": [0, 0, 0], "sampling_rate": 0.75, "default_value": -1000, "number_of_iterations": 50, "metric": "mean_squares", "optimiser": "gradient_descent_line_search", "verbose": False, }, "structure_guided_registration_settings": { "isotropic_resample": True, "resolution_staging": [ 16, 8, 2, ], # specify voxel size (mm) since isotropic_resample is set "iteration_staging": [50, 50, 50], "smoothing_sigmas": [0, 0, 0], "ncores": 8, "default_value": 0, "verbose": False, }, "deformable_registration_settings": { "isotropic_resample": True, "resolution_staging": [ 6, 3, 1.5, ], # specify voxel size (mm) since isotropic_resample is set "iteration_staging": [200, 150, 100], "smoothing_sigmas": [0, 0, 0], "ncores": 8, "default_value": 0, "verbose": False, }, "iar_settings": { "reference_structure": False, "smooth_distance_maps": True, "smooth_sigma": 1, "z_score_statistic": "mad", "outlier_method": "iqr", "outlier_factor": 1.5, "min_best_atlases": 5, "project_on_sphere": False, }, "label_fusion_settings": { "vote_type": "unweighted", "vote_params": None, "optimal_threshold": { "AORTICVALVE": 0.5, "ASCENDINGAORTA": 0.44, "LEFTATRIUM": 0.40, "LEFTVENTRICLE": 0.45, "MITRALVALVE": 0.5, "PULMONARYARTERY": 0.46, "PULMONICVALVE": 0.5, "RIGHTATRIUM": 0.38, "RIGHTVENTRICLE": 0.42, "SVC": 0.44, "TRICUSPIDVALVE": 0.5, "WHOLEHEART": 0.5, }, }, "vessel_spline_settings": { "vessel_name_list": [ "LANTDESCARTERY", "LCIRCUMFLEXARTERY", "LCORONARYARTERY", "RCORONARYARTERY", ], "vessel_radius_mm_dict": { "LANTDESCARTERY": 2, "LCIRCUMFLEXARTERY": 2, "LCORONARYARTERY": 2, "RCORONARYARTERY": 2, }, "scan_direction_dict": { "LANTDESCARTERY": "z", "LCIRCUMFLEXARTERY": "z", "LCORONARYARTERY": "x", "RCORONARYARTERY": "z", }, "stop_condition_type_dict": { "LANTDESCARTERY": "count", "LCIRCUMFLEXARTERY": "count", "LCORONARYARTERY": "count", "RCORONARYARTERY": "count", }, "stop_condition_value_dict": { "LANTDESCARTERY": 2, "LCIRCUMFLEXARTERY": 2, "LCORONARYARTERY": 2, "RCORONARYARTERY": 2, }, }, "geometric_segmentation_settings": { "run_geometric_algorithms": True, "geometric_name_suffix": "_GEOMETRIC", "atlas_structure_names": { "atlas_left_ventricle": "LEFTVENTRICLE", "atlas_right_ventricle": "RIGHTVENTRICLE", "atlas_left_atrium": "LEFTATRIUM", "atlas_right_atrium": "RIGHTATRIUM", "atlas_ascending_aorta": "ASCENDINGAORTA", "atlas_pulmonary_artery": "PULMONARYARTERY", "atlas_superior_vena_cava": "SVC", "atlas_whole_heart": "WHOLEHEART", }, "valve_definitions": { "mitral_valve_thickness_mm": 10, "mitral_valve_radius_mm": 15, "tricuspid_valve_thickness_mm": 10, "tricuspid_valve_radius_mm": 15, "pulmonic_valve_thickness_mm": 10, "aortic_valve_thickness_mm": 10, }, "conduction_system_definitions": { "sinoatrial_node_radius_mm": 10, "atrioventricular_node_radius_mm": 10, }, }, "postprocessing_settings": { "run_postprocessing": True, "binaryfillhole_mm": 3, "structures_for_binaryfillhole": [ "ASCENDINGAORTA", "LEFTATRIUM", "LEFTVENTRICLE", "RIGHTATRIUM", "RIGHTVENTRICLE", "SVC", "AORTICVALVE", "MITRALVALVE", "PULMONICVALVE", "TRICUSPIDVALVE", "WHOLEHEART", ], "structures_for_overlap_correction": [ "ASCENDINGAORTA", "LEFTATRIUM", "LEFTVENTRICLE", "RIGHTATRIUM", "RIGHTVENTRICLE", "PULMONARYARTERY", "SVC", ], }, "return_atlas_guide_structure": False, "return_as_cropped": False, "return_proba_as_contours": False, } def run_cardiac_segmentation(img, guide_structure=None, settings=CARDIAC_SETTINGS_DEFAULTS): """Runs the atlas-based cardiac segmentation Args: img (sitk.Image): settings (dict, optional): Dictionary containing settings for algorithm. Defaults to default_settings. Returns: dict: Dictionary containing output of segmentation """ results = {} results_prob = {} return_as_cropped = settings["return_as_cropped"] """ Initialisation - Read in atlases - image files - structure files Atlas structure: 'ID': 'Original': 'CT Image' : sitk.Image 'Struct A' : sitk.Image 'Struct B' : sitk.Image 'RIR' : 'CT Image' : sitk.Image 'Transform' : transform parameter map 'Struct A' : sitk.Image 'Struct B' : sitk.Image 'DIR' : 'CT Image' : sitk.Image 'Transform' : displacement field transform 'Weight Map' : sitk.Image 'Struct A' : sitk.Image 'Struct B' : sitk.Image """ logger.info("") # Settings atlas_path = settings["atlas_settings"]["atlas_path"] atlas_id_list = settings["atlas_settings"]["atlas_id_list"] atlas_structure_list = settings["atlas_settings"]["atlas_structure_list"] atlas_image_format = settings["atlas_settings"]["atlas_image_format"] atlas_label_format = settings["atlas_settings"]["atlas_label_format"] crop_atlas_to_structures = settings["atlas_settings"]["crop_atlas_to_structures"] crop_atlas_expansion_mm = settings["atlas_settings"]["crop_atlas_expansion_mm"] atlas_set = {} for atlas_id in atlas_id_list: atlas_set[atlas_id] = {} atlas_set[atlas_id]["Original"] = {} image = sitk.ReadImage(f"{atlas_path}/{atlas_image_format.format(atlas_id)}") structures = { struct: sitk.ReadImage(f"{atlas_path}/{atlas_label_format.format(atlas_id, struct)}") for struct in atlas_structure_list } if crop_atlas_to_structures: logger.info(f"Automatically cropping atlas: {atlas_id}") original_volume = np.product(image.GetSize()) crop_box_size, crop_box_index = label_to_roi( structures.values(), expansion_mm=crop_atlas_expansion_mm ) image = crop_to_roi(image, size=crop_box_size, index=crop_box_index) final_volume = np.product(image.GetSize()) logger.info(f" > Volume reduced by factor {original_volume/final_volume:.2f}") for struct in atlas_structure_list: structures[struct] = crop_to_roi( structures[struct], size=crop_box_size, index=crop_box_index ) atlas_set[atlas_id]["Original"]["CT Image"] = image for struct in atlas_structure_list: atlas_set[atlas_id]["Original"][struct] = structures[struct] """ Step 1 - Automatic cropping If we have a guide structure: - use structure to crop target image Otherwise: - using a quick registration to register each atlas - expansion of the bounding box to ensure entire volume of interest is enclosed - target image is cropped """ expansion_mm = settings["auto_crop_target_image_settings"]["expansion_mm"] if guide_structure: crop_box_size, crop_box_index = label_to_roi(guide_structure, expansion_mm=expansion_mm) img_crop = crop_to_roi(img, crop_box_size, crop_box_index) guide_structure = crop_to_roi(guide_structure, crop_box_size, crop_box_index) target_reg_structure = convert_mask_to_reg_structure(guide_structure, expansion=2) else: quick_reg_settings = { "reg_method": "similarity", "shrink_factors": [8], "smooth_sigmas": [0], "sampling_rate": 0.75, "default_value": -1000, "number_of_iterations": 25, "final_interp": sitk.sitkLinear, "metric": "mean_squares", "optimiser": "gradient_descent_line_search", } registered_crop_images = [] logger.info("Running initial Translation tranform to crop image volume") for atlas_id in atlas_id_list[: min([8, len(atlas_id_list)])]: logger.info(f" > atlas {atlas_id}") # Register the atlases atlas_set[atlas_id]["RIR"] = {} atlas_image = atlas_set[atlas_id]["Original"]["CT Image"] reg_image, _ = linear_registration( img, atlas_image, **quick_reg_settings, ) registered_crop_images.append(sitk.Cast(reg_image, sitk.sitkFloat32)) del reg_image combined_image = sum(registered_crop_images) / len(registered_crop_images) > -1000 crop_box_size, crop_box_index = label_to_roi(combined_image, expansion_mm=expansion_mm) img_crop = crop_to_roi(img, crop_box_size, crop_box_index) logger.info("Calculated crop box:") logger.info(f" > {crop_box_index}") logger.info(f" > {crop_box_size}") logger.info(f" > Vol reduction = {np.product(img.GetSize())/np.product(crop_box_size):.2f}") """ Step 2 - Rigid registration of target images - Individual atlas images are registered to the target - The transformation is used to propagate the labels onto the target """ linear_registration_settings = settings["linear_registration_settings"] logger.info( f"Running {linear_registration_settings['reg_method']} tranform to align atlas images" ) for atlas_id in atlas_id_list: # Register the atlases logger.info(f" > atlas {atlas_id}") atlas_set[atlas_id]["RIR"] = {} if guide_structure: guide_structure_name = settings["atlas_settings"]["guide_structure_name"] target_reg_image = target_reg_structure atlas_reg_image = convert_mask_to_reg_structure( atlas_set[atlas_id]["Original"][guide_structure_name], expansion=2 ) else: target_reg_image = img_crop atlas_reg_image = atlas_set[atlas_id]["Original"]["CT Image"] _, initial_tfm = linear_registration( target_reg_image, atlas_reg_image, **linear_registration_settings, ) # Save in the atlas dict atlas_set[atlas_id]["RIR"]["Transform"] = initial_tfm if guide_structure: atlas_set[atlas_id]["RIR"]["Reg Mask"] = apply_transform( input_image=atlas_reg_image, reference_image=img_crop, transform=initial_tfm, default_value=0, interpolator=sitk.sitkLinear, ) expanded_atlas_guide_structure = extend_mask( atlas_set[atlas_id]["Original"][guide_structure_name], direction=("ax", "sup"), extension_mm=settings["atlas_settings"]["superior_extension"], interior_mm_shape=settings["atlas_settings"]["superior_extension"] / 2, ) atlas_set[atlas_id]["RIR"][guide_structure_name + "EXPANDED"] = apply_transform( input_image=expanded_atlas_guide_structure, reference_image=img_crop, transform=initial_tfm, default_value=0, interpolator=sitk.sitkNearestNeighbor, ) atlas_set[atlas_id]["RIR"]["CT Image"] = apply_transform( input_image=atlas_set[atlas_id]["Original"]["CT Image"], reference_image=img_crop, transform=initial_tfm, default_value=-1000, interpolator=sitk.sitkLinear, ) # sitk.WriteImage(rigid_image, f"./RR_{atlas_id}.nii.gz") for struct in atlas_structure_list: input_struct = atlas_set[atlas_id]["Original"][struct] atlas_set[atlas_id]["RIR"][struct] = apply_transform( input_image=input_struct, reference_image=img_crop, transform=initial_tfm, default_value=0, interpolator=sitk.sitkNearestNeighbor, ) atlas_set[atlas_id]["Original"] = None """ Step 3 - Deformable image registration - Using Fast Symmetric Diffeomorphic Demons """ if guide_structure: structure_guided_registration_settings = settings["structure_guided_registration_settings"] logger.info("Running structure-guided deformable registration on atlas labels") for atlas_id in atlas_id_list: logger.info(f" > atlas {atlas_id}") # Register the atlases atlas_set[atlas_id]["DIR_STRUCT"] = {} deform_image, struct_guided_tfm, _ = fast_symmetric_forces_demons_registration( target_reg_structure, atlas_set[atlas_id]["RIR"]["Reg Mask"], **structure_guided_registration_settings, ) # Save in the atlas dict atlas_set[atlas_id]["DIR_STRUCT"]["Reg Mask"] = deform_image atlas_set[atlas_id]["DIR_STRUCT"]["Transform"] = struct_guided_tfm atlas_set[atlas_id]["DIR_STRUCT"]["CT Image"] = apply_transform( input_image=atlas_set[atlas_id]["RIR"]["CT Image"], transform=struct_guided_tfm, default_value=-1000, interpolator=sitk.sitkLinear, ) atlas_set[atlas_id]["DIR_STRUCT"][guide_structure_name + "EXPANDED"] = apply_transform( input_image=atlas_set[atlas_id]["RIR"][guide_structure_name + "EXPANDED"], reference_image=img_crop, transform=struct_guided_tfm, default_value=0, interpolator=sitk.sitkNearestNeighbor, ) # sitk.WriteImage(deform_image, f"./DIR_STRUCT_{atlas_id}.nii.gz") for struct in atlas_structure_list: input_struct = atlas_set[atlas_id]["RIR"][struct] atlas_set[atlas_id]["DIR_STRUCT"][struct] = apply_transform( input_image=input_struct, transform=struct_guided_tfm, default_value=0, interpolator=sitk.sitkNearestNeighbor, ) atlas_set[atlas_id]["RIR"] = None # Settings deformable_registration_settings = settings["deformable_registration_settings"] logger.info("Running DIR to refine atlas image registration") for atlas_id in atlas_id_list: logger.info(f" > atlas {atlas_id}") # Register the atlases atlas_set[atlas_id]["DIR"] = {} if guide_structure: label = "DIR_STRUCT" else: label = "RIR" atlas_reg_image = atlas_set[atlas_id][label]["CT Image"] target_reg_image = img_crop if guide_structure: expanded_atlas_mask = atlas_set[atlas_id]["DIR_STRUCT"][ guide_structure_name + "EXPANDED" ] expanded_target_mask = extend_mask( guide_structure, direction=("ax", "sup"), extension_mm=settings["atlas_settings"]["superior_extension"], interior_mm_shape=settings["atlas_settings"]["superior_extension"] / 2, ) combined_mask = sitk.Maximum(expanded_atlas_mask, expanded_target_mask) atlas_reg_image = sitk.Mask(atlas_reg_image, combined_mask, outsideValue=-1000) atlas_reg_image = sitk.Mask( atlas_reg_image, atlas_reg_image > -400, outsideValue=-1000 ) target_reg_image = sitk.Mask(target_reg_image, combined_mask, outsideValue=-1000) target_reg_image = sitk.Mask( target_reg_image, atlas_reg_image > -400, outsideValue=-1000 ) deform_image, dir_tfm, _ = fast_symmetric_forces_demons_registration( target_reg_image, atlas_reg_image, **deformable_registration_settings, ) # Save in the atlas dict atlas_set[atlas_id]["DIR"]["Transform"] = dir_tfm atlas_set[atlas_id]["DIR"]["CT Image"] = apply_transform( input_image=atlas_set[atlas_id][label]["CT Image"], transform=dir_tfm, default_value=-1000, interpolator=sitk.sitkLinear, ) for struct in atlas_structure_list: input_struct = atlas_set[atlas_id][label][struct] atlas_set[atlas_id]["DIR"][struct] = apply_transform( input_image=input_struct, transform=dir_tfm, default_value=0, interpolator=sitk.sitkNearestNeighbor, ) atlas_set[atlas_id][label] = None """ Step 4 - Iterative atlas removal - This is an automatic process that will attempt to remove inconsistent atlases from the entire set """ # Compute weight maps # Here we use simple GWV as this minises the potentially negative influence of mis-registered # atlases iar_settings = settings["iar_settings"] if iar_settings["reference_structure"]: for atlas_id in atlas_id_list: atlas_image = atlas_set[atlas_id]["DIR"]["CT Image"] weight_map = compute_weight_map(img_crop, atlas_image, vote_type="global") atlas_set[atlas_id]["DIR"]["Weight Map"] = weight_map atlas_set = run_iar(atlas_set=atlas_set, **iar_settings) else: logger.info("IAR: No reference structure, skipping iterative atlas removal.") """ Step 4 - Vessel Splining """ vessel_spline_settings = settings["vessel_spline_settings"] if len(vessel_spline_settings["vessel_name_list"]) > 0: segmented_vessel_dict = vessel_spline_generation( img_crop, atlas_set, **vessel_spline_settings ) else: logger.info("No vessel splining required, continue.") """ Step 5 - Label Fusion """ # Compute weight maps vote_type = settings["label_fusion_settings"]["vote_type"] vote_params = settings["label_fusion_settings"]["vote_params"] # Compute weight maps for atlas_id in list(atlas_set.keys()): atlas_image = atlas_set[atlas_id]["DIR"]["CT Image"] weight_map = compute_weight_map( img_crop, atlas_image, vote_type=vote_type, vote_params=vote_params ) atlas_set[atlas_id]["DIR"]["Weight Map"] = weight_map combined_label_dict = combine_labels(atlas_set, atlas_structure_list) """ Step 6 - Paste the cropped structure into the original image space """ logger.info("Generating binary segmentations.") template_img_binary = sitk.Cast((img * 0), sitk.sitkUInt8) template_img_prob = sitk.Cast((img * 0), sitk.sitkFloat64) vote_structures = settings["label_fusion_settings"]["optimal_threshold"].keys() vote_structures = [i for i in vote_structures if i in atlas_structure_list] for structure_name in vote_structures: probability_map = combined_label_dict[structure_name] optimal_threshold = settings["label_fusion_settings"]["optimal_threshold"][structure_name] binary_struct = process_probability_image(probability_map, optimal_threshold) if return_as_cropped: results[structure_name] = binary_struct if settings["return_proba_as_contours"]: atlas_contours = [ atlas_set[atlas_id]["DIR"][structure_name] >= 2 for atlas_id in atlas_id_list ] results_prob[structure_name] = binary_encode_structure_list(atlas_contours) else: results_prob[structure_name] = probability_map # We also generate another version of the guide_structure using the atlas contours # We *can* return this, but probably don't want to # Here this check is performed if (not settings["return_atlas_guide_structure"]) and (guide_structure is not None): results[guide_structure_name] = guide_structure results_prob[guide_structure_name] = guide_structure else: if settings["return_proba_as_contours"]: atlas_contours = [ atlas_set[atlas_id]["DIR"][structure_name] >= 2 for atlas_id in atlas_id_list ] probability_img = binary_encode_structure_list(atlas_contours) template_img_prob = sitk.Cast((img * 0), sitk.sitkUInt32) else: probability_img = probability_map # Un-crop binary structure paste_img_binary = sitk.Paste( template_img_binary, binary_struct, binary_struct.GetSize(), (0, 0, 0), crop_box_index, ) results[structure_name] = paste_img_binary # Un-crop probability map paste_prob_img = sitk.Paste( template_img_prob, probability_img, probability_img.GetSize(), (0, 0, 0), crop_box_index, ) results_prob[structure_name] = paste_prob_img # Un-crop the guide structure if (not settings["return_atlas_guide_structure"]) and (guide_structure is not None): new_guide_structure = sitk.Paste( template_img_binary, guide_structure, guide_structure.GetSize(), (0, 0, 0), crop_box_index, ) results[guide_structure_name] = new_guide_structure results_prob[guide_structure_name] = new_guide_structure for structure_name in vessel_spline_settings["vessel_name_list"]: binary_struct = segmented_vessel_dict[structure_name] if return_as_cropped: results[structure_name] = binary_struct vessel_list = [ atlas_set[atlas_id]["DIR"][structure_name] for atlas_id in list(atlas_set.keys()) ] else: # Un-crop binary vessel paste_img_binary = sitk.Paste( template_img_binary, binary_struct, binary_struct.GetSize(), (0, 0, 0), crop_box_index, ) results[structure_name] = paste_img_binary vessel_list = [] for atlas_id in list(atlas_set.keys()): paste_img_binary = sitk.Paste( template_img_binary, atlas_set[atlas_id]["DIR"][structure_name], atlas_set[atlas_id]["DIR"][structure_name].GetSize(), (0, 0, 0), crop_box_index, ) vessel_list.append(paste_img_binary) # Encode list of vessels encoded_vessels = binary_encode_structure_list(vessel_list) results_prob[structure_name] = encoded_vessels """ Step 7 - Geometric definitions of cardiac valves and conduction system nodes """ geometric_segmentation_settings = settings["geometric_segmentation_settings"] if geometric_segmentation_settings["run_geometric_algorithms"]: logger.info("Computing geometric definitions for valves and conduction system.") geom_atlas_names = geometric_segmentation_settings["atlas_structure_names"] geom_valve_defs = geometric_segmentation_settings["valve_definitions"] geom_conduction_defs = geometric_segmentation_settings["conduction_system_definitions"] # 1 - MITRAL VALVE mv_name = "MITRALVALVE" + geometric_segmentation_settings["geometric_name_suffix"] results[mv_name] = generate_valve_using_cylinder( label_atrium=results[geom_atlas_names["atlas_left_atrium"]], label_ventricle=results[geom_atlas_names["atlas_left_ventricle"]], radius_mm=geom_valve_defs["mitral_valve_radius_mm"], height_mm=geom_valve_defs["mitral_valve_thickness_mm"], ) # 2 - TRICUSPID VALVE tv_name = "TRICUSPIDVALVE" + geometric_segmentation_settings["geometric_name_suffix"] results[tv_name] = generate_valve_using_cylinder( label_atrium=results[geom_atlas_names["atlas_right_atrium"]], label_ventricle=results[geom_atlas_names["atlas_right_ventricle"]], radius_mm=geom_valve_defs["tricuspid_valve_radius_mm"], height_mm=geom_valve_defs["tricuspid_valve_thickness_mm"], ) # 3 - AORTIC VALVE av_name = "AORTICVALVE" + geometric_segmentation_settings["geometric_name_suffix"] results[av_name] = generate_valve_from_great_vessel( label_great_vessel=results[geom_atlas_names["atlas_ascending_aorta"]], label_ventricle=results[geom_atlas_names["atlas_left_ventricle"]], valve_thickness_mm=geom_valve_defs["aortic_valve_thickness_mm"], ) # 4 - PULMONIC VALVE pv_name = "PULMONICVALVE" + geometric_segmentation_settings["geometric_name_suffix"] results[pv_name] = generate_valve_from_great_vessel( label_great_vessel=results[geom_atlas_names["atlas_pulmonary_artery"]], label_ventricle=results[geom_atlas_names["atlas_right_ventricle"]], valve_thickness_mm=geom_valve_defs["pulmonic_valve_thickness_mm"], ) # 5 - SINOATRIAL NODE san_name = "SAN" + geometric_segmentation_settings["geometric_name_suffix"] results[san_name] = geometric_sinoatrialnode( label_svc=results[geom_atlas_names["atlas_superior_vena_cava"]], label_ra=results[geom_atlas_names["atlas_right_atrium"]], label_wholeheart=results[geom_atlas_names["atlas_whole_heart"]], radius_mm=geom_conduction_defs["sinoatrial_node_radius_mm"], ) # 6 - ATRIOVENTRICULAR NODE avn_name = "AVN" + geometric_segmentation_settings["geometric_name_suffix"] results[avn_name] = geometric_atrioventricularnode( label_la=results[geom_atlas_names["atlas_left_atrium"]], label_lv=results[geom_atlas_names["atlas_left_ventricle"]], label_ra=results[geom_atlas_names["atlas_right_atrium"]], label_rv=results[geom_atlas_names["atlas_right_ventricle"]], radius_mm=geom_conduction_defs["atrioventricular_node_radius_mm"], ) """ Step 8 - Post-processing """ postprocessing_settings = settings["postprocessing_settings"] if postprocessing_settings["run_postprocessing"]: logger.info("Running post-processing.") # Remove any smaller components and perform morphological closing (hole filling) binaryfillhole_img = [ int(postprocessing_settings["binaryfillhole_mm"] / sp) for sp in img.GetSpacing() ] for structure_name in postprocessing_settings["structures_for_binaryfillhole"]: if structure_name not in results.keys(): continue contour_s = results[structure_name] contour_s = sitk.RelabelComponent(sitk.ConnectedComponent(contour_s)) == 1 contour_s = sitk.BinaryMorphologicalClosing(contour_s, binaryfillhole_img) results[structure_name] = contour_s # Remove any overlaps input_overlap = { s: results[s] for s in postprocessing_settings["structures_for_overlap_correction"] } output_overlap = correct_volume_overlap(input_overlap) for s in postprocessing_settings["structures_for_overlap_correction"]: results[s] = output_overlap[s] if return_as_cropped: results["CROP_IMAGE"] = img_crop logger.info("Done!") return results, results_prob
35.918436
103
0.613339
[ "Apache-2.0" ]
RadiotherapyAI/platipy
platipy/imaging/projects/cardiac/run.py
32,147
Python
from behave import * import requests from django.contrib.auth.models import User from rest_framework.authtoken.models import Token from host.models import Event use_step_matcher("re") # @given("that I am a registered host of privilege walk events and want to create questions and answer choices for the event") # def step_impl(context): # context.username = "12thMan" # context.password = "SomePassword123" # context.first_name = "12th" # context.last_name = "Man" # context.email = "[email protected]" # usr = User.objects.create_user( # context.username, # context.email, # context.password # ) # usr.first_name = context.first_name # usr.last_name = context.last_name # usr.save() # registered_user = User.objects.filter(username="12thMan") # assert len(registered_user) == 1 # user_auth_token, _ = Token.objects.get_or_create(user=usr) # context.key = user_auth_token.key # data = { # "name": "New year event" # } # headers = { # 'Authorization':'Token '+ context.key # } # resp = requests.post(context.test.live_server_url + "/host/events/create/", data, headers=headers) # context.event_api_response_data = resp.json() # context.eventId = context.event_api_response_data["id"] # @when("I make an API call to create questions API with my correct username, questions, answer choices and correct eventid") # def step_impl(context): # data = { # "event_id": context.eventId, # "title": "The question's title goes here", # "choices": [ # { # "description": "Pizza", # "value": 1 # }, # { # "description": "Ice Cream", # "value": 2 # }, # { # "description": "Salt Water", # "value": -1 # } # ] # } # headers = { # 'Authorization':'Token '+ context.key # } # resp = requests.post(context.test.live_server_url + "/host/qa/create/", data, headers=headers) # assert resp.status_code >= 200 and resp.status_code < 300 # context.api_response_data = resp.json() # @then("I expect the response that gives the status and id of the created question") # def step_impl(context): # assert context.api_response_data["status"] == "created" # assert context.api_response_data["id"] != "" # @given("that I am a registered host of privilege walk and wants to create questions but with wrong eventid") # def step_impl(context): # context.username = "12thMan" # context.password = "SomePassword123" # context.first_name = "12th" # context.last_name = "Man" # context.email = "[email protected]" # usr = User.objects.create_user( # context.username, # context.email, # context.password # ) # usr.first_name = context.first_name # usr.last_name = context.last_name # usr.save() # registered_user = User.objects.filter(username="12thMan") # assert len(registered_user) == 1 # user_auth_token, _ = Token.objects.get_or_create(user=usr) # context.key = user_auth_token.key # data = { # "name": "New year event" # } # headers = { # 'Authorization':'Token '+ context.key # } # resp = requests.post(context.test.live_server_url + "/host/events/create/", data, headers=headers) # context.event_api_response_data = resp.json() # context.eventId = context.event_api_response_data["id"] # @when("I make an API call to create questions API with my username, questions, answer choices and wrong event id") # def step_impl(context): # data = { # "event_id": 12, # "title": "Are you under 20?", # "choices": [ # { # "description": "Yes", # "value": "1" # }, # { # "description": "No", # "value": "-1" # } # ] # } # headers = { # 'Authorization':'Token '+ context.key # } # resp = requests.post(context.test.live_server_url + "/host/qa/create/", data, headers=headers) # assert resp.status_code >= 500 # context.api_response_data = resp.json() # @then("I expect the response that says questions cannot be created as event id doesn't exist") # def step_impl(context): # pass # @given("that I am a registered host of privilege walk and wants to create questions but without giving eventid") # def step_impl(context): # context.username = "12thMan" # @when("I make an API call to create questions API with my username, questions, answer choices and without event id") # def step_impl(context): # data = { # "title": "Are you under 20?", # "choices": [ # { # "description": "Yes", # "value": "1" # }, # { # "description": "No", # "value": "-1" # } # ] # } # headers = { # 'Authorization':'Token '+ context.key # } # resp = requests.post(context.test.live_server_url + "/host/qa/create/", data, headers=headers) # assert resp.status_code >= 500 # context.api_response_data = resp.json() # @then("I expect the response that says questions cannot be created as event id is missing") # def step_impl(context): # pass @given("that I am a registered host of privilege walk events and want to create questions but forgets to give username") def step_impl(context): context.username = "11thMan" @when("I make an API call to create questions API with missing username in request") def step_impl(context): data = { "title": "Are you under 20?", "choices": [ { "description": "Yes", "value": "1" }, { "description": "No", "value": "-1" } ] } resp = requests.post(context.test.live_server_url + "/host/events/create/", data) assert resp.status_code >= 400 and resp.status_code < 500 context.api_response_data = resp.json() @then("I expect the response that says questions cannot be created and username is required in request") def step_impl(context): assert context.api_response_data["detail"] == "Authentication credentials were not provided."
29.925926
126
0.591894
[ "MIT" ]
Privilege-walk/back-end
behave_tests/steps/create_question.py
6,464
Python
import logging import unittest import random from math import sqrt from scipy.stats import chisquare from type_system import Type, PolymorphicType, PrimitiveType, Arrow, List, UnknownType, INT, BOOL, STRING from program import Program, Function, Variable, BasicPrimitive, New from program_as_list import evaluation_from_compressed, reconstruct_from_compressed from dsl import DSL from DSL.deepcoder import semantics,primitive_types from Algorithms.a_star import a_star class TestSum(unittest.TestCase): def test_programs(self): """ Checks the evaluation of programs """ p1 = BasicPrimitive("MAP") p2 = BasicPrimitive("MAP", type_=PolymorphicType(name="test")) # checking whether they represent the same programs and same types self.assertTrue(repr(p1) == repr(p2)) self.assertTrue(p1.typeless_eq(p2)) self.assertFalse(p1.__eq__(p2)) self.assertFalse(id(p1) == id(p2)) t0 = PolymorphicType("t0") t1 = PolymorphicType("t1") semantics = { "+1": lambda x: x + 1, "MAP": lambda f: lambda l: list(map(f, l)), } primitive_types = { "+1": Arrow(INT, INT), "MAP": Arrow(Arrow(t0, t1), Arrow(List(t0), List(t1))), } toy_DSL = DSL(semantics, primitive_types) p0 = Function(BasicPrimitive("+1"), [Variable(0)]) env = (2, None) self.assertTrue(p0.eval(toy_DSL, env, 0) == 3) p1 = Function(BasicPrimitive("MAP"), [BasicPrimitive("+1"), Variable(0)]) env = ([2, 4], None) self.assertTrue(p1.eval(toy_DSL, env, 0) == [3, 5]) def test_evaluation_from_compressed(self): """ Check if evaluation_from_compressed evaluates correctly the programs """ N = 20_000 # we test against the first N programs deepcoder = DSL(semantics, primitive_types) type_request = Arrow(List(INT), List(INT)) deepcoder_CFG = deepcoder.DSL_to_CFG(type_request) deepcoder_PCFG = deepcoder_CFG.CFG_to_Random_PCFG() gen_a_star = a_star(deepcoder_PCFG) environment = ([2, 3, 1], None) r = type_request.returns() for i in range(N): program_compressed = next(gen_a_star) program = reconstruct_from_compressed(program_compressed, r) program_as_list = [] eval_from_compressed = evaluation_from_compressed( program_compressed, deepcoder, environment, r ) eval_from_program = program.eval_naive(deepcoder, environment) self.assertEqual(eval_from_compressed, eval_from_program) if __name__ == "__main__": unittest.main(verbosity=2)
35.025641
105
0.640922
[ "MIT" ]
agissaud/DeepSynth
unit_tests_programs.py
2,732
Python
from enum import Enum class ProcMessage(Enum): SYNC_MODEL = 1 class JobCompletions(): SENDER_ID = 1 STATUS = True RESULTS = {} ERRORS = ""
13.5
24
0.623457
[ "Apache-2.0" ]
rharish101/RecoEdge
fedrec/communications/messages.py
162
Python
import os from setuptools import setup, find_packages with open('README.rst') as readme_file: readme = readme_file.read() def prerelease_local_scheme(version): """ Return local scheme version unless building on master in CircleCI. This function returns the local scheme version number (e.g. 0.0.0.dev<N>+g<HASH>) unless building on CircleCI for a pre-release in which case it ignores the hash and produces a PEP440 compliant pre-release version number (e.g. 0.0.0.dev<N>). """ from setuptools_scm.version import get_local_node_and_date if os.getenv('CIRCLE_BRANCH') in ('master', ): return '' else: return get_local_node_and_date(version) setup( name='histomicsui', use_scm_version={'local_scheme': prerelease_local_scheme}, setup_requires=['setuptools-scm'], description='Organize, visualize, and analyze histology images.', author='Kitware, Inc.', author_email='[email protected]', classifiers=[ 'Development Status :: 5 - Production/Stable', 'License :: OSI Approved :: Apache Software License', 'Natural Language :: English', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', ], install_requires=[ 'girder-large-image-annotation>=1.4.2', 'girder-slicer-cli-web[girder]>=1.2.0', 'girder-worker[girder]>=0.6.0', 'celery>=4.4.0rc5', ], license='Apache Software License 2.0', long_description=readme, long_description_content_type='text/x-rst', include_package_data=True, keywords='girder-plugin, histomicsui', packages=find_packages(exclude=['test', 'test.*']), url='https://github.com/DigitalSlideArchive/histomicsui', zip_safe=False, python_requires='>=3.6', entry_points={ 'girder.plugin': [ 'histomicsui = histomicsui:GirderPlugin' ] }, )
32.920635
70
0.653809
[ "Apache-2.0" ]
abcsFrederick/HistomicsUI
setup.py
2,074
Python
import copy import functools import warnings from types import MethodType from typing import Dict, List, Optional, Type, Union import dill import pandas as pd from feast.base_feature_view import BaseFeatureView from feast.data_source import RequestSource from feast.errors import RegistryInferenceFailure, SpecifiedFeaturesNotPresentError from feast.feature import Feature from feast.feature_view import FeatureView from feast.feature_view_projection import FeatureViewProjection from feast.field import Field, from_value_type from feast.protos.feast.core.OnDemandFeatureView_pb2 import ( OnDemandFeatureView as OnDemandFeatureViewProto, ) from feast.protos.feast.core.OnDemandFeatureView_pb2 import ( OnDemandFeatureViewMeta, OnDemandFeatureViewSpec, OnDemandSource, ) from feast.protos.feast.core.OnDemandFeatureView_pb2 import ( UserDefinedFunction as UserDefinedFunctionProto, ) from feast.type_map import ( feast_value_type_to_pandas_type, python_type_to_feast_value_type, ) from feast.usage import log_exceptions from feast.value_type import ValueType warnings.simplefilter("once", DeprecationWarning) class OnDemandFeatureView(BaseFeatureView): """ [Experimental] An OnDemandFeatureView defines a logical group of features that are generated by applying a transformation on a set of input sources, such as feature views and request data sources. Attributes: name: The unique name of the on demand feature view. features: The list of features in the output of the on demand feature view. source_feature_view_projections: A map from input source names to actual input sources with type FeatureViewProjection. source_request_sources: A map from input source names to the actual input sources with type RequestSource. udf: The user defined transformation function, which must take pandas dataframes as inputs. description: A human-readable description. tags: A dictionary of key-value pairs to store arbitrary metadata. owner: The owner of the on demand feature view, typically the email of the primary maintainer. """ # TODO(adchia): remove inputs from proto and declaration name: str features: List[Field] source_feature_view_projections: Dict[str, FeatureViewProjection] source_request_sources: Dict[str, RequestSource] udf: MethodType description: str tags: Dict[str, str] owner: str @log_exceptions def __init__( self, *args, name: Optional[str] = None, features: Optional[List[Feature]] = None, sources: Optional[ Dict[str, Union[FeatureView, FeatureViewProjection, RequestSource]] ] = None, udf: Optional[MethodType] = None, inputs: Optional[ Dict[str, Union[FeatureView, FeatureViewProjection, RequestSource]] ] = None, schema: Optional[List[Field]] = None, description: str = "", tags: Optional[Dict[str, str]] = None, owner: str = "", ): """ Creates an OnDemandFeatureView object. Args: name: The unique name of the on demand feature view. features (deprecated): The list of features in the output of the on demand feature view, after the transformation has been applied. sources (optional): A map from input source names to the actual input sources, which may be feature views, feature view projections, or request data sources. These sources serve as inputs to the udf, which will refer to them by name. udf (optional): The user defined transformation function, which must take pandas dataframes as inputs. inputs (optional): A map from input source names to the actual input sources, which may be feature views, feature view projections, or request data sources. These sources serve as inputs to the udf, which will refer to them by name. schema (optional): The list of features in the output of the on demand feature view, after the transformation has been applied. description (optional): A human-readable description. tags (optional): A dictionary of key-value pairs to store arbitrary metadata. owner (optional): The owner of the on demand feature view, typically the email of the primary maintainer. """ positional_attributes = ["name", "features", "inputs", "udf"] _name = name _schema = schema or [] if len(_schema) == 0 and features is not None: _schema = [Field.from_feature(feature) for feature in features] if features is not None: warnings.warn( ( "The `features` parameter is being deprecated in favor of the `schema` parameter. " "Please switch from using `features` to `schema`. This will also requiring switching " "feature definitions from using `Feature` to `Field`. Feast 0.21 and onwards will not " "support the `features` parameter." ), DeprecationWarning, ) _sources = sources or inputs if inputs and sources: raise ValueError("At most one of `sources` or `inputs` can be specified.") elif inputs: warnings.warn( ( "The `inputs` parameter is being deprecated. Please use `sources` instead. " "Feast 0.21 and onwards will not support the `inputs` parameter." ), DeprecationWarning, ) _udf = udf if args: warnings.warn( ( "On demand feature view parameters should be specified as keyword arguments " "instead of positional arguments. Feast 0.23 and onwards will not support " "positional arguments in on demand feature view definitions." ), DeprecationWarning, ) if len(args) > len(positional_attributes): raise ValueError( f"Only {', '.join(positional_attributes)} are allowed as positional args " f"when defining feature views, for backwards compatibility." ) if len(args) >= 1: _name = args[0] if len(args) >= 2: _schema = args[1] # Convert Features to Fields. if len(_schema) > 0 and isinstance(_schema[0], Feature): _schema = [Field.from_feature(feature) for feature in _schema] warnings.warn( ( "The `features` parameter is being deprecated in favor of the `schema` parameter. " "Please switch from using `features` to `schema`. This will also requiring switching " "feature definitions from using `Feature` to `Field`. Feast 0.21 and onwards will not " "support the `features` parameter." ), DeprecationWarning, ) if len(args) >= 3: _sources = args[2] warnings.warn( ( "The `inputs` parameter is being deprecated. Please use `sources` instead. " "Feast 0.21 and onwards will not support the `inputs` parameter." ), DeprecationWarning, ) if len(args) >= 4: _udf = args[3] if not _name: raise ValueError( "The name of the on demand feature view must be specified." ) if not _sources: raise ValueError("The `sources` parameter must be specified.") super().__init__( name=_name, features=_schema, description=description, tags=tags, owner=owner, ) assert _sources is not None self.source_feature_view_projections: Dict[str, FeatureViewProjection] = {} self.source_request_sources: Dict[str, RequestSource] = {} for source_name, odfv_source in _sources.items(): if isinstance(odfv_source, RequestSource): self.source_request_sources[source_name] = odfv_source elif isinstance(odfv_source, FeatureViewProjection): self.source_feature_view_projections[source_name] = odfv_source else: self.source_feature_view_projections[ source_name ] = odfv_source.projection if _udf is None: raise ValueError("The `udf` parameter must be specified.") assert _udf self.udf = _udf @property def proto_class(self) -> Type[OnDemandFeatureViewProto]: return OnDemandFeatureViewProto def __copy__(self): fv = OnDemandFeatureView( name=self.name, schema=self.features, sources=dict( **self.source_feature_view_projections, **self.source_request_sources, ), udf=self.udf, description=self.description, tags=self.tags, owner=self.owner, ) fv.projection = copy.copy(self.projection) return fv def __eq__(self, other): if not super().__eq__(other): return False if ( not self.source_feature_view_projections == other.source_feature_view_projections or not self.source_request_sources == other.source_request_sources or not self.udf.__code__.co_code == other.udf.__code__.co_code ): return False return True def __hash__(self): return super().__hash__() def to_proto(self) -> OnDemandFeatureViewProto: """ Converts an on demand feature view object to its protobuf representation. Returns: A OnDemandFeatureViewProto protobuf. """ meta = OnDemandFeatureViewMeta() if self.created_timestamp: meta.created_timestamp.FromDatetime(self.created_timestamp) if self.last_updated_timestamp: meta.last_updated_timestamp.FromDatetime(self.last_updated_timestamp) sources = {} for source_name, fv_projection in self.source_feature_view_projections.items(): sources[source_name] = OnDemandSource( feature_view_projection=fv_projection.to_proto() ) for (source_name, request_sources,) in self.source_request_sources.items(): sources[source_name] = OnDemandSource( request_data_source=request_sources.to_proto() ) spec = OnDemandFeatureViewSpec( name=self.name, features=[feature.to_proto() for feature in self.features], sources=sources, user_defined_function=UserDefinedFunctionProto( name=self.udf.__name__, body=dill.dumps(self.udf, recurse=True), ), description=self.description, tags=self.tags, owner=self.owner, ) return OnDemandFeatureViewProto(spec=spec, meta=meta) @classmethod def from_proto(cls, on_demand_feature_view_proto: OnDemandFeatureViewProto): """ Creates an on demand feature view from a protobuf representation. Args: on_demand_feature_view_proto: A protobuf representation of an on-demand feature view. Returns: A OnDemandFeatureView object based on the on-demand feature view protobuf. """ sources = {} for ( source_name, on_demand_source, ) in on_demand_feature_view_proto.spec.sources.items(): if on_demand_source.WhichOneof("source") == "feature_view": sources[source_name] = FeatureView.from_proto( on_demand_source.feature_view ).projection elif on_demand_source.WhichOneof("source") == "feature_view_projection": sources[source_name] = FeatureViewProjection.from_proto( on_demand_source.feature_view_projection ) else: sources[source_name] = RequestSource.from_proto( on_demand_source.request_data_source ) on_demand_feature_view_obj = cls( name=on_demand_feature_view_proto.spec.name, schema=[ Field( name=feature.name, dtype=from_value_type(ValueType(feature.value_type)), ) for feature in on_demand_feature_view_proto.spec.features ], sources=sources, udf=dill.loads( on_demand_feature_view_proto.spec.user_defined_function.body ), description=on_demand_feature_view_proto.spec.description, tags=dict(on_demand_feature_view_proto.spec.tags), owner=on_demand_feature_view_proto.spec.owner, ) # FeatureViewProjections are not saved in the OnDemandFeatureView proto. # Create the default projection. on_demand_feature_view_obj.projection = FeatureViewProjection.from_definition( on_demand_feature_view_obj ) if on_demand_feature_view_proto.meta.HasField("created_timestamp"): on_demand_feature_view_obj.created_timestamp = ( on_demand_feature_view_proto.meta.created_timestamp.ToDatetime() ) if on_demand_feature_view_proto.meta.HasField("last_updated_timestamp"): on_demand_feature_view_obj.last_updated_timestamp = ( on_demand_feature_view_proto.meta.last_updated_timestamp.ToDatetime() ) return on_demand_feature_view_obj def get_request_data_schema(self) -> Dict[str, ValueType]: schema: Dict[str, ValueType] = {} for request_source in self.source_request_sources.values(): if isinstance(request_source.schema, List): new_schema = {} for field in request_source.schema: new_schema[field.name] = field.dtype.to_value_type() schema.update(new_schema) elif isinstance(request_source.schema, Dict): schema.update(request_source.schema) else: raise Exception( f"Request source schema is not correct type: ${str(type(request_source.schema))}" ) return schema def get_transformed_features_df( self, df_with_features: pd.DataFrame, full_feature_names: bool = False, ) -> pd.DataFrame: # Apply on demand transformations columns_to_cleanup = [] for source_fv_projection in self.source_feature_view_projections.values(): for feature in source_fv_projection.features: full_feature_ref = f"{source_fv_projection.name}__{feature.name}" if full_feature_ref in df_with_features.keys(): # Make sure the partial feature name is always present df_with_features[feature.name] = df_with_features[full_feature_ref] columns_to_cleanup.append(feature.name) elif feature.name in df_with_features.keys(): # Make sure the full feature name is always present df_with_features[full_feature_ref] = df_with_features[feature.name] columns_to_cleanup.append(full_feature_ref) # Compute transformed values and apply to each result row df_with_transformed_features = self.udf.__call__(df_with_features) # Work out whether the correct columns names are used. rename_columns: Dict[str, str] = {} for feature in self.features: short_name = feature.name long_name = f"{self.projection.name_to_use()}__{feature.name}" if ( short_name in df_with_transformed_features.columns and full_feature_names ): rename_columns[short_name] = long_name elif not full_feature_names: # Long name must be in dataframe. rename_columns[long_name] = short_name # Cleanup extra columns used for transformation df_with_features.drop(columns=columns_to_cleanup, inplace=True) return df_with_transformed_features.rename(columns=rename_columns) def infer_features(self): """ Infers the set of features associated to this feature view from the input source. Raises: RegistryInferenceFailure: The set of features could not be inferred. """ df = pd.DataFrame() for feature_view_projection in self.source_feature_view_projections.values(): for feature in feature_view_projection.features: dtype = feast_value_type_to_pandas_type(feature.dtype.to_value_type()) df[f"{feature_view_projection.name}__{feature.name}"] = pd.Series( dtype=dtype ) df[f"{feature.name}"] = pd.Series(dtype=dtype) for request_data in self.source_request_sources.values(): for field in request_data.schema: dtype = feast_value_type_to_pandas_type(field.dtype.to_value_type()) df[f"{field.name}"] = pd.Series(dtype=dtype) output_df: pd.DataFrame = self.udf.__call__(df) inferred_features = [] for f, dt in zip(output_df.columns, output_df.dtypes): inferred_features.append( Field( name=f, dtype=from_value_type( python_type_to_feast_value_type(f, type_name=str(dt)) ), ) ) if self.features: missing_features = [] for specified_features in self.features: if specified_features not in inferred_features: missing_features.append(specified_features) if missing_features: raise SpecifiedFeaturesNotPresentError( [f.name for f in missing_features], self.name ) else: self.features = inferred_features if not self.features: raise RegistryInferenceFailure( "OnDemandFeatureView", f"Could not infer Features for the feature view '{self.name}'.", ) @staticmethod def get_requested_odfvs(feature_refs, project, registry): all_on_demand_feature_views = registry.list_on_demand_feature_views( project, allow_cache=True ) requested_on_demand_feature_views: List[OnDemandFeatureView] = [] for odfv in all_on_demand_feature_views: for feature in odfv.features: if f"{odfv.name}:{feature.name}" in feature_refs: requested_on_demand_feature_views.append(odfv) break return requested_on_demand_feature_views # TODO(felixwang9817): Force this decorator to accept kwargs and switch from # `features` to `schema`. def on_demand_feature_view( *args, features: Optional[List[Feature]] = None, sources: Optional[Dict[str, Union[FeatureView, RequestSource]]] = None, inputs: Optional[Dict[str, Union[FeatureView, RequestSource]]] = None, schema: Optional[List[Field]] = None, description: str = "", tags: Optional[Dict[str, str]] = None, owner: str = "", ): """ Creates an OnDemandFeatureView object with the given user function as udf. Args: features (deprecated): The list of features in the output of the on demand feature view, after the transformation has been applied. sources (optional): A map from input source names to the actual input sources, which may be feature views, feature view projections, or request data sources. These sources serve as inputs to the udf, which will refer to them by name. inputs (optional): A map from input source names to the actual input sources, which may be feature views, feature view projections, or request data sources. These sources serve as inputs to the udf, which will refer to them by name. schema (optional): The list of features in the output of the on demand feature view, after the transformation has been applied. description (optional): A human-readable description. tags (optional): A dictionary of key-value pairs to store arbitrary metadata. owner (optional): The owner of the on demand feature view, typically the email of the primary maintainer. """ positional_attributes = ["features", "inputs"] _schema = schema or [] if len(_schema) == 0 and features is not None: _schema = [Field.from_feature(feature) for feature in features] if features is not None: warnings.warn( ( "The `features` parameter is being deprecated in favor of the `schema` parameter. " "Please switch from using `features` to `schema`. This will also requiring switching " "feature definitions from using `Feature` to `Field`. Feast 0.21 and onwards will not " "support the `features` parameter." ), DeprecationWarning, ) _sources = sources or inputs if inputs and sources: raise ValueError("At most one of `sources` or `inputs` can be specified.") elif inputs: warnings.warn( ( "The `inputs` parameter is being deprecated. Please use `sources` instead. " "Feast 0.21 and onwards will not support the `inputs` parameter." ), DeprecationWarning, ) if args: warnings.warn( ( "On demand feature view parameters should be specified as keyword arguments " "instead of positional arguments. Feast 0.23 and onwards will not support " "positional arguments in on demand feature view definitions." ), DeprecationWarning, ) if len(args) > len(positional_attributes): raise ValueError( f"Only {', '.join(positional_attributes)} are allowed as positional args " f"when defining feature views, for backwards compatibility." ) if len(args) >= 1: _schema = args[0] # Convert Features to Fields. if len(_schema) > 0 and isinstance(_schema[0], Feature): _schema = [Field.from_feature(feature) for feature in _schema] warnings.warn( ( "The `features` parameter is being deprecated in favor of the `schema` parameter. " "Please switch from using `features` to `schema`. This will also requiring switching " "feature definitions from using `Feature` to `Field`. Feast 0.21 and onwards will not " "support the `features` parameter." ), DeprecationWarning, ) if len(args) >= 2: _sources = args[1] warnings.warn( ( "The `inputs` parameter is being deprecated. Please use `sources` instead. " "Feast 0.21 and onwards will not support the `inputs` parameter." ), DeprecationWarning, ) if not _sources: raise ValueError("The `sources` parameter must be specified.") def decorator(user_function): on_demand_feature_view_obj = OnDemandFeatureView( name=user_function.__name__, sources=_sources, schema=_schema, udf=user_function, description=description, tags=tags, owner=owner, ) functools.update_wrapper( wrapper=on_demand_feature_view_obj, wrapped=user_function ) return on_demand_feature_view_obj return decorator
42.14188
111
0.612461
[ "Apache-2.0" ]
aurobindoc/feast
sdk/python/feast/on_demand_feature_view.py
24,653
Python
#!/usr/bin/env python # coding=utf8 from copy import deepcopy class Deque: def __init__(self): self.data = [] def addFront(self, item): self.data.insert(0, item) def addTail(self, item): self.data.append(item) def removeFront(self): if self.size() == 0: return None else: value = deepcopy(self.data[0]) del self.data[0] return value def removeTail(self): if self.size() == 0: return None else: value = deepcopy(self.data[-1]) del self.data[-1] return value def size(self): return len(self.data) def check_palindrome(check_value): deque = Deque() # Reading data into deque for c in check_value: deque.addTail(c) # Comparing each symbol on both sides, if not equal - not palindrome while deque.size() > 1: if deque.removeTail() != deque.removeFront(): return False # If all check was succeeded, string is a palindrome return True
21.6
72
0.564815
[ "MIT" ]
igelfiend/Python.Structures.Deque
palindrome_check.py
1,080
Python
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from PyQt5 import QtWidgets, QtGui, QtCore import sys, os.path as op path1 = op.join( op.abspath(op.dirname(__file__)), '..', 'Structure') path2 = op.join( op.abspath(op.dirname(__file__)), '..') sys.path.append(path1) sys.path.append(path2) from Structure import * from VisObject import * class SubVision( QtWidgets.QWidget ): """ Базовый класс-окно для показа подчиненных объектов """ def __init__( self, main_object, is_change=True, parent=None ): super().__init__( parent=parent ) #Устанавливаем главный объект self.__obj = main_object #Устанавливаем параметр возможности изменения элементов (по умолчанию - Да) self.is_change = is_change self.initUI() def initUI( self ): ''' Инициализируем содержимое окна ''' #Добавляем окно данных и устанавливаем в него подчиненные объекты self.sub_objs = QtWidgets.QListWidget( ) for obj in self.__obj.sub_objects: #Делаем ячейку a = QtWidgets.QListWidgetItem() #Устанавливаем в ней подчиненный базовому объект a.sub_obj = obj #Устанавливаем в ней текст-имя объекта подчиненного объекта a.setText( obj.name ) #Добавляем в список self.sub_objs.addItem( a ) #Объявляем форму и добавляем в нее список подчиненных объектов self.form = QtWidgets.QFormLayout() self.form.addRow(self.sub_objs) self.setLayout(self.form) #Соединяем двойной щелчок с методом self.sub_objs.itemDoubleClicked.connect( self.isDoubleClicked ) def isDoubleClicked( self, obj ): #Если окно возможно изменить, вызываем окно изменения, иначе - окно просмотра if self.is_change: sub_window = ChangeVisObject( obj.sub_obj, parent=self ) else: sub_window = SimpleVisObject( obj.sub_obj, parent=self ) sub_window.setWindowTitle( "Редактирование объекта: " + obj.sub_obj.name ) #Делаем это или родительское окно неактивным if self.parent() is None: self.setEnabled( False ) else: self.parent().setEnabled( False ) #Делаем дочернее окно активным и показываем его sub_window.setEnabled( True ) sub_window.show()
38.885246
85
0.643339
[ "MIT" ]
bochkovoi/AHP
src/gui/SubVision.py
2,955
Python
#!/usr/bin/env python #version 2.1 from PyQt4 import QtGui from PyQt4 import QtCore from PyQt4 import Qt import PyQt4.Qwt5 as Qwt from PyQt4.QtCore import pyqtSignal class control_button_frame(QtGui.QFrame): def __init__(self, parent=None, az_el = None): super(control_button_frame, self).__init__() self.parent = parent self.az_el = az_el self.initUI() def initUI(self): self.setFrameShape(QtGui.QFrame.StyledPanel) self.init_widgets() self.connect_signals() def init_widgets(self): self.MinusTenButton = QtGui.QPushButton(self) self.MinusTenButton.setText("-10.0") self.MinusTenButton.setMinimumWidth(45) self.MinusOneButton = QtGui.QPushButton(self) self.MinusOneButton.setText("-1.0") self.MinusOneButton.setMinimumWidth(45) self.MinusPtOneButton = QtGui.QPushButton(self) self.MinusPtOneButton.setText("-0.1") self.MinusPtOneButton.setMinimumWidth(45) self.PlusPtOneButton = QtGui.QPushButton(self) self.PlusPtOneButton.setText("+0.1") self.PlusPtOneButton.setMinimumWidth(45) self.PlusOneButton = QtGui.QPushButton(self) self.PlusOneButton.setText("+1.0") self.PlusOneButton.setMinimumWidth(45) self.PlusTenButton = QtGui.QPushButton(self) self.PlusTenButton.setText("+10.0") self.PlusTenButton.setMinimumWidth(45) hbox1 = QtGui.QHBoxLayout() hbox1.addWidget(self.MinusTenButton) hbox1.addWidget(self.MinusOneButton) hbox1.addWidget(self.MinusPtOneButton) hbox1.addWidget(self.PlusPtOneButton) hbox1.addWidget(self.PlusOneButton) hbox1.addWidget(self.PlusTenButton) self.setLayout(hbox1) def connect_signals(self): self.PlusPtOneButton.clicked.connect(self.button_clicked) self.PlusOneButton.clicked.connect(self.button_clicked) self.PlusTenButton.clicked.connect(self.button_clicked) self.MinusPtOneButton.clicked.connect(self.button_clicked) self.MinusOneButton.clicked.connect(self.button_clicked) self.MinusTenButton.clicked.connect(self.button_clicked) def button_clicked(self): sender = self.sender() self.parent.increment_target_angle(self.az_el,float(sender.text()))
34.217391
83
0.694197
[ "MIT" ]
vt-gs/tracking
gui/v2.1/control_button_frame.py
2,361
Python
'''base config for emanet''' # config for dataset DATASET_CFG = { 'train': { 'type': '', 'set': 'train', 'rootdir': '', 'aug_opts': [('Resize', {'output_size': (2048, 512), 'keep_ratio': True, 'scale_range': (0.5, 2.0)}), ('RandomCrop', {'crop_size': (512, 512), 'one_category_max_ratio': 0.75}), ('RandomFlip', {'flip_prob': 0.5}), ('PhotoMetricDistortion', {}), ('Normalize', {'mean': [123.675, 116.28, 103.53], 'std': [58.395, 57.12, 57.375]}), ('ToTensor', {}), ('Padding', {'output_size': (512, 512), 'data_type': 'tensor'}),] }, 'test': { 'type': '', 'set': 'val', 'rootdir': '', 'aug_opts': [('Resize', {'output_size': (2048, 512), 'keep_ratio': True, 'scale_range': None}), ('Normalize', {'mean': [123.675, 116.28, 103.53], 'std': [58.395, 57.12, 57.375]}), ('ToTensor', {}),] } } # config for dataloader DATALOADER_CFG = { 'train': { 'type': ['nondistributed', 'distributed'][1], 'batch_size': 16, 'num_workers': 16, 'shuffle': True, 'pin_memory': True, 'drop_last': True, }, 'test': { 'type': ['nondistributed', 'distributed'][1], 'batch_size': 1, 'num_workers': 16, 'shuffle': False, 'pin_memory': True, 'drop_last': False, } } # config for optimizer OPTIMIZER_CFG = { 'type': 'sgd', 'sgd': { 'learning_rate': 0.01, 'momentum': 0.9, 'weight_decay': 5e-4, }, 'max_epochs': 0, 'params_rules': {}, 'filter_params': True, 'policy': { 'type': 'poly', 'opts': {'power': 0.9, 'max_iters': None, 'num_iters': None, 'num_epochs': None} }, 'adjust_period': ['iteration', 'epoch'][0], } # config for losses LOSSES_CFG = { 'loss_aux': { 'celoss': {'scale_factor': 0.4, 'opts': {'ignore_index': 255, 'reduction': 'mean'}} }, 'loss_cls': { 'celoss': {'scale_factor': 1.0, 'opts': {'ignore_index': 255, 'reduction': 'mean'}} }, } # config for model MODEL_CFG = { 'type': 'emanet', 'num_classes': -1, 'benchmark': True, 'is_multi_gpus': True, 'align_corners': False, 'distributed': {'is_on': True, 'backend': 'nccl'}, 'norm_cfg': {'type': 'syncbatchnorm', 'opts': {}}, 'act_cfg': {'type': 'relu', 'opts': {'inplace': True}}, 'backbone': { 'type': 'resnet101', 'series': 'resnet', 'pretrained': True, 'outstride': 8, 'use_stem': True, 'selected_indices': (2, 3), }, 'ema': { 'in_channels': 2048, 'ema_channels': 512, 'momentum': 0.1, 'num_stages': 3, 'num_bases': 64, }, 'decoder': { 'in_channels': 2560, 'out_channels': 512, 'dropout': 0.1, }, 'auxiliary': { 'in_channels': 1024, 'out_channels': 512, 'dropout': 0.1, } } # config for inference INFERENCE_CFG = { 'mode': 'whole', 'opts': {}, 'tricks': { 'multiscale': [1], 'flip': False, 'use_probs_before_resize': False } } # config for common COMMON_CFG = { 'train': { 'backupdir': '', 'logfilepath': '', 'loginterval': 50, 'saveinterval': 1 }, 'test': { 'backupdir': '', 'logfilepath': '', 'resultsavepath': '' } }
27.457364
109
0.474873
[ "MIT" ]
skydengyao/sssegmentation
ssseg/cfgs/emanet/base_cfg.py
3,542
Python
# -*- coding: utf-8 -*- # Generated by Django 1.10.3 on 2017-05-29 06:35 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('djeddit', '0001_initial'), ] operations = [ migrations.AddField( model_name='thread', name='locked', field=models.BooleanField(default=False), ), ]
21
53
0.60771
[ "Apache-2.0" ]
EatEmAll/django-djedd
djeddit/migrations/0002_thread_locked.py
441
Python
from collections import defaultdict class Graph: def __init__(self, numberOfNodes): self.numberOfNodes = numberOfNodes+1 self.graph = [[0 for x in range(numberOfNodes+1)] for y in range(numberOfNodes+1)] def withInBounds(self, v1, v2): return (v1 >= 0 and v1 <= self.numberOfNodes) and (v2 >= 0 and v2 <= self.numberOfNodes) def insertEdge(self, v1, v2): if(self.withInBounds(v1, v2)): self.graph[v1][v2] = 1 def printGraph(self): for i in range(self.numberOfNodes): for j in range(len(self.graph[i])): if(self.graph[i][j]): print(i, "->", j) g = Graph(5) g.insertEdge(1, 2) g.insertEdge(2, 3) g.insertEdge(4, 5) g.printGraph()
25
96
0.575484
[ "MIT" ]
PawanRamaMali/LeetCode
Graphs/graphs creation/directed graph/adjacency matrix/index.py
775
Python
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import json import logging import re import os import requests from builtins import str from typing import Text, List, Dict, Any logger = logging.getLogger(__name__) INTENT_MESSAGE_PREFIX = "/" class NaturalLanguageInterpreter(object): def parse(self, text): raise NotImplementedError( "Interpreter needs to be able to parse " "messages into structured output.") @staticmethod def create(obj): if isinstance(obj, NaturalLanguageInterpreter): return obj if isinstance(obj, str): return RasaNLUInterpreter(model_directory=obj) else: return RegexInterpreter() # default interpreter class RegexInterpreter(NaturalLanguageInterpreter): @staticmethod def allowed_prefixes(): return INTENT_MESSAGE_PREFIX + "_" # _ is deprecated but supported @staticmethod def _create_entities(parsed_entities, sidx, eidx): entities = [] for k, vs in parsed_entities.items(): if not isinstance(vs, list): vs = [vs] for value in vs: entities.append({ "entity": k, "start": sidx, "end": eidx, # can't be more specific "value": value }) return entities @staticmethod def _parse_parameters(entitiy_str, sidx, eidx, user_input): # type: (Text, int, int, Text) -> List[Dict[Text, Any]] if entitiy_str is None or not entitiy_str.strip(): # if there is nothing to parse we will directly exit return [] try: parsed_entities = json.loads(entitiy_str) if isinstance(parsed_entities, dict): return RegexInterpreter._create_entities(parsed_entities, sidx, eidx) else: raise Exception("Parsed value isn't a json object " "(instead parser found '{}')" ".".format(type(parsed_entities))) except Exception as e: logger.warning("Invalid to parse arguments in line " "'{}'. Failed to decode parameters" "as a json object. Make sure the intent" "followed by a proper json object. " "Error: {}".format(user_input, e)) return [] @staticmethod def extract_intent_and_entities(user_input): # type: (Text) -> object """Parse the user input using regexes to extract intent & entities.""" prefixes = re.escape(RegexInterpreter.allowed_prefixes()) # the regex matches "slot{"a": 1}" m = re.search('^['+prefixes+']?([^{]+)([{].+)?', user_input) if m is not None: event_name = m.group(1).strip() entities = RegexInterpreter._parse_parameters(m.group(2), m.start(2), m.end(2), user_input) return event_name, entities else: logger.warning("Failed to parse intent end entities from " "'{}'. ".format(user_input)) return None, [] @staticmethod def deprecated_extraction(user_input): """DEPRECATED parse of user input message.""" value_assign_rx = '\s*(.+)\s*=\s*(.+)\s*' prefixes = re.escape(RegexInterpreter.allowed_prefixes()) structured_message_rx = '^['+prefixes+']?([^\[]+)(\[(.+)\])?' m = re.search(structured_message_rx, user_input) if m is not None: intent = m.group(1).lower() offset = m.start(3) entities_str = m.group(3) entities = [] if entities_str is not None: for entity_str in entities_str.split(','): for match in re.finditer(value_assign_rx, entity_str): start = match.start(2) + offset end = match.end(0) + offset entity = { "entity": match.group(1), "start": start, "end": end, "value": match.group(2)} entities.append(entity) return intent, entities else: return None, [] @staticmethod def is_using_deprecated_format(text): """Indicates if the text string is using the deprecated intent format. In the deprecated format entities where annotated using `[name=Rasa]` which has been replaced with `{"name": "Rasa"}`.""" return (text.find("[") != -1 and (text.find("{") == -1 or text.find("[") < text.find("{"))) def parse(self, text): """Parse a text message.""" if self.is_using_deprecated_format(text): intent, entities = self.deprecated_extraction(text) else: intent, entities = self.extract_intent_and_entities(text) return { 'text': text, 'intent': { 'name': intent, 'confidence': 1.0, }, 'intent_ranking': [{ 'name': intent, 'confidence': 1.0, }], 'entities': entities, } class RasaNLUHttpInterpreter(NaturalLanguageInterpreter): def __init__(self, model_name=None, token=None, server='http://localhost:5000', project_name='default'): self.model_name = model_name self.token = token self.server = server self.project_name = project_name def parse(self, text): """Parse a text message. Return a default value if the parsing of the text failed.""" default_return = {"intent": {"name": "", "confidence": 0.0}, "entities": [], "text": ""} result = self._rasa_http_parse(text) return result if result is not None else default_return def _rasa_http_parse(self, text): """Send a text message to a running rasa NLU http server. Return `None` on failure.""" if not self.server: logger.error( "Failed to parse text '{}' using rasa NLU over http. " "No rasa NLU server specified!".format(text)) return None params = { "token": self.token, "model": self.model_name, "project": self.project_name, "q": text } url = "{}/parse".format(self.server) try: result = requests.get(url, params=params) if result.status_code == 200: return result.json() else: logger.error( "Failed to parse text '{}' using rasa NLU over http. " "Error: {}".format(text, result.text)) return None except Exception as e: logger.error( "Failed to parse text '{}' using rasa NLU over http. " "Error: {}".format(text, e)) return None class RasaNLUInterpreter(NaturalLanguageInterpreter): def __init__(self, model_directory, config_file=None, lazy_init=False): self.model_directory = model_directory self.lazy_init = lazy_init self.config_file = config_file if not lazy_init: self._load_interpreter() else: self.interpreter = None def parse(self, text): """Parse a text message. Return a default value if the parsing of the text failed.""" if self.lazy_init and self.interpreter is None: self._load_interpreter() return self.interpreter.parse(text) def _load_interpreter(self): from rasa_nlu.model import Interpreter self.interpreter = Interpreter.load(self.model_directory)
34.890756
108
0.53408
[ "Apache-2.0" ]
RocketChat/rasa_core
rasa_core/interpreter.py
8,304
Python
# Copyright 2022 The SeqIO Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Tests for seqio.dataset_providers.""" import copy import functools import os import shutil from typing import Any, Callable, Mapping, Optional, Sequence from absl.testing import absltest from absl.testing import parameterized from seqio import dataset_providers from seqio import feature_converters from seqio import metrics as metrics_lib from seqio import preprocessors from seqio import test_utils from seqio import utils from seqio import vocabularies import tensorflow.compat.v2 as tf import tensorflow_datasets as tfds tf.compat.v1.enable_eager_execution() TaskRegistry = dataset_providers.TaskRegistry MixtureRegistry = dataset_providers.MixtureRegistry mock = absltest.mock assert_dataset = test_utils.assert_dataset create_default_dataset = test_utils.create_default_dataset class TasksTest(test_utils.FakeTaskTest): def test_invalid_name(self): with self.assertRaisesRegex( ValueError, "Task name 'invalid/name' contains invalid characters. " "Must match regex: .*"): self.add_task("invalid/name", self.function_source) def test_repeat_name(self): with self.assertRaisesWithLiteralMatch( ValueError, "Attempting to register duplicate provider: text_line_task"): self.add_task("text_line_task", self.text_line_source) def test_function_source_signature(self): # Good signatures. def good_fn(split, shuffle_files): del split del shuffle_files dataset_providers.FunctionDataSource(good_fn, splits=("train",)) def default_good_fn(split, shuffle_files=False): del split del shuffle_files dataset_providers.FunctionDataSource(default_good_fn, splits=("train",)) def seed_fn(split, shuffle_files=True, seed=0): del split del shuffle_files del seed dataset_providers.FunctionDataSource(seed_fn, splits=("train",)) def extra_kwarg_good_fn(split, shuffle_files, unused_kwarg=True): del split del shuffle_files dataset_providers.FunctionDataSource(extra_kwarg_good_fn, splits=("train",)) # Bad signatures. with self.assertRaisesWithLiteralMatch( ValueError, "'missing_shuff' must have positional args ('split', 'shuffle_files'), " "got: ('split',)"): def missing_shuff(split): del split dataset_providers.FunctionDataSource(missing_shuff, splits=("train",)) with self.assertRaisesWithLiteralMatch( ValueError, "'missing_split' must have positional args ('split', 'shuffle_files'), " "got: ('shuffle_files',)"): def missing_split(shuffle_files): del shuffle_files dataset_providers.FunctionDataSource(missing_split, splits=("train",)) with self.assertRaisesWithLiteralMatch( ValueError, "'extra_pos_arg' may only have positional args ('split', " "'shuffle_files'), got: ('split', 'shuffle_files', 'unused_arg')"): def extra_pos_arg(split, shuffle_files, unused_arg): del split del shuffle_files dataset_providers.FunctionDataSource(extra_pos_arg, splits=("train",)) def test_metric_fn_signature(self): # pylint:disable=unused-argument add_task = functools.partial(self.add_task, source=self.function_source) def score_metric_fn(targets, scores): return {} def predict_metric_fn(targets, predictions): return {} valid_task = add_task( "valid_metrics", metric_fns=[score_metric_fn, predict_metric_fn]) self.assertSameElements( [score_metric_fn, predict_metric_fn], valid_task.metric_fns) self.assertSameElements( [score_metric_fn], valid_task.score_metric_fns) self.assertSameElements( [predict_metric_fn], valid_task.predict_metric_fns) def extra_arg_metric_fn(targets, predictions, extra_param): return {} expected_error_message_prefix = ( "Metric functions must have positional arguments matching either " "('targets', 'predictions') or ('targets', 'scores'). Got: ") with self.assertRaisesWithLiteralMatch( ValueError, expected_error_message_prefix + "('targets', 'predictions', 'extra_param')"): valid_task = add_task( "extra_arg_metric", metric_fns=[extra_arg_metric_fn]) def bad_order_metric_fn(predictions, targets): return {} with self.assertRaisesWithLiteralMatch( ValueError, expected_error_message_prefix + "('predictions', 'targets')"): valid_task = add_task( "bad_order_metric", metric_fns=[bad_order_metric_fn]) def bad_default_metric_fn(targets, predictions=(0)): return {} with self.assertRaisesWithLiteralMatch( ValueError, expected_error_message_prefix + "('targets',)"): valid_task = add_task( "bad_default_metric", metric_fns=[bad_default_metric_fn]) def ok_default_metric_fn(targets, predictions, extra_param=3): return {} valid_task_2 = add_task( "valid_metrics_2", metric_fns=[ok_default_metric_fn]) self.assertSameElements([ok_default_metric_fn], valid_task_2.metric_fns) self.assertEmpty(valid_task_2.score_metric_fns) self.assertSameElements( [ok_default_metric_fn], valid_task_2.predict_metric_fns) def predict_metric_fn_with_types( targets: Sequence[Mapping[str, Any]], predictions: Sequence[Mapping[str, Any]] ) -> Mapping[str, metrics_lib.MetricValue]: return {} valid_task_with_types = TaskRegistry.add( "valid_metrics_with_types", source=self.function_source, output_features={ "inputs": dataset_providers.Feature(test_utils.sentencepiece_vocab()), "targets": dataset_providers.Feature(test_utils.sentencepiece_vocab()) }, metric_fns=[predict_metric_fn_with_types]) self.assertSameElements([predict_metric_fn_with_types], valid_task_with_types.metric_fns) # pylint:enable=unused-argument def test_no_tfds_version(self): with self.assertRaisesWithLiteralMatch( ValueError, "TFDS name must contain a version number, got: fake"): dataset_providers.TfdsDataSource(tfds_name="fake") def test_tfds_splits(self): self.assertSameElements( ["train", "validation"], dataset_providers.TfdsDataSource(tfds_name="fake:0.0.0").splits) self.assertSameElements( ["validation"], dataset_providers.TfdsDataSource( tfds_name="fake:0.0.0", splits=["validation"]).splits) self.assertSameElements( ["validation"], dataset_providers.TfdsDataSource( tfds_name="fake:0.0.0", splits={"validation": "train"}).splits) def test_tfds_task(self): self.verify_task_matches_fake_datasets( "tfds_task", use_cached=False) def test_function_task(self): self.verify_task_matches_fake_datasets( "function_task", use_cached=False) def test_text_line_task(self): self.verify_task_matches_fake_datasets( "text_line_task", use_cached=False, splits=["train"]) def test_tf_example_task(self): self.verify_task_matches_fake_datasets( "tf_example_task", use_cached=False, splits=["train"]) @mock.patch.object(tf.io.gfile, "glob") def test_file_data_source_shuffle_buffer_low(self, mock_glob): mock_glob.return_value = [f"{i}" for i in range(20)] fds = dataset_providers.FileDataSource( read_file_fn=lambda x: tf.data.Dataset.from_tensor_slices([x]), split_to_filepattern={"train": "filepattern"}, file_shuffle_buffer_size=2) for _ in range(10): ds = [ d.decode() for d in tfds.as_numpy( fds.get_dataset("train", shuffle=True, seed=23)) ] self.assertListEqual( ds, [ # Not a great shuffle. "0", "2", "1", "4", "5", "3", "7", "6", "9", "10", "11", "8", "13", "14", "12", "16", "15", "18", "17", "19" ]) @mock.patch.object(tf.io.gfile, "glob") def test_file_data_source_shuffle_buffer_full(self, mock_glob): mock_glob.return_value = [f"{i}" for i in range(20)] fds = dataset_providers.FileDataSource( read_file_fn=lambda x: tf.data.Dataset.from_tensor_slices([x]), split_to_filepattern={"train": "filepattern"}, file_shuffle_buffer_size=None) for _ in range(10): ds = [ d.decode() for d in tfds.as_numpy( fds.get_dataset("train", shuffle=True, seed=23)) ] self.assertListEqual( ds, [ # Good shuffle. "2", "13", "12", "19", "15", "5", "9", "1", "6", "8", "3", "0", "10", "4", "14", "7", "16", "17", "18", "11" ]) def _get_preps_with_cache_placeholder_buffer_size(self, buffer_size): preps = list(self.DEFAULT_PREPROCESSORS) for i, p in enumerate(preps): if isinstance(p, dataset_providers.CacheDatasetPlaceholder): preps[i] = dataset_providers.CacheDatasetPlaceholder( file_shuffle_buffer_size=buffer_size) return preps def _mock_and_assert_cached_source(self, task_name, buffer_size): cached_task = dataset_providers.get_mixture_or_task(task_name) cached_task._get_cached_source = mock.MagicMock( side_effect=cached_task._get_cached_source) _ = cached_task.get_dataset(None, "train", use_cached=True) cached_task._get_cached_source.assert_called_once_with( "train", buffer_size) def test_cached_data_source_shuffle_buffer_default(self): self._mock_and_assert_cached_source("cached_task", None) def test_cached_data_source_shuffle_buffer_set(self): self.add_task("cached_task_buf_2", self.tfds_source, self._get_preps_with_cache_placeholder_buffer_size(2)) shutil.copytree(self.cached_task_dir, os.path.join(self.test_data_dir, "cached_task_buf_2")) self._mock_and_assert_cached_source("cached_task_buf_2", 2) def test_cached_data_source_shuffle_buffer_None(self): self.add_task("cached_task_buf_None", self.tfds_source, self._get_preps_with_cache_placeholder_buffer_size(None)) shutil.copytree(self.cached_task_dir, os.path.join(self.test_data_dir, "cached_task_buf_None")) self._mock_and_assert_cached_source("cached_task_buf_None", None) def test_proto_task(self): self.verify_task_matches_fake_datasets( "proto_task", use_cached=False, splits=["train"]) def test_num_input_examples(self): self.assertEqual(30, self.cached_task.num_input_examples("train")) self.assertEqual(10, self.cached_task.num_input_examples("validation")) def test_disallow_shuffle(self): task = dataset_providers.Task( "no_shuffle", source=self.function_source, output_features=self.DEFAULT_OUTPUT_FEATURES, preprocessors=self.DEFAULT_PREPROCESSORS, shuffle_buffer_size=None) with self.assertRaisesWithLiteralMatch( ValueError, "Shuffling is disallowed for Task 'no_shuffle' since its " "`shuffle_buffer_size` was set to `None` on construction."): task.get_dataset(None, shuffle=True) with self.assertRaisesWithLiteralMatch( ValueError, "Shuffling is disallowed for Task 'no_shuffle' since its " "`shuffle_buffer_size` was set to `None` on construction."): task.get_dataset(None, shuffle=True, shuffle_buffer_size=100) task.get_dataset(None, shuffle=False) def test_supports_caching(self): self.assertFalse( dataset_providers.Task( "nosupports_cache", source=self.function_source, output_features=self.DEFAULT_OUTPUT_FEATURES, preprocessors=[]).supports_caching) self.assertFalse( dataset_providers.Task( "nosupports_cache", source=self.function_source, output_features=self.DEFAULT_OUTPUT_FEATURES, preprocessors=[preprocessors.tokenize]).supports_caching) self.assertTrue( dataset_providers.Task( "supports_cache", source=self.function_source, output_features=self.DEFAULT_OUTPUT_FEATURES, preprocessors=[ preprocessors.tokenize, dataset_providers.CacheDatasetPlaceholder() ]).supports_caching) self.assertTrue( dataset_providers.Task( "supports_cache", source=self.function_source, output_features=self.DEFAULT_OUTPUT_FEATURES, preprocessors=[ dataset_providers.CacheDatasetPlaceholder(required=True), preprocessors.tokenize, ]).supports_caching) self.assertTrue( dataset_providers.Task( "supports_cache", source=self.function_source, output_features=self.DEFAULT_OUTPUT_FEATURES, preprocessors=[ dataset_providers.CacheDatasetPlaceholder(), ]).supports_caching) def test_requires_caching(self): self.assertFalse( dataset_providers.Task( "nosupports_cache", output_features=self.DEFAULT_OUTPUT_FEATURES, source=self.function_source, preprocessors=[preprocessors.tokenize]).requires_caching) self.assertFalse( dataset_providers.Task( "supports_cache", output_features=self.DEFAULT_OUTPUT_FEATURES, source=self.function_source, preprocessors=[ preprocessors.tokenize, dataset_providers.CacheDatasetPlaceholder() ]).requires_caching) task = dataset_providers.Task( "requires_cache", output_features=self.DEFAULT_OUTPUT_FEATURES, source=self.function_source, preprocessors=[ dataset_providers.CacheDatasetPlaceholder(required=True), preprocessors.tokenize, ]) self.assertTrue(task.requires_caching) with self.assertRaisesWithLiteralMatch( ValueError, "Task 'requires_cache' requires caching, but was called with " "`use_cached=False`."): task.get_dataset({"inputs": 512, "targets": 512}, use_cached=False) # We haven't actually cached the task, so it still fails but with a # different error. with self.assertRaisesWithLiteralMatch( AssertionError, "'requires_cache' does not exist in any of the task cache " "directories."): task.get_dataset({"inputs": 512, "targets": 512}, use_cached=True) def test_datasource_prohibits_caching(self): function_source_no_cache = dataset_providers.FunctionDataSource( dataset_fn=test_utils.get_fake_dataset, splits=["train", "validation"], caching_permitted=False) with self.assertRaisesWithLiteralMatch( ValueError, "Caching was requested for 'prohibits_cache', but the underlying data " "source prohibits caching. Please remove `CacheDatasetPlaceholder` and " "try again." ): dataset_providers.Task( "prohibits_cache", output_features=self.DEFAULT_OUTPUT_FEATURES, source=function_source_no_cache, preprocessors=[ dataset_providers.CacheDatasetPlaceholder(required=True), preprocessors.tokenize, ]) def test_cache_exists(self): self.assertTrue(self.cached_task.cache_dir) self.cached_task.assert_cached() self.assertEqual( os.path.join(self.test_data_dir, "cached_task"), self.cached_task.cache_dir) self.assertFalse(self.uncached_task.cache_dir) with self.assertRaisesWithLiteralMatch( AssertionError, "'tfds_task' does not exist in any of the task cache directories."): TaskRegistry.get("tfds_task").assert_cached() def test_get_cached_stats(self): expected_train_stats = { "examples": 3, "inputs_tokens": 36, "inputs_max_tokens": 13, "targets_tokens": 18, "targets_max_tokens": 6} self.assertEqual( expected_train_stats, self.cached_task.get_cached_stats("train")) # Check repeated call. self.assertEqual( expected_train_stats, self.cached_task.get_cached_stats("train")) expected_validation_stats = { "examples": 2, "inputs_tokens": 23, "inputs_max_tokens": 12, "targets_tokens": 36, "targets_max_tokens": 21} self.assertEqual( expected_validation_stats, self.cached_task.get_cached_stats("validation")) with self.assertRaisesWithLiteralMatch( ValueError, "Stats do not exist for 'cached_task' split: fake"): self.cached_task.get_cached_stats("fake") with self.assertRaisesWithLiteralMatch( AssertionError, "'uncached_task' does not exist in any of the task cache directories."): self.uncached_task.get_cached_stats("train") def test_set_global_cache_dirs(self): utils.set_global_cache_dirs([]) self.assertFalse(self.cached_task.cache_dir) utils.set_global_cache_dirs([self.test_data_dir]) self.assertTrue(self.cached_task.cache_dir) def test_get_dataset_cached(self): self.verify_task_matches_fake_datasets( "cached_task", use_cached=True, token_preprocessed=False) # Test with token preprocessor. self.cached_task._preprocessors = self.DEFAULT_PREPROCESSORS + ( test_utils.test_token_preprocessor,) self.verify_task_matches_fake_datasets( "cached_task", use_cached=True, token_preprocessed=True) def test_get_dataset_onthefly(self): self.verify_task_matches_fake_datasets( "uncached_task", use_cached=False) # Test with token preprocessor. self.cached_task._preprocessors = self.DEFAULT_PREPROCESSORS + ( test_utils.test_token_preprocessor,) self.verify_task_matches_fake_datasets( "cached_task", use_cached=False, token_preprocessed=True) def test_get_dataset_no_truncation(self): self.verify_task_matches_fake_datasets( "uncached_task", use_cached=False, sequence_length=None) def test_sharding(self): for i in range(3): self.verify_task_matches_fake_datasets( "cached_task", use_cached=False, num_shards=i, token_preprocessed=False) self.verify_task_matches_fake_datasets( "cached_task", use_cached=True, num_shards=i, token_preprocessed=False) def test_feature_validation(self): default_vocab = test_utils.sentencepiece_vocab() features = { "inputs": dataset_providers.Feature(vocabulary=default_vocab, required=False), "targets": dataset_providers.Feature(vocabulary=default_vocab, required=True), "inputs_rank2": dataset_providers.Feature( vocabulary=vocabularies.PassThroughVocabulary(5), required=False, rank=2), "continuous_features": dataset_providers.ContinuousFeature( required=False, rank=2) } def _materialize(output): task = dataset_providers.Task( "feature_validation_task", self.function_source, output_features=features, preprocessors=(lambda _: tf.data.Dataset.from_tensors(output),), metric_fns=[], ) list( task.get_dataset( {"inputs": 13, "targets": 13, "inputs_rank2": 13}, "train", use_cached=False ).as_numpy_iterator() ) # Missing optional feature: OK _materialize({"targets": [0]}) # Missing required feature. with self.assertRaisesWithLiteralMatch( ValueError, "Task dataset is missing expected output feature after preprocessing: " "targets"): _materialize({"inputs": [0]}) # Wrong type. with self.assertRaisesWithLiteralMatch( ValueError, "Task dataset has incorrect type for feature 'targets' after " "preprocessing: Got string, expected int32"): _materialize({"targets": ["wrong type"]}) # Wrong rank. with self.assertRaisesWithLiteralMatch( ValueError, "Task dataset has incorrect rank for feature 'targets' after " "preprocessing: Got 0, expected 1"): _materialize({"targets": 0}) # Verify rank > 1 works. _materialize({"targets": [0], "inputs_rank2": [[0, 0, 0], [0, 0, 0]]}) # Wrong rank (1 when 2 is expected). with self.assertRaisesWithLiteralMatch( ValueError, "Task dataset has incorrect rank for feature 'inputs_rank2' after " "preprocessing: Got 1, expected 2"): _materialize({"targets": [0], "inputs_rank2": [0]}) # Test ContinuousFeature _materialize({ "targets": [0], "continuous_features": [[1, 1], [0, 1]] }) def test_value_errors(self): dataset_fn = ( lambda split, shuffle_files: tf.data.Dataset.from_tensors(["test"])) output_features = { "inputs": dataset_providers.Feature(test_utils.sentencepiece_vocab()) } with self.assertRaisesWithLiteralMatch( ValueError, "`CacheDatasetPlaceholder` can appear at most once in the " "preprocessing pipeline. Found 2 in 'multiple_cache_placeholders'."): dataset_providers.Task( "multiple_cache_placeholders", source=dataset_providers.FunctionDataSource( dataset_fn=dataset_fn, splits=["train", "validation"] ), preprocessors=[ test_utils.test_text_preprocessor, preprocessors.tokenize, dataset_providers.CacheDatasetPlaceholder(), test_utils.test_token_preprocessor, dataset_providers.CacheDatasetPlaceholder() ], output_features=output_features, metric_fns=[]) with self.assertRaisesWithLiteralMatch( ValueError, "'test_token_preprocessor' has a `sequence_length` argument but occurs " "before `CacheDatasetPlaceholder` in 'sequence_length_pre_cache'. This " "is not allowed since the sequence length is specified at run time."): dataset_providers.Task( "sequence_length_pre_cache", dataset_providers.FunctionDataSource( dataset_fn=dataset_fn, splits=["train"], ), preprocessors=[ test_utils.test_text_preprocessor, preprocessors.tokenize, test_utils.test_token_preprocessor, dataset_providers.CacheDatasetPlaceholder() ], output_features=output_features, metric_fns=[]) def test_tfds_source_splits(self): default_splits_src = dataset_providers.TfdsDataSource("fake:0.0.0") self.assertSameElements(["train", "validation"], default_splits_src.splits) validation_split_src = dataset_providers.TfdsDataSource( "fake:0.0.0", splits=["validation"]) self.assertSameElements(["validation"], validation_split_src.splits) sliced_split_src = dataset_providers.TfdsDataSource( "fake:0.0.0", splits={"validation": "train[0:1%]"}) self.assertSameElements(["validation"], sliced_split_src.splits) def test_no_eos(self): default_vocab = test_utils.sentencepiece_vocab() features = { "inputs": dataset_providers.Feature(add_eos=True, vocabulary=default_vocab), "targets": dataset_providers.Feature(add_eos=False, vocabulary=default_vocab), } self.add_task("task_no_eos", self.function_source, output_features=features) self.verify_task_matches_fake_datasets("task_no_eos", use_cached=False) def test_dtype(self): default_vocab = test_utils.sentencepiece_vocab() features = { "inputs": # defaults to int32 dataset_providers.Feature(vocabulary=default_vocab), "targets": dataset_providers.Feature(dtype=tf.int64, vocabulary=default_vocab), } self.add_task( "task_dtypes", self.function_source, preprocessors=self.DEFAULT_PREPROCESSORS + ( utils.map_over_dataset( lambda x: {k: tf.cast(v, tf.int64) if k == "targets" else v # pylint:disable=g-long-lambda for k, v in x.items()} ), ), output_features=features ) self.verify_task_matches_fake_datasets("task_dtypes", use_cached=False) def test_num_epochs(self): # Try repeating after preprocessing the dataset to verify the outputs are # the same. epoch1_ds = self.random_task.get_dataset( {"inputs": 13, "targets": 13}, split="train", use_cached=False, shuffle=True, seed=0) # `random_task` has 3 examples per epoch. epoch2_ds = self.random_task.get_dataset( {"inputs": 13, "targets": 13}, split="train", use_cached=False, shuffle=True, seed=0 ).repeat(2).skip(3) test_utils.assert_datasets_eq(epoch1_ds, epoch2_ds) # Try repeating before preprocessing the dataset to verify the outputs are # different. epoch1_ds = self.random_task.get_dataset( {"inputs": 13, "targets": 13}, split="train", use_cached=False, shuffle=True, seed=0) # `random_task` has 3 examples per epoch. epoch2_ds = self.random_task.get_dataset( {"inputs": 13, "targets": 13}, split="train", use_cached=False, shuffle=True, seed=0, num_epochs=2 ).skip(3) test_utils.assert_datasets_neq(epoch1_ds, epoch2_ds) def test_same_seeds_cached_match(self): dataset1 = self.cached_task.get_dataset( {"inputs": 13, "targets": 13}, split="train", use_cached=True, shuffle=True, seed=0) dataset2 = self.cached_task.get_dataset( {"inputs": 13, "targets": 13}, split="train", use_cached=True, shuffle=True, seed=0) test_utils.assert_datasets_eq(dataset1, dataset2) def test_different_seeds_cached_mismatch(self): dataset1 = self.cached_task.get_dataset( {"inputs": 13, "targets": 13}, split="train", use_cached=True, shuffle=True, seed=0) dataset2 = self.cached_task.get_dataset( {"inputs": 13, "targets": 13}, split="train", use_cached=True, shuffle=True, seed=42) test_utils.assert_datasets_neq(dataset1, dataset2) def test_same_seeds_uncached_match(self): dataset1 = self.uncached_task.get_dataset( {"inputs": 13, "targets": 13}, split="train", use_cached=False, shuffle=True, seed=0) dataset2 = self.uncached_task.get_dataset( {"inputs": 13, "targets": 13}, split="train", use_cached=False, shuffle=True, seed=0) test_utils.assert_datasets_eq(dataset1, dataset2) def test_different_seeds_uncached_mismatch(self): dataset1 = self.uncached_task.get_dataset( {"inputs": 13, "targets": 13}, split="train", use_cached=False, shuffle=True, seed=0) dataset2 = self.uncached_task.get_dataset( {"inputs": 13, "targets": 13}, split="train", use_cached=False, shuffle=True, seed=42) test_utils.assert_datasets_neq(dataset1, dataset2) def test_same_seeds_random_tp_uncached_match(self): dataset1 = self.random_task.get_dataset( {"inputs": 13, "targets": 13}, split="train", use_cached=False, shuffle=True, seed=0).repeat(4) dataset2 = self.random_task.get_dataset( {"inputs": 13, "targets": 13}, split="train", use_cached=False, shuffle=True, seed=0).repeat(4) test_utils.assert_datasets_eq(dataset1, dataset2) def test_different_seeds_random_tp_uncached_mismatch(self): dataset1 = self.random_task.get_dataset( {"inputs": 13, "targets": 13}, split="train", use_cached=False, shuffle=True, seed=0) dataset2 = self.random_task.get_dataset( {"inputs": 13, "targets": 13}, split="train", use_cached=False, shuffle=True, seed=42) test_utils.assert_datasets_neq(dataset1, dataset2) def test_no_shuffle_with_seed_cached_match(self): dataset1 = self.cached_task.get_dataset( {"inputs": 13, "targets": 13}, split="train", use_cached=True, shuffle=False, seed=0) dataset2 = self.cached_task.get_dataset( {"inputs": 13, "targets": 13}, split="train", use_cached=True, shuffle=False, seed=42) test_utils.assert_datasets_eq(dataset1, dataset2) def test_no_shuffle_with_seed_uncached_match(self): dataset1 = self.uncached_task.get_dataset( {"inputs": 13, "targets": 13}, split="train", use_cached=False, shuffle=False, seed=0) dataset2 = self.uncached_task.get_dataset( {"inputs": 13, "targets": 13}, split="train", use_cached=False, shuffle=False, seed=42) test_utils.assert_datasets_eq(dataset1, dataset2) def test_no_shuffle_different_seeds_random_tp_uncached_mismatch(self): dataset1 = self.random_task.get_dataset( {"inputs": 13, "targets": 13}, split="train", use_cached=False, shuffle=False, seed=0) dataset2 = self.random_task.get_dataset( {"inputs": 13, "targets": 13}, split="train", use_cached=False, shuffle=False, seed=42) test_utils.assert_datasets_neq(dataset1, dataset2) def test_plaintext_to_pretokenized_rename(self): ds = self.cached_plaintext_task.get_dataset( {"inputs": 13, "targets": 13}, split="train", use_cached=True, shuffle=False) keys = next(ds.as_numpy_iterator()).keys() self.assertSetEqual( set(keys), set(["inputs", "inputs_pretokenized", "targets", "targets_pretokenized"])) def test_list_shards(self): def _get_formatted_shards_list(task_name, split): shards = dataset_providers.get_mixture_or_task( task_name).source.list_shards(split) shards = [s.split("/")[-1] for s in shards] return sorted(shards) self.assertListEqual( _get_formatted_shards_list("tfds_task", "train"), ["train.tfrecord-00000-of-00002", "train.tfrecord-00001-of-00002"]) self.assertListEqual( _get_formatted_shards_list("text_line_task", "train"), ["train.tsv-00000-of-00002", "train.tsv-00001-of-00002"]) self.assertListEqual( _get_formatted_shards_list("tf_example_task", "train"), ["train.tfrecord-00000-of-00002", "train.tfrecord-00001-of-00002"]) self.assertListEqual( _get_formatted_shards_list("proto_task", "train"), ["train.tfrecord-00000-of-00002", "train.tfrecord-00001-of-00002"]) self.assertListEqual( _get_formatted_shards_list("function_task", "train"), ["train"]) self.assertListEqual( _get_formatted_shards_list("fully_processed_precache", "train"), ["train"]) self.assertListEqual( _get_formatted_shards_list("tokenized_postcache", "train"), ["train"]) self.assertListEqual( _get_formatted_shards_list("random_task", "train"), ["train"]) self.assertListEqual( _get_formatted_shards_list("uncached_task", "train"), ["train.tfrecord-00000-of-00002", "train.tfrecord-00001-of-00002"]) self.assertListEqual( _get_formatted_shards_list("cached_task", "train"), ["train.tfrecord-00000-of-00002", "train.tfrecord-00001-of-00002"]) self.assertListEqual( _get_formatted_shards_list("cached_plaintext_task", "train"), ["train.tfrecord-00000-of-00002", "train.tfrecord-00001-of-00002"]) class MixturesTest(test_utils.FakeTaskTest): def test_tasks(self): self.add_task("task1", self.function_source) self.add_task("task2", self.function_source) MixtureRegistry.add("test_mix1", [("task1", 1), ("task2", 1)]) mix = MixtureRegistry.get("test_mix1") self.assertEqual(len(mix.tasks), 2) for task in mix.tasks: self.verify_task_matches_fake_datasets(task.name, use_cached=False) self.assertEqual(mix.get_rate(task), 1) def test_num_examples(self): MixtureRegistry.add("test_mix2", [(self.cached_task.name, 1)]) mix = MixtureRegistry.get("test_mix2") self.assertEqual(mix.num_input_examples(split="train"), 30) def test_splits(self): MixtureRegistry.add( "test_mix", [(self.cached_task.name, 1), (self.uncached_task.name, 1)] ) mix = MixtureRegistry.get("test_mix") self.assertSameElements(["train", "validation"], mix.splits, 30) def test_get_dataset(self): MixtureRegistry.add("test_mix3", [(self.cached_task.name, 1)]) task_ds = TaskRegistry.get_dataset( self.cached_task.name, { "inputs": 13, "targets": 13 }, "validation", use_cached=False, shuffle=False) mix_ds = MixtureRegistry.get("test_mix3").get_dataset( { "inputs": 13, "targets": 13 }, "validation", use_cached=False, shuffle=False) # mix.get_dataset strips non-output features task_ds = task_ds.map(lambda x: {k: x[k] for k in ["inputs", "targets"]}) # limit size since get_dataset repeats the dataset test_utils.assert_datasets_eq(task_ds.repeat(2), mix_ds.take(4)) def test_get_dataset_mix(self): @utils.map_over_dataset def _constant_preprocessor(unused_x, val): return { "targets": tf.constant([val], tf.int32), "inputs": tf.constant([val], tf.int32), } self.add_task( "two_task", self.function_source, preprocessors=(functools.partial(_constant_preprocessor, val=2),) ) self.add_task( "three_task", self.function_source, preprocessors=(functools.partial(_constant_preprocessor, val=3),) ) MixtureRegistry.add("test_mix", [("two_task", 1), ("three_task", 1)]) sequence_length = {"inputs": 2, "targets": 2} mix_ds = MixtureRegistry.get("test_mix").get_dataset( sequence_length, "train", seed=13).take(1000) res = sum(int(item["inputs"][0]) for item in mix_ds.as_numpy_iterator()) self.assertEqual(res, 2481) def test_get_dataset_passthrough_features(self): @utils.map_over_dataset def _constant_feature_preprocessor(unused_x, val): return { "targets": tf.constant([val], tf.int32), "inputs": tf.constant([val], tf.int32), "feature": tf.constant([val], tf.int32), } self.add_task( "two_task", self.function_source, preprocessors=(functools.partial(_constant_feature_preprocessor, val=2),)) self.add_task( "three_task", self.function_source, preprocessors=(functools.partial(_constant_feature_preprocessor, val=3),)) MixtureRegistry.add("test_mix", [("two_task", 1), ("three_task", 1)]) sequence_length = {"inputs": 2, "targets": 2} passthrough_features = ["feature"] mix_ds = MixtureRegistry.get("test_mix").get_dataset( sequence_length, "train", seed=13, passthrough_features=passthrough_features).take(1000) # output features are defined as "inputs" and "targets" by default. res = sum(int(item["feature"][0]) for item in mix_ds.as_numpy_iterator()) self.assertEqual(res, 2481) def test_copy_pretokenized(self): @utils.map_over_dataset def _constant_preprocessor(unused_x, val): return { "targets": tf.constant([val], tf.int32), "targets_pretokenized": tf.constant(f"targets_{val}"), "inputs": tf.constant([val], tf.int32), "inputs_pretokenized": tf.constant(f"inputs_{val}") } self.add_task( "two_task", self.function_source, preprocessors=(functools.partial(_constant_preprocessor, val=2),) ) self.add_task( "three_task", self.function_source, preprocessors=(functools.partial(_constant_preprocessor, val=3),) ) MixtureRegistry.add("test_mix", [("two_task", 1), ("three_task", 1)]) sequence_length = {"inputs": 2, "targets": 2} mix_ds = MixtureRegistry.get("test_mix").get_dataset( sequence_length, "train", seed=13, copy_pretokenized=True).take(1000) inputs_pretokenized = set( ex["inputs_pretokenized"] for ex in mix_ds.as_numpy_iterator()) targets_pretokenized = set( ex["targets_pretokenized"] for ex in mix_ds.as_numpy_iterator()) self.assertCountEqual([b"inputs_2", b"inputs_3"], inputs_pretokenized) self.assertCountEqual([b"targets_2", b"targets_3"], targets_pretokenized) mix_ds = MixtureRegistry.get("test_mix").get_dataset( sequence_length, "train", seed=13, copy_pretokenized=False).take(1000) for ex in mix_ds.as_numpy_iterator(): self.assertNoCommonElements( ["inputs_pretokenized", "targets_pretokenized"], ex.keys()) def test_get_rate_with_callable(self): def fn(t): self.assertEqual(t.name, "task4") return 42 self.add_task("task4", self.function_source) task = TaskRegistry.get("task4") MixtureRegistry.add("test_mix5", [("task4", fn)]) mix = MixtureRegistry.get("test_mix5") self.assertEqual(mix.get_rate(task), 42) def test_mixture_of_mixtures(self): self.add_task("task_a", self.function_source) self.add_task("task_b", self.function_source) self.add_task("task_c", self.function_source) MixtureRegistry.add("another_mix", [("task_a", 1), ("task_b", 1)]) MixtureRegistry.add("supermix", [("another_mix", 1), ("task_c", 1)]) supermix = MixtureRegistry.get("supermix") names = [task.name for task in supermix.tasks] self.assertEqual(names, ["task_a", "task_b", "task_c"]) self.assertEqual([supermix.get_rate(t) for t in supermix.tasks], [0.5, 0.5, 1]) def test_mixture_of_mixtures_dupe(self): self.add_task("task2_a", self.function_source) self.add_task("task2_b", self.function_source) self.add_task("task2_c", self.function_source) MixtureRegistry.add("yet_another_mix", [("task2_a", 1), ("task2_b", 1)]) MixtureRegistry.add("supermix_with_dupe", [("yet_another_mix", 1), ("task2_a", 1), ("task2_c", 1)]) supermix = MixtureRegistry.get("supermix_with_dupe") names = [task.name for task in supermix.tasks] self.assertEqual(names, ["task2_a", "task2_b", "task2_c"]) self.assertEqual([supermix.get_rate(t) for t in supermix.tasks], [1.5, 0.5, 1]) def test_mixture_with_sample_fn(self): def sequential_intereave(datasets: Sequence[tf.data.Dataset], rates: Sequence[float], sample_seed: Optional[int]) -> tf.data.Dataset: """Sample function that simply concatenates two datasets.""" del rates, sample_seed return datasets[0].concatenate(datasets[1]) def gen_dataset(split, shuffle_files=False, seed=None, val: str = "") -> tf.data.Dataset: del split, shuffle_files, seed # Need this to pass arg validation. return tf.data.Dataset.from_tensor_slices({ "inputs": [[val]] * 3, }) # Register two very simple tasks, each with 3 repeated string values. vocab = vocabularies.PassThroughVocabulary(0) tasks = [] for task_name in ["first", "second"]: tasks.append(self.add_task( task_name, dataset_providers.FunctionDataSource( dataset_fn=functools.partial(gen_dataset, val=task_name), splits=["train"]), preprocessors=[], output_features={ "inputs": dataset_providers.Feature(vocab, dtype=tf.string) })) # Verify that by default, interleaving of datasets is random. MixtureRegistry.add("default_mix", [("first", 1), ("second", 1)]) default_ds = MixtureRegistry.get("default_mix").get_dataset( None, "train", shuffle=False, seed=2, num_epochs=1) expected = [b"second", b"first", b"second", b"first", b"second", b"first"] actual = [x["inputs"] for x in default_ds.as_numpy_iterator()] self.assertEqual(expected, actual) # Verify that we can modify sampling function correctly. MixtureRegistry.add( "sequential_mix", [("first", 1), ("second", 1)], sample_fn=sequential_intereave) sequential_ds = MixtureRegistry.get("sequential_mix").get_dataset( None, "train", shuffle=False, seed=2, num_epochs=1) expected = [b"first"] * 3 + [b"second"] * 3 actual = [x["inputs"] for x in sequential_ds.as_numpy_iterator()] self.assertEqual(expected, actual) class GetDatasetTest(parameterized.TestCase, tf.test.TestCase): def test_get_dataset_enc_dec_unpacked(self): mixture_or_task_name = "enc_dec_unpacked" x = [{"inputs": [7, 8, 5, 6, 9, 4, 3], "targets": [3, 9]}, {"inputs": [8, 4], "targets": [4]}, {"inputs": [5, 6, 7], "targets": [6, 5]}] ds = create_default_dataset(x) dataset_fn = lambda split, shuffle_files: ds register_dummy_task(mixture_or_task_name, dataset_fn=dataset_fn) task_feature_lengths = {"inputs": 7, "targets": 5} converter = feature_converters.EncDecFeatureConverter(pack=False) output_ds = dataset_providers.get_dataset( mixture_or_task_name=mixture_or_task_name, task_feature_lengths=task_feature_lengths, dataset_split="train", shuffle=False, feature_converter=converter) expected = [{ "encoder_input_tokens": [7, 8, 5, 6, 9, 4, 1], "decoder_target_tokens": [3, 9, 1, 0, 0], "decoder_input_tokens": [0, 3, 9, 1, 0], "decoder_loss_weights": [1, 1, 1, 0, 0], }, { "encoder_input_tokens": [8, 4, 1, 0, 0, 0, 0], "decoder_target_tokens": [4, 1, 0, 0, 0], "decoder_input_tokens": [0, 4, 1, 0, 0], "decoder_loss_weights": [1, 1, 0, 0, 0], }, { "encoder_input_tokens": [5, 6, 7, 1, 0, 0, 0], "decoder_target_tokens": [6, 5, 1, 0, 0], "decoder_input_tokens": [0, 6, 5, 1, 0], "decoder_loss_weights": [1, 1, 1, 0, 0], }] expected_dtypes = {feat: tf.int32 for feat in expected[0].keys()} assert_dataset(output_ds, expected, expected_dtypes=expected_dtypes) @parameterized.parameters( dict( task_name="enc_dec_partial_trim_both", task_feature_lengths={ "inputs": 7, "targets": 2 }, expect_trim_inputs=True, expect_trim_targets=True), dict( task_name="enc_dec_partial_trim_targets", task_feature_lengths={ "inputs": None, "targets": 2 }, expect_trim_inputs=False, expect_trim_targets=True), dict( task_name="enc_dec_partial_trim_inputs", task_feature_lengths={ "inputs": 7, "targets": None }, expect_trim_inputs=True, expect_trim_targets=False), dict( task_name="enc_dec_partial_trim_neither", task_feature_lengths={ "inputs": None, "targets": None }, expect_trim_inputs=False, expect_trim_targets=False), dict( task_name="enc_dec_partial_trim_nothing", task_feature_lengths=None, expect_trim_inputs=False, expect_trim_targets=False)) def test_partial_sequence_length(self, task_name, task_feature_lengths, expect_trim_inputs, expect_trim_targets): x = [{"inputs": [7, 8, 5, 6, 9, 4, 3], "targets": [3, 9]}, {"inputs": [8, 4], "targets": [4]}, {"inputs": [5, 6, 7], "targets": [6, 5]}] ds = create_default_dataset(x) dataset_fn = lambda split, shuffle_files: ds register_dummy_task(task_name, dataset_fn=dataset_fn) # Unlike the other tests, don't use a feature converter. Instead, test the # task.get_dataset method directly, which is similar to how evaluation.py # infers feature lengths w/trimming. task = dataset_providers.get_mixture_or_task(task_name) output_ds = task.get_dataset( sequence_length=task_feature_lengths, shuffle=False) expected = [{ "inputs": [7, 8, 5, 6, 9, 4, 3, 1], "targets": [3, 9, 1], }, { "inputs": [8, 4, 1], "targets": [4, 1], }, { "inputs": [5, 6, 7, 1], "targets": [6, 5, 1], }] if expect_trim_inputs: expected[0]["inputs"] = [7, 8, 5, 6, 9, 4, 1] if expect_trim_targets: expected[0]["targets"] = [3, 1] expected[2]["targets"] = [6, 1] expected_dtypes = {feat: tf.int32 for feat in expected[0].keys()} assert_dataset(output_ds, expected, expected_dtypes=expected_dtypes) @parameterized.parameters( dict( task_name="enc_dec_multidim_trim_both", task_feature_lengths={ "inputs": (2, 5), "targets": 2 }, expect_trim_inputs=True, expect_trim_targets=True, ), dict( task_name="enc_dec_multidim_trim_inputs", task_feature_lengths={ "inputs": (2, 5), "targets": None }, expect_trim_inputs=True, expect_trim_targets=False, ), dict( task_name="enc_dec_multidim_trim_targets", task_feature_lengths={ "inputs": None, "targets": 2 }, expect_trim_inputs=False, expect_trim_targets=True, ), dict( task_name="enc_dec_no_multidim_trim", task_feature_lengths={ "inputs": None, "targets": None }, expect_trim_inputs=False, expect_trim_targets=False ) ) def test_multidimension_sequence_length(self, task_name, task_feature_lengths, expect_trim_inputs, expect_trim_targets): x = [{"inputs": [[7, 8, 5, 6, 9, 4, 3], [2, 3, 4, 5, 0, 0, 0], [6, 7, 1, 0, 0, 0, 0]], "targets": [3, 9]}, {"inputs": [[8, 4], [1, 0], [2, 3]], "targets": [4]}, {"inputs": [[5, 6, 7]], "targets": [6, 5, 1]}, {"inputs": [[7, 8, 9, 1, 2, 3, 4, 5, 6]], "targets": [10, 11, 1]}] ds = tf.data.Dataset.from_generator( lambda: x, output_types={"inputs": tf.int32, "targets": tf.int32}, output_shapes={"inputs": (None, None), "targets": (None,)}) dataset_fn = lambda split, shuffle_files: ds dataset_providers.TaskRegistry.add( task_name, source=dataset_providers.FunctionDataSource( dataset_fn=dataset_fn, splits=["train", "validation"]), preprocessors=[ dataset_providers.CacheDatasetPlaceholder(), ], output_features={ "inputs": dataset_providers.Feature( test_utils.sentencepiece_vocab(), rank=2), "targets": dataset_providers.Feature( test_utils.sentencepiece_vocab()) }, metric_fns=[]) # Unlike the other tests, don't use a feature converter. Instead, test the # task.get_dataset method directly, which is similar to how evaluation.py # infers feature lengths w/trimming. task = dataset_providers.get_mixture_or_task(task_name) output_ds = task.get_dataset( sequence_length=task_feature_lengths, shuffle=False) expected = copy.deepcopy(x) if expect_trim_inputs: expected[0]["inputs"] = [[7, 8, 5, 6, 9], [2, 3, 4, 5, 0]] expected[1]["inputs"] = [[8, 4], [1, 0]] expected[3]["inputs"] = [[7, 8, 9, 1, 2]] if expect_trim_targets: expected[2]["targets"] = [6, 5] expected[3]["targets"] = [10, 11] expected_dtypes = {feat: tf.int32 for feat in expected[0].keys()} assert_dataset(output_ds, expected, expected_dtypes=expected_dtypes) def test_get_dataset_enc_dec_packed(self): mixture_or_task_name = "enc_dec_packed" x = [{"inputs": [7, 8, 5, 6, 9, 4, 3], "targets": [3, 9]}, {"inputs": [8, 4], "targets": [4]}, {"inputs": [5, 6, 7], "targets": [6, 5]}] ds = create_default_dataset(x) dataset_fn = lambda split, shuffle_files: ds register_dummy_task(mixture_or_task_name, dataset_fn=dataset_fn) task_feature_lengths = {"inputs": 7, "targets": 5} converter = feature_converters.EncDecFeatureConverter(pack=True) output_ds = dataset_providers.get_dataset( mixture_or_task_name=mixture_or_task_name, task_feature_lengths=task_feature_lengths, dataset_split="train", shuffle=False, feature_converter=converter) expected = [{ # Example 1 is trimmed "encoder_input_tokens": [7, 8, 5, 6, 9, 4, 1], "encoder_segment_ids": [1, 1, 1, 1, 1, 1, 1], "encoder_positions": [0, 1, 2, 3, 4, 5, 6], "decoder_target_tokens": [3, 9, 1, 0, 0], "decoder_input_tokens": [0, 3, 9, 0, 0], "decoder_loss_weights": [1, 1, 1, 0, 0], "decoder_segment_ids": [1, 1, 1, 0, 0], "decoder_positions": [0, 1, 2, 0, 0], }, { # Example 2 and 3 are packed together "encoder_input_tokens": [8, 4, 1, 5, 6, 7, 1], "encoder_segment_ids": [1, 1, 1, 2, 2, 2, 2], "encoder_positions": [0, 1, 2, 0, 1, 2, 3], "decoder_target_tokens": [4, 1, 6, 5, 1], "decoder_input_tokens": [0, 4, 0, 6, 5], "decoder_loss_weights": [1, 1, 1, 1, 1], "decoder_segment_ids": [1, 1, 2, 2, 2], "decoder_positions": [0, 1, 0, 1, 2], }] expected_dtypes = {feat: tf.int32 for feat in expected[0].keys()} assert_dataset(output_ds, expected, expected_dtypes=expected_dtypes) def test_get_dataset_both_train_and_validation_splits(self): mixture_or_task_name = "both_train_and_validation_splits" x_train = [{"inputs": [7, 8, 5, 6, 9, 4, 3], "targets": [3, 9]}] x_val = [{"inputs": [8, 4], "targets": [4]}] datasets = { "train": create_default_dataset(x_train), "validation": create_default_dataset(x_val) } dataset_fn = lambda split, shuffle_files: datasets[split] register_dummy_task(mixture_or_task_name, dataset_fn=dataset_fn) task_feature_lengths = {"inputs": 7, "targets": 5} output_ds = {} for split in ["train", "validation"]: converter = feature_converters.EncDecFeatureConverter(pack=False) output_ds[split] = dataset_providers.get_dataset( mixture_or_task_name=mixture_or_task_name, task_feature_lengths=task_feature_lengths, dataset_split=split, shuffle=False, feature_converter=converter) expected_train = { "encoder_input_tokens": [7, 8, 5, 6, 9, 4, 1], "decoder_target_tokens": [3, 9, 1, 0, 0], "decoder_input_tokens": [0, 3, 9, 1, 0], "decoder_loss_weights": [1, 1, 1, 0, 0], } expected_val = { "encoder_input_tokens": [8, 4, 1, 0, 0, 0, 0], "decoder_target_tokens": [4, 1, 0, 0, 0], "decoder_input_tokens": [0, 4, 1, 0, 0], "decoder_loss_weights": [1, 1, 0, 0, 0], } expected_dtypes = {feat: tf.int32 for feat in expected_train.keys()} assert_dataset( output_ds["train"], expected_train, expected_dtypes=expected_dtypes) assert_dataset( output_ds["validation"], expected_val, expected_dtypes=expected_dtypes) def test_get_dataset_enc_dec_sharded(self): mixture_or_task_name = "enc_dec_sharded" x = [{"inputs": [7, 8, 5, 6, 9, 4, 3], "targets": [3, 9]}, {"inputs": [8, 4], "targets": [4]}, {"inputs": [5, 6, 7], "targets": [6, 5]}] ds = create_default_dataset(x) dataset_fn = lambda split, shuffle_files: ds register_dummy_task(mixture_or_task_name, dataset_fn=dataset_fn) task_feature_lengths = {"inputs": 7, "targets": 5} converter = feature_converters.EncDecFeatureConverter(pack=False) shard_info = dataset_providers.ShardInfo(index=0, num_shards=2) output_ds = dataset_providers.get_dataset( mixture_or_task_name=mixture_or_task_name, task_feature_lengths=task_feature_lengths, dataset_split="train", shuffle=False, feature_converter=converter, shard_info=shard_info) # Example index 1 should not be present in the sharded dataset. expected = [{ "encoder_input_tokens": [7, 8, 5, 6, 9, 4, 1], "decoder_target_tokens": [3, 9, 1, 0, 0], "decoder_input_tokens": [0, 3, 9, 1, 0], "decoder_loss_weights": [1, 1, 1, 0, 0], }, { "encoder_input_tokens": [5, 6, 7, 1, 0, 0, 0], "decoder_target_tokens": [6, 5, 1, 0, 0], "decoder_input_tokens": [0, 6, 5, 1, 0], "decoder_loss_weights": [1, 1, 1, 0, 0], }] expected_dtypes = {feat: tf.int32 for feat in expected[0].keys()} assert_dataset(output_ds, expected, expected_dtypes=expected_dtypes) def test_get_dataset_enc_dec_sharded_and_packed(self): mixture_or_task_name = "enc_dec_sharded_and_packed" x = [{"inputs": [7, 8], "targets": [3, 9]}, {"inputs": [8, 4], "targets": [4]}, {"inputs": [5, 6, 7], "targets": [6]}] ds = create_default_dataset(x) dataset_fn = lambda split, shuffle_files: ds register_dummy_task(mixture_or_task_name, dataset_fn=dataset_fn) task_feature_lengths = {"inputs": 7, "targets": 5} converter = feature_converters.EncDecFeatureConverter(pack=True) shard_info = dataset_providers.ShardInfo(index=0, num_shards=2) output_ds = dataset_providers.get_dataset( mixture_or_task_name=mixture_or_task_name, task_feature_lengths=task_feature_lengths, dataset_split="train", shuffle=False, feature_converter=converter, shard_info=shard_info) # Packing should be done after the sharding. expected = { "encoder_input_tokens": [7, 8, 1, 5, 6, 7, 1], "encoder_segment_ids": [1, 1, 1, 2, 2, 2, 2], "encoder_positions": [0, 1, 2, 0, 1, 2, 3], "decoder_target_tokens": [3, 9, 1, 6, 1], "decoder_input_tokens": [0, 3, 9, 0, 6], "decoder_loss_weights": [1, 1, 1, 1, 1], "decoder_segment_ids": [1, 1, 1, 2, 2], "decoder_positions": [0, 1, 2, 0, 1], } expected_dtypes = {feat: tf.int32 for feat in expected.keys()} assert_dataset(output_ds, expected, expected_dtypes=expected_dtypes) def register_dummy_task( task_name: str, dataset_fn: Callable[[str, str], tf.data.Dataset], output_feature_names: Sequence[str] = ("inputs", "targets")) -> None: """Register a dummy task for GetDatasetTest.""" dataset_providers.TaskRegistry.add( task_name, source=dataset_providers.FunctionDataSource( dataset_fn=dataset_fn, splits=["train", "validation"]), preprocessors=[ dataset_providers.CacheDatasetPlaceholder(), preprocessors.append_eos_after_trim, ], output_features={ feat: dataset_providers.Feature(test_utils.sentencepiece_vocab()) for feat in output_feature_names }, metric_fns=[]) if __name__ == "__main__": absltest.main()
38.483539
107
0.647989
[ "Apache-2.0" ]
00mjk/seqio
seqio/dataset_providers_test.py
56,109
Python
from copy import copy from typing import Optional import torch import pytorch_lightning as pl from transformers import ( EncoderDecoderModel, RobertaModel, RobertaConfig, GPT2LMHeadModel, GPT2Config, RobertaTokenizer, GPT2Tokenizer, AdamW, get_linear_schedule_with_warmup, ) import nltk nltk.download("wordnet") class EncoderDecoderModule(pl.LightningModule): def __init__( self, learning_rate: float, src_tokenizer: RobertaTokenizer, trg_tokenizer: GPT2Tokenizer, num_epochs: int, num_batches: int, num_gpus: int, num_layers_encoder: Optional[int] = None, num_layers_decoder: Optional[int] = None, encoder_name_or_path: Optional[str] = None, decoder_name_or_path: Optional[str] = None, **kwargs, ): super().__init__() self._src_tokenizer = src_tokenizer self._trg_tokenizer = trg_tokenizer self._num_epochs = num_epochs self._num_batches = num_batches self._num_gpus = num_gpus self.learning_rate = learning_rate self.save_hyperparameters() if encoder_name_or_path is not None and decoder_name_or_path is not None: # use pretrained RoBERTa as encoder encoder = RobertaModel.from_pretrained(encoder_name_or_path) # resize embeddings to match vocabulary size encoder.resize_token_embeddings(len(self._src_tokenizer)) # remove layers if necessary if num_layers_encoder is not None and num_layers_encoder < encoder.config.num_hidden_layers: encoder = EncoderDecoderModule.remove_layers_from_model(encoder, num_layers_encoder, is_gpt=False) # use pretrained GPT-2 as decoder config = GPT2Config.from_pretrained(decoder_name_or_path) config.is_decoder = True config.add_cross_attention = True decoder = GPT2LMHeadModel.from_pretrained(decoder_name_or_path, config=config) # remove layers if necessary if num_layers_decoder is not None and num_layers_decoder < decoder.config.n_layer: decoder = EncoderDecoderModule.remove_layers_from_model(decoder, num_layers_decoder, is_gpt=True) elif num_layers_decoder is not None and num_layers_encoder is not None: # use randomly initialized RoBERTa as encoder encoder_config = RobertaConfig() encoder_config.num_hidden_layers = num_layers_encoder encoder = RobertaModel(config=encoder_config) # resize embeddings to match vocabulary size encoder.resize_token_embeddings(len(self._src_tokenizer)) # use randomly initialized GPT-2 as decoder decoder_config = GPT2Config() decoder_config.n_layer = num_layers_decoder decoder_config.is_decoder = True decoder_config.add_cross_attention = True decoder = GPT2LMHeadModel(config=decoder_config) else: raise ValueError( "You have to specify either num_layers for training from scratch \ or paths for loading pretrained models" ) self.model = EncoderDecoderModel(encoder=encoder, decoder=decoder) # cache is currently not supported by EncoderDecoder framework self.model.decoder.config.use_cache = False # do not tie output embeddings to input embeddings self.model.config.tie_word_embeddings = False # to make logs for different batch sizes prettier self.examples_count = 0 def forward(self, batch): return self.model( input_ids=batch["diff_input_ids"], attention_mask=batch["diff_attention_mask"], decoder_input_ids=batch["msg_input_ids"], decoder_attention_mask=batch["msg_attention_mask"], labels=batch["msg_labels"], ) def training_step(self, batch, batch_idx): self.examples_count += len(batch["diff_input_ids"]) loss, logits = self(batch)[:2] self.logger.experiment.log({"train_loss_step": loss}, step=self.examples_count) return {"loss": loss} def training_epoch_end(self, outputs): train_loss_mean = torch.stack([x["loss"] for x in outputs]).mean() self.logger.experiment.log({"train_loss_epoch": train_loss_mean}, step=self.examples_count) def next_token_metrics_step(self, batch): loss, scores = self(batch)[:2] return {"loss": loss} def next_token_metrics_epoch_end(self, outputs, stage): """ Logic for validation & testing epoch end: 1) Calculate accuracy@1, accuracy@5, MRR@5 2) (in val stage only) Aggregate loss and log metric(s) for ModelCheckpoint 3) Log everything to wandb """ loss = torch.stack([x["loss"] for x in outputs]).mean() metrics = {f"{stage}_loss_epoch": loss} if stage == "val": self.log("val_loss_epoch", metrics["val_loss_epoch"], on_step=False, on_epoch=True, prog_bar=True, logger=False) self.logger.experiment.log(metrics, step=self.examples_count) def validation_step(self, batch, batch_idx, dataloader_idx=0): return self.next_token_metrics_step(batch) def validation_epoch_end(self, outputs): self.next_token_metrics_epoch_end(outputs, stage="val") def test_step(self, batch, batch_idx): return self.next_token_metrics_step(batch) def test_epoch_end(self, outputs): self.next_token_metrics_epoch_end(outputs, stage="test") def configure_optimizers(self): optimizer = AdamW(self.parameters(), lr=self.learning_rate) scheduler = { "scheduler": get_linear_schedule_with_warmup( optimizer, 4000 // self._num_gpus, self._num_epochs * self._num_batches ), "interval": "step", "frequency": 1, } return [optimizer], [scheduler] @staticmethod def remove_layers_from_model(teacher, num_layers, is_gpt): if not is_gpt: teacher_config = teacher.config student_config = copy(teacher.config) student_config.num_hidden_layers = num_layers student = RobertaModel(config=student_config) # copy all embeddings student.embeddings.word_embeddings = teacher.embeddings.word_embeddings student.embeddings.position_embeddings = teacher.embeddings.position_embeddings student.embeddings.token_type_embeddings = teacher.embeddings.token_type_embeddings student.embeddings.LayerNorm = teacher.embeddings.LayerNorm student.embeddings.dropout = teacher.embeddings.dropout # uniformly pick from middle layers from teacher # it is basically np.linspace(0, teacher_config.num_hidden_layers, # num=student_config.num_hidden_layers, endpoint=True) step = (teacher_config.num_hidden_layers - 1) / (student_config.num_hidden_layers - 1) for student_layer, teacher_layer in enumerate( int(i * step) for i in range(student_config.num_hidden_layers) ): student.encoder.layer[student_layer] = teacher.encoder.layer[teacher_layer] else: teacher_config = teacher.config student_config = copy(teacher.config) student_config.n_layer = num_layers student = GPT2LMHeadModel(config=student_config) # Copying all embeddings student.transformer.wte = teacher.transformer.wte student.transformer.wpe = teacher.transformer.wpe student.transformer.drop = teacher.transformer.drop # Maybe there is something else in BERT that need to be copied! # Specific thing for GPT2LMHead. Not necessary for BERT student.tie_weights() # Uniformly pick from middle layers from teacher # It is basically np.linspace(0, teacher_config.n_layer, num=student_config.n_layer, endpoint=True) step = (teacher_config.n_layer - 1) / (student_config.n_layer - 1) for student_layer, teacher_layer in enumerate(int(i * step) for i in range(student_config.n_layer)): student.transformer.h[student_layer] = teacher.transformer.h[teacher_layer] return student
42.313433
124
0.663139
[ "MIT" ]
saridormi/commit_message_generation
src/model/encoder_decoder_module.py
8,505
Python
from soup import soup_collector def name_collector(spl_id, spl_type): soup = soup_collector(spl_id, spl_type) sample_info_type = soup.findAll('a') #unwanted till now START try: sample_info_name1 = sample_info_type[0].get('name').split('_')[1].strip() sample_info_name2 = sample_info_type[0].get('name').split('_')[2].strip() sample_info_name = sample_info_name1 + "_" + sample_info_name2 except: sample_info_name = sample_info_type[0].get('name').split('_')[1].strip() return sample_info_name #END #intro
33.588235
81
0.677758
[ "MIT" ]
0x0is1/drhelp
src/name_collect.py
571
Python
import os import numpy as np from glob import glob from scipy import optimize, spatial, ndimage from tifffile import imread, imsave from skimage.segmentation import find_boundaries from skimage.morphology import remove_small_objects from skimage.draw import line from utils import random_colormap import pdb # define binarization function def prepare_binary(fn): # generate binary segmentaiton result seg = np.squeeze(imread(fn)) > bw_th seg = remove_small_objects(seg>0, min_size=min_obj_size) return seg # params max_matching_dist = 45 approx_inf = 65535 track_display_legnth = 20 min_obj_size = 20 bw_th = -0.5 parent_path = "/mnt/data/" all_movies = glob(parent_path + "timelapse/*.tiff") for M_idx, movies in enumerate(all_movies): movie_basename = os.path.basename(movies) well_name = movie_basename[:-5] seg_path = f"{parent_path}timelapse_seg/{well_name}/" # vis_path = f"{parent_path}timelapse_track/{well_name}" # os.makedirs(vis_path, exist_ok=True) raw_path = f"{parent_path}timelapse/{well_name}" track_result = f"{parent_path}timelapse_track/{well_name}_result.npy" total_time = len(glob(raw_path + "/*.tiff")) traj = dict() lineage = dict() for tt in range(total_time): seg_fn = seg_path + f"img_{tt}_segmentation.tiff" seg = prepare_binary(seg_fn) # get label image seg_label, num_cells = ndimage.label(seg) # calculate center of mass centroid = ndimage.center_of_mass(seg, labels=seg_label, index=np.arange(1, num_cells + 1)) # generate cell information of this frame traj.update({ tt : {"centroid": centroid, "parent": [], "child": [], "ID": []} }) # initialize trajectory ID, parent node, track pts for the first frame max_cell_id = len(traj[0].get("centroid")) traj[0].update( {"ID": np.arange(0, max_cell_id, 1)} ) traj[0].update( {"parent": -1 * np.ones(max_cell_id, dtype=int)} ) centers = traj[0].get("centroid") pts = [] for ii in range(max_cell_id): pts.append([centers[ii]]) lineage.update({ii: [centers[ii]]}) traj[0].update({"track_pts": pts}) for tt in np.arange(1, total_time): p_prev = traj[tt-1].get("centroid") p_next = traj[tt].get("centroid") ########################################################### # simple LAP tracking ########################################################### num_cell_prev = len(p_prev) num_cell_next = len(p_next) # calculate distance between each pair of cells cost_mat = spatial.distance.cdist(p_prev, p_next) # if the distance is too far, change to approx. Inf. cost_mat[cost_mat > max_matching_dist] = approx_inf # add edges from cells in previous frame to auxillary vertices # in order to accomendate segmentation errors and leaving cells cost_mat_aug = max_matching_dist * 1.2 * np.ones( (num_cell_prev, num_cell_next + num_cell_prev), dtype=float ) cost_mat_aug[:num_cell_prev, :num_cell_next] = cost_mat[:, :] # solve the optimization problem row_ind, col_ind = optimize.linear_sum_assignment(cost_mat_aug) ######################################################### # parse the matching result ######################################################### prev_child = np.ones(num_cell_prev, dtype=int) next_parent = np.ones(num_cell_next, dtype=int) next_ID = np.zeros(num_cell_next, dtype=int) next_track_pts = [] # assign child for cells in previous frame for ii in range(num_cell_prev): if col_ind[ii] >= num_cell_next: prev_child[ii] = -1 else: prev_child[ii] = col_ind[ii] # assign parent for cells in next frame, update ID and track pts prev_pt = traj[tt-1].get("track_pts") prev_id = traj[tt-1].get("ID") for ii in range(num_cell_next): if ii in col_ind: # a matched cell is found next_parent[ii] = np.where(col_ind == ii)[0][0] next_ID[ii] = prev_id[next_parent[ii]] current_pts = prev_pt[next_parent[ii]].copy() current_pts.append(p_next[ii]) if len(current_pts) > track_display_legnth: current_pts.pop(0) next_track_pts.append(current_pts) # attach this point to the lineage single_lineage = lineage.get(next_ID[ii]) try: single_lineage.append(p_next[ii]) except Exception: pdb.set_trace() lineage.update({next_ID[ii]: single_lineage}) else: # a new cell next_parent[ii] = -1 next_ID[ii] = max_cell_id next_track_pts.append([p_next[ii]]) lineage.update({max_cell_id: [p_next[ii]]}) max_cell_id += 1 # update record traj[tt-1].update({"child": prev_child}) traj[tt].update({"parent": next_parent}) traj[tt].update({"ID": next_ID}) traj[tt].update({"track_pts": next_track_pts}) np.save(track_result, [traj, lineage]) """ ###################################################### # generate track visualization ###################################################### cmap = random_colormap() for tt in range(total_time): # print(traj[tt].get("ID")) # load segmentation and extract contours seg_fn = seg_path + f"img_{tt}_segmentation.tiff" seg = prepare_binary(seg_fn) seg_label, num_cells = ndimage.label(seg) cell_contours = find_boundaries(seg, mode='inner').astype(np.uint16) cell_contours[cell_contours > 0] = 1 cell_contours = cell_contours * seg_label.astype(np.uint16) cell_contours = cell_contours - 1 # to make the first object has label 0, to match index # load raw image and create visualizaiton in RGB # TODO: use real raw images # raw = seg.astype(np.uint8) raw = np.squeeze(imread(raw_path + f"img_{tt}.tiff")).astype(np.float32) raw = (raw - raw.min())/ (raw.max() - raw.min()) raw = raw * 255 raw = raw.astype(np.uint8) vis = np.zeros((raw.shape[0], raw.shape[1], 3), dtype=np.uint8) for cc in range(3): vis[:, :, cc] = raw # loop through all cells, for each cell, we do the following # 1- find ID, 2- load the color, 3- draw contour 4- draw track cell_id = traj[tt].get("ID") pts = traj[tt].get("track_pts") for cid in range(num_cells): # find ID this_id = cell_id[cid] # load the color this_color = 255 * cmap.colors[this_id] this_color = this_color.astype(np.uint8) # draw contour for cc in range(3): vis_c = vis[:, :, cc] vis_c[cell_contours == cid] = this_color[cc] vis[:, :, cc] = vis_c # TODO: check if we need this line # draw track this_track = pts[cid] if len(this_track) < 2: continue else: for pid in range(len(this_track) - 1): p1 = this_track[pid] p2 = this_track[pid + 1] rr, cc = line(int(round(p1[0])), int(round(p1[1])), int(round(p2[0])), int(round(p2[1]))) for ch in range(3): vis[rr, cc ,ch] = this_color[ch] imsave(vis_path + f"img_{tt+1}.tiff", vis) """
35.741784
105
0.574544
[ "BSD-2-Clause" ]
MMV-Lab/cell_movie_analysis
run_tracking.py
7,613
Python
from __future__ import print_function import sys import datetime import random def main(n): start = -86400 * 365 * 20 end = 86400 * 365 filename = 'testdata-' + str(n) + '.txt' with open(filename, 'w') as fp: now = datetime.datetime.now() for i in range(n): d = datetime.timedelta(seconds=random.randint(start, end)) nd = now + d fp.write(nd.strftime("%d/%m/%Y %H:%M:%S") + '\n') print('generate finish {}\n'.format(filename)) if __name__ == '__main__': if not(len(sys.argv) == 2 and sys.argv[1].isdigit()): print('bad input, argument must be number\n') exit() n = int(sys.argv[1]) main(n)
26.692308
70
0.573487
[ "MIT" ]
Paradise02/Interviews
Beijin-Tuiwen/Python/gen_data.py
694
Python
import ast import csv import logging import math import os from nose_parameterized import parameterized import numpy import SimpleITK as sitk import six from radiomics import getTestCase, imageoperations # Get the logger. This is done outside the class, as it is needed by both the class and the custom_name_func logger = logging.getLogger('radiomics.testing') TEST_CASES = ('brain1', 'brain2', 'breast1', 'lung1', 'lung2') def custom_name_func(testcase_func, param_num, param): """ A custom test name function that will ensure that the tests are run such that they're batched with all tests for a given data set are run together, avoiding re-reading the data more than necessary. Tests are run in alphabetical order, so put the test case first. An alternate option is to right justify the test number (param_num) with zeroes so that the numerical and alphabetical orders are the same. Not providing this method when there are more than 10 tests results in tests running in an order similar to: test_*.test_scenario_0_* test_*.test_scenario_10_* test_*.test_scenario_11_* ... test_*.test_scenario_19_* test_*.test_scenario_1_* test_*.test_scenario_20_* """ global logger logger.debug('custom_name_func: function name = %s, param_num = {0:0>3}, param.args = %s'.format(param_num), testcase_func.__name__, param.args) return str("%s_%s" % ( testcase_func.__name__, parameterized.to_safe_name("_".join(str(x) for x in param.args)), )) class RadiomicsTestUtils: """ This utility class reads in and stores the baseline files stored in 'data\baseline' (one per feature class) It provides utility methods to get the baseline feature value for a feature class and compare it to the result generated by the test. """ def __init__(self): self._logger = logging.getLogger('radiomics.testing.utils') self._logger.debug('RadiomicsTestUtils') # the image and mask volumes self._image = None self._mask = None self._current_image = None self._current_mask = None self._bb = None self._imageType = None # set up file paths self._dataDir = os.path.join(os.path.dirname(os.path.abspath(__file__)), "..", "data") self._baselineDir = os.path.join(self._dataDir, 'baseline') self._tests = set() self._test = None # Test, specifies an image and mask and some configuration (settings) self._testCase = None # Test image and mask to use in configured test self._testedSet = set() self._baseline = {} self.readBaselineFiles() self._current_config = {} self._featureClassName = None self._results = {} self._diffs = {} for test in self.getTests(): self._results[test] = {} self._diffs[test] = {} def readBaselineFiles(self): """ Reads the 'baseline' folder contained in dataDir. All files starting with 'baseline_' are read as baseline files. These files should therefore be named as follows: 'baseline_<className>.csv'. """ baselineFiles = [fileName for fileName in os.listdir(self._baselineDir) if os.path.isfile(os.path.join(self._baselineDir, fileName)) and fileName.startswith('baseline_')] assert len(baselineFiles) > 0 for baselineFile in baselineFiles: newBaseline = PyRadiomicsBaseline.readBaselineFile(os.path.join(self._baselineDir, baselineFile)) cls = newBaseline.cls self._logger.debug('Read baseline for class %s', cls) self._baseline[cls] = newBaseline self._tests |= newBaseline.tests def getTests(self): """ Return all the tests for which there are baseline information. """ return self._tests def getFeatureNames(self, className, test): """ Gets all features for which a baseline value is available for the current class and test case. Returns a list containing the feature names (without image type and feature class specifiers, i.e. just the feature name). """ if className not in self._baseline: return None # No baseline available for specified class return self._baseline[className].getTestFeatures(test) def setFeatureClassAndTestCase(self, className, test): """ Set testing suite to specified testCase and feature class. Throws an assertion error if either class or test case are not recognized. These have to be set here together, as the settings with which the test case has to be loaded are defined per feature class in the baseline (extracted from provenance information). Only (re)loads an image/mask if the test case has changed, or the change of feature class causes a change in test settings. If feature class and test case are unchanged, nothing is reloaded and function returns False. If either feature class or test case is changed, function returns True. """ global TEST_CASES if self._featureClassName == className and self._test == test: return False self._test = test self._testedSet.add(self._test) # First set featureClass if necessary, because if settings have changed, testCase needs te be reloaded if self._featureClassName != className: self._logger.debug('Setting feature class name to %s', className) assert className in self._baseline.keys() # Check if a baseline has been read for this class self._featureClassName = className # Check if test settings have changed if self._current_config != self._baseline[className].getTestConfig(test): self._current_config = self._baseline[className].getTestConfig(test) self._testCase = None # forces image to be reloaded (as settings have changed) # Next, set testCase if necessary if self._testCase != self._current_config['TestCase']: self._testCase = self._current_config['TestCase'] self._logger.info("Reading the image and mask for test case %s", self._testCase) assert self._current_config['TestCase'] in TEST_CASES imageName, maskName = getTestCase(self._testCase) assert imageName is not None assert maskName is not None self._image = sitk.ReadImage(imageName) self._mask = sitk.ReadImage(maskName) if 'ImageHash' in self._current_config: assert sitk.Hash(self._image) == self._current_config['ImageHash'] if 'MaskHash' in self._current_config: assert sitk.Hash(self._mask) == self._current_config['MaskHash'] settings = self._current_config.get('Settings', {}) interpolator = settings.get('interpolator', sitk.sitkBSpline) resampledPixelSpacing = settings.get('resampledPixelSpacing', None) if interpolator is not None and resampledPixelSpacing is not None: self._image, self._mask = imageoperations.resampleImage(self._image, self._mask, resampledPixelSpacing, interpolator, settings.get('label', 1), settings.get('padDistance', 5)) self._bb, correctedMask = imageoperations.checkMask(self._image, self._mask, **settings) if correctedMask is not None: self._mask = correctedMask self._imageType = None return True def getImage(self, imageType): if self._imageType != imageType: self._applyFilter(imageType) return self._current_image def getMask(self, imageType): if self._imageType != imageType: self._applyFilter(imageType) return self._current_mask def _applyFilter(self, imageType): if imageType == 'original': self._current_image, self._current_mask = imageoperations.cropToTumorMask(self._image, self._mask, self._bb) else: raise NotImplementedError() self._imageType = imageType def getSettings(self): return self._current_config.get('Settings', {}) def checkResult(self, featureName, value): """ Use utility methods to get and test the results against the expected baseline value for this key. """ longName = '_'.join(featureName) if value is None: self._diffs[self._test][longName] = None self._results[self._test][longName] = None assert (value is not None) if math.isnan(value): self._diffs[self._test][longName] = numpy.nan self._results[self._test][longName] = numpy.nan assert (not math.isnan(value)) # save the result using the baseline class and feature names self._logger.debug('checkResults: featureName = %s', featureName) self._results[self._test][longName] = value baselineValue = self._baseline[self._featureClassName].getBaselineValue(self._test, longName) assert baselineValue is not None baselineValue = float(baselineValue) self._logger.debug('checkResults: for featureName %s, got baseline value = %f', featureName, baselineValue) if baselineValue == 0.0: # avoid divide by zero, the difference is either 0% if the value is also zero, or 100% if value - baselineValue == 0.0: percentDiff = 0.0 else: percentDiff = 1.0 else: percentDiff = abs(1.0 - (value / baselineValue)) # save the difference self._diffs[self._test][longName] = percentDiff # check for a less than three percent difference if (percentDiff >= 0.03): self._logger.error('checkResult %s, baseline value = %f, calculated = %f, diff = %f%%', featureName, float(baselineValue), value, percentDiff * 100) assert (percentDiff < 0.03) def getResults(self): return self._results def getDiffs(self): return self._diffs def getDataDir(self): return self._dataDir def writeCSV(self, data, fileName): """ Write out data in a csv file. Assumes a data structure with: {'id1' : {'f1':n1, 'f2':n2}, 'id2' : {'f1':n3, 'f2':n4}} """ # Get the headers from the first testCase in _testedSet # If no tests were run, the length of _testedSet will be 0, and no files should be written if len(self._testedSet) > 0: with open(fileName, 'w') as csvFile: csvFileWriter = csv.writer(csvFile, lineterminator='\n') testedCases = sorted(self._testedSet) header = sorted(data[testedCases[0]].keys()) header = ['testCase'] + header csvFileWriter.writerow(header) for testCase in testedCases: thisCase = data[testCase] thisCase['testCase'] = testCase row = [] for h in header: row = row + [thisCase.get(h, "N/A")] csvFileWriter.writerow(row) self._logger.info('Wrote to file %s', fileName) else: self._logger.info('No test cases run, aborting file write to %s', fileName) class PyRadiomicsBaseline: def __init__(self, featureClassName): self.logger = logging.getLogger('radiomics.testing.baseline') self.cls = featureClassName self.configuration = {} self.baseline = {} self.tests = set() @classmethod def readBaselineFile(cls, baselineFile): featureClassName = os.path.basename(baselineFile)[9:-4] new_baseline = cls(featureClassName) new_baseline.logger.debug('Reading baseline for class %s', new_baseline.cls) with open(baselineFile, 'r' if six.PY3 else 'rb') as baselineReader: csvReader = csv.reader(baselineReader) tests = six.next(csvReader)[1:] for case in tests: new_baseline.configuration[case] = {} new_baseline.baseline[case] = {} for testRow in csvReader: for case_idx, case in enumerate(tests, start=1): if 'general_info' in testRow[0]: new_baseline.configuration[case][testRow[0]] = testRow[case_idx] else: new_baseline.baseline[case][testRow[0]] = testRow[case_idx] new_baseline.tests = set(tests) return new_baseline def getTestConfig(self, test): if test not in self.configuration: return {} # This test is not present in the baseline for this class config = { 'TestCase': self.configuration[test].get('general_info_TestCase', None), 'Settings': ast.literal_eval(self.configuration[test].get('general_info_GeneralSettings', '{}')), } if 'general_info_ImageHash' in self.configuration[test]: config['ImageHash'] = self.configuration[test]['general_info_ImageHash'] if 'general_info_MaskHash' in self.configuration[test]: config['MaskHash'] = self.configuration[test]['general_info_MaskHash'] if config['TestCase'] is None: self.logger.error('Missing key "general_info_TestCase". Cannot configure!') return None return config def getTestFeatures(self, test): """ Gets all features for which a baseline value is available for the current class and test case. Returns a list containing the feature names. """ if test not in self.baseline: return None # This test is not present in the baseline for this class return list(self.baseline[test].keys()) def getBaselineValue(self, test, featureName): if test not in self.baseline: return None return self.baseline[test].get(featureName, None) def writeBaselineFile(self, baselineDir): baselineFile = os.path.join(baselineDir, 'baseline_%s.csv' % self.cls) testCases = list(self.baseline.keys()) with open(baselineFile, 'wb') as baseline: csvWriter = csv.writer(baseline) header = ['featureName'] + testCases csvWriter.writerow(header) config = self.configuration[testCases[0]].keys() for c in config: row = [c] for testCase in testCases: row.append(str(self.configuration[testCase].get(c, ''))) csvWriter.writerow(row) features = self.baseline[testCases[0]].keys() for f in features: row = [f] for testCase in testCases: row.append(str(self.baseline[testCase].get(f, ''))) csvWriter.writerow(row)
36.228792
122
0.67679
[ "BSD-3-Clause" ]
NPCC-Joe/Radiomics-pyradiomics
tests/testUtils.py
14,093
Python
# -*- coding: utf-8 -*- from __future__ import unicode_literals # IntegrityError Exception for checking duplicate entry, # connection import to establish connection to database from django.db import IntegrityError, connection # Used for serializing object data to json string from django.core.serializers.json import DjangoJSONEncoder from django.core.serializers import serialize # Django HTTP Request from django.shortcuts import render, redirect from django.http import HttpResponse, Http404, HttpResponseForbidden, HttpResponseRedirect, JsonResponse # Generic views as Class from django.views.generic import TemplateView from django.views.generic.list import ListView from django.views import View # system imports import sys, os, csv, json, datetime, calendar, re # Django utils from django.utils import timezone, safestring from django.utils.decorators import method_decorator # Django authentication from django.contrib.auth.models import User from django.contrib.auth import authenticate, login, logout from django.contrib.auth.decorators import login_required from django.contrib.auth.hashers import make_password # Django Messaging Framework from django.contrib import messages # Conditional operators and exception for models from django.db.models import Q, Count, Sum, Prefetch from django.core.exceptions import ObjectDoesNotExist # Paginator class import from django.core.paginator import Paginator, InvalidPage, EmptyPage, PageNotAnInteger # Helpers import app.user_helper as user_helper import app.records_helper as records_helper # Forms from app.forms import * #========================================================================================= # GET SUB CATEGORY ON BASIS OF CATEGORY #========================================================================================= def get_sub_category(request): sub_cat_list = request.GET.getlist("cat_id[]") if len(sub_cat_list) > 0: sub_cats = records_helper.SubCategoryList(sub_cat_list) html = [] for sub in sub_cats: html.append('<option value="'+str(sub.id)+'">'+str(sub)+'</option>'); return HttpResponse(''.join(html)) return HttpResponse('')
33.545455
104
0.714995
[ "MIT" ]
lawrence-gandhar/data_security_project
app/views/combiners_views.py
2,214
Python
# -*- coding: utf-8 -*- # This script was written by Takashi SUGA on April-August 2017 # You may use and/or modify this file according to the license described in the MIT LICENSE.txt file https://raw.githubusercontent.com/suchowan/watson-api-client/master """『重要文抽出によるWebページ要約のためのHTMLテキスト分割』 http://harp.lib.hiroshima-u.ac.jp/hiroshima-cu/metadata/5532 を参考にした HTML テキスト化処理 """ import codecs import re class Article: # この順に文字コードを試みる encodings = [ "utf-8", "cp932", "euc-jp", "iso-2022-jp", "latin_1" ] # ブロックレベル要素抽出正規表現 block_level_tags = re.compile("(?i)</?(" + "|".join([ "address", "blockquote", "center", "dir", "div", "dl", "fieldset", "form", "h[1-6]", "hr", "isindex", "menu", "noframes", "noscript", "ol", "pre", "p", "table", "ul", "dd", "dt", "frameset", "li", "tbody", "td", "tfoot", "th", "thead", "tr" ]) + ")(>|[^a-z].*?>)") def __init__(self, path): print(path) self.path = path self.contents = self.get_contents() # self.contents = self.get_title() def get_contents(self): for encoding in self.encodings: try: lines = codecs.open(self.path, 'r', encoding) html = ' '.join(line.rstrip('\r\n') for line in lines) return self.__get_contents_in_html(html) except UnicodeDecodeError: continue print('Cannot detect encoding of ' + self.path) return None def __get_contents_in_html(self, html): parts = re.split("(?i)<(?:body|frame).*?>", html, 1) if len(parts) == 2: head, body = parts else: print('Cannot split ' + self.path) body = html body = re.sub(r"(?i)<(script|style|select).*?>.*?</\1\s*>", " ", body) body = re.sub(self.block_level_tags, ' _BLOCK_LEVEL_TAG_ ', body) body = re.sub(r"(?i)<a\s.+?>", ' _ANCHOR_LEFT_TAG_ ', body) body = re.sub("(?i)</a>", ' _ANCHOR_RIGHT_TAG_ ', body) body = re.sub("(?i)<[/a-z].*?>", " ", body) return re.sub(" +", " ", "".join(self.__get_contents_in_body(body))) def __get_contents_in_body(self, body): for block in body.split("_BLOCK_LEVEL_TAG_"): yield from self.__get_contents_in_block(block) def __get_contents_in_block(self, block): self.in_sentence = False for unit in block.split("。"): yield from self.__get_contents_in_unit(unit) if self.in_sentence: yield '。\n' def __get_contents_in_unit(self, unit): image_link = "_ANCHOR_LEFT_TAG_ +_ANCHOR_RIGHT_TAG_" unit = re.sub(image_link, " ", unit) if re.match(r"^ *$", unit): return fragment_tag = "((?:_ANCHOR_LEFT_TAG_ .+?_ANCHOR_LEFT_TAG_ ){2,})" for fragment in re.split(fragment_tag, unit): yield from self.__get_contents_in_fragment(fragment) def __get_contents_in_fragment(self, fragment): fragment = re.sub("_ANCHOR_(LEFT|RIGHT)_TAG_", ' ', fragment) if re.match(r"^ *$", fragment): return text_unit = TextUnit(fragment) if text_unit.is_sentence(): # 文ユニットは“ 。”で終わる if self.in_sentence: yield '。\n' yield text_unit.separated yield ' 。\n' self.in_sentence = False else: # 非文ユニットは“―。”で終わる # (制約) 論文と相違し非文ユニットは結合のみ行い分割していない yield text_unit.separated yield '―' self.in_sentence = True def get_title(self): return self.path.split('/')[-1] from janome.tokenizer import Tokenizer from collections import defaultdict import mojimoji #import re class TextUnit: tokenizer = Tokenizer("user_dic.csv", udic_type="simpledic", udic_enc="utf8") def __init__(self,fragment): self.fragment = fragment self.categories = defaultdict(int) separated = [] for token in self.tokenizer.tokenize(self.preprocess(self.fragment)): self.categories[self.categorize(token.part_of_speech)] += 1 separated.append(token.surface) separated.append('') self.separated = '/'.join(separated) def categorize(self,part_of_speech): if re.match("^名詞,(一般|代名詞|固有名詞|サ変接続|[^,]+語幹)", part_of_speech): return '自立' if re.match("^動詞", part_of_speech) and not re.match("サ変", part_of_speech): return '自立' if re.match("^形容詞,自立", part_of_speech): return '自立' if re.match("^助詞", part_of_speech): return '助詞' if re.match("^助動詞", part_of_speech): return '助動詞' return 'その他' def is_sentence(self): if self.categories['自立'] == 0: return False match = 0 if self.categories['自立'] >= 7: match += 1 if 100 * self.categories['自立'] / sum(self.categories.values()) <= 64: match += 1 if 100 * (self.categories['助詞'] + self.categories['助動詞']) / self.categories['自立'] >= 22: # 論文通り「付属語 = 助詞 ⋃ 助動詞」と解釈 (通常の定義と異なる) match += 1 if 100 * self.categories['助詞'] / self.categories['自立'] >= 26: match += 1 if 100 * self.categories['助動詞'] / self.categories['自立'] >= 6: match += 1 return match >= 3 def preprocess(self, text): text = re.sub("&[^;]+;", " ", text) text = mojimoji.han_to_zen(text, digit=False) text = re.sub('(\t | )+', " ", text) return text if __name__ == '__main__': import glob import os path_pattern = '/home/samba/example/links/bookmarks.crawled/**/*.html' # The converted plaintext is put as '/home/samba/example/links/bookmarks.plaintext/**/*.txt' for path in glob.glob(path_pattern, recursive=True): article = Article(path) plaintext_path = re.sub("(?i)html?$", "txt", path.replace('.crawled', '.plaintext')) plaintext_path = plaintext_path.replace('\\', '/') plaintext_dir = re.sub("/[^/]+$", "", plaintext_path) if not os.path.exists(plaintext_dir): os.makedirs(plaintext_dir) with codecs.open(plaintext_path, 'w', 'utf-8') as f: f.write(article.contents)
36.413793
168
0.566288
[ "CC0-1.0" ]
suchowan/bookmarks
scripts/python/html2plaintext.py
6,788
Python
from django.contrib import admin from graphite.events.models import Event class EventsAdmin(admin.ModelAdmin): fieldsets = ( (None, { 'fields': ('when', 'what', 'data', 'tags',) }), ) list_display = ('when', 'what', 'data',) list_filter = ('what',) search_fields = ('tags', ) admin.site.register(Event, EventsAdmin)
22.9375
55
0.594005
[ "Apache-2.0" ]
drax68/graphite-web
webapp/graphite/events/admin.py
367
Python
# coding: utf-8 # Copyright (c) 2016, 2020, Oracle and/or its affiliates. All rights reserved. # This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license. from oci.util import formatted_flat_dict, NONE_SENTINEL, value_allowed_none_or_none_sentinel # noqa: F401 from oci.decorators import init_model_state_from_kwargs @init_model_state_from_kwargs class UpdateHttpRedirectDetails(object): """ The details of a HTTP Redirect configured to redirect traffic from one hostname to another. **Warning:** Oracle recommends that you avoid using any confidential information when you supply string values using the API. """ def __init__(self, **kwargs): """ Initializes a new UpdateHttpRedirectDetails object with values from keyword arguments. The following keyword arguments are supported (corresponding to the getters/setters of this class): :param display_name: The value to assign to the display_name property of this UpdateHttpRedirectDetails. :type display_name: str :param target: The value to assign to the target property of this UpdateHttpRedirectDetails. :type target: HttpRedirectTarget :param response_code: The value to assign to the response_code property of this UpdateHttpRedirectDetails. :type response_code: int :param freeform_tags: The value to assign to the freeform_tags property of this UpdateHttpRedirectDetails. :type freeform_tags: dict(str, str) :param defined_tags: The value to assign to the defined_tags property of this UpdateHttpRedirectDetails. :type defined_tags: dict(str, dict(str, object)) """ self.swagger_types = { 'display_name': 'str', 'target': 'HttpRedirectTarget', 'response_code': 'int', 'freeform_tags': 'dict(str, str)', 'defined_tags': 'dict(str, dict(str, object))' } self.attribute_map = { 'display_name': 'displayName', 'target': 'target', 'response_code': 'responseCode', 'freeform_tags': 'freeformTags', 'defined_tags': 'definedTags' } self._display_name = None self._target = None self._response_code = None self._freeform_tags = None self._defined_tags = None @property def display_name(self): """ Gets the display_name of this UpdateHttpRedirectDetails. The user-friendly name of the HTTP Redirect. The name can be changed and does not need to be unique. :return: The display_name of this UpdateHttpRedirectDetails. :rtype: str """ return self._display_name @display_name.setter def display_name(self, display_name): """ Sets the display_name of this UpdateHttpRedirectDetails. The user-friendly name of the HTTP Redirect. The name can be changed and does not need to be unique. :param display_name: The display_name of this UpdateHttpRedirectDetails. :type: str """ self._display_name = display_name @property def target(self): """ Gets the target of this UpdateHttpRedirectDetails. The redirect target object including all the redirect data. :return: The target of this UpdateHttpRedirectDetails. :rtype: HttpRedirectTarget """ return self._target @target.setter def target(self, target): """ Sets the target of this UpdateHttpRedirectDetails. The redirect target object including all the redirect data. :param target: The target of this UpdateHttpRedirectDetails. :type: HttpRedirectTarget """ self._target = target @property def response_code(self): """ Gets the response_code of this UpdateHttpRedirectDetails. The response code returned for the redirect to the client. For more information, see `RFC 7231`__. __ https://tools.ietf.org/html/rfc7231#section-6.4 :return: The response_code of this UpdateHttpRedirectDetails. :rtype: int """ return self._response_code @response_code.setter def response_code(self, response_code): """ Sets the response_code of this UpdateHttpRedirectDetails. The response code returned for the redirect to the client. For more information, see `RFC 7231`__. __ https://tools.ietf.org/html/rfc7231#section-6.4 :param response_code: The response_code of this UpdateHttpRedirectDetails. :type: int """ self._response_code = response_code @property def freeform_tags(self): """ Gets the freeform_tags of this UpdateHttpRedirectDetails. Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. For more information, see `Resource Tags`__. Example: `{\"Department\": \"Finance\"}` __ https://docs.cloud.oracle.com/Content/General/Concepts/resourcetags.htm :return: The freeform_tags of this UpdateHttpRedirectDetails. :rtype: dict(str, str) """ return self._freeform_tags @freeform_tags.setter def freeform_tags(self, freeform_tags): """ Sets the freeform_tags of this UpdateHttpRedirectDetails. Free-form tags for this resource. Each tag is a simple key-value pair with no predefined name, type, or namespace. For more information, see `Resource Tags`__. Example: `{\"Department\": \"Finance\"}` __ https://docs.cloud.oracle.com/Content/General/Concepts/resourcetags.htm :param freeform_tags: The freeform_tags of this UpdateHttpRedirectDetails. :type: dict(str, str) """ self._freeform_tags = freeform_tags @property def defined_tags(self): """ Gets the defined_tags of this UpdateHttpRedirectDetails. Defined tags for this resource. Each key is predefined and scoped to a namespace. For more information, see `Resource Tags`__. Example: `{\"Operations\": {\"CostCenter\": \"42\"}}` __ https://docs.cloud.oracle.com/Content/General/Concepts/resourcetags.htm :return: The defined_tags of this UpdateHttpRedirectDetails. :rtype: dict(str, dict(str, object)) """ return self._defined_tags @defined_tags.setter def defined_tags(self, defined_tags): """ Sets the defined_tags of this UpdateHttpRedirectDetails. Defined tags for this resource. Each key is predefined and scoped to a namespace. For more information, see `Resource Tags`__. Example: `{\"Operations\": {\"CostCenter\": \"42\"}}` __ https://docs.cloud.oracle.com/Content/General/Concepts/resourcetags.htm :param defined_tags: The defined_tags of this UpdateHttpRedirectDetails. :type: dict(str, dict(str, object)) """ self._defined_tags = defined_tags def __repr__(self): return formatted_flat_dict(self) def __eq__(self, other): if other is None: return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not self == other
34.312217
245
0.66148
[ "Apache-2.0" ]
revnav/sandbox
darling_ansible/python_venv/lib/python3.7/site-packages/oci/waas/models/update_http_redirect_details.py
7,583
Python
#sum = 10 def func1(): #sum = 20 print('Local1:', sum) def func2(): #sum = 30 print('Local 2:', sum) func2() func1() print("Global:", sum([1, 2, 3]))
11.6875
32
0.459893
[ "Apache-2.0" ]
zevgenia/Python_shultais
Course/functions/example_12.py
187
Python
from __future__ import annotations from spark_auto_mapper_fhir.fhir_types.uri import FhirUri from spark_auto_mapper_fhir.value_sets.generic_type import GenericTypeCode from spark_auto_mapper.type_definitions.defined_types import AutoMapperTextInputType # This file is auto-generated by generate_classes so do not edit manually # noinspection PyPep8Naming class ContractResourceAssetAvailiabilityCodesCode(GenericTypeCode): """ ContractResourceAssetAvailiabilityCodes From: http://hl7.org/fhir/asset-availability in valuesets.xml This value set has asset availability codes. """ def __init__(self, value: AutoMapperTextInputType): super().__init__(value=value) """ http://hl7.org/fhir/asset-availability """ codeset: FhirUri = "http://hl7.org/fhir/asset-availability" class ContractResourceAssetAvailiabilityCodesCodeValues: """ To be completed From: http://hl7.org/fhir/asset-availability in valuesets.xml """ Lease = ContractResourceAssetAvailiabilityCodesCode("lease")
30.941176
84
0.773764
[ "Apache-2.0" ]
icanbwell/SparkAutoMapper.FHIR
spark_auto_mapper_fhir/value_sets/contract_resource_asset_availiability_codes.py
1,052
Python
# -*- coding: utf-8 -*- # Copyright (C) 2020. Huawei Technologies Co., Ltd. All rights reserved. # This program is free software; you can redistribute it and/or modify # it under the terms of the MIT License. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # MIT License for more details. """This is a class for RandomMirrow_pair.""" import numpy as np from vega.common import ClassFactory, ClassType @ClassFactory.register(ClassType.TRANSFORM) class RandomMirrow_pair(object): """Random mirrow two related image.""" def __call__(self, image, label): """Call function of RandomMirrow_pair. :param image: usually the feature image, for example, the LR image for super solution dataset, the initial image for the segmentation dataset, and etc :type image: PIL image :param label: usually the label image, for example, the HR image for super solution dataset, the mask image for the segmentation dataset, and etc :type lebel: PIL image :return: the image after transform :rtype: list, erery item is a PIL image, the first one is feature image, the second is label image """ flip = np.random.choice(2) * 2 - 1 channels_image = image.shape[-1] channels_label = label.shape[-1] if channels_image == 3: image = image[:, :, ::flip] else: image = image[:, ::flip] if channels_label == 3: label = label[:, :, ::flip] else: label = label[:, ::flip] return image, label
38.863636
106
0.65731
[ "MIT" ]
NiuRc/vega
vega/datasets/transforms/RandomMirrow_pair.py
1,710
Python
import pytest import autofit as af from autofit.mock import mock as m @pytest.fixture( name="target_gaussian" ) def make_target_gaussian(): return af.PriorModel( m.Gaussian ) @pytest.fixture( name="prior" ) def make_prior(): return af.UniformPrior() @pytest.fixture( name="source_gaussian" ) def make_source_gaussian(prior): return af.PriorModel( m.Gaussian, centre=prior ) def test_simple( source_gaussian, target_gaussian, prior ): target_gaussian.take_attributes( source_gaussian ) assert target_gaussian.centre == prior def test_assertions( source_gaussian, target_gaussian ): target_gaussian.add_assertion( target_gaussian.centre <= target_gaussian.intensity ) with pytest.raises(AssertionError): target_gaussian.take_attributes( source_gaussian ) def test_assertions_collection( source_gaussian, target_gaussian ): target_gaussian.add_assertion( target_gaussian.centre <= target_gaussian.intensity ) target_collection = af.Collection( gaussian=target_gaussian ) source_collection = af.Collection( gaussian=source_gaussian ) with pytest.raises(AssertionError): target_collection.take_attributes( source_collection ) def test_in_collection( source_gaussian, target_gaussian, prior ): target = af.CollectionPriorModel( gaussian=target_gaussian ) source = af.CollectionPriorModel( gaussian=source_gaussian ) target.take_attributes( source ) assert target.gaussian.centre == prior def test_tuple( source_gaussian, target_gaussian, prior ): source_gaussian.centre = (prior, 1.0) target_gaussian.take_attributes( source_gaussian ) assert target_gaussian.centre == (prior, 1.0) def test_tuple_prior( source_gaussian, target_gaussian, prior ): source_gaussian.centre = (prior, 1.0) target_gaussian.centre = af.TuplePrior() target_gaussian.take_attributes( source_gaussian ) assert target_gaussian.centre == (prior, 1.0) def test_tuple_in_instance( target_gaussian, prior ): # noinspection PyTypeChecker source_gaussian = m.Gaussian( centre=(prior, 1.0) ) target_gaussian.take_attributes( source_gaussian ) assert target_gaussian.centre == (prior, 1.0) def test_tuple_in_collection( source_gaussian, target_gaussian, prior ): source_gaussian.centre = (prior, 1.0) source = af.CollectionPriorModel( gaussian=source_gaussian ) target = af.CollectionPriorModel( gaussian=target_gaussian ) target.take_attributes(source) assert target.gaussian.centre == (prior, 1.0) def test_tuple_in_instance_in_collection( target_gaussian, prior ): # noinspection PyTypeChecker source_gaussian = m.Gaussian( centre=(prior, 1.0) ) source = af.CollectionPriorModel( gaussian=source_gaussian ) target = af.CollectionPriorModel( gaussian=target_gaussian ) target.take_attributes(source) assert target.gaussian.centre == (prior, 1.0) def test_source_is_dict( source_gaussian, target_gaussian, prior ): source = dict( gaussian=source_gaussian ) target = af.CollectionPriorModel( gaussian=target_gaussian ) target.take_attributes(source) assert target.gaussian.centre == prior def test_target_is_dict( source_gaussian, target_gaussian, prior ): source = af.CollectionPriorModel( collection=af.CollectionPriorModel( gaussian=source_gaussian ) ) target = af.CollectionPriorModel( collection=dict( gaussian=target_gaussian ) ) target.take_attributes(source) assert target.collection.gaussian.centre == prior def test_missing_from_source( target_gaussian, prior ): target_gaussian.centre = prior target_gaussian.take_attributes( af.CollectionPriorModel() ) assert target_gaussian.centre == prior def test_unlabelled_in_collection( source_gaussian, target_gaussian, prior ): target = af.CollectionPriorModel( [target_gaussian] ) source = af.CollectionPriorModel( [source_gaussian] ) target.take_attributes( source ) assert target[0].centre == prior def test_passing_float( source_gaussian, target_gaussian ): source_gaussian.centre = 2.0 target_gaussian.take_attributes( source_gaussian ) assert target_gaussian.centre == 2.0 def test_missing_from_origin( target_gaussian ): target_gaussian.take_attributes( af.CollectionPriorModel() ) def test_limits( source_gaussian, target_gaussian ): source_gaussian.centre = af.GaussianPrior( mean=0, sigma=1, lower_limit=-1, upper_limit=1 ) target_gaussian.take_attributes( source_gaussian ) assert target_gaussian.centre.lower_limit == -1 assert target_gaussian.centre.upper_limit == 1 def test_tuples(): centre = (0.0, 1.0) source = af.Model( m.Gaussian, centre=centre ) target = af.Model( m.Gaussian ) target.take_attributes(source) assert target.centre == centre
20.335616
60
0.616201
[ "MIT" ]
rhayes777/PyAutoF
test_autofit/mapper/test_take_attributes.py
5,938
Python
# # Copyright 2017 Alsanium, SAS. or its affiliates. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import unittest import handler class Context: def get_remaining_time_in_millis(self): pass def log(self): pass class TestCase(unittest.TestCase): def test_case(self): with self.assertRaisesRegexp(AttributeError, "runtime: symbol Handle is not valid"): handler.Handle({}, Context())
28.205882
92
0.727842
[ "Apache-2.0" ]
LIVEauctioneers/aws-lambda-go-shim
tests/sig_param_count/test.py
959
Python
# USAGE # python hard_negative_mine.py --conf conf/cars.json # import the necessary packages from __future__ import print_function from pyimagesearch.object_detection import ObjectDetector from pyimagesearch.descriptors import HOG from pyimagesearch.utils import dataset from pyimagesearch.utils import Conf from imutils import paths import numpy as np import progressbar import argparse import pickle import random import cv2 # construct the argument parser and parse the arguments ap = argparse.ArgumentParser() ap.add_argument("-c", "--conf", required=True, help="path to the configuration file") args = vars(ap.parse_args()) # load the configuration file and initialize the data list conf = Conf(args["conf"]) data = [] # load the classifier, then initialize the Histogram of Oriented Gradients descriptor # and the object detector model = pickle.loads(open(conf["classifier_path"], "rb").read()) hog = HOG(orientations=conf["orientations"], pixelsPerCell=tuple(conf["pixels_per_cell"]), cellsPerBlock=tuple(conf["cells_per_block"]), normalize=conf["normalize"], block_norm="L1") od = ObjectDetector(model, hog) # grab the set of distraction paths and randomly sample them dstPaths = list(paths.list_images(conf["image_distractions"])) dstPaths = random.sample(dstPaths, conf["hn_num_distraction_images"]) # setup the progress bar widgets = ["Mining: ", progressbar.Percentage(), " ", progressbar.Bar(), " ", progressbar.ETA()] pbar = progressbar.ProgressBar(maxval=len(dstPaths), widgets=widgets).start() # loop over the distraction paths for (i, imagePath) in enumerate(dstPaths): # load the image and convert it to grayscale image = cv2.imread(imagePath) gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # detect objects in the image (boxes, probs) = od.detect(gray, conf["window_dim"], winStep=conf["hn_window_step"], pyramidScale=conf["hn_pyramid_scale"], minProb=conf["hn_min_probability"]) # loop over the bounding boxes for (prob, (startX, startY, endX, endY)) in zip(probs, boxes): # extract the ROI from the image, resize it to a known, canonical size, extract # HOG features from teh ROI, and finally update the data roi = cv2.resize(gray[startY:endY, startX:endX], tuple(conf["window_dim"]), interpolation=cv2.INTER_AREA) features = hog.describe(roi) data.append(np.hstack([[prob], features])) # update the progress bar pbar.update(i) # sort the data points by confidence pbar.finish() print("[INFO] sorting by probability...") data = np.array(data) data = data[data[:, 0].argsort()[::-1]] # dump the dataset to file print("[INFO] dumping hard negatives to file...") dataset.dump_dataset(data[:, 1:], [-1] * len(data), conf["features_path"], "hard_negatives", writeMethod="a")
37.369863
96
0.752933
[ "Apache-2.0" ]
CactusJackFX/PyImageSearch_Guru
Module_02_Building_Your_Own_Custom_Object_Detector/2.10_Re-Training_and_Running_your_Classifier/hard_negative_mine.py
2,728
Python
# -*- coding: utf-8 -*- # ------------------------------------------------------------------------------ # # Copyright 2022 Valory AG # Copyright 2018-2021 Fetch.AI Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ------------------------------------------------------------------------------ """This module contains the tests for the code-blocks in the standalone-transaction.md file.""" import logging import os from unittest.mock import patch import pytest from aea.test_tools.test_cases import BaseAEATestCase from tests.conftest import CUR_PATH, MAX_FLAKY_RERUNS_INTEGRATION, ROOT_DIR from tests.test_docs.helper import extract_code_blocks, extract_python_code from tests.test_docs.test_standalone_transaction.standalone_transaction import ( logger, run, ) MD_FILE = "docs/standalone-transaction.md" PY_FILE = "test_docs/test_standalone_transaction/standalone_transaction.py" test_logger = logging.getLogger(__name__) class TestStandaloneTransaction(BaseAEATestCase): """This class contains the tests for the code-blocks in the agent-vs-aea.md file.""" @classmethod def _patch_logger(cls): cls.patch_logger_info = patch.object(logger, "info") cls.mocked_logger_info = cls.patch_logger_info.__enter__() @classmethod def _unpatch_logger(cls): cls.mocked_logger_info.__exit__() @classmethod def setup_class(cls): """Setup the test class.""" super().setup_class() cls._patch_logger() doc_path = os.path.join(ROOT_DIR, MD_FILE) cls.code_blocks = extract_code_blocks(filepath=doc_path, filter_="python") test_code_path = os.path.join(CUR_PATH, PY_FILE) cls.python_file = extract_python_code(test_code_path) def test_read_md_file(self): """Test the last code block, that is the full listing of the demo from the Markdown.""" assert ( self.code_blocks[-1] == self.python_file ), "Files must be exactly the same." @pytest.mark.integration(reruns=MAX_FLAKY_RERUNS_INTEGRATION) def test_run_end_to_end(self): """Run the transaction from the file.""" try: run() self.mocked_logger_info.assert_any_call("Transaction complete.") except RuntimeError: test_logger.info("RuntimeError: Some transactions have failed") def test_code_blocks_exist(self): """Test that all the code-blocks exist in the python file.""" for blocks in self.code_blocks: assert ( blocks in self.python_file ), "Code-block doesn't exist in the python file."
35.404494
95
0.671215
[ "Apache-2.0" ]
valory-xyz/agents-aea
tests/test_docs/test_standalone_transaction/test_standalone_transaction.py
3,151
Python
"""Python wrappers around TensorFlow ops. This file is MACHINE GENERATED! Do not edit. """ import collections as _collections from tensorflow.python.eager import execute as _execute from tensorflow.python.eager import context as _context from tensorflow.python.eager import core as _core from tensorflow.python.framework import dtypes as _dtypes from tensorflow.python.framework import tensor_shape as _tensor_shape from tensorflow.core.framework import op_def_pb2 as _op_def_pb2 # Needed to trigger the call to _set_call_cpp_shape_fn. from tensorflow.python.framework import common_shapes as _common_shapes from tensorflow.python.framework import op_def_registry as _op_def_registry from tensorflow.python.framework import ops as _ops from tensorflow.python.framework import op_def_library as _op_def_library from tensorflow.python.util.tf_export import tf_export @tf_export('PeriodicResample') def periodic_resample(values, shape, name=None): r"""Periodically resample elements of a tensor to conform to `shape`. This function implements a slightly more generic version of the subpixel convolutions found in this [paper](https://arxiv.org/abs/1609.05158). The formula for computing the elements in the `output` tensor is as follows: `T` = `values` tensor of rank `R` `S` = desired `shape` of output tensor (vector of length `R`) `P` = `output` tensor of rank `R` \((T_1,\ldots,T_R)\) = shape(`T`) \([S_1,\ldots,S_q,\ldots,S_R]\) = elements of vector `S` A single element in `S` is left unspecified (denoted \(S_q=-1\)). Let \(f_i\) denote the (possibly non-integer) factor that relates the original dimension to the desired dimensions, \(S_i=f_i T_i\), for \(i\neq q\) where \(f_i>0\). Define the following: \(g_i=\lceil f_i\rceil\) \(t=\prod_i T_i\) \(s=\prod_{i\neq q} S_i\) \(S_q\) can then be defined as by \(S_q=\lfloor t/s\rfloor\). The elements of the resulting tensor are defined as \(P_{s_1,\ldots,s_R}=T_{h_1,\ldots,h_q,\ldots,h_R}\). The \(h_i\) (\(i\neq q\)) are defined by \(h_i=\lfloor s_i/g_i\rfloor\). \(h_q=S_q\sum_{j\neq q}^{q-1}G_j \mathrm{mod}(s_j,g_j) + s_q\), where \(G_j=\prod_{i}^{j-1}g_i\) (\(G_0=1\)). One drawback of this method is that whenever the output dimensions are slightly less than integer multiples of the input dimensions, many of the tensor elements are repeated in an inefficient way. This is resolved by specifying that all desired dimensions are integer multiples of the input tensor. For example: ```prettyprint `input` is [[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11]] tf.periodic_resample(input, [6, None]) ==> [[ 0 1] [ 2 3] [ 4 5] [ 6 7] [ 8 9] [10 11]] ``` Args: values: A `Tensor`. Must be one of the following types: `float32`, `float64`, `int64`, `int32`, `uint8`, `uint16`, `int16`, `int8`, `complex64`, `complex128`, `qint8`, `quint8`, `qint32`, `half`, `uint32`, `uint64`, `bfloat16`. The tensor of rank `R` to periodic_resample shape: A `tf.TensorShape` or list of `ints`. A 1-D tensor representing the desired shape of the output tensor. Exactly one element of this tensor must have the value `None` which represents that this dimension of `values` can be adjusted downward in order to accommodate increases in other dimensions. The specified sizes of the non-adjustable dimensions must by at least as large as in the `values` tensor. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `values`. Periodically resampled tensor that has dimensions specified as in `shape` except that the dimension specified as `None` will be minimally decreased as necessary. """ shape = _execute.make_shape(shape, "shape") _ctx = _context.context() if _ctx.in_graph_mode(): _, _, _op = _op_def_lib._apply_op_helper( "PeriodicResample", values=values, shape=shape, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("T", _op.get_attr("T"), "shape", _op.get_attr("shape")) else: _attr_T, (values,) = _execute.args_to_matching_eager([values], _ctx) _inputs_flat = [values] _attrs = ("T", _attr_T, "shape", shape) _result = _execute.execute(b"PeriodicResample", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "PeriodicResample", _inputs_flat, _attrs, _result, name) _result, = _result return _result def _InitOpDefLibrary(op_list_proto_bytes): op_list = _op_def_pb2.OpList() op_list.ParseFromString(op_list_proto_bytes) _op_def_registry.register_op_list(op_list) op_def_lib = _op_def_library.OpDefLibrary() op_def_lib.add_op_list(op_list) return op_def_lib # op { # name: "PeriodicResample" # input_arg { # name: "values" # type_attr: "T" # } # output_arg { # name: "output" # type_attr: "T" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_FLOAT # type: DT_DOUBLE # type: DT_INT64 # type: DT_INT32 # type: DT_UINT8 # type: DT_UINT16 # type: DT_INT16 # type: DT_INT8 # type: DT_COMPLEX64 # type: DT_COMPLEX128 # type: DT_QINT8 # type: DT_QUINT8 # type: DT_QINT32 # type: DT_HALF # type: DT_UINT32 # type: DT_UINT64 # type: DT_BFLOAT16 # } # } # } # attr { # name: "shape" # type: "shape" # } # } _op_def_lib = _InitOpDefLibrary(b"\n^\n\020PeriodicResample\022\013\n\006values\"\001T\032\013\n\006output\"\001T\" \n\001T\022\004type:\025\n\0232\021\001\002\t\003\004\021\005\006\010\022\013\014\r\023\026\027\016\"\016\n\005shape\022\005shape")
38.891026
247
0.647602
[ "Apache-2.0" ]
gian1312/suchen
tensorflow/contrib/periodic_resample/python/ops/gen_periodic_resample_op.py
6,067
Python
import os class Config: SECRET_KEY = os.environ.get('SECRET_KEY') SQLALCHEMY_TRACK_MODIFICATIONS = False UPLOADED_PHOTOS_DEST = 'app/static/photos' # email configurations MAIL_SERVER = 'smtp.googlemail.com' MAIL_PORT = 587 MAIL_USE_TLS = True MAIL_USERNAME = os.environ.get("MAIL_USERNAME") MAIL_PASSWORD = os.environ.get("MAIL_PASSWORD") # simple mde configurations SIMPLEMDE_JS_IIFE = True SIMPLEMDE_USE_CDN = True @staticmethod def init_app(app): pass class TestConfig(Config): pass class ProdConfig(Config): SQLALCHEMY_DATABASE_URI = os.environ.get("DATABASE_URL") if SQLALCHEMY_DATABASE_URI and SQLALCHEMY_DATABASE_URI.startswith("postgres://"): SQLALCHEMY_DATABASE_URI = SQLALCHEMY_DATABASE_URI.replace("postgres://", "postgresql://", 1) pass class DevConfig(Config): SQLALCHEMY_DATABASE_URI = 'postgresql+psycopg2://moringa:Anna123!@localhost/blogapp1' DEBUG = True config_options = { 'development': DevConfig, 'production': ProdConfig, 'test': TestConfig }
22.791667
100
0.707495
[ "Unlicense" ]
AnnabelNkir/My_Hello_World
config.py
1,094
Python
import os import re import sys import uuid import redis from cryptography.fernet import Fernet from flask import abort, Flask, render_template, request from redis.exceptions import ConnectionError from werkzeug.urls import url_quote_plus from werkzeug.urls import url_unquote_plus NO_SSL = os.environ.get('NO_SSL', False) TOKEN_SEPARATOR = '~' # Initialize Flask Application app = Flask(__name__) if os.environ.get('DEBUG'): app.debug = True app.secret_key = os.environ.get('SECRET_KEY', 'Secret Key') app.config.update( dict(STATIC_URL=os.environ.get('STATIC_URL', 'static'))) # Initialize Redis if os.environ.get('MOCK_REDIS'): from mockredis import mock_strict_redis_client redis_client = mock_strict_redis_client() elif os.environ.get('REDIS_URL'): redis_client = redis.StrictRedis.from_url(os.environ.get('REDIS_URL')) else: redis_host = os.environ.get('REDIS_HOST', 'localhost') redis_port = os.environ.get('REDIS_PORT', 6379) redis_db = os.environ.get('SNAPPASS_REDIS_DB', 0) redis_client = redis.StrictRedis( host=redis_host, port=redis_port, db=redis_db) REDIS_PREFIX = os.environ.get('REDIS_PREFIX', 'snappass') TIME_CONVERSION = {'week': 604800, 'day': 86400, 'hour': 3600} def check_redis_alive(fn): def inner(*args, **kwargs): try: if fn.__name__ == 'main': redis_client.ping() return fn(*args, **kwargs) except ConnectionError as e: print('Failed to connect to redis! %s' % e.message) if fn.__name__ == 'main': sys.exit(0) else: return abort(500) return inner def encrypt(password): """ Take a password string, encrypt it with Fernet symmetric encryption, and return the result (bytes), with the decryption key (bytes) """ encryption_key = Fernet.generate_key() fernet = Fernet(encryption_key) encrypted_password = fernet.encrypt(password.encode('utf-8')) return encrypted_password, encryption_key def decrypt(password, decryption_key): """ Decrypt a password (bytes) using the provided key (bytes), and return the plain-text password (bytes). """ fernet = Fernet(decryption_key) return fernet.decrypt(password) def parse_token(token): token_fragments = token.split(TOKEN_SEPARATOR, 1) # Split once, not more. storage_key = token_fragments[0] try: decryption_key = token_fragments[1].encode('utf-8') except IndexError: decryption_key = None return storage_key, decryption_key @check_redis_alive def set_password(password, ttl): """ Encrypt and store the password for the specified lifetime. Returns a token comprised of the key where the encrypted password is stored, and the decryption key. """ storage_key = REDIS_PREFIX + uuid.uuid4().hex encrypted_password, encryption_key = encrypt(password) redis_client.setex(storage_key, ttl, encrypted_password) encryption_key = encryption_key.decode('utf-8') token = TOKEN_SEPARATOR.join([storage_key, encryption_key]) return token @check_redis_alive def get_password(token): """ From a given token, return the initial password. If the token is tilde-separated, we decrypt the password fetched from Redis. If not, the password is simply returned as is. """ storage_key, decryption_key = parse_token(token) password = redis_client.get(storage_key) redis_client.delete(storage_key) if password is not None: if decryption_key is not None: password = decrypt(password, decryption_key) return password.decode('utf-8') @check_redis_alive def password_exists(token): storage_key, decryption_key = parse_token(token) return redis_client.exists(storage_key) def empty(value): if not value: return True def clean_input(): """ Make sure we're not getting bad data from the front end, format data to be machine readable """ if empty(request.form.get('password', '')): abort(400) if empty(request.form.get('ttl', '')): abort(400) time_period = request.form['ttl'].lower() if time_period not in TIME_CONVERSION: abort(400) return TIME_CONVERSION[time_period], request.form['password'] @app.route('/', methods=['GET']) def index(): return render_template('set_password.html') @app.route('/', methods=['POST']) def handle_password(): ttl, password = clean_input() token = set_password(password, ttl) if NO_SSL: base_url = request.url_root else: base_url = request.url_root.replace("http://", "https://") link = base_url + url_quote_plus(token) return render_template('confirm.html', password_link=link) @app.route('/<password_key>', methods=['GET']) def preview_password(password_key): password_key = url_unquote_plus(password_key) if not password_exists(password_key): abort(404) return render_template('preview.html') @app.route('/<password_key>', methods=['POST']) def show_password(password_key): password_key = url_unquote_plus(password_key) password = get_password(password_key) if not password: abort(404) return render_template('password.html', password=password) @check_redis_alive def main(): app.run(host='0.0.0.0') if __name__ == '__main__': main()
27.292929
80
0.690044
[ "MIT" ]
47Billion/snappass
snappass/main.py
5,404
Python
# Copyright 2021 Hathor Labs # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING, Callable, Dict, Optional from structlog import get_logger from hathor.p2p.messages import ProtocolMessages if TYPE_CHECKING: from hathor.p2p.protocol import HathorProtocol # noqa: F401 logger = get_logger() class BaseState: protocol: 'HathorProtocol' cmd_map: Dict[ProtocolMessages, Callable[[str], None]] def __init__(self, protocol: 'HathorProtocol'): self.log = logger.new(**protocol.get_logger_context()) self.protocol = protocol self.cmd_map = { ProtocolMessages.ERROR: self.handle_error, ProtocolMessages.THROTTLE: self.handle_throttle, } # This variable is set by HathorProtocol after instantiating the state self.state_name = None def handle_error(self, payload: str) -> None: self.protocol.handle_error(payload) def handle_throttle(self, payload: str) -> None: self.log.info('throttled', payload=payload) def send_message(self, cmd: ProtocolMessages, payload: Optional[str] = None) -> None: self.protocol.send_message(cmd, payload) def send_throttle(self, key: str) -> None: limit = self.protocol.ratelimit.get_limit(key) if limit is None: return max_hits, window_seconds = limit payload = '{} At most {} hits every {} seconds'.format(key, max_hits, window_seconds) self.protocol.send_message(ProtocolMessages.THROTTLE, payload) def on_enter(self) -> None: raise NotImplementedError def on_exit(self) -> None: pass def prepare_to_disconnect(self) -> None: """Called when we will disconnect with the peer.""" pass
33.397059
93
0.69749
[ "Apache-2.0" ]
HathorNetwork/hathor-core
hathor/p2p/states/base.py
2,271
Python
"""This module contains wunderkafka producer's boilerplate."""
31.5
62
0.777778
[ "Apache-2.0" ]
severstal-digital/wunderkafka
wunderkafka/producers/__init__.py
63
Python
from typing import List, Optional from pydantic import BaseModel from typing_extensions import Literal from .request import BaseResponseData, CountOffsetParams, ListRequestParams, ListResponseData from .tag import Tag from .user import CommonUserDetails class Comment(BaseModel): # The ID of the post aweme_id: str # The ID of the comment cid: str # The timestamp in seconds when the comment was posted create_time: int # The number of times the comment has been liked digg_count: int # If this comment is replying to a comment, this array contains the original comment reply_comment: Optional[List["Comment"]] = None # If this comment is replying to a comment, the ID of that comment - "0" if not a reply reply_id: str # The status of the comment - 1 = published, 4 = published by you? status: int # The comment text text: str # Details about any tags in the comment text_extra: List[Tag] # Details about the author user: CommonUserDetails # 1 if the user likes the comment user_digged: Literal[0, 1] class ListCommentsRequest(ListRequestParams, CountOffsetParams): # The ID of the post to list comments for aweme_id: str # ??? - default is 2 comment_style: Optional[int] = None # ??? digged_cid = None # ??? insert_cids = None class ListCommentsResponse(ListResponseData, CountOffsetParams): comments: List[Comment] class PostCommentRequest(BaseModel): # The ID of the post to comment on aweme_id: str # The comment text text: str # The ID of the comment that is being replied to reply_id: Optional[str] = None # Details about any tags in the comment text_extra: List[Tag] # ??? is_self_see: Literal[0, 1] class PostCommentResponse(BaseResponseData): # The comment that was posted comment: Comment
22.630952
93
0.696476
[ "MIT" ]
MikeOwino/tiktok_bot
tiktok_bot/models/comment.py
1,901
Python
import pytest from datetime import datetime, timedelta import pytz from bs4 import BeautifulSoup from src.events import Events from src.users import Users from src.user import USER_ACCESS_MANAGER from src.stores import MemoryStore from src.email_generators import EventLocationChangedEmail def test_event_location_changed_email(): store = MemoryStore() events = Events(store) users = Users(store) start = datetime.now(pytz.timezone("America/New_York")) dur = timedelta(hours=1) end = start + dur u = users.add("[email protected]", 'name', 'alias', 'psw', 8) e = events.add('test', 'test', 30, start, dur, 'test', 'test', '[email protected]', 'test', u) email = EventLocationChangedEmail(e, e, '', root='./src') html = email.generate(u) soup = BeautifulSoup(html, 'html.parser') assert html assert type(html) == str assert bool(soup.find()) assert soup.find("div", {"class": "user"}).string.strip() == 'name' assert soup.find("a", {"class": "event-link"}).string.strip() == 'test' assert soup.find("td", {"class": "event-location-text"}).string.strip() == 'test' assert soup.find("div", {"class": "event-description"}).string.strip() == 'test'
38.375
85
0.664495
[ "MIT" ]
fjacob21/mididecweb
backend/tests/email_generators/test_event_location_changed.py
1,228
Python
import mmcv def wider_face_classes(): return ['face'] def voc_classes(): return [ 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor' ] def imagenet_det_classes(): return [ 'accordion', 'airplane', 'ant', 'antelope', 'apple', 'armadillo', 'artichoke', 'axe', 'baby_bed', 'backpack', 'bagel', 'balance_beam', 'banana', 'band_aid', 'banjo', 'baseball', 'basketball', 'bathing_cap', 'beaker', 'bear', 'bee', 'bell_pepper', 'bench', 'bicycle', 'binder', 'bird', 'bookshelf', 'bow_tie', 'bow', 'bowl', 'brassiere', 'burrito', 'bus', 'butterfly', 'camel', 'can_opener', 'car', 'cart', 'cattle', 'cello', 'centipede', 'chain_saw', 'chair', 'chime', 'cocktail_shaker', 'coffee_maker', 'computer_keyboard', 'computer_mouse', 'corkscrew', 'cream', 'croquet_ball', 'crutch', 'cucumber', 'cup_or_mug', 'diaper', 'digital_clock', 'dishwasher', 'dog', 'domestic_cat', 'dragonfly', 'drum', 'dumbbell', 'electric_fan', 'elephant', 'face_powder', 'fig', 'filing_cabinet', 'flower_pot', 'flute', 'fox', 'french_horn', 'frog', 'frying_pan', 'giant_panda', 'goldfish', 'golf_ball', 'golfcart', 'guacamole', 'guitar', 'hair_dryer', 'hair_spray', 'hamburger', 'hammer', 'hamster', 'harmonica', 'harp', 'hat_with_a_wide_brim', 'head_cabbage', 'helmet', 'hippopotamus', 'horizontal_bar', 'horse', 'hotdog', 'iPod', 'isopod', 'jellyfish', 'koala_bear', 'ladle', 'ladybug', 'lamp', 'laptop', 'lemon', 'lion', 'lipstick', 'lizard', 'lobster', 'maillot', 'maraca', 'microphone', 'microwave', 'milk_can', 'miniskirt', 'monkey', 'motorcycle', 'mushroom', 'nail', 'neck_brace', 'oboe', 'orange', 'otter', 'pencil_box', 'pencil_sharpener', 'perfume', 'person', 'piano', 'pineapple', 'ping-pong_ball', 'pitcher', 'pizza', 'plastic_bag', 'plate_rack', 'pomegranate', 'popsicle', 'porcupine', 'power_drill', 'pretzel', 'printer', 'puck', 'punching_bag', 'purse', 'rabbit', 'racket', 'ray', 'red_panda', 'refrigerator', 'remote_control', 'rubber_eraser', 'rugby_ball', 'ruler', 'salt_or_pepper_shaker', 'saxophone', 'scorpion', 'screwdriver', 'seal', 'sheep', 'ski', 'skunk', 'snail', 'snake', 'snowmobile', 'snowplow', 'soap_dispenser', 'soccer_ball', 'sofa', 'spatula', 'squirrel', 'starfish', 'stethoscope', 'stove', 'strainer', 'strawberry', 'stretcher', 'sunglasses', 'swimming_trunks', 'swine', 'syringe', 'table', 'tape_player', 'tennis_ball', 'tick', 'tie', 'tiger', 'toaster', 'traffic_light', 'train', 'trombone', 'trumpet', 'turtle', 'tv_or_monitor', 'unicycle', 'vacuum', 'violin', 'volleyball', 'waffle_iron', 'washer', 'water_bottle', 'watercraft', 'whale', 'wine_bottle', 'zebra' ] def imagenet_vid_classes(): return [ 'airplane', 'antelope', 'bear', 'bicycle', 'bird', 'bus', 'car', 'cattle', 'dog', 'domestic_cat', 'elephant', 'fox', 'giant_panda', 'hamster', 'horse', 'lion', 'lizard', 'monkey', 'motorcycle', 'rabbit', 'red_panda', 'sheep', 'snake', 'squirrel', 'tiger', 'train', 'turtle', 'watercraft', 'whale', 'zebra' ] def coco_classes(): # return ['瓶盖破损','瓶盖变形','瓶盖坏边','瓶盖打旋','瓶盖断点','标贴歪斜','标贴起皱','标贴气泡','喷码正常','喷码异常'] return ['瓶盖破损', '瓶盖变形', '瓶盖坏边', '瓶盖打旋', '瓶盖断点' '喷码正常', '喷码异常']#pg # return ['标贴歪斜', '标贴起皱', '标贴气泡'] # return [ # 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', # 'truck', 'boat', 'traffic_light', 'fire_hydrant', 'stop_sign', # 'parking_meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', # 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', # 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', # 'sports_ball', 'kite', 'baseball_bat', 'baseball_glove', 'skateboard', # 'surfboard', 'tennis_racket', 'bottle', 'wine_glass', 'cup', 'fork', # 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', # 'broccoli', 'carrot', 'hot_dog', 'pizza', 'donut', 'cake', 'chair', # 'couch', 'potted_plant', 'bed', 'dining_table', 'toilet', 'tv', # 'laptop', 'mouse', 'remote', 'keyboard', 'cell_phone', 'microwave', # 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', # 'scissors', 'teddy_bear', 'hair_drier', 'toothbrush' # ] def cityscapes_classes(): return [ 'person', 'rider', 'car', 'truck', 'bus', 'train', 'motorcycle', 'bicycle' ] dataset_aliases = { 'voc': ['voc', 'pascal_voc', 'voc07', 'voc12'], 'imagenet_det': ['det', 'imagenet_det', 'ilsvrc_det'], 'imagenet_vid': ['vid', 'imagenet_vid', 'ilsvrc_vid'], 'coco': ['coco', 'mscoco', 'ms_coco'], 'wider_face': ['WIDERFaceDataset', 'wider_face', 'WDIERFace'], 'cityscapes': ['cityscapes'] } def get_classes(dataset): """Get class names of a dataset.""" alias2name = {} for name, aliases in dataset_aliases.items(): for alias in aliases: alias2name[alias] = name if mmcv.is_str(dataset): if dataset in alias2name: labels = eval(alias2name[dataset] + '_classes()') else: raise ValueError('Unrecognized dataset: {}'.format(dataset)) else: raise TypeError('dataset must a str, but got {}'.format(type(dataset))) return labels
46.834711
84
0.575437
[ "Apache-2.0" ]
UESTC-Liuxin/TianChi
my_configs/new/mmdet/core/evaluation/class_names.py
5,827
Python
# /usr/bin/env python3 """Benchmark of handling PDB files comparing multiple libraries.""" import argparse import glob import os import re import subprocess import sys from pathlib import Path def gather_libs(selected_libs): libs = [] for path in sorted(glob.iglob("bench/*")): lib = os.path.basename(path) if not os.path.isdir(path) or (selected_libs and lib not in selected_libs): continue libs.append(lib) return libs def gather_tests(libs, selected_tests): tests = [] for lib in libs: for filepath in sorted(glob.iglob(os.path.join("bench", lib, "*"))): test, _ = os.path.splitext(os.path.basename(filepath)) if test in tests or (selected_tests and test not in selected_tests): continue tests.append(test) return tests def parse_args(argv): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument("-t", "--tests", help="Test names to run.") parser.add_argument("-l", "--libraries", help="Library names to test.") opts = parser.parse_args() if opts.tests: opts.tests = opts.tests.split(",") if opts.libraries: opts.libraries = opts.libraries.split(",") return vars(opts) def run_test(filepath, pdbfile, repeats=10): *_, dirname, filename = Path(filepath).parts basename, _ = os.path.splitext(filename) pdbid, _ = os.path.splitext(os.path.basename(pdbfile)) print(format(f"{dirname}/{basename}/{pdbid}", "<40"), end="", flush=True) if "schrodinger" in filepath: cmd = [ os.path.join(os.environ["SCHRODINGER"], "run"), filepath, pdbfile, str(repeats), ] elif filepath.endswith(".py"): cmd = ["python3", filepath, pdbfile, str(repeats)] elif filepath.endswith(".cr"): cmd = ["crystal", "run", "--release", filepath, "--", pdbfile, str(repeats)] elif filepath.endswith(".tcl"): cmd = [ "vmd", "-dispdev", "none", "-e", filepath, "-args", pdbfile, str(repeats), ] try: output = subprocess.check_output(cmd, stderr=subprocess.DEVNULL) output = output.decode(sys.stdout.encoding).strip() try: elapsed = float(output) except ValueError: elapsed = float(re.findall(r"elapsed *= *([\d\.e\-]+)", output)[0]) print(format(elapsed, ".6f")) except subprocess.CalledProcessError: print("failed") opts = parse_args(sys.argv[1:]) libs = gather_libs(opts["libraries"]) tests = gather_tests(libs, opts["tests"]) pdbs = list(map(os.path.abspath, glob.glob("data/*.pdb"))) for test in tests: for pdbfile in pdbs if test.startswith("parse") else ["data/1ake.pdb"]: for lib in libs: paths = glob.glob(f"bench/{lib}/{test}.*") if not paths: continue run_test(paths[0], pdbfile, repeats=10 if "1htq" not in pdbfile else 3) print("")
29.409524
84
0.589702
[ "MIT" ]
franciscoadasme/pdb-bench
run.py
3,088
Python
#!/usr/bin/env python3 # Allow direct execution import os import sys import unittest sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) # Various small unit tests import io import itertools import json import xml.etree.ElementTree from yt_dlp.compat import ( compat_chr, compat_etree_fromstring, compat_getenv, compat_HTMLParseError, compat_os_name, compat_setenv, ) from yt_dlp.utils import ( Config, DateRange, ExtractorError, InAdvancePagedList, LazyList, OnDemandPagedList, age_restricted, args_to_str, base_url, caesar, clean_html, clean_podcast_url, cli_bool_option, cli_option, cli_valueless_option, date_from_str, datetime_from_str, detect_exe_version, determine_ext, dfxp2srt, dict_get, encode_base_n, encode_compat_str, encodeFilename, escape_rfc3986, escape_url, expand_path, extract_attributes, find_xpath_attr, fix_xml_ampersands, float_or_none, format_bytes, get_element_by_attribute, get_element_by_class, get_element_html_by_attribute, get_element_html_by_class, get_element_text_and_html_by_tag, get_elements_by_attribute, get_elements_by_class, get_elements_html_by_attribute, get_elements_html_by_class, get_elements_text_and_html_by_attribute, int_or_none, intlist_to_bytes, iri_to_uri, is_html, js_to_json, limit_length, locked_file, lowercase_escape, match_str, merge_dicts, mimetype2ext, month_by_name, multipart_encode, ohdave_rsa_encrypt, orderedSet, parse_age_limit, parse_bitrate, parse_codecs, parse_count, parse_dfxp_time_expr, parse_duration, parse_filesize, parse_iso8601, parse_qs, parse_resolution, pkcs1pad, prepend_extension, read_batch_urls, remove_end, remove_quotes, remove_start, render_table, replace_extension, rot47, sanitize_filename, sanitize_path, sanitize_url, sanitized_Request, shell_quote, smuggle_url, str_to_int, strip_jsonp, strip_or_none, subtitles_filename, timeconvert, unescapeHTML, unified_strdate, unified_timestamp, unsmuggle_url, update_url_query, uppercase_escape, url_basename, url_or_none, urlencode_postdata, urljoin, urshift, version_tuple, xpath_attr, xpath_element, xpath_text, xpath_with_ns, ) class TestUtil(unittest.TestCase): def test_timeconvert(self): self.assertTrue(timeconvert('') is None) self.assertTrue(timeconvert('bougrg') is None) def test_sanitize_filename(self): self.assertEqual(sanitize_filename(''), '') self.assertEqual(sanitize_filename('abc'), 'abc') self.assertEqual(sanitize_filename('abc_d-e'), 'abc_d-e') self.assertEqual(sanitize_filename('123'), '123') self.assertEqual('abc_de', sanitize_filename('abc/de')) self.assertFalse('/' in sanitize_filename('abc/de///')) self.assertEqual('abc_de', sanitize_filename('abc/<>\\*|de')) self.assertEqual('xxx', sanitize_filename('xxx/<>\\*|')) self.assertEqual('yes no', sanitize_filename('yes? no')) self.assertEqual('this - that', sanitize_filename('this: that')) self.assertEqual(sanitize_filename('AT&T'), 'AT&T') aumlaut = 'ä' self.assertEqual(sanitize_filename(aumlaut), aumlaut) tests = '\u043a\u0438\u0440\u0438\u043b\u043b\u0438\u0446\u0430' self.assertEqual(sanitize_filename(tests), tests) self.assertEqual( sanitize_filename('New World record at 0:12:34'), 'New World record at 0_12_34') self.assertEqual(sanitize_filename('--gasdgf'), '--gasdgf') self.assertEqual(sanitize_filename('--gasdgf', is_id=True), '--gasdgf') self.assertEqual(sanitize_filename('--gasdgf', is_id=False), '_-gasdgf') self.assertEqual(sanitize_filename('.gasdgf'), '.gasdgf') self.assertEqual(sanitize_filename('.gasdgf', is_id=True), '.gasdgf') self.assertEqual(sanitize_filename('.gasdgf', is_id=False), 'gasdgf') forbidden = '"\0\\/' for fc in forbidden: for fbc in forbidden: self.assertTrue(fbc not in sanitize_filename(fc)) def test_sanitize_filename_restricted(self): self.assertEqual(sanitize_filename('abc', restricted=True), 'abc') self.assertEqual(sanitize_filename('abc_d-e', restricted=True), 'abc_d-e') self.assertEqual(sanitize_filename('123', restricted=True), '123') self.assertEqual('abc_de', sanitize_filename('abc/de', restricted=True)) self.assertFalse('/' in sanitize_filename('abc/de///', restricted=True)) self.assertEqual('abc_de', sanitize_filename('abc/<>\\*|de', restricted=True)) self.assertEqual('xxx', sanitize_filename('xxx/<>\\*|', restricted=True)) self.assertEqual('yes_no', sanitize_filename('yes? no', restricted=True)) self.assertEqual('this_-_that', sanitize_filename('this: that', restricted=True)) tests = 'aäb\u4e2d\u56fd\u7684c' self.assertEqual(sanitize_filename(tests, restricted=True), 'aab_c') self.assertTrue(sanitize_filename('\xf6', restricted=True) != '') # No empty filename forbidden = '"\0\\/&!: \'\t\n()[]{}$;`^,#' for fc in forbidden: for fbc in forbidden: self.assertTrue(fbc not in sanitize_filename(fc, restricted=True)) # Handle a common case more neatly self.assertEqual(sanitize_filename('\u5927\u58f0\u5e26 - Song', restricted=True), 'Song') self.assertEqual(sanitize_filename('\u603b\u7edf: Speech', restricted=True), 'Speech') # .. but make sure the file name is never empty self.assertTrue(sanitize_filename('-', restricted=True) != '') self.assertTrue(sanitize_filename(':', restricted=True) != '') self.assertEqual(sanitize_filename( 'ÂÃÄÀÁÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖŐØŒÙÚÛÜŰÝÞßàáâãäåæçèéêëìíîïðñòóôõöőøœùúûüűýþÿ', restricted=True), 'AAAAAAAECEEEEIIIIDNOOOOOOOOEUUUUUYTHssaaaaaaaeceeeeiiiionooooooooeuuuuuythy') def test_sanitize_ids(self): self.assertEqual(sanitize_filename('_n_cd26wFpw', is_id=True), '_n_cd26wFpw') self.assertEqual(sanitize_filename('_BD_eEpuzXw', is_id=True), '_BD_eEpuzXw') self.assertEqual(sanitize_filename('N0Y__7-UOdI', is_id=True), 'N0Y__7-UOdI') def test_sanitize_path(self): if sys.platform != 'win32': return self.assertEqual(sanitize_path('abc'), 'abc') self.assertEqual(sanitize_path('abc/def'), 'abc\\def') self.assertEqual(sanitize_path('abc\\def'), 'abc\\def') self.assertEqual(sanitize_path('abc|def'), 'abc#def') self.assertEqual(sanitize_path('<>:"|?*'), '#######') self.assertEqual(sanitize_path('C:/abc/def'), 'C:\\abc\\def') self.assertEqual(sanitize_path('C?:/abc/def'), 'C##\\abc\\def') self.assertEqual(sanitize_path('\\\\?\\UNC\\ComputerName\\abc'), '\\\\?\\UNC\\ComputerName\\abc') self.assertEqual(sanitize_path('\\\\?\\UNC/ComputerName/abc'), '\\\\?\\UNC\\ComputerName\\abc') self.assertEqual(sanitize_path('\\\\?\\C:\\abc'), '\\\\?\\C:\\abc') self.assertEqual(sanitize_path('\\\\?\\C:/abc'), '\\\\?\\C:\\abc') self.assertEqual(sanitize_path('\\\\?\\C:\\ab?c\\de:f'), '\\\\?\\C:\\ab#c\\de#f') self.assertEqual(sanitize_path('\\\\?\\C:\\abc'), '\\\\?\\C:\\abc') self.assertEqual( sanitize_path('youtube/%(uploader)s/%(autonumber)s-%(title)s-%(upload_date)s.%(ext)s'), 'youtube\\%(uploader)s\\%(autonumber)s-%(title)s-%(upload_date)s.%(ext)s') self.assertEqual( sanitize_path('youtube/TheWreckingYard ./00001-Not bad, Especially for Free! (1987 Yamaha 700)-20141116.mp4.part'), 'youtube\\TheWreckingYard #\\00001-Not bad, Especially for Free! (1987 Yamaha 700)-20141116.mp4.part') self.assertEqual(sanitize_path('abc/def...'), 'abc\\def..#') self.assertEqual(sanitize_path('abc.../def'), 'abc..#\\def') self.assertEqual(sanitize_path('abc.../def...'), 'abc..#\\def..#') self.assertEqual(sanitize_path('../abc'), '..\\abc') self.assertEqual(sanitize_path('../../abc'), '..\\..\\abc') self.assertEqual(sanitize_path('./abc'), 'abc') self.assertEqual(sanitize_path('./../abc'), '..\\abc') def test_sanitize_url(self): self.assertEqual(sanitize_url('//foo.bar'), 'http://foo.bar') self.assertEqual(sanitize_url('httpss://foo.bar'), 'https://foo.bar') self.assertEqual(sanitize_url('rmtps://foo.bar'), 'rtmps://foo.bar') self.assertEqual(sanitize_url('https://foo.bar'), 'https://foo.bar') self.assertEqual(sanitize_url('foo bar'), 'foo bar') def test_extract_basic_auth(self): auth_header = lambda url: sanitized_Request(url).get_header('Authorization') self.assertFalse(auth_header('http://foo.bar')) self.assertFalse(auth_header('http://:foo.bar')) self.assertEqual(auth_header('http://@foo.bar'), 'Basic Og==') self.assertEqual(auth_header('http://:[email protected]'), 'Basic OnBhc3M=') self.assertEqual(auth_header('http://user:@foo.bar'), 'Basic dXNlcjo=') self.assertEqual(auth_header('http://user:[email protected]'), 'Basic dXNlcjpwYXNz') def test_expand_path(self): def env(var): return f'%{var}%' if sys.platform == 'win32' else f'${var}' compat_setenv('yt_dlp_EXPATH_PATH', 'expanded') self.assertEqual(expand_path(env('yt_dlp_EXPATH_PATH')), 'expanded') self.assertEqual(expand_path(env('HOME')), compat_getenv('HOME')) self.assertEqual(expand_path('~'), compat_getenv('HOME')) self.assertEqual( expand_path('~/%s' % env('yt_dlp_EXPATH_PATH')), '%s/expanded' % compat_getenv('HOME')) def test_prepend_extension(self): self.assertEqual(prepend_extension('abc.ext', 'temp'), 'abc.temp.ext') self.assertEqual(prepend_extension('abc.ext', 'temp', 'ext'), 'abc.temp.ext') self.assertEqual(prepend_extension('abc.unexpected_ext', 'temp', 'ext'), 'abc.unexpected_ext.temp') self.assertEqual(prepend_extension('abc', 'temp'), 'abc.temp') self.assertEqual(prepend_extension('.abc', 'temp'), '.abc.temp') self.assertEqual(prepend_extension('.abc.ext', 'temp'), '.abc.temp.ext') def test_replace_extension(self): self.assertEqual(replace_extension('abc.ext', 'temp'), 'abc.temp') self.assertEqual(replace_extension('abc.ext', 'temp', 'ext'), 'abc.temp') self.assertEqual(replace_extension('abc.unexpected_ext', 'temp', 'ext'), 'abc.unexpected_ext.temp') self.assertEqual(replace_extension('abc', 'temp'), 'abc.temp') self.assertEqual(replace_extension('.abc', 'temp'), '.abc.temp') self.assertEqual(replace_extension('.abc.ext', 'temp'), '.abc.temp') def test_subtitles_filename(self): self.assertEqual(subtitles_filename('abc.ext', 'en', 'vtt'), 'abc.en.vtt') self.assertEqual(subtitles_filename('abc.ext', 'en', 'vtt', 'ext'), 'abc.en.vtt') self.assertEqual(subtitles_filename('abc.unexpected_ext', 'en', 'vtt', 'ext'), 'abc.unexpected_ext.en.vtt') def test_remove_start(self): self.assertEqual(remove_start(None, 'A - '), None) self.assertEqual(remove_start('A - B', 'A - '), 'B') self.assertEqual(remove_start('B - A', 'A - '), 'B - A') def test_remove_end(self): self.assertEqual(remove_end(None, ' - B'), None) self.assertEqual(remove_end('A - B', ' - B'), 'A') self.assertEqual(remove_end('B - A', ' - B'), 'B - A') def test_remove_quotes(self): self.assertEqual(remove_quotes(None), None) self.assertEqual(remove_quotes('"'), '"') self.assertEqual(remove_quotes("'"), "'") self.assertEqual(remove_quotes(';'), ';') self.assertEqual(remove_quotes('";'), '";') self.assertEqual(remove_quotes('""'), '') self.assertEqual(remove_quotes('";"'), ';') def test_ordered_set(self): self.assertEqual(orderedSet([1, 1, 2, 3, 4, 4, 5, 6, 7, 3, 5]), [1, 2, 3, 4, 5, 6, 7]) self.assertEqual(orderedSet([]), []) self.assertEqual(orderedSet([1]), [1]) # keep the list ordered self.assertEqual(orderedSet([135, 1, 1, 1]), [135, 1]) def test_unescape_html(self): self.assertEqual(unescapeHTML('%20;'), '%20;') self.assertEqual(unescapeHTML('&#x2F;'), '/') self.assertEqual(unescapeHTML('&#47;'), '/') self.assertEqual(unescapeHTML('&eacute;'), 'é') self.assertEqual(unescapeHTML('&#2013266066;'), '&#2013266066;') self.assertEqual(unescapeHTML('&a&quot;'), '&a"') # HTML5 entities self.assertEqual(unescapeHTML('&period;&apos;'), '.\'') def test_date_from_str(self): self.assertEqual(date_from_str('yesterday'), date_from_str('now-1day')) self.assertEqual(date_from_str('now+7day'), date_from_str('now+1week')) self.assertEqual(date_from_str('now+14day'), date_from_str('now+2week')) self.assertEqual(date_from_str('20200229+365day'), date_from_str('20200229+1year')) self.assertEqual(date_from_str('20210131+28day'), date_from_str('20210131+1month')) def test_datetime_from_str(self): self.assertEqual(datetime_from_str('yesterday', precision='day'), datetime_from_str('now-1day', precision='auto')) self.assertEqual(datetime_from_str('now+7day', precision='day'), datetime_from_str('now+1week', precision='auto')) self.assertEqual(datetime_from_str('now+14day', precision='day'), datetime_from_str('now+2week', precision='auto')) self.assertEqual(datetime_from_str('20200229+365day', precision='day'), datetime_from_str('20200229+1year', precision='auto')) self.assertEqual(datetime_from_str('20210131+28day', precision='day'), datetime_from_str('20210131+1month', precision='auto')) self.assertEqual(datetime_from_str('20210131+59day', precision='day'), datetime_from_str('20210131+2month', precision='auto')) self.assertEqual(datetime_from_str('now+1day', precision='hour'), datetime_from_str('now+24hours', precision='auto')) self.assertEqual(datetime_from_str('now+23hours', precision='hour'), datetime_from_str('now+23hours', precision='auto')) def test_daterange(self): _20century = DateRange("19000101", "20000101") self.assertFalse("17890714" in _20century) _ac = DateRange("00010101") self.assertTrue("19690721" in _ac) _firstmilenium = DateRange(end="10000101") self.assertTrue("07110427" in _firstmilenium) def test_unified_dates(self): self.assertEqual(unified_strdate('December 21, 2010'), '20101221') self.assertEqual(unified_strdate('8/7/2009'), '20090708') self.assertEqual(unified_strdate('Dec 14, 2012'), '20121214') self.assertEqual(unified_strdate('2012/10/11 01:56:38 +0000'), '20121011') self.assertEqual(unified_strdate('1968 12 10'), '19681210') self.assertEqual(unified_strdate('1968-12-10'), '19681210') self.assertEqual(unified_strdate('28/01/2014 21:00:00 +0100'), '20140128') self.assertEqual( unified_strdate('11/26/2014 11:30:00 AM PST', day_first=False), '20141126') self.assertEqual( unified_strdate('2/2/2015 6:47:40 PM', day_first=False), '20150202') self.assertEqual(unified_strdate('Feb 14th 2016 5:45PM'), '20160214') self.assertEqual(unified_strdate('25-09-2014'), '20140925') self.assertEqual(unified_strdate('27.02.2016 17:30'), '20160227') self.assertEqual(unified_strdate('UNKNOWN DATE FORMAT'), None) self.assertEqual(unified_strdate('Feb 7, 2016 at 6:35 pm'), '20160207') self.assertEqual(unified_strdate('July 15th, 2013'), '20130715') self.assertEqual(unified_strdate('September 1st, 2013'), '20130901') self.assertEqual(unified_strdate('Sep 2nd, 2013'), '20130902') self.assertEqual(unified_strdate('November 3rd, 2019'), '20191103') self.assertEqual(unified_strdate('October 23rd, 2005'), '20051023') def test_unified_timestamps(self): self.assertEqual(unified_timestamp('December 21, 2010'), 1292889600) self.assertEqual(unified_timestamp('8/7/2009'), 1247011200) self.assertEqual(unified_timestamp('Dec 14, 2012'), 1355443200) self.assertEqual(unified_timestamp('2012/10/11 01:56:38 +0000'), 1349920598) self.assertEqual(unified_timestamp('1968 12 10'), -33436800) self.assertEqual(unified_timestamp('1968-12-10'), -33436800) self.assertEqual(unified_timestamp('28/01/2014 21:00:00 +0100'), 1390939200) self.assertEqual( unified_timestamp('11/26/2014 11:30:00 AM PST', day_first=False), 1417001400) self.assertEqual( unified_timestamp('2/2/2015 6:47:40 PM', day_first=False), 1422902860) self.assertEqual(unified_timestamp('Feb 14th 2016 5:45PM'), 1455471900) self.assertEqual(unified_timestamp('25-09-2014'), 1411603200) self.assertEqual(unified_timestamp('27.02.2016 17:30'), 1456594200) self.assertEqual(unified_timestamp('UNKNOWN DATE FORMAT'), None) self.assertEqual(unified_timestamp('May 16, 2016 11:15 PM'), 1463440500) self.assertEqual(unified_timestamp('Feb 7, 2016 at 6:35 pm'), 1454870100) self.assertEqual(unified_timestamp('2017-03-30T17:52:41Q'), 1490896361) self.assertEqual(unified_timestamp('Sep 11, 2013 | 5:49 AM'), 1378878540) self.assertEqual(unified_timestamp('December 15, 2017 at 7:49 am'), 1513324140) self.assertEqual(unified_timestamp('2018-03-14T08:32:43.1493874+00:00'), 1521016363) def test_determine_ext(self): self.assertEqual(determine_ext('http://example.com/foo/bar.mp4/?download'), 'mp4') self.assertEqual(determine_ext('http://example.com/foo/bar/?download', None), None) self.assertEqual(determine_ext('http://example.com/foo/bar.nonext/?download', None), None) self.assertEqual(determine_ext('http://example.com/foo/bar/mp4?download', None), None) self.assertEqual(determine_ext('http://example.com/foo/bar.m3u8//?download'), 'm3u8') self.assertEqual(determine_ext('foobar', None), None) def test_find_xpath_attr(self): testxml = '''<root> <node/> <node x="a"/> <node x="a" y="c" /> <node x="b" y="d" /> <node x="" /> </root>''' doc = compat_etree_fromstring(testxml) self.assertEqual(find_xpath_attr(doc, './/fourohfour', 'n'), None) self.assertEqual(find_xpath_attr(doc, './/fourohfour', 'n', 'v'), None) self.assertEqual(find_xpath_attr(doc, './/node', 'n'), None) self.assertEqual(find_xpath_attr(doc, './/node', 'n', 'v'), None) self.assertEqual(find_xpath_attr(doc, './/node', 'x'), doc[1]) self.assertEqual(find_xpath_attr(doc, './/node', 'x', 'a'), doc[1]) self.assertEqual(find_xpath_attr(doc, './/node', 'x', 'b'), doc[3]) self.assertEqual(find_xpath_attr(doc, './/node', 'y'), doc[2]) self.assertEqual(find_xpath_attr(doc, './/node', 'y', 'c'), doc[2]) self.assertEqual(find_xpath_attr(doc, './/node', 'y', 'd'), doc[3]) self.assertEqual(find_xpath_attr(doc, './/node', 'x', ''), doc[4]) def test_xpath_with_ns(self): testxml = '''<root xmlns:media="http://example.com/"> <media:song> <media:author>The Author</media:author> <url>http://server.com/download.mp3</url> </media:song> </root>''' doc = compat_etree_fromstring(testxml) find = lambda p: doc.find(xpath_with_ns(p, {'media': 'http://example.com/'})) self.assertTrue(find('media:song') is not None) self.assertEqual(find('media:song/media:author').text, 'The Author') self.assertEqual(find('media:song/url').text, 'http://server.com/download.mp3') def test_xpath_element(self): doc = xml.etree.ElementTree.Element('root') div = xml.etree.ElementTree.SubElement(doc, 'div') p = xml.etree.ElementTree.SubElement(div, 'p') p.text = 'Foo' self.assertEqual(xpath_element(doc, 'div/p'), p) self.assertEqual(xpath_element(doc, ['div/p']), p) self.assertEqual(xpath_element(doc, ['div/bar', 'div/p']), p) self.assertEqual(xpath_element(doc, 'div/bar', default='default'), 'default') self.assertEqual(xpath_element(doc, ['div/bar'], default='default'), 'default') self.assertTrue(xpath_element(doc, 'div/bar') is None) self.assertTrue(xpath_element(doc, ['div/bar']) is None) self.assertTrue(xpath_element(doc, ['div/bar'], 'div/baz') is None) self.assertRaises(ExtractorError, xpath_element, doc, 'div/bar', fatal=True) self.assertRaises(ExtractorError, xpath_element, doc, ['div/bar'], fatal=True) self.assertRaises(ExtractorError, xpath_element, doc, ['div/bar', 'div/baz'], fatal=True) def test_xpath_text(self): testxml = '''<root> <div> <p>Foo</p> </div> </root>''' doc = compat_etree_fromstring(testxml) self.assertEqual(xpath_text(doc, 'div/p'), 'Foo') self.assertEqual(xpath_text(doc, 'div/bar', default='default'), 'default') self.assertTrue(xpath_text(doc, 'div/bar') is None) self.assertRaises(ExtractorError, xpath_text, doc, 'div/bar', fatal=True) def test_xpath_attr(self): testxml = '''<root> <div> <p x="a">Foo</p> </div> </root>''' doc = compat_etree_fromstring(testxml) self.assertEqual(xpath_attr(doc, 'div/p', 'x'), 'a') self.assertEqual(xpath_attr(doc, 'div/bar', 'x'), None) self.assertEqual(xpath_attr(doc, 'div/p', 'y'), None) self.assertEqual(xpath_attr(doc, 'div/bar', 'x', default='default'), 'default') self.assertEqual(xpath_attr(doc, 'div/p', 'y', default='default'), 'default') self.assertRaises(ExtractorError, xpath_attr, doc, 'div/bar', 'x', fatal=True) self.assertRaises(ExtractorError, xpath_attr, doc, 'div/p', 'y', fatal=True) def test_smuggle_url(self): data = {"ö": "ö", "abc": [3]} url = 'https://foo.bar/baz?x=y#a' smug_url = smuggle_url(url, data) unsmug_url, unsmug_data = unsmuggle_url(smug_url) self.assertEqual(url, unsmug_url) self.assertEqual(data, unsmug_data) res_url, res_data = unsmuggle_url(url) self.assertEqual(res_url, url) self.assertEqual(res_data, None) smug_url = smuggle_url(url, {'a': 'b'}) smug_smug_url = smuggle_url(smug_url, {'c': 'd'}) res_url, res_data = unsmuggle_url(smug_smug_url) self.assertEqual(res_url, url) self.assertEqual(res_data, {'a': 'b', 'c': 'd'}) def test_shell_quote(self): args = ['ffmpeg', '-i', encodeFilename('ñ€ß\'.mp4')] self.assertEqual( shell_quote(args), """ffmpeg -i 'ñ€ß'"'"'.mp4'""" if compat_os_name != 'nt' else '''ffmpeg -i "ñ€ß'.mp4"''') def test_float_or_none(self): self.assertEqual(float_or_none('42.42'), 42.42) self.assertEqual(float_or_none('42'), 42.0) self.assertEqual(float_or_none(''), None) self.assertEqual(float_or_none(None), None) self.assertEqual(float_or_none([]), None) self.assertEqual(float_or_none(set()), None) def test_int_or_none(self): self.assertEqual(int_or_none('42'), 42) self.assertEqual(int_or_none(''), None) self.assertEqual(int_or_none(None), None) self.assertEqual(int_or_none([]), None) self.assertEqual(int_or_none(set()), None) def test_str_to_int(self): self.assertEqual(str_to_int('123,456'), 123456) self.assertEqual(str_to_int('123.456'), 123456) self.assertEqual(str_to_int(523), 523) self.assertEqual(str_to_int('noninteger'), None) self.assertEqual(str_to_int([]), None) def test_url_basename(self): self.assertEqual(url_basename('http://foo.de/'), '') self.assertEqual(url_basename('http://foo.de/bar/baz'), 'baz') self.assertEqual(url_basename('http://foo.de/bar/baz?x=y'), 'baz') self.assertEqual(url_basename('http://foo.de/bar/baz#x=y'), 'baz') self.assertEqual(url_basename('http://foo.de/bar/baz/'), 'baz') self.assertEqual( url_basename('http://media.w3.org/2010/05/sintel/trailer.mp4'), 'trailer.mp4') def test_base_url(self): self.assertEqual(base_url('http://foo.de/'), 'http://foo.de/') self.assertEqual(base_url('http://foo.de/bar'), 'http://foo.de/') self.assertEqual(base_url('http://foo.de/bar/'), 'http://foo.de/bar/') self.assertEqual(base_url('http://foo.de/bar/baz'), 'http://foo.de/bar/') self.assertEqual(base_url('http://foo.de/bar/baz?x=z/x/c'), 'http://foo.de/bar/') def test_urljoin(self): self.assertEqual(urljoin('http://foo.de/', '/a/b/c.txt'), 'http://foo.de/a/b/c.txt') self.assertEqual(urljoin(b'http://foo.de/', '/a/b/c.txt'), 'http://foo.de/a/b/c.txt') self.assertEqual(urljoin('http://foo.de/', b'/a/b/c.txt'), 'http://foo.de/a/b/c.txt') self.assertEqual(urljoin(b'http://foo.de/', b'/a/b/c.txt'), 'http://foo.de/a/b/c.txt') self.assertEqual(urljoin('//foo.de/', '/a/b/c.txt'), '//foo.de/a/b/c.txt') self.assertEqual(urljoin('http://foo.de/', 'a/b/c.txt'), 'http://foo.de/a/b/c.txt') self.assertEqual(urljoin('http://foo.de', '/a/b/c.txt'), 'http://foo.de/a/b/c.txt') self.assertEqual(urljoin('http://foo.de', 'a/b/c.txt'), 'http://foo.de/a/b/c.txt') self.assertEqual(urljoin('http://foo.de/', 'http://foo.de/a/b/c.txt'), 'http://foo.de/a/b/c.txt') self.assertEqual(urljoin('http://foo.de/', '//foo.de/a/b/c.txt'), '//foo.de/a/b/c.txt') self.assertEqual(urljoin(None, 'http://foo.de/a/b/c.txt'), 'http://foo.de/a/b/c.txt') self.assertEqual(urljoin(None, '//foo.de/a/b/c.txt'), '//foo.de/a/b/c.txt') self.assertEqual(urljoin('', 'http://foo.de/a/b/c.txt'), 'http://foo.de/a/b/c.txt') self.assertEqual(urljoin(['foobar'], 'http://foo.de/a/b/c.txt'), 'http://foo.de/a/b/c.txt') self.assertEqual(urljoin('http://foo.de/', None), None) self.assertEqual(urljoin('http://foo.de/', ''), None) self.assertEqual(urljoin('http://foo.de/', ['foobar']), None) self.assertEqual(urljoin('http://foo.de/a/b/c.txt', '.././../d.txt'), 'http://foo.de/d.txt') self.assertEqual(urljoin('http://foo.de/a/b/c.txt', 'rtmp://foo.de'), 'rtmp://foo.de') self.assertEqual(urljoin(None, 'rtmp://foo.de'), 'rtmp://foo.de') def test_url_or_none(self): self.assertEqual(url_or_none(None), None) self.assertEqual(url_or_none(''), None) self.assertEqual(url_or_none('foo'), None) self.assertEqual(url_or_none('http://foo.de'), 'http://foo.de') self.assertEqual(url_or_none('https://foo.de'), 'https://foo.de') self.assertEqual(url_or_none('http$://foo.de'), None) self.assertEqual(url_or_none('http://foo.de'), 'http://foo.de') self.assertEqual(url_or_none('//foo.de'), '//foo.de') self.assertEqual(url_or_none('s3://foo.de'), None) self.assertEqual(url_or_none('rtmpte://foo.de'), 'rtmpte://foo.de') self.assertEqual(url_or_none('mms://foo.de'), 'mms://foo.de') self.assertEqual(url_or_none('rtspu://foo.de'), 'rtspu://foo.de') self.assertEqual(url_or_none('ftps://foo.de'), 'ftps://foo.de') def test_parse_age_limit(self): self.assertEqual(parse_age_limit(None), None) self.assertEqual(parse_age_limit(False), None) self.assertEqual(parse_age_limit('invalid'), None) self.assertEqual(parse_age_limit(0), 0) self.assertEqual(parse_age_limit(18), 18) self.assertEqual(parse_age_limit(21), 21) self.assertEqual(parse_age_limit(22), None) self.assertEqual(parse_age_limit('18'), 18) self.assertEqual(parse_age_limit('18+'), 18) self.assertEqual(parse_age_limit('PG-13'), 13) self.assertEqual(parse_age_limit('TV-14'), 14) self.assertEqual(parse_age_limit('TV-MA'), 17) self.assertEqual(parse_age_limit('TV14'), 14) self.assertEqual(parse_age_limit('TV_G'), 0) def test_parse_duration(self): self.assertEqual(parse_duration(None), None) self.assertEqual(parse_duration(False), None) self.assertEqual(parse_duration('invalid'), None) self.assertEqual(parse_duration('1'), 1) self.assertEqual(parse_duration('1337:12'), 80232) self.assertEqual(parse_duration('9:12:43'), 33163) self.assertEqual(parse_duration('12:00'), 720) self.assertEqual(parse_duration('00:01:01'), 61) self.assertEqual(parse_duration('x:y'), None) self.assertEqual(parse_duration('3h11m53s'), 11513) self.assertEqual(parse_duration('3h 11m 53s'), 11513) self.assertEqual(parse_duration('3 hours 11 minutes 53 seconds'), 11513) self.assertEqual(parse_duration('3 hours 11 mins 53 secs'), 11513) self.assertEqual(parse_duration('3 hours, 11 minutes, 53 seconds'), 11513) self.assertEqual(parse_duration('3 hours, 11 mins, 53 secs'), 11513) self.assertEqual(parse_duration('62m45s'), 3765) self.assertEqual(parse_duration('6m59s'), 419) self.assertEqual(parse_duration('49s'), 49) self.assertEqual(parse_duration('0h0m0s'), 0) self.assertEqual(parse_duration('0m0s'), 0) self.assertEqual(parse_duration('0s'), 0) self.assertEqual(parse_duration('01:02:03.05'), 3723.05) self.assertEqual(parse_duration('T30M38S'), 1838) self.assertEqual(parse_duration('5 s'), 5) self.assertEqual(parse_duration('3 min'), 180) self.assertEqual(parse_duration('2.5 hours'), 9000) self.assertEqual(parse_duration('02:03:04'), 7384) self.assertEqual(parse_duration('01:02:03:04'), 93784) self.assertEqual(parse_duration('1 hour 3 minutes'), 3780) self.assertEqual(parse_duration('87 Min.'), 5220) self.assertEqual(parse_duration('PT1H0.040S'), 3600.04) self.assertEqual(parse_duration('PT00H03M30SZ'), 210) self.assertEqual(parse_duration('P0Y0M0DT0H4M20.880S'), 260.88) self.assertEqual(parse_duration('01:02:03:050'), 3723.05) self.assertEqual(parse_duration('103:050'), 103.05) def test_fix_xml_ampersands(self): self.assertEqual( fix_xml_ampersands('"&x=y&z=a'), '"&amp;x=y&amp;z=a') self.assertEqual( fix_xml_ampersands('"&amp;x=y&wrong;&z=a'), '"&amp;x=y&amp;wrong;&amp;z=a') self.assertEqual( fix_xml_ampersands('&amp;&apos;&gt;&lt;&quot;'), '&amp;&apos;&gt;&lt;&quot;') self.assertEqual( fix_xml_ampersands('&#1234;&#x1abC;'), '&#1234;&#x1abC;') self.assertEqual(fix_xml_ampersands('&#&#'), '&amp;#&amp;#') def test_paged_list(self): def testPL(size, pagesize, sliceargs, expected): def get_page(pagenum): firstid = pagenum * pagesize upto = min(size, pagenum * pagesize + pagesize) yield from range(firstid, upto) pl = OnDemandPagedList(get_page, pagesize) got = pl.getslice(*sliceargs) self.assertEqual(got, expected) iapl = InAdvancePagedList(get_page, size // pagesize + 1, pagesize) got = iapl.getslice(*sliceargs) self.assertEqual(got, expected) testPL(5, 2, (), [0, 1, 2, 3, 4]) testPL(5, 2, (1,), [1, 2, 3, 4]) testPL(5, 2, (2,), [2, 3, 4]) testPL(5, 2, (4,), [4]) testPL(5, 2, (0, 3), [0, 1, 2]) testPL(5, 2, (1, 4), [1, 2, 3]) testPL(5, 2, (2, 99), [2, 3, 4]) testPL(5, 2, (20, 99), []) def test_read_batch_urls(self): f = io.StringIO('''\xef\xbb\xbf foo bar\r baz # More after this line\r ; or after this bam''') self.assertEqual(read_batch_urls(f), ['foo', 'bar', 'baz', 'bam']) def test_urlencode_postdata(self): data = urlencode_postdata({'username': '[email protected]', 'password': '1234'}) self.assertTrue(isinstance(data, bytes)) def test_update_url_query(self): self.assertEqual(parse_qs(update_url_query( 'http://example.com/path', {'quality': ['HD'], 'format': ['mp4']})), parse_qs('http://example.com/path?quality=HD&format=mp4')) self.assertEqual(parse_qs(update_url_query( 'http://example.com/path', {'system': ['LINUX', 'WINDOWS']})), parse_qs('http://example.com/path?system=LINUX&system=WINDOWS')) self.assertEqual(parse_qs(update_url_query( 'http://example.com/path', {'fields': 'id,formats,subtitles'})), parse_qs('http://example.com/path?fields=id,formats,subtitles')) self.assertEqual(parse_qs(update_url_query( 'http://example.com/path', {'fields': ('id,formats,subtitles', 'thumbnails')})), parse_qs('http://example.com/path?fields=id,formats,subtitles&fields=thumbnails')) self.assertEqual(parse_qs(update_url_query( 'http://example.com/path?manifest=f4m', {'manifest': []})), parse_qs('http://example.com/path')) self.assertEqual(parse_qs(update_url_query( 'http://example.com/path?system=LINUX&system=WINDOWS', {'system': 'LINUX'})), parse_qs('http://example.com/path?system=LINUX')) self.assertEqual(parse_qs(update_url_query( 'http://example.com/path', {'fields': b'id,formats,subtitles'})), parse_qs('http://example.com/path?fields=id,formats,subtitles')) self.assertEqual(parse_qs(update_url_query( 'http://example.com/path', {'width': 1080, 'height': 720})), parse_qs('http://example.com/path?width=1080&height=720')) self.assertEqual(parse_qs(update_url_query( 'http://example.com/path', {'bitrate': 5020.43})), parse_qs('http://example.com/path?bitrate=5020.43')) self.assertEqual(parse_qs(update_url_query( 'http://example.com/path', {'test': '第二行тест'})), parse_qs('http://example.com/path?test=%E7%AC%AC%E4%BA%8C%E8%A1%8C%D1%82%D0%B5%D1%81%D1%82')) def test_multipart_encode(self): self.assertEqual( multipart_encode({b'field': b'value'}, boundary='AAAAAA')[0], b'--AAAAAA\r\nContent-Disposition: form-data; name="field"\r\n\r\nvalue\r\n--AAAAAA--\r\n') self.assertEqual( multipart_encode({'欄位'.encode(): '值'.encode()}, boundary='AAAAAA')[0], b'--AAAAAA\r\nContent-Disposition: form-data; name="\xe6\xac\x84\xe4\xbd\x8d"\r\n\r\n\xe5\x80\xbc\r\n--AAAAAA--\r\n') self.assertRaises( ValueError, multipart_encode, {b'field': b'value'}, boundary='value') def test_dict_get(self): FALSE_VALUES = { 'none': None, 'false': False, 'zero': 0, 'empty_string': '', 'empty_list': [], } d = FALSE_VALUES.copy() d['a'] = 42 self.assertEqual(dict_get(d, 'a'), 42) self.assertEqual(dict_get(d, 'b'), None) self.assertEqual(dict_get(d, 'b', 42), 42) self.assertEqual(dict_get(d, ('a', )), 42) self.assertEqual(dict_get(d, ('b', 'a', )), 42) self.assertEqual(dict_get(d, ('b', 'c', 'a', 'd', )), 42) self.assertEqual(dict_get(d, ('b', 'c', )), None) self.assertEqual(dict_get(d, ('b', 'c', ), 42), 42) for key, false_value in FALSE_VALUES.items(): self.assertEqual(dict_get(d, ('b', 'c', key, )), None) self.assertEqual(dict_get(d, ('b', 'c', key, ), skip_false_values=False), false_value) def test_merge_dicts(self): self.assertEqual(merge_dicts({'a': 1}, {'b': 2}), {'a': 1, 'b': 2}) self.assertEqual(merge_dicts({'a': 1}, {'a': 2}), {'a': 1}) self.assertEqual(merge_dicts({'a': 1}, {'a': None}), {'a': 1}) self.assertEqual(merge_dicts({'a': 1}, {'a': ''}), {'a': 1}) self.assertEqual(merge_dicts({'a': 1}, {}), {'a': 1}) self.assertEqual(merge_dicts({'a': None}, {'a': 1}), {'a': 1}) self.assertEqual(merge_dicts({'a': ''}, {'a': 1}), {'a': ''}) self.assertEqual(merge_dicts({'a': ''}, {'a': 'abc'}), {'a': 'abc'}) self.assertEqual(merge_dicts({'a': None}, {'a': ''}, {'a': 'abc'}), {'a': 'abc'}) def test_encode_compat_str(self): self.assertEqual(encode_compat_str(b'\xd1\x82\xd0\xb5\xd1\x81\xd1\x82', 'utf-8'), 'тест') self.assertEqual(encode_compat_str('тест', 'utf-8'), 'тест') def test_parse_iso8601(self): self.assertEqual(parse_iso8601('2014-03-23T23:04:26+0100'), 1395612266) self.assertEqual(parse_iso8601('2014-03-23T22:04:26+0000'), 1395612266) self.assertEqual(parse_iso8601('2014-03-23T22:04:26Z'), 1395612266) self.assertEqual(parse_iso8601('2014-03-23T22:04:26.1234Z'), 1395612266) self.assertEqual(parse_iso8601('2015-09-29T08:27:31.727'), 1443515251) self.assertEqual(parse_iso8601('2015-09-29T08-27-31.727'), None) def test_strip_jsonp(self): stripped = strip_jsonp('cb ([ {"id":"532cb",\n\n\n"x":\n3}\n]\n);') d = json.loads(stripped) self.assertEqual(d, [{"id": "532cb", "x": 3}]) stripped = strip_jsonp('parseMetadata({"STATUS":"OK"})\n\n\n//epc') d = json.loads(stripped) self.assertEqual(d, {'STATUS': 'OK'}) stripped = strip_jsonp('ps.embedHandler({"status": "success"});') d = json.loads(stripped) self.assertEqual(d, {'status': 'success'}) stripped = strip_jsonp('window.cb && window.cb({"status": "success"});') d = json.loads(stripped) self.assertEqual(d, {'status': 'success'}) stripped = strip_jsonp('window.cb && cb({"status": "success"});') d = json.loads(stripped) self.assertEqual(d, {'status': 'success'}) stripped = strip_jsonp('({"status": "success"});') d = json.loads(stripped) self.assertEqual(d, {'status': 'success'}) def test_strip_or_none(self): self.assertEqual(strip_or_none(' abc'), 'abc') self.assertEqual(strip_or_none('abc '), 'abc') self.assertEqual(strip_or_none(' abc '), 'abc') self.assertEqual(strip_or_none('\tabc\t'), 'abc') self.assertEqual(strip_or_none('\n\tabc\n\t'), 'abc') self.assertEqual(strip_or_none('abc'), 'abc') self.assertEqual(strip_or_none(''), '') self.assertEqual(strip_or_none(None), None) self.assertEqual(strip_or_none(42), None) self.assertEqual(strip_or_none([]), None) def test_uppercase_escape(self): self.assertEqual(uppercase_escape('aä'), 'aä') self.assertEqual(uppercase_escape('\\U0001d550'), '𝕐') def test_lowercase_escape(self): self.assertEqual(lowercase_escape('aä'), 'aä') self.assertEqual(lowercase_escape('\\u0026'), '&') def test_limit_length(self): self.assertEqual(limit_length(None, 12), None) self.assertEqual(limit_length('foo', 12), 'foo') self.assertTrue( limit_length('foo bar baz asd', 12).startswith('foo bar')) self.assertTrue('...' in limit_length('foo bar baz asd', 12)) def test_mimetype2ext(self): self.assertEqual(mimetype2ext(None), None) self.assertEqual(mimetype2ext('video/x-flv'), 'flv') self.assertEqual(mimetype2ext('application/x-mpegURL'), 'm3u8') self.assertEqual(mimetype2ext('text/vtt'), 'vtt') self.assertEqual(mimetype2ext('text/vtt;charset=utf-8'), 'vtt') self.assertEqual(mimetype2ext('text/html; charset=utf-8'), 'html') self.assertEqual(mimetype2ext('audio/x-wav'), 'wav') self.assertEqual(mimetype2ext('audio/x-wav;codec=pcm'), 'wav') def test_month_by_name(self): self.assertEqual(month_by_name(None), None) self.assertEqual(month_by_name('December', 'en'), 12) self.assertEqual(month_by_name('décembre', 'fr'), 12) self.assertEqual(month_by_name('December'), 12) self.assertEqual(month_by_name('décembre'), None) self.assertEqual(month_by_name('Unknown', 'unknown'), None) def test_parse_codecs(self): self.assertEqual(parse_codecs(''), {}) self.assertEqual(parse_codecs('avc1.77.30, mp4a.40.2'), { 'vcodec': 'avc1.77.30', 'acodec': 'mp4a.40.2', 'dynamic_range': None, }) self.assertEqual(parse_codecs('mp4a.40.2'), { 'vcodec': 'none', 'acodec': 'mp4a.40.2', 'dynamic_range': None, }) self.assertEqual(parse_codecs('mp4a.40.5,avc1.42001e'), { 'vcodec': 'avc1.42001e', 'acodec': 'mp4a.40.5', 'dynamic_range': None, }) self.assertEqual(parse_codecs('avc3.640028'), { 'vcodec': 'avc3.640028', 'acodec': 'none', 'dynamic_range': None, }) self.assertEqual(parse_codecs(', h264,,newcodec,aac'), { 'vcodec': 'h264', 'acodec': 'aac', 'dynamic_range': None, }) self.assertEqual(parse_codecs('av01.0.05M.08'), { 'vcodec': 'av01.0.05M.08', 'acodec': 'none', 'dynamic_range': None, }) self.assertEqual(parse_codecs('vp9.2'), { 'vcodec': 'vp9.2', 'acodec': 'none', 'dynamic_range': 'HDR10', }) self.assertEqual(parse_codecs('av01.0.12M.10.0.110.09.16.09.0'), { 'vcodec': 'av01.0.12M.10', 'acodec': 'none', 'dynamic_range': 'HDR10', }) self.assertEqual(parse_codecs('dvhe'), { 'vcodec': 'dvhe', 'acodec': 'none', 'dynamic_range': 'DV', }) self.assertEqual(parse_codecs('theora, vorbis'), { 'vcodec': 'theora', 'acodec': 'vorbis', 'dynamic_range': None, }) self.assertEqual(parse_codecs('unknownvcodec, unknownacodec'), { 'vcodec': 'unknownvcodec', 'acodec': 'unknownacodec', }) self.assertEqual(parse_codecs('unknown'), {}) def test_escape_rfc3986(self): reserved = "!*'();:@&=+$,/?#[]" unreserved = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_.~' self.assertEqual(escape_rfc3986(reserved), reserved) self.assertEqual(escape_rfc3986(unreserved), unreserved) self.assertEqual(escape_rfc3986('тест'), '%D1%82%D0%B5%D1%81%D1%82') self.assertEqual(escape_rfc3986('%D1%82%D0%B5%D1%81%D1%82'), '%D1%82%D0%B5%D1%81%D1%82') self.assertEqual(escape_rfc3986('foo bar'), 'foo%20bar') self.assertEqual(escape_rfc3986('foo%20bar'), 'foo%20bar') def test_escape_url(self): self.assertEqual( escape_url('http://wowza.imust.org/srv/vod/telemb/new/UPLOAD/UPLOAD/20224_IncendieHavré_FD.mp4'), 'http://wowza.imust.org/srv/vod/telemb/new/UPLOAD/UPLOAD/20224_IncendieHavre%CC%81_FD.mp4' ) self.assertEqual( escape_url('http://www.ardmediathek.de/tv/Sturm-der-Liebe/Folge-2036-Zu-Mann-und-Frau-erklärt/Das-Erste/Video?documentId=22673108&bcastId=5290'), 'http://www.ardmediathek.de/tv/Sturm-der-Liebe/Folge-2036-Zu-Mann-und-Frau-erkl%C3%A4rt/Das-Erste/Video?documentId=22673108&bcastId=5290' ) self.assertEqual( escape_url('http://тест.рф/фрагмент'), 'http://xn--e1aybc.xn--p1ai/%D1%84%D1%80%D0%B0%D0%B3%D0%BC%D0%B5%D0%BD%D1%82' ) self.assertEqual( escape_url('http://тест.рф/абв?абв=абв#абв'), 'http://xn--e1aybc.xn--p1ai/%D0%B0%D0%B1%D0%B2?%D0%B0%D0%B1%D0%B2=%D0%B0%D0%B1%D0%B2#%D0%B0%D0%B1%D0%B2' ) self.assertEqual(escape_url('http://vimeo.com/56015672#at=0'), 'http://vimeo.com/56015672#at=0') def test_js_to_json_realworld(self): inp = '''{ 'clip':{'provider':'pseudo'} }''' self.assertEqual(js_to_json(inp), '''{ "clip":{"provider":"pseudo"} }''') json.loads(js_to_json(inp)) inp = '''{ 'playlist':[{'controls':{'all':null}}] }''' self.assertEqual(js_to_json(inp), '''{ "playlist":[{"controls":{"all":null}}] }''') inp = '''"The CW\\'s \\'Crazy Ex-Girlfriend\\'"''' self.assertEqual(js_to_json(inp), '''"The CW's 'Crazy Ex-Girlfriend'"''') inp = '"SAND Number: SAND 2013-7800P\\nPresenter: Tom Russo\\nHabanero Software Training - Xyce Software\\nXyce, Sandia\\u0027s"' json_code = js_to_json(inp) self.assertEqual(json.loads(json_code), json.loads(inp)) inp = '''{ 0:{src:'skipped', type: 'application/dash+xml'}, 1:{src:'skipped', type: 'application/vnd.apple.mpegURL'}, }''' self.assertEqual(js_to_json(inp), '''{ "0":{"src":"skipped", "type": "application/dash+xml"}, "1":{"src":"skipped", "type": "application/vnd.apple.mpegURL"} }''') inp = '''{"foo":101}''' self.assertEqual(js_to_json(inp), '''{"foo":101}''') inp = '''{"duration": "00:01:07"}''' self.assertEqual(js_to_json(inp), '''{"duration": "00:01:07"}''') inp = '''{segments: [{"offset":-3.885780586188048e-16,"duration":39.75000000000001}]}''' self.assertEqual(js_to_json(inp), '''{"segments": [{"offset":-3.885780586188048e-16,"duration":39.75000000000001}]}''') def test_js_to_json_edgecases(self): on = js_to_json("{abc_def:'1\\'\\\\2\\\\\\'3\"4'}") self.assertEqual(json.loads(on), {"abc_def": "1'\\2\\'3\"4"}) on = js_to_json('{"abc": true}') self.assertEqual(json.loads(on), {'abc': True}) # Ignore JavaScript code as well on = js_to_json('''{ "x": 1, y: "a", z: some.code }''') d = json.loads(on) self.assertEqual(d['x'], 1) self.assertEqual(d['y'], 'a') # Just drop ! prefix for now though this results in a wrong value on = js_to_json('''{ a: !0, b: !1, c: !!0, d: !!42.42, e: !!![], f: !"abc", g: !"", !42: 42 }''') self.assertEqual(json.loads(on), { 'a': 0, 'b': 1, 'c': 0, 'd': 42.42, 'e': [], 'f': "abc", 'g': "", '42': 42 }) on = js_to_json('["abc", "def",]') self.assertEqual(json.loads(on), ['abc', 'def']) on = js_to_json('[/*comment\n*/"abc"/*comment\n*/,/*comment\n*/"def",/*comment\n*/]') self.assertEqual(json.loads(on), ['abc', 'def']) on = js_to_json('[//comment\n"abc" //comment\n,//comment\n"def",//comment\n]') self.assertEqual(json.loads(on), ['abc', 'def']) on = js_to_json('{"abc": "def",}') self.assertEqual(json.loads(on), {'abc': 'def'}) on = js_to_json('{/*comment\n*/"abc"/*comment\n*/:/*comment\n*/"def"/*comment\n*/,/*comment\n*/}') self.assertEqual(json.loads(on), {'abc': 'def'}) on = js_to_json('{ 0: /* " \n */ ",]" , }') self.assertEqual(json.loads(on), {'0': ',]'}) on = js_to_json('{ /*comment\n*/0/*comment\n*/: /* " \n */ ",]" , }') self.assertEqual(json.loads(on), {'0': ',]'}) on = js_to_json('{ 0: // comment\n1 }') self.assertEqual(json.loads(on), {'0': 1}) on = js_to_json(r'["<p>x<\/p>"]') self.assertEqual(json.loads(on), ['<p>x</p>']) on = js_to_json(r'["\xaa"]') self.assertEqual(json.loads(on), ['\u00aa']) on = js_to_json("['a\\\nb']") self.assertEqual(json.loads(on), ['ab']) on = js_to_json("/*comment\n*/[/*comment\n*/'a\\\nb'/*comment\n*/]/*comment\n*/") self.assertEqual(json.loads(on), ['ab']) on = js_to_json('{0xff:0xff}') self.assertEqual(json.loads(on), {'255': 255}) on = js_to_json('{/*comment\n*/0xff/*comment\n*/:/*comment\n*/0xff/*comment\n*/}') self.assertEqual(json.loads(on), {'255': 255}) on = js_to_json('{077:077}') self.assertEqual(json.loads(on), {'63': 63}) on = js_to_json('{/*comment\n*/077/*comment\n*/:/*comment\n*/077/*comment\n*/}') self.assertEqual(json.loads(on), {'63': 63}) on = js_to_json('{42:42}') self.assertEqual(json.loads(on), {'42': 42}) on = js_to_json('{/*comment\n*/42/*comment\n*/:/*comment\n*/42/*comment\n*/}') self.assertEqual(json.loads(on), {'42': 42}) on = js_to_json('{42:4.2e1}') self.assertEqual(json.loads(on), {'42': 42.0}) on = js_to_json('{ "0x40": "0x40" }') self.assertEqual(json.loads(on), {'0x40': '0x40'}) on = js_to_json('{ "040": "040" }') self.assertEqual(json.loads(on), {'040': '040'}) on = js_to_json('[1,//{},\n2]') self.assertEqual(json.loads(on), [1, 2]) def test_js_to_json_malformed(self): self.assertEqual(js_to_json('42a1'), '42"a1"') self.assertEqual(js_to_json('42a-1'), '42"a"-1') def test_extract_attributes(self): self.assertEqual(extract_attributes('<e x="y">'), {'x': 'y'}) self.assertEqual(extract_attributes("<e x='y'>"), {'x': 'y'}) self.assertEqual(extract_attributes('<e x=y>'), {'x': 'y'}) self.assertEqual(extract_attributes('<e x="a \'b\' c">'), {'x': "a 'b' c"}) self.assertEqual(extract_attributes('<e x=\'a "b" c\'>'), {'x': 'a "b" c'}) self.assertEqual(extract_attributes('<e x="&#121;">'), {'x': 'y'}) self.assertEqual(extract_attributes('<e x="&#x79;">'), {'x': 'y'}) self.assertEqual(extract_attributes('<e x="&amp;">'), {'x': '&'}) # XML self.assertEqual(extract_attributes('<e x="&quot;">'), {'x': '"'}) self.assertEqual(extract_attributes('<e x="&pound;">'), {'x': '£'}) # HTML 3.2 self.assertEqual(extract_attributes('<e x="&lambda;">'), {'x': 'λ'}) # HTML 4.0 self.assertEqual(extract_attributes('<e x="&foo">'), {'x': '&foo'}) self.assertEqual(extract_attributes('<e x="\'">'), {'x': "'"}) self.assertEqual(extract_attributes('<e x=\'"\'>'), {'x': '"'}) self.assertEqual(extract_attributes('<e x >'), {'x': None}) self.assertEqual(extract_attributes('<e x=y a>'), {'x': 'y', 'a': None}) self.assertEqual(extract_attributes('<e x= y>'), {'x': 'y'}) self.assertEqual(extract_attributes('<e x=1 y=2 x=3>'), {'y': '2', 'x': '3'}) self.assertEqual(extract_attributes('<e \nx=\ny\n>'), {'x': 'y'}) self.assertEqual(extract_attributes('<e \nx=\n"y"\n>'), {'x': 'y'}) self.assertEqual(extract_attributes("<e \nx=\n'y'\n>"), {'x': 'y'}) self.assertEqual(extract_attributes('<e \nx="\ny\n">'), {'x': '\ny\n'}) self.assertEqual(extract_attributes('<e CAPS=x>'), {'caps': 'x'}) # Names lowercased self.assertEqual(extract_attributes('<e x=1 X=2>'), {'x': '2'}) self.assertEqual(extract_attributes('<e X=1 x=2>'), {'x': '2'}) self.assertEqual(extract_attributes('<e _:funny-name1=1>'), {'_:funny-name1': '1'}) self.assertEqual(extract_attributes('<e x="Fáilte 世界 \U0001f600">'), {'x': 'Fáilte 世界 \U0001f600'}) self.assertEqual(extract_attributes('<e x="décompose&#769;">'), {'x': 'décompose\u0301'}) # "Narrow" Python builds don't support unicode code points outside BMP. try: compat_chr(0x10000) supports_outside_bmp = True except ValueError: supports_outside_bmp = False if supports_outside_bmp: self.assertEqual(extract_attributes('<e x="Smile &#128512;!">'), {'x': 'Smile \U0001f600!'}) # Malformed HTML should not break attributes extraction on older Python self.assertEqual(extract_attributes('<mal"formed/>'), {}) def test_clean_html(self): self.assertEqual(clean_html('a:\nb'), 'a: b') self.assertEqual(clean_html('a:\n "b"'), 'a: "b"') self.assertEqual(clean_html('a<br>\xa0b'), 'a\nb') def test_intlist_to_bytes(self): self.assertEqual( intlist_to_bytes([0, 1, 127, 128, 255]), b'\x00\x01\x7f\x80\xff') def test_args_to_str(self): self.assertEqual( args_to_str(['foo', 'ba/r', '-baz', '2 be', '']), 'foo ba/r -baz \'2 be\' \'\'' if compat_os_name != 'nt' else 'foo ba/r -baz "2 be" ""' ) def test_parse_filesize(self): self.assertEqual(parse_filesize(None), None) self.assertEqual(parse_filesize(''), None) self.assertEqual(parse_filesize('91 B'), 91) self.assertEqual(parse_filesize('foobar'), None) self.assertEqual(parse_filesize('2 MiB'), 2097152) self.assertEqual(parse_filesize('5 GB'), 5000000000) self.assertEqual(parse_filesize('1.2Tb'), 1200000000000) self.assertEqual(parse_filesize('1.2tb'), 1200000000000) self.assertEqual(parse_filesize('1,24 KB'), 1240) self.assertEqual(parse_filesize('1,24 kb'), 1240) self.assertEqual(parse_filesize('8.5 megabytes'), 8500000) def test_parse_count(self): self.assertEqual(parse_count(None), None) self.assertEqual(parse_count(''), None) self.assertEqual(parse_count('0'), 0) self.assertEqual(parse_count('1000'), 1000) self.assertEqual(parse_count('1.000'), 1000) self.assertEqual(parse_count('1.1k'), 1100) self.assertEqual(parse_count('1.1 k'), 1100) self.assertEqual(parse_count('1,1 k'), 1100) self.assertEqual(parse_count('1.1kk'), 1100000) self.assertEqual(parse_count('1.1kk '), 1100000) self.assertEqual(parse_count('1,1kk'), 1100000) self.assertEqual(parse_count('100 views'), 100) self.assertEqual(parse_count('1,100 views'), 1100) self.assertEqual(parse_count('1.1kk views'), 1100000) self.assertEqual(parse_count('10M views'), 10000000) self.assertEqual(parse_count('has 10M views'), 10000000) def test_parse_resolution(self): self.assertEqual(parse_resolution(None), {}) self.assertEqual(parse_resolution(''), {}) self.assertEqual(parse_resolution(' 1920x1080'), {'width': 1920, 'height': 1080}) self.assertEqual(parse_resolution('1920×1080 '), {'width': 1920, 'height': 1080}) self.assertEqual(parse_resolution('1920 x 1080'), {'width': 1920, 'height': 1080}) self.assertEqual(parse_resolution('720p'), {'height': 720}) self.assertEqual(parse_resolution('4k'), {'height': 2160}) self.assertEqual(parse_resolution('8K'), {'height': 4320}) self.assertEqual(parse_resolution('pre_1920x1080_post'), {'width': 1920, 'height': 1080}) self.assertEqual(parse_resolution('ep1x2'), {}) self.assertEqual(parse_resolution('1920, 1080'), {'width': 1920, 'height': 1080}) def test_parse_bitrate(self): self.assertEqual(parse_bitrate(None), None) self.assertEqual(parse_bitrate(''), None) self.assertEqual(parse_bitrate('300kbps'), 300) self.assertEqual(parse_bitrate('1500kbps'), 1500) self.assertEqual(parse_bitrate('300 kbps'), 300) def test_version_tuple(self): self.assertEqual(version_tuple('1'), (1,)) self.assertEqual(version_tuple('10.23.344'), (10, 23, 344)) self.assertEqual(version_tuple('10.1-6'), (10, 1, 6)) # avconv style def test_detect_exe_version(self): self.assertEqual(detect_exe_version('''ffmpeg version 1.2.1 built on May 27 2013 08:37:26 with gcc 4.7 (Debian 4.7.3-4) configuration: --prefix=/usr --extra-'''), '1.2.1') self.assertEqual(detect_exe_version('''ffmpeg version N-63176-g1fb4685 built on May 15 2014 22:09:06 with gcc 4.8.2 (GCC)'''), 'N-63176-g1fb4685') self.assertEqual(detect_exe_version('''X server found. dri2 connection failed! Trying to open render node... Success at /dev/dri/renderD128. ffmpeg version 2.4.4 Copyright (c) 2000-2014 the FFmpeg ...'''), '2.4.4') def test_age_restricted(self): self.assertFalse(age_restricted(None, 10)) # unrestricted content self.assertFalse(age_restricted(1, None)) # unrestricted policy self.assertFalse(age_restricted(8, 10)) self.assertTrue(age_restricted(18, 14)) self.assertFalse(age_restricted(18, 18)) def test_is_html(self): self.assertFalse(is_html(b'\x49\x44\x43<html')) self.assertTrue(is_html(b'<!DOCTYPE foo>\xaaa')) self.assertTrue(is_html( # UTF-8 with BOM b'\xef\xbb\xbf<!DOCTYPE foo>\xaaa')) self.assertTrue(is_html( # UTF-16-LE b'\xff\xfe<\x00h\x00t\x00m\x00l\x00>\x00\xe4\x00' )) self.assertTrue(is_html( # UTF-16-BE b'\xfe\xff\x00<\x00h\x00t\x00m\x00l\x00>\x00\xe4' )) self.assertTrue(is_html( # UTF-32-BE b'\x00\x00\xFE\xFF\x00\x00\x00<\x00\x00\x00h\x00\x00\x00t\x00\x00\x00m\x00\x00\x00l\x00\x00\x00>\x00\x00\x00\xe4')) self.assertTrue(is_html( # UTF-32-LE b'\xFF\xFE\x00\x00<\x00\x00\x00h\x00\x00\x00t\x00\x00\x00m\x00\x00\x00l\x00\x00\x00>\x00\x00\x00\xe4\x00\x00\x00')) def test_render_table(self): self.assertEqual( render_table( ['a', 'empty', 'bcd'], [[123, '', 4], [9999, '', 51]]), 'a empty bcd\n' '123 4\n' '9999 51') self.assertEqual( render_table( ['a', 'empty', 'bcd'], [[123, '', 4], [9999, '', 51]], hide_empty=True), 'a bcd\n' '123 4\n' '9999 51') self.assertEqual( render_table( ['\ta', 'bcd'], [['1\t23', 4], ['\t9999', 51]]), ' a bcd\n' '1 23 4\n' '9999 51') self.assertEqual( render_table( ['a', 'bcd'], [[123, 4], [9999, 51]], delim='-'), 'a bcd\n' '--------\n' '123 4\n' '9999 51') self.assertEqual( render_table( ['a', 'bcd'], [[123, 4], [9999, 51]], delim='-', extra_gap=2), 'a bcd\n' '----------\n' '123 4\n' '9999 51') def test_match_str(self): # Unary self.assertFalse(match_str('xy', {'x': 1200})) self.assertTrue(match_str('!xy', {'x': 1200})) self.assertTrue(match_str('x', {'x': 1200})) self.assertFalse(match_str('!x', {'x': 1200})) self.assertTrue(match_str('x', {'x': 0})) self.assertTrue(match_str('is_live', {'is_live': True})) self.assertFalse(match_str('is_live', {'is_live': False})) self.assertFalse(match_str('is_live', {'is_live': None})) self.assertFalse(match_str('is_live', {})) self.assertFalse(match_str('!is_live', {'is_live': True})) self.assertTrue(match_str('!is_live', {'is_live': False})) self.assertTrue(match_str('!is_live', {'is_live': None})) self.assertTrue(match_str('!is_live', {})) self.assertTrue(match_str('title', {'title': 'abc'})) self.assertTrue(match_str('title', {'title': ''})) self.assertFalse(match_str('!title', {'title': 'abc'})) self.assertFalse(match_str('!title', {'title': ''})) # Numeric self.assertFalse(match_str('x>0', {'x': 0})) self.assertFalse(match_str('x>0', {})) self.assertTrue(match_str('x>?0', {})) self.assertTrue(match_str('x>1K', {'x': 1200})) self.assertFalse(match_str('x>2K', {'x': 1200})) self.assertTrue(match_str('x>=1200 & x < 1300', {'x': 1200})) self.assertFalse(match_str('x>=1100 & x < 1200', {'x': 1200})) self.assertTrue(match_str('x > 1:0:0', {'x': 3700})) # String self.assertFalse(match_str('y=a212', {'y': 'foobar42'})) self.assertTrue(match_str('y=foobar42', {'y': 'foobar42'})) self.assertFalse(match_str('y!=foobar42', {'y': 'foobar42'})) self.assertTrue(match_str('y!=foobar2', {'y': 'foobar42'})) self.assertTrue(match_str('y^=foo', {'y': 'foobar42'})) self.assertFalse(match_str('y!^=foo', {'y': 'foobar42'})) self.assertFalse(match_str('y^=bar', {'y': 'foobar42'})) self.assertTrue(match_str('y!^=bar', {'y': 'foobar42'})) self.assertRaises(ValueError, match_str, 'x^=42', {'x': 42}) self.assertTrue(match_str('y*=bar', {'y': 'foobar42'})) self.assertFalse(match_str('y!*=bar', {'y': 'foobar42'})) self.assertFalse(match_str('y*=baz', {'y': 'foobar42'})) self.assertTrue(match_str('y!*=baz', {'y': 'foobar42'})) self.assertTrue(match_str('y$=42', {'y': 'foobar42'})) self.assertFalse(match_str('y$=43', {'y': 'foobar42'})) # And self.assertFalse(match_str( 'like_count > 100 & dislike_count <? 50 & description', {'like_count': 90, 'description': 'foo'})) self.assertTrue(match_str( 'like_count > 100 & dislike_count <? 50 & description', {'like_count': 190, 'description': 'foo'})) self.assertFalse(match_str( 'like_count > 100 & dislike_count <? 50 & description', {'like_count': 190, 'dislike_count': 60, 'description': 'foo'})) self.assertFalse(match_str( 'like_count > 100 & dislike_count <? 50 & description', {'like_count': 190, 'dislike_count': 10})) # Regex self.assertTrue(match_str(r'x~=\bbar', {'x': 'foo bar'})) self.assertFalse(match_str(r'x~=\bbar.+', {'x': 'foo bar'})) self.assertFalse(match_str(r'x~=^FOO', {'x': 'foo bar'})) self.assertTrue(match_str(r'x~=(?i)^FOO', {'x': 'foo bar'})) # Quotes self.assertTrue(match_str(r'x^="foo"', {'x': 'foo "bar"'})) self.assertFalse(match_str(r'x^="foo "', {'x': 'foo "bar"'})) self.assertFalse(match_str(r'x$="bar"', {'x': 'foo "bar"'})) self.assertTrue(match_str(r'x$=" \"bar\""', {'x': 'foo "bar"'})) # Escaping & self.assertFalse(match_str(r'x=foo & bar', {'x': 'foo & bar'})) self.assertTrue(match_str(r'x=foo \& bar', {'x': 'foo & bar'})) self.assertTrue(match_str(r'x=foo \& bar & x^=foo', {'x': 'foo & bar'})) self.assertTrue(match_str(r'x="foo \& bar" & x^=foo', {'x': 'foo & bar'})) # Example from docs self.assertTrue(match_str( r"!is_live & like_count>?100 & description~='(?i)\bcats \& dogs\b'", {'description': 'Raining Cats & Dogs'})) # Incomplete self.assertFalse(match_str('id!=foo', {'id': 'foo'}, True)) self.assertTrue(match_str('x', {'id': 'foo'}, True)) self.assertTrue(match_str('!x', {'id': 'foo'}, True)) self.assertFalse(match_str('x', {'id': 'foo'}, False)) def test_parse_dfxp_time_expr(self): self.assertEqual(parse_dfxp_time_expr(None), None) self.assertEqual(parse_dfxp_time_expr(''), None) self.assertEqual(parse_dfxp_time_expr('0.1'), 0.1) self.assertEqual(parse_dfxp_time_expr('0.1s'), 0.1) self.assertEqual(parse_dfxp_time_expr('00:00:01'), 1.0) self.assertEqual(parse_dfxp_time_expr('00:00:01.100'), 1.1) self.assertEqual(parse_dfxp_time_expr('00:00:01:100'), 1.1) def test_dfxp2srt(self): dfxp_data = '''<?xml version="1.0" encoding="UTF-8"?> <tt xmlns="http://www.w3.org/ns/ttml" xml:lang="en" xmlns:tts="http://www.w3.org/ns/ttml#parameter"> <body> <div xml:lang="en"> <p begin="0" end="1">The following line contains Chinese characters and special symbols</p> <p begin="1" end="2">第二行<br/>♪♪</p> <p begin="2" dur="1"><span>Third<br/>Line</span></p> <p begin="3" end="-1">Lines with invalid timestamps are ignored</p> <p begin="-1" end="-1">Ignore, two</p> <p begin="3" dur="-1">Ignored, three</p> </div> </body> </tt>'''.encode() srt_data = '''1 00:00:00,000 --> 00:00:01,000 The following line contains Chinese characters and special symbols 2 00:00:01,000 --> 00:00:02,000 第二行 ♪♪ 3 00:00:02,000 --> 00:00:03,000 Third Line ''' self.assertEqual(dfxp2srt(dfxp_data), srt_data) dfxp_data_no_default_namespace = b'''<?xml version="1.0" encoding="UTF-8"?> <tt xml:lang="en" xmlns:tts="http://www.w3.org/ns/ttml#parameter"> <body> <div xml:lang="en"> <p begin="0" end="1">The first line</p> </div> </body> </tt>''' srt_data = '''1 00:00:00,000 --> 00:00:01,000 The first line ''' self.assertEqual(dfxp2srt(dfxp_data_no_default_namespace), srt_data) dfxp_data_with_style = b'''<?xml version="1.0" encoding="utf-8"?> <tt xmlns="http://www.w3.org/2006/10/ttaf1" xmlns:ttp="http://www.w3.org/2006/10/ttaf1#parameter" ttp:timeBase="media" xmlns:tts="http://www.w3.org/2006/10/ttaf1#style" xml:lang="en" xmlns:ttm="http://www.w3.org/2006/10/ttaf1#metadata"> <head> <styling> <style id="s2" style="s0" tts:color="cyan" tts:fontWeight="bold" /> <style id="s1" style="s0" tts:color="yellow" tts:fontStyle="italic" /> <style id="s3" style="s0" tts:color="lime" tts:textDecoration="underline" /> <style id="s0" tts:backgroundColor="black" tts:fontStyle="normal" tts:fontSize="16" tts:fontFamily="sansSerif" tts:color="white" /> </styling> </head> <body tts:textAlign="center" style="s0"> <div> <p begin="00:00:02.08" id="p0" end="00:00:05.84">default style<span tts:color="red">custom style</span></p> <p style="s2" begin="00:00:02.08" id="p0" end="00:00:05.84"><span tts:color="lime">part 1<br /></span><span tts:color="cyan">part 2</span></p> <p style="s3" begin="00:00:05.84" id="p1" end="00:00:09.56">line 3<br />part 3</p> <p style="s1" tts:textDecoration="underline" begin="00:00:09.56" id="p2" end="00:00:12.36"><span style="s2" tts:color="lime">inner<br /> </span>style</p> </div> </body> </tt>''' srt_data = '''1 00:00:02,080 --> 00:00:05,840 <font color="white" face="sansSerif" size="16">default style<font color="red">custom style</font></font> 2 00:00:02,080 --> 00:00:05,840 <b><font color="cyan" face="sansSerif" size="16"><font color="lime">part 1 </font>part 2</font></b> 3 00:00:05,840 --> 00:00:09,560 <u><font color="lime">line 3 part 3</font></u> 4 00:00:09,560 --> 00:00:12,360 <i><u><font color="yellow"><font color="lime">inner </font>style</font></u></i> ''' self.assertEqual(dfxp2srt(dfxp_data_with_style), srt_data) dfxp_data_non_utf8 = '''<?xml version="1.0" encoding="UTF-16"?> <tt xmlns="http://www.w3.org/ns/ttml" xml:lang="en" xmlns:tts="http://www.w3.org/ns/ttml#parameter"> <body> <div xml:lang="en"> <p begin="0" end="1">Line 1</p> <p begin="1" end="2">第二行</p> </div> </body> </tt>'''.encode('utf-16') srt_data = '''1 00:00:00,000 --> 00:00:01,000 Line 1 2 00:00:01,000 --> 00:00:02,000 第二行 ''' self.assertEqual(dfxp2srt(dfxp_data_non_utf8), srt_data) def test_cli_option(self): self.assertEqual(cli_option({'proxy': '127.0.0.1:3128'}, '--proxy', 'proxy'), ['--proxy', '127.0.0.1:3128']) self.assertEqual(cli_option({'proxy': None}, '--proxy', 'proxy'), []) self.assertEqual(cli_option({}, '--proxy', 'proxy'), []) self.assertEqual(cli_option({'retries': 10}, '--retries', 'retries'), ['--retries', '10']) def test_cli_valueless_option(self): self.assertEqual(cli_valueless_option( {'downloader': 'external'}, '--external-downloader', 'downloader', 'external'), ['--external-downloader']) self.assertEqual(cli_valueless_option( {'downloader': 'internal'}, '--external-downloader', 'downloader', 'external'), []) self.assertEqual(cli_valueless_option( {'nocheckcertificate': True}, '--no-check-certificate', 'nocheckcertificate'), ['--no-check-certificate']) self.assertEqual(cli_valueless_option( {'nocheckcertificate': False}, '--no-check-certificate', 'nocheckcertificate'), []) self.assertEqual(cli_valueless_option( {'checkcertificate': True}, '--no-check-certificate', 'checkcertificate', False), []) self.assertEqual(cli_valueless_option( {'checkcertificate': False}, '--no-check-certificate', 'checkcertificate', False), ['--no-check-certificate']) def test_cli_bool_option(self): self.assertEqual( cli_bool_option( {'nocheckcertificate': True}, '--no-check-certificate', 'nocheckcertificate'), ['--no-check-certificate', 'true']) self.assertEqual( cli_bool_option( {'nocheckcertificate': True}, '--no-check-certificate', 'nocheckcertificate', separator='='), ['--no-check-certificate=true']) self.assertEqual( cli_bool_option( {'nocheckcertificate': True}, '--check-certificate', 'nocheckcertificate', 'false', 'true'), ['--check-certificate', 'false']) self.assertEqual( cli_bool_option( {'nocheckcertificate': True}, '--check-certificate', 'nocheckcertificate', 'false', 'true', '='), ['--check-certificate=false']) self.assertEqual( cli_bool_option( {'nocheckcertificate': False}, '--check-certificate', 'nocheckcertificate', 'false', 'true'), ['--check-certificate', 'true']) self.assertEqual( cli_bool_option( {'nocheckcertificate': False}, '--check-certificate', 'nocheckcertificate', 'false', 'true', '='), ['--check-certificate=true']) self.assertEqual( cli_bool_option( {}, '--check-certificate', 'nocheckcertificate', 'false', 'true', '='), []) def test_ohdave_rsa_encrypt(self): N = 0xab86b6371b5318aaa1d3c9e612a9f1264f372323c8c0f19875b5fc3b3fd3afcc1e5bec527aa94bfa85bffc157e4245aebda05389a5357b75115ac94f074aefcd e = 65537 self.assertEqual( ohdave_rsa_encrypt(b'aa111222', e, N), '726664bd9a23fd0c70f9f1b84aab5e3905ce1e45a584e9cbcf9bcc7510338fc1986d6c599ff990d923aa43c51c0d9013cd572e13bc58f4ae48f2ed8c0b0ba881') def test_pkcs1pad(self): data = [1, 2, 3] padded_data = pkcs1pad(data, 32) self.assertEqual(padded_data[:2], [0, 2]) self.assertEqual(padded_data[28:], [0, 1, 2, 3]) self.assertRaises(ValueError, pkcs1pad, data, 8) def test_encode_base_n(self): self.assertEqual(encode_base_n(0, 30), '0') self.assertEqual(encode_base_n(80, 30), '2k') custom_table = '9876543210ZYXWVUTSRQPONMLKJIHGFEDCBA' self.assertEqual(encode_base_n(0, 30, custom_table), '9') self.assertEqual(encode_base_n(80, 30, custom_table), '7P') self.assertRaises(ValueError, encode_base_n, 0, 70) self.assertRaises(ValueError, encode_base_n, 0, 60, custom_table) def test_caesar(self): self.assertEqual(caesar('ace', 'abcdef', 2), 'cea') self.assertEqual(caesar('cea', 'abcdef', -2), 'ace') self.assertEqual(caesar('ace', 'abcdef', -2), 'eac') self.assertEqual(caesar('eac', 'abcdef', 2), 'ace') self.assertEqual(caesar('ace', 'abcdef', 0), 'ace') self.assertEqual(caesar('xyz', 'abcdef', 2), 'xyz') self.assertEqual(caesar('abc', 'acegik', 2), 'ebg') self.assertEqual(caesar('ebg', 'acegik', -2), 'abc') def test_rot47(self): self.assertEqual(rot47('yt-dlp'), r'JE\5=A') self.assertEqual(rot47('YT-DLP'), r'*%\s{!') def test_urshift(self): self.assertEqual(urshift(3, 1), 1) self.assertEqual(urshift(-3, 1), 2147483646) GET_ELEMENT_BY_CLASS_TEST_STRING = ''' <span class="foo bar">nice</span> ''' def test_get_element_by_class(self): html = self.GET_ELEMENT_BY_CLASS_TEST_STRING self.assertEqual(get_element_by_class('foo', html), 'nice') self.assertEqual(get_element_by_class('no-such-class', html), None) def test_get_element_html_by_class(self): html = self.GET_ELEMENT_BY_CLASS_TEST_STRING self.assertEqual(get_element_html_by_class('foo', html), html.strip()) self.assertEqual(get_element_by_class('no-such-class', html), None) GET_ELEMENT_BY_ATTRIBUTE_TEST_STRING = ''' <div itemprop="author" itemscope>foo</div> ''' def test_get_element_by_attribute(self): html = self.GET_ELEMENT_BY_CLASS_TEST_STRING self.assertEqual(get_element_by_attribute('class', 'foo bar', html), 'nice') self.assertEqual(get_element_by_attribute('class', 'foo', html), None) self.assertEqual(get_element_by_attribute('class', 'no-such-foo', html), None) html = self.GET_ELEMENT_BY_ATTRIBUTE_TEST_STRING self.assertEqual(get_element_by_attribute('itemprop', 'author', html), 'foo') def test_get_element_html_by_attribute(self): html = self.GET_ELEMENT_BY_CLASS_TEST_STRING self.assertEqual(get_element_html_by_attribute('class', 'foo bar', html), html.strip()) self.assertEqual(get_element_html_by_attribute('class', 'foo', html), None) self.assertEqual(get_element_html_by_attribute('class', 'no-such-foo', html), None) html = self.GET_ELEMENT_BY_ATTRIBUTE_TEST_STRING self.assertEqual(get_element_html_by_attribute('itemprop', 'author', html), html.strip()) GET_ELEMENTS_BY_CLASS_TEST_STRING = ''' <span class="foo bar">nice</span><span class="foo bar">also nice</span> ''' GET_ELEMENTS_BY_CLASS_RES = ['<span class="foo bar">nice</span>', '<span class="foo bar">also nice</span>'] def test_get_elements_by_class(self): html = self.GET_ELEMENTS_BY_CLASS_TEST_STRING self.assertEqual(get_elements_by_class('foo', html), ['nice', 'also nice']) self.assertEqual(get_elements_by_class('no-such-class', html), []) def test_get_elements_html_by_class(self): html = self.GET_ELEMENTS_BY_CLASS_TEST_STRING self.assertEqual(get_elements_html_by_class('foo', html), self.GET_ELEMENTS_BY_CLASS_RES) self.assertEqual(get_elements_html_by_class('no-such-class', html), []) def test_get_elements_by_attribute(self): html = self.GET_ELEMENTS_BY_CLASS_TEST_STRING self.assertEqual(get_elements_by_attribute('class', 'foo bar', html), ['nice', 'also nice']) self.assertEqual(get_elements_by_attribute('class', 'foo', html), []) self.assertEqual(get_elements_by_attribute('class', 'no-such-foo', html), []) def test_get_elements_html_by_attribute(self): html = self.GET_ELEMENTS_BY_CLASS_TEST_STRING self.assertEqual(get_elements_html_by_attribute('class', 'foo bar', html), self.GET_ELEMENTS_BY_CLASS_RES) self.assertEqual(get_elements_html_by_attribute('class', 'foo', html), []) self.assertEqual(get_elements_html_by_attribute('class', 'no-such-foo', html), []) def test_get_elements_text_and_html_by_attribute(self): html = self.GET_ELEMENTS_BY_CLASS_TEST_STRING self.assertEqual( list(get_elements_text_and_html_by_attribute('class', 'foo bar', html)), list(zip(['nice', 'also nice'], self.GET_ELEMENTS_BY_CLASS_RES))) self.assertEqual(list(get_elements_text_and_html_by_attribute('class', 'foo', html)), []) self.assertEqual(list(get_elements_text_and_html_by_attribute('class', 'no-such-foo', html)), []) GET_ELEMENT_BY_TAG_TEST_STRING = ''' random text lorem ipsum</p> <div> this should be returned <span>this should also be returned</span> <div> this should also be returned </div> closing tag above should not trick, so this should also be returned </div> but this text should not be returned ''' GET_ELEMENT_BY_TAG_RES_OUTERDIV_HTML = GET_ELEMENT_BY_TAG_TEST_STRING.strip()[32:276] GET_ELEMENT_BY_TAG_RES_OUTERDIV_TEXT = GET_ELEMENT_BY_TAG_RES_OUTERDIV_HTML[5:-6] GET_ELEMENT_BY_TAG_RES_INNERSPAN_HTML = GET_ELEMENT_BY_TAG_TEST_STRING.strip()[78:119] GET_ELEMENT_BY_TAG_RES_INNERSPAN_TEXT = GET_ELEMENT_BY_TAG_RES_INNERSPAN_HTML[6:-7] def test_get_element_text_and_html_by_tag(self): html = self.GET_ELEMENT_BY_TAG_TEST_STRING self.assertEqual( get_element_text_and_html_by_tag('div', html), (self.GET_ELEMENT_BY_TAG_RES_OUTERDIV_TEXT, self.GET_ELEMENT_BY_TAG_RES_OUTERDIV_HTML)) self.assertEqual( get_element_text_and_html_by_tag('span', html), (self.GET_ELEMENT_BY_TAG_RES_INNERSPAN_TEXT, self.GET_ELEMENT_BY_TAG_RES_INNERSPAN_HTML)) self.assertRaises(compat_HTMLParseError, get_element_text_and_html_by_tag, 'article', html) def test_iri_to_uri(self): self.assertEqual( iri_to_uri('https://www.google.com/search?q=foo&ie=utf-8&oe=utf-8&client=firefox-b'), 'https://www.google.com/search?q=foo&ie=utf-8&oe=utf-8&client=firefox-b') # Same self.assertEqual( iri_to_uri('https://www.google.com/search?q=Käsesoßenrührlöffel'), # German for cheese sauce stirring spoon 'https://www.google.com/search?q=K%C3%A4seso%C3%9Fenr%C3%BChrl%C3%B6ffel') self.assertEqual( iri_to_uri('https://www.google.com/search?q=lt<+gt>+eq%3D+amp%26+percent%25+hash%23+colon%3A+tilde~#trash=?&garbage=#'), 'https://www.google.com/search?q=lt%3C+gt%3E+eq%3D+amp%26+percent%25+hash%23+colon%3A+tilde~#trash=?&garbage=#') self.assertEqual( iri_to_uri('http://правозащита38.рф/category/news/'), 'http://xn--38-6kcaak9aj5chl4a3g.xn--p1ai/category/news/') self.assertEqual( iri_to_uri('http://www.правозащита38.рф/category/news/'), 'http://www.xn--38-6kcaak9aj5chl4a3g.xn--p1ai/category/news/') self.assertEqual( iri_to_uri('https://i❤.ws/emojidomain/👍👏🤝💪'), 'https://xn--i-7iq.ws/emojidomain/%F0%9F%91%8D%F0%9F%91%8F%F0%9F%A4%9D%F0%9F%92%AA') self.assertEqual( iri_to_uri('http://日本語.jp/'), 'http://xn--wgv71a119e.jp/') self.assertEqual( iri_to_uri('http://导航.中国/'), 'http://xn--fet810g.xn--fiqs8s/') def test_clean_podcast_url(self): self.assertEqual(clean_podcast_url('https://www.podtrac.com/pts/redirect.mp3/chtbl.com/track/5899E/traffic.megaphone.fm/HSW7835899191.mp3'), 'https://traffic.megaphone.fm/HSW7835899191.mp3') self.assertEqual(clean_podcast_url('https://play.podtrac.com/npr-344098539/edge1.pod.npr.org/anon.npr-podcasts/podcast/npr/waitwait/2020/10/20201003_waitwait_wwdtmpodcast201003-015621a5-f035-4eca-a9a1-7c118d90bc3c.mp3'), 'https://edge1.pod.npr.org/anon.npr-podcasts/podcast/npr/waitwait/2020/10/20201003_waitwait_wwdtmpodcast201003-015621a5-f035-4eca-a9a1-7c118d90bc3c.mp3') def test_LazyList(self): it = list(range(10)) self.assertEqual(list(LazyList(it)), it) self.assertEqual(LazyList(it).exhaust(), it) self.assertEqual(LazyList(it)[5], it[5]) self.assertEqual(LazyList(it)[5:], it[5:]) self.assertEqual(LazyList(it)[:5], it[:5]) self.assertEqual(LazyList(it)[::2], it[::2]) self.assertEqual(LazyList(it)[1::2], it[1::2]) self.assertEqual(LazyList(it)[5::-1], it[5::-1]) self.assertEqual(LazyList(it)[6:2:-2], it[6:2:-2]) self.assertEqual(LazyList(it)[::-1], it[::-1]) self.assertTrue(LazyList(it)) self.assertFalse(LazyList(range(0))) self.assertEqual(len(LazyList(it)), len(it)) self.assertEqual(repr(LazyList(it)), repr(it)) self.assertEqual(str(LazyList(it)), str(it)) self.assertEqual(list(LazyList(it, reverse=True)), it[::-1]) self.assertEqual(list(reversed(LazyList(it))[::-1]), it) self.assertEqual(list(reversed(LazyList(it))[1:3:7]), it[::-1][1:3:7]) def test_LazyList_laziness(self): def test(ll, idx, val, cache): self.assertEqual(ll[idx], val) self.assertEqual(getattr(ll, '_LazyList__cache'), list(cache)) ll = LazyList(range(10)) test(ll, 0, 0, range(1)) test(ll, 5, 5, range(6)) test(ll, -3, 7, range(10)) ll = LazyList(range(10), reverse=True) test(ll, -1, 0, range(1)) test(ll, 3, 6, range(10)) ll = LazyList(itertools.count()) test(ll, 10, 10, range(11)) ll = reversed(ll) test(ll, -15, 14, range(15)) def test_format_bytes(self): self.assertEqual(format_bytes(0), '0.00B') self.assertEqual(format_bytes(1000), '1000.00B') self.assertEqual(format_bytes(1024), '1.00KiB') self.assertEqual(format_bytes(1024**2), '1.00MiB') self.assertEqual(format_bytes(1024**3), '1.00GiB') self.assertEqual(format_bytes(1024**4), '1.00TiB') self.assertEqual(format_bytes(1024**5), '1.00PiB') self.assertEqual(format_bytes(1024**6), '1.00EiB') self.assertEqual(format_bytes(1024**7), '1.00ZiB') self.assertEqual(format_bytes(1024**8), '1.00YiB') self.assertEqual(format_bytes(1024**9), '1024.00YiB') def test_hide_login_info(self): self.assertEqual(Config.hide_login_info(['-u', 'foo', '-p', 'bar']), ['-u', 'PRIVATE', '-p', 'PRIVATE']) self.assertEqual(Config.hide_login_info(['-u']), ['-u']) self.assertEqual(Config.hide_login_info(['-u', 'foo', '-u', 'bar']), ['-u', 'PRIVATE', '-u', 'PRIVATE']) self.assertEqual(Config.hide_login_info(['--username=foo']), ['--username=PRIVATE']) def test_locked_file(self): TEXT = 'test_locked_file\n' FILE = 'test_locked_file.ytdl' MODES = 'war' # Order is important try: for lock_mode in MODES: with locked_file(FILE, lock_mode, False) as f: if lock_mode == 'r': self.assertEqual(f.read(), TEXT * 2, 'Wrong file content') else: f.write(TEXT) for test_mode in MODES: testing_write = test_mode != 'r' try: with locked_file(FILE, test_mode, False): pass except (BlockingIOError, PermissionError): if not testing_write: # FIXME print(f'Known issue: Exclusive lock ({lock_mode}) blocks read access ({test_mode})') continue self.assertTrue(testing_write, f'{test_mode} is blocked by {lock_mode}') else: self.assertFalse(testing_write, f'{test_mode} is not blocked by {lock_mode}') finally: try: os.remove(FILE) except Exception: pass if __name__ == '__main__': unittest.main()
46.417534
382
0.604141
[ "Unlicense" ]
Yessssman/yt-dlp
test/test_utils.py
84,977
Python
#!/usr/bin/python3 # -*- coding: utf-8 -*- #pylint: skip-file from nose.tools import assert_equal from iot_message.cryptor.plain import Cryptor from iot_message.message import Message __author__ = 'Bartosz Kościów' import iot_message.factory as factory class TestCryptorPlain(object): def setUp(self): Message.chip_id = 'pc' Message.node_name = 'Turkusik' Message.drop_unencrypted = False Message.encoders = [] Message.decoders = {} def test_encode_message(self): Message.add_encoder(Cryptor()) msg = factory.MessageFactory.create() inp = {"event": "channel.on", "parameters": {"channel": 0}, "response": "", "targets": ["node-north"]} msg.set(inp) msg.encrypt() assert_equal(inp["event"], msg.data["event"]) assert_equal(inp["parameters"], msg.data["parameters"]) assert_equal(inp["targets"], msg.data["targets"]) def test_decrypt_message(self): Message.add_decoder(Cryptor()) inp = """{"protocol": "iot:1", "node": "Turkusik", "chip_id": "pc", "event": "message.plain", "parameters": ["a"], "response": "", "targets": ["Turkusik"]}""" msg = factory.MessageFactory.create(inp) assert_equal(msg.data["event"], "message.plain") assert_equal(msg.data["parameters"], ["a"]) assert_equal(msg.data["targets"], ['Turkusik'])
33.95122
166
0.630747
[ "MIT" ]
bkosciow/python_iot-1
iot_message/tests/test_plain_cryptor.py
1,394
Python
#! /usr/bin/env python import os os.mkdir('_testing') os.chdir('_testing') os.environ['MPLBACKEND'] = 'Agg' from pymt.components import FrostNumberGeoModel as Model model = Model() for default in model.defaults: print('{name}: {val} {units}'.format( name=default[0], val=default[1][0], units=default[1][1]))
21.6
65
0.682099
[ "MIT" ]
csdms-stack/permamodel-frostnumbergeo-csdms-recipe
recipe/run_test.py
324
Python
__author__ = 'tinglev' import logging import requests from requests import HTTPError, ConnectTimeout, RequestException from modules import environment from modules.subscribers.slack import slack_util from modules.event_system.event_system import subscribe_to_event, unsubscribe_from_event from modules import deployment_util LOG = logging.getLogger(__name__) DEFAULT_FLOTTSBRO_API_BASE_URL = 'https://api-r.referens.sys.kth.se/api/pipeline' def subscribe(): subscribe_to_event('deployment', handle_deployment) def unsubscribe(): unsubscribe_from_event('deployment', handle_deployment) def handle_deployment(deployment): global LOG add(deployment) return deployment def get_base_url(): return environment.get_env_with_default_value(environment.FLOTTSBRO_API_BASE_URL, DEFAULT_FLOTTSBRO_API_BASE_URL) def get_add_endpoint(cluster): return '{}/v1/latest/{}'.format(get_base_url(), cluster) def add(deployment): call_endpoint(get_add_endpoint(deployment["cluster"]), deployment) def get_headers(): api_key = environment.get_env(environment.FLOTTSBRO_API_KEY) if not api_key: LOG.error('No header env FLOTTSBRO_API_KEY specified ') return None return { 'api_key': api_key } def call_endpoint(endpoint, deployment): global LOG try: headers = get_headers() if headers: response = requests.post(endpoint, data=deployment, headers=headers) LOG.debug('Calling "%s", response was "%s"', endpoint, response.text) else: LOG.info('Skipped calling flottsbro-api, header constraints not satisfied.') except (HTTPError, ConnectTimeout, RequestException) as request_ex: LOG.error('Could not add deployment to Flottsbro-API: "%s"', request_ex)
31.561404
117
0.740411
[ "MIT" ]
KTH/alvares
modules/subscribers/flottsbro/flottsbro.py
1,799
Python
""" This module stores constants used during the operations of the UI. """ # Application info. CM_NAME = "CovertMark" CM_VER = "0.1" CM_RELEASE = "alpha" CM_AUTHOR = "C Shi" CM_LINK = "https://github.com/chongyangshi" CM_LICENSE = "Please see LICENSE.md for terms of usage of this program." CM_TITLE = """\ _____ _ ___ ___ _ / __ \ | | | \/ | | | | / \/ _____ _____ _ __| |_| . . | __ _ _ __| | __ | | / _ \ \ / / _ | '__| __| |\/| |/ _` | '__| |/ / | \__/| (_) \ V | __| | | |_| | | | (_| | | | < \____/\___/ \_/ \___|_| \__\_| |_/\__,_|_| |_|\_\\ """ DIVIDER = "-" * 40 PROCEDURE_RUN_FIELDS = ["strategy", "run_order", "user_params", "pt_pcap", "pt_filters", "pt_collection", "neg_pcap", "neg_filters", "neg_collection", "user_defined_name"] # UI colours. class colours: GREEN = '\033[92m' YELLOW = '\033[93m' PURPLE = '\033[95m' RED = '\033[91m' GRAY = '\033[90m' BGC = "\033[;7m" BOLD = '\033[1m' ENDC = '\033[0m' RATINGS = { (0, 75.0): (colours.GREEN, "This strategy is not very effective in identifying this obfuscation protocol."), (75.0, 90.0): (colours.PURPLE, "This strategy is reasonably effective in identifying this obfuscation protocol, and can be deployed by a state censor with some difficulties."), (90.0, 100.0): (colours.RED, "This strategy is very effective in identifying this obfuscation protocol, and can be easily deployed by a state censor.") } RATING_BANDS = { (0, 75.0): "Good Covertness", (75.0, 90.0): "Reasonable Covertness", (90.0, 100.0): "Bad Covertness" }
33.367347
180
0.582875
[ "MIT" ]
chongyangshi/CovertMark
CovertMark/constants.py
1,635
Python
import matplotlib.pyplot as plt import numpy as np def gen_data(n, start=0, end=10): x = np.linspace(start, end, n) y = np.sin(10*x) - x*x return y def gen_data_osc(n): return np.array([1024 + (-2)**(-i/100) for i in range(n)]) def gen_data_rand(n): return np.random.randn(n) + 0.3*np.linspace(0, 10, n) def calc_cov(X, Y): return np.sum((X - np.average(X))*(Y - np.average(Y))) / (X.shape[0] - 1) def angular_coef(X,Y): return calc_cov(X,Y)/calc_cov(X,X) def linear_coef(a, X, Y): return np.average(Y) - a*np.average(X) count = 100 end = 100 time = np.linspace(0, end, count) data = gen_data(count) delta = end / count preds = [] kg_preds = [] kg_prediction = 0 for i in range(1, count): a = angular_coef(time[:i], data[:i]) b = linear_coef(a, time[:i], data[:i]) prediction = (time[i]+delta)*a + b preds.append(prediction) avg_X = np.average(time[:i]) avg_Y = np.average(data[:i]) cov = calc_cov(time[:i], data[:i]) estimate = time*a + b plt.scatter(time, data, label="Medições", color="#FF5850") plt.scatter(time[1:], preds, label="Est. Min. Quad.", color="#62B21C") plt.plot(time, estimate, label="Min. Quad. Final", color="#36A1FF") plt.xlabel("Tempo") plt.ylabel("Temperatura") plt.title("Aproximação Por Minimos Quadrados") # Place a legend to the right of this smaller subplot. plt.legend() plt.show()
24.862069
78
0.613731
[ "MIT" ]
Raphael-C-Almeida/Wireless-Sensor-Network
Data Fusion Test/Minimos Quadrados Puro.py
1,446
Python
import numpy as np from time import sleep import torch import torch.nn as nn import torch.nn.functional as F from core.models.common_layers import batch_norm, get_nddr from core.tasks import get_tasks from core.utils import AttrDict from core.utils.losses import poly class SingleTaskNet(nn.Module): def __init__(self, cfg, net1, net2): super(SingleTaskNet, self).__init__() self.cfg = cfg self.net1 = net1 self.net2 = net2 assert len(net1.stages) == len(net2.stages) self.task1, self.task2 = get_tasks(cfg) self.num_stages = len(net1.stages) self._step = 0 def step(self): self._step += 1 def loss(self, x, labels): label_1, label_2 = labels result = self.forward(x) result.loss1 = self.task1.loss(result.out1, label_1) result.loss2 = self.task2.loss(result.out2, label_2) result.loss = result.loss1 + self.cfg.TRAIN.TASK2_FACTOR * result.loss2 return result def forward(self, x): N, C, H, W = x.size() y = x.clone() x = self.net1.base(x) y = self.net2.base(y) for stage_id in range(self.num_stages): x = self.net1.stages[stage_id](x) y = self.net2.stages[stage_id](y) x = self.net1.head(x) y = self.net2.head(y) return AttrDict({'out1': x, 'out2': y}) class SharedFeatureNet(nn.Module): def __init__(self, cfg, net1, net2): super(SharedFeatureNet, self).__init__() self.cfg = cfg self.net1 = net1 self.net2 = net2 assert len(net1.stages) == len(net2.stages) self.task1, self.task2 = get_tasks(cfg) self.num_stages = len(net1.stages) self._step = 0 def step(self): self._step += 1 def loss(self, x, labels): label_1, label_2 = labels result = self.forward(x) result.loss1 = self.task1.loss(result.out1, label_1) result.loss2 = self.task2.loss(result.out2, label_2) result.loss = result.loss1 + self.cfg.TRAIN.TASK2_FACTOR * result.loss2 return result def forward(self, x): x = self.net1.base(x) for stage_id in range(self.num_stages): x = self.net1.stages[stage_id](x) out1 = self.net1.head(x) out2 = self.net2.head(x) return AttrDict({'out1': out1, 'out2': out2}) class NDDRNet(nn.Module): def __init__(self, cfg, net1, net2): super(NDDRNet, self).__init__() self.cfg = cfg self.net1 = net1 self.net2 = net2 assert len(net1.stages) == len(net2.stages) self.task1, self.task2 = get_tasks(cfg) self.num_stages = len(net1.stages) nddrs = [] total_channels = 0 for stage_id in range(self.num_stages): out_channels = net1.stages[stage_id].out_channels assert out_channels == net2.stages[stage_id].out_channels if stage_id in cfg.TRAIN.AUX_LAYERS: total_channels += out_channels nddr = get_nddr(cfg, out_channels, out_channels) nddrs.append(nddr) nddrs = nn.ModuleList(nddrs) self.aux = cfg.TRAIN.AUX if self.aux: print("Using shortcut") self.aux_conv1 = nn.Sequential( nn.Conv2d(total_channels, 256, kernel_size=3, padding=1, bias=False), batch_norm(256, eps=1e-03, momentum=cfg.MODEL.BATCH_NORM_MOMENTUM), nn.ReLU(inplace=True), nn.Dropout2d(p=0.5), nn.Conv2d(256, cfg.MODEL.NET1_CLASSES, kernel_size=1) ) self.aux_conv2 = nn.Sequential( nn.Conv2d(total_channels, 256, kernel_size=3, padding=1, bias=False), batch_norm(256, eps=1e-03, momentum=cfg.MODEL.BATCH_NORM_MOMENTUM), nn.ReLU(inplace=True), nn.Dropout2d(p=0.5), nn.Conv2d(256, cfg.MODEL.NET2_CLASSES, kernel_size=1) ) self.nddrs = nn.ModuleDict({ 'nddrs': nddrs, }) self._step = 0 def step(self): self._step += 1 def loss(self, x, labels): label_1, label_2 = labels result = self.forward(x) result.loss1 = self.task1.loss(result.out1, label_1) result.loss2 = self.task2.loss(result.out2, label_2) result.loss = result.loss1 + self.cfg.TRAIN.TASK2_FACTOR * result.loss2 if self.aux: result.aux_loss1 = self.task1.loss(result.aux1, label_1) result.aux_loss2 = self.task2.loss(result.aux2, label_2) result.aux_loss = result.aux_loss1 + self.cfg.TRAIN.TASK2_FACTOR * result.aux_loss2 result.aux_weight = poly(start=self.cfg.TRAIN.AUX_WEIGHT, end=0., steps=self._step, total_steps=self.cfg.TRAIN.STEPS, period=self.cfg.TRAIN.AUX_PERIOD, power=1.) result.loss += result.aux_weight * result.aux_loss return result def forward(self, x): N, C, H, W = x.size() y = x.clone() x = self.net1.base(x) y = self.net2.base(y) xs, ys = [], [] for stage_id in range(self.num_stages): x = self.net1.stages[stage_id](x) y = self.net2.stages[stage_id](y) if isinstance(x, list): x[0], y[0] = self.nddrs['nddrs'][stage_id](x[0], y[0]) else: x, y = self.nddrs['nddrs'][stage_id](x, y) if self.aux and self.training and stage_id in self.cfg.TRAIN.AUX_LAYERS: xs.append(x) ys.append(y) x = self.net1.head(x) y = self.net2.head(y) result = AttrDict({'out1': x, 'out2': y}) if self.aux and self.training: _, _, h, w = x.size() aux_x = torch.cat([F.interpolate(_x, (h, w), mode='bilinear', align_corners=True) for _x in xs[:-1]] + [xs[-1]], dim=1) aux_y = torch.cat([F.interpolate(_y, (h, w), mode='bilinear', align_corners=True) for _y in ys[:-1]] + [ys[-1]], dim=1) result.aux1 = self.aux_conv1(aux_x) result.aux2 = self.aux_conv2(aux_y) return result
36.414773
124
0.559058
[ "Apache-2.0" ]
WZzhaoyi/MTLNAS
core/models/nddr_net.py
6,409
Python
# -*- coding: utf-8 -*- # Define here the models for your spider middleware # # See documentation in: # https://docs.scrapy.org/en/latest/topics/spider-middleware.html from scrapy import signals class SteamScrapeSpiderMiddleware(object): # Not all methods need to be defined. If a method is not defined, # scrapy acts as if the spider middleware does not modify the # passed objects. @classmethod def from_crawler(cls, crawler): # This method is used by Scrapy to create your spiders. s = cls() crawler.signals.connect(s.spider_opened, signal=signals.spider_opened) return s def process_spider_input(self, response, spider): # Called for each response that goes through the spider # middleware and into the spider. # Should return None or raise an exception. return None def process_spider_output(self, response, result, spider): # Called with the results returned from the Spider, after # it has processed the response. # Must return an iterable of Request, dict or Item objects. for i in result: yield i def process_spider_exception(self, response, exception, spider): # Called when a spider or process_spider_input() method # (from other spider middleware) raises an exception. # Should return either None or an iterable of Request, dict # or Item objects. pass def process_start_requests(self, start_requests, spider): # Called with the start requests of the spider, and works # similarly to the process_spider_output() method, except # that it doesn’t have a response associated. # Must return only requests (not items). for r in start_requests: yield r def spider_opened(self, spider): spider.logger.info('Spider opened: %s' % spider.name) class SteamScrapeDownloaderMiddleware(object): # Not all methods need to be defined. If a method is not defined, # scrapy acts as if the downloader middleware does not modify the # passed objects. @classmethod def from_crawler(cls, crawler): # This method is used by Scrapy to create your spiders. s = cls() crawler.signals.connect(s.spider_opened, signal=signals.spider_opened) return s def process_request(self, request, spider): # Called for each request that goes through the downloader # middleware. # Must either: # - return None: continue processing this request # - or return a Response object # - or return a Request object # - or raise IgnoreRequest: process_exception() methods of # installed downloader middleware will be called return None def process_response(self, request, response, spider): # Called with the response returned from the downloader. # Must either; # - return a Response object # - return a Request object # - or raise IgnoreRequest return response def process_exception(self, request, exception, spider): # Called when a download handler or a process_request() # (from other downloader middleware) raises an exception. # Must either: # - return None: continue processing this exception # - return a Response object: stops process_exception() chain # - return a Request object: stops process_exception() chain pass def spider_opened(self, spider): spider.logger.info('Spider opened: %s' % spider.name)
34.663462
78
0.666852
[ "MIT" ]
argwood/IndieP
steam-scrapy/steam_scrape/middlewares.py
3,607
Python
"""The tests for the Canary sensor platform.""" import copy import unittest from unittest.mock import Mock from homeassistant.components.canary import DATA_CANARY from homeassistant.components.sensor import canary from homeassistant.components.sensor.canary import CanarySensor, \ SENSOR_TYPES, ATTR_AIR_QUALITY, STATE_AIR_QUALITY_NORMAL, \ STATE_AIR_QUALITY_ABNORMAL, STATE_AIR_QUALITY_VERY_ABNORMAL from tests.common import (get_test_home_assistant) from tests.components.test_canary import mock_device, mock_location VALID_CONFIG = { "canary": { "username": "[email protected]", "password": "bar", } } class TestCanarySensorSetup(unittest.TestCase): """Test the Canary platform.""" DEVICES = [] def add_entities(self, devices, action): """Mock add devices.""" for device in devices: self.DEVICES.append(device) def setUp(self): """Initialize values for this testcase class.""" self.hass = get_test_home_assistant() self.config = copy.deepcopy(VALID_CONFIG) def tearDown(self): """Stop everything that was started.""" self.hass.stop() def test_setup_sensors(self): """Test the sensor setup.""" online_device_at_home = mock_device(20, "Dining Room", True, "Canary") offline_device_at_home = mock_device(21, "Front Yard", False, "Canary") online_device_at_work = mock_device(22, "Office", True, "Canary") self.hass.data[DATA_CANARY] = Mock() self.hass.data[DATA_CANARY].locations = [ mock_location("Home", True, devices=[online_device_at_home, offline_device_at_home]), mock_location("Work", True, devices=[online_device_at_work]), ] canary.setup_platform(self.hass, self.config, self.add_entities, None) assert 6 == len(self.DEVICES) def test_temperature_sensor(self): """Test temperature sensor with fahrenheit.""" device = mock_device(10, "Family Room", "Canary") location = mock_location("Home", False) data = Mock() data.get_reading.return_value = 21.1234 sensor = CanarySensor(data, SENSOR_TYPES[0], location, device) sensor.update() assert "Home Family Room Temperature" == sensor.name assert "°C" == sensor.unit_of_measurement assert 21.12 == sensor.state assert "mdi:thermometer" == sensor.icon def test_temperature_sensor_with_none_sensor_value(self): """Test temperature sensor with fahrenheit.""" device = mock_device(10, "Family Room", "Canary") location = mock_location("Home", False) data = Mock() data.get_reading.return_value = None sensor = CanarySensor(data, SENSOR_TYPES[0], location, device) sensor.update() assert sensor.state is None def test_humidity_sensor(self): """Test humidity sensor.""" device = mock_device(10, "Family Room", "Canary") location = mock_location("Home") data = Mock() data.get_reading.return_value = 50.4567 sensor = CanarySensor(data, SENSOR_TYPES[1], location, device) sensor.update() assert "Home Family Room Humidity" == sensor.name assert "%" == sensor.unit_of_measurement assert 50.46 == sensor.state assert "mdi:water-percent" == sensor.icon def test_air_quality_sensor_with_very_abnormal_reading(self): """Test air quality sensor.""" device = mock_device(10, "Family Room", "Canary") location = mock_location("Home") data = Mock() data.get_reading.return_value = 0.4 sensor = CanarySensor(data, SENSOR_TYPES[2], location, device) sensor.update() assert "Home Family Room Air Quality" == sensor.name assert sensor.unit_of_measurement is None assert 0.4 == sensor.state assert "mdi:weather-windy" == sensor.icon air_quality = sensor.device_state_attributes[ATTR_AIR_QUALITY] assert STATE_AIR_QUALITY_VERY_ABNORMAL == air_quality def test_air_quality_sensor_with_abnormal_reading(self): """Test air quality sensor.""" device = mock_device(10, "Family Room", "Canary") location = mock_location("Home") data = Mock() data.get_reading.return_value = 0.59 sensor = CanarySensor(data, SENSOR_TYPES[2], location, device) sensor.update() assert "Home Family Room Air Quality" == sensor.name assert sensor.unit_of_measurement is None assert 0.59 == sensor.state assert "mdi:weather-windy" == sensor.icon air_quality = sensor.device_state_attributes[ATTR_AIR_QUALITY] assert STATE_AIR_QUALITY_ABNORMAL == air_quality def test_air_quality_sensor_with_normal_reading(self): """Test air quality sensor.""" device = mock_device(10, "Family Room", "Canary") location = mock_location("Home") data = Mock() data.get_reading.return_value = 1.0 sensor = CanarySensor(data, SENSOR_TYPES[2], location, device) sensor.update() assert "Home Family Room Air Quality" == sensor.name assert sensor.unit_of_measurement is None assert 1.0 == sensor.state assert "mdi:weather-windy" == sensor.icon air_quality = sensor.device_state_attributes[ATTR_AIR_QUALITY] assert STATE_AIR_QUALITY_NORMAL == air_quality def test_air_quality_sensor_with_none_sensor_value(self): """Test air quality sensor.""" device = mock_device(10, "Family Room", "Canary") location = mock_location("Home") data = Mock() data.get_reading.return_value = None sensor = CanarySensor(data, SENSOR_TYPES[2], location, device) sensor.update() assert sensor.state is None assert sensor.device_state_attributes is None def test_battery_sensor(self): """Test battery sensor.""" device = mock_device(10, "Family Room", "Canary Flex") location = mock_location("Home") data = Mock() data.get_reading.return_value = 70.4567 sensor = CanarySensor(data, SENSOR_TYPES[4], location, device) sensor.update() assert "Home Family Room Battery" == sensor.name assert "%" == sensor.unit_of_measurement assert 70.46 == sensor.state assert "mdi:battery-70" == sensor.icon def test_wifi_sensor(self): """Test battery sensor.""" device = mock_device(10, "Family Room", "Canary Flex") location = mock_location("Home") data = Mock() data.get_reading.return_value = -57 sensor = CanarySensor(data, SENSOR_TYPES[3], location, device) sensor.update() assert "Home Family Room Wifi" == sensor.name assert "dBm" == sensor.unit_of_measurement assert -57 == sensor.state assert "mdi:wifi" == sensor.icon
34.219512
79
0.648753
[ "Apache-2.0" ]
27tech/home-assistant
tests/components/sensor/test_canary.py
7,016
Python
import linelib import datetime import signal def handler(x, y): pass signal.signal(signal.SIGUSR1, handler) signal.signal(signal.SIGALRM, handler) while True: linelib.sendblock("date", {"full_text": datetime.datetime.now().strftime( "%Y-%m-%e %H:%M:%S" )}) linelib.sendPID("date") linelib.waitsig(1)
18.444444
77
0.671687
[ "MIT" ]
5225225/bar
modules/timeblock.py
332
Python
# -*- coding: utf-8 -*- # Generated by Django 1.9.6 on 2016-07-07 21:36 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('users', '0002_auto_20160706_2232'), ] operations = [ migrations.AlterField( model_name='userprofile', name='picture_path', field=models.CharField(blank=True, max_length=128, null=True), ), ]
23
74
0.6294
[ "MIT" ]
otherland8/market-place
market_place/users/migrations/0003_auto_20160708_0036.py
483
Python
# Copyright (c) 2020 DDN. All rights reserved. # Use of this source code is governed by a MIT-style # license that can be found in the LICENSE file. from collections import defaultdict import json from django.db.models import Q from django.contrib.contenttypes.models import ContentType class LockCache(object): # Lock change receivers are called whenever a change occurs to the locks. It allows something to # respond to changes. An example would be long polling. # The receivers are called with the lock being removed and LOCK_ADD or LOCK_REMOVE as the paramter. lock_change_receivers = [] LOCK_ADD = 1 LOCK_REMOVE = 2 def __init__(self): from chroma_core.models import Job, StateLock self.write_locks = [] self.write_by_item = defaultdict(list) self.read_locks = [] self.read_by_item = defaultdict(list) self.all_by_job = defaultdict(list) self.all_by_item = defaultdict(list) for job in Job.objects.filter(~Q(state="complete")): if job.locks_json: locks = json.loads(job.locks_json) for lock in locks: self._add(StateLock.from_dict(job, lock)) def call_receivers(self, lock, add_remove): for lock_change_receiver in self.lock_change_receivers: lock_change_receiver(lock, add_remove) def remove_job(self, job): locks = list(self.all_by_job[job.id]) n = len(locks) for lock in locks: if lock.write: self.write_locks.remove(lock) self.write_by_item[lock.locked_item].remove(lock) else: self.read_locks.remove(lock) self.read_by_item[lock.locked_item].remove(lock) self.all_by_job[job.id].remove(lock) self.all_by_item[lock.locked_item].remove(lock) self.call_receivers(lock, self.LOCK_REMOVE) return n def add(self, lock): self._add(lock) def _add(self, lock): assert lock.job.id is not None if lock.write: self.write_locks.append(lock) self.write_by_item[lock.locked_item].append(lock) else: self.read_locks.append(lock) self.read_by_item[lock.locked_item].append(lock) self.all_by_job[lock.job.id].append(lock) self.all_by_item[lock.locked_item].append(lock) self.call_receivers(lock, self.LOCK_ADD) def get_by_job(self, job): return self.all_by_job[job.id] def get_all(self, locked_item): return self.all_by_item[locked_item] def get_latest_write(self, locked_item, not_job=None): try: if not_job is not None: return sorted( [l for l in self.write_by_item[locked_item] if l.job != not_job], lambda a, b: cmp(a.job.id, b.job.id), )[-1] return sorted(self.write_by_item[locked_item], lambda a, b: cmp(a.job.id, b.job.id))[-1] except IndexError: return None def get_read_locks(self, locked_item, after, not_job): return [x for x in self.read_by_item[locked_item] if after <= x.job.id and x.job != not_job] def get_write(self, locked_item): return self.write_by_item[locked_item] def get_by_locked_item(self, item): return self.all_by_item[item] def get_write_by_locked_item(self): result = {} for locked_item, locks in self.write_by_item.items(): if locks: result[locked_item] = sorted(locks, lambda a, b: cmp(a.job.id, b.job.id))[-1] return result def lock_change_receiver(): """ A decorator for connecting receivers to signals that a lock has change. @receiver(post_save, sender=MyModel) def signal_receiver(sender, **kwargs): ... """ def _decorator(func): LockCache.lock_change_receivers.append(func) return func return _decorator def to_lock_json(lock, add_remove=LockCache.LOCK_ADD): if getattr(lock.locked_item, "downcast", None) and callable(lock.locked_item.downcast): item = lock.locked_item.downcast() else: item = lock.locked_item return { "job_id": lock.job.id, "content_type_id": ContentType.objects.get_for_model(item).id, "item_id": lock.locked_item.id, "uuid": lock.uuid, "description": lock.job.description(), "lock_type": "write" if lock.write else "read", "action": "add" if add_remove == LockCache.LOCK_ADD else "remove", }
33.028571
103
0.632353
[ "MIT" ]
beevans/integrated-manager-for-lustre
chroma_core/services/job_scheduler/lock_cache.py
4,624
Python
from django.urls import path, include urlpatterns = [ path('', include(('rest_friendship.urls', 'rest_friendship'), namespace='rest_friendship')), ]
25.666667
96
0.720779
[ "ISC" ]
sflems/django-rest-friendship
tests/urls.py
154
Python
#for fixture loading
10.5
20
0.809524
[ "BSD-2-Clause" ]
chalkchisel/django-rest-framework
examples/permissionsexample/models.py
21
Python
""" Support for interfacing with the XBMC/Kodi JSON-RPC API. For more details about this platform, please refer to the documentation at https://home-assistant.io/components/media_player.kodi/ """ import asyncio import logging import urllib import aiohttp import voluptuous as vol from homeassistant.components.media_player import ( SUPPORT_NEXT_TRACK, SUPPORT_PAUSE, SUPPORT_PREVIOUS_TRACK, SUPPORT_SEEK, SUPPORT_PLAY_MEDIA, SUPPORT_VOLUME_MUTE, SUPPORT_VOLUME_SET, SUPPORT_STOP, SUPPORT_TURN_OFF, SUPPORT_PLAY, SUPPORT_VOLUME_STEP, MediaPlayerDevice, PLATFORM_SCHEMA) from homeassistant.const import ( STATE_IDLE, STATE_OFF, STATE_PAUSED, STATE_PLAYING, CONF_HOST, CONF_NAME, CONF_PORT, CONF_USERNAME, CONF_PASSWORD) from homeassistant.helpers.aiohttp_client import async_get_clientsession import homeassistant.helpers.config_validation as cv REQUIREMENTS = ['jsonrpc-async==0.2'] _LOGGER = logging.getLogger(__name__) CONF_TURN_OFF_ACTION = 'turn_off_action' DEFAULT_NAME = 'Kodi' DEFAULT_PORT = 8080 DEFAULT_TIMEOUT = 5 TURN_OFF_ACTION = [None, 'quit', 'hibernate', 'suspend', 'reboot', 'shutdown'] SUPPORT_KODI = SUPPORT_PAUSE | SUPPORT_VOLUME_SET | SUPPORT_VOLUME_MUTE | \ SUPPORT_PREVIOUS_TRACK | SUPPORT_NEXT_TRACK | SUPPORT_SEEK | \ SUPPORT_PLAY_MEDIA | SUPPORT_STOP | SUPPORT_PLAY | SUPPORT_VOLUME_STEP PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({ vol.Required(CONF_HOST): cv.string, vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string, vol.Optional(CONF_PORT, default=DEFAULT_PORT): cv.port, vol.Optional(CONF_TURN_OFF_ACTION, default=None): vol.In(TURN_OFF_ACTION), vol.Inclusive(CONF_USERNAME, 'auth'): cv.string, vol.Inclusive(CONF_PASSWORD, 'auth'): cv.string, }) @asyncio.coroutine def async_setup_platform(hass, config, async_add_entities, discovery_info=None): """Setup the Kodi platform.""" host = config.get(CONF_HOST) port = config.get(CONF_PORT) if host.startswith('http://') or host.startswith('https://'): host = host.lstrip('http://').lstrip('https://') _LOGGER.warning( "Kodi host name should no longer conatin http:// See updated " "definitions here: " "https://home-assistant.io/components/media_player.kodi/") entity = KodiDevice( hass, name=config.get(CONF_NAME), host=host, port=port, username=config.get(CONF_USERNAME), password=config.get(CONF_PASSWORD), turn_off_action=config.get(CONF_TURN_OFF_ACTION)) yield from async_add_entities([entity], update_before_add=True) class KodiDevice(MediaPlayerDevice): """Representation of a XBMC/Kodi device.""" def __init__(self, hass, name, host, port, username=None, password=None, turn_off_action=None): """Initialize the Kodi device.""" import jsonrpc_async self.hass = hass self._name = name kwargs = { 'timeout': DEFAULT_TIMEOUT, 'session': async_get_clientsession(hass), } if username is not None: kwargs['auth'] = aiohttp.BasicAuth(username, password) image_auth_string = "{}:{}@".format(username, password) else: image_auth_string = "" self._http_url = 'http://{}:{}/jsonrpc'.format(host, port) self._image_url = 'http://{}{}:{}/image'.format( image_auth_string, host, port) self._server = jsonrpc_async.Server(self._http_url, **kwargs) self._turn_off_action = turn_off_action self._players = list() self._properties = None self._item = None self._app_properties = None @property def name(self): """Return the name of the device.""" return self._name @asyncio.coroutine def _get_players(self): """Return the active player objects or None.""" import jsonrpc_async try: return (yield from self._server.Player.GetActivePlayers()) except jsonrpc_async.jsonrpc.TransportError: if self._players is not None: _LOGGER.info('Unable to fetch kodi data') _LOGGER.debug('Unable to fetch kodi data', exc_info=True) return None @property def state(self): """Return the state of the device.""" if self._players is None: return STATE_OFF if len(self._players) == 0: return STATE_IDLE if self._properties['speed'] == 0 and not self._properties['live']: return STATE_PAUSED else: return STATE_PLAYING @asyncio.coroutine def async_update(self): """Retrieve latest state.""" self._players = yield from self._get_players() if self._players is not None and len(self._players) > 0: player_id = self._players[0]['playerid'] assert isinstance(player_id, int) self._properties = yield from self._server.Player.GetProperties( player_id, ['time', 'totaltime', 'speed', 'live'] ) self._item = (yield from self._server.Player.GetItem( player_id, ['title', 'file', 'uniqueid', 'thumbnail', 'artist'] ))['item'] self._app_properties = \ yield from self._server.Application.GetProperties( ['volume', 'muted'] ) else: self._properties = None self._item = None self._app_properties = None @property def volume_level(self): """Volume level of the media player (0..1).""" if self._app_properties is not None: return self._app_properties['volume'] / 100.0 @property def is_volume_muted(self): """Boolean if volume is currently muted.""" if self._app_properties is not None: return self._app_properties['muted'] @property def media_content_id(self): """Content ID of current playing media.""" if self._item is not None: return self._item.get('uniqueid', None) @property def media_content_type(self): """Content type of current playing media.""" if self._players is not None and len(self._players) > 0: return self._players[0]['type'] @property def media_duration(self): """Duration of current playing media in seconds.""" if self._properties is not None and not self._properties['live']: total_time = self._properties['totaltime'] return ( total_time['hours'] * 3600 + total_time['minutes'] * 60 + total_time['seconds']) @property def media_image_url(self): """Image url of current playing media.""" if self._item is None: return None url_components = urllib.parse.urlparse(self._item['thumbnail']) if url_components.scheme == 'image': return '{}/{}'.format( self._image_url, urllib.parse.quote_plus(self._item['thumbnail'])) @property def media_title(self): """Title of current playing media.""" # find a string we can use as a title if self._item is not None: return self._item.get( 'title', self._item.get('label', self._item.get('file', 'unknown'))) @property def supported_media_commands(self): """Flag of media commands that are supported.""" supported_media_commands = SUPPORT_KODI if self._turn_off_action in TURN_OFF_ACTION: supported_media_commands |= SUPPORT_TURN_OFF return supported_media_commands @asyncio.coroutine def async_turn_off(self): """Execute turn_off_action to turn off media player.""" if self._turn_off_action == 'quit': yield from self._server.Application.Quit() elif self._turn_off_action == 'hibernate': yield from self._server.System.Hibernate() elif self._turn_off_action == 'suspend': yield from self._server.System.Suspend() elif self._turn_off_action == 'reboot': yield from self._server.System.Reboot() elif self._turn_off_action == 'shutdown': yield from self._server.System.Shutdown() else: _LOGGER.warning('turn_off requested but turn_off_action is none') @asyncio.coroutine def async_volume_up(self): """Volume up the media player.""" assert ( yield from self._server.Input.ExecuteAction('volumeup')) == 'OK' @asyncio.coroutine def async_volume_down(self): """Volume down the media player.""" assert ( yield from self._server.Input.ExecuteAction('volumedown')) == 'OK' def async_set_volume_level(self, volume): """Set volume level, range 0..1. This method must be run in the event loop and returns a coroutine. """ return self._server.Application.SetVolume(int(volume * 100)) def async_mute_volume(self, mute): """Mute (true) or unmute (false) media player. This method must be run in the event loop and returns a coroutine. """ return self._server.Application.SetMute(mute) @asyncio.coroutine def async_set_play_state(self, state): """Helper method for play/pause/toggle.""" players = yield from self._get_players() if len(players) != 0: yield from self._server.Player.PlayPause( players[0]['playerid'], state) def async_media_play_pause(self): """Pause media on media player. This method must be run in the event loop and returns a coroutine. """ return self.async_set_play_state('toggle') def async_media_play(self): """Play media. This method must be run in the event loop and returns a coroutine. """ return self.async_set_play_state(True) def async_media_pause(self): """Pause the media player. This method must be run in the event loop and returns a coroutine. """ return self.async_set_play_state(False) @asyncio.coroutine def async_media_stop(self): """Stop the media player.""" players = yield from self._get_players() if len(players) != 0: yield from self._server.Player.Stop(players[0]['playerid']) @asyncio.coroutine def _goto(self, direction): """Helper method used for previous/next track.""" players = yield from self._get_players() if len(players) != 0: if direction == 'previous': # first seek to position 0. Kodi goes to the beginning of the # current track if the current track is not at the beginning. yield from self._server.Player.Seek(players[0]['playerid'], 0) yield from self._server.Player.GoTo( players[0]['playerid'], direction) def async_media_next_track(self): """Send next track command. This method must be run in the event loop and returns a coroutine. """ return self._goto('next') def async_media_previous_track(self): """Send next track command. This method must be run in the event loop and returns a coroutine. """ return self._goto('previous') @asyncio.coroutine def async_media_seek(self, position): """Send seek command.""" players = yield from self._get_players() time = {} time['milliseconds'] = int((position % 1) * 1000) position = int(position) time['seconds'] = int(position % 60) position /= 60 time['minutes'] = int(position % 60) position /= 60 time['hours'] = int(position) if len(players) != 0: yield from self._server.Player.Seek(players[0]['playerid'], time) def async_play_media(self, media_type, media_id, **kwargs): """Send the play_media command to the media player. This method must be run in the event loop and returns a coroutine. """ if media_type == "CHANNEL": return self._server.Player.Open( {"item": {"channelid": int(media_id)}}) else: return self._server.Player.Open( {"item": {"file": str(media_id)}})
33.4
78
0.621876
[ "MIT" ]
sbidoul/home-assistant
homeassistant/components/media_player/kodi.py
12,525
Python
## DQN Tutorial ## Implementation from https://github.com/FitMachineLearning import torch import gym import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import numpy as np from dataclasses import dataclass from typing import Any from random import random @dataclass class sars: state: Any action: Any reward: float next_state: Any done: bool qval: float advantage: float = 0.0 class DQNAgent: def __init__(self,actor_model,critic_model): self.actor_model = actor_model self.critic_model = critic_model def get_actions(self, observations): # import ipdb; ipdb.set_trace() guessed_actions = self.actor_model(torch.Tensor(observations).to(self.actor_model.device)) return guessed_actions def get_predicted_Q_values(self,observation_and_action): guessed_Qs = self.critic_model(torch.Tensor(observation_and_action)) return guessed_Qs(-1)[1] def update_target_model(self): self.targetModel.load_state_dict(self.model.state_dict()) class ActorModel(nn.Module): def __init__(self, obs_shape, action_shape,lr): super(ActorModel,self).__init__() assert len(obs_shape) ==1, "This network only works on flat observations" self.obs_shape = obs_shape self.action_shape = action_shape # import ipdb; ipdb.set_trace() self.net = torch.nn.Sequential( torch.nn.Linear(obs_shape[0],512), torch.nn.ReLU(), # torch.nn.Linear(1024,256), # torch.nn.ReLU(), torch.nn.Linear(512,action_shape[0]) ) self.opt = optim.Adam(self.net.parameters(),lr=lr) if torch.cuda.is_available(): print("Using CUDA") self.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cuda:1') self.to(self.device) def forward(self, x): return self.net(x) class CriticModel(nn.Module): def __init__(self, obs_shape, action_shape,lr): super(CriticModel,self).__init__() assert len(obs_shape) ==1, "This network only works on flat observations" self.obs_shape = obs_shape self.action_shape = action_shape self.net = torch.nn.Sequential( torch.nn.Linear(obs_shape[0]+action_shape[0],512), torch.nn.ReLU(), # torch.nn.Linear(2048,512), # torch.nn.ReLU(), torch.nn.Linear(512,1) # one out put because we are predicting Q values ) self.opt = optim.Adam(self.net.parameters(),lr=lr) if torch.cuda.is_available(): print("Using CUDA") self.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cuda:1') self.to(self.device) def forward(self, x): return self.net(x) class ReplayBuffer: def __init__(self, buffer_size = 1000): # self.buffer_size = buffer_size self.buffer_size = buffer_size self.buffer = np.empty((buffer_size),dtype=object) # self.buffer = [] self.index = 0 def insert(self, sars): # self.buffer.append(sars) # print("inserting index ", self.index, "@",self.index%self.buffer_size) if(self.index == 10): print("first 10 ",self.buffer[0:10]) # import ipdb; ipdb.set_trace() # if(self.index > self.buffer_size and self.index%self.buffer_size==0): # print("first 10 ",self.buffer[0:10]) # print("last 10 ",self.buffer[-10:]) # print("") # import ipdb; ipdb.set_trace() self.buffer[self.index%self.buffer_size] = sars self.index+=1 # self.buffer.append(sars) # if(len(self.buffer)>self.buffer_size): # self.buffer = self.buffer[1:] # # print("Clipping Buffer at size", len(self.buffer)) def sample(self, num_samples,current_episode_steps): # assert num_samples < min(len(self.buffer),self.index) # if num_samples>self.index: # print("sampling n ",min(num_samples,self.index)) a = self.buffer[0:min(self.index,self.buffer_size)] if len(self.buffer) > 0: return np.random.choice(a, min(num_samples,self.index)) else: return []
34.992063
99
0.608528
[ "MIT" ]
FitMachineLearning/FitML
Pytorch/ActorCritic/agent_and_model.py
4,409
Python
""" library to take autodiff and execute a computation graph """ from __future__ import absolute_import import numpy as np from .Node import Op from .. import ndarray from ..stream import * import ctypes import os from pynvml import * FLAG_SHOW_GRAPH = False G_NODE_ID = 0 NAME_RULE = 1 def communicate_init(worker_num, worker_id, source_ip, target_ip): global lib_communicate # lib_communicate.DL_Connect_Init(2, 0, "*:4001", "localhost:4002") # lib_communicate.DL_Connect_Init(2, 1, "*:4002", "localhost:4001") curr_path = os.path.dirname(os.path.abspath(os.path.expanduser(__file__))) lib_path = os.path.join(curr_path, '../../build/lib/') path_to_so_file = os.path.join(lib_path, "lib_communication.so") lib_communicate = ctypes.cdll.LoadLibrary(path_to_so_file) lib_communicate.DL_Connect_Init( worker_num, worker_id, source_ip, target_ip) def communicate_finish(): lib_communicate.DL_Communicate_Close() class Distributed_CommunicateOp(Op): def __call__(self, nodeA): new_node = Op.__call__(self) new_node.inputs = [nodeA] new_node.name = "Distributed_Communicate(%s)" % (nodeA.name) # print nodeA.name return new_node def compute(self, node, input_vals, output_val, use_numpy=True): after_reduce_gradient_cpu = ndarray.empty( shape=output_val.shape, ctx=ndarray.cpu(0)) if use_numpy: gradient_val_cpu = ndarray.array(input_vals[0], ctx=ndarray.cpu(0)) else: gradient_val_cpu = ndarray.array( input_vals[0].asnumpy(), ctx=ndarray.cpu(0)) # print gradient_val_cpu.asnumpy() lib_communicate.DL_Communicate_Init(gradient_val_cpu.handle) lib_communicate.DL_Communicate( gradient_val_cpu.handle, after_reduce_gradient_cpu.handle) # print after_reduce_gradient_cpu.asnumpy() if use_numpy: output_val[:] = after_reduce_gradient_cpu.asnumpy() else: after_reduce_gradient_cpu.copyto(output_val) def gradient(self, node, output_grad): raise NotImplementedError def infer_shape(self, node, input_shapes): return input_shapes[0] distributed_communicate_op = Distributed_CommunicateOp() class StreamExecutor(object): """Executor computes values for given set of nodes in computation graph.""" def __init__(self, eval_node_list, ctx = None, stream = None, policy = None): """ Parameters ---------- eval_node_list: list of nodes whose values need to be computed. ctx: runtime DLContext, default is None which means np.ndarray on cpu topo_order: list of nodes in topological order node_to_shape_map: dict from node to shape of the node node_to_arr_map: dict from node to ndarray.NDArray allocated for node feed_shapes: shapes of feed_dict from last run(...) """ self.eval_node_list = eval_node_list self.ctx = ctx if stream is None: self.stream = create_stream_handle(ctx) else: self.stream = stream self.stream.sync() self.topo_order = find_topo_sort(self.eval_node_list) self.node_to_shape_map = None self.node_to_arr_map = None self.feed_shapes = None self.policy = policy if self.policy == 'swap': self.swap_queue = [] def infer_shape(self, feed_shapes): """Given shapes of feed_dict nodes, infer shape for all nodes in graph. Implementation note: Iteratively calls node.op.infer_shape to infer shapes. Node shapes stored in self.node_to_shape_map. Parameters ---------- feed_shapes: node->shapes mapping for feed_dict nodes. """ """TODO: Your code here""" self.node_to_shape_map = {} for node in self.topo_order: if node in feed_shapes: self.node_to_shape_map[node] = feed_shapes[node] else: # print(node.name) input_shapes = [self.node_to_shape_map[n] for n in node.inputs] self.node_to_shape_map[node] = node.op.infer_shape( node, input_shapes) def memory_plan(self, feed_shapes): """Allocates ndarray.NDArray for every node except feed_dict nodes. Implementation note: Option 1: Alloc a ndarray.NDArray per node that persists across run() Option 2: Implement a memory pool to reuse memory for nodes of same shapes. More details see Lecture 7. For both options, self.node_to_arr_map stores node->NDArray mapping to allow mapping to persist across multiple executor.run(). Hint: use ndarray.empty(shape, ctx=self.ctx) to allocate NDArray. Parameters ---------- feed_shapes: node->shapes mapping for feed_dict nodes. """ """TODO: Your code here""" assert (self.ctx is not None) # self.infer_shape(feed_shapes) self.node_to_arr_map = {} for node, shape in self.node_to_shape_map.items(): if self.policy == 'swap': if not node.swap: self.node_to_arr_map[node] = ndarray.empty( shape, ctx=self.ctx) elif self.policy == 'vdnn': self.node_to_arr_map[node] = np.empty(shape) else: self.node_to_arr_map[node] = ndarray.empty(shape, ctx=self.ctx) def run(self, feed_dict, convert_to_numpy_ret_vals=False): """ Parameters ---------- feed_dict: a dictionary of node->np.ndarray supplied by user. convert_to_numpy_ret_vals: whether to convert ret vals to np.array Returns ------- A list of values for nodes in eval_node_list. NDArray or np.ndarray. """ def are_feed_shapes_equal(sa, sb): if (not isinstance(sa, dict)) or (not isinstance(sb, dict)): return False unmatched_item = set(sa.items()) ^ set(sb.items()) return len(unmatched_item) == 0 # Assume self.ctx is None implies numpy array and numpy ops. use_numpy = self.ctx is None node_to_val_map = {} for node, value in feed_dict.items(): if use_numpy: # all values passed in feed_dict must be np.ndarray assert isinstance(value, np.ndarray) node_to_val_map[node] = value else: # convert values to ndarray.NDArray if necessary if isinstance(value, np.ndarray): node_to_val_map[node] = ndarray.array(value, ctx=self.ctx) elif isinstance(value, ndarray.NDArray): node_to_val_map[node] = value else: assert False, "feed_dict value type not supported" # print"xxxx" # collect shapes for all placeholders # infer shape if feed_shapes changed since last run # e.g. call run() on test data after trainng # print feed_shapes feed_shapes = {} for node in node_to_val_map: feed_shapes[node] = node_to_val_map[node].shape if(not are_feed_shapes_equal(feed_shapes, self.feed_shapes)): self.infer_shape(feed_shapes) self.feed_shapes = feed_shapes if (not use_numpy): self.memory_plan(self.feed_shapes) for node in self.topo_order: if node in node_to_val_map: continue input_vals = [node_to_val_map[n] for n in node.inputs] if use_numpy: node_val = np.empty(shape=self.node_to_shape_map[node]) else: node_val = self.node_to_arr_map[node] # print(node.name) node.op.compute(node, input_vals, node_val, use_numpy, self.stream) node_to_val_map[node] = node_val self.stream.sync() if not use_numpy and convert_to_numpy_ret_vals: return [node_to_val_map[n].asnumpy() for n in self.eval_node_list] return [node_to_val_map[n] for n in self.eval_node_list] # def run(self, feed_dict, convert_to_numpy_ret_vals=False): # """ # Parameters # ---------- # feed_dict: a dictionary of node->np.ndarray supplied by user. # convert_to_numpy_ret_vals: whether to convert ret vals to np.array # Returns # ------- # A list of values for nodes in eval_node_list. NDArray or np.ndarray. # """ # def are_feed_shapes_equal(sa, sb): # if (not isinstance(sa, dict)) or (not isinstance(sb, dict)): # return False # unmatched_item = set(sa.items()) ^ set(sb.items()) # return len(unmatched_item) == 0 # # Assume self.ctx is None implies numpy array and numpy ops. # use_numpy = self.ctx is None # node_to_val_map = {} # for node, value in feed_dict.items(): # if self.policy == 'vdnn': # assert isinstance(value, np.ndarray) # node_to_val_map[node] = value # else: # if use_numpy: # # all values passed in feed_dict must be np.ndarray # assert isinstance(value, np.ndarray) # node_to_val_map[node] = value # else: # # convert values to ndarray.NDArray if necessary # if isinstance(value, np.ndarray): # if self.policy == 'swap': # if node.swap == True: # node_to_val_map[node] = value # else: # node_to_val_map[node] = ndarray.array(value, ctx=self.ctx) # else: # node_to_val_map[node] = ndarray.array(value, ctx=self.ctx) # elif isinstance(value, ndarray.NDArray): # node_to_val_map[node] = value # else: # assert False, "feed_dict value type not supported" # # collect shapes for all placeholders # feed_shapes = {} # for node in node_to_val_map: # feed_shapes[node] = node_to_val_map[node].shape # # infer shape if feed_shapes changed since last run # # e.g. call run() on test data after trainng # # print feed_shapes # if (not are_feed_shapes_equal(feed_shapes, self.feed_shapes)): # self.infer_shape(feed_shapes) # self.feed_shapes = feed_shapes # if not self.policy == 'vdnn': # # plan memory if using GPU # if (not use_numpy): # self.memory_plan(feed_shapes) # # Traverse graph in topo order and compute values for all nodes. # global FLAG_SHOW_GRAPH # if self.policy == 'swap': # # generate swap queue # if not use_numpy: # for node in self.topo_order: # if node not in node_to_val_map: # # variable in placeholder # for input_node in node.inputs: # if input_node.swap == True: # self.swap_queue.append(input_node) # # variable grad # if node.swap == True: # self.swap_queue.append(node) # node_in_GPU = None # if FLAG_SHOW_GRAPH: # print "Show swap queue:" # for node in self.swap_queue: # print node # elif self.policy == 'vdnn': # # TODO traverse graph to select in-gpu window # window = [0,0] # if not use_numpy: # nvmlInit() # handle = nvmlDeviceGetHandleByIndex(0) # info = nvmlDeviceGetMemoryInfo(handle) # gpu_mem = info.free # nvmlShutdown() # loss_node = self.eval_node_list[0] # window[1] = self.topo_order.index(loss_node)+1 # window[0] = self.topo_order.index(loss_node)+1 # for node in reversed(self.topo_order[:window[1]+1]): # node_size = 4 # float32 # #print node, self.node_to_shape_map[node] # for shape in self.node_to_shape_map[node]: # node_size = node_size * shape # if gpu_mem > node_size: # gpu_mem = gpu_mem - node_size # window[0] = window[0] - 1 # #print "gpu_mem:",gpu_mem # # Traverse graph in topo order and compute values for all nodes. # if FLAG_SHOW_GRAPH: # print "run topo_order" # # Show graph dependency # if FLAG_SHOW_GRAPH: # print "node:",node # print "node.desc:",node.desc # for node in self.topo_order: # if self.policy == 'vdnn': # # Skip placeholder nodes # if node in node_to_val_map: # continue # # H2D before compute # ## Collect inputs # input_vals = [] # for n in node.inputs: # if not use_numpy: # if isinstance(node_to_val_map[n], np.ndarray): # node_to_val_map[n] = ndarray.array(node_to_val_map[n], ctx=self.ctx) # input_vals.append(node_to_val_map[n]) # ## Alloc node space # if use_numpy: # node_val = np.empty(shape=self.node_to_shape_map[node]) # else: # node_val = ndarray.empty(shape=self.node_to_shape_map[node], ctx=self.ctx) # # Compute # # node_val is modified in-place whether np.ndarray or NDArray # node.op.compute(node, input_vals, node_val, use_numpy) # # D2H after compute # if use_numpy: # node_to_val_map[node] = node_val # else: # node_index = self.topo_order.index(node) # if node_index > window[0] and node_index < window[1]: # node_to_val_map[node] = node_val # continue # node_to_val_map[node] = node_val.asnumpy() # del node_val # for n in node.inputs: # if isinstance(node_to_val_map[n], ndarray.NDArray): # tmp_val = node_to_val_map[n].asnumpy() # del node_to_val_map[n] # node_to_val_map[n] = tmp_val # elif self.policy == 'swap': # # Switch in GPU # if not use_numpy: # if self.swap_queue and (node_in_GPU==None): # swap_node = self.swap_queue[0] # if swap_node in node_to_val_map: # node_to_val_map[swap_node] = ndarray.array(node_to_val_map[swap_node], ctx=self.ctx) # else: # self.node_to_arr_map[swap_node] = ndarray.empty(self.node_to_shape_map[swap_node], ctx=self.ctx) # node_in_GPU = swap_node.id # if node in node_to_val_map: # # Skip placeholder nodes. Values already provided by feed_dict. # continue # # Compute # input_vals = [node_to_val_map[n] for n in node.inputs] # if use_numpy: # node_val = np.empty(shape=self.node_to_shape_map[node]) # else: # node_val = self.node_to_arr_map[node] # # node_val is modified in-place whether np.ndarray or NDArray # node.op.compute(node, input_vals, node_val, use_numpy) # if node.swap == True: # node_to_val_map[node] = node_val.asnumpy() # del node_val # del self.node_to_arr_map[node] # del self.swap_queue[0] # node_in_GPU = None # else: # node_to_val_map[node] = node_val # # Switch out GPU # if not use_numpy: # if self.swap_queue: # if self.swap_queue[0] in node.inputs: # out_node = self.swap_queue.pop(0) # if self.swap_queue: # if not self.swap_queue[0].id == node_in_GPU: # tmp_array = node_to_val_map[out_node].asnumpy() # del node_to_val_map[out_node] # node_to_val_map[out_node] = tmp_array # node_in_GPU = None # else: # if node in node_to_val_map: # # Skip placeholder nodes. Values already provided by feed_dict. # continue # input_vals = [node_to_val_map[n] for n in node.inputs] # # print self.node_to_shape_map[node] # if use_numpy: # node_val = np.empty(shape=self.node_to_shape_map[node]) # else: # node_val = self.node_to_arr_map[node] # # node_val is modified in-place whether np.ndarray or NDArray # # if (len(node.inputs) == 1): # # print "computs",node.inputs[0].name # # else: # # print "computs",node.inputs[0].name,node.inputs[1].name # # print node.name # # print node_val.shape # # print "xxx" # # print node.name # node.op.compute(node, input_vals, node_val, use_numpy) # # print "xxx" # node_to_val_map[node] = node_val # # print "xxx" # if FLAG_SHOW_GRAPH: # FLAG_SHOW_GRAPH = False # # Collect node values. # if not use_numpy and convert_to_numpy_ret_vals: # if self.policy == 'swap': # node_values = [] # for n in self.eval_node_list: # if n.swap == True: # node_values.append(node_to_val_map[n]) # else: # node_values.append(node_to_val_map[n].asnumpy()) # return node_values # elif self.policy == 'vdnn': # return [node_to_val_map[n] for n in self.eval_node_list] # else: # return [node_to_val_map[n].asnumpy() for n in self.eval_node_list] # return [node_to_val_map[n] for n in self.eval_node_list] def gradients(output_node, node_list, scheduler_policy=None): """Take gradient of output node with respect to each node in node_list. Parameters ---------- output_node: output node that we are taking derivative of. node_list: list of nodes that we are taking derivative wrt. Returns ------- A list of gradient values, one for each node in node_list respectively. """ from . import OnesLike node_to_output_grads_list = {} node_to_output_grads_list[output_node] = [ OnesLike.oneslike_op(output_node)] node_to_output_grad = {} # Traverse forward graph in reverse topological order reverse_topo_order = reversed(find_topo_sort([output_node])) for node in reverse_topo_order: output_grad = sum_node_list(node_to_output_grads_list[node]) node_to_output_grad[node] = output_grad input_grads_list = node.op.gradient(node, output_grad) #print len(node.name) #print len(node.inputs) #raw_input("\n\nPress the enter key to exit.") for i in range(len(node.inputs)): if node.inputs[i] not in node_to_output_grads_list: node_to_output_grads_list[node.inputs[i]] = [] # Calculate partial adjoint for input nodes. # print node.name node_to_output_grads_list[node.inputs[i]].append( input_grads_list[i]) if scheduler_policy == 'swap': for node in node_list: if node.swap: node_to_output_grad[node].swap = True grad_node_list = [node_to_output_grad[node] for node in node_list] # grad_node_list = [distributed_communicate_op(node_to_output_grad[node]) for node in node_list] return grad_node_list def distributed_gradients(output_node, node_list, scheduler_policy=None): """Take gradient of output node with respect to each node in node_list. Parameters ---------- output_node: output node that we are taking derivative of. node_list: list of nodes that we are taking derivative wrt. Returns ------- A list of gradient values, one for each node in node_list respectively. """ from .OnesLike import oneslike_op node_to_output_grads_list = {} node_to_output_grads_list[output_node] = [oneslike_op(output_node)] node_to_output_grad = {} # Traverse forward graph in reverse topological order reverse_topo_order = reversed(find_topo_sort([output_node])) for node in reverse_topo_order: output_grad = sum_node_list(node_to_output_grads_list[node]) node_to_output_grad[node] = output_grad input_grads_list = node.op.gradient(node, output_grad) #print len(node.name) #print len(node.inputs) #raw_input("\n\nPress the enter key to exit.") for i in range(len(node.inputs)): if node.inputs[i] not in node_to_output_grads_list: node_to_output_grads_list[node.inputs[i]] = [] # Calculate partial adjoint for input nodes. node_to_output_grads_list[node.inputs[i]].append( input_grads_list[i]) if scheduler_policy == 'swap': for node in node_list: if node.swap: node_to_output_grad[node].swap = True # grad_node_list = [node_to_output_grad[node] for node in node_list] grad_node_list = [distributed_communicate_op( node_to_output_grad[node]) for node in node_list] return grad_node_list ################## # Helper Methods # ################## def find_topo_sort(node_list): """Given a list of nodes, return a topo ordering of nodes ending in them. A simple algorithm is to do a post-order DFS traversal on the given nodes, going backwards based on input edges. Since a node is added to the ordering after all its predecessors are traversed due to post-order DFS, we get a topological sort. """ visited = set() topo_order = [] for node in node_list: topo_sort_dfs(node, visited, topo_order) return topo_order def topo_sort_dfs(node, visited, topo_order): """Post-order DFS""" if node in visited: return visited.add(node) for n in node.inputs: topo_sort_dfs(n, visited, topo_order) topo_order.append(node) def sum_node_list(node_list): """Custom sum func to avoid creating redundant nodes in Python sum func.""" from operator import add from functools import reduce return reduce(add, node_list) def broadcast_rule(shape_a, shape_b): """Return output shape of broadcast shape_a, shape_b. e.g. broadcast_rule((3,2), (4,3,2)) returns output_shape = (4,3,2) Check out explanations and more examples at https://docs.scipy.org/doc/numpy-1.10.0/user/basics.broadcasting.html http://eli.thegreenplace.net/2015/broadcasting-arrays-in-numpy/ """ assert(isinstance(shape_a, tuple)) assert(isinstance(shape_b, tuple)) if len(shape_a) > len(shape_b): longer_shape, shorter_shape = shape_a, shape_b else: longer_shape, shorter_shape = shape_b, shape_a len_diff = len(longer_shape) - len(shorter_shape) for i in range(len_diff): # pad with leading 1s shorter_shape = (1,) + shorter_shape assert len(shorter_shape) == len(longer_shape) output_shape = list(longer_shape) for i in range(len(output_shape)): assert (shorter_shape[i] == longer_shape[i]) \ or (shorter_shape[i] == 1) \ or (longer_shape[i] == 1) output_shape[i] = max(shorter_shape[i], longer_shape[i]) return tuple(output_shape)
40.091973
116
0.591074
[ "Apache-2.0" ]
DMALab/TSplit
python/athena/gpu_ops/StreamExecutor.py
23,975
Python
""" TickerHandler This implements an efficient Ticker which uses a subscription model to 'tick' subscribed objects at regular intervals. The ticker mechanism is used by importing and accessing the instantiated TICKER_HANDLER instance in this module. This instance is run by the server; it will save its status across server reloads and be started automaticall on boot. Example: ```python from evennia.scripts.tickerhandler import TICKER_HANDLER # call tick myobj.at_tick(*args, **kwargs) every 15 seconds TICKER_HANDLER.add(15, myobj.at_tick, *args, **kwargs) ``` You supply the interval to tick and a callable to call regularly with any extra args/kwargs. The handler will transparently set up and add new timers behind the scenes to tick at given intervals, using a TickerPool - all callables with the same interval will share the interval ticker. To remove: ```python TICKER_HANDLER.remove(15, myobj.at_tick) ``` Both interval and callable must be given since a single object can be subscribed to many different tickers at the same time. You can also supply `idstring` as an identifying string if you ever want to tick the callable at the same interval but with different arguments (args/kwargs are not used for identifying the ticker). There is also `persistent=False` if you don't want to make a ticker that don't survive a reload. If either or both `idstring` or `persistent` has been changed from their defaults, they must be supplied to the `TICKER_HANDLER.remove` call to properly identify the ticker to remove. The TickerHandler's functionality can be overloaded by modifying the Ticker class and then changing TickerPool and TickerHandler to use the custom classes ```python class MyTicker(Ticker): # [doing custom stuff] class MyTickerPool(TickerPool): ticker_class = MyTicker class MyTickerHandler(TickerHandler): ticker_pool_class = MyTickerPool ``` If one wants to duplicate TICKER_HANDLER's auto-saving feature in a custom handler one can make a custom `AT_STARTSTOP_MODULE` entry to call the handler's `save()` and `restore()` methods when the server reboots. """ import inspect from builtins import object from twisted.internet.defer import inlineCallbacks from django.core.exceptions import ObjectDoesNotExist from evennia.scripts.scripts import ExtendedLoopingCall from evennia.server.models import ServerConfig from evennia.utils.logger import log_trace, log_err from evennia.utils.dbserialize import dbserialize, dbunserialize, pack_dbobj, unpack_dbobj from evennia.utils import variable_from_module _GA = object.__getattribute__ _SA = object.__setattr__ _ERROR_ADD_TICKER = \ """TickerHandler: Tried to add an invalid ticker: {storekey} Ticker was not added.""" class Ticker(object): """ Represents a repeatedly running task that calls hooks repeatedly. Overload `_callback` to change the way it operates. """ @inlineCallbacks def _callback(self): """ This will be called repeatedly every `self.interval` seconds. `self.subscriptions` contain tuples of (obj, args, kwargs) for each subscribing object. If overloading, this callback is expected to handle all subscriptions when it is triggered. It should not return anything and should not traceback on poorly designed hooks. The callback should ideally work under @inlineCallbacks so it can yield appropriately. The _hook_key, which is passed down through the handler via kwargs is used here to identify which hook method to call. """ self._to_add = [] self._to_remove = [] self._is_ticking = True for store_key, (args, kwargs) in self.subscriptions.iteritems(): callback = yield kwargs.pop("_callback", "at_tick") obj = yield kwargs.pop("_obj", None) try: if callable(callback): # call directly yield callback(*args, **kwargs) continue # try object method if not obj or not obj.pk: # object was deleted between calls self._to_remove.append(store_key) continue else: yield _GA(obj, callback)(*args, **kwargs) except ObjectDoesNotExist: log_trace("Removing ticker.") self._to_remove.append(store_key) except Exception: log_trace() finally: # make sure to re-store kwargs["_callback"] = callback kwargs["_obj"] = obj # cleanup - we do this here to avoid changing the subscription dict while it loops self._is_ticking = False for store_key in self._to_remove: self.remove(store_key) for store_key, (args, kwargs) in self._to_add: self.add(store_key, *args, **kwargs) self._to_remove = [] self._to_add = [] def __init__(self, interval): """ Set up the ticker Args: interval (int): The stepping interval. """ self.interval = interval self.subscriptions = {} self._is_ticking = False self._to_remove = [] self._to_add = [] # set up a twisted asynchronous repeat call self.task = ExtendedLoopingCall(self._callback) def validate(self, start_delay=None): """ Start/stop the task depending on how many subscribers we have using it. Args: start_delay (int): Time to way before starting. """ subs = self.subscriptions if self.task.running: if not subs: self.task.stop() elif subs: self.task.start(self.interval, now=False, start_delay=start_delay) def add(self, store_key, *args, **kwargs): """ Sign up a subscriber to this ticker. Args: store_key (str): Unique storage hash for this ticker subscription. args (any, optional): Arguments to call the hook method with. Kwargs: _start_delay (int): If set, this will be used to delay the start of the trigger instead of `interval`. """ if self._is_ticking: # protects the subscription dict from # updating while it is looping self._to_start.append((store_key, (args, kwargs))) else: start_delay = kwargs.pop("_start_delay", None) self.subscriptions[store_key] = (args, kwargs) self.validate(start_delay=start_delay) def remove(self, store_key): """ Unsubscribe object from this ticker Args: store_key (str): Unique store key. """ if self._is_ticking: # this protects the subscription dict from # updating while it is looping self._to_remove.append(store_key) else: self.subscriptions.pop(store_key, False) self.validate() def stop(self): """ Kill the Task, regardless of subscriptions. """ self.subscriptions = {} self.validate() class TickerPool(object): """ This maintains a pool of `evennia.scripts.scripts.ExtendedLoopingCall` tasks for calling subscribed objects at given times. """ ticker_class = Ticker def __init__(self): """ Initialize the pool. """ self.tickers = {} def add(self, store_key, *args, **kwargs): """ Add new ticker subscriber. Args: store_key (str): Unique storage hash. args (any, optional): Arguments to send to the hook method. """ _, _, _, interval, _, _ = store_key if not interval: log_err(_ERROR_ADD_TICKER.format(store_key=store_key)) return if interval not in self.tickers: self.tickers[interval] = self.ticker_class(interval) self.tickers[interval].add(store_key, *args, **kwargs) def remove(self, store_key): """ Remove subscription from pool. Args: store_key (str): Unique storage hash to remove """ _, _, _, interval, _, _ = store_key if interval in self.tickers: self.tickers[interval].remove(store_key) if not self.tickers[interval]: del self.tickers[interval] def stop(self, interval=None): """ Stop all scripts in pool. This is done at server reload since restoring the pool will automatically re-populate the pool. Args: interval (int, optional): Only stop tickers with this interval. """ if interval and interval in self.tickers: self.tickers[interval].stop() else: for ticker in self.tickers.values(): ticker.stop() class TickerHandler(object): """ The Tickerhandler maintains a pool of tasks for subscribing objects to various tick rates. The pool maintains creation instructions and and re-applies them at a server restart. """ ticker_pool_class = TickerPool def __init__(self, save_name="ticker_storage"): """ Initialize handler save_name (str, optional): The name of the ServerConfig instance to store the handler state persistently. """ self.ticker_storage = {} self.save_name = save_name self.ticker_pool = self.ticker_pool_class() def _get_callback(self, callback): """ Analyze callback and determine its consituents Args: callback (function or method): This is either a stand-alone function or class method on a typeclassed entitye (that is, an entity that can be saved to the database). Returns: ret (tuple): This is a tuple of the form `(obj, path, callfunc)`, where `obj` is the database object the callback is defined on if it's a method (otherwise `None`) and vice-versa, `path` is the python-path to the stand-alone function (`None` if a method). The `callfunc` is either the name of the method to call or the callable function object itself. """ outobj, outpath, outcallfunc = None, None, None if callable(callback): if inspect.ismethod(callback): outobj = callback.im_self outcallfunc = callback.im_func.func_name elif inspect.isfunction(callback): outpath = "%s.%s" % (callback.__module__, callback.func_name) outcallfunc = callback else: raise TypeError("%s is not a callable function or method." % callback) return outobj, outpath, outcallfunc def _store_key(self, obj, path, interval, callfunc, idstring="", persistent=True): """ Tries to create a store_key for the object. Args: obj (Object, tuple or None): Subscribing object if any. If a tuple, this is a packed_obj tuple from dbserialize. path (str or None): Python-path to callable, if any. interval (int): Ticker interval. callfunc (callable or str): This is either the callable function or the name of the method to call. Note that the callable is never stored in the key; that is uniquely identified with the python-path. idstring (str, optional): Additional separator between different subscription types. persistent (bool, optional): If this ticker should survive a system shutdown or not. Returns: store_key (tuple): A tuple `(packed_obj, methodname, outpath, interval, idstring, persistent)` that uniquely identifies the ticker. Here, `packed_obj` is the unique string representation of the object or `None`. The `methodname` is the string name of the method on `packed_obj` to call, or `None` if `packed_obj` is unset. `path` is the Python-path to a non-method callable, or `None`. Finally, `interval` `idstring` and `persistent` are integers, strings and bools respectively. """ interval = int(interval) persistent = bool(persistent) packed_obj = pack_dbobj(obj) methodname = callfunc if callfunc and isinstance(callfunc, basestring) else None outpath = path if path and isinstance(path, basestring) else None return (packed_obj, methodname, outpath, interval, idstring, persistent) def save(self): """ Save ticker_storage as a serialized string into a temporary ServerConf field. Whereas saving is done on the fly, if called by server when it shuts down, the current timer of each ticker will be saved so it can start over from that point. """ if self.ticker_storage: # get the current times so the tickers can be restarted with a delay later start_delays = dict((interval, ticker.task.next_call_time()) for interval, ticker in self.ticker_pool.tickers.items()) # remove any subscriptions that lost its object in the interim to_save = {store_key: (args, kwargs) for store_key, (args, kwargs) in self.ticker_storage.items() if ((store_key[1] and ("_obj" in kwargs and kwargs["_obj"].pk) and hasattr(kwargs["_obj"], store_key[1])) or # a valid method with existing obj store_key[2])} # a path given # update the timers for the tickers for store_key, (args, kwargs) in to_save.items(): interval = store_key[1] # this is a mutable, so it's updated in-place in ticker_storage kwargs["_start_delay"] = start_delays.get(interval, None) ServerConfig.objects.conf(key=self.save_name, value=dbserialize(to_save)) else: # make sure we have nothing lingering in the database ServerConfig.objects.conf(key=self.save_name, delete=True) def restore(self, server_reload=True): """ Restore ticker_storage from database and re-initialize the handler from storage. This is triggered by the server at restart. Args: server_reload (bool, optional): If this is False, it means the server went through a cold reboot and all non-persistent tickers must be killed. """ # load stored command instructions and use them to re-initialize handler restored_tickers = ServerConfig.objects.conf(key=self.save_name) if restored_tickers: # the dbunserialize will convert all serialized dbobjs to real objects restored_tickers = dbunserialize(restored_tickers) self.ticker_storage = {} for store_key, (args, kwargs) in restored_tickers.iteritems(): try: # at this point obj is the actual object (or None) due to how # the dbunserialize works obj, callfunc, path, interval, idstring, persistent = store_key if not persistent and not server_reload: # this ticker will not be restarted continue if isinstance(callfunc, basestring) and not obj: # methods must have an existing object continue # we must rebuild the store_key here since obj must not be # stored as the object itself for the store_key to be hashable. store_key = self._store_key(obj, path, interval, callfunc, idstring, persistent) if obj and callfunc: kwargs["_callback"] = callfunc kwargs["_obj"] = obj elif path: modname, varname = path.rsplit(".", 1) callback = variable_from_module(modname, varname) kwargs["_callback"] = callback kwargs["_obj"] = None else: # Neither object nor path - discard this ticker log_err("Tickerhandler: Removing malformed ticker: %s" % str(store_key)) continue except Exception: # this suggests a malformed save or missing objects log_trace("Tickerhandler: Removing malformed ticker: %s" % str(store_key)) continue # if we get here we should create a new ticker self.ticker_storage[store_key] = (args, kwargs) self.ticker_pool.add(store_key, *args, **kwargs) def add(self, interval=60, callback=None, idstring="", persistent=True, *args, **kwargs): """ Add subscription to tickerhandler Args: interval (int, optional): Interval in seconds between calling `callable(*args, **kwargs)` callable (callable function or method, optional): This should either be a stand-alone function or a method on a typeclassed entity (that is, one that can be saved to the database). idstring (str, optional): Identifier for separating this ticker-subscription from others with the same interval. Allows for managing multiple calls with the same time interval and callback. persistent (bool, optional): A ticker will always survive a server reload. If this is unset, the ticker will be deleted by a server shutdown. args, kwargs (optional): These will be passed into the callback every time it is called. Notes: The callback will be identified by type and stored either as as combination of serialized database object + methodname or as a python-path to the module + funcname. These strings will be combined iwth `interval` and `idstring` to define a unique storage key for saving. These must thus all be supplied when wanting to modify/remove the ticker later. """ if isinstance(callback, int): raise RuntimeError("TICKER_HANDLER.add has changed: " "the interval is now the first argument, callback the second.") obj, path, callfunc = self._get_callback(callback) store_key = self._store_key(obj, path, interval, callfunc, idstring, persistent) kwargs["_obj"] = obj kwargs["_callback"] = callfunc # either method-name or callable self.ticker_storage[store_key] = (args, kwargs) self.ticker_pool.add(store_key, *args, **kwargs) self.save() def remove(self, interval=60, callback=None, idstring="", persistent=True): """ Remove object from ticker or only remove it from tickers with a given interval. Args: interval (int, optional): Interval of ticker to remove. callback (callable function or method): Either a function or the method of a typeclassed object. idstring (str, optional): Identifier id of ticker to remove. """ if isinstance(callback, int): raise RuntimeError("TICKER_HANDLER.remove has changed: " "the interval is now the first argument, callback the second.") obj, path, callfunc = self._get_callback(callback) store_key = self._store_key(obj, path, interval, callfunc, idstring, persistent) to_remove = self.ticker_storage.pop(store_key, None) if to_remove: self.ticker_pool.remove(store_key) self.save() def clear(self, interval=None): """ Stop/remove tickers from handler. Args: interval (int): Only stop tickers with this interval. Notes: This is the only supported way to kill tickers related to non-db objects. """ self.ticker_pool.stop(interval) if interval: self.ticker_storage = dict((store_key, store_key) for store_key in self.ticker_storage if store_key[1] != interval) else: self.ticker_storage = {} self.save() def all(self, interval=None): """ Get all subscriptions. Args: interval (int): Limit match to tickers with this interval. Returns: tickers (list): If `interval` was given, this is a list of tickers using that interval. tickerpool_layout (dict): If `interval` was *not* given, this is a dict {interval1: [ticker1, ticker2, ...], ...} """ if interval is None: # return dict of all, ordered by interval return dict((interval, ticker.subscriptions) for interval, ticker in self.ticker_pool.tickers.iteritems()) else: # get individual interval ticker = self.ticker_pool.tickers.get(interval, None) if ticker: return {interval: ticker.subscriptions} def all_display(self): """ Get all tickers on an easily displayable form. Returns: tickers (dict): A list of all storekeys """ store_keys = [] for ticker in self.ticker_pool.tickers.itervalues(): for (objtup, callfunc, path, interval, idstring, persistent), (args, kwargs) in ticker.subscriptions.iteritems(): store_keys.append((kwargs.get("_obj", None), callfunc, path, interval, idstring, persistent)) return store_keys # main tickerhandler TICKER_HANDLER = TickerHandler()
38.568966
125
0.60903
[ "BSD-3-Clause" ]
orkim/evennia
evennia/scripts/tickerhandler.py
22,370
Python
# ====================================================================== # The Stars Align # Advent of Code 2018 Day 10 -- Eric Wastl -- https://adventofcode.com # # Python implementation by Dr. Dean Earl Wright III # ====================================================================== # ====================================================================== # a o c _ 1 0 . p y # ====================================================================== "Solve the puzzles for Advent of Code 2018 day 10" # ---------------------------------------------------------------------- # import # ---------------------------------------------------------------------- import argparse import sys import lights # ---------------------------------------------------------------------- # constants # ---------------------------------------------------------------------- # ---------------------------------------------------------------------- # parse_commnd_line # ---------------------------------------------------------------------- def parse_command_line(): "Parse the command line options" # 1. Create the command line parser desc = 'The Stars Align - Day 10 of Advent of Code 2018' sample = 'sample: python aoc_10.py input.txt' parser = argparse.ArgumentParser(description=desc, epilog=sample) parser.add_argument('-v', '--verbose', action='store_true', default=False, dest='verbose', help='Print status messages to stdout') parser.add_argument('-p', '--part', action='store', default=1, type=int, dest='part', help='Puzzle Part (1 or 2)') parser.add_argument('-l', '--limit', action='store', default=0, type=int, dest='limit', help='Maximum limit (e.g., time, size, recursion) before stopping') parser.add_argument('filepath', metavar='FILENAME', action='store', type=str, help="Location of puzzle input") # 2. Get the options and arguments return parser.parse_args() # ---------------------------------------------------------------------- # part_one # ---------------------------------------------------------------------- def part_one(args, input_lines): "Process part one of the puzzle" # 1. Create the puzzle solver solver = lights.Lights(part2=False, text=input_lines) # 2. Determine the solution for part one solution = solver.part_one(verbose=args.verbose, limit=args.limit) if solution is None: print("There is no solution") else: print("The solution for part one is %s" % (solution)) # 3. Return result return solution is not None # ---------------------------------------------------------------------- # part_two # ---------------------------------------------------------------------- def part_two(args, input_lines): "Process part two of the puzzle" # 1. Create the puzzle solver solver = lights.Lights(part2=True, text=input_lines) # 2. Determine the solution for part two solution = solver.part_two(verbose=args.verbose, limit=args.limit) if solution is None: print("There is no solution") else: print("The solution for part two is %s" % (solution)) # 3. Return result return solution is not None # ---------------------------------------------------------------------- # from_file # ---------------------------------------------------------------------- def from_file(filepath): "Read the file" return from_text(open(filepath).read()) # ---------------------------------------------------------------------- # from_text # ---------------------------------------------------------------------- def from_text(text): "Break the text into trimed, non-comment lines" # 1. We start with no lines lines = [] # 2. Loop for lines in the text for line in text.split('\n'): # 3. But ignore blank and non-claim lines line = line.rstrip(' \r') if not line: continue if line.startswith('!'): continue # 4. Add the line lines.append(line) # 5. Return a list of clean lines return lines # ---------------------------------------------------------------------- # main # ---------------------------------------------------------------------- def main(): "Read the Advent of Code problem and solve it" # 1. Get the command line options args = parse_command_line() # 2. Read the puzzle file input_text = from_file(args.filepath) # 3. Process the appropiate part of the puzzle if args.part == 1: result = part_one(args, input_text) else: result = part_two(args, input_text) # 5. Set return code (0 if solution found, 2 if not) if result: sys.exit(0) sys.exit(2) # ---------------------------------------------------------------------- # module initialization # ---------------------------------------------------------------------- if __name__ == '__main__': main() # ====================================================================== # end a o c _ 1 0 . p y end # ======================================================================
35.179641
91
0.372936
[ "MIT" ]
deanearlwright/AdventOfCode
2018/10_TheStarsAlign/aoc_10.py
5,875
Python
from pyecharts import options as opts from pyecharts.charts import Map import pandas as pd import namemap def read_country_code(): """ 获取国家中英文字典 :return: """ country_dict = {} for key, val in namemap.nameMap.items(): # 将 nameMap 列表里面键值互换 country_dict[val] = key return country_dict def read_csv(): """ 读取数据,返回国家英文名称列表和累计确诊数列表 :return: """ country_dict = read_country_code() data = pd.read_csv("2019-nCoV.csv", index_col=False) countrys_names = list() confirmed_count = list() for x in range(len(data.index)): if data['name'].iloc[x] in country_dict.keys(): countrys_names.append(country_dict[data['name'].iloc[x]]) confirmed_count.append(data['confirm'].iloc[x]) else: print(data['name'].iloc[x]) return countrys_names, confirmed_count def draw_map(): """ 绘制世界地图 遇到一个很神奇的问题: 两个列表必须写死数据地图才会渲染数据,如果数据是从方法中获得,则地图不渲染数据 :return: """ # 修复注释中的问题,原因是 confirmed_count 中的 int 是 numpy 的 int ,需转化为 python 中的 int # 感谢公众号的 @李康伟 同学提出 countrys_names, confirmed_count = read_csv() confirmed_count_list = [] for item in confirmed_count: confirmed_count_list.append(int(item)) # countrys_names = ['United States', 'Brazil', 'Russia', 'Spain', 'United Kingdom', 'Italy', 'France', 'Germany', 'Turkey', 'Iran', 'India', 'Peru', 'Canada', 'Saudi Arabia', 'Mexico', 'Chile', 'Belgium', 'Pakistan', 'Netherlands', 'Qatar', 'Ecuador', 'Belarus', 'Sweden', 'Bangladesh', 'Singapore Rep.', 'Switzerland', 'Portugal', 'United Arab Emirates', 'Ireland', 'Indonesia', 'South Africa', 'Poland', 'Ukraine', 'Kuwait', 'Colombia', 'Romania', 'Israel', 'Japan', 'Egypt', 'Austria', 'Dominican Rep.', 'Philippines', 'Denmark', 'Argentina', 'Korea', 'Serbia', 'Panama', 'Afghanistan', 'Czech Rep.', 'Norway', 'Kazakhstan', 'Algeria', 'Nigeria', 'Morocco', 'Oman', 'Malaysia', 'Australia', 'Moldova', 'Ghana', 'Finland', 'Armenia', 'Bolivia', 'Cameroon', 'Iraq', 'Luxembourg', 'Azerbaijan', 'Honduras', 'Hungary', 'Sudan', 'Guinea', 'Uzbekistan', 'Guatemala', 'Thailand', 'Senegal', 'Greece', 'Tajikistan', 'Bulgaria', "Côte d'Ivoire", 'Djibouti', 'Croatia', 'Gabon', 'Cuba', 'Estonia', 'El Salvador', 'Iceland', 'Lithuania', 'Somalia', 'New Zealand', 'Slovakia', 'Slovenia', 'Kyrgyzstan', 'Kenya', 'Guinea Bissau', 'Lebanon', 'Sri Lanka', 'Tunisia', 'Latvia', 'Mali', 'Venezuela', 'Albania', 'Eq. Guinea', 'Niger', 'Cyprus', 'Zambia', 'Costa Rica', 'Haiti', 'Paraguay', 'Burkina Faso', 'Uruguay', 'Georgia', 'Jordan', 'Chad', 'Sierra Leone', 'Nepal', 'Jamaica', 'Tanzania', 'Ethiopia', 'Madagascar', 'Palestine', 'Togo', 'Vietnam', 'Rwanda', 'Montenegro', 'Nicaragua', 'Liberia', 'Swaziland', 'Mauritania', 'Yemen', 'Myanmar', 'Uganda', 'Mozambique', 'Mongolia', 'Brunei', 'Benin', 'Guyana', 'Cambodia', 'The Bahamas', 'Malawi', 'Libya', 'Syria', 'Angola', 'Zimbabwe', 'Burundi', 'Eritrea', 'Botswana', 'Gambia', 'Bhutan', 'East Timor', 'Namibia', 'Lao PDR', 'Fiji', 'Belize', 'Suriname', 'Papua New Guinea', 'Lesotho'] # # confirmed_count = [1666828, 347398, 335882, 281904, 258504, 229327, 182036, 179986, 155686, 133521, 131920, 115754, 85151, 70161, 65856, 65393, 56810, 54601, 45265, 42213, 36258, 35244, 33188, 32078, 31068, 30725, 30471, 28704, 24582, 21745, 21343, 20931, 20580, 20464, 20177, 17857, 16712, 16536, 16513, 16486, 14422, 13777, 11487, 11353, 11190, 11092, 10577, 9998, 8890, 8346, 8322, 8113, 7526, 7406, 7257, 7185, 7114, 6994, 6617, 6568, 6302, 5915, 4400, 4272, 3990, 3982, 3743, 3741, 3628, 3176, 3132, 3054, 3040, 2976, 2876, 2738, 2427, 2366, 2270, 2243, 1934, 1931, 1821, 1819, 1804, 1616, 1594, 1504, 1504, 1468, 1403, 1192, 1114, 1097, 1089, 1048, 1046, 1015, 1010, 989, 960, 943, 927, 920, 918, 865, 850, 814, 764, 728, 704, 648, 621, 584, 550, 509, 494, 488, 423, 373, 325, 325, 324, 279, 255, 238, 227, 212, 201, 198, 168, 141, 141, 135, 127, 124, 100, 82, 75, 70, 61, 56, 42, 39, 30, 25, 24, 24, 20, 19, 18, 18, 11, 8, 2] c = ( Map() .add( "确诊人数", [list(z) for z in zip(countrys_names, confirmed_count_list)], is_map_symbol_show=False, maptype="world", label_opts=opts.LabelOpts(is_show=False), itemstyle_opts=opts.ItemStyleOpts(color="rgb(49,60,72)") ) .set_series_opts(label_opts=opts.LabelOpts(is_show=False)) .set_global_opts( title_opts=opts.TitleOpts(title="全球 2019-nCoV 地图"), visualmap_opts=opts.VisualMapOpts(max_=1700000), ) .render("map_world.html") ) if __name__ == '__main__': draw_map()
60.101266
1,829
0.624684
[ "MIT" ]
DearCasper/python-learning
python-data-analysis/2019-nCoV-global/global_map.py
5,031
Python
""" 2. Categorical Predictors ========================= """ ############################################################################### # The syntax for handling categorical predictors is **different** between standard regression models/two-stage-models (i.e. :code:`Lm` and :code:`Lm2`) and multi-level models (:code:`Lmer`) in :code:`pymer4`. This is because formula parsing is passed to R for :code:`Lmer` models, but handled by Python for other models. ############################################################################### # Lm and Lm2 Models # ----------------- # :code:`Lm` and :code:`Lm2` models use `patsy <https://patsy.readthedocs.io/en/latest/>`_ to parse model formulae. Patsy is very powerful and has built-in support for handling categorical coding schemes by wrapping a predictor in then :code:`C()` *within* the module formula. Patsy can also perform some pre-processing such as scaling and standardization using special functions like :code:`center()`. Here are some examples. # import basic libraries and sample data import os import pandas as pd from pymer4.utils import get_resource_path from pymer4.models import Lm # IV3 is a categorical predictors with 3 levels in the sample data df = pd.read_csv(os.path.join(get_resource_path(), "sample_data.csv")) ############################################################################### # Dummy-coded/Treatment contrasts # +++++++++++++++++++++++++++++++ # Estimate a model using Treatment contrasts (dummy-coding) # with '1.0' as the reference level # This is the default of the C() function model = Lm("DV ~ C(IV3, levels=[1.0, 0.5, 1.5])", data=df) print(model.fit()) ############################################################################### # Orthogonal Polynomial Contrasts # +++++++++++++++++++++++++++++++ # Patsy can do this using the Poly argument to the # C() function model = Lm("DV ~ C(IV3, Poly)", data=df) print(model.fit()) ############################################################################### # Sum-to-zero contrasts # +++++++++++++++++++++ # Similar to before but with the Sum argument model = Lm("DV ~ C(IV3, Sum)", data=df) print(model.fit()) ############################################################################### # Scaling/Centering # +++++++++++++++++ # Moderation with IV2, but centering IV2 first model = Lm("DV ~ center(IV2) * C(IV3, Sum)", data=df) print(model.fit()) ############################################################################### # Please refer to the `patsy documentation <https://patsy.readthedocs.io/en/latest/categorical-coding.html>`_ for more details when working categorical predictors in :code:`Lm` or :code:`Lm2` models. ############################################################################### # Lmer Models # ----------- # :code:`Lmer()` models currently have support for handling categorical predictors in one of three ways based on how R's :code:`factor()` works (see the note at the end of this tutorial): # # - Dummy-coded factor levels (treatment contrasts) in which each model term is the difference between a factor level and a selected reference level # - Orthogonal polynomial contrasts in which each model term is a polynomial contrast across factor levels (e.g. linear, quadratic, cubic, etc) # - Custom contrasts for each level of a factor, which should be provided in the manner expected by R. # # To make re-parameterizing models easier, factor codings are passed as a dictionary to the :code:`factors` argument of a model's :code:`.fit()`. This obviates the need for adjusting data-frame properties as in R. Note that this is **different** from :code:`Lm` and :code:`Lm2` models above which expect factor codings in their formulae (because patsy does). # # Each of these ways also enables you to easily compute post-hoc comparisons between factor levels, as well as interactions between continuous predictors and each factor level. See tutorial 3 for more on post-hoc tests. from pymer4.models import Lmer # We're going to fit a multi-level logistic regression using the # dichotomous DV_l variable and the same categorical predictor (IV3) # as before model = Lmer("DV_l ~ IV3 + (IV3|Group)", data=df, family="binomial") ############################################################################### # Dummy-coding factors # ++++++++++++++++++++ # First we'll use dummy-coding/treatment contrasts with 1.0 as the reference level. This will compute two coefficients: 0.5 > 1.0 and 1.5 > 1.0. print(model.fit(factors={"IV3": ["1.0", "0.5", "1.5"]})) ############################################################################### # Polynomial contrast coding # ++++++++++++++++++++++++++ # Second we'll use orthogonal polynomial contrasts. This is accomplished using the :code:`ordered=True` argument and specifying the order of the *linear* contrast in increasing order. R will automatically compute higher order polynomial contrats that are orthogonal to this linear contrast. In this example, since there are 3 factor levels this will result in two polynomial terms: a linear contrast we specify below corresponding to 0.5 < 1.0 < 1.5 and an orthogonal quadratic contrast automatically determined by R, corresponding to 0.5 > 1 < 1.5 print(model.fit(factors={"IV3": ["0.5", "1.0", "1.5"]}, ordered=True)) ############################################################################### # Custom contrasts # ++++++++++++++++ # :code:`Lmer` models can also take custom factor contrasts based on how they are expected by R (see the note at the end of this tutorial for how contrasts work in R). Remember that there can be at most k-1 model terms representing any k level factor without over-parameterizing a model. If you specify a custom contrast, R will generate set of orthogonal contrasts for the rest of your model terms. # Compare level '1.0' to the mean of levels '0.5' and '1.5' # and let R determine the second contrast orthogonal to it print(model.fit(factors={"IV3": {"1.0": 1, "0.5": -0.5, "1.5": -0.5}})) ############################################################################### # User-created contrasts (without R) # ++++++++++++++++++++++++++++++++++ # Another option available to you is fitting a model with *only* your desired contrast(s) rather than a full set of k-1 contrasts. Contrary to how statistics is usually taught, you don't ever *have to* include a full set of k-1 contrasts for a k level factor! The upside to doing this is that you won't need to rely on R to compute anything for you (aside from the model fit), and you will have a model with exactly the number of terms as contrasts you desire, giving you complete control. The downside is that post-hoc tests will no longer be available (see tutorial 3 for more information on post-hoc tests), but it's unlikely you're doing post-hoc tests if you are computing a subset of specific contrasts anyway. This is also a useful approach if you don't want to use patsy's formula syntax with :code:`Lm` and :code:`Lm2` as noted above. # # This can be accomplished by creating new columns in your dataframe to test specific hypotheses and is trivial to do with pandas `map <https://pandas.pydata.org/pandas-docs/version/0.25/reference/api/pandas.Series.map.html/>`_ and `assign <https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.assign.html/>`_ methods. For example, here we manually compute a linear contrast by creating a new column in our dataframe and treating it as a continuous variable. # Create a new column in the dataframe with a custom (linear) contrast df = df.assign(IV3_custom_lin=df["IV3"].map({0.5: -1, 1.0: 0, 1.5: 1})) print(df.head()) ############################################################################### # Now we can use this variable as a continuous predictor without the need for the :code:`factors` argument. Notice how the z-stat and p-value of the estimate are the same as the linear polynomial contrast estimated above. The coefficients differ in scale only because R uses [~-0.707, ~0, ~0.707] for its polynomial contrasts rather than [-1, 0, 1] like we did. # Estimate model model = Lmer( "DV_l ~ IV3_custom_lin + (IV3_custom_lin|Group)", data=df, family="binomial" ) print(model.fit()) ############################################################################### # A note on how contrasts in R work # --------------------------------- # .. note:: # This is just for folks curious about how contrasts in R work # # Specifying multiple custom contrasts in R has always been a point of confusion amongst users. This because the :code:`contrasts()` command in R doesn't actually expect contrast weights (i.e. a design matrix) as one would intuit. Rather, it is made for generating contrast coding schemes which are the inverse of the contrast weight matrix. For a longer explanation with examples see `this reference <https://rstudio-pubs-static.s3.amazonaws.com/65059_586f394d8eb84f84b1baaf56ffb6b47f.html>`_ and `this reference <https://github.com/ejolly/R/blob/master/Guides/Contrasts_in_R.md>`_. For these situations pymer4 offers a few utility functions to convert between these matrix types if desired in :code:`pymer4.utils`: :code:`R2con()` and :code:`con2R()`.
69.398496
843
0.638245
[ "MIT" ]
Shotgunosine/pymer4
docs/auto_examples/example_02_categorical.py
9,230
Python
# print('Reading templates/__init__.py') from .errors import * import logging logging.debug('Reading src/templates/__init__.py')
18.714286
50
0.770992
[ "MIT" ]
honzatomek/pythonFEA
src/pythonFEA/templates/__init__.py
131
Python
from raw.ndfd import *
11.5
22
0.73913
[ "Apache-2.0" ]
EliteUSA/pyxb
examples/ndfd/ndfd.py
23
Python
import multiprocessing import warnings import six from chainer.backends import cuda from chainer.dataset import convert from chainer import reporter from chainer.training.updaters import standard_updater try: from cupy.cuda import nccl _available = True except Exception: _available = False import numpy class _Worker(multiprocessing.Process): def __init__(self, proc_id, pipe, master): super(_Worker, self).__init__() self.proc_id = proc_id self.pipe = pipe self.converter = master.converter self.model = master._master self.device = master._devices[proc_id] self.iterator = master._mpu_iterators[proc_id] self.n_devices = len(master._devices) def setup(self): _, comm_id = self.pipe.recv() self.comm = nccl.NcclCommunicator(self.n_devices, comm_id, self.proc_id) self.model.to_gpu(self.device) self.reporter = reporter.Reporter() self.reporter.add_observer('main', self.model) self.reporter.add_observers('main', self.model.namedlinks(skipself=True)) def run(self): dev = cuda.Device(self.device) dev.use() self.setup() while True: job, data = self.pipe.recv() if job == 'finalize': dev.synchronize() break if job == 'update': # For reducing memory self.model.cleargrads() batch = self.converter(self.iterator.next(), self.device) with self.reporter.scope({}): # pass dummy observation loss = _calc_loss(self.model, batch) self.model.cleargrads() loss.backward() del loss gg = gather_grads(self.model) nccl_data_type = _get_nccl_data_type(gg.dtype) null_stream = cuda.Stream.null self.comm.reduce(gg.data.ptr, gg.data.ptr, gg.size, nccl_data_type, nccl.NCCL_SUM, 0, null_stream.ptr) del gg self.model.cleargrads() gp = gather_params(self.model) nccl_data_type = _get_nccl_data_type(gp.dtype) self.comm.bcast(gp.data.ptr, gp.size, nccl_data_type, 0, null_stream.ptr) scatter_params(self.model, gp) del gp class MultiprocessParallelUpdater(standard_updater.StandardUpdater): """Implementation of a multiprocess parallel GPU Updater. This is an implementation of :class:`Updater` that uses multiple GPUs with multi-process data parallelism. It uses Nvidia NCCL for communication between multiple GPUs. It behaves similarly to :class:`~chainer.training.updaters.StandardUpdater`. The update routine is modified to support data-parallel computation on multiple GPUs in one machine. It is based on synchronous parallel SGD: it parallelizes the gradient computation over a mini-batch, and updates the parameters only in the main device. It does not transfer the values collected by :class:`Reporter` in the sub devices to the main device. So you can only see the reported values in the main device. Args: iterators: List of dataset iterator for the training dataset. The number of the iterators must be same to the number of GPUs you use. optimizer: Optimizer to update parameters. The model should be attached to the optimizer. converter: Converter function to build input arrays. Each batch extracted by the iterator is split equally between the devices and then passed with corresponding ``device`` option to this function. :func:`~chainer.dataset.concat_examples` is used by default. devices: Dictionary or list of devices to which the training data is sent. The master device will be the first one in the list or the value attached to the key ``'main'``. auto_new_epoch (bool): If ``True``, :meth:`~chainer.Optimizer.new_epoch` of the main optimizer is automatically called when the ``is_new_epoch`` attribute of the main iterator is ``True``. """ def __init__(self, iterators, optimizer, converter=convert.concat_examples, devices=None, auto_new_epoch=True): if not MultiprocessParallelUpdater.available(): raise Exception( 'NCCL is not enabled. MultiprocessParallelUpdater ' 'requires NCCL.\n' 'Please reinstall CuPy after you install NCCL.\n' '(see https://docs-cupy.chainer.org/en/latest/install.html)') try: cuda.cupy.cuda.driver.ctxGetCurrent() _cuda_initialized = True except cuda.cupy.cuda.driver.CUDADriverError: # The context is not initialized, it will be fine. _cuda_initialized = False if _cuda_initialized: raise RuntimeError( 'The CUDA context has been already initialized. ' 'MultiprocessParallelUpdater assumes the context is ' 'uninitialized. Please do not call CUDA API before ' 'MultiprocessParallelUpdater creates processes.') assert len(iterators) == len(devices) for iterator in iterators[1:]: assert len(iterator.dataset) == len(iterators[0].dataset) # Correct optimizer parameters for new minibatch size optim = optimizer.__class__.__name__ if optim in ('Adam', 'AdaGrad', 'RMSprop'): optimizer.eps *= len(devices) warnings.warn('optimizer.eps is changed to {} ' 'by MultiprocessParallelUpdater for new batch size.'. format(optimizer.eps)) elif optim in ('RMSpropGraves', 'AdaDelta'): optimizer.eps *= len(devices) ** 2 # not quite right for AdaDelta warnings.warn('optimizer.eps is changed to {} ' 'by MultiprocessParallelUpdater for new batch size.'. format(optimizer.eps)) elif hasattr(optimizer, 'lr'): optimizer.lr /= len(devices) warnings.warn('optimizer.lr is changed to {} ' 'by MultiprocessParallelUpdater for new batch size.'. format(optimizer.lr)) super(MultiprocessParallelUpdater, self).__init__( iterator=iterators[0], optimizer=optimizer, converter=converter, auto_new_epoch=auto_new_epoch, ) if isinstance(devices, dict): devices = devices.copy() main = devices.pop('main') devices = list(six.itervalues(devices)) devices = [main] + devices elif isinstance(devices, (list, tuple)): devices = list(devices) else: raise ValueError( 'devices argument should be either dict, list or tuple,' ' but {} was given.'.format(type(devices))) if devices is None or any(device is None for device in devices): raise ValueError('must specify GPU devices') self._master = optimizer.target self._devices = devices self._mpu_iterators = iterators self._initialized = False self._pipes = [] self._workers = [] self.comm = None @staticmethod def available(): return _available def _send_message(self, message): for pipe in self._pipes: pipe.send(message) def setup_workers(self): if self._initialized: return self._initialized = True self._master.cleargrads() for i in six.moves.range(1, len(self._devices)): pipe, worker_end = multiprocessing.Pipe() worker = _Worker(i, worker_end, self) worker.start() self._workers.append(worker) self._pipes.append(pipe) with cuda.Device(self._devices[0]): self._master.to_gpu(self._devices[0]) if len(self._devices) > 1: comm_id = nccl.get_unique_id() self._send_message(('set comm_id', comm_id)) self.comm = nccl.NcclCommunicator(len(self._devices), comm_id, 0) def update_core(self): self.setup_workers() self._send_message(('update', None)) with cuda.Device(self._devices[0]): # For reducing memory self._master.cleargrads() optimizer = self.get_optimizer('main') iterator = self.get_iterator('main') batch = iterator.next() batch = self.converter(batch, self._devices[0]) loss = _calc_loss(self._master, batch) self._master.cleargrads() loss.backward() # NCCL: reduce grads null_stream = cuda.Stream.null if self.comm is not None: gg = gather_grads(self._master) nccl_data_type = _get_nccl_data_type(gg.dtype) self.comm.reduce(gg.data.ptr, gg.data.ptr, gg.size, nccl_data_type, nccl.NCCL_SUM, 0, null_stream.ptr) scatter_grads(self._master, gg) del gg optimizer.update() if self.comm is not None: gp = gather_params(self._master) nccl_data_type = _get_nccl_data_type(gp.dtype) self.comm.bcast(gp.data.ptr, gp.size, nccl_data_type, 0, null_stream.ptr) if self.auto_new_epoch and iterator.is_new_epoch: optimizer.new_epoch(auto=True) def finalize(self): self._send_message(('finalize', None)) for worker in self._workers: worker.join() def _calc_loss(model, in_arrays): if isinstance(in_arrays, tuple): return model(*in_arrays) elif isinstance(in_arrays, dict): return model(**in_arrays) else: return model(in_arrays) def size_num_grads(link): """Count total size of all gradient arrays of a given link Args: link (chainer.link.Link): Target link object. """ size = 0 num = 0 for param in link.params(): if param.size == 0: continue size += param.size num += 1 return size, num def _memcpy_gather(): return cuda.elementwise( 'raw T ptrs, raw X dtypes, raw Y info', 'raw float32 dst', ''' int id_min = id_pre; int id_max = num_src; while (id_max - id_min > 1) { int id = (id_max + id_min) / 2; if (i < info[id]) id_max = id; else id_min = id; } int id = id_min; int i_dst = i; int i_src = i; if (id > 0) i_src -= info[id]; dst[i_dst] = 0; if (ptrs[id] != NULL) { if (dtypes[id] == 0) { // fp32 float *src = reinterpret_cast<float *>(ptrs[id]); dst[i_dst] = src[i_src]; } else { // fp16 float16 *src = reinterpret_cast<float16 *>(ptrs[id]); dst[i_dst] = static_cast<float>(src[i_src]); } } id_pre = id; ''', '_memcpy_gather', loop_prep=''' int num_src = info[0]; int id_pre = 0; ''') def _gather(link, target): size, num = size_num_grads(link) ptrs = numpy.empty(num, dtype=numpy.uint64) dtypes = numpy.empty(num, dtype=numpy.int8) info = numpy.empty(num + 1, dtype=numpy.int32) info[0] = 0 i = 0 for _, param in sorted(link.namedparams()): if param.size == 0: continue ptrs[i] = 0 # NULL pointer d = getattr(param, target) if d is not None: ptrs[i] = d.data.ptr dtypes[i] = 0 # fp32 if param.dtype == numpy.float16: dtypes[i] = 1 # fp16 info[i + 1] = info[i] + param.size i += 1 info[0] = num ptrs = cuda.to_gpu(ptrs) dtypes = cuda.to_gpu(dtypes) info = cuda.to_gpu(info) return _memcpy_gather()(ptrs, dtypes, info, size=size) def gather_grads(link): """Put together all gradient arrays and make a single array Args: link (chainer.link.Link): Target link object. Return: cupy.ndarray """ if link.xp is numpy: raise RuntimeError('gather_grads works only on GPU.') return _gather(link, 'grad') def gather_params(link): """Put together all gradient arrays and make a single array Args: link (chainer.link.Link): Target link object. Return: cupy.ndarray """ if link.xp is numpy: raise RuntimeError('Link.gather_params works only on GPU.') return _gather(link, 'data') def _memcpy_scatter(): return cuda.elementwise( 'raw T ptrs, raw X dtypes, raw Y info, raw float32 array', '', ''' int id_min = id_pre; int id_max = num_src; while (id_max - id_min > 1) { int id = (id_max + id_min) / 2; if (i < info[id]) id_max = id; else id_min = id; } int id = id_min; int i_src = i; int i_dst = i; if (id > 0) i_dst -= info[id]; if (ptrs[id] != NULL) { if (dtypes[id] == 0) { // fp32 float *dst = reinterpret_cast<float *>(ptrs[id]); dst[i_dst] = array[i_src]; } else { // fp16 float16 *dst = reinterpret_cast<float16 *>(ptrs[id]); dst[i_dst] = static_cast<float16>(array[i_src]); } } id_pre = id; ''', '_memcpy_scatter', loop_prep=''' int num_src = info[0]; int id_pre = 0; ''') def _scatter(link, array, target): size, num = size_num_grads(link) ptrs = numpy.zeros(num, dtype=numpy.uint64) dtypes = numpy.zeros(num, dtype=numpy.int8) info = numpy.zeros(num + 1, dtype=numpy.int32) info[0] = 0 i = 0 for _, param in sorted(link.namedparams()): if param.size == 0: continue ptrs[i] = 0 # NULL pointer d = getattr(param, target) if d is None: d = cuda.cupy.zeros(param.shape, dtype=param.dtype) setattr(param, target, d) ptrs[i] = d.data.ptr dtypes[i] = 0 # fp32 if param.dtype == numpy.float16: dtypes[i] = 1 # fp16 info[i + 1] = info[i] + param.size i += 1 if i != num: raise() info[0] = num ptrs = cuda.to_gpu(ptrs) dtypes = cuda.to_gpu(dtypes) info = cuda.to_gpu(info) return _memcpy_scatter()(ptrs, dtypes, info, array, size=size) def scatter_grads(link, array): """Put back contents of the specified array to the related gradient arrays Args: link (chainer.link.Link): Target link object. array (cupy.ndarray): gathered array created by gather_grads() """ return _scatter(link, array, 'grad') def scatter_params(link, array): """Put back contents of the specified array to the related gradient arrays Args: link (chainer.link.Link): Target link object. array (cupy.ndarray): gathered array created by gather_params() """ return _scatter(link, array, 'data') def _get_nccl_data_type(dtype): """Get data type for NCCL""" if dtype == numpy.float32: nccl_data_type = nccl.NCCL_FLOAT elif dtype == numpy.float16: nccl_data_type = nccl.NCCL_HALF elif dtype == numpy.float64: nccl_data_type = nccl.NCCL_DOUBLE else: raise RuntimeError('Unexpected data type:{}'.format(dtype)) return nccl_data_type
33.567623
79
0.561687
[ "MIT" ]
Lynkzhang/Chainer-UM
chainer/training/updaters/multiprocess_parallel_updater.py
16,381
Python
import libtmux def ensure_server() -> libtmux.Server: ''' Either create new or return existing server ''' return libtmux.Server() def spawn_session(name: str, kubeconfig_location: str, server: libtmux.Server): if server.has_session(name): return else: session = server.new_session(name) session.set_environment("KUBECONFIG", kubeconfig_location) # the new_session will create default window and pane which will not contain KUBECONFIG, add manually session.attached_window.attached_pane.send_keys("export KUBECONFIG={}".format(kubeconfig_location))
32.421053
109
0.719156
[ "MIT" ]
kiemlicz/kmux
kmux/tmux.py
616
Python
import numpy as np import cv2 from PIL import Image img_form = "jpg" img_out_dir = "./output_images" vid_form = "mp4" vid_out_dir = "./test_videos_output" class array_image: def __init__(self): self.image = None self.binary_image = None def store(self, name): name = img_out_dir + "/" + name + "." + img_form print("Saving image: " + name) im = Image.fromarray(self.binary_image) im.save(name) class color(array_image): def __init__(self, caller=None, color = "Gr"): threshold = {'R':(200, 255), 'G':(200, 255), 'B':(200, 255), 'H':(15, 100), 'L':(0,255), 'S':(90, 255), 'Gr':(200, 255)} self.available = False self.binary_available = False self.image = None self.binary_image = None self.caller = caller self.color = color self.threshold = threshold[self.color] def get(self, binary=False, masked=False, thresh=None): ret = 0 if (self.available) & (thresh==None): if binary: if self.binary_available: ret = self.binary_image else: self.binary_image = self.color_select(color=self.color, binary=True) self.binary_available = True ret = self.binary_image else: ret = self.image else: self.image = self.color_select(color=self.color, binary=False) self.available = True if binary: self.binary_image = self.color_select(color=self.color, binary=True, thresh=None) self.binary_available = True ret = self.binary_image else: ret = self.image if masked: ret = self.caller.region_of_interest(ret) return ret def grayscale(self): """Applies the Grayscale transform This will return an image with only one color channel but NOTE: to see the returned image as grayscale (assuming your grayscaled image is called 'gray') you should call plt.imshow(gray, cmap='gray')""" return cv2.cvtColor(self.caller.image, cv2.COLOR_RGB2GRAY) # Or use BGR2GRAY if you read an image with cv2.imread() # return cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) def color_select(self, color='R', binary = True, thresh=None): #image received is RGB mpimg.imread img = np.copy(self.caller.image) RGB_colors = {'R':0, 'G':1, 'B':2} HLS_colors = {'H':0, 'L':1, 'S':2} if color in RGB_colors: channel = img[:,:,RGB_colors[color]] elif color in HLS_colors: img = cv2.cvtColor(img, cv2.COLOR_RGB2HLS) channel = img[:, :, HLS_colors[color]] else: channel = self.grayscale() if binary: if not thresh: thresh = self.threshold binary_output = np.zeros_like(img[:,:,0]) binary_output[(channel > thresh[0]) & (channel <= thresh[1])] = 1 return binary_output else: return channel
34.615385
128
0.563492
[ "MIT" ]
mhhm2005eg/CarND-Advanced-Lane-Lines
color.py
3,150
Python
import numpy as np from network.activation import Activation from network.layer import Layer from network.utils.im2col_cython import im2col_cython, col2im_cython class Convolution(Layer): def __init__(self, filter_shape, stride, padding, dropout_rate: float = 0, activation: Activation = None, last_layer=False, weight_initializer=None, fb_weight_initializer=None) -> None: assert len(filter_shape) == 4, \ "invalid filter shape: 4-tuple required, {}-tuple given".format(len(filter_shape)) super().__init__() self.filter_shape = filter_shape self.stride = stride self.padding = padding self.dropout_rate = dropout_rate self.activation = activation self.last_layer = last_layer self.weight_initializer = weight_initializer self.fb_weight_initializer = fb_weight_initializer def initialize(self, input_size, num_classes, train_method) -> tuple: assert np.size(input_size) == 3, \ "invalid input size: 3-tuple required for convolution layer" c_in, h_in, w_in = input_size f, c_f, h_f, w_f = self.filter_shape assert c_in == c_f, \ "input channel dimension ({}) not compatible with filter channel dimension ({})".format(c_in, c_f) assert (h_in - h_f + 2 * self.padding) % self.stride == 0, \ "filter width ({}) not compatible with input width ({})".format(h_f, h_in) assert (w_in - w_f + 2 * self.padding) % self.stride == 0, \ "filter height ({}) not compatible with input height ({})".format(h_f, h_in) self.h_out = ((h_in - h_f + 2 * self.padding) // self.stride) + 1 self.w_out = ((w_in - w_f + 2 * self.padding) // self.stride) + 1 # initialize weights if self.weight_initializer is None: sqrt_fan_in = np.sqrt(c_in * h_in * w_in) self.W = np.random.uniform(low=-1 / sqrt_fan_in, high=1 / sqrt_fan_in, size=self.filter_shape) else: self.W = self.weight_initializer.init(dim=(f, c_f, h_f, w_f)) # initialize feedback weights if self.fb_weight_initializer is None: sqrt_fan_out = np.sqrt(f * self.h_out * self.w_out) # self.B = np.random.uniform(low=-1 / sqrt_fan_out, high=1 / sqrt_fan_out, size=(num_classes, f, self.h_out, self.w_out)) self.B = np.random.uniform(low=-1 / sqrt_fan_out, high=1 / sqrt_fan_out, size=(num_classes, f * self.h_out * self.w_out)) else: # self.B = self.fb_weight_initializer.init(dim=(num_classes, f, self.h_out, self.w_out)) self.B = self.fb_weight_initializer.init(dim=(num_classes, f * self.h_out * self.w_out)) # initialize bias units self.b = np.zeros(f) return f, self.h_out, self.w_out def forward(self, X, mode='predict') -> np.ndarray: n_in, c, h_in, w_in = X.shape n_f, c, h_f, w_f = self.W.shape self.x_cols = im2col_cython(X, h_f, w_f, self.padding, self.stride) # <-> z = self.W.reshape((n_f, -1)).dot(self.x_cols) z += self.b.reshape(-1, 1) # + z = z.reshape(n_f, self.h_out, self.w_out, n_in).transpose(3, 0, 1, 2) self.a_in = X if self.activation is None: self.a_out = z else: self.a_out = self.activation.forward(z) if mode == 'train' and self.dropout_rate > 0: # self.dropout_mask = np.random.binomial(size=self.a_out.shape, n=1, p=1 - self.dropout_rate) self.dropout_mask = (np.random.rand(*self.a_out.shape) > self.dropout_rate).astype(int) self.a_out *= self.dropout_mask return self.a_out def dfa(self, E: np.ndarray) -> tuple: # E = np.einsum('ij,jklm->iklm', E, self.B) n_f, c_f, h_f, w_f = self.W.shape E = np.dot(E, self.B).reshape((-1, n_f, self.h_out, self.w_out)) if self.dropout_rate > 0: E *= self.dropout_mask if self.activation is None: E *= self.a_out else: E *= self.activation.gradient(self.a_out) dW = E.transpose((1, 2, 3, 0)).reshape(n_f, -1).dot(self.x_cols.T).reshape(self.W.shape) db = np.sum(E, axis=(0, 2, 3)) return dW, db def back_prob(self, E: np.ndarray) -> tuple: if self.dropout_rate > 0: E *= self.dropout_mask n_in, c_in, h_in, w_in = self.a_in.shape n_f, c_f, h_f, w_f = self.W.shape if self.activation is None: E *= self.a_out else: E *= self.activation.gradient(self.a_out) delta_reshaped = E.transpose((1, 2, 3, 0)).reshape(n_f, -1) dX_cols = self.W.reshape(n_f, -1).T.dot(delta_reshaped) dX = col2im_cython(dX_cols, n_in, c_in, h_in, w_in, h_f, w_f, self.padding, self.stride) dW = delta_reshaped.dot(self.x_cols.T).reshape(self.W.shape) db = np.sum(E, axis=(0, 2, 3)) return dX, dW, db def has_weights(self) -> bool: return True
40.384
133
0.602813
[ "MIT" ]
metataro/DirectFeedbackAlignment
network/layers/convolution_im2col.py
5,048
Python
#!/usr/bin/python # # Copyright 2018-2022 Polyaxon, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest from mock import MagicMock, patch from polyaxon.cli.artifacts import artifacts from polyaxon_sdk import V1ProjectVersionKind from tests.test_cli.utils import BaseCommandTestCase @pytest.mark.cli_mark class TestCliArtifacts(BaseCommandTestCase): @patch("polyaxon_sdk.ProjectsV1Api.create_version") @patch("polyaxon_sdk.ProjectsV1Api.patch_version") @patch("polyaxon_sdk.ProjectsV1Api.get_version") def test_create_artifact(self, get_version, patch_version, create_version): self.runner.invoke(artifacts, ["register"]) assert create_version.call_count == 0 assert patch_version.call_count == 0 assert get_version.call_count == 0 get_version.return_value = None self.runner.invoke(artifacts, ["register", "--project=owner/foo"]) assert get_version.call_count == 1 assert patch_version.call_count == 0 assert create_version.call_count == 1 get_version.return_value = MagicMock( kind=V1ProjectVersionKind.ARTIFACT, ) self.runner.invoke(artifacts, ["register", "--project=owner/foo"]) assert get_version.call_count == 2 assert patch_version.call_count == 0 assert create_version.call_count == 1 self.runner.invoke(artifacts, ["register", "--project=owner/foo", "--force"]) assert get_version.call_count == 3 assert patch_version.call_count == 1 assert create_version.call_count == 1 @patch("polyaxon_sdk.ProjectsV1Api.list_versions") def test_list_artifacts(self, list_artifacts): self.runner.invoke(artifacts, ["ls", "--project=owner/foo"]) assert list_artifacts.call_count == 1 @patch("polyaxon_sdk.ProjectsV1Api.get_version") def test_get_artifact(self, get_artifact): self.runner.invoke(artifacts, ["get", "-p", "admin/foo"]) assert get_artifact.call_count == 1 @patch("polyaxon_sdk.ProjectsV1Api.patch_version") def test_update_artifact(self, update_artifact): self.runner.invoke( artifacts, ["update", "-p", "admin/foo", "--description=foo"] ) assert update_artifact.call_count == 1 @patch("polyaxon_sdk.ProjectsV1Api.create_version_stage") def test_update_artifact_stage(self, stage_artifact): self.runner.invoke( artifacts, ["stage", "-p", "admin/foo", "-to", "production", "--reason=foo"] ) assert stage_artifact.call_count == 1
39.448718
88
0.702632
[ "Apache-2.0" ]
polyaxon/cli
cli/tests/test_cli/test_artifacts.py
3,077
Python
#encoding:utf-8 subreddit = 'rainbow6' t_channel = '@r_rainbow6' def send_post(submission, r2t): return r2t.send_simple(submission)
15.444444
38
0.741007
[ "MIT" ]
AliannejadiPourya/reddit2telegram
reddit2telegram/channels/r_rainbow6/app.py
139
Python
version = '2.9.0'
9.5
18
0.526316
[ "MIT" ]
pozi/PoziConnect
app/PoziConnect/version.py
19
Python
import asyncio import logging from typing import Dict, List, Optional, Set, Tuple from seno.types.blockchain_format.sized_bytes import bytes32 from seno.util.ints import uint32, uint128 log = logging.getLogger(__name__) class SyncStore: # Whether or not we are syncing sync_mode: bool long_sync: bool peak_to_peer: Dict[bytes32, Set[bytes32]] # Header hash : peer node id peer_to_peak: Dict[bytes32, Tuple[bytes32, uint32, uint128]] # peer node id : [header_hash, height, weight] sync_target_header_hash: Optional[bytes32] # Peak hash we are syncing towards sync_target_height: Optional[uint32] # Peak height we are syncing towards peers_changed: asyncio.Event batch_syncing: Set[bytes32] # Set of nodes which we are batch syncing from backtrack_syncing: Dict[bytes32, int] # Set of nodes which we are backtrack syncing from, and how many threads @classmethod async def create(cls): self = cls() self.sync_mode = False self.long_sync = False self.sync_target_header_hash = None self.sync_target_height = None self.peak_fork_point = {} self.peak_to_peer = {} self.peer_to_peak = {} self.peers_changed = asyncio.Event() self.batch_syncing = set() self.backtrack_syncing = {} return self def set_peak_target(self, peak_hash: bytes32, target_height: uint32): self.sync_target_header_hash = peak_hash self.sync_target_height = target_height def get_sync_target_hash(self) -> Optional[bytes32]: return self.sync_target_header_hash def get_sync_target_height(self) -> Optional[bytes32]: return self.sync_target_height def set_sync_mode(self, sync_mode: bool): self.sync_mode = sync_mode def get_sync_mode(self) -> bool: return self.sync_mode def set_long_sync(self, long_sync: bool): self.long_sync = long_sync def get_long_sync(self) -> bool: return self.long_sync def peer_has_block(self, header_hash: bytes32, peer_id: bytes32, weight: uint128, height: uint32, new_peak: bool): """ Adds a record that a certain peer has a block. """ if header_hash == self.sync_target_header_hash: self.peers_changed.set() if header_hash in self.peak_to_peer: self.peak_to_peer[header_hash].add(peer_id) else: self.peak_to_peer[header_hash] = {peer_id} if new_peak: self.peer_to_peak[peer_id] = (header_hash, height, weight) def get_peers_that_have_peak(self, header_hashes: List[bytes32]) -> Set[bytes32]: """ Returns: peer ids of peers that have at least one of the header hashes. """ node_ids: Set[bytes32] = set() for header_hash in header_hashes: if header_hash in self.peak_to_peer: for node_id in self.peak_to_peer[header_hash]: node_ids.add(node_id) return node_ids def get_peak_of_each_peer(self) -> Dict[bytes32, Tuple[bytes32, uint32, uint128]]: """ Returns: dictionary of peer id to peak information. """ ret = {} for peer_id, v in self.peer_to_peak.items(): if v[0] not in self.peak_to_peer: continue ret[peer_id] = v return ret def get_heaviest_peak(self) -> Optional[Tuple[bytes32, uint32, uint128]]: """ Returns: the header_hash, height, and weight of the heaviest block that one of our peers has notified us of. """ if len(self.peer_to_peak) == 0: return None heaviest_peak_hash: Optional[bytes32] = None heaviest_peak_weight: uint128 = uint128(0) heaviest_peak_height: Optional[uint32] = None for peer_id, (peak_hash, height, weight) in self.peer_to_peak.items(): if peak_hash not in self.peak_to_peer: continue if heaviest_peak_hash is None or weight > heaviest_peak_weight: heaviest_peak_hash = peak_hash heaviest_peak_weight = weight heaviest_peak_height = height assert heaviest_peak_hash is not None and heaviest_peak_weight is not None and heaviest_peak_height is not None return heaviest_peak_hash, heaviest_peak_height, heaviest_peak_weight async def clear_sync_info(self): """ Clears the peak_to_peer info which can get quite large. """ self.peak_to_peer = {} def peer_disconnected(self, node_id: bytes32): if node_id in self.peer_to_peak: del self.peer_to_peak[node_id] for peak, peers in self.peak_to_peer.items(): if node_id in peers: self.peak_to_peer[peak].remove(node_id) assert node_id not in self.peak_to_peer[peak] self.peers_changed.set()
35.992701
119
0.653012
[ "Apache-2.0" ]
AcidBurnSB/seno-blockchain
seno/full_node/sync_store.py
4,931
Python
# coding: utf-8 """ Mailchimp Marketing API No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) # noqa: E501 OpenAPI spec version: 3.0.74 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class AddListMembers1(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'email_address': 'str', 'email_type': 'str', 'status': 'str', 'merge_fields': 'dict(str, object)', 'interests': 'dict(str, bool)', 'language': 'str', 'vip': 'bool', 'location': 'Location', 'marketing_permissions': 'list[MarketingPermission1]', 'ip_signup': 'str', 'timestamp_signup': 'datetime', 'ip_opt': 'str', 'timestamp_opt': 'datetime', 'tags': 'list[str]' } attribute_map = { 'email_address': 'email_address', 'email_type': 'email_type', 'status': 'status', 'merge_fields': 'merge_fields', 'interests': 'interests', 'language': 'language', 'vip': 'vip', 'location': 'location', 'marketing_permissions': 'marketing_permissions', 'ip_signup': 'ip_signup', 'timestamp_signup': 'timestamp_signup', 'ip_opt': 'ip_opt', 'timestamp_opt': 'timestamp_opt', 'tags': 'tags' } def __init__(self, email_address=None, email_type=None, status=None, merge_fields=None, interests=None, language=None, vip=None, location=None, marketing_permissions=None, ip_signup=None, timestamp_signup=None, ip_opt=None, timestamp_opt=None, tags=None): # noqa: E501 """AddListMembers1 - a model defined in Swagger""" # noqa: E501 self._email_address = None self._email_type = None self._status = None self._merge_fields = None self._interests = None self._language = None self._vip = None self._location = None self._marketing_permissions = None self._ip_signup = None self._timestamp_signup = None self._ip_opt = None self._timestamp_opt = None self._tags = None self.discriminator = None self.email_address = email_address if email_type is not None: self.email_type = email_type self.status = status if merge_fields is not None: self.merge_fields = merge_fields if interests is not None: self.interests = interests if language is not None: self.language = language if vip is not None: self.vip = vip if location is not None: self.location = location if marketing_permissions is not None: self.marketing_permissions = marketing_permissions if ip_signup is not None: self.ip_signup = ip_signup if timestamp_signup is not None: self.timestamp_signup = timestamp_signup if ip_opt is not None: self.ip_opt = ip_opt if timestamp_opt is not None: self.timestamp_opt = timestamp_opt if tags is not None: self.tags = tags @property def email_address(self): """Gets the email_address of this AddListMembers1. # noqa: E501 Email address for a subscriber. # noqa: E501 :return: The email_address of this AddListMembers1. # noqa: E501 :rtype: str """ return self._email_address @email_address.setter def email_address(self, email_address): """Sets the email_address of this AddListMembers1. Email address for a subscriber. # noqa: E501 :param email_address: The email_address of this AddListMembers1. # noqa: E501 :type: str """ if email_address is None: raise ValueError("Invalid value for `email_address`, must not be `None`") # noqa: E501 self._email_address = email_address @property def email_type(self): """Gets the email_type of this AddListMembers1. # noqa: E501 Type of email this member asked to get ('html' or 'text'). # noqa: E501 :return: The email_type of this AddListMembers1. # noqa: E501 :rtype: str """ return self._email_type @email_type.setter def email_type(self, email_type): """Sets the email_type of this AddListMembers1. Type of email this member asked to get ('html' or 'text'). # noqa: E501 :param email_type: The email_type of this AddListMembers1. # noqa: E501 :type: str """ self._email_type = email_type @property def status(self): """Gets the status of this AddListMembers1. # noqa: E501 Subscriber's current status. # noqa: E501 :return: The status of this AddListMembers1. # noqa: E501 :rtype: str """ return self._status @status.setter def status(self, status): """Sets the status of this AddListMembers1. Subscriber's current status. # noqa: E501 :param status: The status of this AddListMembers1. # noqa: E501 :type: str """ if status is None: raise ValueError("Invalid value for `status`, must not be `None`") # noqa: E501 allowed_values = ["subscribed", "unsubscribed", "cleaned", "pending", "transactional"] # noqa: E501 if status not in allowed_values: raise ValueError( "Invalid value for `status` ({0}), must be one of {1}" # noqa: E501 .format(status, allowed_values) ) self._status = status @property def merge_fields(self): """Gets the merge_fields of this AddListMembers1. # noqa: E501 A dictionary of merge fields where the keys are the merge tags. See the [Merge Fields documentation](https://mailchimp.com/developer/marketing/docs/merge-fields/#structure) for more about the structure. # noqa: E501 :return: The merge_fields of this AddListMembers1. # noqa: E501 :rtype: dict(str, object) """ return self._merge_fields @merge_fields.setter def merge_fields(self, merge_fields): """Sets the merge_fields of this AddListMembers1. A dictionary of merge fields where the keys are the merge tags. See the [Merge Fields documentation](https://mailchimp.com/developer/marketing/docs/merge-fields/#structure) for more about the structure. # noqa: E501 :param merge_fields: The merge_fields of this AddListMembers1. # noqa: E501 :type: dict(str, object) """ self._merge_fields = merge_fields @property def interests(self): """Gets the interests of this AddListMembers1. # noqa: E501 The key of this object's properties is the ID of the interest in question. # noqa: E501 :return: The interests of this AddListMembers1. # noqa: E501 :rtype: dict(str, bool) """ return self._interests @interests.setter def interests(self, interests): """Sets the interests of this AddListMembers1. The key of this object's properties is the ID of the interest in question. # noqa: E501 :param interests: The interests of this AddListMembers1. # noqa: E501 :type: dict(str, bool) """ self._interests = interests @property def language(self): """Gets the language of this AddListMembers1. # noqa: E501 If set/detected, the [subscriber's language](https://mailchimp.com/help/view-and-edit-contact-languages/). # noqa: E501 :return: The language of this AddListMembers1. # noqa: E501 :rtype: str """ return self._language @language.setter def language(self, language): """Sets the language of this AddListMembers1. If set/detected, the [subscriber's language](https://mailchimp.com/help/view-and-edit-contact-languages/). # noqa: E501 :param language: The language of this AddListMembers1. # noqa: E501 :type: str """ self._language = language @property def vip(self): """Gets the vip of this AddListMembers1. # noqa: E501 [VIP status](https://mailchimp.com/help/designate-and-send-to-vip-contacts/) for subscriber. # noqa: E501 :return: The vip of this AddListMembers1. # noqa: E501 :rtype: bool """ return self._vip @vip.setter def vip(self, vip): """Sets the vip of this AddListMembers1. [VIP status](https://mailchimp.com/help/designate-and-send-to-vip-contacts/) for subscriber. # noqa: E501 :param vip: The vip of this AddListMembers1. # noqa: E501 :type: bool """ self._vip = vip @property def location(self): """Gets the location of this AddListMembers1. # noqa: E501 :return: The location of this AddListMembers1. # noqa: E501 :rtype: Location """ return self._location @location.setter def location(self, location): """Sets the location of this AddListMembers1. :param location: The location of this AddListMembers1. # noqa: E501 :type: Location """ self._location = location @property def marketing_permissions(self): """Gets the marketing_permissions of this AddListMembers1. # noqa: E501 The marketing permissions for the subscriber. # noqa: E501 :return: The marketing_permissions of this AddListMembers1. # noqa: E501 :rtype: list[MarketingPermission1] """ return self._marketing_permissions @marketing_permissions.setter def marketing_permissions(self, marketing_permissions): """Sets the marketing_permissions of this AddListMembers1. The marketing permissions for the subscriber. # noqa: E501 :param marketing_permissions: The marketing_permissions of this AddListMembers1. # noqa: E501 :type: list[MarketingPermission1] """ self._marketing_permissions = marketing_permissions @property def ip_signup(self): """Gets the ip_signup of this AddListMembers1. # noqa: E501 IP address the subscriber signed up from. # noqa: E501 :return: The ip_signup of this AddListMembers1. # noqa: E501 :rtype: str """ return self._ip_signup @ip_signup.setter def ip_signup(self, ip_signup): """Sets the ip_signup of this AddListMembers1. IP address the subscriber signed up from. # noqa: E501 :param ip_signup: The ip_signup of this AddListMembers1. # noqa: E501 :type: str """ self._ip_signup = ip_signup @property def timestamp_signup(self): """Gets the timestamp_signup of this AddListMembers1. # noqa: E501 The date and time the subscriber signed up for the list in ISO 8601 format. # noqa: E501 :return: The timestamp_signup of this AddListMembers1. # noqa: E501 :rtype: datetime """ return self._timestamp_signup @timestamp_signup.setter def timestamp_signup(self, timestamp_signup): """Sets the timestamp_signup of this AddListMembers1. The date and time the subscriber signed up for the list in ISO 8601 format. # noqa: E501 :param timestamp_signup: The timestamp_signup of this AddListMembers1. # noqa: E501 :type: datetime """ self._timestamp_signup = timestamp_signup @property def ip_opt(self): """Gets the ip_opt of this AddListMembers1. # noqa: E501 The IP address the subscriber used to confirm their opt-in status. # noqa: E501 :return: The ip_opt of this AddListMembers1. # noqa: E501 :rtype: str """ return self._ip_opt @ip_opt.setter def ip_opt(self, ip_opt): """Sets the ip_opt of this AddListMembers1. The IP address the subscriber used to confirm their opt-in status. # noqa: E501 :param ip_opt: The ip_opt of this AddListMembers1. # noqa: E501 :type: str """ self._ip_opt = ip_opt @property def timestamp_opt(self): """Gets the timestamp_opt of this AddListMembers1. # noqa: E501 The date and time the subscribe confirmed their opt-in status in ISO 8601 format. # noqa: E501 :return: The timestamp_opt of this AddListMembers1. # noqa: E501 :rtype: datetime """ return self._timestamp_opt @timestamp_opt.setter def timestamp_opt(self, timestamp_opt): """Sets the timestamp_opt of this AddListMembers1. The date and time the subscribe confirmed their opt-in status in ISO 8601 format. # noqa: E501 :param timestamp_opt: The timestamp_opt of this AddListMembers1. # noqa: E501 :type: datetime """ self._timestamp_opt = timestamp_opt @property def tags(self): """Gets the tags of this AddListMembers1. # noqa: E501 The tags that are associated with a member. # noqa: E501 :return: The tags of this AddListMembers1. # noqa: E501 :rtype: list[str] """ return self._tags @tags.setter def tags(self, tags): """Sets the tags of this AddListMembers1. The tags that are associated with a member. # noqa: E501 :param tags: The tags of this AddListMembers1. # noqa: E501 :type: list[str] """ self._tags = tags def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(AddListMembers1, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, AddListMembers1): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
31.934426
273
0.61345
[ "Apache-2.0" ]
RWiggers/mailchimp-marketing-asyncio
mailchimp_marketing_asyncio/models/add_list_members1.py
15,584
Python
#Curso Python #06 - Condições Aninhadas #Primeiro Exemplo #nome = str(input('Qual é seu Nome: ')) #if nome == 'Jefferson': # print('Que Nome Bonito') #else: # print('Seu nome é bem normal.') #print('Tenha um bom dia, {}'.format(nome)) #Segundo Exemplo nome = str(input('Qual é seu Nome: ')) if nome == 'Jefferson': print('Que Nome Bonito') elif nome == 'Pedro' or nome == 'Marcos' or nome == 'Paulo': print('Seu nome é bem popular no Brasil.') elif nome in 'Jennifer Vitoria Mariana Deborah': print('Belo nome você tem em !') else: print('Seu nome é bem normal.') print('Tenha um bom dia, {}'.format(nome))
27.478261
60
0.648734
[ "MIT" ]
ElHa07/Python
Curso Python/Aula06/CondicoesAinhada.py
640
Python
#### NOTICE: THIS FILE IS AUTOGENERATED #### MODIFICATIONS MAY BE LOST IF DONE IMPROPERLY #### PLEASE SEE THE ONLINE DOCUMENTATION FOR EXAMPLES from swgpy.object import * def create(kernel): result = Creature() result.template = "object/mobile/shared_space_comm_station_talus.iff" result.attribute_template_id = 9 result.stfName("npc_name","selonian_base_male") #### BEGIN MODIFICATIONS #### #### END MODIFICATIONS #### return result
26.588235
70
0.734513
[ "MIT" ]
SWGANHServices/GameServer_Legacy
data/scripts/templates/object/mobile/shared_space_comm_station_talus.py
452
Python
"""Config flow to configure Xiaomi Miio.""" import logging from re import search from micloud import MiCloud import voluptuous as vol from homeassistant import config_entries from homeassistant.config_entries import SOURCE_REAUTH from homeassistant.const import CONF_HOST, CONF_NAME, CONF_TOKEN from homeassistant.core import callback from homeassistant.helpers.device_registry import format_mac from .const import ( CONF_CLOUD_COUNTRY, CONF_CLOUD_PASSWORD, CONF_CLOUD_SUBDEVICES, CONF_CLOUD_USERNAME, CONF_DEVICE, CONF_FLOW_TYPE, CONF_GATEWAY, CONF_MAC, CONF_MANUAL, CONF_MODEL, DEFAULT_CLOUD_COUNTRY, DOMAIN, MODELS_ALL, MODELS_ALL_DEVICES, MODELS_GATEWAY, SERVER_COUNTRY_CODES, ) from .device import ConnectXiaomiDevice _LOGGER = logging.getLogger(__name__) DEVICE_SETTINGS = { vol.Required(CONF_TOKEN): vol.All(str, vol.Length(min=32, max=32)), } DEVICE_CONFIG = vol.Schema({vol.Required(CONF_HOST): str}).extend(DEVICE_SETTINGS) DEVICE_MODEL_CONFIG = vol.Schema({vol.Required(CONF_MODEL): vol.In(MODELS_ALL)}) DEVICE_CLOUD_CONFIG = vol.Schema( { vol.Optional(CONF_CLOUD_USERNAME): str, vol.Optional(CONF_CLOUD_PASSWORD): str, vol.Optional(CONF_CLOUD_COUNTRY, default=DEFAULT_CLOUD_COUNTRY): vol.In( SERVER_COUNTRY_CODES ), vol.Optional(CONF_MANUAL, default=False): bool, } ) class OptionsFlowHandler(config_entries.OptionsFlow): """Options for the component.""" def __init__(self, config_entry: config_entries.ConfigEntry) -> None: """Init object.""" self.config_entry = config_entry async def async_step_init(self, user_input=None): """Manage the options.""" errors = {} if user_input is not None: use_cloud = user_input.get(CONF_CLOUD_SUBDEVICES, False) cloud_username = self.config_entry.data.get(CONF_CLOUD_USERNAME) cloud_password = self.config_entry.data.get(CONF_CLOUD_PASSWORD) cloud_country = self.config_entry.data.get(CONF_CLOUD_COUNTRY) if use_cloud and ( not cloud_username or not cloud_password or not cloud_country ): errors["base"] = "cloud_credentials_incomplete" # trigger re-auth flow self.hass.async_create_task( self.hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_REAUTH}, data=self.config_entry.data, ) ) if not errors: return self.async_create_entry(title="", data=user_input) settings_schema = vol.Schema( { vol.Optional( CONF_CLOUD_SUBDEVICES, default=self.config_entry.options.get(CONF_CLOUD_SUBDEVICES, False), ): bool } ) return self.async_show_form( step_id="init", data_schema=settings_schema, errors=errors ) class XiaomiMiioFlowHandler(config_entries.ConfigFlow, domain=DOMAIN): """Handle a Xiaomi Miio config flow.""" VERSION = 1 def __init__(self): """Initialize.""" self.host = None self.mac = None self.token = None self.model = None self.name = None self.cloud_username = None self.cloud_password = None self.cloud_country = None self.cloud_devices = {} @staticmethod @callback def async_get_options_flow(config_entry) -> OptionsFlowHandler: """Get the options flow.""" return OptionsFlowHandler(config_entry) async def async_step_reauth(self, user_input=None): """Perform reauth upon an authentication error or missing cloud credentials.""" self.host = user_input[CONF_HOST] self.token = user_input[CONF_TOKEN] self.mac = user_input[CONF_MAC] self.model = user_input.get(CONF_MODEL) return await self.async_step_reauth_confirm() async def async_step_reauth_confirm(self, user_input=None): """Dialog that informs the user that reauth is required.""" if user_input is not None: return await self.async_step_cloud() return self.async_show_form( step_id="reauth_confirm", data_schema=vol.Schema({}) ) async def async_step_import(self, conf: dict): """Import a configuration from config.yaml.""" self.host = conf[CONF_HOST] self.token = conf[CONF_TOKEN] self.name = conf.get(CONF_NAME) self.model = conf.get(CONF_MODEL) self.context.update( {"title_placeholders": {"name": f"YAML import {self.host}"}} ) return await self.async_step_connect() async def async_step_user(self, user_input=None): """Handle a flow initialized by the user.""" return await self.async_step_cloud() async def async_step_zeroconf(self, discovery_info): """Handle zeroconf discovery.""" name = discovery_info.get("name") self.host = discovery_info.get("host") self.mac = discovery_info.get("properties", {}).get("mac") if self.mac is None: poch = discovery_info.get("properties", {}).get("poch", "") result = search(r"mac=\w+", poch) if result is not None: self.mac = result.group(0).split("=")[1] if not name or not self.host or not self.mac: return self.async_abort(reason="not_xiaomi_miio") self.mac = format_mac(self.mac) # Check which device is discovered. for gateway_model in MODELS_GATEWAY: if name.startswith(gateway_model.replace(".", "-")): unique_id = self.mac await self.async_set_unique_id(unique_id) self._abort_if_unique_id_configured({CONF_HOST: self.host}) self.context.update( {"title_placeholders": {"name": f"Gateway {self.host}"}} ) return await self.async_step_cloud() for device_model in MODELS_ALL_DEVICES: if name.startswith(device_model.replace(".", "-")): unique_id = self.mac await self.async_set_unique_id(unique_id) self._abort_if_unique_id_configured({CONF_HOST: self.host}) self.context.update( {"title_placeholders": {"name": f"{device_model} {self.host}"}} ) return await self.async_step_cloud() # Discovered device is not yet supported _LOGGER.debug( "Not yet supported Xiaomi Miio device '%s' discovered with host %s", name, self.host, ) return self.async_abort(reason="not_xiaomi_miio") def extract_cloud_info(self, cloud_device_info): """Extract the cloud info.""" if self.host is None: self.host = cloud_device_info["localip"] if self.mac is None: self.mac = format_mac(cloud_device_info["mac"]) if self.model is None: self.model = cloud_device_info["model"] if self.name is None: self.name = cloud_device_info["name"] self.token = cloud_device_info["token"] async def async_step_cloud(self, user_input=None): """Configure a xiaomi miio device through the Miio Cloud.""" errors = {} if user_input is not None: if user_input[CONF_MANUAL]: return await self.async_step_manual() cloud_username = user_input.get(CONF_CLOUD_USERNAME) cloud_password = user_input.get(CONF_CLOUD_PASSWORD) cloud_country = user_input.get(CONF_CLOUD_COUNTRY) if not cloud_username or not cloud_password or not cloud_country: errors["base"] = "cloud_credentials_incomplete" return self.async_show_form( step_id="cloud", data_schema=DEVICE_CLOUD_CONFIG, errors=errors ) miio_cloud = MiCloud(cloud_username, cloud_password) if not await self.hass.async_add_executor_job(miio_cloud.login): errors["base"] = "cloud_login_error" return self.async_show_form( step_id="cloud", data_schema=DEVICE_CLOUD_CONFIG, errors=errors ) devices_raw = await self.hass.async_add_executor_job( miio_cloud.get_devices, cloud_country ) if not devices_raw: errors["base"] = "cloud_no_devices" return self.async_show_form( step_id="cloud", data_schema=DEVICE_CLOUD_CONFIG, errors=errors ) self.cloud_devices = {} for device in devices_raw: parent_id = device.get("parent_id") if not parent_id: name = device["name"] model = device["model"] list_name = f"{name} - {model}" self.cloud_devices[list_name] = device self.cloud_username = cloud_username self.cloud_password = cloud_password self.cloud_country = cloud_country if self.host is not None: for device in self.cloud_devices.values(): cloud_host = device.get("localip") if cloud_host == self.host: self.extract_cloud_info(device) return await self.async_step_connect() if len(self.cloud_devices) == 1: self.extract_cloud_info(list(self.cloud_devices.values())[0]) return await self.async_step_connect() return await self.async_step_select() return self.async_show_form( step_id="cloud", data_schema=DEVICE_CLOUD_CONFIG, errors=errors ) async def async_step_select(self, user_input=None): """Handle multiple cloud devices found.""" errors = {} if user_input is not None: cloud_device = self.cloud_devices[user_input["select_device"]] self.extract_cloud_info(cloud_device) return await self.async_step_connect() select_schema = vol.Schema( {vol.Required("select_device"): vol.In(list(self.cloud_devices))} ) return self.async_show_form( step_id="select", data_schema=select_schema, errors=errors ) async def async_step_manual(self, user_input=None): """Configure a xiaomi miio device Manually.""" errors = {} if user_input is not None: self.token = user_input[CONF_TOKEN] if user_input.get(CONF_HOST): self.host = user_input[CONF_HOST] return await self.async_step_connect() if self.host: schema = vol.Schema(DEVICE_SETTINGS) else: schema = DEVICE_CONFIG return self.async_show_form(step_id="manual", data_schema=schema, errors=errors) async def async_step_connect(self, user_input=None): """Connect to a xiaomi miio device.""" errors = {} if self.host is None or self.token is None: return self.async_abort(reason="incomplete_info") if user_input is not None: self.model = user_input[CONF_MODEL] # Try to connect to a Xiaomi Device. connect_device_class = ConnectXiaomiDevice(self.hass) await connect_device_class.async_connect_device(self.host, self.token) device_info = connect_device_class.device_info if self.model is None and device_info is not None: self.model = device_info.model if self.model is None: errors["base"] = "cannot_connect" return self.async_show_form( step_id="connect", data_schema=DEVICE_MODEL_CONFIG, errors=errors ) if self.mac is None and device_info is not None: self.mac = format_mac(device_info.mac_address) unique_id = self.mac existing_entry = await self.async_set_unique_id( unique_id, raise_on_progress=False ) if existing_entry: data = existing_entry.data.copy() data[CONF_HOST] = self.host data[CONF_TOKEN] = self.token if ( self.cloud_username is not None and self.cloud_password is not None and self.cloud_country is not None ): data[CONF_CLOUD_USERNAME] = self.cloud_username data[CONF_CLOUD_PASSWORD] = self.cloud_password data[CONF_CLOUD_COUNTRY] = self.cloud_country self.hass.config_entries.async_update_entry(existing_entry, data=data) await self.hass.config_entries.async_reload(existing_entry.entry_id) return self.async_abort(reason="reauth_successful") if self.name is None: self.name = self.model flow_type = None for gateway_model in MODELS_GATEWAY: if self.model.startswith(gateway_model): flow_type = CONF_GATEWAY if flow_type is None: for device_model in MODELS_ALL_DEVICES: if self.model.startswith(device_model): flow_type = CONF_DEVICE if flow_type is not None: return self.async_create_entry( title=self.name, data={ CONF_FLOW_TYPE: flow_type, CONF_HOST: self.host, CONF_TOKEN: self.token, CONF_MODEL: self.model, CONF_MAC: self.mac, CONF_CLOUD_USERNAME: self.cloud_username, CONF_CLOUD_PASSWORD: self.cloud_password, CONF_CLOUD_COUNTRY: self.cloud_country, }, ) errors["base"] = "unknown_device" return self.async_show_form( step_id="connect", data_schema=DEVICE_MODEL_CONFIG, errors=errors )
36.502564
88
0.606631
[ "Apache-2.0" ]
0xFEEDC0DE64/homeassistant-core
homeassistant/components/xiaomi_miio/config_flow.py
14,236
Python
#!/usr/bin/env python import os import re import pickle import json import glob import numpy as np from abc import ABC, abstractmethod from concurrent.futures import ProcessPoolExecutor from contextlib import contextmanager from collections import namedtuple, OrderedDict from tqdm import tqdm from .utils import img_to_jpeg_bytes, jpeg_bytes_to_img, _DEFAULT_JPEG_QUALITY from pathlib import Path #from simplejpeg import is_jpeg def is_jpeg(data): """ Check whether a bytes object (or similar) contains JPEG (JFIF) data. Returns False for truncated files. Taken from simplejpeg.is_jpeg, but less strict because it doesn't check EOI, as most JPEG viewers don't really throw error for missing EOI. :param data: JPEG (JFIF) data :return: True if JPEG """ return data[:2] == b'\xFF\xD8' ImgInfo = namedtuple('ImgInfo', ['loc', 'pad', 'length']) class FileFormatException(Exception): pass class AbstractSerializer(ABC): # pragma: no cover @abstractmethod def load(self, file_name): pass @abstractmethod def dump(self, thing, file_name): pass class PickleSerializer(AbstractSerializer): def load(self, file_name): with open(file_name, 'rb') as file_pointer: return pickle.load(file_pointer) def dump(self, thing, file_name): with open(file_name, 'wb') as file_pointer: pickle.dump(thing, file_pointer) class JSONSerializer(AbstractSerializer): def load(self, file_name): with open(file_name, 'r') as file_pointer: return json.load(file_pointer, object_pairs_hook=OrderedDict) def dump(self, thing, file_name): with open(file_name, 'w') as file_pointer: json.dump(thing, file_pointer) pickle_serializer = PickleSerializer() json_serializer = JSONSerializer() def extract_input_for_getitem(element): if isinstance(element, tuple) and len(element) == 2: id_, slice_ = element elif isinstance(element, (int, str)): id_, slice_ = element, None else: raise TypeError("Undefined input type! id or (id, slice) expected") id_ = str(id_) return id_, slice_ class GulpDirectory(object): """ Represents a directory containing *.gulp and *.gmeta files. Parameters ---------- output_dir: str Path to the directory containing the files. jpeg_decoder: callable that takes a JPEG stored as :py:class:`bytes` and returns the desired decoded image format (e.g. np.ndarray) Attributes ---------- all_meta_dicts: list of dicts All meta dicts from all chunks as a list. chunk_lookup: dict: int -> str Mapping element id to chunk index. chunk_objs_lookup: dict: int -> GulpChunk Mapping element id to chunk index. merged_meta_dict: dict: id -> meta dict all meta dicts merged """ def __init__(self, output_dir, jpeg_decoder=jpeg_bytes_to_img): self.output_dir = output_dir self.jpeg_decoder = jpeg_decoder self.chunk_objs_lookup = OrderedDict(zip(self._chunk_ids(), self._chunks())) self.all_meta_dicts = [c.meta_dict for c in self.chunk_objs_lookup.values()] self.num_chunks = len(self.chunk_objs_lookup) self.chunk_lookup = {} for chunk_id, chunk in self.chunk_objs_lookup.items(): for id_ in chunk.meta_dict: self.chunk_lookup[id_] = chunk_id self.merged_meta_dict = {} for d in self.all_meta_dicts: for k in d.keys(): assert k not in self.merged_meta_dict,\ "Duplicate id detected {}".format(k) else: self.merged_meta_dict.update(d) def __iter__(self): return iter(self.chunk_objs_lookup.values()) def chunks(self): """ Return a generator over existing GulpChunk objects which are ready to be opened and read from. """ return self.__iter__() def _chunks(self): return (GulpChunk(*paths, jpeg_decoder=self.jpeg_decoder) for paths in self._existing_file_paths()) def new_chunks(self, total_new_chunks): """ Return a generator over freshly setup GulpChunk objects which are ready to be opened and written to. Parameters ---------- total_new_chunks: int The total number of new chunks to initialize. """ return ((GulpChunk(*paths, jpeg_decoder=self.jpeg_decoder) for paths in self._allocate_new_file_paths(total_new_chunks))) def __getitem__(self, element): id_, _ = extract_input_for_getitem(element) chunk_id = self.chunk_lookup[id_] gulp_chunk = self.chunk_objs_lookup[chunk_id] with gulp_chunk.open(): return gulp_chunk[element] def _find_existing_data_paths(self): return sorted(glob.glob(os.path.join(self.output_dir, 'data*.gulp'))) def _find_existing_meta_paths(self): return sorted(glob.glob(os.path.join(self.output_dir, 'meta*.gmeta'))) def _load_label_dict(self): return json.load(open(os.path.join(self.output_dir, 'label2idx.json'), 'rb')) def _existing_file_paths(self): data_paths = self._find_existing_data_paths() meta_paths = self._find_existing_meta_paths() assert len(data_paths) == len(meta_paths) return zip(data_paths, meta_paths) def _find_ids_from_paths(self, paths): return [int(re.findall(r'\d+', os.path.basename(p))[0]) for p in paths] def _chunk_ids(self): data_paths = self._find_existing_data_paths() meta_paths = self._find_existing_meta_paths() data_ids = self._find_ids_from_paths(data_paths) meta_ids = self._find_ids_from_paths(meta_paths) assert data_ids == meta_ids return data_ids def _next_chunk_id(self): existing_chunk_ids = self._chunk_ids() next_chunk_id = 0 if len(existing_chunk_ids) > 0: next_chunk_id = max([int(i) for i in existing_chunk_ids]) + 1 return next_chunk_id def _allocate_new_file_paths(self, total_new_chunks): next_chunk_id = self._next_chunk_id() return [self._initialize_filenames(i) for i in range(next_chunk_id, next_chunk_id + total_new_chunks)] def _initialize_filenames(self, chunk_id): data_file_path = os.path.join( self.output_dir, 'data_{}.gulp'.format(chunk_id)) meta_file_path = os.path.join( self.output_dir, 'meta_{}.gmeta'.format(chunk_id)) return data_file_path, meta_file_path class GulpChunk(object): """ Represents a gulp chunk on disk. Parameters ---------- data_file_path: str Path to the *.gulp file. meta_file_path: str Path to the *.gmeta file. serializer: subclass of AbstractSerializer The type of serializer to use. jpeg_decoder: callable that takes a JPEG stored as :py:class:`bytes` and returns the desired decoded image format (e.g. np.ndarray) """ def __init__(self, data_file_path, meta_file_path, serializer=json_serializer, jpeg_decoder=jpeg_bytes_to_img): self.jpeg_decoder = jpeg_decoder self.serializer = serializer self.data_file_path = data_file_path self.meta_file_path = meta_file_path self.meta_dict = self._get_or_create_dict() self._img_info = {} self.fp = None def __contains__(self, id_): return str(id_) in self.meta_dict def __getitem__(self, element): id_, slice_ = extract_input_for_getitem(element) return self.read_frames(id_, slice_) def __iter__(self): return self.iter_all() def _get_frame_infos(self, id_): id_ = str(id_) if id_ in self.meta_dict: return (self._get_or_create_img_info(id_), self._copy_meta_data(id_)) def _copy_meta_data(self, id_): return dict(self.meta_dict[id_]['meta_data'][0]) def _get_or_create_img_info(self, id_): if id_ not in self._img_info: self._img_info[id_] = [ImgInfo(*info) for info in self.meta_dict[id_]['frame_info']] return self._img_info[id_] def _get_or_create_dict(self): if os.path.exists(self.meta_file_path): return self.serializer.load(self.meta_file_path) else: return OrderedDict() @staticmethod def _default_factory(): return OrderedDict([('frame_info', []), ('meta_data', [])]) @staticmethod def _pad_image(number): return (4 - (number % 4)) % 4 def _append_meta(self, id_, meta_data): id_ = str(id_) if id_ not in self.meta_dict: # implements an OrderedDefaultDict self.meta_dict[id_] = self._default_factory() self.meta_dict[id_]['meta_data'].append(meta_data) def _write_frame(self, id_, image, jpeg_encode_quality=_DEFAULT_JPEG_QUALITY): loc = self.fp.tell() if isinstance(image, (str, Path)): # If image is a string or pathlib Path, assume that it is a path to a jpeg file # and add it directly without decoding and encoding it. with open(str(image), 'rb') as image_file: img_str = image_file.read() if not is_jpeg(img_str): raise FileFormatException(f'Image file from path {image} does not appear to be a JPEG file.') else: # np.array img_str = img_to_jpeg_bytes(image, jpeg_encode_quality) assert len(img_str) > 0 pad = self._pad_image(len(img_str)) record = img_str.ljust(len(img_str) + pad, b'\0') assert len(record) > 0 img_info = ImgInfo(loc=loc, length=len(record), pad=pad) id_ = str(id_) if id_ not in self.meta_dict: # implements an OrderedDefaultDict self.meta_dict[id_] = self._default_factory() self.meta_dict[id_]['frame_info'].append(img_info) self.fp.write(record) def _write_frames(self, id_, frames, jpeg_encode_quality=_DEFAULT_JPEG_QUALITY): for frame in frames: self._write_frame(id_, frame, jpeg_encode_quality) @contextmanager def open(self, flag='rb'): """Open the gulp chunk for reading. Parameters ---------- flag: str 'rb': Read binary 'wb': Write binary 'ab': Append to binary Notes ----- Works as a context manager but returns None. """ if flag in ['wb', 'rb', 'ab']: self.fp = open(self.data_file_path, flag) else: m = "This file does not support the mode: '{}'".format(flag) raise NotImplementedError(m) yield if flag in ['wb', 'ab']: self.flush() self.fp.close() def flush(self): """Flush all buffers and write the meta file.""" self.fp.flush() self.serializer.dump(self.meta_dict, self.meta_file_path) def append(self, id_, meta_data, frames, jpeg_encode_quality=_DEFAULT_JPEG_QUALITY): """ Append an item to the gulp. Parameters ---------- id_ : str The ID of the item meta_data: dict The meta-data associated with the item. frames: list of numpy arrays The frames of the item as a list of numpy dictionaries consisting of image pixel values. """ self._append_meta(id_, meta_data) self._write_frames(id_, frames, jpeg_encode_quality=jpeg_encode_quality) def read_frames(self, id_, slice_=None): """ Read frames for a single item. Parameters ---------- id_: str The ID of the item slice_: slice or list of ints: A slice or list of indices with which to select frames. Returns ------- frames (int), meta(dict) The frames of the item as a list of numpy arrays consisting of image pixel values. And the metadata. """ frame_infos, meta_data = self._get_frame_infos(id_) slice_element = slice_ if slice_ is not None else slice(0, len(frame_infos)) def extract_frame(frame_info): self.fp.seek(frame_info.loc) record = self.fp.read(frame_info.length) img_str = record[:len(record)-frame_info.pad] img = self.jpeg_decoder(img_str) return img if isinstance(slice_element, (list, np.ndarray)): selected_frame_infos = [frame_infos[idx] for idx in slice_element] else: selected_frame_infos = frame_infos[slice_element] frames = [extract_frame(frame_info) for frame_info in selected_frame_infos] return frames, meta_data def iter_all(self, accepted_ids=None, shuffle=False): """ Iterate over all frames in the gulp. Parameters ---------- accepted_ids: list of str A filter for accepted ids. shuffle: bool Shuffle the items or not. Returns ------- iterator An iterator that yield a series of frames,meta tuples. See `read_frames` for details. """ ids = self.meta_dict.keys() if accepted_ids is not None: intersection = list(set(ids) & set(accepted_ids)) ids = [id_ for id_ in ids if id_ in intersection] if shuffle: ids = list(ids) np.random.shuffle(ids) with self.open('rb'): for id_ in ids: frames, meta = self.read_frames(id_) yield frames, meta class ChunkWriter(object): """Can write from an adapter to a gulp chunk. Parameters ---------- adapter: subclass of AbstractDatasetAdapter The adapter to get items from. """ def __init__(self, adapter): self.adapter = adapter def write_chunk(self, output_chunk, input_slice): """Write from an input slice in the adapter to an output chunk. Parameters ---------- output_chunk: GulpChunk The chunk to write to input_slice: slice The slice to use from the adapter. """ with output_chunk.open('wb'): for video in self.adapter.iter_data(input_slice): id_ = video['id'] meta_data = video['meta'] frames = video['frames'] if len(frames) > 0: output_chunk.append(id_, meta_data, frames, self.adapter.jpeg_encode_quality()) else: print("Failed to write video with id: {}; no frames" .format(id_)) def calculate_chunk_slices(items_per_chunk, num_items): """Calculate slices for indexing an adapter. Parameters ---------- items_per_chunk: int Approximate number of items per chunk. num_items: int Total number of items. Returns ------- list of slices """ assert items_per_chunk > 0 assert num_items > 0 return [slice(i, min(i + items_per_chunk, num_items)) for i in range(0, num_items, items_per_chunk)] class GulpIngestor(object): """Ingest items from an adapter into an gulp chunks. Parameters ---------- adapter: subclass of AbstractDatasetAdapter The adapter to ingest from. output_folder: str The folder/directory to write to. videos_per_chunk: int The total number of items per chunk. num_workers: int The level of parallelism. """ def __init__(self, adapter, output_folder, videos_per_chunk, num_workers): assert int(num_workers) > 0 self.adapter = adapter self.output_folder = output_folder self.videos_per_chunk = int(videos_per_chunk) self.num_workers = int(num_workers) def __call__(self): os.makedirs(self.output_folder, exist_ok=True) chunk_slices = calculate_chunk_slices(self.videos_per_chunk, len(self.adapter)) gulp_directory = GulpDirectory(self.output_folder) new_chunks = gulp_directory.new_chunks(len(chunk_slices)) chunk_writer = ChunkWriter(self.adapter) with ProcessPoolExecutor(max_workers=self.num_workers) as executor: result = executor.map(chunk_writer.write_chunk, new_chunks, chunk_slices) for r in tqdm(result, desc='Chunks finished', unit='chunk', dynamic_ncols=True, total=len(chunk_slices)): pass
32.685824
143
0.614582
[ "MIT" ]
kiyoon/GulpIO2
src/gulpio2/fileio.py
17,062
Python
# coding: utf-8 # # Copyright 2014 The Oppia Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, softwar # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from extensions.rich_text_components import base NONNEGATIVE_INT_SCHEMA = { 'type': 'int', 'validators': [{ 'id': 'is_at_least', 'min_value': 0 }], } class Video(base.BaseRichTextComponent): """A rich-text component representing a YouTube video.""" name = 'Video' category = 'Basic Input' description = 'A YouTube video.' frontend_name = 'video' tooltip = 'Insert video' _customization_arg_specs = [{ 'name': 'video_id', 'description': ( 'The YouTube id for this video. This is the 11-character string ' 'after \'v=\' in the video URL.'), 'schema': { 'type': 'unicode', }, 'default_value': '', }, { 'name': 'start', 'description': ( 'Video start time in seconds: (leave at 0 to start at the ' 'beginning.)'), 'schema': NONNEGATIVE_INT_SCHEMA, 'default_value': 0 }, { 'name': 'end', 'description': ( 'Video end time in seconds: (leave at 0 to play until the end.)'), 'schema': NONNEGATIVE_INT_SCHEMA, 'default_value': 0 }, { 'name': 'autoplay', 'description': ( 'Autoplay this video once the question has loaded?'), 'schema': { 'type': 'bool' }, 'default_value': False, }] icon_data_url = ( '' 'ABGdBTUEAAK/INwWK6QAAABl0RVh0%0AU29mdHdhcmUAQWRvYmUgSW1hZ2VSZWFkeXHJZ' 'TwAAAIfSURBVDjLpZNPaBNBGMXfbrubzBqbg4kL%0A0lJLgiVKE/AP6Kl6UUFQNAeDIAj' 'VS08aELx59GQPAREV/4BeiqcqROpRD4pUNCJSS21OgloISWME%0AZ/aPb6ARdNeTCz92m' 'O%2B9N9/w7RphGOJ/nsH%2Bolqtvg%2BCYJR8q9VquThxuVz%2BoJTKeZ63Uq/XC38E%0' 'A0Jj3ff8%2BOVupVGLbolkzQw5HOqAxQU4wXWWnZrykmYD0QsgAOJe9hpEUcPr8i0GaJ8' 'n2vs/sL2h8%0AR66TpVfWTdETHWE6GRGKjGiiKNLii5BSLpN7pBHpgMYhMkm8tPUWz3sL' '2D1wFaY/jvnWcTTaE5Dy%0AjMfTT5J0XIAiTRYn3ASwZ1MKbTmN7z%2BKaHUOYqmb1fcP' 'iNa4kQBuyvWAHYfcHGzDgYcx9NKrwJYH%0ACAyF21JiPWBnXMAQOea6bmn%2B4ueYGZi8' 'gtymNVobF7BG5prNpjd%2BeW6X4BSUD0gOdCpzA8MpA/v2%0Av15kl4%2BpK0emwHSbjJ' 'GBlz%2BvYM1fQeDrYOBTdzOGvDf6EFNr%2BLYjHbBgsaCLxr%2BmoNQjU2vYhRXp%0AgI' 'UOmSWWnsJRfjlOZhrexgtYDZ/gWbetNRbNs6QT10GJglNk64HMaGgbAkoMo5fiFNy7CKD' 'QUGqE%0A5r38YktxAfSqW7Zt33l66WtkAkACjuNsaLVaDxlw5HdJ/86aYrG4WCgUZD6fX' '%2Bjv/U0ymfxoWVZo%0AmuZyf%2B8XqfGP49CCrBUAAAAASUVORK5CYII%3D%0A' )
36.686047
79
0.675436
[ "Apache-2.0" ]
Atlas-Sailed-Co/oppia
extensions/rich_text_components/Video/Video.py
3,155
Python
# Copyright 2012 Anton Beloglazov # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from mocktest import * from pyqcy import * import neat.locals.underload.trivial as trivial import logging logging.disable(logging.CRITICAL) class Trivial(TestCase): @qc(10) def always_underloaded_factory( time_step=int_(min=0, max=10), migration_time=float_(min=0, max=10), utilization=list_(of=float) ): alg = trivial.always_underloaded_factory(time_step, migration_time, {}) assert alg(utilization) == (True, {}) def test_threshold_factory(self): alg = trivial.threshold_factory(300, 20., {'threshold': 0.5}) self.assertEqual(alg([]), (False, {})) self.assertEqual(alg([0.0, 0.0]), (True, {})) self.assertEqual(alg([0.0, 0.4]), (True, {})) self.assertEqual(alg([0.0, 0.5]), (True, {})) self.assertEqual(alg([0.0, 0.6]), (False, {})) self.assertEqual(alg([0.0, 1.0]), (False, {})) def test_last_n_average_threshold_factory(self): alg = trivial.last_n_average_threshold_factory( 300, 20., {'threshold': 0.5, 'n': 2}) self.assertEqual(alg([]), (False, {})) self.assertEqual(alg([0.0, 0.0]), (True, {})) self.assertEqual(alg([0.0, 0.4]), (True, {})) self.assertEqual(alg([0.0, 0.5]), (True, {})) self.assertEqual(alg([0.0, 0.6]), (True, {})) self.assertEqual(alg([0.0, 1.0]), (True, {})) self.assertEqual(alg([0.2, 1.0]), (False, {})) self.assertEqual(alg([0.0, 0.2, 1.0]), (False, {})) self.assertEqual(alg([0.0, 1.0, 1.0]), (False, {})) self.assertEqual(alg([0.0, 0.6, 0.6]), (False, {})) alg = trivial.last_n_average_threshold_factory( 300, 20., {'threshold': 0.5, 'n': 3}) self.assertEqual(alg([0.0, 0.6, 0.6]), (True, {})) def test_threshold(self): self.assertEqual(trivial.threshold(0.5, []), False) self.assertEqual(trivial.threshold(0.5, [0.0, 0.0]), True) self.assertEqual(trivial.threshold(0.5, [0.0, 0.4]), True) self.assertEqual(trivial.threshold(0.5, [0.0, 0.5]), True) self.assertEqual(trivial.threshold(0.5, [0.0, 0.6]), False) self.assertEqual(trivial.threshold(0.5, [0.0, 1.0]), False) def test_last_n_average_threshold(self): self.assertEqual(trivial.last_n_average_threshold( 0.5, 2, []), False) self.assertEqual(trivial.last_n_average_threshold( 0.5, 2, [0.0, 0.0]), True) self.assertEqual(trivial.last_n_average_threshold( 0.5, 2, [0.0, 0.4]), True) self.assertEqual(trivial.last_n_average_threshold( 0.5, 2, [0.0, 0.5]), True) self.assertEqual(trivial.last_n_average_threshold( 0.5, 2, [0.0, 0.6]), True) self.assertEqual(trivial.last_n_average_threshold( 0.5, 2, [0.0, 1.0]), True) self.assertEqual(trivial.last_n_average_threshold( 0.5, 2, [0.2, 1.0]), False) self.assertEqual(trivial.last_n_average_threshold( 0.5, 2, [0.0, 0.2, 1.0]), False) self.assertEqual(trivial.last_n_average_threshold( 0.5, 2, [0.0, 1.0, 1.0]), False) self.assertEqual(trivial.last_n_average_threshold( 0.5, 2, [0.0, 0.6, 0.6]), False) self.assertEqual(trivial.last_n_average_threshold( 0.5, 3, [0.0, 0.6, 0.6]), True)
42.294737
79
0.595819
[ "Apache-2.0" ]
MisterPup/OpenStack-Neat-Ceilometer
tests/locals/underload/test_trivial.py
4,018
Python
# coding=utf-8 # Copyright 2019 The TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """NSynth Dataset.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import csv import os import numpy as np import tensorflow as tf import tensorflow_datasets.public_api as tfds _DESCRIPTION = """\ The NSynth Dataset is an audio dataset containing ~300k musical notes, each with a unique pitch, timbre, and envelope. Each note is annotated with three additional pieces of information based on a combination of human evaluation and heuristic algorithms: Source, Family, and Qualities. """ _FULL_DESCRIPTION = """\ Full NSynth Dataset is split into train, valid, and test sets, with no instruments overlapping between the train set and the valid/test sets. """ _GANSYNTH_DESCRIPTION = """\ NSynth Dataset limited to acoustic instruments in the MIDI pitch interval [24, 84]. Uses alternate splits that have overlap in instruments (but not exact notes) between the train set and valid/test sets. This variant was originally introduced in the ICLR 2019 GANSynth paper (https://arxiv.org/abs/1902.08710). """ _F0_AND_LOUDNESS_ADDENDUM = """\ This version additionally contains estimates for F0 using CREPE (Kim et al., 2018) and A-weighted perceptual loudness. Both signals are provided at a frame rate of 250Hz. """ # From http://proceedings.mlr.press/v70/engel17a.html _CITATION = """\ @InProceedings{pmlr-v70-engel17a, title = {Neural Audio Synthesis of Musical Notes with {W}ave{N}et Autoencoders}, author = {Jesse Engel and Cinjon Resnick and Adam Roberts and Sander Dieleman and Mohammad Norouzi and Douglas Eck and Karen Simonyan}, booktitle = {Proceedings of the 34th International Conference on Machine Learning}, pages = {1068--1077}, year = {2017}, editor = {Doina Precup and Yee Whye Teh}, volume = {70}, series = {Proceedings of Machine Learning Research}, address = {International Convention Centre, Sydney, Australia}, month = {06--11 Aug}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v70/engel17a/engel17a.pdf}, url = {http://proceedings.mlr.press/v70/engel17a.html}, } """ _NUM_SECS = 4 _AUDIO_RATE = 16000 # 16 kHz _F0_AND_LOUDNESS_RATE = 250 # 250 Hz _INSTRUMENT_FAMILIES = [ "bass", "brass", "flute", "guitar", "keyboard", "mallet", "organ", "reed", "string", "synth_lead", "vocal"] _INSTRUMENT_SOURCES = ["acoustic", "electronic", "synthetic"] _QUALITIES = [ "bright", "dark", "distortion", "fast_decay", "long_release", "multiphonic", "nonlinear_env", "percussive", "reverb", "tempo-synced"] _BASE_DOWNLOAD_PATH = "http://download.magenta.tensorflow.org/datasets/nsynth/nsynth-" _SPLITS = ["train", "valid", "test"] _SPLIT_SHARDS = { "train": 512, "valid": 32, "test": 8, } class NsynthConfig(tfds.core.BuilderConfig): """BuilderConfig for NSynth Dataset.""" def __init__(self, gansynth_subset=False, estimate_f0_and_loudness=False, **kwargs): """Constructs a NsynthConfig. Args: gansynth_subset: bool, whether to use the subset of the dataset introduced in the ICLR 2019 GANSynth paper (Engel, et al. 2018). This subset uses acoustic-only instrument sources and limits the pitches to the interval [24, 84]. The train and test splits are also modified so that instruments (but not specific notes) overlap between them. See https://arxiv.org/abs/1902.08710 for more details. estimate_f0_and_loudness: bool, whether to estimate fundamental frequency (F0) and loudness for the audio (at 250 Hz) and add them to the set of features. **kwargs: keyword arguments forwarded to super. """ name_parts = [] if gansynth_subset: name_parts.append("gansynth_subset") else: name_parts.append("full") if estimate_f0_and_loudness: name_parts.append("f0_and_loudness") super(NsynthConfig, self).__init__( name=".".join(name_parts), version=tfds.core.Version( "1.1.0", experiments={tfds.core.Experiment.S3: False}), **kwargs) self.gansynth_subset = gansynth_subset self.estimate_f0_and_loudness = estimate_f0_and_loudness class Nsynth(tfds.core.BeamBasedBuilder): """A large-scale and high-quality dataset of annotated musical notes.""" BUILDER_CONFIGS = [ NsynthConfig(description=_FULL_DESCRIPTION), NsynthConfig( gansynth_subset=True, description=_GANSYNTH_DESCRIPTION), NsynthConfig( gansynth_subset=True, estimate_f0_and_loudness=True, description=_GANSYNTH_DESCRIPTION + _F0_AND_LOUDNESS_ADDENDUM), ] def _info(self): features = { "id": tf.string, "audio": tfds.features.Tensor( shape=(_AUDIO_RATE * _NUM_SECS,), dtype=tf.float32), "pitch": tfds.features.ClassLabel(num_classes=128), "velocity": tfds.features.ClassLabel(num_classes=128), "instrument": { # We read the list of labels in _split_generators. "label": tfds.features.ClassLabel(num_classes=1006), "family": tfds.features.ClassLabel(names=_INSTRUMENT_FAMILIES), "source": tfds.features.ClassLabel(names=_INSTRUMENT_SOURCES), }, "qualities": {quality: tf.bool for quality in _QUALITIES}, } if self.builder_config.estimate_f0_and_loudness: f0_and_ld_shape = (_F0_AND_LOUDNESS_RATE * _NUM_SECS + 1,) features["f0"] = { "hz": tfds.features.Tensor(shape=f0_and_ld_shape, dtype=tf.float32), "midi": tfds.features.Tensor(shape=f0_and_ld_shape, dtype=tf.float32), "confidence": tfds.features.Tensor(shape=f0_and_ld_shape, dtype=tf.float32) } features["loudness"] = { "db": tfds.features.Tensor(shape=f0_and_ld_shape, dtype=tf.float32) } return tfds.core.DatasetInfo( builder=self, description=_DESCRIPTION, features=tfds.features.FeaturesDict(features), homepage="https://g.co/magenta/nsynth-dataset", citation=_CITATION, metadata=tfds.core.BeamMetadataDict(), ) def _split_generators(self, dl_manager): """Returns splits.""" dl_urls = {} dl_urls["examples"] = { split: _BASE_DOWNLOAD_PATH + "%s.tfrecord.tar" % split for split in _SPLITS } dl_urls["instrument_labels"] = ( _BASE_DOWNLOAD_PATH + "instrument_labels.txt") if self.builder_config.gansynth_subset: dl_urls["gansynth_splits"] = ( _BASE_DOWNLOAD_PATH + "gansynth_splits.csv") dl_paths = dl_manager.download_and_extract(dl_urls) with tf.io.gfile.GFile(dl_paths["instrument_labels"]) as f: instrument_labels = f.read().strip().splitlines() self.info.features["instrument"]["label"].names = instrument_labels split_ids = {s: set() for s in _SPLITS} split_dirs = {s: [dl_paths["examples"][s]] for s in _SPLITS} if self.builder_config.gansynth_subset: # Generator needs to see all original splits for each new split. split_dirs = {s: dl_paths["examples"].values() for s in _SPLITS} with tf.io.gfile.GFile(dl_paths["gansynth_splits"]) as f: reader = csv.DictReader(f) for row in reader: split_ids[row["split"]].add(row["id"]) return [ tfds.core.SplitGenerator( # pylint: disable=g-complex-comprehension name=split, num_shards=_SPLIT_SHARDS[split], gen_kwargs={ "tfrecord_dirs": split_dirs[split], "ids": split_ids[split], "split": split, }) for split in _SPLITS ] def _build_pcollection(self, pipeline, tfrecord_dirs, ids, split): """Build PCollection of examples for split.""" beam = tfds.core.lazy_imports.apache_beam def _emit_base_example(ex): """Maps an input example to a TFDS example.""" beam.metrics.Metrics.counter(split, "base-examples").inc() features = ex.features.feature return { "id": features["note_str"].bytes_list.value[0], "audio": np.array(features["audio"].float_list.value, dtype=np.float32), "pitch": features["pitch"].int64_list.value[0], "velocity": features["velocity"].int64_list.value[0], "instrument": { "label": tf.compat.as_text( features["instrument_str"].bytes_list.value[0]), "family": tf.compat.as_text( features["instrument_family_str"].bytes_list.value[0]), "source": tf.compat.as_text( features["instrument_source_str"].bytes_list.value[0]) }, "qualities": { q: features["qualities"].int64_list.value[i] for (i, q) in enumerate(_QUALITIES) } } def _in_split(ex, split_ids): if not split_ids or tf.compat.as_text(ex["id"]) in split_ids: beam.metrics.Metrics.counter(split, "in-split").inc() return True return False def _estimate_f0(ex): """Estimate the fundamental frequency using CREPE and add to example.""" ex = ex.copy() beam.metrics.Metrics.counter(split, "estimate-f0").inc() _, f0_hz, f0_confidence, _ = tfds.core.lazy_imports.crepe.predict( ex["audio"], sr=_AUDIO_RATE, viterbi=True, step_size=1000 / _F0_AND_LOUDNESS_RATE, verbose=0) f0_midi = tfds.core.lazy_imports.librosa.core.hz_to_midi(f0_hz) # Set -infs introduced by hz_to_midi to 0. f0_midi[f0_midi == -np.inf] = 0 # Set nans to 0 in confidence. f0_confidence = np.nan_to_num(f0_confidence) ex["f0"] = { "hz": f0_hz.astype(np.float32), "midi": f0_midi.astype(np.float32), "confidence": f0_confidence.astype(np.float32), } return ex def _compute_loudness(ex): """Compute loudness and add to example.""" ex = ex.copy() beam.metrics.Metrics.counter(split, "compute-loudness").inc() librosa = tfds.core.lazy_imports.librosa n_fft = 2048 amin = 1e-15 top_db = 200.0 stft = librosa.stft( ex["audio"], n_fft=n_fft, hop_length=int(_AUDIO_RATE // _F0_AND_LOUDNESS_RATE)) loudness_db = librosa.perceptual_weighting( np.abs(stft)**2, librosa.fft_frequencies(_AUDIO_RATE, n_fft=n_fft), amin=amin, top_db=top_db) # Average across freq in linear scale. mean_loudness_amp = np.mean(librosa.db_to_amplitude(loudness_db), axis=0) mean_loudness_db = librosa.amplitude_to_db( mean_loudness_amp, amin=amin, top_db=top_db) ex["loudness"] = {"db": mean_loudness_db.astype(np.float32)} return ex examples = ( pipeline | beam.Create([os.path.join(dir_, "*") for dir_ in tfrecord_dirs]) | beam.io.tfrecordio.ReadAllFromTFRecord( coder=beam.coders.ProtoCoder(tf.train.Example)) | beam.Map(_emit_base_example) | beam.Filter(_in_split, split_ids=ids)) if self.builder_config.estimate_f0_and_loudness: examples = ( examples | beam.Reshuffle() | beam.Map(_estimate_f0) | beam.Map(_compute_loudness)) if split == tfds.Split.TRAIN: # Output mean and variance of loudness for TRAIN split. loudness = examples | beam.Map(lambda x: np.mean(x["loudness"]["db"])) loudness_mean = ( loudness | "loudness_mean" >> beam.combiners.Mean.Globally()) loudness_variance = ( loudness | beam.Map(lambda ld, ld_mean: (ld - ld_mean)**2, ld_mean=beam.pvalue.AsSingleton(loudness_mean)) | "loudness_variance" >> beam.combiners.Mean.Globally()) self.info.metadata["loudness_db_mean"] = loudness_mean self.info.metadata["loudness_db_variance"] = loudness_variance return examples
36.573864
139
0.645332
[ "Apache-2.0" ]
Alex-Fabbri/datasets
tensorflow_datasets/audio/nsynth.py
12,874
Python
# -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- # pylint: disable=too-many-lines # pylint: disable=unused-argument from azure.cli.core.util import sdk_no_wait def databoxedge_device_create(client, device_name, resource_group_name, location, tags=None, sku=None, etag=None, data_box_edge_device_status=None, description=None, model_description=None, friendly_name=None, no_wait=False): data_box_edge_device = {} data_box_edge_device['location'] = location data_box_edge_device['tags'] = tags data_box_edge_device['etag'] = etag data_box_edge_device['data_box_edge_device_status'] = data_box_edge_device_status data_box_edge_device['description'] = description data_box_edge_device['model_description'] = model_description data_box_edge_device['friendly_name'] = friendly_name if sku: data_box_edge_device['sku'] = {} data_box_edge_device['sku']['name'] = sku return sdk_no_wait(no_wait, client.create_or_update, device_name=device_name, resource_group_name=resource_group_name, data_box_edge_device=data_box_edge_device) def databoxedge_device_update(client, device_name, resource_group_name, tags=None): if tags is None: return client.get(device_name=device_name, resource_group_name=resource_group_name) parameters = {'tags': tags} return client.update(device_name=device_name, resource_group_name=resource_group_name, parameters=parameters) def databoxedge_bandwidth_schedule_update(instance, device_name, name, resource_group_name, start=None, stop=None, rate_in_mbps=None, days=None, no_wait=False): if start is not None: instance.start = start if stop is not None: instance.stop = stop if rate_in_mbps is not None: instance.rate_in_mbps = rate_in_mbps if days is not None: instance.days = days return instance def databoxedge_order_create(client, device_name, resource_group_name, address_line1, postal_code, city, state, country, contact_person, company_name, phone, email_list, status=None, comments=None, address_line2=None, address_line3=None, no_wait=False): order = {} if status: order['current_status'] = {} order['current_status']['status'] = status order['current_status']['comments'] = comments order['shipping_address'] = {} order['shipping_address']['address_line1'] = address_line1 order['shipping_address']['address_line2'] = address_line2 order['shipping_address']['address_line3'] = address_line3 order['shipping_address']['postal_code'] = postal_code order['shipping_address']['city'] = city order['shipping_address']['state'] = state order['shipping_address']['country'] = country order['contact_information'] = {} order['contact_information']['contact_person'] = contact_person order['contact_information']['company_name'] = company_name order['contact_information']['phone'] = phone order['contact_information']['email_list'] = email_list return sdk_no_wait(no_wait, client.create_or_update, device_name=device_name, resource_group_name=resource_group_name, order=order)
42.109244
85
0.50908
[ "MIT" ]
00Kai0/azure-cli
src/azure-cli/azure/cli/command_modules/databoxedge/manual/custom.py
5,011
Python
# -*- coding:utf-8 -*- import csv import fileinput import sys import numpy from pynm.feature.metric.itml import learn_metric, convert_data class ItmlCommand: name = 'itml' help = 'Information Theoretic Metric Learning' @classmethod def build_arg_parser(cls, parser): parser.add_argument('-i', '--input_data', default='-', type=str, metavar='FILE', help='input data file (default: stdin)') label_or_pair = parser.add_mutually_exclusive_group(required=True) label_or_pair.add_argument('-l', '--input_labels', default=None, type=str, metavar='FILE', help='input labels file') label_or_pair.add_argument('-p', '--input_pairs', default=None, type=str, metavar='FILE', help='input pairs file') parser.add_argument('-o', '--output_data', default=None, type=str, metavar='FILE', help='output data file') parser.add_argument('-m', '--output_metric', default=None, type=str, metavar='FILE', help='output metric file') parser.add_argument('-w', '--output_weights', default=None, type=str, metavar='FILE', help='output weights file') parser.add_argument('-d', '--delimiter', default='\t', type=str, metavar='DELIM', help='delimiter (default: "\\t")') parser.add_argument('-s', '--sparse', action='store_true', help='sparse format (not implemented yet)') parser.add_argument('--header', action='store_true', help='has header') parser.add_argument('-U', '--u_param', default=1.0, type=float, metavar='DISTANCE', help='U parameter (max distance for same labels, default: 1.0)') parser.add_argument('-L', '--l_param', default=1.0, type=float, metavar='DISTANCE', help='L parameter (min distance for different labels, default: 1.0)') parser.add_argument('-S', '--slack', default=1.0, type=float, metavar='SLACK', help='slack variable (default: 1.0)') parser.add_argument('-N', '--max_iteration_number', default=1000, type=int, metavar='MAX', help='max iteration (default: 1000)') def run(self, args): with fileinput.input(args.input_data) as in_: header, data = self.load_data(in_, delimiter=args.delimiter, has_header=args.header) if args.input_labels is not None: with fileinput.input(args.input_labels) as in_: labels = self.load_labels(in_) pairs = None elif args.input_pairs is not None: with fileinput.input(args.input_pairs) as in_: pairs = self.load_pairs(in_) labels = None metric = learn_metric(data, labels=labels, pairs=pairs, u=args.u_param, l=args.l_param, slack=args.slack, max_iter=args.max_iteration_number, is_sparse=args.sparse) if args.output_metric is not None: if args.output_metric == '-': self.export_metric(sys.stdout, metric, header) else: with open(args.output_metric, 'w') as o_: self.export_metric(o_, metric, header) if args.output_weights is not None: weights = numpy.diag(metric) if args.output_weights == '-': self.export_weights(sys.stdout, weights, header) else: with open(args.output_weights, 'w') as o_: self.export_weights(o_, weights, header) if args.output_data is not None: converted_data = convert_data(metric, data) if args.output_data == '-': self.export_data(sys.stdout, converted_data, header) else: with open(args.output_data, 'w') as o_: self.export_data(o_, converted_data, header) return 0 def load_data(self, input_data, delimiter='\t', has_header=False): reader = csv.reader(input_data, delimiter=delimiter) if has_header: header = {value: key for key, value in enumerate(reader.next())} else: header = None data = [] for row in reader: data.append(numpy.array(list(map(lambda x: float(x), row)))) return header, data def load_labels(self, input_labels): return list(map(lambda x: int(x), input_labels)) def load_pairs(self, input_pairs, delimiter='\t', header=None): pairs = [] if header is None: for line in input_pairs: row = line.split(delimiter) idx1 = int(row[0]) idx2 = int(row[1]) similar = int(row[2]) > 0 pairs.append((idx1, idx2, similar)) else: for line in input_pairs: row = line.split(delimiter) idx1 = header[row[0]] idx2 = header[row[1]] similar = int(row[2]) > 0 pairs.append((idx1, idx2, similar)) return pairs def export_metric(self, output, metric, header=None, sparse=False): if sparse: raise NotImplementedError('sparse is not supported yet.') writer = csv.writer(output) if header is not None: writer.writerow(header) for row in metric: writer.writerow(row) def export_weights(self, output, weights, header=None): writer = csv.writer(output) if header is not None: writer.writerow(header) writer.writerow(weights) def export_data(self, output, data, header=None, sparse=False): if sparse: raise NotImplementedError('sparse is not supported yet.') writer = csv.writer(output) if header is not None: writer.writerow(header) for row in data: writer.writerow(row) class MetricCommand: name = 'metric' help = 'Metric Learning' sub_commands = [ItmlCommand] default_command = sub_commands[0] def build_arg_parser(self, parser): self.default_command.build_arg_parser(parser) subparsers = parser.add_subparsers(title='algorithm', dest='algorithm') for command in self.sub_commands: subparser = subparsers.add_parser(command.name, help=command.help) command.build_arg_parser(subparser) def run(self, args): sub_command = self._get_sub_command(args.algorithm) return sub_command.run(args) def _get_sub_command(self, algorithm): if algorithm is None: return self.default_command() return next(filter(lambda x: x.name == algorithm, self.sub_commands))()
37.270042
97
0.452621
[ "MIT" ]
ohtaman/pynm
pynm/commands/metric.py
8,833
Python
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- import os import os.path import re from math import ceil from ipaddress import ip_network from knack.log import get_logger from azure.cli.core.util import CLIError import azure.cli.core.keys as keys logger = get_logger(__name__) def validate_ssh_key(namespace): if hasattr(namespace, 'no_ssh_key') and namespace.no_ssh_key: return string_or_file = (namespace.ssh_key_value or os.path.join(os.path.expanduser('~'), '.ssh', 'id_rsa.pub')) content = string_or_file if os.path.exists(string_or_file): logger.info('Use existing SSH public key file: %s', string_or_file) with open(string_or_file, 'r') as f: content = f.read() elif not keys.is_valid_ssh_rsa_public_key(content): if namespace.generate_ssh_keys: # figure out appropriate file names: # 'base_name'(with private keys), and 'base_name.pub'(with public keys) public_key_filepath = string_or_file if public_key_filepath[-4:].lower() == '.pub': private_key_filepath = public_key_filepath[:-4] else: private_key_filepath = public_key_filepath + '.private' content = keys.generate_ssh_keys(private_key_filepath, public_key_filepath) logger.warning("SSH key files '%s' and '%s' have been generated under ~/.ssh to " "allow SSH access to the VM. If using machines without " "permanent storage like Azure Cloud Shell without an attached " "file share, back up your keys to a safe location", private_key_filepath, public_key_filepath) else: raise CLIError('An RSA key file or key value must be supplied to SSH Key Value. ' 'You can use --generate-ssh-keys to let CLI generate one for you') namespace.ssh_key_value = content def validate_create_parameters(namespace): if not namespace.name: raise CLIError('--name has no value') if namespace.dns_name_prefix is not None and not namespace.dns_name_prefix: raise CLIError('--dns-prefix has no value') def validate_k8s_version(namespace): """Validates a string as a possible Kubernetes version. An empty string is also valid, which tells the server to use its default version.""" if namespace.kubernetes_version: k8s_release_regex = re.compile(r'^[v|V]?(\d+\.\d+\.\d+.*)$') found = k8s_release_regex.findall(namespace.kubernetes_version) if found: namespace.kubernetes_version = found[0] else: raise CLIError('--kubernetes-version should be the full version number, ' 'such as "1.7.12" or "1.8.7"') def validate_linux_host_name(namespace): """Validates a string as a legal host name component. This validation will also occur server-side in the ARM API, but that may take a minute or two before the user sees it. So it's more user-friendly to validate in the CLI pre-flight. """ # https://stackoverflow.com/questions/106179/regular-expression-to-match-dns-hostname-or-ip-address rfc1123_regex = re.compile(r'^([a-zA-Z0-9]|[a-zA-Z0-9][a-zA-Z0-9\-]{0,61}[a-zA-Z0-9])(\.([a-zA-Z0-9]|[a-zA-Z0-9][a-zA-Z0-9\-]{0,61}[a-zA-Z0-9]))*$') # pylint:disable=line-too-long found = rfc1123_regex.findall(namespace.name) if not found: raise CLIError('--name cannot exceed 63 characters and can only contain ' 'letters, numbers, or dashes (-).') def validate_max_pods(namespace): """Validates that max_pods is set to a reasonable minimum number.""" # kube-proxy and kube-svc reside each nodes, # 2 kube-proxy pods, 1 azureproxy/heapster/dashboard/tunnelfront are in kube-system minimum_pods_required = ceil((namespace.node_count * 2 + 6 + 1) / namespace.node_count) if namespace.max_pods != 0 and namespace.max_pods < minimum_pods_required: raise CLIError('--max-pods must be at least {} for a managed Kubernetes cluster to function.' .format(minimum_pods_required)) def validate_nodes_count(namespace): """Validate that min_count and max_count is set to 1-100""" if namespace.min_count is not None: if namespace.min_count < 1 or namespace.min_count > 100: raise CLIError('--min-count must be in the range [1,100]') if namespace.max_count is not None: if namespace.max_count < 1 or namespace.max_count > 100: raise CLIError('--max-count must be in the range [1,100]') def validate_ip_ranges(namespace): if namespace.api_server_authorized_ip_ranges is not None: if namespace.api_server_authorized_ip_ranges == '': return for ip in namespace.api_server_authorized_ip_ranges.split(','): try: ip_network(ip) except ValueError: raise CLIError("--api-server-authorized-ip-ranges should be list of IPv4 addresses or CIDRs") def validate_nodepool_name(namespace): """Validates a nodepool name to be at most 12 characters, alphanumeric only.""" if namespace.nodepool_name != "": if len(namespace.nodepool_name) > 12: raise CLIError('--nodepool-name can contain atmost 12 characters') if not namespace.nodepool_name.isalnum(): raise CLIError('--nodepool-name should only contain alphanumeric characters') def validate_vm_set_type(namespace): """Validates the vm set type string.""" if namespace.vm_set_type is not None: if namespace.vm_set_type == '': return if namespace.vm_set_type.lower() != "availabilityset" and \ namespace.vm_set_type.lower() != "virtualmachinescalesets": raise CLIError("--vm-set-type can only be VirtualMachineScaleSets or AvailabilitySet") def validate_load_balancer_sku(namespace): """Validates the load balancer sku string.""" if namespace.load_balancer_sku is not None: if namespace.load_balancer_sku == '': return if namespace.load_balancer_sku.lower() != "basic" and namespace.load_balancer_sku.lower() != "standard": raise CLIError("--load-balancer-sku can only be standard or basic") def validate_load_balancer_outbound_ips(namespace): """validate load balancer profile outbound IP ids""" if namespace.load_balancer_outbound_ips is not None: ip_id_list = [x.strip() for x in namespace.load_balancer_outbound_ips.split(',')] if not all(ip_id_list): raise CLIError("--load-balancer-outbound-ips cannot contain whitespace") def validate_load_balancer_outbound_ip_prefixes(namespace): """validate load balancer profile outbound IP prefix ids""" if namespace.load_balancer_outbound_ip_prefixes is not None: ip_prefix_id_list = [x.strip() for x in namespace.load_balancer_outbound_ip_prefixes.split(',')] if not all(ip_prefix_id_list): raise CLIError("--load-balancer-outbound-ip-prefixes cannot contain whitespace") def validate_taints(namespace): """Validates that provided taint is a valid format""" regex = re.compile(r"^[a-zA-Z\d][\w\-\.\/]{0,252}=[a-zA-Z\d][\w\-\.]{0,62}:(NoSchedule|PreferNoSchedule|NoExecute)$") # pylint: disable=line-too-long if namespace.node_taints is not None and namespace.node_taints != '': for taint in namespace.node_taints.split(','): if taint == "": continue found = regex.findall(taint) if not found: raise CLIError('Invalid node taint: %s' % taint) def validate_priority(namespace): """Validates the node pool priority string.""" if namespace.priority is not None: if namespace.priority == '': return if namespace.priority != "Low" and \ namespace.priority != "Regular": raise CLIError("--priority can only be Low or Regular") def validate_eviction_policy(namespace): """Validates the node pool priority string.""" if namespace.eviction_policy is not None: if namespace.eviction_policy == '': return if namespace.eviction_policy != "Delete" and \ namespace.eviction_policy != "Deallocate": raise CLIError("--eviction-policy can only be Delete or Deallocate")
45.388601
184
0.649201
[ "MIT" ]
andyzhangx/azure-cli-extensions
src/aks-preview/azext_aks_preview/_validators.py
8,760
Python
import os import numpy as np import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt import torch from torch.utils.data import DataLoader from tqdm import tqdm import argparse import cv2 import config from utils import Mesh from models import CMR from models.smpl_from_lib import SMPL from utils.pose_utils import compute_similarity_transform_batch, \ scale_and_translation_transform_batch from utils.cam_utils import orthographic_project_torch, undo_keypoint_normalisation from datasets.my_3dpw_eval_dataset import PW3DEvalDataset def evaluate_3dpw(model, eval_dataset, metrics, device, vis_save_path, num_workers=4, pin_memory=True, vis_every_n_batches=1000): eval_dataloader = DataLoader(eval_dataset, batch_size=1, shuffle=False, drop_last=True, num_workers=num_workers, pin_memory=pin_memory) smpl = SMPL(config.SMPL_MODEL_DIR, batch_size=1) smpl_male = SMPL(config.SMPL_MODEL_DIR, batch_size=1, gender='male') smpl_female = SMPL(config.SMPL_MODEL_DIR, batch_size=1, gender='female') smpl.to(device) smpl_male.to(device) smpl_female.to(device) J_regressor = torch.from_numpy(np.load(config.JOINT_REGRESSOR_H36M)).float() J_regressor_batch = J_regressor[None, :].to(device) if 'pve' in metrics: pve_smpl_sum = 0.0 pve_graph_sum = 0.0 pve_smpl_per_frame = [] pve_graph_per_frame = [] if 'pve_scale_corrected' in metrics: pve_scale_corrected_smpl_sum = 0.0 pve_scale_corrected_graph_sum = 0.0 pve_scale_corrected_smpl_per_frame = [] pve_scale_corrected_graph_per_frame = [] if 'pve_pa' in metrics: pve_pa_smpl_sum = 0.0 pve_pa_graph_sum = 0.0 pve_pa_smpl_per_frame = [] pve_pa_graph_per_frame = [] if 'pve-t' in metrics: pvet_sum = 0.0 pvet_per_frame = [] if 'pve-t_scale_corrected' in metrics: pvet_scale_corrected_sum = 0.0 pvet_scale_corrected_per_frame = [] if 'mpjpe' in metrics: mpjpe_smpl_sum = 0.0 mpjpe_graph_sum = 0.0 mpjpe_smpl_per_frame = [] mpjpe_graph_per_frame = [] if 'mpjpe_scale_corrected' in metrics: mpjpe_scale_corrected_smpl_sum = 0.0 mpjpe_scale_corrected_graph_sum = 0.0 mpjpe_scale_corrected_smpl_per_frame = [] mpjpe_scale_corrected_graph_per_frame = [] if 'j3d_rec_err' in metrics: j3d_rec_err_smpl_sum = 0.0 j3d_rec_err_graph_sum = 0.0 j3d_rec_err_smpl_per_frame = [] j3d_rec_err_graph_per_frame = [] if 'pve_2d' in metrics: pve_2d_smpl_sum = 0.0 pve_2d_graph_sum = 0.0 if 'pve_2d_scale_corrected' in metrics: pve_2d_scale_corrected_smpl_sum = 0.0 pve_2d_scale_corrected_graph_sum = 0.0 if 'pve_2d_pa' in metrics: pve_2d_pa_smpl_sum = 0.0 pve_2d_pa_graph_sum = 0.0 num_samples = 0 num_vertices = 6890 num_joints3d = 14 model.eval() for batch_num, samples_batch in enumerate(tqdm(eval_dataloader)): # ------------------------------- TARGETS and INPUTS ------------------------------- input = samples_batch['input'] input = input.to(device) target_pose = samples_batch['pose'].to(device) target_shape = samples_batch['shape'].to(device) target_gender = samples_batch['gender'][0] if target_gender == 'm': target_smpl_output = smpl_male(body_pose=target_pose[:, 3:], global_orient=target_pose[:, :3], betas=target_shape) target_vertices = target_smpl_output.vertices target_reposed_smpl_output = smpl_male(betas=target_shape) target_reposed_vertices = target_reposed_smpl_output.vertices target_joints_h36m = torch.matmul(J_regressor_batch, target_vertices) target_joints_h36mlsp = target_joints_h36m[:, config.H36M_TO_J14, :] elif target_gender == 'f': target_smpl_output = smpl_female(body_pose=target_pose[:, 3:], global_orient=target_pose[:, :3], betas=target_shape) target_vertices = target_smpl_output.vertices target_reposed_smpl_output = smpl_female(betas=target_shape) target_reposed_vertices = target_reposed_smpl_output.vertices target_joints_h36m = torch.matmul(J_regressor_batch, target_vertices) target_joints_h36mlsp = target_joints_h36m[:, config.H36M_TO_J14, :] # ------------------------------- PREDICTIONS ------------------------------- pred_vertices, pred_vertices_smpl, pred_camera, pred_rotmat, pred_betas = model(input) pred_vertices_projected2d = orthographic_project_torch(pred_vertices, pred_camera) pred_vertices_projected2d = undo_keypoint_normalisation(pred_vertices_projected2d, input.shape[-1]) pred_vertices_smpl_projected2d = orthographic_project_torch(pred_vertices_smpl, pred_camera) pred_vertices_smpl_projected2d = undo_keypoint_normalisation(pred_vertices_smpl_projected2d, input.shape[-1]) pred_reposed_smpl_output = smpl(betas=pred_betas) pred_reposed_vertices = pred_reposed_smpl_output.vertices pred_joints_h36m = torch.matmul(J_regressor_batch, pred_vertices) pred_joints_h36mlsp = pred_joints_h36m[:, config.H36M_TO_J14, :] pred_joints_smpl_h36m = torch.matmul(J_regressor_batch, pred_vertices_smpl) pred_joints_smpl_h36mlsp = pred_joints_smpl_h36m[:, config.H36M_TO_J14, :] # Numpy-fying target_vertices = target_vertices.cpu().detach().numpy() target_reposed_vertices = target_reposed_vertices.cpu().detach().numpy() target_joints_h36mlsp = target_joints_h36mlsp.cpu().detach().numpy() pred_vertices = pred_vertices.cpu().detach().numpy() pred_vertices_smpl = pred_vertices_smpl.cpu().detach().numpy() pred_vertices_projected2d = pred_vertices_projected2d.cpu().detach().numpy() pred_vertices_smpl_projected2d = pred_vertices_smpl_projected2d.cpu().detach().numpy() pred_reposed_vertices = pred_reposed_vertices.cpu().detach().numpy() pred_joints_h36mlsp = pred_joints_h36mlsp.cpu().detach().numpy() pred_joints_smpl_h36mlsp = pred_joints_smpl_h36mlsp.cpu().detach().numpy() # ------------------------------- METRICS ------------------------------- if 'pve' in metrics: pve_smpl_batch = np.linalg.norm(pred_vertices_smpl - target_vertices, axis=-1) # (1, 6890) pve_graph_batch = np.linalg.norm(pred_vertices - target_vertices, axis=-1) pve_smpl_sum += np.sum(pve_smpl_batch) # scalar pve_graph_sum += np.sum(pve_graph_batch) pve_smpl_per_frame.append(np.mean(pve_smpl_batch, axis=-1)) pve_graph_per_frame.append(np.mean(pve_graph_batch, axis=-1)) # Scale and translation correction if 'pve_scale_corrected' in metrics: pred_vertices_smpl_sc = scale_and_translation_transform_batch(pred_vertices_smpl, target_vertices) pred_vertices_sc = scale_and_translation_transform_batch(pred_vertices, target_vertices) pve_sc_smpl_batch = np.linalg.norm(pred_vertices_smpl_sc - target_vertices, axis=-1) # (1, 6890) pve_sc_graph_batch = np.linalg.norm(pred_vertices_sc - target_vertices, axis=-1) # (1, 6890) pve_scale_corrected_smpl_sum += np.sum(pve_sc_smpl_batch) # scalar pve_scale_corrected_graph_sum += np.sum(pve_sc_graph_batch) # scalar pve_scale_corrected_smpl_per_frame.append(np.mean(pve_sc_smpl_batch, axis=-1)) pve_scale_corrected_graph_per_frame.append(np.mean(pve_sc_graph_batch, axis=-1)) # Procrustes analysis if 'pve_pa' in metrics: pred_vertices_smpl_pa = compute_similarity_transform_batch(pred_vertices_smpl, target_vertices) pred_vertices_pa = compute_similarity_transform_batch(pred_vertices, target_vertices) pve_pa_smpl_batch = np.linalg.norm(pred_vertices_smpl_pa - target_vertices, axis=-1) # (1, 6890) pve_pa_graph_batch = np.linalg.norm(pred_vertices_pa - target_vertices, axis=-1) # (1, 6890) pve_pa_smpl_sum += np.sum(pve_pa_smpl_batch) # scalar pve_pa_graph_sum += np.sum(pve_pa_graph_batch) # scalar pve_pa_smpl_per_frame.append(np.mean(pve_pa_smpl_batch, axis=-1)) pve_pa_graph_per_frame.append(np.mean(pve_pa_graph_batch, axis=-1)) if 'pve-t' in metrics: pvet_batch = np.linalg.norm(pred_reposed_vertices - target_reposed_vertices, axis=-1) pvet_sum += np.sum(pvet_batch) pvet_per_frame.append(np.mean(pvet_batch, axis=-1)) # Scale and translation correction if 'pve-t_scale_corrected' in metrics: pred_reposed_vertices_sc = scale_and_translation_transform_batch(pred_reposed_vertices, target_reposed_vertices) pvet_scale_corrected_batch = np.linalg.norm(pred_reposed_vertices_sc - target_reposed_vertices, axis=-1) # (bs, 6890) pvet_scale_corrected_sum += np.sum(pvet_scale_corrected_batch) # scalar pvet_scale_corrected_per_frame.append(np.mean(pvet_scale_corrected_batch, axis=-1)) if 'mpjpe' in metrics: mpjpe_smpl_batch = np.linalg.norm(pred_joints_smpl_h36mlsp - target_joints_h36mlsp, axis=-1) # (bs, 14) mpjpe_graph_batch = np.linalg.norm(pred_joints_h36mlsp - target_joints_h36mlsp, axis=-1) # (bs, 14) mpjpe_smpl_sum += np.sum(mpjpe_smpl_batch) mpjpe_graph_sum += np.sum(mpjpe_graph_batch) mpjpe_smpl_per_frame.append(np.mean(mpjpe_smpl_batch, axis=-1)) mpjpe_graph_per_frame.append(np.mean(mpjpe_graph_batch, axis=-1)) # Scale and translation correction if 'mpjpe_scale_corrected' in metrics: pred_joints_smpl_h36mlsp_sc = scale_and_translation_transform_batch(pred_joints_smpl_h36mlsp, target_joints_h36mlsp) pred_joints_h36mlsp_sc = scale_and_translation_transform_batch(pred_joints_h36mlsp, target_joints_h36mlsp) mpjpe_scale_corrected_smpl_batch = np.linalg.norm(pred_joints_smpl_h36mlsp_sc - target_joints_h36mlsp, axis=-1) # (bs, 14) mpjpe_scale_corrected_graph_batch = np.linalg.norm(pred_joints_h36mlsp_sc - target_joints_h36mlsp, axis=-1) # (bs, 14) mpjpe_scale_corrected_smpl_sum += np.sum(mpjpe_scale_corrected_smpl_batch) mpjpe_scale_corrected_graph_sum += np.sum(mpjpe_scale_corrected_graph_batch) mpjpe_scale_corrected_smpl_per_frame.append(np.mean(mpjpe_scale_corrected_smpl_batch, axis=-1)) mpjpe_scale_corrected_graph_per_frame.append(np.mean(mpjpe_scale_corrected_graph_batch, axis=-1)) # Procrustes analysis if 'j3d_rec_err' in metrics: pred_joints_smpl_h36mlsp_pa = compute_similarity_transform_batch(pred_joints_smpl_h36mlsp, target_joints_h36mlsp) pred_joints_h36mlsp_pa = compute_similarity_transform_batch(pred_joints_h36mlsp, target_joints_h36mlsp) j3d_rec_err_smpl_batch = np.linalg.norm(pred_joints_smpl_h36mlsp_pa - target_joints_h36mlsp, axis=-1) # (bs, 14) j3d_rec_err_graph_batch = np.linalg.norm(pred_joints_h36mlsp_pa - target_joints_h36mlsp, axis=-1) # (bs, 14) j3d_rec_err_smpl_sum += np.sum(j3d_rec_err_smpl_batch) j3d_rec_err_graph_sum += np.sum(j3d_rec_err_graph_batch) j3d_rec_err_smpl_per_frame.append(np.mean(j3d_rec_err_smpl_batch, axis=-1)) j3d_rec_err_graph_per_frame.append(np.mean(j3d_rec_err_graph_batch, axis=-1)) if 'pve_2d' in metrics: pred_vertices_smpl_2d = pred_vertices_smpl[:, :, :2] pred_vertices_2d = pred_vertices[:, :, :2] target_vertices_2d = target_vertices[:, :, :2] pve_2d_smpl_batch = np.linalg.norm(pred_vertices_smpl_2d - target_vertices_2d, axis=-1) # (bs, 6890) pve_2d_graph_batch = np.linalg.norm(pred_vertices_2d - target_vertices_2d, axis=-1) # (bs, 6890) pve_2d_smpl_sum += np.sum(pve_2d_smpl_batch) pve_2d_graph_sum += np.sum(pve_2d_graph_batch) # Scale and translation correction if 'pve_2d_scale_corrected' in metrics: pred_vertices_smpl_sc = scale_and_translation_transform_batch(pred_vertices_smpl, target_vertices) pred_vertices_sc = scale_and_translation_transform_batch(pred_vertices, target_vertices) pred_vertices_smpl_2d_sc = pred_vertices_smpl_sc[:, :, :2] pred_vertices_2d_sc = pred_vertices_sc[:, :, :2] target_vertices_2d = target_vertices[:, :, :2] pve_2d_sc_smpl_batch = np.linalg.norm(pred_vertices_smpl_2d_sc - target_vertices_2d, axis=-1) # (bs, 6890) pve_2d_sc_graph_batch = np.linalg.norm(pred_vertices_2d_sc - target_vertices_2d, axis=-1) # (bs, 6890) pve_2d_scale_corrected_smpl_sum += np.sum(pve_2d_sc_smpl_batch) pve_2d_scale_corrected_graph_sum += np.sum(pve_2d_sc_graph_batch) # Procrustes analysis if 'pve_2d_pa' in metrics: pred_vertices_smpl_pa = compute_similarity_transform_batch(pred_vertices_smpl, target_vertices) pred_vertices_pa = compute_similarity_transform_batch(pred_vertices, target_vertices) pred_vertices_smpl_2d_pa = pred_vertices_smpl_pa[:, :, :2] pred_vertices_2d_pa = pred_vertices_pa[:, :, :2] target_vertices_2d = target_vertices[:, :, :2] pve_2d_pa_smpl_batch = np.linalg.norm(pred_vertices_smpl_2d_pa - target_vertices_2d, axis=-1) # (bs, 6890) pve_2d_pa_graph_batch = np.linalg.norm(pred_vertices_2d_pa - target_vertices_2d, axis=-1) # (bs, 6890) pve_2d_pa_smpl_sum += np.sum(pve_2d_pa_smpl_batch) pve_2d_pa_graph_sum += np.sum(pve_2d_pa_graph_batch) num_samples += target_pose.shape[0] # ------------------------------- VISUALISE ------------------------------- if vis_every_n_batches is not None: if batch_num % vis_every_n_batches == 0: vis_imgs = samples_batch['vis_img'].numpy() vis_imgs = np.transpose(vis_imgs, [0, 2, 3, 1]) fnames = samples_batch['fname'] plt.figure(figsize=(16, 12)) plt.subplot(341) plt.imshow(vis_imgs[0]) plt.subplot(342) plt.imshow(vis_imgs[0]) plt.scatter(pred_vertices_projected2d[0, :, 0], pred_vertices_projected2d[0, :, 1], s=0.1, c='r') plt.subplot(343) plt.imshow(vis_imgs[0]) plt.scatter(pred_vertices_smpl_projected2d[0, :, 0], pred_vertices_smpl_projected2d[0, :, 1], s=0.1, c='r') plt.subplot(345) plt.scatter(target_vertices[0, :, 0], target_vertices[0, :, 1], s=0.1, c='b') plt.scatter(pred_vertices[0, :, 0], pred_vertices[0, :, 1], s=0.1, c='r') plt.gca().invert_yaxis() plt.gca().set_aspect('equal', adjustable='box') plt.subplot(346) plt.scatter(target_vertices[0, :, 0], target_vertices[0, :, 1], s=0.1, c='b') plt.scatter(pred_vertices_smpl[0, :, 0], pred_vertices_smpl[0, :, 1], s=0.1, c='r') plt.gca().invert_yaxis() plt.gca().set_aspect('equal', adjustable='box') plt.subplot(347) plt.scatter(target_vertices[0, :, 0], target_vertices[0, :, 1], s=0.1, c='b') plt.scatter(pred_vertices_pa[0, :, 0], pred_vertices_pa[0, :, 1], s=0.1, c='r') plt.gca().invert_yaxis() plt.gca().set_aspect('equal', adjustable='box') plt.subplot(348) plt.scatter(target_vertices[0, :, 0], target_vertices[0, :, 1], s=0.1, c='b') plt.scatter(pred_vertices_smpl_pa[0, :, 0], pred_vertices_smpl_pa[0, :, 1], s=0.1, c='r') plt.gca().invert_yaxis() plt.gca().set_aspect('equal', adjustable='box') plt.subplot(349) plt.scatter(target_reposed_vertices[0, :, 0], target_reposed_vertices[0, :, 1], s=0.1, c='b') plt.scatter(pred_reposed_vertices_sc[0, :, 0], pred_reposed_vertices_sc[0, :, 1], s=0.1, c='r') plt.gca().set_aspect('equal', adjustable='box') plt.subplot(3, 4, 10) for j in range(num_joints3d): plt.scatter(pred_joints_h36mlsp[0, j, 0], pred_joints_h36mlsp[0, j, 1], c='r') plt.scatter(target_joints_h36mlsp[0, j, 0], target_joints_h36mlsp[0, j, 1], c='b') plt.text(pred_joints_h36mlsp[0, j, 0], pred_joints_h36mlsp[0, j, 1], s=str(j)) plt.text(target_joints_h36mlsp[0, j, 0], target_joints_h36mlsp[0, j, 1], s=str(j)) plt.gca().invert_yaxis() plt.gca().set_aspect('equal', adjustable='box') plt.subplot(3, 4, 11) for j in range(num_joints3d): plt.scatter(pred_joints_h36mlsp_pa[0, j, 0], pred_joints_h36mlsp_pa[0, j, 1], c='r') plt.scatter(target_joints_h36mlsp[0, j, 0], target_joints_h36mlsp[0, j, 1], c='b') plt.text(pred_joints_h36mlsp_pa[0, j, 0], pred_joints_h36mlsp_pa[0, j, 1], s=str(j)) plt.text(target_joints_h36mlsp[0, j, 0], target_joints_h36mlsp[0, j, 1], s=str(j)) plt.gca().invert_yaxis() plt.gca().set_aspect('equal', adjustable='box') plt.subplot(3, 4, 12) for j in range(num_joints3d): plt.scatter(pred_joints_smpl_h36mlsp_pa[0, j, 0], pred_joints_smpl_h36mlsp_pa[0, j, 1], c='r') plt.scatter(target_joints_h36mlsp[0, j, 0], target_joints_h36mlsp[0, j, 1], c='b') plt.text(pred_joints_smpl_h36mlsp_pa[0, j, 0], pred_joints_smpl_h36mlsp_pa[0, j, 1], s=str(j)) plt.text(target_joints_h36mlsp[0, j, 0], target_joints_h36mlsp[0, j, 1], s=str(j)) plt.gca().invert_yaxis() plt.gca().set_aspect('equal', adjustable='box') # plt.show() save_fig_path = os.path.join(vis_save_path, fnames[0]) plt.savefig(save_fig_path, bbox_inches='tight') plt.close() if 'pve' in metrics: pve_smpl = pve_smpl_sum / (num_samples * num_vertices) print('PVE SMPL: {:.5f}'.format(pve_smpl)) pve_graph = pve_graph_sum / (num_samples * num_vertices) print('PVE GRAPH: {:.5f}'.format(pve_graph)) pve_smpl_per_frame = np.concatenate(pve_smpl_per_frame, axis=0) pve_graph_per_frame = np.concatenate(pve_graph_per_frame, axis=0) np.save(os.path.join(save_path, 'pve_per_frame.npy'), pve_smpl_per_frame) np.save(os.path.join(save_path, 'pve_graph_per_frame.npy'), pve_graph_per_frame) if 'pve_scale_corrected' in metrics: pve_sc_smpl = pve_scale_corrected_smpl_sum / (num_samples * num_vertices) print('PVE SC SMPL: {:.5f}'.format(pve_sc_smpl)) pve_sc_graph = pve_scale_corrected_graph_sum / (num_samples * num_vertices) print('PVE SC GRAPH: {:.5f}'.format(pve_sc_graph)) pve_scale_corrected_smpl_per_frame = np.concatenate(pve_scale_corrected_smpl_per_frame, axis=0) pve_scale_corrected_graph_per_frame = np.concatenate(pve_scale_corrected_graph_per_frame, axis=0) np.save(os.path.join(save_path, 'pve_scale_corrected_per_frame.npy'), pve_scale_corrected_smpl_per_frame) np.save(os.path.join(save_path, 'pve_scale_corrected_graph_per_frame.npy'), pve_scale_corrected_graph_per_frame) if 'pve_pa' in metrics: pve_pa_smpl = pve_pa_smpl_sum / (num_samples * num_vertices) print('PVE PA SMPL: {:.5f}'.format(pve_pa_smpl)) pve_pa_graph = pve_pa_graph_sum / (num_samples * num_vertices) print('PVE PA GRAPH: {:.5f}'.format(pve_pa_graph)) pve_pa_smpl_per_frame = np.concatenate(pve_pa_smpl_per_frame, axis=0) pve_pa_graph_per_frame = np.concatenate(pve_pa_graph_per_frame, axis=0) np.save(os.path.join(save_path, 'pve_pa_per_frame.npy'), pve_pa_smpl_per_frame) np.save(os.path.join(save_path, 'pve_pa_graph_per_frame.npy'), pve_pa_graph_per_frame) if 'pve-t' in metrics: pvet = pvet_sum / (num_samples * num_vertices) print('PVE-T: {:.5f}'.format(pvet)) pvet_per_frame = np.concatenate(pvet_per_frame, axis=0) np.save(os.path.join(save_path, 'pvet_per_frame.npy'), pvet_per_frame) if 'pve-t_scale_corrected' in metrics: pvet_sc = pvet_scale_corrected_sum / (num_samples * num_vertices) print('PVE-T SC: {:.5f}'.format(pvet_sc)) pvet_scale_corrected_per_frame = np.concatenate(pvet_scale_corrected_per_frame, axis=0) np.save(os.path.join(save_path, 'pvet_scale_corrected_per_frame.npy'), pvet_scale_corrected_per_frame) if 'mpjpe' in metrics: mpjpe_smpl = mpjpe_smpl_sum / (num_samples * num_joints3d) print('MPJPE SMPL: {:.5f}'.format(mpjpe_smpl)) mpjpe_graph = mpjpe_graph_sum / (num_samples * num_joints3d) print('MPJPE GRAPH: {:.5f}'.format(mpjpe_graph)) mpjpe_smpl_per_frame = np.concatenate(mpjpe_smpl_per_frame, axis=0) mpjpe_graph_per_frame = np.concatenate(mpjpe_graph_per_frame, axis=0) np.save(os.path.join(save_path, 'mpjpe_per_frame.npy'), mpjpe_smpl_per_frame) np.save(os.path.join(save_path, 'mpjpe_graph_per_frame.npy'), mpjpe_graph_per_frame) if 'mpjpe_scale_corrected' in metrics: mpjpe_sc_smpl = mpjpe_scale_corrected_smpl_sum / (num_samples * num_joints3d) print('MPJPE SC SMPL: {:.5f}'.format(mpjpe_sc_smpl)) mpjpe_sc_graph = mpjpe_scale_corrected_graph_sum / (num_samples * num_joints3d) print('MPJPE SC GRAPH: {:.5f}'.format(mpjpe_sc_graph)) mpjpe_scale_corrected_smpl_per_frame = np.concatenate( mpjpe_scale_corrected_smpl_per_frame, axis=0) mpjpe_scale_corrected_graph_per_frame = np.concatenate( mpjpe_scale_corrected_graph_per_frame, axis=0) np.save(os.path.join(save_path, 'mpjpe_scale_corrected_per_frame.npy'), mpjpe_scale_corrected_smpl_per_frame) np.save(os.path.join(save_path, 'mpjpe_scale_corrected_graph_per_frame.npy'), mpjpe_scale_corrected_graph_per_frame) if 'j3d_rec_err' in metrics: j3d_rec_err_smpl = j3d_rec_err_smpl_sum / (num_samples * num_joints3d) print('Rec Err SMPL: {:.5f}'.format(j3d_rec_err_smpl)) j3d_rec_err_graph = j3d_rec_err_graph_sum / (num_samples * num_joints3d) print('Rec Err GRAPH: {:.5f}'.format(j3d_rec_err_graph)) j3d_rec_err_smpl_per_frame = np.concatenate(j3d_rec_err_smpl_per_frame, axis=0) j3d_rec_err_graph_per_frame = np.concatenate(j3d_rec_err_graph_per_frame, axis=0) np.save(os.path.join(save_path, 'j3d_rec_err_per_frame.npy'), j3d_rec_err_smpl_per_frame) np.save(os.path.join(save_path, 'j3d_rec_err_graph_per_frame.npy'), j3d_rec_err_graph_per_frame) if 'pve_2d' in metrics: pve_2d_smpl = pve_2d_smpl_sum / (num_samples * num_vertices) print('PVE 2D SMPL: {:.5f}'.format(pve_2d_smpl)) pve_2d_graph = pve_2d_graph_sum / (num_samples * num_vertices) print('PVE 2D GRAPH: {:.5f}'.format(pve_2d_graph)) if 'pve_2d_scale_corrected' in metrics: pve_2d_sc_smpl = pve_2d_scale_corrected_smpl_sum / (num_samples * num_vertices) print('PVE 2D SC SMPL: {:.5f}'.format(pve_2d_sc_smpl)) pve_2d_sc_graph = pve_2d_scale_corrected_graph_sum / (num_samples * num_vertices) print('PVE 2D SC GRAPH: {:.5f}'.format(pve_2d_sc_graph)) if 'pve_2d_pa' in metrics: pve_2d_pa_smpl = pve_2d_pa_smpl_sum / (num_samples * num_vertices) print('PVE 2D PA SMPL: {:.5f}'.format(pve_2d_pa_smpl)) pve_2d_pa_graph = pve_2d_pa_graph_sum / (num_samples * num_vertices) print('PVE 2D PA GRAPH: {:.5f}'.format(pve_2d_pa_graph)) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--checkpoint', default=None, help='Path to network checkpoint') parser.add_argument('--gpu', default="0", type=str, help='GPU') args = parser.parse_args() # Device os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # see issue #152 os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') # Load model mesh = Mesh(device=device) # Our pretrained networks have 5 residual blocks with 256 channels. # You might want to change this if you use a different architecture. model = CMR(mesh, 5, 256, pretrained_checkpoint=args.checkpoint, device=device) model.to(device) model.eval() # Setup evaluation dataset dataset_path = '/scratch2/as2562/datasets/3DPW/test' dataset = PW3DEvalDataset(dataset_path, img_wh=config.INPUT_RES) print("Eval examples found:", len(dataset)) # Metrics metrics = ['pve', 'pve-t', 'pve_pa', 'pve-t_pa', 'mpjpe', 'j3d_rec_err', 'pve_2d', 'pve_2d_pa', 'pve_2d_scale_corrected', 'pve_scale_corrected', 'pve-t_scale_corrected', 'mpjpe_scale_corrected'] save_path = '/data/cvfs/as2562/GraphCMR/evaluations/3dpw' if not os.path.exists(save_path): os.makedirs(save_path) # Run evaluation evaluate_3dpw(model=model, eval_dataset=dataset, metrics=metrics, device=device, vis_save_path=save_path, num_workers=4, pin_memory=True, vis_every_n_batches=1000)
52.824663
125
0.633353
[ "BSD-3-Clause" ]
akashsengupta1997/GraphCMR
evaluate_3dpw_mine.py
27,416
Python
# Copyright 2017-2020 EPAM Systems, Inc. (https://www.epam.com/) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from src.api.entity import Entity from .base import API import json from ..model.object_permission_model import ObjectPermissionModel class User(API): def __init__(self): super(User, self).__init__() @classmethod def get_permissions(cls, identifier, acl_class): entity = Entity.load_by_id_or_name(identifier, acl_class) return cls.permissions(entity['id'], entity['aclClass']), entity['owner'] @classmethod def permissions(cls, id, acl_class): api = cls.instance() response_data = api.call('permissions?id={}&aclClass={}'.format(id, acl_class.upper()), None) if 'payload' in response_data and 'permissions' in response_data['payload']: permissions = [] for permission_json in response_data['payload']['permissions']: permission_object = ObjectPermissionModel.load(permission_json) permission_object.parse_mask(True) permissions.append(permission_object) return permissions else: return [] @classmethod def grant_permission(cls, identifier, acl_class, user_name, principal, mask): api = cls.instance() payload = {} if acl_class is not None: payload['aclClass'] = acl_class.upper() if identifier is not None: payload['id'] = identifier if mask is not None: payload['mask'] = mask if principal is not None: payload['principal'] = principal if user_name is not None: payload['userName'] = user_name data = json.dumps(payload) api.call('grant', data) @classmethod def change_owner(cls, user_name, class_name, object_id): api = cls.instance() response_data = api.call('/grant/owner?userName={}&aclClass={}&id={}'.format( user_name, str(class_name).upper(), object_id), None, http_method='POST') if 'payload' in response_data and 'entity' in response_data['payload']: return response_data['payload']['entity'] if 'message' in response_data: raise RuntimeError(response_data['message']) else: raise RuntimeError("Failed to change owner.") @classmethod def generate_user_token(cls, user_name, duration): api = cls.instance() query = '/user/token?name=%s' % user_name if duration: query = '&expiration='.join([query, str(duration)]) response_data = api.call(query, None) if 'payload' in response_data and 'token' in response_data['payload']: return response_data['payload']['token'] if 'message' in response_data: raise RuntimeError(response_data['message']) else: raise RuntimeError("Failed to generate user token.")
40.529412
101
0.649057
[ "Apache-2.0" ]
NShaforostov/cloud-pipeline
pipe-cli/src/api/user.py
3,445
Python
import pytest import numpy as np import tensorflow as tf import tensorflow.keras import librosa from kapre import STFT, Magnitude, Phase, Delta, InverseSTFT, ApplyFilterbank from kapre.composed import ( get_melspectrogram_layer, get_log_frequency_spectrogram_layer, get_stft_mag_phase, get_perfectly_reconstructing_stft_istft, get_stft_magnitude_layer, ) from utils import get_audio, save_load_compare def _num_frame_valid(nsp_src, nsp_win, len_hop): """Computes the number of frames with 'valid' setting""" return (nsp_src - (nsp_win - len_hop)) // len_hop def _num_frame_same(nsp_src, len_hop): """Computes the number of frames with 'same' setting""" return int(np.ceil(float(nsp_src) / len_hop)) def allclose_phase(a, b, atol=1e-3): """Testing phase. Remember that a small error in complex value may lead to a large phase difference if the norm is very small. Therefore, it makes more sense to test it on the complex value itself rather than breaking it down to phase. """ np.testing.assert_allclose(np.sin(a), np.sin(b), atol=atol) np.testing.assert_allclose(np.cos(a), np.cos(b), atol=atol) def allclose_complex_numbers(a, b, atol=1e-3): np.testing.assert_equal(np.shape(a), np.shape(b)) np.testing.assert_allclose(np.abs(a), np.abs(b), rtol=1e-5, atol=atol) np.testing.assert_allclose(np.real(a), np.real(b), rtol=1e-5, atol=atol) np.testing.assert_allclose(np.imag(a), np.imag(b), rtol=1e-5, atol=atol) @pytest.mark.parametrize('n_fft', [1000]) @pytest.mark.parametrize('hop_length', [None, 256]) @pytest.mark.parametrize('n_ch', [1, 2, 6]) @pytest.mark.parametrize('data_format', ['default', 'channels_first', 'channels_last']) def test_spectrogram_correctness(n_fft, hop_length, n_ch, data_format): def _get_stft_model(following_layer=None): # compute with kapre stft_model = tensorflow.keras.models.Sequential() stft_model.add( STFT( n_fft=n_fft, win_length=win_length, hop_length=hop_length, window_fn=None, pad_end=False, input_data_format=data_format, output_data_format=data_format, input_shape=input_shape, name='stft', ) ) if following_layer is not None: stft_model.add(following_layer) return stft_model src_mono, batch_src, input_shape = get_audio(data_format=data_format, n_ch=n_ch) win_length = n_fft # test with x2 # compute with librosa S_ref = librosa.core.stft( src_mono, n_fft=n_fft, hop_length=hop_length, win_length=win_length, center=False ).T # (time, freq) S_ref = np.expand_dims(S_ref, axis=2) # time, freq, ch=1 S_ref = np.tile(S_ref, [1, 1, n_ch]) # time, freq, ch=n_ch if data_format == 'channels_first': S_ref = np.transpose(S_ref, (2, 0, 1)) # ch, time, freq stft_model = _get_stft_model() S_complex = stft_model.predict(batch_src)[0] # 3d representation allclose_complex_numbers(S_ref, S_complex) # test Magnitude() stft_mag_model = _get_stft_model(Magnitude()) S = stft_mag_model.predict(batch_src)[0] # 3d representation np.testing.assert_allclose(np.abs(S_ref), S, atol=2e-4) # # test Phase() stft_phase_model = _get_stft_model(Phase()) S = stft_phase_model.predict(batch_src)[0] # 3d representation allclose_phase(np.angle(S_complex), S) @pytest.mark.parametrize('n_fft', [512]) @pytest.mark.parametrize('sr', [22050]) @pytest.mark.parametrize('hop_length', [None, 256]) @pytest.mark.parametrize('n_ch', [2]) @pytest.mark.parametrize('data_format', ['default', 'channels_first', 'channels_last']) @pytest.mark.parametrize('amin', [1e-5, 1e-3]) @pytest.mark.parametrize('dynamic_range', [120.0, 80.0]) @pytest.mark.parametrize('n_mels', [40]) @pytest.mark.parametrize('mel_f_min', [0.0]) @pytest.mark.parametrize('mel_f_max', [8000]) def test_melspectrogram_correctness( n_fft, sr, hop_length, n_ch, data_format, amin, dynamic_range, n_mels, mel_f_min, mel_f_max ): """Test the correctness of melspectrogram. Note that mel filterbank is tested separated """ def _get_melgram_model(return_decibel, amin, dynamic_range, input_shape=None): # compute with kapre melgram_model = get_melspectrogram_layer( n_fft=n_fft, sample_rate=sr, n_mels=n_mels, mel_f_min=mel_f_min, mel_f_max=mel_f_max, win_length=win_length, hop_length=hop_length, input_data_format=data_format, output_data_format=data_format, return_decibel=return_decibel, input_shape=input_shape, db_amin=amin, db_dynamic_range=dynamic_range, ) return melgram_model src_mono, batch_src, input_shape = get_audio(data_format=data_format, n_ch=n_ch) win_length = n_fft # test with x2 # compute with librosa S_ref = librosa.feature.melspectrogram( src_mono, sr=sr, n_fft=n_fft, hop_length=hop_length, win_length=win_length, center=False, power=1.0, n_mels=n_mels, fmin=mel_f_min, fmax=mel_f_max, ).T S_ref = np.expand_dims(S_ref, axis=2) # time, freq, ch=1 S_ref = np.tile(S_ref, [1, 1, n_ch]) # time, freq, ch=n_ch if data_format == 'channels_first': S_ref = np.transpose(S_ref, (2, 0, 1)) # ch, time, freq # melgram melgram_model = _get_melgram_model( return_decibel=False, input_shape=input_shape, amin=None, dynamic_range=120.0 ) S = melgram_model.predict(batch_src)[0] # 3d representation np.testing.assert_allclose(S_ref, S, atol=1e-4) # log melgram melgram_model = _get_melgram_model( return_decibel=True, input_shape=input_shape, amin=amin, dynamic_range=dynamic_range ) S = melgram_model.predict(batch_src)[0] # 3d representation S_ref_db = librosa.power_to_db(S_ref, ref=1.0, amin=amin, top_db=dynamic_range) np.testing.assert_allclose( S_ref_db, S, rtol=3e-3 ) # decibel is evaluated with relative tolerance @pytest.mark.parametrize('data_format', ['default', 'channels_first', 'channels_last']) def test_log_spectrogram_runnable(data_format): """test if log spectrogram layer works well""" src_mono, batch_src, input_shape = get_audio(data_format=data_format, n_ch=1) _ = get_log_frequency_spectrogram_layer(input_shape, return_decibel=True) _ = get_log_frequency_spectrogram_layer(input_shape, return_decibel=False) @pytest.mark.xfail def test_log_spectrogram_fail(): """test if log spectrogram layer works well""" src_mono, batch_src, input_shape = get_audio(data_format='channels_last', n_ch=1) _ = get_log_frequency_spectrogram_layer(input_shape, return_decibel=True, log_n_bins=200) def test_delta(): """test delta layer""" specgrams = np.array([1.0, 2.0, 3.0, 4.0], dtype=np.float32) specgrams = np.reshape(specgrams, (1, -1, 1, 1)) # (b, t, f, ch) delta_model = tensorflow.keras.models.Sequential() delta_model.add(Delta(win_length=3, input_shape=(4, 1, 1), data_format='channels_last')) delta_kapre = delta_model(specgrams) delta_ref = np.array([0.5, 1.0, 1.0, 0.5], dtype=np.float32) delta_ref = np.reshape(delta_ref, (1, -1, 1, 1)) # (b, t, f, ch) np.testing.assert_allclose(delta_kapre, delta_ref) @pytest.mark.parametrize('data_format', ['default', 'channels_first', 'channels_last']) def test_mag_phase(data_format): n_ch = 1 n_fft, hop_length, win_length = 512, 256, 512 src_mono, batch_src, input_shape = get_audio(data_format=data_format, n_ch=n_ch) mag_phase_layer = get_stft_mag_phase( input_shape=input_shape, n_fft=n_fft, win_length=win_length, hop_length=hop_length, input_data_format=data_format, output_data_format=data_format, ) model = tensorflow.keras.models.Sequential() model.add(mag_phase_layer) mag_phase_kapre = model(batch_src)[0] # a 2d image shape ch_axis = 0 if data_format == 'channels_first' else 2 # non-batch mag_phase_ref = np.stack( librosa.magphase( librosa.stft( src_mono, n_fft=n_fft, hop_length=hop_length, win_length=win_length, center=False, ).T ), axis=ch_axis, ) np.testing.assert_equal(mag_phase_kapre.shape, mag_phase_ref.shape) # magnitude test np.testing.assert_allclose( np.take(mag_phase_kapre, [0,], axis=ch_axis), np.take(mag_phase_ref, [0,], axis=ch_axis), atol=2e-4, ) # phase test - todo - yeah.. @pytest.mark.parametrize('waveform_data_format', ['default', 'channels_first', 'channels_last']) @pytest.mark.parametrize('stft_data_format', ['default', 'channels_first', 'channels_last']) @pytest.mark.parametrize('hop_ratio', [0.5, 0.25, 0.125]) def test_perfectly_reconstructing_stft_istft(waveform_data_format, stft_data_format, hop_ratio): n_ch = 1 src_mono, batch_src, input_shape = get_audio(data_format=waveform_data_format, n_ch=n_ch) time_axis = 1 if waveform_data_format == 'channels_first' else 0 # non-batch! len_src = input_shape[time_axis] n_fft = 2048 hop_length = int(2048 * hop_ratio) n_added_frames = int(1 / hop_ratio) - 1 stft, istft = get_perfectly_reconstructing_stft_istft( stft_input_shape=input_shape, n_fft=n_fft, hop_length=hop_length, waveform_data_format=waveform_data_format, stft_data_format=stft_data_format, ) # Test - [STFT -> ISTFT] model = tf.keras.models.Sequential([stft, istft]) recon_waveform = model(batch_src) # trim off the pad_begin part len_pad_begin = n_fft - hop_length if waveform_data_format == 'channels_first': recon_waveform = recon_waveform[:, :, len_pad_begin : len_pad_begin + len_src] else: recon_waveform = recon_waveform[:, len_pad_begin : len_pad_begin + len_src, :] np.testing.assert_allclose(batch_src, recon_waveform, atol=1e-5) # Test - [ISTFT -> STFT] S = librosa.stft(src_mono, n_fft=n_fft, hop_length=hop_length).T.astype( np.complex64 ) # (time, freq) ch_axis = 1 if stft_data_format == 'channels_first' else 3 # batch shape S = np.expand_dims(S, (0, ch_axis)) model = tf.keras.models.Sequential([istft, stft]) recon_S = model(S) # trim off the frames coming from zero-pad result n = n_added_frames n_added_frames += n if stft_data_format == 'channels_first': if n != 0: S = S[:, :, n:-n, :] recon_S = recon_S[:, :, n_added_frames:-n_added_frames, :] else: if n != 0: S = S[:, n:-n, :, :] recon_S = recon_S[:, n_added_frames:-n_added_frames, :, :] np.testing.assert_equal(S.shape, recon_S.shape) allclose_complex_numbers(S, recon_S) def test_save_load(): """test saving/loading of models that has stft, melspectorgrma, and log frequency.""" src_mono, batch_src, input_shape = get_audio(data_format='channels_last', n_ch=1) # test STFT save/load save_load_compare( STFT(input_shape=input_shape, pad_begin=True), batch_src, allclose_complex_numbers ) # test melspectrogram save/load save_load_compare( get_melspectrogram_layer(input_shape=input_shape, return_decibel=True), batch_src, np.testing.assert_allclose, ) # test log frequency spectrogram save/load save_load_compare( get_log_frequency_spectrogram_layer(input_shape=input_shape, return_decibel=True), batch_src, np.testing.assert_allclose, ) # test stft_mag_phase save_load_compare( get_stft_mag_phase(input_shape=input_shape, return_decibel=True), batch_src, np.testing.assert_allclose, ) # test stft mag save_load_compare( get_stft_magnitude_layer(input_shape=input_shape), batch_src, np.testing.assert_allclose ) @pytest.mark.xfail() @pytest.mark.parametrize('layer', [STFT, InverseSTFT]) def test_wrong_input_data_format(layer): _ = layer(input_data_format='weird_string') @pytest.mark.xfail() @pytest.mark.parametrize('layer', [STFT, InverseSTFT]) def test_wrong_input_data_format(layer): _ = layer(output_data_format='weird_string') @pytest.mark.xfail() @pytest.mark.parametrize('layer', [Delta, ApplyFilterbank]) def test_wrong_data_format(layer): _ = layer(data_format='weird_string') if __name__ == '__main__': pytest.main([__file__])
35.376045
112
0.682598
[ "MIT" ]
Path-A/kapre
tests/test_time_frequency.py
12,700
Python
#!/usr/bin/env python2 import sys import re import datetime import hashlib import optparse import urllib2 # cheers Dirk :) url = 'https://testssl.sh/mapping-rfc.txt' for line in urllib2.urlopen(url): cipher = line.split() print cipher[1]+'(0'+cipher[0]+'),'
16.117647
42
0.686131
[ "ECL-2.0", "Apache-2.0" ]
Ameg-yag/TLS-Attacker
resources/cipher_suite_grabber.py
274
Python
"""Ray constants used in the Python code.""" import logging import math import os logger = logging.getLogger(__name__) def env_integer(key, default): if key in os.environ: return int(os.environ[key]) return default def direct_call_enabled(): return bool(int(os.environ.get("RAY_FORCE_DIRECT", "1"))) ID_SIZE = 20 # The default maximum number of bytes to allocate to the object store unless # overridden by the user. DEFAULT_OBJECT_STORE_MAX_MEMORY_BYTES = 20 * 10**9 # The default number of retries to call `put` when the object store is full. DEFAULT_PUT_OBJECT_RETRIES = 5 # The default seconds for delay between calls to retry `put` when # the object store is full. This delay is exponentially doubled up to # DEFAULT_PUT_OBJECT_RETRIES times. DEFAULT_PUT_OBJECT_DELAY = 1 # The smallest cap on the memory used by the object store that we allow. # This must be greater than MEMORY_RESOURCE_UNIT_BYTES * 0.7 OBJECT_STORE_MINIMUM_MEMORY_BYTES = 75 * 1024 * 1024 # The default maximum number of bytes that the non-primary Redis shards are # allowed to use unless overridden by the user. DEFAULT_REDIS_MAX_MEMORY_BYTES = 10**10 # The smallest cap on the memory used by Redis that we allow. REDIS_MINIMUM_MEMORY_BYTES = 10**7 # Default resource requirements for actors when no resource requirements are # specified. DEFAULT_ACTOR_METHOD_CPU_SIMPLE = 1 DEFAULT_ACTOR_CREATION_CPU_SIMPLE = 0 # Default resource requirements for actors when some resource requirements are # specified in . DEFAULT_ACTOR_METHOD_CPU_SPECIFIED = 0 DEFAULT_ACTOR_CREATION_CPU_SPECIFIED = 1 # Default number of return values for each actor method. DEFAULT_ACTOR_METHOD_NUM_RETURN_VALS = 1 # If a remote function or actor (or some other export) has serialized size # greater than this quantity, print an warning. PICKLE_OBJECT_WARNING_SIZE = 10**7 # If remote functions with the same source are imported this many times, then # print a warning. DUPLICATE_REMOTE_FUNCTION_THRESHOLD = 100 # The maximum resource quantity that is allowed. TODO(rkn): This could be # relaxed, but the current implementation of the node manager will be slower # for large resource quantities due to bookkeeping of specific resource IDs. MAX_RESOURCE_QUANTITY = 100000 # Each memory "resource" counts as this many bytes of memory. MEMORY_RESOURCE_UNIT_BYTES = 50 * 1024 * 1024 # Number of units 1 resource can be subdivided into. MIN_RESOURCE_GRANULARITY = 0.0001 # Fraction of plasma memory that can be reserved. It is actually 70% but this # is set to 69% to leave some headroom. PLASMA_RESERVABLE_MEMORY_FRACTION = 0.69 def round_to_memory_units(memory_bytes, round_up): """Round bytes to the nearest memory unit.""" return from_memory_units(to_memory_units(memory_bytes, round_up)) def from_memory_units(memory_units): """Convert from memory units -> bytes.""" return memory_units * MEMORY_RESOURCE_UNIT_BYTES def to_memory_units(memory_bytes, round_up): """Convert from bytes -> memory units.""" value = memory_bytes / MEMORY_RESOURCE_UNIT_BYTES if value < 1: raise ValueError( "The minimum amount of memory that can be requested is {} bytes, " "however {} bytes was asked.".format(MEMORY_RESOURCE_UNIT_BYTES, memory_bytes)) if isinstance(value, float) and not value.is_integer(): # TODO(ekl) Ray currently does not support fractional resources when # the quantity is greater than one. We should fix memory resources to # be allocated in units of bytes and not 100MB. if round_up: value = int(math.ceil(value)) else: value = int(math.floor(value)) return int(value) # Different types of Ray errors that can be pushed to the driver. # TODO(rkn): These should be defined in flatbuffers and must be synced with # the existing C++ definitions. WAIT_FOR_CLASS_PUSH_ERROR = "wait_for_class" PICKLING_LARGE_OBJECT_PUSH_ERROR = "pickling_large_object" WAIT_FOR_FUNCTION_PUSH_ERROR = "wait_for_function" TASK_PUSH_ERROR = "task" REGISTER_REMOTE_FUNCTION_PUSH_ERROR = "register_remote_function" FUNCTION_TO_RUN_PUSH_ERROR = "function_to_run" VERSION_MISMATCH_PUSH_ERROR = "version_mismatch" CHECKPOINT_PUSH_ERROR = "checkpoint" REGISTER_ACTOR_PUSH_ERROR = "register_actor" WORKER_CRASH_PUSH_ERROR = "worker_crash" WORKER_DIED_PUSH_ERROR = "worker_died" WORKER_POOL_LARGE_ERROR = "worker_pool_large" PUT_RECONSTRUCTION_PUSH_ERROR = "put_reconstruction" INFEASIBLE_TASK_ERROR = "infeasible_task" RESOURCE_DEADLOCK_ERROR = "resource_deadlock" REMOVED_NODE_ERROR = "node_removed" MONITOR_DIED_ERROR = "monitor_died" LOG_MONITOR_DIED_ERROR = "log_monitor_died" REPORTER_DIED_ERROR = "reporter_died" DASHBOARD_DIED_ERROR = "dashboard_died" RAYLET_CONNECTION_ERROR = "raylet_connection_error" # Abort autoscaling if more than this number of errors are encountered. This # is a safety feature to prevent e.g. runaway node launches. AUTOSCALER_MAX_NUM_FAILURES = env_integer("AUTOSCALER_MAX_NUM_FAILURES", 5) # The maximum number of nodes to launch in a single request. # Multiple requests may be made for this batch size, up to # the limit of AUTOSCALER_MAX_CONCURRENT_LAUNCHES. AUTOSCALER_MAX_LAUNCH_BATCH = env_integer("AUTOSCALER_MAX_LAUNCH_BATCH", 5) # Max number of nodes to launch at a time. AUTOSCALER_MAX_CONCURRENT_LAUNCHES = env_integer( "AUTOSCALER_MAX_CONCURRENT_LAUNCHES", 10) # Interval at which to perform autoscaling updates. AUTOSCALER_UPDATE_INTERVAL_S = env_integer("AUTOSCALER_UPDATE_INTERVAL_S", 5) # The autoscaler will attempt to restart Ray on nodes it hasn't heard from # in more than this interval. AUTOSCALER_HEARTBEAT_TIMEOUT_S = env_integer("AUTOSCALER_HEARTBEAT_TIMEOUT_S", 30) # The reporter will report its statistics this often (milliseconds). REPORTER_UPDATE_INTERVAL_MS = env_integer("REPORTER_UPDATE_INTERVAL_MS", 2500) # Max number of retries to AWS (default is 5, time increases exponentially) BOTO_MAX_RETRIES = env_integer("BOTO_MAX_RETRIES", 12) # Max number of retries to create an EC2 node (retry different subnet) BOTO_CREATE_MAX_RETRIES = env_integer("BOTO_CREATE_MAX_RETRIES", 5) LOGGER_FORMAT = ( "%(asctime)s\t%(levelname)s %(filename)s:%(lineno)s -- %(message)s") LOGGER_FORMAT_HELP = "The logging format. default='{}'".format(LOGGER_FORMAT) LOGGER_LEVEL = "info" LOGGER_LEVEL_CHOICES = ["debug", "info", "warning", "error", "critical"] LOGGER_LEVEL_HELP = ("The logging level threshold, choices=['debug', 'info'," " 'warning', 'error', 'critical'], default='info'") # A constant indicating that an actor doesn't need reconstructions. NO_RECONSTRUCTION = 0 # A constant indicating that an actor should be reconstructed infinite times. INFINITE_RECONSTRUCTION = 2**30 # Constants used to define the different process types. PROCESS_TYPE_REAPER = "reaper" PROCESS_TYPE_MONITOR = "monitor" PROCESS_TYPE_RAYLET_MONITOR = "raylet_monitor" PROCESS_TYPE_LOG_MONITOR = "log_monitor" PROCESS_TYPE_REPORTER = "reporter" PROCESS_TYPE_DASHBOARD = "dashboard" PROCESS_TYPE_WORKER = "worker" PROCESS_TYPE_RAYLET = "raylet" PROCESS_TYPE_PLASMA_STORE = "plasma_store" PROCESS_TYPE_REDIS_SERVER = "redis_server" PROCESS_TYPE_WEB_UI = "web_ui" LOG_MONITOR_MAX_OPEN_FILES = 200 # A constant used as object metadata to indicate the object is raw binary. RAW_BUFFER_METADATA = b"RAW" # A constant used as object metadata to indicate the object is pickled. This # format is only ever used for Python inline task argument values. PICKLE_BUFFER_METADATA = b"PICKLE" # A constant used as object metadata to indicate the object is pickle5 format. PICKLE5_BUFFER_METADATA = b"PICKLE5" AUTOSCALER_RESOURCE_REQUEST_CHANNEL = b"autoscaler_resource_request" # The default password to prevent redis port scanning attack. # Hex for ray. REDIS_DEFAULT_PASSWORD = "5241590000000000" # The default ip address to bind to. NODE_DEFAULT_IP = "127.0.0.1"
39.673267
78
0.774644
[ "Apache-2.0" ]
stephanie-wang/ray
python/ray/ray_constants.py
8,014
Python
# -*- coding: utf-8 -*- # This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this file, # You can obtain one at http://mozilla.org/MPL/2.0/. from keras.preprocessing.sequence import pad_sequences from keras.preprocessing.text import Tokenizer from sklearn.base import BaseEstimator from sklearn.base import ClassifierMixin from sklearn.base import TransformerMixin from bugbug.utils import numpy_to_dict class KerasTextToSequences(BaseEstimator, TransformerMixin): def __init__(self, maxlen, vocab_size): self.maxlen = maxlen self.tokenizer = Tokenizer(num_words=vocab_size) def fit(self, x, y=None): self.tokenizer.fit_on_texts(x) return self def transform(self, data): sequences = self.tokenizer.texts_to_sequences(data) return pad_sequences(sequences, maxlen=self.maxlen) class KerasClassifier(BaseEstimator, ClassifierMixin): def __init__(self, epochs, batch_size): self.epochs = epochs self.batch_size = batch_size def fit(self, X, y): X_dict = numpy_to_dict(X) self.model = self.model_creator(X_dict, y) self.model.fit(X_dict, y, epochs=self.epochs, batch_size=self.batch_size, verbose=1) return self def predict_proba(self, X): return self.model.predict(numpy_to_dict(X)) def predict(self, X): return self.predict_proba(X).argmax(axis=-1)
30.875
92
0.712551
[ "MPL-2.0" ]
Delkhaz/bugbug
bugbug/nn.py
1,482
Python
# -*- coding: utf-8 -*- """ Created on Sun Jul 15 16:02:16 2018 @author: ning """ import os working_dir = '' import pandas as pd pd.options.mode.chained_assignment = None import numpy as np from utils import (cv_counts) saving_dir = '../results/cv_counts' if not os.path.exists(saving_dir): os.mkdir(saving_dir) # Exp 1 for participant in ['AC', 'CL', 'FW', 'HB', 'KK', 'LM', 'MC', 'MP1', 'MP2', 'NN', 'RP','SD', 'TJ', 'TS', 'WT']: experiment = 'pos' df = pd.read_csv(os.path.join(working_dir,'../data/PoSdata.csv')) df = df[df.columns[1:]] df.columns = ['participant', 'blocks', 'trials', 'firstgabor', 'success', 'tilted', 'correct', 'RT_correct', 'awareness', 'RT_awareness', 'confidence', 'RT_confidence'] df_sub = df[df['participant'] == participant] # make sure all the attributes are either 0 or 1 df_sub.loc[:,'success' ] = df_sub.loc[:,'success' ].values - 1 df_sub.loc[:,'awareness' ] = df_sub.loc[:,'awareness' ].values - 1 df_sub.loc[:,'confidence'] = df_sub.loc[:,'confidence'].values - 1 ################################################################## np.random.seed(12345) # use all 6 possible features feature_names = [ 'correct', 'awareness', 'confidence', 'RT_correct', 'RT_awareness', 'RT_confidence'] target_name = 'success' results = dict(sub = [], window = [], fold = [], ) for name in feature_names: results['{}_high_cond_{}_low'.format(target_name,name)] = [] results['{}_high_cond_{}_high'.format(target_name,name)] = [] for n_back in np.arange(1,5): # loop through the number of trials looking back # this is the part that is redundent and the code is long results = cv_counts( df_sub, feature_names, target_name, results, participant, experiment, window=n_back, ) temp = pd.DataFrame(results) temp.to_csv(os.path.join(saving_dir,'Pos_6_features (cv_count)_{}.csv'.format(participant)),index=False) # save as a csv ################################################################################ # use success, awareness, and confidence as features np.random.seed(12345) # use judgement features feature_names = [ 'correct', 'awareness', 'confidence',] target_name = 'success' results = dict(sub = [], window = [], fold = [], ) for name in feature_names: results['{}_high_cond_{}_low'.format(target_name,name)] = [] results['{}_high_cond_{}_high'.format(target_name,name)] = [] for n_back in np.arange(1,5): # loop through the number of trials looking back # this is the part that is redundent and the code is long results = cv_counts( df_sub, feature_names, target_name, results, participant, experiment, window=n_back, ) temp = pd.DataFrame(results) temp.to_csv(os.path.join(saving_dir,'Pos_3_1_features (cv_count)_{}.csv'.format(participant)),index=False) # save as a csv ############################################################################### # use reactimes as features np.random.seed(12345) # use all 6 possible features feature_names = [ 'RT_correct', 'RT_awareness', 'RT_confidence'] target_name = 'success' results = dict(sub = [], window = [], fold = [], ) for name in feature_names: results['{}_high_cond_{}_low'.format(target_name,name)] = [] results['{}_high_cond_{}_high'.format(target_name,name)] = [] for n_back in np.arange(1,5): # loop through the number of trials looking back # this is the part that is redundent and the code is long results = cv_counts( df_sub, feature_names, target_name, results, participant, experiment, window=n_back, ) temp = pd.DataFrame(results) temp.to_csv(os.path.join(saving_dir,'Pos_RT_features (cv_count)_{}.csv'.format(participant)),index=False) # save as a csv
33.760234
126
0.411744
[ "MIT" ]
nmningmei/metacognition
scripts/classifcation_pos_n_trials_back (cv counts).py
5,773
Python
# -*- coding: utf-8 -*- import os import torch import torch.nn as nn from supar.models import (BiaffineDependencyModel, CRF2oDependencyModel, CRFDependencyModel, VIDependencyModel) from supar.parsers.parser import Parser from supar.utils import Config, Dataset, Embedding from supar.utils.common import BOS, PAD, UNK from supar.utils.field import ChartField, Field, RawField, SubwordField from supar.utils.fn import ispunct from supar.utils.logging import get_logger, progress_bar from supar.utils.metric import AttachmentMetric from supar.utils.transform import CoNLL logger = get_logger(__name__) class BiaffineDependencyParser(Parser): r""" The implementation of Biaffine Dependency Parser :cite:`dozat-etal-2017-biaffine`. """ NAME = 'biaffine-dependency' MODEL = BiaffineDependencyModel def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.TAG = self.transform.CPOS self.ARC, self.REL = self.transform.HEAD, self.transform.DEPREL def train(self, train, dev, test, buckets=32, batch_size=5000, update_steps=1, punct=False, tree=False, proj=False, partial=False, verbose=True, **kwargs): r""" Args: train/dev/test (list[list] or str): Filenames of the train/dev/test datasets. buckets (int): The number of buckets that sentences are assigned to. Default: 32. batch_size (int): The number of tokens in each batch. Default: 5000. update_steps (int): Gradient accumulation steps. Default: 1. punct (bool): If ``False``, ignores the punctuation during evaluation. Default: ``False``. tree (bool): If ``True``, ensures to output well-formed trees. Default: ``False``. proj (bool): If ``True``, ensures to output projective trees. Default: ``False``. partial (bool): ``True`` denotes the trees are partially annotated. Default: ``False``. verbose (bool): If ``True``, increases the output verbosity. Default: ``True``. kwargs (dict): A dict holding unconsumed arguments for updating training configs. """ return super().train(**Config().update(locals())) def evaluate(self, data, buckets=8, batch_size=5000, punct=False, tree=True, proj=False, partial=False, verbose=True, **kwargs): r""" Args: data (str): The data for evaluation, both list of instances and filename are allowed. buckets (int): The number of buckets that sentences are assigned to. Default: 32. batch_size (int): The number of tokens in each batch. Default: 5000. punct (bool): If ``False``, ignores the punctuation during evaluation. Default: ``False``. tree (bool): If ``True``, ensures to output well-formed trees. Default: ``False``. proj (bool): If ``True``, ensures to output projective trees. Default: ``False``. partial (bool): ``True`` denotes the trees are partially annotated. Default: ``False``. verbose (bool): If ``True``, increases the output verbosity. Default: ``True``. kwargs (dict): A dict holding unconsumed arguments for updating evaluation configs. Returns: The loss scalar and evaluation results. """ return super().evaluate(**Config().update(locals())) def predict(self, data, pred=None, lang=None, buckets=8, batch_size=5000, prob=False, tree=True, proj=False, verbose=True, **kwargs): r""" Args: data (list[list] or str): The data for prediction, both a list of instances and filename are allowed. pred (str): If specified, the predicted results will be saved to the file. Default: ``None``. lang (str): Language code (e.g., ``en``) or language name (e.g., ``English``) for the text to tokenize. ``None`` if tokenization is not required. Default: ``None``. buckets (int): The number of buckets that sentences are assigned to. Default: 32. batch_size (int): The number of tokens in each batch. Default: 5000. prob (bool): If ``True``, outputs the probabilities. Default: ``False``. tree (bool): If ``True``, ensures to output well-formed trees. Default: ``False``. proj (bool): If ``True``, ensures to output projective trees. Default: ``False``. verbose (bool): If ``True``, increases the output verbosity. Default: ``True``. kwargs (dict): A dict holding unconsumed arguments for updating prediction configs. Returns: A :class:`~supar.utils.Dataset` object that stores the predicted results. """ return super().predict(**Config().update(locals())) @classmethod def load(cls, path, reload=False, src=None, **kwargs): r""" Loads a parser with data fields and pretrained model parameters. Args: path (str): - a string with the shortcut name of a pretrained model defined in ``supar.MODEL`` to load from cache or download, e.g., ``'biaffine-dep-en'``. - a local path to a pretrained model, e.g., ``./<path>/model``. reload (bool): Whether to discard the existing cache and force a fresh download. Default: ``False``. src (str): Specifies where to download the model. ``'github'``: github release page. ``'hlt'``: hlt homepage, only accessible from 9:00 to 18:00 (UTC+8). Default: None. kwargs (dict): A dict holding unconsumed arguments for updating training configs and initializing the model. Examples: >>> from supar import Parser >>> parser = Parser.load('biaffine-dep-en') >>> parser = Parser.load('./ptb.biaffine.dep.lstm.char') """ return super().load(path, reload, src, **kwargs) def _train(self, loader): self.model.train() bar, metric = progress_bar(loader), AttachmentMetric() for i, batch in enumerate(bar, 1): words, texts, *feats, arcs, rels = batch word_mask = words.ne(self.args.pad_index) mask = word_mask if len(words.shape) < 3 else word_mask.any(-1) # ignore the first token of each sentence mask[:, 0] = 0 s_arc, s_rel = self.model(words, feats) loss = self.model.loss(s_arc, s_rel, arcs, rels, mask, self.args.partial) loss = loss / self.args.update_steps loss.backward() nn.utils.clip_grad_norm_(self.model.parameters(), self.args.clip) if i % self.args.update_steps == 0: self.optimizer.step() self.scheduler.step() self.optimizer.zero_grad() arc_preds, rel_preds = self.model.decode(s_arc, s_rel, mask) if self.args.partial: mask &= arcs.ge(0) # ignore all punctuation if not specified if not self.args.punct: mask.masked_scatter_(mask, ~mask.new_tensor([ispunct(w) for s in texts for w in s])) metric(arc_preds, rel_preds, arcs, rels, mask) bar.set_postfix_str(f"lr: {self.scheduler.get_last_lr()[0]:.4e} - loss: {loss:.4f} - {metric}") logger.info(f"{bar.postfix}") @torch.no_grad() def _evaluate(self, loader): self.model.eval() total_loss, metric = 0, AttachmentMetric() for batch in loader: words, texts, *feats, arcs, rels = batch word_mask = words.ne(self.args.pad_index) mask = word_mask if len(words.shape) < 3 else word_mask.any(-1) # ignore the first token of each sentence mask[:, 0] = 0 s_arc, s_rel = self.model(words, feats) loss = self.model.loss(s_arc, s_rel, arcs, rels, mask, self.args.partial) arc_preds, rel_preds = self.model.decode(s_arc, s_rel, mask, self.args.tree, self.args.proj) if self.args.partial: mask &= arcs.ge(0) # ignore all punctuation if not specified if not self.args.punct: mask.masked_scatter_(mask, ~mask.new_tensor([ispunct(w) for s in texts for w in s])) total_loss += loss.item() metric(arc_preds, rel_preds, arcs, rels, mask) total_loss /= len(loader) return total_loss, metric @torch.no_grad() def _predict(self, loader): self.model.eval() preds = {'arcs': [], 'rels': [], 'probs': [] if self.args.prob else None} for batch in progress_bar(loader): words, texts, *feats = batch word_mask = words.ne(self.args.pad_index) mask = word_mask if len(words.shape) < 3 else word_mask.any(-1) # ignore the first token of each sentence mask[:, 0] = 0 lens = mask.sum(1).tolist() s_arc, s_rel = self.model(words, feats) arc_preds, rel_preds = self.model.decode(s_arc, s_rel, mask, self.args.tree, self.args.proj) preds['arcs'].extend(arc_preds[mask].split(lens)) preds['rels'].extend(rel_preds[mask].split(lens)) if self.args.prob: preds['probs'].extend([prob[1:i+1, :i+1].cpu() for i, prob in zip(lens, s_arc.softmax(-1).unbind())]) preds['arcs'] = [seq.tolist() for seq in preds['arcs']] preds['rels'] = [self.REL.vocab[seq.tolist()] for seq in preds['rels']] return preds @classmethod def build(cls, path, min_freq=2, fix_len=20, **kwargs): r""" Build a brand-new Parser, including initialization of all data fields and model parameters. Args: path (str): The path of the model to be saved. min_freq (str): The minimum frequency needed to include a token in the vocabulary. Required if taking words as encoder input. Default: 2. fix_len (int): The max length of all subword pieces. The excess part of each piece will be truncated. Required if using CharLSTM/BERT. Default: 20. kwargs (dict): A dict holding the unconsumed arguments. """ args = Config(**locals()) args.device = 'cuda' if torch.cuda.is_available() else 'cpu' os.makedirs(os.path.dirname(path) or './', exist_ok=True) if os.path.exists(path) and not args.build: parser = cls.load(**args) parser.model = cls.MODEL(**parser.args) parser.model.load_pretrained(parser.WORD.embed).to(args.device) return parser logger.info("Building the fields") TAG, CHAR, ELMO, BERT = None, None, None, None if args.encoder != 'lstm': from transformers import (AutoTokenizer, GPT2Tokenizer, GPT2TokenizerFast) t = AutoTokenizer.from_pretrained(args.bert) WORD = SubwordField('words', pad=t.pad_token, unk=t.unk_token, bos=t.bos_token or t.cls_token, fix_len=args.fix_len, tokenize=t.tokenize, fn=None if not isinstance(t, (GPT2Tokenizer, GPT2TokenizerFast)) else lambda x: ' '+x) WORD.vocab = t.get_vocab() else: WORD = Field('words', pad=PAD, unk=UNK, bos=BOS, lower=True) if 'tag' in args.feat: TAG = Field('tags', bos=BOS) if 'char' in args.feat: CHAR = SubwordField('chars', pad=PAD, unk=UNK, bos=BOS, fix_len=args.fix_len) if 'elmo' in args.feat: from allennlp.modules.elmo import batch_to_ids ELMO = RawField('elmo') ELMO.compose = lambda x: batch_to_ids(x).to(WORD.device) if 'bert' in args.feat: from transformers import (AutoTokenizer, GPT2Tokenizer, GPT2TokenizerFast) t = AutoTokenizer.from_pretrained(args.bert) BERT = SubwordField('bert', pad=t.pad_token, unk=t.unk_token, bos=t.bos_token or t.cls_token, fix_len=args.fix_len, tokenize=t.tokenize, fn=None if not isinstance(t, (GPT2Tokenizer, GPT2TokenizerFast)) else lambda x: ' '+x) BERT.vocab = t.get_vocab() TEXT = RawField('texts') ARC = Field('arcs', bos=BOS, use_vocab=False, fn=CoNLL.get_arcs) REL = Field('rels', bos=BOS) transform = CoNLL(FORM=(WORD, TEXT, CHAR, ELMO, BERT), CPOS=TAG, HEAD=ARC, DEPREL=REL) train = Dataset(transform, args.train) if args.encoder == 'lstm': WORD.build(train, args.min_freq, (Embedding.load(args.embed, args.unk) if args.embed else None)) if TAG is not None: TAG.build(train) if CHAR is not None: CHAR.build(train) REL.build(train) args.update({ 'n_words': len(WORD.vocab) if args.encoder != 'lstm' else WORD.vocab.n_init, 'n_rels': len(REL.vocab), 'n_tags': len(TAG.vocab) if TAG is not None else None, 'n_chars': len(CHAR.vocab) if CHAR is not None else None, 'char_pad_index': CHAR.pad_index if CHAR is not None else None, 'bert_pad_index': BERT.pad_index if BERT is not None else None, 'pad_index': WORD.pad_index, 'unk_index': WORD.unk_index, 'bos_index': WORD.bos_index }) logger.info(f"{transform}") logger.info("Building the model") model = cls.MODEL(**args).load_pretrained(WORD.embed if hasattr(WORD, 'embed') else None).to(args.device) logger.info(f"{model}\n") return cls(args, model, transform) class CRFDependencyParser(BiaffineDependencyParser): r""" The implementation of first-order CRF Dependency Parser :cite:`zhang-etal-2020-efficient`. """ NAME = 'crf-dependency' MODEL = CRFDependencyModel def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def train(self, train, dev, test, buckets=32, batch_size=5000, update_steps=1, punct=False, mbr=True, tree=False, proj=False, partial=False, verbose=True, **kwargs): r""" Args: train/dev/test (list[list] or str): Filenames of the train/dev/test datasets. buckets (int): The number of buckets that sentences are assigned to. Default: 32. batch_size (int): The number of tokens in each batch. Default: 5000. update_steps (int): Gradient accumulation steps. Default: 1. punct (bool): If ``False``, ignores the punctuation during evaluation. Default: ``False``. mbr (bool): If ``True``, performs MBR decoding. Default: ``True``. tree (bool): If ``True``, ensures to output well-formed trees. Default: ``False``. proj (bool): If ``True``, ensures to output projective trees. Default: ``False``. partial (bool): ``True`` denotes the trees are partially annotated. Default: ``False``. verbose (bool): If ``True``, increases the output verbosity. Default: ``True``. kwargs (dict): A dict holding unconsumed arguments for updating training configs. """ return super().train(**Config().update(locals())) def evaluate(self, data, buckets=8, batch_size=5000, punct=False, mbr=True, tree=True, proj=True, partial=False, verbose=True, **kwargs): r""" Args: data (str): The data for evaluation, both list of instances and filename are allowed. buckets (int): The number of buckets that sentences are assigned to. Default: 32. batch_size (int): The number of tokens in each batch. Default: 5000. punct (bool): If ``False``, ignores the punctuation during evaluation. Default: ``False``. mbr (bool): If ``True``, performs MBR decoding. Default: ``True``. tree (bool): If ``True``, ensures to output well-formed trees. Default: ``False``. proj (bool): If ``True``, ensures to output projective trees. Default: ``False``. partial (bool): ``True`` denotes the trees are partially annotated. Default: ``False``. verbose (bool): If ``True``, increases the output verbosity. Default: ``True``. kwargs (dict): A dict holding unconsumed arguments for updating evaluation configs. Returns: The loss scalar and evaluation results. """ return super().evaluate(**Config().update(locals())) def predict(self, data, pred=None, lang=None, buckets=8, batch_size=5000, prob=False, mbr=True, tree=True, proj=True, verbose=True, **kwargs): r""" Args: data (list[list] or str): The data for prediction, both a list of instances and filename are allowed. pred (str): If specified, the predicted results will be saved to the file. Default: ``None``. lang (str): Language code (e.g., ``en``) or language name (e.g., ``English``) for the text to tokenize. ``None`` if tokenization is not required. Default: ``None``. buckets (int): The number of buckets that sentences are assigned to. Default: 32. batch_size (int): The number of tokens in each batch. Default: 5000. prob (bool): If ``True``, outputs the probabilities. Default: ``False``. mbr (bool): If ``True``, performs MBR decoding. Default: ``True``. tree (bool): If ``True``, ensures to output well-formed trees. Default: ``False``. proj (bool): If ``True``, ensures to output projective trees. Default: ``False``. verbose (bool): If ``True``, increases the output verbosity. Default: ``True``. kwargs (dict): A dict holding unconsumed arguments for updating prediction configs. Returns: A :class:`~supar.utils.Dataset` object that stores the predicted results. """ return super().predict(**Config().update(locals())) @classmethod def load(cls, path, reload=False, src=None, **kwargs): r""" Loads a parser with data fields and pretrained model parameters. Args: path (str): - a string with the shortcut name of a pretrained model defined in ``supar.MODEL`` to load from cache or download, e.g., ``'crf-dep-en'``. - a local path to a pretrained model, e.g., ``./<path>/model``. reload (bool): Whether to discard the existing cache and force a fresh download. Default: ``False``. src (str): Specifies where to download the model. ``'github'``: github release page. ``'hlt'``: hlt homepage, only accessible from 9:00 to 18:00 (UTC+8). Default: None. kwargs (dict): A dict holding unconsumed arguments for updating training configs and initializing the model. Examples: >>> from supar import Parser >>> parser = Parser.load('crf-dep-en') >>> parser = Parser.load('./ptb.crf.dep.lstm.char') """ return super().load(path, reload, src, **kwargs) def _train(self, loader): self.model.train() bar, metric = progress_bar(loader), AttachmentMetric() for i, batch in enumerate(bar, 1): words, texts, *feats, arcs, rels = batch word_mask = words.ne(self.args.pad_index) mask = word_mask if len(words.shape) < 3 else word_mask.any(-1) # ignore the first token of each sentence mask[:, 0] = 0 s_arc, s_rel = self.model(words, feats) loss, s_arc = self.model.loss(s_arc, s_rel, arcs, rels, mask, self.args.mbr, self.args.partial) loss = loss / self.args.update_steps loss.backward() nn.utils.clip_grad_norm_(self.model.parameters(), self.args.clip) if i % self.args.update_steps == 0: self.optimizer.step() self.scheduler.step() self.optimizer.zero_grad() arc_preds, rel_preds = self.model.decode(s_arc, s_rel, mask) if self.args.partial: mask &= arcs.ge(0) # ignore all punctuation if not specified if not self.args.punct: mask.masked_scatter_(mask, ~mask.new_tensor([ispunct(w) for s in texts for w in s])) metric(arc_preds, rel_preds, arcs, rels, mask) bar.set_postfix_str(f"lr: {self.scheduler.get_last_lr()[0]:.4e} - loss: {loss:.4f} - {metric}") logger.info(f"{bar.postfix}") @torch.no_grad() def _evaluate(self, loader): self.model.eval() total_loss, metric = 0, AttachmentMetric() for batch in loader: words, texts, *feats, arcs, rels = batch word_mask = words.ne(self.args.pad_index) mask = word_mask if len(words.shape) < 3 else word_mask.any(-1) # ignore the first token of each sentence mask[:, 0] = 0 s_arc, s_rel = self.model(words, feats) loss, s_arc = self.model.loss(s_arc, s_rel, arcs, rels, mask, self.args.mbr, self.args.partial) arc_preds, rel_preds = self.model.decode(s_arc, s_rel, mask, self.args.tree, self.args.proj) if self.args.partial: mask &= arcs.ge(0) # ignore all punctuation if not specified if not self.args.punct: mask.masked_scatter_(mask, ~mask.new_tensor([ispunct(w) for s in texts for w in s])) total_loss += loss.item() metric(arc_preds, rel_preds, arcs, rels, mask) total_loss /= len(loader) return total_loss, metric @torch.no_grad() def _predict(self, loader): self.model.eval() preds = {'arcs': [], 'rels': [], 'probs': [] if self.args.prob else None} for batch in progress_bar(loader): words, texts, *feats = batch word_mask = words.ne(self.args.pad_index) mask = word_mask if len(words.shape) < 3 else word_mask.any(-1) # ignore the first token of each sentence mask[:, 0] = 0 lens = mask.sum(1).tolist() s_arc, s_rel = self.model(words, feats) if self.args.mbr: s_arc = self.model.crf(s_arc, mask, mbr=True) arc_preds, rel_preds = self.model.decode(s_arc, s_rel, mask, self.args.tree, self.args.proj) preds['arcs'].extend(arc_preds[mask].split(lens)) preds['rels'].extend(rel_preds[mask].split(lens)) if self.args.prob: arc_probs = s_arc if self.args.mbr else s_arc.softmax(-1) preds['probs'].extend([prob[1:i+1, :i+1].cpu() for i, prob in zip(lens, arc_probs.unbind())]) preds['arcs'] = [seq.tolist() for seq in preds['arcs']] preds['rels'] = [self.REL.vocab[seq.tolist()] for seq in preds['rels']] return preds class CRF2oDependencyParser(BiaffineDependencyParser): r""" The implementation of second-order CRF Dependency Parser :cite:`zhang-etal-2020-efficient`. """ NAME = 'crf2o-dependency' MODEL = CRF2oDependencyModel def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def train(self, train, dev, test, buckets=32, batch_size=5000, update_steps=1, punct=False, mbr=True, tree=False, proj=False, partial=False, verbose=True, **kwargs): r""" Args: train/dev/test (list[list] or str): Filenames of the train/dev/test datasets. buckets (int): The number of buckets that sentences are assigned to. Default: 32. batch_size (int): The number of tokens in each batch. Default: 5000. update_steps (int): Gradient accumulation steps. Default: 1. punct (bool): If ``False``, ignores the punctuation during evaluation. Default: ``False``. mbr (bool): If ``True``, performs MBR decoding. Default: ``True``. tree (bool): If ``True``, ensures to output well-formed trees. Default: ``False``. proj (bool): If ``True``, ensures to output projective trees. Default: ``False``. partial (bool): ``True`` denotes the trees are partially annotated. Default: ``False``. verbose (bool): If ``True``, increases the output verbosity. Default: ``True``. kwargs (dict): A dict holding unconsumed arguments for updating training configs. """ return super().train(**Config().update(locals())) def evaluate(self, data, buckets=8, batch_size=5000, punct=False, mbr=True, tree=True, proj=True, partial=False, verbose=True, **kwargs): r""" Args: data (str): The data for evaluation, both list of instances and filename are allowed. buckets (int): The number of buckets that sentences are assigned to. Default: 32. batch_size (int): The number of tokens in each batch. Default: 5000. punct (bool): If ``False``, ignores the punctuation during evaluation. Default: ``False``. mbr (bool): If ``True``, performs MBR decoding. Default: ``True``. tree (bool): If ``True``, ensures to output well-formed trees. Default: ``False``. proj (bool): If ``True``, ensures to output projective trees. Default: ``False``. partial (bool): ``True`` denotes the trees are partially annotated. Default: ``False``. verbose (bool): If ``True``, increases the output verbosity. Default: ``True``. kwargs (dict): A dict holding unconsumed arguments for updating evaluation configs. Returns: The loss scalar and evaluation results. """ return super().evaluate(**Config().update(locals())) def predict(self, data, pred=None, lang=None, buckets=8, batch_size=5000, prob=False, mbr=True, tree=True, proj=True, verbose=True, **kwargs): r""" Args: data (list[list] or str): The data for prediction, both a list of instances and filename are allowed. pred (str): If specified, the predicted results will be saved to the file. Default: ``None``. lang (str): Language code (e.g., ``en``) or language name (e.g., ``English``) for the text to tokenize. ``None`` if tokenization is not required. Default: ``None``. buckets (int): The number of buckets that sentences are assigned to. Default: 32. batch_size (int): The number of tokens in each batch. Default: 5000. prob (bool): If ``True``, outputs the probabilities. Default: ``False``. mbr (bool): If ``True``, performs MBR decoding. Default: ``True``. tree (bool): If ``True``, ensures to output well-formed trees. Default: ``False``. proj (bool): If ``True``, ensures to output projective trees. Default: ``False``. verbose (bool): If ``True``, increases the output verbosity. Default: ``True``. kwargs (dict): A dict holding unconsumed arguments for updating prediction configs. Returns: A :class:`~supar.utils.Dataset` object that stores the predicted results. """ return super().predict(**Config().update(locals())) @classmethod def load(cls, path, reload=False, src=None, **kwargs): r""" Loads a parser with data fields and pretrained model parameters. Args: path (str): - a string with the shortcut name of a pretrained model defined in ``supar.MODEL`` to load from cache or download, e.g., ``'crf2o-dep-en'``. - a local path to a pretrained model, e.g., ``./<path>/model``. reload (bool): Whether to discard the existing cache and force a fresh download. Default: ``False``. src (str): Specifies where to download the model. ``'github'``: github release page. ``'hlt'``: hlt homepage, only accessible from 9:00 to 18:00 (UTC+8). Default: None. kwargs (dict): A dict holding unconsumed arguments for updating training configs and initializing the model. Examples: >>> from supar import Parser >>> parser = Parser.load('crf2o-dep-en') >>> parser = Parser.load('./ptb.crf2o.dep.lstm.char') """ return super().load(path, reload, src, **kwargs) def _train(self, loader): self.model.train() bar, metric = progress_bar(loader), AttachmentMetric() for i, batch in enumerate(bar, 1): words, texts, *feats, arcs, sibs, rels = batch word_mask = words.ne(self.args.pad_index) mask = word_mask if len(words.shape) < 3 else word_mask.any(-1) # ignore the first token of each sentence mask[:, 0] = 0 s_arc, s_sib, s_rel = self.model(words, feats) loss, s_arc = self.model.loss(s_arc, s_sib, s_rel, arcs, sibs, rels, mask, self.args.mbr, self.args.partial) loss = loss / self.args.update_steps loss.backward() nn.utils.clip_grad_norm_(self.model.parameters(), self.args.clip) if i % self.args.update_steps == 0: self.optimizer.step() self.scheduler.step() self.optimizer.zero_grad() arc_preds, rel_preds = self.model.decode(s_arc, s_sib, s_rel, mask) if self.args.partial: mask &= arcs.ge(0) # ignore all punctuation if not specified if not self.args.punct: mask.masked_scatter_(mask, ~mask.new_tensor([ispunct(w) for s in texts for w in s])) metric(arc_preds, rel_preds, arcs, rels, mask) bar.set_postfix_str(f"lr: {self.scheduler.get_last_lr()[0]:.4e} - loss: {loss:.4f} - {metric}") logger.info(f"{bar.postfix}") @torch.no_grad() def _evaluate(self, loader): self.model.eval() total_loss, metric = 0, AttachmentMetric() for batch in loader: words, texts, *feats, arcs, sibs, rels = batch word_mask = words.ne(self.args.pad_index) mask = word_mask if len(words.shape) < 3 else word_mask.any(-1) # ignore the first token of each sentence mask[:, 0] = 0 s_arc, s_sib, s_rel = self.model(words, feats) loss, s_arc = self.model.loss(s_arc, s_sib, s_rel, arcs, sibs, rels, mask, self.args.mbr, self.args.partial) arc_preds, rel_preds = self.model.decode(s_arc, s_sib, s_rel, mask, self.args.tree, self.args.mbr, self.args.proj) if self.args.partial: mask &= arcs.ge(0) # ignore all punctuation if not specified if not self.args.punct: mask.masked_scatter_(mask, ~mask.new_tensor([ispunct(w) for s in texts for w in s])) total_loss += loss.item() metric(arc_preds, rel_preds, arcs, rels, mask) total_loss /= len(loader) return total_loss, metric @torch.no_grad() def _predict(self, loader): self.model.eval() preds = {'arcs': [], 'rels': [], 'probs': [] if self.args.prob else None} for batch in progress_bar(loader): words, texts, *feats = batch word_mask = words.ne(self.args.pad_index) mask = word_mask if len(words.shape) < 3 else word_mask.any(-1) # ignore the first token of each sentence mask[:, 0] = 0 lens = mask.sum(1).tolist() s_arc, s_sib, s_rel = self.model(words, feats) if self.args.mbr: s_arc = self.model.crf((s_arc, s_sib), mask, mbr=True) arc_preds, rel_preds = self.model.decode(s_arc, s_sib, s_rel, mask, self.args.tree, self.args.mbr, self.args.proj) preds['arcs'].extend(arc_preds[mask].split(lens)) preds['rels'].extend(rel_preds[mask].split(lens)) if self.args.prob: arc_probs = s_arc if self.args.mbr else s_arc.softmax(-1) preds['probs'].extend([prob[1:i+1, :i+1].cpu() for i, prob in zip(lens, arc_probs.unbind())]) preds['arcs'] = [seq.tolist() for seq in preds['arcs']] preds['rels'] = [self.REL.vocab[seq.tolist()] for seq in preds['rels']] return preds @classmethod def build(cls, path, min_freq=2, fix_len=20, **kwargs): r""" Build a brand-new Parser, including initialization of all data fields and model parameters. Args: path (str): The path of the model to be saved. min_freq (str): The minimum frequency needed to include a token in the vocabulary. Default: 2. fix_len (int): The max length of all subword pieces. The excess part of each piece will be truncated. Required if using CharLSTM/BERT. Default: 20. kwargs (dict): A dict holding the unconsumed arguments. """ args = Config(**locals()) args.device = 'cuda' if torch.cuda.is_available() else 'cpu' os.makedirs(os.path.dirname(path) or './', exist_ok=True) if os.path.exists(path) and not args.build: parser = cls.load(**args) parser.model = cls.MODEL(**parser.args) parser.model.load_pretrained(parser.WORD.embed).to(args.device) return parser logger.info("Building the fields") TAG, CHAR, ELMO, BERT = None, None, None, None if args.encoder != 'lstm': from transformers import (AutoTokenizer, GPT2Tokenizer, GPT2TokenizerFast) t = AutoTokenizer.from_pretrained(args.bert) WORD = SubwordField('words', pad=t.pad_token, unk=t.unk_token, bos=t.bos_token or t.cls_token, fix_len=args.fix_len, tokenize=t.tokenize, fn=None if not isinstance(t, (GPT2Tokenizer, GPT2TokenizerFast)) else lambda x: ' '+x) WORD.vocab = t.get_vocab() else: WORD = Field('words', pad=PAD, unk=UNK, bos=BOS, lower=True) if 'tag' in args.feat: TAG = Field('tags', bos=BOS) if 'char' in args.feat: CHAR = SubwordField('chars', pad=PAD, unk=UNK, bos=BOS, fix_len=args.fix_len) if 'elmo' in args.feat: from allennlp.modules.elmo import batch_to_ids ELMO = RawField('elmo') ELMO.compose = lambda x: batch_to_ids(x).to(WORD.device) if 'bert' in args.feat: from transformers import (AutoTokenizer, GPT2Tokenizer, GPT2TokenizerFast) t = AutoTokenizer.from_pretrained(args.bert) BERT = SubwordField('bert', pad=t.pad_token, unk=t.unk_token, bos=t.bos_token or t.cls_token, fix_len=args.fix_len, tokenize=t.tokenize, fn=None if not isinstance(t, (GPT2Tokenizer, GPT2TokenizerFast)) else lambda x: ' '+x) BERT.vocab = t.get_vocab() TEXT = RawField('texts') ARC = Field('arcs', bos=BOS, use_vocab=False, fn=CoNLL.get_arcs) SIB = ChartField('sibs', bos=BOS, use_vocab=False, fn=CoNLL.get_sibs) REL = Field('rels', bos=BOS) transform = CoNLL(FORM=(WORD, TEXT, CHAR, ELMO, BERT), CPOS=TAG, HEAD=(ARC, SIB), DEPREL=REL) train = Dataset(transform, args.train) if args.encoder == 'lstm': WORD.build(train, args.min_freq, (Embedding.load(args.embed, args.unk) if args.embed else None)) if TAG is not None: TAG.build(train) if CHAR is not None: CHAR.build(train) REL.build(train) args.update({ 'n_words': len(WORD.vocab) if args.encoder != 'lstm' else WORD.vocab.n_init, 'n_rels': len(REL.vocab), 'n_tags': len(TAG.vocab) if TAG is not None else None, 'n_chars': len(CHAR.vocab) if CHAR is not None else None, 'char_pad_index': CHAR.pad_index if CHAR is not None else None, 'bert_pad_index': BERT.pad_index if BERT is not None else None, 'pad_index': WORD.pad_index, 'unk_index': WORD.unk_index, 'bos_index': WORD.bos_index }) logger.info(f"{transform}") logger.info("Building the model") model = cls.MODEL(**args).load_pretrained(WORD.embed if hasattr(WORD, 'embed') else None).to(args.device) logger.info(f"{model}\n") return cls(args, model, transform) class VIDependencyParser(BiaffineDependencyParser): r""" The implementation of Dependency Parser using Variational Inference (:cite:`wang-tu-2020-second`). """ NAME = 'vi-dependency' MODEL = VIDependencyModel def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def train(self, train, dev, test, buckets=32, batch_size=5000, update_steps=1, punct=False, tree=False, proj=False, partial=False, verbose=True, **kwargs): r""" Args: train/dev/test (list[list] or str): Filenames of the train/dev/test datasets. buckets (int): The number of buckets that sentences are assigned to. Default: 32. batch_size (int): The number of tokens in each batch. Default: 5000. update_steps (int): Gradient accumulation steps. Default: 1. punct (bool): If ``False``, ignores the punctuation during evaluation. Default: ``False``. tree (bool): If ``True``, ensures to output well-formed trees. Default: ``False``. proj (bool): If ``True``, ensures to output projective trees. Default: ``False``. partial (bool): ``True`` denotes the trees are partially annotated. Default: ``False``. verbose (bool): If ``True``, increases the output verbosity. Default: ``True``. kwargs (dict): A dict holding unconsumed arguments for updating training configs. """ return super().train(**Config().update(locals())) def evaluate(self, data, buckets=8, batch_size=5000, punct=False, tree=True, proj=True, partial=False, verbose=True, **kwargs): r""" Args: data (str): The data for evaluation, both list of instances and filename are allowed. buckets (int): The number of buckets that sentences are assigned to. Default: 32. batch_size (int): The number of tokens in each batch. Default: 5000. punct (bool): If ``False``, ignores the punctuation during evaluation. Default: ``False``. tree (bool): If ``True``, ensures to output well-formed trees. Default: ``False``. proj (bool): If ``True``, ensures to output projective trees. Default: ``False``. partial (bool): ``True`` denotes the trees are partially annotated. Default: ``False``. verbose (bool): If ``True``, increases the output verbosity. Default: ``True``. kwargs (dict): A dict holding unconsumed arguments for updating evaluation configs. Returns: The loss scalar and evaluation results. """ return super().evaluate(**Config().update(locals())) def predict(self, data, pred=None, lang=None, buckets=8, batch_size=5000, prob=False, tree=True, proj=True, verbose=True, **kwargs): r""" Args: data (list[list] or str): The data for prediction, both a list of instances and filename are allowed. pred (str): If specified, the predicted results will be saved to the file. Default: ``None``. lang (str): Language code (e.g., ``en``) or language name (e.g., ``English``) for the text to tokenize. ``None`` if tokenization is not required. Default: ``None``. buckets (int): The number of buckets that sentences are assigned to. Default: 32. batch_size (int): The number of tokens in each batch. Default: 5000. prob (bool): If ``True``, outputs the probabilities. Default: ``False``. tree (bool): If ``True``, ensures to output well-formed trees. Default: ``False``. proj (bool): If ``True``, ensures to output projective trees. Default: ``False``. verbose (bool): If ``True``, increases the output verbosity. Default: ``True``. kwargs (dict): A dict holding unconsumed arguments for updating prediction configs. Returns: A :class:`~supar.utils.Dataset` object that stores the predicted results. """ return super().predict(**Config().update(locals())) @classmethod def load(cls, path, reload=False, src=None, **kwargs): r""" Loads a parser with data fields and pretrained model parameters. Args: path (str): - a string with the shortcut name of a pretrained model defined in ``supar.MODEL`` to load from cache or download, e.g., ``'vi-dep-en'``. - a local path to a pretrained model, e.g., ``./<path>/model``. reload (bool): Whether to discard the existing cache and force a fresh download. Default: ``False``. src (str): Specifies where to download the model. ``'github'``: github release page. ``'hlt'``: hlt homepage, only accessible from 9:00 to 18:00 (UTC+8). Default: None. kwargs (dict): A dict holding unconsumed arguments for updating training configs and initializing the model. Examples: >>> from supar import Parser >>> parser = Parser.load('vi-dep-en') >>> parser = Parser.load('./ptb.vi.dep.lstm.char') """ return super().load(path, reload, src, **kwargs) def _train(self, loader): self.model.train() bar, metric = progress_bar(loader), AttachmentMetric() for i, batch in enumerate(bar, 1): words, texts, *feats, arcs, rels = batch word_mask = words.ne(self.args.pad_index) mask = word_mask if len(words.shape) < 3 else word_mask.any(-1) # ignore the first token of each sentence mask[:, 0] = 0 s_arc, s_sib, s_rel = self.model(words, feats) loss, s_arc = self.model.loss(s_arc, s_sib, s_rel, arcs, rels, mask) loss = loss / self.args.update_steps loss.backward() nn.utils.clip_grad_norm_(self.model.parameters(), self.args.clip) if i % self.args.update_steps == 0: self.optimizer.step() self.scheduler.step() self.optimizer.zero_grad() arc_preds, rel_preds = self.model.decode(s_arc, s_rel, mask) if self.args.partial: mask &= arcs.ge(0) # ignore all punctuation if not specified if not self.args.punct: mask.masked_scatter_(mask, ~mask.new_tensor([ispunct(w) for s in texts for w in s])) metric(arc_preds, rel_preds, arcs, rels, mask) bar.set_postfix_str(f"lr: {self.scheduler.get_last_lr()[0]:.4e} - loss: {loss:.4f} - {metric}") logger.info(f"{bar.postfix}") @torch.no_grad() def _evaluate(self, loader): self.model.eval() total_loss, metric = 0, AttachmentMetric() for batch in loader: words, texts, *feats, arcs, rels = batch word_mask = words.ne(self.args.pad_index) mask = word_mask if len(words.shape) < 3 else word_mask.any(-1) # ignore the first token of each sentence mask[:, 0] = 0 s_arc, s_sib, s_rel = self.model(words, feats) loss, s_arc = self.model.loss(s_arc, s_sib, s_rel, arcs, rels, mask) arc_preds, rel_preds = self.model.decode(s_arc, s_rel, mask, self.args.tree, self.args.proj) if self.args.partial: mask &= arcs.ge(0) # ignore all punctuation if not specified if not self.args.punct: mask.masked_scatter_(mask, ~mask.new_tensor([ispunct(w) for s in texts for w in s])) total_loss += loss.item() metric(arc_preds, rel_preds, arcs, rels, mask) total_loss /= len(loader) return total_loss, metric @torch.no_grad() def _predict(self, loader): self.model.eval() preds = {'arcs': [], 'rels': [], 'probs': [] if self.args.prob else None} for batch in progress_bar(loader): words, texts, *feats = batch word_mask = words.ne(self.args.pad_index) mask = word_mask if len(words.shape) < 3 else word_mask.any(-1) # ignore the first token of each sentence mask[:, 0] = 0 lens = mask.sum(1).tolist() s_arc, s_sib, s_rel = self.model(words, feats) s_arc = self.model.inference((s_arc, s_sib), mask) arc_preds, rel_preds = self.model.decode(s_arc, s_rel, mask, self.args.tree, self.args.proj) preds['arcs'].extend(arc_preds[mask].split(lens)) preds['rels'].extend(rel_preds[mask].split(lens)) if self.args.prob: preds['probs'].extend([prob[1:i+1, :i+1].cpu() for i, prob in zip(lens, s_arc.unbind())]) preds['arcs'] = [seq.tolist() for seq in preds['arcs']] preds['rels'] = [self.REL.vocab[seq.tolist()] for seq in preds['rels']] return preds
45.484171
126
0.555988
[ "MIT" ]
LiBinNLP/HOSDP
supar/parsers/dep.py
48,850
Python
import argparse import logging from datetime import datetime from python_liftbridge import ErrNoSuchStream from python_liftbridge import ErrStreamExists from python_liftbridge import Lift from python_liftbridge import Stream def parse_arguments(): '''Argument parsing for the script''' parser = argparse.ArgumentParser( description='Liftbridge sub script.', ) parser.add_argument( 'subject', metavar='subject', ) parser.add_argument( 'stream', metavar='stream', ) parser.add_argument( '-s', '--server', metavar='s', nargs='?', default='127.0.0.1:9292', help='(default: %(default)s)', ) parser.add_argument( '-t', '--timestamp', action='store_true', help='Display timestamps', ) parser.add_argument( '-c', '--create', action='store_true', help="Creates the stream in case it doesn't exist", ) parser.add_argument( '-d', '--debug', action='store_true', help='Shows debug logs', ) return parser.parse_args() def main(): args = parse_arguments() if args.debug: logging.basicConfig(level=logging.DEBUG) client = Lift(ip_address=args.server) count = 0 if args.create: try: client.create_stream(Stream(args.subject, args.stream)) except ErrStreamExists: pass try: for message in client.subscribe( Stream( args.subject, args.stream, ).start_at_earliest_received(), ): print("{} [#{}] Received on [{} - {}]: '{}'".format( datetime.fromtimestamp( int(message.timestamp) / 1000000000, ), count, args.subject, args.stream, message.value.decode('utf-8'), )) count = count + 1 except ErrNoSuchStream: print("The stream {} doesn't exist. With -c or --create it's creation can be forced." .format(args.stream)) main()
23.788889
93
0.554414
[ "Apache-2.0" ]
LaPetiteSouris/python-liftbridge
examples/lift-sub.py
2,141
Python
# Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import unittest from telemetry.internal import story_runner from telemetry.page import page from telemetry.page import legacy_page_test from telemetry.page import shared_page_state from telemetry import story as story_module from telemetry.testing import fakes from telemetry.util import wpr_modes def SetUpPageRunnerArguments(options): parser = options.CreateParser() story_runner.AddCommandLineArgs(parser) options.MergeDefaultValues(parser.get_default_values()) story_runner.ProcessCommandLineArgs(parser, options) class DummyTest(legacy_page_test.LegacyPageTest): def ValidateAndMeasurePage(self, *_): pass class SharedPageStateTests(unittest.TestCase): def setUp(self): self.options = fakes.CreateBrowserFinderOptions() self.options.use_live_sites = False self.options.output_formats = ['none'] self.options.suppress_gtest_report = True def testUseLiveSitesFlagSet(self): self.options.use_live_sites = True run_state = shared_page_state.SharedPageState( DummyTest(), self.options, story_module.StorySet()) self.assertTrue(run_state.platform.network_controller.is_open) self.assertEquals(run_state.platform.network_controller.wpr_mode, wpr_modes.WPR_OFF) self.assertTrue(run_state.platform.network_controller.use_live_traffic) def testUseLiveSitesFlagUnset(self): run_state = shared_page_state.SharedPageState( DummyTest(), self.options, story_module.StorySet()) self.assertTrue(run_state.platform.network_controller.is_open) self.assertEquals(run_state.platform.network_controller.wpr_mode, wpr_modes.WPR_REPLAY) self.assertFalse(run_state.platform.network_controller.use_live_traffic) def testWPRRecordEnable(self): self.options.browser_options.wpr_mode = wpr_modes.WPR_RECORD run_state = shared_page_state.SharedPageState( DummyTest(), self.options, story_module.StorySet()) self.assertTrue(run_state.platform.network_controller.is_open) self.assertEquals(run_state.platform.network_controller.wpr_mode, wpr_modes.WPR_RECORD) self.assertFalse(run_state.platform.network_controller.use_live_traffic) def testConstructorCallsSetOptions(self): test = DummyTest() shared_page_state.SharedPageState( test, self.options, story_module.StorySet()) self.assertEqual(test.options, self.options) def assertUserAgentSetCorrectly( self, shared_page_state_class, expected_user_agent): story = page.Page( 'http://www.google.com', shared_page_state_class=shared_page_state_class) test = DummyTest() story_set = story_module.StorySet() story_set.AddStory(story) story.shared_state_class(test, self.options, story_set) browser_options = self.options.browser_options actual_user_agent = browser_options.browser_user_agent_type self.assertEqual(expected_user_agent, actual_user_agent) def testPageStatesUserAgentType(self): self.assertUserAgentSetCorrectly( shared_page_state.SharedMobilePageState, 'mobile') self.assertUserAgentSetCorrectly( shared_page_state.SharedDesktopPageState, 'desktop') self.assertUserAgentSetCorrectly( shared_page_state.SharedTabletPageState, 'tablet') self.assertUserAgentSetCorrectly( shared_page_state.Shared10InchTabletPageState, 'tablet_10_inch') self.assertUserAgentSetCorrectly( shared_page_state.SharedPageState, None) def testBrowserStartupURLSetCorrectly(self): story_set = story_module.StorySet() google_page = page.Page( 'http://www.google.com', startup_url='http://www.google.com', page_set=story_set) example_page = page.Page( 'https://www.example.com', startup_url='https://www.example.com', page_set=story_set) gmail_page = page.Page( 'https://www.gmail.com', startup_url='https://www.gmail.com', page_set=story_set) for p in (google_page, example_page, gmail_page): story_set.AddStory(p) shared_state = shared_page_state.SharedPageState( DummyTest(), self.options, story_set) for p in (google_page, example_page, gmail_page): shared_state.WillRunStory(p) self.assertEquals( p.startup_url, self.options.browser_options.startup_url)
38.646552
76
0.758867
[ "BSD-3-Clause" ]
bopopescu/catapult-2
telemetry/telemetry/page/shared_page_state_unittest.py
4,483
Python
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import json import warnings import pulumi import pulumi.runtime from .. import utilities, tables class ProxyProtocolPolicy(pulumi.CustomResource): instance_ports: pulumi.Output[list] """ List of instance ports to which the policy should be applied. This can be specified if the protocol is SSL or TCP. """ load_balancer: pulumi.Output[str] """ The load balancer to which the policy should be attached. """ def __init__(__self__, resource_name, opts=None, instance_ports=None, load_balancer=None, __name__=None, __opts__=None): """ Provides a proxy protocol policy, which allows an ELB to carry a client connection information to a backend. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[list] instance_ports: List of instance ports to which the policy should be applied. This can be specified if the protocol is SSL or TCP. :param pulumi.Input[str] load_balancer: The load balancer to which the policy should be attached. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if not resource_name: raise TypeError('Missing resource name argument (for URN creation)') if not isinstance(resource_name, str): raise TypeError('Expected resource name to be a string') if opts and not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') __props__ = dict() if instance_ports is None: raise TypeError('Missing required property instance_ports') __props__['instance_ports'] = instance_ports if load_balancer is None: raise TypeError('Missing required property load_balancer') __props__['load_balancer'] = load_balancer super(ProxyProtocolPolicy, __self__).__init__( 'aws:ec2/proxyProtocolPolicy:ProxyProtocolPolicy', resource_name, __props__, opts) def translate_output_property(self, prop): return tables._CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return tables._SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
40.753623
124
0.68101
[ "ECL-2.0", "Apache-2.0" ]
lemonade-hq/pulumi-aws
sdk/python/pulumi_aws/ec2/proxy_protocol_policy.py
2,812
Python
#!/usr/bin/env python3 # -*- coding:utf-8 -*- # ============================================================================ # # Project : Airbnb # # Version : 0.1.0 # # File : split_names.py # # Python : 3.8.0 # # ---------------------------------------------------------------------------- # # Author : John James # # Company: DecisionScients # # Email : [email protected] # # ---------------------------------------------------------------------------- # # Created : Tuesday, 7th January 2020 10:22:44 am # # Last Modified: Tuesday, 7th January 2020 10:22:44 am # # Modified By : John James ([email protected]>) # # ---------------------------------------------------------------------------- # # License: BSD # # Copyright (c) 2020 DecisionScients # # ============================================================================ # #%% import os directory = "./data/raw/" filenames = os.listdir(directory) for filename in filenames: name = filename.split(".")[0] print(name) # %%
52.7
80
0.253004
[ "BSD-3-Clause" ]
decisionscients/Airbnb
src/lab/split_names.py
1,581
Python
import numpy as np from scipy.optimize import curve_fit from ..data_generation import interp_reflectivity, ReflectivityGenerator def q_shift_variants(q_values_prediction, q_values_input, corrected_reflectivity, n_variants, scale=0.001): """Create ``n_variants`` interpolated reflectivity curve variants with randomly distributed q shifts.""" shift = np.random.normal(loc=0, size=n_variants, scale=scale).reshape(n_variants, 1) shifted_qs = np.tile(q_values_input, (n_variants, 1)) + shift interpolated_curves = np.zeros((n_variants, len(q_values_prediction))) for i in range(n_variants): interpolated_curves[i] = interp_reflectivity(q_values_prediction, shifted_qs[i], corrected_reflectivity) return interpolated_curves, shift def curve_scaling_variants(corrected_reflectivity, n_variants, scale=0.1): """Create ``n_variants`` reflectivity curve variants with randomly distributed scaling factors.""" scalings = np.random.normal(loc=1, size=n_variants, scale=scale).reshape(n_variants, 1) scaled_curves = np.zeros((n_variants, len(corrected_reflectivity))) for i in range(n_variants): scaled_curves[i] = corrected_reflectivity.copy() * scalings[i] return scaled_curves, scalings def curve_variant_log_mse(curve, variant_curves): """Calculate the log MSE of a curve and a :class:`ndarray` of curves""" errors = np.log10(curve) - np.log10(variant_curves) return np.mean(errors ** 2, axis=1) def least_log_mean_squares_fit(q_values, data, predicted_labels, sample, output_preprocessor, fraction_bounds=(0.5, 0.5, 0.1)): """Fits the data with a model curve with ``scipy.optimize.curve_fit`` using ``predicted_labels`` as start values.""" prep_labels = output_preprocessor.apply_preprocessing(predicted_labels)[0] start_values = np.array(prep_labels)[0] bounds = ([val - bound * abs(val) for val, bound in zip(start_values, fraction_bounds)], [val + bound * abs(val) for val, bound in zip(start_values, fraction_bounds)]) fit_result = curve_fit(fitting_model(q_values, sample, output_preprocessor), q_values, np.log10(data), p0=start_values, bounds=bounds) return output_preprocessor.restore_labels(np.atleast_2d(fit_result[0])) def fitting_model(q_values, sample, output_preprocessor): def log_refl_curve(q, *prep_labels): generator = ReflectivityGenerator(q_values, sample) restored_labels = output_preprocessor.restore_labels(np.atleast_2d(prep_labels)) model = generator.simulate_reflectivity(restored_labels, progress_bar=False)[0] return np.log10(model) return log_refl_curve def log_mse_loss(prep_labels, data, generator, output_preprocessor): """MSE loss between a reflectivity curve and a model curve generated with the given normalized labels.""" restored_labels = output_preprocessor.restore_labels(np.atleast_2d(prep_labels)) model = generator.simulate_reflectivity(restored_labels, progress_bar=False)[0] loss = mean_squared_error(np.log10(data), np.log10(model)) return loss def mean_squared_error(array1, array2): """Returns element-wise mean squared error between two arrays.""" if len(array1) != len(array2): raise ValueError(f'array1 and array2 must be of same length ({len(array1)} != {len(array2)})') else: error = np.asarray(array1) - np.asarray(array2) return np.mean(np.atleast_2d(error ** 2), axis=1)
49.929577
120
0.725811
[ "MIT" ]
schreiber-lab/mlreflect
mlreflect/curve_fitter/minimizer.py
3,545
Python
from sys import maxsize class Group: def __init__(self, name=None, header=None, footer=None, id=None): self.name = name self.header = header self.footer = footer self.id = id def __repr__(self): return"%s:%s:%s:%s" % (self.id, self.name, self.header, self.footer) def __eq__(self, other): return (self.id is None or other.id is None or self.id == other.id) and self.name == other.name def id_or_max(self): if self.id: return int(self.id) else: return maxsize
23.75
103
0.582456
[ "Apache-2.0" ]
Docent321/python_traning
model/group.py
570
Python
# -*- coding: utf-8 -*- from datetime import datetime import json import time import flask from example.usermanagement.schema_marshmallow import AboutSchema from example.usermanagement.schema_marshmallow import NoContentSchema from example.usermanagement.schema_marshmallow import UserAvatarSchema from example.usermanagement.schema_marshmallow import UserDigestSchema from example.usermanagement.schema_marshmallow import UserIdPathSchema from example.usermanagement.schema_marshmallow import UserSchema from example.usermanagement.userlib import User from example.usermanagement.userlib import UserAvatarNotFound from example.usermanagement.userlib import UserLib from example.usermanagement.userlib import UserNotFound from hapic import Hapic from hapic import MarshmallowProcessor from hapic.data import HapicData from hapic.data import HapicFile from hapic.error.marshmallow import MarshmallowDefaultErrorBuilder from hapic.ext.flask import FlaskContext try: # Python 3.5+ from http import HTTPStatus except ImportError: from http import client as HTTPStatus hapic = Hapic() hapic.set_processor_class(MarshmallowProcessor) class FlaskController(object): @hapic.with_api_doc() @hapic.output_body(AboutSchema()) def about(self): """ This endpoint allow to check that the API is running. This description is generated from the docstring of the method. """ return {"version": "1.2.3", "datetime": datetime.now()} @hapic.with_api_doc() @hapic.output_body(UserDigestSchema(many=True)) def get_users(self): """ Obtain users list. """ return UserLib().get_users() @hapic.with_api_doc() @hapic.handle_exception(UserNotFound, HTTPStatus.NOT_FOUND) @hapic.input_path(UserIdPathSchema()) @hapic.output_body(UserSchema()) def get_user(self, id, hapic_data: HapicData): """ Return a user taken from the list or return a 404 """ return UserLib().get_user(int(hapic_data.path["id"])) @hapic.with_api_doc() # TODO - G.M - 2017-12-5 - Support input_forms ? # TODO - G.M - 2017-12-5 - Support exclude, only ? @hapic.input_body(UserSchema(exclude=("id",))) @hapic.output_body(UserSchema()) def add_user(self, hapic_data: HapicData): """ Add a user to the list """ new_user = User(**hapic_data.body) return UserLib().add_user(new_user) @hapic.with_api_doc() @hapic.handle_exception(UserNotFound, HTTPStatus.NOT_FOUND) @hapic.output_body(NoContentSchema(), default_http_code=204) @hapic.input_path(UserIdPathSchema()) def del_user(self, id, hapic_data: HapicData): UserLib().del_user(int(hapic_data.path["id"])) return NoContentSchema() @hapic.with_api_doc() @hapic.handle_exception(UserNotFound, HTTPStatus.NOT_FOUND) @hapic.handle_exception(UserAvatarNotFound, HTTPStatus.NOT_FOUND) @hapic.input_path(UserIdPathSchema()) @hapic.output_file(["image/png"]) def get_user_avatar(self, id, hapic_data: HapicData): return HapicFile( file_path=UserLib().get_user_avatar_path(user_id=(int(hapic_data.path["id"]))) ) @hapic.with_api_doc() @hapic.handle_exception(UserNotFound, HTTPStatus.NOT_FOUND) @hapic.handle_exception(UserAvatarNotFound, HTTPStatus.BAD_REQUEST) @hapic.input_path(UserIdPathSchema()) @hapic.input_files(UserAvatarSchema()) @hapic.output_body(NoContentSchema(), default_http_code=204) def update_user_avatar(self, id, hapic_data: HapicData): UserLib().update_user_avatar( user_id=int(hapic_data.path["id"]), avatar=hapic_data.files["avatar"] ) def bind(self, app: flask.Flask): app.add_url_rule("/about", view_func=self.about) app.add_url_rule("/users/", view_func=self.get_users) app.add_url_rule("/users/<id>", view_func=self.get_user) app.add_url_rule("/users/", view_func=self.add_user, methods=["POST"]) app.add_url_rule("/users/<id>", view_func=self.del_user, methods=["DELETE"]) # nopep8 app.add_url_rule( "/users/<id>/avatar", view_func=self.get_user_avatar, methods=["GET"] ) # nopep8 app.add_url_rule("/users/<id>/avatar", view_func=self.update_user_avatar, methods=["PUT"]) if __name__ == "__main__": app = flask.Flask(__name__) controllers = FlaskController() controllers.bind(app) hapic.set_context(FlaskContext(app, default_error_builder=MarshmallowDefaultErrorBuilder())) print("") print("") print("GENERATING OPENAPI DOCUMENTATION") doc_title = "Demo API documentation" doc_description = ( "This documentation has been generated from " "code. You can see it using swagger: " "http://editor2.swagger.io/" ) hapic.add_documentation_view("/doc/", doc_title, doc_description) openapi_file_name = "api-documentation.json" with open(openapi_file_name, "w") as openapi_file_handle: openapi_file_handle.write( json.dumps(hapic.generate_doc(title=doc_title, description=doc_description)) ) print("Documentation generated in {}".format(openapi_file_name)) time.sleep(1) print("") print("") print("RUNNING FLASK SERVER NOW") print("DOCUMENTATION AVAILABLE AT /doc/") # Run app app.run(host="127.0.0.1", port=8082, debug=True)
36.689189
98
0.707182
[ "MIT" ]
algoo/hapic
example/usermanagement/serve_flask_marshmallow.py
5,430
Python
import os from aws_cdk import ( core, aws_dynamodb as ddb, aws_ec2 as ec2, aws_ecs as ecs, aws_ecr as ecr, aws_iam as iam, aws_logs as cwl, aws_secretsmanager as sm, aws_kinesis as ks, ) class LogstashOutStack(core.Stack): def __init__(self, scope: core.Construct, id: str, ctx: object, ecr_repository: ecr.Repository, kinesis_stream: ks.Stream, state_table: ddb.Table, **kwargs) -> None: super().__init__(scope, id, **kwargs) self.ecr_repository = ecr_repository self.kinesis_stream = kinesis_stream self.state_table = state_table service_name = "processor" ctx_srv = getattr(ctx.outbound.services.pull, service_name) self.vpc = ec2.Vpc.from_vpc_attributes( self, "VPC", **ctx.vpc_props.dict() ) # CloudWatch Logs Group self.log_group = cwl.LogGroup( scope = self, id = "logs" ) # Create a new ECS cluster for our services self.cluster = ecs.Cluster( self, vpc = self.vpc, id = f"{id}_cluster" ) cluster_name_output = core.CfnOutput( scope=self, id="cluster-name-out", value=self.cluster.cluster_name, export_name=f"{id}-cluster-name" ) service_names_output = core.CfnOutput( scope=self, id="service-names-out", value=service_name, export_name=f"{id}-service-names" ) # Create a role for ECS to interact with AWS APIs with standard permissions self.ecs_exec_role = iam.Role( scope = self, id = "ecs_logstash-exec_role", assumed_by = iam.ServicePrincipal("ecs-tasks.amazonaws.com"), managed_policies = ([ iam.ManagedPolicy.from_aws_managed_policy_name( "service-role/AmazonECSTaskExecutionRolePolicy") ]) ) # Grant ECS additional permissions to decrypt secrets from Secrets Manager that have been encrypted with our custom key if getattr(ctx, "secrets_key_arn", None) is not None: self.ecs_exec_role.add_to_policy( iam.PolicyStatement( actions = ["kms:Decrypt"], effect = iam.Effect.ALLOW, resources = [ctx.secrets_key_arn] )) # Grant ECS permissions to log to our log group self.log_group.grant_write(self.ecs_exec_role) # Create a task role to grant permissions for Logstash to interact with AWS APIs ecs_task_role = iam.Role( scope = self, id = f"{service_name}_task_role", assumed_by = iam.ServicePrincipal("ecs-tasks.amazonaws.com") ) # Add permissions for Logstash to send metrics to CloudWatch ecs_task_role.add_to_policy( iam.PolicyStatement( actions = ["cloudwatch:PutMetricData"], effect = iam.Effect.ALLOW, resources = ["*"] )) # Add permissions for Logstash to interact with our Kinesis queue self.kinesis_stream.grant_read(ecs_task_role) # Remove this when next version of kinesis module is released # https://github.com/aws/aws-cdk/pull/6141 ecs_task_role.add_to_policy( iam.PolicyStatement( actions = ["kinesis:ListShards"], effect = iam.Effect.ALLOW, resources = [self.kinesis_stream.stream_arn] )) # Add permissions for Logstash to store Kinesis Consumer Library (KCL) state tracking in DynamoDB state_table.grant_full_access(ecs_task_role) # Add permissions for Logstash to upload logs to S3 for archive bucket_resources = [] for k, v in ctx_srv.variables.items(): if k.endswith("_log_bucket"): bucket_resources.append('arn:aws:s3:::{0}'.format(v)) bucket_resources.append('arn:aws:s3:::{0}/*'.format(v)) ecs_task_role.add_to_policy( iam.PolicyStatement( actions=[ "s3:PutObject", "s3:ListMultipartUploadParts", "s3:ListBucket", "s3:AbortMultipartUpload" ], effect=iam.Effect.ALLOW, resources=bucket_resources )) # Task Definition task_definition = ecs.FargateTaskDefinition( scope = self, id = f"{service_name}_task_definition", cpu = ctx_srv.size.cpu, memory_limit_mib = ctx_srv.size.ram, execution_role = self.ecs_exec_role, task_role = ecs_task_role, ) log_driver = ecs.LogDriver.aws_logs( log_group = self.log_group, stream_prefix = service_name) # Container Definition container_vars = self.__get_container_vars(service_name, ctx, ctx_srv) container = ecs.ContainerDefinition( scope = self, id = f"{service_name}_container_definition", task_definition = task_definition, image = ecs.ContainerImage.from_ecr_repository(self.ecr_repository, "latest"), logging = log_driver, **container_vars ) # Service Definition security_group = ec2.SecurityGroup( scope = self, id = f"{service_name}_sg", vpc = self.vpc ) service = ecs.FargateService( scope = self, id = f"{service_name}_fargate_service", task_definition = task_definition, cluster = self.cluster, desired_count = getattr(ctx_srv, "desired_count", ctx.default_desired_count), service_name = service_name, security_group = security_group ) scaling = service.auto_scale_task_count( max_capacity = ctx_srv.scaling.max_capacity, min_capacity = ctx_srv.scaling.min_capacity ) scaling.scale_on_cpu_utilization( id = "cpu_scaling", target_utilization_percent = ctx_srv.scaling.target_utilization_percent, scale_in_cooldown = core.Duration.seconds(ctx_srv.scaling.scale_in_cooldown_seconds), scale_out_cooldown = core.Duration.seconds(ctx_srv.scaling.scale_out_cooldown_seconds), ) def __get_container_vars(self, service_name, ctx, ctx_srv): # Prepare container defaults container_vars = {} container_environment = { "ENV_STAGE": ctx.stage, "SERVICE_NAME": service_name, "DEBUG_OUTPUT": ctx.debug_output, "LS_JAVA_OPTS": "-Xms256m -Xmx{0}m".format(ctx_srv.size.ram - 256), "KINESIS_ENDPOINT": ctx.queue.kinesis_endpoint, "KINESIS_STREAM_NAME": self.kinesis_stream.stream_name, "AWS_REGION": ctx.aws_region, "DYNAMODB_STATE_TABLE_NAME": self.state_table.table_name } container_secrets = {} # Get and populate service-specific variables and secrets from context if hasattr(ctx_srv, "variables"): for k, v in ctx_srv.variables.items(): container_environment[k.upper()] = v if hasattr(ctx_srv, "secrets"): for k, v in ctx_srv.secrets.items(): sm_secret = sm.Secret.from_secret_arn( scope = self, id = f"{k}-secret", secret_arn = v ) ecs_secret = ecs.Secret.from_secrets_manager(sm_secret) secret_env_key = "{0}_SECRET".format(k.upper()) container_secrets[secret_env_key] = ecs_secret if container_environment: container_vars["environment"] = container_environment if container_secrets: container_vars["secrets"] = container_secrets return container_vars
38.870813
169
0.58481
[ "MIT" ]
originsecurity/telemetry
src/cdk/stacks/outbound/stack.py
8,124
Python
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Contains the noise perturb augmentation model.""" from deepspeech.frontend.audio import AudioSegment from deepspeech.frontend.augmentor.base import AugmentorBase from deepspeech.frontend.utility import read_manifest class NoisePerturbAugmentor(AugmentorBase): """Augmentation model for adding background noise. :param rng: Random generator object. :type rng: random.Random :param min_snr_dB: Minimal signal noise ratio, in decibels. :type min_snr_dB: float :param max_snr_dB: Maximal signal noise ratio, in decibels. :type max_snr_dB: float :param noise_manifest_path: Manifest path for noise audio data. :type noise_manifest_path: str """ def __init__(self, rng, min_snr_dB, max_snr_dB, noise_manifest_path): self._min_snr_dB = min_snr_dB self._max_snr_dB = max_snr_dB self._rng = rng self._noise_manifest = read_manifest(manifest_path=noise_manifest_path) def __call__(self, x, uttid=None, train=True): if not train: return x self.transform_audio(x) return x def transform_audio(self, audio_segment): """Add background noise audio. Note that this is an in-place transformation. :param audio_segment: Audio segment to add effects to. :type audio_segment: AudioSegmenet|SpeechSegment """ noise_json = self._rng.choice(self._noise_manifest, 1, replace=False)[0] if noise_json['duration'] < audio_segment.duration: raise RuntimeError("The duration of sampled noise audio is smaller " "than the audio segment to add effects to.") diff_duration = noise_json['duration'] - audio_segment.duration start = self._rng.uniform(0, diff_duration) end = start + audio_segment.duration noise_segment = AudioSegment.slice_from_file( noise_json['audio_filepath'], start=start, end=end) snr_dB = self._rng.uniform(self._min_snr_dB, self._max_snr_dB) audio_segment.add_noise( noise_segment, snr_dB, allow_downsampling=True, rng=self._rng)
42.046154
80
0.71094
[ "Apache-2.0" ]
qq1440837150/DeepSpeech
deepspeech/frontend/augmentor/noise_perturb.py
2,733
Python