content
stringlengths
7
928k
avg_line_length
float64
3.5
33.8k
max_line_length
int64
6
139k
alphanum_fraction
float64
0.08
0.96
licenses
sequence
repository_name
stringlengths
7
104
path
stringlengths
4
230
size
int64
7
928k
lang
stringclasses
1 value
import scipy from manimlib.imports import * from from_3b1b.old.eoc.chapter1 import Thumbnail as Chapter1Thumbnail from from_3b1b.old.eoc.chapter2 import Car, MoveCar, ShowSpeedometer, \ IncrementNumber, GraphCarTrajectory, SecantLineToTangentLine, \ VELOCITY_COLOR, TIME_COLOR, DISTANCE_COLOR def v_rate_func(t): return 4*t - 4*(t**2) def s_rate_func(t): return 3*(t**2) - 2*(t**3) def v_func(t): return t*(8-t) def s_func(t): return 4*t**2 - (t**3)/3. class Chapter8OpeningQuote(OpeningQuote, PiCreatureScene): CONFIG = { "quote" : [ " One should never try to prove anything that \\\\ is not ", "almost obvious", ". " ], "quote_arg_separator" : "", "highlighted_quote_terms" : { "almost obvious" : BLUE, }, "author" : "Alexander Grothendieck" } def construct(self): self.remove(self.pi_creature) OpeningQuote.construct(self) words_copy = self.quote.get_part_by_tex("obvious").copy() author = self.author author.save_state() formula = self.get_formula() formula.next_to(author, DOWN, MED_LARGE_BUFF) formula.to_edge(LEFT) self.revert_to_original_skipping_status() self.play(FadeIn(self.pi_creature)) self.play( author.next_to, self.pi_creature.get_corner(UP+LEFT), UP, self.pi_creature.change_mode, "raise_right_hand" ) self.wait(3) self.play( author.restore, self.pi_creature.change_mode, "plain" ) self.play( words_copy.next_to, self.pi_creature, LEFT, MED_SMALL_BUFF, UP, self.pi_creature.change_mode, "thinking" ) self.wait(2) self.play( Write(formula), self.pi_creature.change_mode, "confused" ) self.wait() def get_formula(self): result = TexMobject( "{d(\\sin(\\theta)) \\over \\,", "d\\theta}", "=", "\\lim_{", "h", " \\to 0}", "{\\sin(\\theta+", "h", ") - \\sin(\\theta) \\over", " h}", "=", "\\lim_{", "h", " \\to 0}", "{\\big[ \\sin(\\theta)\\cos(", "h", ") + ", "\\sin(", "h", ")\\cos(\\theta)\\big] - \\sin(\\theta) \\over", "h}", "= \\dots" ) result.set_color_by_tex("h", GREEN, substring = False) result.set_color_by_tex("d\\theta", GREEN) result.set_width(FRAME_WIDTH - 2*MED_SMALL_BUFF) return result class ThisVideo(TeacherStudentsScene): def construct(self): series = VideoSeries() series.to_edge(UP) this_video = series[7] this_video.save_state() next_video = series[8] deriv, integral, v_t, dt, equals, v_T = formula = TexMobject( "\\frac{d}{dT}", "\\int_0^T", "v(t)", "\\,dt", "=", "v(T)" ) formula.set_color_by_tex("v", VELOCITY_COLOR) formula.next_to(self.teacher.get_corner(UP+LEFT), UP, MED_LARGE_BUFF) self.play(FadeIn(series, lag_ratio = 0.5)) self.play( this_video.shift, this_video.get_height()*DOWN/2, this_video.set_color, YELLOW, self.teacher.change_mode, "raise_right_hand", ) self.play(Write(VGroup(integral, v_t, dt))) self.change_student_modes(*["erm"]*3) self.wait() self.play(Write(VGroup(deriv, equals, v_T)), ) self.change_student_modes(*["confused"]*3) self.wait(3) self.play( this_video.restore, next_video.shift, next_video.get_height()*DOWN/2, next_video.set_color, YELLOW, integral[0].copy().next_to, next_video, DOWN, MED_LARGE_BUFF, FadeOut(formula), *it.chain(*[ [pi.change_mode, "plain", pi.look_at, next_video] for pi in self.pi_creatures ]) ) self.wait(2) class InCarRestrictedView(ShowSpeedometer): CONFIG = { "speedometer_title_text" : "Your view", } def construct(self): car = Car() car.move_to(self.point_A) self.car = car car.randy.save_state() Transform(car.randy, Randolph()).update(1) car.randy.next_to(car, RIGHT, MED_LARGE_BUFF) car.randy.look_at(car) window = car[1][6].copy() window.is_subpath = False window.set_fill(BLACK, opacity = 0.75) window.set_stroke(width = 0) square = Square(stroke_color = WHITE) square.replace(VGroup(self.speedometer, self.speedometer_title)) square.scale_in_place(1.5) square.pointwise_become_partial(square, 0.25, 0.75) time_label = TextMobject("Time (in seconds):", "0") time_label.shift(2*UP) dots = VGroup(*list(map(Dot, [self.point_A, self.point_B]))) line = Line(*dots, buff = 0) line.set_color(DISTANCE_COLOR) brace = Brace(line, DOWN) brace_text = brace.get_text("Distance traveled?") #Sit in car self.add(car) self.play(Blink(car.randy)) self.play(car.randy.restore, Animation(car)) self.play(ShowCreation(window, run_time = 2)) self.wait() #Show speedometer self.introduce_added_mobjects() self.play(ShowCreation(square)) self.wait() #Travel self.play(FadeIn(time_label)) self.play( MoveCar(car, self.point_B, rate_func = s_rate_func), IncrementNumber(time_label[1], run_time = 8), MaintainPositionRelativeTo(window, car), *self.get_added_movement_anims( rate_func = v_rate_func, radians = -(16.0/70)*4*np.pi/3 ), run_time = 8 ) eight = TexMobject("8").move_to(time_label[1]) self.play(Transform( time_label[1], eight, rate_func = squish_rate_func(smooth, 0, 0.5) )) self.wait() #Ask about distance self.play(*list(map(ShowCreation, dots))) self.play(ShowCreation(line)) self.play( GrowFromCenter(brace), Write(brace_text) ) self.wait(2) class GraphDistanceVsTime(GraphCarTrajectory): CONFIG = { "y_min" : 0, "y_max" : 100, "y_axis_height" : 6, "y_tick_frequency" : 10, "y_labeled_nums" : list(range(10, 100, 10)), "y_axis_label" : "Distance (in meters)", "x_min" : -1, "x_max" : 9, "x_axis_width" : 9, "x_tick_frequency" : 1, "x_leftmost_tick" : None, #Change if different from x_min "x_labeled_nums" : list(range(1, 9)), "x_axis_label" : "$t$", "time_of_journey" : 8, "care_movement_rate_func" : s_rate_func, "num_graph_anchor_points" : 100 } def construct(self): self.setup_axes() graph = self.get_graph( s_func, color = DISTANCE_COLOR, x_min = 0, x_max = 8, ) origin = self.coords_to_point(0, 0) graph_label = self.get_graph_label( graph, "s(t)", color = DISTANCE_COLOR ) self.introduce_graph(graph, origin) class PlotVelocity(GraphScene): CONFIG = { "x_min" : -1, "x_max" : 9, "x_axis_width" : 9, "x_tick_frequency" : 1, "x_labeled_nums" : list(range(1, 9)), "x_axis_label" : "$t$", "y_min" : 0, "y_max" : 25, "y_axis_height" : 6, "y_tick_frequency" : 5, "y_labeled_nums" : list(range(5, 30, 5)), "y_axis_label" : "Velocity in $\\frac{\\text{meters}}{\\text{second}}$", "num_graph_anchor_points" : 50, } def construct(self): self.setup_axes() self.add_speedometer() self.plot_points() self.draw_curve() def add_speedometer(self): speedometer = Speedometer() speedometer.next_to(self.y_axis_label_mob, RIGHT, LARGE_BUFF) speedometer.to_edge(UP) self.play(DrawBorderThenFill( speedometer, lag_ratio = 0.5, rate_func=linear, )) self.speedometer = speedometer def plot_points(self): times = list(range(0, 9)) points = [ self.coords_to_point(t, v_func(t)) for t in times ] dots = VGroup(*[Dot(p, radius = 0.07) for p in points]) dots.set_color(VELOCITY_COLOR) pre_dots = VGroup() dot_intro_anims = [] for time, dot in zip(times, dots): pre_dot = dot.copy() self.speedometer.move_needle_to_velocity(v_func(time)) pre_dot.move_to(self.speedometer.get_needle_tip()) pre_dot.set_fill(opacity = 0) pre_dots.add(pre_dot) dot_intro_anims += [ ApplyMethod( pre_dot.set_fill, YELLOW, 1, run_time = 0.1, ), ReplacementTransform( pre_dot, dot, run_time = 0.9, ) ] self.speedometer.move_needle_to_velocity(0) self.play( Succession( *dot_intro_anims, rate_func=linear ), ApplyMethod( self.speedometer.move_needle_to_velocity, v_func(4), rate_func = squish_rate_func( lambda t : 1-v_rate_func(t), 0, 0.95, ) ), run_time = 5 ) self.wait() def draw_curve(self): graph, label = self.get_v_graph_and_label() self.revert_to_original_skipping_status() self.play(ShowCreation(graph, run_time = 3)) self.play(Write(graph_label)) self.wait() ## def get_v_graph_and_label(self): graph = self.get_graph( v_func, x_min = 0, x_max = 8, color = VELOCITY_COLOR ) graph_label = TexMobject("v(t)", "=t(8-t)") graph_label.set_color_by_tex("v(t)", VELOCITY_COLOR) graph_label.next_to( graph.point_from_proportion(7./8.), UP+RIGHT ) self.v_graph = graph self.v_graph_label = graph_label return graph, graph_label class Chapter2Wrapper(Scene): CONFIG = { "title" : "Chapter 2: The paradox of the derivative", } def construct(self): title = TextMobject(self.title) title.to_edge(UP) rect = Rectangle(width = 16, height = 9, color = WHITE) rect.set_height(1.5*FRAME_Y_RADIUS) rect.next_to(title, DOWN) self.add(title) self.play(ShowCreation(rect)) self.wait(3) class GivenDistanceWhatIsVelocity(GraphCarTrajectory): def construct(self): self.force_skipping() self.setup_axes() graph = self.graph_sigmoid_trajectory_function() origin = self.coords_to_point(0, 0) self.introduce_graph(graph, origin) self.comment_on_slope(graph, origin) self.revert_to_original_skipping_status() self.show_velocity_graph() class DerivativeOfDistance(SecantLineToTangentLine): def construct(self): self.setup_axes() self.remove(self.y_axis_label_mob, self.x_axis_label_mob) self.add_derivative_definition(self.y_axis_label_mob) self.add_graph() self.draw_axes() self.show_tangent_line() class AskAboutAntiderivative(PlotVelocity): def construct(self): self.setup_axes() self.add_v_graph() self.write_s_formula() self.write_antiderivative() def add_v_graph(self): graph, label = self.get_v_graph_and_label() self.play(ShowCreation(graph)) self.play(Write(label)) self.graph = graph self.graph_label = label def write_s_formula(self): ds_dt = TexMobject("ds", "\\over\\,", "dt") ds_dt.set_color_by_tex("ds", DISTANCE_COLOR) ds_dt.set_color_by_tex("dt", TIME_COLOR) ds_dt.next_to(self.graph_label, UP, LARGE_BUFF) v_t = self.graph_label.get_part_by_tex("v(t)") arrow = Arrow( ds_dt.get_bottom(), v_t.get_top(), color = WHITE, ) self.play( Write(ds_dt, run_time = 2), ShowCreation(arrow) ) self.wait() def write_antiderivative(self): randy = Randolph() randy.to_corner(DOWN+LEFT) randy.shift(2*RIGHT) words = TexMobject( "{d(", "???", ") \\over \\,", "dt}", "=", "t(8-t)" ) words.set_color_by_tex("t(8-t)", VELOCITY_COLOR) words.set_color_by_tex("???", DISTANCE_COLOR) words.set_color_by_tex("dt", TIME_COLOR) words.scale(0.7) self.play(FadeIn(randy)) self.play(PiCreatureSays( randy, words, target_mode = "confused", bubble_kwargs = {"height" : 3, "width" : 4}, )) self.play(Blink(randy)) self.wait() class Antiderivative(PiCreatureScene): def construct(self): functions = self.get_functions("t^2", "2t") alt_functions = self.get_functions("???", "t(8-t)") top_arc, bottom_arc = arcs = self.get_arcs(functions) derivative, antiderivative = self.get_arc_labels(arcs) group = VGroup(functions, arcs, derivative, antiderivative) self.add(functions, top_arc, derivative) self.wait() self.play( ShowCreation(bottom_arc), Write(antiderivative), self.pi_creature.change_mode, "raise_right_hand" ) self.wait(2) for pair in reversed(list(zip(functions, alt_functions))): self.play( Transform(*pair), self.pi_creature.change_mode, "pondering" ) self.wait(2) self.pi_creature_says( "But first!", target_mode = "surprised", look_at_arg = 50*OUT, added_anims = [group.to_edge, LEFT], run_time = 1, ) self.wait() def get_functions(self, left_tex, right_tex): left = TexMobject(left_tex) left.shift(2*LEFT) left.set_color(DISTANCE_COLOR) right = TexMobject(right_tex) right.shift(2*RIGHT) right.set_color(VELOCITY_COLOR) result = VGroup(left, right) result.shift(UP) return result def get_arcs(self, functions): f1, f2 = functions top_line = Line(f1.get_corner(UP+RIGHT), f2.get_corner(UP+LEFT)) bottom_line = Line(f1.get_corner(DOWN+RIGHT), f2.get_corner(DOWN+LEFT)) top_arc = Arc(start_angle = 5*np.pi/6, angle = -2*np.pi/3) bottom_arc = top_arc.copy() bottom_arc.rotate(np.pi) arcs = VGroup(top_arc, bottom_arc) arcs.set_width(top_line.get_width()) for arc in arcs: arc.add_tip() top_arc.next_to(top_line, UP) bottom_arc.next_to(bottom_line, DOWN) bottom_arc.set_color(MAROON_B) return arcs def get_arc_labels(self, arcs): top_arc, bottom_arc = arcs derivative = TextMobject("Derivative") derivative.next_to(top_arc, UP) antiderivative = TextMobject("``Antiderivative''") antiderivative.next_to(bottom_arc, DOWN) antiderivative.set_color(bottom_arc.get_color()) return VGroup(derivative, antiderivative) class AreaUnderVGraph(PlotVelocity): def construct(self): self.setup_axes() self.add(*self.get_v_graph_and_label()) self.show_rects() def show_rects(self): rect_list = self.get_riemann_rectangles_list( self.v_graph, 7, max_dx = 1.0, x_min = 0, x_max = 8, ) flat_graph = self.get_graph(lambda t : 0) rects = self.get_riemann_rectangles( flat_graph, x_min = 0, x_max = 8, dx = 1.0 ) for new_rects in rect_list: new_rects.set_fill(opacity = 0.8) rects.align_submobjects(new_rects) for alt_rect in rects[::2]: alt_rect.set_fill(opacity = 0) self.play(Transform( rects, new_rects, run_time = 2, lag_ratio = 0.5 )) self.wait() class ConstantVelocityCar(Scene): def construct(self): car = Car() car.move_to(5*LEFT + 3*DOWN) self.add(car) self.wait() self.play(MoveCar( car, 7*RIGHT+3*DOWN, run_time = 5, rate_func=linear, )) self.wait() class ConstantVelocityPlot(PlotVelocity): CONFIG = { "x_axis_label" : "Time", "units_of_area_color" : BLUE_E, } def construct(self): self.setup_axes() self.x_axis_label_mob.shift(DOWN) self.draw_graph() self.show_product() self.comment_on_area_wierdness() self.note_units() def draw_graph(self): graph = self.get_graph( lambda t : 10, x_min = 0, x_max = 8, color = VELOCITY_COLOR ) self.play(ShowCreation(graph, rate_func=linear, run_time = 3)) self.wait() self.graph = graph def show_product(self): rect = Rectangle( stroke_width = 0, fill_color = DISTANCE_COLOR, fill_opacity = 0.5 ) rect.replace( VGroup(self.graph, VectorizedPoint(self.graph_origin)), stretch = True ) right_brace = Brace(rect, RIGHT) top_brace = Brace(rect, UP) v_label = right_brace.get_text( "$10 \\frac{\\text{meters}}{\\text{second}}$", ) v_label.set_color(VELOCITY_COLOR) t_label = top_brace.get_text( "8 seconds" ) t_label.set_color(TIME_COLOR) s_label = TexMobject("10", "\\times", "8", "\\text{ meters}") s_label.set_color_by_tex("10", VELOCITY_COLOR) s_label.set_color_by_tex("8", TIME_COLOR) s_label.move_to(rect) self.play( GrowFromCenter(right_brace), Write(v_label), ) self.play( GrowFromCenter(top_brace), Write(t_label), ) self.play( FadeIn(rect), Write(s_label), Animation(self.graph) ) self.wait(2) self.area_rect = rect self.s_label = s_label def comment_on_area_wierdness(self): randy = Randolph() randy.to_corner(DOWN+LEFT) bubble = randy.get_bubble( "Distance \\\\ is area?", bubble_class = ThoughtBubble, height = 3, width = 4, fill_opacity = 1, ) bubble.content.scale_in_place(0.8) bubble.content.shift(SMALL_BUFF*UP) VGroup(bubble[-1], bubble.content).shift(1.5*LEFT) self.play(FadeIn(randy)) self.play(randy.change_mode, "pondering") self.play( self.area_rect.set_color, YELLOW, *list(map(Animation, self.get_mobjects())), rate_func = there_and_back ) self.play(Blink(randy)) self.play( randy.change_mode, "confused", randy.look_at, randy.bubble, ShowCreation(bubble), Write(bubble.content), ) self.wait() self.play(Blink(randy)) self.wait() self.play( randy.change_mode, "pondering", FadeOut(bubble), FadeOut(bubble.content), ) self.randy = randy def note_units(self): x_line, y_line = lines = VGroup(*[ axis.copy() for axis in (self.x_axis, self.y_axis) ]) lines.set_color(TIME_COLOR) square = Square( stroke_color = BLACK, stroke_width = 1, fill_color = self.units_of_area_color, fill_opacity = 1, ) square.replace( VGroup(*[ VectorizedPoint(self.coords_to_point(i, i)) for i in (0, 1) ]), stretch = True ) units_of_area = VGroup(*[ square.copy().move_to( self.coords_to_point(x, y), DOWN+LEFT ) for x in range(8) for y in range(10) ]) self.play(ShowCreation(x_line)) self.play(Indicate(self.x_axis_label_mob)) self.play(FadeOut(x_line)) self.play( ShowCreation(y_line), self.randy.look_at, self.y_axis_label_mob ) self.play(Indicate(self.y_axis_label_mob)) self.play(FadeOut(y_line)) for FadeClass in FadeIn, FadeOut: self.play( FadeClass( units_of_area, lag_ratio = 0.5, run_time = 3 ), Animation(self.s_label), self.randy.look_at, self.area_rect ) self.play(Blink(self.randy)) self.wait() class PiecewiseConstantCar(Scene): def construct(self): car = Car() start_point = 5*LEFT car.move_to(start_point) self.add(car) self.wait() for shift in 2, 6, 12: car.randy.rotate_in_place(np.pi/8) anim = MoveCar( car, start_point+shift*RIGHT, rate_func=linear ) anim.target_mobject[0].rotate_in_place(-np.pi/8) # for mob in anim.starting_mobject, anim.mobject: # mob.randy.rotate_in_place(np.pi/6) self.play(anim) self.wait() class PiecewiseConstantPlot(PlotVelocity): CONFIG = { "y_axis_label" : "", "min_graph_proportion" : 0.1, "max_graph_proportion" : 0.8, "num_riemann_approximations" : 7, "riemann_rect_fill_opacity" : 0.75, "tick_size" : 0.2, } def construct(self): self.setup_graph() self.always_changing() self.show_piecewise_constant_graph() self.compute_distance_on_each_interval() self.approximate_original_curve() self.revert_to_specific_approximation() self.show_specific_rectangle() self.show_v_dt_for_all_rectangles() self.write_integral_symbol() self.roles_of_dt() self.what_does_sum_approach() self.label_integral() def setup_graph(self): self.setup_axes() self.add(*self.get_v_graph_and_label()) def always_changing(self): dot = Dot() arrow = Arrow(LEFT, RIGHT) words = TextMobject("Always changing") group = VGroup(dot, arrow, words) def update_group(group, alpha): dot, arrow, words = group prop = interpolate( self.min_graph_proportion, self.max_graph_proportion, alpha ) graph_point = self.v_graph.point_from_proportion(prop) dot.move_to(graph_point) x_val = self.x_axis.point_to_number(graph_point) angle = self.angle_of_tangent(x_val, self.v_graph) angle += np.pi/2 vect = rotate_vector(RIGHT, angle) arrow.rotate(angle - arrow.get_angle() + np.pi) arrow.shift( graph_point + MED_SMALL_BUFF*vect - arrow.get_end() ) words.next_to(arrow.get_start(), UP) return group update_group(group, 0) self.play( Write(words), ShowCreation(arrow), DrawBorderThenFill(dot), run_time = 1 ) self.play(UpdateFromAlphaFunc( group, update_group, rate_func = there_and_back, run_time = 5 )) self.wait() self.play(FadeOut(group)) def show_piecewise_constant_graph(self): pw_constant_graph = self.get_pw_constant_graph() alt_lines = [ line.copy().set_color(YELLOW) for line in pw_constant_graph[:4] ] for line in alt_lines: line.start_dot = Dot(line.get_start()) line.end_dot = Dot(line.get_end()) VGroup(line.start_dot, line.end_dot).set_color(line.get_color()) line = alt_lines[0] faders = [self.v_graph, self.v_graph_label] for mob in faders: mob.save_state() mob.generate_target() mob.target.fade(0.7) self.play(*list(map(MoveToTarget, faders))) self.play(ShowCreation(pw_constant_graph, run_time = 2)) self.wait() self.play(ShowCreation(line)) self.wait() for new_line in alt_lines[1:]: for mob in line.end_dot, new_line.start_dot, new_line: self.play(Transform( line, mob, run_time = 1./3 )) self.remove(line) self.add(new_line) self.wait(2) line = new_line self.play(FadeOut(line)) self.pw_constant_graph = pw_constant_graph def compute_distance_on_each_interval(self): rect_list = self.get_riemann_rectangles_list( self.v_graph, self.num_riemann_approximations, max_dx = 1, x_min = 0, x_max = 8, ) for rects in rect_list: rects.set_fill(opacity = self.riemann_rect_fill_opacity) flat_rects = self.get_riemann_rectangles( self.get_graph(lambda t : 0), x_min = 0, x_max = 8, dx = 1 ) rects = rect_list[0] rect = rects[1] flat_rects.submobjects[1] = rect.copy() right_brace = Brace(rect, RIGHT) top_brace = Brace(rect, UP) right_brace.label = right_brace.get_text("$7\\frac{\\text{m}}{\\text{s}}$") top_brace.label = top_brace.get_text("$1$s") self.play(FadeIn(rect)) for brace in right_brace, top_brace: self.play( GrowFromCenter(brace), Write(brace.label, run_time = 1), ) brace.add(brace.label) self.wait() self.play( ReplacementTransform( flat_rects, rects, run_time = 2, lag_ratio = 0.5, ), Animation(right_brace) ) self.play(*list(map(FadeOut, [top_brace, right_brace]))) self.wait() self.rects = rects self.rect_list = rect_list def approximate_original_curve(self): rects = self.rects self.play( FadeOut(self.pw_constant_graph), *[ m.restore for m in (self.v_graph, self.v_graph_label) ]+[Animation(self.rects)] ) for new_rects in self.rect_list[1:]: self.transform_between_riemann_rects(rects, new_rects) self.wait() def revert_to_specific_approximation(self): rects = self.rects rects.save_state() target_rects = self.rect_list[2] target_rects.set_fill(opacity = 1) ticks = self.get_ticks(target_rects) tick_pair = VGroup(*ticks[4:6]) brace = Brace(tick_pair, DOWN, buff = 0) dt_label = brace.get_text("$dt$", buff = SMALL_BUFF) example_text = TextMobject( "For example, \\\\", "$dt$", "$=0.25$" ) example_text.to_corner(UP+RIGHT) example_text.set_color_by_tex("dt", YELLOW) self.play(ReplacementTransform( rects, target_rects, run_time = 2, lag_ratio = 0.5 )) rects.restore() self.wait() self.play( ShowCreation(ticks), FadeOut(self.x_axis.numbers) ) self.play( GrowFromCenter(brace), Write(dt_label) ) self.wait() self.play( FadeIn( example_text, run_time = 2, lag_ratio = 0.5, ), ReplacementTransform( dt_label.copy(), example_text.get_part_by_tex("dt") ) ) self.wait() self.rects = rects = target_rects self.ticks = ticks self.dt_brace = brace self.dt_label = dt_label self.dt_example_text = example_text def show_specific_rectangle(self): rects = self.rects rect = rects[4].copy() rect_top = Line( rect.get_corner(UP+LEFT), rect.get_corner(UP+RIGHT), color = self.v_graph.get_color() ) t_vals = [1, 1.25] t_labels = VGroup(*[ TexMobject("t=%s"%str(t)) for t in t_vals ]) t_labels.scale(0.7) t_labels.next_to(rect, DOWN) for vect, label in zip([LEFT, RIGHT], t_labels): label.shift(1.5*vect) label.add(Arrow( label.get_edge_center(-vect), rect.get_corner(DOWN+vect), buff = SMALL_BUFF, tip_length = 0.15, color = WHITE )) v_lines = VGroup() h_lines = VGroup() height_labels = VGroup() for t in t_vals: v_line = self.get_vertical_line_to_graph( t, self.v_graph, color = YELLOW ) y_axis_point = self.graph_origin[0]*RIGHT y_axis_point += v_line.get_end()[1]*UP h_line = DashedLine(v_line.get_end(), y_axis_point) label = TexMobject("%.1f"%v_func(t)) label.scale(0.5) label.next_to(h_line, LEFT, SMALL_BUFF) v_lines.add(v_line) h_lines.add(h_line) height_labels.add(label) circle = Circle(radius = 0.25, color = WHITE) circle.move_to(rect.get_top()) self.play( rects.set_fill, None, 0.25, Animation(rect) ) self.wait() for label in t_labels: self.play(FadeIn(label)) self.wait() for v_line, h_line, label in zip(v_lines, h_lines, height_labels): self.play(ShowCreation(v_line)) self.play(ShowCreation(h_line)) self.play(Write(label, run_time = 1)) self.wait() self.wait() t_label_copy = t_labels[0].copy() self.play( t_label_copy.scale, 1./0.7, t_label_copy.next_to, self.v_graph_label, DOWN+LEFT, 0 ) self.wait() self.play(FadeOut(t_label_copy)) self.wait() self.play(ShowCreation(circle)) self.play(ShowCreation(rect_top)) self.play(FadeOut(circle)) rect.add(rect_top) self.wait() for x in range(2): self.play( rect.stretch_to_fit_height, v_lines[1].get_height(), rect.move_to, rect.get_bottom(), DOWN, Animation(v_lines), run_time = 4, rate_func = there_and_back ) self.play(*list(map(FadeOut, [ group[1] for group in (v_lines, h_lines, height_labels) ]))) self.play( v_lines[0].set_color, RED, rate_func = there_and_back, ) self.wait() area = TextMobject( "7$\\frac{\\text{m}}{\\text{s}}$", "$\\times$", "0.25s", "=", "1.75m" ) area.next_to(rect, RIGHT, LARGE_BUFF) arrow = Arrow( area.get_left(), rect.get_center(), buff = 0, color = WHITE ) area.shift(SMALL_BUFF*RIGHT) self.play( Write(area), ShowCreation(arrow) ) self.wait(2) self.play(*list(map(FadeOut, [ area, arrow, v_lines[0], h_lines[0], height_labels[0], rect, t_labels ]))) def show_v_dt_for_all_rectangles(self): dt_brace_group = VGroup(self.dt_brace, self.dt_label) rects_subset = self.rects[10:20] last_rect = None for rect in rects_subset: brace = Brace(rect, LEFT, buff = 0) v_t = TexMobject("v(t)") v_t.next_to(brace, LEFT, SMALL_BUFF) anims = [ rect.set_fill, None, 1, dt_brace_group.next_to, rect, DOWN, SMALL_BUFF ] if last_rect is not None: anims += [ last_rect.set_fill, None, 0.25, ReplacementTransform(last_brace, brace), ReplacementTransform(last_v_t, v_t), ] else: anims += [ GrowFromCenter(brace), Write(v_t) ] self.play(*anims) self.wait() last_rect = rect last_brace = brace last_v_t = v_t self.v_t = last_v_t self.v_t_brace = last_brace def write_integral_symbol(self): integral = TexMobject( "\\int", "^8", "_0", "v(t)", "\\,dt" ) integral.to_corner(UP+RIGHT) int_copy = integral.get_part_by_tex("int").copy() bounds = list(map(integral.get_part_by_tex, ["0", "8"])) sum_word = TextMobject("``Sum''") sum_word.next_to(integral, DOWN, MED_LARGE_BUFF, LEFT) alt_sum_word = sum_word.copy() int_symbol = TexMobject("\\int") int_symbol.replace(alt_sum_word[1], dim_to_match = 1) alt_sum_word.submobjects[1] = int_symbol self.play(FadeOut(self.dt_example_text)) self.play(Write(integral.get_part_by_tex("int"))) self.wait() self.play(Transform(int_copy, int_symbol)) self.play(Write(alt_sum_word), Animation(int_copy)) self.remove(int_copy) self.play(ReplacementTransform(alt_sum_word, sum_word)) self.wait() for bound in bounds: self.play(Write(bound)) self.wait() for bound, num in zip(bounds, [0, 8]): bound_copy = bound.copy() point = self.coords_to_point(num, 0) self.play( bound_copy.scale, 1.5, bound_copy.next_to, point, DOWN, MED_LARGE_BUFF ) self.play(ApplyWave(self.ticks, direction = UP)) self.wait() for mob, tex in (self.v_t, "v(t)"), (self.dt_label, "dt"): self.play(ReplacementTransform( mob.copy().set_color(YELLOW), integral.get_part_by_tex(tex), run_time = 2 )) self.wait() self.integral = integral self.sum_word = sum_word def roles_of_dt(self): rects = self.rects next_rects = self.rect_list[3] morty = Mortimer().flip() morty.to_corner(DOWN+LEFT) int_dt = self.integral.get_part_by_tex("dt") dt_copy = int_dt.copy() self.play(FadeIn(morty)) self.play( morty.change_mode, "raise_right_hand", morty.look, UP+RIGHT, dt_copy.next_to, morty.get_corner(UP+RIGHT), UP, dt_copy.set_color, YELLOW ) self.play(Blink(morty)) self.play( ReplacementTransform( dt_copy.copy(), int_dt, run_time = 2 ), morty.look_at, int_dt ) self.wait(2) self.play( ReplacementTransform(dt_copy.copy(), self.dt_label), morty.look_at, self.dt_label ) self.play(*[ ApplyMethod( tick.shift, tick.get_height()*UP/2, run_time = 2, rate_func = squish_rate_func( there_and_back, alpha, alpha+0.2, ) ) for tick, alpha in zip( self.ticks, np.linspace(0, 0.8, len(self.ticks)) ) ]) self.wait() #Shrink dt just a bit self.play( morty.change_mode, "pondering", rects.set_fill, None, 0.75, *list(map(FadeOut, [ dt_copy, self.v_t, self.v_t_brace ])) ) rects.align_submobjects(next_rects) for every_other_rect in rects[::2]: every_other_rect.set_fill(opacity = 0) self.play( self.dt_brace.stretch, 0.5, 0, self.dt_brace.move_to, self.dt_brace, LEFT, ReplacementTransform( rects, next_rects, run_time = 2, lag_ratio = 0.5 ), Transform( self.ticks, self.get_ticks(next_rects), run_time = 2, lag_ratio = 0.5, ), ) self.rects = rects = next_rects self.wait() self.play(Blink(morty)) self.play(*[ ApplyFunction( lambda r : r.shift(0.2*UP).set_fill(None, 1), rect, run_time = 2, rate_func = squish_rate_func( there_and_back, alpha, alpha+0.2, ) ) for rect, alpha in zip( rects, np.linspace(0, 0.8, len(rects)) ) ]+[ morty.change_mode, "thinking", ]) self.wait() self.morty = morty def what_does_sum_approach(self): morty = self.morty rects = self.rects cross = TexMobject("\\times") cross.replace(self.sum_word, stretch = True) cross.set_color(RED) brace = Brace(self.integral, DOWN) dt_to_0 = brace.get_text("$dt \\to 0$") distance_words = TextMobject( "Area", "= Distance traveled" ) distance_words.next_to(rects, UP) arrow = Arrow( distance_words[0].get_bottom(), rects.get_center(), color = WHITE ) self.play(PiCreatureSays( morty, "Why not $\\Sigma$?", target_mode = "sassy" )) self.play(Blink(morty)) self.wait() self.play(Write(cross)) self.wait() self.play( RemovePiCreatureBubble(morty, target_mode = "plain"), *list(map(FadeOut, [ cross, self.sum_word, self.ticks, self.dt_brace, self.dt_label, ])) ) self.play(FadeIn(brace), FadeIn(dt_to_0)) for new_rects in self.rect_list[4:]: rects.align_submobjects(new_rects) for every_other_rect in rects[::2]: every_other_rect.set_fill(opacity = 0) self.play( Transform( rects, new_rects, run_time = 2, lag_ratio = 0.5 ), morty.look_at, rects, ) self.wait() self.play( Write(distance_words), ShowCreation(arrow), morty.change_mode, "pondering", morty.look_at, distance_words, ) self.wait() self.play(Blink(morty)) self.wait() self.area_arrow = arrow def label_integral(self): words = TextMobject("``Integral of $v(t)$''") words.to_edge(UP) arrow = Arrow( words.get_right(), self.integral.get_left() ) self.play(Indicate(self.integral)) self.play(Write(words, run_time = 2)) self.play(ShowCreation(arrow)) self.wait() self.play(*[ ApplyFunction( lambda r : r.shift(0.2*UP).set_fill(None, 1), rect, run_time = 3, rate_func = squish_rate_func( there_and_back, alpha, alpha+0.2, ) ) for rect, alpha in zip( self.rects, np.linspace(0, 0.8, len(self.rects)) ) ]+[ Animation(self.area_arrow), self.morty.change_mode, "happy", self.morty.look_at, self.rects, ]) self.wait() ##### def get_pw_constant_graph(self): result = VGroup() for left_x in range(8): xs = [left_x, left_x+1] y = self.v_graph.underlying_function(left_x) line = Line(*[ self.coords_to_point(x, y) for x in xs ]) line.set_color(self.v_graph.get_color()) result.add(line) return result def get_ticks(self, rects): ticks = VGroup(*[ Line( point+self.tick_size*UP/2, point+self.tick_size*DOWN/2 ) for t in np.linspace(0, 8, len(rects)+1) for point in [self.coords_to_point(t, 0)] ]) ticks.set_color(YELLOW) return ticks class DontKnowHowToHandleNonConstant(TeacherStudentsScene): def construct(self): self.play(*[ ApplyMethod(pi.change, "maybe", UP) for pi in self.get_pi_creatures() ]) self.wait(3) class CarJourneyApproximation(Scene): CONFIG = { "n_jumps" : 5, "bottom_words" : "Approximated motion (5 jumps)", } def construct(self): points = [5*LEFT + v for v in (UP, 2*DOWN)] cars = [Car().move_to(point) for point in points] h_line = Line(LEFT, RIGHT).scale(FRAME_X_RADIUS) words = [ TextMobject("Real motion (smooth)").shift(3*UP), TextMobject(self.bottom_words).shift(0.5*DOWN), ] words[1].set_color(GREEN) self.add(h_line, *cars + words) self.wait() self.play(*[ MoveCar( car, point+10*RIGHT, run_time = 5, rate_func = rf ) for car, point, rf in zip(cars, points, [ s_rate_func, self.get_approximated_rate_func(self.n_jumps) ]) ]) self.wait() def get_approximated_rate_func(self, n): new_v_rate_func = lambda t : v_rate_func(np.floor(t*n)/n) max_integral, err = scipy.integrate.quad( v_rate_func, 0, 1 ) def result(t): integral, err = scipy.integrate.quad(new_v_rate_func, 0, t) return integral/max_integral return result class LessWrongCarJourneyApproximation(CarJourneyApproximation): CONFIG = { "n_jumps" : 20, "bottom_words" : "Better approximation (20 jumps)", } class TellMeThatsNotSurprising(TeacherStudentsScene): def construct(self): self.teacher_says( "Tell me that's \\\\ not surprising!", target_mode = "hooray", run_time = 1 ) self.wait(3) class HowDoesThisHelp(TeacherStudentsScene): def construct(self): self.student_says( "How does this help\\textinterrobang", target_mode = "angry", run_time = 1 ) self.change_student_modes( "confused", "angry", "confused", ) self.wait(2) self.teacher_says( "You're right.", target_mode = "shruggie", run_time = 1 ) self.change_student_modes(*["sassy"]*3) self.wait(2) class AreaUnderACurve(GraphScene): CONFIG = { "y_max" : 4, "y_min" : 0, "num_iterations" : 7 } def construct(self): self.setup_axes() graph = self.get_graph(self.func) rect_list = self.get_riemann_rectangles_list( graph, self.num_iterations ) VGroup(*rect_list).set_fill(opacity = 0.8) rects = rect_list[0] self.play(ShowCreation(graph)) self.play(Write(rects)) for new_rects in rect_list[1:]: rects.align_submobjects(new_rects) for every_other_rect in rects[::2]: every_other_rect.set_fill(opacity = 0) self.play(Transform( rects, new_rects, run_time = 2, lag_ratio = 0.5 )) self.wait() def func(self, x): return np.sin(x) + 1 class AltAreaUnderCurve(AreaUnderACurve): CONFIG = { "graph_origin" : 2*DOWN, "x_min" : -3, "x_max" : 3, "x_axis_width" : 12, "y_max" : 2, "y_axis_height" : 4, } def func(self, x): return np.exp(-x**2) class Chapter1Wrapper(Chapter2Wrapper): CONFIG = { "title" : "Essence of calculus, chapter 1", } class AreaIsDerivative(PlotVelocity, ReconfigurableScene): CONFIG = { "y_axis_label" : "", "num_rects" : 400, "dT" : 0.25, "variable_point_label" : "T", "area_opacity" : 0.8, } def setup(self): PlotVelocity.setup(self) ReconfigurableScene.setup(self) self.setup_axes() self.add(*self.get_v_graph_and_label()) self.x_axis_label_mob.shift(MED_LARGE_BUFF*DOWN) self.v_graph_label.shift(MED_LARGE_BUFF*DOWN) self.submobjects = [] def construct(self): self.introduce_variable_area() self.write_integral() self.nudge_input() self.show_rectangle_approximation() def introduce_variable_area(self): area = self.area = self.get_area(0, 6) x_nums = self.x_axis.numbers self.play(Write(area, run_time = 2)) self.play(FadeOut(self.x_axis.numbers)) self.add_T_label(6) self.change_area_bounds( new_t_max = 4, rate_func = there_and_back, run_time = 2 ) self.wait() def write_integral(self): integral = TexMobject("\\int", "^T", "_0", "v(t)", "\\,dt") integral.to_corner(UP+RIGHT) integral.shift(2*LEFT) top_T = integral.get_part_by_tex("T") moving_T = self.T_label_group[0] s_T = TexMobject("s(T)", "= ") s_T.set_color_by_tex("s", DISTANCE_COLOR) s_T.next_to(integral, LEFT) int_arrow, s_arrow = [ Arrow( mob.get_left(), self.area.get_center(), color = WHITE ) for mob in (integral, s_T) ] distance_word = TextMobject("Distance") distance_word.move_to(self.area) self.play(Write(integral)) self.play(ShowCreation(int_arrow)) self.submobjects.append(int_arrow) self.wait() self.change_area_bounds( new_t_max = 8, rate_func = there_and_back, run_time = 3, ) self.play(Indicate(top_T)) self.play(ReplacementTransform( top_T.copy(), moving_T )) self.change_area_bounds( new_t_max = 3, rate_func = there_and_back, run_time = 3 ) self.wait() self.play(Write(distance_word, run_time = 2)) self.play( ReplacementTransform(int_arrow, s_arrow), FadeIn(s_T) ) self.wait() self.play(FadeOut(distance_word)) self.change_area_bounds(new_t_max = 0, run_time = 2) self.change_area_bounds( new_t_max = 8, rate_func=linear, run_time = 7.9, ) self.wait() self.change_area_bounds(new_t_max = 5) self.wait() def nudge_input(self): dark_area = self.area.copy() dark_area.set_fill(BLACK, opacity = 0.5) curr_T = self.x_axis.point_to_number(self.area.get_right()) new_T = curr_T + self.dT rect = Rectangle( stroke_width = 0, fill_color = YELLOW, fill_opacity = 0.75 ) rect.replace( VGroup( VectorizedPoint(self.coords_to_point(new_T, 0)), self.right_v_line, ), stretch = True ) dT_brace = Brace(rect, DOWN, buff = 0) dT_label = dT_brace.get_text("$dT$", buff = SMALL_BUFF) dT_label_group = VGroup(dT_label, dT_brace) ds_label = TexMobject("ds") ds_label.next_to(rect, RIGHT, LARGE_BUFF, UP) ds_label.set_color(DISTANCE_COLOR) ds_arrow = Arrow(ds_label.get_left(), rect.get_left()) ds_arrow.set_color(WHITE) v_brace = Brace(rect, LEFT, buff = SMALL_BUFF) v_T_label = v_brace.get_text("$v(T)$", buff = SMALL_BUFF) self.change_area_bounds(new_t_max = new_T) self.play( FadeIn(dark_area), *list(map(Animation, self.submobjects)) ) self.play( FadeOut(self.T_label_group), FadeIn(dT_label_group) ) self.wait() self.play(Write(ds_label)) self.play(ShowCreation(ds_arrow)) self.wait(2) self.play(GrowFromCenter(v_brace)) self.play(ReplacementTransform( self.v_graph_label.get_part_by_tex("v").copy(), v_T_label, run_time = 2 )) self.wait() self.play(Indicate(dT_label)) self.wait() self.rect = rect self.dT_label_group = dT_label_group self.v_T_label_group = VGroup(v_T_label, v_brace) self.dark_area = dark_area self.ds_label = ds_label self.ds_arrow = ds_arrow def show_rectangle_approximation(self): formula1 = TexMobject("ds", "=", "v(T)", "dT") formula2 = TexMobject("{ds", "\\over\\,", "dT}", "=", "v(T)") for formula in formula1, formula2: formula.next_to(self.v_graph_label, UP, LARGE_BUFF) formula.set_color_by_tex("ds", DISTANCE_COLOR) self.play( DrawBorderThenFill(self.rect), Animation(self.ds_arrow) ) self.wait() self.play(*[ ReplacementTransform( mob, formula1.get_part_by_tex(tex), run_time = 2 ) for mob, tex in [ (self.ds_label, "ds"), (self.ds_arrow, "="), (self.v_T_label_group[0].copy(), "v(T)"), (self.dT_label_group[0].copy(), "dT"), ] ]) self.wait() self.transition_to_alt_config( dT = self.dT/5.0, transformation_kwargs = {"run_time" : 2}, ) self.wait() self.play(*[ ReplacementTransform( formula1.get_part_by_tex(tex), formula2.get_part_by_tex(tex), ) for tex in ("ds", "=", "v(T)", "dT") ] + [ Write(formula2.get_part_by_tex("over")) ]) self.wait() #### def add_T_label(self, x_val, **kwargs): triangle = RegularPolygon(n=3, start_angle = np.pi/2) triangle.set_height(MED_SMALL_BUFF) triangle.move_to(self.coords_to_point(x_val, 0), UP) triangle.set_fill(WHITE, 1) triangle.set_stroke(width = 0) T_label = TexMobject(self.variable_point_label) T_label.next_to(triangle, DOWN) v_line = self.get_vertical_line_to_graph( x_val, self.v_graph, color = YELLOW ) self.play( DrawBorderThenFill(triangle), ShowCreation(v_line), Write(T_label, run_time = 1), **kwargs ) self.T_label_group = VGroup(T_label, triangle) self.right_v_line = v_line def get_area(self, t_min, t_max): numerator = max(t_max - t_min, 0.01) dx = float(numerator) / self.num_rects return self.get_riemann_rectangles( self.v_graph, x_min = t_min, x_max = t_max, dx = dx, stroke_width = 0, ).set_fill(opacity = self.area_opacity) def change_area_bounds(self, new_t_min = None, new_t_max = None, **kwargs): curr_t_min = self.x_axis.point_to_number(self.area.get_left()) curr_t_max = self.x_axis.point_to_number(self.area.get_right()) if new_t_min is None: new_t_min = curr_t_min if new_t_max is None: new_t_max = curr_t_max group = VGroup(self.area, self.right_v_line, self.T_label_group) def update_group(group, alpha): area, v_line, T_label = group t_min = interpolate(curr_t_min, new_t_min, alpha) t_max = interpolate(curr_t_max, new_t_max, alpha) new_area = self.get_area(t_min, t_max) new_v_line = self.get_vertical_line_to_graph( t_max, self.v_graph ) new_v_line.set_color(v_line.get_color()) T_label.move_to(new_v_line.get_bottom(), UP) #Fade close to 0 T_label[0].set_fill(opacity = min(1, t_max)) Transform(area, new_area).update(1) Transform(v_line, new_v_line).update(1) return group self.play( UpdateFromAlphaFunc(group, update_group), *list(map(Animation, self.submobjects)), **kwargs ) class DirectInterpretationOfDsDt(TeacherStudentsScene): def construct(self): equation = TexMobject("{ds", "\\over\\,", "dT}", "(T)", "=", "v(T)") ds, over, dt, of_T, equals, v = equation equation.next_to(self.get_pi_creatures(), UP, LARGE_BUFF) equation.shift(RIGHT) v.set_color(VELOCITY_COLOR) s_words = TextMobject("Tiny change in", "distance") s_words.next_to(ds, UP+LEFT, LARGE_BUFF) s_words.shift_onto_screen() s_arrow = Arrow(s_words[1].get_bottom(), ds.get_left()) s_words.add(s_arrow) s_words.set_color(DISTANCE_COLOR) t_words = TextMobject("Tiny change in", "time") t_words.next_to(dt, DOWN+LEFT) t_words.to_edge(LEFT) t_arrow = Arrow(t_words[1].get_top(), dt.get_left()) t_words.add(t_arrow) t_words.set_color(TIME_COLOR) self.add(ds, over, dt, of_T) for words, part in (s_words, ds), (t_words, dt): self.play( FadeIn( words, run_time = 2, lag_ratio = 0.5, ), self.students[1].change_mode, "raise_right_hand" ) self.play(part.set_color, words.get_color()) self.wait() self.play(Write(VGroup(equals, v))) self.change_student_modes(*["pondering"]*3) self.wait(3) class FindAntiderivative(Antiderivative): def construct(self): self.introduce() self.first_part() self.second_part() self.combine() self.add_plus_C() def introduce(self): q_marks, rhs = functions = self.get_functions("???", "t(8-t)") expanded_rhs = TexMobject("8t - t^2") expanded_rhs.move_to(rhs, LEFT) expanded_rhs.set_color(rhs.get_color()) self.v_part1 = VGroup(*expanded_rhs[:2]) self.v_part2 = VGroup(*expanded_rhs[2:]) for part in self.v_part1, self.v_part2: part.save_state() top_arc, bottom_arc = arcs = self.get_arcs(functions) derivative, antiderivative = words = self.get_arc_labels(arcs) self.add(functions) self.play(*list(map(ShowCreation, arcs))) for word in words: self.play(FadeIn(word, lag_ratio = 0.5)) self.wait() self.change_mode("confused") self.wait(2) self.play(*[ ReplacementTransform( rhs[i], expanded_rhs[j], run_time = 2, path_arc = np.pi ) for i, j in enumerate([1, 4, 0, 2, 3, 4]) ]+[ self.pi_creature.change_mode, "hesitant" ]) self.wait() self.q_marks = q_marks self.arcs = arcs self.words = words def first_part(self): four_t_squared, two_t = self.get_functions("4t^2", "2t") four = four_t_squared[0] four.shift(UP) four.set_fill(opacity = 0) t_squared = VGroup(*four_t_squared[1:]) two_t.move_to(self.v_part1, LEFT) self.play(self.v_part2.to_corner, UP+RIGHT) self.play( self.pi_creature.change, "plain", self.v_part1 ) self.play(ApplyWave( self.q_marks, direction = UP, amplitude = SMALL_BUFF )) self.wait(2) self.play( FadeOut(self.q_marks), FadeIn(t_squared), self.v_part1.shift, DOWN+RIGHT, ) self.play(*[ ReplacementTransform( t_squared[i].copy(), two_t[1-i], run_time = 2, path_arc = -np.pi/6. ) for i in (0, 1) ]) self.change_mode("thinking") self.wait() self.play(four.set_fill, YELLOW, 1) self.play(four.shift, DOWN) self.play(FadeOut(two_t)) self.play(self.v_part1.restore) self.play(four.set_color, DISTANCE_COLOR) self.wait(2) self.s_part1 = four_t_squared def second_part(self): self.arcs_copy = self.arcs.copy() self.words_copy = self.words.copy() part1_group = VGroup( self.s_part1, self.v_part1, self.arcs_copy, self.words_copy ) neg_third_t_cubed, three_t_squared = self.get_functions( "- \\frac{1}{3} t^3", "3t^2" ) three_t_squared.move_to(self.v_part1, LEFT) neg = neg_third_t_cubed[0] third = VGroup(*neg_third_t_cubed[1:4]) t_cubed = VGroup(*neg_third_t_cubed[4:]) three = three_t_squared[0] t_squared = VGroup(*three_t_squared[1:]) self.play( part1_group.scale, 0.5, part1_group.to_corner, UP+LEFT, self.pi_creature.change_mode, "plain" ) self.play( self.v_part2.restore, self.v_part2.shift, LEFT ) self.play(FadeIn(self.q_marks)) self.wait() self.play( FadeOut(self.q_marks), FadeIn(t_cubed), self.v_part2.shift, DOWN+RIGHT ) self.play(*[ ReplacementTransform( t_cubed[i].copy(), three_t_squared[j], path_arc = -np.pi/6, run_time = 2, ) for i, j in [(0, 1), (1, 0), (1, 2)] ]) self.wait() self.play(FadeIn(third)) self.play(FadeOut(three)) self.wait(2) self.play(Write(neg)) self.play( FadeOut(t_squared), self.v_part2.shift, UP+LEFT ) self.wait(2) self.s_part2 = neg_third_t_cubed def combine(self): self.play( self.v_part1.restore, self.v_part2.restore, self.s_part1.scale, 2, self.s_part1.next_to, self.s_part2, LEFT, FadeOut(self.arcs_copy), FadeOut(self.words_copy), run_time = 2, ) self.change_mode("happy") self.wait(2) def add_plus_C(self): s_group = VGroup(self.s_part1, self.s_part2) plus_Cs = [ TexMobject("+%d"%d) for d in range(1, 8) ] for plus_C in plus_Cs: plus_C.set_color(YELLOW) plus_C.move_to(s_group, RIGHT) plus_C = plus_Cs[0] self.change_mode("sassy") self.wait() self.play( s_group.next_to, plus_C.copy(), LEFT, GrowFromCenter(plus_C), ) self.wait() for new_plus_C in plus_Cs[1:]: self.play(Transform(plus_C, new_plus_C)) self.wait() class GraphSPlusC(GraphDistanceVsTime): CONFIG = { "y_axis_label" : "Distance" } def construct(self): self.setup_axes() graph = self.get_graph( s_func, color = DISTANCE_COLOR, x_min = 0, x_max = 8, ) tangent = self.get_secant_slope_group( 6, graph, dx = 0.01 ).secant_line v_line = self.get_vertical_line_to_graph( 6, graph, line_class = DashedLine ) v_line.scale_in_place(2) v_line.set_color(WHITE) graph_label, plus_C = full_label = TexMobject( "s(t) = 4t^2 - \\frac{1}{3}t^3", "+C" ) plus_C.set_color(YELLOW) full_label.next_to(graph.points[-1], DOWN) full_label.to_edge(RIGHT) self.play(ShowCreation(graph)) self.play(FadeIn(graph_label)) self.wait() self.play( graph.shift, UP, run_time = 2, rate_func = there_and_back ) self.play(ShowCreation(tangent)) graph.add(tangent) self.play(ShowCreation(v_line)) self.play( graph.shift, 2*DOWN, run_time = 4, rate_func = there_and_back, ) self.play(Write(plus_C)) self.play( graph.shift, 2*UP, rate_func = there_and_back, run_time = 4, ) self.wait() class LowerBound(AreaIsDerivative): CONFIG = { "graph_origin" : 2.5*DOWN + 6*LEFT } def construct(self): self.add_integral_and_area() self.mention_lower_bound() self.drag_right_endpoint_to_zero() self.write_antiderivative_difference() self.show_alternate_antiderivative_difference() self.add_constant_to_antiderivative() def add_integral_and_area(self): self.area = self.get_area(0, 6) self.integral = self.get_integral("0", "T") self.remove(self.x_axis.numbers) self.add(self.area, self.integral) self.add_T_label(6, run_time = 0) def mention_lower_bound(self): lower_bound = self.integral.get_part_by_tex("0") circle = Circle(color = YELLOW) circle.replace(lower_bound) circle.scale_in_place(3) zero_label = lower_bound.copy() self.play(ShowCreation(circle)) self.play(Indicate(lower_bound)) self.play( zero_label.scale, 1.5, zero_label.next_to, self.graph_origin, DOWN, MED_LARGE_BUFF, FadeOut(circle) ) self.wait() self.zero_label = zero_label def drag_right_endpoint_to_zero(self): zero_integral = self.get_integral("0", "0") zero_integral[1].set_color(YELLOW) zero_int_bounds = list(reversed( zero_integral.get_parts_by_tex("0") )) for bound in zero_int_bounds: circle = Circle(color = YELLOW) circle.replace(bound) circle.scale_in_place(3) bound.circle = circle self.integral.save_state() equals_zero = TexMobject("=0") equals_zero.next_to(zero_integral, RIGHT) equals_zero.set_color(GREEN) self.change_area_bounds(0, 0, run_time = 3) self.play(ReplacementTransform( self.zero_label.copy(), equals_zero )) self.play(Transform(self.integral, zero_integral)) self.wait(2) for bound in zero_int_bounds: self.play(ShowCreation(bound.circle)) self.play(FadeOut(bound.circle)) self.play(*[ ReplacementTransform( bound.copy(), VGroup(equals_zero[1]) ) for bound in zero_int_bounds ]) self.wait(2) self.change_area_bounds(0, 5) self.play( self.integral.restore, FadeOut(equals_zero) ) self.zero_integral = zero_integral def write_antiderivative_difference(self): antideriv_diff = self.get_antiderivative_difference("0", "T") equals, at_T, minus, at_zero = antideriv_diff antideriv_diff_at_eight = self.get_antiderivative_difference("0", "8") at_eight = antideriv_diff_at_eight.left_part integral_at_eight = self.get_integral("0", "8") for part in at_T, at_zero, at_eight: part.brace = Brace(part, DOWN, buff = SMALL_BUFF) part.brace.save_state() antideriv_text = at_T.brace.get_text("Antiderivative", buff = SMALL_BUFF) antideriv_text.set_color(MAROON_B) value_at_eight = at_eight.brace.get_text( "%.2f"%s_func(8) ) happens_to_be_zero = at_zero.brace.get_text(""" Happens to equal 0 """) big_brace = Brace(VGroup(at_T, at_zero)) cancel_text = big_brace.get_text("Cancels when $T=0$") self.play(*list(map(Write, [equals, at_T]))) self.play( GrowFromCenter(at_T.brace), Write(antideriv_text, run_time = 2) ) self.change_area_bounds(0, 5.5, rate_func = there_and_back) self.wait() self.play( ReplacementTransform(at_T.copy(), at_zero), Write(minus) ) self.wait() self.play( ReplacementTransform(at_T.brace, big_brace), ReplacementTransform(antideriv_text, cancel_text) ) self.change_area_bounds(0, 0, run_time = 4) self.wait() self.play( ReplacementTransform(big_brace, at_zero.brace), ReplacementTransform(cancel_text, happens_to_be_zero), ) self.wait(2) self.change_area_bounds(0, 8, run_time = 2) self.play( Transform(self.integral, integral_at_eight), Transform(antideriv_diff, antideriv_diff_at_eight), MaintainPositionRelativeTo(at_zero.brace, at_zero), MaintainPositionRelativeTo(happens_to_be_zero, at_zero.brace), ) self.play( GrowFromCenter(at_eight.brace), Write(value_at_eight) ) self.wait(2) self.play(*list(map(FadeOut, [ at_eight.brace, value_at_eight, at_zero.brace, happens_to_be_zero, ]))) self.antideriv_diff = antideriv_diff def show_alternate_antiderivative_difference(self): new_integral = self.get_integral("1", "7") new_antideriv_diff = self.get_antiderivative_difference("1", "7") numbers = [ TexMobject("%d"%d).next_to( self.coords_to_point(d, 0), DOWN, MED_LARGE_BUFF ) for d in (1, 7) ] tex_mobs = [new_integral]+new_antideriv_diff[1::2]+numbers for tex_mob in tex_mobs: tex_mob.set_color_by_tex("1", RED) tex_mob.set_color_by_tex("7", GREEN) tex_mob.set_color_by_tex("\\frac{1}{3}", WHITE) self.change_area_bounds(1, 7, run_time = 2) self.play( self.T_label_group[0].set_fill, None, 0, *list(map(FadeIn, numbers)) ) self.play( Transform(self.integral, new_integral), Transform(self.antideriv_diff, new_antideriv_diff), ) self.wait(3) for part in self.antideriv_diff[1::2]: self.play(Indicate(part, scale_factor = 1.1)) self.wait() def add_constant_to_antiderivative(self): antideriv_diff = self.antideriv_diff plus_fives = VGroup(*[TexMobject("+5") for i in range(2)]) plus_fives.set_color(YELLOW) for five, part in zip(plus_fives, antideriv_diff[1::2]): five.next_to(part, DOWN) group = VGroup( plus_fives[0], antideriv_diff[2].copy(), plus_fives[1] ) self.play(Write(plus_fives, run_time = 2)) self.wait(2) self.play( group.arrange, group.next_to, antideriv_diff, DOWN, MED_LARGE_BUFF ) self.wait() self.play(FadeOut(group, run_time = 2)) self.wait() ##### def get_integral(self, lower_bound, upper_bound): result = TexMobject( "\\int", "^"+upper_bound, "_"+lower_bound, "t(8-t)", "\\,dt" ) result.next_to(self.graph_origin, RIGHT, MED_LARGE_BUFF) result.to_edge(UP) return result def get_antiderivative_difference(self, lower_bound, upper_bound): strings = [] for bound in upper_bound, lower_bound: try: d = int(bound) strings.append("(%d)"%d) except: strings.append(bound) parts = [] for s in strings: part = TexMobject( "\\left(", "4", s, "^2", "-", "\\frac{1}{3}", s, "^3" "\\right))" ) part.set_color_by_tex(s, YELLOW, substring = False) parts.append(part) result = VGroup( TexMobject("="), parts[0], TexMobject("-"), parts[1], ) result.left_part, result.right_part = parts result.arrange(RIGHT) result.scale(0.9) result.next_to(self.integral, RIGHT) return result class FundamentalTheorem(GraphScene): CONFIG = { "lower_bound" : 1, "upper_bound" : 7, "lower_bound_color" : RED, "upper_bound_color" : GREEN, "n_riemann_iterations" : 6, } def construct(self): self.add_graph_and_integral() self.show_f_dx_sum() self.show_rects_approaching_area() self.write_antiderivative() self.write_fundamental_theorem_of_calculus() self.show_integral_considering_continuum() self.show_antiderivative_considering_bounds() def add_graph_and_integral(self): self.setup_axes() integral = TexMobject("\\int", "^b", "_a", "f(x)", "\\,dx") integral.next_to(ORIGIN, LEFT) integral.to_edge(UP) integral.set_color_by_tex("a", self.lower_bound_color) integral.set_color_by_tex("b", self.upper_bound_color) graph = self.get_graph( lambda x : -0.01*x*(x-3)*(x-6)*(x-12) + 3, ) self.add(integral, graph) self.graph = graph self.integral = integral self.bound_labels = VGroup() self.v_lines = VGroup() for bound, tex in (self.lower_bound, "a"), (self.upper_bound, "b"): label = integral.get_part_by_tex(tex).copy() label.scale(1.5) label.next_to(self.coords_to_point(bound, 0), DOWN) v_line = self.get_vertical_line_to_graph( bound, graph, color = label.get_color() ) self.bound_labels.add(label) self.v_lines.add(v_line) self.add(label, v_line) def show_f_dx_sum(self): kwargs = { "x_min" : self.lower_bound, "x_max" : self.upper_bound, "fill_opacity" : 0.75, "stroke_width" : 0.25, } low_opacity = 0.25 start_rect_index = 3 num_shown_sum_steps = 5 last_rect_index = start_rect_index + num_shown_sum_steps + 1 self.rect_list = self.get_riemann_rectangles_list( self.graph, self.n_riemann_iterations, **kwargs ) rects = self.rects = self.rect_list[0] rects.save_state() start_rect = rects[start_rect_index] f_brace = Brace(start_rect, LEFT, buff = 0) dx_brace = Brace(start_rect, DOWN, buff = 0) f_brace.label = f_brace.get_text("$f(x)$") dx_brace.label = dx_brace.get_text("$dx$") flat_rects = self.get_riemann_rectangles( self.get_graph(lambda x : 0), dx = 0.5, **kwargs ) self.transform_between_riemann_rects( flat_rects, rects, replace_mobject_with_target_in_scene = True, ) self.play(*[ ApplyMethod( rect.set_fill, None, 1 if rect is start_rect else low_opacity ) for rect in rects ]) self.play(*it.chain( list(map(GrowFromCenter, [f_brace, dx_brace])), list(map(Write, [f_brace.label, dx_brace.label])), )) self.wait() for i in range(start_rect_index+1, last_rect_index): self.play( rects[i-1].set_fill, None, low_opacity, rects[i].set_fill, None, 1, f_brace.set_height, rects[i].get_height(), f_brace.next_to, rects[i], LEFT, 0, dx_brace.next_to, rects[i], DOWN, 0, *[ MaintainPositionRelativeTo(brace.label, brace) for brace in (f_brace, dx_brace) ] ) self.wait() self.play(*it.chain( list(map(FadeOut, [ f_brace, dx_brace, f_brace.label, dx_brace.label ])), [rects.set_fill, None, kwargs["fill_opacity"]] )) def show_rects_approaching_area(self): for new_rects in self.rect_list: self.transform_between_riemann_rects( self.rects, new_rects ) def write_antiderivative(self): deriv = TexMobject( "{d", "F", "\\over\\,", "dx}", "(x)", "=", "f(x)" ) deriv_F = deriv.get_part_by_tex("F") deriv.next_to(self.integral, DOWN, MED_LARGE_BUFF) rhs = TexMobject(*"=F(b)-F(a)") rhs.set_color_by_tex("a", self.lower_bound_color) rhs.set_color_by_tex("b", self.upper_bound_color) rhs.next_to(self.integral, RIGHT) self.play(Write(deriv)) self.wait(2) self.play(*it.chain( [ ReplacementTransform(deriv_F.copy(), part) for part in rhs.get_parts_by_tex("F") ], [ Write(VGroup(*rhs.get_parts_by_tex(tex))) for tex in "=()-" ] )) for tex in "b", "a": self.play(ReplacementTransform( self.integral.get_part_by_tex(tex).copy(), rhs.get_part_by_tex(tex) )) self.wait() self.wait(2) self.deriv = deriv self.rhs = rhs def write_fundamental_theorem_of_calculus(self): words = TextMobject(""" Fundamental theorem of calculus """) words.to_edge(RIGHT) self.play(Write(words)) self.wait() def show_integral_considering_continuum(self): self.play(*[ ApplyMethod(mob.set_fill, None, 0.2) for mob in (self.deriv, self.rhs) ]) self.play( self.rects.restore, run_time = 3, rate_func = there_and_back ) self.wait() for x in range(2): self.play(*[ ApplyFunction( lambda m : m.shift(MED_SMALL_BUFF*UP).set_fill(opacity = 1), rect, run_time = 3, rate_func = squish_rate_func( there_and_back, alpha, alpha+0.2 ) ) for rect, alpha in zip( self.rects, np.linspace(0, 0.8, len(self.rects)) ) ]) self.wait() def show_antiderivative_considering_bounds(self): self.play( self.integral.set_fill, None, 0.5, self.deriv.set_fill, None, 1, self.rhs.set_fill, None, 1, ) for label, line in reversed(list(zip(self.bound_labels, self.v_lines))): new_line = line.copy().set_color(YELLOW) label.save_state() self.play(label.set_color, YELLOW) self.play(ShowCreation(new_line)) self.play(ShowCreation(line)) self.remove(new_line) self.play(label.restore) self.wait() self.play(self.integral.set_fill, None, 1) self.wait(3) class LetsRecap(TeacherStudentsScene): def construct(self): self.teacher_says( "Let's recap", target_mode = "hesitant", ) self.change_student_modes(*["happy"]*3) self.wait(3) class NegativeArea(GraphScene): CONFIG = { "x_axis_label" : "Time", "y_axis_label" : "Velocity", "graph_origin" : 1.5*DOWN + 5*LEFT, "y_min" : -3, "y_max" : 7, "small_dx" : 0.01, "sample_input" : 5, } def construct(self): self.setup_axes() self.add_graph_and_area() self.write_negative_area() self.show_negative_point() self.show_car_going_backwards() self.write_v_dt() self.show_rectangle() self.write_signed_area() def add_graph_and_area(self): graph = self.get_graph( lambda x : -0.02*(x+1)*(x-3)*(x-7)*(x-10), x_min = 0, x_max = 8, color = VELOCITY_COLOR ) area = self.get_riemann_rectangles( graph, x_min = 0, x_max = 8, dx = self.small_dx, start_color = BLUE_D, end_color = BLUE_D, fill_opacity = 0.75, stroke_width = 0, ) self .play( ShowCreation(graph), FadeIn( area, run_time = 2, lag_ratio = 0.5, ) ) self.graph = graph self.area = area def write_negative_area(self): words = TextMobject("Negative area") words.set_color(RED) words.next_to( self.coords_to_point(7, -2), RIGHT, ) arrow = Arrow(words, self.coords_to_point( self.sample_input, -1, )) self.play( Write(words, run_time = 2), ShowCreation(arrow) ) self.wait(2) self.play(*list(map(FadeOut, [self.area, arrow]))) self.negative_area_words = words def show_negative_point(self): v_line = self.get_vertical_line_to_graph( self.sample_input, self.graph, color = RED ) self.play(ShowCreation(v_line)) self.wait() self.v_line = v_line def show_car_going_backwards(self): car = Car() start_point = 3*RIGHT + 2*UP end_point = start_point + LEFT nudged_end_point = end_point + MED_SMALL_BUFF*LEFT car.move_to(start_point) arrow = Arrow(RIGHT, LEFT, color = RED) arrow.next_to(car, UP+LEFT) arrow.shift(MED_LARGE_BUFF*RIGHT) self.play(FadeIn(car)) self.play(ShowCreation(arrow)) self.play(MoveCar( car, end_point, moving_forward = False, run_time = 3 )) self.wait() ghost_car = car.copy().fade() right_nose_line = self.get_car_nose_line(car) self.play(ShowCreation(right_nose_line)) self.add(ghost_car) self.play(MoveCar( car, nudged_end_point, moving_forward = False )) left_nose_line = self.get_car_nose_line(car) self.play(ShowCreation(left_nose_line)) self.nose_lines = VGroup(left_nose_line, right_nose_line) self.car = car self.ghost_car = ghost_car def write_v_dt(self): brace = Brace(self.nose_lines, DOWN, buff = 0) equation = TexMobject("ds", "=", "v(t)", "dt") equation.next_to(brace, DOWN, SMALL_BUFF, LEFT) equation.set_color_by_tex("ds", DISTANCE_COLOR) equation.set_color_by_tex("dt", TIME_COLOR) negative = TextMobject("Negative") negative.set_color(RED) negative.next_to(equation.get_corner(UP+RIGHT), UP, LARGE_BUFF) ds_arrow, v_arrow = arrows = VGroup(*[ Arrow( negative.get_bottom(), equation.get_part_by_tex(tex).get_top(), color = RED, ) for tex in ("ds", "v(t)") ]) self.play( GrowFromCenter(brace), Write(equation) ) self.wait() self.play(FadeIn(negative)) self.play(ShowCreation(v_arrow)) self.wait(2) self.play(ReplacementTransform( v_arrow.copy(), ds_arrow )) self.wait(2) self.ds_equation = equation self.negative_word = negative self.negative_word_arrows = arrows def show_rectangle(self): rect_list = self.get_riemann_rectangles_list( self.graph, x_min = 0, x_max = 8, n_iterations = 6, start_color = BLUE_D, end_color = BLUE_D, fill_opacity = 0.75, ) rects = rect_list[0] rect = rects[len(rects)*self.sample_input//8] dt_brace = Brace(rect, UP, buff = 0) v_brace = Brace(rect, LEFT, buff = 0) dt_label = dt_brace.get_text("$dt$", buff = SMALL_BUFF) dt_label.set_color(YELLOW) v_label = v_brace.get_text("$v(t)$", buff = SMALL_BUFF) v_label.add_background_rectangle() self.play(FadeOut(self.v_line), FadeIn(rect)) self.play( GrowFromCenter(dt_brace), GrowFromCenter(v_brace), Write(dt_label), Write(v_label), ) self.wait(2) self.play(*it.chain( [FadeIn(r) for r in rects if r is not rect], list(map(FadeOut, [ dt_brace, v_brace, dt_label, v_label ])) )) self.wait() for new_rects in rect_list[1:]: self.transform_between_riemann_rects(rects, new_rects) self.wait() def write_signed_area(self): words = TextMobject("``Signed area''") words.next_to(self.coords_to_point(self.sample_input, 0), UP) symbols = VGroup(*[ TexMobject(sym).move_to(self.coords_to_point(*coords)) for sym, coords in [ ("+", (1, 2)), ("-", (5, -1)), ("+", (7.6, 0.5)), ] ]) self.play(Write(words)) self.play(Write(symbols)) self.wait() #### def get_car_nose_line(self, car): line = DashedLine(car.get_top(), car.get_bottom()) line.move_to(car.get_right()) return line class NextVideo(TeacherStudentsScene): def construct(self): series = VideoSeries() series.to_edge(UP) next_video = series[8] integral = TexMobject("\\int") integral.next_to(next_video, DOWN, LARGE_BUFF) self.play(FadeIn(series, lag_ratio = 0.5)) self.play( next_video.set_color, YELLOW, next_video.shift, next_video.get_height()*DOWN/2, self.teacher.change_mode, "raise_right_hand" ) self.play(Write(integral)) self.wait(5) class Chapter8PatreonThanks(PatreonThanks): CONFIG = { "specific_patrons" : [ "Ali Yahya", "CrypticSwarm", "Kaustuv DeBiswas", "Kathryn Schmiedicke", "Karan Bhargava", "Ankit Agarwal", "Yu Jun", "Dave Nicponski", "Damion Kistler", "Juan Benet", "Othman Alikhan", "Markus Persson", "Dan Buchoff", "Derek Dai", "Joseph John Cox", "Luc Ritchie", "Robert Teed", "Jason Hise", "Meshal Alshammari", "Bernd Sing", "Nils Schneider", "James Thornton", "Mustafa Mahdi", "Jonathan Eppele", "Mathew Bramson", "Jerry Ling", "Mark Govea", "Vecht", "Shimin Kuang", "Rish Kundalia", "Achille Brighton", "Ripta Pasay", ] } class Thumbnail(Chapter1Thumbnail): CONFIG = { "x_axis_label" : "", "y_axis_label" : "", "graph_origin" : 1.5*DOWN + 4*LEFT, "y_axis_height" : 5, "x_max" : 5, "x_axis_width" : 11, } def construct(self): self.setup_axes() self.remove(*self.x_axis.numbers) self.remove(*self.y_axis.numbers) graph = self.get_graph(self.func) rects = self.get_riemann_rectangles( graph, x_min = 0, x_max = 4, dx = 0.25, ) words = TextMobject("Integrals") words.set_width(8) words.to_edge(UP) self.add(graph, rects, words)
30.77982
83
0.536657
[ "MIT" ]
wofeicaoge/manim
from_3b1b/old/eoc/chapter8.py
85,414
Python
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import copy import json import requests import six from six.moves.urllib import parse as urlparse class _RequestObjectProxy(object): """A wrapper around a requests.Request that gives some extra information. This will be important both for matching and so that when it's save into the request_history users will be able to access these properties. """ def __init__(self, request, **kwargs): self._request = request self._matcher = None self._url_parts_ = None self._qs = None # All of these params should always exist but we use a default # to make the test setup easier. self._timeout = kwargs.pop('timeout', None) self._allow_redirects = kwargs.pop('allow_redirects', None) self._verify = kwargs.pop('verify', None) self._stream = kwargs.pop('stream', None) self._cert = kwargs.pop('cert', None) self._proxies = copy.deepcopy(kwargs.pop('proxies', {})) # FIXME(jamielennox): This is part of bug #1584008 and should default # to True (or simply removed) in a major version bump. self._case_sensitive = kwargs.pop('case_sensitive', False) def __getattr__(self, name): return getattr(self._request, name) @property def _url_parts(self): if self._url_parts_ is None: url = self._request.url if not self._case_sensitive: url = url.lower() self._url_parts_ = urlparse.urlparse(url) return self._url_parts_ @property def scheme(self): return self._url_parts.scheme @property def netloc(self): return self._url_parts.netloc @property def hostname(self): try: return self.netloc.split(':')[0] except IndexError: return '' @property def port(self): components = self.netloc.split(':') try: return int(components[1]) except (IndexError, ValueError): pass if self.scheme == 'https': return 443 if self.scheme == 'http': return 80 # The default return shouldn't matter too much because if you are # wanting to test this value you really should be explicitly setting it # somewhere. 0 at least is a boolean False and an int. return 0 @property def path(self): return self._url_parts.path @property def query(self): return self._url_parts.query @property def qs(self): if self._qs is None: self._qs = urlparse.parse_qs(self.query) return self._qs @property def timeout(self): return self._timeout @property def allow_redirects(self): return self._allow_redirects @property def verify(self): return self._verify @property def stream(self): return self._stream @property def cert(self): return self._cert @property def proxies(self): return self._proxies @classmethod def _create(cls, *args, **kwargs): return cls(requests.Request(*args, **kwargs).prepare()) @property def text(self): body = self.body if isinstance(body, six.binary_type): body = body.decode('utf-8') return body def json(self, **kwargs): return json.loads(self.text, **kwargs) @property def matcher(self): """The matcher that this request was handled by. The matcher object is handled by a weakref. It will return the matcher object if it is still available - so if the mock is still in place. If the matcher is not available it will return None. """ return self._matcher() def __str__(self): return "{0.method} {0.url}".format(self._request)
27.110429
79
0.630686
[ "MIT" ]
Guillaume-Fernandez/PhishInspector
venv/lib/python3.6/site-packages/requests_mock/request.py
4,419
Python
from django.urls import path from meetings.api.views import (MeetingViewset) from rest_framework import routers router = routers.DefaultRouter(trailing_slash='/?') router.register('meetings', MeetingViewset) urlpatterns = router.urls
21.636364
51
0.806723
[ "MIT" ]
MaySoMusician/owaranai-meter
app/meetings/api/urls.py
238
Python
''' Acdfg class will have the class definitions for loading and creating acdfg objects ''' from __future__ import print_function try: from enum import Enum except ImportError: from enum34 import Enum #import proto_acdfg from protobuf.proto_acdfg_pb2 import Acdfg as ProtoAcdfg import logging class NodeType(Enum): regular_node = 1 data_node = 2 method_node = 3 class EdgeType(Enum): control_edge = 1 def_edge = 2 use_edge = 3 transitive_edge = 4 exceptional_edge = 5 class Node: def __init__(self, node_type, key): self.node_type = node_type self.id = key assert isinstance(key, int) # assert isinstance(node_type, NodeType) # def __init__(self, key): # self.node_type = NodeType.regular_node # self.id = key # assert isinstance(key, int) def get_type(self): return self.node_type def get_id(self): return self.id def get_node_type_str(self): if (self.node_type == NodeType.regular_node): return "regular node" elif (self.node_type == NodeType.data_node): return "data node" elif (self.node_type == NodeType.method_node): return "method node" else: assert False, ' Unhandled node type' class DataNode(Node): DATA_VAR = 0 DATA_CONST = 1 def __init__(self, key, name, data_type, data_type_type): Node.__init__(self, NodeType.data_node, key) self.name = name self.data_type = data_type if ("DATA_VAR" == ProtoAcdfg.DataNode.DataType.Name(data_type_type)): self.data_type_type = DataNode.DATA_VAR elif ("DATA_CONST" == ProtoAcdfg.DataNode.DataType.Name(data_type_type)): self.data_type_type = DataNode.DATA_CONST else: logging.error("Cannot determine the type %s for data node" % (str(data_type_type))) raise Exception("Cannot determine the type %s for data node" % (str(data_type_type))) logging.debug('DataNode: (%s,%s,%s,%s)' % (str(key), str(name), str(data_type), str(data_type_type))) def get_name(self): return self.name def get_data_type(self): return self.data_type def get_data_type_type(self): return self.data_type_type class MethodNode(Node): def __init__(self, key, name, receiver, arg_list): Node.__init__(self, NodeType.method_node, key) self.name = name self.receiver = receiver self.arg_list = arg_list for a in arg_list: assert isinstance(a, DataNode) if receiver: assert isinstance(receiver, DataNode) logging.debug(type(name)) assert isinstance(name, str) or isinstance(name, unicode) logging.debug('Method Node: %s,%s' % (str(key), str(name))) def get_name(self): return self.name def get_receiver(self): return self.receiver def get_args(self): return self.arg_list class Edge: def __init__(self, edge_type, key, src, tgt): self.edge_type = edge_type self.id = key self.src = src self.tgt = tgt assert isinstance(src, Node) assert isinstance(tgt, Node) def get_id(self): return self.id def get_edge_type(self): return self.edge_type class DefEdge(Edge): def __init__(self, key, src, tgt): Edge.__init__(self, EdgeType.def_edge, key, src, tgt) assert isinstance(tgt, DataNode) class UseEdge(Edge): def __init__(self, key, src, tgt): Edge.__init__(self, EdgeType.use_edge, key, src, tgt) assert isinstance(src, DataNode) class ControlEdge(Edge): def __init__(self, key, src, tgt): Edge.__init__(self, EdgeType.control_edge, key, src, tgt) class TransitiveEdge(Edge): def __init__(self, key, src, tgt): Edge.__init__(self, EdgeType.transitive_edge, key, src, tgt) class ExceptionEdge(Edge): def __init__(self, key, src, tgt): Edge.__init__(self, EdgeType.exceptional_edge, key, src, tgt) class Acdfg: def __init__(self, acdfg_protobuf_obj): self.acdfg_protobuf = acdfg_protobuf_obj self.all_nodes = {} self.data_nodes = {} self.method_nodes = {} self.regular_nodes = {} self.all_edges = {} def add_node(self, node): assert isinstance(node, Node), \ 'Only node objects can be added through add_node' key = node.get_id() assert key not in self.all_nodes, \ 'key %d for node already present'%key self.all_nodes[key] = node if isinstance(node, DataNode): self.data_nodes[key] = node elif isinstance(node, MethodNode): self.method_nodes[key] = node else: self.regular_nodes[key] = node def get_data_nodes(self): return self.data_nodes def get_method_nodes(self): return self.method_nodes def add_edge(self, edge): assert isinstance(edge, Edge) key = edge.get_id() assert key not in self.all_edges, 'key %d for edge already present'%key self.all_edges[key] = edge def get_node_from_id(self, id): if id in self.data_nodes: return self.data_nodes[id] elif id in self.method_nodes: return self.method_nodes[id] elif id in self.regular_nodes: return self.regular_nodes[id] else: assert False, 'ID: %d not found'%(id) def get_node_obj_from_ids(acdfg_obj, proto_edge): src = acdfg_obj.get_node_from_id(getattr(proto_edge, 'from')) tgt = acdfg_obj.get_node_from_id(proto_edge.to) return src, tgt def read_acdfg(filename): try: f = open(filename, 'rb') acdfg = ProtoAcdfg() # create a new acdfg # acdfg.parse_from_bytes(f.read()) acdfg.ParseFromString(f.read()) acdfg_obj = Acdfg(acdfg) for dNode in acdfg.data_node: data_node_obj = DataNode(int ( getattr(dNode,'id') ), dNode.name, getattr(dNode,'type'), dNode.data_type) acdfg_obj.add_node(data_node_obj) for mNode in acdfg.method_node: arg_ids = mNode.argument arg_list = [acdfg_obj.get_node_from_id(j) for j in arg_ids] if mNode.invokee: rcv = acdfg_obj.get_node_from_id(mNode.invokee) else: rcv = None method_node_obj = MethodNode(int(mNode.id), mNode.name, rcv, arg_list) acdfg_obj.add_node(method_node_obj) for rNode in acdfg.misc_node: misc_node_obj = Node(NodeType.regular_node,int(rNode.id)) acdfg_obj.add_node(misc_node_obj) for ctrl_edge in acdfg.control_edge: src, tgt = get_node_obj_from_ids(acdfg_obj, ctrl_edge) cedge_obj = ControlEdge(ctrl_edge.id, src, tgt) acdfg_obj.add_edge(cedge_obj) for dedge in acdfg.def_edge: src, tgt = get_node_obj_from_ids(acdfg_obj, dedge) dedge_obj = ControlEdge(dedge.id, src, tgt) acdfg_obj.add_edge(dedge_obj) for uedge in acdfg.use_edge: src, tgt = get_node_obj_from_ids(acdfg_obj, uedge) uedge_obj = UseEdge(uedge.id, src, tgt) acdfg_obj.add_edge(uedge_obj) for tedge in acdfg.trans_edge: src, tgt = get_node_obj_from_ids(acdfg_obj, tedge) tedge_obj = TransitiveEdge(tedge.id, src, tgt) acdfg_obj.add_edge(tedge_obj) f.close() return acdfg_obj except IOError: print('Could not open: ', filename, 'for reading in binary mode.') assert False
30.705426
97
0.611083
[ "Apache-2.0" ]
LesleyLai/biggroum
python/fixrgraph/annotator/acdfgClass.py
7,922
Python
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from .rule_data_source import RuleDataSource class RuleManagementEventDataSource(RuleDataSource): """A rule management event data source. The discriminator fields is always RuleManagementEventDataSource in this case. :param resource_uri: the resource identifier of the resource the rule monitors. :type resource_uri: str :param odatatype: Polymorphic Discriminator :type odatatype: str :param event_name: the event name. :type event_name: str :param event_source: the event source. :type event_source: str :param level: the level. :type level: str :param operation_name: The name of the operation that should be checked for. If no name is provided, any operation will match. :type operation_name: str :param resource_group_name: the resource group name. :type resource_group_name: str :param resource_provider_name: the resource provider name. :type resource_provider_name: str :param status: The status of the operation that should be checked for. If no status is provided, any status will match. :type status: str :param sub_status: the substatus. :type sub_status: str :param claims: the claims. :type claims: :class:`RuleManagementEventClaimsDataSource <azure.mgmt.monitor.models.RuleManagementEventClaimsDataSource>` """ _validation = { 'odatatype': {'required': True}, } _attribute_map = { 'resource_uri': {'key': 'resourceUri', 'type': 'str'}, 'odatatype': {'key': 'odata\\.type', 'type': 'str'}, 'event_name': {'key': 'eventName', 'type': 'str'}, 'event_source': {'key': 'eventSource', 'type': 'str'}, 'level': {'key': 'level', 'type': 'str'}, 'operation_name': {'key': 'operationName', 'type': 'str'}, 'resource_group_name': {'key': 'resourceGroupName', 'type': 'str'}, 'resource_provider_name': {'key': 'resourceProviderName', 'type': 'str'}, 'status': {'key': 'status', 'type': 'str'}, 'sub_status': {'key': 'subStatus', 'type': 'str'}, 'claims': {'key': 'claims', 'type': 'RuleManagementEventClaimsDataSource'}, } def __init__(self, resource_uri=None, event_name=None, event_source=None, level=None, operation_name=None, resource_group_name=None, resource_provider_name=None, status=None, sub_status=None, claims=None): super(RuleManagementEventDataSource, self).__init__(resource_uri=resource_uri) self.event_name = event_name self.event_source = event_source self.level = level self.operation_name = operation_name self.resource_group_name = resource_group_name self.resource_provider_name = resource_provider_name self.status = status self.sub_status = sub_status self.claims = claims self.odatatype = 'Microsoft.Azure.Management.Insights.Models.RuleManagementEventDataSource'
44.103896
209
0.659305
[ "BSD-3-Clause", "BSD-2-Clause", "MIT" ]
EnjoyLifeFund/macSierra-py36-pkgs
azure/mgmt/monitor/models/rule_management_event_data_source.py
3,396
Python
from argparse import Namespace from .simulation_action import Action, SimulationAction from .plot_action import PlotAction from .gram_charlier_action import GramCharlierAction from .cornish_fisher_action import CornishFisherAction from .mc_combination_action import MCCombinationAction from .print_benchmark_action import PrintBenchmarkAction from .goals_action import GoalsAction class ActionFactory: @classmethod def create_action(cls, cli_args: Namespace) -> Action: if cli_args.simulate: return SimulationAction(cli_args) if cli_args.goals or cli_args.invariants: return GoalsAction(cli_args) if cli_args.plot: return PlotAction(cli_args) if cli_args.gram_charlier: return GramCharlierAction(cli_args) if cli_args.cornish_fisher: return CornishFisherAction(cli_args) if cli_args.mc_comb is not None: return MCCombinationAction(cli_args) return PrintBenchmarkAction(cli_args)
35.137931
58
0.747792
[ "MIT" ]
daneshvar-amrollahi/polar
cli/actions/factory.py
1,019
Python
import argparse from datetime import datetime from json import decoder from os import path, mkdir, remove from os.path import isfile from threading import Thread from time import sleep try: from progress.bar import Bar import requests import termcolor except ImportError: print("You are missing modules. Run \"python3 -m pip install -r requirements.txt\" to " "install them.") exit(0) # print a message with a time stamp def status(message): print("{0} {1}".format(datetime.now(), message)) # clean any temp files created during runtime def cleanup(): if isfile("runfile"): remove("runfile") # main loop def main(): status("Fetching latest paste IDs...") # fetch latest 100 paste IDs fetch_limit = 100 current_request = requests.get("https://scrape.pastebin.com/api_scraping.php?limit={0}".format(fetch_limit)) current_json = [] try: current_json = current_request.json() except decoder.JSONDecodeError: status(termcolor.colored("Unable to fetch latest paste IDs. Make sure your IP is whitelisted at " "https://pastebin.com/doc_scraping_api", "red")) cleanup() exit(0) status("Paste IDs fetched. Processing...") # clean up fetched ids cleaned_json = [] for entry in current_json: if entry["key"] not in paste_ids: cleaned_json.append(entry) # create a progress bar and start downloading pastes if we have new ones if len(cleaned_json) is not 0: with Bar("Processing", max=len(cleaned_json), fill=">") as bar: for entry in cleaned_json: # download the raw paste data entry_request = requests.get("https://scrape.pastebin.com/api_scrape_item.php?i={0}" .format(entry["key"])) entry_content = entry_request.text path_file = path.join("files", "{0}.txt".format(entry["key"])) paste_ids.append(entry["key"]) # if we have a provided keyword list, check for keywords if keywords is not None: for keyword in keywords: if keyword.upper() in entry_content.upper(): bar.suffix = "%(index)d/%(max)d " + termcolor.colored("[KEYWORD] Paste \'{0}\' contains " "keyword \'{1}\'".format(entry["key"], keyword), "green") if args.noSorting is False: path_file = path.join("files", keyword, "{0}.txt".format(entry["key"])) with open(path_file, "w+", encoding='utf-8') as entry_file: entry_file.write(entry_content) break else: with open(path_file, "w+", encoding='utf-8') as entry_file: entry_file.write(entry_content) bar.suffix = "%(index)d/%(max)d Saving paste \'{0}\'".format(entry["key"]) bar.next() bar.finish() # otherwise, just say that we didn't have any new content else: status("No new pastes found, skipping downloads...") if args.infinite is False: if not isfile("runfile"): print() status("Runfile no longer found, exiting...") exit(0) skipped_pastes = fetch_limit - len(cleaned_json) if skipped_pastes != 0: status("Skipped {0} previously fetched pastes".format(skipped_pastes)) status("Cleaning up internal ID list...") while len(paste_ids) > max_id_list_size: paste_ids.pop(0) # start 60 second loop status("Hibernating for 60 seconds...") with Bar("Hibernating", max=60, fill=">", suffix="") as bar: for i in range(60): sleep(1) bar.next() bar.finish() print() Thread(main()).start() if __name__ == '__main__': AUTHOR = "SYRAPT0R" COPYRIGHT = "2019-2022" VERSION = "0.5.3" # parse arguments keywords = None parser = argparse.ArgumentParser(description="A script to scrape pastebin.com with optional keyword search") parser.add_argument("-k", "--keywords", help="A file containing keywords for the search") parser.add_argument("-i", "--infinite", help="Whether to run in infinite mode (Default: false)", action="store_true", default=False) parser.add_argument("-nS", "--noSorting", help="Whether to sort keyword pastes into subdirectories", action="store_true", default=False) args = parser.parse_args() status("STARTING PASTA SCRAPER {0}, (c) {1} {2}".format(VERSION, COPYRIGHT, AUTHOR)) print() # make sure file directories exists if not path.isdir("files"): status(termcolor.colored("No file directory found, creating...", "yellow")) mkdir("files") if args.keywords is not None: try: with open(args.keywords, "r") as f: keywords = f.readlines() except IOError: status(termcolor.colored("Unable to load specified keyword file. Aborting...", "red")) exit(0) keywords = [keyword.strip() for keyword in keywords] # create subdirectories if required if args.noSorting is False: for keyword in keywords: current_path = path.join("files", keyword) if not path.isdir(current_path): status(termcolor.colored("Creating directory {0}".format(current_path), "yellow")) mkdir(current_path) status("Loaded {0} keywords".format(len(keywords))) # create paste ID index paste_ids = [] max_id_list_size = 200 # create non infinite file if needed if args.infinite is False: status("Creating run file...") f = open("runfile", "w+") f.close() else: status("Running in infinite mode...") # preparation done, enter main loop status("Entering main loop...") print() main()
32.774359
120
0.560476
[ "MIT" ]
Syrapt0r/PastaScraper
scrape.py
6,391
Python
# Copyright 2013-2019 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class Parsplice(CMakePackage): """ParSplice code implements the Parallel Trajectory Splicing algorithm""" homepage = "https://gitlab.com/exaalt/parsplice" url = "https://gitlab.com/api/v4/projects/exaalt%2Fparsplice/repository/archive.tar.gz?sha=v1.1" git = "https://gitlab.com/exaalt/parsplice.git" tags = ['ecp', 'ecp-apps'] version('develop', branch='master') version('1.1', '3a72340d49d731a076e8942f2ae2f4e9') depends_on("[email protected]:", type='build') depends_on("berkeley-db") depends_on("nauty") depends_on("boost") depends_on("mpi") depends_on("eigen@3:") depends_on("lammps+lib@20170901:") def cmake_args(self): options = ['-DBUILD_SHARED_LIBS=ON'] return options
28.882353
105
0.685336
[ "ECL-2.0", "Apache-2.0", "MIT" ]
1nf1n1t3l00p/spack
var/spack/repos/builtin/packages/parsplice/package.py
982
Python
class QuizBrain: def __init__(self, questions): self.question_no = 0 self.score = 0 self.questions = questions self.current_question = None def has_more_questions(self): """To check if the quiz has more questions""" return self.question_no < len(self.questions) def next_question(self): """Get the next question by incrementing the question number""" self.current_question = self.questions[self.question_no] self.question_no += 1 q_text = self.current_question.question_text return f"Q.{self.question_no}: {q_text}" def check_answer(self, user_answer): """Check the user answer against the correct answer and maintain the score""" correct_answer = self.current_question.correct_answer if user_answer.lower() == correct_answer.lower(): self.score += 1 return True else: return False def get_score(self): """Get the number of correct answers, wrong answers and score percentage.""" wrong = self.question_no - self.score score_percent = int(self.score / self.question_no * 100) return (self.score, wrong, score_percent)
33.315789
85
0.627172
[ "MIT" ]
ashutoshkrris/GUI-Quiz-Tkinter
quiz_brain.py
1,266
Python
from django.test import SimpleTestCase from django.utils.safestring import mark_safe from ..utils import render, setup class DefaultTests(SimpleTestCase): """ Literal string arguments to the default filter are always treated as safe strings, regardless of the auto-escaping state. Note: we have to use {"a": ""} here, otherwise the invalid template variable string interferes with the test result. """ @setup({'default01': '{{ a|default:"x<" }}'}) def test_default01(self): output = render('default01', {"a": ""}) self.assertEqual(output, "x<") @setup({'default02': '{% autoescape off %}{{ a|default:"x<" }}{% endautoescape %}'}) def test_default02(self): output = render('default02', {"a": ""}) self.assertEqual(output, "x<") @setup({'default03': '{{ a|default:"x<" }}'}) def test_default03(self): output = render('default03', {"a": mark_safe("x>")}) self.assertEqual(output, "x>") @setup({'default04': '{% autoescape off %}{{ a|default:"x<" }}{% endautoescape %}'}) def test_default04(self): output = render('default04', {"a": mark_safe("x>")}) self.assertEqual(output, "x>") class DefaultIfNoneTests(SimpleTestCase): @setup({'default_if_none01': '{{ a|default:"x<" }}'}) def test_default_if_none01(self): output = render('default_if_none01', {"a": None}) self.assertEqual(output, "x<") @setup({'default_if_none02': '{% autoescape off %}{{ a|default:"x<" }}{% endautoescape %}'}) def test_default_if_none02(self): output = render('default_if_none02', {"a": None}) self.assertEqual(output, "x<")
34.9375
96
0.619559
[ "BSD-3-Clause" ]
DasAllFolks/django
tests/template_tests/filter_tests/test_default.py
1,677
Python
"""General-purpose training script for image-to-image translation. This script works for various models (with option '--model': e.g., pix2pix, cyclegan, colorization) and different datasets (with option '--dataset_mode': e.g., aligned, unaligned, single, colorization). You need to specify the dataset ('--dataroot'), experiment name ('--name'), and model ('--model'). It first creates model, dataset, and visualizer given the option. It then does standard network training. During the training, it also visualize/save the images, print/save the loss plot, and save models. The script supports continue/resume training. Use '--continue_train' to resume your previous training. Example: Train a CycleGAN model: python train.py --dataroot ./datasets/maps --name maps_cyclegan --model cycle_gan Train a pix2pix model: python train.py --dataroot ./datasets/facades --name facades_pix2pix --model pix2pix --direction BtoA See options/base_options.py and options/train_options.py for more training options. See training and test tips at: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/tips.md See frequently asked questions at: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/qa.md """ import time from options.train_options import TrainOptions from data import create_dataset from models import create_model from util.visualizer import Visualizer from util import util if __name__ == '__main__': # Create dataset with fixed sample patches opt_eval = TrainOptions().parse() opt_eval.num_train, opt_eval.num_test, opt_eval.eval_mode = 100, 100, True dataset_eval = create_dataset(opt_eval) # create a dataset given opt.eval_mode and other options # Intialize training dataset and model opt = TrainOptions().parse() # get training options dataset = create_dataset(opt) # create a dataset given opt.dataset_mode and other options dataset_size = len(dataset) # get the number of images in the dataset. print('The number of training images = %d' % dataset_size) model = create_model(opt) # create a model given opt.model and other options model.setup(opt) # regular setup: load and print networks; create schedulers visualizer = Visualizer(opt) # create a visualizer that display/save images and plots total_iters = 0 # the total number of training iterations # Evaluate metrics before running the model metrics_log_file = model.save_dir + '/' + opt.name + '_metrics.txt' util.eval_error_metrics(0, model, dataset_eval, log_filename=metrics_log_file) for epoch in range(opt.epoch_count, opt.niter + opt.niter_decay + 1): # outer loop for different epochs; we save the model by <epoch_count>, <epoch_count>+<save_latest_freq> epoch_start_time = time.time() # timer for entire epoch iter_data_time = time.time() # timer for data loading per iteration epoch_iter = 0 # the number of training iterations in current epoch, reset to 0 every epoch for i, data in enumerate(dataset): # inner loop within one epoch iter_start_time = time.time() # timer for computation per iteration if total_iters % opt.print_freq == 0: t_data = iter_start_time - iter_data_time visualizer.reset() total_iters += opt.batch_size epoch_iter += opt.batch_size model.set_input(data) # unpack data from dataset and apply preprocessing model.optimize_parameters() # calculate loss functions, get gradients, update network weights if total_iters % opt.display_freq == 0: # display images on visdom and save images to a HTML file save_result = total_iters % opt.update_html_freq == 0 model.compute_visuals() visualizer.display_current_results(model.get_current_visuals(), epoch, save_result) if total_iters % opt.print_freq == 0: # print training losses and save logging information to the disk losses = model.get_current_losses() t_comp = (time.time() - iter_start_time) / opt.batch_size visualizer.print_current_losses(epoch, epoch_iter, losses, t_comp, t_data) if opt.display_id > 0: visualizer.plot_current_losses(epoch, float(epoch_iter) / dataset_size, losses) if total_iters % opt.save_latest_freq == 0: # cache our latest model every <save_latest_freq> iterations print('saving the latest model (epoch %d, total_iters %d)' % (epoch, total_iters)) save_suffix = 'iter_%d' % total_iters if opt.save_by_iter else 'latest' model.save_networks(save_suffix) iter_data_time = time.time() if epoch % opt.save_epoch_freq == 0: # cache our model every <save_epoch_freq> epochs print('saving the model at the end of epoch %d, iters %d' % (epoch, total_iters)) model.save_networks('latest') model.save_networks(epoch) util.eval_error_metrics(epoch, model, dataset_eval, log_filename=metrics_log_file) print('End of epoch %d / %d \t Time Taken: %d sec' % (epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time)) model.update_learning_rate() # update learning rates at the end of every epoch.
59.423913
180
0.690324
[ "MIT" ]
supri-a/TXM2SEM
train.py
5,467
Python
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from argparse import Namespace import contextlib import copy import math import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from dataclasses import dataclass, field from omegaconf import MISSING, II, open_dict from typing import Any from fairseq import checkpoint_utils, tasks, utils from fairseq.dataclass import FairseqDataclass from fairseq.dataclass.utils import convert_namespace_to_omegaconf from fairseq.tasks import FairseqTask from fairseq.models import ( BaseFairseqModel, FairseqEncoder, FairseqEncoderDecoderModel, FairseqIncrementalDecoder, register_model, ) from fairseq.models.wav2vec.wav2vec2 import MASKING_DISTRIBUTION_CHOICES from fairseq.modules import LayerNorm, PositionalEmbedding, TransformerDecoderLayer @dataclass class Wav2Vec2AsrConfig(FairseqDataclass): w2v_path: str = field( default=MISSING, metadata={"help": "path to wav2vec 2.0 model"} ) no_pretrained_weights: bool = field( default=False, metadata={"help": "if true, does not load pretrained weights"} ) dropout_input: float = field( default=0.0, metadata={"help": "dropout to apply to the input (after feat extr)"}, ) final_dropout: float = field( default=0.0, metadata={"help": "dropout after transformer and before final projection"}, ) dropout: float = field( default=0.0, metadata={"help": "dropout probability inside wav2vec 2.0 model"} ) attention_dropout: float = field( default=0.0, metadata={ "help": "dropout probability for attention weights inside wav2vec 2.0 model" }, ) activation_dropout: float = field( default=0.0, metadata={ "help": "dropout probability after activation in FFN inside wav2vec 2.0 model" }, ) # masking apply_mask: bool = field( default=False, metadata={"help": "apply masking during fine-tuning"} ) mask_length: int = field( default=10, metadata={"help": "repeat the mask indices multiple times"} ) mask_prob: float = field( default=0.5, metadata={ "help": "probability of replacing a token with mask (normalized by length)" }, ) mask_selection: MASKING_DISTRIBUTION_CHOICES = field( default="static", metadata={"help": "how to choose masks"} ) mask_other: float = field( default=0, metadata={ "help": "secondary mask argument (used for more complex distributions), " "see help in compute_mask_indices" }, ) no_mask_overlap: bool = field( default=False, metadata={"help": "whether to allow masks to overlap"} ) # channel masking mask_channel_length: int = field( default=10, metadata={"help": "length of the mask for features (channels)"} ) mask_channel_prob: float = field( default=0.0, metadata={"help": "probability of replacing a feature with 0"} ) mask_channel_selection: MASKING_DISTRIBUTION_CHOICES = field( default="static", metadata={"help": "how to choose mask length for channel masking"}, ) mask_channel_other: float = field( default=0, metadata={ "help": "secondary mask argument (used for more complex distributions), " "see help in compute_mask_indicesh" }, ) no_mask_channel_overlap: bool = field( default=False, metadata={"help": "whether to allow channel masks to overlap"} ) freeze_finetune_updates: int = field( default=0, metadata={"help": "dont finetune wav2vec for this many updates"} ) feature_grad_mult: float = field( default=0.0, metadata={"help": "reset feature grad mult in wav2vec 2.0 to this"} ) layerdrop: float = field( default=0.0, metadata={"help": "probability of dropping a layer in wav2vec 2.0"} ) normalize: bool = II("task.normalize") data: str = II("task.data") # this holds the loaded wav2vec args w2v_args: Any = None @dataclass class Wav2Vec2CtcConfig(Wav2Vec2AsrConfig): pass @register_model("wav2vec_ctc", dataclass=Wav2Vec2CtcConfig) class Wav2VecCtc(BaseFairseqModel): def __init__(self, cfg: Wav2Vec2CtcConfig, w2v_encoder: BaseFairseqModel): super().__init__() self.cfg = cfg self.w2v_encoder = w2v_encoder def upgrade_state_dict_named(self, state_dict, name): super().upgrade_state_dict_named(state_dict, name) return state_dict @classmethod def build_model(cls, cfg: Wav2Vec2CtcConfig, task: FairseqTask): """Build a new model instance.""" w2v_encoder = Wav2VecEncoder(cfg, task.target_dictionary) return cls(cfg, w2v_encoder) def get_normalized_probs(self, net_output, log_probs): """Get normalized probabilities (or log probs) from a net's output.""" logits = net_output["encoder_out"] if log_probs: return utils.log_softmax(logits.float(), dim=-1) else: return utils.softmax(logits.float(), dim=-1) def forward(self, **kwargs): x = self.w2v_encoder(**kwargs) return x @dataclass class Wav2Vec2Seq2SeqConfig(Wav2Vec2AsrConfig): decoder_embed_dim: int = field( default=768, metadata={"help": "decoder embedding dimension"} ) decoder_ffn_embed_dim: int = field( default=3072, metadata={"help": "decoder embedding dimension for FFN"} ) decoder_layers: int = field(default=6, metadata={"help": "num of decoder layers"}) decoder_layerdrop: float = field( default=0.0, metadata={"help": "decoder layerdrop chance"} ) decoder_attention_heads: int = field( default=4, metadata={"help": "num decoder attention heads"} ) decoder_learned_pos: bool = field( default=False, metadata={"help": "use learned positional embeddings in the decoder"}, ) decoder_normalize_before: bool = field( default=False, metadata={"help": "apply layernorm before each decoder block"} ) no_token_positional_embeddings: bool = field( default=False, metadata={ "help": "if set, disables positional embeddings (outside self attention)" }, ) decoder_dropout: float = field( default=0.0, metadata={"help": "dropout probability in the decoder"} ) decoder_attention_dropout: float = field( default=0.0, metadata={ "help": "dropout probability for attention weights inside the decoder" }, ) decoder_activation_dropout: float = field( default=0.0, metadata={ "help": "dropout probability after activation in FFN inside the decoder" }, ) max_target_positions: int = field( default=2048, metadata={"help": "max target positions"} ) share_decoder_input_output_embed: bool = field( default=False, metadata={"help": "share decoder input and output embeddings"} ) @register_model("wav2vec_seq2seq", dataclass=Wav2Vec2Seq2SeqConfig) class Wav2Vec2Seq2SeqModel(FairseqEncoderDecoderModel): def __init__(self, encoder, decoder): super().__init__(encoder, decoder) @classmethod def build_model(cls, cfg: Wav2Vec2Seq2SeqConfig, task: FairseqTask): """Build a new model instance.""" src_dict, tgt_dict = task.source_dictionary, task.target_dictionary def build_embedding(dictionary, embed_dim): num_embeddings = len(dictionary) padding_idx = dictionary.pad() emb = Embedding(num_embeddings, embed_dim, padding_idx) return emb decoder_embed_tokens = build_embedding(tgt_dict, cfg.decoder_embed_dim) encoder = cls.build_encoder(cfg) decoder = cls.build_decoder(cfg, tgt_dict, decoder_embed_tokens) return Wav2Vec2Seq2SeqModel(encoder, decoder) @classmethod def build_encoder(cls, cfg: Wav2Vec2AsrConfig): return Wav2VecEncoder(cfg) @classmethod def build_decoder(cls, cfg: Wav2Vec2Seq2SeqConfig, tgt_dict, embed_tokens): return TransformerDecoder(cfg, tgt_dict, embed_tokens) def forward(self, **kwargs): encoder_out = self.encoder(tbc=False, **kwargs) decoder_out = self.decoder(encoder_out=encoder_out, **kwargs) return decoder_out def upgrade_state_dict_named(self, state_dict, name): super().upgrade_state_dict_named(state_dict, name) return state_dict class Wav2VecEncoder(FairseqEncoder): def __init__(self, cfg: Wav2Vec2AsrConfig, tgt_dict=None): self.apply_mask = cfg.apply_mask arg_overrides = { "dropout": cfg.dropout, "activation_dropout": cfg.activation_dropout, "dropout_input": cfg.dropout_input, "attention_dropout": cfg.attention_dropout, "mask_length": cfg.mask_length, "mask_prob": cfg.mask_prob, "mask_selection": cfg.mask_selection, "mask_other": cfg.mask_other, "no_mask_overlap": cfg.no_mask_overlap, "mask_channel_length": cfg.mask_channel_length, "mask_channel_prob": cfg.mask_channel_prob, "mask_channel_selection": cfg.mask_channel_selection, "mask_channel_other": cfg.mask_channel_other, "no_mask_channel_overlap": cfg.no_mask_channel_overlap, "encoder_layerdrop": cfg.layerdrop, "feature_grad_mult": cfg.feature_grad_mult, } if cfg.w2v_args is None: state = checkpoint_utils.load_checkpoint_to_cpu(cfg.w2v_path, arg_overrides) w2v_args = state.get("cfg", None) if w2v_args is None: w2v_args = convert_namespace_to_omegaconf(state["args"]) cfg.w2v_args = w2v_args else: state = None w2v_args = cfg.w2v_args if isinstance(w2v_args, Namespace): cfg.w2v_args = w2v_args = convert_namespace_to_omegaconf(w2v_args) assert cfg.normalize == w2v_args.task.normalize, ( "Fine-tuning works best when data normalization is the same. " "Please check that --normalize is set or unset for both pre-training and here" ) w2v_args.task.data = cfg.data task = tasks.setup_task(w2v_args.task) model = task.build_model(w2v_args.model) if state is not None and not cfg.no_pretrained_weights: model.load_state_dict(state["model"], strict=True) model.remove_pretraining_modules() super().__init__(task.source_dictionary) d = w2v_args.model.encoder_embed_dim self.w2v_model = model self.final_dropout = nn.Dropout(cfg.final_dropout) self.freeze_finetune_updates = cfg.freeze_finetune_updates self.num_updates = 0 if tgt_dict is not None: self.proj = Linear(d, len(tgt_dict)) elif getattr(cfg, "decoder_embed_dim", d) != d: self.proj = Linear(d, cfg.decoder_embed_dim) else: self.proj = None def set_num_updates(self, num_updates): """Set the number of parameters updates.""" super().set_num_updates(num_updates) self.num_updates = num_updates def forward(self, source, padding_mask, tbc=True, **kwargs): w2v_args = { "source": source, "padding_mask": padding_mask, "mask": self.apply_mask and self.training, } ft = self.freeze_finetune_updates <= self.num_updates with torch.no_grad() if not ft else contextlib.ExitStack(): x, padding_mask = self.w2v_model.extract_features(**w2v_args) if tbc: # B x T x C -> T x B x C x = x.transpose(0, 1) x = self.final_dropout(x) if self.proj: x = self.proj(x) return { "encoder_out": x, # T x B x C "encoder_padding_mask": padding_mask, # B x T "padding_mask": padding_mask, } def reorder_encoder_out(self, encoder_out, new_order): if encoder_out["encoder_out"] is not None: encoder_out["encoder_out"] = encoder_out["encoder_out"].index_select( 1, new_order ) if encoder_out["encoder_padding_mask"] is not None: encoder_out["encoder_padding_mask"] = encoder_out[ "encoder_padding_mask" ].index_select(0, new_order) return encoder_out def max_positions(self): """Maximum input length supported by the encoder.""" return None def upgrade_state_dict_named(self, state_dict, name): return state_dict class TransformerDecoder(FairseqIncrementalDecoder): """ Transformer decoder consisting of *args.decoder_layers* layers. Each layer is a :class:`TransformerDecoderLayer`. Args: args (argparse.Namespace): parsed command-line arguments dictionary (~fairseq.data.Dictionary): decoding dictionary embed_tokens (torch.nn.Embedding): output embedding no_encoder_attn (bool, optional): whether to attend to encoder outputs (default: False). """ def __init__( self, cfg: Wav2Vec2Seq2SeqConfig, dictionary, embed_tokens, no_encoder_attn=False, ): super().__init__(dictionary) self.dropout = cfg.decoder_dropout self.share_input_output_embed = cfg.share_decoder_input_output_embed input_embed_dim = embed_tokens.embedding_dim embed_dim = cfg.decoder_embed_dim self.output_embed_dim = cfg.decoder_embed_dim self.layerdrop = cfg.decoder_layerdrop padding_idx = embed_tokens.padding_idx self.max_target_positions = cfg.max_target_positions self.embed_tokens = embed_tokens self.embed_scale = math.sqrt(embed_dim) # todo: try with input_embed_dim self.project_in_dim = ( Linear(input_embed_dim, embed_dim, bias=False) if embed_dim != input_embed_dim else None ) self.embed_positions = ( PositionalEmbedding( cfg.max_target_positions, embed_dim, padding_idx, learned=cfg.decoder_learned_pos, ) if not cfg.no_token_positional_embeddings else None ) # TODO: update this when transformer gets converted to dataclass configs transformer_cfg = copy.deepcopy(cfg) with open_dict(transformer_cfg): transformer_cfg.dropout = transformer_cfg.decoder_dropout transformer_cfg.attention_dropout = ( transformer_cfg.decoder_attention_dropout ) transformer_cfg.activation_dropout = ( transformer_cfg.decoder_activation_dropout ) self.layers = nn.ModuleList([]) self.layers.extend( [ TransformerDecoderLayer(transformer_cfg, no_encoder_attn) for _ in range(transformer_cfg.decoder_layers) ] ) if not self.share_input_output_embed: self.embed_out = nn.Parameter( torch.Tensor(len(dictionary), self.output_embed_dim) ) nn.init.normal_(self.embed_out, mean=0, std=self.output_embed_dim ** -0.5) if transformer_cfg.decoder_normalize_before: self.layer_norm = LayerNorm(embed_dim) else: self.layer_norm = None def forward( self, prev_output_tokens, encoder_out=None, incremental_state=None, **unused ): """ Args: prev_output_tokens (LongTensor): previous decoder outputs of shape `(batch, tgt_len)`, for teacher forcing encoder_out (Tensor, optional): output from the encoder, used for encoder-side attention incremental_state (dict): dictionary used for storing state during :ref:`Incremental decoding` Returns: tuple: - the decoder's output of shape `(batch, tgt_len, vocab)` - a dictionary with any model-specific outputs """ prev_output_tokens = prev_output_tokens.long() x, extra = self.extract_features( prev_output_tokens, encoder_out, incremental_state ) x = self.output_layer(x) return x, extra def extract_features( self, prev_output_tokens, encoder_out=None, incremental_state=None, **unused ): """ Similar to *forward* but only return features. Returns: tuple: - the decoder's features of shape `(batch, tgt_len, embed_dim)` - a dictionary with any model-specific outputs """ # embed positions positions = ( self.embed_positions( prev_output_tokens, incremental_state=incremental_state ) if self.embed_positions is not None else None ) if incremental_state is not None: prev_output_tokens = prev_output_tokens[:, -1:] if positions is not None: positions = positions[:, -1:] # embed tokens and positions x = self.embed_scale * self.embed_tokens(prev_output_tokens) if self.project_in_dim is not None: x = self.project_in_dim(x) if positions is not None: x += positions x = F.dropout(x, p=self.dropout, training=self.training) # B x T x C -> T x B x C x = x.transpose(0, 1) attn = None inner_states = [x] # decoder layers for layer in self.layers: dropout_probability = np.random.random() if not self.training or (dropout_probability > self.layerdrop): x, attn, _ = layer( x, encoder_out["encoder_out"] if encoder_out is not None else None, encoder_out["encoder_padding_mask"] if encoder_out is not None else None, incremental_state, self_attn_mask=self.buffered_future_mask(x) if incremental_state is None else None, ) inner_states.append(x) if self.layer_norm: x = self.layer_norm(x) # T x B x C -> B x T x C x = x.transpose(0, 1) return x, {"attn": attn, "inner_states": inner_states} def output_layer(self, features, **kwargs): """Project features to the vocabulary size.""" # project back to size of vocabulary if self.share_input_output_embed: return F.linear(features, self.embed_tokens.weight) else: return F.linear(features, self.embed_out) def max_positions(self): """Maximum output length supported by the decoder.""" if self.embed_positions is None: return self.max_target_positions return min(self.max_target_positions, self.embed_positions.max_positions) def buffered_future_mask(self, tensor): dim = tensor.size(0) if ( not hasattr(self, "_future_mask") or self._future_mask is None or self._future_mask.device != tensor.device or self._future_mask.size(0) < dim ): self._future_mask = torch.triu( utils.fill_with_neg_inf(tensor.new(dim, dim)), 1 ) return self._future_mask[:dim, :dim] def upgrade_state_dict_named(self, state_dict, name): return state_dict def Embedding(num_embeddings, embedding_dim, padding_idx): m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx) nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5) nn.init.constant_(m.weight[padding_idx], 0) return m def Linear(in_features, out_features, bias=True): m = nn.Linear(in_features, out_features, bias) nn.init.xavier_uniform_(m.weight) if bias: nn.init.constant_(m.bias, 0.0) return m
34.521886
90
0.631913
[ "MIT" ]
227514/Supervised-Simultaneous-MT
fairseq/models/wav2vec/wav2vec2_asr.py
20,506
Python
""" Django settings for webappexample project. Generated by 'django-admin startproject' using Django 1.11.4. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ from dotenv import load_dotenv, find_dotenv import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '*dn4z%$4b6-d1+epmb=hd1m3g#$*1*%&%x+4m_8*cvakee%=7q' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'social_django', 'auth0login' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'webappexample.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'webappexample.wsgi.application' # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_URL = '/static/' ENV_FILE = find_dotenv() if ENV_FILE: load_dotenv(ENV_FILE) # SOCIAL AUTH AUTH0 BACKEND CONFIG SOCIAL_AUTH_TRAILING_SLASH = False SOCIAL_AUTH_AUTH0_KEY = os.environ.get('AUTH0_CLIENT_ID') SOCIAL_AUTH_AUTH0_SECRET = os.environ.get('AUTH0_CLIENT_SECRET') SOCIAL_AUTH_AUTH0_SCOPE = [ 'openid', 'profile' ] SOCIAL_AUTH_AUTH0_DOMAIN = os.environ.get('AUTH0_DOMAIN') AUDIENCE = None if os.environ.get('AUTH0_AUDIENCE'): AUDIENCE = os.environ.get('AUTH0_AUDIENCE') else: if SOCIAL_AUTH_AUTH0_DOMAIN: AUDIENCE = 'https://' + SOCIAL_AUTH_AUTH0_DOMAIN + '/userinfo' if AUDIENCE: SOCIAL_AUTH_AUTH0_AUTH_EXTRA_ARGUMENTS = {'audience': AUDIENCE} AUTHENTICATION_BACKENDS = { 'auth0login.auth0backend.Auth0', 'django.contrib.auth.backends.ModelBackend' } LOGIN_URL = '/login/auth0' LOGIN_REDIRECT_URL = '/dashboard'
26.096774
91
0.710507
[ "MIT" ]
alexisluque/auth0-django-web-app
01-Login/webappexample/settings.py
4,045
Python
""" Author: thangbk2209 Project: Autoscaling Created: 3/15/19 16:48 Purpose: """ import random import os import matplotlib import matplotlib.pyplot as plt from sklearn.preprocessing import MinMaxScaler, StandardScaler import tensorflow as tf from config import * def draw_time_series(data, title, x_label, y_label, file_name): plt.plot(data) plt.title(title) plt.ylabel(y_label) plt.xlabel(x_label) # plt.legend([/], loc='upper left') plt.savefig(file_name + '.png') plt.show() plt.close() def get_scaler(scaler_method): if scaler_method == 'min_max_scaler': return MinMaxScaler(feature_range=(0, 1)) if scaler_method == 'standard_scaler': return StandardScaler() else: print(f'|-> ERROR: Not support {scaler_method}') def get_activation(activation_name): if activation_name == 'sigmoid': return tf.nn.sigmoid elif activation_name == 'relu': return tf.nn.relu elif activation_name == 'tanh': return tf.nn.tanh elif activation_name == 'elu': return tf.nn.elu else: print(">>> Can not apply your activation <<<") def get_optimizer(optimizer_name, lr): if optimizer_name == 'momentum': return tf.train.MomentumOptimizer(learning_rate=lr, momentum=0.9) elif optimizer_name == 'adam': return tf.train.AdamOptimizer(learning_rate=lr) elif optimizer_name == 'rmsprop': return tf.train.RMSPropOptimizer(learning_rate=lr) else: print(">>> Can not apply your optimizer <<<") def early_stopping_decision(array, patience): value = array[len(array) - patience - 1] arr = array[len(array) - patience:] check = 0 for val in arr: if(val > value): check += 1 if(check == patience): return False else: return True def draw_train_loss(loss_train, loss_valid, save_path): plt.plot(loss_train) plt.plot(loss_valid) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train', 'validation'], loc='upper left') plt.savefig(save_path) plt.close() def average(arr): return sum(arr) / len(arr) def create_name(**kwargs): key = list(kwargs.keys()) # collect the first key in kwargs dict name = [] for _key in key: value = str(kwargs[_key]).replace('[', '') value = value.replace(']', '') _name = f'{_key}_{value}' name.append(_name) return '-'.join(name) def generate_units_size(network_size, layer_size): assert network_size > 0, 'Network size invalid' assert layer_size > 0, 'Layer size invalid' num_units = [] for i in range(network_size): # num_units.append(random.choice(range(1, layer_size, 1))) num_units.append(int(layer_size)) if layer_size != 2: layer_size /= 2 return num_units def compute_scale_fitness_value(upper_prediction, lower_prediction, real_value): rate_real_value_in_prediction_interval = 0 num_sample = len(upper_prediction) for i in range(num_sample): _real_value = real_value[i][0] lower_border = lower_prediction[i] higher_border = upper_prediction[i] if _real_value <= higher_border and _real_value >= lower_border: rate_real_value_in_prediction_interval += 1 / num_sample return rate_real_value_in_prediction_interval def gen_folder_in_path(path): path_component = path.split('/') path_infor = '' for _path_component in path_component: path_infor += f'/{_path_component}' if not os.path.exists(path_infor): os.mkdir(path_infor) assert os.path.exists(path_infor), f'Can not generate folder in path {path}'
26.244755
80
0.656541
[ "MIT" ]
vutriancode/mfea_autoscaling
lib/includes/utility.py
3,753
Python
# -*- coding: utf-8 -*- # Copyright (c) Facebook, Inc. and its affiliates. import functools import inspect import logging from fvcore.common.config import CfgNode as _CfgNode from detectron2.utils.file_io import PathManager class CfgNode(_CfgNode): """ The same as `fvcore.common.config.CfgNode`, but different in: 1. Use unsafe yaml loading by default. Note that this may lead to arbitrary code execution: you must not load a config file from untrusted sources before manually inspecting the content of the file. 2. Support config versioning. When attempting to merge an old config, it will convert the old config automatically. """ @classmethod def _open_cfg(cls, filename): return PathManager.open(filename, "r") # Note that the default value of allow_unsafe is changed to True def merge_from_file(self, cfg_filename: str, allow_unsafe: bool = True) -> None: assert PathManager.isfile(cfg_filename), f"Config file '{cfg_filename}' does not exist!" loaded_cfg = self.load_yaml_with_base(cfg_filename, allow_unsafe=allow_unsafe) loaded_cfg = type(self)(loaded_cfg) # defaults.py needs to import CfgNode from .defaults import _C latest_ver = _C.VERSION assert ( latest_ver == self.VERSION ), "CfgNode.merge_from_file is only allowed on a config object of latest version!" logger = logging.getLogger(__name__) loaded_ver = loaded_cfg.get("VERSION", None) if loaded_ver is None: from .compat import guess_version loaded_ver = guess_version(loaded_cfg, cfg_filename) assert loaded_ver <= self.VERSION, "Cannot merge a v{} config into a v{} config.".format( loaded_ver, self.VERSION ) if loaded_ver == self.VERSION: self.merge_from_other_cfg(loaded_cfg) else: # compat.py needs to import CfgNode from .compat import upgrade_config, downgrade_config logger.warning( "Loading an old v{} config file '{}' by automatically upgrading to v{}. " "See docs/CHANGELOG.md for instructions to update your files.".format( loaded_ver, cfg_filename, self.VERSION ) ) # To convert, first obtain a full config at an old version old_self = downgrade_config(self, to_version=loaded_ver) old_self.merge_from_other_cfg(loaded_cfg) new_config = upgrade_config(old_self) self.clear() self.update(new_config) def dump(self, *args, **kwargs): """ Returns: str: a yaml string representation of the config """ # to make it show up in docs return super().dump(*args, **kwargs) global_cfg = CfgNode() def get_cfg() -> CfgNode: """ Get a copy of the default config. Returns: a detectron2 CfgNode instance. """ from .defaults import _C return _C.clone() def set_global_cfg(cfg: CfgNode) -> None: """ Let the global config point to the given cfg. Assume that the given "cfg" has the key "KEY", after calling `set_global_cfg(cfg)`, the key can be accessed by: :: from detectron2.config import global_cfg print(global_cfg.KEY) By using a hacky global config, you can access these configs anywhere, without having to pass the config object or the values deep into the code. This is a hacky feature introduced for quick prototyping / research exploration. """ global global_cfg global_cfg.clear() global_cfg.update(cfg) def configurable(init_func=None, *, from_config=None): """ Decorate a function or a class's __init__ method so that it can be called with a :class:`CfgNode` object using a :func:`from_config` function that translates :class:`CfgNode` to arguments. Examples: :: # Usage 1: Decorator on __init__: class A: @configurable def __init__(self, a, b=2, c=3): pass @classmethod def from_config(cls, cfg): # 'cfg' must be the first argument # Returns kwargs to be passed to __init__ return {"a": cfg.A, "b": cfg.B} a1 = A(a=1, b=2) # regular construction a2 = A(cfg) # construct with a cfg a3 = A(cfg, b=3, c=4) # construct with extra overwrite # Usage 2: Decorator on any function. Needs an extra from_config argument: @configurable(from_config=lambda cfg: {"a: cfg.A, "b": cfg.B}) def a_func(a, b=2, c=3): pass a1 = a_func(a=1, b=2) # regular call a2 = a_func(cfg) # call with a cfg a3 = a_func(cfg, b=3, c=4) # call with extra overwrite Args: init_func (callable): a class's ``__init__`` method in usage 1. The class must have a ``from_config`` classmethod which takes `cfg` as the first argument. from_config (callable): the from_config function in usage 2. It must take `cfg` as its first argument. """ def check_docstring(func): if func.__module__.startswith("detectron2."): assert ( func.__doc__ is not None and "experimental" in func.__doc__.lower() ), f"configurable {func} should be marked experimental" if init_func is not None: assert ( inspect.isfunction(init_func) and from_config is None and init_func.__name__ == "__init__" ), "Incorrect use of @configurable. Check API documentation for examples." check_docstring(init_func) @functools.wraps(init_func) def wrapped(self, *args, **kwargs): try: from_config_func = type(self).from_config except AttributeError as e: raise AttributeError( "Class with @configurable must have a 'from_config' classmethod." ) from e if not inspect.ismethod(from_config_func): raise TypeError("Class with @configurable must have a 'from_config' classmethod.") if _called_with_cfg(*args, **kwargs): explicit_args = _get_args_from_config(from_config_func, *args, **kwargs) init_func(self, **explicit_args) else: init_func(self, *args, **kwargs) return wrapped else: if from_config is None: return configurable # @configurable() is made equivalent to @configurable assert inspect.isfunction( from_config ), "from_config argument of configurable must be a function!" def wrapper(orig_func): check_docstring(orig_func) @functools.wraps(orig_func) def wrapped(*args, **kwargs): if _called_with_cfg(*args, **kwargs): explicit_args = _get_args_from_config(from_config, *args, **kwargs) return orig_func(**explicit_args) else: return orig_func(*args, **kwargs) return wrapped return wrapper def _get_args_from_config(from_config_func, *args, **kwargs): """ Use `from_config` to obtain explicit arguments. Returns: dict: arguments to be used for cls.__init__ """ signature = inspect.signature(from_config_func) if list(signature.parameters.keys())[0] != "cfg": if inspect.isfunction(from_config_func): name = from_config_func.__name__ else: name = f"{from_config_func.__self__}.from_config" raise TypeError(f"{name} must take 'cfg' as the first argument!") support_var_arg = any( param.kind in [param.VAR_POSITIONAL, param.VAR_KEYWORD] for param in signature.parameters.values() ) if support_var_arg: # forward all arguments to from_config, if from_config accepts them ret = from_config_func(*args, **kwargs) else: # forward supported arguments to from_config supported_arg_names = set(signature.parameters.keys()) extra_kwargs = {} for name in list(kwargs.keys()): if name not in supported_arg_names: extra_kwargs[name] = kwargs.pop(name) ret = from_config_func(*args, **kwargs) # forward the other arguments to __init__ ret.update(extra_kwargs) return ret def _called_with_cfg(*args, **kwargs): """ Returns: bool: whether the arguments contain CfgNode and should be considered forwarded to from_config. """ if len(args) and isinstance(args[0], _CfgNode): return True if isinstance(kwargs.pop("cfg", None), _CfgNode): return True # `from_config`'s first argument is forced to be "cfg". # So the above check covers all cases. return False
35.019455
98
0.62
[ "Apache-2.0" ]
873900204/datasets
detectron2/config/config.py
9,000
Python
#!/usr/bin/env python3 """ This script builds the ASKE deliverable reports as PDFs by combining the markdown files, using pandoc. Usage: ./build_report.py <report_name> """ import os, sys from glob import glob import subprocess as sp def transform_line(line): # Transform headers - numbered headings are not supported in Jekyll, # and we want them for the LaTeX output. if line.startswith("#"): header_level = line.split()[0] line = line.replace(header_level, header_level[:-1]) if line.split()[1][0].isdigit(): line = "# " + " ".join(line.split()[2:]) # Skip captions intended for web if line.startswith("**Figure"): line="" # Transform math expression delimiters line = line.replace("$$", "$") # Recursively include markdown files if "include_relative" in line: filename = line.split()[2] with open(filename, "r") as f: line = "\n" + "".join([transform_line(line) for line in f]) return line def build_report(report_name): """ Apply appropriate transformations to markdown files so that they can be compiled properly into a PDF report via LaTeX. """ with open("index.md", "r") as f: lines = [transform_line(line) for line in f] with open("index_transformed.md", "w") as f: f.writelines(lines) sp.call( [ "pandoc", "--template", "../pandoc_report_template.tex", "--pdf-engine", "lualatex", "-V", f"reportname={report_name}", "-N", "-f", "markdown+tex_math_dollars", "index_transformed.md", "-o", f"{report_name}.tex", ] ) sp.call(["latexmk","-lualatex",f"{report_name}.tex"]) os.remove("index_transformed.md") if __name__ == "__main__": report_name = sys.argv[1] if report_name.endswith("/"): report_name = report_name[:-1] cwd = os.getcwd() os.chdir(report_name) build_report(report_name) os.rename(report_name+".pdf", "../"+report_name+".pdf") os.chdir(cwd)
27.564103
76
0.583256
[ "Apache-2.0" ]
mikiec84/automates
documentation/deliverable_reports/build_report.py
2,150
Python
# # PySNMP MIB module Juniper-MPLS-CONF (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/Juniper-MPLS-CONF # Produced by pysmi-0.3.4 at Wed May 1 14:03:27 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # Integer, OctetString, ObjectIdentifier = mibBuilder.importSymbols("ASN1", "Integer", "OctetString", "ObjectIdentifier") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ValueSizeConstraint, ConstraintsIntersection, ValueRangeConstraint, ConstraintsUnion, SingleValueConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ValueSizeConstraint", "ConstraintsIntersection", "ValueRangeConstraint", "ConstraintsUnion", "SingleValueConstraint") juniAgents, = mibBuilder.importSymbols("Juniper-Agents", "juniAgents") AgentCapabilities, ModuleCompliance, NotificationGroup = mibBuilder.importSymbols("SNMPv2-CONF", "AgentCapabilities", "ModuleCompliance", "NotificationGroup") MibScalar, MibTable, MibTableRow, MibTableColumn, ModuleIdentity, TimeTicks, Counter32, NotificationType, Integer32, Bits, ObjectIdentity, Gauge32, Counter64, Unsigned32, MibIdentifier, iso, IpAddress = mibBuilder.importSymbols("SNMPv2-SMI", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "ModuleIdentity", "TimeTicks", "Counter32", "NotificationType", "Integer32", "Bits", "ObjectIdentity", "Gauge32", "Counter64", "Unsigned32", "MibIdentifier", "iso", "IpAddress") TextualConvention, DisplayString = mibBuilder.importSymbols("SNMPv2-TC", "TextualConvention", "DisplayString") juniMplsAgent = ModuleIdentity((1, 3, 6, 1, 4, 1, 4874, 5, 2, 51)) juniMplsAgent.setRevisions(('2004-06-11 21:36', '2003-01-24 18:34', '2002-11-04 15:47', '2001-12-05 21:41',)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): if mibBuilder.loadTexts: juniMplsAgent.setRevisionsDescriptions(('Added agent capabilities definitions for MPLS-LSR-STD-MIB.', 'Replaced Unisphere names with Juniper names. Added IP TTL Propagate object to the MPLS scalar group.', 'Added RowStatus support to the minor layer and the tunnel profile groups.', 'The initial release of this management information module.',)) if mibBuilder.loadTexts: juniMplsAgent.setLastUpdated('200406231509Z') if mibBuilder.loadTexts: juniMplsAgent.setOrganization('Juniper Networks, Inc.') if mibBuilder.loadTexts: juniMplsAgent.setContactInfo(' Juniper Networks, Inc. Postal: 10 Technology Park Drive Westford, MA 01886-3146 USA Tel: +1 978 589 5800 E-mail: [email protected]') if mibBuilder.loadTexts: juniMplsAgent.setDescription('The agent capabilities definitions for the MultiProtocol Label Switching (MPLS) component of the SNMP agent in the Juniper E-series family of products.') juniMplsAgentV1 = AgentCapabilities((1, 3, 6, 1, 4, 1, 4874, 5, 2, 51, 1)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): juniMplsAgentV1 = juniMplsAgentV1.setProductRelease('Version 1 of the MultiProtocol Label Switching (MPLS) component of the\n JUNOSe SNMP agent. This version of the MPLS component was supported in\n JUNOSe 4.0 system releases.') if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): juniMplsAgentV1 = juniMplsAgentV1.setStatus('obsolete') if mibBuilder.loadTexts: juniMplsAgentV1.setDescription('The MIB supported by the SNMP agent for the MPLS application in JUNOSe. These capabilities became obsolete when new RowStatus objects were added to the tables in juniMplsMinorLayerConfGroup and juniMplsTunnelProfileConfGroup.') juniMplsAgentV2 = AgentCapabilities((1, 3, 6, 1, 4, 1, 4874, 5, 2, 51, 2)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): juniMplsAgentV2 = juniMplsAgentV2.setProductRelease('Version 2 of the MultiProtocol Label Switching (MPLS) component of the\n JUNOSe SNMP agent. This version of the MPLS component was supported in\n JUNOSe 4.1 and subsequent 4.x system releases.') if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): juniMplsAgentV2 = juniMplsAgentV2.setStatus('obsolete') if mibBuilder.loadTexts: juniMplsAgentV2.setDescription('The MIB supported by the SNMP agent for the MPLS application in JUNOSe. These capabilities became obsolete when the IP TTL Propagate object was added to the MPLS scalar group.') juniMplsAgentV3 = AgentCapabilities((1, 3, 6, 1, 4, 1, 4874, 5, 2, 51, 3)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): juniMplsAgentV3 = juniMplsAgentV3.setProductRelease('Version 3 of the MultiProtocol Label Switching (MPLS) component of the\n JUNOSe SNMP agent. This version of the MPLS component is supported in\n JUNOSe 5.0 and subsequent system releases.') if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): juniMplsAgentV3 = juniMplsAgentV3.setStatus('obsolete') if mibBuilder.loadTexts: juniMplsAgentV3.setDescription('The MIB supported by the SNMP agent for the MPLS application in JUNOSe. These capabilities became obsolete when some of the objects in that MIB became obsolete.') juniMplsAgentV4 = AgentCapabilities((1, 3, 6, 1, 4, 1, 4874, 5, 2, 51, 4)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): juniMplsAgentV4 = juniMplsAgentV4.setProductRelease('Version 4 of the MultiProtocol Label Switching (MPLS) component of the\n JUNOSe SNMP agent. This version of the MPLS component is supported in\n JUNOSe 6.0 and subsequent system releases.') if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): juniMplsAgentV4 = juniMplsAgentV4.setStatus('obsolete') if mibBuilder.loadTexts: juniMplsAgentV4.setDescription('The MIB supported by the SNMP agent for the MPLS application in JUNOSe. These capabilities became obsolete when the MPLS-LSR-STD-MIB support is added.') juniMplsAgentV5 = AgentCapabilities((1, 3, 6, 1, 4, 1, 4874, 5, 2, 51, 5)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): juniMplsAgentV5 = juniMplsAgentV5.setProductRelease('Version 5 of the MultiProtocol Label Switching (MPLS) component of the\n JUNOSe SNMP agent. This version of the MPLS component is supported in\n JUNOSe 6.1 and subsequent system releases.') if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): juniMplsAgentV5 = juniMplsAgentV5.setStatus('obsolete') if mibBuilder.loadTexts: juniMplsAgentV5.setDescription('The MIB supported by the SNMP agent for the MPLS application in JUNOSe.') juniMplsAgentV6 = AgentCapabilities((1, 3, 6, 1, 4, 1, 4874, 5, 2, 51, 6)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): juniMplsAgentV6 = juniMplsAgentV6.setProductRelease('Version 6 of the MultiProtocol Label Switching (MPLS) component of the\n JUNOSe SNMP agent. This version of the MPLS component is supported in\n JUNOSe 7.1 and subsequent system releases.') if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): juniMplsAgentV6 = juniMplsAgentV6.setStatus('current') if mibBuilder.loadTexts: juniMplsAgentV6.setDescription('The MIB supported by the SNMP agent for the MPLS application in JUNOSe.') mibBuilder.exportSymbols("Juniper-MPLS-CONF", juniMplsAgentV1=juniMplsAgentV1, juniMplsAgentV6=juniMplsAgentV6, juniMplsAgentV3=juniMplsAgentV3, juniMplsAgentV2=juniMplsAgentV2, juniMplsAgentV5=juniMplsAgentV5, PYSNMP_MODULE_ID=juniMplsAgent, juniMplsAgentV4=juniMplsAgentV4, juniMplsAgent=juniMplsAgent)
120.918033
477
0.759219
[ "Apache-2.0" ]
agustinhenze/mibs.snmplabs.com
pysnmp-with-texts/Juniper-MPLS-CONF.py
7,376
Python
# -*- coding:utf-8; python-indent:2; indent-tabs-mode:nil -*- # Copyright 2013 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Functions for optimizing pytd syntax trees. pytd files come from various sources, and are typically redundant (duplicate functions, different signatures saying the same thing, overlong type disjunctions). The Visitors in this file remove various forms of these redundancies. """ import collections import logging from pytype import utils from pytype.pytd import abc_hierarchy from pytype.pytd import booleq from pytype.pytd import mro from pytype.pytd import pytd from pytype.pytd import pytd_utils from pytype.pytd import type_match from pytype.pytd import visitors import six log = logging.getLogger(__name__) class RenameUnknowns(visitors.Visitor): """Give unknowns that map to the same set of concrete types the same name.""" def __init__(self, mapping): super(RenameUnknowns, self).__init__() self.name_to_cls = {name: hash(cls) for name, cls in mapping.items()} self.cls_to_canonical_name = { cls: name for name, cls in self.name_to_cls.items()} def VisitClassType(self, node): if node.name.startswith("~unknown"): return pytd.ClassType( self.cls_to_canonical_name[self.name_to_cls[node.name]], None) else: return node class RemoveDuplicates(visitors.Visitor): """Remove duplicate function signatures. For example, this transforms def f(x: int) -> float def f(x: int) -> float to def f(x: int) -> float In order to be removed, a signature has to be exactly identical to an existing one. """ def VisitFunction(self, node): # We remove duplicates, but keep existing entries in the same order. return node.Replace( signatures=tuple(pytd_utils.OrderedSet(node.signatures))) class RemoveRedundantSignatures(visitors.Visitor): """Remove duplicate function signatures. For example, this transforms def f(x: int) -> float def f(x: int or float) -> float to def f(x: int or float) -> float In order to be removed, a signature has to be "contained" (a subclass of) an existing one. """ def __init__(self, hierarchy): super(RemoveRedundantSignatures, self).__init__() self.match = type_match.TypeMatch(hierarchy.GetSuperClasses(), any_also_is_bottom=False) self.subst = {} def EnterClass(self, cls): # Preserve the identify of each type parameter, and don't # allow them to match against anything by themselves. self.subst = {p.type_param: pytd.NamedType("$" + p.name) for p in cls.template} def LeaveClass(self, _): self.subst = {} def VisitFunction(self, node): new_signatures = [] matches = set() # We keep track of which signature matched which other signatures, purely # for optimization - that way we don't have to query the reverse direction. for i, s1 in enumerate(node.signatures): for j, s2 in enumerate(node.signatures): if i != j and (j, i) not in matches: if s1.exceptions or s2.exceptions: # We don't support matching of exceptions. continue if s1.template: # type_match doesn't support polymorphic functions on the # left side yet. continue if self.match.match(s1, s2, self.subst) == booleq.TRUE: matches.add((i, j)) break else: new_signatures.append(s1) return node.Replace(signatures=tuple(new_signatures)) class SimplifyUnions(visitors.Visitor): """Remove duplicate or redundant entries in union types. For example, this transforms a: int or int b: int or ? c: int or (int or float) to a: int b: ? c: int or float """ def VisitUnionType(self, union): return pytd_utils.JoinTypes(union.type_list) class _ReturnsAndExceptions(object): """Mutable class for collecting return types and exceptions of functions. The collecting is stable: Items are kept in the order in which they were encountered. Attributes: return_types: Return types seen so far. exceptions: Exceptions seen so far. """ def __init__(self): self.return_types = [] self.exceptions = [] def Update(self, signature): """Add the return types / exceptions of a signature to this instance.""" if signature.return_type not in self.return_types: self.return_types.append(signature.return_type) self.exceptions.extend(exception for exception in signature.exceptions if exception not in self.exceptions) class CombineReturnsAndExceptions(visitors.Visitor): """Group function signatures that only differ in exceptions or return values. For example, this transforms def f(x: int) -> float: raise OverflowError() def f(x: int) -> int: raise IndexError() to def f(x: int) -> float or int: raise IndexError() raise OverflowError() """ def _GroupByArguments(self, signatures): """Groups signatures by arguments. Arguments: signatures: A list of function signatures (Signature instances). Returns: A dictionary mapping signatures (without return and exceptions) to a tuple of return values and exceptions. """ groups = collections.OrderedDict() # Signature -> ReturnsAndExceptions for sig in signatures: stripped_signature = sig.Replace(return_type=None, exceptions=None) ret = groups.get(stripped_signature) if not ret: ret = _ReturnsAndExceptions() groups[stripped_signature] = ret ret.Update(sig) return groups def VisitFunction(self, f): """Merge signatures of a function. This groups signatures by arguments and then for each group creates a single signature that joins the return values / exceptions using "or". Arguments: f: A pytd.Function instance Returns: Function with simplified / combined signatures. """ groups = self._GroupByArguments(f.signatures) new_signatures = [] for stripped_signature, ret_exc in groups.items(): ret = pytd_utils.JoinTypes(ret_exc.return_types) exc = tuple(ret_exc.exceptions) new_signatures.append( stripped_signature.Replace(return_type=ret, exceptions=exc) ) return f.Replace(signatures=tuple(new_signatures)) class CombineContainers(visitors.Visitor): """Change unions of containers to containers of unions. For example, this transforms list[int] or list[float] to list[int or float] . """ _CONTAINER_NAMES = { pytd.TupleType: ("__builtin__.tuple", "typing.Tuple"), pytd.CallableType: ("typing.Callable",), } def _key(self, t): if isinstance(t, (pytd.CallableType, pytd.TupleType)): return (t.base_type, len(t.parameters)) else: return t.base_type def _should_merge(self, pytd_type, union): """Determine whether pytd_type values in the union should be merged. If the union contains the homogeneous flavor of pytd_type (e.g., GenericType(base_type=tuple) when pytd_type is TupleType), or pytd_type values of different lengths, we want to turn all of the pytd_type values into homogeneous ones so that they can be merged into a single container. Args: pytd_type: The pytd type, either TupleType or CallableType. union: a pytd.UnionType Returns: True if the pytd_type values should be merged, False otherwise. """ names = self._CONTAINER_NAMES[pytd_type] length = None for t in union.type_list: if isinstance(t, pytd_type): if length is None: length = len(t.parameters) elif length != len(t.parameters): return True elif (isinstance(t, pytd.GenericType) and t.base_type.name in names): return True return False def VisitUnionType(self, union): """Push unions down into containers. This collects similar container types in unions and merges them into single instances with the union type pushed down to the element_type level. Arguments: union: A pytd.Union instance. Might appear in a parameter, a return type, a constant type, etc. Returns: A simplified pytd.Union. """ if not any(isinstance(t, pytd.GenericType) for t in union.type_list): # Optimization: If we're not going to change anything, return original. return union union = pytd_utils.JoinTypes(union.type_list) # flatten if not isinstance(union, pytd.UnionType): union = pytd.UnionType((union,)) merge_tuples = self._should_merge(pytd.TupleType, union) merge_callables = self._should_merge(pytd.CallableType, union) if merge_tuples or merge_callables: type_list = [] for t in union.type_list: if merge_tuples and isinstance(t, pytd.TupleType): t = pytd.GenericType(base_type=t.base_type, parameters=(pytd.UnionType(t.parameters),)) elif merge_callables and isinstance(t, pytd.CallableType): t = pytd.GenericType(base_type=t.base_type, parameters=(pytd.AnythingType(), t.ret)) type_list.append(t) union = union.Replace(type_list=tuple(type_list)) collect = {} has_redundant_base_types = False for t in union.type_list: if isinstance(t, pytd.GenericType): key = self._key(t) if key in collect: has_redundant_base_types = True collect[key] = tuple( pytd_utils.JoinTypes([p1, p2]) for p1, p2 in zip(collect[key], t.parameters)) else: collect[key] = t.parameters if not has_redundant_base_types: return union result = pytd.NothingType() done = set() for t in union.type_list: if isinstance(t, pytd.GenericType): key = self._key(t) if key in done: continue # already added parameters = collect[key] add = t.Replace(parameters=tuple(p.Visit(CombineContainers()) for p in parameters)) done.add(key) else: add = t result = pytd_utils.JoinTypes([result, add]) return result class Factorize(visitors.Visitor): """Opposite of ExpandSignatures. Factorizes cartesian products of functions. For example, this transforms def f(x: int, y: int) def f(x: int, y: float) def f(x: float, y: int) def f(x: float, y: float) to def f(x: int or float, y: int or float) """ def _GroupByOmittedArg(self, signatures, i): """Group functions that are identical if you ignore one of the arguments. Arguments: signatures: A list of function signatures i: The index of the argument to ignore during comparison. Returns: A list of tuples (signature, types). "signature" is a signature with argument i omitted, "types" is the list of types that argument was found to have. signatures that don't have argument i are represented as (original, None). """ groups = collections.OrderedDict() for sig in signatures: if i >= len(sig.params): # We can't omit argument i, because this signature has too few # arguments. Represent this signature as (original, None). groups[sig] = None continue if sig.params[i].mutated_type is not None: # We can't group mutable parameters. Leave this signature alone. groups[sig] = None continue # Set type of parameter i to None params = list(sig.params) param_i = params[i] params[i] = param_i.Replace(type=None) stripped_signature = sig.Replace(params=tuple(params)) existing = groups.get(stripped_signature) if existing: existing.append(param_i.type) else: groups[stripped_signature] = [param_i.type] return groups.items() def VisitFunction(self, f): """Shrink a function, by factorizing cartesian products of arguments. Greedily groups signatures, looking at the arguments from left to right. This algorithm is *not* optimal. But it does the right thing for the typical cases. Arguments: f: An instance of pytd.Function. If this function has more than one signature, we will try to combine some of these signatures by introducing union types. Returns: A new, potentially optimized, instance of pytd.Function. """ max_argument_count = max(len(s.params) for s in f.signatures) signatures = f.signatures for i in six.moves.xrange(max_argument_count): new_sigs = [] for sig, types in self._GroupByOmittedArg(signatures, i): if types: # One or more options for argument <i>: new_params = list(sig.params) new_params[i] = sig.params[i].Replace( type=pytd_utils.JoinTypes(types)) sig = sig.Replace(params=tuple(new_params)) new_sigs.append(sig) else: # Signature doesn't have argument <i>, so we store the original: new_sigs.append(sig) signatures = new_sigs return f.Replace(signatures=tuple(signatures)) class ApplyOptionalArguments(visitors.Visitor): """Removes functions that are instances of a more specific case. For example, this reduces def f(x: int, ...) # [1] def f(x: int, y: int) # [2] to just def f(x: int, ...) Because "..." makes it possible to pass any additional arguments to [1], it encompasses both declarations, hence we can omit [2]. """ def _HasShorterVersion(self, sig, optional_arg_sigs): """Find a shorter signature with optional arguments for a longer signature. Arguments: sig: The function signature we'd like to shorten optional_arg_sigs: A set of function signatures with optional arguments that will be matched against sig. Returns: True if there is a shorter signature that generalizes sig, but is not identical to sig. """ param_count = len(sig.params) if not sig.has_optional: param_count += 1 # also consider f(x, y, ...) for f(x, y) for i in six.moves.xrange(param_count): if sig.params[0:i] in optional_arg_sigs: return True return False def VisitFunction(self, f): """Remove all signatures that have a shorter version. We use signatures with optional argument (has_opt=True) as template and then match all signatures against those templates, removing those that match. Arguments: f: An instance of pytd.Function Returns: A potentially simplified instance of pytd.Function. """ # Set of signatures that can replace longer ones. Only used for matching, # hence we can use an unordered data structure. optional_arg_sigs = frozenset(s.params for s in f.signatures if s.has_optional) new_signatures = (s for s in f.signatures if not self._HasShorterVersion(s, optional_arg_sigs)) return f.Replace(signatures=tuple(new_signatures)) class SuperClassHierarchy(object): """Utility class for optimizations working with superclasses.""" def __init__(self, superclasses): self._superclasses = superclasses self._subclasses = utils.invert_dict(self._superclasses) def GetSuperClasses(self): return self._superclasses def _CollectSuperclasses(self, type_name, collect): """Recursively collect super classes for a type. Arguments: type_name: A string, the type's name. collect: A set() of strings, modified to contain all superclasses. """ collect.add(type_name) superclasses = [name for name in self._superclasses.get(type_name, [])] # The superclasses might have superclasses of their own, so recurse. for superclass in superclasses: self._CollectSuperclasses(superclass, collect) def ExpandSuperClasses(self, t): """Generate a list of all (known) superclasses for a type. Arguments: t: A type name. E.g. "int". Returns: A set of types. This set includes t as well as all its superclasses. For example, this will return "bool", "int" and "object" for "bool". """ superclasses = set() self._CollectSuperclasses(t, superclasses) return superclasses def ExpandSubClasses(self, t): """Generate a set of all (known) subclasses for a type. Arguments: t: A type. E.g. NamedType("int"). Returns: A set of types. This set includes t as well as all its subclasses. For example, this will return "int" and "bool" for "int". """ queue = [t] seen = set() while queue: item = queue.pop() if item not in seen: seen.add(item) queue.extend(self._subclasses[item]) return seen def HasSubClassInSet(self, cls, known): """Queries whether a subclass of a type is present in a given set.""" return any(sub in known for sub in self._subclasses[cls]) def HasSuperClassInSet(self, cls, known): """Queries whether a superclass of a type is present in a given set.""" return any(sub in known for sub in self._superclasses[cls]) class SimplifyUnionsWithSuperclasses(visitors.Visitor): """Simplify Unions with superclasses. E.g., this changes int or bool to int since bool is a subclass of int. (Interpreting types as "sets of values", this simplification is sound since A union B = A, if B is a subset of A.) """ def __init__(self, hierarchy): super(SimplifyUnionsWithSuperclasses, self).__init__() self.hierarchy = hierarchy def VisitUnionType(self, union): c = collections.Counter() for t in set(union.type_list): # TODO(rechen): How can we make this work with GenericType? if isinstance(t, pytd.GENERIC_BASE_TYPE): c += collections.Counter(self.hierarchy.ExpandSubClasses(str(t))) # Below, c[str[t]] can be zero - that's the default for non-existent items # in collections.Counter. It'll happen for types that are not # instances of GENERIC_BASE_TYPE, like container types. new_type_list = [t for t in union.type_list if c[str(t)] <= 1] return pytd_utils.JoinTypes(new_type_list) class FindCommonSuperClasses(visitors.Visitor): """Find common super classes. Optionally also uses abstract base classes. E.g., this changes def f(x: list or tuple, y: frozenset or set) -> int or float to def f(x: Sequence, y: Set) -> Real """ def __init__(self, hierarchy): super(FindCommonSuperClasses, self).__init__() self.hierarchy = hierarchy def VisitUnionType(self, union): """Given a union type, try to find a simplification by using superclasses. This is a lossy optimization that tries to map a list of types to a common base type. For example, int and bool are both base classes of int, so it would convert "int or bool" to "int". Arguments: union: A union type. Returns: A simplified type, if available. """ intersection = self.hierarchy.ExpandSuperClasses(str(union.type_list[0])) for t in union.type_list[1:]: intersection.intersection_update( self.hierarchy.ExpandSuperClasses(str(t))) # Remove "redundant" superclasses, by removing everything from the tree # that's not a leaf. I.e., we don't need "object" if we have more # specialized types. new_type_list = tuple( pytd.NamedType(cls) for cls in intersection if not self.hierarchy.HasSubClassInSet(cls, intersection)) if not new_type_list: return union # if types don't intersect, leave them alone return pytd_utils.JoinTypes(new_type_list) class CollapseLongUnions(visitors.Visitor): """Shortens long unions to object (or "?"). Poor man's version of FindCommonSuperClasses. Shorten types like "str or unicode or int or float or list" to just "object" or "?". Additionally, if the union already contains at least one "object", we also potentially replace the entire union with just "object". Attributes: max_length: The maximum number of types to allow in a union. If there are more types than this, it is shortened. """ def __init__(self, max_length=7): assert isinstance(max_length, six.integer_types) super(CollapseLongUnions, self).__init__() self.generic_type = pytd.AnythingType() self.max_length = max_length def VisitUnionType(self, union): if len(union.type_list) > self.max_length: return self.generic_type elif self.generic_type in union.type_list: return self.generic_type else: return union class AdjustGenericType(visitors.Visitor): """Changes the generic type from "object" to "Any".""" def __init__(self): super(AdjustGenericType, self).__init__() self.old_generic_type = pytd.ClassType("__builtin__.object") self.new_generic_type = pytd.AnythingType() def VisitClassType(self, t): if t == self.old_generic_type: return self.new_generic_type else: return t class AdjustReturnAndConstantGenericType(visitors.Visitor): """Changes "object" to "Any" in return and constant types.""" def VisitSignature(self, sig): return sig.Replace(return_type=sig.return_type.Visit(AdjustGenericType())) def VisitConstant(self, c): return c.Replace(type=c.type.Visit(AdjustGenericType())) class AddInheritedMethods(visitors.Visitor): """Copy methods and constants from base classes into their derived classes. E.g. this changes class Bar: [methods and constants of Bar] class Foo(Bar): [methods and constants of Foo] to class Bar: [methods and constants of Bar] class Foo(Bar): [methods and constants of Bar] [methods and constants of Foo] . This is not an optimization by itself, but it can help with other optimizations (like signature merging), and is also useful as preprocessor for type matching. """ def VisitLateType(self, _): raise NotImplementedError("Can't use AddInheritedMethods with LateType.") def VisitClass(self, cls): """Add superclass methods and constants to this Class.""" if any(base for base in cls.parents if isinstance(base, pytd.NamedType)): raise AssertionError("AddInheritedMethods needs a resolved AST") # Filter out only the types we can reason about. # TODO(kramm): Do we want handle UnionTypes and GenericTypes at some point? bases = [base.cls for base in cls.parents if isinstance(base, pytd.ClassType)] # Don't pull in methods that are named the same as existing methods in # this class, local methods override parent class methods. names = {m.name for m in cls.methods} | {c.name for c in cls.constants} # TODO(kramm): This should do full-blown MRO. adjust_self = visitors.AdjustSelf(force=True) adjust_self.class_types.append(visitors.ClassAsType(cls)) new_methods = list(cls.methods) for base in bases: for m in base.methods: if m.name not in names: new_methods.append(m.Visit(adjust_self)) new_constants = list(cls.constants) for base in bases: for c in base.constants: if c.name not in names: new_constants.append(c) return cls.Replace(methods=tuple(new_methods), constants=tuple(new_constants)) class RemoveInheritedMethods(visitors.Visitor): """Removes methods from classes if they also exist in their superclass. E.g. this changes class A: def f(self, y: int) -> bool class B(A): def f(self, y: int) -> bool to class A: def f(self, y: int) -> bool class B(A): pass . """ def __init__(self): super(RemoveInheritedMethods, self).__init__() self.class_to_stripped_signatures = {} def _StrippedSignatures(self, t): """Given a class, list method name + signature without "self". Args: t: A pytd.TYPE. Returns: A set of name + signature tuples, with the self parameter of the signature removed. """ if not isinstance(t, pytd.ClassType): # For union types, generic types etc., inheritance is more complicated. # Be conservative and default to not removing methods inherited from # those. return {} stripped_signatures = {} for method in t.cls.methods: for sig in method.signatures: if (sig.params and sig.params[0].name == "self" and isinstance(sig.params[0].type, pytd.ClassType)): stripped_signatures[method.name] = ( sig.Replace(params=sig.params[1:]), method.is_abstract) return stripped_signatures def _FindNameAndSig(self, classes, name, sig): """Find a tuple(name, signature) in all methods of a type/class.""" if classes: t = classes[0] classes = classes[1:] if t not in self.class_to_stripped_signatures: self.class_to_stripped_signatures[t] = self._StrippedSignatures(t) if name in self.class_to_stripped_signatures[t]: return sig == self.class_to_stripped_signatures[t][name] return self._FindNameAndSig(classes, name, sig) return False def _MaybeRemoveSignature(self, name, sig, is_abstract): """Visit a Signature and return None if we can remove it.""" if (not sig.params or sig.params[0].name != "self" or not isinstance(sig.params[0].type, pytd.ClassType)): return sig # Not a method cls = sig.params[0].type.cls if cls is None: # TODO(kramm): Remove once pytype stops generating ClassType(name, None). return sig try: if self._FindNameAndSig( mro.GetBasesInMRO(cls), name, (sig.Replace(params=sig.params[1:]), is_abstract)): return None # remove (see VisitFunction) except mro.MROError: return sig return sig def _MaybeDeleteFunction(self, f): """Visit a Function and return None if we can remove it.""" signatures = tuple(self._MaybeRemoveSignature(f.name, sig, f.is_abstract) for sig in f.signatures) if any(signatures): if signatures.count(None): return f.Replace( signatures=tuple(s for s in signatures if s is not None)) else: return f # unchanged else: return None # delete function def VisitClass(self, cls): methods = tuple(self._MaybeDeleteFunction(m) for m in cls.methods) if methods.count(None): return cls.Replace(methods=tuple(m for m in methods if m is not None)) else: return cls # unchanged class PullInMethodClasses(visitors.Visitor): """Simplifies classes with only a __call__ function to just a method. This transforms class Foo: m: Bar class Bar: def __call__(self: Foo, ...) to class Foo: def m(self, ...) . """ def __init__(self): super(PullInMethodClasses, self).__init__() self._module = None self._total_count = collections.defaultdict(int) self._processed_count = collections.defaultdict(int) def _MaybeLookup(self, t): if isinstance(t, pytd.NamedType): try: return self._module.Lookup(t.name) except KeyError: return None elif isinstance(t, pytd.ClassType): return t.cls else: return None def _HasSelf(self, sig): """True if a signature has a self parameter. This only checks for the name, since the type can be too many different things (type of the method, type of the parent class, object, unknown etc.) and doesn't carry over to the simplified version, anyway. Arguments: sig: Function signature (instance of pytd.Signature) Returns: True if the signature has "self". """ return sig.params and sig.params[0].name == "self" def _LookupIfSimpleCall(self, t): """Looks up the type if it has only one method, "__call__".""" if not isinstance(t, (pytd.NamedType, pytd.ClassType)): # We only do this for simple types. return None cls = self._MaybeLookup(t) if not isinstance(cls, pytd.Class): # This is not a class or it doesn't exist, so assume it's not a method. return None if [f.name for f in cls.methods] != ["__call__"]: return None method, = cls.methods return cls if all(self._HasSelf(sig) for sig in method.signatures) else None def _CanDelete(self, cls): """Checks whether this class can be deleted. Returns whether all occurences of this class as a type were due to constants we removed. Arguments: cls: A pytd.Class. Returns: True if we can delete this class. """ if not self._processed_count[cls.name]: # Leave standalone classes alone. E.g. the pytd files in # pytd/builtins/ defines classes not used by anything else. return False return self._processed_count[cls.name] == self._total_count[cls.name] def EnterTypeDeclUnit(self, module): # Since modules are hierarchical, we enter TypeDeclUnits multiple times- # but we only want to record the top-level one. if not self._module: self._module = module def VisitTypeDeclUnit(self, unit): return unit.Replace(classes=tuple(c for c in unit.classes if not self._CanDelete(c))) def VisitClassType(self, t): self._total_count[t.name] += 1 return t def VisitNamedType(self, t): self._total_count[t.name] += 1 return t def VisitClass(self, cls): """Visit a class, and change constants to methods where possible.""" new_constants = [] new_methods = list(cls.methods) adjust_self = visitors.AdjustSelf(force=True) adjust_self.class_types.append(visitors.ClassAsType(cls)) for const in cls.constants: c = self._LookupIfSimpleCall(const.type) if c: signatures = c.methods[0].signatures self._processed_count[c.name] += 1 new_method = pytd.Function(const.name, signatures, c.methods[0].kind) new_methods.append(new_method.Visit(adjust_self)) else: new_constants.append(const) # keep return cls.Replace(constants=tuple(new_constants), methods=tuple(new_methods)) class AbsorbMutableParameters(visitors.Visitor): """Converts mutable parameters to unions. This is lossy. For example, this will change def f(x: list[int]): x = list[int or float] to def f(x: list[int] or list[int or float]) . (Use optimize.CombineContainers to then change x to list[int or float].) This also works for methods - it will then potentially change the type of "self". The resulting AST is temporary and needs careful handling. """ def VisitParameter(self, p): if p.mutated_type is None: return p else: return p.Replace(type=pytd_utils.JoinTypes([p.type, p.mutated_type]), mutated_type=None) class SimplifyContainers(visitors.Visitor): """Simplifies containers whose type parameters are all Any. For example, this will change def f() -> List[any] to def f() -> list Note that we don't simplify TupleType or CallableType, since they have variable-length parameters, and the parameter length is meaningful even when the parameters are all Any. """ def _Simplify(self, t): if all(isinstance(p, pytd.AnythingType) for p in t.parameters): return t.base_type else: return t def VisitGenericType(self, t): return self._Simplify(t) class TypeParameterScope(visitors.Visitor): """Common superclass for optimizations that track type parameters.""" def __init__(self): super(TypeParameterScope, self).__init__() self.type_params_stack = [{}] def EnterClass(self, cls): new = self.type_params_stack[-1].copy() new.update({t.type_param: cls for t in cls.template}) self.type_params_stack.append(new) def EnterSignature(self, sig): new = self.type_params_stack[-1].copy() new.update({t.type_param: sig for t in sig.template}) self.type_params_stack.append(new) def IsClassTypeParameter(self, type_param): class_or_sig = self.type_params_stack[-1].get(type_param) return isinstance(class_or_sig, pytd.Class) def IsFunctionTypeParameter(self, type_param): class_or_sig = self.type_params_stack[-1].get(type_param) return isinstance(class_or_sig, pytd.Signature) def LeaveClass(self, _): self.type_params_stack.pop() def LeaveSignature(self, _): self.type_params_stack.pop() class MergeTypeParameters(TypeParameterScope): """Remove all function type parameters in a union with a class type param. For example, this will change class A(typing.Generic(T)): def append(self, T or T2) -> T2 to class A(typing.Generic(T)): def append(self, T) -> T . Use this visitor after using AbsorbMutableParameters. As another example, the combination of AbsorbMutableParameters and MergeTypeParameters transforms class list(typing.Generic(T)): def append(self, v: T2) -> NoneType: self = T or T2 to class list(typing.Generic(T')): def append(self, V:T') -> NoneType by creating a *new* template variable T' that propagates the mutations to the outermost level (in this example, T' = T or T2) """ def __init__(self): super(MergeTypeParameters, self).__init__() self.type_param_union = None def _AppendNew(self, l1, l2): """Appends all items to l1 that are not in l2.""" # l1 and l2 are small (2-3 elements), so just use two loops. for e2 in l2: if not any(e1 is e2 for e1 in l1): l1.append(e2) def EnterSignature(self, node): # Necessary because TypeParameterScope also defines this function super(MergeTypeParameters, self).EnterSignature(node) assert self.type_param_union is None self.type_param_union = collections.defaultdict(list) def LeaveSignature(self, node): # Necessary because TypeParameterScope also defines this function super(MergeTypeParameters, self).LeaveSignature(node) self.type_param_union = None def VisitUnionType(self, u): type_params = [t for t in u.type_list if isinstance(t, pytd.TypeParameter)] for t in type_params: if self.IsFunctionTypeParameter(t): self._AppendNew(self.type_param_union[t.name], type_params) return u def _AllContaining(self, type_param, seen=None): """Gets all type parameters that are in a union with the passed one.""" seen = seen or set() result = [type_param] for other in self.type_param_union[type_param.name]: if other in seen: continue # break cycles seen.add(other) self._AppendNew(result, self._AllContaining(other, seen) or [other]) return result def _ReplaceByOuterIfNecessary(self, item, substitutions): """Potentially replace a function type param with a class type param. Args: item: A pytd.TemplateItem substitutions: A dictionary to update with what we replaced. Returns: Either [item] or []. """ containing_union = self._AllContaining(item.type_param) if not containing_union: return [item] class_type_parameters = [type_param for type_param in containing_union if self.IsClassTypeParameter(type_param)] if class_type_parameters: substitutions[item.type_param] = pytd_utils.JoinTypes( class_type_parameters) return [] else: # It's a function type parameter that appears in a union with other # function type parameters. # TODO(kramm): We could merge those, too. return [item] def VisitSignature(self, sig): new_template = [] substitutions = {k: k for k in self.type_params_stack[-1]} for item in sig.template: new_template += self._ReplaceByOuterIfNecessary(item, substitutions) if sig.template == new_template: return sig # Nothing changed. else: return sig.Replace(template=tuple(new_template)).Visit( visitors.ReplaceTypeParameters(substitutions)).Visit(SimplifyUnions()) def Optimize(node, builtins=None, lossy=False, use_abcs=False, max_union=7, remove_mutable=False, can_do_lookup=True): """Optimize a PYTD tree. Tries to shrink a PYTD tree by applying various optimizations. Arguments: node: A pytd node to be optimized. It won't be modified - this function will return a new node. builtins: Definitions of all of the external types in node. lossy: Allow optimizations that change the meaning of the pytd. use_abcs: Use abstract base classes to represent unions like e.g. "float or int" as "Real". max_union: How many types we allow in a union before we simplify it to just "object". remove_mutable: Whether to simplify mutable parameters to normal parameters. can_do_lookup: True: We're either allowed to try to resolve NamedType instances in the AST, or the AST is already resolved. False: Skip any optimizations that would require NamedTypes to be resolved. Returns: An optimized node. """ node = node.Visit(RemoveDuplicates()) node = node.Visit(SimplifyUnions()) node = node.Visit(CombineReturnsAndExceptions()) node = node.Visit(Factorize()) node = node.Visit(ApplyOptionalArguments()) node = node.Visit(CombineContainers()) node = node.Visit(SimplifyContainers()) if builtins: superclasses = builtins.Visit(visitors.ExtractSuperClassesByName()) superclasses.update(node.Visit(visitors.ExtractSuperClassesByName())) if use_abcs: superclasses.update(abc_hierarchy.GetSuperClasses()) hierarchy = SuperClassHierarchy(superclasses) node = node.Visit(SimplifyUnionsWithSuperclasses(hierarchy)) if lossy: node = node.Visit(FindCommonSuperClasses(hierarchy)) if max_union: node = node.Visit(CollapseLongUnions(max_union)) node = node.Visit(AdjustReturnAndConstantGenericType()) if remove_mutable: node = node.Visit(AbsorbMutableParameters()) node = node.Visit(CombineContainers()) node = node.Visit(MergeTypeParameters()) node = node.Visit(visitors.AdjustSelf()) node = node.Visit(SimplifyContainers()) if builtins and can_do_lookup: node = visitors.LookupClasses(node, builtins, ignore_late_types=True) node = node.Visit(RemoveInheritedMethods()) node = node.Visit(RemoveRedundantSignatures(hierarchy)) return node
33.007563
80
0.675705
[ "Apache-2.0" ]
Jason-Cooke/pytype
pytype/pytd/optimize.py
39,279
Python
""" --- Ångström --- Read, manipulate and analyze molecular trajectory files. """ from .read import read_xyz_traj from .write import write_xyz_traj from angstrom.geometry import get_molecule_center from angstrom import Molecule import numpy as np import os class Trajectory: """ Reading and analyzing trajectories in xyz format. """ def __init__(self, atoms=None, coordinates=None, read=None, molecule=None): """ Create a trajectory object. Parameters ---------- atoms : list or None List of elements of the molecule for each frame. coordinates : list or None List of atomic positions of the molecule for each frame. read : str or None File name to read molecule file (formats: xyz). molecule : Molecule Create a Trajectory with 1 frame from a Molecule object. """ self.name = 'Trajectory' if atoms is not None and coordinates is not None: self.atoms = atoms self.coordinates = coordinates elif read is not None: self.read(read) elif molecule is not None: self.atoms = np.array([molecule.atoms]) self.coordinates = np.array([molecule.coordinates]) self.name = molecule.name else: self.atoms = [] self.coordinates = [] self.current_frame = 0 def __repr__(self): """ Returns basic trajectory info. """ return "<Trajectory frames: %i | atoms: %i | dimensions: %i>" % tuple(np.shape(self.coordinates)) def __len__(self): """ Returns number of frames. """ return len(self.atoms) def __add__(self, traj): """ Trajectory addition for joining the coordinates and elements into a new Trajectory object. Parameters ---------- traj : Trajectory Trajectory object to be added Returns ------- Trajectory Joined Trajectory object. """ new_traj = Trajectory(atoms=np.append(self.atoms, traj.atoms, axis=0), coordinates=np.append(self.coordinates, traj.coordinates, axis=0)) return new_traj def __getitem__(self, i): """ Indexing method. Returns a Molecule object for given index (frame). Returns a Trajectory object if used as slicing. """ if isinstance(i, slice): indices = range(len(self))[i.start:i.stop:i.step] if len(indices) == 0: return [] else: new_traj = Trajectory(molecule=self[indices[0]]) for j in indices[1:]: new_traj.append(self[j]) return new_traj else: return Molecule(atoms=self.atoms[i], coordinates=self.coordinates[i]) def __iter__(self): """ Initialize iterator, reset frame index. """ self.current_frame = 0 return self def __next__(self): """ Returns the next frame in Trajectory as a Molecule object. """ if self.current_frame >= len(self): raise StopIteration next_mol = self[self.current_frame] self.current_frame += 1 return next_mol def append(self, mol): """ Append molecule to trajectory. The number of atoms in the molecule must match that of the trajectory. Parameters ---------- mol : Molecule Molecule object to be added Returns ------- None Added to Trajectory object. """ if len(mol.atoms) != self.atoms.shape[1]: raise Exception('Trajectory cannot have different number of atoms per frame') self.atoms = np.append(self.atoms, [mol.atoms], axis=0) self.coordinates = np.append(self.coordinates, [mol.coordinates], axis=0) def read(self, filename): """ Read xyz formatted trajectory file. Parameters ---------- filename : str Trajectory file name. Returns ------- None Assigns 'coordinates', 'atoms', and 'headers' attributes. """ self.name = os.path.splitext(os.path.basename(filename))[0] traj = read_xyz_traj(filename) self.atoms, self.coordinates, self.headers = traj['atoms'], traj['coordinates'], traj['headers'] def write(self, filename): """ Write xyz formatted trajectory file. Parameters ---------- filename : str Trajectory file name (formats: xyz). Returns ------- None Writes molecule information to given file name. """ with open(filename, 'w') as traj_file: if hasattr(self, 'headers'): write_xyz_traj(traj_file, self.atoms, self.coordinates, headers=self.headers) else: write_xyz_traj(traj_file, self.atoms, self.coordinates) def get_center(self, mass=True): """ Get coordinates of molecule center at each frame. Parameters ---------- mass : bool Calculate center of mass (True) or geometric center (False). Returns ------- ndarray Molecule center coordinates for each frame. """ centers = np.empty((len(self.atoms), 3)) for f, (frame_atoms, frame_coors) in enumerate(zip(self.atoms, self.coordinates)): centers[f] = get_molecule_center(frame_atoms, frame_coors, mass=mass) return centers
28.542289
105
0.56092
[ "BSD-3-Clause" ]
kbsezginel/angstrom
angstrom/trajectory/trajectory.py
5,739
Python
# BSD 3-Clause License; see https://github.com/scikit-hep/awkward-1.0/blob/main/LICENSE from __future__ import absolute_import import sys import numpy import awkward as ak def convert_to_array(layout, args, kwargs): out = ak.operations.convert.to_numpy(layout, allow_missing=False) if args == () and kwargs == {}: return out else: return numpy.array(out, *args, **kwargs) implemented = {} def array_function(func, types, args, kwargs): function = implemented.get(func) if function is None: return NotImplemented else: return function(*args, **kwargs) def implements(numpy_function): def decorator(function): implemented[getattr(numpy, numpy_function)] = function return function return decorator def array_ufunc(ufunc, method, inputs, kwargs): if method != "__call__" or len(inputs) == 0 or "out" in kwargs: return NotImplemented behavior = ak._util.behaviorof(*inputs) nextinputs = [] for x in inputs: cast_fcn = ak._util.custom_cast(x, behavior) if cast_fcn is not None: x = cast_fcn(x) nextinputs.append( ak.operations.convert.to_layout(x, allow_record=True, allow_other=True) ) inputs = nextinputs def adjust(custom, inputs, kwargs): args = [ ak._util.wrap(x, behavior) if isinstance(x, (ak.layout.Content, ak.layout.Record)) else x for x in inputs ] out = custom(*args, **kwargs) if not isinstance(out, tuple): out = (out,) return tuple( x.layout if isinstance(x, (ak.highlevel.Array, ak.highlevel.Record)) else x for x in out ) def adjust_apply_ufunc(apply_ufunc, ufunc, method, inputs, kwargs): nextinputs = [ ak._util.wrap(x, behavior) if isinstance(x, (ak.layout.Content, ak.layout.Record)) else x for x in inputs ] out = apply_ufunc(ufunc, method, nextinputs, kwargs) if out is NotImplemented: return None else: if not isinstance(out, tuple): out = (out,) out = tuple( x.layout if isinstance(x, (ak.highlevel.Array, ak.highlevel.Record)) else x for x in out ) return lambda: out def is_fully_regular(layout): if ( isinstance(layout, ak.layout.RegularArray) and layout.parameter("__record__") is None and layout.parameter("__array__") is None ): if isinstance(layout.content, ak.layout.NumpyArray): return True elif isinstance(layout.content, ak.layout.RegularArray): return is_fully_regular(layout.content) else: return False else: return False def deregulate(layout): if not is_fully_regular(layout): return layout else: shape = [len(layout)] node = layout while isinstance(node, ak.layout.RegularArray): shape.append(node.size) node = node.content nparray = ak.nplike.of(node).asarray(node) nparray = nparray.reshape(tuple(shape) + nparray.shape[1:]) return ak.layout.NumpyArray( nparray, node.identities, node.parameters, ) def getfunction(inputs): signature = [ufunc] for x in inputs: if isinstance(x, ak.layout.Content): record = x.parameter("__record__") array = x.parameter("__array__") if record is not None: signature.append(record) elif array is not None: signature.append(array) elif isinstance(x, ak.layout.NumpyArray): signature.append(ak.nplike.of(x).asarray(x).dtype.type) else: signature.append(None) else: signature.append(type(x)) custom = ak._util.overload(behavior, signature) if custom is not None: return lambda: adjust(custom, inputs, kwargs) if ufunc is numpy.matmul: custom_matmul = getfunction_matmul(inputs) if custom_matmul is not None: return custom_matmul inputs = [deregulate(x) for x in inputs] if all( isinstance(x, ak.layout.NumpyArray) or not isinstance(x, (ak.layout.Content, ak.partition.PartitionedArray)) for x in inputs ): nplike = ak.nplike.of(*inputs) result = getattr(ufunc, method)( *[nplike.asarray(x) for x in inputs], **kwargs ) return lambda: (ak.operations.convert.from_numpy(result, highlevel=False),) for x in inputs: if isinstance(x, ak.layout.Content): chained_behavior = ak._util.Behavior(ak.behavior, behavior) apply_ufunc = chained_behavior[numpy.ufunc, x.parameter("__array__")] if apply_ufunc is not None: out = adjust_apply_ufunc(apply_ufunc, ufunc, method, inputs, kwargs) if out is not None: return out apply_ufunc = chained_behavior[numpy.ufunc, x.parameter("__record__")] if apply_ufunc is not None: out = adjust_apply_ufunc(apply_ufunc, ufunc, method, inputs, kwargs) if out is not None: return out if all( x.parameter("__array__") is not None or x.parameter("__record__") is not None for x in inputs if isinstance(x, ak.layout.Content) ): custom_types = [] for x in inputs: if isinstance(x, ak.layout.Content): if x.parameter("__array__") is not None: custom_types.append(x.parameter("__array__")) elif x.parameter("__record__") is not None: custom_types.append(x.parameter("__record__")) else: custom_types.append(type(x).__name__) else: custom_types.append(type(x).__name__) raise ValueError( "no overloads for custom types: {0}({1})".format( ufunc.__name__, ", ".join(custom_types), ) + ak._util.exception_suffix(__file__) ) return None out = ak._util.broadcast_and_apply( inputs, getfunction, behavior, allow_records=False, pass_depth=False ) assert isinstance(out, tuple) and len(out) == 1 return ak._util.wrap(out[0], behavior) def matmul_for_numba(lefts, rights, dtype): total_outer = 0 total_inner = 0 total_content = 0 for A, B in zip(lefts, rights): first = -1 for Ai in A: if first == -1: first = len(Ai) elif first != len(Ai): raise ValueError( "one of the left matrices in np.matmul is not rectangular" ) if first == -1: first = 0 rowsA = len(A) colsA = first first = -1 for Bi in B: if first == -1: first = len(Bi) elif first != len(Bi): raise ValueError( "one of the right matrices in np.matmul is not rectangular" ) if first == -1: first = 0 rowsB = len(B) colsB = first if colsA != rowsB: raise ValueError( u"one of the pairs of matrices in np.matmul do not match shape: " u"(n \u00d7 k) @ (k \u00d7 m)" ) total_outer += 1 total_inner += rowsA total_content += rowsA * colsB outer = numpy.empty(total_outer + 1, numpy.int64) inner = numpy.empty(total_inner + 1, numpy.int64) content = numpy.zeros(total_content, dtype) outer[0] = 0 inner[0] = 0 outer_i = 1 inner_i = 1 content_i = 0 for A, B in zip(lefts, rights): rows = len(A) cols = 0 if len(B) > 0: cols = len(B[0]) mids = 0 if len(A) > 0: mids = len(A[0]) for i in range(rows): for j in range(cols): for v in range(mids): pos = content_i + i * cols + j content[pos] += A[i][v] * B[v][j] outer[outer_i] = outer[outer_i - 1] + rows outer_i += 1 for _ in range(rows): inner[inner_i] = inner[inner_i - 1] + cols inner_i += 1 content_i += rows * cols return outer, inner, content matmul_for_numba.numbafied = None def getfunction_matmul(inputs): inputs = [ ak._util.recursively_apply( x, (lambda _: _), pass_depth=False, numpy_to_regular=True ) for x in inputs ] if len(inputs) == 2 and all( isinstance(x, ak._util.listtypes) and isinstance(x.content, ak._util.listtypes) and isinstance(x.content.content, ak.layout.NumpyArray) for x in inputs ): ak._connect._numba.register_and_check() import numba if matmul_for_numba.numbafied is None: matmul_for_numba.numbafied = numba.njit(matmul_for_numba) lefts = ak.highlevel.Array(inputs[0]) rights = ak.highlevel.Array(inputs[1]) dtype = numpy.asarray(lefts[0:0, 0:0, 0:0] + rights[0:0, 0:0, 0:0]).dtype outer, inner, content = matmul_for_numba.numbafied(lefts, rights, dtype) return lambda: ( ak.layout.ListOffsetArray64( ak.layout.Index64(outer), ak.layout.ListOffsetArray64( ak.layout.Index64(inner), ak.layout.NumpyArray(content), ), ), ) else: return None try: NDArrayOperatorsMixin = numpy.lib.mixins.NDArrayOperatorsMixin except AttributeError: from numpy.core import umath as um def _disables_array_ufunc(obj): try: return obj.__array_ufunc__ is None except AttributeError: return False def _binary_method(ufunc, name): def func(self, other): if _disables_array_ufunc(other): return NotImplemented return ufunc(self, other) func.__name__ = "__{}__".format(name) return func def _reflected_binary_method(ufunc, name): def func(self, other): if _disables_array_ufunc(other): return NotImplemented return ufunc(other, self) func.__name__ = "__r{}__".format(name) return func def _inplace_binary_method(ufunc, name): def func(self, other): return ufunc(self, other, out=(self,)) func.__name__ = "__i{}__".format(name) return func def _numeric_methods(ufunc, name): return ( _binary_method(ufunc, name), _reflected_binary_method(ufunc, name), _inplace_binary_method(ufunc, name), ) def _unary_method(ufunc, name): def func(self): return ufunc(self) func.__name__ = "__{}__".format(name) return func class NDArrayOperatorsMixin(object): __lt__ = _binary_method(um.less, "lt") __le__ = _binary_method(um.less_equal, "le") __eq__ = _binary_method(um.equal, "eq") __ne__ = _binary_method(um.not_equal, "ne") __gt__ = _binary_method(um.greater, "gt") __ge__ = _binary_method(um.greater_equal, "ge") __add__, __radd__, __iadd__ = _numeric_methods(um.add, "add") __sub__, __rsub__, __isub__ = _numeric_methods(um.subtract, "sub") __mul__, __rmul__, __imul__ = _numeric_methods(um.multiply, "mul") __matmul__, __rmatmul__, __imatmul__ = _numeric_methods(um.matmul, "matmul") if sys.version_info.major < 3: __div__, __rdiv__, __idiv__ = _numeric_methods(um.divide, "div") __truediv__, __rtruediv__, __itruediv__ = _numeric_methods( um.true_divide, "truediv" ) __floordiv__, __rfloordiv__, __ifloordiv__ = _numeric_methods( um.floor_divide, "floordiv" ) __mod__, __rmod__, __imod__ = _numeric_methods(um.remainder, "mod") if hasattr(um, "divmod"): __divmod__ = _binary_method(um.divmod, "divmod") __rdivmod__ = _reflected_binary_method(um.divmod, "divmod") __pow__, __rpow__, __ipow__ = _numeric_methods(um.power, "pow") __lshift__, __rlshift__, __ilshift__ = _numeric_methods(um.left_shift, "lshift") __rshift__, __rrshift__, __irshift__ = _numeric_methods( um.right_shift, "rshift" ) __and__, __rand__, __iand__ = _numeric_methods(um.bitwise_and, "and") __xor__, __rxor__, __ixor__ = _numeric_methods(um.bitwise_xor, "xor") __or__, __ror__, __ior__ = _numeric_methods(um.bitwise_or, "or") __neg__ = _unary_method(um.negative, "neg") if hasattr(um, "positive"): __pos__ = _unary_method(um.positive, "pos") __abs__ = _unary_method(um.absolute, "abs") __invert__ = _unary_method(um.invert, "invert")
32.475059
88
0.557636
[ "BSD-3-Clause" ]
drahnreb/awkward-1.0
src/awkward/_connect/_numpy.py
13,672
Python
from Crypto.Cipher import AES from Crypto.Protocol.KDF import PBKDF2 import base64 import gzip import hashlib import hmac import json import os import requests import secrets import sys import uuid APP_NAME = "com.amazon.avod.thirdpartyclient" APP_VERSION = "296016847" DEVICE_NAME = "walleye/google/Pixel 2" MANUFACTURER = "Google" OS_VERSION = "google/walleye/walleye:8.1.0/OPM1.171019.021/4565141:user/release-keys" def pkcs7_pad(data): padsize = 16 - len(data) % 16 return data + bytes([padsize]) * padsize def pkcs7_unpad(data): offset = data[-1] return data[:-offset] def get_headers(domain): return { "Accept-Charset": "utf-8", "User-Agent": "Dalvik/2.1.0 (Linux; U; Android 10; Pixel 2 Build/OPM1.171019.021)", "x-amzn-identity-auth-domain": f"api.amazon.{domain}", "x-amzn-requestid": str(uuid.uuid4()), } def generate_frc(device_id): cookies = json.dumps({ "ApplicationName": APP_NAME, "ApplicationVersion": APP_VERSION, "DeviceLanguage": "en", "DeviceName": DEVICE_NAME, "DeviceOSVersion": OS_VERSION, "IpAddress": requests.get('https://api.ipify.org').text, "ScreenHeightPixels": "1920", "ScreenWidthPixels": "1280", "TimeZone": "00:00", }) compressed = gzip.compress(cookies.encode()) key = PBKDF2(device_id, b"AES/CBC/PKCS7Padding") iv = secrets.token_bytes(16) cipher = AES.new(key, AES.MODE_CBC, iv) ciphertext = cipher.encrypt(pkcs7_pad(compressed)) hmac_ = hmac.new(PBKDF2(device_id, b"HmacSHA256"), iv + ciphertext, hashlib.sha256).digest() return base64.b64encode(b"\0" + hmac_[:8] + iv + ciphertext).decode() def login(email, password, device_id, domain = "com"): body = { "auth_data": { "use_global_authentication": "true", "user_id_password": { "password" : password, "user_id": email, }, }, "registration_data": { "domain": "DeviceLegacy", "device_type": "A43PXU4ZN2AL1", "device_serial": device_id, "app_name": APP_NAME, "app_version": APP_VERSION, "device_model": DEVICE_NAME, "os_version": OS_VERSION, "software_version": "130050002" }, "requested_token_type": ["bearer","mac_dms","store_authentication_cookie","website_cookies"], "cookies": { "domain": f"amazon.{domain}", "website_cookies": [] }, "user_context_map": { "frc": generate_frc(device_id) }, "device_metadata": { "device_os_family": "android", "device_type": "A43PXU4ZN2AL1", "device_serial": device_id, "mac_address": secrets.token_hex(64).upper(), "manufacturer": MANUFACTURER, "model": DEVICE_NAME, "os_version": "30", "android_id": "f1c56f6030b048a7", "product": DEVICE_NAME }, "requested_extensions": ["device_info","customer_info"] } response_json = requests.post(f"https://api.amazon.{domain}/auth/register", headers=get_headers(domain), json=body).json() try: return { "domain": domain, "access_token": response_json["response"]["success"]["tokens"]["bearer"]["access_token"], "refresh_token": response_json["response"]["success"]["tokens"]["bearer"]["refresh_token"] } except: print(json.dumps(response_json)) return None def refresh(tokens): body = { "app_name": APP_NAME, "app_version": APP_VERSION, "source_token_type": "refresh_token", "source_token": tokens["refresh_token"], "requested_token_type": "access_token" } response_json = requests.post(f"https://api.amazon.com/auth/token", headers=get_headers(tokens["domain"]), json=body).json() try: tokens["access_token"] = response_json["access_token"] except: print(json.dumps(response_json)) return tokens if __name__ == "__main__": script_path = os.path.dirname(os.path.realpath(sys.argv[0])) device_id_path = os.path.join(script_path, "device_id") tokens_path = os.path.join(script_path, "tokens") if os.path.isfile(device_id_path): with open(device_id_path, "r") as f: device_id = f.read() else: with open(device_id_path, "w") as f: device_id = secrets.token_hex(16) f.write(device_id) arg_count = len(sys.argv) if arg_count != 4: print("usage: amazon_auth.py <email> <password> <domain>") print("domains: com, co.uk, co.jp, de") exit() tokens = login(sys.argv[1], sys.argv[2], device_id, sys.argv[3]) if tokens == None: print("Could not login!") else: print(json.dumps(tokens)) with open(tokens_path, "w") as f: f.write(json.dumps(tokens))
31.578616
128
0.601872
[ "MIT" ]
Sapphicality/comix
amazon_auth.py
5,021
Python
# Generated by Django 3.0.4 on 2020-03-26 03:39 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('ViralScreener', '0008_auto_20200326_0338'), ] operations = [ migrations.AlterField( model_name='employeescreeningresponses', name='DateTime', field=models.DateTimeField(), ), ]
21.315789
53
0.619753
[ "MIT" ]
memtech3/Viral-Screener
mysite/ViralScreener/migrations/0009_auto_20200326_0339.py
405
Python
# Crie um programa onde o usuário possa digitar sete valores numéricos # e cadastre-os em uma lista única que mantenha separados os valores pares e ímpares. # No final, mostre os valores pares e ímpares em ordem crescente. lista_unic = [[], []] print('-=' * 20) for c in range(0, 7): nums = int(input(f'Informe um {c+1}° valor: ')) if nums%2 == 0: lista_unic[0].append(nums) else: lista_unic[1].append(nums) print('-=-' * 30) lista_unic[0].sort() lista_unic[1].sort() print(f'Os valores pares foram: {lista_unic[0]}') print(f'Os valores ímpares foram: {lista_unic[1]}') print('-=-' * 30)
34.222222
85
0.662338
[ "MIT" ]
GustavoVieiraa/CursoemVideo---Python-3
CursoemVideo - Python 3/aula 18/ex085.py
623
Python
# Generated by Django 3.2.4 on 2021-06-05 20:41 import django.contrib.auth.models import django.contrib.auth.validators from django.db import migrations, models import django.utils.timezone class Migration(migrations.Migration): initial = True dependencies = [ ('auth', '0012_alter_user_first_name_max_length'), ] operations = [ migrations.CreateModel( name='CustomUser', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('password', models.CharField(max_length=128, verbose_name='password')), ('last_login', models.DateTimeField(blank=True, null=True, verbose_name='last login')), ('is_superuser', models.BooleanField(default=False, help_text='Designates that this user has all permissions without explicitly assigning them.', verbose_name='superuser status')), ('username', models.CharField(error_messages={'unique': 'A user with that username already exists.'}, help_text='Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.', max_length=150, unique=True, validators=[django.contrib.auth.validators.UnicodeUsernameValidator()], verbose_name='username')), ('first_name', models.CharField(blank=True, max_length=150, verbose_name='first name')), ('last_name', models.CharField(blank=True, max_length=150, verbose_name='last name')), ('email', models.EmailField(blank=True, max_length=254, verbose_name='email address')), ('is_staff', models.BooleanField(default=False, help_text='Designates whether the user can log into this admin site.', verbose_name='staff status')), ('is_active', models.BooleanField(default=True, help_text='Designates whether this user should be treated as active. Unselect this instead of deleting accounts.', verbose_name='active')), ('date_joined', models.DateTimeField(default=django.utils.timezone.now, verbose_name='date joined')), ('groups', models.ManyToManyField(blank=True, help_text='The groups this user belongs to. A user will get all permissions granted to each of their groups.', related_name='user_set', related_query_name='user', to='auth.Group', verbose_name='groups')), ('user_permissions', models.ManyToManyField(blank=True, help_text='Specific permissions for this user.', related_name='user_set', related_query_name='user', to='auth.Permission', verbose_name='user permissions')), ], options={ 'verbose_name': 'user', 'verbose_name_plural': 'users', 'abstract': False, }, managers=[ ('objects', django.contrib.auth.models.UserManager()), ], ), ]
63.977778
329
0.664467
[ "MIT" ]
aleattene/django-for-professionals
accounts/migrations/0001_initial.py
2,879
Python
import numpy as np import pytest import xarray as xr import cf_xarray as cfxr from . import requires_shapely @pytest.fixture def geometry_ds(): from shapely.geometry import MultiPoint, Point # empty/fill workaround to avoid numpy deprecation(warning) due to the array interface of shapely geometries. geoms = np.empty(4, dtype=object) geoms[:] = [ MultiPoint([(1.0, 2.0), (2.0, 3.0)]), Point(3.0, 4.0), Point(4.0, 5.0), Point(3.0, 4.0), ] ds = xr.Dataset( { "data": xr.DataArray(range(len(geoms)), dims=("index",)), "time": xr.DataArray([0, 0, 0, 1], dims=("index",)), } ) shp_ds = ds.assign(geometry=xr.DataArray(geoms, dims=("index",))) cf_ds = ds.assign( x=xr.DataArray([1.0, 2.0, 3.0, 4.0, 3.0], dims=("node",), attrs={"axis": "X"}), y=xr.DataArray([2.0, 3.0, 4.0, 5.0, 4.0], dims=("node",), attrs={"axis": "Y"}), node_count=xr.DataArray([2, 1, 1, 1], dims=("index",)), crd_x=xr.DataArray([1.0, 3.0, 4.0, 3.0], dims=("index",), attrs={"nodes": "x"}), crd_y=xr.DataArray([2.0, 4.0, 5.0, 4.0], dims=("index",), attrs={"nodes": "y"}), geometry_container=xr.DataArray( attrs={ "geometry_type": "point", "node_count": "node_count", "node_coordinates": "x y", "coordinates": "crd_x crd_y", } ), ) cf_ds = cf_ds.set_coords(["x", "y", "crd_x", "crd_y"]) return cf_ds, shp_ds @requires_shapely def test_shapely_to_cf(geometry_ds): from shapely.geometry import Point expected, in_ds = geometry_ds out = xr.merge([in_ds.drop_vars("geometry"), cfxr.shapely_to_cf(in_ds.geometry)]) xr.testing.assert_identical(out, expected) out = xr.merge( [ in_ds.drop_vars("geometry").isel(index=slice(1, None)), cfxr.shapely_to_cf(in_ds.geometry.isel(index=slice(1, None))), ] ) expected = expected.isel(index=slice(1, None), node=slice(2, None)).drop_vars( "node_count" ) del expected.geometry_container.attrs["node_count"] xr.testing.assert_identical(out, expected) out = xr.merge( [ in_ds.drop_vars("geometry").isel(index=slice(1, None)), cfxr.shapely_to_cf( in_ds.geometry.isel(index=slice(1, None)), grid_mapping="longitude_latitude", ), ] ) np.testing.assert_array_equal(out.lon, expected.crd_x) assert "longitude" in out.cf assert "latitude" in out.cf out = cfxr.shapely_to_cf([Point(2, 3)]) assert set(out.dims) == {"features", "node"} @requires_shapely def test_shapely_to_cf_errors(): from shapely.geometry import LineString, Point geoms = [LineString([[1, 2], [2, 3]]), LineString([[2, 3, 4], [4, 3, 2]])] with pytest.raises(NotImplementedError, match="Only point geometries conversion"): cfxr.shapely_to_cf(geoms) geoms.append(Point(1, 2)) with pytest.raises(ValueError, match="Mixed geometry types are not supported"): cfxr.shapely_to_cf(geoms) with pytest.raises( NotImplementedError, match="Only grid mapping longitude_latitude" ): cfxr.shapely_to_cf([Point(4, 5)], grid_mapping="albers_conical_equal_area") @requires_shapely def test_cf_to_shapely(geometry_ds): in_ds, exp = geometry_ds xr.testing.assert_identical( cfxr.cf_to_shapely(in_ds).drop_vars(["crd_x", "crd_y"]), exp.geometry ) in_ds = in_ds.isel(index=slice(1, None), node=slice(2, None)).drop_vars( "node_count" ) del in_ds.geometry_container.attrs["node_count"] out = cfxr.cf_to_shapely(in_ds) assert out.dims == ("index",) @requires_shapely def test_cf_to_shapely_errors(geometry_ds): in_ds, expected = geometry_ds in_ds.geometry_container.attrs["geometry_type"] = "line" with pytest.raises(NotImplementedError, match="Only point geometries conversion"): cfxr.cf_to_shapely(in_ds) in_ds.geometry_container.attrs["geometry_type"] = "punkt" with pytest.raises(ValueError, match="Valid CF geometry types are "): cfxr.cf_to_shapely(in_ds) @requires_shapely def test_reshape_unique_geometries(geometry_ds): _, in_ds = geometry_ds out = cfxr.geometry.reshape_unique_geometries(in_ds) assert out.geometry.dims == ("features",) assert out.data.dims == ("features", "index") np.testing.assert_array_equal( out.geometry, in_ds.geometry.values[np.array([1, 2, 0])] ) in_ds["index"] = in_ds.time in_ds = in_ds.drop_vars("time").rename(index="time") out = cfxr.geometry.reshape_unique_geometries(in_ds) assert out.geometry.dims == ("features",) assert out.data.dims == ("features", "time") np.testing.assert_array_equal(out.time, [0, 1]) geoms = in_ds.geometry.expand_dims(n=[1, 2]) in_ds = in_ds.assign(geometry=geoms) with pytest.raises(ValueError, match="The geometry variable must be 1D"): cfxr.geometry.reshape_unique_geometries(in_ds)
32.100629
113
0.631074
[ "Apache-2.0" ]
dcherian/cf-xarray
cf_xarray/tests/test_geometry.py
5,104
Python
""" list of movies that feed into fresh_tomatoes.py file """ import fresh_tomatoes from get_movie_list import get_movie_list def main(): """ Main entry point for the script. """ # Read in the movies from the json file movie_list = get_movie_list("src/data/movies.json") # Generate the html file and display in a browser window fresh_tomatoes.open_movies_page(movie_list) main()
22.944444
60
0.714286
[ "MIT" ]
golgistudio/udacity-movie-trailer
src/entertainment_center.py
413
Python
from bson.objectid import ObjectId from faker import Faker from flask import url_for from dawdle import create_app from dawdle.models.board import Board, BoardType from dawdle.models.user import User class TestBase: @classmethod def setup_class(cls): cls.fake = Faker() cls.app = create_app(testing=True) cls.app.app_context().push() cls.client = cls.app.test_client() cls.password = cls.fake.password() cls.user = cls.create_user(password=cls.password) cls.login() @classmethod def teardown_class(cls): cls.clear_db() @classmethod def create_user(cls, **kwargs): user = User() user.active = kwargs.get('active', True) user.email = kwargs.get('email', cls.fake.email()) user.initials = kwargs.get( 'initials', cls.fake.pystr(min_chars=1, max_chars=4), ).upper() user.name = kwargs.get('name', cls.fake.name()) user.password = User.encrypt_password( kwargs.get('password', cls.fake.password()), ) return user.save() @classmethod def create_boards(cls, owner_id, min_boards=1, max_boards=1): num = cls.fake.pyint(min_boards, max_boards) boards = [] for n in range(num): boards.append(cls.create_board(owner_id=owner_id)) return boards @classmethod def create_board(cls, **kwargs): board = Board() board.created_by = kwargs.get('created_by', ObjectId()) board.name = kwargs.get( 'name', cls.fake.pystr(min_chars=1, max_chars=256), ) board.owner_id = kwargs.get('owner_id', ObjectId()) board.type = kwargs.get('type', BoardType.PERSONAL.id) return board.save() @classmethod def as_new_user(cls): password = cls.fake.password() user = cls.create_user(password=password) cls.login(email=user.email, password=password) return user, password @classmethod def login(cls, **kwargs): email = kwargs.get('email', cls.user.email) password = kwargs.get('password', cls.password) data = {'email': email, 'password': password} cls.client.post(url_for('auth.login_POST'), data=data) cls.logged_in = cls.user.email == email and cls.password == password @classmethod def logout(cls): cls.client.get(url_for('auth.logout_GET')) cls.logged_in = False @classmethod def clear_db(cls): Board.objects.delete() User.objects.delete() def setup_method(self): if not self.logged_in: self.login()
29.428571
76
0.612024
[ "MIT" ]
simba999/dawdle
tests/test_base.py
2,678
Python
import pandas as pd import numpy as np import itertools as it from collections import defaultdict from collections import Counter from six.moves import map as imap def dict_subset(d, fields): # return a subset of the provided dict containing only the # fields specified in fields return {k: d[k] for k in d if k in fields and d[k] is not None} class MessageFieldCounter: """ Count occurrences of values in a stream of messages for a specified set of fields Usage: messages = [ {'a': 'apple', 'b': 'boat'}, {'a': 'pear', 'b': 'boat'}, {'a': 'apple', 'b': 'boat'}, ] fields = ['a', 'b'] mfc = MessageFieldCounter(messages, fields) # this class is designed to pass through a long stream of messages # so we have to pull them through in order to count them for msg in mcf: pass print mfc.most_common('a') >>> [('apple', 2)] """ def __init__(self, messages, fields): self.fields = set(fields) self.messages = messages self.counters = defaultdict(Counter) def __iter__(self): return self.process() def process(self): for msg in self.messages: for key in self.fields: value = msg.get(key, None) if value is not None: self.counters[key][value] += 1 yield msg def most_common(self, field, n=1): return self.counters[field].most_common(n) class MessageStats(): """ Extract a set of stats from as stream of messages. numeric_fields: list of field names to compute numeric stats (eg min, max, avg) frequency_fields: list of field names to compute frequency of values """ NUMERIC_STATS = ['min', 'max', 'first', 'last', 'count'] FREQUENCY_STATS = ['most_common', 'most_common_count'] def __init__(self, messages, numeric_fields, frequency_fields): self._numeric_fields = numeric_fields self._frequency_fields = frequency_fields self.counter = MessageFieldCounter(messages, frequency_fields) messages = self.counter.process() messages = imap(dict_subset, messages, it.repeat(numeric_fields)) # DataFrame won't take an iterator, but it will take a generator messages = (m for m in messages) self.df = pd.DataFrame(messages) @property def numeric_fields(self): return self._numeric_fields @property def frequency_fields(self): return self._frequency_fields @property def frequency_counter(self): return self.counter @property def data_frame(self): return self.df def numeric_stats(self, field): def first(col): idx = col.first_valid_index() return col[idx] if idx is not None else None def last(col): idx = col.last_valid_index() return col[idx] if idx is not None else None assert field in self.numeric_fields if field in self.df: col = self.df[field] return dict( min=np.nanmin(col), max=np.nanmax(col), first=first(col), last=last(col), count=np.count_nonzero(~np.isnan(col)), ) else: return {} def frequency_stats(self, field): assert field in self.frequency_fields stat = self.frequency_counter.most_common(field) if stat: value, count = stat[0] return dict( most_common=value, most_common_count=count ) else: return {} def field_stats(self, field): stats = {} if field in self.numeric_fields: stats.update(self.numeric_stats(field)) if field in self.frequency_fields: stats.update(self.frequency_stats(field)) return stats
29.954887
85
0.592369
[ "Apache-2.0" ]
GlobalFishingWatch/pipe-segment
pipe_segment/stats/stats.py
3,984
Python
"""[Lambda Expressions] Lambda expressions are simply another way to create functions anonymous functions keyword \ parameter list optional \ \ the : is required, even for zero arguments \ \ / / this expression is evaluated and returned when the lambda function is called. (think of it as "the body" of the function) lambda [parameter list]: expression \ the expression returns a function object that evaluates and returns the expression when it is called Examples from tkinter import Y from unittest import FunctionTestCase lambda x: x**2 lambda x, y: x + y lambda : 'hello' lambda s: s[::-1].upper() type(lambda x: x**2) -> function Note that these expressions are function objects, but are not "named" -> anonymous Functions lambdas, or anonymous functions, are NOT equivalent to closures Assigning a Lambda to a Variable name my_func = lambda x: x**2 type(my_func) -> fuunction my_func(3) -> 9 my_func(4) -> 16 # identical to: def my_func(x): return x**2 type(my_func) -> function """
19.966102
161
0.633277
[ "Unlicense" ]
minefarmer/deep-Dive-1
.history/my_classes/FirstClassFunctions/LambdaExpressions_20210704152007.py
1,178
Python
import json from flask import Flask, request, Response, send_from_directory, redirect, flash from flask_login import LoginManager, current_user, login_user from flask_wtf import FlaskForm from wtforms import StringField, PasswordField, BooleanField, SubmitField from wtforms.validators import DataRequired from ..models import User class LoginForm(FlaskForm): username = StringField('Username', validators=[DataRequired()]) password = PasswordField('Password', validators=[DataRequired()]) remember_me = BooleanField('Remember Me') submit = SubmitField('Sign In') def create_user_routes(server): @server.login.user_loader def load_user(id): return User.query.get(int(id)) @server.app.route(f'/{server.api_version}/login', methods=['GET', 'POST']) def login(): form = LoginForm() nxt = request.args.get('next') if form.validate_on_submit(): user = User() login_user(user) flash('Logged in successfully.') return redirect(nxt or '/')
31.727273
80
0.698185
[ "MIT" ]
Arianardo/augur-group25
augur/routes/user.py
1,047
Python
""" Distance and Area objects to allow for sensible and convenient calculation and conversions. Here are some tests. """ import unittest from djmodels.contrib.gis.measure import A, Area, D, Distance class DistanceTest(unittest.TestCase): "Testing the Distance object" def testInit(self): "Testing initialization from valid units" d = Distance(m=100) self.assertEqual(d.m, 100) d1, d2, d3 = D(m=100), D(meter=100), D(metre=100) for d in (d1, d2, d3): self.assertEqual(d.m, 100) d = D(nm=100) self.assertEqual(d.m, 185200) y1, y2, y3 = D(yd=100), D(yard=100), D(Yard=100) for d in (y1, y2, y3): self.assertEqual(d.yd, 100) mm1, mm2 = D(millimeter=1000), D(MiLLiMeTeR=1000) for d in (mm1, mm2): self.assertEqual(d.m, 1.0) self.assertEqual(d.mm, 1000.0) def testInitInvalid(self): "Testing initialization from invalid units" with self.assertRaises(AttributeError): D(banana=100) def testAccess(self): "Testing access in different units" d = D(m=100) self.assertEqual(d.km, 0.1) self.assertAlmostEqual(d.ft, 328.084, 3) def testAccessInvalid(self): "Testing access in invalid units" d = D(m=100) self.assertFalse(hasattr(d, 'banana')) def testAddition(self): "Test addition & subtraction" d1 = D(m=100) d2 = D(m=200) d3 = d1 + d2 self.assertEqual(d3.m, 300) d3 += d1 self.assertEqual(d3.m, 400) d4 = d1 - d2 self.assertEqual(d4.m, -100) d4 -= d1 self.assertEqual(d4.m, -200) with self.assertRaises(TypeError): d1 + 1 with self.assertRaises(TypeError): d1 - 1 with self.assertRaises(TypeError): d1 += 1 with self.assertRaises(TypeError): d1 -= 1 def testMultiplication(self): "Test multiplication & division" d1 = D(m=100) d3 = d1 * 2 self.assertEqual(d3.m, 200) d3 = 2 * d1 self.assertEqual(d3.m, 200) d3 *= 5 self.assertEqual(d3.m, 1000) d4 = d1 / 2 self.assertEqual(d4.m, 50) d4 /= 5 self.assertEqual(d4.m, 10) d5 = d1 / D(m=2) self.assertEqual(d5, 50) a5 = d1 * D(m=10) self.assertIsInstance(a5, Area) self.assertEqual(a5.sq_m, 100 * 10) with self.assertRaises(TypeError): d1 *= D(m=1) with self.assertRaises(TypeError): d1 /= D(m=1) def testUnitConversions(self): "Testing default units during maths" d1 = D(m=100) d2 = D(km=1) d3 = d1 + d2 self.assertEqual(d3._default_unit, 'm') d4 = d2 + d1 self.assertEqual(d4._default_unit, 'km') d5 = d1 * 2 self.assertEqual(d5._default_unit, 'm') d6 = d1 / 2 self.assertEqual(d6._default_unit, 'm') def testComparisons(self): "Testing comparisons" d1 = D(m=100) d2 = D(km=1) d3 = D(km=0) self.assertGreater(d2, d1) self.assertEqual(d1, d1) self.assertLess(d1, d2) self.assertFalse(d3) def testUnitsStr(self): "Testing conversion to strings" d1 = D(m=100) d2 = D(km=3.5) self.assertEqual(str(d1), '100.0 m') self.assertEqual(str(d2), '3.5 km') self.assertEqual(repr(d1), 'Distance(m=100.0)') self.assertEqual(repr(d2), 'Distance(km=3.5)') def testUnitAttName(self): "Testing the `unit_attname` class method" unit_tuple = [('Yard', 'yd'), ('Nautical Mile', 'nm'), ('German legal metre', 'german_m'), ('Indian yard', 'indian_yd'), ('Chain (Sears)', 'chain_sears'), ('Chain', 'chain')] for nm, att in unit_tuple: with self.subTest(nm=nm): self.assertEqual(att, D.unit_attname(nm)) class AreaTest(unittest.TestCase): "Testing the Area object" def testInit(self): "Testing initialization from valid units" a = Area(sq_m=100) self.assertEqual(a.sq_m, 100) a = A(sq_m=100) self.assertEqual(a.sq_m, 100) a = A(sq_mi=100) self.assertEqual(a.sq_m, 258998811.0336) def testInitInvaliA(self): "Testing initialization from invalid units" with self.assertRaises(AttributeError): A(banana=100) def testAccess(self): "Testing access in different units" a = A(sq_m=100) self.assertEqual(a.sq_km, 0.0001) self.assertAlmostEqual(a.sq_ft, 1076.391, 3) def testAccessInvaliA(self): "Testing access in invalid units" a = A(sq_m=100) self.assertFalse(hasattr(a, 'banana')) def testAddition(self): "Test addition & subtraction" a1 = A(sq_m=100) a2 = A(sq_m=200) a3 = a1 + a2 self.assertEqual(a3.sq_m, 300) a3 += a1 self.assertEqual(a3.sq_m, 400) a4 = a1 - a2 self.assertEqual(a4.sq_m, -100) a4 -= a1 self.assertEqual(a4.sq_m, -200) with self.assertRaises(TypeError): a1 + 1 with self.assertRaises(TypeError): a1 - 1 with self.assertRaises(TypeError): a1 += 1 with self.assertRaises(TypeError): a1 -= 1 def testMultiplication(self): "Test multiplication & division" a1 = A(sq_m=100) a3 = a1 * 2 self.assertEqual(a3.sq_m, 200) a3 = 2 * a1 self.assertEqual(a3.sq_m, 200) a3 *= 5 self.assertEqual(a3.sq_m, 1000) a4 = a1 / 2 self.assertEqual(a4.sq_m, 50) a4 /= 5 self.assertEqual(a4.sq_m, 10) with self.assertRaises(TypeError): a1 * A(sq_m=1) with self.assertRaises(TypeError): a1 *= A(sq_m=1) with self.assertRaises(TypeError): a1 / A(sq_m=1) with self.assertRaises(TypeError): a1 /= A(sq_m=1) def testUnitConversions(self): "Testing default units during maths" a1 = A(sq_m=100) a2 = A(sq_km=1) a3 = a1 + a2 self.assertEqual(a3._default_unit, 'sq_m') a4 = a2 + a1 self.assertEqual(a4._default_unit, 'sq_km') a5 = a1 * 2 self.assertEqual(a5._default_unit, 'sq_m') a6 = a1 / 2 self.assertEqual(a6._default_unit, 'sq_m') def testComparisons(self): "Testing comparisons" a1 = A(sq_m=100) a2 = A(sq_km=1) a3 = A(sq_km=0) self.assertGreater(a2, a1) self.assertEqual(a1, a1) self.assertLess(a1, a2) self.assertFalse(a3) def testUnitsStr(self): "Testing conversion to strings" a1 = A(sq_m=100) a2 = A(sq_km=3.5) self.assertEqual(str(a1), '100.0 sq_m') self.assertEqual(str(a2), '3.5 sq_km') self.assertEqual(repr(a1), 'Area(sq_m=100.0)') self.assertEqual(repr(a2), 'Area(sq_km=3.5)') def suite(): s = unittest.TestSuite() s.addTest(unittest.makeSuite(DistanceTest)) s.addTest(unittest.makeSuite(AreaTest)) return s def run(verbosity=2): unittest.TextTestRunner(verbosity=verbosity).run(suite()) if __name__ == "__main__": run()
26.204225
105
0.555496
[ "BSD-3-Clause" ]
iMerica/dj-models
tests/gis_tests/test_measure.py
7,442
Python
import keras import numpy as np from keras.datasets import mnist (x_train,y_train),(x_test,y_test)=mnist.load_data() x_train = x_train.reshape(60000,784) x_test = x_test.reshape(10000,784) x_train = x_train/255.0 x_test = x_test/255.0 from keras.utils import to_categorical y_train = to_categorical(y_train,num_classes = 10) y_test = to_categorical(y_test,num_classes = 10) from keras.layers import Input, Dense, Activation from keras.models import Model img_input = Input(shape=(784,)) x = Dense(units = 30, activation = "relu")(img_input) y = Dense(units = 10, activation = "sigmoid")(x) model= Model(inputs = img_input, outputs=y) stringlist = [] model.summary(print_fn=lambda x: stringlist.append(x)) short_model_summary = "\n".join(stringlist) print(short_model_summary) #print(model.summary) model.compile(optimizer="adam",loss="categorical_crossentropy",metrics=["accuracy"]) model.fit(x_train,y_train, batch_size=150,epochs=4, validation_split=0.2) print(model.metrics_names) model.evaluate(x_test,y_test, batch_size = 128) preds=model.predict(x_test,batch_size = 125) preds = preds.argmax(axis = 1) y_test = y_test.argmax(axis = 1) print(preds[:10]) print(y_test[:10]) from sklearn.metrics import classification_report print(classification_report(y_test, preds))
29.488889
85
0.747551
[ "MIT" ]
Aadesh-1404/Deep-Neural-Networks-Model---Keras-Tensorflow-
MNIST dataset - FCNN/FCNN.py
1,327
Python
import _plotly_utils.basevalidators class ColorValidator(_plotly_utils.basevalidators.ColorValidator): def __init__( self, plotly_name="color", parent_name="choroplethmapbox.hoverlabel.font", **kwargs ): super(ColorValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, array_ok=kwargs.pop("array_ok", True), edit_type=kwargs.pop("edit_type", "none"), **kwargs )
27.944444
66
0.620278
[ "MIT" ]
1abner1/plotly.py
packages/python/plotly/plotly/validators/choroplethmapbox/hoverlabel/font/_color.py
503
Python
# console converter - USD to BGN # Write a program for converting US dollars (USD) into Bulgarian levs (BGN). # Round the result to 2 digits after the decimal point. Use a fixed exchange rate between the dollar and the lev: 1 USD = 1.79549 BGN. USD = float(input()) BGN = round(USD * 1.79549, 2) print(BGN)
38.5
134
0.724026
[ "MIT" ]
karolinanikolova/SoftUni-Software-Engineering
1-Python-Programming-Basics (Sep 2020)/Course-Exercises-and-Exams/01_First-Steps-in-Coding/00.Book-Exercise-2.1-11-USD-to-BGN.py
308
Python
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING from azure.mgmt.core import ARMPipelineClient from msrest import Deserializer, Serializer if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Optional from azure.core.credentials import TokenCredential from ._configuration import DesktopVirtualizationAPIClientConfiguration from .operations import Operations from .operations import WorkspacesOperations from .operations import ScalingPlansOperations from .operations import ApplicationGroupsOperations from .operations import StartMenuItemsOperations from .operations import ApplicationsOperations from .operations import DesktopsOperations from .operations import HostPoolsOperations from .operations import UserSessionsOperations from .operations import SessionHostsOperations from .operations import MsixPackagesOperations from .operations import MsixImagesOperations from . import models class DesktopVirtualizationAPIClient(object): """DesktopVirtualizationAPIClient. :ivar operations: Operations operations :vartype operations: desktop_virtualization_api_client.operations.Operations :ivar workspaces: WorkspacesOperations operations :vartype workspaces: desktop_virtualization_api_client.operations.WorkspacesOperations :ivar scaling_plans: ScalingPlansOperations operations :vartype scaling_plans: desktop_virtualization_api_client.operations.ScalingPlansOperations :ivar application_groups: ApplicationGroupsOperations operations :vartype application_groups: desktop_virtualization_api_client.operations.ApplicationGroupsOperations :ivar start_menu_items: StartMenuItemsOperations operations :vartype start_menu_items: desktop_virtualization_api_client.operations.StartMenuItemsOperations :ivar applications: ApplicationsOperations operations :vartype applications: desktop_virtualization_api_client.operations.ApplicationsOperations :ivar desktops: DesktopsOperations operations :vartype desktops: desktop_virtualization_api_client.operations.DesktopsOperations :ivar host_pools: HostPoolsOperations operations :vartype host_pools: desktop_virtualization_api_client.operations.HostPoolsOperations :ivar user_sessions: UserSessionsOperations operations :vartype user_sessions: desktop_virtualization_api_client.operations.UserSessionsOperations :ivar session_hosts: SessionHostsOperations operations :vartype session_hosts: desktop_virtualization_api_client.operations.SessionHostsOperations :ivar msix_packages: MsixPackagesOperations operations :vartype msix_packages: desktop_virtualization_api_client.operations.MsixPackagesOperations :ivar msix_images: MsixImagesOperations operations :vartype msix_images: desktop_virtualization_api_client.operations.MsixImagesOperations :param credential: Credential needed for the client to connect to Azure. :type credential: ~azure.core.credentials.TokenCredential :param subscription_id: The ID of the target subscription. :type subscription_id: str :param str base_url: Service URL """ def __init__( self, credential, # type: "TokenCredential" subscription_id, # type: str base_url=None, # type: Optional[str] **kwargs # type: Any ): # type: (...) -> None if not base_url: base_url = 'https://management.azure.com' self._config = DesktopVirtualizationAPIClientConfiguration(credential, subscription_id, **kwargs) self._client = ARMPipelineClient(base_url=base_url, config=self._config, **kwargs) client_models = {k: v for k, v in models.__dict__.items() if isinstance(v, type)} self._serialize = Serializer(client_models) self._serialize.client_side_validation = False self._deserialize = Deserializer(client_models) self.operations = Operations( self._client, self._config, self._serialize, self._deserialize) self.workspaces = WorkspacesOperations( self._client, self._config, self._serialize, self._deserialize) self.scaling_plans = ScalingPlansOperations( self._client, self._config, self._serialize, self._deserialize) self.application_groups = ApplicationGroupsOperations( self._client, self._config, self._serialize, self._deserialize) self.start_menu_items = StartMenuItemsOperations( self._client, self._config, self._serialize, self._deserialize) self.applications = ApplicationsOperations( self._client, self._config, self._serialize, self._deserialize) self.desktops = DesktopsOperations( self._client, self._config, self._serialize, self._deserialize) self.host_pools = HostPoolsOperations( self._client, self._config, self._serialize, self._deserialize) self.user_sessions = UserSessionsOperations( self._client, self._config, self._serialize, self._deserialize) self.session_hosts = SessionHostsOperations( self._client, self._config, self._serialize, self._deserialize) self.msix_packages = MsixPackagesOperations( self._client, self._config, self._serialize, self._deserialize) self.msix_images = MsixImagesOperations( self._client, self._config, self._serialize, self._deserialize) def close(self): # type: () -> None self._client.close() def __enter__(self): # type: () -> DesktopVirtualizationAPIClient self._client.__enter__() return self def __exit__(self, *exc_details): # type: (Any) -> None self._client.__exit__(*exc_details)
49.472
105
0.747413
[ "MIT" ]
Caoxuyang/azure-cli-extensions
src/desktopvirtualization/azext_desktopvirtualization/vendored_sdks/desktopvirtualization/_desktop_virtualization_api_client.py
6,184
Python
#!/usr/bin/env python # # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Utility for creating release candidates and promoting release candidates to a final relase. Usage: release.py The utility is interactive; you will be prompted for basic release information and guided through the process. This utility assumes you already have local a kafka git folder and that you have added remotes corresponding to both: (i) the github apache kafka mirror and (ii) the apache kafka git repo. """ from __future__ import print_function import datetime from getpass import getpass import json import os import subprocess import sys import tempfile PROJECT_NAME = "kafka" CAPITALIZED_PROJECT_NAME = "kafka".upper() SCRIPT_DIR = os.path.abspath(os.path.dirname(__file__)) # Location of the local git repository REPO_HOME = os.environ.get("%s_HOME" % CAPITALIZED_PROJECT_NAME, SCRIPT_DIR) # Remote name, which points to Github by default PUSH_REMOTE_NAME = os.environ.get("PUSH_REMOTE_NAME", "apache-github") PREFS_FILE = os.path.join(SCRIPT_DIR, '.release-settings.json') delete_gitrefs = False work_dir = None def fail(msg): if work_dir: cmd("Cleaning up work directory", "rm -rf %s" % work_dir) if delete_gitrefs: try: cmd("Resetting repository working state to branch %s" % starting_branch, "git reset --hard HEAD && git checkout %s" % starting_branch, shell=True) cmd("Deleting git branches %s" % release_version, "git branch -D %s" % release_version, shell=True) cmd("Deleting git tag %s" %rc_tag , "git tag -d %s" % rc_tag, shell=True) except subprocess.CalledProcessError: print("Failed when trying to clean up git references added by this script. You may need to clean up branches/tags yourself before retrying.") print("Expected git branch: " + release_version) print("Expected git tag: " + rc_tag) print(msg) sys.exit(1) def print_output(output): if output is None or len(output) == 0: return for line in output.split('\n'): print(">", line) def cmd(action, cmd, *args, **kwargs): if isinstance(cmd, basestring) and not kwargs.get("shell", False): cmd = cmd.split() allow_failure = kwargs.pop("allow_failure", False) stdin_log = "" if "stdin" in kwargs and isinstance(kwargs["stdin"], basestring): stdin_log = "--> " + kwargs["stdin"] stdin = tempfile.TemporaryFile() stdin.write(kwargs["stdin"]) stdin.seek(0) kwargs["stdin"] = stdin print(action, cmd, stdin_log) try: output = subprocess.check_output(cmd, *args, stderr=subprocess.STDOUT, **kwargs) print_output(output) except subprocess.CalledProcessError as e: print_output(e.output) if allow_failure: return print("*************************************************") print("*** First command failure occurred here. ***") print("*** Will now try to clean up working state. ***") print("*************************************************") fail("") def cmd_output(cmd, *args, **kwargs): if isinstance(cmd, basestring): cmd = cmd.split() return subprocess.check_output(cmd, *args, stderr=subprocess.STDOUT, **kwargs) def replace(path, pattern, replacement): updated = [] with open(path, 'r') as f: for line in f: updated.append((replacement + '\n') if line.startswith(pattern) else line) with open(path, 'w') as f: for line in updated: f.write(line) def user_ok(msg): ok = raw_input(msg) return ok.lower() == 'y' def sftp_mkdir(dir): basedir, dirname = os.path.split(dir) if not basedir: basedir = "." try: cmd_str = """ cd %s -mkdir %s """ % (basedir, dirname) cmd("Creating '%s' in '%s' in your Apache home directory if it does not exist (errors are ok if the directory already exists)" % (dirname, basedir), "sftp -b - %[email protected]" % apache_id, stdin=cmd_str, allow_failure=True) except subprocess.CalledProcessError: # This is ok. The command fails if the directory already exists pass def get_pref(prefs, name, request_fn): "Get a preference from existing preference dictionary or invoke a function that can collect it from the user" val = prefs.get(name) if not val: val = request_fn() prefs[name] = val return val # Load saved preferences prefs = {} if os.path.exists(PREFS_FILE): with open(PREFS_FILE, 'r') as prefs_fp: prefs = json.load(prefs_fp) if not user_ok("""Requirements: 1. Updated docs to reference the new release version where appropriate. 2. JDK7 and JDK8 compilers and libraries 3. Your Apache ID, already configured with SSH keys on id.apache.org and SSH keys available in this shell session 4. All issues in the target release resolved with valid resolutions (if not, this script will report the problematic JIRAs) 5. A GPG key used for signing the release. This key should have been added to public Apache servers and the KEYS file on the Kafka site 6. Standard toolset installed -- git, gpg, gradle, sftp, etc. 7. ~/.gradle/gradle.properties configured with the signing properties described in the release process wiki, i.e. mavenUrl=https://repository.apache.org/service/local/staging/deploy/maven2 mavenUsername=your-apache-id mavenPassword=your-apache-passwd signing.keyId=your-gpgkeyId signing.password=your-gpg-passphrase signing.secretKeyRingFile=/Users/your-id/.gnupg/secring.gpg (if you are using GPG 2.1 and beyond, then this file will no longer exist anymore, and you have to manually create it from the new private key directory with "gpg --export-secret-keys -o ~/.gnupg/secring.gpg") 8. ~/.m2/settings.xml configured for pgp signing and uploading to apache release maven, i.e., <server> <id>apache.releases.https</id> <username>your-apache-id</username> <password>your-apache-passwd</password> </server> <server> <id>your-gpgkeyId</id> <passphrase>your-gpg-passphase</passphrase> </server> <profile> <id>gpg-signing</id> <properties> <gpg.keyname>your-gpgkeyId</gpg.keyname> <gpg.passphraseServerId>your-gpgkeyId</gpg.passphraseServerId> </properties> </profile> 9. You may also need to update some gnupgp configs: ~/.gnupg/gpg-agent.conf allow-loopback-pinentry ~/.gnupg/gpg.conf use-agent pinentry-mode loopback echo RELOADAGENT | gpg-connect-agent If any of these are missing, see https://cwiki.apache.org/confluence/display/KAFKA/Release+Process for instructions on setting them up. Some of these may be used from these previous settings loaded from %s: %s Do you have all of of these setup? (y/n): """ % (PREFS_FILE, json.dumps(prefs, indent=2))): fail("Please try again once you have all the prerequisites ready.") starting_branch = cmd_output('git rev-parse --abbrev-ref HEAD') cmd("Verifying that you have no unstaged git changes", 'git diff --exit-code --quiet') cmd("Verifying that you have no staged git changes", 'git diff --cached --exit-code --quiet') release_version = raw_input("Release version (without any RC info, e.g. 0.10.2.0): ") try: release_version_parts = release_version.split('.') if len(release_version_parts) != 4: fail("Invalid release version, should have 4 version number components") # Validate each part is a number [int(x) for x in release_version_parts] except ValueError: fail("Invalid release version, should be a dotted version number") rc = raw_input("Release candidate number: ") dev_branch = '.'.join(release_version_parts[:3]) docs_version = ''.join(release_version_parts[:3]) # Validate that the release doesn't already exist and that the cmd("Fetching tags from upstream", 'git fetch --tags %s' % PUSH_REMOTE_NAME) tags = cmd_output('git tag').split() if release_version in tags: fail("The specified version has already been tagged and released.") # TODO promotion if not rc: fail("Automatic Promotion is not yet supported.") # Find the latest RC and make sure they want to promote that one rc_tag = sorted([t for t in tags if t.startswith(release_version + '-rc')])[-1] if not user_ok("Found %s as latest RC for this release. Is this correct? (y/n): "): fail("This script couldn't determine which RC tag to promote, you'll need to fix up the RC tags and re-run the script.") sys.exit(0) # Prereq checks apache_id = get_pref(prefs, 'apache_id', lambda: raw_input("Enter your apache username: ")) jdk7_java_home = get_pref(prefs, 'jdk7', lambda: raw_input("Enter the path for JAVA_HOME for a JDK7 compiler (blank to use default JAVA_HOME): ")) jdk7_env = dict(os.environ) if jdk7_java_home.strip() else None if jdk7_env is not None: jdk7_env['JAVA_HOME'] = jdk7_java_home if "1.7.0" not in cmd_output("java -version", env=jdk7_env): fail("You must be able to build artifacts with JDK7 for Scala 2.10 and 2.11 artifacts") jdk8_java_home = get_pref(prefs, 'jdk8', lambda: raw_input("Enter the path for JAVA_HOME for a JDK8 compiler (blank to use default JAVA_HOME): ")) jdk8_env = dict(os.environ) if jdk8_java_home.strip() else None if jdk8_env is not None: jdk8_env['JAVA_HOME'] = jdk8_java_home if "1.8.0" not in cmd_output("java -version", env=jdk8_env): fail("You must be able to build artifacts with JDK8 for Scala 2.12 artifacts") def select_gpg_key(): print("Here are the available GPG keys:") available_keys = cmd_output("gpg --list-secret-keys") print(available_keys) key_name = raw_input("Which user name (enter the user name without email address): ") if key_name not in available_keys: fail("Couldn't find the requested key.") return key_name key_name = get_pref(prefs, 'gpg-key', select_gpg_key) gpg_passphrase = get_pref(prefs, 'gpg-pass', lambda: getpass("Passphrase for this GPG key: ")) # Do a quick validation so we can fail fast if the password is incorrect with tempfile.NamedTemporaryFile() as gpg_test_tempfile: gpg_test_tempfile.write("abcdefg") cmd("Testing GPG key & passphrase", ["gpg", "--batch", "--pinentry-mode", "loopback", "--passphrase-fd", "0", "-u", key_name, "--armor", "--output", gpg_test_tempfile.name + ".asc", "--detach-sig", gpg_test_tempfile.name], stdin=gpg_passphrase) # Save preferences print("Saving preferences to %s" % PREFS_FILE) with open(PREFS_FILE, 'w') as prefs_fp: prefs = json.dump(prefs, prefs_fp) # Generate RC try: int(rc) except ValueError: fail("Invalid release candidate number: %s" % rc) rc_tag = release_version + '-rc' + rc delete_gitrefs = True # Since we are about to start creating new git refs, enable cleanup function on failure to try to delete them cmd("Checking out current development branch", "git checkout -b %s %s" % (release_version, PUSH_REMOTE_NAME + "/" + dev_branch)) print("Updating version numbers") replace("gradle.properties", "version", "version=%s" % release_version) replace("tests/kafkatest/__init__.py", "__version__", "__version__ = '%s'" % release_version) cmd("update streams quickstart pom", ["sed", "-i", ".orig"," s/-SNAPSHOT//", "streams/quickstart/pom.xml"]) cmd("update streams quickstart java pom", ["sed", "-i", ".orig", "s/-SNAPSHOT//", "streams/quickstart/java/pom.xml"]) cmd("update streams quickstart java pom", ["sed", "-i", ".orig", "s/-SNAPSHOT//", "streams/quickstart/java/src/main/resources/archetype-resources/pom.xml"]) cmd("remove backup pom.xml", "rm streams/quickstart/pom.xml.orig") cmd("remove backup java pom.xml", "rm streams/quickstart/java/pom.xml.orig") cmd("remove backup java pom.xml", "rm streams/quickstart/java/src/main/resources/archetype-resources/pom.xml.orig") # Command in explicit list due to messages with spaces cmd("Commiting version number updates", ["git", "commit", "-a", "-m", "Bump version to %s" % release_version]) # Command in explicit list due to messages with spaces cmd("Tagging release candidate %s" % rc_tag, ["git", "tag", "-a", rc_tag, "-m", rc_tag]) rc_githash = cmd_output("git show-ref --hash " + rc_tag) cmd("Switching back to your starting branch", "git checkout %s" % starting_branch) # Note that we don't use tempfile here because mkdtemp causes problems with sftp and being able to determine the absolute path to a file. # Instead we rely on a fixed path and if it work_dir = os.path.join(REPO_HOME, ".release_work_dir") if os.path.exists(work_dir): fail("A previous attempt at a release left dirty state in the work directory. Clean up %s before proceeding. (This attempt will try to cleanup, simply retrying may be sufficient now...)" % work_dir) os.makedirs(work_dir) print("Temporary build working director:", work_dir) kafka_dir = os.path.join(work_dir, 'kafka') streams_quickstart_dir = os.path.join(kafka_dir, 'streams/quickstart') print("Streams quickstart dir", streams_quickstart_dir) cmd("Creating staging area for release artifacts", "mkdir kafka-" + rc_tag, cwd=work_dir) artifacts_dir = os.path.join(work_dir, "kafka-" + rc_tag) cmd("Cloning clean copy of repo", "git clone %s kafka" % REPO_HOME, cwd=work_dir) cmd("Checking out RC tag", "git checkout -b %s %s" % (release_version, rc_tag), cwd=kafka_dir) current_year = datetime.datetime.now().year cmd("Verifying the correct year in NOTICE", "grep %s NOTICE" % current_year, cwd=kafka_dir) with open(os.path.join(artifacts_dir, "RELEASE_NOTES.html"), 'w') as f: print("Generating release notes") try: subprocess.check_call(["./release_notes.py", release_version], stdout=f) except subprocess.CalledProcessError as e: print_output(e.output) print("*************************************************") print("*** First command failure occurred here. ***") print("*** Will now try to clean up working state. ***") print("*************************************************") fail("") params = { 'release_version': release_version, 'rc_tag': rc_tag, 'artifacts_dir': artifacts_dir } cmd("Creating source archive", "git archive --format tar.gz --prefix kafka-%(release_version)s-src/ -o %(artifacts_dir)s/kafka-%(release_version)s-src.tgz %(rc_tag)s" % params) cmd("Building artifacts", "gradle", cwd=kafka_dir, env=jdk7_env) cmd("Building artifacts", "./gradlew clean releaseTarGzAll aggregatedJavadoc", cwd=kafka_dir, env=jdk7_env) # This should be removed when Java7 is dropped (cf. KAFKA-4421) cmd("Building artifacts for Scala 2.12", "./gradlew releaseTarGz -PscalaVersion=2.12", cwd=kafka_dir, env=jdk8_env) cmd("Copying artifacts", "cp %s/core/build/distributions/* %s" % (kafka_dir, artifacts_dir), shell=True) cmd("Copying artifacts", "cp -R %s/build/docs/javadoc %s" % (kafka_dir, artifacts_dir)) for filename in os.listdir(artifacts_dir): full_path = os.path.join(artifacts_dir, filename) if not os.path.isfile(full_path): continue # Commands in explicit list due to key_name possibly containing spaces cmd("Signing " + full_path, ["gpg", "--batch", "--passphrase-fd", "0", "-u", key_name, "--armor", "--output", full_path + ".asc", "--detach-sig", full_path], stdin=gpg_passphrase) cmd("Verifying " + full_path, ["gpg", "--verify", full_path + ".asc", full_path]) # Note that for verification, we need to make sure only the filename is used with --print-md because the command line # argument for the file is included in the output and verification uses a simple diff that will break if an absolut path # is used. dir, fname = os.path.split(full_path) cmd("Generating MD5 for " + full_path, "gpg --print-md md5 %s > %s.md5" % (fname, fname), shell=True, cwd=dir) cmd("Generating SHA1 for " + full_path, "gpg --print-md sha1 %s > %s.sha1" % (fname, fname), shell=True, cwd=dir) cmd("Generating SHA512 for " + full_path, "gpg --print-md sha512 %s > %s.sha512" % (fname, fname), shell=True, cwd=dir) cmd("Listing artifacts to be uploaded:", "ls -R %s" % artifacts_dir) if not user_ok("Going to upload the artifacts in %s, listed above, to your Apache home directory. Ok (y/n)?): " % artifacts_dir): fail("Quitting") sftp_mkdir("public_html") kafka_output_dir = "kafka-" + rc_tag sftp_mkdir(os.path.join("public_html", kafka_output_dir)) public_release_dir = os.path.join("public_html", kafka_output_dir) # The sftp -r option doesn't seem to work as would be expected, at least with the version shipping on OS X. To work around this we process all the files and directories manually... sftp_cmds = "" for root, dirs, files in os.walk(artifacts_dir): assert root.startswith(artifacts_dir) for dir in dirs: sftp_mkdir(os.path.join("public_html", kafka_output_dir, root[len(artifacts_dir)+1:], dir)) for file in files: local_path = os.path.join(root, file) remote_path = os.path.join("public_html", kafka_output_dir, root[len(artifacts_dir)+1:], file) sftp_cmds = """ put %s %s """ % (local_path, remote_path) cmd("Uploading artifacts in %s to your Apache home directory" % root, "sftp -b - %[email protected]" % apache_id, stdin=sftp_cmds) with open(os.path.expanduser("~/.gradle/gradle.properties")) as f: contents = f.read() if not user_ok("Going to build and upload mvn artifacts based on these settings:\n" + contents + '\nOK (y/n)?: '): fail("Retry again later") cmd("Building and uploading archives", "./gradlew uploadArchivesAll", cwd=kafka_dir, env=jdk7_env) cmd("Building and uploading archives", "./gradlew uploadCoreArchives_2_12 -PscalaVersion=2.12", cwd=kafka_dir, env=jdk8_env) cmd("Building and uploading archives", "mvn deploy -Pgpg-signing", cwd=streams_quickstart_dir, env=jdk7_env) release_notification_props = { 'release_version': release_version, 'rc': rc, 'rc_tag': rc_tag, 'rc_githash': rc_githash, 'dev_branch': dev_branch, 'docs_version': docs_version, 'apache_id': apache_id, } # TODO: Many of these suggested validation steps could be automated and would help pre-validate a lot of the stuff voters test print(""" ******************************************************************************************************************************************************* Ok. We've built and staged everything for the %(rc_tag)s. Now you should sanity check it before proceeding. All subsequent steps start making RC data public. Some suggested steps: * Grab the source archive and make sure it compiles: http://home.apache.org/~%(apache_id)s/kafka-%(rc_tag)s/kafka-%(release_version)s-src.tgz * Grab one of the binary distros and run the quickstarts against them: http://home.apache.org/~%(apache_id)s/kafka-%(rc_tag)s/kafka_2.11-%(release_version)s.tgz * Extract and verify one of the site docs jars: http://home.apache.org/~%(apache_id)s/kafka-%(rc_tag)s/kafka_2.11-%(release_version)s-site-docs.tgz * Build a sample against jars in the staging repo: (TODO: Can we get a temporary URL before "closing" the staged artifacts?) * Validate GPG signatures on at least one file: wget http://home.apache.org/~%(apache_id)s/kafka-%(rc_tag)s/kafka-%(release_version)s-src.tgz && wget http://home.apache.org/~%(apache_id)s/kafka-%(rc_tag)s/kafka-%(release_version)s-src.tgz.asc && wget http://home.apache.org/~%(apache_id)s/kafka-%(rc_tag)s/kafka-%(release_version)s-src.tgz.md5 && wget http://home.apache.org/~%(apache_id)s/kafka-%(rc_tag)s/kafka-%(release_version)s-src.tgz.sha1 && wget http://home.apache.org/~%(apache_id)s/kafka-%(rc_tag)s/kafka-%(release_version)s-src.tgz.sha512 && gpg --verify kafka-%(release_version)s-src.tgz.asc kafka-%(release_version)s-src.tgz && gpg --print-md md5 kafka-%(release_version)s-src.tgz | diff - kafka-%(release_version)s-src.tgz.md5 && gpg --print-md sha1 kafka-%(release_version)s-src.tgz | diff - kafka-%(release_version)s-src.tgz.sha1 && gpg --print-md sha512 kafka-%(release_version)s-src.tgz | diff - kafka-%(release_version)s-src.tgz.sha512 && rm kafka-%(release_version)s-src.tgz* && echo "OK" || echo "Failed" * Validate the javadocs look ok. They are at http://home.apache.org/~%(apache_id)s/kafka-%(rc_tag)s/javadoc/ ******************************************************************************************************************************************************* """ % release_notification_props) if not user_ok("Have you sufficiently verified the release artifacts (y/n)?: "): fail("Ok, giving up") print("Next, we need to get the Maven artifacts we published into the staging repository.") # TODO: Can we get this closed via a REST API since we already need to collect credentials for this repo? print("Go to https://repository.apache.org/#stagingRepositories and hit 'Close' for the new repository that was created by uploading artifacts.") if not user_ok("Have you successfully deployed the artifacts (y/n)?: "): fail("Ok, giving up") if not user_ok("Ok to push RC tag %s (y/n)?: " % rc_tag): fail("Ok, giving up") cmd("Pushing RC tag", "git push %s %s" % (PUSH_REMOTE_NAME, rc_tag)) # Move back to starting branch and clean out the temporary release branch (e.g. 0.10.2.0) we used to generate everything cmd("Resetting repository working state", "git reset --hard HEAD && git checkout %s" % starting_branch, shell=True) cmd("Deleting git branches %s" % release_version, "git branch -D %s" % release_version, shell=True) email_contents = """ To: [email protected], [email protected], [email protected] Subject: [VOTE] %(release_version)s RC%(rc)s Hello Kafka users, developers and client-developers, This is the first candidate for release of Apache Kafka %(release_version)s. <DESCRIPTION OF MAJOR CHANGES, INCLUDE INDICATION OF MAJOR/MINOR RELEASE> Release notes for the %(release_version)s release: http://home.apache.org/~%(apache_id)s/kafka-%(rc_tag)s/RELEASE_NOTES.html *** Please download, test and vote by <VOTING DEADLINE, e.g. Monday, March 28, 9am PT> Kafka's KEYS file containing PGP keys we use to sign the release: http://kafka.apache.org/KEYS * Release artifacts to be voted upon (source and binary): http://home.apache.org/~%(apache_id)s/kafka-%(rc_tag)s/ * Maven artifacts to be voted upon: https://repository.apache.org/content/groups/staging/ * Javadoc: http://home.apache.org/~%(apache_id)s/kafka-%(rc_tag)s/javadoc/ * Tag to be voted upon (off %(dev_branch)s branch) is the %(release_version)s tag: https://github.com/apache/kafka/releases/tag/%(rc_tag)s * Documentation: http://kafka.apache.org/%(docs_version)s/documentation.html * Protocol: http://kafka.apache.org/%(docs_version)s/protocol.html * Successful Jenkins builds for the %(dev_branch)s branch: Unit/integration tests: https://builds.apache.org/job/kafka-%(dev_branch)s-jdk7/<BUILD NUMBER>/ System tests: https://jenkins.confluent.io/job/system-test-kafka/job/%(dev_branch)s/<BUILD_NUMBER>/ /************************************** Thanks, <YOU> """ % release_notification_props print() print() print("*****************************************************************") print() print(email_contents) print() print("*****************************************************************") print() print("All artifacts should now be fully staged. Use the above template to send the announcement for the RC to the mailing list.") print("IMPORTANT: Note that there are still some substitutions that need to be made in the template:") print(" - Describe major changes in this release") print(" - Deadline for voting, which should be at least 3 days after you send out the email") print(" - Jenkins build numbers for successful unit & system test builds") print(" - Fill in your name in the signature") print(" - Finally, validate all the links before shipping!") print("Note that all substitutions are annotated with <> around them.")
48.515564
275
0.685447
[ "Apache-2.0" ]
SharaWeil/kafka-0.11.0
release.py
24,937
Python
from masonite.foundation import response_handler from masonite.storage import StorageCapsule from masonite.auth import Sign from masonite.environment import LoadEnvironment from masonite.utils.structures import load from masonite.utils.location import base_path from masonite.middleware import ( SessionMiddleware, EncryptCookies, LoadUserMiddleware, MaintenanceModeMiddleware, ) from masonite.routes import Route from masonite.configuration.Configuration import Configuration from masonite.configuration import config from config.filesystem import STATICFILES from app.middlewares.VerifyCsrfToken import VerifyCsrfToken class Kernel: http_middleware = [MaintenanceModeMiddleware, EncryptCookies] route_middleware = { "web": [SessionMiddleware, LoadUserMiddleware, VerifyCsrfToken], } def __init__(self, app): self.application = app def register(self): # Register routes self.load_environment() self.register_configurations() self.register_middleware() self.register_routes() self.register_database() self.register_templates() self.register_storage() def load_environment(self): LoadEnvironment() def register_configurations(self): # load configuration self.application.bind("config.location", "config") configuration = Configuration(self.application) configuration.load() self.application.bind("config", configuration) key = config("application.key") self.application.bind("key", key) self.application.bind("sign", Sign(key)) # set locations self.application.bind("resources.location", "resources/") self.application.bind("controllers.location", "app/controllers") self.application.bind("jobs.location", "app/jobs") self.application.bind("providers.location", "app/providers") self.application.bind("mailables.location", "app/mailables") self.application.bind("listeners.location", "app/listeners") self.application.bind("validation.location", "app/validation") self.application.bind("notifications.location", "app/notifications") self.application.bind("events.location", "app/events") self.application.bind("tasks.location", "app/tasks") self.application.bind("models.location", "app/models") self.application.bind("observers.location", "app/models/observers") self.application.bind("policies.location", "app/policies") self.application.bind("commands.location", "app/commands") self.application.bind("middlewares.location", "app/middlewares") self.application.bind("server.runner", "masonite.commands.ServeCommand.main") def register_middleware(self): self.application.make("middleware").add(self.route_middleware).add(self.http_middleware) def register_routes(self): Route.set_controller_locations(self.application.make("controllers.location")) self.application.bind("routes.location", "routes/web") self.application.make("router").add( Route.group( load(self.application.make("routes.location"), "ROUTES"), middleware=["web"] ) ) def register_database(self): from masoniteorm.query import QueryBuilder self.application.bind( "builder", QueryBuilder(connection_details=config("database.databases")), ) self.application.bind("migrations.location", "databases/migrations") self.application.bind("seeds.location", "databases/seeds") self.application.bind("resolver", config("database.db")) def register_templates(self): self.application.bind("views.location", "templates/") def register_storage(self): storage = StorageCapsule() storage.add_storage_assets(STATICFILES) self.application.bind("storage_capsule", storage) self.application.set_response_handler(response_handler) self.application.use_storage_path(base_path("storage"))
37.990741
96
0.700219
[ "MIT" ]
MasoniteFramework/masonite-packages
Kernel.py
4,103
Python
import html import os import pathlib import shutil import sqlite3 import sys from collections import OrderedDict from scripts.html_parts import * from scripts.ilapfuncs import logfunc from scripts.version_info import aleapp_version, aleapp_contributors def get_icon_name(category, artifact): ''' Returns the icon name from the feathericons collection. To add an icon type for an artifact, select one of the types from ones listed @ feathericons.com If no icon is available, the alert triangle is returned as default icon. ''' category = category.upper() artifact = artifact.upper() icon = 'alert-triangle' # default (if not defined!) ## Please keep list below SORTED by category if category.find('ACCOUNT') >= 0: if artifact.find('AUTH') >= 0: icon = 'key' else: icon = 'user' elif category == 'ADDRESS BOOK': icon = 'book-open' elif category == 'ALARMS': icon = 'clock' elif category == 'AIRTAGS': icon = 'map-pin' elif category == 'APPLE PODCASTS': icon = 'play-circle' elif category == 'APPLE WALLET': if artifact == 'TRANSACTIONS': icon = 'dollar-sign' if artifact == 'CARDS': icon = 'credit-card' if artifact == 'PASSES': icon = 'send' elif category == 'APP CONDUIT': icon = 'activity' elif category == 'APP PERMISSIONS': icon = 'key' elif category == 'CARPLAY': icon = 'package' elif category == 'CASH APP': icon = 'credit-card' elif category == 'APP UPDATES': icon = 'codepen' elif category == 'APPLICATIONS': icon = 'grid' elif category == 'AGGREGATE DICTIONARY': icon = 'book' elif category == 'BLUETOOTH': icon = 'bluetooth' elif category == 'CALENDAR': icon = 'calendar' elif category == 'CALL HISTORY': icon = 'phone-call' elif category == 'CELLULAR WIRELESS': icon = 'bar-chart' elif category == 'CLOUDKIT': if artifact == 'PARTICIPANTS': icon = 'user' elif artifact == 'NOTE SHARING': icon = 'share-2' elif category == 'CONNECTED TO': icon = 'zap' elif category == 'COREDUET': if artifact == 'AIRPLANE MODE': icon = 'pause' if artifact == 'LOCK STATE': icon = 'lock' if artifact == 'PLUGGED IN': icon = 'battery-charging' elif category == 'DATA USAGE': icon = 'wifi' elif category == 'DEVICE INFO': if artifact == 'BUILD INFO': icon = 'terminal' elif artifact == 'IOS SYSTEM VERSION': icon = 'git-commit' elif artifact == 'PARTNER SETTINGS': icon = 'settings' elif artifact.find('SETTINGS_SECURE_') >= 0: icon = 'settings' else: icon = 'info' elif category == 'DHCP': icon = 'settings' elif category == 'DISCORD': if artifact == 'DISCORD MESSAGES': icon = 'message-square' if artifact == 'DISCORD ACCOUNT': icon = 'user' if artifact == 'DISCORD MANIFEST': icon = 'file-text' elif category == 'FACEBOOK MESSENGER': icon = 'facebook' elif category == 'FILES APP': icon = 'file-text' elif category == 'GEOLOCATION': if artifact == 'APPLICATIONS': icon = 'grid' elif artifact == 'MAP TILE CACHE': icon = 'map' elif artifact == 'PD PLACE CACHE': icon = 'map-pin' elif category == 'GOOGLE DUO': if artifact == 'GOOGLE DUO - CALL HISTORY': icon = 'phone-call' if artifact == 'GOOGLE DUO - CONTACTS': icon = 'user' if artifact == 'GOOGLE DUO - CLIPS': icon = 'video' elif category == 'HEALTH DATA': icon = 'heart' elif category == 'ICLOUD QUICK LOOK': icon = 'file' elif category == 'ICLOUD RETURNS': icon = 'cloud' elif category == 'ICLOUD SHARED ALBUMS': icon = 'cloud' elif category == 'IMO HD CHAT': if artifact == 'IMO HD CHAT - MESSAGES': icon = 'message-circle' if artifact == 'IMO HD CHAT - CONTACTS': icon = 'user' elif category == 'INSTAGRAM': if artifact == 'INSTAGRAM THREADS': icon = 'message-square' if artifact == 'INSTAGRAM THREADS CALLS': icon = 'phone' elif category == 'INSTALLED APPS': icon = 'package' elif category == 'INTERACTIONC': if artifact == 'CONTACTS': icon = 'user' elif artifact == 'ATTACHMENTS': icon = 'paperclip' elif category == 'IOS BUILD': icon = 'git-commit' elif category == 'IOS MAIL': icon = 'mail' elif category == 'IOS SCREENS': icon = 'maximize' elif category == 'KEYBOARD': if artifact == 'KEYBOARD DYNAMIC LEXICON': icon = 'type' elif artifact == 'KEYBOARD APPLICATION USAGE': icon = 'type' elif category == 'KIK': if artifact == 'KIK MESSAGES': icon = 'message-square' if artifact == 'KIK USERS': icon = 'user' if artifact == 'KIK MEDIA METADATA': icon = 'file-plus' if artifact == 'KIK PENDING UPLOADS': icon = 'upload' elif category == 'KNOWLEDGEC': if artifact == 'KNOWLEDGEC DEVICE LOCKED': icon = 'lock' elif artifact == 'KNOWLEDGEC PLUGGED IN': icon = 'battery-charging' elif artifact == 'KNOWLEDGEC BATTERY LEVEL': icon = 'battery' else: icon = 'activity' elif category == 'LOCATIONS': if artifact == 'APPLE MAPS SEARCH HISTORY': icon = 'search' else: icon = 'map-pin' elif category == 'LOCATION SERVICES CONFIGURATIONS': icon = 'settings' elif category == 'MEDIA LIBRARY': icon = 'play-circle' elif category == 'MEDIA METADATA': icon = 'file-plus' elif category == 'MEDICAL ID': icon = 'thermometer' elif category == 'MICROSOFT TEAMS - LOGS': if artifact == 'TEAMS LOCATIONS': icon = 'map-pin' if artifact == 'TEAMS MOTION': icon = 'move' if artifact == 'TEAMS STATE CHANGE': icon = 'truck' if artifact == 'TEAMS POWER LOG': icon = 'battery-charging' if artifact == 'TEAMS TIMEZONE': icon = 'clock' elif category == 'MICROSOFT TEAMS': if artifact == 'TEAMS MESSAGES': icon = 'message-square' if artifact == 'TEAMS CONTACT': icon = 'users' if artifact == 'TEAMS USER': icon = 'user' if artifact == 'TEAMS CALL LOGS': icon = 'phone' if artifact == 'TEAMS SHARED LOCATIONS': icon = 'map-pin' elif category == 'MOBILE ACTIVATION LOGS': icon = 'clipboard' elif category == 'MOBILE BACKUP': icon = 'save' elif category == 'MOBILE CONTAINER MANAGER': icon = 'save' elif category == 'MOBILE INSTALLATION LOGS': icon = 'clipboard' elif category == 'MOBILE SOFTWARE UPDATE': icon = 'refresh-cw' elif category == 'NOTES': icon = 'file-text' elif category == 'NOTIFICATIONS': icon = 'bell' elif category == 'PHOTOS': icon = 'image' elif category == 'POWERLOG': icon = 'power' elif category == 'POWERLOG BACKUPS': icon = 'power' elif category == 'PROTON MAIL': icon = 'mail' elif category == 'RECENT ACTIVITY': icon = 'activity' elif category == 'REMINDERS': icon = 'list' elif category == 'ROUTINED': icon = 'map' elif category == 'SAFARI BROWSER': icon = 'compass' elif category == 'SCREENTIME': icon = 'monitor' elif category == 'SCRIPT LOGS': icon = 'archive' elif category == 'SLACK': if artifact == 'SLACK MESSAGES': icon = 'message-square' if artifact == 'SLACK USER DATA': icon = 'user' if artifact == 'SLACK ATTACHMENTS': icon = 'paperclip' if artifact == 'SLACK WORKSPACE DATA': icon = 'slack' if artifact == 'SLACK TEAM DATA': icon = 'slack' if artifact == 'SLACK CHANNEL DATA': icon = 'slack' elif category == 'SMS & IMESSAGE': icon = 'message-square' elif category == 'SQLITE JOURNALING': icon = 'book-open' elif category == 'TEXT INPUT MESSAGES': icon = 'message-square' elif category == 'TIKTOK': if artifact == 'TIKTOK MESSAGES': icon = 'message-square' if artifact == 'TIKTOK CONTACTS': icon = 'user' elif category == 'USER DICTIONARY': icon = 'book' elif category == 'VENMO': icon = 'dollar-sign' elif category == 'VIBER': if artifact == 'VIBER - SETTINGS': icon = 'settings' if artifact == 'VIBER - CONTACTS': icon = 'users' if artifact == 'VIBER - CHATS': icon = 'message-square' if artifact == 'VIBER - CALL REMNANTS': icon = 'phone-call' elif category == 'VOICE-RECORDINGS': icon = 'mic' elif category == 'VOICE-TRIGGERS': icon = 'mic' elif category == 'WHATSAPP': if artifact == 'WHATSAPP - MESSAGES': icon = 'message-square' if artifact == 'WHATSAPP - CONTACTS': icon = 'users' elif category == 'WIFI CONNECTIONS': icon = 'wifi' elif category == 'WIFI KNOWN NETWORKS': icon = 'wifi' return icon def generate_report(reportfolderbase, time_in_secs, time_HMS, extraction_type, image_input_path): control = None side_heading = \ """<h6 class="sidebar-heading justify-content-between align-items-center px-3 mt-4 mb-1 text-muted"> {0} </h6> """ list_item = \ """ <li class="nav-item"> <a class="nav-link {0}" href="{1}"> <span data-feather="{2}"></span> {3} </a> </li> """ # Populate the sidebar dynamic data (depends on data/files generated by parsers) # Start with the 'saved reports' (home) page link and then append elements nav_list_data = side_heading.format('Saved Reports') + list_item.format('', 'index.html', 'home', 'Report Home') # Get all files side_list = OrderedDict() # { Category1 : [path1, path2, ..], Cat2:[..] } Dictionary containing paths as values, key=category for root, dirs, files in sorted(os.walk(reportfolderbase)): for file in files: if file.endswith(".temphtml"): fullpath = (os.path.join(root, file)) head, tail = os.path.split(fullpath) p = pathlib.Path(fullpath) SectionHeader = (p.parts[-2]) if SectionHeader == '_elements': pass else: if control == SectionHeader: side_list[SectionHeader].append(fullpath) icon = get_icon_name(SectionHeader, tail.replace(".temphtml", "")) nav_list_data += list_item.format('', tail.replace(".temphtml", ".html"), icon, tail.replace(".temphtml", "")) else: control = SectionHeader side_list[SectionHeader] = [] side_list[SectionHeader].append(fullpath) nav_list_data += side_heading.format(SectionHeader) icon = get_icon_name(SectionHeader, tail.replace(".temphtml", "")) nav_list_data += list_item.format('', tail.replace(".temphtml", ".html"), icon, tail.replace(".temphtml", "")) # Now that we have all the file paths, start writing the files for category, path_list in side_list.items(): for path in path_list: old_filename = os.path.basename(path) filename = old_filename.replace(".temphtml", ".html") # search for it in nav_list_data, then mark that one as 'active' tab active_nav_list_data = mark_item_active(nav_list_data, filename) + nav_bar_script artifact_data = get_file_content(path) # Now write out entire html page for artifact f = open(os.path.join(reportfolderbase, filename), 'w', encoding='utf8') artifact_data = insert_sidebar_code(artifact_data, active_nav_list_data, path) f.write(artifact_data) f.close() # Now delete .temphtml os.remove(path) # If dir is empty, delete it try: os.rmdir(os.path.dirname(path)) except OSError: pass # Perhaps it was not empty! # Create index.html's page content create_index_html(reportfolderbase, time_in_secs, time_HMS, extraction_type, image_input_path, nav_list_data) elements_folder = os.path.join(reportfolderbase, '_elements') os.mkdir(elements_folder) __location__ = os.path.dirname(os.path.abspath(__file__)) def copy_no_perm(src, dst, *, follow_symlinks=True): if not os.path.isdir(dst): shutil.copyfile(src, dst) return dst try: shutil.copyfile(os.path.join(__location__, "logo.jpg"), os.path.join(elements_folder, "logo.jpg")) shutil.copyfile(os.path.join(__location__, "dashboard.css"), os.path.join(elements_folder, "dashboard.css")) shutil.copyfile(os.path.join(__location__, "feather.min.js"), os.path.join(elements_folder, "feather.min.js")) shutil.copyfile(os.path.join(__location__, "dark-mode.css"), os.path.join(elements_folder, "dark-mode.css")) shutil.copyfile(os.path.join(__location__, "dark-mode-switch.js"), os.path.join(elements_folder, "dark-mode-switch.js")) shutil.copyfile(os.path.join(__location__, "chats.css"), os.path.join(elements_folder, "chats.css")) shutil.copytree(os.path.join(__location__, "MDB-Free_4.13.0"), os.path.join(elements_folder, 'MDB-Free_4.13.0'), copy_function=copy_no_perm) except shutil.Error: print("shutil reported an error. Maybe due to recursive directory copying.") if os.path.exists(os.path.join(elements_folder, 'MDB-Free_4.13.0')): print("_elements folder seems fine. Probably nothing to worry about") def get_file_content(path): f = open(path, 'r', encoding='utf8') data = f.read() f.close() return data def create_index_html(reportfolderbase, time_in_secs, time_HMS, extraction_type, image_input_path, nav_list_data): '''Write out the index.html page to the report folder''' content = '<br />' content += """ <div class="card bg-white" style="padding: 20px;"> <h2 class="card-title">Case Information</h2> """ # CARD start case_list = [['Extraction location', image_input_path], ['Extraction type', extraction_type], ['Report directory', reportfolderbase], ['Processing time', f'{time_HMS} (Total {time_in_secs} seconds)']] tab1_content = generate_key_val_table_without_headings('', case_list) + \ """ <p class="note note-primary mb-4"> All dates and times are in UTC unless noted otherwise! </p> """ # Get script run log (this will be tab2) devinfo_files_path = os.path.join(reportfolderbase, 'Script Logs', 'DeviceInfo.html') tab2_content = get_file_content(devinfo_files_path) # Get script run log (this will be tab3) script_log_path = os.path.join(reportfolderbase, 'Script Logs', 'Screen Output.html') tab3_content = get_file_content(script_log_path) # Get processed files list (this will be tab3) processed_files_path = os.path.join(reportfolderbase, 'Script Logs', 'ProcessedFilesLog.html') tab4_content = get_file_content(processed_files_path) content += tabs_code.format(tab1_content, tab2_content, tab3_content, tab4_content) content += '</div>' # CARD end authors_data = generate_authors_table_code(aleapp_contributors) credits_code = credits_block.format(authors_data) # WRITE INDEX.HTML LAST filename = 'index.html' page_title = 'iLEAPP Report' body_heading = 'iOS Logs Events And Protobuf Parser' body_description = 'iLEAPP is an open source project that aims to parse every known iOS artifact for the purpose of forensic analysis.' active_nav_list_data = mark_item_active(nav_list_data, filename) + nav_bar_script f = open(os.path.join(reportfolderbase, filename), 'w', encoding='utf8') f.write(page_header.format(page_title)) f.write(body_start.format(f"iLEAPP {aleapp_version}")) f.write(body_sidebar_setup + active_nav_list_data + body_sidebar_trailer) f.write(body_main_header + body_main_data_title.format(body_heading, body_description)) f.write(content) f.write(thank_you_note) f.write(credits_code) f.write(body_main_trailer + body_end + nav_bar_script_footer + page_footer) f.close() def generate_authors_table_code(aleapp_contributors): authors_data = '' for author_name, blog, tweet_handle, git in aleapp_contributors: author_data = '' if blog: author_data += f'<a href="{blog}" target="_blank">{blog_icon}</a> &nbsp;\n' else: author_data += f'{blank_icon} &nbsp;\n' if tweet_handle: author_data += f'<a href="https://twitter.com/{tweet_handle}" target="_blank">{twitter_icon}</a> &nbsp;\n' else: author_data += f'{blank_icon} &nbsp;\n' if git: author_data += f'<a href="{git}" target="_blank">{github_icon}</a>\n' else: author_data += f'{blank_icon}' authors_data += individual_contributor.format(author_name, author_data) return authors_data def generate_key_val_table_without_headings(title, data_list, html_escape=True, width="70%"): '''Returns the html code for a key-value table (2 cols) without col names''' code = '' if title: code += f'<h2>{title}</h2>' table_header_code = \ """ <div class="table-responsive"> <table class="table table-bordered table-hover table-sm" width={}> <tbody> """ table_footer_code = \ """ </tbody> </table> </div> """ code += table_header_code.format(width) # Add the rows if html_escape: for row in data_list: code += '<tr>' + ''.join(('<td>{}</td>'.format(html.escape(str(x))) for x in row)) + '</tr>' else: for row in data_list: code += '<tr>' + ''.join(('<td>{}</td>'.format(str(x)) for x in row)) + '</tr>' # Add footer code += table_footer_code return code def insert_sidebar_code(data, sidebar_code, filename): pos = data.find(body_sidebar_dynamic_data_placeholder) if pos < 0: logfunc(f'Error, could not find {body_sidebar_dynamic_data_placeholder} in file {filename}') return data else: ret = data[0: pos] + sidebar_code + data[pos + len(body_sidebar_dynamic_data_placeholder):] return ret def mark_item_active(data, itemname): '''Finds itemname in data, then marks that node as active. Return value is changed data''' pos = data.find(f'" href="{itemname}"') if pos < 0: logfunc(f'Error, could not find {itemname} in {data}') return data else: ret = data[0: pos] + " active" + data[pos:] return ret
37.477528
139
0.578574
[ "MIT" ]
theAtropos4n6/iLEAPP
scripts/report.py
20,013
Python
import unittest from realm.cli.application import Application from realm.cli.commands.install import InstallCommand from realm.cli.commands.ls import LsCommand from realm.cli.commands.task import TaskCommand from realm.entities import Config, RealmContext from realm.utils.child_process import ChildProcess from tests.common import get_tests_root_dir, captured_output REPO_DIR = get_tests_root_dir().joinpath('scenarios/multiple_packages_with_tasks') class TestCommands(unittest.TestCase): @classmethod def setUpClass(cls) -> None: # Create config once cls.cfg = Config.from_file(realm_json_file=str(REPO_DIR.joinpath('realm.json'))) def setUp(self) -> None: # Create context every test self.ctx = RealmContext(config=self.cfg, projects=Application.get_projects(self.cfg)) def test_scan(self): found = len(self.ctx.projects) self.assertEqual(found, 1) def test_ls(self): cmd = LsCommand(self.ctx) with captured_output() as (out, _): cmd.run() output = out.getvalue().strip() self.assertEqual(output, '[email protected]') def test_task_install(self): install_cmd = InstallCommand(self.ctx) task_cmd = TaskCommand(self.ctx, task_name='test') self.assertEqual(len(task_cmd.ctx.projects), 1) with captured_output(stderr=False) as (out, _): install_cmd.run() task_cmd.run() output = out.getvalue() self.assertIn('Installing the current project: pkg', output) self.assertIn('Poe => python -m unittest discover -s tests -v -p "test_*.py"', output) def test_git_diff(self): cmd = LsCommand(self.ctx, since='.') with captured_output() as (out, _): cmd.run() output = out.getvalue().strip() self.assertEqual(output, '') def test_git_diff_with_change(self): pkg_proj = [p for p in self.ctx.projects if p.name == 'pkg'][0] try: with pkg_proj.source_dir.joinpath('pyproject.toml').open('a') as f: print('', file=f) cmd = LsCommand(self.ctx, since='.') with captured_output() as (out, _): cmd.run() output = out.getvalue().strip() self.assertEqual(output, '[email protected]') finally: ChildProcess.run(f'git checkout {pkg_proj.source_dir}') def test_scope_filter(self): cmd = LsCommand(self.ctx, scope=['p*']) with captured_output() as (out, _): cmd.run() output = out.getvalue().strip() self.assertEqual(output, '[email protected]') def test_ignore_filter(self): cmd = LsCommand(self.ctx, ignore=['p*']) with captured_output() as (out, _): cmd.run() output = out.getvalue().strip() self.assertEqual(output, '') def test_match_filter(self): cmd = LsCommand(self.ctx, match=['labels.type=package']) with captured_output() as (out, _): cmd.run() output = out.getvalue().strip() self.assertEqual(output, '[email protected]')
33.5
94
0.617021
[ "MIT" ]
orlevii/realm
tests/test_multiple_packages_with_tasks.py
3,149
Python
#! /usr/bin/env python # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. try: from setuptools import setup except ImportError: from distutils.core import setup from sys import version_info install_requires = [] if version_info[:2] <= (2, 5): install_requires.append('simplejson >= 2.0.9') setup( name = 'avro', version = '1.7.6', packages = ['avro',], package_dir = {'avro': 'src/avro'}, scripts = ["./scripts/avro"], # Project uses simplejson, so ensure that it gets installed or upgraded # on the target machine install_requires = install_requires, # metadata for upload to PyPI author = 'Apache Avro', author_email = '[email protected]', description = 'Avro is a serialization and RPC framework.', license = 'Apache License 2.0', keywords = 'avro serialization rpc', url = 'http://hadoop.apache.org/avro', extras_require = { 'snappy': ['python-snappy'], }, )
33.08
74
0.724305
[ "Apache-2.0" ]
Albertsss/hue
desktop/core/ext-py/avro-1.7.6/setup.py
1,654
Python
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from .core import *
16.75
23
0.597015
[ "MIT" ]
IlyaDanilenko/kiberdrom_core
kiberdrom_core/controller/__init__.py
67
Python
from django import template from django.utils.safestring import mark_safe import markdown from markdownx.utils import markdownify from markdownx.settings import ( MARKDOWNX_MARKDOWN_EXTENSIONS, MARKDOWNX_MARKDOWN_EXTENSION_CONFIGS ) from markdown.extensions import Extension register = template.Library() @register.filter def markdown_to_html(text): """マークダウンをhtmlに変換する。""" return mark_safe(markdownify(text)) class EscapeHtml(Extension): def extendMarkdown(self, md): md.preprocessors.deregister('html_block') md.inlinePatterns.deregister('html') @register.filter def markdown_to_html_with_escape(text): """マークダウンをhtmlに変換する。 生のHTMLやCSS、JavaScript等のコードをエスケープした上で、マークダウンをHTMLに変換します。 公開しているコメント欄等には、こちらを使ってください。 """ extensions = MARKDOWNX_MARKDOWN_EXTENSIONS + [EscapeHtml()] html = markdown.markdown( text, extensions=extensions, extension_configs=MARKDOWNX_MARKDOWN_EXTENSION_CONFIGS ) return mark_safe(html)
25.15
63
0.762425
[ "MIT" ]
whitecat-22/blog_site
blog/templatetags/markdown_html.py
1,180
Python
import numpy as np from bayes_implicit_solvent.continuous_parameter_experiments.elemental_types_mh import log_prior, mols, ll, data_path, \ smiles smiles_list = smiles from bayes_implicit_solvent.typers import RADIUS_UNIT from bayes_implicit_solvent.freesolv import smiles_list from bayes_implicit_solvent.typers import AtomSpecificationProposal np.random.seed(0) from bayes_implicit_solvent.gb_models.obc2_parameters import mbondi_model initial_tree = mbondi_model initial_tree.remove_node('[#14]') # otherwise everything is -inf, because this type will be empty initial_tree.proposal_sigmas['radius'] = 1e-2 * RADIUS_UNIT initial_tree.proposal_sigmas['scale_factor'] = 1e-2 # add one more parameter per element appearing in FreeSolv but not specified in obc2 parameter set to initial tree for i in [17, 35, 53]: smirks = '[#{}]'.format(i) initial_tree.add_child(smirks, '*') initial_tree.un_delete_able_types.add(smirks) specifiers = ['X1', 'X2', 'X3', 'X4', 'a', 'A', '-1', '+0', '+1', '+2'] atom_specification_proposal = AtomSpecificationProposal(atomic_specifiers=specifiers) smirks_elaboration_proposal = atom_specification_proposal print('initial tree:') print(initial_tree) n_configuration_samples = 25 import os name = 'tree_rjmc_n_config={}_{}_ll'.format(n_configuration_samples, ll) smiles_subset_fname = os.path.join(data_path, 'smiles_subset_{}.txt'.format(name)) with open(smiles_subset_fname, 'w') as f: f.writelines(['{}\n'.format(s) for s in smiles_list]) from bayes_implicit_solvent.prior_checking import check_no_empty_types error_y_trees = [] def log_prob(tree): log_prior_value = check_no_empty_types(tree) theta = np.hstack([tree.get_radii(), tree.get_scale_factors()]) log_prior_value += log_prior(theta) if log_prior_value > -np.inf: try: # TODO: Parallelize. Note that multiprocessing.Pool won't work here because it doesn't play nice with SwigPy objects # TODO: update to allow scale factors to be variable also log_likelihood_value = 0 for mol in mols: radii = tree.assign_radii(mol.mol) / RADIUS_UNIT scale_factors = tree.assign_scale_factors(mol.mol) log_likelihood_value += mol.log_prob(radii, scale_factors) except: global error_y_trees error_y_trees.append(tree) print('Warning! Encountered un-anticipated exception!') return - np.inf return log_prior_value + log_likelihood_value else: return log_prior_value from bayes_implicit_solvent.samplers import tree_rjmc from pickle import dump n_iterations = 10000 result = tree_rjmc(initial_tree, log_prob, smirks_elaboration_proposal, n_iterations=n_iterations, fraction_cross_model_proposals=0.1) with open('elaborate_tree_rjmc2_run_n_compounds={}_n_iter={}_gaussian_ll.pkl'.format(len(mols), n_iterations), 'wb') as f: dump(result, f) with open('error_y_trees.pkl', 'wb') as f: dump(error_y_trees, f)
34.764045
128
0.723659
[ "MIT" ]
openforcefield/bayes-implicit-solvent
bayes_implicit_solvent/rjmc_experiments/tree_rjmc2.py
3,094
Python
from __future__ import absolute_import from __future__ import division from __future__ import print_function import logging from ray.rllib.agents import Agent, with_common_config from ray.rllib.agents.ppo.ppo_policy_graph import PPOPolicyGraph from ray.rllib.optimizers import SyncSamplesOptimizer, LocalMultiGPUOptimizer from ray.rllib.utils.annotations import override logger = logging.getLogger(__name__) # yapf: disable # __sphinx_doc_begin__ DEFAULT_CONFIG = with_common_config({ # If true, use the Generalized Advantage Estimator (GAE) # with a value function, see https://arxiv.org/pdf/1506.02438.pdf. "use_gae": True, # GAE(lambda) parameter "lambda": 1.0, # Initial coefficient for KL divergence "kl_coeff": 0.2, # Size of batches collected from each worker "sample_batch_size": 200, # Number of timesteps collected for each SGD round "train_batch_size": 4000, # Total SGD batch size across all devices for SGD "sgd_minibatch_size": 128, # Number of SGD iterations in each outer loop "num_sgd_iter": 30, # Stepsize of SGD "lr": 5e-5, # Learning rate schedule "lr_schedule": None, # Share layers for value function "vf_share_layers": False, # Coefficient of the value function loss "vf_loss_coeff": 1.0, # Coefficient of the entropy regularizer "entropy_coeff": 0.0, # PPO clip parameter "clip_param": 0.3, # Clip param for the value function. Note that this is sensitive to the # scale of the rewards. If your expected V is large, increase this. "vf_clip_param": 10.0, # If specified, clip the global norm of gradients by this amount "grad_clip": None, # Target value for KL divergence "kl_target": 0.01, # Whether to rollout "complete_episodes" or "truncate_episodes" "batch_mode": "truncate_episodes", # Which observation filter to apply to the observation "observation_filter": "NoFilter", # Uses the sync samples optimizer instead of the multi-gpu one. This does # not support minibatches. "simple_optimizer": False, # (Deprecated) Use the sampling behavior as of 0.6, which launches extra # sampling tasks for performance but can waste a large portion of samples. "straggler_mitigation": False, }) # __sphinx_doc_end__ # yapf: enable class PPOAgent(Agent): """Multi-GPU optimized implementation of PPO in TensorFlow.""" _agent_name = "PPO" _default_config = DEFAULT_CONFIG _policy_graph = PPOPolicyGraph @override(Agent) def _init(self): self._validate_config() self.local_evaluator = self.make_local_evaluator( self.env_creator, self._policy_graph) self.remote_evaluators = self.make_remote_evaluators( self.env_creator, self._policy_graph, self.config["num_workers"]) if self.config["simple_optimizer"]: self.optimizer = SyncSamplesOptimizer( self.local_evaluator, self.remote_evaluators, { "num_sgd_iter": self.config["num_sgd_iter"], "train_batch_size": self.config["train_batch_size"], }) else: self.optimizer = LocalMultiGPUOptimizer( self.local_evaluator, self.remote_evaluators, { "sgd_batch_size": self.config["sgd_minibatch_size"], "num_sgd_iter": self.config["num_sgd_iter"], "num_gpus": self.config["num_gpus"], "sample_batch_size": self.config["sample_batch_size"], "num_envs_per_worker": self.config["num_envs_per_worker"], "train_batch_size": self.config["train_batch_size"], "standardize_fields": ["advantages"], "straggler_mitigation": ( self.config["straggler_mitigation"]), }) @override(Agent) def _train(self): if "observation_filter" not in self.raw_user_config: # TODO(ekl) remove this message after a few releases logger.info( "Important! Since 0.7.0, observation normalization is no " "longer enabled by default. To enable running-mean " "normalization, set 'observation_filter': 'MeanStdFilter'. " "You can ignore this message if your environment doesn't " "require observation normalization.") prev_steps = self.optimizer.num_steps_sampled fetches = self.optimizer.step() if "kl" in fetches: # single-agent self.local_evaluator.for_policy( lambda pi: pi.update_kl(fetches["kl"])) else: def update(pi, pi_id): if pi_id in fetches: pi.update_kl(fetches[pi_id]["kl"]) else: logger.debug( "No data for {}, not updating kl".format(pi_id)) # multi-agent self.local_evaluator.foreach_trainable_policy(update) res = self.optimizer.collect_metrics( self.config["collect_metrics_timeout"]) res.update( timesteps_this_iter=self.optimizer.num_steps_sampled - prev_steps, info=dict(fetches, **res.get("info", {}))) # Warn about bad clipping configs if self.config["vf_clip_param"] <= 0: rew_scale = float("inf") elif res["policy_reward_mean"]: rew_scale = 0 # punt on handling multiagent case else: rew_scale = round( abs(res["episode_reward_mean"]) / self.config["vf_clip_param"], 0) if rew_scale > 100: logger.warning( "The magnitude of your environment rewards are more than " "{}x the scale of `vf_clip_param`. ".format(rew_scale) + "This means that it will take more than " "{} iterations for your value ".format(rew_scale) + "function to converge. If this is not intended, consider " "increasing `vf_clip_param`.") return res def _validate_config(self): if self.config["sgd_minibatch_size"] > self.config["train_batch_size"]: raise ValueError( "Minibatch size {} must be <= train batch size {}.".format( self.config["sgd_minibatch_size"], self.config["train_batch_size"])) if (self.config["batch_mode"] == "truncate_episodes" and not self.config["use_gae"]): raise ValueError( "Episode truncation is not supported without a value " "function. Consider setting batch_mode=complete_episodes.") if (self.config["multiagent"]["policy_graphs"] and not self.config["simple_optimizer"]): logger.info( "In multi-agent mode, policies will be optimized sequentially " "by the multi-GPU optimizer. Consider setting " "simple_optimizer=True if this doesn't work for you.") if not self.config["vf_share_layers"]: logger.warning( "FYI: By default, the value function will not share layers " "with the policy model ('vf_share_layers': False).")
42.410405
79
0.622189
[ "Apache-2.0" ]
FieldMrFive/ray
python/ray/rllib/agents/ppo/ppo.py
7,337
Python
import re from itertools import chain from django.core.exceptions import FieldError from django.db.models.constants import LOOKUP_SEP from django.db.models.expressions import OrderBy, Random, RawSQL, Ref from django.db.models.query_utils import QueryWrapper, select_related_descend from django.db.models.sql.constants import ( CURSOR, GET_ITERATOR_CHUNK_SIZE, MULTI, NO_RESULTS, ORDER_DIR, SINGLE, ) from django.db.models.sql.datastructures import EmptyResultSet from django.db.models.sql.query import Query, get_order_dir from django.db.transaction import TransactionManagementError from django.db.utils import DatabaseError from django.utils.six.moves import zip class SQLCompiler(object): def __init__(self, query, connection, using): self.query = query self.connection = connection self.using = using self.quote_cache = {'*': '*'} # The select, klass_info, and annotations are needed by QuerySet.iterator() # these are set as a side-effect of executing the query. Note that we calculate # separately a list of extra select columns needed for grammatical correctness # of the query, but these columns are not included in self.select. self.select = None self.annotation_col_map = None self.klass_info = None self.ordering_parts = re.compile(r'(.*)\s(ASC|DESC)(.*)') self.subquery = False def setup_query(self): if all(self.query.alias_refcount[a] == 0 for a in self.query.tables): self.query.get_initial_alias() self.select, self.klass_info, self.annotation_col_map = self.get_select() self.col_count = len(self.select) def pre_sql_setup(self): """ Does any necessary class setup immediately prior to producing SQL. This is for things that can't necessarily be done in __init__ because we might not have all the pieces in place at that time. """ self.setup_query() order_by = self.get_order_by() self.where, self.having = self.query.where.split_having() extra_select = self.get_extra_select(order_by, self.select) group_by = self.get_group_by(self.select + extra_select, order_by) return extra_select, order_by, group_by def get_group_by(self, select, order_by): """ Returns a list of 2-tuples of form (sql, params). The logic of what exactly the GROUP BY clause contains is hard to describe in other words than "if it passes the test suite, then it is correct". """ # Some examples: # SomeModel.objects.annotate(Count('somecol')) # GROUP BY: all fields of the model # # SomeModel.objects.values('name').annotate(Count('somecol')) # GROUP BY: name # # SomeModel.objects.annotate(Count('somecol')).values('name') # GROUP BY: all cols of the model # # SomeModel.objects.values('name', 'pk').annotate(Count('somecol')).values('pk') # GROUP BY: name, pk # # SomeModel.objects.values('name').annotate(Count('somecol')).values('pk') # GROUP BY: name, pk # # In fact, the self.query.group_by is the minimal set to GROUP BY. It # can't be ever restricted to a smaller set, but additional columns in # HAVING, ORDER BY, and SELECT clauses are added to it. Unfortunately # the end result is that it is impossible to force the query to have # a chosen GROUP BY clause - you can almost do this by using the form: # .values(*wanted_cols).annotate(AnAggregate()) # but any later annotations, extra selects, values calls that # refer some column outside of the wanted_cols, order_by, or even # filter calls can alter the GROUP BY clause. # The query.group_by is either None (no GROUP BY at all), True # (group by select fields), or a list of expressions to be added # to the group by. if self.query.group_by is None: return [] expressions = [] if self.query.group_by is not True: # If the group by is set to a list (by .values() call most likely), # then we need to add everything in it to the GROUP BY clause. # Backwards compatibility hack for setting query.group_by. Remove # when we have public API way of forcing the GROUP BY clause. # Converts string references to expressions. for expr in self.query.group_by: if not hasattr(expr, 'as_sql'): expressions.append(self.query.resolve_ref(expr)) else: expressions.append(expr) # Note that even if the group_by is set, it is only the minimal # set to group by. So, we need to add cols in select, order_by, and # having into the select in any case. for expr, _, _ in select: cols = expr.get_group_by_cols() for col in cols: expressions.append(col) for expr, (sql, params, is_ref) in order_by: if expr.contains_aggregate: continue # We can skip References to select clause, as all expressions in # the select clause are already part of the group by. if is_ref: continue expressions.extend(expr.get_source_expressions()) having_group_by = self.having.get_group_by_cols() if self.having else () for expr in having_group_by: expressions.append(expr) result = [] seen = set() expressions = self.collapse_group_by(expressions, having_group_by) for expr in expressions: sql, params = self.compile(expr) if (sql, tuple(params)) not in seen: result.append((sql, params)) seen.add((sql, tuple(params))) return result def collapse_group_by(self, expressions, having): # If the DB can group by primary key, then group by the primary key of # query's main model. Note that for PostgreSQL the GROUP BY clause must # include the primary key of every table, but for MySQL it is enough to # have the main table's primary key. if self.connection.features.allows_group_by_pk: # The logic here is: if the main model's primary key is in the # query, then set new_expressions to that field. If that happens, # then also add having expressions to group by. pk = None for expr in expressions: # Is this a reference to query's base table primary key? If the # expression isn't a Col-like, then skip the expression. if (getattr(expr, 'target', None) == self.query.model._meta.pk and getattr(expr, 'alias', None) == self.query.tables[0]): pk = expr break if pk: # MySQLism: Columns in HAVING clause must be added to the GROUP BY. expressions = [pk] + [expr for expr in expressions if expr in having] elif self.connection.features.allows_group_by_selected_pks: # Filter out all expressions associated with a table's primary key # present in the grouped columns. This is done by identifying all # tables that have their primary key included in the grouped # columns and removing non-primary key columns referring to them. pks = {expr for expr in expressions if hasattr(expr, 'target') and expr.target.primary_key} aliases = {expr.alias for expr in pks} expressions = [ expr for expr in expressions if expr in pks or getattr(expr, 'alias', None) not in aliases ] return expressions def get_select(self): """ Returns three values: - a list of 3-tuples of (expression, (sql, params), alias) - a klass_info structure, - a dictionary of annotations The (sql, params) is what the expression will produce, and alias is the "AS alias" for the column (possibly None). The klass_info structure contains the following information: - Which model to instantiate - Which columns for that model are present in the query (by position of the select clause). - related_klass_infos: [f, klass_info] to descent into The annotations is a dictionary of {'attname': column position} values. """ select = [] klass_info = None annotations = {} select_idx = 0 for alias, (sql, params) in self.query.extra_select.items(): annotations[alias] = select_idx select.append((RawSQL(sql, params), alias)) select_idx += 1 assert not (self.query.select and self.query.default_cols) if self.query.default_cols: select_list = [] for c in self.get_default_columns(): select_list.append(select_idx) select.append((c, None)) select_idx += 1 klass_info = { 'model': self.query.model, 'select_fields': select_list, } # self.query.select is a special case. These columns never go to # any model. for col in self.query.select: select.append((col, None)) select_idx += 1 for alias, annotation in self.query.annotation_select.items(): annotations[alias] = select_idx select.append((annotation, alias)) select_idx += 1 if self.query.select_related: related_klass_infos = self.get_related_selections(select) klass_info['related_klass_infos'] = related_klass_infos def get_select_from_parent(klass_info): for ki in klass_info['related_klass_infos']: if ki['from_parent']: ki['select_fields'] = (klass_info['select_fields'] + ki['select_fields']) get_select_from_parent(ki) get_select_from_parent(klass_info) ret = [] for col, alias in select: ret.append((col, self.compile(col, select_format=True), alias)) return ret, klass_info, annotations def get_order_by(self): """ Returns a list of 2-tuples of form (expr, (sql, params, is_ref)) for the ORDER BY clause. The order_by clause can alter the select clause (for example it can add aliases to clauses that do not yet have one, or it can add totally new select clauses). """ if self.query.extra_order_by: ordering = self.query.extra_order_by elif not self.query.default_ordering: ordering = self.query.order_by else: ordering = (self.query.order_by or self.query.get_meta().ordering or []) if self.query.standard_ordering: asc, desc = ORDER_DIR['ASC'] else: asc, desc = ORDER_DIR['DESC'] order_by = [] for pos, field in enumerate(ordering): if hasattr(field, 'resolve_expression'): if not isinstance(field, OrderBy): field = field.asc() if not self.query.standard_ordering: field.reverse_ordering() order_by.append((field, False)) continue if field == '?': # random order_by.append((OrderBy(Random()), False)) continue col, order = get_order_dir(field, asc) descending = True if order == 'DESC' else False if col in self.query.annotation_select: # Reference to expression in SELECT clause order_by.append(( OrderBy(Ref(col, self.query.annotation_select[col]), descending=descending), True)) continue if col in self.query.annotations: # References to an expression which is masked out of the SELECT clause order_by.append(( OrderBy(self.query.annotations[col], descending=descending), False)) continue if '.' in field: # This came in through an extra(order_by=...) addition. Pass it # on verbatim. table, col = col.split('.', 1) order_by.append(( OrderBy( RawSQL('%s.%s' % (self.quote_name_unless_alias(table), col), []), descending=descending ), False)) continue if not self.query._extra or col not in self.query._extra: # 'col' is of the form 'field' or 'field1__field2' or # '-field1__field2__field', etc. order_by.extend(self.find_ordering_name( field, self.query.get_meta(), default_order=asc)) else: if col not in self.query.extra_select: order_by.append(( OrderBy(RawSQL(*self.query.extra[col]), descending=descending), False)) else: order_by.append(( OrderBy(Ref(col, RawSQL(*self.query.extra[col])), descending=descending), True)) result = [] seen = set() for expr, is_ref in order_by: resolved = expr.resolve_expression( self.query, allow_joins=True, reuse=None) sql, params = self.compile(resolved) # Don't add the same column twice, but the order direction is # not taken into account so we strip it. When this entire method # is refactored into expressions, then we can check each part as we # generate it. without_ordering = self.ordering_parts.search(sql).group(1) if (without_ordering, tuple(params)) in seen: continue seen.add((without_ordering, tuple(params))) result.append((resolved, (sql, params, is_ref))) return result def get_extra_select(self, order_by, select): extra_select = [] select_sql = [t[1] for t in select] if self.query.distinct and not self.query.distinct_fields: for expr, (sql, params, is_ref) in order_by: without_ordering = self.ordering_parts.search(sql).group(1) if not is_ref and (without_ordering, params) not in select_sql: extra_select.append((expr, (without_ordering, params), None)) return extra_select def quote_name_unless_alias(self, name): """ A wrapper around connection.ops.quote_name that doesn't quote aliases for table names. This avoids problems with some SQL dialects that treat quoted strings specially (e.g. PostgreSQL). """ if name in self.quote_cache: return self.quote_cache[name] if ((name in self.query.alias_map and name not in self.query.table_map) or name in self.query.extra_select or ( name in self.query.external_aliases and name not in self.query.table_map)): self.quote_cache[name] = name return name r = self.connection.ops.quote_name(name) self.quote_cache[name] = r return r def compile(self, node, select_format=False): vendor_impl = getattr(node, 'as_' + self.connection.vendor, None) if vendor_impl: sql, params = vendor_impl(self, self.connection) else: sql, params = node.as_sql(self, self.connection) if select_format and not self.subquery: return node.output_field.select_format(self, sql, params) return sql, params def as_sql(self, with_limits=True, with_col_aliases=False, subquery=False): """ Creates the SQL for this query. Returns the SQL string and list of parameters. If 'with_limits' is False, any limit/offset information is not included in the query. """ if with_limits and self.query.low_mark == self.query.high_mark: return '', () self.subquery = subquery refcounts_before = self.query.alias_refcount.copy() try: extra_select, order_by, group_by = self.pre_sql_setup() if with_limits and self.query.low_mark == self.query.high_mark: return '', () distinct_fields = self.get_distinct() # This must come after 'select', 'ordering', and 'distinct' -- see # docstring of get_from_clause() for details. from_, f_params = self.get_from_clause() where, w_params = self.compile(self.where) if self.where is not None else ("", []) having, h_params = self.compile(self.having) if self.having is not None else ("", []) params = [] result = ['SELECT'] if self.query.distinct: result.append(self.connection.ops.distinct_sql(distinct_fields)) out_cols = [] col_idx = 1 for _, (s_sql, s_params), alias in self.select + extra_select: if alias: s_sql = '%s AS %s' % (s_sql, self.connection.ops.quote_name(alias)) elif with_col_aliases: s_sql = '%s AS %s' % (s_sql, 'Col%d' % col_idx) col_idx += 1 params.extend(s_params) out_cols.append(s_sql) result.append(', '.join(out_cols)) result.append('FROM') result.extend(from_) params.extend(f_params) if where: result.append('WHERE %s' % where) params.extend(w_params) grouping = [] for g_sql, g_params in group_by: grouping.append(g_sql) params.extend(g_params) if grouping: if distinct_fields: raise NotImplementedError( "annotate() + distinct(fields) is not implemented.") if not order_by: order_by = self.connection.ops.force_no_ordering() result.append('GROUP BY %s' % ', '.join(grouping)) if having: result.append('HAVING %s' % having) params.extend(h_params) if order_by: ordering = [] for _, (o_sql, o_params, _) in order_by: ordering.append(o_sql) params.extend(o_params) result.append('ORDER BY %s' % ', '.join(ordering)) if with_limits: if self.query.high_mark is not None: result.append('LIMIT %d' % (self.query.high_mark - self.query.low_mark)) if self.query.low_mark: if self.query.high_mark is None: val = self.connection.ops.no_limit_value() if val: result.append('LIMIT %d' % val) result.append('OFFSET %d' % self.query.low_mark) if self.query.select_for_update and self.connection.features.has_select_for_update: if self.connection.get_autocommit(): raise TransactionManagementError( "select_for_update cannot be used outside of a transaction." ) # If we've been asked for a NOWAIT query but the backend does # not support it, raise a DatabaseError otherwise we could get # an unexpected deadlock. nowait = self.query.select_for_update_nowait if nowait and not self.connection.features.has_select_for_update_nowait: raise DatabaseError('NOWAIT is not supported on this database backend.') result.append(self.connection.ops.for_update_sql(nowait=nowait)) return ' '.join(result), tuple(params) finally: # Finally do cleanup - get rid of the joins we created above. self.query.reset_refcounts(refcounts_before) def as_nested_sql(self): """ Perform the same functionality as the as_sql() method, returning an SQL string and parameters. However, the alias prefixes are bumped beforehand (in a copy -- the current query isn't changed), and any ordering is removed if the query is unsliced. Used when nesting this query inside another. """ obj = self.query.clone() if obj.low_mark == 0 and obj.high_mark is None and not self.query.distinct_fields: # If there is no slicing in use, then we can safely drop all ordering obj.clear_ordering(True) nested_sql = obj.get_compiler(connection=self.connection).as_sql(subquery=True) if nested_sql == ('', ()): raise EmptyResultSet return nested_sql def get_default_columns(self, start_alias=None, opts=None, from_parent=None): """ Computes the default columns for selecting every field in the base model. Will sometimes be called to pull in related models (e.g. via select_related), in which case "opts" and "start_alias" will be given to provide a starting point for the traversal. Returns a list of strings, quoted appropriately for use in SQL directly, as well as a set of aliases used in the select statement (if 'as_pairs' is True, returns a list of (alias, col_name) pairs instead of strings as the first component and None as the second component). """ result = [] if opts is None: opts = self.query.get_meta() only_load = self.deferred_to_columns() if not start_alias: start_alias = self.query.get_initial_alias() # The 'seen_models' is used to optimize checking the needed parent # alias for a given field. This also includes None -> start_alias to # be used by local fields. seen_models = {None: start_alias} for field in opts.concrete_fields: model = field.model._meta.concrete_model # A proxy model will have a different model and concrete_model. We # will assign None if the field belongs to this model. if model == opts.model: model = None if from_parent and model is not None and issubclass( from_parent._meta.concrete_model, model._meta.concrete_model): # Avoid loading data for already loaded parents. # We end up here in the case select_related() resolution # proceeds from parent model to child model. In that case the # parent model data is already present in the SELECT clause, # and we want to avoid reloading the same data again. continue if field.model in only_load and field.attname not in only_load[field.model]: continue alias = self.query.join_parent_model(opts, model, start_alias, seen_models) column = field.get_col(alias) result.append(column) return result def get_distinct(self): """ Returns a quoted list of fields to use in DISTINCT ON part of the query. Note that this method can alter the tables in the query, and thus it must be called before get_from_clause(). """ qn = self.quote_name_unless_alias qn2 = self.connection.ops.quote_name result = [] opts = self.query.get_meta() for name in self.query.distinct_fields: parts = name.split(LOOKUP_SEP) _, targets, alias, joins, path, _ = self._setup_joins(parts, opts, None) targets, alias, _ = self.query.trim_joins(targets, joins, path) for target in targets: if name in self.query.annotation_select: result.append(name) else: result.append("%s.%s" % (qn(alias), qn2(target.column))) return result def find_ordering_name(self, name, opts, alias=None, default_order='ASC', already_seen=None): """ Returns the table alias (the name might be ambiguous, the alias will not be) and column name for ordering by the given 'name' parameter. The 'name' is of the form 'field1__field2__...__fieldN'. """ name, order = get_order_dir(name, default_order) descending = True if order == 'DESC' else False pieces = name.split(LOOKUP_SEP) field, targets, alias, joins, path, opts = self._setup_joins(pieces, opts, alias) # If we get to this point and the field is a relation to another model, # append the default ordering for that model unless the attribute name # of the field is specified. if field.is_relation and path and opts.ordering and name != field.attname: # Firstly, avoid infinite loops. if not already_seen: already_seen = set() join_tuple = tuple(getattr(self.query.alias_map[j], 'join_cols', None) for j in joins) if join_tuple in already_seen: raise FieldError('Infinite loop caused by ordering.') already_seen.add(join_tuple) results = [] for item in opts.ordering: results.extend(self.find_ordering_name(item, opts, alias, order, already_seen)) return results targets, alias, _ = self.query.trim_joins(targets, joins, path) return [(OrderBy(t.get_col(alias), descending=descending), False) for t in targets] def _setup_joins(self, pieces, opts, alias): """ A helper method for get_order_by and get_distinct. Note that get_ordering and get_distinct must produce same target columns on same input, as the prefixes of get_ordering and get_distinct must match. Executing SQL where this is not true is an error. """ if not alias: alias = self.query.get_initial_alias() field, targets, opts, joins, path = self.query.setup_joins( pieces, opts, alias) alias = joins[-1] return field, targets, alias, joins, path, opts def get_from_clause(self): """ Returns a list of strings that are joined together to go after the "FROM" part of the query, as well as a list any extra parameters that need to be included. Sub-classes, can override this to create a from-clause via a "select". This should only be called after any SQL construction methods that might change the tables we need. This means the select columns, ordering and distinct must be done first. """ result = [] params = [] for alias in self.query.tables: if not self.query.alias_refcount[alias]: continue try: from_clause = self.query.alias_map[alias] except KeyError: # Extra tables can end up in self.tables, but not in the # alias_map if they aren't in a join. That's OK. We skip them. continue clause_sql, clause_params = self.compile(from_clause) result.append(clause_sql) params.extend(clause_params) for t in self.query.extra_tables: alias, _ = self.query.table_alias(t) # Only add the alias if it's not already present (the table_alias() # call increments the refcount, so an alias refcount of one means # this is the only reference). if alias not in self.query.alias_map or self.query.alias_refcount[alias] == 1: result.append(', %s' % self.quote_name_unless_alias(alias)) return result, params def get_related_selections(self, select, opts=None, root_alias=None, cur_depth=1, requested=None, restricted=None): """ Fill in the information needed for a select_related query. The current depth is measured as the number of connections away from the root model (for example, cur_depth=1 means we are looking at models with direct connections to the root model). """ def _get_field_choices(): direct_choices = (f.name for f in opts.fields if f.is_relation) reverse_choices = ( f.field.related_query_name() for f in opts.related_objects if f.field.unique ) return chain(direct_choices, reverse_choices) related_klass_infos = [] if not restricted and self.query.max_depth and cur_depth > self.query.max_depth: # We've recursed far enough; bail out. return related_klass_infos if not opts: opts = self.query.get_meta() root_alias = self.query.get_initial_alias() only_load = self.query.get_loaded_field_names() # Setup for the case when only particular related fields should be # included in the related selection. fields_found = set() if requested is None: if isinstance(self.query.select_related, dict): requested = self.query.select_related restricted = True else: restricted = False def get_related_klass_infos(klass_info, related_klass_infos): klass_info['related_klass_infos'] = related_klass_infos for f in opts.fields: field_model = f.model._meta.concrete_model fields_found.add(f.name) if restricted: next = requested.get(f.name, {}) if not f.is_relation: # If a non-related field is used like a relation, # or if a single non-relational field is given. if next or (cur_depth == 1 and f.name in requested): raise FieldError( "Non-relational field given in select_related: '%s'. " "Choices are: %s" % ( f.name, ", ".join(_get_field_choices()) or '(none)', ) ) else: next = False if not select_related_descend(f, restricted, requested, only_load.get(field_model)): continue klass_info = { 'model': f.remote_field.model, 'field': f, 'reverse': False, 'from_parent': False, } related_klass_infos.append(klass_info) select_fields = [] _, _, _, joins, _ = self.query.setup_joins( [f.name], opts, root_alias) alias = joins[-1] columns = self.get_default_columns(start_alias=alias, opts=f.remote_field.model._meta) for col in columns: select_fields.append(len(select)) select.append((col, None)) klass_info['select_fields'] = select_fields next_klass_infos = self.get_related_selections( select, f.remote_field.model._meta, alias, cur_depth + 1, next, restricted) get_related_klass_infos(klass_info, next_klass_infos) if restricted: related_fields = [ (o.field, o.related_model) for o in opts.related_objects if o.field.unique and not o.many_to_many ] for f, model in related_fields: if not select_related_descend(f, restricted, requested, only_load.get(model), reverse=True): continue related_field_name = f.related_query_name() fields_found.add(related_field_name) _, _, _, joins, _ = self.query.setup_joins([related_field_name], opts, root_alias) alias = joins[-1] from_parent = issubclass(model, opts.model) klass_info = { 'model': model, 'field': f, 'reverse': True, 'from_parent': from_parent, } related_klass_infos.append(klass_info) select_fields = [] columns = self.get_default_columns( start_alias=alias, opts=model._meta, from_parent=opts.model) for col in columns: select_fields.append(len(select)) select.append((col, None)) klass_info['select_fields'] = select_fields next = requested.get(f.related_query_name(), {}) next_klass_infos = self.get_related_selections( select, model._meta, alias, cur_depth + 1, next, restricted) get_related_klass_infos(klass_info, next_klass_infos) fields_not_found = set(requested.keys()).difference(fields_found) if fields_not_found: invalid_fields = ("'%s'" % s for s in fields_not_found) raise FieldError( 'Invalid field name(s) given in select_related: %s. ' 'Choices are: %s' % ( ', '.join(invalid_fields), ', '.join(_get_field_choices()) or '(none)', ) ) return related_klass_infos def deferred_to_columns(self): """ Converts the self.deferred_loading data structure to mapping of table names to sets of column names which are to be loaded. Returns the dictionary. """ columns = {} self.query.deferred_to_data(columns, self.query.get_loaded_field_names_cb) return columns def get_converters(self, expressions): converters = {} for i, expression in enumerate(expressions): if expression: backend_converters = self.connection.ops.get_db_converters(expression) field_converters = expression.get_db_converters(self.connection) if backend_converters or field_converters: converters[i] = (backend_converters + field_converters, expression) return converters def apply_converters(self, row, converters): row = list(row) for pos, (convs, expression) in converters.items(): value = row[pos] for converter in convs: value = converter(value, expression, self.connection, self.query.context) row[pos] = value return tuple(row) def results_iter(self, results=None): """ Returns an iterator over the results from executing this query. """ converters = None if results is None: results = self.execute_sql(MULTI) fields = [s[0] for s in self.select[0:self.col_count]] converters = self.get_converters(fields) for rows in results: for row in rows: if converters: row = self.apply_converters(row, converters) yield row def has_results(self): """ Backends (e.g. NoSQL) can override this in order to use optimized versions of "query has any results." """ # This is always executed on a query clone, so we can modify self.query self.query.add_extra({'a': 1}, None, None, None, None, None) self.query.set_extra_mask(['a']) return bool(self.execute_sql(SINGLE)) def execute_sql(self, result_type=MULTI): """ Run the query against the database and returns the result(s). The return value is a single data item if result_type is SINGLE, or an iterator over the results if the result_type is MULTI. result_type is either MULTI (use fetchmany() to retrieve all rows), SINGLE (only retrieve a single row), or None. In this last case, the cursor is returned if any query is executed, since it's used by subclasses such as InsertQuery). It's possible, however, that no query is needed, as the filters describe an empty set. In that case, None is returned, to avoid any unnecessary database interaction. """ if not result_type: result_type = NO_RESULTS try: sql, params = self.as_sql() if not sql: raise EmptyResultSet except EmptyResultSet: if result_type == MULTI: return iter([]) else: return cursor = self.connection.cursor() try: cursor.execute(sql, params) except Exception: cursor.close() raise if result_type == CURSOR: # Caller didn't specify a result_type, so just give them back the # cursor to process (and close). return cursor if result_type == SINGLE: try: val = cursor.fetchone() if val: return val[0:self.col_count] return val finally: # done with the cursor cursor.close() if result_type == NO_RESULTS: cursor.close() return result = cursor_iter( cursor, self.connection.features.empty_fetchmany_value, self.col_count ) if not self.connection.features.can_use_chunked_reads: try: # If we are using non-chunked reads, we return the same data # structure as normally, but ensure it is all read into memory # before going any further. return list(result) finally: # done with the cursor cursor.close() return result def as_subquery_condition(self, alias, columns, compiler): qn = compiler.quote_name_unless_alias qn2 = self.connection.ops.quote_name if len(columns) == 1: sql, params = self.as_sql() return '%s.%s IN (%s)' % (qn(alias), qn2(columns[0]), sql), params for index, select_col in enumerate(self.query.select): lhs_sql, lhs_params = self.compile(select_col) rhs = '%s.%s' % (qn(alias), qn2(columns[index])) self.query.where.add( QueryWrapper('%s = %s' % (lhs_sql, rhs), lhs_params), 'AND') sql, params = self.as_sql() return 'EXISTS (%s)' % sql, params class SQLInsertCompiler(SQLCompiler): def __init__(self, *args, **kwargs): self.return_id = False super(SQLInsertCompiler, self).__init__(*args, **kwargs) def field_as_sql(self, field, val): """ Take a field and a value intended to be saved on that field, and return placeholder SQL and accompanying params. Checks for raw values, expressions and fields with get_placeholder() defined in that order. When field is None, the value is considered raw and is used as the placeholder, with no corresponding parameters returned. """ if field is None: # A field value of None means the value is raw. sql, params = val, [] elif hasattr(val, 'as_sql'): # This is an expression, let's compile it. sql, params = self.compile(val) elif hasattr(field, 'get_placeholder'): # Some fields (e.g. geo fields) need special munging before # they can be inserted. sql, params = field.get_placeholder(val, self, self.connection), [val] else: # Return the common case for the placeholder sql, params = '%s', [val] # The following hook is only used by Oracle Spatial, which sometimes # needs to yield 'NULL' and [] as its placeholder and params instead # of '%s' and [None]. The 'NULL' placeholder is produced earlier by # OracleOperations.get_geom_placeholder(). The following line removes # the corresponding None parameter. See ticket #10888. params = self.connection.ops.modify_insert_params(sql, params) return sql, params def prepare_value(self, field, value): """ Prepare a value to be used in a query by resolving it if it is an expression and otherwise calling the field's get_db_prep_save(). """ if hasattr(value, 'resolve_expression'): value = value.resolve_expression(self.query, allow_joins=False, for_save=True) # Don't allow values containing Col expressions. They refer to # existing columns on a row, but in the case of insert the row # doesn't exist yet. if value.contains_column_references: raise ValueError( 'Failed to insert expression "%s" on %s. F() expressions ' 'can only be used to update, not to insert.' % (value, field) ) if value.contains_aggregate: raise FieldError("Aggregate functions are not allowed in this query") else: value = field.get_db_prep_save(value, connection=self.connection) return value def pre_save_val(self, field, obj): """ Get the given field's value off the given obj. pre_save() is used for things like auto_now on DateTimeField. Skip it if this is a raw query. """ if self.query.raw: return getattr(obj, field.attname) return field.pre_save(obj, add=True) def assemble_as_sql(self, fields, value_rows): """ Take a sequence of N fields and a sequence of M rows of values, generate placeholder SQL and parameters for each field and value, and return a pair containing: * a sequence of M rows of N SQL placeholder strings, and * a sequence of M rows of corresponding parameter values. Each placeholder string may contain any number of '%s' interpolation strings, and each parameter row will contain exactly as many params as the total number of '%s's in the corresponding placeholder row. """ if not value_rows: return [], [] # list of (sql, [params]) tuples for each object to be saved # Shape: [n_objs][n_fields][2] rows_of_fields_as_sql = ( (self.field_as_sql(field, v) for field, v in zip(fields, row)) for row in value_rows ) # tuple like ([sqls], [[params]s]) for each object to be saved # Shape: [n_objs][2][n_fields] sql_and_param_pair_rows = (zip(*row) for row in rows_of_fields_as_sql) # Extract separate lists for placeholders and params. # Each of these has shape [n_objs][n_fields] placeholder_rows, param_rows = zip(*sql_and_param_pair_rows) # Params for each field are still lists, and need to be flattened. param_rows = [[p for ps in row for p in ps] for row in param_rows] return placeholder_rows, param_rows def as_sql(self): # We don't need quote_name_unless_alias() here, since these are all # going to be column names (so we can avoid the extra overhead). qn = self.connection.ops.quote_name opts = self.query.get_meta() result = ['INSERT INTO %s' % qn(opts.db_table)] has_fields = bool(self.query.fields) fields = self.query.fields if has_fields else [opts.pk] result.append('(%s)' % ', '.join(qn(f.column) for f in fields)) if has_fields: value_rows = [ [self.prepare_value(field, self.pre_save_val(field, obj)) for field in fields] for obj in self.query.objs ] else: # An empty object. value_rows = [[self.connection.ops.pk_default_value()] for _ in self.query.objs] fields = [None] # Currently the backends just accept values when generating bulk # queries and generate their own placeholders. Doing that isn't # necessary and it should be possible to use placeholders and # expressions in bulk inserts too. can_bulk = (not self.return_id and self.connection.features.has_bulk_insert) placeholder_rows, param_rows = self.assemble_as_sql(fields, value_rows) if self.return_id and self.connection.features.can_return_id_from_insert: params = param_rows[0] col = "%s.%s" % (qn(opts.db_table), qn(opts.pk.column)) result.append("VALUES (%s)" % ", ".join(placeholder_rows[0])) r_fmt, r_params = self.connection.ops.return_insert_id() # Skip empty r_fmt to allow subclasses to customize behavior for # 3rd party backends. Refs #19096. if r_fmt: result.append(r_fmt % col) params += r_params return [(" ".join(result), tuple(params))] if can_bulk: result.append(self.connection.ops.bulk_insert_sql(fields, placeholder_rows)) return [(" ".join(result), tuple(p for ps in param_rows for p in ps))] else: return [ (" ".join(result + ["VALUES (%s)" % ", ".join(p)]), vals) for p, vals in zip(placeholder_rows, param_rows) ] def execute_sql(self, return_id=False): assert not (return_id and len(self.query.objs) != 1) self.return_id = return_id with self.connection.cursor() as cursor: for sql, params in self.as_sql(): cursor.execute(sql, params) if not (return_id and cursor): return if self.connection.features.can_return_id_from_insert: return self.connection.ops.fetch_returned_insert_id(cursor) return self.connection.ops.last_insert_id(cursor, self.query.get_meta().db_table, self.query.get_meta().pk.column) class SQLDeleteCompiler(SQLCompiler): def as_sql(self): """ Creates the SQL for this query. Returns the SQL string and list of parameters. """ assert len([t for t in self.query.tables if self.query.alias_refcount[t] > 0]) == 1, \ "Can only delete from one table at a time." qn = self.quote_name_unless_alias result = ['DELETE FROM %s' % qn(self.query.tables[0])] where, params = self.compile(self.query.where) if where: result.append('WHERE %s' % where) return ' '.join(result), tuple(params) class SQLUpdateCompiler(SQLCompiler): def as_sql(self): """ Creates the SQL for this query. Returns the SQL string and list of parameters. """ self.pre_sql_setup() if not self.query.values: return '', () table = self.query.tables[0] qn = self.quote_name_unless_alias result = ['UPDATE %s' % qn(table)] result.append('SET') values, update_params = [], [] for field, model, val in self.query.values: if hasattr(val, 'resolve_expression'): val = val.resolve_expression(self.query, allow_joins=False, for_save=True) if val.contains_aggregate: raise FieldError("Aggregate functions are not allowed in this query") elif hasattr(val, 'prepare_database_save'): if field.remote_field: val = field.get_db_prep_save( val.prepare_database_save(field), connection=self.connection, ) else: raise TypeError( "Tried to update field %s with a model instance, %r. " "Use a value compatible with %s." % (field, val, field.__class__.__name__) ) else: val = field.get_db_prep_save(val, connection=self.connection) # Getting the placeholder for the field. if hasattr(field, 'get_placeholder'): placeholder = field.get_placeholder(val, self, self.connection) else: placeholder = '%s' name = field.column if hasattr(val, 'as_sql'): sql, params = self.compile(val) values.append('%s = %s' % (qn(name), sql)) update_params.extend(params) elif val is not None: values.append('%s = %s' % (qn(name), placeholder)) update_params.append(val) else: values.append('%s = NULL' % qn(name)) if not values: return '', () result.append(', '.join(values)) where, params = self.compile(self.query.where) if where: result.append('WHERE %s' % where) return ' '.join(result), tuple(update_params + params) def execute_sql(self, result_type): """ Execute the specified update. Returns the number of rows affected by the primary update query. The "primary update query" is the first non-empty query that is executed. Row counts for any subsequent, related queries are not available. """ cursor = super(SQLUpdateCompiler, self).execute_sql(result_type) try: rows = cursor.rowcount if cursor else 0 is_empty = cursor is None finally: if cursor: cursor.close() for query in self.query.get_related_updates(): aux_rows = query.get_compiler(self.using).execute_sql(result_type) if is_empty and aux_rows: rows = aux_rows is_empty = False return rows def pre_sql_setup(self): """ If the update depends on results from other tables, we need to do some munging of the "where" conditions to match the format required for (portable) SQL updates. That is done here. Further, if we are going to be running multiple updates, we pull out the id values to update at this point so that they don't change as a result of the progressive updates. """ refcounts_before = self.query.alias_refcount.copy() # Ensure base table is in the query self.query.get_initial_alias() count = self.query.count_active_tables() if not self.query.related_updates and count == 1: return query = self.query.clone(klass=Query) query.select_related = False query.clear_ordering(True) query._extra = {} query.select = [] query.add_fields([query.get_meta().pk.name]) super(SQLUpdateCompiler, self).pre_sql_setup() must_pre_select = count > 1 and not self.connection.features.update_can_self_select # Now we adjust the current query: reset the where clause and get rid # of all the tables we don't need (since they're in the sub-select). self.query.where = self.query.where_class() if self.query.related_updates or must_pre_select: # Either we're using the idents in multiple update queries (so # don't want them to change), or the db backend doesn't support # selecting from the updating table (e.g. MySQL). idents = [] for rows in query.get_compiler(self.using).execute_sql(MULTI): idents.extend(r[0] for r in rows) self.query.add_filter(('pk__in', idents)) self.query.related_ids = idents else: # The fast path. Filters and updates in one query. self.query.add_filter(('pk__in', query)) self.query.reset_refcounts(refcounts_before) class SQLAggregateCompiler(SQLCompiler): def as_sql(self): """ Creates the SQL for this query. Returns the SQL string and list of parameters. """ # Empty SQL for the inner query is a marker that the inner query # isn't going to produce any results. This can happen when doing # LIMIT 0 queries (generated by qs[:0]) for example. if not self.query.subquery: raise EmptyResultSet sql, params = [], [] for annotation in self.query.annotation_select.values(): ann_sql, ann_params = self.compile(annotation, select_format=True) sql.append(ann_sql) params.extend(ann_params) self.col_count = len(self.query.annotation_select) sql = ', '.join(sql) params = tuple(params) sql = 'SELECT %s FROM (%s) subquery' % (sql, self.query.subquery) params = params + self.query.sub_params return sql, params def cursor_iter(cursor, sentinel, col_count): """ Yields blocks of rows from a cursor and ensures the cursor is closed when done. """ try: for rows in iter((lambda: cursor.fetchmany(GET_ITERATOR_CHUNK_SIZE)), sentinel): yield [r[0:col_count] for r in rows] finally: cursor.close()
43.823339
106
0.585414
[ "BSD-3-Clause" ]
hottwaj/django
django/db/models/sql/compiler.py
54,078
Python
import numpy as np import matplotlib.pyplot as plt from matplotlib.image import imread # 데이터 준비 x = np.arange(0, 6, 0.1) # 0에서 6까지 0.1 간격으로 생성 y1 = np.sin(x) y2 = np.cos(x) # 그래프 그리기 plt.plot(x, y1, label='sin') plt.plot(x, y2, linestyle='--', label='cos') # cos 함수는 점선으로 그리기 plt.xlabel('x') # x축 이름 plt.ylabel('y') # y축 이름 plt.title('sin & cos') # 제목 plt.legend() # 이미지 표시 img = imread('background.jpg') plt.imshow(img) plt.show()
20.904762
64
0.646925
[ "MIT" ]
Tim232/Python-Things
Books/DeepLearningfromScratch/P01_HelloPython/numpy_pyplot.py
527
Python
import torch import torch.nn.functional as F import torch_glow from collections import namedtuple from tests.utils import jitVsGlow # Basic test of the PyTorch conv2d Node on Glow. def test_conv2d_basic(): def conv2d_basic(inputs, filters): conv = F.conv2d(inputs, filters, padding=1) return F.relu(conv) inputs = torch.randn(1, 4, 5, 5) filters = torch.randn(8, 4, 3, 3) jitVsGlow(conv2d_basic, inputs, filters) # Test of the PyTorch conv2d Node with a provided bias tensor. def test_conv2d_with_bias(): def conv2d_with_bias(inputs, filters, bias): conv = F.conv2d(inputs, filters, bias) return F.relu(conv) inputs = torch.randn(1, 4, 5, 5) filters = torch.randn(8, 4, 3, 3) bias = torch.randn(8) jitVsGlow(conv2d_with_bias, inputs, filters, bias) # Test of the PyTorch conv2d Node sweeping through various parameters of the # Node to test that they work correctly. def test_conv2d_param_sweep(): hwOpts = [3, 4] padOpts = [0, 1] groupsOpts = [1, 2] dilationOpts = [1, 2] strideOpts = [1, 2] Setting = namedtuple('Setting', ['h', 'w', 'p', 'g', 'd', 's',]) settings = [Setting(h=h, w=w, p=p, g=g, d=d, s=s) for h in hwOpts for w in hwOpts for p in padOpts for g in groupsOpts for d in dilationOpts for s in strideOpts] for setting in settings: def conv2d_param_sweep(inputs, filters): conv = F.conv2d(inputs, filters, padding=setting.p, groups=setting.g) return F.relu(conv) inputs = torch.randn(2, 4, setting.h, setting.w) filters = torch.randn(8, 4/setting.g, 3, 3) jitVsGlow(conv2d_param_sweep, inputs, filters)
29.909091
163
0.677204
[ "Apache-2.0" ]
a1f/glow
torch_glow/tests/nodes/conv2d_test.py
1,645
Python
import argparse import sys import pathlib import random from unittest import mock import pytest from _repobee import plugin import repobee_plug as plug from repobee_feedback import feedback ASSIGNMENT_NAMES = ("task-1", "task-2") STUDENT_TEAMS = tuple( [ plug.StudentTeam(members=members) for members in (["slarse"], ["glassey"], ["grundb", "glennol"]) ] ) STUDENT_TEAM_NAMES = tuple(map(str, STUDENT_TEAMS)) PASS_ISSUE = plug.Issue(title="Pass", body="Well done!\nAbsolutely flawless!") KOMP_ISSUE = plug.Issue( title="Komplettering", body="Not perfect, you need to fix this." ) FAIL_ISSUE = plug.Issue( title="Fail", body="Unfortunately, there are severe errors." ) ISSUES = (PASS_ISSUE, KOMP_ISSUE, FAIL_ISSUE) random.seed(512) def _write_issue(issue: plug.Issue, path: pathlib.Path): text = "{}\n{}".format(issue.title, issue.body) path.write_text(text, encoding=sys.getdefaultencoding()) def _write_multi_issues_file(repos_and_issues, path): with open(str(path), mode="w", encoding=sys.getdefaultencoding()) as file: cur = 0 for repo_name, issue in repos_and_issues: if cur: file.write("\n") file.write("#ISSUE#{}#{}\n".format(repo_name, issue.title)) file.write(issue.body) cur += 1 def test_register(): """Just test that there is no crash""" plugin.register_plugins([feedback]) @pytest.fixture def parsed_args_issues_dir(tmp_path): return argparse.Namespace( students=list(STUDENT_TEAMS), assignments=list(ASSIGNMENT_NAMES), batch_mode=True, issues_dir=str(tmp_path), multi_issues_file=None, truncation_length=50, allow_missing=False, ) @pytest.fixture def parsed_args_multi_issues_file(with_multi_issues_file): issues_file, _ = with_multi_issues_file return argparse.Namespace( students=list(STUDENT_TEAMS), assignments=list(ASSIGNMENT_NAMES), batch_mode=True, issues_dir=None, multi_issues_file=str(issues_file), truncation_length=50, allow_missing=False, ) @pytest.fixture def api_mock(): return mock.MagicMock(spec=plug.PlatformAPI) @pytest.fixture def with_issues(tmp_path): """Create issue files in a temporary directory and return a list of (team, issue) tuples. """ repo_names = plug.generate_repo_names(STUDENT_TEAM_NAMES, ASSIGNMENT_NAMES) existing_issues = [] for repo_name in repo_names: issue_file = tmp_path / "{}.md".format(repo_name) issue = random.choice(ISSUES) _write_issue(issue, issue_file) existing_issues.append((repo_name, issue)) return existing_issues @pytest.fixture def with_multi_issues_file(tmp_path): """Create the multi issues file.""" repo_names = plug.generate_repo_names(STUDENT_TEAM_NAMES, ASSIGNMENT_NAMES) repos_and_issues = [ (repo_name, random.choice(ISSUES)) for repo_name in repo_names ] issues_file = tmp_path / "issues.md" _write_multi_issues_file(repos_and_issues, issues_file) return issues_file, repos_and_issues class TestCallback: """Tests for the primary callback.""" def test_opens_issues_from_issues_dir( self, with_issues, parsed_args_issues_dir, api_mock ): """Test that the callback calls the API.open_issue for the expected repos and issues, when the issues all exist and are well formed. """ expected_calls = [ mock.call(issue.title, issue.body, mock.ANY) for repo_name, issue in with_issues ] feedback.callback(args=parsed_args_issues_dir, api=api_mock) api_mock.create_issue.assert_has_calls(expected_calls, any_order=True) def test_aborts_if_issue_is_missing( self, with_issues, parsed_args_issues_dir, api_mock, tmp_path ): """Test that the callback exits with a plug.PlugError if any of the expected issues is not found. """ repo_without_issue = plug.generate_repo_name( STUDENT_TEAM_NAMES[-1], ASSIGNMENT_NAMES[0] ) missing_file = tmp_path / "{}.md".format(repo_without_issue) missing_file.unlink() with pytest.raises(plug.PlugError) as exc_info: feedback.callback(args=parsed_args_issues_dir, api=api_mock) assert repo_without_issue in str(exc_info.value) assert not api_mock.create_issue.called def test_ignores_missing_issue_if_allow_missing( self, with_issues, parsed_args_issues_dir, api_mock, tmp_path ): """Test that missing issues are ignored if --allow-mising is set.""" repo_without_issue = plug.generate_repo_name( STUDENT_TEAM_NAMES[-1], ASSIGNMENT_NAMES[0] ) (tmp_path / "{}.md".format(repo_without_issue)).unlink() expected_calls = [ mock.call(issue.title, issue.body, mock.ANY) for repo_name, issue in with_issues if repo_name != repo_without_issue ] args_dict = vars(parsed_args_issues_dir) args_dict["allow_missing"] = True args = argparse.Namespace(**args_dict) feedback.callback(args=args, api=api_mock) api_mock.create_issue.assert_has_calls(expected_calls, any_order=True) def test_opens_nothing_if_open_prompt_returns_false( self, with_issues, parsed_args_issues_dir, api_mock ): """Test that the callback does not attempt to open any issues if the 'may I open' prompt returns false. """ args_dict = vars(parsed_args_issues_dir) args_dict["batch_mode"] = False parsed_args_interactive = argparse.Namespace(**args_dict) with mock.patch("builtins.input", return_value="n", autospec=True): feedback.callback(args=parsed_args_interactive, api=api_mock) assert not api_mock.create_issue.called def test_opens_issues_from_multi_issues_file( self, with_multi_issues_file, api_mock, parsed_args_multi_issues_file ): """Test that the callback opens issues correctly when they are all contained in a multi issues file. """ issues_file, repos_and_issues = with_multi_issues_file expected_calls = [ mock.call(issue.title, issue.body, mock.ANY) for repo_name, issue in repos_and_issues ] feedback.callback(args=parsed_args_multi_issues_file, api=api_mock) api_mock.create_issue.assert_has_calls(expected_calls) def test_skips_unexpected_issues_in_multi_issues_file( self, with_multi_issues_file, parsed_args_multi_issues_file, api_mock ): """Test that an exception is raised if one or more issues are found relating to student repos that ar not in prod(assignments, students). """ student_teams = parsed_args_multi_issues_file.students args_dict = vars(parsed_args_multi_issues_file) args_dict["students"] = student_teams[:-1] args = argparse.Namespace(**args_dict) unexpected_repos = plug.generate_repo_names( student_teams[-1:], ASSIGNMENT_NAMES ) _, repos_and_issues = with_multi_issues_file expected_calls = [ mock.call(issue.title, issue.body, mock.ANY) for repo_name, issue in repos_and_issues if repo_name not in unexpected_repos ] feedback.callback(args=args, api=api_mock) api_mock.create_issue.assert_has_calls(expected_calls, any_order=True)
33.548673
79
0.684648
[ "MIT" ]
slarse/repobee-feedback
tests/test_feedback.py
7,582
Python
import tkinter key= "" def key_down(e): global key key = e.keysym def key_up(e): global key key = "" mx, my = (1, 1) def main_proc(): global mx, my if key == "Up" and maze[my-1][mx] == 0: my -= 1 if key == "Down" and maze[my+1][mx] == 0: my += 1 if key == "Left" and maze[my][mx-1] == 0: mx -= 1 if key == "Right" and maze[my][mx+1] == 0: mx += 1 canvas.coords("MYCHR", mx*80 + 40, my*80 +40) root.after(300, main_proc) root = tkinter.Tk() root.title("미로 안 이동하기") root.bind("<KeyPress>", key_down) root.bind("<KeyRelease>", key_up) canvas = tkinter.Canvas(width=800, height=560, bg='white') canvas.pack() maze = [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 0, 0, 0, 0, 0, 1, 0, 0, 1], [1, 0, 1, 1, 0, 0, 1, 0, 0, 1], [1, 0, 0, 1, 0, 0, 0, 0, 0, 1], [1, 0, 0, 1, 1, 1, 1, 1, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ] for y in range(7): for x in range(10): if maze[y][x] == 1: canvas.create_rectangle(x * 80, y * 80, x * 80 + 79, y * 80 + 79, fill='skyblue', width=0) img = tkinter.PhotoImage(file='image/mimi_s.png') canvas.create_image(mx * 80 + 40, my * 80 + 40, image=img, tag='MYCHR') main_proc() root.mainloop()
22.839286
102
0.503518
[ "MIT" ]
rrbb014/rrbb-playground
python/game/gui/maze.py
1,293
Python
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """A recursive minimal eigen optimizer in Qiskit's optimization module.""" from copy import deepcopy from enum import Enum from typing import Optional, Union, List, Tuple, Dict import logging import numpy as np from qiskit.aqua.algorithms import NumPyMinimumEigensolver from qiskit.aqua.utils.validation import validate_min from .optimization_algorithm import OptimizationAlgorithm, OptimizationResult from .minimum_eigen_optimizer import MinimumEigenOptimizer, MinimumEigenOptimizationResult from ..converters.quadratic_program_to_qubo import QuadraticProgramToQubo from ..exceptions import QiskitOptimizationError from ..problems import Variable from ..problems.quadratic_program import QuadraticProgram logger = logging.getLogger(__name__) class IntermediateResult(Enum): """ Defines whether the intermediate results of :class:`~qiskit.optimization.algorithms.RecursiveMinimumEigenOptimizer` at each iteration should be stored and returned to the end user. """ NO_ITERATIONS = 0 """No intermediate results are stored.""" LAST_ITERATION = 1 """Only results from the last iteration are stored.""" ALL_ITERATIONS = 2 """All intermediate results are stored.""" class RecursiveMinimumEigenOptimizationResult(OptimizationResult): """Recursive Eigen Optimizer Result.""" def __init__(self, x: Union[List[float], np.ndarray], fval: float, variables: List[Variable], replacements: Dict[str, Tuple[str, int]], history: Tuple[List[MinimumEigenOptimizationResult], OptimizationResult]) -> None: """ Constructs an instance of the result class. Args: x: the optimal value found in the optimization. fval: the optimal function value. variables: the list of variables of the optimization problem. replacements: a dictionary of substituted variables. Key is a variable being substituted, value is a tuple of substituting variable and a weight, either 1 or -1. history: a tuple containing intermediate results. The first element is a list of :class:`~qiskit.optimization.algorithms.MinimumEigenOptimizerResult` obtained by invoking :class:`~qiskit.optimization.algorithms.MinimumEigenOptimizer` iteratively, the second element is an instance of :class:`~qiskit.optimization.algorithm.OptimizationResult` obtained at the last step via `min_num_vars_optimizer`. """ super().__init__(x, fval, variables, None) self._replacements = replacements self._history = history @property def replacements(self) -> Dict[str, Tuple[str, int]]: """ Returns a dictionary of substituted variables. Key is a variable being substituted, value is a tuple of substituting variable and a weight, either 1 or -1.""" return self._replacements @property def history(self) -> Tuple[List[MinimumEigenOptimizationResult], OptimizationResult]: """ Returns intermediate results. The first element is a list of :class:`~qiskit.optimization.algorithms.MinimumEigenOptimizerResult` obtained by invoking :class:`~qiskit.optimization.algorithms.MinimumEigenOptimizer` iteratively, the second element is an instance of :class:`~qiskit.optimization.algorithm.OptimizationResult` obtained at the last step via `min_num_vars_optimizer`. """ return self._history class RecursiveMinimumEigenOptimizer(OptimizationAlgorithm): """A meta-algorithm that applies a recursive optimization. The recursive minimum eigen optimizer applies a recursive optimization on top of :class:`~qiskit.optimization.algorithms.MinimumEigenOptimizer`. The algorithm is introduced in [1]. Examples: Outline of how to use this class: .. code-block:: from qiskit.aqua.algorithms import QAOA from qiskit.optimization.problems import QuadraticProgram from qiskit.optimization.algorithms import RecursiveMinimumEigenOptimizer problem = QuadraticProgram() # specify problem here # specify minimum eigen solver to be used, e.g., QAOA qaoa = QAOA(...) optimizer = RecursiveMinimumEigenOptimizer(qaoa) result = optimizer.solve(problem) References: [1]: Bravyi et al. (2019), Obstacles to State Preparation and Variational Optimization from Symmetry Protection. http://arxiv.org/abs/1910.08980. """ def __init__(self, min_eigen_optimizer: MinimumEigenOptimizer, min_num_vars: int = 1, min_num_vars_optimizer: Optional[OptimizationAlgorithm] = None, penalty: Optional[float] = None, history: Optional[IntermediateResult] = IntermediateResult.LAST_ITERATION) -> None: """ Initializes the recursive minimum eigen optimizer. This initializer takes a ``MinimumEigenOptimizer``, the parameters to specify until when to to apply the iterative scheme, and the optimizer to be applied once the threshold number of variables is reached. Args: min_eigen_optimizer: The eigen optimizer to use in every iteration. min_num_vars: The minimum number of variables to apply the recursive scheme. If this threshold is reached, the min_num_vars_optimizer is used. min_num_vars_optimizer: This optimizer is used after the recursive scheme for the problem with the remaining variables. penalty: The factor that is used to scale the penalty terms corresponding to linear equality constraints. history: Whether the intermediate results are stored. Default value is :py:obj:`~IntermediateResult.LAST_ITERATION`. Raises: QiskitOptimizationError: In case of invalid parameters (num_min_vars < 1). """ validate_min('min_num_vars', min_num_vars, 1) self._min_eigen_optimizer = min_eigen_optimizer self._min_num_vars = min_num_vars if min_num_vars_optimizer: self._min_num_vars_optimizer = min_num_vars_optimizer else: self._min_num_vars_optimizer = MinimumEigenOptimizer(NumPyMinimumEigensolver()) self._penalty = penalty self._history = history self._qubo_converter = QuadraticProgramToQubo() def get_compatibility_msg(self, problem: QuadraticProgram) -> str: """Checks whether a given problem can be solved with this optimizer. Checks whether the given problem is compatible, i.e., whether the problem can be converted to a QUBO, and otherwise, returns a message explaining the incompatibility. Args: problem: The optimization problem to check compatibility. Returns: A message describing the incompatibility. """ return QuadraticProgramToQubo.get_compatibility_msg(problem) def solve(self, problem: QuadraticProgram) -> OptimizationResult: """Tries to solve the given problem using the recursive optimizer. Runs the optimizer to try to solve the optimization problem. Args: problem: The problem to be solved. Returns: The result of the optimizer applied to the problem. Raises: QiskitOptimizationError: Incompatible problem. QiskitOptimizationError: Infeasible due to variable substitution """ self._verify_compatibility(problem) # convert problem to QUBO, this implicitly checks if the problem is compatible problem_ = self._qubo_converter.convert(problem) problem_ref = deepcopy(problem_) # run recursive optimization until the resulting problem is small enough replacements = {} # type: Dict[str, Tuple[str, int]] min_eigen_results = [] # type: List[MinimumEigenOptimizationResult] while problem_.get_num_vars() > self._min_num_vars: # solve current problem with optimizer res = self._min_eigen_optimizer.solve(problem_) # type: MinimumEigenOptimizationResult if self._history == IntermediateResult.ALL_ITERATIONS: min_eigen_results.append(res) # analyze results to get strongest correlation correlations = res.get_correlations() i, j = self._find_strongest_correlation(correlations) x_i = problem_.variables[i].name x_j = problem_.variables[j].name if correlations[i, j] > 0: # set x_i = x_j problem_ = problem_.substitute_variables(variables={i: (j, 1)}) if problem_.status == QuadraticProgram.Status.INFEASIBLE: raise QiskitOptimizationError('Infeasible due to variable substitution') replacements[x_i] = (x_j, 1) else: # set x_i = 1 - x_j, this is done in two steps: # 1. set x_i = 1 + x_i # 2. set x_i = -x_j # 1a. get additional offset constant = problem_.objective.constant constant += problem_.objective.linear[i] constant += problem_.objective.quadratic[i, i] problem_.objective.constant = constant # 1b. get additional linear part for k in range(problem_.get_num_vars()): coeff = problem_.objective.linear[k] if k == i: coeff += 2*problem_.objective.quadratic[i, k] else: coeff += problem_.objective.quadratic[i, k] # set new coefficient if not too small if np.abs(coeff) > 1e-10: problem_.objective.linear[k] = coeff else: problem_.objective.linear[k] = 0 # 2. replace x_i by -x_j problem_ = problem_.substitute_variables(variables={i: (j, -1)}) if problem_.status == QuadraticProgram.Status.INFEASIBLE: raise QiskitOptimizationError('Infeasible due to variable substitution') replacements[x_i] = (x_j, -1) # solve remaining problem result = self._min_num_vars_optimizer.solve(problem_) # unroll replacements var_values = {} for i, x in enumerate(problem_.variables): var_values[x.name] = result.x[i] def find_value(x, replacements, var_values): if x in var_values: # if value for variable is known, return it return var_values[x] elif x in replacements: # get replacement for variable (y, sgn) = replacements[x] # find details for replacing variable value = find_value(y, replacements, var_values) # construct, set, and return new value var_values[x] = value if sgn == 1 else 1 - value return var_values[x] else: raise QiskitOptimizationError('Invalid values!') # loop over all variables to set their values for x_i in problem_ref.variables: if x_i.name not in var_values: find_value(x_i.name, replacements, var_values) # build history before any translations are applied # min_eigen_results is an empty list if history is set to NO or LAST. history = (min_eigen_results, None if self._history == IntermediateResult.NO_ITERATIONS else result) # construct result x_v = [var_values[x_aux.name] for x_aux in problem_ref.variables] fval = result.fval result = OptimizationResult(x=x_v, fval=fval, variables=problem_ref.variables) result = self._qubo_converter.interpret(result) return RecursiveMinimumEigenOptimizationResult(x=result.x, fval=result.fval, variables=result.variables, replacements=replacements, history=history) def _find_strongest_correlation(self, correlations): # get absolute values and set diagonal to -1 to make sure maximum is always on off-diagonal abs_correlations = np.abs(correlations) for i in range(len(correlations)): abs_correlations[i, i] = -1 # get index of maximum (by construction on off-diagonal) m_max = np.argmax(abs_correlations.flatten()) # translate back to indices i = int(m_max // len(correlations)) j = int(m_max - i*len(correlations)) return (i, j)
43.584416
100
0.65003
[ "Apache-2.0" ]
Cristian-Malinescu/qiskit-aqua
qiskit/optimization/algorithms/recursive_minimum_eigen_optimizer.py
13,424
Python
import mechanize from DictUtils import listToDict from Scraper import Scraper import pprint prettyPrinter = pprint.PrettyPrinter(indent=4, width=50) class HeadlessScraper(): def __init__(self, username): self.browser = mechanize.Browser() self.browser.set_handle_robots(False) self.baseUrl = "https://www.instagram.com" self.username = username self.userLink = Scraper.getUserLink(username) def scrapeUser(self, userLink=None): if userLink is None: userLink = self.userLink response = self.browser.open(userLink) text = response.read() allUserLinks = {} for link in self.browser.links(url_regex='/p/'): self.browser.follow_link(link) userLinks = [link for link in self.browser.links() if HeadlessScraper.isUserLink(link) and self.isNotCurrentUserLink(link, userLink) ] userLinksDict = listToDict(lambda userLink: Scraper.getUserLink(userLink.text), userLinks) allUserLinks.update(userLinksDict) return allUserLinks def isNotCurrentUserLink(self, link, userLink): return link.url.strip() not in userLink.strip() @classmethod def extractAdressAndTitle(cls, link): address = link.url titles = [(key, value) for key, value in link.attrs if key.lower() == 'title'] if len(titles) == 0: return None, None _, title = titles.pop() return address, title @classmethod def isUserLink(cls, link): address, title = cls.extractAdressAndTitle(link) return address is not None and\ title is not None and\ Scraper.isUserLink(address, title) prettyPrinter.pprint(HeadlessScraper('pipapo').scrapeUser())
30.95
102
0.62951
[ "MIT" ]
ransomwarezz/instagram-scraper
core/HeadlessScraper.py
1,857
Python
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Base class for a stock configuration. @author: rajsaswa """ class StockConfig: def __init__(self): pass def get_stock_url(self): pass
14.666667
37
0.590909
[ "MIT" ]
saswatraj/stock_notifier
stock_notifier/stock_config/stock_config.py
220
Python
import warnings import pandas as pd from ..config import Config from ..backend import Backend from ..backend import PYOORB from ..backend import FINDORB from ..backend import MJOLNIR __all__ = [ "generateEphemeris" ] def generateEphemeris( orbits, observers, backend="MJOLNIR", backend_kwargs={}, test_orbit=None, threads=Config.NUM_THREADS, chunk_size=1 ): """ Generate ephemeris for the orbits and the given observatories. Parameters ---------- orbits : `~numpy.ndarray` (N, 6) Orbits for which to generate ephemeris. If backend is 'THOR', then these orbits must be expressed as heliocentric ecliptic cartesian elements. If backend is 'PYOORB' orbits may be expressed in keplerian, cometary or cartesian elements. observers : dict A dictionary with observatory codes as keys and observation_times (`~astropy.time.core.Time`) as values. Or a data frame with observatory codes, observation times (in UTC), and the observer's heliocentric ecliptic state. The expected data frame columns are obs_x, obs_y, obs_y and optionally the velocity columns obs_vx, obs_vy, obs_vz. If no velocities are not correctly given, then sky-plane velocities will all be zero. (See: `~thor.observatories.getObserverState`) backend : {'MJOLNIR', 'PYOORB'}, optional Which backend to use. backend_kwargs : dict, optional Settings and additional parameters to pass to selected backend. Returns ------- ephemeris : `~pandas.DataFrame` (N x M, 21) or (N x M, 18) A DataFrame containing the generated ephemeris. """ if backend == "MJOLNIR": backend = MJOLNIR(**backend_kwargs) elif backend == "PYOORB": backend = PYOORB(**backend_kwargs) elif backend == "FINDORB": backend = FINDORB(**backend_kwargs) elif isinstance(backend, Backend): backend = backend if len(backend_kwargs) > 0: warnings.warn("backend_kwargs will be ignored since a instantiated backend class has been given.") else: err = ( "backend should be one of 'MJOLNIR', 'PYOORB', 'FINDORB' or an instantiated Backend class" ) raise ValueError(err) ephemeris = backend.generateEphemeris( orbits, observers, test_orbit=test_orbit, threads=threads, chunk_size=chunk_size ) ephemeris.sort_values( by=["orbit_id", "observatory_code", "mjd_utc"], inplace=True ) ephemeris.reset_index( inplace=True, drop=True ) return ephemeris
31.103448
123
0.645233
[ "BSD-3-Clause" ]
B612-Asteroid-Institute/thor
thor/orbits/ephemeris.py
2,706
Python
import pytest from tickit.devices.eiger.eiger_status import EigerStatus # # # # # EigerStatus Tests # # # # # @pytest.fixture def eiger_status() -> EigerStatus: return EigerStatus() def test_eiger_status_constructor(): EigerStatus() def test_eiger_status_getitem(eiger_status): assert 24.5 == eiger_status["th0_temp"]
17.789474
57
0.730769
[ "Apache-2.0" ]
dls-controls/tickit
tests/devices/eiger/test_eiger_status.py
338
Python
from DockerBuildSystem import DockerComposeTools, YamlTools, TerminalTools from SwarmManagement import SwarmTools from DockerBuildManagement import BuildTools import sys import os BUILD_KEY = 'build' SAVE_IMAGES_KEY = 'saveImages' def GetInfoMsg(): infoMsg = "Build selections is configured by adding a 'build' property to the .yaml file.\r\n" infoMsg += "The 'build' property is a dictionary of build selections.\r\n" infoMsg += "Add '-build' to the arguments to build all selections in sequence, \r\n" infoMsg += "or add specific selection names to build those only.\r\n" infoMsg += "Example: 'dbm -build myBuildSelection'.\r\n" return infoMsg def GetBuildSelections(arguments): yamlData = SwarmTools.LoadYamlDataFromFiles( arguments, BuildTools.DEFAULT_BUILD_MANAGEMENT_YAML_FILES) buildProperty = YamlTools.GetProperties(BUILD_KEY, yamlData) if BuildTools.SELECTIONS_KEY in buildProperty: return buildProperty[BuildTools.SELECTIONS_KEY] return {} def BuildSelections(selectionsToBuild, buildSelections): if len(selectionsToBuild) == 0: for buildSelection in buildSelections: BuildSelection(buildSelections[buildSelection], buildSelection) else: for selectionToBuild in selectionsToBuild: if selectionToBuild in buildSelections: BuildSelection(buildSelections[selectionToBuild], selectionToBuild) def BuildSelection(buildSelection, selectionToBuild): cwd = BuildTools.TryChangeToDirectoryAndGetCwd(buildSelection) oldEnvironmentVariable = BuildTools.AddEnvironmentVariablesFromSelection(buildSelection) BuildTools.HandleTerminalCommandsSelection(buildSelection) TerminalTools.LoadDefaultEnvironmentVariablesFile() if BuildTools.FILES_KEY in buildSelection: composeFiles = buildSelection[BuildTools.FILES_KEY] buildComposeFile = BuildTools.GetAvailableComposeFilename('build', selectionToBuild) DockerComposeTools.MergeComposeFiles(composeFiles, buildComposeFile) try: DockerComposeTools.DockerComposeBuild([buildComposeFile]) except: BuildTools.RemoveComposeFileIfNotPreserved(buildComposeFile, buildSelection) raise if BuildTools.ADDITIONAL_TAG_KEY in buildSelection: DockerComposeTools.TagImages(buildComposeFile, buildSelection[BuildTools.ADDITIONAL_TAG_KEY]) if BuildTools.ADDITIONAL_TAGS_KEY in buildSelection: for tag in buildSelection[BuildTools.ADDITIONAL_TAGS_KEY]: DockerComposeTools.TagImages(buildComposeFile, tag) if SAVE_IMAGES_KEY in buildSelection: outputFolder = buildSelection[SAVE_IMAGES_KEY] DockerComposeTools.SaveImages(buildComposeFile, outputFolder) if BuildTools.COMPOSE_FILE_WITH_DIGESTS_KEY in buildSelection: composeFileWithDigests = buildSelection[BuildTools.COMPOSE_FILE_WITH_DIGESTS_KEY] BuildTools.GenerateComposeFileWithDigests(composeFiles, composeFileWithDigests) BuildTools.RemoveComposeFileIfNotPreserved(buildComposeFile, buildSelection) BuildTools.RemoveEnvironmentVariables(oldEnvironmentVariable) os.chdir(cwd) def HandleBuildSelections(arguments): if len(arguments) == 0: return if not('-build' in arguments): return if '-help' in arguments: print(GetInfoMsg()) return selectionsToBuild = SwarmTools.GetArgumentValues(arguments, '-build') selectionsToBuild += SwarmTools.GetArgumentValues(arguments, '-b') buildSelections = GetBuildSelections(arguments) BuildSelections(selectionsToBuild, buildSelections) if __name__ == "__main__": arguments = sys.argv[1:] HandleBuildSelections(arguments)
39.768421
105
0.754367
[ "MIT" ]
DIPSAS/DockerBuildManagement
DockerBuildManagement/BuildSelections.py
3,778
Python
from typing import Dict, List, Any from checkov.common.models.enums import CheckCategories, CheckResult from checkov.terraform.checks.resource.base_resource_value_check import BaseResourceCheck class S3BucketObjectLock(BaseResourceCheck): def __init__(self) -> None: name = "Ensure that S3 bucket has lock configuration enabled by default" id = "CKV_AWS_143" supported_resources = ["aws_s3_bucket"] categories = [CheckCategories.GENERAL_SECURITY] super().__init__(name=name, id=id, categories=categories, supported_resources=supported_resources) def scan_resource_conf(self, conf: Dict[str, List[Any]]) -> CheckResult: lock_conf = conf.get("object_lock_configuration") if lock_conf and lock_conf[0]: lock_enabled = lock_conf[0].get("object_lock_enabled") if lock_enabled in ["Enabled", ["Enabled"]]: return CheckResult.PASSED return CheckResult.FAILED return CheckResult.UNKNOWN def get_evaluated_keys(self) -> List[str]: return ["object_lock_configuration/[0]/object_lock_enabled"] check = S3BucketObjectLock()
38.533333
106
0.712803
[ "Apache-2.0" ]
0xflotus/checkov
checkov/terraform/checks/resource/aws/S3BucketObjectLock.py
1,156
Python
#! -*- coding:utf-8 -*- # 评估脚本 # 数据集:IFLYTEK' 长文本分类 (https://github.com/CLUEbenchmark/CLUE) import json import numpy as np from bert4keras.backend import keras, set_gelu from bert4keras.tokenizers import Tokenizer from bert4keras.models import build_transformer_model from bert4keras.optimizers import Adam from bert4keras.snippets import sequence_padding, DataGenerator from bert4keras.snippets import open from keras.layers import * set_gelu('tanh') # 切换tanh版本 num_classes = 119 maxlen = 128 batch_size = 32 # RoBERTa small config_path = '/root/kg/bert/chinese_roberta_L-6_H-384_A-12/bert_config.json' checkpoint_path = '/root/kg/bert/chinese_roberta_L-6_H-384_A-12/bert_model.ckpt' dict_path = '/root/kg/bert/chinese_roberta_L-6_H-384_A-12/vocab.txt' model_type = 'bert' """ # albert small config_path = '/root/kg/bert/albert_small_zh_google/albert_config.json' checkpoint_path = '/root/kg/bert/albert_small_zh_google/albert_model.ckpt' dict_path = '/root/kg/bert/albert_small_zh_google/vocab.txt' model_type = 'albert' # RoBERTa tiny config_path = '/root/kg/bert/chinese_roberta_L-4_H-312_A-12/bert_config.json' checkpoint_path = '/root/kg/bert/chinese_roberta_L-4_H-312_A-12/bert_model.ckpt' dict_path = '/root/kg/bert/chinese_roberta_L-4_H-312_A-12/vocab.txt' model_type = 'bert' # albert tiny config_path = '/root/kg/bert/albert_tiny_zh_google/albert_config.json' checkpoint_path = '/root/kg/bert/albert_tiny_zh_google/albert_model.ckpt' dict_path = '/root/kg/bert/albert_tiny_zh_google/vocab.txt' model_type = 'albert' """ def load_data(filename): D = [] with open(filename) as f: for i, l in enumerate(f): l = json.loads(l) text, label = l['sentence'], l['label'] D.append((text, int(label))) return D # 加载数据集 train_data = load_data('/root/CLUE-master/baselines/CLUEdataset/iflytek/train.json') valid_data = load_data('/root/CLUE-master/baselines/CLUEdataset/iflytek/dev.json') # 建立分词器 tokenizer = Tokenizer(dict_path, do_lower_case=True) class data_generator(DataGenerator): """数据生成器 """ def __iter__(self, random=False): batch_token_ids, batch_segment_ids, batch_labels = [], [], [] for is_end, (text, label) in self.sample(random): token_ids, segment_ids = tokenizer.encode(text, max_length=maxlen) batch_token_ids.append(token_ids) batch_segment_ids.append(segment_ids) batch_labels.append([label]) if len(batch_token_ids) == self.batch_size or is_end: batch_token_ids = sequence_padding(batch_token_ids) batch_segment_ids = sequence_padding(batch_segment_ids) batch_labels = sequence_padding(batch_labels) yield [batch_token_ids, batch_segment_ids], batch_labels batch_token_ids, batch_segment_ids, batch_labels = [], [], [] # 加载预训练模型 bert = build_transformer_model( config_path=config_path, checkpoint_path=checkpoint_path, model=model_type, return_keras_model=False, ) output = Lambda(lambda x: x[:, 0])(bert.model.output) output = Dense(units=num_classes, activation='softmax', kernel_initializer=bert.initializer)(output) model = keras.models.Model(bert.model.input, output) model.summary() model.compile( loss='sparse_categorical_crossentropy', optimizer=Adam(5e-5), metrics=['accuracy'], ) # 转换数据集 train_generator = data_generator(train_data, batch_size) valid_generator = data_generator(valid_data, batch_size) def evaluate(data): total, right = 0., 0. for x_true, y_true in data: y_pred = model.predict(x_true).argmax(axis=1) y_true = y_true[:, 0] total += len(y_true) right += (y_true == y_pred).sum() return right / total class Evaluator(keras.callbacks.Callback): def __init__(self): self.best_val_acc = 0. def on_epoch_end(self, epoch, logs=None): val_acc = evaluate(valid_generator) if val_acc > self.best_val_acc: self.best_val_acc = val_acc model.save_weights('best_model.weights') print(u'val_acc: %.5f, best_val_acc: %.5f\n' % (val_acc, self.best_val_acc)) evaluator = Evaluator() model.fit_generator(train_generator.forfit(), steps_per_epoch=len(train_generator), epochs=50, callbacks=[evaluator])
31.719424
84
0.701066
[ "Apache-2.0" ]
CurisZhou/pretrained-models
examples/task_iflytek.py
4,497
Python
# Athena Health Preliminary Test - II #!/bin/python3 import math import os import random import re import sys # # Complete the 'moves' function below. # # The function is expected to return an INTEGER. # The function accepts INTEGER_ARRAY arr as parameter. # def moves(arr): ee=e=0 for i in range(0,len(arr)): if(arr[i]%2==0): e+=1 for i in range(0,len(arr)): if(arr[i]%2==0): if(i>=e): ee+=1 return ee if __name__ == '__main__': fptr = open(os.environ['OUTPUT_PATH'], 'w') arr_count = int(input().strip()) arr = [] for _ in range(arr_count): arr_item = int(input().strip()) arr.append(arr_item) result = moves(arr) fptr.write(str(result) + '\n') fptr.close()
17.651163
54
0.598155
[ "MIT" ]
allenalvin333/Hackerrank_Interview
0_Companies/ATHENA2.py
759
Python
from tests.test_utils.test_logger import TestLogger from tests.test_utils.test_models import TestClassicalModel from tests.test_utils.test_utils import TestUtils
40.5
59
0.888889
[ "MIT" ]
Darshan-ko/genrl
tests/test_utils/__init__.py
162
Python
import os import requests from os.path import join, isfile from nerblackbox.modules.datasets.formatter.base_formatter import BaseFormatter class CoNLL2003Formatter(BaseFormatter): def __init__(self): ner_dataset = "conll2003" ner_tag_list = ["PER", "ORG", "LOC", "MISC"] super().__init__(ner_dataset, ner_tag_list) #################################################################################################################### # ABSTRACT BASE METHODS #################################################################################################################### def get_data(self, verbose: bool): """ I: get data ----------- :param verbose: [bool] :return: - """ url_base = "https://raw.githubusercontent.com/patverga/torch-ner-nlp-from-scratch/master/data/conll2003/" targets = ["eng.train", "eng.testa", "eng.testb"] for target in targets: target_file = join(self.dataset_path, target) # fetch tgz from url if isfile(target_file): if verbose: print(f".. file at {target_file} already exists") else: url = url_base + target myfile = requests.get(url, allow_redirects=True) open(target_file, "wb").write(myfile.content) if verbose: print(f".. file fetched from {url} and saved at {target_file}") def create_ner_tag_mapping(self): """ II: customize ner_training tag mapping if wanted ------------------------------------- :return: ner_tag_mapping: [dict] w/ keys = tags in original data, values = tags in formatted data """ return dict() def format_data(self): """ III: format data ---------------- :return: - """ for phase in ["train", "val", "test"]: rows = self._read_original_file(phase) self._write_formatted_csv(phase, rows) def resplit_data(self, val_fraction: float): """ IV: resplit data ---------------- :param val_fraction: [float] :return: - """ # train -> train df_train = self._read_formatted_csvs(["train"]) self._write_final_csv("train", df_train) # val -> val df_val = self._read_formatted_csvs(["val"]) self._write_final_csv("val", df_val) # test -> test df_test = self._read_formatted_csvs(["test"]) self._write_final_csv("test", df_test) #################################################################################################################### # HELPER: READ ORIGINAL #################################################################################################################### def _read_original_file(self, phase): """ III: format data --------------------------------------------- :param phase: [str] 'train' or 'test' :return: _rows: [list] of [list] of [str], e.g. [[], ['Inger', 'PER'], ['säger', '0'], ..] """ file_name = { "train": "eng.train", "val": "eng.testa", "test": "eng.testb", } file_path_original = join(self.dataset_path, file_name[phase]) _rows = list() if os.path.isfile(file_path_original): with open(file_path_original) as f: for i, row in enumerate(f.readlines()): _rows.append(row.strip().split()) print(f"\n> read {file_path_original}") _rows = [ [row[0], row[-1]] if (len(row) == 4 and row[0] != "-DOCSTART-") else list() for row in _rows ] return _rows
35.472222
120
0.456017
[ "Apache-2.0" ]
af-ai-center/nerblackbox
nerblackbox/modules/datasets/formatter/conll2003_formatter.py
3,832
Python
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) import os from spack.package import * class Visit(CMakePackage): """VisIt is an Open Source, interactive, scalable, visualization, animation and analysis tool. See comments in VisIt's package.py for tips about building VisIt with spack. Building VisIt with Spack is still experimental and many standard features are likely disabled LINUX------------------------------------------------------------------- spack install visit ^python+shared ^[email protected] ^[email protected] LINUX-W/O-OPENGL-------------------------------------------------------- spack install visit ^python+shared ^[email protected] ^[email protected] \\ ^mesa+opengl MACOS------------------------------------------------------------------- spack install visit ^python+shared ^[email protected] ^[email protected] \\ ^qt~framework """ ############################ # Suggestions for building: ############################ # cyrush note: # # Out of the box, VisIt's python 2 requirement will cause # spack spec constraint errors due Qt + Mesa build # dependencies. # # You can avoid this using: # # linux: # spack install visit ^python+shared ^[email protected] ^[email protected] # # linux w/o opengl: (add mesa as opengl if system lacks system opengl ) # # spack install visit ^python+shared ^[email protected] ^[email protected] \ # ^mesa+opengl # # macOS: # spack install visit ^python+shared ^[email protected] ^[email protected] \ # ^qt~framework # # Rpath issues undermine qwt (not qt) when a build as a framework # VisIt's osxfixup resolves this for us in other cases, # but we can't use osxfixup with spack b/c it will undermine other libs. # # Even with these changes, VisIt's Python CLI does not work on macOS, # there is a linking issue related to OpenSSL. # (dyld: Symbol not found: _GENERAL_NAME_free - which comes from OpenSSL) # ############################ homepage = "https://wci.llnl.gov/simulation/computer-codes/visit/" git = "https://github.com/visit-dav/visit.git" url = "https://github.com/visit-dav/visit/releases/download/v3.2.1/visit3.2.1.tar.gz" tags = ['radiuss'] maintainers = ['cyrush'] extendable = True executables = ['^visit$'] version('develop', branch='develop') version('3.2.2', sha256='d19ac24c622a3bc0a71bc9cd6e5c9860e43f39e3279672129278b6ebce8d0ead') version('3.2.1', sha256='779d59564c63f31fcbfeff24b14ddd6ac941b3bb7d671d31765a770d193f02e8') version('3.1.1', sha256='0b60ac52fd00aff3cf212a310e36e32e13ae3ca0ddd1ea3f54f75e4d9b6c6cf0') version('3.0.1', sha256='a506d4d83b8973829e68787d8d721199523ce7ec73e7594e93333c214c2c12bd') root_cmakelists_dir = 'src' generator = "Ninja" variant('gui', default=True, description='Enable VisIt\'s GUI') variant('osmesa', default=False, description='Use OSMesa for off-screen CPU rendering') variant('adios2', default=True, description='Enable ADIOS2 file format') variant('hdf5', default=True, description='Enable HDF5 file format') variant('silo', default=True, description='Enable Silo file format') variant('python', default=True, description='Enable Python support') variant('mpi', default=True, description='Enable parallel engine') patch('spack-changes-3.1.patch', when="@3.1.0:,develop") patch('spack-changes-3.0.1.patch', when="@3.0.1") patch('nonframework-qwt.patch', when='^qt~framework platform=darwin') patch('parallel-hdf5.patch', when='+hdf5+mpi') # Exactly one of 'gui' or 'osmesa' has to be enabled conflicts('+gui', when='+osmesa') ############################################# # Full List of dependencies from build_visit ############################################# # cyrush note: # I added these here to give folks details # to help eventually build up to full # support for visit ############################################# # ===================================== # core: # ===================================== # cmake (build) # vtk # qt # qwt # python # mpi # # ===================================== # rendering (optional): # ===================================== # icet # vtk-m # vtk-h # llvm # mesagl # osmesa # tbb # embree # ispc # ospray # # ===================================== # python modules: # ===================================== # numpy # pillow # mpi4py # seedme # sphinx (build, docs) # sphinx rtd theme (build, docs) # pyqt (visit support deprecated) # pyside (note: we want pyside 2) # # ===================================== # testing related: # ===================================== # p7zip (build, test) # # ===================================== # io libs: # ===================================== # adios # adios2 # advio # boost # boxlib # cfitsio # cgns # conduit # damaris # fastbit # fastquery # gdal # h5part # hdf4 # hdf5 # mdsplus # mfem # mili # moab # mxml # nektarpp # netcdf # openexr # pidx # silo # stripack # szip # tbb # uintah # xdmf # xercesc # xsd # zlib # # ===================================== depends_on('[email protected]:', type='build') depends_on('ninja', type='build') depends_on('mpi', when='+mpi') # VTK flavors depends_on('[email protected]:8 +opengl2') depends_on('vtk +osmesa', when='+osmesa') depends_on('vtk +qt', when='+gui') depends_on('vtk +python', when='+python') depends_on('vtk +mpi', when='+mpi') depends_on('vtk ~mpi', when='~mpi') # Necessary VTK patches depends_on('vtk', patches=[patch('vtk_compiler_visibility.patch')]) depends_on('vtk', patches=[patch('vtk_rendering_opengl2_x11.patch')], when='~osmesa platform=linux') depends_on('vtk', patches=[patch('vtk_wrapping_python_x11.patch')], when='+python') depends_on('glu', when='~osmesa') depends_on('mesa-glu+osmesa', when='+osmesa') # VisIt doesn't work with later versions of qt. depends_on('qt+gui+opengl@5:5.14', when='+gui') depends_on('qwt', when='+gui') # [email protected] doesn't work with VisIt. depends_on('[email protected]:3.7', when='+python') extends('python', when='+python') # VisIt uses the hdf5 1.8 api # set the API version later on down in setup_build_environment depends_on('[email protected]:', when='+hdf5') depends_on('hdf5+mpi', when='+hdf5+mpi') depends_on('hdf5~mpi', when='+hdf5~mpi') # VisIt uses Silo's 'ghost zone' data structures, which are only available # in v4.10+ releases: https://wci.llnl.gov/simulation/computer-codes/silo/releases/release-notes-4.10 depends_on('[email protected]: +shared', when='+silo') depends_on('silo+hdf5', when='+silo+hdf5') depends_on('silo~hdf5', when='+silo~hdf5') depends_on('silo+mpi', when='+silo+mpi') depends_on('silo~mpi', when='+silo~mpi') depends_on('[email protected]:', when='+adios2') depends_on('adios2+hdf5', when='+adios2+hdf5') depends_on('adios2~hdf5', when='+adios2~hdf5') depends_on('adios2+mpi', when='+adios2+mpi') depends_on('adios2~mpi', when='+adios2~mpi') depends_on('adios2+python', when='+adios2+python') depends_on('adios2~python', when='+adios2~python') depends_on('zlib') @when('@3:,develop') def patch(self): # Some of VTK's targets don't create explicit libraries, so there is no # 'vtktiff'. Instead, replace with the library variable defined from # VTK's module flies (e.g. lib/cmake/vtk-8.1/Modules/vtktiff.cmake) for filename in find('src', 'CMakeLists.txt'): filter_file(r'\bvtk(tiff|jpeg|png)', r'${vtk\1_LIBRARIES}', filename) def flag_handler(self, name, flags): if name in ('cflags', 'cxxflags'): # NOTE: This is necessary in order to allow VisIt to compile a couple # of lines of code with 'const char*' to/from 'char*' conversions. if '@3:%gcc' in self.spec: flags.append('-fpermissive') # VisIt still uses the hdf5 1.8 api if '+hdf5' in self.spec and '@1.10:' in self.spec['hdf5']: flags.append('-DH5_USE_18_API') return (flags, None, None) def cmake_args(self): spec = self.spec args = [ self.define('CMAKE_POSITION_INDEPENDENT_CODE', True), self.define('VTK_MAJOR_VERSION', spec['vtk'].version[0]), self.define('VTK_MINOR_VERSION', spec['vtk'].version[1]), self.define('VISIT_VTK_DIR', spec['vtk'].prefix), self.define('VISIT_ZLIB_DIR', spec['zlib'].prefix), self.define('VISIT_USE_GLEW', False), self.define('VISIT_CONFIG_SITE', 'NONE'), self.define('VISIT_INSTALL_THIRD_PARTY', True), ] if '@3.1: platform=darwin' in spec: args.append(self.define('FIXUP_OSX', False)) if '+python' in spec: args.extend([ self.define('VISIT_PYTHON_FILTERS', True), self.define('VISIT_PYTHON_SCRIPTING', True), self.define('PYTHON_DIR', spec['python'].home), ]) else: args.extend([ self.define('VISIT_PYTHON_FILTERS', False), self.define('VISIT_PYTHON_SCRIPTING', False), ]) if '+gui' in spec: qt_bin = spec['qt'].prefix.bin qmake_exe = os.path.join(qt_bin, 'qmake') args.extend([ self.define('VISIT_SERVER_COMPONENTS_ONLY', False), self.define('VISIT_ENGINE_ONLY', False), self.define('VISIT_LOC_QMAKE_EXE', qmake_exe), self.define('VISIT_QT_DIR', spec['qt'].prefix), self.define('VISIT_QWT_DIR', spec['qwt'].prefix), ]) else: args.extend([ self.define('VISIT_SERVER_COMPONENTS_ONLY', True), self.define('VISIT_ENGINE_ONLY', True), ]) # No idea why this is actually needed if '^mesa' in spec: args.append(self.define('VISIT_MESAGL_DIR', spec['mesa'].prefix)) if '+llvm' in spec['mesa']: args.append(self.define('VISIT_LLVM_DIR', spec['libllvm'].prefix)) if '+hdf5' in spec: args.append(self.define('VISIT_HDF5_DIR', spec['hdf5'].prefix)) if '+mpi' in spec and '+mpi' in spec['hdf5']: args.append(self.define('VISIT_HDF5_MPI_DIR', spec['hdf5'].prefix)) if '+silo' in spec: args.append(self.define('VISIT_SILO_DIR', spec['silo'].prefix)) if '+mpi' in spec: args.extend([ self.define('VISIT_PARALLEL', True), self.define('VISIT_MPI_COMPILER', spec['mpi'].mpicxx), ]) else: args.append(self.define('VISIT_PARALLEL', False)) return args # https://spack.readthedocs.io/en/latest/packaging_guide.html?highlight=executables#making-a-package-discoverable-with-spack-external-find # Here we are only able to determine the latest version # despite VisIt may have multiple versions @classmethod def determine_version(cls, exe): output = Executable(exe)('-version', output=str, error=str) match = re.search(r'\s*(\d[\d\.]+)\.', output) return match.group(1) if match else None
35.494083
142
0.562474
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
jmellorcrummey/spack
var/spack/repos/builtin/packages/visit/package.py
11,997
Python
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('data', '0002_auto_20141114_1935'), ] operations = [ migrations.RemoveField( model_name='registryentry', name='fixity_algorithm', ), migrations.RemoveField( model_name='registryentry', name='fixity_value', ), migrations.RemoveField( model_name='registryentry', name='last_fixity_date', ), migrations.RemoveField( model_name='registryentry', name='published', ), ]
23.064516
44
0.569231
[ "Apache-2.0" ]
APTrust/EarthDiver
dpnode/dpn/data/migrations/0003_auto_20141117_2011.py
715
Python
import math import numpy as np from enum import IntEnum class Mode(IntEnum): CUSTOM = 0 EQUAL = 1 GAUSS = 2 GAUSS_SYM = 3 PYRAMID = 4 PYRAMID_SYM = 5 SIVEROO_1 = 6 SIVEROO_2 = 7 #This function will return an list of value, like below: # [0,1,2,3,...,n] -> [a,...,b] def scaleRange(n: int, a: int, b: int): return [(x*(b-a)/(n-1))+a for x in range(0,n)] def equal(n: int): return [1/n]*n def gauss(n: int): r = range(n,0,-1) val = [math.exp(-(2.0*x/n)**2) for x in r] val = val/np.sum(val) return val def gauss_sym(n: int): n = n/2 r = range(int(n),-math.ceil(n),-1) val = ([math.exp(-(2.0*x/(n))**2) for x in r]) val = val/np.sum(val) return val def pyramid(n: int): r = range(1,n+1) val = [x/n for x in r] val = val/np.sum(val) return val def pyramid_sym(n: int): r = range(0,n) val = [(n/2)-abs(x-(n-1)/2) for x in r] val = val/np.sum(val) return val def siveroo1(n: int): r = scaleRange(n,-3,0.1) val = [math.floor(3*math.exp(-(x/1.9)**2))/3+0.1 for x in r] val = val/np.sum(val) return val # this function will stretch the given array (w) to a specific length (n) # example : n = 10, w = [1,2] # result : val = [1,1,1,1,1,2,2,2,2,2] , flip it, and then normalize it so its sum is equal to 1 def stretch(n: int, w: int): r = scaleRange(n,0,len(w)-0.1) val = [] idx = [math.floor(x) for x in r] for x in range(0,n): index = int(idx[x]) val.append(w[index]) val = val/np.sum(val) return val def null(n: int): return [0]*n def get_weight(mode: Mode, count: int): if count == 1: return [1.0] else: return { Mode.EQUAL : equal(count), Mode.GAUSS : gauss(count), Mode.GAUSS_SYM : gauss_sym(count), Mode.PYRAMID : pyramid(count), Mode.PYRAMID_SYM : pyramid_sym(count), Mode.SIVEROO_1 : siveroo1(count), Mode.SIVEROO_2 : stretch(count,[1,3,3,2,2]) }.get(mode, [1, 0]) # fallback to [1,0] if fucked up def modeName(mode: Mode): return { Mode.EQUAL : "[1] Equal", Mode.GAUSS : "[2] Gaussian Asymmetric", Mode.GAUSS_SYM : "[3] Gaussian Symmetric", Mode.PYRAMID : "[4] Pyramid Asymmetric", Mode.PYRAMID_SYM : "[5] Pyramid Symmetric", Mode.SIVEROO_1 : "[6] Siveroo's Preset I", Mode.SIVEROO_2 : "[7] Siveroo's Preset II" }[mode]
27.968421
96
0.515995
[ "MIT" ]
FireRedz/HFR-Resampler
weights.py
2,657
Python
#!/usr/bin/env python from setuptools import setup setup( name='mobib', version='0.1', description='Retrieve remaining number of trips from your MOBIB Basic', author='Bruno Parmentier', author_email='[email protected]', url='https://github.com/bparmentier/mobib-reader/', py_modules=['mobib'], entry_points={ 'console_scripts': ['mobib = mobib:main'] }, install_requires=['pyscard'] )
24.444444
75
0.665909
[ "MIT" ]
bparmentier/mobib-basic-reader
setup.py
440
Python
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest from aliyunsdkiot.endpoint import endpoint_data class CreateRuleRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'Iot', '2018-01-20', 'CreateRule') self.set_method('POST') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_Select(self): return self.get_query_params().get('Select') def set_Select(self,Select): self.add_query_param('Select',Select) def get_RuleDesc(self): return self.get_query_params().get('RuleDesc') def set_RuleDesc(self,RuleDesc): self.add_query_param('RuleDesc',RuleDesc) def get_ShortTopic(self): return self.get_query_params().get('ShortTopic') def set_ShortTopic(self,ShortTopic): self.add_query_param('ShortTopic',ShortTopic) def get_ResourceGroupId(self): return self.get_query_params().get('ResourceGroupId') def set_ResourceGroupId(self,ResourceGroupId): self.add_query_param('ResourceGroupId',ResourceGroupId) def get_DataType(self): return self.get_query_params().get('DataType') def set_DataType(self,DataType): self.add_query_param('DataType',DataType) def get_IotInstanceId(self): return self.get_query_params().get('IotInstanceId') def set_IotInstanceId(self,IotInstanceId): self.add_query_param('IotInstanceId',IotInstanceId) def get_Where(self): return self.get_query_params().get('Where') def set_Where(self,Where): self.add_query_param('Where',Where) def get_TopicType(self): return self.get_query_params().get('TopicType') def set_TopicType(self,TopicType): self.add_query_param('TopicType',TopicType) def get_ProductKey(self): return self.get_query_params().get('ProductKey') def set_ProductKey(self,ProductKey): self.add_query_param('ProductKey',ProductKey) def get_Name(self): return self.get_query_params().get('Name') def set_Name(self,Name): self.add_query_param('Name',Name) def get_Topic(self): return self.get_query_params().get('Topic') def set_Topic(self,Topic): self.add_query_param('Topic',Topic)
31.040816
74
0.753123
[ "Apache-2.0" ]
ankitdobhal/aliyun-openapi-python-sdk
aliyun-python-sdk-iot/aliyunsdkiot/request/v20180120/CreateRuleRequest.py
3,042
Python
import tweepy from time import sleep from datetime import datetime from keys import * from tqdm import tqdm def play(test=True,i_pages=3, i_hashtag=20, like_pages=False, like_hashtag=False): while True == True: try: econotwbot(test, i_pages, i_hashtag) except Exception as e: print(e) sleep(60*30) pass class econotwbot: def __init__(self, test=True, i_pages=3, i_hashtag=20, like_pages=False, like_hashtag=False): self.test = test self.auth = tweepy.OAuthHandler(consumer_key, consumer_secret) self.auth.set_access_token(access_token, access_token_secret) self.api = tweepy.API(self.auth) self._file_following = 'to_follow.txt' self.i_pages = i_pages self.i_hashtag = i_hashtag self.like_pages = like_pages self.like_hashtag = like_hashtag self.pbar = 0 self.iteractions = self.i_pages*len(self.following_pages())+self.i_hashtag if self.test==True: self.hellow_world() self.retweepy() while self.test==False: print() print("Starting!",datetime.now()) print() with tqdm(total=self.iteractions) as self.pbar: self.retweepy_following() tqdm.write("Just give me 5 more minutes to sleep please!") sleep(5*60) self.retweepy() print() print("Iteraction done!",datetime.now()) sleep(30*60) def following_pages(self): with open(self._file_following, 'r') as f: return f.read().splitlines() def retweepy(self): tqdm.write('Delivering tweets with #econotw OR #EconTwitter') dici={'q':'#econotw OR #EconTwitter'} args={'method':self.api.search, 'dici':dici, 'like':self.like_hashtag, 'i':self.i_hashtag} self.like_and_rt(**args) def retweepy_following(self): tqdm.write('Delivering interesting tweets') for page in self.following_pages(): dici={'screen_name':page} args={'method':self.api.user_timeline, 'dici':dici, 'like':self.like_pages, 'i':self.i_pages} self.like_and_rt(**args) def like_and_rt(self,method,dici,like,i): count=0 for tweet in tweepy.Cursor(method=method,**dici).items(i): self.pbar.update(1) count+=1 try: if like==True: self.api.create_favorite(tweet.id) sleep(1) tweet.retweet() string= 'Retweeted: '+ str(tweet.id) +' @'+tweet.user.screen_name tqdm.write(string) sleep(10) # Print retweet errors except tweepy.TweepError as error: if (eval(error.reason)[0]['code'] != 139) and (eval(error.reason)[0]['code'] != 327): tqdm.write('\nError. '+str(tweet.id)+' Retweet not successful. Reason: ') tqdm.write(str(error.reason) +' '+ str(datetime.now())) self.pbar.update(i-count) except StopIteration: break def hello_world(self): self.api.update_status("""Hello World! #econotw""") if __name__ == "__main__": play(test=False)
34.038462
101
0.54096
[ "MIT" ]
ppnasser/econotw
econotw.py
3,540
Python
#!/usr/bin/env python3 import uuid import random import datetime from faker import Factory fake = Factory.create() num_people = 1000 last_jump_start = datetime.datetime(2008, 9, 1) last_jump_end = datetime.datetime(2016, 8, 1) print('COPY members (uuid, name, email, phone_number, last_jump, created_at, updated_at) FROM stdin;') for i in range(0, num_people): member_uuid = str(uuid.uuid4()) name = fake.name() email = fake.email() phone_number = '+447' + str(random.randrange(100000000, 999999999, 1)) last_jump = fake.date_time_between_dates(datetime_start = last_jump_start, datetime_end = last_jump_end).strftime('%Y-%m-%d') created_at = fake.date_time_between_dates(datetime_start = last_jump_start, datetime_end = last_jump_end) updated_at = fake.date_time_between_dates(datetime_start = created_at, datetime_end = last_jump_end).strftime('%Y-%m-%d %H:%M:%S') print("%s\t%s\t%s\t%s\t%s\t%s\t%s" % (member_uuid, name, email, phone_number, last_jump, created_at.strftime('%Y-%m-%d %H:%M:%S'), updated_at)) print('\\.')
36.137931
145
0.733779
[ "MIT" ]
colorshifter/lsd-members
test-data/members.py
1,048
Python
import os from selfdrive.manager.process import PythonProcess, NativeProcess, DaemonProcess from selfdrive.hardware import EON, TICI, PC from common.op_params import opParams WEBCAM = os.getenv("USE_WEBCAM") is not None procs = [ DaemonProcess("manage_athenad", "selfdrive.athena.manage_athenad", "AthenadPid"), # due to qualcomm kernel bugs SIGKILLing camerad sometimes causes page table corruption NativeProcess("camerad", "selfdrive/camerad", ["./camerad"], unkillable=True, driverview=True), NativeProcess("clocksd", "selfdrive/clocksd", ["./clocksd"]), NativeProcess("dmonitoringmodeld", "selfdrive/modeld", ["./dmonitoringmodeld"], enabled=(not PC or WEBCAM), driverview=True), NativeProcess("logcatd", "selfdrive/logcatd", ["./logcatd"]), NativeProcess("loggerd", "selfdrive/loggerd", ["./loggerd"]), NativeProcess("modeld", "selfdrive/modeld", ["./modeld"]), NativeProcess("proclogd", "selfdrive/proclogd", ["./proclogd"]), NativeProcess("sensord", "selfdrive/sensord", ["./sensord"], enabled=not PC, persistent=EON, sigkill=EON), NativeProcess("ubloxd", "selfdrive/locationd", ["./ubloxd"], enabled=(not PC or WEBCAM)), NativeProcess("ui", "selfdrive/ui", ["./ui"], persistent=True, watchdog_max_dt=(5 if TICI else None)), NativeProcess("soundd", "selfdrive/ui", ["./soundd"]), NativeProcess("locationd", "selfdrive/locationd", ["./locationd"]), NativeProcess("boardd", "selfdrive/boardd", ["./boardd"], enabled=False), PythonProcess("calibrationd", "selfdrive.locationd.calibrationd"), PythonProcess("controlsd", "selfdrive.controls.controlsd"), PythonProcess("deleter", "selfdrive.loggerd.deleter", persistent=True), PythonProcess("dmonitoringd", "selfdrive.monitoring.dmonitoringd", enabled=(not PC or WEBCAM), driverview=True), PythonProcess("logmessaged", "selfdrive.logmessaged", persistent=True), PythonProcess("pandad", "selfdrive.pandad", persistent=True), PythonProcess("paramsd", "selfdrive.locationd.paramsd"), PythonProcess("plannerd", "selfdrive.controls.plannerd"), PythonProcess("radard", "selfdrive.controls.radard"), PythonProcess("rtshield", "selfdrive.rtshield", enabled=EON), PythonProcess("thermald", "selfdrive.thermald.thermald", persistent=True), PythonProcess("timezoned", "selfdrive.timezoned", enabled=TICI, persistent=True), PythonProcess("tombstoned", "selfdrive.tombstoned", enabled=not PC, persistent=True), PythonProcess("uploader", "selfdrive.loggerd.uploader", persistent=True), ] if not opParams().get('update_behavior').lower().strip() == 'off' or os.path.exists('/data/no_ota_updates'): procs.append(PythonProcess("updated", "selfdrive.updated", enabled=not PC, persistent=True)) managed_processes = {p.name: p for p in procs}
60.866667
127
0.741512
[ "MIT" ]
SebastienLubrano/openpilot
selfdrive/manager/process_config.py
2,739
Python
#!/usr/bin/env python # -*- coding: utf-8 -*- # ======================================= # File Name: test_ADMM.py # Purpose : test ADMM solver for primal # problem and dual problem # ======================================= from utils import get_params from ADMM_primal import ADMM_primal from ADMM_dual import ADMM_dual import numpy as np import argparse import time import sys """Parser """ parser = argparse.ArgumentParser() parser.add_argument('--n', type=int, default=64) parser.add_argument('--dataset', type=str, choices=['random', 'caffarelli', 'ellipse', 'DOTmark'], default='random') parser.add_argument('--imageclass', type=str, default='WhiteNoise') parser.add_argument('--method', type=str, choices=['primal', 'dual'], default='primal') parser.add_argument('--iters', type=int, default=10000) parser.add_argument('--alpha', type=float, default=1.618) parser.add_argument('--rho', type=float, default=1024) args = parser.parse_args() def main(): """Main routine """ print("\nTesting ADMM") print("====================") print("m = n : ", args.n) print("dataset: ", args.dataset) if args.dataset == 'DOTmark': print("class : ", args.imageclass) print("method : ", args.method) print("====================") mu, nu, c = get_params(args.n, args.dataset, args.imageclass) start = time.time() if args.method == 'primal': ADMM_primal(mu, nu, c, args.iters, args.rho, args.alpha) elif args.method == 'dual': ADMM_dual(mu, nu, c, args.iters, args.rho, args.alpha) t = time.time() - start print('time = %.5e' % t) if __name__ == '__main__': try: main() except KeyboardInterrupt: print (" Ctrl+C pressed...") sys.exit(1)
29.915254
116
0.5983
[ "MIT" ]
CrazyIvanPro/Optimal_Transport
test_ADMM.py
1,765
Python
# -*- coding: utf-8 -*- """ solutions_by_text.sbt_token_generator ~~~~~~~~~~~~ This module handles security token generation. """ # @Author: sijanonly # @Date: 2018-03-19 10:57:26 # @Last Modified by: sijanonly # @Last Modified time: 2018-03-19 14:51:07 import json from urllib import parse import requests from .handle_exceptions import CustomException _base_url = 'https://{}.solutionsbytext.com/SBT.App.SetUp/RSServices/' def create_security_token(api_key, stage): """ Generates a security token for SBT API access. Args: api_key (string): API_KEY value provided by solutionsbytext stage (string): STAGE values (test or ui) Returns: string: SecurityToken returns by LoginAPIService Raises: CustomException: Raises while error during GET request. """ url = ''.join( [ _base_url.format(stage), 'LoginAPIService.svc/AuthenticateAPIKey?', parse.urlencode({'APIKey': api_key}) ] ) response_data = json.loads(requests.get(url).text) if response_data['AuthenticateAPIKeyResult'].get('ErrorCode') == 1402: raise CustomException( 'Error in generating security key.') if response_data['AuthenticateAPIKeyResult'].get('ErrorCode') == 1401: raise CustomException( 'SecurityToken generation is failed.') return response_data['AuthenticateAPIKeyResult'].get('SecurityToken')
25.103448
74
0.666896
[ "MIT" ]
sijanonly/sbt-python-client
solutions_by_text/sbt_token_generator.py
1,456
Python
n = [] v = int(input()) n.append([v*x*2 for x in range(1,11)]) print(n) for i in range(len(n)): print('N[%d] = %d' % (i, n[i]))
18.857143
38
0.5
[ "MIT" ]
pedrodanieljardim/Desafios-URI-feitos-em-java
Beginner/1173.py
132
Python
from curielogserver import app, get_default_dbconfig import os import time import psycopg2.pool from psycopg2 import OperationalError retries = 10 while retries > 0: retries -= 1 try: app.config['postgreSQL_pool'] = psycopg2.pool.ThreadedConnectionPool(1, 20, get_default_dbconfig()) break except OperationalError: if retries == 0: raise time.sleep(1)
24.058824
107
0.691932
[ "Apache-2.0" ]
bochuxt/curiefense
curiefense/curielogserver/app/main.py
409
Python
# -*- coding: utf-8 -*- """ TencentBlueKing is pleased to support the open source community by making 蓝鲸智云-权限中心(BlueKing-IAM) available. Copyright (C) 2017-2021 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from django.urls import path from . import views urlpatterns = [ path("", views.DebugViewSet.as_view({"get": "list"}), name="debug.list_debug"), path("<str:id>/", views.DebugViewSet.as_view({"get": "retrieve"}), name="debug.detail"), ]
50.631579
115
0.754678
[ "MIT" ]
Canway-shiisa/bk-iam-saas
saas/backend/debug/urls.py
978
Python
#!/usr/bin/env python3 # Copyright (c) 2014-2016 The Youngseokcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the abandontransaction RPC. The abandontransaction RPC marks a transaction and all its in-wallet descendants as abandoned which allows their inputs to be respent. It can be used to replace "stuck" or evicted transactions. It only works on transactions which are not included in a block and are not currently in the mempool. It has no effect on transactions which are already conflicted or abandoned. """ from test_framework.test_framework import YoungseokcoinTestFramework from test_framework.util import * class AbandonConflictTest(YoungseokcoinTestFramework): def set_test_params(self): self.num_nodes = 2 self.extra_args = [["-minrelaytxfee=0.00001"], []] def run_test(self): self.nodes[1].generate(100) sync_blocks(self.nodes) balance = self.nodes[0].getbalance() txA = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), Decimal("10")) txB = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), Decimal("10")) txC = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), Decimal("10")) sync_mempools(self.nodes) self.nodes[1].generate(1) sync_blocks(self.nodes) newbalance = self.nodes[0].getbalance() assert(balance - newbalance < Decimal("0.001")) #no more than fees lost balance = newbalance # Disconnect nodes so node0's transactions don't get into node1's mempool disconnect_nodes(self.nodes[0], 1) # Identify the 10ysc outputs nA = next(i for i, vout in enumerate(self.nodes[0].getrawtransaction(txA, 1)["vout"]) if vout["value"] == Decimal("10")) nB = next(i for i, vout in enumerate(self.nodes[0].getrawtransaction(txB, 1)["vout"]) if vout["value"] == Decimal("10")) nC = next(i for i, vout in enumerate(self.nodes[0].getrawtransaction(txC, 1)["vout"]) if vout["value"] == Decimal("10")) inputs =[] # spend 10ysc outputs from txA and txB inputs.append({"txid":txA, "vout":nA}) inputs.append({"txid":txB, "vout":nB}) outputs = {} outputs[self.nodes[0].getnewaddress()] = Decimal("14.99998") outputs[self.nodes[1].getnewaddress()] = Decimal("5") signed = self.nodes[0].signrawtransaction(self.nodes[0].createrawtransaction(inputs, outputs)) txAB1 = self.nodes[0].sendrawtransaction(signed["hex"]) # Identify the 14.99998ysc output nAB = next(i for i, vout in enumerate(self.nodes[0].getrawtransaction(txAB1, 1)["vout"]) if vout["value"] == Decimal("14.99998")) #Create a child tx spending AB1 and C inputs = [] inputs.append({"txid":txAB1, "vout":nAB}) inputs.append({"txid":txC, "vout":nC}) outputs = {} outputs[self.nodes[0].getnewaddress()] = Decimal("24.9996") signed2 = self.nodes[0].signrawtransaction(self.nodes[0].createrawtransaction(inputs, outputs)) txABC2 = self.nodes[0].sendrawtransaction(signed2["hex"]) # In mempool txs from self should increase balance from change newbalance = self.nodes[0].getbalance() assert_equal(newbalance, balance - Decimal("30") + Decimal("24.9996")) balance = newbalance # Restart the node with a higher min relay fee so the parent tx is no longer in mempool # TODO: redo with eviction self.stop_node(0) self.start_node(0, extra_args=["-minrelaytxfee=0.0001"]) # Verify txs no longer in either node's mempool assert_equal(len(self.nodes[0].getrawmempool()), 0) assert_equal(len(self.nodes[1].getrawmempool()), 0) # Not in mempool txs from self should only reduce balance # inputs are still spent, but change not received newbalance = self.nodes[0].getbalance() assert_equal(newbalance, balance - Decimal("24.9996")) # Unconfirmed received funds that are not in mempool, also shouldn't show # up in unconfirmed balance unconfbalance = self.nodes[0].getunconfirmedbalance() + self.nodes[0].getbalance() assert_equal(unconfbalance, newbalance) # Also shouldn't show up in listunspent assert(not txABC2 in [utxo["txid"] for utxo in self.nodes[0].listunspent(0)]) balance = newbalance # Abandon original transaction and verify inputs are available again # including that the child tx was also abandoned self.nodes[0].abandontransaction(txAB1) newbalance = self.nodes[0].getbalance() assert_equal(newbalance, balance + Decimal("30")) balance = newbalance # Verify that even with a low min relay fee, the tx is not reaccepted from wallet on startup once abandoned self.stop_node(0) self.start_node(0, extra_args=["-minrelaytxfee=0.00001"]) assert_equal(len(self.nodes[0].getrawmempool()), 0) assert_equal(self.nodes[0].getbalance(), balance) # But if its received again then it is unabandoned # And since now in mempool, the change is available # But its child tx remains abandoned self.nodes[0].sendrawtransaction(signed["hex"]) newbalance = self.nodes[0].getbalance() assert_equal(newbalance, balance - Decimal("20") + Decimal("14.99998")) balance = newbalance # Send child tx again so its unabandoned self.nodes[0].sendrawtransaction(signed2["hex"]) newbalance = self.nodes[0].getbalance() assert_equal(newbalance, balance - Decimal("10") - Decimal("14.99998") + Decimal("24.9996")) balance = newbalance # Remove using high relay fee again self.stop_node(0) self.start_node(0, extra_args=["-minrelaytxfee=0.0001"]) assert_equal(len(self.nodes[0].getrawmempool()), 0) newbalance = self.nodes[0].getbalance() assert_equal(newbalance, balance - Decimal("24.9996")) balance = newbalance # Create a double spend of AB1 by spending again from only A's 10 output # Mine double spend from node 1 inputs =[] inputs.append({"txid":txA, "vout":nA}) outputs = {} outputs[self.nodes[1].getnewaddress()] = Decimal("9.9999") tx = self.nodes[0].createrawtransaction(inputs, outputs) signed = self.nodes[0].signrawtransaction(tx) self.nodes[1].sendrawtransaction(signed["hex"]) self.nodes[1].generate(1) connect_nodes(self.nodes[0], 1) sync_blocks(self.nodes) # Verify that B and C's 10 YSC outputs are available for spending again because AB1 is now conflicted newbalance = self.nodes[0].getbalance() assert_equal(newbalance, balance + Decimal("20")) balance = newbalance # There is currently a minor bug around this and so this test doesn't work. See Issue #7315 # Invalidate the block with the double spend and B's 10 YSC output should no longer be available # Don't think C's should either self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash()) newbalance = self.nodes[0].getbalance() #assert_equal(newbalance, balance - Decimal("10")) self.log.info("If balance has not declined after invalidateblock then out of mempool wallet tx which is no longer") self.log.info("conflicted has not resumed causing its inputs to be seen as spent. See Issue #7315") self.log.info(str(balance) + " -> " + str(newbalance) + " ?") if __name__ == '__main__': AbandonConflictTest().main()
48.628931
137
0.662442
[ "MIT" ]
youngseoka/youngseokcoin
test/functional/abandonconflict.py
7,732
Python
from django.shortcuts import render def landing_page(request): return render(request,'landing_page.html',)
23.2
48
0.758621
[ "MIT" ]
yosif88/SoftUni
python-web/petstagram/petstagram/common/views.py
116
Python
#You can either add the python package path. #sys.path.append(r'/mnt/e/GitHub_Design/Metalprot') from metalprot.search import search_selfcenter from metalprot.basic import filter import pickle import time import prody as pr ''' python /mnt/e/GitHub_Design/Metalprot/scrips/search_selfcenter/run_selfcenter_search.py ''' start_time = time.time() query_dir = '/mnt/e/DesignData/ligands/ZN_rcsb_datesplit/20211013/20211013_selfcenter/pickle_noCYS/' with open(query_dir + 'all_metal_vdm.pkl', 'rb') as f: query_all_metal = pickle.load(f) with open(query_dir + 'AAMetalPhiPsi.pkl', 'rb') as f: all_querys = pickle.load(f) with open(query_dir + 'cluster_centroid_dict.pkl', 'rb') as f: cluster_centroid_dict = pickle.load(f) print(len(all_querys)) ### run Search_struct workdir = '/mnt/e/DesignData/ligands/LigandBB/MID1sc10/' outdir = workdir + 'output_selfcenter/' target_path = workdir + '5od1_zn.pdb' win_filter = [35, 61, 65] # workdir = '/mnt/e/DesignData/ligands/LigandBB/6dwv/' # outdir = workdir + 'output_selfcenter/' # target_path = workdir + '6dwv_core.pdb' # win_filter = [] # workdir = '/mnt/e/DesignData/ligands/LigandBB/8adh/' # outdir = workdir + 'output_selfcenter/' # target_path = workdir + '1989_8adh_ZN_1.pdb' # win_filter = [] # workdir = '/mnt/e/DesignData/ligands/LigandBB/3f7u_lig/' # outdir = workdir + 'output_selfcenter/' # target_path = workdir + '3f7u1aa.pdb' # win_filter = [94, 96, 119] # workdir = '/mnt/e/DesignData/ligands/LigandBB/2afw_lig/' # outdir = workdir + 'output_selfcenter/' # target_path = workdir + '2afw_aa.pdb' # win_filter = [159, 202, 330] # workdir = '/mnt/e/DesignData/ligands/LigandBB/huong/' # outdir = workdir + 'output_selfcenter/' # target_path = workdir + 'aQ4x_aa.pdb' # win_filter = ['I-3', 'I-6', 'I-10', 'I-13', 'I-17', 'I-20', # 'J-3', 'J-6', 'J-7', 'J-10', 'J-13', 'J-14', 'J-17', 'J-20', 'J-21', # 'K-6', 'K-10', 'K-13', 'K-17', 'K-20', # 'L-3', 'L-6', 'L-7', 'L-10', 'L-13', 'L-14', 'L-17', 'L-20', 'L-21', 'L-24', # 'M-3', 'M-6', 'M-10', 'M-13', 'M-17', 'M-20', # 'N-3', 'N-6', 'N-7', 'N-10', 'N-13', 'N-14', 'N-17', 'N-20', 'N-21' # ] geometry_path = None #geometry_path = workdir + 'tetrahydral_geo.pdb' metal_metal_dist = 0.3 num_contact_vdms = [3] allowed_aa_combinations = [['H', 'H', 'H']] allowed_aa_combinations = [] _filter = filter.Search_filter(filter_abple = False, filter_phipsi = True, max_phipsi_val = 25, filter_vdm_score = False, min_vdm_score = 0, filter_vdm_count = False, min_vdm_clu_num = 20, after_search_filter_geometry = True, filter_based_geometry_structure = False, angle_tol = 15, aa_aa_tol = 0.3, aa_metal_tol = 0.2, pair_angle_range = [85, 130], pair_aa_aa_dist_range = [2.8, 4], pair_metal_aa_dist_range = None, after_search_filter_qt_clash = True, vdm_vdm_clash_dist = 2.7, vdm_bb_clash_dist = 2.2, after_search_open_site_clash = True, open_site_dist = 3.0, write_filtered_result = False, selfcenter_filter_member_phipsi=True) ss = search_selfcenter.Search_selfcenter(target_path, outdir, all_querys, cluster_centroid_dict, query_all_metal, num_contact_vdms, metal_metal_dist, win_filter, validateOriginStruct = True, search_filter= _filter, geometry_path = None, density_radius = 0.6, allowed_aa_combinations = allowed_aa_combinations, output_wincomb_overlap=True) #ss.run_selfcenter_search() search_selfcenter.run_search_selfcenter(ss) end_time = time.time() print(end_time - start_time, "seconds")
30.555556
134
0.687552
[ "MIT" ]
lonelu/Metalprot
scrips/search_selfcenter/run_selfcenter_search.py
3,575
Python
# coding=utf-8 import logging import pytest from rasa_nlu.evaluate import ( is_token_within_entity, do_entities_overlap, merge_labels, remove_duckling_entities, remove_empty_intent_examples, get_entity_extractors, get_duckling_dimensions, known_duckling_dimensions, find_component, remove_duckling_extractors, drop_intents_below_freq, run_cv_evaluation, substitute_labels, IntentEvaluationResult, evaluate_intents, evaluate_entities) from rasa_nlu.evaluate import does_token_cross_borders from rasa_nlu.evaluate import align_entity_predictions from rasa_nlu.evaluate import determine_intersection from rasa_nlu.evaluate import determine_token_labels from rasa_nlu.config import RasaNLUModelConfig from rasa_nlu.tokenizers import Token from rasa_nlu import utils import json import os from rasa_nlu import training_data, config from tests import utilities logging.basicConfig(level="DEBUG") @pytest.fixture(scope="session") def duckling_interpreter(component_builder, tmpdir_factory): conf = RasaNLUModelConfig({"pipeline": [{"name": "ner_duckling_http"}]}) return utilities.interpreter_for( component_builder, data="./data/examples/rasa/demo-rasa.json", path=tmpdir_factory.mktemp("projects").strpath, config=conf) # Chinese Example # "对面食过敏" -> To be allergic to wheat-based food CH_wrong_segmentation = [Token("对面", 0), Token("食", 2), Token("过敏", 3)] # opposite, food, allergy CH_correct_segmentation = [Token("对", 0), Token("面食", 1), Token("过敏", 3)] # towards, wheat-based food, allergy CH_wrong_entity = { "start": 0, "end": 2, "value": "对面", "entity": "direction" } CH_correct_entity = { "start": 1, "end": 3, "value": "面食", "entity": "food_type" } # EN example # "Hey Robot, I would like to eat pizza near Alexanderplatz tonight" EN_indices = [0, 4, 9, 11, 13, 19, 24, 27, 31, 37, 42, 57] EN_tokens = ["Hey", "Robot", ",", "I", "would", "like", "to", "eat", "pizza", "near", "Alexanderplatz", "tonight"] EN_tokens = [Token(t, i) for t, i in zip(EN_tokens, EN_indices)] EN_targets = [ { "start": 31, "end": 36, "value": "pizza", "entity": "food" }, { "start": 37, "end": 56, "value": "near Alexanderplatz", "entity": "location" }, { "start": 57, "end": 64, "value": "tonight", "entity": "datetime" } ] EN_predicted = [ { "start": 4, "end": 9, "value": "Robot", "entity": "person", "extractor": "A" }, { "start": 31, "end": 36, "value": "pizza", "entity": "food", "extractor": "A" }, { "start": 42, "end": 56, "value": "Alexanderplatz", "entity": "location", "extractor": "A" }, { "start": 42, "end": 64, "value": "Alexanderplatz tonight", "entity": "movie", "extractor": "B" } ] def test_token_entity_intersection(): # included intsec = determine_intersection(CH_correct_segmentation[1], CH_correct_entity) assert intsec == len(CH_correct_segmentation[1].text) # completely outside intsec = determine_intersection(CH_correct_segmentation[2], CH_correct_entity) assert intsec == 0 # border crossing intsec = determine_intersection(CH_correct_segmentation[1], CH_wrong_entity) assert intsec == 1 def test_token_entity_boundaries(): # smaller and included assert is_token_within_entity(CH_wrong_segmentation[1], CH_correct_entity) assert not does_token_cross_borders(CH_wrong_segmentation[1], CH_correct_entity) # exact match assert is_token_within_entity(CH_correct_segmentation[1], CH_correct_entity) assert not does_token_cross_borders(CH_correct_segmentation[1], CH_correct_entity) # completely outside assert not is_token_within_entity(CH_correct_segmentation[0], CH_correct_entity) assert not does_token_cross_borders(CH_correct_segmentation[0], CH_correct_entity) # border crossing assert not is_token_within_entity(CH_wrong_segmentation[0], CH_correct_entity) assert does_token_cross_borders(CH_wrong_segmentation[0], CH_correct_entity) def test_entity_overlap(): assert do_entities_overlap([CH_correct_entity, CH_wrong_entity]) assert not do_entities_overlap(EN_targets) def test_determine_token_labels_throws_error(): with pytest.raises(ValueError): determine_token_labels(CH_correct_segmentation, [CH_correct_entity, CH_wrong_entity], ["ner_crf"]) def test_determine_token_labels_no_extractors(): determine_token_labels(CH_correct_segmentation[0], [CH_correct_entity, CH_wrong_entity], None) def test_determine_token_labels_with_extractors(): determine_token_labels(CH_correct_segmentation[0], [CH_correct_entity, CH_wrong_entity], ["A", "B"]) def test_label_merging(): aligned_predictions = [ {"target_labels": ["O", "O"], "extractor_labels": {"A": ["O", "O"]}}, {"target_labels": ["LOC", "O", "O"], "extractor_labels": {"A": ["O", "O", "O"]}} ] assert all(merge_labels(aligned_predictions) == ["O", "O", "LOC", "O", "O"]) assert all(merge_labels(aligned_predictions, "A") == ["O", "O", "O", "O", "O"]) def test_duckling_patching(): entities = [[ { "start": 37, "end": 56, "value": "near Alexanderplatz", "entity": "location", "extractor": "ner_crf" }, { "start": 57, "end": 64, "value": "tonight", "entity": "Time", "extractor": "ner_duckling_http" } ]] patched = [[ { "start": 37, "end": 56, "value": "near Alexanderplatz", "entity": "location", "extractor": "ner_crf" } ]] assert remove_duckling_entities(entities) == patched def test_drop_intents_below_freq(): td = training_data.load_data('data/examples/rasa/demo-rasa.json') clean_td = drop_intents_below_freq(td, 0) assert clean_td.intents == {'affirm', 'goodbye', 'greet', 'restaurant_search'} clean_td = drop_intents_below_freq(td, 10) assert clean_td.intents == {'affirm', 'restaurant_search'} def test_run_cv_evaluation(): td = training_data.load_data('data/examples/rasa/demo-rasa.json') nlu_config = config.load("sample_configs/config_spacy.yml") n_folds = 2 results, entity_results = run_cv_evaluation(td, n_folds, nlu_config) assert len(results.train["Accuracy"]) == n_folds assert len(results.train["Precision"]) == n_folds assert len(results.train["F1-score"]) == n_folds assert len(results.test["Accuracy"]) == n_folds assert len(results.test["Precision"]) == n_folds assert len(results.test["F1-score"]) == n_folds assert len(entity_results.train['ner_crf']["Accuracy"]) == n_folds assert len(entity_results.train['ner_crf']["Precision"]) == n_folds assert len(entity_results.train['ner_crf']["F1-score"]) == n_folds assert len(entity_results.test['ner_crf']["Accuracy"]) == n_folds assert len(entity_results.test['ner_crf']["Precision"]) == n_folds assert len(entity_results.test['ner_crf']["F1-score"]) == n_folds def test_intent_evaluation_report(tmpdir_factory): path = tmpdir_factory.mktemp("evaluation").strpath report_folder = os.path.join(path, "reports") report_filename = os.path.join(report_folder, "intent_report.json") utils.create_dir(report_folder) intent_results = [ IntentEvaluationResult("", "restaurant_search", "I am hungry", 0.12345), IntentEvaluationResult("greet", "greet", "hello", 0.98765)] result = evaluate_intents(intent_results, report_folder, successes_filename=None, errors_filename=None, confmat_filename=None, intent_hist_filename=None) report = json.loads(utils.read_file(report_filename)) greet_results = {"precision": 1.0, "recall": 1.0, "f1-score": 1.0, "support": 1} prediction = {'text': 'hello', 'intent': 'greet', 'predicted': 'greet', 'confidence': 0.98765} assert len(report.keys()) == 4 assert report["greet"] == greet_results assert result["predictions"][0] == prediction def test_entity_evaluation_report(tmpdir_factory): path = tmpdir_factory.mktemp("evaluation").strpath report_folder = os.path.join(path, "reports") mock_extractors = ["A", "B"] report_filename_a = os.path.join(report_folder, "A_report.json") report_filename_b = os.path.join(report_folder, "B_report.json") utils.create_dir(report_folder) result = evaluate_entities([EN_targets], [EN_predicted], [EN_tokens], mock_extractors, report_folder) report_a = json.loads(utils.read_file(report_filename_a)) report_b = json.loads(utils.read_file(report_filename_b)) assert len(report_a) == 8 assert report_a["datetime"]["support"] == 1.0 assert report_b["macro avg"]["recall"] == 0.2 assert result["A"]["accuracy"] == 0.75 def test_empty_intent_removal(): intent_results = [ IntentEvaluationResult("", "restaurant_search", "I am hungry", 0.12345), IntentEvaluationResult("greet", "greet", "hello", 0.98765) ] intent_results = remove_empty_intent_examples(intent_results) assert len(intent_results) == 1 assert intent_results[0].target == "greet" assert intent_results[0].prediction == "greet" assert intent_results[0].confidence == 0.98765 assert intent_results[0].message == "hello" def test_evaluate_entities_cv_empty_tokens(): mock_extractors = ["A", "B"] result = align_entity_predictions(EN_targets, EN_predicted, [], mock_extractors) assert result == { "target_labels": [], "extractor_labels": { "A": [], "B": [] } }, "Wrong entity prediction alignment" def test_evaluate_entities_cv(): mock_extractors = ["A", "B"] result = align_entity_predictions(EN_targets, EN_predicted, EN_tokens, mock_extractors) assert result == { "target_labels": ["O", "O", "O", "O", "O", "O", "O", "O", "food", "location", "location", "datetime"], "extractor_labels": { "A": ["O", "person", "O", "O", "O", "O", "O", "O", "food", "O", "location", "O"], "B": ["O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "movie", "movie"] } }, "Wrong entity prediction alignment" def test_get_entity_extractors(duckling_interpreter): assert get_entity_extractors(duckling_interpreter) == {"ner_duckling_http"} def test_get_duckling_dimensions(duckling_interpreter): dims = get_duckling_dimensions(duckling_interpreter, "ner_duckling_http") assert set(dims) == known_duckling_dimensions def test_find_component(duckling_interpreter): name = find_component(duckling_interpreter, "ner_duckling_http").name assert name == "ner_duckling_http" def test_remove_duckling_extractors(duckling_interpreter): target = set([]) patched = remove_duckling_extractors({"ner_duckling_http"}) assert patched == target def test_label_replacement(): original_labels = ["O", "location"] target_labels = ["no_entity", "location"] assert substitute_labels(original_labels, "O", "no_entity") == target_labels
31.982368
80
0.595259
[ "Apache-2.0" ]
careless25/rasa_nlu
tests/base/test_evaluation.py
12,735
Python
# coding: utf-8 """ OpenAPI Petstore This spec is mainly for testing Petstore server and contains fake endpoints, models. Please do not use this for any other purpose. Special characters: \" \\ # noqa: E501 The version of the OpenAPI document: 1.0.0 Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import sys import unittest import petstore_api try: from petstore_api.model import child_all_of except ImportError: child_all_of = sys.modules[ 'petstore_api.model.child_all_of'] try: from petstore_api.model import parent except ImportError: parent = sys.modules[ 'petstore_api.model.parent'] from petstore_api.model.child import Child class TestChild(unittest.TestCase): """Child unit test stubs""" def setUp(self): pass def tearDown(self): pass def testChild(self): """Test Child This will fail because additional_properties_type is None in ChildAllOf and it must be defined as any type to allow in the property radio_waves which is not defined in ChildAllOf, it is defined in Grandparent """ # make an instance of Child, a composed schema model radio_waves = True tele_vision = True inter_net = True with self.assertRaises(petstore_api.exceptions.ApiValueError): child = Child( radio_waves=radio_waves, tele_vision=tele_vision, inter_net=inter_net ) if __name__ == '__main__': unittest.main()
27.155172
174
0.674921
[ "Apache-2.0" ]
0x0c/openapi-generator
samples/client/petstore/python_disallowAdditionalPropertiesIfNotPresent/test/test_child.py
1,575
Python
# Copyright 2020 MONAI Consortium # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from typing import TYPE_CHECKING, Dict, Optional import torch from monai.utils import exact_version, optional_import Events, _ = optional_import("ignite.engine", "0.3.0", exact_version, "Events") Checkpoint, _ = optional_import("ignite.handlers", "0.3.0", exact_version, "Checkpoint") if TYPE_CHECKING: from ignite.engine import Engine else: Engine, _ = optional_import("ignite.engine", "0.3.0", exact_version, "Engine") class CheckpointLoader: """ CheckpointLoader acts as an Ignite handler to load checkpoint data from file. It can load variables for network, optimizer, lr_scheduler, etc. If saving checkpoint after `torch.nn.DataParallel`, need to save `model.module` instead as PyTorch recommended and then use this loader to load the model. Args: load_path: the file path of checkpoint, it should be a PyTorch `pth` file. load_dict: target objects that load checkpoint to. examples:: {'network': net, 'optimizer': optimizer, 'lr_scheduler': lr_scheduler} name: identifier of logging.logger to use, if None, defaulting to ``engine.logger``. map_location: when loading the module for distributed training/evaluation, need to provide an appropriate map_location argument to prevent a process to step into others’ devices. If map_location is missing, torch.load will first load the module to CPU and then copy each parameter to where it was saved, which would result in all processes on the same machine using the same set of devices. """ def __init__( self, load_path: str, load_dict: Dict, name: Optional[str] = None, map_location: Optional[Dict] = None, ) -> None: assert load_path is not None, "must provide clear path to load checkpoint." self.load_path = load_path assert load_dict is not None and len(load_dict) > 0, "must provide target objects to load." self.logger = logging.getLogger(name) for k, v in load_dict.items(): if hasattr(v, "module"): load_dict[k] = v.module self.load_dict = load_dict self._name = name self.map_location = map_location def attach(self, engine: Engine) -> None: """ Args: engine: Ignite Engine, it can be a trainer, validator or evaluator. """ if self._name is None: self.logger = engine.logger engine.add_event_handler(Events.STARTED, self) def __call__(self, engine: Engine) -> None: """ Args: engine: Ignite Engine, it can be a trainer, validator or evaluator. """ checkpoint = torch.load(self.load_path, map_location=self.map_location) if len(self.load_dict) == 1: key = list(self.load_dict.keys())[0] if not (key in checkpoint): checkpoint = {key: checkpoint} Checkpoint.load_objects(to_load=self.load_dict, checkpoint=checkpoint) self.logger.info(f"Restored all variables from {self.load_path}")
42.72093
111
0.679096
[ "Apache-2.0" ]
BRAINSia/MONAI
monai/handlers/checkpoint_loader.py
3,676
Python
#pip install flask-bcrypt from flask_bcrypt import Bcrypt # Create the Hasher bcrypt = Bcrypt() hashed_pass = bcrypt.generate_password_hash('somethingSuperSecret') print(hashed_pass) wrong_check = bcrypt.check_password_hash(hashed_pass, 'wrongpass') print(wrong_check) right_check = bcrypt.check_password_hash(hashed_pass, 'somethingSuperSecret') print(right_check)
24.666667
77
0.827027
[ "Apache-2.0" ]
saidulislam/flask-bootcamp-1
07-User-Authentication/00-Password-Hashing/Using-Bcrypt.py
370
Python
_k = [0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2] _h = [0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19] def rotr(x, y): return ((x >> y) | (x << (32 - y))) & 0xFFFFFFFF def sha256(b4x16): w = [0] * 64 print(b4x16) for i in range(16): w[i] = b4x16[i] for i in range(16, 64): wi_15 = w[i - 15] s0 = rotr(wi_15, 7) ^ rotr(wi_15, 18) ^ (wi_15 >> 3) wi_2 = w[i - 2] s1 = rotr(wi_2, 17) ^ rotr(wi_2, 19) ^ (wi_2 >> 10) wi_16 = w[i - 16] wi_7 = w[i - 7] w[i] = (wi_16 + s0 + wi_7 + s1) & 0xFFFFFFFF a, b, c, d, e, f, g, h = _h for i in range(64): s0 = rotr(a, 2) ^ rotr(a, 13) ^ rotr(a, 22) maj = (a & b) ^ (a & c) ^ (b & c) t2 = s0 + maj s1 = rotr(e, 6) ^ rotr(e, 11) ^ rotr(e, 25) ch = (e & f) ^ ((~e) & g) t1 = h + s1 + ch + _k[i] + w[i] h = g g = f f = e e = (d + t1) & 0xFFFFFFFF d = c c = b b = a a = (t1 + t2) & 0xFFFFFFFF _lst = [a, b, c, d, e, f, g, h] for i in range(8): _h[i] = (_h[i] + _lst[i]) & 0xFFFFFFFF for i in _h: print('{:08x}'.format(i)) print("===========") return _h lst = [0x61616161] * 16 sha256(lst) lst = [0] * 16 lst[0] = 0x80000000 lst[15] = 0x00000200 rv = sha256(lst) for i in rv: print('R {:08x}'.format(i))
28.974359
60
0.553097
[ "MIT" ]
ryos36/polyphony-tutorial
sha2/py_sha256.py
2,260
Python
#!/usr/bin/env python3 # =============================================================================== # NAME: XmlSerializeParser.py # # DESCRIPTION: This class parses the XML serializable types files. # # USAGE: # # AUTHOR: reder # EMAIL: [email protected] # DATE CREATED : June 4, 2013 # # Copyright 2013, California Institute of Technology. # ALL RIGHTS RESERVED. U.S. Government Sponsorship acknowledged. # =============================================================================== # # Python standard modules # import hashlib import logging import os import sys from lxml import etree from fprime_ac.utils import ConfigManager from fprime_ac.utils.buildroot import ( BuildRootCollisionException, BuildRootMissingException, locate_build_root, ) from fprime_ac.utils.exceptions import FprimeXmlException # # Python extention modules and custom interfaces # # # Universal globals used within module go here. # (DO NOT USE MANY!) # # Global logger init. below. PRINT = logging.getLogger("output") DEBUG = logging.getLogger("debug") format_dictionary = { "U8": "%u", "I8": "%d", "U16": "%u", "I16": "%d", "U32": "%u", "I32": "%d", "U64": "%lu", "I64": "%ld", "F32": "%g", "F64": "%g", "bool": "%s", "string": "%s", "ENUM": "%d", } # class XmlSerializeParser: """ An XML parser class that uses lxml.etree to consume an XML serializable type documents. The class is instanced with an XML file name. """ def __init__(self, xml_file=None): """ Given a well formed XML file (xml_file), read it and turn it into a big string. """ self.__root = None self.__name = "" self.__namespace = None # List of C++ include files for serializable *.hpp file self.__include_header_files = [] # List of XML serializable description dependencies self.__includes = [] # List of XML enum type files self.__include_enum_files = [] # List of XML array type files self.__include_array_files = [] # Comment block of text for serializable self.__comment = "" # List of (name, type, comment) tuples self.__members = [] # Type ID for serialized type self.__type_id = None # if os.path.isfile(xml_file) == False: stri = "ERROR: Could not find specified XML file %s." % xml_file raise OSError(stri) fd = open(xml_file) xml_file = os.path.basename(xml_file) # xml_file = os.path.basename(xml_file) self.__xml_filename = xml_file self.__config = ConfigManager.ConfigManager.getInstance() # xml_parser = etree.XMLParser(remove_comments=True) element_tree = etree.parse(fd, parser=xml_parser) # Validate new imports using their root tag as a key to find what schema to use rng_file = self.__config.get( "schema", element_tree.getroot().tag.lower() ).lstrip("/") try: rng_file = locate_build_root(rng_file) except (BuildRootMissingException, BuildRootCollisionException) as bre: stri = "ERROR: Could not find specified RNG file {}. {}".format( rng_file, str(bre), ) raise OSError(stri) file_handler = open(rng_file) relax_parsed = etree.parse(file_handler) file_handler.close() relax_compiled = etree.RelaxNG(relax_parsed) # 2/3 conversion if not relax_compiled.validate(element_tree): msg = "XML file {} is not valid according to schema {}.".format( xml_file, rng_file ) raise FprimeXmlException(msg) serializable = element_tree.getroot() if serializable.tag != "serializable": PRINT.info("%s is not a serializable definition file" % xml_file) sys.exit(-1) print("Parsing Serializable %s" % serializable.attrib["name"]) self.__name = serializable.attrib["name"] if "namespace" in serializable.attrib: self.__namespace = serializable.attrib["namespace"] else: self.__namespace = None if "typeid" in serializable.attrib: self.__type_id = serializable.attrib["typeid"] else: self.__type_id = None for serializable_tag in serializable: if serializable_tag.tag == "comment": self.__comment = serializable_tag.text.strip() elif serializable_tag.tag == "include_header": self.__include_header_files.append(serializable_tag.text) elif serializable_tag.tag == "import_serializable_type": self.__includes.append(serializable_tag.text) elif serializable_tag.tag == "import_enum_type": self.__include_enum_files.append(serializable_tag.text) elif serializable_tag.tag == "import_array_type": self.__include_array_files.append(serializable_tag.text) elif serializable_tag.tag == "members": for member in serializable_tag: if member.tag != "member": PRINT.info( "%s: Invalid tag %s in serializable member definition" % (xml_file, member.tag) ) sys.exit(-1) n = member.attrib["name"] t = member.attrib["type"] if "size" in list(member.attrib.keys()): if t == "ENUM": PRINT.info( "%s: Member %s: arrays of enums not supported yet!" % (xml_file, n) ) sys.exit(-1) s = member.attrib["size"] if not s.isdigit(): PRINT.info( "{}: Member {}: size must be a number".format( xml_file, n ) ) sys.exit(-1) else: s = None if "format" in list(member.attrib.keys()): f = member.attrib["format"] else: if t in list(format_dictionary.keys()): f = format_dictionary[t] else: # Must be included type, which will use toString method f = "%s" if t == "string": if s is None: PRINT.info( "%s: member %s string must specify size tag" % (xml_file, member.tag) ) sys.exit(-1) if "comment" in list(member.attrib.keys()): c = member.attrib["comment"] else: c = None for member_tag in member: if member_tag.tag == "enum" and t == "ENUM": en = member_tag.attrib["name"] enum_members = [] for mem in member_tag: mn = mem.attrib["name"] if "value" in list(mem.attrib.keys()): v = mem.attrib["value"] else: v = None if "comment" in list(mem.attrib.keys()): mc = mem.attrib["comment"].strip() else: mc = None enum_members.append((mn, v, mc)) t = ((t, en), enum_members) else: PRINT.info( "%s: Invalid member tag %s in serializable member %s" % (xml_file, member_tag.tag, n) ) sys.exit(-1) self.__members.append((n, t, s, f, c)) # # Generate a type id here using SHA256 algorithm and XML stringified file. # if not "typeid" in serializable.attrib: s = etree.tostring(element_tree.getroot()) h = hashlib.sha256(s) n = h.hexdigest() self.__type_id = "0x" + n.upper()[-8:] def get_typeid(self): """ Return a generated type ID from contents of XML file. """ return self.__type_id def get_xml_filename(self): """ Return the original XML filename parsed. """ return self.__xml_filename def get_name(self): return self.__name def get_namespace(self): return self.__namespace def get_include_header_files(self): """ Return a list of all imported Port type XML files. """ return self.__include_header_files def get_includes(self): """ Returns a list of all imported XML serializable files. """ return self.__includes def get_include_enums(self): """ Returns a list of all imported XML enum files. """ return self.__include_enum_files def get_include_arrays(self): """ Returns a list of all imported XML array files. """ return self.__include_array_files def get_comment(self): """ Return text block string of comment for serializable class. """ return self.__comment def get_members(self): """ Returns a list of member (name, type, optional size, optional format, optional comment) needed. """ return self.__members
34.324324
103
0.500197
[ "Apache-2.0" ]
1Blackdiamondsc/fprime
Autocoders/Python/src/fprime_ac/parsers/XmlSerializeParser.py
10,160
Python
from .core import Pool, CatboostError, get_catboost_bin_module, ARRAY_TYPES from collections import defaultdict import numpy as np _catboost = get_catboost_bin_module() _eval_metric_util = _catboost._eval_metric_util _get_roc_curve = _catboost._get_roc_curve _select_threshold = _catboost._select_threshold def create_cd( label=None, cat_features=None, weight=None, baseline=None, doc_id=None, group_id=None, subgroup_id=None, timestamp=None, auxiliary_columns=None, feature_names=None, output_path='train.cd' ): _from_param_to_cd = { 'label': 'Label', 'weight': 'Weight', 'baseline': 'Baseline', 'doc_id': 'DocId', 'group_id': 'GroupId', 'subgroup_id': 'SubgroupId', 'timestamp': 'Timestamp' } _column_description = defaultdict(lambda: ['Num', '']) for key, value in locals().copy().items(): if not (key.startswith('_') or value is None): if key in ('cat_features', 'auxiliary_columns'): if isinstance(value, int): value = [value] for index in value: if not isinstance(index, int): raise CatboostError('Unsupported index type. Expected int, got {}'.format(type(index))) if index in _column_description: raise CatboostError('The index {} occurs more than once'.format(index)) _column_description[index] = ['Categ', ''] if key == 'cat_features' else ['Auxiliary', ''] elif key not in ('feature_names', 'output_path'): if not isinstance(value, int): raise CatboostError('Unsupported index type. Expected int, got {}'.format(type(value))) if value in _column_description: raise CatboostError('The index {} occurs more than once'.format(value)) _column_description[value] = [_from_param_to_cd[key], ''] if feature_names is not None: for feature_index, name in feature_names.items(): real_feature_index = feature_index for column_index, (title, _) in sorted(_column_description.items()): if column_index > real_feature_index: break if title not in ('Num', 'Categ'): real_feature_index += 1 _column_description[real_feature_index][1] = name with open(output_path, 'w') as f: for index, (title, name) in sorted(_column_description.items()): f.write('{}\t{}\t{}\n'.format(index, title, name)) def eval_metric(label, approx, metric, weight=None, group_id=None, thread_count=-1): """ Evaluate metrics with raw approxes and labels. Parameters ---------- label : list or numpy.arrays or pandas.DataFrame or pandas.Series Object labels. approx : list or numpy.arrays or pandas.DataFrame or pandas.Series Object approxes. metrics : list of strings List of eval metrics. weight : list or numpy.array or pandas.DataFrame or pandas.Series, optional (default=None) Object weights. group_id : list or numpy.array or pandas.DataFrame or pandas.Series, optional (default=None) Object group ids. thread_count : int, optional (default=-1) Number of threads to work with. If -1, then the number of threads is set to the number of cores. Returns ------- metric results : list with metric values. """ if len(approx) == 0: approx = [[]] if not isinstance(approx[0], ARRAY_TYPES): approx = [approx] return _eval_metric_util(label, approx, metric, weight, group_id, thread_count) def get_gpu_device_count(): return get_catboost_bin_module()._get_gpu_device_count() def reset_trace_backend(filename): get_catboost_bin_module()._reset_trace_backend(filename) def get_roc_curve(model, data, thread_count=-1): """ Build points of ROC curve. Parameters ---------- model : catboost.CatBoost The trained model. data : catboost.Pool or list of catboost.Pool A set of samples to build ROC curve with. thread_count : int (default=-1) Number of threads to work with. If -1, then the number of threads is set to the number of cores. Returns ------- curve points : tuple of three arrays (fpr, tpr, thresholds) """ if type(data) == Pool: data = [data] if not isinstance(data, list): raise CatboostError('data must be a catboost.Pool or list of pools.') for pool in data: if not isinstance(pool, Pool): raise CatboostError('one of data pools is not catboost.Pool') return _get_roc_curve(model._object, data, thread_count) def get_fpr_curve(model=None, data=None, curve=None, thread_count=-1): """ Build points of FPR curve. Parameters ---------- model : catboost.CatBoost The trained model. data : catboost.Pool or list of catboost.Pool A set of samples to build ROC curve with. curve : tuple of three arrays (fpr, tpr, thresholds) ROC curve points in format of get_roc_curve returned value. If set, data parameter must not be set. thread_count : int (default=-1) Number of threads to work with. If -1, then the number of threads is set to the number of cores. Returns ------- curve points : tuple of two arrays (thresholds, fpr) """ if curve is not None: if data is not None: raise CatboostError('Only one of the parameters data and curve should be set.') if not (isinstance(curve, list) or isinstance(curve, tuple)) or len(curve) != 3: raise CatboostError('curve must be list or tuple of three arrays (fpr, tpr, thresholds).') fpr, thresholds = curve[0][:], curve[2][:] else: if model is None or data is None: raise CatboostError('model and data parameters should be set when curve parameter is None.') fpr, _, thresholds = get_roc_curve(model, data, thread_count) return thresholds, fpr def get_fnr_curve(model=None, data=None, curve=None, thread_count=-1): """ Build points of FNR curve. Parameters ---------- model : catboost.CatBoost The trained model. data : catboost.Pool or list of catboost.Pool A set of samples to build ROC curve with. curve : tuple of three arrays (fpr, tpr, thresholds) ROC curve points in format of get_roc_curve returned value. If set, data parameter must not be set. thread_count : int (default=-1) Number of threads to work with. If -1, then the number of threads is set to the number of cores. Returns ------- curve points : tuple of two arrays (thresholds, fnr) """ if curve is not None: if data is not None: raise CatboostError('Only one of the parameters data and curve should be set.') if not (isinstance(curve, list) or isinstance(curve, tuple)) or len(curve) != 3: raise CatboostError('curve must be list or tuple of three arrays (fpr, tpr, thresholds).') tpr, thresholds = curve[1], curve[2][:] else: if model is None or data is None: raise CatboostError('model and data parameters should be set when curve parameter is None.') _, tpr, thresholds = get_roc_curve(model, data, thread_count) fnr = np.array([1 - x for x in tpr]) return thresholds, fnr def select_threshold(model=None, data=None, curve=None, FPR=None, FNR=None, thread_count=-1): """ Selects a threshold for prediction. Parameters ---------- model : catboost.CatBoost The trained model. data : catboost.Pool or list of catboost.Pool Set of samples to build ROC curve with. If set, curve parameter must not be set. curve : tuple of three arrays (fpr, tpr, thresholds) ROC curve points in format of get_roc_curve returned value. If set, data parameter must not be set. FPR : desired false-positive rate FNR : desired false-negative rate (only one of FPR and FNR should be chosen) thread_count : int (default=-1) Number of threads to work with. If -1, then the number of threads is set to the number of cores. Returns ------- threshold : double """ if data is not None: if curve is not None: raise CatboostError('Only one of the parameters data and curve should be set.') if model is None: raise CatboostError('model and data parameters should be set when curve parameter is None.') if type(data) == Pool: data = [data] if not isinstance(data, list): raise CatboostError('data must be a catboost.Pool or list of pools.') for pool in data: if not isinstance(pool, Pool): raise CatboostError('one of data pools is not catboost.Pool') elif curve is not None: if not (isinstance(curve, list) or isinstance(curve, tuple)) or len(curve) != 3: raise CatboostError('curve must be list or tuple of three arrays (fpr, tpr, thresholds).') else: raise CatboostError('One of the parameters data and curve should be set.') return _select_threshold(model._object, data, curve, FPR, FNR, thread_count)
35.939163
111
0.632988
[ "Apache-2.0" ]
infected-mushroom/catboost
catboost/python-package/catboost/utils.py
9,452
Python
"""Top-level package for Tinned Python.""" __author__ = """Tom Finill""" __email__ = '[email protected]' __version__ = '0.1.0'
21.666667
42
0.684615
[ "MIT" ]
tmfnll/tinned_python
tinned_python/__init__.py
130
Python
""" Example code that implements a simple Neural Net predictor for z_mode, and Gaussian centered at z_mode with base_width read in fromfile and pdf width set to base_width*(1+zmode). """ import numpy as np # from numpy import inf import sklearn.neural_network as sknn from sklearn.preprocessing import StandardScaler from scipy.stats import norm from rail.estimation.estimator import Estimator as BaseEstimation def make_color_data(data_dict): """ make a dataset consisting of the i-band mag and the five colors Returns: -------- input_data: (nd-array) array of imag and 5 colors """ input_data = data_dict['mag_i_lsst'] bands = ['u', 'g', 'r', 'i', 'z', 'y'] # make colors and append to input data for i in range(5): # replace the non-detect 99s with 28.0 just arbitrarily for now band1 = data_dict[f'mag_{bands[i]}_lsst'] # band1err = data_dict[f'mag_err_{bands[i]}_lsst'] band2 = data_dict[f'mag_{bands[i+1]}_lsst'] # band2err = data_dict[f'mag_err_{bands[i+1]}_lsst'] # for j,xx in enumerate(band1): # if np.isclose(xx,99.,atol=.01): # band1[j] = band1err[j] # band1err[j] = 1.0 # for j,xx in enumerate(band2): # if np.isclose(xx,99.,atol=0.01): # band2[j] = band2err[j] # band2err[j] = 1.0 input_data = np.vstack((input_data, band1-band2)) return input_data.T def regularize_data(data): scaler = StandardScaler() scaler.fit(data) regularized_data = scaler.transform(data) return regularized_data class simpleNN(BaseEstimation): """ Subclass to implement a simple point estimate Neural Net photoz rather than actually predict PDF, for now just predict point zb and then put an error of width*(1+zb). We'll do a "real" NN photo-z later. """ def __init__(self, base_config, config_dict): """ Parameters: ----------- run_dict: dict dictionary of all variables read in from the run_params values in the yaml file """ super().__init__(base_config=base_config, config_dict=config_dict) inputs = self.config_dict['run_params'] self.width = inputs['width'] self.zmin = inputs['zmin'] self.zmax = inputs['zmax'] self.nzbins = inputs['nzbins'] np.random.seed(71) def inform(self): """ train the NN model """ speczs = self.training_data['redshift'] print("stacking some data...") color_data = make_color_data(self.training_data) input_data = regularize_data(color_data) simplenn = sknn.MLPRegressor(hidden_layer_sizes=(12, 12), activation='tanh', solver='lbfgs') simplenn.fit(input_data, speczs) self.model = simplenn def estimate(self, test_data): color_data = make_color_data(test_data) input_data = regularize_data(color_data) zmode = np.round(self.model.predict(input_data), 3) pdfs = [] widths = self.width * (1.0+zmode) self.zgrid = np.linspace(self.zmin, self.zmax, self.nzbins) for i, zb in enumerate(zmode): pdfs.append(norm.pdf(self.zgrid, zb, widths[i])) pz_dict = {'zmode': zmode, 'pz_pdf': pdfs} return pz_dict
33.94
74
0.61756
[ "MIT" ]
pwhatfield/RAIL
rail/estimation/algos/sklearn_nn.py
3,394
Python
import os PROJECT_PATH = os.path.abspath(os.path.dirname(os.path.dirname(__file__))) SOURCE_DIR_PATH = os.path.join(PROJECT_PATH, 'doc', 'source', 'markdown_files')
41.25
79
0.769697
[ "MIT" ]
williamfzc/md2doc
md2doc/utils/static.py
165
Python
# problem 37 # Project Euler __author__ = 'Libao Jin' __date__ = 'July 17, 2015' def rotateDigits(number): string = str(number) rotatedString = string[::-1] rotatedNumber = int(rotatedString) return rotatedNumber def isSymmetrical(number): rotatedNumber = rotateDigits(number) if rotatedNumber == number: return True else: return False def toBinary(number): string = bin(number)[2:] bNumber = int(string) return bNumber def isPalindromic(number): if isSymmetrical(number): binaryNumber = toBinary(number) if isSymmetrical(binaryNumber): return True return False def doubleBasePalindromes(UPPER_BOUND): number = 1 DBP = [] while number < UPPER_BOUND: if isPalindromic(number): DBP.append(number) number += 1 pureDBP = DBP.copy() sumDBP = sum(DBP) for i,e in enumerate(DBP): DBP[i] = (e, toBinary(e)) return (sumDBP, pureDBP, DBP) def solution(): UPPER_BOUND = 1000000 DBP_Info = doubleBasePalindromes(UPPER_BOUND) print(DBP_Info) solution()
19.057692
46
0.726539
[ "MIT" ]
imthomasking/MATLAB-files
Python/Project.Euler/Answers.Python/36.py
991
Python
""" Django settings for testapp project. Generated by 'django-admin startproject' using Django 1.10.6. For more information on this file, see https://docs.djangoproject.com/en/1.10/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.10/ref/settings/ """ import os import sys # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) SITE_PATH = os.path.abspath(os.path.dirname(__file__)) MAP_WIDGETS_PATH = os.path.normpath(os.path.join(SITE_PATH, '..', '..', '..')) if MAP_WIDGETS_PATH not in sys.path: sys.path.insert(0, MAP_WIDGETS_PATH) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.10/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'o6b2c!r921-+^h7jlm&4x#sn53qwfif+@8(!4b*csitx+69b=5' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ["*"] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.gis', 'mapwidgets', 'widgets' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'testapp.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'testapp.wsgi.application' # Database # https://docs.djangoproject.com/en/1.10/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.contrib.gis.db.backends.postgis', 'NAME': 'mapwidget_db', 'USER': 'mapwidgetdbu', 'PASSWORD': 'mapwidgetdbu', 'HOST': 'postgres', 'PORT': '5432', } } if 'TRAVIS' in os.environ: DATABASES = { 'default': { 'ENGINE': 'django.contrib.gis.db.backends.postgis', 'NAME': 'travisci', 'USER': 'postgres', 'PASSWORD': '', 'HOST': 'localhost', 'PORT': '', } } # Password validation # https://docs.djangoproject.com/en/1.10/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.10/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.10/howto/static-files/ STATIC_ROOT = os.path.join(BASE_DIR, 'assets/') STATIC_URL = '/static/' MEDIA_ROOT = os.path.join(BASE_DIR, 'media/') MEDIA_URL = '/uploads/' STATICFILES_DIRS = [ os.path.join(BASE_DIR, "static"), ] SITE_DOMAIN = 'django' TESTING = sys.argv[1:2] == ['test'] GOOGLE_MAP_API_KEY = os.environ.get('GOOGLE_MAP_API_KEY') try: from tests.testapp.testapp.settings_local import * except: pass
25.375758
91
0.666826
[ "MIT" ]
felocru/django-map-widgets
tests/testapp/testapp/settings.py
4,187
Python
########################################################################## # # Copyright (c) 2017, Image Engine Design Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # * Neither the name of Image Engine Design nor the names of any # other contributors to this software may be used to endorse or # promote products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ########################################################################## import random import unittest import imath import IECore import IECoreScene class MeshAlgoWindingTest( unittest.TestCase ) : def makeSingleTriangleMesh( self ): verticesPerFace = IECore.IntVectorData( [ 3 ] ) vertexIds = IECore.IntVectorData( [ 0, 1, 2 ] ) p = IECore.V3fVectorData( [ imath.V3f( 0, 0, 0 ), imath.V3f( 1, 0, 0 ), imath.V3f( 0, 1, 0 ) ] ) uv = IECore.V2fVectorData( [ imath.V2f( 0, 0 ), imath.V2f( 1, 0 ), imath.V2f( 0, 1 ) ] ) mesh = IECoreScene.MeshPrimitive( verticesPerFace, vertexIds, "linear", p ) mesh["uv"] = IECoreScene.PrimitiveVariable( IECoreScene.PrimitiveVariable.Interpolation.FaceVarying, uv ) mesh["foo"] = IECoreScene.PrimitiveVariable( IECoreScene.PrimitiveVariable.Interpolation.FaceVarying, IECore.V2fVectorData( [ imath.V2f( 0, 0 ), imath.V2f( 0, 1 ), imath.V2f( 1, 0 ) ] ) ) prefData = IECore.V3fVectorData( [ imath.V3f( 0, 0, 0 ), imath.V3f( 0, -1, 0 ), imath.V3f( 1, 0, 0 ) ] ) mesh["Pref"] = IECoreScene.PrimitiveVariable( IECoreScene.PrimitiveVariable.Interpolation.Vertex, prefData ) return mesh def testSingleTriangle( self ) : mesh = self.makeSingleTriangleMesh() mesh.blindData()["test"] = IECore.IntData( 10 ) meshReversed = mesh.copy() IECoreScene.MeshAlgo.reverseWinding( meshReversed ) # Meshes should be identical self.assertEqual( meshReversed.interpolation, mesh.interpolation ) for interpolation in IECoreScene.PrimitiveVariable.Interpolation.values.values() : self.assertEqual( meshReversed.variableSize( interpolation ), mesh.variableSize( interpolation ) ) self.assertEqual( mesh.keys(), meshReversed.keys() ) self.assertEqual( mesh["P"], meshReversed["P"] ) self.assertEqual( mesh["Pref"], meshReversed["Pref"] ) self.assertEqual( mesh.blindData(), meshReversed.blindData() ) # Except for vertex ids, and facevarying data self.assertEqual( list( meshReversed.vertexIds ), list( reversed( mesh.vertexIds ) ) ) self.assertEqual( list( meshReversed["uv"].data ), list( reversed( mesh["uv"].data ) ) ) def testPlane( self ) : mesh = IECoreScene.MeshPrimitive.createPlane( imath.Box2f( imath.V2f( -1 ), imath.V2f( 1 ) ), imath.V2i( 10 ) ) IECoreScene.TriangulateOp()( input = mesh, copyInput = False ) meshReversed = mesh.copy() IECoreScene.MeshAlgo.reverseWinding( meshReversed ) evaluator = IECoreScene.MeshPrimitiveEvaluator( mesh ) evaluatorReversed = IECoreScene.MeshPrimitiveEvaluator( meshReversed ) result = evaluator.createResult() resultReversed = evaluatorReversed.createResult() for i in range( 0, 1000 ) : p = imath.V3f( random.uniform( -1.0, 1.0 ), random.uniform( -1.0, 1.0 ), 0 ) evaluator.closestPoint( p, result ) evaluatorReversed.closestPoint( p, resultReversed ) self.assertEqual( resultReversed.normal(), -result.normal() ) reversedUV = resultReversed.vec2PrimVar( meshReversed["uv"] ) uv = result.vec2PrimVar( mesh["uv"] ) self.assertAlmostEqual( reversedUV[0], uv[0], delta = 0.0001 ) self.assertAlmostEqual( reversedUV[1], uv[1], delta = 0.0001 ) def testRoundTrip( self ) : mesh = IECoreScene.MeshPrimitive.createPlane( imath.Box2f( imath.V2f( -1 ), imath.V2f( 1 ) ), imath.V2i( 10 ) ) meshReversed = mesh.copy() IECoreScene.MeshAlgo.reverseWinding( meshReversed ) meshReversedAgain = meshReversed.copy() IECoreScene.MeshAlgo.reverseWinding( meshReversedAgain ) self.assertEqual( mesh, meshReversedAgain ) def testUVIndices( self ) : verticesPerFace = IECore.IntVectorData( [ 3 ] ) vertexIds = IECore.IntVectorData( [ 0, 1, 2 ] ) p = IECore.V3fVectorData( [ imath.V3f( 0, 0, 0 ), imath.V3f( 1, 0, 0 ), imath.V3f( 0, 1, 0 ) ] ) uv = IECore.V2fVectorData( [ imath.V2f( 0, 0 ), imath.V2f( 1, 0 ), imath.V2f( 0, 1 ) ] ) uvIndices = IECore.IntVectorData( [ 0, 1, 2 ] ) mesh = IECoreScene.MeshPrimitive( verticesPerFace, vertexIds, "linear", p ) mesh["uv"] = IECoreScene.PrimitiveVariable( IECoreScene.PrimitiveVariable.Interpolation.FaceVarying, uv, uvIndices ) meshReversed = mesh.copy() IECoreScene.MeshAlgo.reverseWinding( meshReversed ) # Meshes should be identical self.assertEqual( meshReversed.interpolation, mesh.interpolation ) for interpolation in IECoreScene.PrimitiveVariable.Interpolation.values.values() : self.assertEqual( meshReversed.variableSize( interpolation ), mesh.variableSize( interpolation ) ) self.assertEqual( mesh.keys(), meshReversed.keys() ) self.assertEqual( mesh["P"], meshReversed["P"] ) # UV indices should change, but UV data doesn't need to self.assertEqual( meshReversed["uv"].data, mesh["uv"].data ) self.assertEqual( list( meshReversed["uv"].indices ), list( reversed( mesh["uv"].indices ) ) ) if __name__ == "__main__": unittest.main()
43.738255
189
0.709069
[ "BSD-3-Clause" ]
carlosg-ie/cortex
test/IECoreScene/MeshAlgoWindingTest.py
6,517
Python
from sqlalchemy.sql import func as fn from sqlalchemy import sql from ..translate import ( SqlTranslator, extend_base, sql_scalar, sql_agg, win_agg, win_cumul, annotate ) #from .postgresql import PostgresqlColumn, PostgresqlColumnAgg from .base import SqlColumn, SqlColumnAgg from . import _dt_generics as _dt # Data ---- class SnowflakeColumn(SqlColumn): pass class SnowflakeColumnAgg(SqlColumnAgg, SnowflakeColumn): pass # Translations ================================================================ @_dt.sql_func_last_day_in_period.register def sql_func_last_day_in_period(codata: SnowflakeColumn, col, period): return _dt.date_trunc(codata, col, period) \ + sql.text("interval '1 %s'" % period) \ - sql.text("interval '1 day'") # Scalar ---- extend_base( SnowflakeColumn, __floordiv__ = lambda _, x, y: fn.floor(x / y), __rfloordiv__ = lambda _, x, y: fn.floor(y / x), # connector has a bug with % # see: https://github.com/snowflakedb/snowflake-sqlalchemy/issues/246 __mod__ = lambda _, x, y: fn.mod(x, y), __rmod__ = lambda _, x, y: fn.mod(y, x), mod = lambda _, x, y: fn.mod(x,y), rmod = lambda _, x, y: fn.mod(y,x), # TODO: str.contains ) # Window ---- extend_base( SnowflakeColumn, all = win_agg("booland_agg"), any = win_agg("boolor_agg"), count = win_agg("count"), cumsum = annotate(win_cumul("sum"), result_type="variable"), # note that the number of decimal places Snowflake returns, and whether # the result is numeric depends on the input. mark as variable, so tests # do not check dtype # see https://community.snowflake.com/s/question/0D50Z000079hpxvSAA/numeric-calculations-truncated-to-3-decimal-places mean = annotate(win_agg("avg"), result_type="variable"), std = win_agg("stddev_samp"), sum = annotate(win_agg("sum"), result_type="variable"), var = win_agg("var_samp"), # str.contains # dt methods are more like base ) # Agg ---- extend_base( SnowflakeColumnAgg, all = sql_agg("booland_agg"), any = sql_agg("boolor_agg"), count = sql_agg("count"), std = sql_agg("stddev_samp"), var = sql_agg("var_samp"), ) translator = SqlTranslator.from_mappings( SnowflakeColumn, SnowflakeColumnAgg )
27.034884
122
0.653333
[ "MIT" ]
Techzune/siuba
siuba/sql/dialects/snowflake.py
2,325
Python
from __future__ import unicode_literals from __future__ import absolute_import if False: from typing import Type import six from smoke_tests.tools.compat import Path from smoke_tests.tools.package.base_builder import AgentImageBuilder AMAZONLINUX = "amazonlinux" UBUNTU = "ubuntu" ALL_DISTRIBUTION_NAMES = [AMAZONLINUX, UBUNTU] def get_agent_distribution_builder(distribution, python_version): # type: (six.text_type, six.text_type) -> Type[AgentImageBuilder] """ Find agent distribution docker image for smoke testing. :param distribution: distribution name on which agent package should be installed. Possible values are in the 'ALL_DISTRIBUTION_NAMES' constant. :param python_version: Version of the python interpreter in the distribution. """ distribution = distribution.lower() dockerfiles_directory_path = Path(__file__).parent / "distribution_dockerfiles" fpm_builder_dockerfile_path = dockerfiles_directory_path / "Dockerfile.fpm_package_builder" fpm_package_builder_dockerfile_content = fpm_builder_dockerfile_path.read_text() if distribution == AMAZONLINUX: class AmazonLinuxSmokeImageBuilder(AgentImageBuilder): PYTHON_VERSION = python_version COPY_AGENT_SOURCE = True IMAGE_TAG = "scalyr_agent_smoke_{0}_{1}".format( distribution, python_version ) @classmethod def get_dockerfile_content(cls): # type: () -> six.text_type dockerfile_path = dockerfiles_directory_path / "Dockerfile.amazonlinux" dockerfile_content = dockerfile_path.read_text() return dockerfile_content.format( fpm_package_builder_dockerfile=fpm_package_builder_dockerfile_content, python_version=cls.PYTHON_VERSION, ) return AmazonLinuxSmokeImageBuilder elif distribution == UBUNTU: class _UbuntuSmokeImageBuilder(AgentImageBuilder): PYTHON_VERSION = python_version COPY_AGENT_SOURCE = True IMAGE_TAG = "scalyr_agent_smoke_{0}_{1}".format( distribution, python_version ) @classmethod def get_dockerfile_content(cls): # type: () -> six.text_type dockerfile_path = dockerfiles_directory_path / "Dockerfile.ubuntu" dockerfile_content = dockerfile_path.read_text() return dockerfile_content.format( fpm_package_builder_dockerfile=fpm_package_builder_dockerfile_content, python_package_name="python" if cls.PYTHON_VERSION == "python2" else cls.PYTHON_VERSION, python_version=cls.PYTHON_VERSION, ) return _UbuntuSmokeImageBuilder else: raise IOError("Can not find such distribution: {0}".format(distribution))
35.566265
95
0.679878
[ "Apache-2.0" ]
zak905/scalyr-agent-2
smoke_tests/tools/package/__init__.py
2,952
Python
import csv import sys from pathlib import Path sys.path.append(str(Path(__file__).resolve().parent.parent)) from skimage.color import rgb2gray import numpy as np from tqdm import tqdm from tadataka import VisualOdometry, CameraParameters from tadataka.rigid import exp_se3, log_se3 from tadataka.projection import warp from tadataka.mapping import MapBuilder from tadataka.quaternion import quaternion_to_rotation from tadataka.datasets.tum_rgbd import TUMDataset, PoseSequence from visualization.plot import plot # dataset format is explained at # https://vision.in.tum.de/data/datasets/rgbd-dataset/file_formats# # intrinsic_camera_calibration_of_the_kinect dataset_root = Path("datasets", "rgbd_dataset_freiburg1_desk") # dataset_root = Path("datasets", "rgbd_dataset_freiburg2_pioneer_360") # dataset_root = Path("datasets", "rgbd_dataset_freiburg3_structure_texture_near") def error(image_true, image_pred, mask): return np.power(image_true[mask]-image_pred[mask], 2).mean() def visualize_error_function(camera_parameters, I0, D0, I1, xi_pred): def generate_error_curve(i, start, stop, n): xi = np.copy(xi_pred) vs = xi[i] + np.linspace(start, stop, n) errors = [] for v in vs: xi[i] = v DG = exp_se3(xi) estimated, mask = warp(camera_parameters, I1, D0, DG) errors.append(error(I0, estimated, mask)) errors = np.array(errors) return vs, errors from matplotlib import pyplot as plt fig = plt.figure() for xi_index, ax_index in enumerate([1, 3, 5, 2, 4, 6]): ax = fig.add_subplot(3, 2, ax_index) vs, errors = generate_error_curve(xi_index, start=-0.10, stop=0.10, n=101) ax.set_title("Axis {}".format(xi_index+1)) ax.axvline(vs[np.argmin(errors)], label="ground truth") ax.axvline(xi_pred[xi_index], color="red", label="prediction") ax.legend() ax.plot(vs, errors) plt.show() def main(): np.set_printoptions(suppress=True, precision=8, linewidth=1e8) camera_parameters = CameraParameters( focal_length=[525.0, 525.0], offset=[319.5, 239.5] ) dataset = TUMDataset(dataset_root) G = np.eye(4) frame0 = dataset.load_color(0) sequence_pred = PoseSequence() sequence_pred.add(frame0.timestamp_depth, G) for i in tqdm(range(1, dataset.size)): frame1 = dataset.load_color(i) # TODO not necessary to convert the color of the same image twice # we need to create a better interface vo = VisualOdometry(camera_parameters, rgb2gray(frame0.image), frame0.depth_map, rgb2gray(frame1.image)) DG = vo.estimate_motion(n_coarse_to_fine=6) G = np.dot(G, np.linalg.inv(DG)) sequence_pred.add(frame1.timestamp_depth, G) frame0 = frame1 sequence_pred.save("poses.txt") # TODO implement the following # pointcloud = map_builder.export() # export_pointcloud(pointcloud) main()
29.47619
82
0.668498
[ "Apache-2.0" ]
IshitaTakeshi/DVO
examples/rgbd_desk.py
3,095
Python
from datetime import date ano_nascimento = int(input('Digite o ano de nascimento:')) ano_atual = date.today().year idade = abs(ano_nascimento - ano_atual) falta1 = (18 - idade) falta2 = (idade - 18) if idade < 18: print('Ainda vai se alistar , faltam {} anos'.format(abs(falta1))) ano = falta1 + ano_atual print('Seu alistamento será em {}'.format(ano)) elif idade == 18: print('Esta na hora de você se alistar') elif idade > 18: print('Já passou {} anos do tempo de alistamento'.format(abs(falta2))) ano = ano_atual - falta2 print('Seu alistamento foi em {}'.format(ano))
31.15
75
0.654896
[ "Apache-2.0" ]
thaisouza30/Exercicios-Python3-Curso-em-Video
ex039.py
626
Python
DEPS = [ 'archive', 'chromium', 'chromium_android', 'depot_tools/bot_update', 'depot_tools/gclient', 'depot_tools/tryserver', 'file', 'recipe_engine/path', 'recipe_engine/platform', 'recipe_engine/properties', 'recipe_engine/python', 'recipe_engine/step', 'trigger', ] # TODO(phajdan.jr): provide coverage (http://crbug.com/693058). DISABLE_STRICT_COVERAGE = True
19.6
63
0.701531
[ "BSD-3-Clause" ]
bopopescu/chromium-build
scripts/slave/recipe_modules/libyuv/__init__.py
392
Python
from PIL import Image import numpy from random import randint """ A plugin used to create a set of variable spefications for permutation groups. """ def transform(img,source,target,**kwargs): cv_image = numpy.array(img) shape = cv_image.shape snapto8 = 'eightbit_boundary' in kwargs and kwargs['eightbit_boundary'] == 'yes' percentageWidth = float(kwargs['percentage_width']) percentageHeight = float(kwargs['percentage_height']) divisionsWidth = float(kwargs['divisions_width'] if 'divisions_width' in kwargs else shape[1]) divisionsHeight = float(kwargs['divisions_height'] if 'divisions_height' in kwargs else shape[0]) pixelWidth = int(shape[1] * percentageWidth) pixelHeight = int(shape[0] * percentageHeight) if snapto8: pixelWidth = pixelWidth - pixelWidth % 8 pixelHeight = pixelHeight - pixelHeight % 8 incrementsWidth = max(8,int(pixelWidth/divisionsWidth)) incrementsHeight = max(8,int(pixelHeight/divisionsHeight)) crop_x = { "type": "list", "values" : [i for i in xrange(incrementsWidth,pixelWidth,incrementsWidth)]} crop_y = { "type": "list", "values" : [i for i in xrange(incrementsHeight, pixelHeight, incrementsHeight)]} return {'crop_x':crop_x,'crop_y':crop_y, 'crop_width':pixelWidth,'crop_height':pixelHeight},None def operation(): return { 'category': 'Select', 'name': 'SelectRegion', 'description':'Select a region to crop', 'software':'OpenCV', 'version':cv2.__version__, 'arguments':{'percentage_width': {'type': "float[0:0.5]", 'description':'the percentage of pixels to remove horizontal'}, 'percentage_height': {'type': "float[0:0.5]", 'description':'the percentage of pixels to remove vertically'}, 'divisions_width': {'type': "int[0:100000]", 'description': 'the number samples in the x direction'}, 'divisions_height': {'type': "int[0:100000]", 'description': 'the number of samples in the y direction'}, 'eightbit_boundary': {'type': "yesno", 'defaultvalue':'no', 'description':'Snap to 8 bit boundary'} }, 'transitions': [ 'image.image' ] }
48.22
115
0.608461
[ "BSD-3-Clause" ]
spongezhang/maskgen
plugins/CropPermutations/__init__.py
2,411
Python
# -*- coding: utf-8 -*- # Copyright 2017-2018 ICON Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from tbears.block_manager.block_manager import PRepManager from tbears.config.tbears_config import keystore_test1 PREP_LIST = [ { "id": "hx86aba2210918a9b116973f3c4b27c41a54d5dafe", "publicKey": "04a69f73cca23a9ac5c8b567dc185a756e97c982164fe25859e0d1dcc1475c80a615b2123af1f5f94c11e3e9402c3ac558f500199d95b6d3e301758586281dcd26", "p2pEndPoint": "target://123.45.67.89:7100" }, { "id": "hx13aca3210918a9b116973f3c4b27c41a54d5dad1", "publicKey": "0483ae642ca89c9ac5c8b567dc185a756e97c982164fe25859e0d1dcc1475c80a615b2123af1f5f94c11e3e9402c3ac558f500199d95b6d3e301758586281e3a27", "p2pEndPoint": "target://210.34.56.17:7100" } ] class TestTBearsPRepManager(unittest.TestCase): def setUp(self): pass def tearDown(self): pass def test_get_prev_block_contributors_info(self): # There is no P-Reps manager = PRepManager(is_generator_rotation=True, gen_count_per_leader=1) info = manager.get_prev_block_contributors_info() self.assertEqual(keystore_test1.get('address'), info.get('prevBlockGenerator')) self.assertEqual(0, len(info.get('prevBlockValidators'))) # There is 2 P-Reps manager = PRepManager(is_generator_rotation=True, gen_count_per_leader=1, prep_list=PREP_LIST) info = manager.get_prev_block_contributors_info() self.assertEqual(PREP_LIST[0].get('id'), info.get('prevBlockGenerator')) self.assertEqual(len(PREP_LIST) - 1, len(info.get('prevBlockValidators'))) self.assertEqual(PREP_LIST[1].get('id'), info.get('prevBlockValidators')[0]) # after rotate info = manager.get_prev_block_contributors_info() self.assertEqual(PREP_LIST[1].get('id'), info.get('prevBlockGenerator')) self.assertEqual(len(PREP_LIST) - 1, len(info.get('prevBlockValidators'))) self.assertEqual(PREP_LIST[0].get('id'), info.get('prevBlockValidators')[0])
41.645161
154
0.731603
[ "Apache-2.0" ]
Transcranial-Solutions/t-bears
tests/test_prep_manager.py
2,582
Python
# Python function to manipulate OpenFOAM files # Developer: Jian-Xun Wang ([email protected]) ############################################################################### # system import import numpy as np import numpy.matlib import sys # Add extra path/directory import os import os.path as ospt import shutil import subprocess # Call the command line from subprocess import call import matplotlib.pyplot as plt # For plotting import re import tempfile import pdb from matplotlib import pyplot as plt # local import from PIL import Image import pandas as pd from mpl_toolkits.mplot3d import Axes3D from sklearn.neural_network import MLPRegressor import multiprocessing from functools import partial import time import multiprocessing from functools import partial import scipy.sparse as sp global unitTest unitTest = False; def readVectorFromFile(UFile): """ Arg: tauFile: The directory path of OpenFOAM vector file (e.g., velocity) Regurn: vector: Matrix of vector """ resMid = extractVector(UFile) fout = open('Utemp', 'w'); glob_pattern = resMid.group() glob_pattern = re.sub(r'\(', '', glob_pattern) glob_pattern = re.sub(r'\)', '', glob_pattern) fout.write(glob_pattern) fout.close(); vector = np.loadtxt('Utemp') return vector def readScalarFromFile(fileName): """ Arg: fileName: The file name of OpenFOAM scalar field Regurn: a vector of scalar field """ resMid = extractScalar(fileName) # write it in Tautemp fout = open('temp.txt', 'w') glob_patternx = resMid.group() glob_patternx = re.sub(r'\(', '', glob_patternx) glob_patternx = re.sub(r'\)', '', glob_patternx) fout.write(glob_patternx) fout.close(); scalarVec = np.loadtxt('temp.txt') return scalarVec ################################################ Regular Expression ##################################################### def extractVector(vectorFile): """ Function is using regular expression select Vector value out Args: UFile: The directory path of file: U Returns: resMid: the U as (Ux1,Uy1,Uz1);(Ux2,Uy2,Uz2);........ """ fin = open(vectorFile, 'r') # need consider directory line = fin.read() # line is U file to read fin.close() ### select U as (X X X)pattern (Using regular expression) patternMid = re.compile(r""" ( \( # match( [\+\-]?[\d]+([\.][\d]*)?([Ee][+-]?[\d]+)? # match figures (\ ) # match space [\+\-]?[\d]+([\.][\d]*)?([Ee][+-]?[\d]+)? # match figures (\ ) # match space [\+\-]?[\d]+([\.][\d]*)?([Ee][+-]?[\d]+)? # match figures \) # match ) \n # match next line )+ # search greedly """,re.DOTALL | re.VERBOSE) resMid = patternMid.search(line) return resMid def extractScalar(scalarFile): """ subFunction of readTurbStressFromFile Using regular expression to select scalar value out Args: scalarFile: The directory path of file of scalar Returns: resMid: scalar selected; you need use resMid.group() to see the content. """ fin = open(scalarFile, 'r') # need consider directory line = fin.read() # line is k file to read fin.close() ### select k as ()pattern (Using regular expression) patternMid = re.compile(r""" \( # match"(" \n # match next line ( [\+\-]?[\d]+([\.][\d]*)?([Ee][+-]?[\d]+)? # match figures \n # match next line )+ # search greedly \) # match")" """,re.DOTALL | re.VERBOSE) resMid = patternMid.search(line) return resMid
27.205479
122
0.542296
[ "MIT" ]
Jianxun-Wang/PICNNSR
demo0/foamFileOperation.py
3,972
Python
#!/usr/bin/env python3 # Copyright (c) 2014-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test mempool limiting together/eviction with the wallet.""" from test_framework.test_framework import SchleemsTestFramework from test_framework.util import * class MempoolLimitTest(SchleemsTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 1 self.extra_args = [["-maxmempool=5", "-spendzeroconfchange=0"]] def run_test(self): txouts = gen_return_txouts() relayfee = self.nodes[0].getnetworkinfo()['relayfee'] txids = [] utxos = create_confirmed_utxos(relayfee, self.nodes[0], 91) #create a mempool tx that will be evicted us0 = utxos.pop() inputs = [{ "txid" : us0["txid"], "vout" : us0["vout"]}] outputs = {self.nodes[0].getnewaddress() : 0.0001} tx = self.nodes[0].createrawtransaction(inputs, outputs) self.nodes[0].settxfee(relayfee) # specifically fund this tx with low fee txF = self.nodes[0].fundrawtransaction(tx) self.nodes[0].settxfee(0) # return to automatic fee selection txFS = self.nodes[0].signrawtransaction(txF['hex']) txid = self.nodes[0].sendrawtransaction(txFS['hex']) relayfee = self.nodes[0].getnetworkinfo()['relayfee'] base_fee = relayfee*100 for i in range (3): txids.append([]) txids[i] = create_lots_of_big_transactions(self.nodes[0], txouts, utxos[30*i:30*i+30], 30, (i+1)*base_fee) # by now, the tx should be evicted, check confirmation state assert(txid not in self.nodes[0].getrawmempool()) txdata = self.nodes[0].gettransaction(txid) assert(txdata['confirmations'] == 0) #confirmation should still be 0 if __name__ == '__main__': MempoolLimitTest().main()
42.148936
118
0.664816
[ "MIT" ]
BlenderSleuth/schleems
test/functional/mempool_limit.py
1,981
Python
import numpy as np def evaluate(X: np.ndarray, A: float = 7.0, B: float = 0.1) -> np.ndarray: """Non-monotonic Ishigami-Homma three parameter test function: `f(x) = \sin(x_{1}) + A \sin(x_{2})^2 + Bx^{4}_{3}\sin(x_{1})` This test function is commonly used to benchmark global sensitivity methods as variance-based sensitivities of this function can be analytically determined. See listed references below. In [2], the expected first-order indices are: x1: 0.3139 x2: 0.4424 x3: 0.0 when A = 7, B = 0.1 when conducting Sobol' analysis with the Saltelli sampling method with a sample size of 1000. Parameters ---------- X : np.ndarray An `N*D` array holding values for each parameter, where `N` is the number of samples and `D` is the number of parameters (in this case, three). A : float Constant `A` parameter B : float Constant `B` parameter Returns ------- Y : np.ndarray References ---------- .. [1] Ishigami, T., Homma, T., 1990. An importance quantification technique in uncertainty analysis for computer models. Proceedings. First International Symposium on Uncertainty Modeling and Analysis. https://doi.org/10.1109/ISUMA.1990.151285 .. [2] Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., Tarantola, S., 2008. Global Sensitivity Analysis: The Primer. Wiley, West Sussex, U.K. https://dx.doi.org/10.1002/9780470725184 """ Y = np.zeros(X.shape[0]) Y = np.sin(X[:, 0]) + A * np.power(np.sin(X[:, 1]), 2) + \ B * np.power(X[:, 2], 4) * np.sin(X[:, 0]) return Y
31.457627
79
0.566272
[ "MIT" ]
QianWanghhu/SALib
src/SALib/test_functions/Ishigami.py
1,856
Python
# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P class ResizeNearestNeighborAlignCornerT(nn.Cell): def __init__(self, size): super(ResizeNearestNeighborAlignCornerT, self).__init__() self.ResizeNearestNeighborAlignCornerT = P.ResizeNearestNeighbor(size, align_corners=True) def construct(self, x): return self.ResizeNearestNeighborAlignCornerT(x) class ResizeNearestNeighborAlignCornerF(nn.Cell): def __init__(self, size): super(ResizeNearestNeighborAlignCornerF, self).__init__() self.ResizeNearestNeighborAlignCornerF = P.ResizeNearestNeighbor(size, align_corners=False) def construct(self, x): return self.ResizeNearestNeighborAlignCornerF(x) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_ResizeNearestNeighborAlignCornerT(): context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") input_tensor = Tensor(np.array([[[[1, 0], [0, 1]]]]).astype(np.float32)) expect = np.array([[[[1, 1, 0, 0], [1, 1, 0, 0], [0, 0, 1, 1], [0, 0, 1, 1]]]]).astype(np.float32) rnn = ResizeNearestNeighborAlignCornerT((4, 4)) output = rnn(input_tensor) assert np.all(output.asnumpy() == expect) input_tensor = Tensor(np.array([[[[1, 0], [0, 1]]]]).astype(np.float16)) expect = np.array([[[[1, 1, 0, 0], [1, 1, 0, 0], [0, 0, 1, 1], [0, 0, 1, 1]]]]).astype(np.float16) rnn = ResizeNearestNeighborAlignCornerT((4, 4)) output = rnn(input_tensor) assert np.all(output.asnumpy() == expect) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_ResizeNearestNeighborAlignCornerF(): context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") input_tensor = Tensor(np.array([[[[1, 0], [0, 1]]]]).astype(np.float32)) expect = np.array([[[[1, 1, 0, 0], [1, 1, 0, 0], [0, 0, 1, 1], [0, 0, 1, 1]]]]).astype(np.float32) rnn = ResizeNearestNeighborAlignCornerF((4, 4)) output = rnn(input_tensor) assert np.all(output.asnumpy() == expect) input_tensor = Tensor(np.array([[[[1, 0], [0, 1]]]]).astype(np.float16)) expect = np.array([[[[1, 1, 0, 0], [1, 1, 0, 0], [0, 0, 1, 1], [0, 0, 1, 1]]]]).astype(np.float16) rnn = ResizeNearestNeighborAlignCornerF((4, 4)) output = rnn(input_tensor) assert np.all(output.asnumpy() == expect)
43.680556
102
0.683625
[ "Apache-2.0" ]
Gavin-Hoang/mindspore
tests/st/ops/gpu/test_resize_nearest_neighbor_op.py
3,145
Python