content
stringlengths
7
928k
avg_line_length
float64
3.5
33.8k
max_line_length
int64
6
139k
alphanum_fraction
float64
0.08
0.96
licenses
sequence
repository_name
stringlengths
7
104
path
stringlengths
4
230
size
int64
7
928k
lang
stringclasses
1 value
# -*- coding: UTF-8 -*- from __future__ import print_function, division import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.optim import lr_scheduler from torch.autograd import Variable from torchvision import datasets, models, transforms from tensorboardX import SummaryWriter import sys import json import scipy import os, time import argparse import numpy as np import torchvision import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt from PIL import Image from shutil import copyfile from model import ft_net from test_eval_cython import get_test_acc, extr_fea_train from utils import * import loader, loss import pdb version = torch.__version__ # ##################################################################### # argsions # -------- parser = argparse.ArgumentParser(description='Training') parser.add_argument('--gpu',default='0', type=str,help='gpu ids: e.g. 0 0,1,2 0,2') parser.add_argument('--seed', default=1, type=int, help='rng seed') parser.add_argument('--model_dir',default='.checkpoint/', type=str, help='output model name') parser.add_argument('--data_dir',default='/home/comp/mangye/dataset/', type=str, help='data dir') parser.add_argument('--dataset',default='duke',type=str, help='training data:Market1501, DukeMTMCreID') parser.add_argument('--pretrained',default='',type=str, help='path of pretrained "model:./model/baseline/net_8.pth"') parser.add_argument('--batchsize', default=32, type=int, help='batchsize') parser.add_argument('--noise_ratio', default=0.2, type=float, help='percentage of noise data in the training') parser.add_argument('--lr', default=0.01, type=float, help='initial learning rate') parser.add_argument('--alpha', default=2, type=float, help='beta distribution: alpha') parser.add_argument('--beta', default=6, type=float, help='beta distribution: beta') parser.add_argument('--LabelWt', default=60, type=int, help='label refinment weight') parser.add_argument('--weighttype', default=0, type=int, help='weight type: instance weight, class weight') parser.add_argument('--stage2', action='store_true', help='training stage 2') args = parser.parse_args() torch.manual_seed(args.seed) start_epoch = 0 if args.stage2: start_epoch = start_epoch + 20 best_acc = 0 test_epoch = 2 lr = args.lr data_dir = args.data_dir + args.dataset suffix = args.dataset + '_noise_{}_'.format(args.noise_ratio) if args.LabelWt > 0 or args.stage2: suffix = suffix + 'batch_{}_wt_{}'.format(args.batchsize,args.LabelWt) else: suffix = suffix + 'batch_{}_baseline'.format(args.batchsize) if args.stage2: suffix = suffix + '_beta_{}_{}_lr_{:1.1e}'.format(args.alpha, args.beta, args.lr) suffix = suffix + '_w_st2_new' else: suffix = suffix + '_lr_{:1.1e}'.format(args.lr) suffix = suffix + '_w_st1' print ('model: ' + suffix) # define the log path log_dir = './new_res/' + args.dataset + '_log/' checkpoint_path = './res/checkpoint/' vis_log_dir = log_dir + suffix + '/' if not os.path.isdir(log_dir): os.makedirs(log_dir) if not os.path.isdir(vis_log_dir): os.makedirs(vis_log_dir) writer = SummaryWriter(vis_log_dir) test_log_file = open(log_dir + suffix + '.txt', "w") sys.stdout = Logger(log_dir + suffix + '_os.txt') # define the gpu id str_ids = args.gpu.split(',') gpu_ids = [] for str_id in str_ids: gid = int(str_id) if gid >=0: gpu_ids.append(gid) # set gpu ids if len(gpu_ids)>0: torch.cuda.set_device(gpu_ids[0]) print ('using gpu: {}'.format(gpu_ids)) # ##################################################################### # Load Data train_transform = transforms.Compose([ #transforms.RandomResizedCrop(size=128, scale=(0.75,1.0), ratio=(0.75,1.3333), interpolation=3), #Image.BICUBIC) transforms.Resize((288,144), interpolation=3), transforms.RandomCrop((256,128)), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) test_transform = transforms.Compose([ transforms.Resize((256,128), interpolation=3), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) # load training dataDatasetFolder print('Starting loading training data: ', args.dataset ) train_dataset = loader.DatasetFolder(os.path.join(data_dir, 'train'), transform=train_transform) class_names = train_dataset.classes dataset_sizes_train = len(train_dataset) use_gpu = torch.cuda.is_available() # Define a model model = ft_net(len(class_names)) if use_gpu: model = model.cuda() # Load a pretrainied model if args.pretrained or args.stage2: # model_name = 'market_noise_0.2_batch_32_lambda_0.4_lr_1.0e-02_st1_epoch_best.t' model_name = '{}_noise_{}_batch_32_wt_60_lr_1.0e-02_w_st1_epoch_best.t'.format(args.dataset, args.noise_ratio) print('Initilizaing weights with {}'.format(model_name)) model_path = checkpoint_path + model_name model.load_state_dict(torch.load(model_path)) else: print('Initilizaing weights with ImageNet') # generate noisy label if args.noise_ratio >= 0: trainLabels = torch.LongTensor([y for (p, y, w) in train_dataset.imgs]) trainLabels_nsy, if_truelbl = gen_nosiy_lbl(trainLabels, args.noise_ratio, len(class_names)) print('Finish adding noisy label') # generate instance weight if args.stage2: print('Generating sef-generated weights......') weight_file = './new_res/' + 'new_{}_{}_weights.npy'.format(args.dataset, args.noise_ratio) label_file = './new_res/' + 'new_{}_{}_label.npy'.format(args.dataset, args.noise_ratio) # if os.path.exists(weight_file): # all_weights = np.load(weight_file) # pre_pids = np.load(label_file) # else: tansform_bak = train_transform train_dataset.transform = test_transform temploader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batchsize, shuffle=False, num_workers=8) model.eval() # Set model to evaluate mode print('Start extract features...') start = time.time() train_feas, pre_pids = extr_fea_train(model, train_dataset, temploader, use_gpu) print('Evaluation time: {}'.format(time.time()-start)) indexs, ori_weight = gen_weights_dist(train_feas, trainLabels_nsy, class_names, args.alpha, args.beta) order = np.argsort(indexs) all_weights = ori_weight[order] np.save(weight_file, all_weights) np.save(label_file, pre_pids) train_dataset.transform = tansform_bak all_weights = all_weights.astype(np.float32) for i in range(len(trainLabels_nsy)): train_dataset.imgs[i] = (train_dataset.imgs[i][0], int(pre_pids[i]), all_weights[i]) else: print('Setting same weights for all the instances...') for i in range(len(trainLabels_nsy)): train_dataset.imgs[i] = (train_dataset.imgs[i][0], trainLabels_nsy[i],1) dataloaders_train = torch.utils.data.DataLoader(train_dataset, batch_size=args.batchsize, shuffle=True, num_workers=8) # 8 workers may work faster # load testing dataDatasetFolder test_dataset = {x: datasets.ImageFolder( os.path.join(data_dir,x) ,test_transform) for x in ['gallery','query']} dataloaders_test = {x: torch.utils.data.DataLoader(test_dataset[x], batch_size=args.batchsize, shuffle=False, num_workers=8) for x in ['gallery','query']} # Define loss functions # if args.LabelWt>0: # criterion = loss.LabelRefineLoss(lambda1=args.LabelWt) if args.stage2: criterion = loss.InstanceWeightLoss(weighted = 1) else: criterion = nn.CrossEntropyLoss() # optimizer ignored_params = list(map(id, model.model.fc.parameters() )) + list(map(id, model.classifier.parameters() )) base_params = filter(lambda p: id(p) not in ignored_params, model.parameters()) optimizer_ft = optim.SGD([ {'params': base_params, 'lr': lr}, {'params': model.model.fc.parameters(), 'lr': lr*10}, {'params': model.classifier.parameters(), 'lr': lr*10} ], weight_decay=5e-4, momentum=0.9, nesterov=True) # Decay LR by a factor of 0.1 every 40 epochs exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=20, gamma=0.1) def save_network(network, epoch_label, is_best = False): if is_best: save_path = checkpoint_path + suffix + '_epoch_best.t' else: save_path = checkpoint_path + suffix + '_epoch_{}.t'.format(epoch_label) torch.save(network.state_dict(), save_path) def sigmoid_rampup(current, rampup_length): """Exponential rampup from https://arxiv.org/abs/1610.02242""" if rampup_length == 0: return 1.0 else: current = np.clip(current, 0.0, rampup_length) phase = 1.0 - current / rampup_length w = float(np.exp(-2.0 * phase * phase)) return min(w,0.5) def train_model(model, criterion, optimizer_ft, scheduler, epoch): scheduler.step() lambda1 = sigmoid_rampup(epoch, args.LabelWt) train_loss = AverageMeter() data_time = AverageMeter() batch_time = AverageMeter() model.train() correct = 0 total = 0 end = time.time() for batch_idx, (inputs, targets, weights) in enumerate(dataloaders_train): if use_gpu: inputs = Variable(inputs.cuda()) targets = Variable(targets.cuda()) weights = Variable(weights.cuda()) data_time.update(time.time() - end) optimizer_ft.zero_grad() outputs = model(inputs) if args.stage2: loss = criterion(outputs, targets, weights) else: loss = criterion(outputs, targets, lambda1) loss.backward() optimizer_ft.step() train_loss.update(loss.item(), inputs.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() _, predicted = outputs.max(1) correct += predicted.eq(targets).sum().item() total += inputs.size(0) if batch_idx%10==0: print('Epoch: [{}][{}/{}] ' 'Time: {batch_time.val:.3f} ({batch_time.avg:.3f}) ' 'Data: {data_time.val:.3f} ({data_time.avg:.3f}) ' 'Loss: {train_loss.val:.4f} ({train_loss.avg:.4f}) ' 'Accu: {:.2f}'.format( epoch, batch_idx, len(dataloaders_train),100.*correct/total, batch_time=batch_time, data_time=data_time, train_loss=train_loss)) writer.add_scalar('training acc (train)', 100.*correct/total, epoch) writer.add_scalar('loss', train_loss.avg, epoch) for epoch in range(start_epoch, start_epoch+41): # training print('Start Training..........') train_model(model, criterion, optimizer_ft, exp_lr_scheduler, epoch) # evaluation if epoch%test_epoch ==0: model.eval() # Set model to evaluate mode start = time.time() cmc, mAP = get_test_acc(model, test_dataset, dataloaders_test, use_gpu, max_rank=10) if cmc[0] > best_acc: best_epoch = epoch best_acc = cmc[0] save_network(model, epoch, is_best = True) print('Epoch {}: R1:{:.4%} R5:{:.4%} R10:{:.4%} mAP:{:.4%} (Best Epoch[{}])'.format( epoch, cmc[0],cmc[4],cmc[9], mAP ,best_epoch)) print('Epoch {}: R1:{:.4%} R5:{:.4%} R10:{:.4%} mAP:{:.4%} (Best Epoch[{}])'.format( epoch, cmc[0],cmc[4],cmc[9], mAP ,best_epoch), file = test_log_file) test_log_file.flush() print('Evaluation time: {}'.format(time.time()-start)) # if epoch%20==0: # save_network(model, epoch, is_best = False)
38.755776
154
0.664311
[ "MIT" ]
mangye16/ReID-Label-Noise
PNet/train_pnet.py
11,743
Python
from abc import abstractmethod from collections import deque from copy import deepcopy from libcheckers import BoardConfig, InvalidMoveException from libcheckers.enum import Player, PieceClass, GameOverReason from libcheckers.utils import ( index_to_coords, coords_to_index, get_indexes_between, get_lines_of_sight, is_black_home_row, is_white_home_row, ) class BaseMove(object): """ Represents a move a player can make in the checkers game. """ @abstractmethod def apply(self, board): """ Apply a move to a board and retrieve the board produced by the move. Parameters ---------- board The board to apply the move to. Returns ------- Board A new board that will be produced after applying this move. """ return board @abstractmethod def __eq__(self, other): return False @abstractmethod def __repr__(self): return super(BaseMove, self).__repr__() class ForwardMove(BaseMove): """ Represents a free movement action (the one that does not capture any opponent pieces). """ def __init__(self, start_index, end_index): self.start_index = start_index self.end_index = end_index def apply(self, board): if not board.owner[self.start_index]: msg = 'Cannot move from an empty square ({0})'.format(self.start_index) raise InvalidMoveException(msg) if board.owner[self.end_index]: msg = 'Cannot move to a non-empty square ({0})'.format(self.end_index) raise InvalidMoveException(msg) is_backward_move = ( (board.owner[self.start_index] == Player.WHITE and self.end_index > self.start_index) or (board.owner[self.start_index] == Player.BLACK and self.end_index < self.start_index) ) if is_backward_move and board.piece_class[self.start_index] != PieceClass.KING: msg = 'Cannot freely move backwards unless the piece is a king' raise InvalidMoveException(msg) new_board = board.clone() new_board.move_piece(self.start_index, self.end_index) return new_board def __eq__(self, other): return (isinstance(other, ForwardMove) and self.start_index == other.start_index and self.end_index == other.end_index) def __repr__(self): return 'Move: {0} -> {1}'.format(self.start_index, self.end_index) class CaptureMove(BaseMove): """ Represents a move that captures a single opponent piece. """ def __init__(self, start_index, end_index): self.start_index = start_index self.end_index = end_index def find_opponent_square(self, board): """ Retrieve the index of the square that contains the enemy piece to be captured. """ path_indexes = get_indexes_between(self.start_index, self.end_index) own_color = board.owner[self.start_index] own_path_squares = [ index for index in path_indexes if board.owner[index] == own_color ] opponent_path_squares = [ index for index in path_indexes if board.owner[index] and board.owner[index] != own_color ] if len(own_path_squares) > 0: msg = 'Cannot capture when own pieces are in the way: {0}' raise InvalidMoveException(msg.format(', '.join(str(index) for index in own_path_squares))) if len(opponent_path_squares) != 1: msg = 'Cannot capture: must have exactly one opponent piece along the way' raise InvalidMoveException(msg) if not board.owner[self.start_index]: msg = 'Cannot move from an empty square ({0})'.format(self.start_index) raise InvalidMoveException(msg) if board.owner[self.end_index]: msg = 'Cannot move to a non-empty square ({0})'.format(self.end_index) raise InvalidMoveException(msg) return opponent_path_squares[0] def apply(self, board): opponent_square = self.find_opponent_square(board) new_board = board.clone() new_board.move_piece(self.start_index, self.end_index) new_board.remove_piece(opponent_square) return new_board def __eq__(self, other): return (isinstance(other, CaptureMove) and self.start_index == other.start_index and self.end_index == other.end_index) def __repr__(self): return 'Capture: {0} -> {1}'.format(self.start_index, self.end_index) class ComboCaptureMove(BaseMove): """ Represents a chain of capture moves. """ def __init__(self, moves): self.moves = moves def apply(self, board): new_board = board zombies_to_clear = [] for i, move in enumerate(self.moves): # According to the rules, men should not be promoted when merely passing through # the home row. They actually need to finish the move there to be promoted. old_class = new_board.piece_class[move.start_index] # Remove captured pieces only after the move is finished. Otherwise king moves # like "forward, capture right, then capture left" would be allowed. opponent_square = move.find_opponent_square(new_board) zombies_to_clear.append(opponent_square) new_board = move.apply(new_board) new_board.owner[opponent_square] = Player.ZOMBIE # Restore the piece class if it was "accidentally" promoted in between the moves. if i < len(self.moves) - 1: new_board.piece_class[move.end_index] = old_class # Wipe the zombies. for zombie in zombies_to_clear: new_board.remove_piece(zombie) return new_board def __eq__(self, other): return (isinstance(other, ComboCaptureMove) and len(self.moves) == len(other.moves) and all(self.moves[i] == other.moves[i] for i in range(len(self.moves)))) def __repr__(self): return 'Combo x{0}: [{1}]'.format(len(self.moves), ', '.join(str(move) for move in self.moves)) class Board(object): """ Represents an international checkers game board and contains the movement logic of the game pieces. """ def __init__(self): self.owner = [None] * (BoardConfig.total_squares + 1) self.piece_class = [None] * (BoardConfig.total_squares + 1) def move_piece(self, start_index, end_index): """ Move an existing game piece from point A to point B. """ self.owner[end_index] = self.owner[start_index] self.owner[start_index] = None self.piece_class[end_index] = self.piece_class[start_index] self.piece_class[start_index] = None # Promote the piece if it has reached the opponent's home row. if self.owner[end_index] == Player.WHITE and is_black_home_row(end_index): self.piece_class[end_index] = PieceClass.KING if self.owner[end_index] == Player.BLACK and is_white_home_row(end_index): self.piece_class[end_index] = PieceClass.KING def add_piece(self, index, player, piece_class): """ Place a new piece on the board with the specified owner and class. """ self.owner[index] = player self.piece_class[index] = piece_class def remove_piece(self, index): """ Clear the specified square from the board. """ self.owner[index] = None self.piece_class[index] = None def get_player_squares(self, player): """ Get all squares on the board owned by the specified player. """ return [ index for index in range(1, BoardConfig.total_squares + 1) if self.owner[index] == player ] def get_free_movement_destinations(self, index): """ Get all allowed destinations for free movement for the piece at the specified square. """ own_color = self.owner[index] own_class = self.piece_class[index] visibility_range = BoardConfig.board_dim if own_class == PieceClass.KING else 1 lines_of_sight = get_lines_of_sight(index, visibility_range) # Men can only move forward, and the direction of forward depends on the color. if own_class == PieceClass.MAN and own_color == Player.WHITE: lines_of_sight = lines_of_sight[:2] if own_class == PieceClass.MAN and own_color == Player.BLACK: lines_of_sight = lines_of_sight[-2:] result = [] for line in lines_of_sight: for i in range(0, len(line)): # Cannot move beyond another piece if not capturing. if self.owner[line[i]]: break result.append(line[i]) return result def get_capturable_pieces(self, index): """ Get all squares that contain opponent's pieces capturable from the specified position. """ own_color = self.owner[index] own_class = self.piece_class[index] visibility_range = BoardConfig.board_dim if own_class == PieceClass.KING else 2 lines_of_sight = get_lines_of_sight(index, visibility_range) result = [] for line in lines_of_sight: for i in range(0, len(line) - 1): # Cannot jump over own pieces or previously captured pieces. if self.owner[line[i]] in (own_color, Player.ZOMBIE): break # Cannot capture protected pieces. if self.owner[line[i]] and self.owner[line[i + 1]]: break # Can only capture if the square following the piece is empty. if self.owner[line[i]] and self.owner[line[i]] != own_color and not self.owner[line[i + 1]]: result.append(line[i]) break return result def get_available_capture_landing_positions(self, attacker_index, capture_index): """ If the specified square is captured by the specified attacker, get all possible squares the attacker can land on. """ own_class = self.piece_class[attacker_index] attacker_row, attacker_col = index_to_coords(attacker_index) capture_row, capture_col = index_to_coords(capture_index) # Calculate the unit movement vector. movement_row = (capture_row - attacker_row) // abs(capture_row - attacker_row) movement_col = (capture_col - attacker_col) // abs(capture_col - attacker_col) result = [] current_row = capture_row + movement_row current_col = capture_col + movement_col if own_class == PieceClass.MAN: return [coords_to_index(current_row, current_col)] # Kings can make arbitrarily long jumps as long as they capture only one piece. while 1 <= current_row <= BoardConfig.board_dim and 1 <= current_col <= BoardConfig.board_dim: current_index = coords_to_index(current_row, current_col) if not self.owner[current_index]: result.append(current_index) current_row += movement_row current_col += movement_col else: break return result def get_capture_sequence_candidates(self, player): """ Get all possible capture move sequences (not necessarily maximum ones) starting from every piece owned by the specified player. """ player_squares = self.get_player_squares(player) # Check if there are any pieces in our line of sight that can be captured. attack_options = [] for attacker in player_squares: attack_options.extend([ (attacker, target) for target in self.get_capturable_pieces(attacker) ]) # Run a tree traversal (BFS) to find all capture sequences, and choose the longest ones. capture_sequences = [] # Each item in the queue is a 3-tuple: (board, move, previous moves). queue = deque() # Initial queue items: first step in each possible sequence. for attacker, target in attack_options: queue.extend([ (self, CaptureMove(attacker, landing), []) for landing in self.get_available_capture_landing_positions(attacker, target) ]) # Main search queue. while queue: board_before, move, prev_moves = queue.popleft() # No not allow promoting the piece if it does not finish the move on the home row. class_before = board_before.piece_class[move.start_index] # Keep the captured pieces because they cannot be removed till the end of turn. opponent_quare = move.find_opponent_square(board_before) board_after = move.apply(board_before) board_after.owner[opponent_quare] = Player.ZOMBIE board_after.piece_class[move.end_index] = class_before next_attack_options = [ (move.end_index, target) for target in board_after.get_capturable_pieces(move.end_index) ] # Terminal position, nothing more to capture. if not next_attack_options: capture_sequences.append(prev_moves + [move]) # Search deeper for the consecutive captures. for attacker, target in next_attack_options: queue.extend([ (board_after, CaptureMove(attacker, landing), prev_moves + [move]) for landing in board_after.get_available_capture_landing_positions(attacker, target) ]) return capture_sequences def get_available_moves(self, player): """ For the specified player, get the list of all allowed moves that are applicable to this board according to the game rules. """ result = [] capture_sequences = self.get_capture_sequence_candidates(player) if not capture_sequences: # There are no pieces we must capture. Free movement is allowed. for source in self.get_player_squares(player): result.extend([ ForwardMove(source, destination) for destination in self.get_free_movement_destinations(source) ]) else: # There's a piece we must capture. Rules demand we capture as many as possible. max_seq_length = max(len(seq) for seq in capture_sequences) result.extend([ ComboCaptureMove(seq) if len(seq) > 1 else seq[0] for seq in capture_sequences if len(seq) == max_seq_length ]) return result def check_game_over(self, player_turn): """ Check if the game board is in a terminal state from the specified player's point of view. (e.g. a certain player has won or lost, or there is a draw). """ white_moves = self.get_available_moves(Player.WHITE) black_moves = self.get_available_moves(Player.BLACK) # If a player is unable to move, they lose. if player_turn == Player.WHITE and not white_moves: return GameOverReason.BLACK_WON if player_turn == Player.BLACK and not black_moves: return GameOverReason.WHITE_WON # If both players have only one king left, the game is a draw. white_squares = self.get_player_squares(Player.WHITE) black_squares = self.get_player_squares(Player.BLACK) only_one_king_each = ( len(white_squares) == 1 and len(black_squares) == 1 and self.piece_class[white_squares[0]] == PieceClass.KING and self.piece_class[black_squares[0]] == PieceClass.KING and not self.get_capturable_pieces(white_squares[0]) and not self.get_capturable_pieces(black_squares[0]) ) if only_one_king_each: return GameOverReason.DRAW return None def clone(self): """ Create an independent copy of this board. """ return deepcopy(self) def __repr__(self): return 'White: {0} | Black: {1}'.format( ', '.join(str(idx) for idx in self.get_player_squares(Player.WHITE)), ', '.join(str(idx) for idx in self.get_player_squares(Player.BLACK)), )
36.308026
108
0.623193
[ "MIT" ]
YuriyGuts/libcheckers
libcheckers/movement.py
16,738
Python
# This utility function comes up with which racers to use in the next race def racerCalculator(raceNum, numCars): print("RaceNum",raceNum) print("numCars",numCars) if raceNum is None: raceNum = 1 f = lambda x : (raceNum*3+x) % numCars return f(0),f(1),f(2)
28.6
74
0.657343
[ "MIT" ]
Sam-Gram/PiWood-Derby
racerCalculator.py
286
Python
from diversity_filters import NoFilter, NoFilterWithPenalty from diversity_filters.base_diversity_filter import BaseDiversityFilter from diversity_filters.diversity_filter_parameters import DiversityFilterParameters class DiversityFilter: def __new__(cls, parameters: DiversityFilterParameters) -> BaseDiversityFilter: all_filters = dict(NoFilter=NoFilter, NoFilterWithPenalty=NoFilterWithPenalty) div_filter = all_filters.get(parameters.name) return div_filter(parameters)
40.923077
83
0.789474
[ "Apache-2.0" ]
MolecularAI/Lib-INVENT
diversity_filters/diversity_filter.py
532
Python
""" The ``transaction`` submodule contains a wrapper class to simplify the usage of transactions:: t = revitron.Transaction() ... t.close() """ # from pyrevit import script class Transaction: """ A transaction helper class. """ def __init__(self): """ Inits a new transaction. """ import revitron bundle = script.get_bundle_name().replace('.pushbutton', '') self.transaction = revitron.DB.Transaction(revitron.DOC, bundle) self.transaction.Start() def commit(self): """ Commits the open transaction. """ self.transaction.Commit() def rollback(self): """ Rolls back the open transaction. """ self.transaction.RollBack()
21.325
95
0.532239
[ "MIT" ]
YKato521/revitron-for-RevitPythonShell
revitron/transaction.py
853
Python
import requests import json from pprint import pprint as print def getCode(res:str) : return str(res).split("[")[1].split("]")[0] url = 'http://localhost:4042' guid = '2012491924' # get guid from connexion.json() guid2 = '0' gurl = f"{url}/{guid}" home = requests.post(url) print (getCode(home)) print (home.json()) print ("\n\n##################\n\n") connexion = requests.post('http://localhost:4042/connect') print (getCode(connexion)) print (connexion.json()) print ("\n\n##################\n\n") # regarder = requests.get(f"{gurl}/regarder") # print (getCode(regarder)) # print (regarder.json()) # print ("\n\n##################\n\n") # myobj = {"direction": "N"} # deplacement = requests.post(f"{gurl}/deplacement", json=myobj) # print (getCode(deplacement)) # print (deplacement.json()) # print ("\n\n##################\n\n") # examiner = requests.get(f"{gurl}/examiner/{guid2}") # print (getCode(examiner)) # print (examiner.json()) # print ("\n\n##################\n\n") # taper = requests.get(f"{gurl}/taper/{guid2}") # print (getCode(taper)) # print (taper.json())
25.418605
65
0.601098
[ "MIT" ]
jonelleamio/AdventureGameServer
bin/test_server.py
1,093
Python
import configargparse as cfargparse import os import torch import onmt.opts as opts from onmt.utils.logging import logger class ArgumentParser(cfargparse.ArgumentParser): def __init__( self, config_file_parser_class=cfargparse.YAMLConfigFileParser, formatter_class=cfargparse.ArgumentDefaultsHelpFormatter, **kwargs): super(ArgumentParser, self).__init__( config_file_parser_class=config_file_parser_class, formatter_class=formatter_class, **kwargs) @classmethod def defaults(cls, *args): """Get default arguments added to a parser by all ``*args``.""" dummy_parser = cls() for callback in args: callback(dummy_parser) defaults = dummy_parser.parse_known_args([])[0] return defaults @classmethod def update_model_opts(cls, model_opt): if model_opt.word_vec_size > 0: model_opt.src_word_vec_size = model_opt.word_vec_size model_opt.tgt_word_vec_size = model_opt.word_vec_size if model_opt.layers > 0: model_opt.enc_layers = model_opt.layers model_opt.dec_layers = model_opt.layers if model_opt.rnn_size > 0: model_opt.enc_rnn_size = model_opt.rnn_size model_opt.dec_rnn_size = model_opt.rnn_size model_opt.brnn = model_opt.encoder_type == "brnn" if model_opt.copy_attn_type is None: model_opt.copy_attn_type = model_opt.global_attention @classmethod def validate_model_opts(cls, model_opt): assert model_opt.model_type in ["text", "img", "audio", "vec"], \ "Unsupported model type %s" % model_opt.model_type # this check is here because audio allows the encoder and decoder to # be different sizes, but other model types do not yet same_size = model_opt.enc_rnn_size == model_opt.dec_rnn_size assert model_opt.model_type == 'audio' or same_size, \ "The encoder and decoder rnns must be the same size for now" assert model_opt.rnn_type != "SRU" or model_opt.gpu_ranks, \ "Using SRU requires -gpu_ranks set." if model_opt.share_embeddings: if model_opt.model_type != "text": raise AssertionError( "--share_embeddings requires --model_type text.") @classmethod def ckpt_model_opts(cls, ckpt_opt): # Load default opt values, then overwrite with the opts in # the checkpoint. That way, if there are new options added, # the defaults are used. opt = cls.defaults(opts.model_opts) opt.__dict__.update(ckpt_opt.__dict__) return opt @classmethod def validate_train_opts(cls, opt): if opt.epochs: raise AssertionError( "-epochs is deprecated please use -train_steps.") if opt.truncated_decoder > 0 and max(opt.accum_count) > 1: raise AssertionError("BPTT is not compatible with -accum > 1") if opt.gpuid: raise AssertionError( "gpuid is deprecated see world_size and gpu_ranks") if torch.cuda.is_available() and not opt.gpu_ranks: logger.info("WARNING: You have a CUDA device, \ should run with -gpu_ranks") if opt.world_size < len(opt.gpu_ranks): raise AssertionError( "parameter counts of -gpu_ranks must be less or equal " "than -world_size.") if opt.world_size == len(opt.gpu_ranks) and \ min(opt.gpu_ranks) > 0: raise AssertionError( "-gpu_ranks should have master(=0) rank " "unless -world_size is greater than len(gpu_ranks).") assert len(opt.data_ids) == len(opt.data_weights), \ "Please check -data_ids and -data_weights options!" assert len(opt.dropout) == len(opt.dropout_steps), \ "Number of dropout values must match accum_steps values" assert len(opt.attention_dropout) == len(opt.dropout_steps), \ "Number of attention_dropout values must match accum_steps values" @classmethod def validate_translate_opts(cls, opt): if opt.beam_size != 1 and opt.random_sampling_topk != 1: raise ValueError('Can either do beam search OR random sampling.') @classmethod def validate_preprocess_args(cls, opt): assert opt.max_shard_size == 0, \ "-max_shard_size is deprecated. Please use \ -shard_size (number of examples) instead." assert opt.shuffle == 0, \ "-shuffle is not implemented. Please shuffle \ your data before pre-processing." assert len(opt.train_src) == len(opt.train_tgt), \ "Please provide same number of src and tgt train files!" assert len(opt.train_src) == len(opt.train_ids), \ "Please provide proper -train_ids for your data!" for file in opt.train_src + opt.train_tgt: assert os.path.isfile(file), "Please check path of %s" % file assert not opt.valid_src or os.path.isfile(opt.valid_src), \ "Please check path of your valid src file!" assert not opt.valid_tgt or os.path.isfile(opt.valid_tgt), \ "Please check path of your valid tgt file!" assert not opt.src_vocab or os.path.isfile(opt.src_vocab), \ "Please check path of your src vocab!" assert not opt.tgt_vocab or os.path.isfile(opt.tgt_vocab), \ "Please check path of your tgt vocab!"
41.307143
79
0.6175
[ "MIT" ]
ACL2020-Submission/ACL2020
onmt/utils/parse.py
5,783
Python
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from collections import OrderedDict from typing import Dict, Type from .base import HotelGroupViewServiceTransport from .grpc import HotelGroupViewServiceGrpcTransport # Compile a registry of transports. _transport_registry = ( OrderedDict() ) # type: Dict[str, Type[HotelGroupViewServiceTransport]] _transport_registry["grpc"] = HotelGroupViewServiceGrpcTransport __all__ = ( "HotelGroupViewServiceTransport", "HotelGroupViewServiceGrpcTransport", )
31.441176
74
0.77362
[ "Apache-2.0" ]
FoIIon/google-ads-python
google/ads/googleads/v7/services/services/hotel_group_view_service/transports/__init__.py
1,069
Python
import kanu while True: print('\n Select one:') print('\t1 -> Solve a linear equation') print('\t2 -> Simplify any expression') print('\t3 -> Is this number a Perfect Square?') print('\t4 -> Get Prime Numbers') print('\t5 -> START A NUCLEAR WAR :)') print('\t6 -> Factor Integers') choice = input() if choice == '1': print('Enter the equation:', end=' ') try: print(kanu.solve_single_linear_equation(input())) except kanu.NonLinearEquationError: print('You entered a non-linear equation.') elif choice == '2': print('Enter the expression:', end=' ') print(kanu.all_together_now(input())) elif choice == '3': import math def is_perfect_square(y): sqrt_value = math.sqrt(y) return int(sqrt_value) ** 2 == y number = int(input('Enter a number: ')) if is_perfect_square(number): print("It is a perfect square!") else: print("It is NOT a perfect square!") elif choice == '4': number = int(input("Input an integer:")) factors = [] while number % 2 == 0: factors.append(2) number //= 2 divisor = 3 while number != 1 and divisor <= number: if number % divisor == 0: factors.append(divisor) number //= divisor else: divisor += 2 print("The Prime Factors are: ") for i in range(len(factors)): print(factors[i], end=',') elif choice == '5': print('Executing "GETTING THE FOOTBALL" ') if choice == '5': from tqdm import tqdm x = 1 for i in tqdm(range(0, 1000000)): for x in range(0, 100): x *= 4 print("DONE") print("HERE ARE THE NUCLEAR LAUNCH CODES...") print(" 56 58 10 62 11 1 25 29 55 62") print(" 5 8 1 9 6 7 4 3 10 20") print(" 41 16 18 50 9 51 48 5 37 30") print(" 40 3 34 61 59 2 39 46 28 47") print(" 38 7 42 26 63 45 17 27 60 21") print("Launch Nukes?") print("\t1 -> YES") print('\t2 -> NO') choice = input() if choice == '1': print('Please Wait...') from tqdm import tqdm x = 1 for i in tqdm(range(0, 100000)): for x in range(0, 95): x *= 4 print('BYE BYE WORLD') input('press ENTER to continue') elif choice == '2': print('Maybe Another Day.') input('press ENTER to continue') elif choice == '6': import math number = int(input("Enter a number: ")) factors = [] for i in range(1, int(math.sqrt(number)) + 1): if number % i == 0: factors.append(i) factor_pair = number // i if factor_pair != i: factors.append(factor_pair) factors.sort() print(factors)
27.849558
61
0.479504
[ "MIT" ]
ThiccTT/nivek-maths
Nivek maths/nivek-maths.py
3,147
Python
"""Custom data update coordinators for the GitHub integration.""" from __future__ import annotations from typing import Literal, TypedDict from aiogithubapi import ( GitHubAPI, GitHubCommitModel, GitHubException, GitHubReleaseModel, GitHubRepositoryModel, ) from homeassistant.config_entries import ConfigEntry from homeassistant.core import HomeAssistant, T from homeassistant.helpers.update_coordinator import DataUpdateCoordinator, UpdateFailed from .const import DEFAULT_UPDATE_INTERVAL, DOMAIN, LOGGER, IssuesPulls CoordinatorKeyType = Literal["information", "release", "issue", "commit"] class GitHubBaseDataUpdateCoordinator(DataUpdateCoordinator[T]): """Base class for GitHub data update coordinators.""" def __init__( self, hass: HomeAssistant, entry: ConfigEntry, client: GitHubAPI, repository: str, ) -> None: """Initialize GitHub data update coordinator base class.""" self.config_entry = entry self.repository = repository self._client = client super().__init__( hass, LOGGER, name=DOMAIN, update_interval=DEFAULT_UPDATE_INTERVAL, ) async def fetch_data(self) -> T: """Fetch data from GitHub API.""" async def _async_update_data(self) -> T: try: return await self.fetch_data() except GitHubException as exception: LOGGER.exception(exception) raise UpdateFailed(exception) from exception class RepositoryInformationDataUpdateCoordinator( GitHubBaseDataUpdateCoordinator[GitHubRepositoryModel] ): """Data update coordinator for repository information.""" async def fetch_data(self) -> GitHubRepositoryModel: """Get the latest data from GitHub.""" result = await self._client.repos.get(self.repository) return result.data class RepositoryReleaseDataUpdateCoordinator( GitHubBaseDataUpdateCoordinator[GitHubReleaseModel] ): """Data update coordinator for repository release.""" async def fetch_data(self) -> GitHubReleaseModel | None: """Get the latest data from GitHub.""" result = await self._client.repos.releases.list( self.repository, **{"params": {"per_page": 1}} ) if not result.data: return None for release in result.data: if not release.prerelease: return release # Fall back to the latest release if no non-prerelease release is found return result.data[0] class RepositoryIssueDataUpdateCoordinator( GitHubBaseDataUpdateCoordinator[IssuesPulls] ): """Data update coordinator for repository issues.""" async def fetch_data(self) -> IssuesPulls: """Get the latest data from GitHub.""" base_issue_response = await self._client.repos.issues.list( self.repository, **{"params": {"per_page": 1}} ) pull_response = await self._client.repos.pulls.list( self.repository, **{"params": {"per_page": 1}} ) pulls_count = pull_response.last_page_number or 0 issues_count = (base_issue_response.last_page_number or 0) - pulls_count issue_last = base_issue_response.data[0] if issues_count != 0 else None if issue_last is not None and issue_last.pull_request: issue_response = await self._client.repos.issues.list(self.repository) for issue in issue_response.data: if not issue.pull_request: issue_last = issue break return IssuesPulls( issues_count=issues_count, issue_last=issue_last, pulls_count=pulls_count, pull_last=pull_response.data[0] if pulls_count != 0 else None, ) class RepositoryCommitDataUpdateCoordinator( GitHubBaseDataUpdateCoordinator[GitHubCommitModel] ): """Data update coordinator for repository commit.""" async def fetch_data(self) -> GitHubCommitModel | None: """Get the latest data from GitHub.""" result = await self._client.repos.list_commits( self.repository, **{"params": {"per_page": 1}} ) return result.data[0] if result.data else None class DataUpdateCoordinators(TypedDict): """Custom data update coordinators for the GitHub integration.""" information: RepositoryInformationDataUpdateCoordinator release: RepositoryReleaseDataUpdateCoordinator issue: RepositoryIssueDataUpdateCoordinator commit: RepositoryCommitDataUpdateCoordinator
32.577465
88
0.676827
[ "Apache-2.0" ]
Arquiteto/core
homeassistant/components/github/coordinator.py
4,626
Python
def add(a: int, b: int) -> int: return a + b def subtract(a: int, b: int) -> int: return a - b def multiply(a: int, b: int or str) -> int: return a * b """ ... ---------------------------------------------------------------------- Ran 3 tests in 0.000s OK """
13.95
70
0.387097
[ "Apache-2.0" ]
MahanBi/python-tests
unittest/code.py
279
Python
# coding=utf-8 VERSION = '1.8.1' __VERSION__ = VERSION def increase(): import os import re filename = os.path.abspath(__file__) with open(filename, encoding='utf8') as file: content = file.read() match = re.search(r"VERSION = '(\d+).(\d+).(\d+)'", content) old = f'{match.group(1)}.{match.group(2)}.{match.group(3)}' new = f'{match.group(1)}.{match.group(2)}.{int(match.group(3)) + 1}' content = content.replace(old, new) with open(filename, 'w', encoding='utf8') as file: file.write(content)
25.045455
72
0.598911
[ "MIT" ]
StevenBaby/chess
src/version.py
551
Python
import os import time from WebKit.URLParser import ServletFactoryManager from WebUtils.Funcs import htmlEncode from AdminSecurity import AdminSecurity class ServletCache(AdminSecurity): """Display servlet cache. This servlet displays, in a readable form, the internal data structure of the cache of all servlet factories. This can be useful for debugging WebKit problems and the information is interesting in general. """ def title(self): return 'Servlet Cache' def writeContent(self): wr = self.writeln factories = [factory for factory in ServletFactoryManager._factories if factory._classCache] if not factories: wr('<h4>No caching servlet factories found.</h4>') wr('<p>Caching can be activated by setting' ' <code>CacheServletClasses = True</code>.</p>') return if len(factories) > 1: factories.sort() wr('<h3>Servlet Factories:</h3>') wr('<table>') for factory in factories: wr('<tr><td><a href="#%s">%s</a></td></tr>' % ((factory.name(),)*2)) wr('</table>') req = self.request() wr('<form action="ServletCache" method="post">') for factory in factories: name = factory.name() wr('<a id="%s"></a><h4>%s</h4>' % ((name,)*2)) if req.hasField('flush_' + name): factory.flushCache() wr('<p style="color:green">' 'The servlet cache has been flushed. &nbsp; ' '<input type="submit" name="reload" value="Reload"></p>') continue wr(htCache(factory)) wr('</form>') def htCache(factory): """Output the cache of a servlet factory.""" html = [] wr = html.append cache = factory._classCache keys = sorted(cache) wr('<p>Uniqueness: %s</p>' % factory.uniqueness()) wr('<p>Extensions: %s</p>' % ', '.join(map(repr, factory.extensions()))) wr('<p>Unique paths in the servlet cache: <strong>%d</strong>' ' &nbsp; <input type="submit" name="flush_%s" value="Flush"></p>' % (len(keys), factory.name())) wr('<p>Click any link to jump to the details for that path.</p>') wr('<h5>Filenames:</h5>') wr('<table class="NiceTable">') wr('<tr><th>File</th><th>Directory</th></tr>') paths = [] for key in keys: head, tail = os.path.split(key) path = dict(dir=head, base=tail, full=key) paths.append(path) paths.sort(key=lambda p: (p['base'].lower(), p['dir'].lower())) # At this point, paths is a list where each element is a dictionary # with directory name, base name, full path name sorted first by # base name and second by dir name. for path in paths: wr('<tr><td><a href="#id%s">%s</a></td><td>%s</td></tr>' % (id(path['full']), path['base'], path['dir'])) wr('</table>') wr('<h5>Full paths:</h5>') wr('<table class="NiceTable">') wr('<tr><th>Servlet path</th></tr>') for key in keys: wr('<tr><td><a href="#%s">%s</a></td></tr>' % (id(key), key)) wr('</table>') wr('<h5>Details:</h5>') wr('<table class="NiceTable">') for path in paths: wr('<tr class="NoTable"><td colspan="2">' '<a id="id%s"></a><strong>%s</strong> - %s</td></tr>' % (id(path['full']), path['base'], path['dir'])) record = cache[path['full']].copy() record['path'] = path['full'] if path['full'] in factory._threadsafeServletCache: record['instances'] = 'one servlet instance (threadsafe)' else: record['instances'] = ('free reusable servlets: %d' % len(factory._servletPool)) wr(htRecord(record)) wr('</table>') return '\n'.join(html) def htRecord(record): html = [] wr = html.append for key in sorted(record): htKey = htmlEncode(key) # determine the HTML for the value value = record[key] htValue = None # check for special cases where we want a custom display if hasattr(value, '__name__'): htValue = value.__name__ if key == 'mtime': htValue = '%s (%s)' % (time.asctime(time.localtime(value)), value) # the general case: if not htValue: htValue = htmlEncode(str(value)) wr('<tr><th>%s</th><td>%s</td></tr>' % (htKey, htValue)) return '\n'.join(html)
37.254098
78
0.551155
[ "MIT" ]
Cito/w4py
WebKit/Admin/ServletCache.py
4,545
Python
n=(input("Enter a number")) a=len(n) s=int(n) sum=0 p=s while s>0: b=s%10 sum=sum+b**a s=s//10 if sum==p: print("It is an Amstrong Number") else: print("It is Not an Amstrong Number")
15.615385
41
0.591133
[ "Apache-2.0" ]
nikhilsamninan/python-files
day2/amstrongnospl.py
203
Python
# Generated by Django 2.1 on 2019-01-12 15:12 import django.db.models.deletion from django.db import migrations, models import pretix.base.models.fields class Migration(migrations.Migration): dependencies = [ ('pretixbase', '0104_auto_20181114_1526'), ] operations = [ migrations.AddField( model_name='invoiceaddress', name='beneficiary', field=models.TextField(blank=True, verbose_name='Beneficiary'), ), migrations.AddField( model_name='invoice', name='invoice_to_beneficiary', field=models.TextField(blank=True, null=True, verbose_name='Beneficiary'), ), ]
25.703704
86
0.635447
[ "Apache-2.0" ]
Janfred/pretix
src/pretix/base/migrations/0105_auto_20190112_1512.py
694
Python
import sys sys.path.append('../') import torch import numpy as np import random import math import time import argparse from data_tlp_cite import DataHelper_t from torch.utils.data import DataLoader from model import Model from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import roc_auc_score, accuracy_score, f1_score device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # device = torch.device("cpu") FType = torch.FloatTensor LType = torch.LongTensor def setup_seed(seed): torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) random.seed(seed) np.random.seed(seed) torch.backends.cudnn.deterministic = True def main(args): setup_seed(args.seed) Data = DataHelper_t(args.file_path, args.node_feature_path, args.neg_size, args.hist_len, args.directed, tlp_flag=args.tlp_flag) loader = DataLoader(Data, batch_size=args.batch_size, shuffle=False, num_workers=5) model = Model(args).to(device) model.load_state_dict(torch.load('../res/cite/model.pkl')) s_emb_list = [] t_emb_list = [] dup_s_emb_list = [] neg_embs_list = [] loss_list = [] model.eval() for i_batch, sample_batched in enumerate(loader): loss, s_emb, t_emb, dup_s_emb, neg_embs = model.forward( sample_batched['s_self_feat'].type(FType).reshape(-1, args.feat_dim).to(device), sample_batched['s_one_hop_feat'].type(FType).reshape(-1, args.feat_dim).to(device), sample_batched['s_two_hop_feat'].type(FType).reshape(-1, args.feat_dim).to(device), sample_batched['t_self_feat'].type(FType).reshape(-1, args.feat_dim).to(device), sample_batched['t_one_hop_feat'].type(FType).reshape(-1, args.feat_dim).to(device), sample_batched['t_two_hop_feat'].type(FType).reshape(-1, args.feat_dim).to(device), sample_batched['neg_self_feat'].type(FType).reshape(-1, args.feat_dim).to(device), sample_batched['neg_one_hop_feat'].type(FType).reshape(-1, args.feat_dim).to(device), sample_batched['neg_two_hop_feat'].type(FType).reshape(-1, args.feat_dim).to(device), sample_batched['event_time'].type(FType).to(device), sample_batched['s_history_times'].type(FType).to(device), sample_batched['s_his_his_times_list'].type(FType).to(device), sample_batched['t_history_times'].type(FType).to(device), sample_batched['t_his_his_times_list'].type(FType).to(device), sample_batched['neg_his_times_list'].type(FType).to(device), sample_batched['neg_his_his_times_list'].type(FType).to(device), sample_batched['s_edge_rate'].type(FType).to(device), training=False ) s_emb_list.append(s_emb) t_emb_list.append(t_emb) dup_s_emb_list.append(dup_s_emb.reshape(-1, args.out_dim)) neg_embs_list.append(neg_embs.reshape(-1, args.out_dim)) loss_list.append(loss) s_emb_list = torch.cat(s_emb_list, dim=0) t_emb_list = torch.cat(t_emb_list, dim=0) dup_s_emb_list = torch.cat(dup_s_emb_list, dim=0) neg_embs_list = torch.cat(neg_embs_list, dim=0) truth = torch.ones(s_emb_list.size(0), dtype=torch.int) truth_neg = torch.zeros(neg_embs_list.size(0), dtype=torch.int) s_list = torch.cat((s_emb_list, dup_s_emb_list), dim=0) t_list = torch.cat((t_emb_list, neg_embs_list), dim=0) truth_list = torch.cat((truth, truth_neg), dim=0) dif_list = torch.abs(s_list - t_list) x_train, x_test, y_train, y_test = train_test_split(dif_list, truth_list, test_size=1 - args.train_ratio, random_state=args.seed, stratify=truth_list) lr = LogisticRegression(max_iter=10000) lr.fit(x_train, y_train) y_test_pred = lr.predict(x_test) acc = accuracy_score(y_test, y_test_pred) f1 = f1_score(y_test, y_test_pred) print('acc:{}'.format(round(acc, 4))) print('f1:{}'.format(round(f1, 4))) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--file_path', type=str, default='./data/cite/emb_edges.pt') parser.add_argument('--node_feature_path', type=str, default='./data/cite/sorted_emb_feat.pt') parser.add_argument('--neg_size', type=int, default=1) parser.add_argument('--hist_len', type=int, default=10) parser.add_argument('--directed', type=bool, default=False) parser.add_argument('--epoch_num', type=int, default=10, help='epoch number') parser.add_argument('--tlp_flag', type=bool, default=True) parser.add_argument('--batch_size', type=int, default=100) parser.add_argument('--lr', type=float, default=0.001) parser.add_argument('--hid_dim', type=int, default=16) parser.add_argument('--feat_dim', type=int, default=128) parser.add_argument('--out_dim', type=int, default=16) parser.add_argument('--seed', type=int, default=4) parser.add_argument('--ncoef', type=float, default=0.01) parser.add_argument('--l2_reg', type=float, default=0.001) parser.add_argument('--train_ratio', type=float, default=0.8) args = parser.parse_args() start = time.perf_counter() main(args)
41.418605
109
0.688564
[ "MIT" ]
WenZhihao666/TREND
main_test.py
5,343
Python
import numpy as np import random random.seed(200) # Create Sigmoid Function def sig(inp): return (1/(1+np.exp(-1*inp))) # For Back Propagation, make Desigmoid function def dsig(inp): return (1.0-inp)*inp # Define class for neuron class Neuron: def __init__(self,weights,func,dfunc): # member variables for class self.weights = weights self.output = None self.func = func # dfunc is the derivative of the function self.dfunc = dfunc # No delta yet because we haven't defined anything self.delta = None def agr(self,x): bias = self.weights[-1] out = np.inner(self.weights.copy()[:-1],x) + bias return out def activation(self,inp): self.output = self.func(inp) return self.output # Definition for weights def gen_weights(dim): # Add 1 to the dimension for the bias return np.random.uniform(-0.1,0.1,dim+1) # Definition of the actual network # Activations correspond to activation funcitons used def gen_net(structure, activations): # Create empty list net = [] for i in range(1,len(structure)): layer = [] for j in range(structure[i]): # feed in neuron weights from last layer weights = gen_weights(structure[i-1]) layer.append(Neuron(weights, activations[0][i-1], activations[1][i-1])) net.append(layer) return net # Define feed forward def feed_fwd(net, inp): # It stores the current input associated with the given layer inp_store = inp for layer in net: out_of_curr_layer = [] for neuron in layer: # Calculate accumulated output value accum = neuron.agr(inp_store) output = neuron.activation(accum) # Store output for later use out_of_curr_layer.append(output) inp_store = out_of_curr_layer return inp_store # Define back propagation def back_prop(net, target): back_len = len(net) for i in range(back_len): ind = back_len-i-1 layer = net[ind] errors = [] if ind == back_len-1: j=0 for neuron in layer: errors.append(target[j]-neuron.output) j+=1 else: for j in range(len(layer)): error = 0.0 # For neuron in front of current neuron, check deltas for neuron in net[ind+1]: error+=(neuron.weights[j]*neuron.delta) errors.append(error) j=0 for neuron in layer: neuron.delta = errors[j]*neuron.dfunc(neuron.output) j+=1 return net # Define how much to update the weights by everytime # Alpha is the learning rate, but if too high it may overshoot def update_weights(net,inp,alpha): for i in range(len(net)): if i==0: inputs = inp else: inputs = [] prev_layer = net[i-1] for neuron in prev_layer: inputs.append(neuron.output) curr_layer = net[i] for neuron in curr_layer: for j in range(len(inputs)): neuron.weights[j] += alpha*neuron.delta*inputs[j] neuron.weights[-1]+=alpha*neuron.delta #Define training approach def train(net,train_data,alpha,epoch): for curr_epoch_no in range(epoch): sums = 0 sample_no = 0 # Accuracy Count (number of samples that are right) acc_cnt = 0 for sample in train_data: outputs = feed_fwd(net,sample[0]) expected = sample[1] sums+=sum([(expected[i]-outputs[i])**2 for i in range(len(expected))]) if expected.index(max(expected) == outputs.index(max(outputs))): acc_cnt += 1 back_prop(net,expected) update_weights(net,sample[0],alpha) # Metadata on how well it's doing print('epoch_no:', curr_epoch_no,'loss:', sums, 'accuracy:', acc_cnt) net = gen_net([2,100,100,2],[(sig,sig,sig),[dsig,dsig,dsig]]) train(net,[[[0,0],[0,1]], [[0,1],[1,0]], [[1,0],[1,0]], [[1,1],[0,1]]], 2, 100) # Code to test out neural network output # net = gen_net([2,2,2],[(sig,sig),[dsig,dsig]]) # print(feed_fwd(net,[0.2,0.3])) # for i in range(len(net)): # for j in range(len(net[i])): # print(net[i][j].weights) # print("--------------------------") # net = back_prop(net,[1,0]) # net = update_weights(net,[0.2,0.3],0.2) # for i in range(len(net)): # for j in range(len(net[i])): # print(net[i][j].weights)
31.90411
83
0.572349
[ "MIT" ]
Henrynaut/ML
scripts/neural_net_workshop.py
4,658
Python
# License: MIT License import unittest import glob import os import networkx as nx import numpy as np import itertools from ...PyCTBN.structure_graph.sample_path import SamplePath from ...PyCTBN.structure_graph.network_graph import NetworkGraph from ...PyCTBN.utility.json_importer import JsonImporter class TestNetworkGraph(unittest.TestCase): @classmethod def setUpClass(cls): cls.read_files = glob.glob(os.path.join('./PyCTBN/test_data', "*.json")) cls.importer = JsonImporter(cls.read_files[2], 'samples', 'dyn.str', 'variables', 'Time', 'Name') cls.importer.import_data(0) cls.s1 = SamplePath(cls.importer) cls.s1.build_trajectories() cls.s1.build_structure() def test_init(self): g1 = NetworkGraph(self.s1.structure) self.assertEqual(self.s1.structure, g1._graph_struct) self.assertIsInstance(g1._graph, nx.DiGraph) self.assertIsNone(g1.time_scalar_indexing_strucure) self.assertIsNone(g1.transition_scalar_indexing_structure) self.assertIsNone(g1.transition_filtering) self.assertIsNone(g1.p_combs) def test_add_nodes(self): g1 = NetworkGraph(self.s1.structure) g1.add_nodes(self.s1.structure.nodes_labels) for n1, n2 in zip(g1.nodes, self.s1.structure.nodes_labels): self.assertEqual(n1, n2) def test_add_edges(self): g1 = NetworkGraph(self.s1.structure) g1.add_edges(self.s1.structure.edges) for e in self.s1.structure.edges: self.assertIn(tuple(e), g1.edges) def test_fast_init(self): g1 = NetworkGraph(self.s1.structure) for node in self.s1.structure.nodes_labels: g1.fast_init(node) self.assertIsNotNone(g1._graph.nodes) self.assertIsNotNone(g1._graph.edges) self.assertIsInstance(g1._time_scalar_indexing_structure, np.ndarray) self.assertIsInstance(g1._transition_scalar_indexing_structure, np.ndarray) self.assertIsInstance(g1._time_filtering, np.ndarray) self.assertIsInstance(g1._transition_filtering, np.ndarray) self.assertIsInstance(g1._p_combs_structure, np.ndarray) self.assertIsInstance(g1._aggregated_info_about_nodes_parents, tuple) def test_get_ordered_by_indx_set_of_parents(self): g1 = NetworkGraph(self.s1.structure) g1.add_nodes(self.s1.structure.nodes_labels) g1.add_edges(self.s1.structure.edges) for node in self.s1.structure.nodes_labels: aggr_info = g1.get_ordered_by_indx_set_of_parents(node) for indx in range(len(aggr_info[0]) - 1 ): self.assertLess(g1.get_node_indx(aggr_info[0][indx]), g1.get_node_indx(aggr_info[0][indx + 1])) for par, par_indx in zip(aggr_info[0], aggr_info[1]): self.assertEqual(g1.get_node_indx(par), par_indx) for par, par_val in zip(aggr_info[0], aggr_info[2]): self.assertEqual(g1._graph_struct.get_states_number(par), par_val) def test_build_time_scalar_indexing_structure_for_a_node(self): g1 = NetworkGraph(self.s1.structure) g1.add_nodes(self.s1.structure.nodes_labels) g1.add_edges(self.s1.structure.edges) for node in self.s1.structure.nodes_labels: aggr_info = g1.get_ordered_by_indx_set_of_parents(node) self.aux_build_time_scalar_indexing_structure_for_a_node(g1, node, aggr_info[1], aggr_info[0], aggr_info[2]) def aux_build_time_scalar_indexing_structure_for_a_node(self, graph, node_id, parents_indxs, parents_labels, parents_vals): node_states = graph.get_states_number(node_id) time_scalar_indexing = NetworkGraph.build_time_scalar_indexing_structure_for_a_node(node_states, parents_vals) self.assertEqual(len(time_scalar_indexing), len(parents_indxs) + 1) merged_list = parents_labels[:] merged_list.insert(0, node_id) vals_list = [] for node in merged_list: vals_list.append(graph.get_states_number(node)) t_vec = np.array(vals_list) t_vec = t_vec.cumprod() self.assertTrue(np.array_equal(time_scalar_indexing, t_vec)) def test_build_transition_scalar_indexing_structure_for_a_node(self): g1 = NetworkGraph(self.s1.structure) g1.add_nodes(self.s1.structure.nodes_labels) g1.add_edges(self.s1.structure.edges) for node in self.s1.structure.nodes_labels: aggr_info = g1.get_ordered_by_indx_set_of_parents(node) self.aux_build_transition_scalar_indexing_structure_for_a_node(g1, node, aggr_info[1], aggr_info[0], aggr_info[2]) def aux_build_transition_scalar_indexing_structure_for_a_node(self, graph, node_id, parents_indxs, parents_labels, parents_values): node_states = graph.get_states_number(node_id) transition_scalar_indexing = graph.build_transition_scalar_indexing_structure_for_a_node(node_states, parents_values) self.assertEqual(len(transition_scalar_indexing), len(parents_indxs) + 2) merged_list = parents_labels[:] merged_list.insert(0, node_id) merged_list.insert(0, node_id) vals_list = [] for node_id in merged_list: vals_list.append(graph.get_states_number(node_id)) m_vec = np.array([vals_list]) m_vec = m_vec.cumprod() self.assertTrue(np.array_equal(transition_scalar_indexing, m_vec)) def test_build_time_columns_filtering_structure_for_a_node(self): g1 = NetworkGraph(self.s1.structure) g1.add_nodes(self.s1.structure.nodes_labels) g1.add_edges(self.s1.structure.edges) for node in self.s1.structure.nodes_labels: aggr_info = g1.get_ordered_by_indx_set_of_parents(node) self.aux_build_time_columns_filtering_structure_for_a_node(g1, node, aggr_info[1]) def aux_build_time_columns_filtering_structure_for_a_node(self, graph, node_id, p_indxs): graph.build_time_columns_filtering_for_a_node(graph.get_node_indx(node_id), p_indxs) single_filter = [] single_filter.append(graph.get_node_indx(node_id)) single_filter.extend(p_indxs) self.assertTrue(np.array_equal(graph.build_time_columns_filtering_for_a_node(graph.get_node_indx(node_id), p_indxs),np.array(single_filter))) def test_build_transition_columns_filtering_structure(self): g1 = NetworkGraph(self.s1.structure) g1.add_nodes(self.s1.structure.nodes_labels) g1.add_edges(self.s1.structure.edges) for node in self.s1.structure.nodes_labels: aggr_info = g1.get_ordered_by_indx_set_of_parents(node) self.aux_build_time_columns_filtering_structure_for_a_node(g1, node, aggr_info[1]) def aux_build_transition_columns_filtering_structure(self, graph, node_id, p_indxs): single_filter = [] single_filter.append(graph.get_node_indx(node_id) + graph._graph_struct.total_variables_number) single_filter.append(graph.get_node_indx(node_id)) single_filter.extend(p_indxs) self.assertTrue(np.array_equal(graph.build_transition_filtering_for_a_node(graph.get_node_indx(node_id), p_indxs), np.array(single_filter))) def test_build_p_combs_structure(self): g1 = NetworkGraph(self.s1.structure) g1.add_nodes(self.s1.structure.nodes_labels) g1.add_edges(self.s1.structure.edges) for node in self.s1.structure.nodes_labels: aggr_info = g1.get_ordered_by_indx_set_of_parents(node) self.aux_build_p_combs_structure(g1, aggr_info[2]) def aux_build_p_combs_structure(self, graph, p_vals): p_combs = graph.build_p_comb_structure_for_a_node(p_vals) p_possible_vals = [] for val in p_vals: vals = [v for v in range(val)] p_possible_vals.extend(vals) comb_struct = set(itertools.product(p_possible_vals,repeat=len(p_vals))) for comb in comb_struct: self.assertIn(np.array(comb), p_combs) def test_get_parents_by_id(self): g1 = NetworkGraph(self.s1.structure) g1.add_nodes(self.s1.structure.nodes_labels) g1.add_edges(self.s1.structure.edges) for node in g1.nodes: self.assertListEqual(g1.get_parents_by_id(node), list(g1._graph.predecessors(node))) def test_get_states_number(self): g1 = NetworkGraph(self.s1.structure) g1.add_nodes(self.s1.structure.nodes_labels) g1.add_edges(self.s1.structure.edges) for node, val in zip(g1.nodes, g1.nodes_values): self.assertEqual(val, g1.get_states_number(node)) def test_get_node_indx(self): g1 = NetworkGraph(self.s1.structure) g1.add_nodes(self.s1.structure.nodes_labels) g1.add_edges(self.s1.structure.edges) for node, indx in zip(g1.nodes, g1.nodes_indexes): self.assertEqual(indx, g1.get_node_indx(node)) if __name__ == '__main__': unittest.main()
48.989691
127
0.675295
[ "MIT" ]
madlabunimib/PyCTBN
PyCTBN/tests/structure_graph/test_networkgraph.py
9,504
Python
import os import urllib import torch from torch.utils import model_zoo class CheckpointIO(object): ''' CheckpointIO class. It handles saving and loading checkpoints. Args: checkpoint_dir (str): path where checkpoints are saved ''' def __init__(self, checkpoint_dir='./chkpts', **kwargs): self.module_dict = kwargs self.checkpoint_dir = checkpoint_dir if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) def register_modules(self, **kwargs): ''' Registers modules in current module dictionary. ''' self.module_dict.update(kwargs) def save(self, filename, **kwargs): ''' Saves the current module dictionary. Args: filename (str): name of output file ''' if not os.path.isabs(filename): filename = os.path.join(self.checkpoint_dir, filename) outdict = kwargs for k, v in self.module_dict.items(): outdict[k] = v.state_dict() torch.save(outdict, filename) def load(self, filename): '''Loads a module dictionary from local file or url. Args: filename (str): name of saved module dictionary ''' if is_url(filename): return self.load_url(filename) else: return self.load_file(filename) def load_file(self, filename): '''Loads a module dictionary from file. Args: filename (str): name of saved module dictionary ''' if not os.path.isabs(filename): filename = os.path.join(self.checkpoint_dir, filename) if os.path.exists(filename): print(filename) print('=> Loading checkpoint from local file...') state_dict = torch.load(filename) scalars = self.parse_state_dict(state_dict) return scalars else: raise FileNotFoundError def load_url(self, url): '''Load a module dictionary from url. Args: url (str): url to saved model ''' print(url) print('=> Loading checkpoint from url...') state_dict = model_zoo.load_url(url, progress=True) scalars = self.parse_state_dict(state_dict) return scalars def parse_state_dict(self, state_dict): '''Parse state_dict of model and return scalars. Args: state_dict (dict): State dict of model ''' for k, v in self.module_dict.items(): if k in state_dict: v.load_state_dict(state_dict[k]) else: print('Warning: Could not find %s in checkpoint!' % k) scalars = {k: v for k, v in state_dict.items() if k not in self.module_dict} return scalars def is_url(url): scheme = urllib.parse.urlparse(url).scheme return scheme in ('http', 'https')
29.346535
70
0.584345
[ "MIT" ]
1ucky40nc3/mednerf
graf-main/submodules/GAN_stability/gan_training/checkpoints.py
2,964
Python
from axelrod.action import Action from axelrod.player import Player C, D = Action.C, Action.D class Appeaser(Player): """A player who tries to guess what the opponent wants. Switch the classifier every time the opponent plays D. Start with C, switch between C and D when opponent plays D. Names: - Appeaser: Original Name by Jochen Müller """ name = "Appeaser" classifier = { "memory_depth": float("inf"), # Depends on internal memory. "stochastic": False, "makes_use_of": set(), "long_run_time": False, "inspects_source": False, "manipulates_source": False, "manipulates_state": False, } def strategy(self, opponent: Player) -> Action: if not len(opponent.history): return C else: if opponent.history[-1] == D: if self.history[-1] == C: return D else: return C return self.history[-1]
25.923077
68
0.575668
[ "MIT" ]
DPros/Axelrod
axelrod/strategies/appeaser.py
1,012
Python
from django.contrib import admin from .models import Sport, Activity, Settings, Traces, Lap admin.site.register(Sport) admin.site.register(Activity) admin.site.register(Settings) admin.site.register(Traces) admin.site.register(Lap)
23.4
58
0.807692
[ "MIT" ]
lucasace/workoutizer
wizer/admin.py
234
Python
import uuid from turkit2.common import TextClassification from turkit2.qualifications import Unique, Locale, AcceptRate from utils import get_client client = get_client() quals = [Locale(), AcceptRate()] task = TextClassification(client, 'Test3', '0.01', 'test test', 600, 6000, ['positive', 'negative'], question='Which class does this text match, positive or negative?', qualifications=quals) documents = [f'test{i}' for i in range(5)] def proc(text): for answer, assignment in task.ask(verbosity=100, text=text): print(answer) print(assignment) def main(): tasks = [] for text in documents: proc(text) main()
26.2
190
0.700763
[ "MIT" ]
anthliu/turkit2
tests/text_classification_nonsync.py
655
Python
from typing import Dict from exaslct_src.lib.export_container_task import ExportContainerTask from exaslct_src.lib.data.required_task_info import RequiredTaskInfo from exaslct_src.lib.docker.docker_create_image_task import DockerCreateImageTask class ExportContainerTasksCreator(): def __init__(self, export_path:str, release_name:str): self.release_name = release_name self.export_path = export_path def create_export_tasks_for_flavors( self, build_tasks: Dict[str, Dict[str, DockerCreateImageTask]]): return {flavor_path: self.create_export_tasks(flavor_path, build_task) for flavor_path, build_task in build_tasks.items()} def create_export_tasks(self, flavor_path: str, build_tasks: Dict[str, DockerCreateImageTask]): return {release_type: self.create_export_task(release_type, flavor_path, build_task) for release_type, build_task in build_tasks.items()} def create_export_task(self, release_type: str, flavor_path: str, build_task: DockerCreateImageTask): required_task_info = self.create_required_task_info(build_task) return \ ExportContainerTask( required_task_info_json=required_task_info.to_json(indent=None), export_path=self.export_path, release_name=self.release_name, release_type=release_type, flavor_path=flavor_path) def create_required_task_info(self, build_task): required_task_info = \ RequiredTaskInfo(module_name=build_task.__module__, class_name=build_task.__class__.__name__, params=build_task.param_kwargs) return required_task_info
45.275
92
0.692435
[ "MIT" ]
mace84/script-languages
exaslct_src/lib/export_container_tasks_creator.py
1,811
Python
from subprocess import check_output def isrunning(processName): tasklist = check_output('tasklist', shell=False) tasklist = str(tasklist) return(processName in tasklist)
26.142857
52
0.759563
[ "MIT" ]
ShaderLight/autochampselect
modules/isrunning.py
183
Python
from lithops.multiprocessing import Process, JoinableQueue def worker(q): working = True while working: x = q.get() # Do work that may fail assert x < 10 # Confirm task q.task_done() if x == -1: working = False if __name__ == '__main__': q = JoinableQueue() p = Process(target=worker, args=(q,)) p.start() for x in range(10): q.put(x) # uncomment to hang on the q.join #q.put(11) q.join() q.put(-1) # end loop p.join()
16.484848
58
0.527574
[ "Apache-2.0" ]
GEizaguirre/lithops
examples/multiprocessing/joinable_queue.py
544
Python
# Python program to draw smile # face emoji using turtle import turtle # turtle object pen = turtle.Turtle() # function for creation of eye def eye(col, rad): pen.down() pen.fillcolor(col) pen.begin_fill() pen.circle(rad) pen.end_fill() pen.up() # draw face pen.fillcolor('yellow') pen.begin_fill() pen.circle(100) pen.end_fill() pen.up() # draw eyes pen.goto(-40, 120) eye('white', 15) pen.goto(-37, 125) eye('black', 5) pen.goto(40, 120) eye('white', 15) pen.goto(40, 125) eye('black', 5) # draw nose pen.goto(0, 75) eye('black', 8) # draw mouth pen.goto(-40, 85) pen.down() pen.right(90) pen.circle(40, 180) pen.up() # draw tongue pen.goto(-10, 45) pen.down() pen.right(180) pen.fillcolor('red') pen.begin_fill() pen.circle(10, 180) pen.end_fill() pen.hideturtle()
15.672727
31
0.616009
[ "MIT" ]
ShashankShenoy21/Matlab-and-Python
Smiley_face.py
862
Python
from __future__ import annotations from typing import NoReturn from . import LinearRegression from ...base import BaseEstimator import numpy as np # import linear_regression class PolynomialFitting(BaseEstimator): """ Polynomial Fitting using Least Squares estimation """ def __init__(self, k: int) -> PolynomialFitting: """ Instantiate a polynomial fitting estimator Parameters ---------- k : int Degree of polynomial to fit """ super().__init__() self.deg_ = k self.vander_, self.vander_linear_ = None, LinearRegression(False) # raise NotImplementedError() def _fit(self, X: np.ndarray, y: np.ndarray) -> NoReturn: """ Fit Least Squares model to polynomial transformed samples Parameters ---------- X : ndarray of shape (n_samples, n_features) Input data to fit an estimator for y : ndarray of shape (n_samples, ) Responses of input data to fit to """ # self.vander_ = np.vander(X, self.deg_, increasing=True) self.vander_linear_.fit(self.__transform(X), y) def _predict(self, X: np.ndarray) -> np.ndarray: """ Predict responses for given samples using fitted estimator Parameters ---------- X : ndarray of shape (n_samples, n_features) Input data to predict responses for Returns ------- responses : ndarray of shape (n_samples, ) Predicted responses of given samples """ return self.vander_linear_.predict(self.__transform(X)) def _loss(self, X: np.ndarray, y: np.ndarray) -> float: """ Evaluate performance under MSE loss function Parameters ---------- X : ndarray of shape (n_samples, n_features) Test samples y : ndarray of shape (n_samples, ) True labels of test samples Returns ------- loss : float Performance under MSE loss function """ return self.vander_linear_.loss(self.__transform(X), y) def __transform(self, X: np.ndarray) -> np.ndarray: """ Transform given input according to the univariate polynomial transformation Parameters ---------- X: ndarray of shape (n_samples,) Returns ------- transformed: ndarray of shape (n_samples, k+1) Vandermonde matrix of given samples up to degree k """ X_vander = np.vander(X, self.deg_ + 1, increasing=True) return X_vander
28.451613
83
0.586546
[ "MIT" ]
shirlevy007/IML.HUJI
IMLearn/learners/regressors/polynomial_fitting.py
2,646
Python
"""BackPACK extensions/hooks for computing low-rank factors of the GGN."""
37.5
74
0.76
[ "MIT" ]
PwLo3K46/vivit
vivit/extensions/secondorder/__init__.py
75
Python
import math import warnings from functools import reduce import numpy as np import torch from backpack import backpack, extend from backpack.extensions import BatchGrad from gym.utils import seeding from torchvision import datasets, transforms from dacbench import AbstractEnv warnings.filterwarnings("ignore") class SGDEnv(AbstractEnv): """ Environment to control the learning rate of adam """ def __init__(self, config): """ Initialize SGD Env Parameters ------- config : objdict Environment configuration """ super(SGDEnv, self).__init__(config) self.batch_size = config.training_batch_size self.validation_batch_size = config.validation_batch_size self.no_cuda = config.no_cuda self.current_batch_size = config.training_batch_size self.env_seed = config.seed self.seed(self.env_seed) self.use_cuda = not self.no_cuda and torch.cuda.is_available() self.device = torch.device("cuda" if self.use_cuda else "cpu") self.training_validation_ratio = 0.8 # self.test_dataset = None self.train_dataset = None self.validation_dataset = None self.train_loader = None # self.test_loader = None self.validation_loader = None self.train_loader_it = None self.validation_loader_it = None self.train_batch_index = 0 self.epoch_index = 0 self.current_training_loss = None self.loss_batch = None self.model = None self.parameter_count = 0 self.layer_sizes = [] self.loss_function = torch.nn.NLLLoss(reduction="none") self.loss_function = extend(self.loss_function) self.initial_lr = config.lr * torch.ones( 1, device=self.device, requires_grad=False ) self.current_lr = config.lr * torch.ones( 1, device=self.device, requires_grad=False ) # Adam parameters self.beta1 = config.beta1 self.beta2 = config.beta2 self.m = 0 self.v = 0 self.epsilon = 1.0e-08 self.t = 0 self.step_count = torch.zeros(1, device=self.device, requires_grad=False) self.prev_descent = None self.learning_rate = 0.001 self.predictiveChangeVarDiscountedAverage = torch.zeros( 1, device=self.device, requires_grad=False ) self.predictiveChangeVarUncertainty = torch.zeros( 1, device=self.device, requires_grad=False ) self.lossVarDiscountedAverage = torch.zeros( 1, device=self.device, requires_grad=False ) self.lossVarUncertainty = torch.zeros( 1, device=self.device, requires_grad=False ) self.discount_factor = 0.9 self.firstOrderMomentum = torch.zeros( 1, device=self.device, requires_grad=False ) self.secondOrderMomentum = torch.zeros( 1, device=self.device, requires_grad=False ) self.writer = None if "reward_function" in config.keys(): self.get_reward = config["reward_function"] else: self.get_reward = self.get_default_reward if "state_method" in config.keys(): self.get_state = config["state_method"] else: self.get_state = self.get_default_state def seed(self, seed=None): """ Set rng seed Parameters ---------- seed: seed for rng """ _, seed = seeding.np_random(seed) if seed is not None: torch.manual_seed(seed) np.random.seed(seed) return [seed] def step(self, action): """ Execute environment step Parameters ---------- action : list action to execute Returns ------- np.array, float, bool, dict state, reward, done, info """ done = super(SGDEnv, self).step_() self.step_count += 1 index = 0 if not isinstance(action, float): action = action[0] action = torch.Tensor([action]).to(self.device) new_lr = 10 ** (-action) self.current_lr = new_lr delta_w = torch.mul( new_lr, self.firstOrderMomentum / (torch.sqrt(self.secondOrderMomentum) + self.epsilon), ) for i, p in enumerate(self.model.parameters()): layer_size = self.layer_sizes[i] p.data = p.data - delta_w[index: index + layer_size].reshape( shape=p.data.shape ) index += layer_size self._set_zero_grad() reward = self.get_reward(self) return self.get_state(self), reward, done, {} def reset(self): """ Reset environment Returns ------- np.array Environment state """ super(SGDEnv, self).reset_() dataset = self.instance[0] instance_seed = self.instance[1] construct_model = self.instance[2] self.seed(instance_seed) self.model = construct_model().to(self.device) self.training_validation_ratio = 0.8 train_dataloader_args = {"batch_size": self.batch_size} validation_dataloader_args = {"batch_size": self.validation_batch_size} if self.use_cuda: param = {"num_workers": 1, "pin_memory": True, "shuffle": True} train_dataloader_args.update(param) validation_dataloader_args.update(param) if dataset == "MNIST": transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))] ) train_dataset = datasets.MNIST( "../data", train=True, download=True, transform=transform ) # self.test_dataset = datasets.MNIST('../data', train=False, transform=transform) else: raise NotImplementedError training_dataset_limit = math.floor( len(train_dataset) * self.training_validation_ratio ) validation_dataset_limit = len(train_dataset) self.train_dataset = torch.utils.data.Subset( train_dataset, range(0, training_dataset_limit - 1) ) self.validation_dataset = torch.utils.data.Subset( train_dataset, range(training_dataset_limit, validation_dataset_limit) ) self.train_loader = torch.utils.data.DataLoader( self.train_dataset, **train_dataloader_args ) # self.test_loader = torch.utils.data.DataLoader(self.test_dataset, **train_dataloader_args) self.validation_loader = torch.utils.data.DataLoader( self.validation_dataset, **validation_dataloader_args ) self.train_batch_index = 0 self.epoch_index = 0 self.train_loader_it = iter(self.train_loader) self.validation_loader_it = iter(self.validation_loader) self.parameter_count = 0 self.layer_sizes = [] for p in self.model.parameters(): layer_size = reduce(lambda x, y: x * y, p.shape) self.layer_sizes.append(layer_size) self.parameter_count += layer_size self.model = extend(self.model) self._set_zero_grad() self.model.train() self.current_training_loss = None self.loss_batch = None # Adam parameters self.m = 0 self.v = 0 self.t = 0 self.step_count = torch.zeros(1, device=self.device, requires_grad=False) self.current_lr = self.initial_lr self.prev_descent = torch.zeros( (self.parameter_count,), device=self.device, requires_grad=False ) self.get_default_reward(self) return self.get_state(self) def set_writer(self, writer): self.writer = writer def close(self): """ No additional cleanup necessary Returns ------- bool Cleanup flag """ return True def render(self, mode: str = "human"): """ Render env in human mode Parameters ---------- mode : str Execution mode """ if mode != "human": raise NotImplementedError pass def get_default_state(self, _): """ Gather state description Returns ------- dict Environment state """ gradients = self._get_gradients() self.firstOrderMomentum, self.secondOrderMomentum = self._get_momentum( gradients ) ( predictiveChangeVarDiscountedAverage, predictiveChangeVarUncertainty, ) = self._get_predictive_change_features( self.current_lr, self.firstOrderMomentum, self.secondOrderMomentum ) lossVarDiscountedAverage, lossVarUncertainty = self._get_loss_features() state = { "predictiveChangeVarDiscountedAverage": predictiveChangeVarDiscountedAverage, "predictiveChangeVarUncertainty": predictiveChangeVarUncertainty, "lossVarDiscountedAverage": lossVarDiscountedAverage, "lossVarUncertainty": lossVarUncertainty, "currentLR": self.current_lr, "trainingLoss": self.current_training_loss, "validationLoss": self.current_validation_loss, } return state def _set_zero_grad(self): index = 0 for i, p in enumerate(self.model.parameters()): if p.grad is None: continue layer_size = self.layer_sizes[i] p.grad.zero_() index += layer_size def _train_batch_(self): (data, target) = self.train_loader_it.next() data, target = data.to(self.device), target.to(self.device) self.current_batch_size = data.size()[0] output = self.model(data) loss = self.loss_function(output, target) with backpack(BatchGrad()): loss.mean().backward() loss_value = loss.mean() reward = self._get_validation_loss() self.loss_batch = loss self.current_training_loss = torch.unsqueeze(loss_value.detach(), dim=0) self.train_batch_index += 1 return reward def get_default_reward(self, _): try: reward = self._train_batch_() except StopIteration: self.train_batch_index = 0 self.epoch_index += 1 self.train_loader_it = iter(self.train_loader) reward = self._train_batch_() return reward def _get_val_loss(self): self.model.eval() validation_loss = torch.zeros(1, device=self.device, requires_grad=False) with torch.no_grad(): for data, target in self.validation_loader: data, target = data.to(self.device), target.to(self.device) output = self.model(data) validation_loss += self.loss_function(output, target).mean() validation_loss /= len(self.validation_loader.dataset) self.model.train() return validation_loss def _get_validation_loss_(self): self.model.eval() (data, target) = self.validation_loader_it.next() data, target = data.to(self.device), target.to(self.device) output = self.model(data) validation_loss = self.loss_function(output, target).mean() validation_loss = torch.unsqueeze(validation_loss.detach(), dim=0) self.current_validation_loss = validation_loss self.model.train() return -validation_loss.item() # negative because it is the reward def _get_validation_loss(self): try: validation_loss = self._get_validation_loss_() except StopIteration: self.validation_loader_it = iter(self.validation_loader) validation_loss = self._get_validation_loss_() return validation_loss def _get_gradients(self): gradients = [] for p in self.model.parameters(): if p.grad is None: continue gradients.append(p.grad.flatten()) gradients = torch.cat(gradients, dim=0) return gradients def _get_momentum(self, gradients): self.t += 1 self.m = self.beta1 * self.m + (1 - self.beta1) * gradients self.v = self.beta2 * self.v + (1 - self.beta2) * torch.square(gradients) bias_corrected_m = self.m / (1 - self.beta1 ** self.t) bias_corrected_v = self.v / (1 - self.beta2 ** self.t) return bias_corrected_m, bias_corrected_v def _get_adam_feature(self, learning_rate, m, v): epsilon = 1.0e-8 return torch.mul(learning_rate, m / (torch.sqrt(v) + epsilon)) def _get_loss_features(self): with torch.no_grad(): loss_var = torch.log(torch.var(self.loss_batch)) self.lossVarDiscountedAverage = ( self.discount_factor * self.lossVarDiscountedAverage + (1 - self.discount_factor) * loss_var ) self.lossVarUncertainty = ( self.discount_factor * self.lossVarUncertainty + (1 - self.discount_factor) * (loss_var - self.lossVarDiscountedAverage) ** 2 ) return self.lossVarDiscountedAverage, self.lossVarUncertainty def _get_predictive_change_features(self, lr, m, v): batch_gradients = [] for i, (name, param) in enumerate(self.model.named_parameters()): grad_batch = param.grad_batch.reshape( self.current_batch_size, self.layer_sizes[i] ) batch_gradients.append(grad_batch) batch_gradients = torch.cat(batch_gradients, dim=1) update_value = self._get_adam_feature(lr, m, v) predictive_change = torch.log( torch.var(-1 * torch.matmul(batch_gradients, update_value)) ) self.predictiveChangeVarDiscountedAverage = ( self.discount_factor * self.predictiveChangeVarDiscountedAverage + (1 - self.discount_factor) * predictive_change ) self.predictiveChangeVarUncertainty = ( self.discount_factor * self.predictiveChangeVarUncertainty + (1 - self.discount_factor) * (predictive_change - self.predictiveChangeVarDiscountedAverage) ** 2 ) return ( self.predictiveChangeVarDiscountedAverage, self.predictiveChangeVarUncertainty, )
31.41189
100
0.59973
[ "Apache-2.0" ]
goktug97/DACBench
dacbench/envs/sgd.py
14,795
Python
from __future__ import print_function import sys import os import subprocess from .simsalabim import __version__, __copyright__ from . import add_quant_info as quant from . import helpers def main(argv): print('dinosaur-adapter version %s\n%s' % (__version__, __copyright__)) print('Issued command:', os.path.basename(__file__) + " " + " ".join(map(str, sys.argv[1:]))) args, params = parseArgs() run_dinosaur(args.dinosaur_jar_path, args.mzml_fns, args.output_folder, args.spectrum_output_format, params) def parseArgs(): import argparse apars = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter) requiredNamed = apars.add_argument_group('required arguments') requiredNamed.add_argument('--dinosaur_jar_path', metavar = "JAR", required = True, help='''Path to the Dinosaur .jar file. ''') apars.add_argument('--mzml_fns', default=None, metavar = "M", nargs='*', help='''mzML file(s). To easily specify multiple files one can use wildcards, e.g. my_spectrum_files/*.mzML ''') apars.add_argument('--file_list_file', default=None, metavar = "L", help='''Text file with paths to mzML files, one per line. ''') apars.add_argument('--output_folder', default="./dinosaur/", metavar='O', help='''Output folder. ''') apars.add_argument('--dinosaur_mem', default=8.0, metavar='M', type=float, help='''Memory for allocated for Dinosaur in GB. ''') apars.add_argument('--dinosaur_flags', default="", metavar='O', help='''Extra command line flags to pass to Dinosaur, as indicated in Dinosaur's help text. ''') apars.add_argument('--spectrum_output_format', default=None, metavar='F', help='''If you want updated spectrum files with the new MS1 features assigned to the MS2 spectra, set this to the desired output format (ms2, mgf or mzML). ''') apars.add_argument('--split_precursors', help='''for .mzML or .ms2 output this creates a new spectrum for each precursor, e.g. if spectrum with scan number 132 matches two precursors, we generate two spectra with scan numbers 13201 and 13202. This can be useful if your downstream analysis includes tools that do not support multiple precursors per spectrum, such as MSGF+. For MGF output this flag is always set, as it does not support multiple precursors per spectrum. ''', action='store_true') # ------------------------------------------------ args = apars.parse_args() if not args.mzml_fns: if args.file_list_file and len(args.file_list_file) > 0: with open(args.file_list_file, 'r') as f: args.mzml_fns = list(filter(lambda x : len(x) > 0, map(lambda x : re.sub(r"[\n\t\s]*", "", x), f.read().splitlines()))) else: sys.exit("No input mzML files specified. Use either --mzml_fns or --file_list_file.") elif args.file_list_file and len(args.file_list_file) > 0: sys.exit("Ambiguous mzML input. Use either --mzml_fns or --file_list_file, not both.") params = dict() params['splitPrecursors'] = args.split_precursors params['dinosaurMemory'] = args.dinosaur_mem params['dinosaurFlags'] = args.dinosaur_flags return args, params def run_dinosaur(dinosaur_jar_path, mzml_fns, output_folder, spectrum_output_format, params): dinosaur_binary = "java -Xmx%dM -jar %s --seed=1" % (int(params['dinosaurMemory']*1000), dinosaur_jar_path) helpers.createDir(output_folder) for mzml_fn in mzml_fns: baseFN = helpers.getBase(helpers.getFileName(mzml_fn)) dinosaur_output_file = os.path.join(output_folder, baseFN + ".features.tsv") if not os.path.isfile(dinosaur_output_file): cmd_dinosaur = "%s --force --outDir=%s %s %s;" % (dinosaur_binary, output_folder, params['dinosaurFlags'], mzml_fn) helpers.executeCmd(cmd_dinosaur) else: print("Found dinosaur output file at %s, remove this file to re-run Dinosaur on this file" % (dinosaur_output_file)) output_fn = os.path.join(output_folder, baseFN + ".dummy.txt") if spectrum_output_format: output_fn = os.path.join(output_folder, baseFN + ".recalibrated." + spectrum_output_format) params['specPrecMapFile'] = os.path.join(output_folder, baseFN + ".feature_map.tsv") if not os.path.isfile(params['specPrecMapFile']): quant.add_accurate_precursors(dinosaur_output_file, mzml_fn, output_fn, params) if output_fn.endswith(".dummy.txt"): os.remove(output_fn) else: print("Found dinosaur mapping file at %s, remove this file to re-run Dinosaur on this file" % (params['specPrecMapFile'])) if __name__ == '__main__': main(sys.argv[1:])
47.5
176
0.622775
[ "Apache-2.0" ]
MatthewThe/simsalabim
simsalabim/dinosaur_adapter.py
5,225
Python
# _*_ coding: utf-8 _*_ """ util_urlfilter.py by xianhu """ import re import pybloom_live from .util_config import CONFIG_URLPATTERN_ALL class UrlFilter(object): """ class of UrlFilter, to filter url by regexs and (bloomfilter or set) """ def __init__(self, black_patterns=(CONFIG_URLPATTERN_ALL,), white_patterns=(r"^http",), capacity=None): """ constructor, use variable of BloomFilter if capacity else variable of set """ self._re_black_list = [re.compile(pattern, flags=re.IGNORECASE) for pattern in black_patterns] if black_patterns else [] self._re_white_list = [re.compile(pattern, flags=re.IGNORECASE) for pattern in white_patterns] if white_patterns else [] self._url_set = set() if not capacity else None self._bloom_filter = pybloom_live.ScalableBloomFilter(capacity, error_rate=0.001) if capacity else None return def update(self, url_list): """ update this urlfilter using url_list """ if self._url_set is not None: self._url_set.update(url_list) else: for url in url_list: self._bloom_filter.add(url) return def check(self, url): """ check the url based on self._re_black_list and self._re_white_list """ # if url in black_list, return False for re_black in self._re_black_list: if re_black.search(url): return False # if url in white_list, return True for re_white in self._re_white_list: if re_white.search(url): return True return False if self._re_white_list else True def check_and_add(self, url): """ check the url to make sure that the url hasn't been fetched, and add url to urlfilter """ result = False if self.check(url): if self._url_set is not None: result = url not in self._url_set self._url_set.add(url) else: result = not self._bloom_filter.add(url) return result
31.716418
128
0.618824
[ "BSD-2-Clause" ]
charlesXu86/PSpider
spider/utilities/util_urlfilter.py
2,125
Python
#!/usr/bin/env python '''command long''' import threading import time, os import math from pymavlink import mavutil from MAVProxy.modules.lib import mp_module from mpl_toolkits.mplot3d import Axes3D import numpy as np import matplotlib.pyplot as plt from threading import Thread import mpl_toolkits.mplot3d.axes3d as p3 import matplotlib.animation as animation class CmdlongModule(mp_module.MPModule): def __init__(self, mpstate): super(CmdlongModule, self).__init__(mpstate, "cmdlong") self.add_command('setspeed', self.cmd_do_change_speed, "do_change_speed") self.add_command('setyaw', self.cmd_condition_yaw, "condition_yaw") self.add_command('offboard', self.offboard_mode, "offboard") self.add_command('p_mode', self.position_mode, "p_mode") self.add_command('m_mode', self.manual_mode, "m_mode") self.add_command('a_mode', self.altitude_mode, "a_mode") self.add_command('takeoff2', self.cmd_takeoff_2, "takeoff2") self.add_command('takeoff3', self.takeoff_3, "takeoff3") self.add_command('music',self.music,"music") self.add_command('land2', self.land_2, "land2") self.add_command('fly', self.fly, "fly") self.add_command('x', self.x, "x") self.add_command('y', self.y, "y") self.add_command('z', self.z, "z") self.add_command('h', self.h, "h") self.add_command('yaw', self.yaw, "yaw") self.add_command('takeoff', self.cmd_takeoff, "takeoff") self.add_command('velocity', self.cmd_velocity, "velocity") self.add_command('position', self.cmd_position, "position") self.add_command('st', self.start_position_thread, "start_position_thread") self.add_command('attitude', self.cmd_attitude, "attitude") self.add_command('cammsg', self.cmd_cammsg, "cammsg") self.add_command('camctrlmsg', self.cmd_camctrlmsg, "camctrlmsg") self.add_command('posvel', self.cmd_posvel, "posvel") self.add_command('parachute', self.cmd_parachute, "parachute", ['<enable|disable|release>']) self.add_command('long', self.cmd_long, "execute mavlink long command", self.cmd_long_commands()) self.dis_max = 0 self.dis_min = 100 self.dis_diff = self.dis_max - self.dis_min self.svo_x_max = 0 self.svo_x_min = 0 self.svo_y_max = 0 self.svo_y_min = 0 self.x_diff = self.svo_x_max - self.svo_x_min self.y_diff = self.svo_y_max - self.svo_y_min self.list_x = [] self.list_y = [] self.list_z = [] self.svo_x = 0 self.svo_y = 0 self.svo_z = 0 #thread_obj = Thread(target = self.show_svo_2d) #thread_obj = Thread(target = self.show_svo) #thread_obj.setDaemon(True) #thread_obj.start() def cmd_long_commands(self): atts = dir(mavutil.mavlink) atts = filter( lambda x : x.lower().startswith("mav_cmd"), atts) ret = [] for att in atts: ret.append(att) ret.append(str(att[8:])) return ret def cmd_takeoff(self, args): '''take off''' if ( len(args) != 1): print("Usage: takeoff ALTITUDE_IN_METERS") return if (len(args) == 1): altitude = float(args[0]) print("Take Off started") self.master.mav.command_long_send( self.settings.target_system, # target_system mavutil.mavlink.MAV_COMP_ID_SYSTEM_CONTROL, # target_component mavutil.mavlink.MAV_CMD_NAV_TAKEOFF, # command 0, # confirmation 0, # param1 0, # param2 0, # param3 0, # param4 0, # param5 0, # param6 altitude) # param7 def cmd_parachute(self, args): '''parachute control''' usage = "Usage: parachute <enable|disable|release>" if len(args) != 1: print(usage) return cmds = { 'enable' : mavutil.mavlink.PARACHUTE_ENABLE, 'disable' : mavutil.mavlink.PARACHUTE_DISABLE, 'release' : mavutil.mavlink.PARACHUTE_RELEASE } if not args[0] in cmds: print(usage) return cmd = cmds[args[0]] self.master.mav.command_long_send( self.settings.target_system, # target_system 0, # target_component mavutil.mavlink.MAV_CMD_DO_PARACHUTE, 0, cmd, 0, 0, 0, 0, 0, 0) def cmd_camctrlmsg(self, args): '''camctrlmsg''' print("Sent DIGICAM_CONFIGURE CMD_LONG") self.master.mav.command_long_send( self.settings.target_system, # target_system 0, # target_component mavutil.mavlink.MAV_CMD_DO_DIGICAM_CONFIGURE, # command 0, # confirmation 10, # param1 20, # param2 30, # param3 40, # param4 50, # param5 60, # param6 70) # param7 def cmd_cammsg(self, args): '''cammsg''' print("Sent DIGICAM_CONTROL CMD_LONG") self.master.mav.command_long_send( self.settings.target_system, # target_system 0, # target_component mavutil.mavlink.MAV_CMD_DO_DIGICAM_CONTROL, # command 0, # confirmation 10, # param1 20, # param2 30, # param3 40, # param4 50, # param5 60, # param6 70) # param7 def cmd_do_change_speed(self, args): '''speed value''' if ( len(args) != 1): print("Usage: speed SPEED_VALUE") return if (len(args) == 1): speed = float(args[0]) print("SPEED %s" % (str(speed))) self.master.mav.command_long_send( self.settings.target_system, # target_system mavutil.mavlink.MAV_COMP_ID_SYSTEM_CONTROL, # target_component mavutil.mavlink.MAV_CMD_DO_CHANGE_SPEED, # command 0, # confirmation 0, # param1 speed, # param2 (Speed value) 0, # param3 0, # param4 0, # param5 0, # param6 0) # param7 def cmd_condition_yaw(self, args): '''yaw angle angular_speed angle_mode''' if ( len(args) != 3): print("Usage: yaw ANGLE ANGULAR_SPEED MODE:[0 absolute / 1 relative]") return if (len(args) == 3): angle = float(args[0]) angular_speed = float(args[1]) angle_mode = float(args[2]) print("ANGLE %s" % (str(angle))) self.master.mav.command_long_send( self.settings.target_system, # target_system mavutil.mavlink.MAV_COMP_ID_SYSTEM_CONTROL, # target_component mavutil.mavlink.MAV_CMD_CONDITION_YAW, # command 0, # confirmation angle, # param1 (angle value) angular_speed, # param2 (angular speed value) 0, # param3 angle_mode, # param4 (mode: 0->absolute / 1->relative) 0, # param5 0, # param6 0) # param7 def cmd_velocity(self, args): '''velocity x-ms y-ms z-ms''' if (len(args) != 3): print("Usage: velocity x y z (m/s)") return if (len(args) == 3): x_mps = float(args[0]) y_mps = float(args[1]) z_mps = float(args[2]) print("x:%f, y:%f, z:%f" % (x_mps, y_mps, z_mps)) self.master.mav.set_position_target_local_ned_send( 0, # system time in milliseconds 1, # target system 0, # target component 8, # coordinate frame MAV_FRAME_BODY_NED 455, # type mask (vel only) 0, 0, 0, # position x,y,z x_mps, y_mps, z_mps, # velocity x,y,z 0, 0, 0, # accel x,y,z 0, 0) # yaw, yaw rate def mavlink_packet(self, msg): type = msg.get_type() if type == 'DISTANCE_SENSOR': #print "distance find\n" #print isinstance(msg,subclass) #print msg.current_distance #print msg.__class__ #self.console.set_status('distance','distance %s' % msg.current_distance) #print msg.current_distance if self.dis_max < msg.current_distance: self.dis_max = msg.current_distance if self.dis_min > msg.current_distance: self.dis_min = msg.current_distance self.dis_diff = self.dis_max - self.dis_min #self.msg.current_distance = if type == 'SVO_POSITION_RAW': #self.svo_x = msg.position_x #self.svo_y = msg.position_y #self.svo_z = msg.position_z if self.svo_x_max < msg.position_x: self.svo_x_max = msg.position_x if self.svo_x_min > msg.position_x: self.svo_x_min = msg.position_x if self.svo_y_max < msg.position_y: self.svo_y_max = msg.position_y if self.svo_y_min > msg.position_y: self.svo_y_min = msg.position_y self.x_diff = self.svo_x_max - self.svo_x_min self.y_diff = self.svo_y_max - self.svo_y_min #print self.dis_max #print self.dis_min elif type == 'LOCAL_POSITION_NED': self.console.set_status('position_ned_x','position_x %s' % msg.x) self.svo_x = msg.x #print type(self.svo_x) #self.console.set_status('position_ned_y','position_y %s' % msg.y) self.svo_y = msg.y #print (svo_y) #self.console.set_status('position_ned_z','position_ned %s' % msg.z) self.svo_z = msg.z def show_svo_2d(self): fig = plt.figure() #self.ax = p3.Axes3D(fig) self.ax = fig.add_subplot(1, 1, 1) num = 0 self.ax.set_xlabel('X') self.ax.set_ylabel('Y') self.ax.set_title('2D Test') self.ax.set_xlim([-1, 1]) self.ax.set_ylim([-1, 1]) self.num = 0 #self.lineData = self.ax.scatter(1, 1, c = 'b', marker = '.') self.lineData, = self.ax.plot([],[]) line_ani = animation.FuncAnimation(fig, self.update_lines_2d,self.Gen_RandLine_2d, interval=100, blit=False) plt.show() def show_svo(self): fig = plt.figure() #self.ax = p3.Axes3D(fig) self.ax = fig.add_subplot(1, 1, 1, projection="3d") num = 0 self.ax.set_xlabel('X') num = 0 self.ax.set_xlabel('X') self.ax.set_xlim3d([-1.0, 1.0]) self.ax.set_ylabel('Y') self.ax.set_ylim3d([-1.0, 1.0]) self.ax.set_zlabel('Z') self.ax.set_zlim3d([-1.0, 1.0]) self.ax.set_title('3D Test') self.num = 0 #line_ani = animation.FuncAnimation(fig, self.update_lines,self.Gen_RandLine, # interval=10, blit=False) self.lineData = self.ax.scatter([1], [1], [1], c = 'b', marker = '.') line_ani = animation.FuncAnimation(fig, self.update_lines,self.Gen_RandLine, interval=10, blit=False) plt.show() def data_stream(self): pass def Gen_RandLine_2d(self): if len(self.list_x)<200: self.list_x.append(self.svo_x) self.list_y.append(self.svo_y) self.list_z.append(self.svo_z) else: self.list_x.append(self.svo_x) self.list_x = self.list_x[1:] self.list_y.append(self.svo_y) self.list_y = self.list_y[1:] self.list_z.append(self.svo_z) self.list_z = self.list_z[1:] #for i in range(2): #list_x = self.svo_x #list_y = self.svo_y self.list_x.append(float(self.svo_x)) self.list_y.append(float(self.svo_y)) #self.list_z.append(float(self.svo_z)) lineData = [self.list_x,self.list_y] #lineData = [list_x,list_y] #print type(list_x) #print lineData #time.sleep(0.02) #self.ax.set_zlim(min(data[2]), max(data[2])) #lineData = [self.list_x,self.list_y,self.list_z] yield lineData def update_lines_2d(self,data): #print "data",data #lineData = self.ax.scatter(data[0], data[1], data[2], c = 'b', marker = '.') #self.lineData.set_data([(data[0], data[1])]) self.lineData.set_xdata(data[0]) self.lineData.set_ydata(data[1]) self.num = self.num + 1 #self.ax.set_xlim(min(data[0]), max(data[0])) #self.ax.set_ylim(min(data[1]), max(data[1])) if self.num == 100: #self.ax.cla() #print self.num self.num = 0 self.ax.set_xlim(min(data[0])-1, max(data[0])+1) self.ax.set_ylim(min(data[1])-1, max(data[1])+1) return self.lineData, def Gen_RandLine(self): ''' if len(self.list_x)<70: self.list_x.append(self.svo_x) self.list_y.append(self.svo_y) self.list_z.append(self.svo_z) else: self.list_x.append(self.svo_x) self.list_x = self.list_x[1:] self.list_y.append(self.svo_y) self.list_y = self.list_y[1:] self.list_z.append(self.svo_z) self.list_z = self.list_z[1:] ''' #for i in range(2): list_x = self.svo_x list_y = self.svo_y list_z = self.svo_z #self.list_x.append(float(self.svo_x)) #self.list_y.append(float(self.svo_y)) #self.list_z.append(float(self.svo_z)) #lineData = [self.list_x,self.list_y,self.list_z] lineData = [[list_x],[list_y],[list_z]] #print type(list_x) #print lineData #self.ax.set_xlim(min(data[0]), max(data[0])) #self.ax.set_ylim(min(data[1]), max(data[1])) #self.ax.set_zlim(min(data[2]), max(data[2])) #lineData = [self.list_x,self.list_y,self.list_z] yield lineData def update_lines(self,data): #print "data",data #lineData = self.ax.scatter(data[0], data[1], data[2], c = 'b', marker = '.') self.lineData.set_offsets([(data[0], data[1])]) #self.lineData.set_data([data[0], data[1]]) self.lineData.set_3d_properties([data[2]], "z") self.num = self.num + 1 if self.num == 200: #self.ax.cla() #print self.num self.num = 0 self.ax.set_xlabel('X') #self.ax.set_xlim3d([-1.0, 1.0]) self.ax.set_ylabel('Y') #self.ax.set_ylim3d([-1.0, 1.0]) self.ax.set_zlabel('Z') #self.ax.set_zlim3d([-1.0, 1.0]) self.ax.set_title('3D Test') print "xdiff",self.x_diff print "ydiff",self.y_diff #lineData = ax.scatter(data[0], data[1], data[2], c = 'b', marker = '.') #plt.pause(0.01) #ax = p3.Axes3D(fig) return self.lineData def position_mode(self,args): print "position mode!!!!!!!!!!!!!!!!!" self.list_x = [] self.list_y = [] self.list_z = [] #self.start_position_thread(1) time.sleep(0.5) #self.master.set_mode(221,6,0) self.master.set_mode(129,3,0) self.dis_max = 0 self.dis_min = 100 self.svo_x_max = 0 self.svo_x_min = 0 self.svo_y_max = 0 self.svo_y_min = 0 self.x_diff = self.svo_x_max - self.svo_x_min self.y_diff = self.svo_y_max - self.svo_y_min def manual_mode(self,args): print "manual mode!!!!!!!!!!!!!!!!!" print self.master.__class__ #self.start_position_thread(1) #time.sleep(0.5) #self.master.set_mode(221,6,0) self.master.set_mode(129,1,0) self.v_z = float(args[0]) def altitude_mode(self,args): print "altitude mode!!!!!!!!!!!!!!!!!" #self.start_position_thread(1) #time.sleep(0.5) #self.master.set_mode(221,6,0) self.master.set_mode(129,2,0) #self.v_z = float(370) #self.dis_max = 0 #self.dis_min = 100 def offboard_mode(self,args): print "offboard!!!!!!!!!!!!!!!!!" #self.cmd_position_2(1) self.start_offboard_thread(1) time.sleep(0.5) self.master.set_mode(221,6,0) #self.master.set_mode(1,3,0) def cmd_takeoff_2(self, args): '''position z-m''' if (len(args) != 1): print("Usage: position z (meters)") return if (len(args) == 1): # x_m = float(0) # y_m = float(0) z_m = float(args[0]) # print("x:%f, y:%f, z:%f" % (x_m, y_m, z_m)) self.master.mav.set_position_target_local_ned_send( 0, # system time in milliseconds 1, # target system 0, # target component 8, # coordinate frame MAV_FRAME_BODY_NED 5571, # type mask (pos only) 0, 0, z_m, # position x,y,z 0, 0, 0, # velocity x,y,z 0, 0, 0, # accel x,y,z 0, 0) # yaw, yaw rate def takeoff_3(self,args): self.type_mask = 5571 #self.type_mask = 3576 self.x_m = float(0) self.y_m = float(0) self.z_m = float(1.5) self.v_x = float(0) self.v_y = float(0) self.v_z = float(0) #self.cmd_position([1,1,1]) def music(self,args): self.master.mav.command_long_send( self.settings.target_system, # target_system 1, # target_component 0, # command 1, # confirmation 0, # param1 0, # param2 (Speed value) 0, # param3 0, # param4 0, # param5 0, # param6 0) # param7 print self.settings.target_system print mavutil.mavlink.MAV_COMP_ID_SYSTEM_CONTROL def land_2(self,args): self.type_mask = 9671 self.v_x = float(0) self.v_y = float(0) self.v_z = float(0) #def h(self,args): # self.type_mask = 1479 # self.v_x = float(0) # self.v_y = float(0) # self.v_z = float(0) def x(self,args): #print self.master.flightmode self.type_mask = 1479 if self.master.flightmode == "POSCTL": #print self.master self.v_x = float(args[0])*0.5 elif self.master.flightmode == "ALTCTL": #print self.master self.v_x = float(args[0])*1 elif self.master.flightmode == "MANUAL": #print self.master self.v_x = float(args[0])*1 #self.v_z = -4 self.button = 1 def y(self,args): self.type_mask = 1479 if self.master.flightmode == "POSCTL": self.v_y = float(args[0])*0.5 elif self.master.flightmode == "ALTCTL": self.v_y = float(args[0])*1 elif self.master.flightmode == "MANUAL": self.v_y = float(args[0])*1 #self.v_z = -4 self.button = 1 def z(self,args): self.type_mask = 1479 #self.v_z = float(args[0]) if self.master.flightmode == "POSCTL": self.v_z = self.v_z + int(args[0]) elif self.master.flightmode == "ALTCTL": self.v_z = self.v_z + int(args[0]) elif self.master.flightmode == "MANUAL": self.v_z = self.v_z + int(args[0])*0.1 self.button = 1 def yaw(self,args): self.type_mask = 1479 #self.yaw_rate = float(float(args[0])*(math.pi/6.0)) self.yaw_rate = float(args[0])*1.5 self.button = 1 #time.sleep(0.5) #self.yaw_rate = float(0) def h(self,args): self.type_mask = 1479 self.v_x = float(0) self.v_y = float(0) if self.master.flightmode == "POSCTL": self.v_z = float(args[0]) elif self.master.flightmode == "ALTCTL": self.v_z = float(args[0]) elif self.master.flightmode == "MANUAL": pass self.yaw_rate = float(0) self.button = 0 def fly(self,args): self.type_mask = 1479 self.v_x = float(1) time.sleep(2) self.v_x = float(0) self.v_y = float(1) time.sleep(2) self.v_y = float(0) self.v_x = float(-1) time.sleep(2) self.v_x = float(0) self.v_y = float(-1) time.sleep(2) self.v_y = float(0) def start_position_thread(self,args): thread_obj = threading.Thread(target=self._cmd_position_2) thread_obj.setDaemon(True) thread_obj.start() #pass def start_offboard_thread(self,args): thread_obj = threading.Thread(target=self._cmd_position_2_offboard) thread_obj.start() def _cmd_position_2_offboard(self): '''position x-m y-m z-m''' #if (len(args) != 3): # print("Usage: position x y z (meters)") # return #if (len(args) == 3): self.type_mask = 17863 self.x_m = float(0) self.y_m = float(0) self.z_m = float(0) self.v_x = float(0) self.v_y = float(0) self.v_z = float(0) self.yaw_rate = float(0) #print("x:%f, y:%f, z:%f" % (x_m, y_m, z_m)) while 1: time.sleep(0.05) #print "type_mask:%s\n" % self.type_mask #print "v_x:%s\n" % self.v_x #print "v_y:%s\n" % self.v_y #print "v_z:%s\n" % self.v_z #print "z_m:%s\n" % self.z_m #print "send idle" self.master.mav.set_position_target_local_ned_send( 0, # system time in milliseconds 1, # target system 0, # target component 8, # coordinate frame MAV_FRAME_BODY_NED self.type_mask, # type mask (pos only) 42707 self.x_m, self.y_m, self.z_m, # position x,y,z self.v_x, self.v_y, self.v_z, # velocity x,y,z 0, 0, 0, # accel x,y,z 0, self.yaw_rate) # yaw, yaw rate def _cmd_position_2(self): print "position2" '''position x-m y-m z-m''' #if (len(args) != 3): # print("Usage: position x y z (meters)") # return #if (len(args) == 3): #self.type_mask = 17863 #self.x_m = float(0) #self.y_m = float(0) #self.z_m = float(0) self.v_x = 0 self.v_y = 0 self.v_z = 0 self.yaw_rate = 0 self.button = 0 #print("x:%f, y:%f, z:%f" % (x_m, y_m, z_m)) i = 0 while 1: time.sleep(0.05) #print "type_mask:%s\n" % self.type_mask #print "v_x:%s\n" % self.v_x #print "v_y:%s\n" % self.v_y #print "v_z:%s\n" % self.v_z #print "z_m:%s\n" % self.z_m #print "send idle" self.master.mav.manual_control_send(self.master.target_system, self.v_x, self.v_y, self.v_z, self.yaw_rate, self.button) i = i + 1 if 0: #if i == 100: print "x",(int(self.v_x)) print "y",(int(self.v_y)) print "z",(int(self.v_z)) print "yaw",(int(self.yaw_rate)) print "dis_diff",(self.dis_diff) print "x_diff",(self.x_diff) print "y_diff",(self.y_diff) print "button",self.button print "target",(self.master.target_system) i = 0 def cmd_position3(self, args): '''position x-m y-m z-m''' if (len(args) != 3): print("Usage: position x y z (meters)") return if (len(args) == 3): x_m = float(args[0]) y_m = float(args[1]) z_m = float(args[2]) print("x:%f, y:%f, z:%f" % (x_m, y_m, z_m)) self.master.mav.set_position_target_local_ned_send( 0, # system time in milliseconds 1, # target system 0, # target component 8, # coordinate frame MAV_FRAME_BODY_NED 1479, # type mask (pos only) 0, 0, 0,# position x,y,z x_m, y_m, z_m, # velocity x,y,z 0, 0, 0, # accel x,y,z 0, 0) # yaw, yaw rate def cmd_position(self, args): '''position x-m y-m z-m''' if (len(args) != 3): print("Usage: position x y z (meters)") return if (len(args) == 3): x_m = float(args[0]) y_m = float(args[1]) z_m = float(args[2]) print("x:%f, y:%f, z:%f" % (x_m, y_m, z_m)) self.master.mav.set_position_target_local_ned_send( 0, # system time in milliseconds 1, # target system 0, # target component 8, # coordinate frame MAV_FRAME_BODY_NED 3576, # type mask (pos only) x_m, y_m, z_m, # position x,y,z 0, 0, 0, # velocity x,y,z 0, 0, 0, # accel x,y,z 0, 0) # yaw, yaw rate def cmd_attitude(self, args): '''attitude q0 q1 q2 q3 thrust''' if len(args) != 5: print("Usage: attitude q0 q1 q2 q3 thrust (0~1)") return if len(args) == 5: q0 = float(args[0]) q1 = float(args[1]) q2 = float(args[2]) q3 = float(args[3]) thrust = float(args[4]) att_target = [q0, q1, q2, q3] print("q0:%.3f, q1:%.3f, q2:%.3f q3:%.3f thrust:%.2f" % (q0, q1, q2, q3, thrust)) self.master.mav.set_attitude_target_send( 0, # system time in milliseconds 1, # target system 0, # target component 63, # type mask (ignore all except attitude + thrust) att_target, # quaternion attitude 0, # body roll rate 0, # body pich rate 0, # body yaw rate thrust) # thrust def cmd_posvel(self, args): '''posvel mapclick vN vE vD''' ignoremask = 511 latlon = None try: latlon = self.module('map').click_position except Exception: pass if latlon is None: print "set latlon to zeros" latlon = [0, 0] else: ignoremask = ignoremask & 504 print "found latlon", ignoremask vN = 0 vE = 0 vD = 0 if (len(args) == 3): vN = float(args[0]) vE = float(args[1]) vD = float(args[2]) ignoremask = ignoremask & 455 print "ignoremask",ignoremask print latlon self.master.mav.set_position_target_global_int_send( 0, # system time in ms 1, # target system 0, # target component mavutil.mavlink.MAV_FRAME_GLOBAL_RELATIVE_ALT_INT, ignoremask, # ignore int(latlon[0] * 1e7), int(latlon[1] * 1e7), 10, vN, vE, vD, # velocity 0, 0, 0, # accel x,y,z 0, 0) # yaw, yaw rate def cmd_long(self, args): '''execute supplied command long''' if len(args) < 1: print("Usage: long <command> [arg1] [arg2]...") return command = None if args[0].isdigit(): command = int(args[0]) else: try: command = eval("mavutil.mavlink." + args[0]) except AttributeError as e: try: command = eval("mavutil.mavlink.MAV_CMD_" + args[0]) except AttributeError as e: pass if command is None: print("Unknown command long ({0})".format(args[0])) return floating_args = [ float(x) for x in args[1:] ] while len(floating_args) < 7: floating_args.append(float(0)) self.master.mav.command_long_send(self.settings.target_system, self.settings.target_component, command, 0, *floating_args) def init(mpstate): '''initialise module''' return CmdlongModule(mpstate)
36.367371
93
0.487333
[ "CC0-1.0" ]
joakimzhang/python-electron
pycalc/MAVProxy/modules/mavproxy_cmdlong.py
30,985
Python
""" This module is intended to extend functionality of the code provided by original authors. The process is as follows: 1. User has to provide source root path containing (possibly nested) folders with dicom files 2. The program will recreate the structure in the destination root path and anonymize all dicom files. """ import argparse import json import logging import logging.config import random from pathlib import Path from typing import Optional import pydicom from dicomanonymizer.anonym_state import AnonState from dicomanonymizer.dicom_utils import fix_exposure from dicomanonymizer.simpledicomanonymizer import ( anonymize_dicom_file, initialize_actions, ) from dicomanonymizer.utils import ( LOGS_PATH, PROJ_ROOT, ActionsDict, Path_Str, get_dirs, to_Path, try_valid_dir, ) # setup logging (create dirs, if it is first time) LOGS_PATH.mkdir(parents=True, exist_ok=True) logging.config.fileConfig( PROJ_ROOT / "dicomanonymizer/config/logging.ini", defaults={"logfilename": (LOGS_PATH / "file.log").as_posix()}, disable_existing_loggers=False, ) logger = logging.getLogger(__name__) _STATE_PATH = Path.home() / ".dicomanonymizer/cache" _STATE_PATH.mkdir(parents=True, exist_ok=True) def get_extra_rules( use_extra: bool, extra_json_path: Path_Str, ) -> Optional[ActionsDict]: """Helper to provide custom (project level/user level) anonymization rules as a mapping of tags -> action function. Args: use_extra (bool): If use extra rules. extra_json_path (Path_Str): Path to extra rules json file. It should be flat json with action as a key and list of tags as value. Returns: Optional[ActionsDict]: extra rules mapping (tags -> action function) """ # Define the actions dict for additional tags (customization) extra_rules = None if use_extra: # default or user provided path to extra rules json file with open(extra_json_path, "r") as fout: extra_rules = json.load(fout) for key in extra_rules: tag_list = extra_rules[key] tag_list = [tuple(elem) for elem in tag_list] extra_rules[key] = tag_list extra_rules = initialize_actions(extra_rules) return extra_rules def anonymize_dicom_folder( in_path: Path_Str, out_path: Path_Str, debug: bool = False, **kwargs ): """Anonymize dicom files in `in_path`, if `in_path` doesn't contain dicom files, will do nothing. Debug == True will do sort of dry run to check if all good for the large data storages Args: in_path (Path_Str): path to the folder containing dicom files out_path (Path_Str): path to the folder there anonymized copies will be saved debuf (bool): if true, will do a "dry" run """ # check and prepare in_path = to_Path(in_path) try_valid_dir(in_path) out_path = to_Path(out_path) out_path.mkdir(parents=True, exist_ok=True) logger.info(f"Processing: {in_path}") # work itself in_files = [p for p in in_path.iterdir() if p.is_file()] if not in_files: logger.info(f"Folder {in_path} doesn't have dicom files, skip.") return if debug: # anonymize just one file f_in = random.choice(in_files) f_out = out_path / f_in.name try: anonymize_dicom_file(f_in, f_out) except Exception as e: logger.info(f_in) logger.exception(e) raise e else: for f_in in in_files: f_out = out_path / f_in.name try: anonymize_dicom_file(f_in, f_out, **kwargs) except Exception as e: logger.info(f_in) logger.exception(e) raise e def anonymize_root_folder( in_root: Path_Str, out_root: Path_Str, **kwargs, ): """The fuction will get all nested folders from `in_root` and perform anonymization of all folders containg dicom-files Will recreate the `in_root` folders structure in the `out_root` Args: in_root (Path_Str): source root folder (presumably has some dicom-files inide, maybe nested) out_root (Path_Str): destination root folder, will create if not exists """ in_root = to_Path(in_root) try_valid_dir(in_root) out_root = to_Path(out_root) out_root.mkdir(parents=True, exist_ok=True) in_dirs = get_dirs(in_root) state = AnonState(_STATE_PATH) state.init_state() state.load_state() def get_tags_callback(dataset: pydicom.Dataset): state.tag_counter.update(dataset.dir()) logger.info( "Processed paths will be added to the cache, if cache exist and has some paths included, they will be skipped" ) logger.info( f"if, you need to process data again delete files {_STATE_PATH}, please" ) # will try to process all folders, if exception will dump state before raising try: for in_d in in_dirs: rel_path = in_d.relative_to(in_root) if str(rel_path) in state.visited_folders: logger.info(f"{in_d} path is in cache, skipping") continue else: out_d = out_root / rel_path anonymize_dicom_folder( in_d, out_d, ds_callback=get_tags_callback, **kwargs ) # update state state.visited_folders[str(rel_path)] = True except Exception as e: raise e finally: # before saving updated state let's flag tags not seen previously prev_state = AnonState(_STATE_PATH) prev_state.init_state() prev_state.load_state() new_tags = set(state.tag_counter.keys()).difference( prev_state.tag_counter.keys() ) if new_tags: logger.warning( f"During the anonymization new tags: {new_tags} were present" ) else: logger.info("No new tags werer present") # now we can save the current state state.save_state() # Add CLI args parser = argparse.ArgumentParser(description="Batch dicom-anonymization CLI") parser.add_argument( "--type", type=str, choices=["batch", "folder"], default="batch", help="Process only one folder - folder or all nested folders - batch, default = batch", ) parser.add_argument( "--extra-rules", default="", help="Path to json file defining extra rules for additional tags. Defalult in project.", ) parser.add_argument( "--no-extra", action="store_true", help="Only use a rules from DICOM-standard basic de-id profile", ) parser.add_argument( "--debug", action="store_true", help="Will do a dry run (one file per folder)" ) parser.add_argument( "src", type=str, help="Absolute path to the folder containing dicom-files or nested folders with dicom-files", ) parser.add_argument( "dst", type=str, help="Absolute path to the folder where to save anonymized copy of src", ) def main(): # parse args args = parser.parse_args() in_path = Path(args.src) out_path = Path(args.dst) debug = args.debug path = args.extra_rules if not path: path = PROJ_ROOT / "dicomanonymizer/resources/extra_rules.json" extra_rules = get_extra_rules(use_extra=not args.no_extra, extra_json_path=path) # fix known issue with dicom fix_exposure() msg = f""" Start a job: {args.type}, debug set to {args.debug} Will anonymize data at: {in_path} and save to {out_path} """ logger.info(msg) # anonymize if args.type == "batch": anonymize_root_folder( in_path, out_path, debug=debug, extra_anonymization_rules=extra_rules ) elif args.type == "folder": anonymize_dicom_folder( in_path, out_path, debug=debug, extra_anonymization_rules=extra_rules ) logger.info("Well done!") if __name__ == "__main__": main()
31.026923
118
0.655882
[ "BSD-3-Clause" ]
ademyanchuk/dicom-anonymizer
dicomanonymizer/batch_anonymizer.py
8,067
Python
import pickle import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import warnings warnings.filterwarnings('ignore') df = pd.read_csv('Train.csv') # check for categorical attributes cat_col = [] for x in df.dtypes.index: if df.dtypes[x] == 'object': cat_col.append(x) cat_col.remove('Item_Identifier') cat_col.remove('Outlet_Identifier') item_weight_mean = df.pivot_table(values = "Item_Weight", index = 'Item_Identifier') miss_bool = df['Item_Weight'].isnull() for i, item in enumerate(df['Item_Identifier']): if miss_bool[i]: if item in item_weight_mean: df['Item_Weight'][i] = item_weight_mean.loc[item]['Item_Weight'] else: df['Item_Weight'][i] = np.mean(df['Item_Weight']) outlet_size_mode = df.pivot_table(values='Outlet_Size', columns='Outlet_Type', aggfunc=(lambda x: x.mode()[0])) miss_bool = df['Outlet_Size'].isnull() df.loc[miss_bool, 'Outlet_Size'] = df.loc[miss_bool, 'Outlet_Type'].apply(lambda x: outlet_size_mode[x]) # replace zeros with mean df.loc[:, 'Item_Visibility'].replace([0], [df['Item_Visibility'].mean()], inplace=True) # combine item fat content df['Item_Fat_Content'] = df['Item_Fat_Content'].replace({'LF':'Low Fat', 'reg':'Regular', 'low fat':'Low Fat'}) df['Item_Fat_Content'].value_counts() #Creation of New Attributes df['New_Item_Type'] = df['Item_Identifier'].apply(lambda x: x[:2]) df['New_Item_Type'] = df['New_Item_Type'].map({'FD':'Food', 'NC':'Non-Consumable', 'DR':'Drinks'}) df.loc[df['New_Item_Type']=='Non-Consumable', 'Item_Fat_Content'] = 'Non-Edible' # create small values for establishment year df['Outlet_Years'] = 2013 - df['Outlet_Establishment_Year'] from sklearn.preprocessing import LabelEncoder le = LabelEncoder() df['Outlet'] = le.fit_transform(df['Outlet_Identifier']) cat_col = ['Item_Fat_Content', 'Item_Type', 'Outlet_Size', 'Outlet_Location_Type', 'Outlet_Type', 'New_Item_Type'] for col in cat_col: df[col] = le.fit_transform(df[col]) #Input Split X = df.drop(columns=['Outlet_Establishment_Year', 'Item_Identifier', 'Outlet_Identifier', 'Item_Outlet_Sales']) Y = df['Item_Outlet_Sales'] #Model Training from sklearn.model_selection import cross_val_score from sklearn.metrics import mean_squared_error def train(model, X, Y): # train the model model.fit(X, Y) # predict the training set pred = model.predict(X) # perform cross-validation cv_score = cross_val_score(model, X, Y, scoring='neg_mean_squared_error', cv=5) cv_score = np.abs(np.mean(cv_score)) from sklearn.ensemble import RandomForestRegressor model = RandomForestRegressor() train(model, X, Y) coef = pd.Series(model.feature_importances_, X.columns).sort_values(ascending=False) file = open('model.pkl','wb') #dump information to that file pickle.dump(model, file)
38.302632
115
0.707317
[ "MIT" ]
MayurJ-mike/Bigmart-analysis-ml
bigmart.py
2,911
Python
"""State-Split Transformation ----------------------------- (C) Frank-Rene Schaefer The 'State-Split' is a procedure transforms a state machine that triggers on some 'pure' values (e.g. Unicode Characters) into a state machine that triggers on the code unit sequences (e.g. UTF8 Code Units) that correspond to the original values. For example, a state transition on a Unicode Character '0x1329D' as shown below, [ A ]--->( 0x1329D )---->[ B ] is translated into a sequence of UTF16 transitions with a new intermediate state 'i' as follows. [ A ]--( 0xD80C )-->[ i ]-->( 0xDE9E )-->[ B ] This is so, since the character 0x1329D in Unicode is represented as the sequence 0xD80C, 0xDE9E. The present algorithm exploits the fact that translations of adjacent character result in sequences of adjacent intervals. .----------------------------------------------------------------------------. | This procedure is to be used for encodings of dynamic size, i.e. where the | | number of code units to represent a 'pure' value changes depending on the | | value itself (e.g. UTF8, UTF16). | '----------------------------------------------------------------------------' PRINCIPLE: A state transition is described by a 'trigger set' and a target state. If an input occurs that belongs to the 'trigger set' the state machine transits into the specific target state. Trigger sets are composed of one ore more intervals of adjacent values. If the encoding has some type of continuity, it can be assumed that an interval in the pure values can be represented by a sequence of intervals in the transformed state machine. This is, indeed true for the encodings UTF8 and UTF16. The algorithm below considers intervals of pure values and translates them into interval sequences. All interval sequences of a triggger set that triggers to a target state are then combined into a set of state transitions. A unicode transition from state A to state B: [ A ]-->(x0, x1)-->[ B ] is translated into a chain of utf8-byte sequence transitions that might look like this [ A ]-->(b0)-->[ 1 ]-->(c0,c1)-->[ B ] \ / `->(d1)-->[ 2 ]---(e0,e1)---' That means that intermediate states may be introduced to reflect the different byte sequences that represent the original interval. IDEAS: In a simple approach one would translate each element of a interval into an utf8-byte sequence and generate state transitions between A and B. Such an approach, however, produces a huge computational overhead and charges the later Hopcroft Minimization with a huge state machine. To avoid such an hughe computational effort, the Hopcroft Minimzation can be prepared on the basis of transition intervals. (A) Backwards: In somewhat greater intervals, the following might occur: .-->(d1)-->[ 1 ]---(A3,BF)---. / \ / ,->(d1)-->[ 2 ]---(80,BF)--. \ / / \ \ [ A ]-->(b0)-->[ 3 ]-->(80,BF)-->[ B ] \ / `->(d1)-->[ 4 ]---(80,81)---' That means, that for states 2 and 3 the last transition is on [80, BF] to state B. Thus, the intermediate states 2 and 3 are equivalent. Both can be replaced by a single state. (B) Forwards: The first couple of bytes in the correspondent utf8 sequences might be the same. Then, no branch is required until the first differing byte. PROCESS: (1) The original interval translated into a list of interval sequence that represent the values in the target encoding. (2) The interval sequences are plugged in between the state A and B of the state machine. """ from quex.engine.state_machine.state.core import DFA_State import quex.engine.state_machine.transformation.base as base import quex.engine.state_machine.index as state_machine_index from quex.engine.misc.interval_handling import NumberSet from quex.engine.misc.tools import flatten_list_of_lists from collections import defaultdict class EncodingTrafoBySplit(base.EncodingTrafo): """Transformation that takes a lexatom and produces a lexatom sequence. """ def __init__(self, Name, ErrorRangeByCodeUnitDb): base.EncodingTrafo.__init__(self, Name, NumberSet.from_range(0, 0x110000), ErrorRangeByCodeUnitDb) def do_transition(self, from_target_map, FromSi, ToSi, BadLexatomSi): """Translates to transition 'FromSi' --> 'ToSi' inside the state machine according to the specific coding (see derived class, i.e. UTF8 or UTF16). 'BadLexatomSi' is None => no bad lexatom detection. else, transitions to 'bad lexatom state' are added on invalid code units. RETURNS: [0] True if complete, False else. [1] StateDb of newly generated states. """ number_set = from_target_map[ToSi] # Check whether a modification is necessary if number_set.least_greater_bound() <= self.UnchangedRange: # 'UnchangedRange' => No change to numerical values. return True, None if not self.cut_forbidden_range(number_set): # 'number_set' solely contains forbidden elements. del from_target_map[ToSi] return False, None transformed_interval_sequence_list = flatten_list_of_lists( self.get_interval_sequences(interval) for interval in number_set.get_intervals(PromiseToTreatWellF=True) ) # Second, enter the new transitions. new_target_map, \ new_state_db = self.plug_interval_sequences(FromSi, ToSi, transformed_interval_sequence_list, BadLexatomSi) # Absorb new transitions into the target map of the 'from state'. del from_target_map[ToSi] from_target_map.update(new_target_map) return True, new_state_db def _do_single(self, Code): number_set = NumberSet.from_range(Code, Code+1) if number_set.is_empty(): return -1 interval_list = number_set.get_intervals(PromiseToTreatWellF=True) assert len(interval_list) == 1 interval_sequence_list = self.get_interval_sequences(interval_list[0]) # A single code element can only produce a single interval sequence! assert len(interval_sequence_list) == 1 assert all(x.size() == 1 for x in interval_sequence_list[0]) return [x.begin for x in interval_sequence_list[0]] def variable_character_sizes_f(self): return True def lexatom_n_per_character_in_state_machine(self, SM): lexatom_n = None for state in SM.states.itervalues(): for number_set in state.target_map.get_map().itervalues(): candidate_lexatom_n = self.lexatom_n_per_character(number_set) if candidate_lexatom_n is None: return None elif lexatom_n is None: lexatom_n = candidate_lexatom_n elif lexatom_n != candidate_lexatom_n: return None return lexatom_n def hopcroft_minimization_always_makes_sense(self): return True def plug_interval_sequences(self, FromSi, ToSi, IntervalSequenceList, BadLexatomSi): """Transform the list of interval sequences into intermediate state transitions. 'BadLexatomSi' is None => no bad lexatom detection. else, transitions to 'bad lexatom state' are added on invalid code units. RETURN: [0] Target map update for the first state. [1] State Db update for intermediate states. """ def simplify(tm_db, tm_end_inv, ToSi): """Those states which trigger on the same intervals to 'ToSi' are equivalent, i.e. can replaced by one state. """ # Find the states that trigger on the same interval list to the # terminal 'ToSi'. equivalence_db = {} replacement_db = {} for from_si, interval_list in tm_end_inv.iteritems(): key = tuple(sorted(interval_list)) equivalent_si = equivalence_db.get(key) if equivalent_si is None: equivalence_db[key] = from_si else: replacement_db[from_si] = equivalent_si # Replace target states which are equivalent result = {} for from_si, tm in tm_db.iteritems(): new_tm = defaultdict(NumberSet) for target_si, interval in tm.iteritems(): replacement_si = replacement_db.get(target_si) if replacement_si is not None: target_si = replacement_si new_tm[target_si].quick_append_interval(interval) if any(number_set.is_empty() for si, number_set in new_tm.items()): for si, number_set in new_tm.iteritems(): print "#sim", si, number_set if from_si in tm_end_inv: for interval in tm_end_inv[from_si]: new_tm[ToSi].quick_append_interval(interval) result[from_si] = new_tm return result tm_db, \ tm_end_inv, \ position_db = _get_intermediate_transition_maps(FromSi, ToSi, IntervalSequenceList) result_tm_db = simplify(tm_db, tm_end_inv, ToSi) if BadLexatomSi is not None: for si, position in position_db.iteritems(): # The 'positon 0' is done by 'do_state_machine'. It is concerned # with the first state's transition. assert position != 0 self._add_transition_to_bad_lexatom_detector(result_tm_db[si], BadLexatomSi, position) for tm in result_tm_db.itervalues(): assert not any(number_set.is_empty() for number_set in tm.itervalues()) # Generate the target map to be inserted into state 'FromSi'. # Generate list of intermediate states that implement the sequence # of intervals. first_tm = result_tm_db.pop(FromSi) new_state_db = dict( (si, DFA_State.from_TargetMap(tm)) for si, tm in result_tm_db.iteritems() ) return first_tm, new_state_db def __bunch_iterable(IntervalSequenceList, Index): """Iterate over sub-bunches of sequence in 'IntervalSequenceList' which are the same at the given 'Position'. The 'IntervalSequenceList' must be sorted! That is, same intervals must be adjacent. EXAMPLE: Index = 1 IntervalSequenceList = [ [ interval01, interval12, interval21, ], [ interval01, interval12, interval21, ], [ interval02, interval12, interval22, interval30 ], [ interval02, interval13, interval22, interval30 ], [ interval02, interval13, interval23, ] ] That is, the interval sequences are grouped according to groups where the second interval (Index=1) is equal, the yields are as follows: (1) [ [ interval01, interval12, interval21, ], [ interval01, interval12, interval21, ] ] (2) [ [ interval02, interval12, interval22, interval30 ] ] (3) [ [ interval02, interval13, interval22, interval30 ], [ interval02, interval13, interval23, ] ] NOTE: Two sequences of different lengths are *never* grouped together -- by purpose. The index is provided in order to avoid the creation of shorted sub- sequences. Instead, the caller focusses on sub-sequences behind 'Index'. Obviously, this function only makes sense if the intervals before 'Index' are all the same. YIELDS: [0] Interval which is the same for group of sequenes at 'Index'. [1] Group of sequences. [2] 'LastF' -- telling whether the interval is the last in the sequence. """ prev_interval = None prev_i = -1 prev_last_f = False for i, sequence in enumerate(IntervalSequenceList): interval = sequence[Index] if interval.is_empty(): print "#bu:", interval; assert False L = len(sequence) last_f = L == Index + 1 if interval != prev_interval or last_f != prev_last_f: if prev_i != -1: yield prev_interval, IntervalSequenceList[prev_i:i], prev_last_f prev_i = i prev_interval = interval prev_last_f = last_f yield prev_interval, IntervalSequenceList[prev_i:], prev_last_f def _get_intermediate_transition_maps(FromSi, ToSi, interval_sequence_list): """Several transitions are to be inserted in between state 'FromSi' and 'ToSi'. The transitions result from the list of sequences in 'interval_sequence_list'. This function develops the transition maps of the states involved. Also, it notifies about the 'position' of each state in the code unit sequence. Thus, the caller may insert error-detectors on invalid code units. FORBIDDEN: There cannot be a sequence that starts with the exact intervals as a shorter sequences. Example: [ (0, 1), (0, 2), (0, 3) ] # [ (0, 1), (0, 2) ] # Bad, very bad! This would mean that after (0, 1), (0, 2) the 'ToSi' is reached, but then after (0, 3) again. The result is an *iteration* on 'ToSi' --(0, 1)-->( A )--(0, 2)-->( ToSi )----> | | '-<-(0, 3)--' Consequently, such a list of interval sequences cannot represent a linear transition. RETURNS: [0] Transition Map DB: state_index --> 'TransitionMap' with TransitionMap: target_state_index --> Interval That is 'TransitionMap[target_state_index]' tells through which intervals the 'state_index' triggers to 'target_states' The 'Transition Map DB' does not contain transitions to the 'ToSi'--the end state. [1] Inverse End Transition Map: Transitions to the end state are stored inversely: from_state_index --> list of Interval-s The end state can be reached by more than one interval, so a list of Interval-s is associated with the transition 'from_state_index' to 'ToSi'. [1] PositionDB: state_index --> position in code unit sequence. """ # Sort the list of sequences, so that adjacent intervals are listed one # after the other. This is necessary for '__bunch_iterable()' to function. interval_sequence_list.sort() worklist = [ # The state at 'BeginStateIndex' is concerned with the intervals # at position '0' in the 'interval_sequence_list'. The list needs to # be grouped according to the first interval, and for each distinct # interval a transition to another state must be generated. (FromSi, interval_sequence_list, 0) ] tm_db = defaultdict(dict) tm_end_inv = defaultdict(list) position_db = {} while worklist: si, sequence_group, index = worklist.pop() # -- State 'si' triggers on intervals at 'index' in 'sequence_group'. tm = tm_db[si] # -- State 'si' comes at position 'index' in a sequence of code units. # (position of 'FromSi' shall not appear in the 'position_db' since # the error detection of the first state is done in the caller.) if si != FromSi: position_db[si] = index # Group the sequences according to the interval at position 'index'. for interval, sub_group, last_f in __bunch_iterable(sequence_group, index): # Transit to new state for the given sub-group of sequences. if not last_f: # For each 'interval' a deliberate target state is generated. # => each target state is only reached by a single Interval. new_si = state_machine_index.get() tm[new_si] = interval worklist.append((new_si, sub_group, index+1)) else: # If the 'interval' is the last in the sequence, the 'ToSi' is # reached. Obviously this may/should happen more than once. tm_end_inv[si].append(interval) return tm_db, tm_end_inv, position_db
43.550505
91
0.606923
[ "MIT" ]
smmckay/quex-mirror
quex/engine/state_machine/transformation/state_split.py
17,246
Python
import os import platform import ctypes import subprocess import distutils.command.build_py from distutils.core import setup class build_cnmpc(distutils.command.build_py.build_py): description = """Build the CNMPC shared library""" def run(self): subprocess.call("cmake -DCMAKE_BUILD_TYPE=Release . && make cnmpc " + "&& cp -r c ./python/nmpc/", shell=True, cwd=os.path.dirname(os.path.abspath(__file__))) subprocess.call("cmake -DCMAKE_BUILD_TYPE=Release . " + " && make c66nmpc && cp -r ccs-c66x ./python/nmpc/", shell=True, cwd=os.path.dirname(os.path.abspath(__file__))) self.data_files = self.get_data_files() distutils.command.build_py.build_py.run(self) setup( name="nmpc", url="https://github.com/sfwa/nmpc", author="Daniel Dyer", author_email="", version="1.0.0", description="NMPC library for UAV model predictive control", long_description=open("README.md").read(), package_dir={"": "python"}, packages=["nmpc"], package_data={"nmpc": ["c/cnmpc.dll", "c/libcnmpc.so", "c/libcnmpc.dylib", "ccs-c66x/c66nmpc.dll", "ccs-c66x/libc66nmpc.so", "ccs-c66x/libc66nmpc.dylib"]}, license="MIT License", classifiers=[ "Development Status :: 4 - Beta", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", "Programming Language :: Python", "Topic :: Software Development :: Libraries" ], cmdclass={"build_py": build_cnmpc} )
35.1875
78
0.58733
[ "MPL-2.0" ]
GCTMODS/nmpc
setup.py
1,689
Python
# small demo for listmode TOF MLEM without subsets import os import matplotlib.pyplot as py import pyparallelproj as ppp from pyparallelproj.wrapper import joseph3d_fwd, joseph3d_fwd_tof, joseph3d_back, joseph3d_back_tof import numpy as np import argparse import ctypes from time import time #--------------------------------------------------------------------------------- # parse the command line parser = argparse.ArgumentParser() parser.add_argument('--ngpus', help = 'number of GPUs to use', default = 0, type = int) parser.add_argument('--nsubsets', help = 'number of subsets', default = 28, type = int) parser.add_argument('--tpb', help = 'threads per block', default = 64, type = int) parser.add_argument('--nontof', help = 'non-TOF instead of TOF', action = 'store_true') parser.add_argument('--img_mem_order', help = 'memory layout for image', default = 'C', choices = ['C','F']) args = parser.parse_args() #--------------------------------------------------------------------------------- ngpus = args.ngpus nsubsets = args.nsubsets tpb = args.tpb tof = not args.nontof img_mem_order = args.img_mem_order subset = 0 if tof: ntofbins = 27 else: ntofbins = 1 np.random.seed(1) #--------------------------------------------------------------------------------- # setup a scanner with one ring scanner = ppp.RegularPolygonPETScanner(ncrystals_per_module = np.array([16,9]), nmodules = np.array([28,5])) # setup a test image voxsize = np.array([2.,2.,2.]) n0 = 250 n1 = 250 n2 = max(1,int((scanner.xc2.max() - scanner.xc2.min()) / voxsize[2])) # setup a random image img = np.zeros((n0,n1,n2), dtype = np.float32, order = img_mem_order) img[(n0//6):(5*n0//6),(n1//6):(5*n1//6),:] = 1 img_origin = (-(np.array(img.shape) / 2) + 0.5) * voxsize # generate sinogram parameters and the projector sd = np.array([[0,1,2], [0,2,1], [1,2,0], [1,0,2], [2,0,1], [2,1,0]]) for sdo in sd: sino_params = ppp.PETSinogramParameters(scanner, ntofbins = ntofbins, tofbin_width = 23., spatial_dim_order = sdo) proj = ppp.SinogramProjector(scanner, sino_params, img.shape, nsubsets = nsubsets, voxsize = voxsize, img_origin = img_origin, ngpus = ngpus, tof = tof, sigma_tof = 60./2.35, n_sigmas = 3., threadsperblock = tpb) # do a forward / back projection of subset 0 - same as img_fwd = proj.fwd_project(img, 0) # we just write out the single steps to time the python overhead separately #img_fwd = proj.fwd_project(img, 0) #ones_sino = np.ones(img_fwd.shape, dtype = np.float32) #back = proj.back_project(ones_sino, 0) subset_slice = proj.subset_slices[subset] sigma_tof = np.full(proj.nLORs[subset], proj.sigma_tof, dtype = ctypes.c_float).ravel() tofcenter_offset = np.zeros(proj.nLORs[subset], dtype = ctypes.c_float).ravel() xstart = proj.xstart[subset_slice].ravel() xend = proj.xend[subset_slice].ravel() img_ravel = img.ravel(order = img_mem_order) subset_nLORs = proj.nLORs[subset] img_fwd = np.zeros(subset_nLORs*proj.ntofbins, dtype = ctypes.c_float) back_img = np.zeros(proj.nvox, dtype = ctypes.c_float) sino = np.ones(subset_nLORs*proj.ntofbins, dtype = ctypes.c_float) #--- time fwd projection t0 = time() if tof: ok = joseph3d_fwd_tof(xstart, xend, img_ravel, proj.img_origin, proj.voxsize, img_fwd, subset_nLORs, proj.img_dim, proj.tofbin_width, sigma_tof, tofcenter_offset, proj.nsigmas, proj.ntofbins, threadsperblock = proj.threadsperblock, ngpus = proj.ngpus, lm = False) else: ok = joseph3d_fwd(xstart, xend, img_ravel, proj.img_origin, proj.voxsize, img_fwd, subset_nLORs, proj.img_dim, threadsperblock = proj.threadsperblock, ngpus = proj.ngpus, lm = False) t1 = time() #--- time back projection t2 = time() if tof: ok = joseph3d_back_tof(xstart, xend, back_img, proj.img_origin, proj.voxsize, sino, subset_nLORs, proj.img_dim, proj.tofbin_width, sigma_tof, tofcenter_offset, proj.nsigmas, proj.ntofbins, threadsperblock = proj.threadsperblock, ngpus = proj.ngpus, lm = False) else: ok = joseph3d_back(xstart, xend, back_img, proj.img_origin, proj.voxsize, sino, subset_nLORs, proj.img_dim, threadsperblock = proj.threadsperblock, ngpus = proj.ngpus, lm = False) t3 = time() print(f'{sdo} {t1-t0} {t3-t2}')
38.379845
99
0.576247
[ "MIT" ]
KrisThielemans/parallelproj
examples/projector_order_test.py
4,951
Python
import asyncio import random import re import textwrap import discord from .. import utils, errors, cmd from ..servermodule import ServerModule, registered from ..enums import PrivilegeLevel @registered class TruthGame(ServerModule): MODULE_NAME = "Truth Game" MODULE_SHORT_DESCRIPTION = "Tools to play *Truth*." RECOMMENDED_CMD_NAMES = ["truth", "troof", "trufe"] _SECRET_TOKEN = utils.SecretToken() _cmdd = {} _HELP_SUMMARY = """ `{modhelp}` - Truth game. """ DEFAULT_SETTINGS = { "enabled channels": [] } _PARTICIPANT_DELIMITER = " --> " _RULES_STRING = textwrap.dedent(""" **Rules for a game of _Truth_**: idk, ask the people playing it. """).strip() async def _initialize(self, resources): self._client = resources.client self._res = resources self._enabled_channels = None self._load_settings() self._res.suppress_autokill(True) return def _load_settings(self): settings = self._res.get_settings(default=self.DEFAULT_SETTINGS) self._enabled_channels = [] try: self._enabled_channels = settings["enabled channels"] if self._enabled_channels is None: print("DEBUGGING: truthgame.py TruthGame._load_settings() enabled channels is None!") self._enabled_channels = [] except KeyError: self._enabled_channels = settings["enabled channels"] = [] self._res.save_settings(settings) return def _save_settings(self): settings = self._res.get_settings() settings["enabled channels"] = self._enabled_channels self._res.save_settings(settings) return @cmd.add(_cmdd, "rules") async def _cmdf_enable(self, substr, msg, privilege_level): """`{cmd}` - View game rules.""" await self._client.send_msg(msg, self._RULES_STRING) return @cmd.add(_cmdd, "newgame", top=True) @cmd.minimum_privilege(PrivilegeLevel.TRUSTED) async def _cmdf_newgame(self, substr, msg, privilege_level): """`{cmd}` - New game.""" channel = msg.channel await self._abort_if_not_truth_channel(channel) await self._new_game(channel) await self._client.send_msg(channel, "Truth game cleared.") return @cmd.add(_cmdd, "in", top=True) async def _cmdf_in(self, substr, msg, privilege_level): """ `{cmd}` - Adds you to the game. This command also allows moderators to add other users and arbitrary strings as participants. **Example:** `{cmd} an elephant` - Adds "an elephant" as a participant. """ channel = msg.channel await self._abort_if_not_truth_channel(channel) new_participant = None if (privilege_level < PrivilegeLevel.MODERATOR) or (len(substr) == 0): new_participant = "<@" + msg.author.id + ">" else: new_participant = substr if self._PARTICIPANT_DELIMITER in new_participant: await self._client.send_msg(channel, "Error: Not allowed to use the delimiter characters.") raise errors.OperationAborted if new_participant in self._get_participants(channel): await self._client.send_msg(channel, "Error: {} is already a participant.".format(new_participant)) else: await self._add_participant(channel, new_participant) await self._client.send_msg(channel, "Added {} to the game.".format(new_participant)) return @cmd.add(_cmdd, "out", top=True) async def _cmdf_out(self, substr, msg, privilege_level): """ `{cmd}` - Removes you from the game. This command also allows moderators to remove other users and arbitrary strings. **Example:** `{cmd} an elephant` - Removes "an elephant" as a participant. """ channel = msg.channel await self._abort_if_not_truth_channel(channel) participant = None if (privilege_level < PrivilegeLevel.MODERATOR) or (len(substr) == 0): participant = "<@" + msg.author.id + ">" else: participant = substr if participant in self._get_participants(channel): await self._remove_participant(channel, participant) await self._client.send_msg(channel, "Removed {} from the game.".format(participant)) else: await self._client.send_msg(channel, "Error: {} is not already a participant.".format(participant)) return @cmd.add(_cmdd, "enablechannel") @cmd.minimum_privilege(PrivilegeLevel.ADMIN) async def _cmdf_enable(self, substr, msg, privilege_level): """`{cmd}` - Enable Truth in this channel.""" channel = msg.channel if channel.id in self._enabled_channels: await self._client.send_msg(channel, "This channel is already a Truth game channel.") else: self._enabled_channels.append(channel.id) self._save_settings() await self._client.send_msg(channel, "This channel is now a Truth game channel.") return @cmd.add(_cmdd, "disablechannel") @cmd.minimum_privilege(PrivilegeLevel.ADMIN) async def _cmdf_disable(self, substr, msg, privilege_level): """`{cmd}` - Disable Truth in this channel.""" channel = msg.channel if channel.id in self._enabled_channels: self._enabled_channels.remove(channel.id) self._save_settings() await self._client.send_msg(channel, "This channel is no longer a Truth game channel.") else: await self._client.send_msg(channel, "This channel is not a Truth game channel.") return @cmd.add(_cmdd, "viewenabled") async def _cmdf_viewenabled(self, substr, msg, privilege_level): """`{cmd}` - View all channels that are enabled as Truth channels.""" buf = None if len(self._enabled_channels) == 0: buf = "No channels have Truth game enabled." else: buf = "**Truth game enabled channels:**" for channel_id in self._enabled_channels: buf += "\n<#{0}> (ID: {0})".format(channel_id) await self._client.send_msg(msg, buf) return # TODO: Edit this to use the topic string abstraction methods. # Currently, it only consideres user mentions to be participants! @cmd.add(_cmdd, "choose", "random", "rand") async def _cmdf_choosetruth(self, substr, msg, privilege_level): """`{cmd}` - Pick a random participant other than yourself.""" topic = msg.channel.topic if topic is None: await self._client.send_msg(msg, "There doesn't appear to be a truth game in here.") raise errors.OperationAborted mentions = utils.get_all_mentions(topic) if len(mentions) == 0: await self._client.send_msg(msg, "There doesn't appear to be a truth game in here.") raise errors.OperationAborted try: mentions.remove(msg.author.id) if len(mentions) == 0: await self._client.send_msg(msg, "<@{}>".format(msg.author.id)) raise errors.OperationAborted except ValueError: pass choice = random.choice(mentions) buf = "<@{}>\n".format(choice) buf += "My choices were: " for mention in mentions: user = self._client.search_for_user(mention, enablenamesearch=False, serverrestriction=self._res.server) if user is None: buf += "<@{}>, ".format(mention) else: buf += "{}, ".format(user.name) buf = buf[:-2] await self._client.send_msg(msg, buf) return ################################ ### TOPIC STRING ABSTRACTION ### ################################ def _get_participants(self, channel): topic = channel.topic if topic is None: return [] return topic.split(self._PARTICIPANT_DELIMITER) # PRECONDITION: participant_str contains printable characters. # PRECONDITION: participant_str does not contain the delimiter. async def _add_participant(self, channel, participant_str): topic = channel.topic new_topic = None if topic == "": new_topic = participant_str else: new_topic = topic + self._PARTICIPANT_DELIMITER + participant_str await self._client.edit_channel(channel, topic=new_topic) return # PRECONDITION: participant_str in self._get_participants(channel) async def _remove_participant(self, channel, participant_str): participants_list = self._get_participants(channel) participants_list.remove(participant_str) new_topic = self._PARTICIPANT_DELIMITER.join(participants_list) await self._client.edit_channel(channel, topic=new_topic) return async def _new_game(self, channel): await self._client.edit_channel(channel, topic="") return ######################## ### GENERAL SERVICES ### ######################## async def _abort_if_not_truth_channel(self, channel): if not channel.id in self._enabled_channels: await self._client.send_msg(channel, "Error: Truth isn't enabled on this channel.") raise errors.OperationAborted return
36.166667
113
0.650099
[ "MIT" ]
simshadows/Discord-mentionbot
mentionbot/servermodules/truthgame.py
9,114
Python
""" Module for all Form Tests. """ import pytest from django.utils.translation import gettext_lazy as _ from my_blog.users.forms import UserCreationForm from my_blog.users.models import User pytestmark = pytest.mark.django_db class TestUserCreationForm: """ Test class for all tests related to the UserCreationForm """ def test_username_validation_error_msg(self, user: User): """ Tests UserCreation Form's unique validator functions correctly by testing: 1) A new user with an existing username cannot be added. 2) Only 1 error is raised by the UserCreation Form 3) The desired error message is raised """ # The user already exists, # hence cannot be created. form = UserCreationForm( { "username": user.username, "password1": user.password, "password2": user.password, } ) assert not form.is_valid() assert len(form.errors) == 1 assert "username" in form.errors assert form.errors["username"][0] == _("This username has already been taken.")
29.075
87
0.628547
[ "MIT" ]
Tanishk-Sharma/my_blog
my_blog/users/tests/test_forms.py
1,163
Python
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ Base operator for SQL to GCS operators. """ import abc import json import warnings from tempfile import NamedTemporaryFile import unicodecsv as csv from airflow.models import BaseOperator from airflow.providers.google.cloud.hooks.gcs import GCSHook from airflow.utils.decorators import apply_defaults class BaseSQLToGCSOperator(BaseOperator, metaclass=abc.ABCMeta): """ :param sql: The SQL to execute. :type sql: str :param bucket: The bucket to upload to. :type bucket: str :param filename: The filename to use as the object name when uploading to Google Cloud Storage. A {} should be specified in the filename to allow the operator to inject file numbers in cases where the file is split due to size. :type filename: str :param schema_filename: If set, the filename to use as the object name when uploading a .json file containing the BigQuery schema fields for the table that was dumped from the database. :type schema_filename: str :param approx_max_file_size_bytes: This operator supports the ability to split large table dumps into multiple files (see notes in the filename param docs above). This param allows developers to specify the file size of the splits. Check https://cloud.google.com/storage/quotas to see the maximum allowed file size for a single object. :type approx_max_file_size_bytes: long :param export_format: Desired format of files to be exported. :type export_format: str :param field_delimiter: The delimiter to be used for CSV files. :type field_delimiter: str :param gzip: Option to compress file for upload (does not apply to schemas). :type gzip: bool :param schema: The schema to use, if any. Should be a list of dict or a str. Pass a string if using Jinja template, otherwise, pass a list of dict. Examples could be seen: https://cloud.google.com/bigquery/docs /schemas#specifying_a_json_schema_file :type schema: str or list :param gcp_conn_id: (Optional) The connection ID used to connect to Google Cloud Platform. :type gcp_conn_id: str :param google_cloud_storage_conn_id: (Deprecated) The connection ID used to connect to Google Cloud Platform. This parameter has been deprecated. You should pass the gcp_conn_id parameter instead. :type google_cloud_storage_conn_id: str :param delegate_to: The account to impersonate, if any. For this to work, the service account making the request must have domain-wide delegation enabled. :param parameters: a parameters dict that is substituted at query runtime. :type parameters: dict """ template_fields = ('sql', 'bucket', 'filename', 'schema_filename', 'schema', 'parameters') template_ext = ('.sql',) ui_color = '#a0e08c' @apply_defaults def __init__(self, # pylint: disable=too-many-arguments sql, bucket, filename, schema_filename=None, approx_max_file_size_bytes=1900000000, export_format='json', field_delimiter=',', gzip=False, schema=None, parameters=None, gcp_conn_id='google_cloud_default', google_cloud_storage_conn_id=None, delegate_to=None, *args, **kwargs): super().__init__(*args, **kwargs) if google_cloud_storage_conn_id: warnings.warn( "The google_cloud_storage_conn_id parameter has been deprecated. You should pass " "the gcp_conn_id parameter.", DeprecationWarning, stacklevel=3) gcp_conn_id = google_cloud_storage_conn_id self.sql = sql self.bucket = bucket self.filename = filename self.schema_filename = schema_filename self.approx_max_file_size_bytes = approx_max_file_size_bytes self.export_format = export_format.lower() self.field_delimiter = field_delimiter self.gzip = gzip self.schema = schema self.parameters = parameters self.gcp_conn_id = gcp_conn_id self.delegate_to = delegate_to self.parameters = parameters def execute(self, context): cursor = self.query() files_to_upload = self._write_local_data_files(cursor) # If a schema is set, create a BQ schema JSON file. if self.schema_filename: files_to_upload.append(self._write_local_schema_file(cursor)) # Flush all files before uploading for tmp_file in files_to_upload: tmp_file['file_handle'].flush() self._upload_to_gcs(files_to_upload) # Close all temp file handles. for tmp_file in files_to_upload: tmp_file['file_handle'].close() def convert_types(self, schema, col_type_dict, row): """Convert values from DBAPI to output-friendly formats.""" return [ self.convert_type(value, col_type_dict.get(name)) for name, value in zip(schema, row) ] def _write_local_data_files(self, cursor): """ Takes a cursor, and writes results to a local file. :return: A dictionary where keys are filenames to be used as object names in GCS, and values are file handles to local files that contain the data for the GCS objects. """ schema = list(map(lambda schema_tuple: schema_tuple[0], cursor.description)) col_type_dict = self._get_col_type_dict() file_no = 0 tmp_file_handle = NamedTemporaryFile(delete=True) if self.export_format == 'csv': file_mime_type = 'text/csv' else: file_mime_type = 'application/json' files_to_upload = [{ 'file_name': self.filename.format(file_no), 'file_handle': tmp_file_handle, 'file_mime_type': file_mime_type }] if self.export_format == 'csv': csv_writer = self._configure_csv_file(tmp_file_handle, schema) for row in cursor: # Convert datetime objects to utc seconds, and decimals to floats. # Convert binary type object to string encoded with base64. row = self.convert_types(schema, col_type_dict, row) if self.export_format == 'csv': csv_writer.writerow(row) else: row_dict = dict(zip(schema, row)) # TODO validate that row isn't > 2MB. BQ enforces a hard row size of 2MB. tmp_file_handle.write(json.dumps(row_dict, sort_keys=True).encode('utf-8')) # Append newline to make dumps BigQuery compatible. tmp_file_handle.write(b'\n') # Stop if the file exceeds the file size limit. if tmp_file_handle.tell() >= self.approx_max_file_size_bytes: file_no += 1 tmp_file_handle = NamedTemporaryFile(delete=True) files_to_upload.append({ 'file_name': self.filename.format(file_no), 'file_handle': tmp_file_handle, 'file_mime_type': file_mime_type }) if self.export_format == 'csv': csv_writer = self._configure_csv_file(tmp_file_handle, schema) return files_to_upload def _configure_csv_file(self, file_handle, schema): """Configure a csv writer with the file_handle and write schema as headers for the new file. """ csv_writer = csv.writer(file_handle, encoding='utf-8', delimiter=self.field_delimiter) csv_writer.writerow(schema) return csv_writer @abc.abstractmethod def query(self): """Execute DBAPI query.""" @abc.abstractmethod def field_to_bigquery(self, field): """Convert a DBAPI field to BigQuery schema format.""" @abc.abstractmethod def convert_type(self, value, schema_type): """Convert a value from DBAPI to output-friendly formats.""" def _get_col_type_dict(self): """ Return a dict of column name and column type based on self.schema if not None. """ schema = [] if isinstance(self.schema, str): schema = json.loads(self.schema) elif isinstance(self.schema, list): schema = self.schema elif self.schema is not None: self.log.warning('Using default schema due to unexpected type.' 'Should be a string or list.') col_type_dict = {} try: col_type_dict = {col['name']: col['type'] for col in schema} except KeyError: self.log.warning('Using default schema due to missing name or type. Please ' 'refer to: https://cloud.google.com/bigquery/docs/schemas' '#specifying_a_json_schema_file') return col_type_dict def _write_local_schema_file(self, cursor): """ Takes a cursor, and writes the BigQuery schema for the results to a local file system. :return: A dictionary where key is a filename to be used as an object name in GCS, and values are file handles to local files that contains the BigQuery schema fields in .json format. """ schema = [self.field_to_bigquery(field) for field in cursor.description] self.log.info('Using schema for %s: %s', self.schema_filename, schema) tmp_schema_file_handle = NamedTemporaryFile(delete=True) tmp_schema_file_handle.write(json.dumps(schema, sort_keys=True).encode('utf-8')) schema_file_to_upload = { 'file_name': self.schema_filename, 'file_handle': tmp_schema_file_handle, 'file_mime_type': 'application/json', } return schema_file_to_upload def _upload_to_gcs(self, files_to_upload): """ Upload all of the file splits (and optionally the schema .json file) to Google Cloud Storage. """ hook = GCSHook( google_cloud_storage_conn_id=self.gcp_conn_id, delegate_to=self.delegate_to) for tmp_file in files_to_upload: hook.upload(self.bucket, tmp_file.get('file_name'), tmp_file.get('file_handle').name, mime_type=tmp_file.get('file_mime_type'), gzip=self.gzip if tmp_file.get('file_name') == self.schema_filename else False)
41.273381
104
0.643891
[ "Apache-2.0" ]
FRI-DAY/airflow
airflow/providers/google/cloud/operators/sql_to_gcs.py
11,474
Python
from shallowflow.api.source import AbstractListOutputSource from shallowflow.api.config import Option class ForLoop(AbstractListOutputSource): """ Outputs an integer from the specified range. """ def description(self): """ Returns a description for the actor. :return: the actor description :rtype: str """ return "Outputs an integer from the specified range." def _define_options(self): """ For configuring the options. """ super()._define_options() self._option_manager.add(Option(name="start", value_type=int, def_value=1, help="The starting value")) self._option_manager.add(Option(name="end", value_type=int, def_value=10, help="The last value (incl)")) self._option_manager.add(Option(name="step", value_type=int, def_value=1, help="The increment between values")) def _get_item_type(self): """ Returns the type of the individual items that get generated, when not outputting a list. :return: the type that gets generated """ return int def setup(self): """ Prepares the actor for use. :return: None if successful, otherwise error message :rtype: str """ result = super().setup() if result is None: if self.get("end") < self.get("start"): result = "End value (%s) must be smaller than start (%d)!" % (self.get("end"), self.get("start")) return result def _do_execute(self): """ Performs the actual execution. :return: None if successful, otherwise error message :rtype: str """ i = self.get("start") step = self.get("step") end = self.get("end") while i <= end: self._output.append(i) i += step return None
30.545455
113
0.556052
[ "MIT" ]
waikato-datamining/shallow-flow
base/src/shallowflow/base/sources/_ForLoop.py
2,016
Python
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import warnings from typing import Callable, Dict, Optional, Sequence, Tuple, Union from google.api_core import grpc_helpers # type: ignore from google.api_core import operations_v1 # type: ignore from google.api_core import gapic_v1 # type: ignore import google.auth # type: ignore from google.auth import credentials as ga_credentials # type: ignore from google.auth.transport.grpc import SslCredentials # type: ignore import grpc # type: ignore from google.cloud.vision_v1p3beta1.types import image_annotator from google.longrunning import operations_pb2 # type: ignore from .base import ImageAnnotatorTransport, DEFAULT_CLIENT_INFO class ImageAnnotatorGrpcTransport(ImageAnnotatorTransport): """gRPC backend transport for ImageAnnotator. Service that performs Google Cloud Vision API detection tasks over client images, such as face, landmark, logo, label, and text detection. The ImageAnnotator service returns detected entities from the images. This class defines the same methods as the primary client, so the primary client can load the underlying transport implementation and call it. It sends protocol buffers over the wire using gRPC (which is built on top of HTTP/2); the ``grpcio`` package must be installed. """ _stubs: Dict[str, Callable] def __init__(self, *, host: str = 'vision.googleapis.com', credentials: ga_credentials.Credentials = None, credentials_file: str = None, scopes: Sequence[str] = None, channel: grpc.Channel = None, api_mtls_endpoint: str = None, client_cert_source: Callable[[], Tuple[bytes, bytes]] = None, ssl_channel_credentials: grpc.ChannelCredentials = None, client_cert_source_for_mtls: Callable[[], Tuple[bytes, bytes]] = None, quota_project_id: Optional[str] = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, always_use_jwt_access: Optional[bool] = False, ) -> None: """Instantiate the transport. Args: host (Optional[str]): The hostname to connect to. credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. This argument is ignored if ``channel`` is provided. credentials_file (Optional[str]): A file with credentials that can be loaded with :func:`google.auth.load_credentials_from_file`. This argument is ignored if ``channel`` is provided. scopes (Optional(Sequence[str])): A list of scopes. This argument is ignored if ``channel`` is provided. channel (Optional[grpc.Channel]): A ``Channel`` instance through which to make calls. api_mtls_endpoint (Optional[str]): Deprecated. The mutual TLS endpoint. If provided, it overrides the ``host`` argument and tries to create a mutual TLS channel with client SSL credentials from ``client_cert_source`` or application default SSL credentials. client_cert_source (Optional[Callable[[], Tuple[bytes, bytes]]]): Deprecated. A callback to provide client SSL certificate bytes and private key bytes, both in PEM format. It is ignored if ``api_mtls_endpoint`` is None. ssl_channel_credentials (grpc.ChannelCredentials): SSL credentials for the grpc channel. It is ignored if ``channel`` is provided. client_cert_source_for_mtls (Optional[Callable[[], Tuple[bytes, bytes]]]): A callback to provide client certificate bytes and private key bytes, both in PEM format. It is used to configure a mutual TLS channel. It is ignored if ``channel`` or ``ssl_channel_credentials`` is provided. quota_project_id (Optional[str]): An optional project to use for billing and quota. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. always_use_jwt_access (Optional[bool]): Whether self signed JWT should be used for service account credentials. Raises: google.auth.exceptions.MutualTLSChannelError: If mutual TLS transport creation failed for any reason. google.api_core.exceptions.DuplicateCredentialArgs: If both ``credentials`` and ``credentials_file`` are passed. """ self._grpc_channel = None self._ssl_channel_credentials = ssl_channel_credentials self._stubs: Dict[str, Callable] = {} self._operations_client = None if api_mtls_endpoint: warnings.warn("api_mtls_endpoint is deprecated", DeprecationWarning) if client_cert_source: warnings.warn("client_cert_source is deprecated", DeprecationWarning) if channel: # Ignore credentials if a channel was passed. credentials = False # If a channel was explicitly provided, set it. self._grpc_channel = channel self._ssl_channel_credentials = None else: if api_mtls_endpoint: host = api_mtls_endpoint # Create SSL credentials with client_cert_source or application # default SSL credentials. if client_cert_source: cert, key = client_cert_source() self._ssl_channel_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) else: self._ssl_channel_credentials = SslCredentials().ssl_credentials else: if client_cert_source_for_mtls and not ssl_channel_credentials: cert, key = client_cert_source_for_mtls() self._ssl_channel_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) # The base transport sets the host, credentials and scopes super().__init__( host=host, credentials=credentials, credentials_file=credentials_file, scopes=scopes, quota_project_id=quota_project_id, client_info=client_info, always_use_jwt_access=always_use_jwt_access, ) if not self._grpc_channel: self._grpc_channel = type(self).create_channel( self._host, credentials=self._credentials, credentials_file=credentials_file, scopes=self._scopes, ssl_credentials=self._ssl_channel_credentials, quota_project_id=quota_project_id, options=[ ("grpc.max_send_message_length", -1), ("grpc.max_receive_message_length", -1), ], ) # Wrap messages. This must be done after self._grpc_channel exists self._prep_wrapped_messages(client_info) @classmethod def create_channel(cls, host: str = 'vision.googleapis.com', credentials: ga_credentials.Credentials = None, credentials_file: str = None, scopes: Optional[Sequence[str]] = None, quota_project_id: Optional[str] = None, **kwargs) -> grpc.Channel: """Create and return a gRPC channel object. Args: host (Optional[str]): The host for the channel to use. credentials (Optional[~.Credentials]): The authorization credentials to attach to requests. These credentials identify this application to the service. If none are specified, the client will attempt to ascertain the credentials from the environment. credentials_file (Optional[str]): A file with credentials that can be loaded with :func:`google.auth.load_credentials_from_file`. This argument is mutually exclusive with credentials. scopes (Optional[Sequence[str]]): A optional list of scopes needed for this service. These are only used when credentials are not specified and are passed to :func:`google.auth.default`. quota_project_id (Optional[str]): An optional project to use for billing and quota. kwargs (Optional[dict]): Keyword arguments, which are passed to the channel creation. Returns: grpc.Channel: A gRPC channel object. Raises: google.api_core.exceptions.DuplicateCredentialArgs: If both ``credentials`` and ``credentials_file`` are passed. """ return grpc_helpers.create_channel( host, credentials=credentials, credentials_file=credentials_file, quota_project_id=quota_project_id, default_scopes=cls.AUTH_SCOPES, scopes=scopes, default_host=cls.DEFAULT_HOST, **kwargs ) @property def grpc_channel(self) -> grpc.Channel: """Return the channel designed to connect to this service. """ return self._grpc_channel @property def operations_client(self) -> operations_v1.OperationsClient: """Create the client designed to process long-running operations. This property caches on the instance; repeated calls return the same client. """ # Sanity check: Only create a new client if we do not already have one. if self._operations_client is None: self._operations_client = operations_v1.OperationsClient( self.grpc_channel ) # Return the client from cache. return self._operations_client @property def batch_annotate_images(self) -> Callable[ [image_annotator.BatchAnnotateImagesRequest], image_annotator.BatchAnnotateImagesResponse]: r"""Return a callable for the batch annotate images method over gRPC. Run image detection and annotation for a batch of images. Returns: Callable[[~.BatchAnnotateImagesRequest], ~.BatchAnnotateImagesResponse]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if 'batch_annotate_images' not in self._stubs: self._stubs['batch_annotate_images'] = self.grpc_channel.unary_unary( '/google.cloud.vision.v1p3beta1.ImageAnnotator/BatchAnnotateImages', request_serializer=image_annotator.BatchAnnotateImagesRequest.serialize, response_deserializer=image_annotator.BatchAnnotateImagesResponse.deserialize, ) return self._stubs['batch_annotate_images'] @property def async_batch_annotate_files(self) -> Callable[ [image_annotator.AsyncBatchAnnotateFilesRequest], operations_pb2.Operation]: r"""Return a callable for the async batch annotate files method over gRPC. Run asynchronous image detection and annotation for a list of generic files, such as PDF files, which may contain multiple pages and multiple images per page. Progress and results can be retrieved through the ``google.longrunning.Operations`` interface. ``Operation.metadata`` contains ``OperationMetadata`` (metadata). ``Operation.response`` contains ``AsyncBatchAnnotateFilesResponse`` (results). Returns: Callable[[~.AsyncBatchAnnotateFilesRequest], ~.Operation]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if 'async_batch_annotate_files' not in self._stubs: self._stubs['async_batch_annotate_files'] = self.grpc_channel.unary_unary( '/google.cloud.vision.v1p3beta1.ImageAnnotator/AsyncBatchAnnotateFiles', request_serializer=image_annotator.AsyncBatchAnnotateFilesRequest.serialize, response_deserializer=operations_pb2.Operation.FromString, ) return self._stubs['async_batch_annotate_files'] def close(self): self.grpc_channel.close() __all__ = ( 'ImageAnnotatorGrpcTransport', )
45.822581
94
0.638226
[ "Apache-2.0" ]
googleapis/googleapis-gen
google/cloud/vision/v1p3beta1/vision-v1p3beta1-py/google/cloud/vision_v1p3beta1/services/image_annotator/transports/grpc.py
14,205
Python
import io import os import random import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from PIL import Image def resize_axis(tensor, axis, new_size, fill_value=0, random_sampling=False): """Truncates or pads a tensor to new_size on on a given axis. Truncate or extend tensor such that tensor.shape[axis] == new_size. If the size increases, the padding will be performed at the end, using fill_value. Args: tensor: The tensor to be resized. axis: An integer representing the dimension to be sliced. new_size: An integer or 0d tensor representing the new value for tensor.shape[axis]. fill_value: Value to use to fill any new entries in the tensor. Will be cast to the type of tensor. Returns: The resized tensor. """ tensor = torch.Tensor(tensor) shape = list(tensor.shape) pad_shape = shape[:] pad_shape[axis] = max(0, new_size - shape[axis]) start = 0 if shape[axis] <= new_size else np.random.randint( shape[axis] - new_size) # random clip old_length = shape[axis] shape[axis] = min(shape[axis], new_size) resized = torch.cat([ torch.index_select(tensor, dim=axis, index=torch.randint(old_length, (new_size,)) ) if start > 0 and random_sampling else torch.narrow(tensor, dim=axis, start=start, length=shape[axis]), torch.Tensor(*pad_shape).fill_(fill_value) ], dim=axis) return resized class CircleLoss(torch.nn.Module): def __init__(self, m=0.25, gamma=256): super(CircleLoss, self).__init__() self.m = m self.gamma = gamma self.loss = torch.nn.CrossEntropyLoss() def forward(self, logits, labels): alpha = torch.clamp_min(logits + self.m, min=0).detach() # an alpha[labels] = torch.clamp_min(-logits[labels] + 1 + self.m, min=0).detach() # ap delta = torch.ones_like(logits, device=logits.device, dtype=logits.dtype) * self.m # delta_n delta[labels] = 1 - self.m # delta_p return self.loss(alpha * (logits - delta) * self.gamma, labels)
37.033333
131
0.633663
[ "Apache-2.0" ]
glee1228/segment_temporal_context_aggregation
utils.py
2,222
Python
from .infinity import INFINITY import json from typing import List, Tuple, Any, Type, Union, TypeVar, Generic, Optional, Dict, cast, Callable T = TypeVar('T') class PageProperty(Generic[T]): """ A class to represent a property that varies depending on the pages of a spectral sequence. This is the main helper class that encapsulates any property of a class, edge, or chart that varies depending on the page. Examples: >>> p = PageProperty(1) >>> p[4] = 7 >>> p[2] 1 >>> p[4] 7 """ def __init__(self, value : T, parent : Optional[Any] = None, callback : Optional[Callable[[], None]] = None, ): """ Initialize the PageProperty to always have value v.""" self._values : List[Tuple[int, T]] = [(0, value)] self.set_parent(parent) self._callback = callback def set_parent(self, parent : Optional[Any]): self._parent = parent def set_callback(self, callback : Callable[[], None]): self._callback = callback def _needs_update(self): if self._parent: self._parent._needs_update() if self._callback: self._callback() def _find_index(self, target_page : int) -> Tuple[int, bool]: result_idx = None for (idx, (page, _)) in enumerate(self._values): if page > target_page: break result_idx = idx # We need to help out the type checker here if result_idx is None: raise ValueError(f"Page Property indexed with negative index: {target_page}") return (result_idx, self._values[result_idx][0] == target_page) def __getitem__(self, x : Union[int, slice]) -> T: stop = None if type(x) == slice: stop = x.stop or INFINITY x = x.start or 0 if type(x) != int: raise TypeError(f"Expected integer, got {type(x).__name__}.") assert type(x) is int # Make type analysis thing happy (idx, _) = self._find_index(x) if stop: (idx2, _) = self._find_index(stop - 1) if idx != idx2: raise ValueError("Indexed with slice but value is inconsistent across slice.") return self._values[idx][1] def __setitem__(self, p : Union[int, slice], v : T) -> None: if hasattr(v, "set_parent"): v.set_parent(self) if type(p) is int: self._setitem_single(p, v) self._merge_redundant() self._needs_update() return if type(p) is not slice: raise TypeError("Excepted int or slice!") start = p.start or 0 stop = p.stop or INFINITY orig_value = self[stop] (start_idx, _) = self._setitem_single(start, v) (end_idx, hit_end) = self._find_index(stop) if not hit_end and stop < INFINITY: (end_idx, _) = self._setitem_single(stop, orig_value) if stop == INFINITY: end_idx += 1 del self._values[start_idx + 1 : end_idx] self._merge_redundant() self._needs_update() def _setitem_single(self, p : int, v : T): (idx, hit) = self._find_index(p) if hit: self._values[idx] = (p, v) else: idx += 1 self._values.insert(idx, (p, v)) return (idx, hit) def _merge_redundant(self): for i in range(len(self._values) - 1, 0, -1): if self._values[i][1] == self._values[i-1][1]: del self._values[i] def __repr__(self) -> str: values = ", ".join([f"{page}: {value}" for (page, value) in self._values]) return f"PageProperty{{{values}}}" def __eq__(self, other): if type(other) != PageProperty: return False return self._values == other._values def map_values_in_place(self, f): for i in range(len(self._values)): (p, v) = self._values[i] self._values[i] = (p, f(v)) def to_json(self) -> Dict[str, Any]: if len(self._values) == 1: return self._values[0][1] else: return {"type" : "PageProperty", "values" : self._values } @staticmethod def from_json(json_obj : Dict[str, Any]) -> "PageProperty[Any]": result : PageProperty[Any] = PageProperty(None) result._values = [cast(Tuple[int, Any], tuple(x)) for x in json_obj["values"]] return result S = TypeVar('S') PagePropertyOrValue = Union[S, PageProperty[S]] def ensure_page_property(v : PagePropertyOrValue[S], parent : Optional[Any] = None) -> PageProperty[S]: if(type(v) is PageProperty): result = v else: result = PageProperty(v) if parent: result.set_parent(parent) return result
34.520548
104
0.547619
[ "Apache-2.0", "MIT" ]
JoeyBF/sseq
chart/chart/python/spectralsequence_chart/page_property.py
5,040
Python
# Generated by Django 2.1.3 on 2018-12-08 05:56 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('staf', '0008_auto_20181207_1525'), ] operations = [ migrations.AddField( model_name='dataset', name='process', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='staf.Process'), ), ]
24.45
123
0.640082
[ "MIT" ]
metabolism-of-cities/ARCHIVED-metabolism-of-cities-platform-v3
src/staf/migrations/0009_dataset_process.py
489
Python
"""about command for osxphotos CLI""" from textwrap import dedent import click from osxphotos._constants import OSXPHOTOS_URL from osxphotos._version import __version__ MIT_LICENSE = """ MIT License Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ APACHE_2_0_LICENSE = """ Apache License Version 2.0, January 2004 http://www.apache.org/licenses/ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 1. Definitions. "License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document. "Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License. "Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity. "You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License. "Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types. "Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below). "Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof. "Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution." "Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work. 2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form. 3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed. 4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions: (a) You must give any other recipients of the Work or Derivative Works a copy of this License; and (b) You must cause any modified files to carry prominent notices stating that You changed the files; and (c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and (d) If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License. 5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions. 6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file. 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License. 8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages. 9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability. END OF TERMS AND CONDITIONS APPENDIX: How to apply the Apache License to your work. To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets "[]" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the appropriate comment syntax for the file format. We also recommend that a file or class name and description of purpose be included on the same "printed page" as the copyright notice for easier identification within third-party archives. Copyright [yyyy] [name of copyright owner] Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ BSD_3_CLAUSE_LICENSE = """ Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ ISC_LICENSE = """ Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. """ LICENSE = dedent( f""" osxphotos is copyright (c) 2019-2022 by Rhet Turnbull and is licensed under the MIT license: {MIT_LICENSE} osxphotos uses the following 3rd party software licensed under the BSD-3-Clause License: Click (Copyright 2014 Pallets), ptpython (Copyright (c) 2015, Jonathan Slenders) {BSD_3_CLAUSE_LICENSE} osxphotos uses the following 3rd party software licensed under the Apache 2.0 License: tenacity (Copyright Julien Danjou) {APACHE_2_0_LICENSE} osxphotos uses the following 3rd part software licensed under the ISC License: xdg (Copyright 2016-2021 Scott Stevenson <[email protected]>) {ISC_LICENSE} """ ) @click.command(name="about") @click.pass_obj @click.pass_context def about(ctx, cli_obj): """Print information about osxphotos including license.""" click.echo_via_pager( f"osxphotos, version {__version__}\n\n" f"Source code available at: {OSXPHOTOS_URL}\n" f"{LICENSE}" )
50.848387
104
0.748588
[ "MIT" ]
oPromessa/osxphotos
osxphotos/cli/about.py
15,763
Python
from abc import ABCMeta, abstractmethod class Book(object, metaclass=ABCMeta): def __init__(self,title,author): self.title=title self.author=author @abstractmethod def display(): pass
27.375
40
0.680365
[ "MIT" ]
SriCharan220800/RomanReigns
13)Abstract classes.py
219
Python
# -*- coding: utf-8 -*- """ Logging for the hubble daemon """ import logging import time import hubblestack.splunklogging # These patterns will not be logged by "conf_publisher" and "emit_to_splunk" PATTERNS_TO_FILTER = ["password", "token", "passphrase", "privkey", "keyid", "s3.key", "splunk_token"] # While hubble doesn't use these, salt modules can, so let's define them anyway SPLUNK = logging.SPLUNK = 25 PROFILE = logging.PROFILE = 15 TRACE = logging.TRACE = 5 GARBAGE = logging.GARBAGE = 1 QUIET = logging.QUIET = 1000 LOG_LEVELS = { 'all': logging.NOTSET, 'debug': logging.DEBUG, 'error': logging.ERROR, 'critical': logging.CRITICAL, 'garbage': GARBAGE, 'info': logging.INFO, 'profile': PROFILE, 'quiet': QUIET, 'trace': TRACE, 'warning': logging.WARNING, } logging.addLevelName(SPLUNK, 'SPLUNK') logging.addLevelName(QUIET, 'QUIET') logging.addLevelName(PROFILE, 'PROFILE') logging.addLevelName(TRACE, 'TRACE') logging.addLevelName(GARBAGE, 'GARBAGE') def _splunk(self, message, *args, **kwargs): if self.isEnabledFor(logging.SPLUNK): self._log(logging.SPLUNK, message, args, **kwargs) def _quiet(self, message, *args, **kwargs): if self.isEnabledFor(logging.QUIET): self._log(logging.QUIET, message, args, **kwargs) def _profile(self, message, *args, **kwargs): if self.isEnabledFor(logging.PROFILE): self._log(logging.PROFILE, message, args, **kwargs) def _trace(self, message, *args, **kwargs): if self.isEnabledFor(logging.TRACE): self._log(logging.TRACE, message, args, **kwargs) def _garbage(self, message, *args, **kwargs): if self.isEnabledFor(logging.GARBAGE): self._log(logging.GARBAGE, message, args, **kwargs) logging.Logger.splunk = _splunk logging.Logger.quiet = _quiet logging.Logger.profile = _profile logging.Logger.trace = _trace logging.Logger.garbage = _garbage SPLUNK_HANDLER = None class MockRecord(object): """ Fake record that mimicks a logging record """ def __init__(self, message, levelname, asctime, name): self.message = message self.levelname = levelname self.asctime = asctime self.name = name # Set up an early log handler for use while we're generating config. # Will be removed when we set up the console or file logger. TEMP_HANDLER = logging.StreamHandler() TEMP_HANDLER.setLevel(logging.INFO) TEMP_HANDLER.setFormatter(logging.Formatter('%(asctime)s %(levelname)s %(name)s: %(message)s')) logging.root.handlers.insert(0, TEMP_HANDLER) def _remove_temp_handler(): """ Remove temporary handler if it exists """ if TEMP_HANDLER and TEMP_HANDLER in logging.root.handlers: logging.root.handlers.remove(TEMP_HANDLER) def setup_console_logger(log_level='error', log_format='%(asctime)s [%(levelname)-5s] %(message)s', date_format='%H:%M:%S'): """ Sets up logging to STDERR, allowing for configurable level, format, and date format. """ _remove_temp_handler() rootlogger = logging.getLogger() handler = logging.StreamHandler() handler.setLevel(LOG_LEVELS.get(log_level, logging.ERROR)) formatter = logging.Formatter(log_format, date_format) handler.setFormatter(formatter) rootlogger.addHandler(handler) def setup_file_logger(log_file, log_level='error', log_format='%(asctime)s,%(msecs)03d [%(levelname)-5s] [%(name)s:%(lineno)d] ' ' %(message)s', date_format='%Y-%m-%d %H:%M:%S', max_bytes=100000000, backup_count=1): """ Sets up logging to a file. By default will auto-rotate those logs every 100MB and keep one backup. """ _remove_temp_handler() rootlogger = logging.getLogger() handler = logging.handlers.RotatingFileHandler(log_file, maxBytes=max_bytes, backupCount=backup_count) handler.setLevel(LOG_LEVELS.get(log_level, logging.ERROR)) formatter = logging.Formatter(log_format, date_format) handler.setFormatter(formatter) rootlogger.addHandler(handler) def setup_splunk_logger(): """ Sets up logging to splunk. """ _remove_temp_handler() rootlogger = logging.getLogger() handler = hubblestack.splunklogging.SplunkHandler() handler.setLevel(logging.SPLUNK) rootlogger.addHandler(handler) global SPLUNK_HANDLER SPLUNK_HANDLER = handler def emit_to_splunk(message, level, name): """ Emit a single message to splunk """ if isinstance(message, (list, dict)): message = filter_logs(message, remove_dots=False) if SPLUNK_HANDLER is None: return False handler = SPLUNK_HANDLER handler.emit(MockRecord(message, level, time.asctime(), name)) return True def workaround_salt_log_handler_queues(): """ Build a fake log handler and add it to LOGGING_STORE_HANDLER and LOGGING_NULL_HANDLER """ class _FakeLogHandler(object): level = 10 count = 0 def handle(self, _record): """ Receive a record and increase the count """ self.count += 1 flh = _FakeLogHandler() import salt.log.setup as sls sls.LOGGING_STORE_HANDLER.sync_with_handlers([flh]) sls.LOGGING_NULL_HANDLER.sync_with_handlers([flh]) # if flh.count > 0: # log.info("pretended to handle %d logging record(s) # for salt.log.setup.LOGGING_*_HANDLER", flh.count) def filter_logs(opts_to_log, remove_dots=True): """ Filters out keys containing certain patterns to avoid sensitive information being sent to logs Works on dictionaries and lists This function was located at extmods/modules/conf_publisher.py previously """ filtered_conf = _remove_sensitive_info(opts_to_log, PATTERNS_TO_FILTER) if remove_dots: for key in filtered_conf.keys(): if '.' in key: filtered_conf[key.replace('.', '_')] = filtered_conf.pop(key) return filtered_conf def _remove_sensitive_info(obj, patterns_to_filter): """ Filter known sensitive info """ if isinstance(obj, dict): obj = { key: _remove_sensitive_info(value, patterns_to_filter) for key, value in obj.items() if not any(patt in key for patt in patterns_to_filter)} elif isinstance(obj, list): obj = [_remove_sensitive_info(item, patterns_to_filter) for item in obj] return obj
28.943231
99
0.664152
[ "Apache-2.0" ]
instructure/hubble
hubblestack/log.py
6,628
Python
import os class ConfigParams: def __init__(self,configPath): self.env_dist = os.environ #权限验证 self.api_key = "" # userID = "" # ip = "0.0.0.0" #模型相关存放根目录 self.modelPath = os.path.join(os.getcwd(),"model") cpuCores = 0 threads = 2 port = 33388 batchSize = 10 #每个算法使用的GPU数量 self.GPUDevices = 1 topK = 80 featureSize = 512 zmqthreads = 2 self.CPU = 0 self.zmqAddr = "tcp://{}:5560".format(self.env_dist["ZMQ_ADDR"]) if "ZMQ_ADDR" in self.env_dist else "tcp://127.0.0.1:5570" print(str(self.zmqAddr)) self.helmet_ids = self.parseAI("HELMET") if "HELMET" in self.env_dist else [] self.pose_ids = self.parseAI("POSE") if "POSE" in self.env_dist else [] self.track_coal_ids = self.parseAI("TRACK_COAL") if "TRACK_COAL" in self.env_dist else [] self.smoke_phone_ids = self.parseAI("SMOKEPHONE") if "SMOKEPHONE" in self.env_dist else [] # self.helmet_ids = [1,1,1] # self.pose_ids = [] # self.track_coal_ids = [] # self.smoke_phone_ids = [] def loadConfig(self,configPath): pass def generateDefaultConfig(self,configPath): pass def initEasylogging(self,logConfig): pass def printParams(self): print("run configParams function printParams") pass def parseAI(self,key): ai_ids = [] for i in self.env_dist[key].split(','): ai_ids.append(int(i)) return ai_ids
26.3
131
0.576046
[ "MIT" ]
MistSun-Chen/py_verifier
common/configParams.py
1,622
Python
import sys, gzip, logging from .in_util import TimeReport, detectFileChrom, extendFileList, dumpReader #======================================== # Schema for AStorage #======================================== _TRASCRIPT_PROPERTIES = [ {"name": "Ensembl_geneid", "tp": "str", "opt": "repeat"}, {"name": "Ensembl_transcriptid", "tp": "str", "opt": "repeat"}, {"name": "Ensembl_proteinid", "tp": "str", "opt": "repeat"}, {"name": "refcodon", "tp": "str", "opt": "repeat"}, {"name": "codonpos", "tp": "str", "opt": "repeat"}, {"name": "FATHMM_score", "tp": "num"}, {"name": "FATHMM_pred", "tp": "str", "opt": "dict"}, {"name": "GENCODE_basic", "tp": "str"}, {"name": "HGVSc_ANNOVAR", "tp": "str"}, {"name": "HGVSp_ANNOVAR", "tp": "str"}, {"name": "HGVSc_snpEff", "tp": "str"}, {"name": "HGVSp_snpEff", "tp": "str"}, {"name": "MPC_score", "tp": "num"}, {"name": "MutationTaster_score", "tp": "num"}, {"name": "MutationAssessor_pred", "tp": "str", "opt": "dict"}, {"name": "Polyphen2_HDIV_score", "tp": "num"}, {"name": "Polyphen2_HDIV_pred", "tp": "str", "opt": "dict"}, {"name": "Polyphen2_HVAR_score", "tp": "num"}, {"name": "Polyphen2_HVAR_pred", "tp": "str", "opt": "dict"}, {"name": "SIFT_score", "tp": "num"}, {"name": "SIFT_pred", "tp": "str", "opt": "dict"}, {"name": "SIFT4G_score", "tp": "num"}, {"name": "SIFT4G_pred", "tp": "str", "opt": "dict"}, {"name": "Uniprot_acc", "tp": "str"} ] #=============================================== _FACETS_PROPERTIES = [ {"name": "MetaLR_score", "tp": "num"}, {"name": "MetaLR_rankscore", "tp": "num"}, {"name": "MetaLR_pred", "opt": "dict", "tp": "str"}, {"name": "MutPred_score", "tp": "str"}, {"name": "MutPred_rankscore", "tp": "num"}, {"name": "MutPred_protID", "tp": "str"}, {"name": "MutPred_AAchange", "tp": "str"}, {"name": "MutPred_Top5features", "tp": "str"}, {"name": "MPC_rankscore", "tp": "num"}, {"name": "PrimateAI_score", "tp": "num"}, {"name": "PrimateAI_rankscore", "tp": "num"}, {"name": "REVEL_score", "tp": "num"}, {"name": "SIFT4G_converted_rankscore", "tp": "num"}, { "name": "transcripts", "tp": "list", "item": { "tp": "dict", "items": _TRASCRIPT_PROPERTIES } } ] #=============================================== _VARIANT_PROPERTIES = [ {"name": "ALT", "tp": "str", "opt": "gene"}, {"name": "REF", "tp": "str", "opt": "gene"}, {"name": "CADD_raw", "tp": "num"}, {"name": "CADD_phred", "tp": "num"}, {"name": "DANN_score", "tp": "num"}, {"name": "DANN_rankscore", "tp": "num"}, {"name": "Eigen_raw_coding", "tp": "num"}, {"name": "Eigen_raw_coding_rankscore", "tp": "num"}, {"name": "Eigen_phred_coding", "tp": "num"}, {"name": "Eigen_PC_raw_coding", "tp": "num"}, {"name": "Eigen_PC_raw_coding_rankscore", "tp": "num"}, {"name": "Eigen_PC_phred_coding", "tp": "num"}, {"name": "GTEx_V7_gene", "tp": "str", "opt": "repeat"}, {"name": "GTEx_V7_tissue", "tp": "str"}, {"name": "MutationTaster_score", "tp": "str"}, {"name": "MutationTaster_pred", "tp": "str"}, {"name": "PrimateAI_pred", "tp": "str", "opt": "dict"}, {"name": "Geuvadis_eQTL_target_gene", "tp": "str"}, { "name": "facets", "tp": "list", "item": { "tp": "dict", "items": _FACETS_PROPERTIES } } ] #=============================================== SCHEMA_DBNSFP_4 = { "name": "DBNSFP", "key": "hg38", "io": { "block-type": "page-cluster", "max-var-count": 50 }, "filter-list": {"ref": "REF", "alt": "ALT"}, "top": { "tp": "list", "item": { "tp": "dict", "items": _VARIANT_PROPERTIES } } } #======================================== # Ingest logic #======================================== VARIANT_TAB = [ ["REF", str], ["ALT", str], ["MutationTaster_score", str], ["MutationTaster_pred", str], ["PrimateAI_pred", str], ["CADD_raw", float], ["CADD_phred", float], ["DANN_score", float], ["DANN_rankscore", float], ["Eigen_raw_coding", float], ["Eigen_raw_coding_rankscore", float], ["Eigen_phred_coding", float], ["Eigen_PC_raw_coding", float], ["Eigen_PC_raw_coding_rankscore", float], ["Eigen_PC_phred_coding", float], ["GTEx_V7_gene", str], ["GTEx_V7_tissue", str], ["Geuvadis_eQTL_target_gene", str] ] #======================================== FACET_TAB = [ ["refcodon", str], ["codonpos", str], ["SIFT4G_converted_rankscore", float], ["MetaLR_score", float], ["MetaLR_rankscore", float], ["MetaLR_pred", str], ["REVEL_score", float], ["MutPred_score", str], ["MutPred_rankscore", float], ["MutPred_protID", str], ["MutPred_AAchange", str], ["MutPred_Top5features", str], ["MPC_rankscore", float], ["PrimateAI_score", float], ["PrimateAI_rankscore", float] ] #======================================== TRANSCRIPT_TAB = [ ["Ensembl_geneid", str], ["Ensembl_transcriptid", str], ["Ensembl_proteinid", str], ["Uniprot_acc", str], ["HGVSc_ANNOVAR", str], ["HGVSp_ANNOVAR", str], ["HGVSc_snpEff", str], ["HGVSp_snpEff", str], ["GENCODE_basic", str], ["SIFT_score", float], ["SIFT_pred", str], ["SIFT4G_score", float], ["SIFT4G_pred", str], ["Polyphen2_HDIV_score", float], ["Polyphen2_HDIV_pred", str], ["Polyphen2_HVAR_score", float], ["Polyphen2_HVAR_pred", str], ["MutationAssessor_score", float], ["MutationAssessor_pred", str], ["FATHMM_score", float], ["FATHMM_pred", str], ["MPC_score", float] ] ALL_TABS = [VARIANT_TAB, FACET_TAB, TRANSCRIPT_TAB] #======================================== FLD_NAME_MAP = { "ref": "REF", "alt": "ALT", "Eigen_pred_coding": "Eigen_phred_coding" } def _normFieldName(name): global FLD_NAME_MAP name = name.replace('-', '_') return FLD_NAME_MAP.get(name, name) #======================================== def setupFields(field_line): global ALL_TABS, FLD_NAME_MAP assert field_line.startswith('#') field_names = field_line[1:].split() assert field_names[0].startswith("chr") assert field_names[1].startswith("pos") fields_idxs = {_normFieldName(name): idx for idx, name in enumerate(field_names)} errors = 0 for tab in ALL_TABS: for field_info in tab: idx = fields_idxs.get(field_info[0]) if idx is None: errors += 1 logging.error("No field registered: %s" % field_info[0]) else: if len(field_info) == 2: field_info.append(idx) else: field_info[2] = idx if errors > 0: logging.info("Available fields:\n=====\n" + "\n".join(sorted(fields_idxs.keys()))) assert errors == 0 #======================================== def iterFields(fields, properties_tab): for name, tp, idx in properties_tab: val = fields[idx] if val == '.': yield name, None else: yield name, tp(val) def iterDeepFields(fields, properties_tab): for name, tp, idx in properties_tab: val_seq = [] for val in fields[idx].split(';'): if val == '.': val_seq.append(None) else: val_seq.append(tp(val)) yield name, val_seq #======================================== class DataCollector: def __init__(self): self.mCounts = [0, 0, 0] self.mCurRecord = None def getCounts(self): return self.mCounts def ingestLine(self, line): global VARIANT_TAB, FACET_TAB, TRANSCRIPT_TAB if line.endswith('\n'): line = line[:-1] fields = line.split('\t') chrom = "chr" + str(fields[0]) pos = int(fields[1]) new_record = False if self.mCurRecord is None or (chrom, pos) != self.mCurRecord[0]: new_record = True new_variant = new_record var_data = dict() for name, val in iterFields(fields, VARIANT_TAB): var_data[name] = val if not new_variant and val != self.mCurRecord[1][-1][name]: new_variant = True facet_data = {name: val for name, val in iterFields(fields, FACET_TAB)} tr_data_seq = None for name, val_seq in iterDeepFields(fields, TRANSCRIPT_TAB): if tr_data_seq is None: tr_data_seq = [{name: val} for val in val_seq] else: for idx, val in enumerate(val_seq): tr_data_seq[idx][name] = val if tr_data_seq is None: tr_data_seq = [] facet_data["transcripts"] = tr_data_seq self.mCounts[2] += len(tr_data_seq) self.mCounts[1] += 1 ret = None if new_record: self.mCounts[0] += 1 var_data["facets"] = [facet_data] ret, self.mCurRecord = self.mCurRecord, [(chrom, pos), [var_data]] elif new_variant: self.mCounts[0] += 1 var_data["facets"] = [facet_data] self.mCurRecord[1].append(var_data) else: self.mCurRecord[1][-1]["facets"].append(facet_data) return ret def finishUp(self): return self.mCurRecord #======================================== #======================================== class ReaderDBNSFP4: def __init__(self, file_list, chrom_loc = "chr"): self.mFiles = extendFileList(file_list) self.mChromLoc = chrom_loc def read(self): exceptions = 0 for chrom_file in self.mFiles: chrom = detectFileChrom(chrom_file, self.mChromLoc) logging.info("Evaluation of %s in %s" % (chrom, chrom_file)) with gzip.open(chrom_file, 'rt') as text_inp: time_rep = TimeReport("chr" + chrom) collector = DataCollector() for line_no, line in enumerate(text_inp): if line_no == 0: setupFields(line) continue try: info = collector.ingestLine(line) if info is not None: yield info if (line_no % 10000) == 0: total_var, _, _ = collector.getCounts() time_rep.portion(total_var) except IndexError: exceptions += 1 info = collector.finishUp() if info: yield info total_var, total_facets, total_tr = collector.getCounts() time_rep.done(total_var) logging.info("transcripts: %d, facets: %d, exceptions: %d" % (total_tr, total_facets, exceptions)) #======================================== def reader_dbNSFP4(properties, schema_h = None): return ReaderDBNSFP4( properties["file_list"], properties.get("chrom_loc", "chr")) #======================================== if __name__ == '__main__': logging.root.setLevel(logging.INFO) reader = reader_dbNSFP4({"file_list": sys.argv[1]}) dumpReader(reader)
37.005848
78
0.459387
[ "Apache-2.0" ]
ForomePlatform/Anfisa-Annotations
a_storage/ingest/in_dbnsfp4.py
12,656
Python
# Source: https://gist.github.com/redknightlois/c4023d393eb8f92bb44b2ab582d7ec20 from torch.optim.optimizer import Optimizer import torch import math class Ralamb(Optimizer): def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-4): defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) self.buffer = [[None, None, None] for ind in range(10)] super(Ralamb, self).__init__(params, defaults) def step(self, closure=None): loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data.float() if grad.is_sparse: raise RuntimeError('Ralamb does not support sparse gradients') p_data_fp32 = p.data.float() state = self.state[p] if len(state) == 0: state['step'] = 0 state['exp_avg'] = torch.zeros_like(p_data_fp32) state['exp_avg_sq'] = torch.zeros_like(p_data_fp32) else: state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32) state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_data_fp32) exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] beta1, beta2 = group['betas'] # Decay the first and second moment running average coefficient # m_t exp_avg.mul_(beta1).add_(1 - beta1, grad) # v_t exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) state['step'] += 1 buffered = self.buffer[int(state['step'] % 10)] if state['step'] == buffered[0]: N_sma, radam_step_size = buffered[1], buffered[2] else: buffered[0] = state['step'] beta2_t = beta2 ** state['step'] N_sma_max = 2 / (1 - beta2) - 1 N_sma = N_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t) buffered[1] = N_sma # more conservative since it's an approximated value if N_sma >= 5: radam_step_size = group['lr'] * math.sqrt((1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (N_sma - 2) / N_sma * N_sma_max / (N_sma_max - 2)) / (1 - beta1 ** state['step']) else: radam_step_size = group['lr'] / (1 - beta1 ** state['step']) buffered[2] = radam_step_size if group['weight_decay'] != 0: p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32) # more conservative since it's an approximated value radam_step = p_data_fp32.clone() if N_sma >= 5: denom = exp_avg_sq.sqrt().add_(group['eps']) radam_step.addcdiv_(-radam_step_size, exp_avg, denom) else: radam_step.add_(-radam_step_size, exp_avg) radam_norm = radam_step.pow(2).sum().sqrt() weight_norm = p.data.pow(2).sum().sqrt().clamp(0, 10) if 0 in (weight_norm, radam_norm): trust_ratio = 1 else: trust_ratio = weight_norm / radam_norm state['weight_norm'] = weight_norm state['adam_norm'] = radam_norm state['trust_ratio'] = trust_ratio if N_sma >= 5: p_data_fp32.addcdiv_(-radam_step_size * trust_ratio, exp_avg, denom) else: p_data_fp32.add_(-radam_step_size * trust_ratio, exp_avg) p.data.copy_(p_data_fp32) return loss
40.191919
195
0.508922
[ "MIT" ]
achaiah/pywick
pywick/optimizers/ralamb.py
3,979
Python
import sys import json import hashlib import gc from operator import * import shlex from pyspark import StorageLevel from pyspark.sql import SQLContext from pyspark.sql.functions import * from pyspark.sql.types import * import numpy as np from subjectivity_clues import clues def expect(name, var, expected, op=eq): if op(var, expected): log('[checkpoint] {} = {}'.format(name, expected)) else: log('[error] {} = {}'.format(name, expected)) raise Exception(name) def log(message): log_file = 'sample_subjectivity_tweets.log' with open(log_file, 'a') as f: f.write(message) f.write('\n') f.flush() f.close() print message def to_json(name, jsons): filename = '{}.json'.format(name) with open(filename, 'w') as f: for j in jsons: f.write(j) f.write('\n') def to_csv(name, jsons): filename = '{}.csv'.format(name) with open(filename, 'w') as f: for tweet in jsons: t = json.loads(tweet) body = t['body'].replace('\n', ' ').replace('\r', '').replace('"', '""') f.write('"{}",{},{},"{}"\n'.format(t['id'], t['verb'], t['postedTime'], body)) def sample(rdd, size, seed): items = rdd.collect() rand = np.random.RandomState(seed) sampled = rand.choice(items, size=size, replace=False) expect('sampled', len(set(sampled)), size) return sampled.tolist() def sha(name, ext='json'): BUF_SIZE = 65536 filename = '{}.{}'.format(name, ext) sha1 = hashlib.sha1() with open(filename, 'rb') as f: while True: data = f.read(BUF_SIZE) if not data: break sha1.update(data) return sha1.hexdigest() def read_and_parse_clues(): DEFAULT_FILENAME = os.getcwd() + os.sep + 'subjectivity_clues' + os.sep + 'subjclueslen1-HLTEMNLP05.tff' lines = None with open(DEFAULT_FILENAME, 'r') as f: lines = f.readlines() clues = dict() for l in lines: clue = dict(token.split('=') for token in shlex.split(l)) word = clue['word1'] clues[word] = clue return clues def calculate_relevant(lexicons, sentence): PRIORPOLARITY = { 'positive': 1, 'negative': -1, 'both': 0, 'neutral': 0 } TYPE = { 'strongsubj': 2, 'weaksubj': 1 } total_score = 0 for w in sentence.split(' '): if w not in lexicons.keys(): continue total_score += PRIORPOLARITY[lexicons[w]['priorpolarity']] * TYPE[lexicons[w]['type']] return total_score # Make sure Python uses UTF-8 as tweets contains emoticon and unicode reload(sys) sys.setdefaultencoding('utf-8') # Use SQLContext for better support sqlContext = SQLContext(sc) # Define storage level DISK_ONLY_2 = StorageLevel(True, False, False, False, 2) MEMORY_AND_DISK = StorageLevel(True, True, False, False, 1) # Read GNIP's JSON file directory = "tweets" datasets = sqlContext.read.json(directory) log('# Completed reading JSON files') # Check checksum count file_count = datasets.where(datasets['verb'].isNull()).count() expect('file_count', file_count, 21888) # Check post count all_posts = datasets.where(datasets['verb'] == 'post') all_posts_count = all_posts.count() expect('all_posts_count', all_posts_count, 1570398) # Check share count all_shares = datasets.where(datasets['verb'] == 'share') all_shares_count = all_shares.count() expect('all_shares_count', all_shares_count, 1112590) # Check dataset count info_dataset = datasets.select('info') info_dataset.registerTempTable('info') all_tweets_count = info_dataset.select('info.activity_count').groupBy().sum('activity_count').collect()[0][0] expect('all_tweets_count', all_tweets_count, 2682988) expect('all_tweets_count', all_tweets_count, all_posts_count + all_shares_count) log('# Completed validating tweets count') # Remove post authored by @ChipotleTweet and news agencies chipotle_tweet = 'id:twitter.com:141341662' users_to_remove = [chipotle_tweet, 'id:twitter.com:759251', 'id:twitter.com:91478624', 'id:twitter.com:28785486', 'id:twitter.com:1652541', 'id:twitter.com:51241574', 'id:twitter.com:807095', 'id:twitter.com:34713362', 'id:twitter.com:3090733766', 'id:twitter.com:1367531', 'id:twitter.com:14293310', 'id:twitter.com:3108351', 'id:twitter.com:14173315', 'id:twitter.com:292777349', 'id:twitter.com:428333', 'id:twitter.com:624413', 'id:twitter.com:20562637', 'id:twitter.com:13918492', 'id:twitter.com:16184358', 'id:twitter.com:625697849', 'id:twitter.com:2467791', 'id:twitter.com:9763482', 'id:twitter.com:14511951', 'id:twitter.com:6017542', 'id:twitter.com:26574283', 'id:twitter.com:115754870'] all_posts_wo_specific_users = all_posts.where(~ col('actor.id').isin(users_to_remove)) all_posts_w_specific_users = all_posts.where(col('actor.id').isin(users_to_remove)).count() expect('all_posts_wo_specific_users', all_posts_wo_specific_users.count(), all_posts_count - all_posts_w_specific_users) # Remove share retweet of tweet by @ChipotleTweet and news agencies all_shares_wo_specific_users = all_shares.where(~ col('object.actor.id').isin(users_to_remove)) all_shares_w_specific_users = all_shares.where(col('object.actor.id').isin(users_to_remove)).count() expect('all_shares_wo_specific_users', all_shares_wo_specific_users.count(), all_shares_count - all_shares_w_specific_users) # Generate tweets pool with only English tweet tweets_pool = all_posts_wo_specific_users.unionAll(all_shares_wo_specific_users).filter("twitter_lang = 'en'") tweets_pool.persist(MEMORY_AND_DISK) tweets_pool_count = tweets_pool.count() # Adding all post to all share will be greater than tweet pool because of non-English tweet expected_tweets_pool_count = all_posts_count - all_posts_w_specific_users + \ all_shares_count - all_shares_w_specific_users expect('tweets_pool_count', tweets_pool_count, expected_tweets_pool_count, op=lt) log('# Completed constructing tweets pool') # Check language of tweets languages = tweets_pool.select('twitter_lang').distinct() languages_count = languages.count() language_check = languages.first()['twitter_lang'] expect('languages_count', languages_count, 1) expect('language_check', language_check, 'en') log('# Completed validating language variety') # Take top 80% of tweets by length tweets_pool_str_lengths = tweets_pool.select(length('body').alias('length')).rdd.map(lambda x: x.length).collect() lengths_np = np.array(tweets_pool_str_lengths) p = np.percentile(lengths_np, 20) final_tweets_pool = tweets_pool.filter(length('body') >= p) final_tweets_pool.persist(MEMORY_AND_DISK) tweets_pool.unpersist(blocking=True) final_tweets_pool_count = final_tweets_pool.count() percentage_kept = float(final_tweets_pool_count) / tweets_pool_count expect('percentage_kept', percentage_kept, 0.8, op=gt) log('# Completed sampling top 80% of tweets by body length') # Sampling final_tweets_ids = final_tweets_pool.select(final_tweets_pool['id']).rdd.sortBy(lambda x: x.id).map(lambda x: x.id) # Development tweets dev_seed = 10102016 number_of_dev_samples = 3000 dev_posts = sample(final_tweets_ids, number_of_dev_samples, dev_seed) dev_posts_count = len(dev_posts) expect('dev_posts_count', dev_posts_count, number_of_dev_samples) log('# Completed sampling dev tweets') dev_posts_file = "dev_posts" dev_posts_jsons = final_tweets_pool[final_tweets_pool['id'].isin(dev_posts)].toJSON().collect() to_json(dev_posts_file, dev_posts_jsons) to_csv(dev_posts_file, dev_posts_jsons) expect('dev_posts_file', sha(dev_posts_file), '74447296831c8e3061fc0ee739f549c5b08b85a3') expect('dev_posts_file', sha(dev_posts_file, ext='csv'), '6acfd1f8d238bc5d25d97d2c9e6f6b177699389a') log('Exporting dev post to {}'.format(dev_posts_file)) log('# Completed exporting dev tweets') del dev_posts_jsons gc.collect() # Find distinct set of tweets (unique body text) post_pool = final_tweets_pool.where(final_tweets_pool['verb'] == 'post') post_pool.persist(MEMORY_AND_DISK) post_pool_ids = post_pool.select(post_pool['id']).rdd.sortBy(lambda x: x.id).map(lambda x: x.id).collect() expect('post_pool', post_pool.count(), 1124935) share_pool = final_tweets_pool.where(final_tweets_pool['verb'] == 'share') share_pool.persist(MEMORY_AND_DISK) expect('share_pool', share_pool.count(), 846141) broadcast_post_ids = sc.broadcast(set(post_pool_ids)) unique_share_ids = share_pool.select(share_pool['id'], share_pool['object.id'].alias('object_id')).rdd.filter(lambda row: row['object_id'] not in broadcast_post_ids.value).map(lambda row: row.id).collect() expect('unique_share_pool', len(unique_share_ids), 193006) log('# Completed finding unique share tweet') # Constructing distinct tweet pool broadcast_unique_share_ids = sc.broadcast(unique_share_ids) distinct_tweets_pool = final_tweets_pool.\ select(final_tweets_pool['id'], final_tweets_pool['body']).\ rdd.\ filter(lambda row: row['id'] in broadcast_post_ids.value or row['id'] in broadcast_unique_share_ids.value) distinct_tweets_pool.persist(MEMORY_AND_DISK) distinct_tweets_count = distinct_tweets_pool.count() expect('distinct_tweets_pool', distinct_tweets_count, 1124935 + 193006) # Exclude development tweets tweets_unsampled = distinct_tweets_pool.toDF().where(~ col('id').isin(dev_posts)) tweets_unsampled.persist(MEMORY_AND_DISK) tweets_unsampled_count = tweets_unsampled.count() # no. of dev intersect post pool: 1718, no. of share dev intersect unique share pool: 293 expect('tweets_unsampled', tweets_unsampled_count, 1124935 + 193006 - 1718 - 293) log('# Completed constructing unsampled tweets') # Calculate subjectivity lexicons = read_and_parse_clues() udfBodyToRelevant = udf(lambda body: calculate_relevant(lexicons, body), IntegerType()) tweets_lexicon = tweets_unsampled.withColumn('score', udfBodyToRelevant('body')) tweets_lexicon.persist(MEMORY_AND_DISK) log('# Completed constructing tweet lexicon') # Take top and bottom number_of_tweets_each = 1500 positive_tweets = tweets_lexicon.orderBy(desc('score')).take(number_of_tweets_each) negative_tweets = tweets_lexicon.orderBy(asc('score')).take(number_of_tweets_each) # Cut top and bottom via score for more deterministic sampling min_positive_score = positive_tweets[-1]['score'] min_negative_score = negative_tweets[-1]['score'] expect('min_positive_score', min_positive_score, 7) expect('min_negative_score', min_negative_score, -5) positive_tweets = tweets_lexicon.filter('score > {}'.format(min_positive_score - 1)).orderBy(desc('score')).collect() expect('positive_tweets', len(positive_tweets), 2012) negative_tweets = tweets_lexicon.filter('score < {}'.format(min_negative_score + 1)).orderBy(asc('score')).collect() expect('positive_tweets', len(negative_tweets), 1715) positive_tweet_file = "positive_tweets" positive_tweets_ids = map(lambda t: t['id'], positive_tweets) positive_tweet_jsons = final_tweets_pool[final_tweets_pool['id'].isin(positive_tweets_ids)].toJSON().collect() to_json(positive_tweet_file, positive_tweet_jsons) to_csv(positive_tweet_file, positive_tweet_jsons) log('Exporting positive tweets to {}'.format(positive_tweet_file)) log('# Completed exporting positive tweets') expect('positive_tweet_file', sha(positive_tweet_file), 'cb2f8b691ccf3eae9846c67735f413a49befea28') expect('positive_tweet_file', sha(positive_tweet_file, ext='csv'), 'd3d43ab4e03fdf106b9191f4e0161cfcde3f040e') negative_tweet_file = "negative_tweets" negative_tweet_ids = map(lambda t: t['id'], negative_tweets) negative_tweet_jsons = final_tweets_pool[final_tweets_pool['id'].isin(negative_tweet_ids)].toJSON().collect() to_json(negative_tweet_file, negative_tweet_jsons) to_csv(negative_tweet_file, negative_tweet_jsons) log('Exporting negative tweets to {}'.format(negative_tweet_file)) log('# Completed exporting negative tweets') expect('negative_tweet_file', sha(negative_tweet_file), '086c43427078092e538a779b8b06a71341b8da48') expect('negative_tweet_file', sha(negative_tweet_file, ext='csv'), 'd10a1a95156c28d844e9c4e668d766963c0636a4')
39.711039
205
0.739024
[ "Apache-2.0" ]
chuajiesheng/twitter-sentiment-analysis
step_2/scripts/sample_subjectivity_tweets.py
12,231
Python
import os import sys from setuptools import find_packages, setup IS_RTD = os.environ.get("READTHEDOCS", None) version = "0.4.0b14.dev0" long_description = open(os.path.join(os.path.dirname(__file__), "README.rst")).read() install_requires = [ "morepath==0.19", "alembic", "rulez>=0.1.4,<0.2.0", "inverter>=0.1.0<0.2.0", "more.cors", "celery", "redis", "jsl", "pyyaml>=4.2b1", "more.jsonschema", "sqlalchemy", "sqlalchemy_utils", "more.signals", "DateTime", "transitions", "jsonpath_ng", "python-dateutil", "more.jwtauth", "more.itsdangerous", "sqlsoup", "celery", "gunicorn", "itsdangerous", "pyyaml", "passlib", "jsonschema", "more.transaction", "zope.sqlalchemy", "python-dateutil", "more.cors", "sqlalchemy_jsonfield", "sqlsoup", "celery", "gunicorn", "itsdangerous", "pyyaml", "passlib", "jsonschema", "more.transaction", "zope.sqlalchemy", "more.basicauth", "cryptography", "elasticsearch>7.0.0,<8.0.0", "pamela", "click", "cookiecutter", "eventlet", "wsgigzip", "psycopg2", "colander", "deform", "more.chameleon", "more.static", "RestrictedPython", "beaker", "zstandard", "oauthlib[signedtoken]", "requests-oauthlib", ] if IS_RTD is None: install_requires.append("python-ldap") setup( name="morpfw", version=version, description="Web framework based on morepath", long_description=long_description, classifiers=[], # Get strings from http://pypi.python.org/pypi?%3Aaction=list_classifiers keywords="", author="Izhar Firdaus", author_email="[email protected]", url="http://github.com/morpframework/morpfw", license="Apache-2.0", packages=find_packages(exclude=["ez_setup", "examples", "tests"]), include_package_data=True, zip_safe=False, install_requires=install_requires, extras_require={ "test": [ "nose", "webtest", "pytest", "pytest-html", "pytest_postgresql", "pytest_rabbitmq", "pytest-annotate", "pytest-cov", "pika", "mirakuru", ], "docs": ["sphinxcontrib-httpdomain", "sphinx-click"], }, entry_points={ "morepath": ["scan=morpfw"], "console_scripts": [ "morpfw=morpfw.cli.main:main", "mfw-runmodule=morpfw.cli:run_module", "mfw-profilemodule=morpfw.cli:run_module_profile", ], }, )
22.782609
94
0.579771
[ "Apache-2.0" ]
morpframework/morpfw
setup.py
2,620
Python
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class UpdateHistoryProperty(Model): """An update history of the ImmutabilityPolicy of a blob container. Variables are only populated by the server, and will be ignored when sending a request. :ivar update: The ImmutabilityPolicy update type of a blob container, possible values include: put, lock and extend. Possible values include: 'put', 'lock', 'extend' :vartype update: str or ~azure.mgmt.storage.v2018_11_01.models.ImmutabilityPolicyUpdateType :ivar immutability_period_since_creation_in_days: The immutability period for the blobs in the container since the policy creation, in days. :vartype immutability_period_since_creation_in_days: int :ivar timestamp: Returns the date and time the ImmutabilityPolicy was updated. :vartype timestamp: datetime :ivar object_identifier: Returns the Object ID of the user who updated the ImmutabilityPolicy. :vartype object_identifier: str :ivar tenant_id: Returns the Tenant ID that issued the token for the user who updated the ImmutabilityPolicy. :vartype tenant_id: str :ivar upn: Returns the User Principal Name of the user who updated the ImmutabilityPolicy. :vartype upn: str """ _validation = { 'update': {'readonly': True}, 'immutability_period_since_creation_in_days': {'readonly': True}, 'timestamp': {'readonly': True}, 'object_identifier': {'readonly': True}, 'tenant_id': {'readonly': True}, 'upn': {'readonly': True}, } _attribute_map = { 'update': {'key': 'update', 'type': 'str'}, 'immutability_period_since_creation_in_days': {'key': 'immutabilityPeriodSinceCreationInDays', 'type': 'int'}, 'timestamp': {'key': 'timestamp', 'type': 'iso-8601'}, 'object_identifier': {'key': 'objectIdentifier', 'type': 'str'}, 'tenant_id': {'key': 'tenantId', 'type': 'str'}, 'upn': {'key': 'upn', 'type': 'str'}, } def __init__(self, **kwargs): super(UpdateHistoryProperty, self).__init__(**kwargs) self.update = None self.immutability_period_since_creation_in_days = None self.timestamp = None self.object_identifier = None self.tenant_id = None self.upn = None
40.652174
118
0.647772
[ "MIT" ]
pjquirk/azure-sdk-for-python
sdk/storage/azure-mgmt-storage/azure/mgmt/storage/v2018_11_01/models/update_history_property.py
2,805
Python
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: google/ads/googleads/v6/resources/paid_organic_search_term_view.proto """Generated protocol buffer code.""" from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.api import field_behavior_pb2 as google_dot_api_dot_field__behavior__pb2 from google.api import resource_pb2 as google_dot_api_dot_resource__pb2 from google.api import annotations_pb2 as google_dot_api_dot_annotations__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='google/ads/googleads/v6/resources/paid_organic_search_term_view.proto', package='google.ads.googleads.v6.resources', syntax='proto3', serialized_options=b'\n%com.google.ads.googleads.v6.resourcesB\036PaidOrganicSearchTermViewProtoP\001ZJgoogle.golang.org/genproto/googleapis/ads/googleads/v6/resources;resources\242\002\003GAA\252\002!Google.Ads.GoogleAds.V6.Resources\312\002!Google\\Ads\\GoogleAds\\V6\\Resources\352\002%Google::Ads::GoogleAds::V6::Resources', create_key=_descriptor._internal_create_key, serialized_pb=b'\nEgoogle/ads/googleads/v6/resources/paid_organic_search_term_view.proto\x12!google.ads.googleads.v6.resources\x1a\x1fgoogle/api/field_behavior.proto\x1a\x19google/api/resource.proto\x1a\x1cgoogle/api/annotations.proto\"\xbd\x02\n\x19PaidOrganicSearchTermView\x12Q\n\rresource_name\x18\x01 \x01(\tB:\xe0\x41\x03\xfa\x41\x34\n2googleads.googleapis.com/PaidOrganicSearchTermView\x12\x1d\n\x0bsearch_term\x18\x03 \x01(\tB\x03\xe0\x41\x03H\x00\x88\x01\x01:\x9d\x01\xea\x41\x99\x01\n2googleads.googleapis.com/PaidOrganicSearchTermView\x12\x63\x63ustomers/{customer_id}/paidOrganicSearchTermViews/{campaign_id}~{ad_group_id}~{base64_search_term}B\x0e\n\x0c_search_termB\x8b\x02\n%com.google.ads.googleads.v6.resourcesB\x1ePaidOrganicSearchTermViewProtoP\x01ZJgoogle.golang.org/genproto/googleapis/ads/googleads/v6/resources;resources\xa2\x02\x03GAA\xaa\x02!Google.Ads.GoogleAds.V6.Resources\xca\x02!Google\\Ads\\GoogleAds\\V6\\Resources\xea\x02%Google::Ads::GoogleAds::V6::Resourcesb\x06proto3' , dependencies=[google_dot_api_dot_field__behavior__pb2.DESCRIPTOR,google_dot_api_dot_resource__pb2.DESCRIPTOR,google_dot_api_dot_annotations__pb2.DESCRIPTOR,]) _PAIDORGANICSEARCHTERMVIEW = _descriptor.Descriptor( name='PaidOrganicSearchTermView', full_name='google.ads.googleads.v6.resources.PaidOrganicSearchTermView', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='resource_name', full_name='google.ads.googleads.v6.resources.PaidOrganicSearchTermView.resource_name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b'\340A\003\372A4\n2googleads.googleapis.com/PaidOrganicSearchTermView', file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='search_term', full_name='google.ads.googleads.v6.resources.PaidOrganicSearchTermView.search_term', index=1, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b'\340A\003', file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=b'\352A\231\001\n2googleads.googleapis.com/PaidOrganicSearchTermView\022ccustomers/{customer_id}/paidOrganicSearchTermViews/{campaign_id}~{ad_group_id}~{base64_search_term}', is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ _descriptor.OneofDescriptor( name='_search_term', full_name='google.ads.googleads.v6.resources.PaidOrganicSearchTermView._search_term', index=0, containing_type=None, create_key=_descriptor._internal_create_key, fields=[]), ], serialized_start=199, serialized_end=516, ) _PAIDORGANICSEARCHTERMVIEW.oneofs_by_name['_search_term'].fields.append( _PAIDORGANICSEARCHTERMVIEW.fields_by_name['search_term']) _PAIDORGANICSEARCHTERMVIEW.fields_by_name['search_term'].containing_oneof = _PAIDORGANICSEARCHTERMVIEW.oneofs_by_name['_search_term'] DESCRIPTOR.message_types_by_name['PaidOrganicSearchTermView'] = _PAIDORGANICSEARCHTERMVIEW _sym_db.RegisterFileDescriptor(DESCRIPTOR) PaidOrganicSearchTermView = _reflection.GeneratedProtocolMessageType('PaidOrganicSearchTermView', (_message.Message,), { 'DESCRIPTOR' : _PAIDORGANICSEARCHTERMVIEW, '__module__' : 'google.ads.googleads.v6.resources.paid_organic_search_term_view_pb2' # @@protoc_insertion_point(class_scope:google.ads.googleads.v6.resources.PaidOrganicSearchTermView) }) _sym_db.RegisterMessage(PaidOrganicSearchTermView) DESCRIPTOR._options = None _PAIDORGANICSEARCHTERMVIEW.fields_by_name['resource_name']._options = None _PAIDORGANICSEARCHTERMVIEW.fields_by_name['search_term']._options = None _PAIDORGANICSEARCHTERMVIEW._options = None # @@protoc_insertion_point(module_scope)
58.404255
1,006
0.816393
[ "Apache-2.0" ]
arammaliachi/google-ads-python
google/ads/google_ads/v6/proto/resources/paid_organic_search_term_view_pb2.py
5,490
Python
from itertools import product from json import dumps import logging import nox # noqa from pathlib import Path # noqa import sys # add parent folder to python path so that we can import noxfile_utils.py # note that you need to "pip install -r noxfile-requiterements.txt" for this file to work. sys.path.append(str(Path(__file__).parent / "ci_tools")) from nox_utils import PY27, PY37, PY36, PY35, PY38, PY39, power_session, rm_folder, rm_file, PowerSession # noqa pkg_name = "genbadge" gh_org = "smarie" gh_repo = "python-genbadge" ENVS = { PY39: {"coverage": False, "pkg_specs": {"pip": ">19"}}, PY27: {"coverage": False, "pkg_specs": {"pip": ">10"}}, PY35: {"coverage": False, "pkg_specs": {"pip": ">10"}}, PY36: {"coverage": False, "pkg_specs": {"pip": ">19"}}, PY38: {"coverage": False, "pkg_specs": {"pip": ">19"}}, # IMPORTANT: this should be last so that the folder docs/reports is not deleted afterwards PY37: {"coverage": True, "pkg_specs": {"pip": ">19"}}, # , "pytest-html": "1.9.0" } # set the default activated sessions, minimal for CI nox.options.sessions = ["tests", "flake8"] # , "docs", "gh_pages" nox.options.reuse_existing_virtualenvs = True # this can be done using -r # if platform.system() == "Windows": >> always use this for better control nox.options.default_venv_backend = "conda" # os.environ["NO_COLOR"] = "True" # nox.options.nocolor = True does not work # nox.options.verbose = True nox_logger = logging.getLogger("nox") # nox_logger.setLevel(logging.INFO) NO !!!! this prevents the "verbose" nox flag to work ! class Folders: root = Path(__file__).parent ci_tools = root / "ci_tools" runlogs = root / Path(nox.options.envdir or ".nox") / "_runlogs" runlogs.mkdir(parents=True, exist_ok=True) dist = root / "dist" site = root / "site" site_reports = site / "reports" reports_root = root / "docs" / "reports" test_reports = reports_root / "junit" test_xml = test_reports / "junit.xml" test_html = test_reports / "report.html" test_badge = test_reports / "junit-badge.svg" coverage_reports = reports_root / "coverage" coverage_xml = coverage_reports / "coverage.xml" coverage_intermediate_file = root / ".coverage" coverage_badge = coverage_reports / "coverage-badge.svg" flake8_reports = reports_root / "flake8" flake8_intermediate_file = root / "flake8stats.txt" flake8_badge = flake8_reports / "flake8-badge.svg" @power_session(envs=ENVS, logsdir=Folders.runlogs) def tests(session: PowerSession, coverage, pkg_specs): """Run the test suite, including test reports generation and coverage reports. """ # As soon as this runs, we delete the target site and coverage files to avoid reporting wrong coverage/etc. rm_folder(Folders.site) rm_folder(Folders.reports_root) # delete the .coverage files if any (they are not supposed to be any, but just in case) rm_file(Folders.coverage_intermediate_file) rm_file(Folders.root / "coverage.xml") # CI-only dependencies # Did we receive a flag through positional arguments ? (nox -s tests -- <flag>) # install_ci_deps = False # if len(session.posargs) == 1: # assert session.posargs[0] == "keyrings.alt" # install_ci_deps = True # elif len(session.posargs) > 1: # raise ValueError("Only a single positional argument is accepted, received: %r" % session.posargs) # uncomment and edit if you wish to uninstall something without deleting the whole env # session.run2("pip uninstall pytest-asyncio --yes") # install all requirements # session.install_reqs(phase="pip", phase_reqs=("pip",), versions_dct=pkg_specs) session.install_reqs(setup=True, install=True, tests=True, extras=("all",), versions_dct=pkg_specs) # install CI-only dependencies # if install_ci_deps: # session.install2("keyrings.alt") # list all (conda list alone does not work correctly on github actions) # session.run2("conda list") conda_prefix = Path(session.bin) if conda_prefix.name == "bin": conda_prefix = conda_prefix.parent session.run2("conda list", env={"CONDA_PREFIX": str(conda_prefix), "CONDA_DEFAULT_ENV": session.get_session_id()}) # Fail if the assumed python version is not the actual one session.run2("python ci_tools/check_python_version.py %s" % session.python) # install self so that it is recognized by pytest session.run2("pip install -e . --no-deps") # check that it can be imported even from a different folder session.run2(['python', '-c', '"import os; os.chdir(\'./docs/\'); import %s"' % pkg_name]) # finally run all tests if not coverage: # simple: pytest only session.run2("python -m pytest --cache-clear -v %s/tests/" % pkg_name) else: # coverage + junit html reports + badge generation session.install_reqs(phase="coverage", phase_reqs=["coverage", "pytest-html", "requests"], versions_dct=pkg_specs) # --coverage + junit html reports session.run2("coverage run --source {pkg_name} " "-m pytest --cache-clear --junitxml={test_xml} --html={test_html} -v {pkg_name}/tests/" "".format(pkg_name=pkg_name, test_xml=Folders.test_xml, test_html=Folders.test_html)) session.run2("coverage report") session.run2("coverage xml -o {covxml}".format(covxml=Folders.coverage_xml)) session.run2("coverage html -d {dst}".format(dst=Folders.coverage_reports)) # delete this intermediate file, it is not needed anymore rm_file(Folders.coverage_intermediate_file) # --generates the badge for the test results and fail build if less than x% tests pass nox_logger.info("Generating badge for tests coverage") # Use our own package to generate the badge session.run2("genbadge tests -i %s -o %s -t 100" % (Folders.test_xml, Folders.test_badge)) session.run2("genbadge coverage -i %s -o %s" % (Folders.coverage_xml, Folders.coverage_badge)) @power_session(python=PY38, logsdir=Folders.runlogs) def flake8(session: PowerSession): """Launch flake8 qualimetry.""" session.install("-r", str(Folders.ci_tools / "flake8-requirements.txt")) session.run2("pip install -e .[flake8]") rm_folder(Folders.flake8_reports) rm_file(Folders.flake8_intermediate_file) # Options are set in `setup.cfg` file session.run("flake8", pkg_name, "--exit-zero", "--format=html", "--htmldir", str(Folders.flake8_reports), "--statistics", "--tee", "--output-file", str(Folders.flake8_intermediate_file)) # generate our badge session.run2("genbadge flake8 -i %s -o %s" % (Folders.flake8_intermediate_file, Folders.flake8_badge)) rm_file(Folders.flake8_intermediate_file) @power_session(python=[PY37]) def docs(session: PowerSession): """Generates the doc and serves it on a local http server. Pass '-- build' to build statically instead.""" session.install_reqs(phase="docs", phase_reqs=["mkdocs-material", "mkdocs", "pymdown-extensions", "pygments"]) if session.posargs: # use posargs instead of "serve" session.run2("mkdocs -f ./docs/mkdocs.yml %s" % " ".join(session.posargs)) else: session.run2("mkdocs serve -f ./docs/mkdocs.yml") @power_session(python=[PY37]) def publish(session: PowerSession): """Deploy the docs+reports on github pages. Note: this rebuilds the docs""" session.install_reqs(phase="mkdocs", phase_reqs=["mkdocs-material", "mkdocs", "pymdown-extensions", "pygments"]) # possibly rebuild the docs in a static way (mkdocs serve does not build locally) session.run2("mkdocs build -f ./docs/mkdocs.yml") # check that the doc has been generated with coverage if not Folders.site_reports.exists(): raise ValueError("Test reports have not been built yet. Please run 'nox -s tests-3.7' first") # publish the docs session.run2("mkdocs gh-deploy -f ./docs/mkdocs.yml") # publish the coverage - now in github actions only # session.install_reqs(phase="codecov", phase_reqs=["codecov", "keyring"]) # # keyring set https://app.codecov.io/gh/<org>/<repo> token # import keyring # (note that this import is not from the session env but the main nox env) # codecov_token = keyring.get_password("https://app.codecov.io/gh/<org>/<repo>>", "token") # # note: do not use --root nor -f ! otherwise "There was an error processing coverage reports" # session.run2('codecov -t %s -f %s' % (codecov_token, Folders.coverage_xml)) @power_session(python=[PY37]) def release(session: PowerSession): """Create a release on github corresponding to the latest tag""" # Get current tag using setuptools_scm and make sure this is not a dirty/dev one from setuptools_scm import get_version # (note that this import is not from the session env but the main nox env) from setuptools_scm.version import guess_next_dev_version version = [] def my_scheme(version_): version.append(version_) return guess_next_dev_version(version_) current_tag = get_version(".", version_scheme=my_scheme) # create the package session.install_reqs(phase="setup.py#dist", phase_reqs=["setuptools_scm"]) rm_folder(Folders.dist) session.run2("python setup.py sdist bdist_wheel") if version[0].dirty or not version[0].exact: raise ValueError("You need to execute this action on a clean tag version with no local changes.") # Did we receive a token through positional arguments ? (nox -s release -- <token>) if len(session.posargs) == 1: # Run from within github actions - no need to publish on pypi gh_token = session.posargs[0] publish_on_pypi = False elif len(session.posargs) == 0: # Run from local commandline - assume we want to manually publish on PyPi publish_on_pypi = True # keyring set https://docs.github.com/en/rest token import keyring # (note that this import is not from the session env but the main nox env) gh_token = keyring.get_password("https://docs.github.com/en/rest", "token") assert len(gh_token) > 0 else: raise ValueError("Only a single positional arg is allowed for now") # publish the package on PyPi if publish_on_pypi: # keyring set https://upload.pypi.org/legacy/ your-username # keyring set https://test.pypi.org/legacy/ your-username session.install_reqs(phase="PyPi", phase_reqs=["twine"]) session.run2("twine upload dist/* -u smarie") # -r testpypi # create the github release session.install_reqs(phase="release", phase_reqs=["click", "PyGithub"]) session.run2("python ci_tools/github_release.py -s {gh_token} " "--repo-slug {gh_org}/{gh_repo} -cf ./docs/changelog.md " "-d https://{gh_org}.github.io/{gh_repo}/changelog.html {tag}" "".format(gh_token=gh_token, gh_org=gh_org, gh_repo=gh_repo, tag=current_tag)) @nox.session(python=False) def gha_list(session): """(mandatory arg: <base_session_name>) Prints all sessions available for <base_session_name>, for GithubActions.""" # see https://stackoverflow.com/q/66747359/7262247 # get the desired base session to generate the list for if len(session.posargs) != 1: raise ValueError("This session has a mandatory argument: <base_session_name>") session_func = globals()[session.posargs[0]] # list all sessions for this base session try: session_func.parametrize except AttributeError: sessions_list = ["%s-%s" % (session_func.__name__, py) for py in session_func.python] else: sessions_list = ["%s-%s(%s)" % (session_func.__name__, py, param) for py, param in product(session_func.python, session_func.parametrize)] # print the list so that it can be caught by GHA. # Note that json.dumps is optional since this is a list of string. # However it is to remind us that GHA expects a well-formatted json list of strings. print(dumps(sessions_list)) # if __name__ == '__main__': # # allow this file to be executable for easy debugging in any IDE # nox.run(globals())
44.498195
120
0.682865
[ "BSD-3-Clause" ]
texnofobix/python-genbadge
noxfile.py
12,326
Python
from hotel_app.views import * from rest_framework import routers router = routers.DefaultRouter() router.register(r'rooms', RoomAPIView) router.register(r'employee', EmployeeAPIView) router.register(r'resident', ResidentAPIView) router.register(r'booking', BookingRecordAPIView) router.register(r'cleaning', CleaningScheduleAPIView)
33.4
53
0.826347
[ "MIT" ]
ErmShadow/ITMO_ICT_WebDevelopment_2020-2021
students/K33401/Kunal_Shubham/lab3/hotel_project/hotel_app/router.py
334
Python
import os class FileCredentials: def __init__(self, credentials_file): if credentials_file == None: credentials_file = os.path.expanduser("~") + "/.pingboard" self.credentials_file = credentials_file self.client_id = None self.client_secret = None def load(self): try: credentials = dict(line.strip().split('=') for line in open(self.credentials_file)) self.client_id = credentials['client_id'] self.client_secret = credentials['client_secret'] return True except Exception as e: return False class ArgsCredentials: def __init__(self, id_key, secret_key, **kwargs): self.client_id = None self.client_secret = None try: self.client_id = kwargs[id_key] self.client_secret = kwargs[secret_key] except KeyError: pass def load(self): return self.client_id != None and self.client_secret != None; class Credentials: def __init__(self, **kwargs): self.chain = [ ArgsCredentials('client_id', 'client_secret', **kwargs), ArgsCredentials('PINGBOARD_CLIENT_ID', 'PINGBOARD_CLIENT_SECRET', **os.environ), FileCredentials(kwargs.get('credentials_file')) ] def load(self): loaded_credentials = None for credentials in self.chain: if credentials.load(): loaded_credentials = credentials break if not loaded_credentials: return False self.client_id = loaded_credentials.client_id self.client_secret = loaded_credentials.client_secret return True
27.40625
95
0.600342
[ "MIT" ]
tsouza/pyngboard
pyngboard/credentials.py
1,754
Python
#!usr/bin/env python3 # -*- coding:utf-8 -*- __author__ = 'yanqiong' import random import secrets from bisect import bisect_right from sgqlc.operation import Operation from pandas.core.internals import BlockManager from tqsdk.ins_schema import ins_schema, _add_all_frags RD = random.Random(secrets.randbits(128)) # 初始化随机数引擎,使用随机数作为seed,防止用户同时拉起多个策略,产生同样的 seed def _generate_uuid(prefix=''): return f"{prefix + '_' if prefix else ''}{RD.getrandbits(128):032x}" def _query_for_quote(symbol): """ 返回请求某个合约的合约信息的 query_pack 调用次函数应该全部都是sdk的代码主动请求合约信息 用户请求合约信息一定是 PYSDK_api 开头的请求,因为用户请求的合约信息在回测时带有 timestamp 参数,是不应该调用此函数的 """ symbol_list = symbol if isinstance(symbol, list) else [symbol] op = Operation(ins_schema.rootQuery) query = op.multi_symbol_info(instrument_id=symbol_list) _add_all_frags(query) return { "aid": "ins_query", "query_id": _generate_uuid(prefix='PYSDK_quote_'), "query": op.__to_graphql__() } def _query_for_init(): """ 返回某些类型合约的 query todo: 为了兼容旧版提供给用户的 api._data["quote"].items() 类似用法,应该限制交易所 ["SHFE", "DCE", "CZCE", "INE", "CFFEX", "KQ"] """ op = Operation(ins_schema.rootQuery) query = op.multi_symbol_info(class_=["FUTURE", "INDEX", "OPTION", "COMBINE", "CONT"], exchange_id=["SHFE", "DCE", "CZCE", "INE", "CFFEX", "KQ"]) _add_all_frags(query) return op.__to_graphql__() night_trading_table = { "DCE.a": ["21:00:00", "23:00:00"], "DCE.b": ["21:00:00", "23:00:00"], "DCE.c": ["21:00:00", "23:00:00"], "DCE.cs": ["21:00:00", "23:00:00"], "DCE.m": ["21:00:00", "23:00:00"], "DCE.y": ["21:00:00", "23:00:00"], "DCE.p": ["21:00:00", "23:00:00"], "DCE.l": ["21:00:00", "23:00:00"], "DCE.v": ["21:00:00", "23:00:00"], "DCE.pp": ["21:00:00", "23:00:00"], "DCE.j": ["21:00:00", "23:00:00"], "DCE.jm": ["21:00:00", "23:00:00"], "DCE.i": ["21:00:00", "23:00:00"], "DCE.eg": ["21:00:00", "23:00:00"], "DCE.eb": ["21:00:00", "23:00:00"], "DCE.rr": ["21:00:00", "23:00:00"], "DCE.pg": ["21:00:00", "23:00:00"], "CZCE.CF": ["21:00:00", "23:00:00"], "CZCE.CY": ["21:00:00", "23:00:00"], "CZCE.SA": ["21:00:00", "23:00:00"], "CZCE.SR": ["21:00:00", "23:00:00"], "CZCE.TA": ["21:00:00", "23:00:00"], "CZCE.OI": ["21:00:00", "23:00:00"], "CZCE.MA": ["21:00:00", "23:00:00"], "CZCE.FG": ["21:00:00", "23:00:00"], "CZCE.RM": ["21:00:00", "23:00:00"], "CZCE.ZC": ["21:00:00", "23:00:00"], "CZCE.TC": ["21:00:00", "23:00:00"], "SHFE.rb": ["21:00:00", "23:00:00"], "SHFE.hc": ["21:00:00", "23:00:00"], "SHFE.fu": ["21:00:00", "23:00:00"], "SHFE.bu": ["21:00:00", "23:00:00"], "SHFE.ru": ["21:00:00", "23:00:00"], "SHFE.sp": ["21:00:00", "23:00:00"], "INE.nr": ["21:00:00", "23:00:00"], "SHFE.cu": ["21:00:00", "25:00:00"], "SHFE.al": ["21:00:00", "25:00:00"], "SHFE.zn": ["21:00:00", "25:00:00"], "SHFE.pb": ["21:00:00", "25:00:00"], "SHFE.ni": ["21:00:00", "25:00:00"], "SHFE.sn": ["21:00:00", "25:00:00"], "SHFE.ss": ["21:00:00", "25:00:00"], "SHFE.au": ["21:00:00", "26:30:00"], "SHFE.ag": ["21:00:00", "26:30:00"], "INE.sc": ["21:00:00", "26:30:00"], } def _quotes_add_night(quotes): """为 quotes 中应该有夜盘但是市价合约文件中没有夜盘的品种,添加夜盘时间""" for symbol in quotes: product_id = quotes[symbol].get("product_id") if quotes[symbol].get("trading_time") and product_id: key = f"{quotes[symbol].get('exchange_id')}.{product_id}" if key in night_trading_table and (not quotes[symbol]["trading_time"].get("night")): quotes[symbol]["trading_time"]["night"] = [night_trading_table[key]] def _bisect_value(a, x, priority="right"): """ 返回 bisect_right() 取得下标对应的值,当插入点距离前后元素距离相等,priority 表示优先返回右边的值还是左边的值 a: 必须是已经排序好(升序排列)的 list bisect_right : Return the index where to insert item x in list a, assuming a is sorted. """ assert priority in ['left', 'right'] insert_index = bisect_right(a, x) if 0 < insert_index < len(a): left_dis = x - a[insert_index - 1] right_dis = a[insert_index] - x if left_dis == right_dis: mid_index = insert_index - 1 if priority == "left" else insert_index elif left_dis < right_dis: mid_index = insert_index - 1 else: mid_index = insert_index else: assert insert_index == 0 or insert_index == len(a) mid_index = 0 if insert_index == 0 else (len(a) - 1) return a[mid_index] class BlockManagerUnconsolidated(BlockManager): """mock BlockManager for unconsolidated, 不会因为自动合并同类型的 blocks 而导致 k 线数据不更新""" def __init__(self, *args, **kwargs): BlockManager.__init__(self, *args, **kwargs) self._is_consolidated = False self._known_consolidated = False def _consolidate_inplace(self): pass
35.120567
108
0.577948
[ "Apache-2.0" ]
Al-Wang/tqsdk-python
tqsdk/utils.py
5,470
Python
# -*- coding: utf-8 -*- # Copyright 2018 IBM. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= from qiskit_aqua.algorithms.components.optimizers import Optimizer from ._nloptimizer import minimize import logging try: import nlopt except ImportError: raise ImportWarning('nlopt cannot be imported') logger = logging.getLogger(__name__) class ESCH(Optimizer): """ESCH (evolutionary algorithm) NLopt global optimizer, derivative-free http://nlopt.readthedocs.io/en/latest/NLopt_Algorithms/#esch-evolutionary-algorithm """ ESCH_CONFIGURATION = { 'name': 'ESCH', 'description': 'GN_ESCH Optimizer', 'input_schema': { '$schema': 'http://json-schema.org/schema#', 'id': 'esch_schema', 'type': 'object', 'properties': { 'max_evals': { 'type': 'integer', 'default': 1000 } }, 'additionalProperties': False }, 'support_level': { 'gradient': Optimizer.SupportLevel.ignored, 'bounds': Optimizer.SupportLevel.supported, 'initial_point': Optimizer.SupportLevel.required }, 'options': ['max_evals'], 'optimizer': ['global'] } def __init__(self, configuration=None): super().__init__(configuration or self.ESCH_CONFIGURATION.copy()) def init_args(self): pass def optimize(self, num_vars, objective_function, gradient_function=None, variable_bounds=None, initial_point=None): super().optimize(num_vars, objective_function, gradient_function, variable_bounds, initial_point) return minimize(nlopt.GN_ESCH, objective_function, variable_bounds, initial_point, **self._options)
32.875
119
0.636248
[ "Apache-2.0" ]
eugescu/aqua
qiskit_aqua/algorithms/components/optimizers/nlopts/esch.py
2,367
Python
# Generated by Django 3.2.11 on 2022-02-10 16:05 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ("cabins", "0020_auto_20211111_1825"), ("cabins", "0021_booking_is_declined"), ] operations = []
19.142857
48
0.660448
[ "MIT" ]
hovedstyret/indok-web
backend/apps/cabins/migrations/0022_merge_20220210_1705.py
268
Python
#! /usr/bin/env python3 """Unit tests for smartcard.readers.ReaderGroups This test case can be executed individually, or with all other test cases thru testsuite_framework.py. __author__ = "http://www.gemalto.com" Copyright 2001-2012 gemalto Author: Jean-Daniel Aussel, mailto:[email protected] This file is part of pyscard. pyscard is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. pyscard is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with pyscard; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA """ import platform import unittest from smartcard.System import readergroups from smartcard.scard import resourceManager if 'winscard' == resourceManager and \ -1 == platform.platform().find('Windows-7'): class testcase_readergroups(unittest.TestCase): """Test smartcard framework readersgroups.""" pinpadgroup = 'Pinpad$Readers' biogroup = 'Biometric$Readers' def testcase_readergroup_add(self): """tests groups=groups+[newgroups]""" # take a snapshot of current groups groupssnapshot = list(readergroups()) groups = readergroups() # add pinpad group groups = groups + [self.pinpadgroup] self.assertEqual(groups, groupssnapshot + [self.pinpadgroup]) # add pinpad a second time and biometric once groups = groups + [self.biogroup, self.pinpadgroup] self.assertEqual( groups, groupssnapshot + [self.pinpadgroup, self.biogroup]) # clean-up groups.remove(self.biogroup) groups.remove(self.pinpadgroup) def testcase_readergroup_iadd(self): """test groups+=[newgroups]""" # take a snapshot of current groups groupssnapshot = list(readergroups()) groups = readergroups() # add pinpad group groups += [self.pinpadgroup] self.assertEqual(groups, groupssnapshot + [self.pinpadgroup]) # add pinpad a second time and biometric once groups += [self.biogroup, self.pinpadgroup] self.assertEqual( groups, groupssnapshot + [self.pinpadgroup, self.biogroup]) # clean-up groups.remove(self.biogroup) groups.remove(self.pinpadgroup) def testcase_readergroup_radd(self): """test groups=[newgroups]+groups""" # take a snapshot of current groups groupssnapshot = list(readergroups()) groups = readergroups() # add pinpad group zgroups = [self.pinpadgroup] + groups self.assertEqual(groups, groupssnapshot) self.assertEqual(zgroups, groupssnapshot + [self.pinpadgroup]) self.assertTrue(isinstance(zgroups, type([]))) self.assertTrue(isinstance(groups, type(readergroups()))) # add pinpad a tiwce and biometric once zgroups = \ [self.pinpadgroup, self.biogroup, self.pinpadgroup] + groups self.assertEqual(groups, groupssnapshot) self.assertEqual( zgroups, groupssnapshot + [self.pinpadgroup, self.biogroup]) self.assertTrue(isinstance(zgroups, type([]))) self.assertTrue(isinstance(groups, type(readergroups()))) def testcase_readergroup_append(self): """test groups.append(newgroups)""" # take a snapshot of current groups groupssnapshot = list(readergroups()) groups = readergroups() # add pinpad group groups.append(self.pinpadgroup) self.assertEqual(groups, groupssnapshot + [self.pinpadgroup]) # add pinpad a second time groups.append(self.pinpadgroup) self.assertEqual(groups, groupssnapshot + [self.pinpadgroup]) # add biometric once groups.append(self.biogroup) self.assertEqual( groups, groupssnapshot + [self.pinpadgroup, self.biogroup]) # clean-up groups.remove(self.biogroup) groups.remove(self.pinpadgroup) def testcase_readergroup_insert(self): """test groups.insert(i,newgroups)""" # take a snapshot of current groups groupssnapshot = list(readergroups()) groups = readergroups() # add pinpad group groups.insert(0, self.pinpadgroup) self.assertEqual(groups, groupssnapshot + [self.pinpadgroup]) # add pinpad a second time groups.insert(1, self.pinpadgroup) self.assertEqual(groups, groupssnapshot + [self.pinpadgroup]) # add biometric once groups.insert(1, self.biogroup) self.assertEqual( groups, groupssnapshot + [self.pinpadgroup, self.biogroup]) # clean-up groups.remove(self.biogroup) groups.remove(self.pinpadgroup) def suite(): suite1 = unittest.makeSuite(testcase_readergroups) return unittest.TestSuite((suite1)) if __name__ == '__main__': unittest.main()
35.197531
76
0.632936
[ "BSD-3-Clause" ]
kyletanyag/LL-Smartcard
cacreader/pyscard-2.0.2/smartcard/test/framework/testcase_readergroups.py
5,702
Python
# Copyright (C) 2018-2022 Intel Corporation # SPDX-License-Identifier: Apache-2.0 import logging as log from io import IOBase import networkx as nx import numpy as np from openvino.tools.mo.ops.elementwise import Mul from openvino.tools.mo.ops.split import AttributedVariadicSplit from openvino.tools.mo.front.common.partial_infer.utils import float_array, int64_array from openvino.tools.mo.front.common.partial_infer.utils import mo_array from openvino.tools.mo.front.extractor import add_outputs_identity from openvino.tools.mo.front.kaldi.loader.utils import find_next_tag, read_placeholder, find_next_component, get_name_from_path, \ find_end_of_component, end_of_nnet_tag, read_binary_integer32_token, get_parameters, read_token_value, \ collect_until_token, collect_until_token_and_read, create_edge_attrs, get_args_for_specifier from openvino.tools.mo.front.kaldi.utils import read_binary_vector from openvino.tools.mo.graph.graph import Node, Graph from openvino.tools.mo.ops.const import Const from openvino.tools.mo.utils.error import Error from openvino.tools.mo.utils.utils import refer_to_faq_msg def load_parallel_component(file_descr, graph: Graph, prev_layer_id): """ Load ParallelComponent of the Kaldi model. ParallelComponent contains parallel nested networks. VariadicSplit is inserted before nested networks. Outputs of nested networks concatenate with layer Concat. :param file_descr: descriptor of the model file :param graph: graph with the topology. :param prev_layer_id: id of the input layers for parallel component layer :return: id of the concat layer - last layer of the parallel component layers """ nnet_count = read_token_value(file_descr, b'<NestedNnetCount>') log.debug('Model contains parallel component with {} nested networks'.format(nnet_count)) split_points = [] outputs = [] inputs = [] for i in range(nnet_count): read_token_value(file_descr, b'<NestedNnet>') collect_until_token(file_descr, b'<Nnet>') g = Graph() load_kalid_nnet1_model(g, file_descr, 'Nested_net_{}'.format(i)) # input to nnet1 models is of a rank 1 but we also insert batch_size to 0th axis # 1st axis contains input_size of the nested subnetwork # we split input from the main network to subnetworks input_node = Node(g, 'Parameter') split_points.append(input_node['shape'][1]) g.remove_node(input_node.id) mapping = {node: graph.unique_id(node) for node in g.nodes(data=False) if node in graph} g = nx.relabel_nodes(g, mapping) for val in mapping.values(): g.node[val]['name'] = val graph.add_nodes_from(g.nodes(data=True)) graph.add_edges_from(g.edges(data=True)) sorted_nodes = tuple(nx.topological_sort(g)) outputs.append(Node(graph, sorted_nodes[-1])) inputs.append(Node(graph, sorted_nodes[0])) split_id = graph.unique_id(prefix='NestedNets/VariadicSplit') attrs = {'out_ports_count': nnet_count, 'size_splits': split_points, 'axis': 1, 'name': split_id} variadic_split_node = AttributedVariadicSplit(graph, attrs).create_node() prev_layer_node = Node(graph, prev_layer_id) prev_layer_node.add_output_port(0) graph.create_edge(prev_layer_node, variadic_split_node, 0, 0, create_edge_attrs(prev_layer_id, variadic_split_node.id, prev_layer_id)) concat_id = graph.unique_id(prefix='Concat') graph.add_node(concat_id, parameters=None, op='concat', kind='op') concat_node = Node(graph, concat_id) # Connect each output of variadic_split_node to each subnetwork's inputs in ParallelComponent # and each subnetwork's output to concat_node for i, (input_node, output_node) in enumerate(zip(inputs, outputs)): output_node.add_output_port(0) concat_node.add_input_port(i) graph.create_edge(output_node, concat_node, 0, i, create_edge_attrs(output_node.id, concat_id, output_node.id, i, 0)) graph.create_edge(variadic_split_node, input_node, i, 0, create_edge_attrs(variadic_split_node.id, input_node.id, variadic_split_node.id, 0, i)) return concat_id def load_kaldi_model(graph, nnet_path): """ Structure of the file is the following: magic-number(16896)<Nnet> <Next Layer Name> weights etc. :param nnet_path: :return: """ nnet_name = None if isinstance(nnet_path, str): file_desc = open(nnet_path, "rb") nnet_name = get_name_from_path(nnet_path) elif isinstance(nnet_path, IOBase): file_desc = nnet_path else: raise Error('Unsupported type of Kaldi model') tag = find_next_tag(file_desc) # start new model / submodel if tag == '<Nnet>': load_function = load_kalid_nnet1_model elif tag == '<TransitionModel>': while tag != '<Nnet>' and tag != '<Nnet3>': tag = find_next_tag(file_desc) if tag == '<Nnet3>': load_function = load_kaldi_nnet3_model else: load_function = load_kalid_nnet2_model elif tag == '<Nnet3>': load_function = load_kaldi_nnet3_model else: raise Error('Kaldi model should start with <Nnet> or <TransitionModel> tag. ', refer_to_faq_msg(89)) read_placeholder(file_desc, 1) return load_function(graph, file_desc, nnet_name) def load_kalid_nnet1_model(graph, file_descr, name): prev_layer_id = 'Parameter' graph.add_node(prev_layer_id, name=prev_layer_id, kind='op', op='Parameter', parameters=None) # find out output layer, it can be only one due to chain structure of nnet1 model output_layer = None while True: component_type = find_next_component(file_descr) if component_type == end_of_nnet_tag.lower()[1:-1]: break layer_o = read_binary_integer32_token(file_descr) layer_i = read_binary_integer32_token(file_descr) if component_type == 'parallelcomponent': prev_layer_id = load_parallel_component(file_descr, graph, prev_layer_id) find_end_of_component(file_descr, component_type) continue start_index = file_descr.tell() end_tag, end_index = find_end_of_component(file_descr, component_type) end_index -= len(end_tag) layer_id = graph.unique_id(prefix=component_type) graph.add_node(layer_id, parameters=get_parameters(file_descr, start_index, end_index), op=component_type, kind='op', layer_i=layer_i, layer_o=layer_o) if hasattr(graph, 'op_names_statistic'): graph.op_names_statistic[component_type] += 1 prev_node = Node(graph, prev_layer_id) if prev_node.op == 'Parameter': prev_node['shape'] = int64_array([1, layer_i]) prev_node.add_output_port(0) Node(graph, layer_id).add_input_port(0) graph.create_edge(prev_node, Node(graph, layer_id), 0, 0, create_edge_attrs(prev_layer_id, layer_id, prev_layer_id)) prev_layer_id = layer_id output_layer = layer_id log.debug('{} (type is {}) was loaded'.format(prev_layer_id, component_type)) # Tensor names information corresponding to a node is stored on outgoing edges. # As output nodes do not have outgoing edges, fake outputs are required. In the following code # for each output Identity node is added, and tensor name for the output is kept # on (output, fake output) edge. After Result nodes adding transformation fake outputs # are deleted from graph. assert output_layer is not None, "Output layer is not found in graph" add_outputs_identity(graph, [output_layer], lambda g, output, fake_output: g.create_edge( Node(g, output), Node(g, fake_output), 0, 0, create_edge_attrs(output, fake_output, output))) def load_kalid_nnet2_model(graph, file_descr, nnet_name): input_name = 'Input' graph.add_node(input_name, name=input_name, kind='op', op='Parameter', parameters=None, shape=None) prev_layer_id = input_name all_components = load_components(file_descr, graph) used_layers = set() for layer_id in all_components: prev_node = Node(graph, prev_layer_id) if prev_node.op == 'Parameter': parameters = Node(graph, layer_id).parameters input_dim = read_token_value(parameters, b'<InputDim>') prev_node['shape'] = int64_array([1, input_dim]) prev_node.add_output_port(0) Node(graph, layer_id).add_input_port(0) graph.create_edge(prev_node, Node(graph, layer_id), 0, 0, create_edge_attrs(prev_layer_id, layer_id, prev_layer_id)) used_layers.add(prev_layer_id) prev_layer_id = layer_id log.debug('{} and {} were connected'.format(prev_layer_id, layer_id)) # Tensor names information corresponding to a node is stored on outgoing edges. # As output nodes do not have outgoing edges, fake outputs are required. In the following code # for each output Identity node is added, and tensor name for the output is kept # on (output, fake output) edge. After Result nodes adding transformation fake outputs # are deleted from graph. output_layers = graph.nodes - used_layers add_outputs_identity(graph, output_layers, lambda g, output, fake_output: g.create_edge( Node(g, output), Node(g, fake_output), 0, 0, create_edge_attrs(output, fake_output, output))) def load_kaldi_nnet3_model(graph, file_descr, nnet_name): file_descr.read(1) component_layer_map = load_topology_map(file_descr, graph) # add information for shape calculation for MemoryOffset # shape calculation for MemoryOffset can't be done through shape of previous layer because # it is separated in 2 parts to remove cycle from graph for node in graph.get_op_nodes(**{'op': 'Parameter'}): for o_n_name, params in node.get_outputs(): o_n = Node(graph, o_n_name) if o_n['op'] == 'MemoryOffset': # don't take batch from Parameter, it will be overwritten # take only second dimension because we have only 2 dimensions o_n['parameters']['element_size'] = int64_array([1, node.shape[1]]) load_components(file_descr, graph, component_layer_map) load_priors(file_descr, graph) def load_priors(file_descr, graph): try: collect_until_token(file_descr, b'<Priors>') except Error: # just ignore if priors were not found return if graph.graph['cmd_params'].counts is not None: graph.graph['priors'] = read_binary_vector(file_descr) else: log.error("Model contains Prior values, if you want to embed them into the generated IR add option --counts=\"\" to command line", extra={'is_warning': True}) def load_components(file_descr, graph, component_layer_map=None): num_components = collect_until_token_and_read(file_descr, b'<NumComponents>') log.debug('Network contains {} components'.format(num_components)) is_nnet3 = False if component_layer_map is None else True if not is_nnet3: collect_until_token(file_descr, b'<Components>') all_components = list() name = "" for _ in range(num_components): if is_nnet3: name = collect_until_token_and_read(file_descr, b'<ComponentName>', np.string_) component_type = find_next_component(file_descr) if component_type == end_of_nnet_tag.lower()[1:-1]: break start_index = file_descr.tell() end_tag, end_index = find_end_of_component(file_descr, component_type) # read dim info where possible to simplify shape calculation for MemoryOffset # shape calculation for MemoryOffset can't be done through shape of previous layer because # it is separated in 2 parts to remove cycle from graph file_descr.seek(start_index) dim = 0 dim_words = {b'<Dim>', b'<InputDim>'} for dim_word in dim_words: try: collect_until_token(file_descr, dim_word, size_search_zone=end_index - start_index) cur_index = file_descr.tell() if start_index < cur_index < end_index: dim = read_binary_integer32_token(file_descr) break else: file_descr.seek(start_index) except Error: file_descr.seek(start_index) if is_nnet3: if name in component_layer_map: layer_id = component_layer_map[name][0] for layer in component_layer_map[name]: node = Node(graph, layer) node['parameters'] = get_parameters(file_descr, start_index, end_index) node['op'] = component_type # Read dim info where possible to simplify shape calculation for MemoryOffset for o_n_name, params in node.get_outputs(): o_n = Node(graph, o_n_name) if o_n['op'] == 'MemoryOffset' and dim != 0: o_n['parameters']['element_size'] = int64_array([1, dim]) else: raise Error("Something wrong with layer {}".format(name)) else: layer_id = graph.unique_id(prefix=component_type) graph.add_node(layer_id, parameters=get_parameters(file_descr, start_index, end_index), op=component_type, kind='op') if hasattr(graph, 'op_names_statistic'): graph.op_names_statistic[component_type] += 1 all_components.append(layer_id) log.debug('{} (type is {}) was loaded'.format(layer_id, component_type)) return all_components def load_topology_map(file_descr, graph): not_finished = True component_layer_map = {} layer_node_map = {} while not_finished: not_finished = read_node(file_descr, graph, component_layer_map, layer_node_map) return component_layer_map def read_node(file_descr, graph, component_layer_map, layer_node_map): s = file_descr.readline() if s == b'\n': return False tokens = s.split(b' ') if tokens[0] == b'input-node': in_name = s[s.find(b'name=') + len(b'name='):].split(b' ')[0] in_name = str(in_name).strip('b').replace('\'', "") in_shape = mo_array([1, s[s.find(b'dim=') + len(b'dim='):].split(b' ')[0]], dtype=np.int) if in_name not in layer_node_map: graph.add_node(in_name, name=in_name, kind='op', op='Parameter', parameters=None, shape=in_shape) layer_node_map[in_name] = in_name else: Node(graph, in_name)['op'] = 'Parameter' Node(graph, in_name)['shape'] = in_shape elif tokens[0] == b'component-node': layer_name = s[s.find(b'name=') + len(b'name='):].split(b' ')[0] layer_name = str(layer_name).strip('b').replace('\'', "") component_name = s[s.find(b'component=') + len(b'component='):].split(b' ')[0] if layer_name not in layer_node_map: node_name = graph.unique_id(prefix=layer_name) graph.add_node(node_name, parameters=None, op=None, kind='op') layer_node_map[layer_name] = node_name else: node_name = layer_node_map[layer_name] if component_name in component_layer_map: component_layer_map[component_name].append(node_name) else: component_layer_map[component_name] = [node_name] # parse input in_node_id = parse_input_for_node(s[s.find(b'input=') + 6:], graph, layer_node_map) # don't create cyclic edges node to itself to avoid removing later if in_node_id != node_name: out_port = len(Node(graph, in_node_id).out_nodes()) in_port = len(Node(graph, node_name).in_nodes()) Node(graph, node_name).add_input_port(in_port) Node(graph, in_node_id).add_output_port(out_port, skip_if_exist=True) graph.add_edge(in_node_id, node_name, **create_edge_attrs(in_node_id, node_name, in_node_id, in_port, out_port)) elif tokens[0] == b'output-node': layer_name = s[s.find(b'name=') + len(b'name='):].split(b' ')[0] layer_name = str(layer_name).strip('b').replace('\'', "") node_name = graph.unique_id(prefix=layer_name) graph.add_node(node_name, parameters=None, op='Identity', kind='op') out_name = graph.unique_id(prefix=node_name + "_out") graph.add_node(out_name, parameters=None, op='Result', kind='op') Node(graph, node_name).add_input_port(0) Node(graph, node_name).add_output_port(0) Node(graph, out_name).add_input_port(0) graph.add_edge(node_name, out_name, **create_edge_attrs(node_name, out_name, node_name)) # parse input in_node_id = parse_input_for_node(s[s.find(b'input=') + len(b'input='):], graph, layer_node_map) out_port = len(Node(graph, in_node_id).out_nodes()) Node(graph, in_node_id).add_output_port(out_port) graph.create_edge(Node(graph, in_node_id), Node(graph, node_name), out_port, 0, create_edge_attrs(in_node_id, node_name, in_node_id, 0, out_port)) objective_type = s[s.find(b'objective=') + 10:].split(b' ')[0].split(b'\n')[0] if objective_type != b'linear': raise Error("Unsupported objective-type for output {}".format(node_name)) elif tokens[0] == b'dim-range-node': layer_name = s[s.find(b'name=') + len(b'name='):].split(b' ')[0] layer_name = str(layer_name).strip('b').replace('\'', "") offset = int(s[s.find(b'dim-offset=') + len(b'dim-offset='):].split(b' ')[0]) dim = int(s[s.find(b'dim=') + len(b'dim='):].split(b' ')[0]) if layer_name in layer_node_map: node_name = layer_node_map[layer_name] node = Node(graph, node_name) node['parameters'] = {'offset': mo_array([offset]), 'dim': mo_array([dim]), 'axis': mo_array([1])} node['op'] = 'Crop' else: node_name = graph.unique_id(prefix=layer_name) graph.add_node(node_name, parameters={'offset': mo_array([offset]), 'dim': mo_array([dim]), 'axis': mo_array([1])}, op='Crop', kind='op') layer_node_map[layer_name] = node_name node = Node(graph, node_name) in_node_id = parse_input_for_node(s[s.find(b'input-node=') + len(b'input-node='):], graph, layer_node_map) out_port = len(Node(graph, in_node_id).out_nodes()) in_port = len(Node(graph, node_name).in_nodes()) node.add_input_port(in_port) Node(graph, in_node_id).add_output_port(out_port) graph.create_edge(Node(graph, in_node_id), node, out_port, in_port, create_edge_attrs(in_node_id, node_name, in_node_id, in_port, out_port)) # read dim info where possible to simplify shape calculation for MemoryOffset # shape calculation for MemoryOffset can't be done through shape of previous layer because # it is separated in 2 parts to remove cycle from graph for o_n_name, params in node.get_outputs(): o_n = Node(graph, o_n_name) if o_n['op'] == 'MemoryOffset': o_n['parameters']['element_size'] = int64_array([1, dim]) else: raise Error("Unsupported node specifier {}".format(tokens[0])) return True def parse_input_for_node(string, graph, component_layer_map): return parse_specifier(string, graph, component_layer_map) def parse_specifier(string, graph, layer_node_map): pos = string.find(b'(') if pos == -1: # node name input_name = str(string.split(b' ')[0]).strip('b').replace("\'", '').replace('\\n', '') if input_name not in layer_node_map: node_name = graph.unique_id(prefix=input_name) graph.add_node(node_name, parameters=[], op="", kind='op') layer_node_map[input_name] = node_name else: node_name = layer_node_map[input_name] return node_name spec = string[:pos] args = get_args_for_specifier(string[pos:]) if spec == b'Append': nodes = [] for i in range(len(args)): nodes.append(parse_specifier(args[i], graph, layer_node_map)) layer_name = 'Append_' for node in nodes: layer_name = layer_name + node + "_" if layer_name not in layer_node_map: concat_name = graph.unique_id(prefix=layer_name) graph.add_node(concat_name, parameters=None, op='concat', kind='op') layer_node_map[layer_name] = concat_name i = 0 Node(graph, concat_name).add_sequence_of_ports('in', range(len(nodes))) for node in nodes: out_port = len(Node(graph, node).out_nodes()) Node(graph, node).add_output_port(out_port) graph.create_edge(Node(graph, node), Node(graph, concat_name), out_port, i, create_edge_attrs(node, concat_name, node, i, out_port)) i = i + 1 else: concat_name = layer_node_map[layer_name] return concat_name elif spec == b'Offset': node = parse_specifier(args[0], graph, layer_node_map) t = int(args[1]) if len(args) > 2: raise Error("ModelOptimizer supports only 2 arguments for Offset") layer_name = 'Offset_' + node + '_' if t < 0: layer_name = layer_name + '_' + str(-t) else: layer_name = layer_name + str(t) if layer_name not in layer_node_map: memory_name = graph.unique_id(prefix=layer_name) layer_node_map[layer_name] = memory_name memory_name_2 = memory_name + '_out' graph.add_node(memory_name, parameters=dict(t=t, pair_name=memory_name_2, has_default=False), op='MemoryOffset', kind='op') out_port = len(Node(graph, node).out_nodes()) in_port = len(Node(graph, memory_name).in_nodes()) Node(graph, memory_name).add_input_port(in_port) Node(graph, node).add_output_port(out_port, skip_if_exist=True) graph.create_edge(Node(graph, node), Node(graph, memory_name), out_port, in_port, create_edge_attrs(node, memory_name, node, in_port, out_port)) else: memory_name = layer_node_map[layer_name] return memory_name elif spec == b'Sum': nodes = [] for i in range(len(args)): nodes.append(parse_specifier(args[i], graph, layer_node_map)) layer_name = 'Sum_' for node in nodes: layer_name = layer_name + node + "_" if layer_name not in layer_node_map: sum_name = graph.unique_id(prefix=layer_name) graph.add_node(sum_name, parameters=None, op='Add', kind='op') layer_node_map[layer_name] = sum_name else: sum_name = layer_node_map[layer_name] for i, node in enumerate(nodes): out_port = len(Node(graph, node).out_nodes()) Node(graph, node).add_output_port(out_port, skip_if_exist=True) Node(graph, sum_name).add_input_port(i) graph.add_edge(node, sum_name, **create_edge_attrs(node, sum_name, node, i)) return sum_name elif spec == b'IfDefined': node_id = parse_specifier(args[0], graph, layer_node_map) node = Node(graph, node_id) if node.op == 'MemoryOffset': node['parameters']['has_default'] = True return node_id elif spec == b'ReplaceIndex': node = parse_specifier(args[0], graph, layer_node_map) return node elif spec == b'Scale': node_name = parse_specifier(args[1], graph, layer_node_map) scale_value = float(args[0]) layer_name = '{}/Mul/{}'.format(node_name, scale_value) if layer_name not in layer_node_map: scale_name = graph.unique_id(prefix=layer_name) scale_node = Mul(graph, {'name': scale_name}).create_node() layer_node_map[layer_name] = scale_name scale_const_name = 'Const_{}'.format(scale_value) const_node = Const(graph, {'name': scale_const_name, 'value': float_array([scale_value])}).create_node() node = Node(graph, node_name) graph.create_edge(const_node, scale_node, 0, 0, create_edge_attrs(const_node.id, scale_node.id, const_node.id)) out_port = len(node.out_nodes()) graph.create_edge(node, scale_node, out_port, 1, create_edge_attrs(node_name, scale_node.id, node_name, 1, out_port)) else: scale_name = layer_node_map[layer_name] return scale_name
45.217469
156
0.643277
[ "Apache-2.0" ]
3Demonica/openvino
tools/mo/openvino/tools/mo/front/kaldi/loader/loader.py
25,367
Python
#!/usr/bin/env python """ SHUTDOWN.PY Shutdown Plugin (C) 2015, rGunti """ import dot3k.lcd as lcd import dot3k.backlight as backlight import time, datetime, copy, math, psutil import sys import os from dot3k.menu import Menu, MenuOption class Shutdown(MenuOption): def __init__(self): self.last = self.millis() MenuOption.__init__(self) def redraw(self, menu): lcd.clear() lcd.set_cursor_position(3,1) lcd.write("Bye (^_^)/") for x in reversed(range(127)): backlight.rgb(0, x * 2, 0) lcd.clear() os.system("halt") sys.exit(0) class Reboot(MenuOption): def __init__(self): self.last = self.millis() MenuOption.__init__(self) def redraw(self, menu): lcd.clear() lcd.set_cursor_position(3,1) lcd.write("Bye (^_^)/") for x in reversed(range(127)): backlight.rgb(0, x * 2, 0) lcd.clear() os.system("reboot") sys.exit(0) class QuitScript(MenuOption): def __init__(self): self.last = self.millis() MenuOption.__init__(self) def redraw(self, menu): lcd.clear() lcd.set_cursor_position(3,1) lcd.write("Bye (^_^)/") for x in reversed(range(127)): backlight.rgb(0, x * 2, 0) lcd.clear() sys.exit(0)
20.189655
41
0.672075
[ "MIT" ]
rGunti/Yuki-Chan-Music-Player
display/plugins/Shutdown.py
1,171
Python
from collections import Iterable from itertools import combinations from math import log, ceil from mathsat import msat_term, msat_env from mathsat import msat_make_constant, msat_declare_function from mathsat import msat_get_rational_type, msat_get_bool_type from mathsat import msat_make_and, msat_make_not, msat_make_or, msat_make_iff from mathsat import msat_make_leq, msat_make_equal, msat_make_true from mathsat import msat_make_number, msat_make_plus, msat_make_times from ltl.ltl import TermMap, LTLEncoder from utils import name_next num_procs = 24 delta_name = "delta" def decl_consts(menv: msat_env, name: str, c_type): assert not name.startswith("_"), name s = msat_declare_function(menv, name, c_type) s = msat_make_constant(menv, s) x_s = msat_declare_function(menv, name_next(name), c_type) x_s = msat_make_constant(menv, x_s) return s, x_s def msat_make_minus(menv: msat_env, arg0: msat_term, arg1: msat_term): m_one = msat_make_number(menv, "-1") arg1 = msat_make_times(menv, arg1, m_one) return msat_make_plus(menv, arg0, arg1) def msat_make_lt(menv: msat_env, arg0: msat_term, arg1: msat_term): geq = msat_make_geq(menv, arg0, arg1) return msat_make_not(menv, geq) def msat_make_geq(menv: msat_env, arg0: msat_term, arg1: msat_term): return msat_make_leq(menv, arg1, arg0) def msat_make_gt(menv: msat_env, arg0: msat_term, arg1: msat_term): leq = msat_make_leq(menv, arg0, arg1) return msat_make_not(menv, leq) def msat_make_impl(menv: msat_env, arg0: msat_term, arg1: msat_term): n_arg0 = msat_make_not(menv, arg0) return msat_make_or(menv, n_arg0, arg1) def diverging_symbs(menv: msat_env) -> frozenset: real_type = msat_get_rational_type(menv) delta = msat_declare_function(menv, delta_name, real_type) delta = msat_make_constant(menv, delta) return frozenset([delta]) def check_ltl(menv: msat_env, enc: LTLEncoder) -> (Iterable, msat_term, msat_term, msat_term): assert menv assert isinstance(menv, msat_env) assert enc assert isinstance(enc, LTLEncoder) real_type = msat_get_rational_type(menv) delta, x_delta = decl_consts(menv, delta_name, real_type) transm_time, x_transm_time = decl_consts(menv, "tot_transm_time", real_type) curr2next = {delta: x_delta, transm_time: x_transm_time} mgr = TokenManager("mgr", menv, enc, delta) stations = [Station("st{}".format(i), menv, enc, mgr, delta) for i in range(num_procs)] for s, x_s in mgr.symb2next.items(): curr2next[s] = x_s for comp in stations: for s, x_s in comp.symb2next.items(): assert s not in curr2next.keys() curr2next[s] = x_s zero = msat_make_number(menv, "0") # init: tot_transm_time = 0 init = msat_make_equal(menv, transm_time, zero) # invar: delta >= 0 init = msat_make_and(menv, init, msat_make_geq(menv, delta, zero)) trans = msat_make_geq(menv, x_delta, zero) # only 1 station moves for s0, s1 in combinations(stations, 2): trans = msat_make_and(menv, trans, msat_make_or(menv, s0.stutter, s1.stutter)) # sync stations and mgr st_acquire = stations[0].acquire for st in stations[1:]: st_acquire = msat_make_or(menv, st_acquire, st.acquire) trans = msat_make_and(menv, trans, msat_make_iff(menv, mgr.acquire, st_acquire)) st_release = stations[0].release for st in stations[1:]: st_release = msat_make_or(menv, st_release, st.release) trans = msat_make_and(menv, trans, msat_make_iff(menv, mgr.release, st_release)) # (mgr.counting & mgr.idle') -> total_transm_time' = total_transm_time + mgr.c lhs = msat_make_and(menv, mgr.counting, mgr.x_idle) rhs = msat_make_equal(menv, x_transm_time, msat_make_plus(menv, transm_time, mgr.c)) trans = msat_make_and(menv, trans, msat_make_impl(menv, lhs, rhs)) # !(mgr.counting & mgr.idle') -> total_transm_time' = total_transm_time lhs = msat_make_not(menv, lhs) rhs = msat_make_equal(menv, x_transm_time, transm_time) trans = msat_make_and(menv, trans, msat_make_impl(menv, lhs, rhs)) init = msat_make_and(menv, init, mgr.init) trans = msat_make_and(menv, trans, mgr.trans) for s in stations: init = msat_make_and(menv, init, s.init) trans = msat_make_and(menv, trans, s.trans) # (G F (mgr.counting & mgr.idle')) -> G F total_transm_time < 10 lhs = enc.make_G(enc.make_F(msat_make_and(menv, mgr.counting, enc.make_X(mgr.idle)))) rhs = msat_make_lt(menv, transm_time, msat_make_number(menv, "10")) rhs = enc.make_G(enc.make_F(rhs)) ltl = msat_make_impl(menv, lhs, rhs) return TermMap(curr2next), init, trans, ltl class Module: """Synchronous component""" def __init__(self, name: str, menv: msat_env, enc: LTLEncoder, *args, **kwargs): self.name = name self.menv = menv self.enc = enc self.symb2next = {} true = msat_make_true(menv) self.init = true self.trans = true def _symb(self, v_name, v_type): v_name = "{}_{}".format(self.name, v_name) return decl_consts(self.menv, v_name, v_type) def _enum(self, v_name: str, enum_size: int): bool_type = msat_get_bool_type(self.menv) num_bits = ceil(log(enum_size, 2)) b_vars = [] for idx in range(num_bits): c_name = "{}{}".format(v_name, idx) b_vars.append(tuple(self._symb(c_name, bool_type))) vals = [] x_vals = [] for enum_val in range(enum_size): bit_val = format(enum_val, '0{}b'.format(num_bits)) assert len(bit_val) == num_bits assert all(c in {'0', '1'} for c in bit_val) assign = [b_vars[idx] if c == '1' else (msat_make_not(self.menv, b_vars[idx][0]), msat_make_not(self.menv, b_vars[idx][1])) for idx, c in enumerate(reversed(bit_val))] pred = assign[0][0] x_pred = assign[0][1] for it in assign[1:]: pred = msat_make_and(self.menv, pred, it[0]) x_pred = msat_make_and(self.menv, x_pred, it[1]) vals.append(pred) x_vals.append(x_pred) assert len(vals) == enum_size assert len(x_vals) == enum_size return b_vars, vals, x_vals class TokenManager(Module): """TokenManager module""" def __init__(self, name: str, menv: msat_env, enc: LTLEncoder, delta): super().__init__(name, menv, enc) real_type = msat_get_rational_type(menv) bool_type = msat_get_bool_type(menv) loc, x_loc = self._symb("l", bool_type) evt_symbs, evts, x_evts = self._enum("evt", 3) c, x_c = self._symb("c", real_type) timeout, x_timeout = self._symb("timeout", real_type) self.timeout = timeout self.x_timeout = x_timeout self.c = c self.idle = loc self.counting = msat_make_not(menv, loc) self.x_idle = x_loc self.x_counting = msat_make_not(menv, x_loc) self.acquire = evts[0] self.release = evts[1] self.stutter = evts[2] self.symb2next = {loc: x_loc, c: x_c, timeout: x_timeout} for s, x_s in evt_symbs: assert s not in self.symb2next self.symb2next[s] = x_s zero = msat_make_number(menv, "0") # bound evt bound_evt = evts[0] x_bound_evt = x_evts[0] for evt, x_evt in zip(evts[1:], x_evts[1:]): bound_evt = msat_make_or(menv, bound_evt, evt) x_bound_evt = msat_make_or(menv, x_bound_evt, x_evt) self.init = bound_evt self.trans = x_bound_evt # idle & c = 0 & timeout = 0 self.init = msat_make_and( menv, msat_make_and(menv, self.init, self.idle), msat_make_and(menv, msat_make_equal(menv, c, zero), msat_make_equal(menv, timeout, zero))) # invar: counting -> c <= timeout rhs = msat_make_leq(menv, c, timeout) self.init = msat_make_and(menv, self.init, msat_make_impl(menv, self.counting, rhs)) rhs = msat_make_leq(menv, x_c, x_timeout) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, self.x_counting, rhs)) # (delta > 0 | stutter) -> c' = c + delta & l' = l & timeout' = timeout lhs = msat_make_or(menv, self.stutter, msat_make_gt(menv, delta, zero)) rhs = msat_make_and( menv, msat_make_and(menv, msat_make_iff(menv, x_loc, loc), msat_make_equal(menv, x_c, msat_make_plus(menv, c, delta))), msat_make_equal(menv, x_timeout, timeout)) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) disc_t = msat_make_and(menv, msat_make_equal(menv, delta, zero), msat_make_or(menv, self.acquire, self.release)) # (idle) -> (acquire & counting' & c' = 0) lhs = msat_make_and(menv, disc_t, self.idle) rhs = msat_make_and(menv, self.acquire, msat_make_and(menv, self.x_counting, msat_make_equal(menv, x_c, zero))) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) # (counting) -> (release & idle' & c' = 0 & timeout' = 0) lhs = msat_make_and(menv, disc_t, self.counting) rhs = msat_make_and( menv, msat_make_and(menv, self.x_idle, self.release), msat_make_and(menv, msat_make_equal(menv, x_c, zero), msat_make_equal(menv, x_timeout, zero))) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) class Station(Module): """Station module""" def __init__(self, name: str, menv: msat_env, enc: LTLEncoder, mgr, delta): super().__init__(name, menv, enc) real_type = msat_get_rational_type(menv) bool_type = msat_get_bool_type(menv) loc, x_loc = self._symb("l", bool_type) evt_symbs, evts, x_evts = self._enum("evt", 3) req_time, x_req_time = self._symb("req_time", real_type) self.idle = loc self.transm = msat_make_not(menv, loc) self.x_idle = x_loc self.x_transm = msat_make_not(menv, x_loc) self.acquire = evts[0] self.release = evts[1] self.stutter = evts[2] self.symb2next = {loc: x_loc, req_time: x_req_time} for s, x_s in evt_symbs: assert s not in self.symb2next self.symb2next[s] = x_s zero = msat_make_number(menv, "0") # bound evt bound_evt = evts[0] x_bound_evt = x_evts[0] for evt, x_evt in zip(evts[1:], x_evts[1:]): bound_evt = msat_make_or(menv, bound_evt, evt) x_bound_evt = msat_make_or(menv, x_bound_evt, x_evt) self.init = bound_evt self.trans = x_bound_evt # idle self.init = msat_make_and(menv, self.init, self.idle) # invar: req_time > 0 self.init = msat_make_and(menv, self.init, msat_make_gt(menv, req_time, zero)) self.trans = msat_make_and(menv, self.trans, msat_make_gt(menv, x_req_time, zero)) # (delta > 0 | stutter) -> l' = l & req_time' = req_time lhs = msat_make_or(menv, self.stutter, msat_make_gt(menv, delta, zero)) rhs = msat_make_and( menv, msat_make_iff(menv, x_loc, loc), msat_make_equal(menv, x_req_time, req_time)) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) disc_t = msat_make_and(menv, msat_make_equal(menv, delta, zero), msat_make_or(menv, self.acquire, self.release)) # (idle) -> (acquire & transm' & mgr.timeout' = req_time & req_time' = req_time) lhs = msat_make_and(menv, disc_t, self.idle) rhs = msat_make_and( menv, msat_make_and(menv, self.acquire, self.x_transm), msat_make_and(menv, msat_make_equal(menv, mgr.x_timeout, req_time), msat_make_equal(menv, x_req_time, req_time))) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) # (transm) -> (release & mgr.c > 0 & idle') lhs = msat_make_and(menv, disc_t, self.transm) rhs = msat_make_and( menv, self.release, msat_make_and(menv, msat_make_gt(menv, mgr.c, zero), self.x_idle)) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs))
39.578947
88
0.591534
[ "MIT" ]
EnricoMagnago/F3
benchmarks/ltl_timed_transition_system/token_ring/f3/token_ring_0024.py
13,536
Python
# Print iterations progress def printProgressBar (iteration, total, prefix = '', suffix = '', decimals = 1, length = 100, fill = '█', printEnd = "\r"): """ Call in a loop to create terminal progress bar @params: iteration - Required : current iteration (Int) total - Required : total iterations (Int) prefix - Optional : prefix string (Str) suffix - Optional : suffix string (Str) decimals - Optional : positive number of decimals in percent complete (Int) length - Optional : character length of bar (Int) fill - Optional : bar fill character (Str) printEnd - Optional : end character (e.g. "\r", "\r\n") (Str) From: https://stackoverflow.com/questions/3173320/text-progress-bar-in-the-console """ percent = ("{0:." + str(decimals) + "f}").format(100 * (iteration / float(total))) filledLength = int(length * iteration // total) bar = fill * filledLength + '-' * (length - filledLength) print('\r%s |%s| %s%% %s' % (prefix, bar, percent, suffix), end = printEnd) # Print New Line on Complete if iteration == total: print()
47.64
123
0.592779
[ "Apache-2.0" ]
MariusDgr/AudioMining
src/utils/console_functions.py
1,193
Python
"""Julia set generator without optional PIL-based image drawing""" import time #from memory_profiler import profile # area of complex space to investigate x1, x2, y1, y2 = -1.8, 1.8, -1.8, 1.8 c_real, c_imag = -0.62772, -.42193 @profile def calculate_z_serial_purepython(maxiter, zs, cs): """Calculate output list using Julia update rule""" with profile.timestamp("create_output_list"): output = [0] * len(zs) time.sleep(1) with profile.timestamp("create_range_of_zs"): iterations = range(len(zs)) with profile.timestamp("calculate_output"): for i in iterations: n = 0 z = zs[i] c = cs[i] while n < maxiter and abs(z) < 2: z = z * z + c n += 1 output[i] = n return output @profile def calc_pure_python(draw_output, desired_width, max_iterations): """Create a list of complex co-ordinates (zs) and complex parameters (cs), build Julia set and display""" x_step = (float(x2 - x1) / float(desired_width)) y_step = (float(y1 - y2) / float(desired_width)) x = [] y = [] ycoord = y2 while ycoord > y1: y.append(ycoord) ycoord += y_step xcoord = x1 while xcoord < x2: x.append(xcoord) xcoord += x_step # set width and height to the generated pixel counts, rather than the # pre-rounding desired width and height # build a list of co-ordinates and the initial condition for each cell. # Note that our initial condition is a constant and could easily be removed, # we use it to simulate a real-world scenario with several inputs to our # function zs = [] cs = [] for ycoord in y: for xcoord in x: zs.append(complex(xcoord, ycoord)) cs.append(complex(c_real, c_imag)) print "Length of x:", len(x) print "Total elements:", len(zs) start_time = time.time() output = calculate_z_serial_purepython(max_iterations, zs, cs) end_time = time.time() secs = end_time - start_time print calculate_z_serial_purepython.func_name + " took", secs, "seconds" # this sum is expected for 1000^2 grid with 300 iterations assert sum(output) == 33219980 # Calculate the Julia set using a pure Python solution with # reasonable defaults for a laptop # set draw_output to True to use PIL to draw an image calc_pure_python(draw_output=False, desired_width=1000, max_iterations=300) #calc_pure_python(draw_output=False, desired_width=10, max_iterations=300)
34.4
109
0.642248
[ "MIT" ]
dkdldbdbdosk/High_Performance_Python
codes/01_profiling/memory_profiler/julia1_memoryprofiler2.py
2,580
Python
import os import csv # File path election_dataCSV = os.path.join('.', 'election_data.csv') # The total number of votes cast # A complete list of candidates who received votes # The percentage of votes each candidate won # The total number of votes each candidate won # The winner of the election based on popular vote. # Declaring my variables total_votes = 0 khan_votes = 0 correy_votes = 0 li_votes = 0 otooley_votes = 0 # percent_votes = 0 # total_votes_candidate = 0 # winner = 0 # Open file as read with open ('election_data.csv','r') as csvfile: # Identifying CSV file with delimiter set csvreader = csv.reader(csvfile, delimiter=',') header = next(csvreader) # firstRow = next(csvreader) # total_votes += 1 # previous_row = int(firstRow[0]) # Add rows to list for row in csvreader: #Adding total number of votes cast total_votes += 1 #Candidates that received votes if row[2] == "Khan": khan_votes += 1 elif row[2] == "Correy": correy_votes += 1 elif row[2] == "Li": li_votes += 1 elif row[2] == "O'Tooley": otooley_votes +=1 # Create a list of the candidates candidates_list = ["Khan", "Correy", "Li", "O'Tooley"] votes = [khan_votes, correy_votes, li_votes, otooley_votes] # Pair candidates and votes together dict_candidates_and_votes = dict(zip(candidates_list,votes)) # Find the winner by using the max function key = max(dict_candidates_and_votes, key = dict_candidates_and_votes.get) # Calculating the percentage of votes per candidate khan_percentage = (khan_votes/total_votes) *100 correy_percentage = (correy_votes/total_votes) *100 li_percentage = (li_votes/total_votes) *100 otooley_percentage = (otooley_votes/total_votes) *100 # Print conclusion print(f"Election Results") print(f"----------------------------") print(f"Total Votes: {total_votes}") print(f"----------------------------") print(f"Khan: {khan_percentage:.3f}% ({khan_votes})") print(f"Correy: {correy_percentage:.3f}% ({correy_votes})") print(f"Li: {li_percentage:.3f}% ({li_votes})") print(f"O'Tooley: {otooley_percentage:.3f}% ({otooley_votes})") print(f"----------------------------") print(f"Winner: {key}") print(f"----------------------------") # Export results into txt file file = open('election_output.txt','w') file.write("Election Results: Total Votes - 1048575, Khan - 63.094% (661583), Correy - 19.936% (209046), Li: - 13.958% (146360), O'Tooley - 3.012% (31586), Winner - Khan") file.close
30.625
171
0.621521
[ "MIT" ]
dorispira/Python
PyPoll/main.py
2,695
Python
''' A collection of functions to perform portfolio analysis. Max Gosselin, 2019 ''' import numpy as np import pandas as pd from scipy import optimize def portfolio_metrics(weights, avg_xs_returns, covariance_matrix): ''' Compute basic portfolio metrics: return, stdv, sharpe ratio ''' portfolio_return = np.sum(weights * avg_xs_returns) portfolio_stdv = np.sqrt(np.dot(weights.T, np.dot(weights, covariance_matrix))) portfolio_sharpe = portfolio_return / portfolio_stdv tickers = covariance_matrix.columns metrics = { 'return': portfolio_return, 'stdv': portfolio_stdv, 'sharpe': portfolio_sharpe, 'weights': weights } metrics.update(dict([(ticker, weight) for ticker, weight in zip(tickers, weights)]).items()) return metrics def simulate_portfolios(iters, xs_stats, covariance_matrix): ''' What we want here is to randomly generate portfolios that will sit inside the efficiency frontier for illustrative purposes ''' # Set up an empty array to store our generated portfolios simulations = [] while iters > 1: weights = np.random.random(len(xs_stats.columns)) weights /= np.sum(weights) simulations.append(portfolio_metrics(weights, xs_stats.loc['Avg'], covariance_matrix)) iters -= 1 return simulations def solve_minvar(xs_avg, covariance_matrix): ''' Solve for the weights of the minimum variance portfolio Constraints: sum of weights = 1, weights bound by [0, 0.2], Returns the weights and the jacobian used to generate the solution. ''' def __minvar(weights, xs_avg, covariance_matrix): ''' Anonymous function to compute stdv ''' return np.sqrt(np.dot(weights.T, np.dot(weights, covariance_matrix))) p_size = len(xs_avg) args = (xs_avg, covariance_matrix) constraints = [{'type': 'eq', 'fun': lambda x: np.sum(x) - 1}] bounds = [(0, 0.2)] * p_size minimized_weights = optimize.minimize(__minvar, np.zeros(p_size), args=args, method='SLSQP', bounds=bounds, constraints=constraints, options={'maxiter':1000}) return minimized_weights def solve_maxsharpe(xs_avg, covariance_matrix): ''' Solve for the weights of the maximum Sharpe ratio portfolio Constraints: sum of weights = 1, weights bound by [0, 0.2], Returns the weights and the jacobian used to generate the solution. ''' def __max_by_min_sharpe(weights, xs_avg, covariance_matrix): ''' Anonymous function to compute sharpe ratio, note that since scipy only minimizes we go negative. ''' pm = portfolio_metrics(weights, xs_avg, covariance_matrix) return -pm['return'] / pm['stdv'] p_size = len(xs_avg) args = (xs_avg, covariance_matrix) constraints = [{'type': 'eq', 'fun': lambda x: np.sum(x) - 1}] bounds = [(0, 0.2)] * p_size minimized_weights = optimize.minimize(__max_by_min_sharpe, ((1/p_size) * np.ones(p_size)), args=args, method='SLSQP', bounds=bounds, constraints=constraints, options={'maxiter':1000}) return minimized_weights def solve_for_target_return(xs_avg, covariance_matrix, target): ''' Solve for the weights of the minimum variance portfolio which has a specific targeted return. Constraints: sum of weights = 1, weights bound by [0, 0.2], portfolio return = target return, Returns the weights and the jacobian used to generate the solution. ''' def __minvar(weights, xs_avg, covariance_matrix): ''' Anonymous function to compute stdv ''' return np.sqrt(np.dot(weights.T, np.dot(weights, covariance_matrix))) def __match_target(weights): ''' Anonymous function to check equality with the target return ''' return np.sum(weights * xs_avg) p_size = len(xs_avg) args = (xs_avg, covariance_matrix) constraints = [ {'type': 'eq', 'fun': lambda x: np.sum(x) - 1}, {'type': 'eq', 'fun': lambda x: __match_target(x) - target}, ] bounds = [(0, 0.2)] * p_size minimized_weights = optimize.minimize(__minvar, ((1/p_size) * np.ones(p_size)), args=args, method='SLSQP', bounds=bounds, constraints=constraints, options={'maxiter':1000}) return minimized_weights def generate_efficient_frontier(targets, xs_avg, covariance_matrix): portfolios = [] for target in targets: p_weights = solve_for_target_return(xs_avg, covariance_matrix, target) portfolios.append(portfolio_metrics(p_weights['x'], xs_avg, covariance_matrix)) return portfolios
32.682432
112
0.647509
[ "MIT", "Unlicense" ]
MaxGosselin/portfolio_optimizer
portfolio_functions.py
4,837
Python
from mmcv.utils import Registry, build_from_cfg from .check_argument import (equal_len, is_2dlist, is_3dlist, is_ndarray_list, is_none_or_type, is_type_list, valid_boundary) from .collect_env import collect_env from .img_util import drop_orientation from .lmdb_util import lmdb_converter from .logger import get_root_logger __all__ = [ 'Registry', 'build_from_cfg', 'get_root_logger', 'collect_env', 'is_3dlist', 'is_ndarray_list', 'is_type_list', 'is_none_or_type', 'equal_len', 'is_2dlist', 'valid_boundary', 'lmdb_converter', 'drop_orientation' ]
37.3125
78
0.747069
[ "Apache-2.0" ]
Darrenonly/mmocr
mmocr/utils/__init__.py
597
Python
## @example pyfast_and_pyside2_custom_window.py # This example demonstrates how to use FAST in an existing PySide2 application. # # @m_class{m-block m-warning} @par PySide2 Qt Version # @parblock # For this example you <b>must</b> use the same Qt version of PySide2 as used in FAST (5.14.0) # Do this with: <b>pip install pyside2==5.14.0</b> # @endparblock # # @image html images/examples/python/pyfast_and_pyside_custom_window.jpg width=350px; from PySide2.QtWidgets import * from PySide2.QtOpenGL import QGLWidget from PySide2.QtCore import Slot import PySide2.QtSvg # Must import this before fast due to conflicting symbols from shiboken2 import wrapInstance import fast import threading import sys #fast.Reporter.setGlobalReportMethod(fast.Reporter.COUT) # Create a simple window widget with pyside2 class Window(QWidget): def __init__(self): super(Window, self).__init__() self.setWindowTitle('pyFAST + PySide2') # Create button self.button = QPushButton("Restart FAST pipeline") # Create FAST view self.view = fast.View() self.installEventFilter(wrapInstance(int(self.view.asQGLWidget()), QGLWidget)) self.view.set2DMode() # Create layout and add widgets layout = QVBoxLayout() layout.addWidget(wrapInstance(int(self.view.asQGLWidget()), QGLWidget)) layout.addWidget(self.button) self.setLayout(layout) # Connect button click event self.button.clicked.connect(self.restartPipeline) self.resize(512, 512) @Slot() def restartPipeline(self): # Create FAST computation thread # This is needed to run computations smoothly in the background # The computation thread must live in the object to avoid being destroyed when this function is done. self.computationThread = fast.ComputationThread.create() self.computationThread.addView(self.view) # Setup a FAST pipeline streamer = fast.ImageFileStreamer \ .create(fast.Config.getTestDataPath() + '/US/Heart/ApicalFourChamber/US-2D_#.mhd') renderer = fast.ImageRenderer.create() \ .connect(streamer) self.view.removeAllRenderers() self.view.addRenderer(renderer) self.view.reinitialize() self.computationThread.start() if __name__ == '__main__': # Create the Qt Application app = QApplication(sys.argv) # Create and show the window window = Window() window.show() # Run the main Qt loop sys.exit(app.exec_())
32.897436
109
0.693687
[ "BSD-2-Clause" ]
andreped/FAST
source/FAST/Examples/Python/pyfast_and_pyside2_custom_window.py
2,566
Python
# Project Quex (http://quex.sourceforge.net); License: MIT; # (C) 2005-2020 Frank-Rene Schaefer; #_______________________________________________________________________________ from quex.input.setup import NotificationDB from quex.input.regular_expression.pattern import Pattern_Prep import quex.input.regular_expression.core as regular_expression from quex.input.code.base import SourceRef, \ SourceRef_DEFAULT, \ SourceRefObject from quex.engine.state_machine.core import DFA import quex.engine.state_machine.construction.sequentialize as sequentialize import quex.engine.state_machine.construction.repeat as repeat import quex.engine.state_machine.algebra.difference as difference import quex.engine.state_machine.algebra.intersection as intersection import quex.engine.state_machine.algorithm.beautifier as beautifier import quex.engine.state_machine.check.swallow as swallow import quex.engine.state_machine.check.outrun as outrun import quex.engine.state_machine.check.identity as identity import quex.engine.state_machine.check.tail as tail from quex.engine.misc.tools import typed from quex.engine.misc.interval_handling import NumberSet from quex.engine.counter import IndentationCount_Pre, \ cc_type_name_db, \ cc_type_db from quex.engine.counter_builder import CountActionMap_Builder import quex.engine.misc.error as error import quex.engine.misc.error_check as error_check from quex.engine.misc.file_in import check, \ check_or_die, \ skip_whitespace, \ read_identifier, \ read_integer from quex.constants import E_CharacterCountType from quex.blackboard import setup as Setup def parse_CountActionMap(fh): return _base_parse(fh, CountActionMapFromParser_Builder(fh)) def parse_IndentationSetup(fh): return _base_parse(fh, IndentationSetup_Builder(fh)) def _base_parse(fh, builder, IndentationSetupF=False): """Parses pattern definitions of the form: [ \t] => grid 4; [:intersection([:alpha:], [\X064-\X066]):] => space 1; In other words the right hand side *must* be a character set. ADAPTS: result to contain parsing information. """ # NOTE: Catching of EOF happens in caller: parse_section(...) # while 1 + 1 == 2: skip_whitespace(fh) if check(fh, ">"): break # A regular expression state machine pattern, identifier, sr = _parse_definition_head(fh, builder.identifier_list) if pattern is None and not builder.keyword_else_f: error.log("Keyword '\\else' cannot be used in indentation setup.", fh) # '_parse_definition_head()' ensures that only identifiers mentioned in # 'result' are accepted. if builder.requires_count(): count = _read_value_specifier(fh, identifier, 1) builder.specify(identifier, pattern, count, sr) else: builder.specify(identifier, pattern, sr) if not check(fh, ";"): error.log("Missing ';' after '%s' specification." % identifier, fh) return builder.finalize() class CharacterSetVsAction_BuilderBase: def __init__(self, IdentifierList, KeywordElseAdmissibleF): self.identifier_list = IdentifierList self.keyword_else_f = KeywordElseAdmissibleF class CountActionMapFromParser_Builder(CharacterSetVsAction_BuilderBase): """Line/column number count specification. ___________________________________________________________________________ The main result of the parsing the the Base's .count_command_map which is an instance of CountActionMap_Builder. ____________________________________________________________________________ """ @typed(sr=SourceRef) def __init__(self, fh): self.sr = SourceRef.from_FileHandle(fh) self.__fh = fh self._ca_map_builder = CountActionMap_Builder() CharacterSetVsAction_BuilderBase.__init__(self, ("columns", "grid", "lines"), KeywordElseAdmissibleF=True) def finalize(self): # Finalize / Produce 'LineColumnCount' object. # ca_map = self._ca_map_builder.finalize( Setup.buffer_encoding.source_set.minimum(), Setup.buffer_encoding.source_set.least_greater_bound(), self.sr) _check_grid_values_integer_multiples(ca_map) check_defined(ca_map, self.sr, E_CharacterCountType.LINE) return ca_map def requires_count(self): return True @typed(sr=SourceRef, Identifier=(str,str)) def specify(self, Identifier, Pattern, Count, sr): if Pattern is None: self._ca_map_builder.define_else(cc_type_db[Identifier], Count, sr) else: trigger_set = _extract_trigger_set(sr, Identifier, Pattern) self._ca_map_builder.add(trigger_set, cc_type_db[Identifier], Count, sr) class IndentationSetup_Builder(CharacterSetVsAction_BuilderBase): """Indentation counter specification. ____________________________________________________________________________ The base's .count_command_map contains information about how to count the space at the beginning of the line. The count until the first non-whitespace is the 'indentation'. +bad: The spec contains information about what characters are not supposed to appear in indentation (bad characters). Depending on the philosophical basis, some might consider 'space' as evil, others consider 'tab' as evil. +newline: A detailed state machine can be defined for 'newline'. This might be '\n|(\r\n)' or more complex things. +suppressor: A newline might be suppressed by '\' for example. For that, it might be specified as 'newline suppressor'. ____________________________________________________________________________ """ @typed(sr=SourceRef) def __init__(self, fh): self.__fh = fh self.sm_whitespace = SourceRefObject("whitespace", None) self.sm_badspace = SourceRefObject("bad", None) self.sm_newline = SourceRefObject("newline", None) self.sm_newline_suppressor = SourceRefObject("suppressor", None) self.sm_suspend_list = [] if fh == -1: self.sr = SourceRef_DEFAULT else: self.sr = SourceRef.from_FileHandle(self.__fh) CharacterSetVsAction_BuilderBase.__init__(self, ("whitespace", "suspend", "newline", "suppressor", "bad"), KeywordElseAdmissibleF=False) def finalize(self): # Finalize / Produce 'IndentationCount' object. # if self.sm_whitespace.get() is None: self.sm_whitespace.set(self.__sm_whitespace_default(), SourceRef_DEFAULT) if self.sm_newline.get() is None: self.sm_newline.set(self.__sm_newline_default(), SourceRef_DEFAULT) # -- consistency self._consistency_check() # Transform 'SourceRefObject' into 'Pattern_Prep' objects # (TODO: Why not use it in the first place?) def get_pattern(SRO): if SRO is None or SRO.get() is None: return None return Pattern_Prep(SRO.get(), PatternString="<indentation %s>" % SRO.name, Sr=SRO.sr) pattern_suspend_list = [ get_pattern(sro) for sro in self.sm_suspend_list ] pattern_suspend_list = [ x for x in pattern_suspend_list if x is not None ] if self.sm_newline_suppressor.set_f(): sm_suppressed_newline = sequentialize.do([self.sm_newline_suppressor.get(), self.sm_newline.get()]) sm_suppressed_newline = beautifier.do(sm_suppressed_newline) pattern_suppressed_newline = Pattern_Prep(sm_suppressed_newline, PatternString="<indentation suppressed newline>", Sr=self.sm_newline_suppressor.sr) else: pattern_suppressed_newline = None return IndentationCount_Pre(self.sr, get_pattern(self.sm_whitespace), get_pattern(self.sm_badspace), get_pattern(self.sm_newline), pattern_suppressed_newline, pattern_suspend_list) def requires_count(self): return False def specify(self, identifier, pattern, sr): sm = pattern.extract_sm() if identifier == "whitespace": self.__specify(self.sm_whitespace, sm, sr) elif identifier == "bad": self.__specify(self.sm_badspace, sm, sr) elif identifier == "newline": self.__specify(self.sm_newline, sm, sr) elif identifier == "suppressor": self.__specify(self.sm_newline_suppressor, sm , sr) elif identifier == "suspend": self.__specify_suspend(sm, sr) else: return False return True @typed(sr=SourceRef) def __specify(self, member_ref, Sm, sr): assert Sm is not None _error_if_defined_before(member_ref, sr) if not Sm.is_DFA_compliant(): Sm = beautifier.do(Sm) member_ref.set(Sm, sr) @typed(sr=SourceRef) def __specify_suspend(self, Sm, sr): for before in self.sm_suspend_list: if not identity.do(before.get(), Sm): continue error.log("'suspend' has been defined before;", sr, DontExitF=True) error.log("at this place.", before.sr) sm_suspend = SourceRefObject("suspend", None) self.__specify(sm_suspend, Sm, sr) self.sm_suspend_list.append(sm_suspend) def __sm_newline_default(self): """Default newline: '(\n)|(\r\n)' """ sm = DFA.from_character_set(NumberSet(ord('\n'))) if Setup.dos_carriage_return_newline_f: sm.add_transition_sequence(sm.init_state_index, [ord('\r'), ord('\n')]) return sm def __sm_whitespace_default(self): """Try to define default whitespace ' ' or '\t' if their positions are not yet occupied in the count_command_map. """ sm_whitespace = DFA.from_character_set(NumberSet.from_integer_list([ord(' '), ord('\t')])) sm_whitespace = beautifier.do(repeat.do(sm_whitespace, 1)) if self.sm_badspace.get() is not None: sm_whitespace = difference.do(sm_whitespace, self.sm_badspace.get()) if sm_whitespace.is_Empty() \ or outrun.do(self.sm_badspace.get(), sm_whitespace): error.log("Cannot define default 'whitespace' in the frame of the given\n" "definition of 'bad'.", self.sm_badspace.sr) return sm_whitespace def _consistency_check(self): """ Required defintions: -- WHITESPACE (Default done automatically) => Assert. -- NEWLINE (Default done automatically) => Assert. Inadmissible 'eat-into'. -- SUPPRESSOR shall not eat into [NEWLINE] -- NEWLINE shall not eat into [WHITESPACE, BADSPACE, SUSPEND, SUPPRESSOR] -- WHITESPACE shall not eat into [SUPPRESSOR, NEWLINE, SUSPEND]. -- BADSPACE shall not eat into [SUPPRESSOR, NEWLINE, SUSPEND]. No common lexemes: -- WHITESPACE and BADSPACE may not have common lexemes. Outrun: -- NEWLINE may not start with SUSPEND and vice versa -- NEWLINE may not start with SUPPRESSOR and vice versa -- SUPPRESSOR may not start with SUSPEND and vice versa -- WHITESPACE shall not outrun BADSPACE, but the contrary is ok. (BADSPACE may outrun WHITESPACE (e.g: lexeme with 'tab' after whitespace') """ # (1) Required definitions _____________________________________________ assert self.sm_whitespace.set_f() assert self.sm_newline.set_f() whitespace = self.sm_whitespace newline = self.sm_newline badspace = self.sm_badspace suppressor = self.sm_newline_suppressor suspend_list = self.sm_suspend_list # (2) Inadmissible 'eat-into' __________________________________________ # cmp_list = [ (newline, badspace), (newline, whitespace), (newline, suppressor), (suppressor, newline), (whitespace, newline), (whitespace, suppressor), (badspace, newline), (badspace, suppressor), ] \ + [ (whitespace, x) for x in suspend_list ] \ + [ (newline, x) for x in suspend_list ] \ + [ (badspace, x) for x in suspend_list ] def _error(FormatStr, Sro0, Sro1): error.log(FormatStr % (Sro0.name, Sro1.name), Sro0.sr, DontExitF=True) error.log("'%s' defined here." % Sro1.name, Sro1.sr) def _iterate(SroPairList): for first_sro, second_sro in cmp_list: first, second = first_sro.get(), second_sro.get() if first is None or second is None: continue yield first_sro, first, second_sro, second for first_sro, first, second_sro, second in _iterate(cmp_list): if swallow.ending_A_beginning_B(first, second): _error("'%s' may eat into beginning of '%s'.", first_sro, second_sro) elif swallow.inside_A_match_B(first, second): _error("'%s' may swallow something matched by '%s'.", first_sro, second_sro) for sm_suspend in self.sm_suspend_list: only_common_f, \ common_f = tail.do(self.sm_newline.get(), sm_suspend.get()) error_check.tail(only_common_f, common_f, "indentation handler's newline", self.sm_newline.sr, "suspend", sm_suspend.sr) # (3) Inadmissible common lexemes _____________________________________ # if badspace.get() and not intersection.do([badspace.get(), whitespace.get()]).is_Empty(): _error("'%s' and '%s' match on common lexemes.", whitespace, badspace) # (3) Inadmissible outruns ____________________________________________ # cmp_list = [ (newline, suppressor), (suppressor, newline), (whitespace, badspace) ] for x in suspend_list: cmp_list.extend([ (newline, x), (x, newline), (suppressor, x), (x, suppressor) ]) for first_sro, first, second_sro, second in _iterate(cmp_list): if outrun.do(second, first): _error("'%s' may outrun '%s'.", first_sro, second_sro) def _parse_definition_head(fh, IdentifierList): if check(fh, "\\default"): error.log("'\\default' has been replaced by keyword '\\else' since quex 0.64.9!", fh) elif check(fh, "\\else"): pattern = None else: pattern = regular_expression.parse(fh, AllowPreContextF=False, AllowPostContextF=False) skip_whitespace(fh) check_or_die(fh, "=>", " after character set definition.") skip_whitespace(fh) identifier = read_identifier(fh, OnMissingStr="Missing identifier following '=>'.") error.verify_word_in_list(identifier, IdentifierList, "Unrecognized specifier '%s'." % identifier, fh) skip_whitespace(fh) return pattern, identifier, SourceRef.from_FileHandle(fh) def _read_value_specifier(fh, Keyword, Default=None): skip_whitespace(fh) value = read_integer(fh) if value is not None: return value # not a number received, is it an identifier? variable = read_identifier(fh) if variable: return variable elif Default is not None: return Default error.log("Missing integer or variable name after keyword '%s'." % Keyword, fh) __CountActionMap_DEFAULT = None def LineColumnCount_Default(): global __CountActionMap_DEFAULT if __CountActionMap_DEFAULT is None: builder = CountActionMap_Builder() builder.add(NumberSet(ord('\n')), E_CharacterCountType.LINE, 1, SourceRef_DEFAULT) builder.add(NumberSet(ord('\t')), E_CharacterCountType.GRID, 4, SourceRef_DEFAULT) builder.define_else(E_CharacterCountType.COLUMN, 1, SourceRef_DEFAULT) # Define: "\else" __CountActionMap_DEFAULT = builder.finalize( Setup.buffer_encoding.source_set.minimum(), Setup.buffer_encoding.source_set.least_greater_bound(), # Apply: "\else" SourceRef_DEFAULT) return __CountActionMap_DEFAULT def _error_if_defined_before(Before, sr): if not Before.set_f(): return error.log("'%s' has been defined before;" % Before.name, sr, DontExitF=True) error.log("at this place.", Before.sr) def _extract_trigger_set(sr, Keyword, Pattern): if Pattern is None: return None elif isinstance(Pattern, NumberSet): return Pattern def check_can_be_matched_by_single_character(SM): bad_f = False init_state = SM.get_init_state() if SM.get_init_state().is_acceptance(): bad_f = True elif len(SM.states) != 2: bad_f = True # Init state MUST transit to second state. Second state MUST not have any transitions elif len(init_state.target_map.get_target_state_index_list()) != 1: bad_f = True else: tmp = set(SM.states.keys()) tmp.remove(SM.init_state_index) other_state_index = next(iter(tmp)) if len(SM.states[other_state_index].target_map.get_target_state_index_list()) != 0: bad_f = True if bad_f: error.log("For '%s' only patterns are addmissible which\n" % Keyword + \ "can be matched by a single character, e.g. \" \" or [a-z].", sr) sm = Pattern.extract_sm() check_can_be_matched_by_single_character(sm) transition_map = sm.get_init_state().target_map.get_map() assert len(transition_map) == 1 return list(transition_map.values())[0] def _check_grid_values_integer_multiples(CaMap): """If there are no spaces and the grid is on a homogeneous scale, => then the grid can be transformed into 'easy-to-compute' spaces. """ grid_value_list = [] min_info = None for character_set, info in CaMap: if info.cc_type == E_CharacterCountType.COLUMN: return elif info.cc_type != E_CharacterCountType.GRID: continue elif type(info.value) in (str, str): # If there is one single 'variable' grid value, # then no assumptions can be made. return grid_value_list.append(info.value) if min_info is None or info.value < min_info.value: min_info = info if min_info is None: return # Are all grid values a multiple of the minimum? if all(x % min_info.value == 0 for x in grid_value_list): error.warning("Setup does not contain spaces, only grids (tabulators). All grid\n" \ "widths are multiples of %i. The grid setup %s is equivalent to\n" \ % (min_info.value, repr(sorted(grid_value_list))[1:-1]) + \ "a setup with space counts %s. Space counts are faster to compute.\n" \ % repr([x / min_info.value for x in sorted(grid_value_list)])[1:-1], min_info.sr) return def check_defined(CaMap, SourceReference, CCT): """Checks whether the character counter type has been defined in the map. THROWS: Error in case that is has not been defined. """ for character_set, info in CaMap: if info.cc_type == CCT: return error.warning("Setup does not define '%s'." % cc_type_name_db[CCT], SourceReference, SuppressCode=NotificationDB.warning_counter_setup_without_newline)
44.238589
111
0.60892
[ "MIT" ]
Liby99/quex
quex/input/files/specifier/counter.py
21,323
Python
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 5/15/20 4:49 PM # @File : grover.py # qubit number=2 # total number=20 import cirq import cirq.google as cg from typing import Optional import sys from math import log2 import numpy as np #thatsNoCode from cirq.contrib.svg import SVGCircuit # Symbols for the rotation angles in the QAOA circuit. def make_circuit(n: int, input_qubit): c = cirq.Circuit() # circuit begin c.append(cirq.H.on(input_qubit[0])) # number=1 c.append(cirq.CNOT.on(input_qubit[1],input_qubit[0])) # number=17 c.append(cirq.Z.on(input_qubit[1])) # number=18 c.append(cirq.CNOT.on(input_qubit[1],input_qubit[0])) # number=19 c.append(cirq.Y.on(input_qubit[1])) # number=2 c.append(cirq.Y.on(input_qubit[1])) # number=4 c.append(cirq.Y.on(input_qubit[1])) # number=3 c.append(cirq.H.on(input_qubit[0])) # number=13 c.append(cirq.CZ.on(input_qubit[1],input_qubit[0])) # number=14 c.append(cirq.H.on(input_qubit[0])) # number=15 c.append(cirq.X.on(input_qubit[0])) # number=8 c.append(cirq.CNOT.on(input_qubit[1],input_qubit[0])) # number=9 c.append(cirq.CNOT.on(input_qubit[1],input_qubit[0])) # number=10 c.append(cirq.X.on(input_qubit[0])) # number=11 c.append(cirq.CNOT.on(input_qubit[1],input_qubit[0])) # number=12 # circuit end c.append(cirq.measure(*input_qubit, key='result')) return c def bitstring(bits): return ''.join(str(int(b)) for b in bits) if __name__ == '__main__': qubit_count = 4 input_qubits = [cirq.GridQubit(i, 0) for i in range(qubit_count)] circuit = make_circuit(qubit_count,input_qubits) circuit = cg.optimized_for_sycamore(circuit, optimizer_type='sqrt_iswap') circuit_sample_count =2000 simulator = cirq.Simulator() result = simulator.run(circuit, repetitions=circuit_sample_count) frequencies = result.histogram(key='result', fold_func=bitstring) writefile = open("../data/startCirq347.csv","w+") print(format(frequencies),file=writefile) print("results end", file=writefile) print(circuit.__len__(), file=writefile) print(circuit,file=writefile) writefile.close()
31.171429
77
0.691567
[ "BSD-3-Clause" ]
UCLA-SEAL/QDiff
data/p2DJ/New/program/cirq/startCirq347.py
2,182
Python
import requests import urllib.parse import posixpath import pandas as pd def get_enrollment_dates(course): '''Takes a course object and returns student dates of enrollment. Useful for handling late registrations and modified deadlines. Example: course.get_enrollment_date()''' url_path = posixpath.join("api", "v1", "courses", course['course_id'], "enrollments") api_url = urllib.parse.urljoin(course['hostname'], url_path) token = course['token'] resp = None students = [] while resp is None or resp.links['current']['url'] != resp.links['last']['url']: resp = requests.get( url = api_url if resp is None else resp.links['next']['url'], headers = { "Authorization": f"Bearer {token}", "Accept": "application/json+canvas-string-ids" }, json={ "type": ["StudentEnrollment"], "per_page":"100" } ) students.extend(resp.json()) enrollment_dates = {} for st in students: enrollment_dates[str(st['user_id'])] = str(st['created_at']).strip('Z').replace('T','-').replace(':','-')[:16] return enrollment_dates def get_assignments(course): '''Takes a course object and returns a Pandas data frame with all existing assignments and their attributes/data Example: course.get_assignments()''' url_path = posixpath.join("api", "v1", "courses", course['course_id'], "assignments") api_url = urllib.parse.urljoin(course['hostname'], url_path) token = course['token'] resp = requests.get( url=api_url, headers={ "Authorization": f"Bearer {token}", "Accept": "application/json+canvas-string-ids" }, json={ "per_page": "10000" }, ) assignments = resp.json() assign_data = pd.DataFrame.from_dict(assignments) return assign_data def get_assignment_lock_date(course, assignment): '''Takes a course object and the name of a Canvas assignment and returns the due date. Returns None if no due date assigned. Example: course.get_assignment_due_date('worksheet_01')''' assignments = get_assignments(course) assignments = assignments[['name', 'lock_at']].query('name == @assignment') lock_date = assignments['lock_at'].to_numpy()[0] if lock_date is None: return lock_date lock_date = lock_date.replace("T", "-") lock_date = lock_date.replace(":", "-") return lock_date[:16] def get_assignment_due_date(course, assignment): '''Takes a course object and the name of a Canvas assignment and returns the due date. Returns None if no due date assigned. Example: course.get_assignment_due_date('worksheet_01')''' assignments = get_assignments(course) assignments = assignments[['name', 'due_at']].query('name == @assignment') due_date = assignments['due_at'].to_numpy()[0] if due_date is None: return due_date due_date = due_date.replace("T", "-") due_date = due_date.replace(":", "-") return due_date[:16] def get_assignment_unlock_date(course, assignment): '''Takes a course object and the name of a Canvas assignment and returns the due date. Returns None if no due date assigned. Example: course.get_assignment_unlock_date('worksheet_01')''' assignments = get_assignments(course) assignments = assignments[['name', 'unlock_at']].query('name == @assignment') unlock_date = assignments['unlock_at'].to_numpy()[0] if unlock_date is None: return unlock_date unlock_date = unlock_date.replace("T", "-").replace(':', '-') return unlock_date[:16] def get_assignment_id(course, assignment): '''Takes a course object and the name of a Canvas assignment and returns the Canvas ID. Example: course.get_assignment_id('worksheet_01')''' assignments = get_assignments(course) assignments = assignments[['name', 'id']].query('name == @assignment') return assignments['id'].values[0] def get_grades(course, assignment): '''Takes a course object, an assignment name, and get the grades for that assignment from Canvas. Example: course.get_grades(course, 'worksheet_01')''' assignment_id = get_assignment_id(course, assignment) url_path = posixpath.join("api", "v1", "courses", course['course_id'], "assignments", assignment_id, "submissions") api_url = urllib.parse.urljoin(course['hostname'], url_path) token = course['token'] resp = None scores = {} while resp is None or resp.links['current']['url'] != resp.links['last']['url']: resp = requests.get( url = api_url if resp is None else resp.links['next']['url'], headers = { "Authorization": f"Bearer {token}", "Accept": "application/json+canvas-string-ids" }, json={ "per_page":"100" } ) scores.update( {res['user_id'] : res['score'] for res in resp.json()} ) return scores def grades_need_posting(course, assignment): '''Takes a course object, an assignment name, and get the grades for that assignment from Canvas. Example: course.get_grades(course, 'worksheet_01')''' assignment_id = get_assignment_id(course, assignment) url_path = posixpath.join("api", "v1", "courses", course['course_id'], "assignments", assignment_id, "submissions") api_url = urllib.parse.urljoin(course['hostname'], url_path) token = course['token'] #get enrollments to avoid the test student's submissions real_stu_ids = list(get_enrollment_dates(course).keys()) resp = None posted_flags = [] while resp is None or resp.links['current']['url'] != resp.links['last']['url']: resp = requests.get( url = api_url if resp is None else resp.links['next']['url'], headers = { "Authorization": f"Bearer {token}", "Accept": "application/json+canvas-string-ids" }, json={ "per_page":"100" } ) posted_flags.extend([ (subm_grd['posted_at'] is not None) for subm_grd in resp.json() if subm_grd['user_id'] in real_stu_ids]) return not all(posted_flags) def post_grade(course, assignment, student, score): '''Takes a course object, an assignment name, student id, and score to upload. Posts to Canvas. Example: course.post_grades(dsci100, 'worksheet_01', '23423', 10)''' assignment_id = get_assignment_id(course, assignment) url_post_path = posixpath.join("api", "v1", "courses", course['course_id'], "assignments", assignment_id, "submissions", student) api_url = urllib.parse.urljoin(course['hostname'], url_post_path) token = course['token'] resp = requests.put( url = urllib.parse.urljoin(api_url, student), headers = { "Authorization": f"Bearer {token}", "Accept": "application/json+canvas-string-ids" }, json={ "submission": {"posted_grade": score} }, )
37.808511
134
0.638295
[ "MIT" ]
hsmohammed/rudaux
scripts/canvas.py
7,108
Python
# -*- coding: utf-8 -*- """ pygments.lexers.graphics ~~~~~~~~~~~~~~~~~~~~~~~~ Lexers for computer graphics and plotting related languages. :copyright: Copyright 2006-2020 by the Pygments team, see AUTHORS. :license: BSD, see LICENSE for details. """ from pygments.lexer import RegexLexer, words, include, bygroups, using, \ this, default from pygments.token import Text, Comment, Operator, Keyword, Name, \ Number, Punctuation, String __all__ = ['GLShaderLexer', 'PostScriptLexer', 'AsymptoteLexer', 'GnuplotLexer', 'PovrayLexer', 'HLSLShaderLexer'] class GLShaderLexer(RegexLexer): """ GLSL (OpenGL Shader) lexer. .. versionadded:: 1.1 """ name = 'GLSL' aliases = ['glsl'] filenames = ['*.vert', '*.frag', '*.geo'] mimetypes = ['text/x-glslsrc'] tokens = { 'root': [ (r'^#.*', Comment.Preproc), (r'//.*', Comment.Single), (r'/(\\\n)?[*](.|\n)*?[*](\\\n)?/', Comment.Multiline), (r'\+|-|~|!=?|\*|/|%|<<|>>|<=?|>=?|==?|&&?|\^|\|\|?', Operator), (r'[?:]', Operator), # quick hack for ternary (r'\bdefined\b', Operator), (r'[;{}(),\[\]]', Punctuation), # FIXME when e is present, no decimal point needed (r'[+-]?\d*\.\d+([eE][-+]?\d+)?', Number.Float), (r'[+-]?\d+\.\d*([eE][-+]?\d+)?', Number.Float), (r'0[xX][0-9a-fA-F]*', Number.Hex), (r'0[0-7]*', Number.Oct), (r'[1-9][0-9]*', Number.Integer), (words(( # Storage qualifiers 'attribute', 'const', 'uniform', 'varying', 'buffer', 'shared', 'in', 'out', # Layout qualifiers 'layout', # Interpolation qualifiers 'flat', 'smooth', 'noperspective', # Auxiliary qualifiers 'centroid', 'sample', 'patch', # Parameter qualifiers. Some double as Storage qualifiers 'inout', # Precision qualifiers 'lowp', 'mediump', 'highp', 'precision', # Invariance qualifiers 'invariant', # Precise qualifiers 'precise', # Memory qualifiers 'coherent', 'volatile', 'restrict', 'readonly', 'writeonly', # Statements 'break', 'continue', 'do', 'for', 'while', 'switch', 'case', 'default', 'if', 'else', 'subroutine', 'discard', 'return', 'struct'), prefix=r'\b', suffix=r'\b'), Keyword), (words(( # Boolean values 'true', 'false'), prefix=r'\b', suffix=r'\b'), Keyword.Constant), (words(( # Miscellaneous types 'void', 'atomic_uint', # Floating-point scalars and vectors 'float', 'vec2', 'vec3', 'vec4', 'double', 'dvec2', 'dvec3', 'dvec4', # Integer scalars and vectors 'int', 'ivec2', 'ivec3', 'ivec4', 'uint', 'uvec2', 'uvec3', 'uvec4', # Boolean scalars and vectors 'bool', 'bvec2', 'bvec3', 'bvec4', # Matrices 'mat2', 'mat3', 'mat4', 'dmat2', 'dmat3', 'dmat4', 'mat2x2', 'mat2x3', 'mat2x4', 'dmat2x2', 'dmat2x3', 'dmat2x4', 'mat3x2', 'mat3x3', 'mat3x4', 'dmat3x2', 'dmat3x3', 'dmat3x4', 'mat4x2', 'mat4x3', 'mat4x4', 'dmat4x2', 'dmat4x3', 'dmat4x4', # Floating-point samplers 'sampler1D', 'sampler2D', 'sampler3D', 'samplerCube', 'sampler1DArray', 'sampler2DArray', 'samplerCubeArray', 'sampler2DRect', 'samplerBuffer', 'sampler2DMS', 'sampler2DMSArray', # Shadow samplers 'sampler1DShadow', 'sampler2DShadow', 'samplerCubeShadow', 'sampler1DArrayShadow', 'sampler2DArrayShadow', 'samplerCubeArrayShadow', 'sampler2DRectShadow', # Signed integer samplers 'isampler1D', 'isampler2D', 'isampler3D', 'isamplerCube', 'isampler1DArray', 'isampler2DArray', 'isamplerCubeArray', 'isampler2DRect', 'isamplerBuffer', 'isampler2DMS', 'isampler2DMSArray', # Unsigned integer samplers 'usampler1D', 'usampler2D', 'usampler3D', 'usamplerCube', 'usampler1DArray', 'usampler2DArray', 'usamplerCubeArray', 'usampler2DRect', 'usamplerBuffer', 'usampler2DMS', 'usampler2DMSArray', # Floating-point image types 'image1D', 'image2D', 'image3D', 'imageCube', 'image1DArray', 'image2DArray', 'imageCubeArray', 'image2DRect', 'imageBuffer', 'image2DMS', 'image2DMSArray', # Signed integer image types 'iimage1D', 'iimage2D', 'iimage3D', 'iimageCube', 'iimage1DArray', 'iimage2DArray', 'iimageCubeArray', 'iimage2DRect', 'iimageBuffer', 'iimage2DMS', 'iimage2DMSArray', # Unsigned integer image types 'uimage1D', 'uimage2D', 'uimage3D', 'uimageCube', 'uimage1DArray', 'uimage2DArray', 'uimageCubeArray', 'uimage2DRect', 'uimageBuffer', 'uimage2DMS', 'uimage2DMSArray'), prefix=r'\b', suffix=r'\b'), Keyword.Type), (words(( # Reserved for future use. 'common', 'partition', 'active', 'asm', 'class', 'union', 'enum', 'typedef', 'template', 'this', 'resource', 'goto', 'inline', 'noinline', 'public', 'static', 'extern', 'external', 'interface', 'long', 'short', 'half', 'fixed', 'unsigned', 'superp', 'input', 'output', 'hvec2', 'hvec3', 'hvec4', 'fvec2', 'fvec3', 'fvec4', 'sampler3DRect', 'filter', 'sizeof', 'cast', 'namespace', 'using'), prefix=r'\b', suffix=r'\b'), Keyword.Reserved), # All names beginning with "gl_" are reserved. (r'gl_\w*', Name.Builtin), (r'[a-zA-Z_]\w*', Name), (r'\.', Punctuation), (r'\s+', Text), ], } class HLSLShaderLexer(RegexLexer): """ HLSL (Microsoft Direct3D Shader) lexer. .. versionadded:: 2.3 """ name = 'HLSL' aliases = ['hlsl'] filenames = ['*.hlsl', '*.hlsli'] mimetypes = ['text/x-hlsl'] tokens = { 'root': [ (r'^#.*', Comment.Preproc), (r'//.*', Comment.Single), (r'/(\\\n)?[*](.|\n)*?[*](\\\n)?/', Comment.Multiline), (r'\+|-|~|!=?|\*|/|%|<<|>>|<=?|>=?|==?|&&?|\^|\|\|?', Operator), (r'[?:]', Operator), # quick hack for ternary (r'\bdefined\b', Operator), (r'[;{}(),.\[\]]', Punctuation), # FIXME when e is present, no decimal point needed (r'[+-]?\d*\.\d+([eE][-+]?\d+)?f?', Number.Float), (r'[+-]?\d+\.\d*([eE][-+]?\d+)?f?', Number.Float), (r'0[xX][0-9a-fA-F]*', Number.Hex), (r'0[0-7]*', Number.Oct), (r'[1-9][0-9]*', Number.Integer), (r'"', String, 'string'), (words(( 'asm','asm_fragment','break','case','cbuffer','centroid','class', 'column_major','compile','compile_fragment','const','continue', 'default','discard','do','else','export','extern','for','fxgroup', 'globallycoherent','groupshared','if','in','inline','inout', 'interface','line','lineadj','linear','namespace','nointerpolation', 'noperspective','NULL','out','packoffset','pass','pixelfragment', 'point','precise','return','register','row_major','sample', 'sampler','shared','stateblock','stateblock_state','static', 'struct','switch','tbuffer','technique','technique10', 'technique11','texture','typedef','triangle','triangleadj', 'uniform','vertexfragment','volatile','while'), prefix=r'\b', suffix=r'\b'), Keyword), (words(('true','false'), prefix=r'\b', suffix=r'\b'), Keyword.Constant), (words(( 'auto','catch','char','const_cast','delete','dynamic_cast','enum', 'explicit','friend','goto','long','mutable','new','operator', 'private','protected','public','reinterpret_cast','short','signed', 'sizeof','static_cast','template','this','throw','try','typename', 'union','unsigned','using','virtual'), prefix=r'\b', suffix=r'\b'), Keyword.Reserved), (words(( 'dword','matrix','snorm','string','unorm','unsigned','void','vector', 'BlendState','Buffer','ByteAddressBuffer','ComputeShader', 'DepthStencilState','DepthStencilView','DomainShader', 'GeometryShader','HullShader','InputPatch','LineStream', 'OutputPatch','PixelShader','PointStream','RasterizerState', 'RenderTargetView','RasterizerOrderedBuffer', 'RasterizerOrderedByteAddressBuffer', 'RasterizerOrderedStructuredBuffer','RasterizerOrderedTexture1D', 'RasterizerOrderedTexture1DArray','RasterizerOrderedTexture2D', 'RasterizerOrderedTexture2DArray','RasterizerOrderedTexture3D', 'RWBuffer','RWByteAddressBuffer','RWStructuredBuffer', 'RWTexture1D','RWTexture1DArray','RWTexture2D','RWTexture2DArray', 'RWTexture3D','SamplerState','SamplerComparisonState', 'StructuredBuffer','Texture1D','Texture1DArray','Texture2D', 'Texture2DArray','Texture2DMS','Texture2DMSArray','Texture3D', 'TextureCube','TextureCubeArray','TriangleStream','VertexShader'), prefix=r'\b', suffix=r'\b'), Keyword.Type), (words(( 'bool','double','float','int','half','min16float','min10float', 'min16int','min12int','min16uint','uint'), prefix=r'\b', suffix=r'([1-4](x[1-4])?)?\b'), Keyword.Type), # vector and matrix types (words(( 'abort','abs','acos','all','AllMemoryBarrier', 'AllMemoryBarrierWithGroupSync','any','AppendStructuredBuffer', 'asdouble','asfloat','asin','asint','asuint','asuint','atan', 'atan2','ceil','CheckAccessFullyMapped','clamp','clip', 'CompileShader','ConsumeStructuredBuffer','cos','cosh','countbits', 'cross','D3DCOLORtoUBYTE4','ddx','ddx_coarse','ddx_fine','ddy', 'ddy_coarse','ddy_fine','degrees','determinant', 'DeviceMemoryBarrier','DeviceMemoryBarrierWithGroupSync','distance', 'dot','dst','errorf','EvaluateAttributeAtCentroid', 'EvaluateAttributeAtSample','EvaluateAttributeSnapped','exp', 'exp2','f16tof32','f32tof16','faceforward','firstbithigh', 'firstbitlow','floor','fma','fmod','frac','frexp','fwidth', 'GetRenderTargetSampleCount','GetRenderTargetSamplePosition', 'GlobalOrderedCountIncrement','GroupMemoryBarrier', 'GroupMemoryBarrierWithGroupSync','InterlockedAdd','InterlockedAnd', 'InterlockedCompareExchange','InterlockedCompareStore', 'InterlockedExchange','InterlockedMax','InterlockedMin', 'InterlockedOr','InterlockedXor','isfinite','isinf','isnan', 'ldexp','length','lerp','lit','log','log10','log2','mad','max', 'min','modf','msad4','mul','noise','normalize','pow','printf', 'Process2DQuadTessFactorsAvg','Process2DQuadTessFactorsMax', 'Process2DQuadTessFactorsMin','ProcessIsolineTessFactors', 'ProcessQuadTessFactorsAvg','ProcessQuadTessFactorsMax', 'ProcessQuadTessFactorsMin','ProcessTriTessFactorsAvg', 'ProcessTriTessFactorsMax','ProcessTriTessFactorsMin', 'QuadReadLaneAt','QuadSwapX','QuadSwapY','radians','rcp', 'reflect','refract','reversebits','round','rsqrt','saturate', 'sign','sin','sincos','sinh','smoothstep','sqrt','step','tan', 'tanh','tex1D','tex1D','tex1Dbias','tex1Dgrad','tex1Dlod', 'tex1Dproj','tex2D','tex2D','tex2Dbias','tex2Dgrad','tex2Dlod', 'tex2Dproj','tex3D','tex3D','tex3Dbias','tex3Dgrad','tex3Dlod', 'tex3Dproj','texCUBE','texCUBE','texCUBEbias','texCUBEgrad', 'texCUBElod','texCUBEproj','transpose','trunc','WaveAllBitAnd', 'WaveAllMax','WaveAllMin','WaveAllBitOr','WaveAllBitXor', 'WaveAllEqual','WaveAllProduct','WaveAllSum','WaveAllTrue', 'WaveAnyTrue','WaveBallot','WaveGetLaneCount','WaveGetLaneIndex', 'WaveGetOrderedIndex','WaveIsHelperLane','WaveOnce', 'WavePrefixProduct','WavePrefixSum','WaveReadFirstLane', 'WaveReadLaneAt'), prefix=r'\b', suffix=r'\b'), Name.Builtin), # built-in functions (words(( 'SV_ClipDistance','SV_ClipDistance0','SV_ClipDistance1', 'SV_Culldistance','SV_CullDistance0','SV_CullDistance1', 'SV_Coverage','SV_Depth','SV_DepthGreaterEqual', 'SV_DepthLessEqual','SV_DispatchThreadID','SV_DomainLocation', 'SV_GroupID','SV_GroupIndex','SV_GroupThreadID','SV_GSInstanceID', 'SV_InnerCoverage','SV_InsideTessFactor','SV_InstanceID', 'SV_IsFrontFace','SV_OutputControlPointID','SV_Position', 'SV_PrimitiveID','SV_RenderTargetArrayIndex','SV_SampleIndex', 'SV_StencilRef','SV_TessFactor','SV_VertexID', 'SV_ViewportArrayIndex'), prefix=r'\b', suffix=r'\b'), Name.Decorator), # system-value semantics (r'\bSV_Target[0-7]?\b', Name.Decorator), (words(( 'allow_uav_condition','branch','call','domain','earlydepthstencil', 'fastopt','flatten','forcecase','instance','loop','maxtessfactor', 'numthreads','outputcontrolpoints','outputtopology','partitioning', 'patchconstantfunc','unroll'), prefix=r'\b', suffix=r'\b'), Name.Decorator), # attributes (r'[a-zA-Z_]\w*', Name), (r'\\$', Comment.Preproc), # backslash at end of line -- usually macro continuation (r'\s+', Text), ], 'string': [ (r'"', String, '#pop'), (r'\\([\\abfnrtv"\']|x[a-fA-F0-9]{2,4}|' r'u[a-fA-F0-9]{4}|U[a-fA-F0-9]{8}|[0-7]{1,3})', String.Escape), (r'[^\\"\n]+', String), # all other characters (r'\\\n', String), # line continuation (r'\\', String), # stray backslash ], } class PostScriptLexer(RegexLexer): """ Lexer for PostScript files. The PostScript Language Reference published by Adobe at <http://partners.adobe.com/public/developer/en/ps/PLRM.pdf> is the authority for this. .. versionadded:: 1.4 """ name = 'PostScript' aliases = ['postscript', 'postscr'] filenames = ['*.ps', '*.eps'] mimetypes = ['application/postscript'] delimiter = r'()<>\[\]{}/%\s' delimiter_end = r'(?=[%s])' % delimiter valid_name_chars = r'[^%s]' % delimiter valid_name = r"%s+%s" % (valid_name_chars, delimiter_end) tokens = { 'root': [ # All comment types (r'^%!.+\n', Comment.Preproc), (r'%%.*\n', Comment.Special), (r'(^%.*\n){2,}', Comment.Multiline), (r'%.*\n', Comment.Single), # String literals are awkward; enter separate state. (r'\(', String, 'stringliteral'), (r'[{}<>\[\]]', Punctuation), # Numbers (r'<[0-9A-Fa-f]+>' + delimiter_end, Number.Hex), # Slight abuse: use Oct to signify any explicit base system (r'[0-9]+\#(\-|\+)?([0-9]+\.?|[0-9]*\.[0-9]+|[0-9]+\.[0-9]*)' r'((e|E)[0-9]+)?' + delimiter_end, Number.Oct), (r'(\-|\+)?([0-9]+\.?|[0-9]*\.[0-9]+|[0-9]+\.[0-9]*)((e|E)[0-9]+)?' + delimiter_end, Number.Float), (r'(\-|\+)?[0-9]+' + delimiter_end, Number.Integer), # References (r'\/%s' % valid_name, Name.Variable), # Names (valid_name, Name.Function), # Anything else is executed # These keywords taken from # <http://www.math.ubc.ca/~cass/graphics/manual/pdf/a1.pdf> # Is there an authoritative list anywhere that doesn't involve # trawling documentation? (r'(false|true)' + delimiter_end, Keyword.Constant), # Conditionals / flow control (r'(eq|ne|g[et]|l[et]|and|or|not|if(?:else)?|for(?:all)?)' + delimiter_end, Keyword.Reserved), (words(( 'abs', 'add', 'aload', 'arc', 'arcn', 'array', 'atan', 'begin', 'bind', 'ceiling', 'charpath', 'clip', 'closepath', 'concat', 'concatmatrix', 'copy', 'cos', 'currentlinewidth', 'currentmatrix', 'currentpoint', 'curveto', 'cvi', 'cvs', 'def', 'defaultmatrix', 'dict', 'dictstackoverflow', 'div', 'dtransform', 'dup', 'end', 'exch', 'exec', 'exit', 'exp', 'fill', 'findfont', 'floor', 'get', 'getinterval', 'grestore', 'gsave', 'gt', 'identmatrix', 'idiv', 'idtransform', 'index', 'invertmatrix', 'itransform', 'length', 'lineto', 'ln', 'load', 'log', 'loop', 'matrix', 'mod', 'moveto', 'mul', 'neg', 'newpath', 'pathforall', 'pathbbox', 'pop', 'print', 'pstack', 'put', 'quit', 'rand', 'rangecheck', 'rcurveto', 'repeat', 'restore', 'rlineto', 'rmoveto', 'roll', 'rotate', 'round', 'run', 'save', 'scale', 'scalefont', 'setdash', 'setfont', 'setgray', 'setlinecap', 'setlinejoin', 'setlinewidth', 'setmatrix', 'setrgbcolor', 'shfill', 'show', 'showpage', 'sin', 'sqrt', 'stack', 'stringwidth', 'stroke', 'strokepath', 'sub', 'syntaxerror', 'transform', 'translate', 'truncate', 'typecheck', 'undefined', 'undefinedfilename', 'undefinedresult'), suffix=delimiter_end), Name.Builtin), (r'\s+', Text), ], 'stringliteral': [ (r'[^()\\]+', String), (r'\\', String.Escape, 'escape'), (r'\(', String, '#push'), (r'\)', String, '#pop'), ], 'escape': [ (r'[0-8]{3}|n|r|t|b|f|\\|\(|\)', String.Escape, '#pop'), default('#pop'), ], } class AsymptoteLexer(RegexLexer): """ For `Asymptote <http://asymptote.sf.net/>`_ source code. .. versionadded:: 1.2 """ name = 'Asymptote' aliases = ['asy', 'asymptote'] filenames = ['*.asy'] mimetypes = ['text/x-asymptote'] #: optional Comment or Whitespace _ws = r'(?:\s|//.*?\n|/\*.*?\*/)+' tokens = { 'whitespace': [ (r'\n', Text), (r'\s+', Text), (r'\\\n', Text), # line continuation (r'//(\n|(.|\n)*?[^\\]\n)', Comment), (r'/(\\\n)?\*(.|\n)*?\*(\\\n)?/', Comment), ], 'statements': [ # simple string (TeX friendly) (r'"(\\\\|\\"|[^"])*"', String), # C style string (with character escapes) (r"'", String, 'string'), (r'(\d+\.\d*|\.\d+|\d+)[eE][+-]?\d+[lL]?', Number.Float), (r'(\d+\.\d*|\.\d+|\d+[fF])[fF]?', Number.Float), (r'0x[0-9a-fA-F]+[Ll]?', Number.Hex), (r'0[0-7]+[Ll]?', Number.Oct), (r'\d+[Ll]?', Number.Integer), (r'[~!%^&*+=|?:<>/-]', Operator), (r'[()\[\],.]', Punctuation), (r'\b(case)(.+?)(:)', bygroups(Keyword, using(this), Text)), (r'(and|controls|tension|atleast|curl|if|else|while|for|do|' r'return|break|continue|struct|typedef|new|access|import|' r'unravel|from|include|quote|static|public|private|restricted|' r'this|explicit|true|false|null|cycle|newframe|operator)\b', Keyword), # Since an asy-type-name can be also an asy-function-name, # in the following we test if the string " [a-zA-Z]" follows # the Keyword.Type. # Of course it is not perfect ! (r'(Braid|FitResult|Label|Legend|TreeNode|abscissa|arc|arrowhead|' r'binarytree|binarytreeNode|block|bool|bool3|bounds|bqe|circle|' r'conic|coord|coordsys|cputime|ellipse|file|filltype|frame|grid3|' r'guide|horner|hsv|hyperbola|indexedTransform|int|inversion|key|' r'light|line|linefit|marginT|marker|mass|object|pair|parabola|path|' r'path3|pen|picture|point|position|projection|real|revolution|' r'scaleT|scientific|segment|side|slice|splitface|string|surface|' r'tensionSpecifier|ticklocate|ticksgridT|tickvalues|transform|' r'transformation|tree|triangle|trilinear|triple|vector|' r'vertex|void)(?=\s+[a-zA-Z])', Keyword.Type), # Now the asy-type-name which are not asy-function-name # except yours ! # Perhaps useless (r'(Braid|FitResult|TreeNode|abscissa|arrowhead|block|bool|bool3|' r'bounds|coord|frame|guide|horner|int|linefit|marginT|pair|pen|' r'picture|position|real|revolution|slice|splitface|ticksgridT|' r'tickvalues|tree|triple|vertex|void)\b', Keyword.Type), (r'[a-zA-Z_]\w*:(?!:)', Name.Label), (r'[a-zA-Z_]\w*', Name), ], 'root': [ include('whitespace'), # functions (r'((?:[\w*\s])+?(?:\s|\*))' # return arguments r'([a-zA-Z_]\w*)' # method name r'(\s*\([^;]*?\))' # signature r'(' + _ws + r')(\{)', bygroups(using(this), Name.Function, using(this), using(this), Punctuation), 'function'), # function declarations (r'((?:[\w*\s])+?(?:\s|\*))' # return arguments r'([a-zA-Z_]\w*)' # method name r'(\s*\([^;]*?\))' # signature r'(' + _ws + r')(;)', bygroups(using(this), Name.Function, using(this), using(this), Punctuation)), default('statement'), ], 'statement': [ include('whitespace'), include('statements'), ('[{}]', Punctuation), (';', Punctuation, '#pop'), ], 'function': [ include('whitespace'), include('statements'), (';', Punctuation), (r'\{', Punctuation, '#push'), (r'\}', Punctuation, '#pop'), ], 'string': [ (r"'", String, '#pop'), (r'\\([\\abfnrtv"\'?]|x[a-fA-F0-9]{2,4}|[0-7]{1,3})', String.Escape), (r'\n', String), (r"[^\\'\n]+", String), # all other characters (r'\\\n', String), (r'\\n', String), # line continuation (r'\\', String), # stray backslash ], } def get_tokens_unprocessed(self, text): from pygments.lexers._asy_builtins import ASYFUNCNAME, ASYVARNAME for index, token, value in \ RegexLexer.get_tokens_unprocessed(self, text): if token is Name and value in ASYFUNCNAME: token = Name.Function elif token is Name and value in ASYVARNAME: token = Name.Variable yield index, token, value def _shortened(word): dpos = word.find('$') return '|'.join(word[:dpos] + word[dpos+1:i] + r'\b' for i in range(len(word), dpos, -1)) def _shortened_many(*words): return '|'.join(map(_shortened, words)) class GnuplotLexer(RegexLexer): """ For `Gnuplot <http://gnuplot.info/>`_ plotting scripts. .. versionadded:: 0.11 """ name = 'Gnuplot' aliases = ['gnuplot'] filenames = ['*.plot', '*.plt'] mimetypes = ['text/x-gnuplot'] tokens = { 'root': [ include('whitespace'), (_shortened('bi$nd'), Keyword, 'bind'), (_shortened_many('ex$it', 'q$uit'), Keyword, 'quit'), (_shortened('f$it'), Keyword, 'fit'), (r'(if)(\s*)(\()', bygroups(Keyword, Text, Punctuation), 'if'), (r'else\b', Keyword), (_shortened('pa$use'), Keyword, 'pause'), (_shortened_many('p$lot', 'rep$lot', 'sp$lot'), Keyword, 'plot'), (_shortened('sa$ve'), Keyword, 'save'), (_shortened('se$t'), Keyword, ('genericargs', 'optionarg')), (_shortened_many('sh$ow', 'uns$et'), Keyword, ('noargs', 'optionarg')), (_shortened_many('low$er', 'ra$ise', 'ca$ll', 'cd$', 'cl$ear', 'h$elp', '\\?$', 'hi$story', 'l$oad', 'pr$int', 'pwd$', 're$read', 'res$et', 'scr$eendump', 'she$ll', 'sy$stem', 'up$date'), Keyword, 'genericargs'), (_shortened_many('pwd$', 're$read', 'res$et', 'scr$eendump', 'she$ll', 'test$'), Keyword, 'noargs'), (r'([a-zA-Z_]\w*)(\s*)(=)', bygroups(Name.Variable, Text, Operator), 'genericargs'), (r'([a-zA-Z_]\w*)(\s*\(.*?\)\s*)(=)', bygroups(Name.Function, Text, Operator), 'genericargs'), (r'@[a-zA-Z_]\w*', Name.Constant), # macros (r';', Keyword), ], 'comment': [ (r'[^\\\n]', Comment), (r'\\\n', Comment), (r'\\', Comment), # don't add the newline to the Comment token default('#pop'), ], 'whitespace': [ ('#', Comment, 'comment'), (r'[ \t\v\f]+', Text), ], 'noargs': [ include('whitespace'), # semicolon and newline end the argument list (r';', Punctuation, '#pop'), (r'\n', Text, '#pop'), ], 'dqstring': [ (r'"', String, '#pop'), (r'\\([\\abfnrtv"\']|x[a-fA-F0-9]{2,4}|[0-7]{1,3})', String.Escape), (r'[^\\"\n]+', String), # all other characters (r'\\\n', String), # line continuation (r'\\', String), # stray backslash (r'\n', String, '#pop'), # newline ends the string too ], 'sqstring': [ (r"''", String), # escaped single quote (r"'", String, '#pop'), (r"[^\\'\n]+", String), # all other characters (r'\\\n', String), # line continuation (r'\\', String), # normal backslash (r'\n', String, '#pop'), # newline ends the string too ], 'genericargs': [ include('noargs'), (r'"', String, 'dqstring'), (r"'", String, 'sqstring'), (r'(\d+\.\d*|\.\d+|\d+)[eE][+-]?\d+', Number.Float), (r'(\d+\.\d*|\.\d+)', Number.Float), (r'-?\d+', Number.Integer), ('[,.~!%^&*+=|?:<>/-]', Operator), (r'[{}()\[\]]', Punctuation), (r'(eq|ne)\b', Operator.Word), (r'([a-zA-Z_]\w*)(\s*)(\()', bygroups(Name.Function, Text, Punctuation)), (r'[a-zA-Z_]\w*', Name), (r'@[a-zA-Z_]\w*', Name.Constant), # macros (r'\\\n', Text), ], 'optionarg': [ include('whitespace'), (_shortened_many( "a$ll", "an$gles", "ar$row", "au$toscale", "b$ars", "bor$der", "box$width", "cl$abel", "c$lip", "cn$trparam", "co$ntour", "da$ta", "data$file", "dg$rid3d", "du$mmy", "enc$oding", "dec$imalsign", "fit$", "font$path", "fo$rmat", "fu$nction", "fu$nctions", "g$rid", "hid$den3d", "his$torysize", "is$osamples", "k$ey", "keyt$itle", "la$bel", "li$nestyle", "ls$", "loa$dpath", "loc$ale", "log$scale", "mac$ros", "map$ping", "map$ping3d", "mar$gin", "lmar$gin", "rmar$gin", "tmar$gin", "bmar$gin", "mo$use", "multi$plot", "mxt$ics", "nomxt$ics", "mx2t$ics", "nomx2t$ics", "myt$ics", "nomyt$ics", "my2t$ics", "nomy2t$ics", "mzt$ics", "nomzt$ics", "mcbt$ics", "nomcbt$ics", "of$fsets", "or$igin", "o$utput", "pa$rametric", "pm$3d", "pal$ette", "colorb$ox", "p$lot", "poi$ntsize", "pol$ar", "pr$int", "obj$ect", "sa$mples", "si$ze", "st$yle", "su$rface", "table$", "t$erminal", "termo$ptions", "ti$cs", "ticsc$ale", "ticsl$evel", "timef$mt", "tim$estamp", "tit$le", "v$ariables", "ve$rsion", "vi$ew", "xyp$lane", "xda$ta", "x2da$ta", "yda$ta", "y2da$ta", "zda$ta", "cbda$ta", "xl$abel", "x2l$abel", "yl$abel", "y2l$abel", "zl$abel", "cbl$abel", "xti$cs", "noxti$cs", "x2ti$cs", "nox2ti$cs", "yti$cs", "noyti$cs", "y2ti$cs", "noy2ti$cs", "zti$cs", "nozti$cs", "cbti$cs", "nocbti$cs", "xdti$cs", "noxdti$cs", "x2dti$cs", "nox2dti$cs", "ydti$cs", "noydti$cs", "y2dti$cs", "noy2dti$cs", "zdti$cs", "nozdti$cs", "cbdti$cs", "nocbdti$cs", "xmti$cs", "noxmti$cs", "x2mti$cs", "nox2mti$cs", "ymti$cs", "noymti$cs", "y2mti$cs", "noy2mti$cs", "zmti$cs", "nozmti$cs", "cbmti$cs", "nocbmti$cs", "xr$ange", "x2r$ange", "yr$ange", "y2r$ange", "zr$ange", "cbr$ange", "rr$ange", "tr$ange", "ur$ange", "vr$ange", "xzeroa$xis", "x2zeroa$xis", "yzeroa$xis", "y2zeroa$xis", "zzeroa$xis", "zeroa$xis", "z$ero"), Name.Builtin, '#pop'), ], 'bind': [ ('!', Keyword, '#pop'), (_shortened('all$windows'), Name.Builtin), include('genericargs'), ], 'quit': [ (r'gnuplot\b', Keyword), include('noargs'), ], 'fit': [ (r'via\b', Name.Builtin), include('plot'), ], 'if': [ (r'\)', Punctuation, '#pop'), include('genericargs'), ], 'pause': [ (r'(mouse|any|button1|button2|button3)\b', Name.Builtin), (_shortened('key$press'), Name.Builtin), include('genericargs'), ], 'plot': [ (_shortened_many('ax$es', 'axi$s', 'bin$ary', 'ev$ery', 'i$ndex', 'mat$rix', 's$mooth', 'thru$', 't$itle', 'not$itle', 'u$sing', 'w$ith'), Name.Builtin), include('genericargs'), ], 'save': [ (_shortened_many('f$unctions', 's$et', 't$erminal', 'v$ariables'), Name.Builtin), include('genericargs'), ], } class PovrayLexer(RegexLexer): """ For `Persistence of Vision Raytracer <http://www.povray.org/>`_ files. .. versionadded:: 0.11 """ name = 'POVRay' aliases = ['pov'] filenames = ['*.pov', '*.inc'] mimetypes = ['text/x-povray'] tokens = { 'root': [ (r'/\*[\w\W]*?\*/', Comment.Multiline), (r'//.*\n', Comment.Single), (r'(?s)"(?:\\.|[^"\\])+"', String.Double), (words(( 'break', 'case', 'debug', 'declare', 'default', 'define', 'else', 'elseif', 'end', 'error', 'fclose', 'fopen', 'for', 'if', 'ifdef', 'ifndef', 'include', 'local', 'macro', 'range', 'read', 'render', 'statistics', 'switch', 'undef', 'version', 'warning', 'while', 'write'), prefix=r'#', suffix=r'\b'), Comment.Preproc), (words(( 'aa_level', 'aa_threshold', 'abs', 'acos', 'acosh', 'adaptive', 'adc_bailout', 'agate', 'agate_turb', 'all', 'alpha', 'ambient', 'ambient_light', 'angle', 'aperture', 'arc_angle', 'area_light', 'asc', 'asin', 'asinh', 'assumed_gamma', 'atan', 'atan2', 'atanh', 'atmosphere', 'atmospheric_attenuation', 'attenuating', 'average', 'background', 'black_hole', 'blue', 'blur_samples', 'bounded_by', 'box_mapping', 'bozo', 'break', 'brick', 'brick_size', 'brightness', 'brilliance', 'bumps', 'bumpy1', 'bumpy2', 'bumpy3', 'bump_map', 'bump_size', 'case', 'caustics', 'ceil', 'checker', 'chr', 'clipped_by', 'clock', 'color', 'color_map', 'colour', 'colour_map', 'component', 'composite', 'concat', 'confidence', 'conic_sweep', 'constant', 'control0', 'control1', 'cos', 'cosh', 'count', 'crackle', 'crand', 'cube', 'cubic_spline', 'cylindrical_mapping', 'debug', 'declare', 'default', 'degrees', 'dents', 'diffuse', 'direction', 'distance', 'distance_maximum', 'div', 'dust', 'dust_type', 'eccentricity', 'else', 'emitting', 'end', 'error', 'error_bound', 'exp', 'exponent', 'fade_distance', 'fade_power', 'falloff', 'falloff_angle', 'false', 'file_exists', 'filter', 'finish', 'fisheye', 'flatness', 'flip', 'floor', 'focal_point', 'fog', 'fog_alt', 'fog_offset', 'fog_type', 'frequency', 'gif', 'global_settings', 'glowing', 'gradient', 'granite', 'gray_threshold', 'green', 'halo', 'hexagon', 'hf_gray_16', 'hierarchy', 'hollow', 'hypercomplex', 'if', 'ifdef', 'iff', 'image_map', 'incidence', 'include', 'int', 'interpolate', 'inverse', 'ior', 'irid', 'irid_wavelength', 'jitter', 'lambda', 'leopard', 'linear', 'linear_spline', 'linear_sweep', 'location', 'log', 'looks_like', 'look_at', 'low_error_factor', 'mandel', 'map_type', 'marble', 'material_map', 'matrix', 'max', 'max_intersections', 'max_iteration', 'max_trace_level', 'max_value', 'metallic', 'min', 'minimum_reuse', 'mod', 'mortar', 'nearest_count', 'no', 'normal', 'normal_map', 'no_shadow', 'number_of_waves', 'octaves', 'off', 'offset', 'omega', 'omnimax', 'on', 'once', 'onion', 'open', 'orthographic', 'panoramic', 'pattern1', 'pattern2', 'pattern3', 'perspective', 'pgm', 'phase', 'phong', 'phong_size', 'pi', 'pigment', 'pigment_map', 'planar_mapping', 'png', 'point_at', 'pot', 'pow', 'ppm', 'precision', 'pwr', 'quadratic_spline', 'quaternion', 'quick_color', 'quick_colour', 'quilted', 'radial', 'radians', 'radiosity', 'radius', 'rainbow', 'ramp_wave', 'rand', 'range', 'reciprocal', 'recursion_limit', 'red', 'reflection', 'refraction', 'render', 'repeat', 'rgb', 'rgbf', 'rgbft', 'rgbt', 'right', 'ripples', 'rotate', 'roughness', 'samples', 'scale', 'scallop_wave', 'scattering', 'seed', 'shadowless', 'sin', 'sine_wave', 'sinh', 'sky', 'sky_sphere', 'slice', 'slope_map', 'smooth', 'specular', 'spherical_mapping', 'spiral', 'spiral1', 'spiral2', 'spotlight', 'spotted', 'sqr', 'sqrt', 'statistics', 'str', 'strcmp', 'strength', 'strlen', 'strlwr', 'strupr', 'sturm', 'substr', 'switch', 'sys', 't', 'tan', 'tanh', 'test_camera_1', 'test_camera_2', 'test_camera_3', 'test_camera_4', 'texture', 'texture_map', 'tga', 'thickness', 'threshold', 'tightness', 'tile2', 'tiles', 'track', 'transform', 'translate', 'transmit', 'triangle_wave', 'true', 'ttf', 'turbulence', 'turb_depth', 'type', 'ultra_wide_angle', 'up', 'use_color', 'use_colour', 'use_index', 'u_steps', 'val', 'variance', 'vaxis_rotate', 'vcross', 'vdot', 'version', 'vlength', 'vnormalize', 'volume_object', 'volume_rendered', 'vol_with_light', 'vrotate', 'v_steps', 'warning', 'warp', 'water_level', 'waves', 'while', 'width', 'wood', 'wrinkles', 'yes'), prefix=r'\b', suffix=r'\b'), Keyword), (words(( 'bicubic_patch', 'blob', 'box', 'camera', 'cone', 'cubic', 'cylinder', 'difference', 'disc', 'height_field', 'intersection', 'julia_fractal', 'lathe', 'light_source', 'merge', 'mesh', 'object', 'plane', 'poly', 'polygon', 'prism', 'quadric', 'quartic', 'smooth_triangle', 'sor', 'sphere', 'superellipsoid', 'text', 'torus', 'triangle', 'union'), suffix=r'\b'), Name.Builtin), # TODO: <=, etc (r'[\[\](){}<>;,]', Punctuation), (r'[-+*/=]', Operator), (r'\b(x|y|z|u|v)\b', Name.Builtin.Pseudo), (r'[a-zA-Z_]\w*', Name), (r'[0-9]+\.[0-9]*', Number.Float), (r'\.[0-9]+', Number.Float), (r'[0-9]+', Number.Integer), (r'"(\\\\|\\"|[^"])*"', String), (r'\s+', Text), ] }
49.923274
104
0.479662
[ "BSD-3-Clause" ]
ritchadh/docs-like-code-demo
env/lib/python3.7/site-packages/pygments/lexers/graphics.py
39,040
Python
import os import sys from typing import Dict from typing import List from typing import Optional import pkg_resources from setuptools import find_packages from setuptools import setup def get_version() -> str: version_filepath = os.path.join(os.path.dirname(__file__), "optuna", "version.py") with open(version_filepath) as f: for line in f: if line.startswith("__version__"): return line.strip().split()[-1][1:-1] assert False def get_long_description() -> str: readme_filepath = os.path.join(os.path.dirname(__file__), "README.md") with open(readme_filepath) as f: return f.read() def get_install_requires() -> List[str]: return [ "alembic", "cliff", "cmaes>=0.6.0", "colorlog", "joblib", "numpy", "packaging>=20.0", "scipy!=1.4.0", "sqlalchemy>=1.1.0", "tqdm", ] def get_tests_require() -> List[str]: return get_extras_require()["testing"] def get_extras_require() -> Dict[str, List[str]]: requirements = { "checking": ["black", "hacking", "isort", "mypy==0.782", "blackdoc"], "codecov": ["codecov", "pytest-cov"], "doctest": [ "cma", "matplotlib>=3.0.0", "pandas", "plotly>=4.0.0", "scikit-learn>=0.19.0,<0.23.0", "scikit-optimize", "mlflow", ], "document": [ # TODO(hvy): Unpin `sphinx` version after: # https://github.com/sphinx-doc/sphinx/issues/8105. "sphinx==3.0.4", # As reported in: https://github.com/readthedocs/sphinx_rtd_theme/issues/949, # `sphinx_rtd_theme` 0.5.0 is still not compatible with `sphinx` >= 3.0. "sphinx_rtd_theme<0.5.0", "sphinx-gallery", "sphinx-plotly-directive", "pillow", "matplotlib", "scikit-learn", ], "example": [ "catboost", "chainer", "lightgbm", "mlflow", "mpi4py", "mxnet", "nbval", "scikit-image", "scikit-learn>=0.19.0,<0.23.0", # optuna/visualization/param_importances.py. "xgboost", "keras", "tensorflow>=2.0.0", "tensorflow-datasets", "pytorch-ignite", "pytorch-lightning>=0.8.1", "thop", "skorch", "stable-baselines3>=0.7.0", "catalyst", ] + ( ["torch==1.7.0", "torchvision==0.8.1", "torchaudio==0.7.0"] if sys.platform == "darwin" else ["torch==1.7.0+cpu", "torchvision==0.8.1+cpu", "torchaudio==0.7.0"] ) + ( [ "allennlp==1.2.0", "fastai<2", "dask[dataframe]", "dask-ml", ] if sys.version_info[:2] < (3, 8) else [] ), "experimental": ["redis"], "testing": [ # TODO(toshihikoyanase): Remove the version constraint after resolving the issue # https://github.com/optuna/optuna/issues/1000. "bokeh<2.0.0", "chainer>=5.0.0", "cma", "fakeredis", "lightgbm", "matplotlib>=3.0.0", "mlflow", "mpi4py", "mxnet", "pandas", "plotly>=4.0.0", "pytest", "scikit-learn>=0.19.0,<0.23.0", "scikit-optimize", "xgboost", "keras", "tensorflow", "tensorflow-datasets", "pytorch-ignite", "pytorch-lightning>=0.8.1", "skorch", "catalyst", ] + ( ["torch==1.7.0", "torchvision==0.8.1", "torchaudio==0.7.0"] if sys.platform == "darwin" else ["torch==1.7.0+cpu", "torchvision==0.8.1+cpu", "torchaudio==0.7.0"] ) + (["allennlp==1.2.0", "fastai<2"] if sys.version_info[:2] < (3, 8) else []), "tests": ["fakeredis", "pytest"], "optional": [ "bokeh<2.0.0", # optuna/cli.py, optuna/dashboard.py. "matplotlib>=3.0.0", # optuna/visualization/matplotlib "pandas", # optuna/study.py "plotly>=4.0.0", # optuna/visualization. "redis", # optuna/storages/redis.py. "scikit-learn>=0.19.0,<0.23.0", # optuna/visualization/param_importances.py. ], "integration": [ # TODO(toshihikoyanase): Remove the version constraint after resolving the issue # https://github.com/optuna/optuna/issues/1000. "chainer>=5.0.0", "cma", "lightgbm", "mlflow", "mpi4py", "mxnet", "pandas", "scikit-learn>=0.19.0,<0.23.0", "scikit-optimize", "xgboost", "keras", "tensorflow", "tensorflow-datasets", "pytorch-ignite", "pytorch-lightning>=0.8.1", "skorch", "catalyst", ] + ( ["torch==1.7.0", "torchvision==0.8.1", "torchaudio==0.7.0"] if sys.platform == "darwin" else ["torch==1.7.0+cpu", "torchvision==0.8.1+cpu", "torchaudio==0.7.0"] ) + (["allennlp==1.2.0", "fastai<2"] if sys.version_info[:2] < (3, 8) else []), } return requirements def find_any_distribution(pkgs: List[str]) -> Optional[pkg_resources.Distribution]: for pkg in pkgs: try: return pkg_resources.get_distribution(pkg) except pkg_resources.DistributionNotFound: pass return None setup( name="optuna", version=get_version(), description="A hyperparameter optimization framework", long_description=get_long_description(), long_description_content_type="text/markdown", author="Takuya Akiba", author_email="[email protected]", url="https://optuna.org/", packages=find_packages(), package_data={ "optuna": [ "storages/_rdb/alembic.ini", "storages/_rdb/alembic/*.*", "storages/_rdb/alembic/versions/*.*", "py.typed", ] }, python_requires=">=3.6", install_requires=get_install_requires(), tests_require=get_tests_require(), extras_require=get_extras_require(), entry_points={ "console_scripts": ["optuna = optuna.cli:main"], "optuna.command": [ "create-study = optuna.cli:_CreateStudy", "delete-study = optuna.cli:_DeleteStudy", "study set-user-attr = optuna.cli:_StudySetUserAttribute", "studies = optuna.cli:_Studies", "dashboard = optuna.cli:_Dashboard", "study optimize = optuna.cli:_StudyOptimize", "storage upgrade = optuna.cli:_StorageUpgrade", ], }, classifiers=[ "Development Status :: 5 - Production/Stable", "Intended Audience :: Science/Research", "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3 :: Only", "Topic :: Scientific/Engineering", "Topic :: Scientific/Engineering :: Mathematics", "Topic :: Scientific/Engineering :: Artificial Intelligence", "Topic :: Software Development", "Topic :: Software Development :: Libraries", "Topic :: Software Development :: Libraries :: Python Modules", ], )
31.574297
92
0.512338
[ "MIT" ]
130ndim/optuna
setup.py
7,862
Python
from ..coefficient_array import PwCoeffs from scipy.sparse import dia_matrix import numpy as np def make_kinetic_precond(kpointset, c0, eps=0.1, asPwCoeffs=True): """ Preconditioner P = 1 / (||k|| + ε) Keyword Arguments: kpointset -- """ nk = len(kpointset) nc = kpointset.ctx().num_spins() if nc == 1 and nk == 1 and not asPwCoeffs: # return as np.matrix kp = kpointset[0] gkvec = kp.gkvec() assert (gkvec.num_gvec() == gkvec.count()) N = gkvec.count() d = np.array([ 1 / (np.sum((np.array(gkvec.gkvec(i)))**2) + eps) for i in range(N) ]) return DiagonalPreconditioner( D=dia_matrix((d, 0), shape=(N, N)), c0=c0) else: P = PwCoeffs(dtype=np.float64, ctype=dia_matrix) for k in range(nk): kp = kpointset[k] gkvec = kp.gkvec() assert (gkvec.num_gvec() == gkvec.count()) N = gkvec.count() d = np.array([ 1 / (np.sum( (np.array(gkvec.gkvec_cart(i)))**2) + eps) for i in range(N) ]) for ispn in range(nc): P[k, ispn] = dia_matrix((d, 0), shape=(N, N)) return DiagonalPreconditioner(P, c0) class Preconditioner: def __init__(self): pass class DiagonalPreconditioner(Preconditioner): """ Apply diagonal preconditioner and project resulting gradient to satisfy the constraint. """ def __init__(self, D, c0): super().__init__() self.c0 = c0 self.D = D def __matmul__(self, other): """ """ from ..coefficient_array import CoefficientArray from .ot_transformations import lagrangeMult out = type(other)(dtype=other.dtype) if isinstance(other, CoefficientArray): for key, Dl in self.D.items(): out[key] = Dl * other[key] else: raise ValueError('wrong type given') ll = lagrangeMult(other, self.c0, self) return out + ll def __mul__(self, s): """ """ from ..coefficient_array import CoefficientArray import numpy as np if np.isscalar(s): for key, Dl in self.D.items(): self.D[key] = s*Dl elif isinstance(s, CoefficientArray): out = type(s)(dtype=s.dtype) for key in s.keys(): out[key] = self.D[key] * s[key] return out __lmul__ = __mul__ __rmul__ = __mul__ def __neg__(self): """ """ from ..coefficient_array import CoefficientArray if isinstance(self.D, CoefficientArray): out_data = type(self.D)(dtype=self.D.dtype, ctype=self.D.ctype) out = DiagonalPreconditioner(out_data, self.c0) for k, v in self.D.items(): out.D[k] = -v return out else: out = DiagonalPreconditioner(self.D, self.c0) out.D = -self.D return out def __getitem__(self, key): return self.D[key] class IdentityPreconditioner(Preconditioner): def __init__(self, c0, _f=1): super().__init__() self.c0 = c0 self._f = _f def __matmul__(self, other): from .ot_transformations import lagrangeMult ll = lagrangeMult(other, self.c0, self) return self._f * other + ll def __mul__(self, s): return self._f * s def __neg__(self): return IdentityPreconditioner(self.c0, _f=-self._f) def __getitem__(self, key): return self._f __lmul__ = __mul__ __rmul__ = __mul__
26.92029
91
0.544818
[ "BSD-2-Clause" ]
electronic-structure/SIRIUS
python_module/sirius/ot/ot_precondition.py
3,716
Python
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # # Copyright 2011 Cisco Systems, Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # # @author: Sumit Naiksatam, Cisco Systems, Inc. # @author: Edgar Magana, Cisco Systems, Inc. # """ Configuration consolidation for the Nexus Driver This module will export the configuration parameters from the nexus.ini file """ from quantum.common.utils import find_config_file from quantum.plugins.cisco.common import cisco_configparser as confp CP = confp.CiscoConfigParser(find_config_file({'plugin': 'cisco'}, "nexus.ini")) SECTION = CP['SWITCH'] NEXUS_IP_ADDRESS = SECTION['nexus_ip_address'] NEXUS_FIRST_PORT = SECTION['nexus_first_port'] NEXUS_SECOND_PORT = SECTION['nexus_second_port'] NEXUS_SSH_PORT = SECTION['nexus_ssh_port'] SECTION = CP['DRIVER'] NEXUS_DRIVER = SECTION['name']
34.317073
78
0.739161
[ "Apache-2.0" ]
r-mibu/neutron
quantum/plugins/cisco/nexus/cisco_nexus_configuration.py
1,407
Python
import os def ensure_dir(path: str) -> str: dirname = os.path.dirname(path) os.makedirs(dirname, exist_ok=True) return path
22.666667
39
0.691176
[ "MIT" ]
mbiemann/python-simple-toolbelt
simple_toolbelt/path.py
136
Python
import emoji import string class Tweet(): def __init__(self, text: str): self.text = text.lower() self.hashtags = self.find("#", forbidden="@") self.cleanTag() self.tags = self.find("@", forbidden="#") def find(self, prefix, forbidden): ret = [] _text = self.text _text = _text.replace(forbidden, " ") _text = _text.replace(" ", "") _text = _text.replace("!", "") if not _text.startswith("RT"): for word in _text.split(" "): word = self.remove_emojis(word) if len(word) >= 2 and word.count(prefix) == 1: word = word.split(prefix) word = prefix + word[len(word) - 1] word = word.strip() if word not in ret and len(word) >= 2 and word.startswith(prefix): ret.append(word.lower()) return ret def remove_emojis(self, s): return ''.join(c for c in s if c not in emoji.UNICODE_EMOJI['en']) def cleanTag(self): allowed = list(string.ascii_lowercase + string.ascii_uppercase + string.digits) + ["_", "@", " "] newtext = "" for letter in self.text: if letter in allowed: newtext += letter self.text = newtext
28.956522
105
0.512763
[ "MIT" ]
EliasSchramm/TwitterDB
crawler/tweet.py
1,336
Python
''' Neuron simulator export for: Components: net1 (Type: network) sim1 (Type: Simulation: length=1.0 (SI time) step=5.0E-5 (SI time)) hhcell (Type: cell) passive (Type: ionChannelPassive: conductance=1.0E-11 (SI conductance)) na (Type: ionChannelHH: conductance=1.0E-11 (SI conductance)) k (Type: ionChannelHH: conductance=1.0E-11 (SI conductance)) pulseGen1 (Type: pulseGenerator: delay=0.0 (SI time) duration=1.0E8 (SI time) amplitude=8.000000000000001E-11 (SI current)) This NEURON file has been generated by org.neuroml.export (see https://github.com/NeuroML/org.neuroml.export) org.neuroml.export v1.5.3 org.neuroml.model v1.5.3 jLEMS v0.9.9.0 ''' import neuron import time import hashlib h = neuron.h h.load_file("stdlib.hoc") h.load_file("stdgui.hoc") h("objref p") h("p = new PythonObject()") class NeuronSimulation(): def __init__(self, tstop, dt, seed=123456789): print("\n Starting simulation in NEURON of %sms generated from NeuroML2 model...\n"%tstop) self.seed = seed self.randoms = [] self.next_global_id = 0 # Used in Random123 classes for elements using random(), etc. self.next_spiking_input_id = 0 # Used in Random123 classes for elements using random(), etc. ''' Adding simulation Component(id=sim1 type=Simulation) of network/component: net1 (Type: network) ''' # ###################### Population: hhpop print("Population hhpop contains 1 instance(s) of component: hhcell of type: cell") h.load_file("hhcell.hoc") a_hhpop = [] h("{ n_hhpop = 1 }") h("objectvar a_hhpop[n_hhpop]") for i in range(int(h.n_hhpop)): h("a_hhpop[%i] = new hhcell()"%i) h("access a_hhpop[%i].soma"%i) self.next_global_id+=1 h("proc initialiseV_hhpop() { for i = 0, n_hhpop-1 { a_hhpop[i].set_initial_v() } }") h("objref fih_hhpop") h('{fih_hhpop = new FInitializeHandler(0, "initialiseV_hhpop()")}') h("proc initialiseIons_hhpop() { for i = 0, n_hhpop-1 { a_hhpop[i].set_initial_ion_properties() } }") h("objref fih_ion_hhpop") h('{fih_ion_hhpop = new FInitializeHandler(1, "initialiseIons_hhpop()")}') # Adding single input: Component(id=null type=explicitInput) h("objref explicitInput_pulseGen1a_hhpop0_soma") h("a_hhpop[0].soma { explicitInput_pulseGen1a_hhpop0_soma = new pulseGen1(0.5) } ") trec = h.Vector() trec.record(h._ref_t) h.tstop = tstop h.dt = dt h.steps_per_ms = 1/h.dt # ###################### File to save: time.dat (time) # Column: time h(' objectvar v_time ') h(' { v_time = new Vector() } ') h(' { v_time.record(&t) } ') h.v_time.resize((h.tstop * h.steps_per_ms) + 1) self.initialized = False self.sim_end = -1 # will be overwritten def run(self): self.initialized = True sim_start = time.time() print("Running a simulation of %sms (dt = %sms; seed=%s)" % (h.tstop, h.dt, self.seed)) h.run() self.sim_end = time.time() sim_time = self.sim_end - sim_start print("Finished NEURON simulation in %f seconds (%f mins)..."%(sim_time, sim_time/60.0)) self.save_results() def advance(self): if not self.initialized: h.finitialize() self.initialized = True h.fadvance() ############################################################################### # Hash function to use in generation of random value # This is copied from NetPyNE: https://github.com/Neurosim-lab/netpyne/blob/master/netpyne/simFuncs.py ############################################################################### def _id32 (self,obj): return int(hashlib.md5(obj).hexdigest()[0:8],16) # convert 8 first chars of md5 hash in base 16 to int ############################################################################### # Initialize the stim randomizer # This is copied from NetPyNE: https://github.com/Neurosim-lab/netpyne/blob/master/netpyne/simFuncs.py ############################################################################### def _init_stim_randomizer(self,rand, stimType, gid, seed): #print("INIT STIM %s; %s; %s; %s"%(rand, stimType, gid, seed)) rand.Random123(self._id32(stimType), gid, seed) def save_results(self): print("Saving results at t=%s..."%h.t) if self.sim_end < 0: self.sim_end = time.time() # ###################### File to save: time.dat (time) py_v_time = [ t/1000 for t in h.v_time.to_python() ] # Convert to Python list for speed... f_time_f2 = open('time.dat', 'w') num_points = len(py_v_time) # Simulation may have been stopped before tstop... for i in range(num_points): f_time_f2.write('%f'% py_v_time[i]) # Save in SI units... f_time_f2.close() print("Saved data to: time.dat") save_end = time.time() save_time = save_end - self.sim_end print("Finished saving results in %f seconds"%(save_time)) print("Done") quit() if __name__ == '__main__': ns = NeuronSimulation(tstop=1000.0, dt=0.049999997, seed=123456789) ns.run()
31.72093
128
0.566166
[ "MIT" ]
openworm/org.geppetto.model.neuroml
src/test/resources/expected/neuron/hhcell/main_script.py
5,456
Python
# Character field ID when accessed: 100000201 # ParentID: 32226 # ObjectID: 0
19.5
45
0.75641
[ "MIT" ]
doriyan13/doristory
scripts/quest/autogen_q32226s.py
78
Python
# Josh Aaron Miller 2021 # VenntDB methods for Characters import venntdb from constants import * # VenntDB Methods def character_exists(self, username, char_id): return self.get_character(username, char_id) is not None def get_character(self, username, char_id): self.assert_valid("accounts", username, "characters") if self.is_valid("accounts", username, "characters", char_id): return self.db["accounts"][username]["characters"][char_id] return None def create_character(self, username, character): self.assert_valid("accounts", username, "characters") self.db["accounts"][username]["characters"][character["id"]] = character self.save_db() def get_characters(self, username): self.assert_valid("accounts", username, "characters") return self.db["accounts"][username]["characters"] def get_attr(self, username, char_id, attr): self.assert_valid("accounts", username, "characters", char_id) return self.get_character(username, char_id)[attr] def set_attr(self, username, char_id, attr, val): self.assert_valid("accounts", username, "characters", char_id) self.get_character(username, char_id)[attr] = val self.save_db()
30.219512
77
0.702986
[ "MIT" ]
JackNolanDev/vennt-server
db_characters.py
1,239
Python
from output.models.nist_data.atomic.g_year_month.schema_instance.nistschema_sv_iv_atomic_g_year_month_enumeration_5_xsd.nistschema_sv_iv_atomic_g_year_month_enumeration_5 import ( NistschemaSvIvAtomicGYearMonthEnumeration5, NistschemaSvIvAtomicGYearMonthEnumeration5Type, ) __all__ = [ "NistschemaSvIvAtomicGYearMonthEnumeration5", "NistschemaSvIvAtomicGYearMonthEnumeration5Type", ]
40.1
179
0.875312
[ "MIT" ]
tefra/xsdata-w3c-tests
output/models/nist_data/atomic/g_year_month/schema_instance/nistschema_sv_iv_atomic_g_year_month_enumeration_5_xsd/__init__.py
401
Python
import os from setuptools import setup def filepath(fname): return os.path.join(os.path.dirname(__file__), fname) exec(compile(open('bevel/version.py').read(), 'bevel/version.py', 'exec')) readme_md = filepath('README.md') try: import pypandoc readme_rst = pypandoc.convert_file(readme_md, 'rst') except(ImportError): readme_rst = open(readme_md).read() setup( name="bevel", version="0.1.1", author="Ross Diener, Steven Wu, Cameron Davidson-Pilon", author_email="[email protected]", description="Ordinal regression in Python", license="MIT", keywords="oridinal regression statistics data analysis", url="https://github.com/ShopifyPeopleAnalytics/bevel", packages=[ 'bevel', ], long_description=readme_rst, classifiers=[ "Development Status :: 4 - Beta", "Programming Language :: Python", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Topic :: Scientific/Engineering", ], install_requires=[ "numpy>=1.13.3", "scipy>=1.0.0", "pandas>=0.21.0", "numdifftools>=0.9.20" ], package_data={ "bevel": [ "../README.md", "../LICENSE", ] }, )
24.277778
60
0.591915
[ "MIT" ]
ChihHsuanLin/bevel
setup.py
1,311
Python
todos = ['barber', 'grocery'] for todo in todos: print(todo)
16.5
30
0.621212
[ "MIT" ]
theseana/fempfasb
Term 5/Vue/p.py
66
Python
# Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from batchgenerators.utilities.file_and_folder_operations import * def remove_trailing_slash(filename: str): while filename.endswith('/'): filename = filename[:-1] return filename def maybe_add_0000_to_all_niigz(folder): nii_gz = subfiles(folder, suffix='.nii.gz') for n in nii_gz: n = remove_trailing_slash(n) if not n.endswith('_0000.nii.gz'): os.rename(n, n[:-7] + '_0000.nii.gz')
34.129032
111
0.757089
[ "Apache-2.0" ]
anxingle/nnUNet_simple
nnunet/utilities/file_endings.py
1,058
Python
from dataclasses import dataclass from apple.util.streamable import Streamable, streamable @dataclass(frozen=True) @streamable class BackupInitialized(Streamable): """ Stores user decision regarding import of backup info """ user_initialized: bool # Stores if user made a selection in UI. (Skip vs Import backup) user_skipped: bool # Stores if user decided to skip import of backup info backup_info_imported: bool # Stores if backup info has been imported new_wallet: bool # Stores if this wallet is newly created / not restored from backup
33.941176
92
0.755633
[ "Apache-2.0" ]
Apple-Network/apple-blockchain
apple/wallet/settings/settings_objects.py
577
Python
""" This file holds all the chapter 2 areas of the game. """ from time import sleep # from classes import Player, Difficulty from chapters.chapter import Chapter from chapters.chapter3 import Chapter3 from other.sounds_effects import GameSounds from game import player1, sounds, Difficulty from choices import _player_choice, error_message from other.colors import print_green, print_yellow, print_red, print_sleep, print_blue class Chapter2(Chapter): """Contains all the main chapter 2 areas of the game.""" chapter_num = 2 def checkpoints(self): """runs movement to levels -- checkpoint when leaving area""" return {'0': self.game, '1': self.good_ending_and_continue, 'bad': self.bad_ending, '3': self.woods_area, } def good_ending_and_continue(self): """Simply plays the good ending scene and then drops the player into chapter 2.""" self.good_ending() Chapter3().game() def game(self): """start of ch2""" self.start() print_sleep( 'Upon driving the car through the broken roads area, the sun is certainly dwindling and time in the car' 'says 2:35 AM.\nYou continue to grow yourself tired and restless from everything that had led to this ' 'point\n', 2.5) choices = [str(x) for x in range(1, 3)] choice_options = [ 'Due to the car getting low on gas, you must make a tough decision. (1) Drive back to the local gas ' 'station in town (2) Turn off the car and set up a camp fire in the woods: '] choice = _player_choice(choices, choice_options) if choice == '1': sounds.zombie_attack_inside() print_sleep( 'While attempting to put the car in reverse and head backwards to the local gas station in town, ' 'a swarm of zombies arise on the car while the car gets stuck into gear!\n', 2.5) if not player1.user_attack(): return player1.total_kills += 5 print_green('You have successfully killed off the heaping swarm of zombies surrounding the car!\n', 1) self.continue_message() elif choice == '2': print_sleep( 'You have parked the car near the closet woods area and now need to gather up some supplies for a camp ' 'fire.\n', 2) self.woods_area() def woods_area(self): """Checkpoint save 3""" player1.checkpoint_save('3') print_sleep( 'You have successfully gathered up some sticks and still need a source of flame to begin the campfire.\n', 2) choices = [str(x) for x in range(1, 3)] choice_options = [ 'You can either test your luck in creating a fire by (1) Creating friction: Use sticks and rub against ' 'nearby wood chips (2) Search for other useful resources: '] choice = _player_choice(choices, choice_options) if choice == '1': sounds.flame_ignite() print_sleep('Whoosh! after a few minutes of trying to create friction, the birth of a small ash turns into ' 'a flame!\n', 2.5) self.continue_message() elif choice == '2': sounds.zombie_attack_outside() print_red( 'Whilst looking around for more resources, you begin hearing a group of 3 zombies running towards ' 'you!\n', 2) if not player1.user_attack(): return player1.total_kills += 3 print_green('You have successfully killed off the group of 3 zombies running towards you!\n', 1) self.continue_message()
44.186047
120
0.613421
[ "MIT" ]
JordanLeich/Alpha-Zombie-Survival-Game
chapters/chapter2.py
3,800
Python
import numpy from fframework import asfunction, OpFunction __all__ = ['Angle'] class Angle(OpFunction): """Transforms a mesh into the angle of the mesh to the x axis.""" def __init__(self, mesh): """*mesh* is the mesh Function.""" self.mesh = asfunction(mesh) def __call__(self, ps): """Returns the arctan2. The (y, x) coordinate is in the last dimension.""" meshT = self.mesh(ps).T return numpy.arctan2(meshT[0], meshT[1]).T
24.7
70
0.621457
[ "MIT" ]
friedrichromstedt/moviemaker3
moviemaker3/math/angle.py
494
Python
from pathlib import Path import numba import numpy as np from det3d.core.bbox.geometry import ( points_count_convex_polygon_3d_jit, points_in_convex_polygon_3d_jit, ) try: from spconv.utils import rbbox_intersection, rbbox_iou except: print("Import spconv fail, no support for sparse convolution!") def points_count_rbbox(points, rbbox, z_axis=2, origin=(0.5, 0.5, 0.5)): rbbox_corners = center_to_corner_box3d( rbbox[:, :3], rbbox[:, 3:6], rbbox[:, -1], origin=origin, axis=z_axis ) surfaces = corner_to_surfaces_3d(rbbox_corners) return points_count_convex_polygon_3d_jit(points[:, :3], surfaces) def riou_cc(rbboxes, qrbboxes, standup_thresh=0.0): # less than 50ms when used in second one thread. 10x slower than gpu boxes_corners = center_to_corner_box2d( rbboxes[:, :2], rbboxes[:, 2:4], rbboxes[:, 4] ) boxes_standup = corner_to_standup_nd(boxes_corners) qboxes_corners = center_to_corner_box2d( qrbboxes[:, :2], qrbboxes[:, 2:4], qrbboxes[:, 4] ) qboxes_standup = corner_to_standup_nd(qboxes_corners) # if standup box not overlapped, rbbox not overlapped too. standup_iou = iou_jit(boxes_standup, qboxes_standup, eps=0.0) return rbbox_iou(boxes_corners, qboxes_corners, standup_iou, standup_thresh) def rinter_cc(rbboxes, qrbboxes, standup_thresh=0.0): # less than 50ms when used in second one thread. 10x slower than gpu boxes_corners = center_to_corner_box2d( rbboxes[:, :2], rbboxes[:, 2:4], rbboxes[:, 4] ) boxes_standup = corner_to_standup_nd(boxes_corners) qboxes_corners = center_to_corner_box2d( qrbboxes[:, :2], qrbboxes[:, 2:4], qrbboxes[:, 4] ) qboxes_standup = corner_to_standup_nd(qboxes_corners) # if standup box not overlapped, rbbox not overlapped too. standup_iou = iou_jit(boxes_standup, qboxes_standup, eps=0.0) return rbbox_intersection( boxes_corners, qboxes_corners, standup_iou, standup_thresh ) def corners_nd(dims, origin=0.5): """generate relative box corners based on length per dim and origin point. Args: dims (float array, shape=[N, ndim]): array of length per dim origin (list or array or float): origin point relate to smallest point. Returns: float array, shape=[N, 2 ** ndim, ndim]: returned corners. point layout example: (2d) x0y0, x0y1, x1y0, x1y1; (3d) x0y0z0, x0y0z1, x0y1z0, x0y1z1, x1y0z0, x1y0z1, x1y1z0, x1y1z1 where x0 < x1, y0 < y1, z0 < z1 """ ndim = int(dims.shape[1]) corners_norm = np.stack( np.unravel_index(np.arange(2 ** ndim), [2] * ndim), axis=1 ).astype(dims.dtype) # now corners_norm has format: (2d) x0y0, x0y1, x1y0, x1y1 # (3d) x0y0z0, x0y0z1, x0y1z0, x0y1z1, x1y0z0, x1y0z1, x1y1z0, x1y1z1 # so need to convert to a format which is convenient to do other computing. # for 2d boxes, format is clockwise start with minimum point # for 3d boxes, please draw lines by your hand. if ndim == 2: # generate clockwise box corners corners_norm = corners_norm[[0, 1, 3, 2]] elif ndim == 3: corners_norm = corners_norm[[0, 1, 3, 2, 4, 5, 7, 6]] corners_norm = corners_norm - np.array(origin, dtype=dims.dtype) corners = dims.reshape([-1, 1, ndim]) * corners_norm.reshape([1, 2 ** ndim, ndim]) return corners @numba.njit def corners_2d_jit(dims, origin=0.5): ndim = 2 corners_norm = np.array([[0, 0], [0, 1], [1, 1], [1, 0]], dtype=dims.dtype) corners_norm = corners_norm - np.array(origin, dtype=dims.dtype) corners = dims.reshape((-1, 1, ndim)) * corners_norm.reshape((1, 2 ** ndim, ndim)) return corners @numba.njit def corners_3d_jit(dims, origin=0.5): ndim = 3 corners_norm = np.array( [0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1], dtype=dims.dtype, ).reshape((8, 3)) corners_norm = corners_norm[[0, 1, 3, 2, 4, 5, 7, 6]] corners_norm = corners_norm - np.array(origin, dtype=dims.dtype) corners = dims.reshape((-1, 1, ndim)) * corners_norm.reshape((1, 2 ** ndim, ndim)) return corners @numba.njit def corner_to_standup_nd_jit(boxes_corner): num_boxes = boxes_corner.shape[0] ndim = boxes_corner.shape[-1] result = np.zeros((num_boxes, ndim * 2), dtype=boxes_corner.dtype) for i in range(num_boxes): for j in range(ndim): result[i, j] = np.min(boxes_corner[i, :, j]) for j in range(ndim): result[i, j + ndim] = np.max(boxes_corner[i, :, j]) return result def corner_to_standup_nd(boxes_corner): assert len(boxes_corner.shape) == 3 standup_boxes = [] standup_boxes.append(np.min(boxes_corner, axis=1)) standup_boxes.append(np.max(boxes_corner, axis=1)) return np.concatenate(standup_boxes, -1) def rbbox2d_to_near_bbox(rbboxes): """convert rotated bbox to nearest 'standing' or 'lying' bbox. Args: rbboxes: [N, 5(x, y, xdim, ydim, rad)] rotated bboxes Returns: bboxes: [N, 4(xmin, ymin, xmax, ymax)] bboxes """ rots = rbboxes[..., -1] rots_0_pi_div_2 = np.abs(limit_period(rots, 0.5, np.pi)) cond = (rots_0_pi_div_2 > np.pi / 4)[..., np.newaxis] bboxes_center = np.where(cond, rbboxes[:, [0, 1, 3, 2]], rbboxes[:, :4]) bboxes = center_to_minmax_2d(bboxes_center[:, :2], bboxes_center[:, 2:]) return bboxes def rotation_3d_in_axis(points, angles, axis=0): # points: [N, point_size, 3] rot_sin = np.sin(angles) rot_cos = np.cos(angles) ones = np.ones_like(rot_cos) zeros = np.zeros_like(rot_cos) if axis == 1: rot_mat_T = np.stack( [ [rot_cos, zeros, -rot_sin], [zeros, ones, zeros], [rot_sin, zeros, rot_cos], ] ) elif axis == 2 or axis == -1: rot_mat_T = np.stack( [ [rot_cos, -rot_sin, zeros], [rot_sin, rot_cos, zeros], [zeros, zeros, ones], ] ) elif axis == 0: rot_mat_T = np.stack( [ [zeros, rot_cos, -rot_sin], [zeros, rot_sin, rot_cos], [ones, zeros, zeros], ] ) else: raise ValueError("axis should in range") return np.einsum("aij,jka->aik", points, rot_mat_T) def rotation_points_single_angle(points, angle, axis=0): # points: [N, 3] rot_sin = np.sin(angle) rot_cos = np.cos(angle) if axis == 1: rot_mat_T = np.array( [[rot_cos, 0, -rot_sin], [0, 1, 0], [rot_sin, 0, rot_cos]], dtype=points.dtype, ) elif axis == 2 or axis == -1: rot_mat_T = np.array( [[rot_cos, -rot_sin, 0], [rot_sin, rot_cos, 0], [0, 0, 1]], dtype=points.dtype, ) elif axis == 0: rot_mat_T = np.array( [[1, 0, 0], [0, rot_cos, -rot_sin], [0, rot_sin, rot_cos]], dtype=points.dtype, ) else: raise ValueError("axis should in range") return points @ rot_mat_T def rotation_2d(points, angles): """rotation 2d points based on origin point clockwise when angle positive. Args: points (float array, shape=[N, point_size, 2]): points to be rotated. angles (float array, shape=[N]): rotation angle. Returns: float array: same shape as points """ rot_sin = np.sin(angles) rot_cos = np.cos(angles) rot_mat_T = np.stack([[rot_cos, -rot_sin], [rot_sin, rot_cos]]) return np.einsum("aij,jka->aik", points, rot_mat_T) def rotation_box(box_corners, angle): """rotation 2d points based on origin point clockwise when angle positive. Args: points (float array, shape=[N, point_size, 2]): points to be rotated. angle (float): rotation angle. Returns: float array: same shape as points """ rot_sin = np.sin(angle) rot_cos = np.cos(angle) rot_mat_T = np.array( [[rot_cos, -rot_sin], [rot_sin, rot_cos]], dtype=box_corners.dtype ) return box_corners @ rot_mat_T def center_to_corner_box3d(centers, dims, angles=None, origin=(0.5, 0.5, 0.5), axis=2): """convert kitti locations, dimensions and angles to corners Args: centers (float array, shape=[N, 3]): locations in kitti label file. dims (float array, shape=[N, 3]): dimensions in kitti label file. angles (float array, shape=[N]): rotation_y in kitti label file. origin (list or array or float): origin point relate to smallest point. use [0.5, 1.0, 0.5] in camera and [0.5, 0.5, 0] in lidar. axis (int): rotation axis. 1 for camera and 2 for lidar. Returns: [type]: [description] """ # 'length' in kitti format is in x axis. # yzx(hwl)(kitti label file)<->xyz(lhw)(camera)<->z(-x)(-y)(wlh)(lidar) # center in kitti format is [0.5, 1.0, 0.5] in xyz. corners = corners_nd(dims, origin=origin) # corners: [N, 8, 3] if angles is not None: corners = rotation_3d_in_axis(corners, angles, axis=axis) corners += centers.reshape([-1, 1, 3]) return corners def center_to_corner_box2d(centers, dims, angles=None, origin=0.5): """convert kitti locations, dimensions and angles to corners. format: center(xy), dims(xy), angles(clockwise when positive) Args: centers (float array, shape=[N, 2]): locations in kitti label file. dims (float array, shape=[N, 2]): dimensions in kitti label file. angles (float array, shape=[N]): rotation_y in kitti label file. Returns: [type]: [description] """ # 'length' in kitti format is in x axis. # xyz(hwl)(kitti label file)<->xyz(lhw)(camera)<->z(-x)(-y)(wlh)(lidar) # center in kitti format is [0.5, 1.0, 0.5] in xyz. corners = corners_nd(dims, origin=origin) # corners: [N, 4, 2] if angles is not None: corners = rotation_2d(corners, angles) corners += centers.reshape([-1, 1, 2]) return corners @numba.jit(nopython=True) def box2d_to_corner_jit(boxes): num_box = boxes.shape[0] corners_norm = np.zeros((4, 2), dtype=boxes.dtype) corners_norm[1, 1] = 1.0 corners_norm[2] = 1.0 corners_norm[3, 0] = 1.0 corners_norm -= np.array([0.5, 0.5], dtype=boxes.dtype) corners = boxes.reshape(num_box, 1, 5)[:, :, 2:4] * corners_norm.reshape(1, 4, 2) rot_mat_T = np.zeros((2, 2), dtype=boxes.dtype) box_corners = np.zeros((num_box, 4, 2), dtype=boxes.dtype) for i in range(num_box): rot_sin = np.sin(boxes[i, -1]) rot_cos = np.cos(boxes[i, -1]) rot_mat_T[0, 0] = rot_cos rot_mat_T[0, 1] = -rot_sin rot_mat_T[1, 0] = rot_sin rot_mat_T[1, 1] = rot_cos box_corners[i] = corners[i] @ rot_mat_T + boxes[i, :2] return box_corners def rbbox3d_to_corners(rbboxes, origin=[0.5, 0.5, 0.5], axis=2): return center_to_corner_box3d( rbboxes[..., :3], rbboxes[..., 3:6], rbboxes[..., 6], origin, axis=axis ) def rbbox3d_to_bev_corners(rbboxes, origin=0.5): return center_to_corner_box2d( rbboxes[..., :2], rbboxes[..., 3:5], rbboxes[..., 6], origin ) def minmax_to_corner_2d(minmax_box): ndim = minmax_box.shape[-1] // 2 center = minmax_box[..., :ndim] dims = minmax_box[..., ndim:] - center return center_to_corner_box2d(center, dims, origin=0.0) def minmax_to_corner_2d_v2(minmax_box): # N, 4 -> N 4 2 return minmax_box[..., [0, 1, 0, 3, 2, 3, 2, 1]].reshape(-1, 4, 2) def minmax_to_corner_3d(minmax_box): ndim = minmax_box.shape[-1] // 2 center = minmax_box[..., :ndim] dims = minmax_box[..., ndim:] - center return center_to_corner_box3d(center, dims, origin=0.0) def minmax_to_center_2d(minmax_box): ndim = minmax_box.shape[-1] // 2 center_min = minmax_box[..., :ndim] dims = minmax_box[..., ndim:] - center_min center = center_min + 0.5 * dims return np.concatenate([center, dims], axis=-1) def center_to_minmax_2d_0_5(centers, dims): return np.concatenate([centers - dims / 2, centers + dims / 2], axis=-1) def center_to_minmax_2d(centers, dims, origin=0.5): if origin == 0.5: return center_to_minmax_2d_0_5(centers, dims) corners = center_to_corner_box2d(centers, dims, origin=origin) return corners[:, [0, 2]].reshape([-1, 4]) def limit_period(val, offset=0.5, period=np.pi): return val - np.floor(val / period + offset) * period def projection_matrix_to_CRT_kitti(proj): # P = C @ [R|T] # C is upper triangular matrix, so we need to inverse CR and use QR # stable for all kitti camera projection matrix CR = proj[0:3, 0:3] CT = proj[0:3, 3] RinvCinv = np.linalg.inv(CR) Rinv, Cinv = np.linalg.qr(RinvCinv) C = np.linalg.inv(Cinv) R = np.linalg.inv(Rinv) T = Cinv @ CT return C, R, T def get_frustum(bbox_image, C, near_clip=0.001, far_clip=100): fku = C[0, 0] fkv = -C[1, 1] u0v0 = C[0:2, 2] z_points = np.array([near_clip] * 4 + [far_clip] * 4, dtype=C.dtype)[:, np.newaxis] b = bbox_image box_corners = np.array( [[b[0], b[1]], [b[0], b[3]], [b[2], b[3]], [b[2], b[1]]], dtype=C.dtype ) near_box_corners = (box_corners - u0v0) / np.array( [fku / near_clip, -fkv / near_clip], dtype=C.dtype ) far_box_corners = (box_corners - u0v0) / np.array( [fku / far_clip, -fkv / far_clip], dtype=C.dtype ) ret_xy = np.concatenate([near_box_corners, far_box_corners], axis=0) # [8, 2] ret_xyz = np.concatenate([ret_xy, z_points], axis=1) return ret_xyz def get_frustum_v2(bboxes, C, near_clip=0.001, far_clip=100): fku = C[0, 0] fkv = -C[1, 1] u0v0 = C[0:2, 2] num_box = bboxes.shape[0] z_points = np.array([near_clip] * 4 + [far_clip] * 4, dtype=C.dtype)[ np.newaxis, :, np.newaxis ] z_points = np.tile(z_points, [num_box, 1, 1]) box_corners = minmax_to_corner_2d_v2(bboxes) near_box_corners = (box_corners - u0v0) / np.array( [fku / near_clip, -fkv / near_clip], dtype=C.dtype ) far_box_corners = (box_corners - u0v0) / np.array( [fku / far_clip, -fkv / far_clip], dtype=C.dtype ) ret_xy = np.concatenate([near_box_corners, far_box_corners], axis=1) # [8, 2] ret_xyz = np.concatenate([ret_xy, z_points], axis=-1) return ret_xyz @numba.njit def _add_rgb_to_points_kernel(points_2d, image, points_rgb): num_points = points_2d.shape[0] image_h, image_w = image.shape[:2] for i in range(num_points): img_pos = np.floor(points_2d[i]).astype(np.int32) if img_pos[0] >= 0 and img_pos[0] < image_w: if img_pos[1] >= 0 and img_pos[1] < image_h: points_rgb[i, :] = image[img_pos[1], img_pos[0], :] # image[img_pos[1], img_pos[0]] = 0 def add_rgb_to_points(points, image, rect, Trv2c, P2, mean_size=[5, 5]): kernel = np.ones(mean_size, np.float32) / np.prod(mean_size) # image = cv2.filter2D(image, -1, kernel) points_cam = lidar_to_camera(points[:, :3], rect, Trv2c) points_2d = project_to_image(points_cam, P2) points_rgb = np.zeros([points_cam.shape[0], 3], dtype=points.dtype) _add_rgb_to_points_kernel(points_2d, image, points_rgb) return points_rgb def project_to_image(points_3d, proj_mat): points_shape = list(points_3d.shape) points_shape[-1] = 1 points_4 = np.concatenate([points_3d, np.ones(points_shape)], axis=-1) point_2d = points_4 @ proj_mat.T point_2d_res = point_2d[..., :2] / point_2d[..., 2:3] return point_2d_res def camera_to_lidar(points, r_rect, velo2cam): points_shape = list(points.shape[0:-1]) if points.shape[-1] == 3: points = np.concatenate([points, np.ones(points_shape + [1])], axis=-1) lidar_points = points @ np.linalg.inv((r_rect @ velo2cam).T) return lidar_points[..., :3] def lidar_to_camera(points, r_rect, velo2cam): points_shape = list(points.shape[:-1]) if points.shape[-1] == 3: points = np.concatenate([points, np.ones(points_shape + [1])], axis=-1) camera_points = points @ (r_rect @ velo2cam).T return camera_points[..., :3] def box_camera_to_lidar(data, r_rect, velo2cam): xyz = data[:, 0:3] l, h, w = data[:, 3:4], data[:, 4:5], data[:, 5:6] r = data[:, 6:7] xyz_lidar = camera_to_lidar(xyz, r_rect, velo2cam) return np.concatenate([xyz_lidar, w, l, h, r], axis=1) def box_lidar_to_camera(data, r_rect, velo2cam): xyz_lidar = data[:, 0:3] w, l, h = data[:, 3:4], data[:, 4:5], data[:, 5:6] r = data[:, 6:7] xyz = lidar_to_camera(xyz_lidar, r_rect, velo2cam) return np.concatenate([xyz, l, h, w, r], axis=1) def remove_outside_points(points, rect, Trv2c, P2, image_shape): # 5x faster than remove_outside_points_v1(2ms vs 10ms) C, R, T = projection_matrix_to_CRT_kitti(P2) image_bbox = [0, 0, image_shape[1], image_shape[0]] frustum = get_frustum(image_bbox, C) frustum -= T frustum = np.linalg.inv(R) @ frustum.T frustum = camera_to_lidar(frustum.T, rect, Trv2c) frustum_surfaces = corner_to_surfaces_3d_jit(frustum[np.newaxis, ...]) indices = points_in_convex_polygon_3d_jit(points[:, :3], frustum_surfaces) points = points[indices.reshape([-1])] return points @numba.jit(nopython=True) def iou_jit(boxes, query_boxes, eps=1.0): """calculate box iou. note that jit version runs 2x faster than cython in my machine! Parameters ---------- boxes: (N, 4) ndarray of float query_boxes: (K, 4) ndarray of float Returns ------- overlaps: (N, K) ndarray of overlap between boxes and query_boxes """ N = boxes.shape[0] K = query_boxes.shape[0] overlaps = np.zeros((N, K), dtype=boxes.dtype) for k in range(K): box_area = (query_boxes[k, 2] - query_boxes[k, 0] + eps) * ( query_boxes[k, 3] - query_boxes[k, 1] + eps ) for n in range(N): iw = ( min(boxes[n, 2], query_boxes[k, 2]) - max(boxes[n, 0], query_boxes[k, 0]) + eps ) if iw > 0: ih = ( min(boxes[n, 3], query_boxes[k, 3]) - max(boxes[n, 1], query_boxes[k, 1]) + eps ) if ih > 0: ua = ( (boxes[n, 2] - boxes[n, 0] + eps) * (boxes[n, 3] - boxes[n, 1] + eps) + box_area - iw * ih ) overlaps[n, k] = iw * ih / ua return overlaps @numba.jit(nopython=True) def iou_3d_jit(boxes, query_boxes, add1=True): """calculate box iou3d, ---------- boxes: (N, 6) ndarray of float query_boxes: (K, 6) ndarray of float Returns ------- overlaps: (N, K) ndarray of overlap between boxes and query_boxes """ N = boxes.shape[0] K = query_boxes.shape[0] overlaps = np.zeros((N, K), dtype=boxes.dtype) if add1: add1 = 1.0 else: add1 = 0.0 for k in range(K): box_area = ( (query_boxes[k, 3] - query_boxes[k, 0] + add1) * (query_boxes[k, 4] - query_boxes[k, 1] + add1) * (query_boxes[k, 5] - query_boxes[k, 2] + add1) ) for n in range(N): iw = ( min(boxes[n, 3], query_boxes[k, 3]) - max(boxes[n, 0], query_boxes[k, 0]) + add1 ) if iw > 0: ih = ( min(boxes[n, 4], query_boxes[k, 4]) - max(boxes[n, 1], query_boxes[k, 1]) + add1 ) if ih > 0: il = ( min(boxes[n, 5], query_boxes[k, 5]) - max(boxes[n, 2], query_boxes[k, 2]) + add1 ) if il > 0: ua = float( (boxes[n, 3] - boxes[n, 0] + add1) * (boxes[n, 4] - boxes[n, 1] + add1) * (boxes[n, 5] - boxes[n, 2] + add1) + box_area - iw * ih * il ) overlaps[n, k] = iw * ih * il / ua return overlaps @numba.jit(nopython=True) def iou_nd_jit(boxes, query_boxes, add1=True): """calculate box iou nd, 2x slower than iou_jit. ---------- boxes: (N, ndim * 2) ndarray of float query_boxes: (K, ndim * 2) ndarray of float Returns ------- overlaps: (N, K) ndarray of overlap between boxes and query_boxes """ N = boxes.shape[0] K = query_boxes.shape[0] ndim = boxes.shape[1] // 2 overlaps = np.zeros((N, K), dtype=boxes.dtype) side_lengths = np.zeros((ndim,), dtype=boxes.dtype) if add1: add1 = 1.0 else: add1 = 0.0 invalid = False for k in range(K): qbox_area = query_boxes[k, ndim] - query_boxes[k, 0] + add1 for i in range(1, ndim): qbox_area *= query_boxes[k, ndim + i] - query_boxes[k, i] + add1 for n in range(N): invalid = False for i in range(ndim): side_length = ( min(boxes[n, i + ndim], query_boxes[k, i + ndim]) - max(boxes[n, i], query_boxes[k, i]) + add1 ) if side_length <= 0: invalid = True break side_lengths[i] = side_length if not invalid: box_area = boxes[n, ndim] - boxes[n, 0] + add1 for i in range(1, ndim): box_area *= boxes[n, ndim + i] - boxes[n, i] + add1 inter = side_lengths[0] for i in range(1, ndim): inter *= side_lengths[i] # inter = np.prod(side_lengths) ua = float(box_area + qbox_area - inter) overlaps[n, k] = inter / ua return overlaps def points_in_rbbox(points, rbbox, z_axis=2, origin=(0.5, 0.5, 0.5)): rbbox_corners = center_to_corner_box3d( rbbox[:, :3], rbbox[:, 3:6], rbbox[:, -1], origin=origin, axis=z_axis ) surfaces = corner_to_surfaces_3d(rbbox_corners) indices = points_in_convex_polygon_3d_jit(points[:, :3], surfaces) return indices def corner_to_surfaces_3d(corners): """convert 3d box corners from corner function above to surfaces that normal vectors all direct to internal. Args: corners (float array, [N, 8, 3]): 3d box corners. Returns: surfaces (float array, [N, 6, 4, 3]): """ # box_corners: [N, 8, 3], must from corner functions in this module surfaces = np.array( [ [corners[:, 0], corners[:, 1], corners[:, 2], corners[:, 3]], [corners[:, 7], corners[:, 6], corners[:, 5], corners[:, 4]], [corners[:, 0], corners[:, 3], corners[:, 7], corners[:, 4]], [corners[:, 1], corners[:, 5], corners[:, 6], corners[:, 2]], [corners[:, 0], corners[:, 4], corners[:, 5], corners[:, 1]], [corners[:, 3], corners[:, 2], corners[:, 6], corners[:, 7]], ] ).transpose([2, 0, 1, 3]) return surfaces @numba.jit(nopython=True) def corner_to_surfaces_3d_jit(corners): """convert 3d box corners from corner function above to surfaces that normal vectors all direct to internal. Args: corners (float array, [N, 8, 3]): 3d box corners. Returns: surfaces (float array, [N, 6, 4, 3]): """ # box_corners: [N, 8, 3], must from corner functions in this module num_boxes = corners.shape[0] surfaces = np.zeros((num_boxes, 6, 4, 3), dtype=corners.dtype) corner_idxes = np.array( [0, 1, 2, 3, 7, 6, 5, 4, 0, 3, 7, 4, 1, 5, 6, 2, 0, 4, 5, 1, 3, 2, 6, 7] ).reshape(6, 4) for i in range(num_boxes): for j in range(6): for k in range(4): surfaces[i, j, k] = corners[i, corner_idxes[j, k]] return surfaces def assign_label_to_voxel(gt_boxes, coors, voxel_size, coors_range): """assign a 0/1 label to each voxel based on whether the center of voxel is in gt_box. LIDAR. """ voxel_size = np.array(voxel_size, dtype=gt_boxes.dtype) coors_range = np.array(coors_range, dtype=gt_boxes.dtype) shift = coors_range[:3] voxel_origins = coors[:, ::-1] * voxel_size + shift voxel_centers = voxel_origins + voxel_size * 0.5 gt_box_corners = center_to_corner_box3d( gt_boxes[:, :3] - voxel_size * 0.5, gt_boxes[:, 3:6] + voxel_size, gt_boxes[:, 6], origin=[0.5, 0.5, 0.5], axis=2, ) gt_surfaces = corner_to_surfaces_3d(gt_box_corners) ret = points_in_convex_polygon_3d_jit(voxel_centers, gt_surfaces) return np.any(ret, axis=1).astype(np.int64) def assign_label_to_voxel_v3(gt_boxes, coors, voxel_size, coors_range): """assign a 0/1 label to each voxel based on whether the center of voxel is in gt_box. LIDAR. """ voxel_size = np.array(voxel_size, dtype=gt_boxes.dtype) coors_range = np.array(coors_range, dtype=gt_boxes.dtype) shift = coors_range[:3] voxel_origins = coors[:, ::-1] * voxel_size + shift voxel_maxes = voxel_origins + voxel_size voxel_minmax = np.concatenate([voxel_origins, voxel_maxes], axis=-1) voxel_corners = minmax_to_corner_3d(voxel_minmax) gt_box_corners = center_to_corner_box3d( gt_boxes[:, :3], gt_boxes[:, 3:6], gt_boxes[:, 6], origin=[0.5, 0.5, 0.5], axis=2, ) gt_surfaces = corner_to_surfaces_3d(gt_box_corners) voxel_corners_flat = voxel_corners.reshape([-1, 3]) ret = points_in_convex_polygon_3d_jit(voxel_corners_flat, gt_surfaces) ret = ret.reshape([-1, 8, ret.shape[-1]]) return ret.any(-1).any(-1).astype(np.int64) def image_box_region_area(img_cumsum, bbox): """check a 2d voxel is contained by a box. used to filter empty anchors. Summed-area table algorithm: ==> W ------------------ | | | |------A---------B | | | | | | |----- C---------D Iabcd = ID-IB-IC+IA Args: img_cumsum: [M, H, W](yx) cumsumed image. bbox: [N, 4](xyxy) bounding box, """ N = bbox.shape[0] M = img_cumsum.shape[0] ret = np.zeros([N, M], dtype=img_cumsum.dtype) ID = img_cumsum[:, bbox[:, 3], bbox[:, 2]] IA = img_cumsum[:, bbox[:, 1], bbox[:, 0]] IB = img_cumsum[:, bbox[:, 3], bbox[:, 0]] IC = img_cumsum[:, bbox[:, 1], bbox[:, 2]] ret = ID - IB - IC + IA return ret def get_minimum_bounding_box_bv(points, voxel_size, bound, downsample=8, margin=1.6): x_vsize = voxel_size[0] y_vsize = voxel_size[1] max_x = points[:, 0].max() max_y = points[:, 1].max() min_x = points[:, 0].min() min_y = points[:, 1].min() max_x = np.floor(max_x / (x_vsize * downsample) + 1) * (x_vsize * downsample) max_y = np.floor(max_y / (y_vsize * downsample) + 1) * (y_vsize * downsample) min_x = np.floor(min_x / (x_vsize * downsample)) * (x_vsize * downsample) min_y = np.floor(min_y / (y_vsize * downsample)) * (y_vsize * downsample) max_x = np.minimum(max_x + margin, bound[2]) max_y = np.minimum(max_y + margin, bound[3]) min_x = np.maximum(min_x - margin, bound[0]) min_y = np.maximum(min_y - margin, bound[1]) return np.array([min_x, min_y, max_x, max_y]) def box3d_to_bbox(box3d, rect, Trv2c, P2): box3d_to_cam = box_lidar_to_camera(box3d, rect, Trv2c) box_corners = center_to_corner_box3d( box3d[:, :3], box3d[:, 3:6], box3d[:, 6], [0.5, 1.0, 0.5], axis=1 ) box_corners_in_image = project_to_image(box_corners, P2) # box_corners_in_image: [N, 8, 2] minxy = np.min(box_corners_in_image, axis=1) maxxy = np.max(box_corners_in_image, axis=1) bbox = np.concatenate([minxy, maxxy], axis=1) return bbox def change_box3d_center_(box3d, src, dst): dst = np.array(dst, dtype=box3d.dtype) src = np.array(src, dtype=box3d.dtype) box3d[..., :3] += box3d[..., 3:6] * (dst - src) def encode_parts(relative_shifts): parts = np.zeros((len(relative_shifts),), dtype=np.int32) mask = (relative_shifts[:, 0] >= 0) & (relative_shifts[:, 1] >= 0) parts[mask] = 0 mask = (relative_shifts[:, 0] < 0) & (relative_shifts[:, 1] >= 0) parts[mask] = 1 mask = (relative_shifts[:, 0] < 0) & (relative_shifts[:, 1] < 0) parts[mask] = 2 mask = (relative_shifts[:, 0] >= 0) & (relative_shifts[:, 1] < 0) parts[mask] = 3 return parts
36.460123
88
0.57126
[ "MIT" ]
motional/polarstream
det3d/core/bbox/box_np_ops.py
29,715
Python
from core.himesis import Himesis, HimesisPreConditionPatternLHS import uuid class HContractUnitR03_ConnectedLHS(HimesisPreConditionPatternLHS): def __init__(self): """ Creates the himesis graph representing the AToM3 model HContractUnitR03_ConnectedLHS """ # Flag this instance as compiled now self.is_compiled = True super(HContractUnitR03_ConnectedLHS, self).__init__(name='HContractUnitR03_ConnectedLHS', num_nodes=0, edges=[]) # Add the edges self.add_edges([]) # Set the graph attributes self["mm__"] = ['MT_pre__FamiliesToPersonsMM', 'MoTifRule'] self["MT_constraint__"] = """return True""" self["name"] = """""" self["GUID__"] = uuid.uuid3(uuid.NAMESPACE_DNS,'HContractUnitR03_ConnectedLHS') self["equations"] = [] # Set the node attributes # match class Class(Class) node self.add_node() self.vs[0]["MT_pre__attr1"] = """return True""" self.vs[0]["MT_label__"] = """1""" self.vs[0]["mm__"] = """MT_pre__Class""" self.vs[0]["GUID__"] = uuid.uuid3(uuid.NAMESPACE_DNS,'Class') # Add the edges self.add_edges([ ]) # define evaluation methods for each match class. def eval_attr11(self, attr_value, this): return True # define evaluation methods for each match association. def constraint(self, PreNode, graph): return True
26.489796
114
0.716487
[ "MIT" ]
levilucio/SyVOLT
UML2ER/contracts/unit/HContractUnitR03_ConnectedLHS.py
1,298
Python
import numpy as np import networkx as nx if __name__ == '__main__': from ged4py.algorithm import graph_edit_dist else: from .ged4py.algorithm import graph_edit_dist def rearrange_adj_matrix(matrix, ordering): assert matrix.ndim == 2 # Check that matrix is square assert matrix.shape[0] == matrix.shape[1] num_nodes = matrix.shape[0] assert len(ordering) == num_nodes # Swap rows into correct ordering matrix = matrix[ordering, :] # Swap columns into correct ordering matrix = matrix[:, ordering] return matrix def rand_permute_adj_matrix(matrix): """Randomly permute the order of vertices in the adjacency matrix, while maintaining the connectivity between them.""" num_vertices = matrix.shape[0] rand_order = np.arange(num_vertices) np.random.shuffle(rand_order) matrix_permuted = rearrange_adj_matrix(matrix, rand_order) return matrix_permuted def ged_from_adj(adj_mat_1, adj_mat_2, directed=False, ged_function=graph_edit_dist.compare): """Calculate the graph edit distance between two graphs""" if directed: create_using = nx.DiGraph else: create_using = nx.Graph g1 = nx.from_numpy_matrix(adj_mat_1, create_using=create_using()) g2 = nx.from_numpy_matrix(adj_mat_2, create_using=create_using()) return ged_function(g1, g2) def ged_from_adj_nx(adj_mat_1, adj_mat_2, directed=False): """Calculate the graph edit distance between two graphs using the networkx implementation""" return ged_from_adj(adj_mat_1, adj_mat_2, directed=directed, ged_function=nx.graph_edit_distance) def ged_from_adj_ged4py(adj_mat_1, adj_mat_2, directed=False): """Calculate the graph edit distance between two graphs using the ged4py implementation""" return ged_from_adj(adj_mat_1, adj_mat_2, directed=directed, ged_function=graph_edit_dist.compare) def is_isomorphic_from_adj(adj_mat_1, adj_mat_2): """Checks whether two graphs are isomorphic taking adjacency matrices as inputs""" g1 = nx.from_numpy_matrix(adj_mat_1, create_using=nx.DiGraph()) g2 = nx.from_numpy_matrix(adj_mat_2, create_using=nx.DiGraph()) return nx.is_isomorphic(g1, g2) def adj_matrix_to_edge_list(adj_matrix, directed=True, first_id=0, weighted=False): num_nodes = adj_matrix.shape[0] if directed: num_edges = np.sum(adj_matrix) else: num_edges = int(np.sum(adj_matrix) / 2) if weighted: edge_list = np.zeros([num_edges, 3], dtype=np.int32) else: edge_list = np.zeros([num_edges, 2], dtype=np.int32) i = 0 for node_in in range(num_nodes): if directed: range_2 = range(num_nodes) else: range_2 = range(node_in + 1, num_nodes) for node_out in range_2: edge_val = adj_matrix[node_in, node_out] if edge_val > 0: # If there is a connection if weighted: edge_list[i] = (node_in + first_id, node_out + first_id, edge_val) else: edge_list[i] = (node_in + first_id, node_out + first_id) i += 1 return edge_list def edge_list_to_textfile(edge_list, filepath, weighted=False): with open(filepath, 'w') as file: if weighted: for i, j, weight in edge_list: file.write(f"{i} {j} {weight}\n") else: for i, j in edge_list: file.write(f"{i} {j}\n") return
34.147059
105
0.676715
[ "MIT" ]
BrunoKM/rhoana_graph_tools
utils/graph_utils.py
3,483
Python
import time from typing import Optional, Dict import torch from torch import nn, optim from torch.utils.data import DataLoader from torch.nn.utils.rnn import pack_padded_sequence from utils import TensorboardWriter, AverageMeter, save_checkpoint, accuracy, \ clip_gradient, adjust_learning_rate from metrics import Metrics class Trainer: """ Encoder-decoder pipeline. Tearcher Forcing is used during training and validation. Parameters ---------- caption_model : str Type of the caption model epochs : int We should train the model for __ epochs device : torch.device Use GPU or not word_map : Dict[str, int] Word2id map rev_word_map : Dict[int, str] Id2word map start_epoch : int We should start training the model from __th epoch epochs_since_improvement : int Number of epochs since last improvement in BLEU-4 score best_bleu4 : float Best BLEU-4 score until now train_loader : DataLoader DataLoader for training data val_loader : DataLoader DataLoader for validation data encoder : nn.Module Encoder (based on CNN) decoder : nn.Module Decoder (based on LSTM) encoder_optimizer : optim.Optimizer Optimizer for encoder (Adam) (if fine-tune) decoder_optimizer : optim.Optimizer Optimizer for decoder (Adam) loss_function : nn.Module Loss function (cross entropy) grad_clip : float Gradient threshold in clip gradients tau : float Penalty term τ for doubly stochastic attention in paper: show, attend and tell fine_tune_encoder : bool Fine-tune encoder or not tensorboard : bool, optional, default=False Enable tensorboard or not? log_dir : str, optional Path to the folder to save logs for tensorboard """ def __init__( self, caption_model: str, epochs: int, device: torch.device, word_map: Dict[str, int], rev_word_map: Dict[int, str], start_epoch: int, epochs_since_improvement: int, best_bleu4: float, train_loader: DataLoader, val_loader: DataLoader, encoder: nn.Module, decoder: nn.Module, encoder_optimizer: optim.Optimizer, decoder_optimizer: optim.Optimizer, loss_function: nn.Module, grad_clip: float, tau: float, fine_tune_encoder: bool, tensorboard: bool = False, log_dir: Optional[str] = None ) -> None: self.device = device # GPU / CPU self.caption_model = caption_model self.epochs = epochs self.word_map = word_map self.rev_word_map = rev_word_map self.start_epoch = start_epoch self.epochs_since_improvement = epochs_since_improvement self.best_bleu4 = best_bleu4 self.train_loader = train_loader self.val_loader = val_loader self.encoder = encoder self.decoder = decoder self.encoder_optimizer = encoder_optimizer self.decoder_optimizer = decoder_optimizer self.loss_function = loss_function self.tau = tau self.grad_clip = grad_clip self.fine_tune_encoder = fine_tune_encoder self.print_freq = 100 # print training/validation stats every __ batches # setup visualization writer instance self.writer = TensorboardWriter(log_dir, tensorboard) self.len_epoch = len(self.train_loader) def train(self, epoch: int) -> None: """ Train an epoch Parameters ---------- epoch : int Current number of epoch """ self.decoder.train() # train mode (dropout and batchnorm is used) self.encoder.train() batch_time = AverageMeter() # forward prop. + back prop. time data_time = AverageMeter() # data loading time losses = AverageMeter(tag='loss', writer=self.writer) # loss (per word decoded) top5accs = AverageMeter(tag='top5acc', writer=self.writer) # top5 accuracy start = time.time() # batches for i, (imgs, caps, caplens) in enumerate(self.train_loader): data_time.update(time.time() - start) # Move to GPU, if available imgs = imgs.to(self.device) caps = caps.to(self.device) caplens = caplens.to(self.device) # forward encoder imgs = self.encoder(imgs) # forward decoder if self.caption_model == 'att2all': scores, caps_sorted, decode_lengths, alphas, sort_ind = self.decoder(imgs, caps, caplens) else: scores, caps_sorted, decode_lengths, sort_ind = self.decoder(imgs, caps, caplens) # since we decoded starting with <start>, the targets are all words after <start>, up to <end> targets = caps_sorted[:, 1:] # remove timesteps that we didn't decode at, or are pads # pack_padded_sequence is an easy trick to do this scores = pack_padded_sequence(scores, decode_lengths, batch_first=True)[0] targets = pack_padded_sequence(targets, decode_lengths, batch_first=True)[0] # calc loss loss = self.loss_function(scores, targets) # doubly stochastic attention regularization (in paper: show, attend and tell) if self.caption_model == 'att2all': loss += self.tau * ((1. - alphas.sum(dim = 1)) ** 2).mean() # clear gradient of last batch self.decoder_optimizer.zero_grad() if self.encoder_optimizer is not None: self.encoder_optimizer.zero_grad() # backward loss.backward() # clip gradients if self.grad_clip is not None: clip_gradient(self.decoder_optimizer, self.grad_clip) if self.encoder_optimizer is not None: clip_gradient(self.encoder_optimizer, self.grad_clip) # update weights self.decoder_optimizer.step() if self.encoder_optimizer is not None: self.encoder_optimizer.step() # set step for tensorboard step = (epoch - 1) * self.len_epoch + i self.writer.set_step(step=step, mode='train') # keep track of metrics top5 = accuracy(scores, targets, 5) losses.update(loss.item(), sum(decode_lengths)) top5accs.update(top5, sum(decode_lengths)) batch_time.update(time.time() - start) start = time.time() # print status if i % self.print_freq == 0: print( 'Epoch: [{0}][{1}/{2}]\t' 'Batch Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Data Load Time {data_time.val:.3f} ({data_time.avg:.3f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})\t' 'Top-5 Accuracy {top5.val:.3f} ({top5.avg:.3f})'.format( epoch, i, len(self.train_loader), batch_time = batch_time, data_time = data_time, loss = losses, top5 = top5accs ) ) def validate(self) -> float: """ Validate an epoch. Returns ------- bleu4 : float BLEU-4 score """ self.decoder.eval() # eval mode (no dropout or batchnorm) if self.encoder is not None: self.encoder.eval() batch_time = AverageMeter() losses = AverageMeter() top5accs = AverageMeter() start = time.time() ground_truth = list() # ground_truth (true captions) for calculating BLEU-4 score prediction = list() # prediction (predicted captions) # explicitly disable gradient calculation to avoid CUDA memory error # solves the issue #57 with torch.no_grad(): # Batches for i, (imgs, caps, caplens, allcaps) in enumerate(self.val_loader): # move to device, if available imgs = imgs.to(self.device) caps = caps.to(self.device) caplens = caplens.to(self.device) # forward encoder if self.encoder is not None: imgs = self.encoder(imgs) # forward decoder if self.caption_model == 'att2all': scores, caps_sorted, decode_lengths, alphas, sort_ind = self.decoder(imgs, caps, caplens) else: scores, caps_sorted, decode_lengths, sort_ind = self.decoder(imgs, caps, caplens) # since we decoded starting with <start>, the targets are all words after <start>, up to <end> targets = caps_sorted[:, 1:] # remove timesteps that we didn't decode at, or are pads # pack_padded_sequence is an easy trick to do this scores_copy = scores.clone() scores = pack_padded_sequence(scores, decode_lengths, batch_first = True)[0] targets = pack_padded_sequence(targets, decode_lengths, batch_first = True)[0] # calc loss loss = self.loss_function(scores, targets) # doubly stochastic attention regularization (in paper: show, attend and tell) if self.caption_model == 'att2all': loss += self.tau * ((1. - alphas.sum(dim = 1)) ** 2).mean() # keep track of metrics losses.update(loss.item(), sum(decode_lengths)) top5 = accuracy(scores, targets, 5) top5accs.update(top5, sum(decode_lengths)) batch_time.update(time.time() - start) start = time.time() if i % self.print_freq == 0: print('Validation: [{0}/{1}]\t' 'Batch Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})\t' 'Top-5 Accuracy {top5.val:.3f} ({top5.avg:.3f})\t'.format(i, len(self.val_loader), batch_time = batch_time, loss = losses, top5 = top5accs) ) # store ground truth captions and predicted captions of each image # for n images, each of them has one prediction and multiple ground truths (a, b, c...): # prediction = [ [hyp1], [hyp2], ..., [hypn] ] # ground_truth = [ [ [ref1a], [ref1b], [ref1c] ], ..., [ [refna], [refnb] ] ] # ground truth allcaps = allcaps[sort_ind] # because images were sorted in the decoder for j in range(allcaps.shape[0]): img_caps = allcaps[j].tolist() img_captions = list( map( lambda c: [w for w in c if w not in {self.word_map['<start>'], self.word_map['<pad>']}], img_caps ) ) # remove <start> and pads ground_truth.append(img_captions) # prediction _, preds = torch.max(scores_copy, dim = 2) preds = preds.tolist() temp_preds = list() for j, p in enumerate(preds): temp_preds.append(preds[j][:decode_lengths[j]]) # remove pads preds = temp_preds prediction.extend(preds) assert len(ground_truth) == len(prediction) # calc BLEU-4 and CIDEr score metrics = Metrics(ground_truth, prediction, self.rev_word_map) bleu4 = metrics.belu[3] # BLEU-4 cider = metrics.cider # CIDEr print( '\n * LOSS - {loss.avg:.3f}, TOP-5 ACCURACY - {top5.avg:.3f}, BLEU-4 - {bleu}, CIDEr - {cider}\n'.format( loss = losses, top5 = top5accs, bleu = bleu4, cider = cider ) ) return bleu4 def run_train(self) -> None: # epochs for epoch in range(self.start_epoch, self.epochs): # decay learning rate if there is no improvement for 8 consecutive epochs # terminate training if there is no improvement for 20 consecutive epochs if self.epochs_since_improvement == 20: break if self.epochs_since_improvement > 0 and self.epochs_since_improvement % 8 == 0: adjust_learning_rate(self.decoder_optimizer, 0.8) if self.fine_tune_encoder: adjust_learning_rate(self.encoder_optimizer, 0.8) # train an epoch self.train(epoch = epoch) # validate an epoch recent_bleu4 = self.validate() # epochs num since last improvement is_best = recent_bleu4 > self.best_bleu4 self.best_bleu4 = max(recent_bleu4, self.best_bleu4) if not is_best: self.epochs_since_improvement += 1 print("\nEpochs since last improvement: %d\n" % (self.epochs_since_improvement,)) else: self.epochs_since_improvement = 0 # save checkpoint save_checkpoint( epoch = epoch, epochs_since_improvement = self.epochs_since_improvement, encoder = self.encoder, decoder = self.decoder, encoder_optimizer = self.encoder_optimizer, decoder_optimizer = self.decoder_optimizer, caption_model = self.caption_model, bleu4 = recent_bleu4, is_best = is_best )
36.77892
121
0.551618
[ "MIT" ]
Renovamen/Image-Caption
trainer/trainer.py
14,308
Python
# Get substring using 'start' and 'end' position. def get_substring_or_empty(data, start, end=''): if start in data: if '' == start: f = 0 else: f = len(start) f = data.find(start) + f data = data[f:] else: return '' if end in data: if '' == end: f = len(data) else: f = data.find(end) data = data[:f] else: return '' data = data.strip() return data
20.04
49
0.447106
[ "MIT" ]
domorelivelonger/rss-telegram-bot
utils.py
501
Python
import cmath import math cv =150 cvconv = 736 t1 =440 t2 = 254 polos = 10 freq = 60 r1 = 0.012 R2L = 0.018 X1 = 0.08 X2L = X1 Rp = 58 Xm = 54 print("\nConsidere que o motor é alimentado com tensão de fase igual a 254 V, conexão Y e atinge escorregamento igual a 1,8%") print("\nA - Corrente no estator\n") s = 0.018 print("R2L_s = ", R2L/s, "Ohm") print("(1-s)*(R2L_s) = ", (1-s)*(R2L/s), "Ohm") Z1 = r1+complex(0,X1) print("Z1 = ", Z1, "Ohm") Z2 = R2L/s+complex(0,X2L) print("Z2 = ", Z2, "Ohm") Zn = Rp*complex(0,Xm)/complex(Rp,Xm) print("Zn = ", Zn, "Ohm") Zeq1 = Zn*Z2/(Zn+Z2) print("Zeq1 = ", Zeq1, "Ohm") Zeq2 = Z1+Zeq1 print("Zeq2 = ", Zeq2, "Ohm") I1 = t2/Zeq2 print("I1 = ", I1, "A") I1p = cmath.polar(I1) print("\nB - Fator de pontecia\n") FP = cmath.cos(I1p[1]) FPreal = round(FP.real,5) print("FP = ", FPreal) print("\nC - Potencia de entrada\n") Pe = t2*I1p[0]*cmath.cos(I1p[1]) pereal = round(Pe.real,3) print("Pe = ", pereal, "W") Pe3 = 3*pereal print("Pe3 = ", Pe3, "W") print("\nD - Corrente no rotor\n") E1 = t2-Z1*I1 E1p = cmath.polar(E1) print("E1 = ", E1p, "V") I2L = E1/Z2 I2Lp = cmath.polar(I2L) print("I2L = ", I2Lp, "A") print("\nE - Potencia na carga\n") #professor ultiliza dados polares Ps = ((R2L*(1-s))/s)*I2Lp[0]*I2Lp[0] print("Ps = ", Ps, "W") Ps3 = 3*Ps print("Ps3 = ", Ps3, "W") print("\nF - Velocidade do eixo\n") ns = 120*freq/polos print("ns = ", ns, "rpm") n = (1-s)*ns print("n = ", n, "rpm") w = 2*math.pi*n/60 w = round(w,3) print("w = ", w, "rad/s") print("\nG - Torque na carga\n") t = Ps3/w print("t = ", t, "Nm") print("\nH - Rendimento do motor\n") eni = Ps3/Pe3*100 print("eni = ", eni, "%")
17.333333
126
0.582933
[ "MIT" ]
Boa-Thomas/Eletricidade
P5/Brasilia/Q7 - BR.py
1,667
Python
from dis_snek.models import InteractionContext, OptionTypes, slash_command, slash_option from ElevatorBot.commandHelpers.subCommandTemplates import poll_sub_command from ElevatorBot.commands.base import BaseScale from ElevatorBot.core.misc.poll import Poll class PollRemove(BaseScale): @slash_command( **poll_sub_command, sub_cmd_name="remove", sub_cmd_description="Remove an existing option from an existing poll", ) @slash_option( name="poll_id", description="The ID of the poll", opt_type=OptionTypes.INTEGER, required=True, min_value=0 ) @slash_option( name="option", description="The name the option should have", opt_type=OptionTypes.STRING, required=True, ) async def remove(self, ctx: InteractionContext, poll_id: int, option: str): poll = await Poll.from_poll_id(poll_id=poll_id, ctx=ctx) if poll: await poll.remove_option(ctx=ctx, option=option) def setup(client): PollRemove(client)
32
114
0.710938
[ "MIT" ]
LukasSchmid97/elevatorbot
ElevatorBot/commands/miscellaneous/poll/remove.py
1,024
Python
# + import numpy as np import holoviews as hv from holoviews import opts import matplotlib.pyplot as plt from plotsun import plot_sun hv.extension('bokeh', 'matplotlib') # - # # Load data data = np.load('npz_timeseries/subset.npz') arr = data['arr'] stack = data['stack'] sun = data['sun'] print(arr.shape, stack.shape, sun.shape) stack[:,:,25] plt.imshow(stack[:,:,25], cmap='binary') # + stack = hv.Dataset((np.arange(stack.shape[2]), np.arange(stack.shape[0]), np.arange(stack.shape[1]), stack), ['Time', 'x', 'y'], 'Shadows') stack # - arr = hv.Dataset((np.arange(arr.shape[0]), np.arange(arr.shape[1]), arr), ['x', 'y'], 'Elevation') arr # # View opts.defaults( opts.GridSpace(shared_xaxis=True, shared_yaxis=True), opts.Image(cmap='viridis', invert_yaxis=True, width=400, height=400), opts.Labels(text_color='white', text_font_size='8pt', text_align='left', text_baseline='bottom'), opts.Path(color='white'), opts.Spread(width=600), opts.Overlay(show_legend=False)) elevation = arr.to(hv.Image, ['x', 'y']) shadows = stack.to(hv.Image, ['x', 'y']) elevation dims = {'figsize':(4,5), 'top':1, 'bottom':0, 'left':0.2, 'right':0.95} plot_sun(sunposition=sun, d=dims) elevation * shadows stack[:,:,24]
21.553846
73
0.589579
[ "BSD-3-Clause" ]
cisaacstern/horpyzon
datashader_nb.py
1,401
Python
# -*- coding: utf-8 -*- from django.conf.urls import include from django.conf.urls import url from rest_framework.routers import DefaultRouter from .views import * # register的可选参数 base_name: 用来生成urls名字,如果viewset中没有包含queryset, base_name一定要有 router = DefaultRouter() router.register(r'idcs', IdcViewSet) router.register(r'racks', RackViewSet) router.register(r'servers', ServerViewSet) router.register(r'sshusers', SSHUserViewSet) router.register(r'businesslines', BusinessLineViewSet) router.register(r'projects', ProjectViewSet) urlpatterns = [ url(r'^', include(router.urls)), url(r'^api_dashboard/$', APIDashBoardView.as_view()), url(r'^api_local_ssh_user/$', APILocalSSHUserView.as_view()), ]
30.956522
75
0.771067
[ "BSD-3-Clause" ]
17702296834/open-cmdb
backend/category/urls.py
758
Python
from django.contrib import admin from django.contrib.auth import get_user_model from django.contrib.contenttypes.models import ContentType from django.utils.translation import ugettext_lazy as _ from djangocms_versioning.constants import PUBLISHED, VERSION_STATES from djangocms_versioning.versionables import _cms_extension from polymorphic.utils import get_base_polymorphic_model from rangefilter.filters import DateRangeFilter from .helpers import get_rangefilter_expires_default class SimpleListMultiselectFilter(admin.SimpleListFilter): def value_as_list(self): return self.value().split(',') if self.value() else [] def _update_query(self, changelist, include=None, exclude=None): selected_list = self.value_as_list() if include and include not in selected_list: selected_list.append(include) if exclude and exclude in selected_list: selected_list.remove(exclude) if selected_list: compiled_selection = ','.join(selected_list) return changelist.get_query_string({self.parameter_name: compiled_selection}) else: return changelist.get_query_string(remove=[self.parameter_name]) class ContentTypeFilter(SimpleListMultiselectFilter): title = _("Content Type") parameter_name = "content_type" template = 'djangocms_content_expiry/multiselect_filter.html' def lookups(self, request, model_admin): lookup_list = [] for content_model in _cms_extension().versionables_by_content: # Only add references to the inherited concrete model i.e. not referenced polymorphic models if hasattr(content_model, "polymorphic_ctype"): content_model = get_base_polymorphic_model(content_model) # Create an entry content_type = ContentType.objects.get_for_model(content_model) lookup_list_entry = (content_type.pk, content_type) # Only add unique entries if lookup_list_entry not in lookup_list: lookup_list.append(lookup_list_entry) return lookup_list def queryset(self, request, queryset): content_types = self.value() if not content_types: return queryset return queryset.filter(version__content_type__in=content_types.split(',')) def choices(self, changelist): yield { 'selected': self.value() is None, 'query_string': changelist.get_query_string(remove=[self.parameter_name]), 'display': 'All', 'initial': True, } for lookup, title in self.lookup_choices: yield { 'selected': str(lookup) in self.value_as_list(), 'query_string': changelist.get_query_string({self.parameter_name: lookup}), 'include_query_string': self._update_query(changelist, include=str(lookup)), 'exclude_query_string': self._update_query(changelist, exclude=str(lookup)), 'display': title, } class VersionStateFilter(SimpleListMultiselectFilter): title = _("Version State") parameter_name = "state" default_filter_value = PUBLISHED show_all_param_value = "_all_" template = 'djangocms_content_expiry/multiselect_filter.html' def _is_default(self, filter_value): if self.default_filter_value == filter_value and self.value() is None: return True return False def _get_all_query_string(self, changelist): """ If there's a default value set the all parameter needs to be provided however, if a default is not set the all parameter is not required. """ # Default setting in use if self.default_filter_value: return changelist.get_query_string( {self.parameter_name: self.show_all_param_value} ) # Default setting not in use return changelist.get_query_string(remove=[self.parameter_name]) def _is_all_selected(self): state = self.value() # Default setting in use if self.default_filter_value and state == self.show_all_param_value: return True # Default setting not in use elif not self.default_filter_value and not state: return True return False def _update_query(self, changelist, include=None, exclude=None): selected_list = self.value_as_list() if self.show_all_param_value in selected_list: selected_list.remove(self.show_all_param_value) if include and include not in selected_list: selected_list.append(include) if exclude and exclude in selected_list: selected_list.remove(exclude) if selected_list: compiled_selection = ','.join(selected_list) return changelist.get_query_string({self.parameter_name: compiled_selection}) else: return changelist.get_query_string(remove=[self.parameter_name]) def lookups(self, request, model_admin): return VERSION_STATES def queryset(self, request, queryset): state = self.value() # Default setting in use if self.default_filter_value: if not state: return queryset.filter(version__state=self.default_filter_value) elif state != "_all_": return queryset.filter(version__state__in=state.split(',')) # Default setting not in use elif not self.default_filter_value and state: return queryset.filter(version__state__in=state.split(',')) return queryset def choices(self, changelist): yield { "selected": self._is_all_selected(), "query_string": self._get_all_query_string(changelist), "display": _("All"), 'initial': True, } for lookup, title in self.lookup_choices: lookup_value = str(lookup) yield { "selected": str(lookup) in self.value_as_list() or self._is_default(lookup_value), "query_string": changelist.get_query_string( {self.parameter_name: lookup} ), 'include_query_string': self._update_query(changelist, include=str(lookup_value)), 'exclude_query_string': self._update_query(changelist, exclude=str(lookup_value)), "display": title, } class AuthorFilter(admin.SimpleListFilter): """ An author filter limited to those users who have added expiration dates """ title = _("Version Author") parameter_name = "created_by" def lookups(self, request, model_admin): from django.utils.encoding import force_text User = get_user_model() options = [] qs = model_admin.get_queryset(request) authors = qs.values_list('version__created_by', flat=True).distinct() users = User.objects.filter(pk__in=authors) for user in users: options.append( (force_text(user.pk), user.get_full_name() or user.get_username()) ) return options def queryset(self, request, queryset): if self.value(): return queryset.filter(created_by=self.value()).distinct() return queryset class ContentExpiryDateRangeFilter(DateRangeFilter): def queryset(self, request, queryset): queryset = super().queryset(request, queryset) # By default the widget should default to show a default duration and not all content # expiry records if not any('expires__range' in seed for seed in request.GET): default_gte, default_lte = get_rangefilter_expires_default() queryset = queryset.filter(expires__range=(default_gte, default_lte)) return queryset
39.38
104
0.660995
[ "BSD-3-Clause" ]
Aiky30/djangocms-content-expiry
djangocms_content_expiry/filters.py
7,876
Python