content
stringlengths
7
928k
avg_line_length
float64
3.5
33.8k
max_line_length
int64
6
139k
alphanum_fraction
float64
0.08
0.96
licenses
sequence
repository_name
stringlengths
7
104
path
stringlengths
4
230
size
int64
7
928k
lang
stringclasses
1 value
import aiohttp, asyncio from bs4 import BeautifulSoup import json import time VC_SEARCH = "https://vc.ru/search/v2/content/new" async def parse_urls(key_word): async with aiohttp.ClientSession() as session: async with session.get(VC_SEARCH, params={ "query": key_word, "target_type": 'posts', }) as r: soup = BeautifulSoup(await r.text(), 'html.parser') urls = [x["href"] for x in soup.find_all("a", {"class": "content-feed__link"})] return urls async def get_text(url): async with aiohttp.ClientSession() as session: async with session.get(url) as r: soup = BeautifulSoup(await r.text(), 'html.parser') text = " ".join(map(lambda x: x.text, soup.find("div", {"class": "l-entry__content"}).find_all("p"))) return text async def get_all_texts(keyword): urls = await parse_urls(keyword) all_texts = [] for u in urls[:25]: text = await get_text(u) all_texts.append(text) return all_texts async def vc_get_data(keyword, result_file_path='result-vc.json'): texts = await get_all_texts(keyword) result_dict = {"company": keyword, "texts": texts} result_json = json.loads(json.dumps(result_dict)) return result_json #with open(result_file_path, 'w', encoding='utf-8') as f: # json.dump(result_json, f, ensure_ascii=False, indent=4) if __name__ == "__main__": loop = asyncio.get_event_loop() loop.run_until_complete(vc_get_data("сбер", "other/sber-vc.json"))
31.52
113
0.636421
[ "MIT" ]
OverFitted/hacksai2021spb
Parsers/vcru.py
1,580
Python
#!/usr/bin/env runaiida # -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import print_function __copyright__ = (u"Copyright (c), 2016, Forschungszentrum Jülich GmbH, " "IAS-1/PGI-1, Germany. All rights reserved.") __license__ = "MIT license, see LICENSE.txt file" __version__ = "0.27" __contributors__ = "Jens Broeder" from aiida import load_dbenv, is_dbenv_loaded if not is_dbenv_loaded(): load_dbenv() import sys import os from aiida.common.example_helpers import test_and_get_code from aiida.plugins import DataFactory from aiida_fleur.workflows.scf import FleurScfWorkChain # If set to True, will ask AiiDA to run in serial mode (i.e., AiiDA will not # invoke the mpirun command in the submission script) run_in_serial_mode = True#False queue = None ################################################################ ParameterData = DataFactory('parameter') FleurinpData = DataFactory('fleur.fleurinp') try: dontsend = sys.argv[1] if dontsend == "--dont-send": submit_test = True elif dontsend == "--send": submit_test = False else: raise IndexError except IndexError: print(("The first parameter can only be either " "--send or --dont-send"), file=sys.stderr) sys.exit(1) try: codename = sys.argv[2] except IndexError: codename = None try: queue = sys.argv[3] except IndexError: queue = None ##### code = test_and_get_code(codename, expected_code_type='fleur.fleur') # get where tests folder is, then relative path inpxmlfile = '/usr/users/iff_th1/broeder/aiida/github/aiida-fleur/tests/inp_xml_files/W/inp.xml' fleurinp = FleurinpData(files = [inpxmlfile]) wf_para = Dict(dict={'fleur_runmax' : 4, 'density_criterion' : 0.000001,#}) 'queue_name' : 'th123_node', 'resources' : {"num_machines": 1, "num_mpiprocs_per_machine" : 12}, 'walltime_sec': 10*60, 'serial' : run_in_serial_mode}) if submit_test: print('workchain do not have so far a submit_test function') else: print("Running fleur_scf_wc") res = FleurScfWorkChain.run(wf_parameters=wf_para, fleurinp=fleurinp, fleur=code) #remote_data= remote, fleur=code)
30.25974
97
0.650644
[ "MIT" ]
anoopkcn/aiida-fleur
examples/old_workflowtests/test_run_scf2.py
2,331
Python
""" Copyright (c) 2008-2020, Jesus Cea Avion <[email protected]> All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of Jesus Cea Avion nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ import unittest import os, glob from .test_all import db, test_support, get_new_environment_path, \ get_new_database_path #---------------------------------------------------------------------- class DB(unittest.TestCase): def setUp(self): self.path = get_new_database_path() self.db = db.DB() def tearDown(self): self.db.close() del self.db test_support.unlink(self.path) class DB_general(DB) : def test_get_open_flags(self) : self.db.open(self.path, dbtype=db.DB_HASH, flags = db.DB_CREATE) self.assertEqual(db.DB_CREATE, self.db.get_open_flags()) def test_get_open_flags2(self) : self.db.open(self.path, dbtype=db.DB_HASH, flags = db.DB_CREATE | db.DB_THREAD) self.assertEqual(db.DB_CREATE | db.DB_THREAD, self.db.get_open_flags()) def test_get_dbname_filename(self) : self.db.open(self.path, dbtype=db.DB_HASH, flags = db.DB_CREATE) self.assertEqual((self.path, None), self.db.get_dbname()) def test_get_dbname_filename_database(self) : name = "jcea-random-name" self.db.open(self.path, dbname=name, dbtype=db.DB_HASH, flags = db.DB_CREATE) self.assertEqual((self.path, name), self.db.get_dbname()) def test_bt_minkey(self) : for i in [17, 108, 1030] : self.db.set_bt_minkey(i) self.assertEqual(i, self.db.get_bt_minkey()) def test_lorder(self) : self.db.set_lorder(1234) self.assertEqual(1234, self.db.get_lorder()) self.db.set_lorder(4321) self.assertEqual(4321, self.db.get_lorder()) self.assertRaises(db.DBInvalidArgError, self.db.set_lorder, 9182) def test_priority(self) : flags = [db.DB_PRIORITY_VERY_LOW, db.DB_PRIORITY_LOW, db.DB_PRIORITY_DEFAULT, db.DB_PRIORITY_HIGH, db.DB_PRIORITY_VERY_HIGH] for flag in flags : self.db.set_priority(flag) self.assertEqual(flag, self.db.get_priority()) def test_get_transactional(self) : self.assertFalse(self.db.get_transactional()) self.db.open(self.path, dbtype=db.DB_HASH, flags = db.DB_CREATE) self.assertFalse(self.db.get_transactional()) class DB_hash(DB) : def test_h_ffactor(self) : for ffactor in [4, 16, 256] : self.db.set_h_ffactor(ffactor) self.assertEqual(ffactor, self.db.get_h_ffactor()) def test_h_nelem(self) : for nelem in [1, 2, 4] : nelem = nelem*1024*1024 # Millions self.db.set_h_nelem(nelem) self.assertEqual(nelem, self.db.get_h_nelem()) def test_pagesize(self) : for i in range(9, 17) : # From 512 to 65536 i = 1<<i self.db.set_pagesize(i) self.assertEqual(i, self.db.get_pagesize()) # The valid values goes from 512 to 65536 # Test 131072 bytes... self.assertRaises(db.DBInvalidArgError, self.db.set_pagesize, 1<<17) # Test 256 bytes... self.assertRaises(db.DBInvalidArgError, self.db.set_pagesize, 1<<8) class DB_txn(DB) : def setUp(self) : self.homeDir = get_new_environment_path() self.env = db.DBEnv() self.env.open(self.homeDir, db.DB_CREATE | db.DB_INIT_MPOOL | db.DB_INIT_LOG | db.DB_INIT_TXN) self.db = db.DB(self.env) def tearDown(self) : self.db.close() del self.db self.env.close() del self.env test_support.rmtree(self.homeDir) def test_flags(self) : self.db.set_flags(db.DB_CHKSUM) self.assertEqual(db.DB_CHKSUM, self.db.get_flags()) self.db.set_flags(db.DB_TXN_NOT_DURABLE) self.assertEqual(db.DB_TXN_NOT_DURABLE | db.DB_CHKSUM, self.db.get_flags()) def test_get_transactional(self) : self.assertFalse(self.db.get_transactional()) # DB_AUTO_COMMIT = Implicit transaction self.db.open("XXX", dbtype=db.DB_HASH, flags = db.DB_CREATE | db.DB_AUTO_COMMIT) self.assertTrue(self.db.get_transactional()) class DB_recno(DB) : def test_re_pad(self) : for i in [' ', '*'] : # Check chars self.db.set_re_pad(i) self.assertEqual(ord(i), self.db.get_re_pad()) for i in [97, 65] : # Check integers self.db.set_re_pad(i) self.assertEqual(i, self.db.get_re_pad()) def test_re_delim(self) : for i in [' ', '*'] : # Check chars self.db.set_re_delim(i) self.assertEqual(ord(i), self.db.get_re_delim()) for i in [97, 65] : # Check integers self.db.set_re_delim(i) self.assertEqual(i, self.db.get_re_delim()) def test_re_source(self) : for i in ["test", "test2", "test3"] : self.db.set_re_source(i) self.assertEqual(i, self.db.get_re_source()) class DB_queue(DB) : def test_re_len(self) : for i in [33, 65, 300, 2000] : self.db.set_re_len(i) self.assertEqual(i, self.db.get_re_len()) def test_q_extentsize(self) : for i in [1, 60, 100] : self.db.set_q_extentsize(i) self.assertEqual(i, self.db.get_q_extentsize()) def test_suite(): suite = unittest.TestSuite() suite.addTest(unittest.makeSuite(DB_general)) suite.addTest(unittest.makeSuite(DB_txn)) suite.addTest(unittest.makeSuite(DB_hash)) suite.addTest(unittest.makeSuite(DB_recno)) suite.addTest(unittest.makeSuite(DB_queue)) return suite if __name__ == '__main__': unittest.main(defaultTest='test_suite')
36.979798
79
0.642721
[ "BSD-3-Clause" ]
OnApp/cdn-bsddb3-python
Lib3/bsddb/test/test_db.py
7,322
Python
from dataclasses import dataclass, field from datetime import datetime # for typehinting from typing import TYPE_CHECKING, Generator, List, Literal, Optional import aiohttp import dateparser from .exceptions import UnsupportedRegionError from .pricing import PriceQuery, query_price COUNT = 30 # Items per page of paginated response if TYPE_CHECKING: from .regions import Region # pragma: no cover @dataclass class RatingContent: id: int = None name: str = None type: Literal["descriptor", "interactive"] = None image_url: Optional[str] = None # JP Field svg_image_url: Optional[str] = None # JP Field def __init__(self, data) -> None: self.id = data['id'] self.name = data['name'] self.type = data['type'] if data.get('image_url'): self.image_url = data['image_url'] if data.get('svg_image_url'): self.svg_image_url = data['svg_image_url'] @dataclass class Rating: age: int = None id: int = None image_url: Optional[str] = None name: str = None provisional: bool = None svg_image_url: str = None def __init__(self, data) -> None: if (data['id']) == 0: return self.age = data['age'] self.id = data['id'] if data.get('image_url'): self.image_url = data['image_url'] self.provisional = data['provisional'] self.svg_image_url = data['svg_image_url'] @dataclass class RatingSystem: id: int = None name: str = None def __init__(self, data) -> None: self.id = data['id'] self.name = data['name'] @dataclass class Game: region: "Region" = None content_type: str = None # Literal["game", "bundle"] ??? expand and replace hint dominant_colors: List[str] = None formal_name: str = None hero_banner_url: str = None id: int = None is_new: bool = None membership_required: bool = None public_status: Literal["public"] = None rating_content: List[RatingContent] = field(default_factory=list) rating: Rating = None rating_system: RatingSystem = None release_date_on_eshop: datetime = None screenshots: List[str] = field(default_factory=list) strong_disclaimer: str = None tags: List = field(default_factory=list) target_titles: List = field(default_factory=list) def __init__(self, data, region) -> None: self.region = region self.content_type = data['content_type'] self.dominant_colors = data['dominant_colors'] self.formal_name = data['formal_name'] self.hero_banner_url = data['hero_banner_url'] self.id = data['id'] self.is_new = data['is_new'] self.membership_required = data['membership_required'] self.public_status = data['public_status'] self.rating_content = [RatingContent(c) for c in data['rating_info']['content_descriptors']] self.rating = Rating(data['rating_info']['rating']) self.rating_system = RatingSystem(data['rating_info']['rating_system']) # TODO: is this dateparser correct? self.release_date_on_eshop = dateparser.parse(data['release_date_on_eshop'], settings={'TIMEZONE': "UTC"}) self.screenshots = [s['images'][0]['url'] for s in data['screenshots']] self.strong_disclaimer = data.get('strong_disclaimer', None) self.tags = data['tags'] self.target_titles = data['target_titles'] async def query_price(self) -> PriceQuery: return await query_price(self.region, self) async def query_listing(region: "Region", type: Literal["sales", "new", "ranking"]) -> Generator[Game, None, None]: if not region.supports_listing: raise UnsupportedRegionError("Region does not support listings") if type not in ["sales", "new", "ranking"]: raise ValueError("Invalid type: " + type) lang, reg = region.culture_code.split('_') offset = 0 async with aiohttp.ClientSession() as session: while True: url = f'https://ec.nintendo.com/api/{reg}/{lang}/search/{type}?offset={offset}&count={COUNT}' async with session.get(url) as request: request.raise_for_status() data = await request.json() for game in data['contents']: yield Game(game, region) if (offset + COUNT) >= data['total']: break offset += COUNT
32.816176
115
0.636791
[ "MIT" ]
MattBSG/Switch-REST
nsecpy/listing.py
4,463
Python
from collections import defaultdict from typing import Dict, Tuple, Iterator, Callable, Any, Optional from dataclasses import dataclass """ Provides the `TaggedProfiler` class related to record profiling. TODO: Better description needed. """ @dataclass class TaggedProfilerRecordStatus: offset: int tag: str key: str val: Any r: Optional[dict] @dataclass class TaggedProfilerSummary: total: int histo: dict index: Optional[dict] cache: Optional[dict] def describe(self) -> Iterator[str]: yield f"histo = {self.histo}" if self.index is None: yield f"index = {self.index}" else: yield f"index with {len(self.index)} items:" for label, nums in self.index.items(): yield f"label = '{label}, size = {len(nums)}:" if self.cache is not None: for n in nums: yield f"cache[{n}] = {self.cache[n]}" class TaggedProfiler: """A useful tag-based profiler class which we'll describe when we have more time.""" def __init__(self, tagmap: Dict[str,Callable]): self.tagmap = tagmap def eval_dict(self, r: dict) -> Iterator[Tuple[str,str,str]]: for (tag, f) in self.tagmap.items(): for (k, v) in r.items(): if f(v): yield (tag, k, v) def evaluate(self, recs: Iterator[dict], deep: bool = False) -> Iterator[TaggedProfilerRecordStatus]: for (i, r) in enumerate(recs): for (tag, k, v) in self.eval_dict(r): yield TaggedProfilerRecordStatus(i, tag, k, v, r if deep else None) def profile(self, recs: Iterator[dict], index: bool = False, deep: bool = False) -> TaggedProfilerSummary: """Provides the most useful summary counts you'll likely want from the incoming record sequence. Optional :index and :deep flags allow us to return special indexing and cachinc structs which we'll describe later.""" # We use underscores for all "recording" structures. # Non-nunderscore names for input variables and flags. labels = list(self.tagmap.keys()) temp_cache: Dict[int,Any] = {} temp_index: Dict[str,Any] = {k:defaultdict(int) for k in labels} for status in self.evaluate(recs, deep): temp_cache[status.offset] = status.r if deep else 1 temp_index[status.tag][status.offset] += 1 _total = len(temp_cache) _histo: Dict[str,int] = {k:len(v) for (k,v) in temp_index.items()} _index: Optional[Dict[str,list]] = None _cache: Optional[Dict[int,Any]] = None if temp_index: _index = {k:list(v.keys()) for k,v in temp_index.items()} if deep: _cache = temp_cache return TaggedProfilerSummary(_total, _histo, _index, _cache)
37.697368
126
0.614311
[ "Apache-2.0" ]
wstlabs/caixa
caixa/profile/tagged.py
2,865
Python
import torch; import numpy as np; from torch import nn; from torch import optim; import torch.functional as func; from torchvision import datasets, transforms, models; import time; from os import path; import argparse; import utils import json; def main(test_image_path, checkpoint_path, top_k, category_names, gpu): print("test_image_path: " , test_image_path); print("checkpoint_path: " , checkpoint_path); print("top_k: " , top_k); print("category_names: " , category_names); print("Use_GPU" , gpu); if gpu == True: device='cuda'; else: device='cpu'; if category_names is not None: with open(category_names, 'r') as f: cat_to_name = json.load(f) else: cat_to_name = None; model, class_to_idx = utils.load_model_checkpoint(checkpoint_path); idx_to_class = {class_to_idx[k] : k for k in class_to_idx}; probs, outputs, names = utils.predict(test_image_path, model, idx_to_class, cat_to_name, top_k, device); print(f'The Top {top_k} predictions are:'); for i in range(top_k): print(f'\tPrediction #{i} : {names[i]} with Probability : {probs[i]:.3f}'); if __name__ == '__main__': print('qaz'); parser = argparse.ArgumentParser(description='Image Classification Project') parser.add_argument('test_image_path', action="store", help="Location of Test file for predicting classes of"); parser.add_argument('checkpoint_path', action="store", help="Location of Model Checkpoint file (must have file format .pth)"); parser.add_argument('--top_k', action="store", dest="top_k", help="Number of Top Likely classes predicted.", default=3, type=int) parser.add_argument('--category_names', action="store", dest="category_names", help="path to a file with class categories to real names", default="cat_to_name.json"); parser.add_argument('--gpu', action="store_true", dest="gpu", default=False, help="is provided CUDA gpu will be used, else CPU") parsed_args = parser.parse_args(); main(parsed_args.test_image_path, parsed_args.checkpoint_path, parsed_args.top_k, parsed_args.category_names, parsed_args.gpu);
41.188679
170
0.696748
[ "MIT" ]
ravishchawla/Udacity-Data-Scientist-nd
image_classifier/predict.py
2,183
Python
import collections class CaseInsensitiveDict(collections.MutableMapping): """ A case-insensitive ``dict``-like object. Implements all methods and operations of ``collections.MutableMapping`` as well as dict's ``copy``. Also provides ``lower_items``. All keys are expected to be strings. The structure remembers the case of the last key to be set, and ``iter(instance)``, ``keys()``, ``items()``, ``iterkeys()``, and ``iteritems()`` will contain case-sensitive keys. However, querying and contains testing is case insensitive:: cid = CaseInsensitiveDict() cid['Accept'] = 'application/json' cid['aCCEPT'] == 'application/json' # True list(cid) == ['Accept'] # True For example, ``headers['content-encoding']`` will return the value of a ``'Content-Encoding'`` response header, regardless of how the header name was originally stored. If the constructor, ``.update``, or equality comparison operations are given keys that have equal ``.lower()``s, the behavior is undefined. """ def __init__(self, data=None, **kwargs): self._store = dict() if data is None: data = {} self.update(data, **kwargs) def __setitem__(self, key, value): # Use the lowercased key for lookups, but store the actual # key alongside the value. self._store[key.lower()] = (key, value) def __getitem__(self, key): return self._store[key.lower()][1] def __delitem__(self, key): del self._store[key.lower()] def __iter__(self): return (casedkey for casedkey, mappedvalue in self._store.values()) def __len__(self): return len(self._store) def lower_items(self): """Like iteritems(), but with all lowercase keys.""" return ( (lowerkey, keyval[1]) for (lowerkey, keyval) in self._store.items() ) def __eq__(self, other): if isinstance(other, collections.Mapping): other = CaseInsensitiveDict(other) else: return NotImplemented # Compare insensitively return dict(self.lower_items()) == dict(other.lower_items()) # Copy is required def copy(self): return CaseInsensitiveDict(self._store.values()) def __repr__(self): return str(dict(self.items()))
31.155844
75
0.620675
[ "BSD-2-Clause" ]
jespino/anillo
anillo/utils/structures.py
2,399
Python
# -*- coding: utf-8 -*- # This is a simple mailbox polling script for the Sahana Messaging Module # If there is a need to collect from non-compliant mailers then suggest using the robust Fetchmail to collect & store in a more compliant mailer! # This script doesn't handle MIME attachments import sys, socket, email, uuid # Read-in configuration from Database settings = db(db.msg_email_settings.id == 1).select(limitby=(0, 1)).first() host = settings.inbound_mail_server server_type = settings.inbound_mail_type ssl = settings.inbound_mail_ssl port = settings.inbound_mail_port username = settings.inbound_mail_username password = settings.inbound_mail_password delete = settings.inbound_mail_delete if server_type == "pop3": import poplib # http://docs.python.org/library/poplib.html try: if ssl: p = poplib.POP3_SSL(host, port) else: p = poplib.POP3(host, port) except socket.error, e: error = "Cannot connect: %s" % e print error # Store status in the DB try: id = db().select(db.msg_email_inbound_status.id, limitby=(0, 1)).first().id db(db.msg_email_inbound_status.id == id).update(status=error) except: db.msg_email_inbound_status.insert(status=error) # Explicitly commit DB operations when running from Cron db.commit() sys.exit(1) try: # Attempting APOP authentication... p.apop(username, password) except poplib.error_proto: # Attempting standard authentication... try: p.user(username) p.pass_(password) except poplib.error_proto, e: print "Login failed:", e # Store status in the DB try: id = db().select(db.msg_email_inbound_status.id, limitby=(0, 1)).first().id db(db.msg_email_inbound_status.id == id).update(status="Login failed: %s" % e) except: db.msg_email_inbound_status.insert(status="Login failed: %s" % e) # Explicitly commit DB operations when running from Cron db.commit() sys.exit(1) dellist = [] mblist = p.list()[1] for item in mblist: number, octets = item.split(" ") # Retrieve the message (storing it in a list of lines) lines = p.retr(number)[1] # Create an e-mail object representing the message msg = email.message_from_string("\n".join(lines)) # Parse out the 'From' Header sender = msg["from"] # Parse out the 'Subject' Header if "subject" in msg: subject = msg["subject"] else: subject = "" # Parse out the 'Body' textParts = msg.get_payload() body = textParts[0].get_payload() # Store in DB uuidstamp = uuid.uuid4() db.msg_email_inbox.insert(uuid=uuidstamp, sender=sender, subject=subject, body=body) if delete: # Add it to the list of messages to delete later dellist.append(number) # Explicitly commit DB operations when running from Cron db.commit() # Iterate over the list of messages to delete for number in dellist: p.dele(number) p.quit() elif server_type == "imap": import imaplib # http://docs.python.org/library/imaplib.html try: if ssl: M = imaplib.IMAP4_SSL(host, port) else: M = imaplib.IMAP4(host, port) except socket.error, e: error = "Cannot connect: %s" % e print error # Store status in the DB try: id = db().select(db.msg_email_inbound_status.id, limitby=(0, 1)).first().id db(db.msg_email_inbound_status.id == id).update(status=error) except: db.msg_email_inbound_status.insert(status=error) # Explicitly commit DB operations when running from Cron db.commit() sys.exit(1) try: M.login(username, password) except M.error, e: error = "Login failed: %s" % e print error # Store status in the DB try: id = db().select(db.msg_email_inbound_status.id, limitby=(0, 1)).first().id db(db.msg_email_inbound_status.id == id).update(status=error) except: db.msg_email_inbound_status.insert(status=error) # Explicitly commit DB operations when running from Cron db.commit() sys.exit(1) dellist = [] # Select inbox M.select() # Search for Messages to Download typ, data = M.search(None, "ALL") for num in data[0].split(): typ, msg_data = M.fetch(num, "(RFC822)") for response_part in msg_data: if isinstance(response_part, tuple): msg = email.message_from_string(response_part[1]) # Parse out the 'From' Header sender = msg["from"] # Parse out the 'Subject' Header if "subject" in msg: subject = msg["subject"] else: subject = "" # Parse out the 'Body' textParts = msg.get_payload() body = textParts[0].get_payload() # Store in DB uuidstamp = uuid.uuid4() db.msg_email_inbox.insert(uuid=uuidstamp, sender=sender, subject=subject, body=body) if delete: # Add it to the list of messages to delete later dellist.append(num) # Explicitly commit DB operations when running from Cron db.commit() # Iterate over the list of messages to delete for number in dellist: typ, response = M.store(number, "+FLAGS", r"(\Deleted)") M.close() M.logout()
37.333333
145
0.589973
[ "MIT" ]
dotskapes/dotSkapes
cron/email_receive.py
5,826
Python
""" Module to wrap an integer in bitwise flag/field accessors. """ from collections import OrderedDict from pcapng.ngsix import namedtuple, Iterable class FlagBase(object): """\ Base class for flag types to be used in a Flags object. Handles the bitwise math so subclasses don't have to worry about it. """ __slots__ = [ 'owner', 'offset', 'size', 'extra', 'mask', ] def __init__(self, owner, offset, size, extra=None): if size < 1: raise TypeError('Flag must be at least 1 bit wide') if size > owner._nbits: raise TypeError('Flag must fit into owner size') self.owner = owner self.offset = offset self.size = size self.extra = extra self.mask = ((1 << self.size)-1) << self.offset def get_bits(self): return (self.owner._value & self.mask) >> self.offset def set_bits(self, val): val &= (1 << self.size) - 1 self.owner._value &= ~self.mask self.owner._value |= (val << self.offset) class FlagBool(FlagBase): """Object representing a single boolean flag""" def __init__(self, owner, offset, size, extra=None): if size != 1: raise TypeError('{cls} can only be 1 bit in size'.format(cls=self.__class__.__name__)) super(FlagBool, self).__init__(owner, offset, size) def get(self): return bool(self.get_bits()) def set(self, val): self.set_bits(int(bool(val))) class FlagUInt(FlagBase): """\ Object representing an unsigned integer of the given size stored in a larger bitfield """ def get(self): return self.get_bits() def set(self, val): self.set_bits(val) class FlagEnum(FlagBase): """\ Object representing a range of values stored in part of a larger bitfield """ def __init__(self, owner, offset, size, extra=None): if not isinstance(extra, Iterable): raise TypeError('{cls} needs an iterable of values'.format(cls=self.__class__.__name__)) extra = list(extra) if len(extra) > 2**size: raise TypeError('{cls} iterable has too many values (got {got}, {size} bits only address {max})'.format(cls=self.__class__.__name__, got=len(extra), size=size, max=2**size)) super(FlagEnum, self).__init__(owner, offset, size, extra) def get(self): val = self.get_bits() try: return self.extra[val] except IndexError: return '[invalid value]' def set(self, val): if val in self.extra: self.set_bits(self.extra.index(val)) elif isinstance(val, int): self.set_bits(val) else: raise TypeError('Invalid value {val} for {cls}'.format(val=val, cls=self.__class__.__name__)) # Class representing a single flag schema for FlagWord. # 'nbits' defaults to 1, and 'extra' defaults to None. FlagField = namedtuple('FlagField', ('name', 'ftype', 'nbits', 'extra'), defaults=(1, None)) class FlagWord(object): """\ Class to wrap an integer in bitwise flag/field accessors. """ __slots__ = [ '_nbits', '_value', '_schema', ] def __init__(self, schema, nbits=32, initial=0): """ :param schema: A list of FlagField objects representing the values to be packed into this object, in order from LSB to MSB of the underlying int :param nbits: An integer representing the total number of bits used for flags :param initial: The initial integer value of the flags field """ self._nbits = nbits self._value = initial self._schema = OrderedDict() tot_bits = sum([item.nbits for item in schema]) if tot_bits > nbits: raise TypeError("Too many fields for {nbits}-bit field (schema defines {tot} bits)".format(nbits=nbits, tot=tot_bits)) bitn = 0 for item in schema: if not isinstance(item, FlagField): raise TypeError('Schema must be composed of FlagField objects') if not issubclass(item.ftype, FlagBase): raise TypeError('Expected FlagBase, got {}'.format(item.ftype)) self._schema[item.name] = item.ftype(self, bitn, item.nbits, item.extra) bitn += item.nbits def __int__(self): return self._value def __repr__(self): rv = '<{0} (value={1})'.format(self.__class__.__name__, self._value) for k, v in self._schema.items(): rv += ' {0}={1}'.format(k, v.get()) return rv+'>' def __getattr__(self, name): try: v = self._schema[name] except KeyError: raise AttributeError(name) return v.get() def __setattr__(self, name, val): try: return object.__setattr__(self, name, val) except AttributeError: pass try: v = self._schema[name] except KeyError: raise AttributeError(name) return v.set(val) if __name__ == '__main__': f = FlagWord([ FlagField('inout', FlagEnum, 2, ('NA', 'inbound', 'outbound')), FlagField('casttype', FlagEnum, 3, ('NA', 'unicast', 'multicast', 'broadcast', 'promiscuous')), FlagField('fcslen', FlagUInt, 4), FlagField('reserved', FlagUInt, 7), FlagField('err_16', FlagBool), FlagField('err_17', FlagBool), FlagField('err_18', FlagBool), FlagField('err_19', FlagBool), FlagField('err_20', FlagBool), FlagField('err_21', FlagBool), FlagField('err_22', FlagBool), FlagField('err_23', FlagBool), FlagField('err_crc', FlagBool), FlagField('err_long', FlagBool), FlagField('err_short', FlagBool), FlagField('err_frame_gap', FlagBool), FlagField('err_frame_align', FlagBool), FlagField('err_frame_delim', FlagBool), FlagField('err_preamble', FlagBool), FlagField('err_symbol', FlagBool), ]) f.fcslen = 12 print(f) print(int(f))
30.746341
185
0.5802
[ "Apache-2.0" ]
Boolean263/python-pcapng
pcapng/flags.py
6,303
Python
import os CUR_DIR = os.path.dirname(os.path.realpath(__file__)) PARENT_DIR = os.path.abspath(os.path.join(CUR_DIR, os.pardir)) DATA_DIR = os.path.join(PARENT_DIR, "input") IMAGE_DIR = os.path.join(DATA_DIR, "image") def predict_label(json_data, filename): print(json_data) drivename, fname = filename.split("/") fname = fname.split(".")[0] bounding_box_path = os.path.join("classify/bounding_boxes", fname+'.json') bounding_box_filename = os.path.join(CUR_DIR, bounding_box_path) output_path = os.path.join(CUR_DIR, "classify/write_data.txt") image_filename = os.path.join(IMAGE_DIR, fname+'.png') try: open(bounding_box_filename, 'w').close() except Exception as e: pass with open(bounding_box_filename,'a') as f: f.write(json_data) os.system("python3 {} --image_file={}".format(os.path.join(CUR_DIR, "classify/classifier.py"), image_filename)) data = os.popen("cat {}".format(output_path)).read() os.system("rm classify/bounding_boxes/*.json") return get_keyword(data) def get_keyword(data): pedestrian_keywords = {'person', 'man', 'woman', 'walker', 'pedestrian'} car_keywords = {'car'} van_keywords = {'van', 'minivan', 'bus', 'minibus'} truck_keywords = {'truck'} cyclist_keywords = {'cyclist', 'motorcyclist', 'unicyclist', 'bicycle', 'motocycle', 'bike', 'motorbike', 'unicycle', 'monocycle', 'rickshaw'} words = [] for w in data.split(','): words.extend(w.split(' ')) words = set(words) if words.intersection(car_keywords): return 0 if words.intersection(van_keywords): return 1 if words.intersection(truck_keywords): return 2 if words.intersection(pedestrian_keywords): return 3 if words.intersection(cyclist_keywords): return 4 return -1
32.826923
112
0.718219
[ "Apache-2.0" ]
hasanari/sane
app/predict_label.py
1,707
Python
from ows_refactored.common.ows_reslim_cfg import reslim_landsat bands_ls5_st = { "ST_B6": ["st"], "ST_QA": ["st_qa"], "QA_PIXEL": ["pq"] } bands_ls7_st = { "ST_B6": ["st"], "ST_QA": ["st_qa"], "QA_PIXEL": ["pq"] } bands_ls8_st = { "ST_B10": ["st"], "ST_QA": ["st_qa"], "QA_PIXEL": ["pq"] } style_lsc2_st = { "name": "surface_temperature", "title": "Surface temperature - Celsius", "abstract": "Surface temperature in degrees Celsius", "index_expression": "(0.00341802*st - 124.15)", "mpl_ramp": "magma", "range": [0.0, 50.0], "legend": { "begin": "0.0", "end": "50.0", "decimal_places": 1, "ticks": ["0.0", "10.0", "20.0", "30.0", "40.0", "50.0"], "tick_labels": { "0.0": {"prefix": "<"}, "10.0": {"label": "10.0"}, "20.0": {"label": "20.0"}, "30.0": {"label": "30.0"}, "40.0": {"label": "40.0"}, "50.0": {"prefix": ">"}, }, }, } style_lsc2_st_masked = { "name": "surface_temperature_masked", "title": "Surface temperature (cloud masked) - Celsius", "abstract": "Surface temperature in degrees Celsius", "index_expression": "(0.00341802*st - 124.15)", "mpl_ramp": "magma", "range": [0.0, 50.0], "pq_masks": [ { "band": "QA_PIXEL", "flags": { "clear": True }, }, ], "legend": { "begin": "0.0", "end": "50.0", "decimal_places": 1, "ticks": ["0.0", "10.0", "20.0", "30.0", "40.0", "50.0"], "tick_labels": { "0.0": {"prefix": "<"}, "10.0": {"label": "10.0"}, "20.0": {"label": "20.0"}, "30.0": {"label": "30.0"}, "40.0": {"label": "40.0"}, "50.0": {"prefix": ">"}, }, }, } style_lsc2_st_masked_ls8 = { "name": "surface_temperature_masked", "title": "Surface temperature (cloud masked) - Celsius", "abstract": "Surface temperature in degrees Celsius", "index_expression": "(0.00341802*st - 124.15)", "mpl_ramp": "magma", "range": [0.0, 50.0], "pq_masks": [ { "band": "QA_PIXEL", "flags": { "clear": True, "cirrus": "not_high_confidence" }, }, ], "legend": { "begin": "0.0", "end": "50.0", "decimal_places": 1, "ticks": ["0.0", "10.0", "20.0", "30.0", "40.0", "50.0"], "tick_labels": { "0.0": {"prefix": "<"}, "10.0": {"label": "10.0"}, "20.0": {"label": "20.0"}, "30.0": {"label": "30.0"}, "40.0": {"label": "40.0"}, "50.0": {"prefix": ">"}, }, }, } style_lsc2_st_qa = { "name": "surface_temperature_uncertainty", "title": "Surface temperature uncertainty - Celsius", "abstract": "Surface temperature uncertainty in degrees Celsius", "index_expression": "(0.01*st_qa)", "mpl_ramp": "viridis", "range": [0.0, 6.0], "legend": { "begin": "0.0", "end": "6.0", "decimal_places": 1, "ticks": ["0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "6.0"], "tick_labels": { "0.0": {"label": "0.0"}, "1.0": {"label": "1.0"}, "2.0": {"label": "2.0"}, "3.0": {"label": "3.0"}, "4.0": {"label": "4.0"}, "5.0": {"label": "5.0"}, "6.0": {"prefix": ">"}, }, }, } layer_ls8 = { "title": "Surface temperature (Landsat 8)", "name": "ls8_st", "abstract": """ Surface temperature measures the Earth’s surface temperature and is an important geophysical parameter in global energy balance studies and hydrologic modeling. Surface temperature is also useful for monitoring crop and vegetation health, and extreme heat events such as natural disasters (e.g., volcanic eruptions, wildfires), and urban heat island effects. DE Africa provides access to Landsat Collection 2 Level-2 Surface Temperature products over Africa. USGS Landsat Collection 2 offers improved processing, geometric accuracy, and radiometric calibration compared to previous Collection 1 products. The Level-2 products are endorsed by the Committee on Earth Observation Satellites (CEOS) to be Analysis Ready Data for Land (CARD4L)-compliant. More techincal information about the Landsat Surface Temperature product can be found in the User Guide (https://docs.digitalearthafrica.org/en/latest/data_specs/Landsat_C2_ST_specs.html). Landsat 8 product has a spatial resolution of 30 m and a temporal coverage of 2013 to present. Landsat Level- 2 Surface Temperature Science Product courtesy of the U.S. Geological Survey. For more information on Landsat products, see https://www.usgs.gov/core-science-systems/nli/landsat/landsat-collection-2-level-2-science-products. This product is accessible through OGC Web Service (https://ows.digitalearth.africa/), for analysis in DE Africa Sandbox JupyterLab (https://github.com/digitalearthafrica/deafrica-sandbox-notebooks/wiki) and for direct download from AWS S3 (https://data.digitalearth.africa/). """, "product_name": "ls8_st", "bands": bands_ls8_st, "dynamic": True, "resource_limits": reslim_landsat, "image_processing": { "extent_mask_func": "datacube_ows.ogc_utils.mask_by_val", "always_fetch_bands": [], "manual_merge": False, # True "apply_solar_corrections": False, }, "flags": [ { "product": "ls8_st", "band": "QA_PIXEL", }, ], "native_crs": "EPSG:3857", "native_resolution": [30.0, -30.0], "styling": { "default_style": "surface_temperature", "styles": [ style_lsc2_st, style_lsc2_st_qa, style_lsc2_st_masked_ls8, ], }, } layer_ls7 = { "title": "Surface temperature (Landsat 7)", "name": "ls7_st", "abstract": """ Surface temperature measures the Earth’s surface temperature and is an important geophysical parameter in global energy balance studies and hydrologic modeling. Surface temperature is also useful for monitoring crop and vegetation health, and extreme heat events such as natural disasters (e.g., volcanic eruptions, wildfires), and urban heat island effects. DE Africa provides access to Landsat Collection 2 Level-2 Surface Temperature products over Africa. USGS Landsat Collection 2 offers improved processing, geometric accuracy, and radiometric calibration compared to previous Collection 1 products. The Level-2 products are endorsed by the Committee on Earth Observation Satellites (CEOS) to be Analysis Ready Data for Land (CARD4L)-compliant. More techincal information about the Landsat Surface Temperature product can be found in the User Guide (https://docs.digitalearthafrica.org/en/latest/data_specs/Landsat_C2_ST_specs.html). Landsat 7 product has a spatial resolution of 30 m and a temporal coverage of 1999 to present. Landsat Level- 2 Surface Temperature Science Product courtesy of the U.S. Geological Survey. For more information on Landsat products, see https://www.usgs.gov/core-science-systems/nli/landsat/landsat-collection-2-level-2-science-products. This product is accessible through OGC Web Service (https://ows.digitalearth.africa/), for analysis in DE Africa Sandbox JupyterLab (https://github.com/digitalearthafrica/deafrica-sandbox-notebooks/wiki) and for direct download from AWS S3 (https://data.digitalearth.africa/). """, "product_name": "ls7_st", "bands": bands_ls7_st, "dynamic": True, "resource_limits": reslim_landsat, "image_processing": { "extent_mask_func": "datacube_ows.ogc_utils.mask_by_val", "always_fetch_bands": [], "manual_merge": False, # True "apply_solar_corrections": False, }, "flags": [ { "product": "ls7_st", "band": "QA_PIXEL", }, ], "native_crs": "EPSG:3857", "native_resolution": [30.0, -30.0], "styling": { "default_style": "surface_temperature", "styles": [ style_lsc2_st, style_lsc2_st_qa, style_lsc2_st_masked, ], }, } layer_ls5 = { "title": "Surface temperature (Landsat 5)", "name": "ls5_st", "abstract": """ Surface temperature measures the Earth’s surface temperature and is an important geophysical parameter in global energy balance studies and hydrologic modeling. Surface temperature is also useful for monitoring crop and vegetation health, and extreme heat events such as natural disasters (e.g., volcanic eruptions, wildfires), and urban heat island effects. DE Africa provides access to Landsat Collection 2 Level-2 Surface Temperature products over Africa. USGS Landsat Collection 2 offers improved processing, geometric accuracy, and radiometric calibration compared to previous Collection 1 products. The Level-2 products are endorsed by the Committee on Earth Observation Satellites (CEOS) to be Analysis Ready Data for Land (CARD4L)-compliant. More techincal information about the Landsat Surface Temperature product can be found in the User Guide (https://docs.digitalearthafrica.org/en/latest/data_specs/Landsat_C2_ST_specs.html). Landsat 5 product has a spatial resolution of 30 m and a temporal coverage of 1984 to 2012. Landsat Level- 2 Surface Temperature Science Product courtesy of the U.S. Geological Survey. For more information on Landsat products, see https://www.usgs.gov/core-science-systems/nli/landsat/landsat-collection-2-level-2-science-products. This product is accessible through OGC Web Service (https://ows.digitalearth.africa/), for analysis in DE Africa Sandbox JupyterLab (https://github.com/digitalearthafrica/deafrica-sandbox-notebooks/wiki) and for direct download from AWS S3 (https://data.digitalearth.africa/). """, "product_name": "ls5_st", "bands": bands_ls5_st, "resource_limits": reslim_landsat, "image_processing": { "extent_mask_func": "datacube_ows.ogc_utils.mask_by_val", "always_fetch_bands": [], "manual_merge": False, # True "apply_solar_corrections": False, }, "flags": [ { "product": "ls5_st", "band": "QA_PIXEL", }, ], "native_crs": "EPSG:3857", "native_resolution": [30.0, -30.0], "styling": { "default_style": "surface_temperature", "styles": [ style_lsc2_st, style_lsc2_st_qa, style_lsc2_st_masked, ], }, }
40.075188
390
0.621764
[ "Apache-2.0" ]
FlexiGroBots-H2020/config
services/ows_refactored/surface_temperature/ows_lsc2_st_cfg.py
10,666
Python
""" Unit tests for nltk.tokenize. See also nltk/test/tokenize.doctest """ import pytest from nltk.tokenize import ( punkt, word_tokenize, TweetTokenizer, StanfordSegmenter, TreebankWordTokenizer, SyllableTokenizer, LegalitySyllableTokenizer, ) def setup_module(module): import pytest try: seg = StanfordSegmenter() seg.default_config("ar") seg.default_config("zh") except LookupError as e: pytest.skip( "Tests for nltk.tokenize.stanford_segmenter skipped: %s" % str(e) ) try: StanfordTokenizer() except LookupError: pytest.skip( "Tests for nltk.tokenize.stanford are skipped because the stanford postagger jar doesn't exist" ) class TestTokenize: def test_tweet_tokenizer(self): """ Test TweetTokenizer using words with special and accented characters. """ tokenizer = TweetTokenizer(strip_handles=True, reduce_len=True) s9 = "@myke: Let's test these words: resumé España München français" tokens = tokenizer.tokenize(s9) expected = [ ':', "Let's", 'test', 'these', 'words', ':', 'resumé', 'España', 'München', 'français', ] assert tokens == expected def test_sonority_sequencing_syllable_tokenizer(self): """ Test SyllableTokenizer tokenizer. """ tokenizer = SyllableTokenizer() tokens = tokenizer.tokenize('justification') assert tokens == ['jus', 'ti', 'fi', 'ca', 'tion'] def test_legality_principle_syllable_tokenizer(self): """ Test LegalitySyllableTokenizer tokenizer. """ from nltk.corpus import words test_word = "wonderful" tokenizer = LegalitySyllableTokenizer(words.words()) tokens = tokenizer.tokenize(test_word) assert tokens == ['won', 'der', 'ful'] def test_stanford_segmenter_arabic(self): """ Test the Stanford Word Segmenter for Arabic (default config) """ try: seg = StanfordSegmenter() seg.default_config('ar') sent = u'يبحث علم الحاسوب استخدام الحوسبة بجميع اشكالها لحل المشكلات' segmented_sent = seg.segment(sent.split()) assert segmented_sent.split() == [ 'يبحث', 'علم', 'الحاسوب', 'استخدام', 'الحوسبة', 'ب', 'جميع', 'اشكال', 'ها', 'ل', 'حل', 'المشكلات', ] except LookupError as e: pytest.skip(str(e)) def test_stanford_segmenter_chinese(self): """ Test the Stanford Word Segmenter for Chinese (default config) """ try: seg = StanfordSegmenter() seg.default_config('zh') sent = u"这是斯坦福中文分词器测试" segmented_sent = seg.segment(sent.split()) assert segmented_sent.split() == ['这', '是', '斯坦福', '中文', '分词器', '测试'] except LookupError as e: pytest.skip(str(e)) def test_phone_tokenizer(self): """ Test a string that resembles a phone number but contains a newline """ # Should be recognized as a phone number, albeit one with multiple spaces tokenizer = TweetTokenizer() test1 = "(393) 928 -3010" expected = ['(393) 928 -3010'] result = tokenizer.tokenize(test1) assert result == expected # Due to newline, first three elements aren't part of a phone number; # fourth is test2 = "(393)\n928 -3010" expected = ['(', '393', ')', "928 -3010"] result = tokenizer.tokenize(test2) assert result == expected def test_pad_asterisk(self): """ Test padding of asterisk for word tokenization. """ text = "This is a, *weird sentence with *asterisks in it." expected = ['This', 'is', 'a', ',', '*', 'weird', 'sentence', 'with', '*', 'asterisks', 'in', 'it', '.'] assert word_tokenize(text) == expected def test_pad_dotdot(self): """ Test padding of dotdot* for word tokenization. """ text = "Why did dotdot.. not get tokenized but dotdotdot... did? How about manydots....." expected = ['Why', 'did', 'dotdot', '..', 'not', 'get', 'tokenized', 'but', 'dotdotdot', '...', 'did', '?', 'How', 'about', 'manydots', '.....'] assert word_tokenize(text) == expected def test_remove_handle(self): """ Test remove_handle() from casual.py with specially crafted edge cases """ tokenizer = TweetTokenizer(strip_handles=True) # Simple example. Handles with just numbers should be allowed test1 = "@twitter hello @twi_tter_. hi @12345 @123news" expected = ['hello', '.', 'hi'] result = tokenizer.tokenize(test1) assert result == expected # Handles are allowed to follow any of the following characters test2 = "@n`@n~@n(@n)@n-@n=@n+@n\\@n|@n[@n]@n{@n}@n;@n:@n'@n\"@n/@n?@n.@n,@n<@n>@n @n\n@n ñ@n.ü@n.ç@n." expected = [ '`', '~', '(', ')', '-', '=', '+', '\\', '|', '[', ']', '{', '}', ';', ':', "'", '"', '/', '?', '.', ',', '<', '>', 'ñ', '.', 'ü', '.', 'ç', '.', ] result = tokenizer.tokenize(test2) assert result == expected # Handles are NOT allowed to follow any of the following characters test3 = "a@n j@n z@n A@n L@n Z@n 1@n 4@n 7@n 9@n 0@n _@n !@n @@n #@n $@n %@n &@n *@n" expected = [ 'a', '@n', 'j', '@n', 'z', '@n', 'A', '@n', 'L', '@n', 'Z', '@n', '1', '@n', '4', '@n', '7', '@n', '9', '@n', '0', '@n', '_', '@n', '!', '@n', '@', '@n', '#', '@n', '$', '@n', '%', '@n', '&', '@n', '*', '@n', ] result = tokenizer.tokenize(test3) assert result == expected # Handles are allowed to precede the following characters test4 = "@n!a @n#a @n$a @n%a @n&a @n*a" expected = ['!', 'a', '#', 'a', '$', 'a', '%', 'a', '&', 'a', '*', 'a'] result = tokenizer.tokenize(test4) assert result == expected # Tests interactions with special symbols and multiple @ test5 = "@n!@n @n#@n @n$@n @n%@n @n&@n @n*@n @n@n @@n @n@@n @n_@n @n7@n @nj@n" expected = [ '!', '@n', '#', '@n', '$', '@n', '%', '@n', '&', '@n', '*', '@n', '@n', '@n', '@', '@n', '@n', '@', '@n', '@n_', '@n', '@n7', '@n', '@nj', '@n', ] result = tokenizer.tokenize(test5) assert result == expected # Tests that handles can have a max length of 20 test6 = "@abcdefghijklmnopqrstuvwxyz @abcdefghijklmnopqrst1234 @abcdefghijklmnopqrst_ @abcdefghijklmnopqrstendofhandle" expected = ['uvwxyz', '1234', '_', 'endofhandle'] result = tokenizer.tokenize(test6) assert result == expected # Edge case where an @ comes directly after a long handle test7 = "@abcdefghijklmnopqrstu@abcde @abcdefghijklmnopqrst@abcde @abcdefghijklmnopqrst_@abcde @abcdefghijklmnopqrst5@abcde" expected = [ 'u', '@abcde', '@abcdefghijklmnopqrst', '@abcde', '_', '@abcde', '5', '@abcde', ] result = tokenizer.tokenize(test7) assert result == expected def test_treebank_span_tokenizer(self): """ Test TreebankWordTokenizer.span_tokenize function """ tokenizer = TreebankWordTokenizer() # Test case in the docstring test1 = "Good muffins cost $3.88\nin New (York). Please (buy) me\ntwo of them.\n(Thanks)." expected = [ (0, 4), (5, 12), (13, 17), (18, 19), (19, 23), (24, 26), (27, 30), (31, 32), (32, 36), (36, 37), (37, 38), (40, 46), (47, 48), (48, 51), (51, 52), (53, 55), (56, 59), (60, 62), (63, 68), (69, 70), (70, 76), (76, 77), (77, 78), ] result = list(tokenizer.span_tokenize(test1)) assert result == expected # Test case with double quotation test2 = "The DUP is similar to the \"religious right\" in the United States and takes a hardline stance on social issues" expected = [ (0, 3), (4, 7), (8, 10), (11, 18), (19, 21), (22, 25), (26, 27), (27, 36), (37, 42), (42, 43), (44, 46), (47, 50), (51, 57), (58, 64), (65, 68), (69, 74), (75, 76), (77, 85), (86, 92), (93, 95), (96, 102), (103, 109), ] result = list(tokenizer.span_tokenize(test2)) assert result == expected # Test case with double qoutation as well as converted quotations test3 = "The DUP is similar to the \"religious right\" in the United States and takes a ``hardline'' stance on social issues" expected = [ (0, 3), (4, 7), (8, 10), (11, 18), (19, 21), (22, 25), (26, 27), (27, 36), (37, 42), (42, 43), (44, 46), (47, 50), (51, 57), (58, 64), (65, 68), (69, 74), (75, 76), (77, 79), (79, 87), (87, 89), (90, 96), (97, 99), (100, 106), (107, 113), ] result = list(tokenizer.span_tokenize(test3)) assert result == expected def test_word_tokenize(self): """ Test word_tokenize function """ sentence = "The 'v', I've been fooled but I'll seek revenge." expected = ['The', "'", 'v', "'", ',', 'I', "'ve", 'been', 'fooled', 'but', 'I', "'ll", 'seek', 'revenge', '.'] assert word_tokenize(sentence) == expected sentence = "'v' 're'" expected = ["'", 'v', "'", "'re", "'"] assert word_tokenize(sentence) == expected def test_punkt_pair_iter(self): test_cases = [ ('12', [('1', '2'), ('2', None)]), ('123', [('1', '2'), ('2', '3'), ('3', None)]), ('1234', [('1', '2'), ('2', '3'), ('3', '4'), ('4', None)]), ] for (test_input, expected_output) in test_cases: actual_output = [x for x in punkt._pair_iter(test_input)] assert actual_output == expected_output def test_punkt_pair_iter_handles_stop_iteration_exception(self): # test input to trigger StopIteration from next() it = iter([]) # call method under test and produce a generator gen = punkt._pair_iter(it) # unpack generator, ensure that no error is raised list(gen) def test_punkt_tokenize_words_handles_stop_iteration_exception(self): obj = punkt.PunktBaseClass() class TestPunktTokenizeWordsMock: def word_tokenize(self, s): return iter([]) obj._lang_vars = TestPunktTokenizeWordsMock() # unpack generator, ensure that no error is raised list(obj._tokenize_words('test')) def test_punkt_tokenize_custom_lang_vars(self): # Create LangVars including a full stop end character as used in Bengali class BengaliLanguageVars(punkt.PunktLanguageVars): sent_end_chars = ('.', '?', '!', '\u0964') obj = punkt.PunktSentenceTokenizer(lang_vars = BengaliLanguageVars()) # We now expect these sentences to be split up into the individual sentences sentences = u"উপরাষ্ট্রপতি শ্রী এম ভেঙ্কাইয়া নাইডু সোমবার আই আই টি দিল্লির হীরক জয়ন্তী উদযাপনের উদ্বোধন করেছেন। অনলাইনের মাধ্যমে এই অনুষ্ঠানে কেন্দ্রীয় মানব সম্পদ উন্নয়নমন্ত্রী শ্রী রমেশ পোখরিয়াল ‘নিশাঙ্ক’ উপস্থিত ছিলেন। এই উপলক্ষ্যে উপরাষ্ট্রপতি হীরকজয়ন্তীর লোগো এবং ২০৩০-এর জন্য প্রতিষ্ঠানের লক্ষ্য ও পরিকল্পনার নথি প্রকাশ করেছেন।" expected = ["উপরাষ্ট্রপতি শ্রী এম ভেঙ্কাইয়া নাইডু সোমবার আই আই টি দিল্লির হীরক জয়ন্তী উদযাপনের উদ্বোধন করেছেন।", "অনলাইনের মাধ্যমে এই অনুষ্ঠানে কেন্দ্রীয় মানব সম্পদ উন্নয়নমন্ত্রী শ্রী রমেশ পোখরিয়াল ‘নিশাঙ্ক’ উপস্থিত ছিলেন।", "এই উপলক্ষ্যে উপরাষ্ট্রপতি হীরকজয়ন্তীর লোগো এবং ২০৩০-এর জন্য প্রতিষ্ঠানের লক্ষ্য ও পরিকল্পনার নথি প্রকাশ করেছেন।"] assert obj.tokenize(sentences) == expected def test_punkt_tokenize_no_custom_lang_vars(self): obj = punkt.PunktSentenceTokenizer() # We expect these sentences to not be split properly, as the Bengali full stop '।' is not included in the default language vars sentences = u"উপরাষ্ট্রপতি শ্রী এম ভেঙ্কাইয়া নাইডু সোমবার আই আই টি দিল্লির হীরক জয়ন্তী উদযাপনের উদ্বোধন করেছেন। অনলাইনের মাধ্যমে এই অনুষ্ঠানে কেন্দ্রীয় মানব সম্পদ উন্নয়নমন্ত্রী শ্রী রমেশ পোখরিয়াল ‘নিশাঙ্ক’ উপস্থিত ছিলেন। এই উপলক্ষ্যে উপরাষ্ট্রপতি হীরকজয়ন্তীর লোগো এবং ২০৩০-এর জন্য প্রতিষ্ঠানের লক্ষ্য ও পরিকল্পনার নথি প্রকাশ করেছেন।" expected = ["উপরাষ্ট্রপতি শ্রী এম ভেঙ্কাইয়া নাইডু সোমবার আই আই টি দিল্লির হীরক জয়ন্তী উদযাপনের উদ্বোধন করেছেন। অনলাইনের মাধ্যমে এই অনুষ্ঠানে কেন্দ্রীয় মানব সম্পদ উন্নয়নমন্ত্রী শ্রী রমেশ পোখরিয়াল ‘নিশাঙ্ক’ উপস্থিত ছিলেন। এই উপলক্ষ্যে উপরাষ্ট্রপতি হীরকজয়ন্তীর লোগো এবং ২০৩০-এর জন্য প্রতিষ্ঠানের লক্ষ্য ও পরিকল্পনার নথি প্রকাশ করেছেন।"] assert obj.tokenize(sentences) == expected
31.773784
348
0.467363
[ "Apache-2.0" ]
Geolem/nltk
nltk/test/unit/test_tokenize.py
17,387
Python
from kafka import KafkaConsumer KAFKA_SERVER_URL = 'localhost:9092' LOGIN = "bob" PWD = "bob-secret" TOPIC = "test-topic" GROUP_ID = 'bob-group' consumer = KafkaConsumer(TOPIC, group_id=GROUP_ID, bootstrap_servers=KAFKA_SERVER_URL, security_protocol="SASL_PLAINTEXT", sasl_mechanism='PLAIN', sasl_plain_username=LOGIN, sasl_plain_password=PWD) for msg in consumer: print(msg)
28.866667
100
0.69746
[ "Apache-2.0" ]
pengfei99/KafkaPyClient
kafka-python/ConsumerAuth.py
433
Python
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import torch from detr.models.backbone import Backbone, Joiner from detr.models.detr import DETR, PostProcess from detr.models.position_encoding import PositionEmbeddingSine from detr.models.segmentation import DETRsegm, PostProcessPanoptic from detr.models.transformer import Transformer dependencies = ["torch", "torchvision"] def _make_detr(backbone_name: str, dilation=False, num_classes=91, mask=False): hidden_dim = 256 backbone = Backbone(backbone_name, train_backbone=True, return_interm_layers=mask, dilation=dilation) pos_enc = PositionEmbeddingSine(hidden_dim // 2, normalize=True) backbone_with_pos_enc = Joiner(backbone, pos_enc) backbone_with_pos_enc.num_channels = backbone.num_channels transformer = Transformer(d_model=hidden_dim, return_intermediate_dec=True) detr = DETR(backbone_with_pos_enc, transformer, num_classes=num_classes, num_queries=100) if mask: return DETRsegm(detr) return detr def detr_resnet50(pretrained=False, num_classes=91, return_postprocessor=False): """ DETR R50 with 6 encoder and 6 decoder layers. Achieves 42/62.4 AP/AP50 on COCO val5k. """ model = _make_detr("resnet50", dilation=False, num_classes=num_classes) if pretrained: checkpoint = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/detr/detr-r50-e632da11.pth", map_location="cpu", check_hash=True ) model.load_state_dict(checkpoint["model"]) if return_postprocessor: return model, PostProcess() return model def detr_resnet50_dc5(pretrained=False, num_classes=91, return_postprocessor=False): """ DETR-DC5 R50 with 6 encoder and 6 decoder layers. The last block of ResNet-50 has dilation to increase output resolution. Achieves 43.3/63.1 AP/AP50 on COCO val5k. """ model = _make_detr("resnet50", dilation=True, num_classes=num_classes) if pretrained: checkpoint = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/detr/detr-r50-dc5-f0fb7ef5.pth", map_location="cpu", check_hash=True ) model.load_state_dict(checkpoint["model"]) if return_postprocessor: return model, PostProcess() return model def detr_resnet101(pretrained=False, num_classes=91, return_postprocessor=False): """ DETR-DC5 R101 with 6 encoder and 6 decoder layers. Achieves 43.5/63.8 AP/AP50 on COCO val5k. """ model = _make_detr("resnet101", dilation=False, num_classes=num_classes) if pretrained: checkpoint = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/detr/detr-r101-2c7b67e5.pth", map_location="cpu", check_hash=True ) model.load_state_dict(checkpoint["model"]) if return_postprocessor: return model, PostProcess() return model def detr_resnet101_dc5(pretrained=False, num_classes=91, return_postprocessor=False): """ DETR-DC5 R101 with 6 encoder and 6 decoder layers. The last block of ResNet-101 has dilation to increase output resolution. Achieves 44.9/64.7 AP/AP50 on COCO val5k. """ model = _make_detr("resnet101", dilation=True, num_classes=num_classes) if pretrained: checkpoint = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/detr/detr-r101-dc5-a2e86def.pth", map_location="cpu", check_hash=True ) model.load_state_dict(checkpoint["model"]) if return_postprocessor: return model, PostProcess() return model def detr_resnet50_panoptic( pretrained=False, num_classes=250, threshold=0.85, return_postprocessor=False ): """ DETR R50 with 6 encoder and 6 decoder layers. Achieves 43.4 PQ on COCO val5k. threshold is the minimum confidence required for keeping segments in the prediction """ model = _make_detr("resnet50", dilation=False, num_classes=num_classes, mask=True) is_thing_map = {i: i <= 90 for i in range(250)} if pretrained: checkpoint = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/detr/detr-r50-panoptic-00ce5173.pth", map_location="cpu", check_hash=True, ) model.load_state_dict(checkpoint["model"]) if return_postprocessor: return model, PostProcessPanoptic(is_thing_map, threshold=threshold) return model def detr_resnet50_dc5_panoptic( pretrained=False, num_classes=250, threshold=0.85, return_postprocessor=False ): """ DETR-DC5 R50 with 6 encoder and 6 decoder layers. The last block of ResNet-50 has dilation to increase output resolution. Achieves 44.6 on COCO val5k. threshold is the minimum confidence required for keeping segments in the prediction """ model = _make_detr("resnet50", dilation=True, num_classes=num_classes, mask=True) is_thing_map = {i: i <= 90 for i in range(250)} if pretrained: checkpoint = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/detr/detr-r50-dc5-panoptic-da08f1b1.pth", map_location="cpu", check_hash=True, ) model.load_state_dict(checkpoint["model"]) if return_postprocessor: return model, PostProcessPanoptic(is_thing_map, threshold=threshold) return model def detr_resnet101_panoptic( pretrained=False, num_classes=250, threshold=0.85, return_postprocessor=False ): """ DETR-DC5 R101 with 6 encoder and 6 decoder layers. Achieves 45.1 PQ on COCO val5k. threshold is the minimum confidence required for keeping segments in the prediction """ model = _make_detr("resnet101", dilation=False, num_classes=num_classes, mask=True) is_thing_map = {i: i <= 90 for i in range(250)} if pretrained: checkpoint = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/detr/detr-r101-panoptic-40021d53.pth", map_location="cpu", check_hash=True, ) model.load_state_dict(checkpoint["model"]) if return_postprocessor: return model, PostProcessPanoptic(is_thing_map, threshold=threshold) return model
37.218935
117
0.71097
[ "Apache-2.0" ]
justinkay/detr
detr/hubconf.py
6,290
Python
""" 'storage-add ' sub command """ #To prevent Py2 to interpreting print(val) as a tuple. from __future__ import print_function import os import tempfile import sys import json import utils from storage_yaml import to_storage_yaml # noqa # pylint: disable=too-many-branches def set_args(name, subparsers): """ add arguments, and their options """ parser = subparsers.add_parser(name) arg = parser.add_argument arg( "name", help="Storage Name" ) arg( "--type", help="Storage Type", choices=["Replica1", "Replica3", "External", "Replica2"], default=None ) arg( "--device", help=("Storage device in <node>:<device> format, " "Example: --device kube1.example.com:/dev/vdc"), default=[], action="append" ) arg( "--path", help=("Storage path in <node>:<path> format, " "Example: --path kube1.example.com:/exports/data"), default=[], action="append" ) arg( "--pvc", help="Storage from pvc, Example: --pvc local-pvc-1", default=[], action="append" ) arg( "--external", help="Storage from external gluster, Example: --external gluster-node:/gluster-volname", default=None ) arg( "--tiebreaker", help="If type is 'Replica2', one can have a tiebreaker node along " "with it. like '--tiebreaker tie-breaker-node-name:/data/tiebreaker'", default=None ) utils.add_global_flags(parser) def validate(args): """ validate arguments """ if args.external is not None: if args.type and args.type != "External": print("'--external' option is used only with '--type External'", file=sys.stderr) sys.exit(1) if ":" not in args.external: print("Invalid external storage details. Please specify " "details in the format <node>:/<volname>", file=sys.stderr) sys.exit(1) # Set type to External as '--external' option is provided args.type = "External" if args.tiebreaker: if args.type != "Replica2": print("'--tiebreaker' option should be used only with " "type 'Replica2'", file=sys.stderr) sys.exit(1) if ":" not in args.tiebreaker: print("Invalid tiebreaker details. Please specify details " "in the format <node>:/<path>", file=sys.stderr) sys.exit(1) else: args.tiebreaker = "tie-breaker.kadalu.io:/mnt" if not args.type: args.type = "Replica1" num_storages = (len(args.device) + len(args.path) + len(args.pvc)) or \ (1 if args.external is not None else 0) if num_storages == 0: print("Please specify at least one storage", file=sys.stderr) sys.exit(1) # pylint: disable=too-many-boolean-expressions if ((args.type == "Replica1" and num_storages != 1) or (args.type == "Replica2" and num_storages != 2) or (args.type == "Replica3" and num_storages != 3)): print("Number of storages not matching for type=%s" % args.type, file=sys.stderr) sys.exit(1) kube_nodes = get_kube_nodes(args) for dev in args.device: if ":" not in dev: print("Invalid storage device details. Please specify device " "details in the format <node>:<device>", file=sys.stderr) sys.exit(1) if (not args.dry_run) and (dev.split(":")[0] not in kube_nodes): print("Node name does not appear to be valid: " + dev) sys.exit(1) for path in args.path: if ":" not in path: print("Invalid storage path details. Please specify path " "details in the format <node>:<path>", file=sys.stderr) sys.exit(1) if (not args.dry_run) and (path.split(":")[0] not in kube_nodes): print("Node name does not appear to be valid: " + path) sys.exit(1) def get_kube_nodes(args): """ gets all nodes """ if args.dry_run: return [] cmd = utils.kubectl_cmd(args) + ["get", "nodes", "-ojson"] try: resp = utils.execute(cmd) data = json.loads(resp.stdout) nodes = [] for nodedata in data["items"]: nodes.append(nodedata["metadata"]["name"]) print("The following nodes are available:\n %s" % ", ".join(nodes)) print() return nodes except utils.CommandError as err: utils.command_error(cmd, err.stderr) except FileNotFoundError: utils.kubectl_cmd_help(args.kubectl_cmd) def storage_add_data(args): """ Build the config file """ content = { "apiVersion": "kadalu-operator.storage/v1alpha1", "kind": "KadaluStorage", "metadata": { "name": args.name }, "spec": { "type": args.type, "storage": [] } } # External details are specified, no 'storage' section required if args.external: node, vol = args.external.split(":") content["spec"]["details"] = [ { "gluster_host": node, "gluster_volname": vol.strip("/") } ] return content # Everything below can be provided for a 'Replica3' setup. # Or two types of data can be provided for 'Replica2'. # So, return only at the end. # Device details are specified if args.device: for devdata in args.device: node, dev = devdata.split(":") content["spec"]["storage"].append( { "node": node, "device": dev } ) # If Path is specified if args.path: for pathdata in args.path: node, path = pathdata.split(":") content["spec"]["storage"].append( { "node": node, "path": path } ) # If PVC is specified if args.pvc: for pvc in args.pvc: content["spec"]["storage"].append( { "pvc": pvc } ) # TODO: Support for different port can be added later if args.type == "Replica2": node, path = args.tiebreaker.split(":") content["spec"]["tiebreaker"] = { "node": node, "path": path, "port": 24007 } return content def run(args): """ Adds the subcommand arguments back to main CLI tool """ data = storage_add_data(args) yaml_content = to_storage_yaml(data) print("Storage Yaml file for your reference:\n") print(yaml_content) if args.dry_run: return if not args.script_mode: answer = "" valid_answers = ["yes", "no", "n", "y"] while answer not in valid_answers: answer = input("Is this correct?(Yes/No): ") answer = answer.strip().lower() if answer in ["n", "no"]: return config, tempfile_path = tempfile.mkstemp(prefix="kadalu") try: with os.fdopen(config, 'w') as tmp: tmp.write(yaml_content) cmd = utils.kubectl_cmd(args) + ["create", "-f", tempfile_path] resp = utils.execute(cmd) print("Storage add request sent successfully") print(resp.stdout) print() except utils.CommandError as err: os.remove(tempfile_path) utils.command_error(cmd, err.stderr) except FileNotFoundError: os.remove(tempfile_path) utils.kubectl_cmd_help(args.kubectl_cmd) finally: if os.path.exists(tempfile_path): os.remove(tempfile_path)
29.315985
96
0.547172
[ "Apache-2.0" ]
Joibel/kadalu
cli/kubectl_kadalu/storage_add.py
7,886
Python
from sun.geometry import Location, SunPath from date_time import Date loc = Location( name='Ghent', region='Belgium', latitude=51.07, longitude=3.69, timezone='Europe/Brussels', altitude=9.0 ) date = Date(year=2019, month=7, day=29) sp = SunPath(loc, date) sp.print_table()
19.933333
42
0.682274
[ "MIT" ]
TomLXXVI/pypv
pypv/scripts/sun_path.py
299
Python
# Copyright 2018-2020 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=protected-access r""" This module contains the abstract base classes for defining PennyLane operations and observables. Description ----------- Qubit Operations ~~~~~~~~~~~~~~~~ The :class:`Operator` class serves as a base class for operators, and is inherited by both the :class:`Observable` class and the :class:`Operation` class. These classes are subclassed to implement quantum operations and measure observables in PennyLane. * Each :class:`~.Operator` subclass represents a general type of map between physical states. Each instance of these subclasses represents either - an application of the operator or - an instruction to measure and return the respective result. Operators act on a sequence of wires (subsystems) using given parameter values. * Each :class:`~.Operation` subclass represents a type of quantum operation, for example a unitary quantum gate. Each instance of these subclasses represents an application of the operation with given parameter values to a given sequence of wires (subsystems). * Each :class:`~.Observable` subclass represents a type of physical observable. Each instance of these subclasses represents an instruction to measure and return the respective result for the given parameter values on a sequence of wires (subsystems). Differentiation ^^^^^^^^^^^^^^^ In general, an :class:`Operation` is differentiable (at least using the finite-difference method) with respect to a parameter iff * the domain of that parameter is continuous. For an :class:`Operation` to be differentiable with respect to a parameter using the analytic method of differentiation, it must satisfy an additional constraint: * the parameter domain must be real. .. note:: These conditions are *not* sufficient for analytic differentiation. For example, CV gates must also define a matrix representing their Heisenberg linear transformation on the quadrature operators. For gates that *are* supported via the analytic method, the gradient recipe works as follows: .. math:: \frac{\partial}{\partial\phi_k}f = \sum_{i} c_i f(a_i \phi_k+s_i). where :math:`f` is the expectation value of an observable on a circuit that has been evolved by the operation being considered with parameter :math:`\phi_k`, there are multiple terms indexed with :math:`i` for each parameter :math:`\phi` and the :math:`[c_i, a_i, s_i]` are coefficients specific to the gate. The following specific case holds for example for qubit operations that are generated by one of the Pauli matrices and results in an overall positive and negative shift: .. math:: \frac{\partial}{\partial\phi_k}f = \frac{1}{2}\left[f \left( \phi_k+\frac{\pi}{2} \right) - f \left( \phi_k-\frac{\pi}{2} \right)\right], i.e., so that :math:`[c_0, a_0, s_0]=[1/2, 1, \pi/2]` and :math:`[c_1, a_1, s_1]=[-1/2, 1, -\pi/2]`. CV Operation base classes ~~~~~~~~~~~~~~~~~~~~~~~~~ Due to additional requirements, continuous-variable (CV) operations must subclass the :class:`~.CVOperation` or :class:`~.CVObservable` classes instead of :class:`~.Operation` and :class:`~.Observable`. Differentiation ^^^^^^^^^^^^^^^ To enable gradient computation using the analytic method for Gaussian CV operations, in addition, you need to provide the static class method :meth:`~.CV._heisenberg_rep` that returns the Heisenberg representation of the operation given its list of parameters, namely: * For Gaussian CV Operations this method should return the matrix of the linear transformation carried out by the operation on the vector of quadrature operators :math:`\mathbf{r}` for the given parameter values. * For Gaussian CV Observables this method should return a real vector (first-order observables) or symmetric matrix (second-order observables) of coefficients of the quadrature operators :math:`\x` and :math:`\p`. PennyLane uses the convention :math:`\mathbf{r} = (\I, \x, \p)` for single-mode operations and observables and :math:`\mathbf{r} = (\I, \x_0, \p_0, \x_1, \p_1, \ldots)` for multi-mode operations and observables. .. note:: Non-Gaussian CV operations and observables are currently only supported via the finite-difference method of gradient computation. """ import abc import copy import itertools import functools import numbers from enum import Enum, IntEnum import numpy as np from numpy.linalg import multi_dot import pennylane as qml from pennylane.wires import Wires from .utils import pauli_eigs from .variable import Variable # ============================================================================= # Wire types # ============================================================================= class WiresEnum(IntEnum): """Integer enumeration class to represent the number of wires an operation acts on""" AnyWires = -1 AllWires = 0 AllWires = WiresEnum.AllWires """IntEnum: An enumeration which represents all wires in the subsystem. It is equivalent to an integer with value 0.""" AnyWires = WiresEnum.AnyWires """IntEnum: An enumeration which represents any wires in the subsystem. It is equivalent to an integer with value -1.""" # ============================================================================= # ObservableReturnTypes types # ============================================================================= class ObservableReturnTypes(Enum): """Enumeration class to represent the return types of an observable.""" Sample = "sample" Variance = "var" Expectation = "expval" Probability = "probs" State = "state" def __repr__(self): """String representation of the return types.""" return str(self.value) Sample = ObservableReturnTypes.Sample """Enum: An enumeration which represents sampling an observable.""" Variance = ObservableReturnTypes.Variance """Enum: An enumeration which represents returning the variance of an observable on specified wires.""" Expectation = ObservableReturnTypes.Expectation """Enum: An enumeration which represents returning the expectation value of an observable on specified wires.""" Probability = ObservableReturnTypes.Probability """Enum: An enumeration which represents returning probabilities of all computational basis states.""" State = ObservableReturnTypes.State """Enum: An enumeration which represents returning the state in the computational basis.""" # ============================================================================= # Class property # ============================================================================= class ClassPropertyDescriptor: # pragma: no cover """Allows a class property to be defined""" # pylint: disable=too-few-public-methods def __init__(self, fget, fset=None): self.fget = fget self.fset = fset def __get__(self, obj, klass=None): if klass is None: klass = type(obj) return self.fget.__get__(obj, klass)() def __set__(self, obj, value): if not self.fset: raise AttributeError("can't set attribute") type_ = type(obj) return self.fset.__get__(obj, type_)(value) def setter(self, func): """Set the function as a class method, and store as an attribute.""" if not isinstance(func, (classmethod, staticmethod)): func = classmethod(func) self.fset = func return self def classproperty(func): """The class property decorator""" if not isinstance(func, (classmethod, staticmethod)): func = classmethod(func) return ClassPropertyDescriptor(func) # ============================================================================= # Base Operator class # ============================================================================= class Operator(abc.ABC): r"""Base class for quantum operators supported by a device. The following class attributes must be defined for all Operators: * :attr:`~.Operator.num_params` * :attr:`~.Operator.num_wires` * :attr:`~.Operator.par_domain` Args: params (tuple[float, int, array, Variable]): operator parameters Keyword Args: wires (Iterable[Number, str], Number, str, Wires): Wires that the operator acts on. If not given, args[-1] is interpreted as wires. do_queue (bool): Indicates whether the operator should be immediately pushed into the Operator queue. """ do_check_domain = True #: bool: flag: should we perform a domain check for the parameters? def __copy__(self): cls = self.__class__ copied_op = cls.__new__(cls) copied_op.data = self.data.copy() copied_op._wires = self.wires copied_op._name = self._name if hasattr(self, "_inverse"): copied_op._inverse = self._inverse return copied_op def __deepcopy__(self, memo): cls = self.__class__ copied_op = cls.__new__(cls) # The memo dict maps object ID to object, and is required by # the deepcopy function to keep track of objects it has already # deep copied. memo[id(self)] = copied_op for attribute, value in self.__dict__.items(): if attribute == "data": # Shallow copy the list of parameters. We avoid a deep copy # here, since PyTorch does not support deep copying of tensors # within a differentiable computation. copied_op.data = value.copy() else: # Deep copy everything else. setattr(copied_op, attribute, copy.deepcopy(value, memo)) return copied_op @classmethod def _matrix(cls, *params): """Matrix representation of the operator in the computational basis. This is a *class method* that should be defined for all new operations and observables, that returns the matrix representing the operator in the computational basis. This private method allows matrices to be computed directly without instantiating the operators first. To return the matrices of *instantiated* operators, please use the :attr:`~.Operator.matrix` property instead. **Example:** >>> qml.RY._matrix(0.5) >>> array([[ 0.96891242+0.j, -0.24740396+0.j], [ 0.24740396+0.j, 0.96891242+0.j]]) Returns: array: matrix representation """ raise NotImplementedError @property def matrix(self): r"""Matrix representation of an instantiated operator in the computational basis. **Example:** >>> U = qml.RY(0.5, wires=1) >>> U.matrix >>> array([[ 0.96891242+0.j, -0.24740396+0.j], [ 0.24740396+0.j, 0.96891242+0.j]]) Returns: array: matrix representation """ return self._matrix(*self.parameters) @classmethod def _eigvals(cls, *params): """Eigenvalues of the operator. This is a *class method* that should be defined for all new operations and observables that returns the eigenvalues of the operator. Note that the eigenvalues are not guaranteed to be in any particular order. This private method allows eigenvalues to be computed directly without instantiating the operators first. The default implementation relies on the presence of the :attr:`_matrix` method. To return the eigenvalues of *instantiated* operators, please use the :attr:`~.Operator.eigvals` property instead. **Example:** >>> qml.RZ._eigvals(0.5) >>> array([0.96891242-0.24740396j, 0.96891242+0.24740396j]) Returns: array: eigenvalue representation """ return np.linalg.eigvals(cls._matrix(*params)) @property def eigvals(self): r"""Eigenvalues of an instantiated operator. Note that the eigenvalues are not guaranteed to be in any particular order. **Example:** >>> U = qml.RZ(0.5, wires=1) >>> U.eigvals >>> array([0.96891242-0.24740396j, 0.96891242+0.24740396j]) Returns: array: eigvals representation """ return self._eigvals(*self.parameters) @property @abc.abstractmethod def num_params(self): """Number of parameters the operator takes.""" @property @abc.abstractmethod def num_wires(self): """Number of wires the operator acts on.""" @property @abc.abstractmethod def par_domain(self): """Domain of the gate parameters. * ``'N'``: natural numbers (including zero). * ``'R'``: floats. * ``'A'``: arrays of real or complex values. * ``'L'``: list of arrays of real or complex values. * ``None``: if there are no parameters. """ @property def name(self): """String for the name of the operator.""" return self._name @name.setter def name(self, value): self._name = value def __init__(self, *params, wires=None, do_queue=True): # pylint: disable=too-many-branches self._name = self.__class__.__name__ #: str: name of the operator self.queue_idx = None #: int, None: index of the Operator in the circuit queue, or None if not in a queue if wires is None: raise ValueError("Must specify the wires that {} acts on".format(self.name)) if isinstance(wires, Wires): self._wires = wires else: self._wires = Wires(wires) #: Wires: wires on which the operator acts # check that the number of wires given corresponds to required number if ( self.num_wires != AllWires and self.num_wires != AnyWires and len(self._wires) != self.num_wires ): raise ValueError( "{}: wrong number of wires. " "{} wires given, {} expected.".format(self.name, len(self._wires), self.num_wires) ) if len(params) != self.num_params: raise ValueError( "{}: wrong number of parameters. " "{} parameters passed, {} expected.".format(self.name, len(params), self.num_params) ) # check the validity of the params if self.do_check_domain: for p in params: self.check_domain(p) self.data = list(params) #: list[Any]: parameters of the operator if do_queue: self.queue() def __repr__(self): """Constructor-call-like representation.""" # FIXME using self.parameters here instead of self.data is dangerous, it assumes the data can be evaluated # which is only true if something suitable happens to remain in VariableRef.positional_arg_values etc. after # the last evaluation. if self.parameters: params = ", ".join([repr(p) for p in self.parameters]) return "{}({}, wires={})".format(self.name, params, self.wires.tolist()) return "{}(wires={})".format(self.name, self.wires.tolist()) def check_domain(self, p, flattened=False): """Check the validity of a parameter. :class:`.Variable` instances can represent any real scalars (but not arrays). Args: p (Number, array, Variable): parameter to check flattened (bool): True means p is an element of a flattened parameter sequence (affects the handling of 'A' parameters) Raises: TypeError: parameter is not an element of the expected domain ValueError: parameter is an element of an unknown domain Returns: Number, array, Variable: p """ # pylint: disable=too-many-branches # If parameter is a NumPy scalar, convert it into a Python scalar. if isinstance(p, np.ndarray) and p.ndim == 0: p = p.item() if isinstance(p, Variable): if self.par_domain == "A": raise TypeError( "{}: Array parameter expected, got a Variable, " "which can only represent real scalars.".format(self.name) ) return p # p is not a Variable if self.par_domain == "A": if flattened: if isinstance(p, np.ndarray): raise TypeError( "{}: Flattened array parameter expected, got {}.".format(self.name, type(p)) ) else: if not isinstance(p, np.ndarray): raise TypeError( "{}: Array parameter expected, got {}.".format(self.name, type(p)) ) elif self.par_domain in ("R", "N"): if not isinstance(p, numbers.Real): raise TypeError( "{}: Real scalar parameter expected, got {}.".format(self.name, type(p)) ) if self.par_domain == "N": if not isinstance(p, numbers.Integral): raise TypeError( "{}: Natural number parameter expected, got {}.".format(self.name, type(p)) ) if p < 0: raise TypeError( "{}: Natural number parameter expected, got {}.".format(self.name, p) ) elif self.par_domain == "L": if not isinstance(p, list): raise TypeError("{}: List parameter expected, got {}.".format(self.name, type(p))) if not all(isinstance(elem, np.ndarray) for elem in p): raise TypeError("List elements must be Numpy arrays.") else: raise ValueError( "{}: Unknown parameter domain '{}'.".format(self.name, self.par_domain) ) return p @property def wires(self): """Wires of this operator. Returns: Wires: wires """ return self._wires @property def parameters(self): """Current parameter values. Fixed parameters are returned as is, free parameters represented by :class:`.Variable` instances are replaced by their current numerical value. Returns: list[Any]: parameter values """ # TODO profiling def evaluate(p): """Evaluate a single parameter.""" if isinstance(p, np.ndarray): # object arrays may have Variables inside them if p.dtype == object: temp = np.array([x.val if isinstance(x, Variable) else x for x in p.flat]) return temp.reshape(p.shape) return p if isinstance(p, list): # p is assumed to be a list of numpy arrays # object arrays may have Variables inside them evaled_list = [] for arr in p: if arr.dtype == object: temp = np.array([x.val if isinstance(x, Variable) else x for x in arr.flat]) evaled_list.append(temp.reshape(arr.shape)) return evaled_list return p if isinstance(p, Variable): p = self.check_domain(p.val) return p return [evaluate(p) for p in self.data] def queue(self): """Append the operator to the Operator queue.""" qml.QueuingContext.append(self) return self # so pre-constructed Observable instances can be queued and returned in a single statement # ============================================================================= # Base Operation class # ============================================================================= class Operation(Operator): r"""Base class for quantum operations supported by a device. As with :class:`~.Operator`, the following class attributes must be defined for all operations: * :attr:`~.Operator.num_params` * :attr:`~.Operator.num_wires` * :attr:`~.Operator.par_domain` The following two class attributes are optional, but in most cases should be clearly defined to avoid unexpected behavior during differentiation. * :attr:`~.Operation.grad_method` * :attr:`~.Operation.grad_recipe` Finally, there are some additional optional class attributes that may be set, and used by certain quantum optimizers: * :attr:`~.Operation.generator` Args: params (tuple[float, int, array, Variable]): operation parameters Keyword Args: wires (Sequence[int]): Subsystems it acts on. If not given, args[-1] is interpreted as wires. do_queue (bool): Indicates whether the operation should be immediately pushed into a :class:`BaseQNode` circuit queue. This flag is useful if there is some reason to run an Operation outside of a BaseQNode context. """ # pylint: disable=abstract-method string_for_inverse = ".inv" @property def grad_method(self): """Gradient computation method. * ``'A'``: analytic differentiation using the parameter-shift method. * ``'F'``: finite difference numerical differentiation. * ``None``: the operation may not be differentiated. Default is ``'F'``, or ``None`` if the Operation has zero parameters. """ return None if self.num_params == 0 else "F" grad_recipe = None r"""tuple(Union(list[list[float]], None)) or None: Gradient recipe for the parameter-shift method. This is a tuple with one nested list per operation parameter. For parameter :math:`\phi_k`, the nested list contains elements of the form :math:`[c_i, a_i, s_i]` where :math:`i` is the index of the term, resulting in a gradient recipe of .. math:: \frac{\partial}{\partial\phi_k}f = \sum_{i} c_i f(a_i \phi_k + s_i). If ``None``, the default gradient recipe containing the two terms :math:`[c_0, a_0, s_0]=[1/2, 1, \pi/2]` and :math:`[c_1, a_1, s_1]=[-1/2, 1, -\pi/2]` is assumed for every parameter. """ def get_parameter_shift(self, idx, shift=np.pi / 2): """Multiplier and shift for the given parameter, based on its gradient recipe. Args: idx (int): parameter index Returns: float, float: multiplier, shift """ # get the gradient recipe for this parameter recipe = self.grad_recipe[idx] # Default values multiplier = 0.5 / np.sin(shift) a = 1 # We set the default recipe following: # ∂f(x) = c*f(x+s) - c*f(x-s) # where we express a positive and a negative shift by default default_param_shift = [[multiplier, a, shift], [-multiplier, a, -shift]] param_shift = default_param_shift if recipe is None else recipe if hasattr(self.data[idx], "mult"): # Parameter is a variable, we are in non-tape mode # Need to use the internal multiplier in the Variable to update the # multiplier and the shift var_mult = self.data[idx].mult for elem in param_shift: # Update the multiplier elem[0] *= var_mult if var_mult != 0: # Update the shift # zero multiplier means the shift is unimportant elem[2] /= var_mult return param_shift @property def generator(self): r"""Generator of the operation. A length-2 list ``[generator, scaling_factor]``, where * ``generator`` is an existing PennyLane operation class or :math:`2\times 2` Hermitian array that acts as the generator of the current operation * ``scaling_factor`` represents a scaling factor applied to the generator operation For example, if :math:`U(\theta)=e^{i0.7\theta \sigma_x}`, then :math:`\sigma_x`, with scaling factor :math:`s`, is the generator of operator :math:`U(\theta)`: .. code-block:: python generator = [PauliX, 0.7] Default is ``[None, 1]``, indicating the operation has no generator. """ return [None, 1] @property def inverse(self): """Boolean determining if the inverse of the operation was requested.""" return self._inverse @inverse.setter def inverse(self, boolean): self._inverse = boolean @staticmethod def decomposition(*params, wires): """Returns a template decomposing the operation into other quantum operations.""" raise NotImplementedError def inv(self): """Inverts the operation, such that the inverse will be used for the computations by the specific device. This method concatenates a string to the name of the operation, to indicate that the inverse will be used for computations. Any subsequent call of this method will toggle between the original operation and the inverse of the operation. Returns: :class:`Operator`: operation to be inverted """ self.inverse = not self._inverse return self @property def matrix(self): op_matrix = self._matrix(*self.parameters) if self.inverse: return op_matrix.conj().T return op_matrix @property def eigvals(self): op_eigvals = self._eigvals(*self.parameters) if self.inverse: return op_eigvals.conj() return op_eigvals @property def base_name(self): """Get base name of the operator.""" return self.__class__.__name__ @property def name(self): """Get and set the name of the operator.""" return self._name + Operation.string_for_inverse if self.inverse else self._name def __init__(self, *params, wires=None, do_queue=True): self._inverse = False # check the grad_method validity if self.par_domain == "N": assert ( self.grad_method is None ), "An operation may only be differentiated with respect to real scalar parameters." elif self.par_domain == "A": assert self.grad_method in ( None, "F", ), "Operations that depend on arrays containing free variables may only be differentiated using the F method." # check the grad_recipe validity if self.grad_method == "A": if self.grad_recipe is None: # default recipe for every parameter self.grad_recipe = [None] * self.num_params else: assert ( len(self.grad_recipe) == self.num_params ), "Gradient recipe must have one entry for each parameter!" else: assert self.grad_recipe is None, "Gradient recipe is only used by the A method!" super().__init__(*params, wires=wires, do_queue=do_queue) class DiagonalOperation(Operation): r"""Base class for diagonal quantum operations supported by a device. As with :class:`~.Operation`, the following class attributes must be defined for all operations: * :attr:`~.Operator.num_params` * :attr:`~.Operator.num_wires` * :attr:`~.Operator.par_domain` The following two class attributes are optional, but in most cases should be clearly defined to avoid unexpected behavior during differentiation. * :attr:`~.Operation.grad_method` * :attr:`~.Operation.grad_recipe` Finally, there are some additional optional class attributes that may be set, and used by certain quantum optimizers: * :attr:`~.Operation.generator` Args: params (tuple[float, int, array, Variable]): operation parameters Keyword Args: wires (Sequence[int]): Subsystems it acts on. If not given, args[-1] is interpreted as wires. do_queue (bool): Indicates whether the operation should be immediately pushed into a :class:`BaseQNode` circuit queue. This flag is useful if there is some reason to run an Operation outside of a BaseQNode context. """ # pylint: disable=abstract-method @classmethod def _eigvals(cls, *params): """Eigenvalues of the operator. The order of the eigenvalues needs to match the order of the computational basis vectors. This is a *class method* that must be defined for all new diagonal operations, that returns the eigenvalues of the operator in the computational basis. This private method allows eigenvalues to be computed directly without instantiating the operators first. To return the eigenvalues of *instantiated* operators, please use the :attr:`~.Operator.eigvals` property instead. **Example:** >>> qml.RZ._eigvals(0.5) >>> array([0.96891242-0.24740396j, 0.96891242+0.24740396j]) Returns: array: eigenvalue representation """ raise NotImplementedError @property def eigvals(self): r"""Eigenvalues of an instantiated diagonal operation. The order of the eigenvalues needs to match the order of the computational basis vectors. **Example:** >>> U = qml.RZ(0.5, wires=1) >>> U.eigvals >>> array([0.96891242-0.24740396j, 0.96891242+0.24740396j]) Returns: array: eigvals representation """ return super().eigvals @classmethod def _matrix(cls, *params): return np.diag(cls._eigvals(*params)) class Channel(Operation, abc.ABC): r"""Base class for quantum channels. As with :class:`~.Operation`, the following class attributes must be defined for all channels: * :attr:`~.Operator.num_params` * :attr:`~.Operator.num_wires` * :attr:`~.Operator.par_domain` To define a noisy channel, the following attribute of :class:`~.Channel` can be used to list the corresponding Kraus matrices. * :attr:`~.Channel._kraus_matrices` The following two class attributes are optional, but in most cases should be clearly defined to avoid unexpected behavior during differentiation. * :attr:`~.Operation.grad_method` * :attr:`~.Operation.grad_recipe` Args: params (tuple[float, int, array, Variable]): operation parameters Keyword Args: wires (Sequence[int]): Subsystems the channel acts on. If not given, args[-1] is interpreted as wires. do_queue (bool): Indicates whether the operation should be immediately pushed into a :class:`BaseQNode` circuit queue. This flag is useful if there is some reason to run an Operation outside of a BaseQNode context. """ # pylint: disable=abstract-method @classmethod @abc.abstractmethod def _kraus_matrices(cls, *params): """Kraus matrices representing a quantum channel, specified in the computational basis. This is a class method that should be defined for all new channels. It returns the Kraus matrices representing the channel in the computational basis. This private method allows matrices to be computed directly without instantiating the channel first. **Example** >>> qml.AmplitudeDamping._kraus_matrices(0.1) >>> [array([[1. , 0. ], [0. , 0.9486833]]), array([[0. , 0.31622777], [0. , 0. ]])] To return the Kraus matrices of an *instantiated* channel, please use the :attr:`~.Operator.kraus_matrices` property instead. Returns: list(array): list of Kraus matrices """ raise NotImplementedError @property def kraus_matrices(self): r"""Kraus matrices of an instantiated channel in the computational basis. ** Example** >>> U = qml.AmplitudeDamping(0.1, wires=1) >>> U.kraus_matrices >>> [array([[1. , 0. ], [0. , 0.9486833]]), array([[0. , 0.31622777], [0. , 0. ]])] Returns: list(array): list of Kraus matrices """ return self._kraus_matrices(*self.parameters) # ============================================================================= # Base Observable class # ============================================================================= class Observable(Operator): """Base class for observables supported by a device. :class:`Observable` is used to describe Hermitian quantum observables. As with :class:`~.Operator`, the following class attributes must be defined for all observables: * :attr:`~.Operator.num_params` * :attr:`~.Operator.num_wires` * :attr:`~.Operator.par_domain` Args: params (tuple[float, int, array, Variable]): observable parameters Keyword Args: wires (Sequence[int]): subsystems it acts on. Currently, only one subsystem is supported. do_queue (bool): Indicates whether the operation should be immediately pushed into the Operator queue. """ # pylint: disable=abstract-method return_type = None @classmethod def _eigvals(cls, *params): """Eigenvalues of the observable. The order of the eigenvalues needs to match the order of the computational basis vectors when the observable is diagonalized using :attr:`diagonalizing_gates`. This is a *class method* that must be defined for all new diagonal operations, that returns the eigenvalues of the operator in the computational basis. This private method allows eigenvalues to be computed directly without instantiating the operators first. To return the eigenvalues of *instantiated* operators, please use the :attr:`~.Operator.eigvals` property instead. **Example:** >>> qml.PauliZ._eigvals() >>> array([1, -1]) Returns: array: eigenvalue representation """ raise NotImplementedError @property def eigvals(self): r"""Eigenvalues of an instantiated observable. The order of the eigenvalues needs to match the order of the computational basis vectors when the observable is diagonalized using :attr:`diagonalizing_gates`. This is a requirement for using qubit observables in quantum functions. **Example:** >>> U = qml.PauliZ(wires=1) >>> U.eigvals >>> array([1, -1]) Returns: array: eigvals representation """ return super().eigvals def __init__(self, *params, wires=None, do_queue=True): # extract the arguments if wires is None: wires = params[-1] params = params[:-1] super().__init__(*params, wires=wires, do_queue=do_queue) def __repr__(self): """Constructor-call-like representation.""" temp = super().__repr__() if self.return_type is None: return temp if self.return_type is Probability: return repr(self.return_type) + "(wires={})".format(self.wires.tolist()) return repr(self.return_type) + "(" + temp + ")" def __matmul__(self, other): if isinstance(other, Tensor): return other.__rmatmul__(self) if isinstance(other, Observable): return Tensor(self, other) raise ValueError("Can only perform tensor products between observables.") def _obs_data(self): r"""Extracts the data from a Observable or Tensor and serializes it in an order-independent fashion. This allows for comparison between observables that are equivalent, but are expressed in different orders. For example, `qml.PauliX(0) @ qml.PauliZ(1)` and `qml.PauliZ(1) @ qml.PauliX(0)` are equivalent observables with different orderings. **Example** >>> tensor = qml.PauliX(0) @ qml.PauliZ(1) >>> print(tensor._obs_data()) {("PauliZ", <Wires = [1]>, ()), ("PauliX", <Wires = [0]>, ())} """ obs = Tensor(self).non_identity_obs tensor = set() for ob in obs: parameters = tuple(param.tostring() for param in ob.parameters) tensor.add((ob.name, ob.wires, parameters)) return tensor def compare(self, other): r"""Compares with another :class:`~.Hamiltonian`, :class:`~Tensor`, or :class:`~Observable`, to determine if they are equivalent. Observables/Hamiltonians are equivalent if they represent the same operator (their matrix representations are equal), and they are defined on the same wires. .. Warning:: The compare method does **not** check if the matrix representation of a :class:`~.Hermitian` observable is equal to an equivalent observable expressed in terms of Pauli matrices. To do so would require the matrix form of Hamiltonians and Tensors be calculated, which would drastically increase runtime. Returns: (bool): True if equivalent. **Examples** >>> ob1 = qml.PauliX(0) @ qml.Identity(1) >>> ob2 = qml.Hamiltonian([1], [qml.PauliX(0)]) >>> ob1.compare(ob2) True >>> ob1 = qml.PauliX(0) >>> ob2 = qml.Hermitian(np.array([[0, 1], [1, 0]]), 0) >>> ob1.compare(ob2) False """ if isinstance(other, (Tensor, Observable)): return other._obs_data() == self._obs_data() if isinstance(other, qml.Hamiltonian): return other.compare(self) raise ValueError( "Can only compare an Observable/Tensor, and a Hamiltonian/Observable/Tensor." ) def __add__(self, other): r"""The addition operation between Observables/Tensors/qml.Hamiltonian objects.""" if isinstance(other, (Observable, Tensor)): return qml.Hamiltonian([1, 1], [self, other], simplify=True) if isinstance(other, qml.Hamiltonian): return other + self raise ValueError(f"Cannot add Observable and {type(other)}") def __mul__(self, a): r"""The scalar multiplication operation between a scalar and an Observable/Tensor.""" if isinstance(a, (int, float)): return qml.Hamiltonian([a], [self], simplify=True) raise ValueError(f"Cannot multiply Observable by {type(a)}") __rmul__ = __mul__ def __sub__(self, other): r"""The subtraction operation between Observables/Tensors/qml.Hamiltonian objects.""" if isinstance(other, (Observable, Tensor, qml.Hamiltonian)): return self.__add__(other.__mul__(-1)) raise ValueError(f"Cannot subtract {type(other)} from Observable") def diagonalizing_gates(self): r"""Returns the list of operations such that they diagonalize the observable in the computational basis. Returns: list(qml.Operation): A list of gates that diagonalize the observable in the computational basis. """ raise NotImplementedError class Tensor(Observable): """Container class representing tensor products of observables. To create a tensor, simply initiate it like so: >>> T = Tensor(qml.PauliX(0), qml.Hermitian(A, [1, 2])) You can also create a tensor from other Tensors: >>> T = Tensor(T, qml.PauliZ(4)) The ``@`` symbol can be used as a tensor product operation: >>> T = qml.PauliX(0) @ qml.Hadamard(2) """ # pylint: disable=abstract-method return_type = None tensor = True par_domain = None def __init__(self, *args): # pylint: disable=super-init-not-called self._eigvals_cache = None self.obs = [] for o in args: if isinstance(o, Tensor): self.obs.extend(o.obs) elif isinstance(o, Observable): self.obs.append(o) else: raise ValueError("Can only perform tensor products between observables.") def __copy__(self): cls = self.__class__ copied_op = cls.__new__(cls) copied_op.obs = self.obs.copy() copied_op._eigvals_cache = self._eigvals_cache return copied_op def __repr__(self): """Constructor-call-like representation.""" s = " @ ".join([repr(o) for o in self.obs]) if self.return_type is None: return s if self.return_type is Probability: return repr(self.return_type) + "(wires={})".format(self.wires.tolist()) return repr(self.return_type) + "(" + s + ")" @property def name(self): """All constituent observable names making up the tensor product. Returns: list[str]: list containing all observable names """ return [o.name for o in self.obs] @property def num_wires(self): """Number of wires the tensor product acts on. Returns: int: number of wires """ return len(self.wires) @property def wires(self): """All wires in the system the tensor product acts on. Returns: Wires: wires addressed by the observables in the tensor product """ return Wires.all_wires([o.wires for o in self.obs]) @property def data(self): """Raw parameters of all constituent observables in the tensor product. Returns: list[Any]: flattened list containing all dependent parameters """ return [p for sublist in [o.data for o in self.obs] for p in sublist] @property def num_params(self): """Raw parameters of all constituent observables in the tensor product. Returns: list[Any]: flattened list containing all dependent parameters """ return len(self.data) @property def parameters(self): """Evaluated parameter values of all constituent observables in the tensor product. Returns: list[list[Any]]: nested list containing the parameters per observable in the tensor product """ return [o.parameters for o in self.obs] @property def non_identity_obs(self): """Returns the non-identity observables contained in the tensor product. Returns: list[:class:`~.Observable`]: list containing the non-identity observables in the tensor product """ return [obs for obs in self.obs if not isinstance(obs, qml.Identity)] def __matmul__(self, other): if isinstance(other, Tensor): self.obs.extend(other.obs) return self if isinstance(other, Observable): self.obs.append(other) return self raise ValueError("Can only perform tensor products between observables.") def __rmatmul__(self, other): if isinstance(other, Observable): self.obs[:0] = [other] return self raise ValueError("Can only perform tensor products between observables.") __imatmul__ = __matmul__ @property def eigvals(self): """Return the eigenvalues of the specified tensor product observable. This method uses pre-stored eigenvalues for standard observables where possible. Returns: array[float]: array containing the eigenvalues of the tensor product observable """ if self._eigvals_cache is not None: return self._eigvals_cache standard_observables = {"PauliX", "PauliY", "PauliZ", "Hadamard"} # observable should be Z^{\otimes n} self._eigvals_cache = pauli_eigs(len(self.wires)) # Sort observables lexicographically by the strings of the wire labels # TODO: check for edge cases of the sorting, e.g. Tensor(Hermitian(obs, wires=[0, 2]), # Hermitian(obs, wires=[1, 3, 4]) # Sorting the observables based on wires, so that the order of # the eigenvalues is correct obs_sorted = sorted(self.obs, key=lambda x: [str(l) for l in x.wires.labels]) # check if there are any non-standard observables (such as Identity) if set(self.name) - standard_observables: # Tensor product of observables contains a mixture # of standard and non-standard observables self._eigvals_cache = np.array([1]) for k, g in itertools.groupby(obs_sorted, lambda x: x.name in standard_observables): if k: # Subgroup g contains only standard observables. self._eigvals_cache = np.kron(self._eigvals_cache, pauli_eigs(len(list(g)))) else: # Subgroup g contains only non-standard observables. for ns_ob in g: # loop through all non-standard observables self._eigvals_cache = np.kron(self._eigvals_cache, ns_ob.eigvals) return self._eigvals_cache def diagonalizing_gates(self): """Return the gate set that diagonalizes a circuit according to the specified tensor observable. This method uses pre-stored eigenvalues for standard observables where possible and stores the corresponding eigenvectors from the eigendecomposition. Returns: list: list containing the gates diagonalizing the tensor observable """ diag_gates = [] for o in self.obs: diag_gates.extend(o.diagonalizing_gates()) return diag_gates @property def matrix(self): r"""Matrix representation of the tensor operator in the computational basis. **Example:** Note that the returned matrix *only includes explicitly declared observables* making up the tensor product; that is, it only returns the matrix for the specified subsystem it is defined for. >>> O = qml.PauliZ(0) @ qml.PauliZ(2) >>> O.matrix array([[ 1, 0, 0, 0], [ 0, -1, 0, 0], [ 0, 0, -1, 0], [ 0, 0, 0, 1]]) To get the full :math:`2^3\times 2^3` Hermitian matrix acting on the 3-qubit system, the identity on wire 1 must be explicitly included: >>> O = qml.PauliZ(0) @ qml.Identity(1) @ qml.PauliZ(2) >>> O.matrix array([[ 1., 0., 0., 0., 0., 0., 0., 0.], [ 0., -1., 0., -0., 0., -0., 0., -0.], [ 0., 0., 1., 0., 0., 0., 0., 0.], [ 0., -0., 0., -1., 0., -0., 0., -0.], [ 0., 0., 0., 0., -1., -0., -0., -0.], [ 0., -0., 0., -0., -0., 1., -0., 0.], [ 0., 0., 0., 0., -0., -0., -1., -0.], [ 0., -0., 0., -0., -0., 0., -0., 1.]]) Returns: array: matrix representation """ # group the observables based on what wires they act on U_list = [] for _, g in itertools.groupby(self.obs, lambda x: x.wires.labels): # extract the matrices of each diagonalizing gate mats = [i.matrix for i in g] if len(mats) > 1: # multiply all unitaries together before appending mats = [multi_dot(mats)] # append diagonalizing unitary for specific wire to U_list U_list.append(mats[0]) # Return the Hermitian matrix representing the observable # over the defined wires. return functools.reduce(np.kron, U_list) def prune(self): """Returns a pruned tensor product of observables by removing :class:`~.Identity` instances from the observables building up the :class:`~.Tensor`. The ``return_type`` attribute is preserved while pruning. If the tensor product only contains one observable, then this observable instance is returned. Note that, as a result, this method can return observables that are not a :class:`~.Tensor` instance. **Example:** Pruning that returns a :class:`~.Tensor`: >>> O = qml.PauliZ(0) @ qml.Identity(1) @ qml.PauliZ(2) >>> O.prune() <pennylane.operation.Tensor at 0x7fc1642d1590 >>> [(o.name, o.wires) for o in O.prune().obs] [('PauliZ', [0]), ('PauliZ', [2])] Pruning that returns a single observable: >>> O = qml.PauliZ(0) @ qml.Identity(1) >>> O_pruned = O.prune() >>> (O_pruned.name, O_pruned.wires) ('PauliZ', [0]) Returns: ~.Observable: the pruned tensor product of observables """ if len(self.non_identity_obs) == 0: # Return a single Identity as the tensor only contains Identities obs = qml.Identity(self.wires[0]) elif len(self.non_identity_obs) == 1: obs = self.non_identity_obs[0] else: obs = Tensor(*self.non_identity_obs) obs.return_type = self.return_type return obs # ============================================================================= # CV Operations and observables # ============================================================================= class CV: """A mixin base class denoting a continuous-variable operation.""" # pylint: disable=no-member def heisenberg_expand(self, U, wires): """Expand the given local Heisenberg-picture array into a full-system one. Args: U (array[float]): array to expand (expected to be of the dimension ``1+2*self.num_wires``) wires (Wires): wires on the device the array ``U`` should be expanded to apply to Raises: ValueError: if the size of the input matrix is invalid or `num_wires` is incorrect Returns: array[float]: expanded array, dimension ``1+2*num_wires`` """ U_dim = len(U) nw = len(self.wires) if U.ndim > 2: raise ValueError("Only order-1 and order-2 arrays supported.") if U_dim != 1 + 2 * nw: raise ValueError("{}: Heisenberg matrix is the wrong size {}.".format(self.name, U_dim)) if len(wires) == 0 or len(self.wires) == len(wires): # no expansion necessary (U is a full-system matrix in the correct order) return U if not wires.contains_wires(self.wires): raise ValueError( "{}: Some observable wires {} do not exist on this device with wires {}".format( self.name, self.wires, wires ) ) # get the indices that the operation's wires have on the device wire_indices = wires.indices(self.wires) # expand U into the I, x_0, p_0, x_1, p_1, ... basis dim = 1 + len(wires) * 2 def loc(w): "Returns the slice denoting the location of (x_w, p_w) in the basis." ind = 2 * w + 1 return slice(ind, ind + 2) if U.ndim == 1: W = np.zeros(dim) W[0] = U[0] for k, w in enumerate(wire_indices): W[loc(w)] = U[loc(k)] elif U.ndim == 2: if isinstance(self, Observable): W = np.zeros((dim, dim)) else: W = np.eye(dim) W[0, 0] = U[0, 0] for k1, w1 in enumerate(wire_indices): s1 = loc(k1) d1 = loc(w1) # first column W[d1, 0] = U[s1, 0] # first row (for gates, the first row is always (1, 0, 0, ...), but not for observables!) W[0, d1] = U[0, s1] for k2, w2 in enumerate(wire_indices): W[d1, loc(w2)] = U[s1, loc(k2)] # block k1, k2 in U goes to w1, w2 in W. return W @staticmethod def _heisenberg_rep(p): r"""Heisenberg picture representation of the operation. * For Gaussian CV gates, this method returns the matrix of the linear transformation carried out by the gate for the given parameter values. The method is not defined for non-Gaussian gates. **The existence of this method is equivalent to setting** ``grad_method = 'A'``. * For observables, returns a real vector (first-order observables) or symmetric matrix (second-order observables) of expansion coefficients of the observable. For single-mode Operations we use the basis :math:`\mathbf{r} = (\I, \x, \p)`. For multi-mode Operations we use the basis :math:`\mathbf{r} = (\I, \x_0, \p_0, \x_1, \p_1, \ldots)`. .. note:: For gates, we assume that the inverse transformation is obtained by negating the first parameter. Args: p (Sequence[float]): parameter values for the transformation Returns: array[float]: :math:`\tilde{U}` or :math:`q` """ # pylint: disable=unused-argument return None @classproperty def supports_heisenberg(self): """Returns True iff the CV Operation has overridden the :meth:`~.CV._heisenberg_rep` static method, thereby indicating that it is Gaussian and does not block the use of the parameter-shift differentiation method if found between the differentiated gate and an observable. """ return CV._heisenberg_rep != self._heisenberg_rep class CVOperation(CV, Operation): """Base class for continuous-variable quantum operations.""" # pylint: disable=abstract-method @classproperty def supports_parameter_shift(self): """Returns True iff the CV Operation supports the parameter-shift differentiation method. This means that it has ``grad_method='A'`` and has overridden the :meth:`~.CV._heisenberg_rep` static method. """ return self.grad_method == "A" and self.supports_heisenberg def heisenberg_pd(self, idx): """Partial derivative of the Heisenberg picture transform matrix. Computed using grad_recipe. Args: idx (int): index of the parameter with respect to which the partial derivative is computed. Returns: array[float]: partial derivative """ # get the gradient recipe for this parameter recipe = self.grad_recipe[idx] # Default values multiplier = 0.5 a = 1 shift = np.pi / 2 # We set the default recipe to as follows: # ∂f(x) = c*f(x+s) - c*f(x-s) default_param_shift = [[multiplier, a, shift], [-multiplier, a, -shift]] param_shift = default_param_shift if recipe is None else recipe pd = None # partial derivative of the transformation p = self.parameters original_p_idx = p[idx] for c, _a, s in param_shift: # evaluate the transform at the shifted parameter values p[idx] = _a * original_p_idx + s U = self._heisenberg_rep(p) # pylint: disable=assignment-from-none if pd is None: pd = c * U else: pd += c * U return pd def heisenberg_tr(self, wires, inverse=False): r"""Heisenberg picture representation of the linear transformation carried out by the gate at current parameter values. Given a unitary quantum gate :math:`U`, we may consider its linear transformation in the Heisenberg picture, :math:`U^\dagger(\cdot) U`. If the gate is Gaussian, this linear transformation preserves the polynomial order of any observables that are polynomials in :math:`\mathbf{r} = (\I, \x_0, \p_0, \x_1, \p_1, \ldots)`. This also means it maps :math:`\text{span}(\mathbf{r})` into itself: .. math:: U^\dagger \mathbf{r}_i U = \sum_j \tilde{U}_{ij} \mathbf{r}_j For Gaussian CV gates, this method returns the transformation matrix for the current parameter values of the Operation. The method is not defined for non-Gaussian (and non-CV) gates. Args: wires (Wires): wires on the device that the observable gets applied to inverse (bool): if True, return the inverse transformation instead Raises: RuntimeError: if the specified operation is not Gaussian or is missing the `_heisenberg_rep` method Returns: array[float]: :math:`\tilde{U}`, the Heisenberg picture representation of the linear transformation """ p = self.parameters if inverse: if self.par_domain == "A": # TODO: expand this for the new par domain class, for non-unitary matrices. p[0] = np.linalg.inv(p[0]) else: p[0] = -p[0] # negate first parameter U = self._heisenberg_rep(p) # pylint: disable=assignment-from-none # not defined? if U is None: raise RuntimeError( "{} is not a Gaussian operation, or is missing the _heisenberg_rep method.".format( self.name ) ) return self.heisenberg_expand(U, wires) class CVObservable(CV, Observable): r"""Base class for continuous-variable observables. The class attribute :attr:`~.ev_order` can be defined to indicate to PennyLane whether the corresponding CV observable is a polynomial in the quadrature operators. If so, * ``ev_order = 1`` indicates a first order polynomial in quadrature operators :math:`(\x, \p)`. * ``ev_order = 2`` indicates a second order polynomial in quadrature operators :math:`(\x, \p)`. If :attr:`~.ev_order` is not ``None``, then the Heisenberg representation of the observable should be defined in the static method :meth:`~.CV._heisenberg_rep`, returning an array of the correct dimension. """ # pylint: disable=abstract-method ev_order = None #: None, int: if not None, the observable is a polynomial of the given order in `(x, p)`. def heisenberg_obs(self, wires): r"""Representation of the observable in the position/momentum operator basis. Returns the expansion :math:`q` of the observable, :math:`Q`, in the basis :math:`\mathbf{r} = (\I, \x_0, \p_0, \x_1, \p_1, \ldots)`. * For first-order observables returns a real vector such that :math:`Q = \sum_i q_i \mathbf{r}_i`. * For second-order observables returns a real symmetric matrix such that :math:`Q = \sum_{ij} q_{ij} \mathbf{r}_i \mathbf{r}_j`. Args: wires (Wires): wires on the device that the observable gets applied to Returns: array[float]: :math:`q` """ p = self.parameters U = self._heisenberg_rep(p) # pylint: disable=assignment-from-none return self.heisenberg_expand(U, wires) def operation_derivative(operation) -> np.ndarray: r"""Calculate the derivative of an operation. For an operation :math:`e^{i \hat{H} \phi t}`, this function returns the matrix representation in the standard basis of its derivative with respect to :math:`t`, i.e., .. math:: \frac{d \, e^{i \hat{H} \phi t}}{dt} = i \phi \hat{H} e^{i \hat{H} \phi t}, where :math:`\phi` is a real constant. Args: operation (.Operation): The operation to be differentiated. Returns: array: the derivative of the operation as a matrix in the standard basis Raises: ValueError: if the operation does not have a generator or is not composed of a single trainable parameter """ generator, prefactor = operation.generator if generator is None: raise ValueError(f"Operation {operation.name} does not have a generator") if operation.num_params != 1: # Note, this case should already be caught by the previous raise since we haven't worked out # how to have an operator for multiple parameters. It is added here in case of a future # change raise ValueError( f"Operation {operation.name} is not written in terms of a single parameter" ) if not isinstance(generator, np.ndarray): generator = generator.matrix if operation.inverse: prefactor *= -1 generator = generator.conj().T return 1j * prefactor * generator @ operation.matrix
34.822235
122
0.603598
[ "Apache-2.0" ]
DanielPolatajko/pennylane
pennylane/operation.py
61,709
Python
import os import sys sys.path.append(os.path.join(os.path.dirname(__file__), '../tools')) import files import phylogeny def main(argv): lines = files.read_lines(argv[0]) taxa = lines[0].split() table = lines[1:] print '\n'.join('{%s, %s} {%s, %s}' % (a1, a2, b1, b2) for ((a1, a2), (b1, b2)) in phylogeny.quartets(taxa, table)) if __name__ == "__main__": main(sys.argv[1:])
21.105263
119
0.610973
[ "MIT" ]
cowboysmall-comp/rosalind
src/stronghold/rosalind_qrt.py
401
Python
from __future__ import absolute_import, print_function from django.conf import settings CLIENT_ID = getattr(settings, "GITHUB_APP_ID", None) CLIENT_SECRET = getattr(settings, "GITHUB_API_SECRET", None) REQUIRE_VERIFIED_EMAIL = getattr(settings, "GITHUB_REQUIRE_VERIFIED_EMAIL", False) ERR_NO_ORG_ACCESS = "You do not have access to the required GitHub organization." ERR_NO_PRIMARY_EMAIL = ( "We were unable to find a primary email address associated with your GitHub account." ) ERR_NO_SINGLE_PRIMARY_EMAIL = ( "We were unable to find a single primary email address associated with your GitHub account." ) ERR_NO_VERIFIED_PRIMARY_EMAIL = ( "We were unable to find a verified, primary email address associated with your GitHub account." ) ERR_NO_SINGLE_VERIFIED_PRIMARY_EMAIL = "We were unable to find a single verified, primary email address associated with your GitHub account." # we request repo as we share scopes with the other GitHub integration SCOPE = "user:email,read:org,repo" # deprecated please use GITHUB_API_DOMAIN and GITHUB_BASE_DOMAIN DOMAIN = getattr(settings, "GITHUB_DOMAIN", "api.github.com") BASE_DOMAIN = getattr(settings, "GITHUB_BASE_DOMAIN", "github.com") API_DOMAIN = getattr(settings, "GITHUB_API_DOMAIN", DOMAIN) ACCESS_TOKEN_URL = "https://{0}/login/oauth/access_token".format(BASE_DOMAIN) AUTHORIZE_URL = "https://{0}/login/oauth/authorize".format(BASE_DOMAIN)
37.289474
141
0.791814
[ "BSD-3-Clause" ]
vaniot-s/sentry
src/sentry/auth/providers/github/constants.py
1,417
Python
from OpenGL.GL import * from .. GLGraphicsItem import GLGraphicsItem from .. MeshData import MeshData from pyqtgraph.Qt import QtGui import pyqtgraph as pg from .. import shaders import numpy as np __all__ = ['GLMeshItem'] class GLMeshItem(GLGraphicsItem): """ **Bases:** :class:`GLGraphicsItem <pyqtgraph.opengl.GLGraphicsItem>` Displays a 3D triangle mesh. """ def __init__(self, faces, vertexes=None): """ See :class:`MeshData <pyqtgraph.opengl.MeshData>` for initialization arguments. """ if isinstance(faces, MeshData): self.data = faces else: self.data = MeshData() self.data.setFaces(faces, vertexes) GLGraphicsItem.__init__(self) def initializeGL(self): self.shader = shaders.getShader('balloon') l = glGenLists(1) self.triList = l glNewList(l, GL_COMPILE) glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) glEnable( GL_BLEND ) glEnable( GL_ALPHA_TEST ) #glAlphaFunc( GL_ALWAYS,0.5 ) glEnable( GL_POINT_SMOOTH ) glDisable( GL_DEPTH_TEST ) glColor4f(1, 1, 1, .1) glBegin( GL_TRIANGLES ) for face in self.data: for (pos, norm, color) in face: glColor4f(*color) glNormal3f(norm.x(), norm.y(), norm.z()) glVertex3f(pos.x(), pos.y(), pos.z()) glEnd() glEndList() #l = glGenLists(1) #self.meshList = l #glNewList(l, GL_COMPILE) #glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) #glEnable( GL_BLEND ) #glEnable( GL_ALPHA_TEST ) ##glAlphaFunc( GL_ALWAYS,0.5 ) #glEnable( GL_POINT_SMOOTH ) #glEnable( GL_DEPTH_TEST ) #glColor4f(1, 1, 1, .3) #glBegin( GL_LINES ) #for f in self.faces: #for i in [0,1,2]: #j = (i+1) % 3 #glVertex3f(*f[i]) #glVertex3f(*f[j]) #glEnd() #glEndList() def paint(self): shaders.glUseProgram(self.shader) glCallList(self.triList) shaders.glUseProgram(0) #glCallList(self.meshList)
28.78481
87
0.559367
[ "MIT" ]
robertsj/poropy
pyqtgraph/opengl/items/GLMeshItem.py
2,274
Python
import os, sys try: import MacOS except: MacOS = None from pygame.pkgdata import getResource from pygame import sdlmain_osx __all__ = ['Video_AutoInit'] def Video_AutoInit(): """This is a function that's called from the c extension code just before the display module is initialized""" if MacOS and not MacOS.WMAvailable(): if not sdlmain_osx.WMEnable(): raise ImportError("Can not access the window manager. Use py2app or execute with the pythonw script.") if not sdlmain_osx.RunningFromBundleWithNSApplication(): try: default_icon_data = getResource('pygame_icon.tiff').read() except IOError: default_icon_data = None except NotImplementedError: default_icon_data = None sdlmain_osx.InstallNSApplication(default_icon_data) if (os.getcwd() == '/') and len(sys.argv) > 1: os.chdir(os.path.dirname(sys.argv[0])) return True
30.03125
115
0.676379
[ "MIT" ]
AdamaTraore75020/PYBomber
venv/Lib/site-packages/pygame/macosx.py
961
Python
import sys from pathlib import Path, PurePath sys.path.append("./models/research/object_detection/") sys.path.append("./models/research/") import os import cv2 import numpy as np import tensorflow as tf from utils import label_map_util from utils import visualization_utils as vis_util from image_to_video_converter import images_to_video from PIL import Image class detector: def __init__(self, model_directory): model_path = os.path.join(model_directory, 'frozen_inference_graph.pb') labelmap_path = os.path.join(model_directory, 'labelmap.pbtxt') self.num_classes = 5 self.label_map = label_map_util.load_labelmap(labelmap_path) self.categories = label_map_util.convert_label_map_to_categories(self.label_map, max_num_classes=self.num_classes, use_display_name=True) self.category_index = label_map_util.create_category_index(self.categories) self.detection_graph = tf.Graph() with self.detection_graph.as_default(): self.od_graph_def = tf.GraphDef() with tf.gfile.GFile(model_path, 'rb') as fid: self.serialized_graph = fid.read() self.od_graph_def.ParseFromString(self.serialized_graph) tf.import_graph_def(self.od_graph_def, name='') self.sess = tf.Session(graph=self.detection_graph) # Define input and output tensors (i.e. data) for the object detection classifier self.image_tensor = self.detection_graph.get_tensor_by_name('image_tensor:0') self.detection_boxes = self.detection_graph.get_tensor_by_name('detection_boxes:0') self.detection_scores = self.detection_graph.get_tensor_by_name('detection_scores:0') self.detection_classes = self.detection_graph.get_tensor_by_name('detection_classes:0') self.num_detections = self.detection_graph.get_tensor_by_name('num_detections:0') def draw_boxes_for_image(self, frame, min_score_threshold): frame_expanded = np.expand_dims(frame, axis=0) (boxes, scores, classes, num) = self.sess.run( [self.detection_boxes, self.detection_scores, self.detection_classes, self.num_detections], feed_dict={self.image_tensor: frame_expanded}) vis_util.visualize_boxes_and_labels_on_image_array( frame, np.squeeze(boxes), np.squeeze(classes).astype(np.int32), np.squeeze(scores), self.category_index, use_normalized_coordinates=True, line_thickness=2, min_score_thresh=min_score_threshold) """ print("Self cateogry index") print(self.category_index) print("Score/Classes") for box, score, cls in zip(np.squeeze(boxes), np.squeeze(scores),np.squeeze(classes).astype(np.int32)): print(score, cls, self.category_index[cls]) """ good_boxes = [box for box, score, cls in zip(np.squeeze(boxes), np.squeeze(scores), np.squeeze(classes).astype(np.int32)) if score >= min_score_threshold and 'traffic' not in self.category_index[cls]['name']] return frame, good_boxes @staticmethod def denormalize(box, width, height): # Order taken from: https://www.tensorflow.org/api_docs/python/tf/image/draw_bounding_boxes y_min, x_min, y_max, x_max = box[0], box[1], box[2], box[3] x_min *= width x_max *= width y_min *= height y_max *= height return [x_min, x_max, y_min, y_max] @staticmethod def log_boxes(frame_number, boxes, ofile, width, height): for box in boxes: box = detector.denormalize(box, width, height) # Cast float coordinates to integers box = map(int, box) box = [frame_number] + list(box) line = "|".join(map(str, box)) print(line, file=ofile) def process_image(self, video_name, frame_number, image_path, min_score_threshold, output_path, save_images): image = cv2.imread(image_path) image_name = Path(image_path).stem result_frame = None # Set up logging file log_name = os.path.join(output_path, f"{video_name}_log.txt") with open(log_name, 'a') as log_file: print("At Frame:", frame_number) frame = np.array(image) # Draw boxes frame, boxes = self.draw_boxes_for_image(frame, min_score_threshold) height, width, layers = frame.shape # Log boxes detector.log_boxes(frame_number, boxes, log_file, width, height) # Save frame with boxes for output result_frame = frame # Save frame with boxes if save_images: frame_path = os.path.join(output_path, f"{video_name}_frame_{image_name}.png") print("Saving image at", frame_path) vis_util.save_image_array_as_png(frame, frame_path) return result_frame def process_image_folder(self, folder_path, min_score_threshold, output_path, save_images): folder_name = Path(folder_path).stem frames = [] file_names = os.listdir(folder_path) file_names.sort() for f in file_names: image_path = os.path.join(folder_path, f) if os.path.isfile(image_path): frame_number = len(frames) next_frame = self.process_image(folder_name, frame_number, image_path, min_score_threshold, output_path, save_images) frames.append(next_frame) if save_images: video_path = os.path.join(output_path, folder_name) video = cv2.VideoCapture(video_path) print("Saving video at", video_path) images_to_video(frames, video_path, 30) def process_video(self, video_path, min_score_threshold, output_path, save_images): video_name = Path(video_path).stem # Open video file video = cv2.VideoCapture(video_path) # Set up logging file log_name = os.path.join(output_path, f"{video_name}_log.txt") with open(log_name, 'a') as log_file: frames = [] while(video.isOpened()): ret, frame = video.read() if not ret: break frame_number = len(frames) print("At Frame:", frame_number) # Draw boxes frame, boxes = self.draw_boxes_for_image(frame, min_score_threshold) height, width, layers = frame.shape # Log boxes detector.log_boxes(frame_number, boxes, log_file, width, height) # Save frame with boxes if save_images: frame_path = os.path.join(output_path, f"{video_name}_frame_{frame_number}.png") print("Saving image at", frame_path) vis_util.save_image_array_as_png(frame, frame_path) frames.append(frame) # Save as video if save_images: out_video_path = os.path.join(output_path, f"{video_name}.avi") print("Saving video at", out_video_path) images_to_video(frames, out_video_path, 30) # Clean up video.release() cv2.destroyAllWindows() def default_detector(): det = detector("./trained_model/detectors/") return det def default_inference(): det = default_detector() det.process_video("./data/SignaledJunctionRightTurn_1.avi", 0.70, "./output/temp/", False) return det if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument('--model_path', help='Path to the frozen inference graph and labelmap files', required=True) parser.add_argument('--video_path', help='Path to the video', required=True) parser.add_argument('--min_threshold', type=float, help='Minimum score threshold for a bounding box to be drawn', default=0.7) parser.add_argument('--output_path', help='Path for storing output images and/or logs', required=True) parser.add_argument('--save_images', action='store_true') args = parser.parse_args() det = detector(args.model_path) det.process_video(args.video_path, args.min_threshold, args.output_path, args.save_images)
47.212766
131
0.609283
[ "Unlicense" ]
s-nandi/carla-car-detection
detection.py
8,876
Python
#!/usr/bin/env python # # mri_convert_ppc64 ds ChRIS plugin app # # (c) 2016-2019 Fetal-Neonatal Neuroimaging & Developmental Science Center # Boston Children's Hospital # # http://childrenshospital.org/FNNDSC/ # [email protected] # import os import sys sys.path.append(os.path.dirname(__file__)) # import the Chris app superclass from chrisapp.base import ChrisApp Gstr_title = """ _ _ ____ ___ (_) | | / ___| / | _ __ ___ _ __ _ ___ ___ _ ____ _____ _ __| |_ _ __ _ __ ___/ /___ / /| | | '_ ` _ \| '__| | / __/ _ \| '_ \ \ / / _ \ '__| __| | '_ \| '_ \ / __| ___ \/ /_| | | | | | | | | | || (_| (_) | | | \ V / __/ | | |_ | |_) | |_) | (__| \_/ |\___ | |_| |_| |_|_| |_| \___\___/|_| |_|\_/ \___|_| \__| | .__/| .__/ \___\_____/ |_/ ______ ______| | | | |______| |______|_| |_| """ Gstr_synopsis = """ NAME mri_convert_ppc64.py SYNOPSIS python mri_convert_ppc64.py \\ [-h] [--help] \\ [--json] \\ [--man] \\ [--meta] \\ [--savejson <DIR>] \\ [-v <level>] [--verbosity <level>] \\ [--version] \\ [--inputFile <inputFile>] \\ [--outputFile <outputFile>] \\ [--executable <executable>] \\ [--execArgs <execArgs>] \\ <inputDir> \\ <outputDir> BRIEF EXAMPLE * Bare bones execution mkdir in out && chmod 777 out python mri_convert_ppc64.py \\ in out DESCRIPTION `mri_convert_ppc64.py` calls an underlying executable (typically 'mri_convert') and passes it an input and output spec. ARGS [--inputFile <inputFile>] The input file, relative to <inputDir>. [--outputFile <outputFile>] The output file, relative to <outpufDir>. [--executable <executable>] The actual executable to run. [--execArgs <execArgs>] Additional executable-specific command line args. [-h] [--help] If specified, show help message and exit. [--json] If specified, show json representation of app and exit. [--man] If specified, print (this) man page and exit. [--meta] If specified, print plugin meta data and exit. [--savejson <DIR>] If specified, save json representation file to DIR and exit. [-v <level>] [--verbosity <level>] Verbosity level for app. Not used currently. [--version] If specified, print version number and exit. """ class Mri_convert_ppc64(ChrisApp): """ This calls a pre-built PPC64 'mri_convert' that is housed in a base container.. """ AUTHORS = 'BU-2019-Power9 ([email protected])' SELFPATH = os.path.dirname(os.path.abspath(__file__)) SELFEXEC = os.path.basename(__file__) EXECSHELL = 'python3' TITLE = 'A PowerPPC plugin to run the FreeSurfer mri_convert' CATEGORY = '' TYPE = 'ds' DESCRIPTION = 'This calls a pre-built PPC64 mri_convert that is housed in a base container.' DOCUMENTATION = 'http://wiki' VERSION = '0.1' ICON = '' # url of an icon image LICENSE = 'Opensource (MIT)' MAX_NUMBER_OF_WORKERS = 1 # Override with integer value MIN_NUMBER_OF_WORKERS = 1 # Override with integer value MAX_CPU_LIMIT = '' # Override with millicore value as string, e.g. '2000m' MIN_CPU_LIMIT = '' # Override with millicore value as string, e.g. '2000m' MAX_MEMORY_LIMIT = '' # Override with string, e.g. '1Gi', '2000Mi' MIN_MEMORY_LIMIT = '' # Override with string, e.g. '1Gi', '2000Mi' MIN_GPU_LIMIT = 0 # Override with the minimum number of GPUs, as an integer, for your plugin MAX_GPU_LIMIT = 0 # Override with the maximum number of GPUs, as an integer, for your plugin # Use this dictionary structure to provide key-value output descriptive information # that may be useful for the next downstream plugin. For example: # # { # "finalOutputFile": "final/file.out", # "viewer": "genericTextViewer", # } # # The above dictionary is saved when plugin is called with a ``--saveoutputmeta`` # flag. Note also that all file paths are relative to the system specified # output directory. OUTPUT_META_DICT = {} def define_parameters(self): """ Define the CLI arguments accepted by this plugin app. Use self.add_argument to specify a new app argument. """ self.add_argument('--executable', dest = 'executable', type = str, optional = True, help = 'the conversion program to use', default = '/usr/bin/mri_convert') self.add_argument('--inputFile', dest = 'inputFile', type = str, optional = True, help = 'the input file', default = '') self.add_argument('--outputFile', dest = 'outputFile', type = str, optional = True, help = 'the output file', default = '') self.add_argument('--execArgs', dest = 'execArgs', type = str, optional = True, help = 'additonal arguments for the chosen executable', default = '') def run(self, options): """ Define the code to be run by this plugin app. """ if not len(options.inputFile): print("ERROR: No input file has been specified!") print("You must specify an input file relative to the input directory.") sys.exit(1) if not len(options.outputFile): print("ERROR: No output file has been specified!") print("You must specicy an output file relative to the output directory.") sys.exit(1) str_cmd = '%s %s %s/%s %s/%s' % ( options.executable, options.execArgs, options.inputdir, options.inputFile, options.outputdir, options.outputFile) os.system(str_cmd) def show_man_page(self): """ Print the app's man page. """ print(Gstr_title) print(Gstr_synopsis) # ENTRYPOINT if __name__ == "__main__": chris_app = Mri_convert_ppc64() chris_app.launch()
39.677273
108
0.414251
[ "MIT" ]
quinnyyy/pl-mri_convert_ppc64
mri_convert_ppc64/mri_convert_ppc64.py
8,729
Python
from typing import Tuple, FrozenSet from collections import Iterable from mathsat import msat_term, msat_env from mathsat import msat_make_constant, msat_declare_function from mathsat import msat_get_integer_type, msat_get_rational_type, msat_get_bool_type from mathsat import msat_make_and, msat_make_not, msat_make_or from mathsat import msat_make_leq, msat_make_equal from mathsat import msat_make_number, msat_make_plus from pysmt.environment import Environment as PysmtEnv import pysmt.typing as types from ltl.ltl import TermMap, LTLEncoder from utils import name_next, symb_to_next from hint import Hint, Location def msat_make_lt(menv: msat_env, arg0: msat_term, arg1: msat_term): geq = msat_make_geq(menv, arg0, arg1) return msat_make_not(menv, geq) def msat_make_geq(menv: msat_env, arg0: msat_term, arg1: msat_term): return msat_make_leq(menv, arg1, arg0) def msat_make_gt(menv: msat_env, arg0: msat_term, arg1: msat_term): leq = msat_make_leq(menv, arg0, arg1) return msat_make_not(menv, leq) def msat_make_impl(menv: msat_env, arg0: msat_term, arg1: msat_term): n_arg0 = msat_make_not(menv, arg0) return msat_make_or(menv, n_arg0, arg1) def check_ltl(menv: msat_env, enc: LTLEncoder) -> Tuple[Iterable, msat_term, msat_term, msat_term]: assert menv assert isinstance(menv, msat_env) assert enc assert isinstance(enc, LTLEncoder) bool_type = msat_get_bool_type(menv) real_type = msat_get_rational_type(menv) i = msat_declare_function(menv, "i", real_type) i = msat_make_constant(menv, i) r = msat_declare_function(menv, "r", real_type) r = msat_make_constant(menv, r) l = msat_declare_function(menv, "l", real_type) l = msat_make_constant(menv, l) inc_i = msat_declare_function(menv, "inc_i", bool_type) inc_i = msat_make_constant(menv, inc_i) x_i = msat_declare_function(menv, name_next("i"), real_type) x_i = msat_make_constant(menv, x_i) x_r = msat_declare_function(menv, name_next("r"), real_type) x_r = msat_make_constant(menv, x_r) x_l = msat_declare_function(menv, name_next("l"), real_type) x_l = msat_make_constant(menv, x_l) x_inc_i = msat_declare_function(menv, name_next("inc_i"), bool_type) x_inc_i = msat_make_constant(menv, x_inc_i) curr2next = {i: x_i, r: x_r, l: x_l, inc_i: x_inc_i} zero = msat_make_number(menv, "0") one = msat_make_number(menv, "1") r_gt_0 = msat_make_gt(menv, r, zero) r_lt_l = msat_make_lt(menv, r, l) i_geq_0 = msat_make_geq(menv, i, zero) init = msat_make_and(menv, r_gt_0, r_lt_l) init = msat_make_and(menv, init, msat_make_and(menv, i_geq_0, msat_make_not(menv, inc_i))) init = msat_make_and(menv, init, msat_make_gt(menv, l, zero)) # r' = r trans = msat_make_equal(menv, x_r, r) # i < l -> ((inc_i' & i' = i + 1) | (!inc_i' & i' = i)) & l' = l i_lt_l = msat_make_lt(menv, i, l) x_i_eq_i_p_1 = msat_make_and(menv, x_inc_i, msat_make_equal(menv, x_i, msat_make_plus(menv, i, one))) x_i_eq_i = msat_make_and(menv, msat_make_not(menv, x_inc_i), msat_make_equal(menv, x_i, i)) x_i_eq_i_p_1_or_i = msat_make_or(menv, x_i_eq_i_p_1, x_i_eq_i) x_l_eq_l = msat_make_equal(menv, x_l, l) x_i_eq_i_p_1_or_i_and_x_l_eq_l = msat_make_and(menv, x_i_eq_i_p_1_or_i, x_l_eq_l) trans = msat_make_and(menv, trans, msat_make_impl(menv, i_lt_l, x_i_eq_i_p_1_or_i_and_x_l_eq_l)) # i >= l -> i' = 0 & l' = l + 1 & !inc_i' i_geq_l = msat_make_geq(menv, i, l) x_i_eq_0 = msat_make_equal(menv, x_i, zero) x_l_eq_l_p_1 = msat_make_equal(menv, x_l, msat_make_plus(menv, l, one)) x_i_eq_0_and_x_l_eq_l_p_1 = msat_make_and(menv, msat_make_and(menv, x_i_eq_0, x_l_eq_l_p_1), msat_make_not(menv, x_inc_i)) trans = msat_make_and(menv, trans, msat_make_impl(menv, i_geq_l, x_i_eq_0_and_x_l_eq_l_p_1)) # (G F inc_i) -> ! G F r > i G_F_x_i_gt_i = enc.make_G(enc.make_F(inc_i)) r_gt_i = msat_make_gt(menv, r, i) n_G_F_r_gt_i = msat_make_not(menv, enc.make_G(enc.make_F(r_gt_i))) ltl = msat_make_impl(menv, G_F_x_i_gt_i, n_G_F_r_gt_i) return TermMap(curr2next), init, trans, ltl def hints(env: PysmtEnv) -> FrozenSet[Hint]: assert isinstance(env, PysmtEnv) mgr = env.formula_manager i = mgr.Symbol("i", types.REAL) r = mgr.Symbol("r", types.REAL) l = mgr.Symbol("l", types.REAL) inc_i = mgr.Symbol("inc_i", types.BOOL) symbs = frozenset([i, r, l, inc_i]) x_i = symb_to_next(mgr, i) x_r = symb_to_next(mgr, r) x_l = symb_to_next(mgr, l) x_inc_i = symb_to_next(mgr, inc_i) res = [] n0 = mgr.Real(0) n1 = mgr.Real(1) loc = Location(env, mgr.LE(r, n0)) loc.set_progress(0, mgr.Equals(x_r, mgr.Minus(r, n1))) h_r = Hint("h_r1", env, frozenset([r]), symbs) h_r.set_locs([loc]) res.append(h_r) loc0 = Location(env, mgr.Not(inc_i)) loc0.set_progress(1, x_inc_i) loc1 = Location(env, inc_i, stutterT=x_inc_i) loc1.set_progress(0, mgr.Not(x_inc_i)) h_inc = Hint("h_inc3", env, frozenset([inc_i]), symbs) h_inc.set_locs([loc0, loc1]) res.append(h_inc) loc0 = Location(env, mgr.GE(i, n0)) loc0.set_progress(1, mgr.Equals(x_i, mgr.Plus(i, n1))) loc1 = Location(env, mgr.GE(i, n0)) loc1.set_progress(2, mgr.Equals(x_i, i)) loc2 = Location(env, mgr.GE(i, n0)) loc2.set_progress(0, mgr.Equals(x_i, i)) h_i = Hint("h_i4", env, frozenset([i]), symbs) h_i.set_locs([loc0, loc1, loc2]) res.append(h_i) loc = Location(env, mgr.GE(l, n0)) loc.set_progress(0, mgr.Equals(x_l, mgr.Plus(l, n1))) h_l = Hint("h_l0", env, frozenset([l]), symbs) h_l.set_locs([loc]) res.append(h_l) loc = Location(env, mgr.Not(inc_i)) loc.set_progress(0, mgr.Not(x_inc_i)) h_inc = Hint("h_inc1", env, frozenset([inc_i]), symbs) h_inc.set_locs([loc]) res.append(h_inc) loc0 = Location(env, mgr.GE(r, n0)) loc0.set_progress(1, mgr.Equals(x_r, r)) loc1 = Location(env, mgr.GE(r, n0)) loc1.set_progress(2, mgr.Equals(x_r, mgr.Plus(r, n1))) loc2 = Location(env, mgr.GE(r, n0)) loc2.set_progress(0, mgr.Equals(x_r, r)) h_r = Hint("h_r4", env, frozenset([r]), symbs) h_r.set_locs([loc0, loc1, loc2]) res.append(h_r) loc0 = Location(env, mgr.GE(l, n0)) loc0.set_progress(1, mgr.Equals(x_l, mgr.Plus(l, n1))) loc1 = Location(env, mgr.GE(l, n0)) loc1.set_progress(0, mgr.Equals(x_l, l)) h_l = Hint("h_l2", env, frozenset([l]), symbs) h_l.set_locs([loc0, loc1]) res.append(h_l) loc0 = Location(env, mgr.Not(inc_i)) loc0.set_progress(1, x_inc_i) loc1 = Location(env, inc_i, stutterT=x_inc_i) loc1.set_progress(2, mgr.Not(x_inc_i)) loc2 = Location(env, mgr.Not(inc_i)) loc2.set_progress(0, mgr.Not(x_inc_i)) h_inc = Hint("h_inc4", env, frozenset([inc_i]), symbs) h_inc.set_locs([loc0, loc1, loc2]) res.append(h_inc) loc0 = Location(env, mgr.GE(r, n0)) loc0.set_progress(1, mgr.Equals(x_r, r)) loc1 = Location(env, mgr.GE(r, n0)) loc1.set_progress(0, mgr.Equals(x_r, mgr.Plus(r, n1))) h_r = Hint("h_r2", env, frozenset([r]), symbs) h_r.set_locs([loc0, loc1]) res.append(h_r) loc = Location(env, mgr.GE(r, n0)) loc.set_progress(0, mgr.Equals(x_r, mgr.Plus(r, n1))) h_r = Hint("h_r0", env, frozenset([r]), symbs) h_r.set_locs([loc]) res.append(h_r) loc0 = Location(env, mgr.GE(i, n0), mgr.GE(l, n0), stutterT=mgr.Equals(x_i, mgr.Plus(i, l))) loc0.set_progress(1, mgr.Equals(x_i, mgr.Plus(i, n1))) loc1 = Location(env, mgr.GE(i, n0)) loc1.set_progress(0, mgr.Equals(x_i, i)) h_i = Hint("h_i3", env, frozenset([i]), symbs) h_i.set_locs([loc0, loc1]) res.append(h_i) stutter = mgr.Equals(x_i, i) loc = Location(env, mgr.GE(i, n0), stutterT=stutter) loc.set_progress(0, mgr.Equals(x_i, mgr.Plus(i, n1))) h_i = Hint("h_i0", env, frozenset([i]), symbs) h_i.set_locs([loc]) res.append(h_i) return frozenset(res)
35.9375
89
0.628406
[ "MIT" ]
EnricoMagnago/F3
benchmarks/f3_wrong_hints_permutations/scaling_ltl_infinite_state/12-extending_bound_39.py
8,625
Python
import json import os.path tags = { '1.0': '1__0__3', '1.1': '1__1__4', } schema_url = 'https://standard.open-contracting.org/schema/{}/release-schema.json' def path(filename): return os.path.join('tests', 'fixtures', filename) def read(filename, mode='rt', encoding=None, **kwargs): with open(path(filename), mode, encoding=encoding, **kwargs) as f: return f.read() def load(*args, **kwargs): return json.loads(read(*args, **kwargs))
20.478261
82
0.647558
[ "BSD-3-Clause" ]
open-contracting/ocds-merge
tests/__init__.py
471
Python
import numpy as np from gym import utils from gym_env_mujoco150 import mujoco_env import mujoco_py class Walker2dEnv(mujoco_env.MujocoEnv, utils.EzPickle): def __init__(self): mujoco_env.MujocoEnv.__init__(self, "walker2d_150.xml", 4) utils.EzPickle.__init__(self) def _step(self, a): posbefore = self.sim.data.qpos[0] self.do_simulation(a, self.frame_skip) posafter, height, ang = self.sim.data.qpos[0:3] alive_bonus = 1.0 reward = ((posafter - posbefore) / self.dt) reward += alive_bonus reward -= 1e-3 * np.square(a).sum() done = not (height > 0.8 and height < 2.0 and ang > -1.0 and ang < 1.0) ob = self._get_obs() return ob, reward, done, {} def _get_obs(self): qpos = self.sim.data.qpos qvel = self.sim.data.qvel return np.concatenate([qpos[1:], np.clip(qvel, -10, 10)]).ravel() def reset_model(self): self.set_state( self.init_qpos + self.np_random.uniform(low=-.005, high=.005, size=self.model.nq), self.init_qvel + self.np_random.uniform(low=-.005, high=.005, size=self.model.nv) ) return self._get_obs() def viewer_setup(self): self.viewer.cam.type = mujoco_py.const.CAMERA_TRACKING self.viewer.cam.trackbodyid = 2 self.viewer.cam.distance = self.model.stat.extent * 0.5 self.viewer.cam.lookat[2] = .8 self.viewer.cam.elevation = -20
34.837209
94
0.615487
[ "MIT" ]
pfnet/gym-env-mujoco150
gym_env_mujoco150/walker2d.py
1,498
Python
# MIT License # Copyright (c) 2018 the NJUNMT-pytorch authors. # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import os import random import time from copy import deepcopy import numpy as np import torch import yaml from tensorboardX import SummaryWriter from tqdm import tqdm from src.data.data_iterator import DataIterator from src.data.dataset import TextLineDataset, ZipDataset from src.data.vocabulary import Vocabulary from src.decoding import beam_search, ensemble_beam_search from src.decoding.beam_search import nmt_lm_fusion_beam_search from src.metric.bleu_scorer import SacreBLEUScorer from src.models import build_model from src.modules.criterions import NMTCriterion from src.optim import Optimizer from src.optim.lr_scheduler import ReduceOnPlateauScheduler, NoamScheduler, RsqrtScheduler from src.utils.common_utils import * from src.utils.configs import default_configs, pretty_configs from src.utils.logging import * from src.utils.moving_average import MovingAverage BOS = Vocabulary.BOS EOS = Vocabulary.EOS PAD = Vocabulary.PAD def set_seed(seed): torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed) random.seed(seed) np.random.seed(seed) torch.backends.cudnn.deterministic = True def load_model_parameters(path, map_location="cpu"): state_dict = torch.load(path, map_location=map_location) if "model" in state_dict: return state_dict["model"] return state_dict def split_shard(*inputs, split_size=1): if split_size <= 1: yield inputs else: lengths = [len(s) for s in inputs[-1]] # sorted_indices = np.argsort(lengths) # sorting inputs inputs = [ [inp[ii] for ii in sorted_indices] for inp in inputs ] # split shards total_batch = sorted_indices.shape[0] # total number of batches if split_size >= total_batch: yield inputs else: shard_size = total_batch // split_size _indices = list(range(total_batch))[::shard_size] + [total_batch] for beg, end in zip(_indices[:-1], _indices[1:]): yield (inp[beg:end] for inp in inputs) def prepare_data(seqs_x, seqs_y=None, cuda=False, batch_first=True): """ Args: eval ('bool'): indicator for eval/infer. Returns: """ def _np_pad_batch_2D(samples, pad, batch_first=True, cuda=True): batch_size = len(samples) sizes = [len(s) for s in samples] max_size = max(sizes) x_np = np.full((batch_size, max_size), fill_value=pad, dtype='int64') for ii in range(batch_size): x_np[ii, :sizes[ii]] = samples[ii] if batch_first is False: x_np = np.transpose(x_np, [1, 0]) x = torch.tensor(x_np) if cuda is True: x = x.cuda() return x seqs_x = list(map(lambda s: [BOS] + s + [EOS], seqs_x)) x = _np_pad_batch_2D(samples=seqs_x, pad=PAD, cuda=cuda, batch_first=batch_first) if seqs_y is None: return x seqs_y = list(map(lambda s: [BOS] + s + [EOS], seqs_y)) y = _np_pad_batch_2D(seqs_y, pad=PAD, cuda=cuda, batch_first=batch_first) return x, y def compute_forward(model, critic, seqs_x, eval=False, normalization=1.0, norm_by_words=False ): """ :type model: nn.Module :type critic: NMTCriterion """ x_inp = seqs_x[:, :-1].contiguous() x_label = seqs_x[:, 1:].contiguous() words_norm = x_label.ne(PAD).float().sum(1) if not eval: model.train() critic.train() # For training with torch.enable_grad(): log_probs = model(x_inp) loss = critic(inputs=log_probs, labels=x_label, reduce=False, normalization=normalization) if norm_by_words: loss = loss.div(words_norm).sum() else: loss = loss.sum() torch.autograd.backward(loss) return loss.item() else: model.eval() critic.eval() # For compute loss with torch.no_grad(): log_probs = model(x_inp) loss = critic(inputs=log_probs, labels=x_label, normalization=normalization, reduce=True) return loss.item() def loss_validation(model, critic, valid_iterator): """ :type model: Transformer :type critic: NMTCriterion :type valid_iterator: DataIterator """ n_sents = 0 n_tokens = 0.0 sum_loss = 0.0 valid_iter = valid_iterator.build_generator() for batch in valid_iter: _, seqs_x = batch n_sents += len(seqs_x) n_tokens += sum(len(s) for s in seqs_x) x = prepare_data(seqs_x, cuda=GlobalNames.USE_GPU) loss = compute_forward(model=model, critic=critic, seqs_x=x, eval=True) if np.isnan(loss): WARN("NaN detected!") sum_loss += float(loss) return float(sum_loss / n_sents) def bleu_validation(uidx, valid_iterator, model, bleu_scorer, vocab_tgt, batch_size, valid_dir="./valid", max_steps=10, beam_size=5, alpha=-1.0 ): model.eval() numbers = [] trans = [] infer_progress_bar = tqdm(total=len(valid_iterator), desc=' - (Infer) ', unit="sents") valid_iter = valid_iterator.build_generator(batch_size=batch_size) for batch in valid_iter: seq_nums = batch[0] numbers += seq_nums seqs_x = batch[1] infer_progress_bar.update(len(seqs_x)) x = prepare_data(seqs_x, cuda=GlobalNames.USE_GPU) with torch.no_grad(): word_ids = beam_search(nmt_model=model, beam_size=beam_size, max_steps=max_steps, src_seqs=x, alpha=alpha) word_ids = word_ids.cpu().numpy().tolist() # Append result for sent_t in word_ids: sent_t = [[wid for wid in line if wid != PAD] for line in sent_t] x_tokens = [] for wid in sent_t[0]: if wid == EOS: break x_tokens.append(vocab_tgt.id2token(wid)) if len(x_tokens) > 0: trans.append(vocab_tgt.tokenizer.detokenize(x_tokens)) else: trans.append('%s' % vocab_tgt.id2token(EOS)) origin_order = np.argsort(numbers).tolist() trans = [trans[ii] for ii in origin_order] infer_progress_bar.close() if not os.path.exists(valid_dir): os.mkdir(valid_dir) hyp_path = os.path.join(valid_dir, 'trans.iter{0}.txt'.format(uidx)) with open(hyp_path, 'w') as f: for line in trans: f.write('%s\n' % line) with open(hyp_path) as f: bleu_v = bleu_scorer.corpus_bleu(f) return bleu_v def load_pretrained_model(nmt_model, pretrain_path, device, exclude_prefix=None): """ Args: nmt_model: model. pretrain_path ('str'): path to pretrained model. map_dict ('dict'): mapping specific parameter names to those names in current model. exclude_prefix ('dict'): excluding parameters with specific names for pretraining. Raises: ValueError: Size not match, parameter name not match or others. """ if exclude_prefix is None: exclude_prefix = [] if pretrain_path != "": INFO("Loading pretrained model from {}".format(pretrain_path)) pretrain_params = torch.load(pretrain_path, map_location=device) for name, params in pretrain_params.items(): flag = False for pp in exclude_prefix: if name.startswith(pp): flag = True break if flag: continue INFO("Loading param: {}...".format(name)) try: nmt_model.load_state_dict({name: params}, strict=False) except Exception as e: WARN("{}: {}".format(str(Exception), e)) INFO("Pretrained model loaded.") def train(FLAGS): """ FLAGS: saveto: str reload: store_true config_path: str pretrain_path: str, default="" model_name: str log_path: str """ # write log of training to file. write_log_to_file(os.path.join(FLAGS.log_path, "%s.log" % time.strftime("%Y%m%d-%H%M%S"))) GlobalNames.USE_GPU = FLAGS.use_gpu if GlobalNames.USE_GPU: CURRENT_DEVICE = "cpu" else: CURRENT_DEVICE = "cuda:0" config_path = os.path.abspath(FLAGS.config_path) with open(config_path.strip()) as f: configs = yaml.load(f) INFO(pretty_configs(configs)) # Add default configs configs = default_configs(configs) data_configs = configs['data_configs'] model_configs = configs['model_configs'] optimizer_configs = configs['optimizer_configs'] training_configs = configs['training_configs'] GlobalNames.SEED = training_configs['seed'] set_seed(GlobalNames.SEED) best_model_prefix = os.path.join(FLAGS.saveto, FLAGS.model_name + GlobalNames.MY_BEST_MODEL_SUFFIX) timer = Timer() # ================================================================================== # # Load Data INFO('Loading data...') timer.tic() # Generate target dictionary vocab_src = Vocabulary(**data_configs["vocabularies"][0]) train_batch_size = training_configs["batch_size"] * max(1, training_configs["update_cycle"]) train_buffer_size = training_configs["buffer_size"] * max(1, training_configs["update_cycle"]) train_bitext_dataset = ZipDataset( TextLineDataset(data_path=data_configs['train_data'][0], vocabulary=vocab_src, max_len=data_configs['max_len'][0], ), shuffle=training_configs['shuffle'] ) valid_bitext_dataset = ZipDataset( TextLineDataset(data_path=data_configs['valid_data'][0], vocabulary=vocab_src, ), ) training_iterator = DataIterator(dataset=train_bitext_dataset, batch_size=train_batch_size, use_bucket=training_configs['use_bucket'], buffer_size=train_buffer_size, batching_func=training_configs['batching_key']) valid_iterator = DataIterator(dataset=valid_bitext_dataset, batch_size=training_configs['valid_batch_size'], use_bucket=True, buffer_size=100000, numbering=True) INFO('Done. Elapsed time {0}'.format(timer.toc())) lrate = optimizer_configs['learning_rate'] is_early_stop = False # ================================ Begin ======================================== # # Build Model & Optimizer # We would do steps below on after another # 1. build models & criterion # 2. move models & criterion to gpu if needed # 3. load pre-trained model if needed # 4. build optimizer # 5. build learning rate scheduler if needed # 6. load checkpoints if needed # 0. Initial model_collections = Collections() checkpoint_saver = Saver(save_prefix="{0}.ckpt".format(os.path.join(FLAGS.saveto, FLAGS.model_name)), num_max_keeping=training_configs['num_kept_checkpoints'] ) best_model_saver = BestKSaver(save_prefix="{0}.best".format(os.path.join(FLAGS.saveto, FLAGS.model_name)), num_max_keeping=training_configs["num_kept_best_checkpoints"]) # 1. Build Model & Criterion INFO('Building model...') timer.tic() nmt_model = build_model(n_words=vocab_src.max_n_words, **model_configs) INFO(nmt_model) params_total = sum([p.numel() for n, p in nmt_model.named_parameters()]) params_with_embedding = sum([p.numel() for n, p in nmt_model.named_parameters() if n.find('embedding') == -1]) INFO('Total parameters: {}'.format(params_total)) INFO('Total parameters (excluding word embeddings): {}'.format(params_with_embedding)) critic = NMTCriterion(label_smoothing=model_configs['label_smoothing']) INFO(critic) INFO('Done. Elapsed time {0}'.format(timer.toc())) # 2. Move to GPU if GlobalNames.USE_GPU: nmt_model = nmt_model.cuda() critic = critic.cuda() # 3. Load pretrained model if needed load_pretrained_model(nmt_model, FLAGS.pretrain_path, exclude_prefix=None, device=CURRENT_DEVICE) # 4. Build optimizer INFO('Building Optimizer...') optim = Optimizer(name=optimizer_configs['optimizer'], model=nmt_model, lr=lrate, grad_clip=optimizer_configs['grad_clip'], optim_args=optimizer_configs['optimizer_params'] ) # 5. Build scheduler for optimizer if needed if optimizer_configs['schedule_method'] is not None: if optimizer_configs['schedule_method'] == "loss": scheduler = ReduceOnPlateauScheduler(optimizer=optim, **optimizer_configs["scheduler_configs"] ) elif optimizer_configs['schedule_method'] == "noam": scheduler = NoamScheduler(optimizer=optim, **optimizer_configs['scheduler_configs']) elif optimizer_configs["schedule_method"] == "rsqrt": scheduler = RsqrtScheduler(optimizer=optim, **optimizer_configs['scheduler_configs']) else: WARN("Unknown scheduler name {0}. Do not use lr_scheduling.".format(optimizer_configs['schedule_method'])) scheduler = None else: scheduler = None # 6. build moving average if training_configs['moving_average_method'] is not None: ma = MovingAverage(moving_average_method=training_configs['moving_average_method'], named_params=nmt_model.named_parameters(), alpha=training_configs['moving_average_alpha']) else: ma = None INFO('Done. Elapsed time {0}'.format(timer.toc())) # Reload from latest checkpoint if FLAGS.reload: checkpoint_saver.load_latest(model=nmt_model, optim=optim, lr_scheduler=scheduler, collections=model_collections, ma=ma) # ================================================================================== # # Prepare training eidx = model_collections.get_collection("eidx", [0])[-1] uidx = model_collections.get_collection("uidx", [0])[-1] bad_count = model_collections.get_collection("bad_count", [0])[-1] oom_count = model_collections.get_collection("oom_count", [0])[-1] summary_writer = SummaryWriter(log_dir=FLAGS.log_path) cum_samples = 0 cum_words = 0 valid_loss = best_valid_loss = float('inf') # Max Float saving_files = [] # Timer for computing speed timer_for_speed = Timer() timer_for_speed.tic() INFO('Begin training...') while True: summary_writer.add_scalar("Epoch", (eidx + 1), uidx) # Build iterator and progress bar training_iter = training_iterator.build_generator() training_progress_bar = tqdm(desc=' - (Epc {}, Upd {}) '.format(eidx, uidx), total=len(training_iterator), unit="sents" ) for batch in training_iter: uidx += 1 if optimizer_configs["schedule_method"] is not None and optimizer_configs["schedule_method"] != "loss": scheduler.step(global_step=uidx) seqs_x = batch n_samples_t = len(seqs_x) n_words_t = sum(len(s) for s in seqs_x) cum_samples += n_samples_t cum_words += n_words_t train_loss = 0. optim.zero_grad() try: # Prepare data for seqs_x_t, in split_shard(seqs_x, split_size=training_configs['update_cycle']): x = prepare_data(seqs_x_t, cuda=GlobalNames.USE_GPU) loss = compute_forward(model=nmt_model, critic=critic, seqs_x=x, eval=False, normalization=n_samples_t, norm_by_words=training_configs["norm_by_words"]) train_loss += loss / x.size(1) optim.step() except RuntimeError as e: if 'out of memory' in str(e): print('| WARNING: ran out of memory, skipping batch') oom_count += 1 optim.zero_grad() else: raise e if ma is not None and eidx >= training_configs['moving_average_start_epoch']: ma.step() training_progress_bar.update(n_samples_t) training_progress_bar.set_description(' - (Epc {}, Upd {}) '.format(eidx, uidx)) training_progress_bar.set_postfix_str( 'TrainLoss: {:.2f}, ValidLoss(best): {:.2f} ({:.2f})'.format(train_loss, valid_loss, best_valid_loss)) summary_writer.add_scalar("train_loss", scalar_value=train_loss, global_step=uidx) # ================================================================================== # # Display some information if should_trigger_by_steps(uidx, eidx, every_n_step=training_configs['disp_freq']): # words per second and sents per second words_per_sec = cum_words / (timer.toc(return_seconds=True)) sents_per_sec = cum_samples / (timer.toc(return_seconds=True)) lrate = list(optim.get_lrate())[0] summary_writer.add_scalar("Speed(words/sec)", scalar_value=words_per_sec, global_step=uidx) summary_writer.add_scalar("Speed(sents/sen)", scalar_value=sents_per_sec, global_step=uidx) summary_writer.add_scalar("lrate", scalar_value=lrate, global_step=uidx) summary_writer.add_scalar("oom_count", scalar_value=oom_count, global_step=uidx) # Reset timer timer.tic() cum_words = 0 cum_samples = 0 # ================================================================================== # # Loss Validation & Learning rate annealing if should_trigger_by_steps(global_step=uidx, n_epoch=eidx, every_n_step=training_configs['loss_valid_freq'], debug=FLAGS.debug): if ma is not None: origin_state_dict = deepcopy(nmt_model.state_dict()) nmt_model.load_state_dict(ma.export_ma_params(), strict=False) valid_loss = loss_validation(model=nmt_model, critic=critic, valid_iterator=valid_iterator, ) model_collections.add_to_collection("history_losses", valid_loss) min_history_loss = np.array(model_collections.get_collection("history_losses")).min() summary_writer.add_scalar("loss", valid_loss, global_step=uidx) summary_writer.add_scalar("best_loss", min_history_loss, global_step=uidx) best_valid_loss = min_history_loss if ma is not None: nmt_model.load_state_dict(origin_state_dict) del origin_state_dict if optimizer_configs["schedule_method"] == "loss": scheduler.step(global_step=uidx, metric=best_valid_loss) # If model get new best valid bleu score if valid_loss < best_valid_loss: bad_count = 0 if is_early_stop is False: # 1. save the best model's parameters torch.save(nmt_model.state_dict(), best_model_prefix + ".final") # 2. save the best checkpoint model_collections.add_to_collection("uidx", uidx) model_collections.add_to_collection("eidx", eidx) model_collections.add_to_collection("bad_count", bad_count) best_model_saver.save(global_step=uidx, metric=valid_loss, model=nmt_model, optim=optim, lr_scheduler=scheduler, collections=model_collections, ma=ma) else: bad_count += 1 # At least one epoch should be traversed if bad_count >= training_configs['early_stop_patience'] and eidx > 0: is_early_stop = True WARN("Early Stop!") summary_writer.add_scalar("bad_count", bad_count, uidx) INFO("{0} Loss: {1:.2f} lrate: {2:6f} patience: {3}".format( uidx, valid_loss, lrate, bad_count )) # ================================================================================== # # Saving checkpoints if should_trigger_by_steps(uidx, eidx, every_n_step=training_configs['save_freq'], debug=FLAGS.debug): model_collections.add_to_collection("uidx", uidx) model_collections.add_to_collection("eidx", eidx) model_collections.add_to_collection("bad_count", bad_count) if not is_early_stop: checkpoint_saver.save(global_step=uidx, model=nmt_model, optim=optim, lr_scheduler=scheduler, collections=model_collections, ma=ma) training_progress_bar.close() eidx += 1 if eidx > training_configs["max_epochs"]: break def nmt_lm_fusion_translate(FLAGS): GlobalNames.USE_GPU = FLAGS.use_gpu config_path = os.path.abspath(FLAGS.config_path) with open(config_path.strip()) as f: configs = yaml.load(f) data_configs = configs['data_configs'] nmt_model_configs = configs['nmt_model_configs'] lm_model_configs = configs['lm_model_configs'] timer = Timer() # ================================================================================== # # Load Data INFO('Loading data...') timer.tic() # Generate target dictionary vocab_src = Vocabulary(**data_configs["vocabularies"][0]) vocab_tgt = Vocabulary(**data_configs["vocabularies"][1]) valid_dataset = TextLineDataset(data_path=FLAGS.source_path, vocabulary=vocab_src) valid_iterator = DataIterator(dataset=valid_dataset, batch_size=FLAGS.batch_size, use_bucket=True, buffer_size=100000, numbering=True) INFO('Done. Elapsed time {0}'.format(timer.toc())) # ================================================================================== # # Build Model & Sampler & Validation INFO('Building model...') timer.tic() nmt_model_path = FLAGS.nmt_model_path lm_model_path = FLAGS.lm_model_path nmt_model = build_model(n_src_vocab=vocab_src.max_n_words, n_tgt_vocab=vocab_tgt.max_n_words, **nmt_model_configs) lm_model = build_model(n_words=vocab_tgt.max_n_words, **lm_model_configs) nmt_model.eval() lm_model.eval() INFO('Done. Elapsed time {0}'.format(timer.toc())) INFO('Reloading model parameters...') timer.tic() nmt_params = load_model_parameters(nmt_model_path, map_location="cpu") lm_params = load_model_parameters(lm_model_path, map_location="cpu") nmt_model.load_state_dict(nmt_params) lm_model.load_state_dict(lm_params) if GlobalNames.USE_GPU: nmt_model.cuda() lm_model.cuda() INFO('Done. Elapsed time {0}'.format(timer.toc())) INFO('Begin...') result_numbers = [] result = [] n_words = 0 timer.tic() infer_progress_bar = tqdm(total=len(valid_iterator), desc=' - (Infer) ', unit="sents") valid_iter = valid_iterator.build_generator() for batch in valid_iter: numbers, seqs_x = batch batch_size_t = len(seqs_x) x = prepare_data(seqs_x=seqs_x, cuda=GlobalNames.USE_GPU) with torch.no_grad(): word_ids = nmt_lm_fusion_beam_search(nmt_model=nmt_model, lm_model=lm_model, beam_size=FLAGS.beam_size, max_steps=FLAGS.max_steps, src_seqs=x, alpha=FLAGS.alpha, beta=FLAGS.beta) word_ids = word_ids.cpu().numpy().tolist() result_numbers += numbers # Append result for sent_t in word_ids: sent_t = [[wid for wid in line if wid != PAD] for line in sent_t] result.append(sent_t) n_words += len(sent_t[0]) infer_progress_bar.update(batch_size_t) infer_progress_bar.close() INFO('Done. Speed: {0:.2f} words/sec'.format(n_words / (timer.toc(return_seconds=True)))) translation = [] for sent in result: samples = [] for trans in sent: sample = [] for w in trans: if w == vocab_tgt.EOS: break sample.append(vocab_tgt.id2token(w)) samples.append(vocab_tgt.tokenizer.detokenize(sample)) translation.append(samples) # resume the ordering origin_order = np.argsort(result_numbers).tolist() translation = [translation[ii] for ii in origin_order] with open(FLAGS.saveto, 'w') as f: for trans in translation: f.write("%s\n"%trans[0]) if __name__ == '__main__': _args = { "model_name": "test_rnnlm", "reload": False, "config_path": "./configs/test_rnnlm.yaml", "debug": True, "use_gpu": False, "task": "lm", "log_path": "/tmp", "saveto": "/tmp", "valid_path": "/tmp", } from src.bin import train as _train _train.run(**_args)
34.516827
120
0.566683
[ "MIT" ]
skysky77/MGNMT
src/tasks/lm.py
28,718
Python
import click from . import __version__ from .cli_commands import create_cluster, upload, upload_and_update from .configure import configure def print_version(ctx, param, value): if not value or ctx.resilient_parsing: return click.echo('Version {}'.format(__version__)) ctx.exit() @click.group() @click.option('--version', '-v', is_flag=True, callback=print_version, help=__version__) def cli(version): pass cli.add_command(configure) cli.add_command(create_cluster) cli.add_command(upload) cli.add_command(upload_and_update)
21.923077
70
0.738596
[ "BSD-3-Clause" ]
ShopRunner/apparate
stork/cli.py
570
Python
"""Class definition of the ZoneSpeaker.""" import bisect import functools from typing import Any, Callable, List, Tuple import simulation_groundtruth.srv as groundtruth_srv from simulation_evaluation.msg import Speaker as SpeakerMsg from simulation_groundtruth.msg import LabeledPolygon as LabeledPolygonMsg from simulation_groundtruth.msg import Lane as LaneMsg from simulation_groundtruth.msg import Section as SectionMsg import simulation.utils.road.sections.type as road_section_type from simulation.utils.geometry import Point from simulation.utils.road.sections import SurfaceMarking from .speaker import Speaker class ZoneSpeaker(Speaker): """Information about the zone of the road the car is in.""" def __init__( self, *, section_proxy: Callable[[], List[SectionMsg]], lane_proxy: Callable[[int], LaneMsg], obstacle_proxy: Callable[[int], List[LabeledPolygonMsg]], surface_marking_proxy: Callable[[int], List[LabeledPolygonMsg]], parking_proxy: Callable[[int], Any], intersection_proxy: Callable[[int], Any], overtaking_buffer: float = 2, start_zone_buffer: float = 1, end_zone_buffer: float = 1.5, yield_distance: Tuple[float, float] = (-0.6, -0.2), ): """Initialize zone speaker. Args: section_proxy: Returns all sections when called. lane_proxy: Returns a LaneMsg for each section. obstacle_proxy: function which returns obstacles in a section. surface_marking_proxy: function which returns surface_markings in a section. parking_proxy: function which returns parking msg in a section. intersection_proxy: function which returns intersection msg in a section. parking_spot_buffer: buffer around parking spots in which a parking attempt is also accepted overtaking_buffer: buffer around obstacles that the car is allowed to overtake start_zone_buffer: beginning of the road that is considered as a start zone end_zone_buffer: end of the road that is considered as the end yield_distance: interval before intersections that the vehicle must yield in """ super().__init__( section_proxy=section_proxy, lane_proxy=lane_proxy, obstacle_proxy=obstacle_proxy, surface_marking_proxy=surface_marking_proxy, intersection_proxy=intersection_proxy, ) self.get_parking_msgs = parking_proxy self.overtaking_buffer = overtaking_buffer self.start_zone_buffer = start_zone_buffer self.end_zone_buffer = end_zone_buffer self.yield_distance = yield_distance # Get total length. self.total_length = self.middle_line.length @functools.cached_property def overtaking_zones(self) -> List[Tuple[float, float]]: """Intervals in which the car is allowed to overtake along the :py:attr:`Speaker.middle_line`.""" # Get all obstacle polygons obstacles = list( lp.frame for sec in self.sections if sec.type != road_section_type.PARKING_AREA for lp in self.get_obstacles_in_section(sec.id) ) # Get blocked area polygons because the car # is allowed to drive onto the left lane there! surface_markings = list( surface_marking for sec in self.sections for surface_marking in self.get_surface_markings_in_section(sec.id) ) blocked_areas = [ sm.frame for sm in surface_markings if sm.id_ == SurfaceMarking.BLOCKED_AREA[0] ] # Intervals where polygons are along the middle line intervals = list( self.get_interval_for_polygon(obs) for obs in (obstacles + blocked_areas) ) if len(intervals) == 0: return [] zone_intervals = [ ( intervals[0][0] - self.overtaking_buffer, intervals[0][1] + self.overtaking_buffer, ) ] for start, end in intervals[1:]: last = zone_intervals[-1] # If the start of this section and end of the last overtaking zone # overlap the last interval is extended if start - self.overtaking_buffer < last[1]: zone_intervals[-1] = (last[0], end + self.overtaking_buffer) # Else a new interval is added else: zone_intervals.append( (start - self.overtaking_buffer, end + self.overtaking_buffer) ) # import rospy # rospy.loginfo(f"Obstacle zones: {zone_intervals}") return zone_intervals def _intersection_yield_zones(self, rule: int) -> List[Tuple[float, float]]: """Intervals in which the car is supposed to halt/stop (in front of intersections). Args: rule: only intersections with this rule are considered """ intervals = [] for sec in self.sections: if sec.type != road_section_type.INTERSECTION: continue # Get arclength of the last point of the middle line # at the intersection south opening intersection_msg = self.get_intersection(sec.id) arc_length = self.middle_line.project( Point(intersection_msg.south.middle_line[-1]) ) if intersection_msg.rule == rule: intervals.append( ( arc_length + self.yield_distance[0], arc_length + self.yield_distance[1], ) ) return intervals @functools.cached_property def stop_zones(self) -> List[Tuple[float, float]]: """Intervals in which the car is supposed to stop (in front of intersections).""" return self._intersection_yield_zones(groundtruth_srv.IntersectionSrvResponse.STOP) @functools.cached_property def halt_zones(self) -> List[Tuple[float, float]]: """Intervals in which the car is supposed to halt (in front of intersections).""" return self._intersection_yield_zones(groundtruth_srv.IntersectionSrvResponse.YIELD) @functools.cached_property def speed_zones(self) -> List[Tuple[float, int]]: surface_markings = [ self.get_surface_markings_in_section(sec.id) for sec in self.sections ] surface_markings = [marking for sublist in surface_markings for marking in sublist] result = [] result.append((0, SpeakerMsg.SPEED_UNLIMITED_ZONE)) for marking in surface_markings: if ( SurfaceMarking.ZONE_10_START[0] <= marking.id_ <= SurfaceMarking.ZONE_90_START[0] ): limit = 10 * (marking.id_ - SurfaceMarking.ZONE_10_START[0] + 1) result.append( ( self.get_interval_for_polygon(marking.frame)[0], getattr(SpeakerMsg, f"SPEED_{limit}_ZONE"), ) ) if ( SurfaceMarking.ZONE_10_END[0] <= marking.id_ <= SurfaceMarking.ZONE_90_END[0] ): result.append( ( self.get_interval_for_polygon(marking.frame)[0], SpeakerMsg.SPEED_UNLIMITED_ZONE, ) ) return sorted(result, key=lambda tup: tup[0]) def _inside_any_interval(self, intervals: List[Tuple[float, float]]) -> bool: """Determine if the car is currently in any of the given intervals.""" beginnings = list(interval[0] for interval in intervals) endings = list(interval[1] for interval in intervals) b_idx = bisect.bisect_left(beginnings, self.arc_length) - 1 e_idx = bisect.bisect_left(endings, self.arc_length) - 1 # If the vehicle is in interval x then the beginning is before x # and ending is behind x return b_idx - e_idx == 1 def speak(self) -> List[SpeakerMsg]: """List of speaker msgs. Contents: * beginning of road -> :ref:`Speaker <speaker_msg>`.START_ZONE, end of road -> :ref:`Speaker <speaker_msg>`.END_ZONE, and in between -> :ref:`Speaker <speaker_msg>`.DRIVING_ZONE, * close to an obstacle -> :ref:`Speaker <speaker_msg>`.OVERTAKING_ZONE * before yield/stop lines \ -> :ref:`Speaker <speaker_msg>`.HALT_ZONE/SpeakerMsg.STOP_ZONE, * parking area -> :ref:`Speaker <speaker_msg>`.PARKING_ZONE """ msgs = super().speak() def append_msg(t: int): msg = SpeakerMsg() msg.type = t msgs.append(msg) # Determine if car is in parking zone append_msg( SpeakerMsg.PARKING_ZONE if self.current_section.type == road_section_type.PARKING_AREA else SpeakerMsg.NO_PARKING_ZONE ) # Overtaking append_msg( SpeakerMsg.OVERTAKING_ZONE if self._inside_any_interval(self.overtaking_zones) else SpeakerMsg.NO_OVERTAKING_ZONE ) # Start/End zone if self.arc_length < self.start_zone_buffer: append_msg(SpeakerMsg.START_ZONE) elif self.arc_length + self.end_zone_buffer < self.total_length: append_msg(SpeakerMsg.DRIVING_ZONE) else: append_msg(SpeakerMsg.END_ZONE) # Stop / halt zone if self._inside_any_interval(self.halt_zones): append_msg(SpeakerMsg.HALT_ZONE) elif self._inside_any_interval(self.stop_zones): append_msg(SpeakerMsg.STOP_ZONE) else: append_msg(SpeakerMsg.NO_STOP_ZONE) # Speed zone for x, msg in reversed(self.speed_zones): if x + 0.5 < self.arc_length: # 50cm Threshold append_msg(msg) break return msgs
38.588679
92
0.612263
[ "MIT" ]
KITcar-Team/kitcar-gazebo-simulation
simulation/src/simulation_evaluation/src/speaker/speakers/zone.py
10,226
Python
import argparse import xml.etree.cElementTree as etree import os from os import listdir from os.path import isfile, join import random def processMedlineFolder(medlineFolder,outFolder): """Basic function that iterates through abstracts in a medline file, do a basic word count and save to a file Args: medlineFolder (folder): Medline XML folder containing abstracts outFolder (folder): Folder to save output data to Returns: Nothing """ abstractCount = 0 # List of all files in the directory files = [ f for f in listdir(medlineFolder) if isfile(join(medlineFolder, f)) ] # Filter for only XML files files = sorted([ f for f in files if f.endswith('xml') ]) outfile = join(outFolder,"countWordsError.txt") with open(outfile, "a") as result: # Iterate over all files for f in files: print("Processing %s" % f) fullpath = join(medlineFolder,f) # Iterate through the XML file and stop on each MedlineCitation for event, elem in etree.iterparse(fullpath, events=('start', 'end', 'start-ns', 'end-ns')): if (event=='end' and elem.tag=='MedlineCitation'): # Let's get the PMID and Abstract elements from the XML pmidElements = elem.findall('./PMID') abstractElements = elem.findall('./Article/Abstract/AbstractText') if len(pmidElements) != 1 or len(abstractElements) != 1: continue # Pull the values of the PMID and abstract elements pmid = pmidElements[0].text abstract = abstractElements[0].text if not abstract is None: # Do a very basic word count wordCount = len(abstract.split()) # Prepare and save output to file line = "%s\t%d\n" % (pmid,wordCount) result.write(line) abstractCount += 1 print("%d abstracts processed" % abstractCount) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Little toy example to "process" a Medline abstract file and gives naive word counts for each abstract') parser.add_argument('-i',required=True,help='Medline folder to process') parser.add_argument('-o',required=True,help='Output folder for word-counts') args = parser.parse_args() # Sometimes throw an error if random.random() > 0.5: raise RuntimeError("This sometimes throws an error") processMedlineFolder(args.i,args.o)
31.273973
150
0.711345
[ "MIT" ]
NCBI-Hackathons/Autoupdating_PubMed_Corpus_for_NLP
server/tools/CountWordsError/0.1/CountWordsError.py
2,283
Python
from app01.apis.geng import bp as geng_bp from app01.apis.end1.view_end1 import bp as end1_bp routers = [ geng_bp, end1_bp, ]
16.875
51
0.725926
[ "MIT" ]
pscly/myend
app01/route.py
135
Python
import json import yaml """ SMock -- Serverboards Mock library -- Mock comfortably. This library helps to mock function and method calls, getting the data from an external yaml file. """ class MockWrapper: """ Wraps all the data returned by the mocked function to behave like a dictionary, like an object, like a function, like a jsonable dict... like almost everything you may need """ def __init__(self, data): self.__data = data def __getattr__(self, key): if key not in self.__data: raise KeyError("'%s' not found in %s" % (key, self.__data.keys())) return self.__getitem__(key) def __call__(self): return wrapped(self.__data) def __getitem__(self, key): val = self.__data[key] if isinstance(val, (int, str)): return val return wrapped(val) def __str__(self): return str(self.__data) def __repr__(self): return repr(self.__data) def __eq__(self, other): return self.__data.__eq__(other) def __le__(self, other): return self.__data.__le__(other) def __ge__(self, other): return self.__data.__ge__(other) def __lt__(self, other): return self.__data.__lt__(other) def __gt__(self, other): return self.__data.__gt__(other) def __len__(self): return self.__data.__len__() def keys(self): return self.__data.keys() def get(self, key, defv=None): return self.__data.get(key, defv) class MockWrapperList(MockWrapper, list): def __init__(self, data): MockWrapper.__init__(self, data) list.__init__(self, data) class MockWrapperDict(MockWrapper, dict): def __init__(self, data): MockWrapper.__init__(self, data) dict.__init__(self, data) def wrapped(data): if isinstance(data, dict): return MockWrapperDict(data) if isinstance(data, list): return MockWrapperList(data) return MockWrapper(data) def mock_match(A, B): """ Checked for params on a mocked function is as expected It is necesary as sometimes we get a tuple and at the mock data we have lists. Examples: ``` >>> mock_match("A", "A") True >>> mock_match("A", "B") False >>> mock_match(["A", "B", "C"], ["A", "B", "C"]) True >>> mock_match(["A", "B", "C"], "*") True ``` """ if B == '*': # always match return True if isinstance(A, (tuple, list)): return all(mock_match(a, b) for (a, b) in zip(A, B)) return A == B def mock_res(name, data, args=[], kwargs={}): """ Given a name, data and call parameters, returns the mocked response If there is no matching response, raises an exception that can be used to prepare the mock data. This can be used for situations where you mock some function like data; for example at [Serverboards](https://serverboards.io), we use it to mock RPC calls. Its also used internally on every other mocking. """ data = data.get(name) if not data: raise Exception( "unknown method for mocking: \n%s:\n - args: %s\n kwargs: %s\n response: ...\n" % ( name, json.dumps(args), json.dumps(kwargs) ) ) for res in data: if (mock_match(args, res.get("args")) and mock_match(kwargs, res.get("kwargs", {}))): if 'error' in res: raise Exception(res["error"]) response = res["response"] if isinstance(response, (int, str)): return response return wrapped(response) raise Exception( "unknown data for mocking: \n%s:\n - args: %s\n kwargs: %s\n response: ...\n" % ( name, json.dumps(args), json.dumps(kwargs) ) ) def mock_method(name, data): """ Returns a function that mocks an original function. """ def mockf(*args, **kwargs): return mock_res(name, data, args, kwargs) return mockf def mock_method_async(name, data): """ Returns an async function that mocks an original async function """ async def mockf(*args, **kwargs): return mock_res(name, data, args, kwargs) return mockf class SMock: """ Encapsulates mocking calls so it's easier to load data and mock methods Example: ```python >>> import requests >>> smocked = SMock("tests/data.yaml") >>> requests.get = smocked.mock_method("requests.get") >>> res = requests.get("https://mocked.url") >>> res.status_code 200 >>> res.content 'Gocha!' >>> res.json() {'text': 'Gocha too!'} ``` The mock file is a yaml file with each mocked function as keys, and `args`/`kwargs` as calling args and kwargs, and `response` the response. Check `tests/data.yaml` for an example at the source code. """ def __init__(self, mockfile): with open(mockfile) as fd: self._data = yaml.load(fd) def mock_res(self, name, args=[], kwargs={}): """ Calls `mock_res` Mock by args: ``` >>> smock = SMock("tests/data.yaml") >>> res = smock.mock_res("requests.get", ["https://mocked.url"]) >>> res.status_code 200 ``` Using "*" as args, as fallback. As there is no kwargs, use default: ``` >>> res = smock.mock_res("requests.get", ["https://error.mocked.url"]) >>> res.status_code 404 ``` Using "*" as kwargs: ``` >>> res = smock.mock_res("requests.get", ... ["https://mocked.url"], ... {'data': 'data'}) >>> res.status_code 200 >>> res.content 'Mocked query' ``` """ return mock_res(name, self._data, args, kwargs) def mock_method(self, name): """ Calls `mock_method` """ return mock_method(name, self._data) async def mock_method_async(self, name): """ Calls `mock_method_async` """ return await mock_method_async(name, self._data)
25.497942
102
0.576017
[ "Apache-2.0" ]
serverboards/serverboards-plugin-google-drive
smock.py
6,196
Python
# -*- coding: utf-8 -*- """ Created on Tue Apr 14 13:27:33 2020 @author: Jin Dou """ import torch def buildDataLoader(*tensors,TorchDataSetType,oSamplerType=None,**Args): if(Args.get('DatasetArgs') != None): DataSetArgs = Args['DatasetArgs'] dataset = TorchDataSetType(*tensors,**DataSetArgs) else: dataset = TorchDataSetType(*tensors) if(Args.get('DataLoaderArgs') != None): DataLoaderArgs = Args['DataLoaderArgs'] if(oSamplerType == None or Args.get('SamplerArgs') == None): dataLoader = torch.utils.data.DataLoader(dataset,**DataLoaderArgs) else: SamplerArgs = Args.get('SamplerArgs') oSampler = oSamplerType(dataset,**SamplerArgs) dataLoader = torch.utils.data.DataLoader(dataset,sampler=oSampler,**DataLoaderArgs) else: dataLoader = torch.utils.data.DataLoader(dataset) return dataLoader class CPytorch: def __init__(self): self.Lib = self._ImportTorch() def _ImportTorch(self): import torch as root return root def _getNNAttr(self,name:str): import torch.nn as NN ans = getattr(NN,name) return ans class CTorchNNYaml(CPytorch): def __init__(self): super().__init__() def _readYaml(self,filePath): import yaml ans = None with open(filePath,'r') as stream: try: ans = yaml.safe_load(stream) except yaml.YAMLError as exc: print(exc) return ans def _ParseType(self,conf:dict): if(conf['Type'] == 'Sequential'): return self.buildSequential(conf) def _subListToTuple(self,oInput): if type(oInput) == dict: for key in oInput: if(type(oInput[key]) == list): oInput[key] = tuple(oInput[key]) elif type(oInput) == list: for idx,attr in enumerate(oInput): if type(attr) == list: oInput[idx] = tuple(attr) else: raise ValueError("_subListToTuple: input should be dict or list") def buildSequential(self,conf:dict): oSeq = self.Lib.nn.Sequential() ModelConfList = conf['Model'] for idx,ModelConf in enumerate(ModelConfList): CModule = self._getNNAttr(ModelConf[0]) attr = ModelConf[1] oModule = None name = str(idx) if(len(ModelConf) > 2 and type(ModelConf[2]) == dict): '''if contain aux attribute''' auxAttr = ModelConf[2] if (auxAttr.get('name')!=None): ''' if aux attribute contain name attribute''' name = auxAttr['name'] if(type(attr) == list): if len(attr) == 0: oModule = CModule() elif(type(attr[0]) == list and type(attr[1]) == dict): self._subListToTuple(attr[0]) self._subListToTuple(attr[1]) oModule = CModule(*attr[0],**attr[1]) elif(any(type(x) not in [int,float,str,bool,list] for x in attr)): raise ValueError('attribute of Module %s (index %d) is invalid' % (ModelConf[0],idx)) else: self._subListToTuple(attr) oModule = CModule(*attr) elif(type(attr) == dict): self._subListToTuple(attr) oModule = CModule(**attr) else: raise ValueError('attribute of Module %s (index %d) is invalid' % (ModelConf[0],idx)) oSeq.add_module(name,oModule) return oSeq def __call__(self,confFile:str): yamlDict = self._readYaml(confFile) return self._ParseType(yamlDict)
35.052632
105
0.53003
[ "MIT" ]
powerfulbean/StellarBrainwav
StimRespFlow/DataProcessing/DeepLearning/Factory.py
3,996
Python
""" scaffoldgraph tests.core.test_fragment """ import pytest from rdkit import Chem from scaffoldgraph.core.fragment import * @pytest.fixture(name='mol') def test_molecule(): smiles = 'CCN1CCc2c(C1)sc(NC(=O)Nc3ccc(Cl)cc3)c2C#N' return Chem.MolFromSmiles(smiles) def canon(smiles): """Canonicalize SMILES for safety. If canonicalization ever changes this should remain consistent""" return Chem.MolToSmiles(Chem.MolFromSmiles(smiles)) def test_murcko(mol): murcko = get_murcko_scaffold(mol, generic=False) assert Chem.MolToSmiles(murcko) == canon('O=C(Nc1ccccc1)Nc1cc2c(s1)CNCC2') murcko = get_murcko_scaffold(mol, generic=True) assert Chem.MolToSmiles(murcko) == canon('CC(CC1CCCCC1)CC1CC2CCCCC2C1') def test_annotation(mol): annotation = Chem.MolToSmiles(get_annotated_murcko_scaffold(mol)) annotation = annotation.replace('1*', '*') annotation = annotation.replace('2*', '*') annotation = annotation.replace('3*', '*') assert annotation.count('*') == 3 def test_murcko_all(mol): frags = get_all_murcko_fragments(mol, break_fused_rings=True) assert len(frags) == 6 frags = get_all_murcko_fragments(mol, break_fused_rings=False) assert len(frags) == 3 def test_murcko_next(mol): scf = get_murcko_scaffold(mol) frags_1 = get_next_murcko_fragments(scf, break_fused_rings=True) frags_1 = {Chem.MolToSmiles(x) for x in frags_1} assert len(frags_1) == 2 frags_2 = get_next_murcko_fragments(scf, break_fused_rings=False) frags_2 = {Chem.MolToSmiles(x) for x in frags_2} assert len(frags_2) == 2 assert len(frags_1.intersection(frags_2)) == 1 def test_collect_linker_atoms(): mol = Chem.MolFromSmiles('CCCCCCCCCc1ccccc1') remove_atoms = set() a = collect_linker_atoms(mol.GetAtomWithIdx(0), remove_atoms, True) assert len(a) == 1 assert len(remove_atoms) == 9 remove_atoms.clear() a = collect_linker_atoms(mol.GetAtomWithIdx(0), remove_atoms, False) assert len(a) == 1 assert len(remove_atoms) == 8
31.446154
104
0.719667
[ "MIT" ]
trumanw/ScaffoldGraph
tests/core/test_fragment.py
2,044
Python
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import unittest from unittest import mock from oslo_utils.secretutils import md5 from cinder import exception from cinder.tests.unit import test from cinder.volume import configuration as conf from cinder.volume.drivers.kioxia import entities from cinder.volume.drivers.kioxia import kumoscale as kioxia from cinder.volume.drivers.kioxia import rest_client VOL_BACKEND_NAME = 'kioxia_kumoscale_1' VOL_NAME = 'volume-c2fd04e3-320e-44eb-b-2' VOL_UUID = 'c20aba21-6ef6-446b-b374-45733b4883ba' VOL_SIZE = 10 VOL_PROTOCOL = 'NVMeoF' SNAP_UUID = 'c9ef9d49-0d26-44cb-b609-0b8bd2d3db77' CONN_UUID = '34206309-3733-4cc6-a7d5-9d4dbbe377da' CONN_HOST_NAME = 'devstack' CONN_NQN = 'nqn.2014-08.org.nvmexpress:uuid:' \ 'beaae2de-3a97-4be1-a739-6ac4bc5bf138' success_prov_response = entities.ProvisionerResponse(None, None, "Success", "Success") fail_prov_response = entities.ProvisionerResponse(None, None, "Failure", "Failure") prov_backend1 = entities.Backend(None, None, None, None, 'dummy-pid-1') prov_backend2 = entities.Backend(None, None, None, None, 'dummy-pid-2') prov_location1 = entities.Location(VOL_UUID, prov_backend1) prov_location2 = entities.Location(VOL_UUID, prov_backend2) prov_volume = entities.VolumeProv(VOL_UUID, None, None, None, None, None, None, None, None, None, None, True, None, [prov_location1, prov_location2]) prov_volumes_response = entities.ProvisionerResponse([prov_volume]) no_entities_prov_response = entities.ProvisionerResponse([], None, "Success") class KioxiaVolumeTestCase(test.TestCase): @mock.patch.object(rest_client.KioxiaProvisioner, 'get_info') @mock.patch.object(kioxia.KumoScaleBaseVolumeDriver, '_get_kumoscale') def setUp(self, mock_kumoscale, mock_get_info): mock_get_info.return_value = success_prov_response mock_kumoscale.return_value = \ rest_client.KioxiaProvisioner(['1.2.3.4'], 'cert', 'token') super(KioxiaVolumeTestCase, self).setUp() self.cfg = mock.Mock(spec=conf.Configuration) self.cfg.volume_backend_name = VOL_BACKEND_NAME self.cfg.url = 'dummyURL' self.cfg.token = 'dummy.dummy.Rf-dummy-dummy-lE' self.cfg.cafile = 'dummy' self.cfg.num_replicas = 1 self.cfg.block_size = 512 self.cfg.max_iops_per_gb = 1000 self.cfg.desired_iops_per_gb = 1000 self.cfg.max_bw_per_gb = 1000 self.cfg.desired_bw_per_gb = 1000 self.cfg.same_rack_allowed = False self.cfg.max_replica_down_time = 5 self.cfg.span_allowed = True self.cfg.vol_reserved_space_percentage = 20 self.cfg.provisioning_type = 'THIN' self.driver = kioxia.KumoScaleBaseVolumeDriver(configuration=self.cfg) self.driver.configuration.get = lambda *args, **kwargs: {} self.driver.num_replicas = 2 self.expected_stats = { 'volume_backend_name': VOL_BACKEND_NAME, 'vendor_name': 'KIOXIA', 'driver_version': self.driver.VERSION, 'storage_protocol': 'NVMeOF', 'consistencygroup_support': False, 'thin_provisioning_support': True, 'multiattach': False, 'total_capacity_gb': 1000, 'free_capacity_gb': 600 } @mock.patch.object(rest_client.KioxiaProvisioner, 'get_info') def test_get_kumoscale(self, mock_get_info): mock_get_info.return_value = success_prov_response result = self.driver._get_kumoscale('https://1.2.3.4:8090', 'token', 'cert') self.assertEqual(result.mgmt_ips, ['1.2.3.4']) self.assertEqual(result.port, '8090') self.assertEqual(result.token, 'token') @mock.patch.object(rest_client.KioxiaProvisioner, 'create_volume') def test_volume_create_success(self, mock_create_volume): testvol = _stub_volume() mock_create_volume.return_value = success_prov_response result = self.driver.create_volume(testvol) args, kwargs = mock_create_volume.call_args mock_call = args[0] self.assertEqual(mock_call.alias, testvol['name'][:27]) self.assertEqual(mock_call.capacity, testvol['size']) self.assertEqual(mock_call.uuid, testvol['id']) self.assertEqual(mock_call.protocol, VOL_PROTOCOL) self.assertIsNone(result) @mock.patch.object(rest_client.KioxiaProvisioner, 'create_volume') def test_volume_create_failure(self, mock_create_volume): testvol = _stub_volume() mock_create_volume.return_value = fail_prov_response self.assertRaises(exception.VolumeBackendAPIException, self.driver.create_volume, testvol) @mock.patch.object(rest_client.KioxiaProvisioner, 'create_volume') def test_volume_create_exception(self, mock_create_volume): testvol = _stub_volume() mock_create_volume.side_effect = Exception() self.assertRaises(exception.VolumeBackendAPIException, self.driver.create_volume, testvol) @mock.patch.object(rest_client.KioxiaProvisioner, 'delete_volume') def test_delete_volume_success(self, mock_delete_volume): testvol = _stub_volume() mock_delete_volume.return_value = success_prov_response result = self.driver.delete_volume(testvol) mock_delete_volume.assert_any_call(testvol['id']) self.assertIsNone(result) @mock.patch.object(rest_client.KioxiaProvisioner, 'delete_volume') def test_delete_volume_failure(self, mock_delete_volume): testvol = _stub_volume() mock_delete_volume.return_value = fail_prov_response self.assertRaises(exception.VolumeBackendAPIException, self.driver.delete_volume, testvol) @mock.patch.object(rest_client.KioxiaProvisioner, 'delete_volume') def test_delete_volume_exception(self, mock_delete_volume): testvol = _stub_volume() mock_delete_volume.side_effect = Exception() self.assertRaises(exception.VolumeBackendAPIException, self.driver.delete_volume, testvol) @mock.patch.object(rest_client.KioxiaProvisioner, 'get_backend_by_id') @mock.patch.object(rest_client.KioxiaProvisioner, 'get_targets') @mock.patch.object(rest_client.KioxiaProvisioner, 'get_volumes_by_uuid') @mock.patch.object(rest_client.KioxiaProvisioner, 'publish') @mock.patch.object(rest_client.KioxiaProvisioner, 'host_probe') def test_initialize_connection(self, mock_host_probe, mock_publish, mock_get_volumes_by_uuid, mock_get_targets, mock_get_backend_by_id): testvol = _stub_volume() testconn = _stub_connector() prov_target1 = TargetEntity('target.nqn', prov_backend1) prov_portal = PortalEntity('1.2.3.4', 4420, 'TCP') backend = BackendEntity([prov_portal]) prov_targets_response = entities.ProvisionerResponse([prov_target1]) mock_publish.return_value = success_prov_response mock_host_probe.return_value = success_prov_response mock_get_volumes_by_uuid.return_value = prov_volumes_response mock_get_targets.return_value = prov_targets_response mock_get_backend_by_id.return_value = \ entities.ProvisionerResponse([backend]) result = self.driver.initialize_connection(testvol, testconn) mock_host_probe.assert_any_call(testconn['nqn'], testconn['uuid'], testconn['host'], 'Agent', 'cinder-driver-0.1', 30) mock_publish.assert_any_call(testconn['uuid'], testvol['id']) mock_get_volumes_by_uuid.assert_any_call(testvol['id']) mock_get_targets.assert_any_call(testconn['uuid'], testvol['id']) mock_get_backend_by_id.assert_any_call('dummy-pid-1') expected_replica = {'portals': [('1.2.3.4', '4420', 'TCP')], 'target_nqn': 'target.nqn', 'vol_uuid': testvol['id']} expected_data = { 'vol_uuid': testvol['id'], 'alias': testvol['name'], 'writable': True, 'volume_replicas': [expected_replica] } expected_result = { 'driver_volume_type': 'nvmeof', 'data': expected_data } self.assertDictEqual(result, expected_result) @mock.patch.object(rest_client.KioxiaProvisioner, 'get_backend_by_id') @mock.patch.object(rest_client.KioxiaProvisioner, 'get_targets') @mock.patch.object(rest_client.KioxiaProvisioner, 'get_volumes_by_uuid') @mock.patch.object(rest_client.KioxiaProvisioner, 'publish') @mock.patch.object(rest_client.KioxiaProvisioner, 'host_probe') def test_initialize_connection_host_probe_failure(self, mock_host_probe, mock_publish, mock_get_volumes_by_uuid, mock_get_targets, mock_get_backend_by_id): testvol = _stub_volume() testconn = _stub_connector() prov_target = TargetEntity('target.nqn', prov_backend1) prov_portal = PortalEntity('1.2.3.4', 4420, 'TCP') backend = BackendEntity([prov_portal]) prov_targets_response = entities.ProvisionerResponse([prov_target]) mock_publish.return_value = success_prov_response mock_host_probe.return_value = fail_prov_response mock_get_volumes_by_uuid.return_value = prov_volumes_response mock_get_targets.return_value = prov_targets_response mock_get_backend_by_id.return_value = \ entities.ProvisionerResponse([backend]) self.assertRaises(exception.VolumeBackendAPIException, self.driver.initialize_connection, testvol, testconn) @mock.patch.object(rest_client.KioxiaProvisioner, 'get_backend_by_id') @mock.patch.object(rest_client.KioxiaProvisioner, 'get_targets') @mock.patch.object(rest_client.KioxiaProvisioner, 'get_volumes_by_uuid') @mock.patch.object(rest_client.KioxiaProvisioner, 'publish') @mock.patch.object(rest_client.KioxiaProvisioner, 'host_probe') def test_initialize_connection_host_probe_exception( self, mock_host_probe, mock_publish, mock_get_volumes_by_uuid, mock_get_targets, mock_get_backend_by_id): testvol = _stub_volume() testconn = _stub_connector() prov_target = TargetEntity('target.nqn', prov_backend1) prov_portal = PortalEntity('1.2.3.4', 4420, 'TCP') backend = BackendEntity([prov_portal]) prov_targets_response = entities.ProvisionerResponse([prov_target]) mock_publish.return_value = success_prov_response mock_host_probe.side_effect = Exception() mock_get_volumes_by_uuid.return_value = prov_volumes_response mock_get_targets.return_value = prov_targets_response mock_get_backend_by_id.return_value = \ entities.ProvisionerResponse([backend]) self.assertRaises(exception.VolumeBackendAPIException, self.driver.initialize_connection, testvol, testconn) @mock.patch.object(rest_client.KioxiaProvisioner, 'get_backend_by_id') @mock.patch.object(rest_client.KioxiaProvisioner, 'get_targets') @mock.patch.object(rest_client.KioxiaProvisioner, 'get_volumes_by_uuid') @mock.patch.object(rest_client.KioxiaProvisioner, 'publish') @mock.patch.object(rest_client.KioxiaProvisioner, 'host_probe') def test_initialize_connection_publish_failure(self, mock_host_probe, mock_publish, mock_get_volumes_by_uuid, mock_get_targets, mock_get_backend_by_id): testvol = _stub_volume() testconn = _stub_connector() prov_target = TargetEntity('target.nqn', prov_backend1) prov_portal = PortalEntity('1.2.3.4', 4420, 'TCP') backend = BackendEntity([prov_portal]) prov_targets_response = entities.ProvisionerResponse([prov_target]) mock_publish.return_value = fail_prov_response mock_host_probe.return_value = success_prov_response mock_get_volumes_by_uuid.return_value = prov_volumes_response mock_get_targets.return_value = prov_targets_response mock_get_backend_by_id.return_value = \ entities.ProvisionerResponse([backend]) self.assertRaises(exception.VolumeBackendAPIException, self.driver.initialize_connection, testvol, testconn) @mock.patch.object(rest_client.KioxiaProvisioner, 'get_backend_by_id') @mock.patch.object(rest_client.KioxiaProvisioner, 'get_targets') @mock.patch.object(rest_client.KioxiaProvisioner, 'get_volumes_by_uuid') @mock.patch.object(rest_client.KioxiaProvisioner, 'publish') @mock.patch.object(rest_client.KioxiaProvisioner, 'host_probe') def test_initialize_connection_publish_exception(self, mock_host_probe, mock_publish, mock_get_volumes_by_uuid, mock_get_targets, mock_get_backend_by_id): testvol = _stub_volume() testconn = _stub_connector() prov_target = TargetEntity('target.nqn', prov_backend1) prov_portal = PortalEntity('1.2.3.4', 4420, 'TCP') backend = BackendEntity([prov_portal]) prov_targets_response = entities.ProvisionerResponse([prov_target]) mock_publish.side_effect = Exception() mock_host_probe.return_value = success_prov_response mock_get_volumes_by_uuid.return_value = prov_volumes_response mock_get_targets.return_value = prov_targets_response mock_get_backend_by_id.return_value = \ entities.ProvisionerResponse([backend]) self.assertRaises(exception.VolumeBackendAPIException, self.driver.initialize_connection, testvol, testconn) @mock.patch.object(rest_client.KioxiaProvisioner, 'get_backend_by_id') @mock.patch.object(rest_client.KioxiaProvisioner, 'get_targets') @mock.patch.object(rest_client.KioxiaProvisioner, 'get_volumes_by_uuid') @mock.patch.object(rest_client.KioxiaProvisioner, 'publish') @mock.patch.object(rest_client.KioxiaProvisioner, 'host_probe') def test_initialize_connection_volumes_failure(self, mock_host_probe, mock_publish, mock_get_volumes_by_uuid, mock_get_targets, mock_get_backend_by_id): testvol = _stub_volume() testconn = _stub_connector() prov_target = TargetEntity('target.nqn', prov_backend1) prov_portal = PortalEntity('1.2.3.4', 4420, 'TCP') backend = BackendEntity([prov_portal]) prov_targets_response = entities.ProvisionerResponse([prov_target]) mock_publish.return_value = success_prov_response mock_host_probe.return_value = success_prov_response mock_get_volumes_by_uuid.return_value = fail_prov_response mock_get_targets.return_value = prov_targets_response mock_get_backend_by_id.return_value = \ entities.ProvisionerResponse([backend]) self.assertRaises(exception.VolumeBackendAPIException, self.driver.initialize_connection, testvol, testconn) @mock.patch.object(rest_client.KioxiaProvisioner, 'get_backend_by_id') @mock.patch.object(rest_client.KioxiaProvisioner, 'get_targets') @mock.patch.object(rest_client.KioxiaProvisioner, 'get_volumes_by_uuid') @mock.patch.object(rest_client.KioxiaProvisioner, 'publish') @mock.patch.object(rest_client.KioxiaProvisioner, 'host_probe') def test_initialize_connection_no_volumes(self, mock_host_probe, mock_publish, mock_get_volumes_by_uuid, mock_get_targets, mock_get_backend_by_id): testvol = _stub_volume() testconn = _stub_connector() prov_target = TargetEntity('target.nqn', prov_backend1) prov_portal = PortalEntity('1.2.3.4', 4420, 'TCP') backend = BackendEntity([prov_portal]) prov_targets_response = entities.ProvisionerResponse([prov_target]) mock_publish.return_value = success_prov_response mock_host_probe.return_value = success_prov_response mock_get_volumes_by_uuid.return_value = no_entities_prov_response mock_get_targets.return_value = prov_targets_response mock_get_backend_by_id.return_value = \ entities.ProvisionerResponse([backend]) self.assertRaises(exception.VolumeBackendAPIException, self.driver.initialize_connection, testvol, testconn) @mock.patch.object(rest_client.KioxiaProvisioner, 'get_backend_by_id') @mock.patch.object(rest_client.KioxiaProvisioner, 'get_targets') @mock.patch.object(rest_client.KioxiaProvisioner, 'get_volumes_by_uuid') @mock.patch.object(rest_client.KioxiaProvisioner, 'publish') @mock.patch.object(rest_client.KioxiaProvisioner, 'host_probe') def test_initialize_connection_volumes_exception(self, mock_host_probe, mock_publish, mock_get_volumes_by_uuid, mock_get_targets, mock_get_backend_by_id): testvol = _stub_volume() testconn = _stub_connector() prov_target = TargetEntity('target.nqn', prov_backend1) prov_portal = PortalEntity('1.2.3.4', 4420, 'TCP') backend = BackendEntity([prov_portal]) prov_targets_response = entities.ProvisionerResponse([prov_target]) mock_publish.return_value = success_prov_response mock_host_probe.return_value = success_prov_response mock_get_volumes_by_uuid.side_effect = Exception() mock_get_targets.return_value = prov_targets_response mock_get_backend_by_id.return_value = \ entities.ProvisionerResponse([backend]) self.assertRaises(exception.VolumeBackendAPIException, self.driver.initialize_connection, testvol, testconn) @mock.patch.object(rest_client.KioxiaProvisioner, 'get_backend_by_id') @mock.patch.object(rest_client.KioxiaProvisioner, 'get_targets') @mock.patch.object(rest_client.KioxiaProvisioner, 'get_volumes_by_uuid') @mock.patch.object(rest_client.KioxiaProvisioner, 'publish') @mock.patch.object(rest_client.KioxiaProvisioner, 'host_probe') def test_initialize_connection_targets_failure(self, mock_host_probe, mock_publish, mock_get_volumes_by_uuid, mock_get_targets, mock_get_backend_by_id): testvol = _stub_volume() testconn = _stub_connector() prov_portal = PortalEntity('1.2.3.4', 4420, 'TCP') backend = BackendEntity([prov_portal]) mock_publish.return_value = success_prov_response mock_host_probe.return_value = success_prov_response mock_get_volumes_by_uuid.return_value = prov_volumes_response mock_get_targets.return_value = fail_prov_response mock_get_backend_by_id.return_value = \ entities.ProvisionerResponse([backend]) self.assertRaises(exception.VolumeBackendAPIException, self.driver.initialize_connection, testvol, testconn) @mock.patch.object(rest_client.KioxiaProvisioner, 'get_backend_by_id') @mock.patch.object(rest_client.KioxiaProvisioner, 'get_targets') @mock.patch.object(rest_client.KioxiaProvisioner, 'get_volumes_by_uuid') @mock.patch.object(rest_client.KioxiaProvisioner, 'publish') @mock.patch.object(rest_client.KioxiaProvisioner, 'host_probe') def test_initialize_connection_no_targets(self, mock_host_probe, mock_publish, mock_get_volumes_by_uuid, mock_get_targets, mock_get_backend_by_id): testvol = _stub_volume() testconn = _stub_connector() prov_portal = PortalEntity('1.2.3.4', 4420, 'TCP') backend = BackendEntity([prov_portal]) mock_publish.return_value = success_prov_response mock_host_probe.return_value = success_prov_response mock_get_volumes_by_uuid.return_value = prov_volumes_response mock_get_targets.return_value = no_entities_prov_response mock_get_backend_by_id.return_value = \ entities.ProvisionerResponse([backend]) self.assertRaises(exception.VolumeBackendAPIException, self.driver.initialize_connection, testvol, testconn) @mock.patch.object(rest_client.KioxiaProvisioner, 'get_backend_by_id') @mock.patch.object(rest_client.KioxiaProvisioner, 'get_targets') @mock.patch.object(rest_client.KioxiaProvisioner, 'get_volumes_by_uuid') @mock.patch.object(rest_client.KioxiaProvisioner, 'publish') @mock.patch.object(rest_client.KioxiaProvisioner, 'host_probe') def test_initialize_connection_targets_exception(self, mock_host_probe, mock_publish, mock_get_volumes_by_uuid, mock_get_targets, mock_get_backend_by_id): testvol = _stub_volume() testconn = _stub_connector() prov_portal = PortalEntity('1.2.3.4', 4420, 'TCP') backend = BackendEntity([prov_portal]) mock_publish.return_value = success_prov_response mock_host_probe.return_value = success_prov_response mock_get_volumes_by_uuid.return_value = prov_volumes_response mock_get_targets.side_effect = Exception() mock_get_backend_by_id.return_value = \ entities.ProvisionerResponse([backend]) self.assertRaises(exception.VolumeBackendAPIException, self.driver.initialize_connection, testvol, testconn) @mock.patch.object(rest_client.KioxiaProvisioner, 'get_backend_by_id') @mock.patch.object(rest_client.KioxiaProvisioner, 'get_targets') @mock.patch.object(rest_client.KioxiaProvisioner, 'get_volumes_by_uuid') @mock.patch.object(rest_client.KioxiaProvisioner, 'publish') @mock.patch.object(rest_client.KioxiaProvisioner, 'host_probe') def test_initialize_connection_backend_failure(self, mock_host_probe, mock_publish, mock_get_volumes_by_uuid, mock_get_targets, mock_get_backend_by_id): testvol = _stub_volume() testconn = _stub_connector() prov_target = TargetEntity('target.nqn', prov_backend1) prov_targets_response = entities.ProvisionerResponse([prov_target]) mock_publish.return_value = success_prov_response mock_host_probe.return_value = success_prov_response mock_get_volumes_by_uuid.return_value = prov_volumes_response mock_get_targets.return_value = prov_targets_response mock_get_backend_by_id.return_value = fail_prov_response self.assertRaises(exception.VolumeBackendAPIException, self.driver.initialize_connection, testvol, testconn) @mock.patch.object(rest_client.KioxiaProvisioner, 'get_backend_by_id') @mock.patch.object(rest_client.KioxiaProvisioner, 'get_targets') @mock.patch.object(rest_client.KioxiaProvisioner, 'get_volumes_by_uuid') @mock.patch.object(rest_client.KioxiaProvisioner, 'publish') @mock.patch.object(rest_client.KioxiaProvisioner, 'host_probe') def test_initialize_connection_no_backend(self, mock_host_probe, mock_publish, mock_get_volumes_by_uuid, mock_get_targets, mock_get_backend_by_id): testvol = _stub_volume() testconn = _stub_connector() prov_target = TargetEntity('target.nqn', prov_backend1) prov_targets_response = entities.ProvisionerResponse([prov_target]) mock_publish.return_value = success_prov_response mock_host_probe.return_value = success_prov_response mock_get_volumes_by_uuid.return_value = prov_volumes_response mock_get_targets.return_value = prov_targets_response mock_get_backend_by_id.return_value = no_entities_prov_response self.assertRaises(exception.VolumeBackendAPIException, self.driver.initialize_connection, testvol, testconn) @mock.patch.object(rest_client.KioxiaProvisioner, 'get_backend_by_id') @mock.patch.object(rest_client.KioxiaProvisioner, 'get_targets') @mock.patch.object(rest_client.KioxiaProvisioner, 'get_volumes_by_uuid') @mock.patch.object(rest_client.KioxiaProvisioner, 'publish') @mock.patch.object(rest_client.KioxiaProvisioner, 'host_probe') def test_initialize_connection_backend_exception(self, mock_host_probe, mock_publish, mock_get_volumes_by_uuid, mock_get_targets, mock_get_backend_by_id): testvol = _stub_volume() testconn = _stub_connector() prov_target = TargetEntity('target.nqn', prov_backend1) prov_targets_response = entities.ProvisionerResponse([prov_target]) mock_publish.return_value = success_prov_response mock_host_probe.return_value = success_prov_response mock_get_volumes_by_uuid.return_value = prov_volumes_response mock_get_targets.return_value = prov_targets_response mock_get_backend_by_id.side_effect = Exception() self.assertRaises(exception.VolumeBackendAPIException, self.driver.initialize_connection, testvol, testconn) @mock.patch.object(rest_client.KioxiaProvisioner, 'unpublish') def test_terminate_connection(self, mock_unpublish): testvol = _stub_volume() testconn = _stub_connector() mock_unpublish.return_value = success_prov_response result = self.driver.terminate_connection(testvol, testconn) mock_unpublish.assert_any_call(testconn['uuid'], testvol['id']) self.assertIsNone(result) @mock.patch.object(rest_client.KioxiaProvisioner, 'unpublish') def test_terminate_connection_unpublish_failure(self, mock_unpublish): testvol = _stub_volume() testconn = _stub_connector() mock_unpublish.return_value = fail_prov_response self.assertRaises(exception.VolumeBackendAPIException, self.driver.terminate_connection, testvol, testconn) @mock.patch.object(rest_client.KioxiaProvisioner, 'unpublish') def test_terminate_connection_unpublish_exception(self, mock_unpublish): testvol = _stub_volume() testconn = _stub_connector() mock_unpublish.side_effect = Exception() self.assertRaises(exception.VolumeBackendAPIException, self.driver.terminate_connection, testvol, testconn) @mock.patch.object(rest_client.KioxiaProvisioner, 'get_tenants') def test_get_volume_stats(self, mock_get_tenants): tenant = TenantEntity(1000, 400) mock_get_tenants.return_value = entities.ProvisionerResponse([tenant]) result = self.driver.get_volume_stats(True) mock_get_tenants.assert_any_call() self.assertDictEqual(result, self.expected_stats) @mock.patch.object(rest_client.KioxiaProvisioner, 'get_tenants') def test_get_volume_stats_tenants_failure(self, mock_get_tenants): mock_get_tenants.return_value = fail_prov_response self.expected_stats['total_capacity_gb'] = 'unknown' self.expected_stats['free_capacity_gb'] = 'unknown' self.assertDictEqual( self.driver.get_volume_stats(True), self.expected_stats) @mock.patch.object(rest_client.KioxiaProvisioner, 'get_tenants') def test_get_volume_stats_no_tenants(self, mock_get_tenants): mock_get_tenants.return_value = no_entities_prov_response self.expected_stats['total_capacity_gb'] = 'unknown' self.expected_stats['free_capacity_gb'] = 'unknown' self.assertDictEqual( self.driver.get_volume_stats(True), self.expected_stats) @mock.patch.object(rest_client.KioxiaProvisioner, 'get_tenants') def test_get_volume_stats_tenants_exception(self, mock_get_tenants): mock_get_tenants.side_effect = Exception() self.expected_stats['total_capacity_gb'] = 'unknown' self.expected_stats['free_capacity_gb'] = 'unknown' self.assertDictEqual( self.driver.get_volume_stats(True), self.expected_stats) @mock.patch.object(rest_client.KioxiaProvisioner, 'create_snapshot') def test_create_snapshot_success(self, mock_create_snapshot): testsnap = _stub_snapshot() mock_create_snapshot.return_value = success_prov_response result = self.driver.create_snapshot(testsnap) args, kwargs = mock_create_snapshot.call_args mock_call = args[0] self.assertEqual(mock_call.alias, testsnap['name']) self.assertEqual(mock_call.volumeID, testsnap['volume_id']) self.assertEqual(mock_call.snapshotID, testsnap['id']) self.assertIsNone(result) @mock.patch.object(rest_client.KioxiaProvisioner, 'create_snapshot') def test_create_snapshot_failure(self, mock_create_snapshot): testsnap = _stub_snapshot() mock_create_snapshot.return_value = fail_prov_response self.assertRaises(exception.VolumeBackendAPIException, self.driver.create_snapshot, testsnap) @mock.patch.object(rest_client.KioxiaProvisioner, 'create_snapshot') def test_create_snapshot_exception(self, mock_create_snapshot): testsnap = _stub_snapshot() mock_create_snapshot.side_effect = Exception() self.assertRaises(exception.VolumeBackendAPIException, self.driver.create_snapshot, testsnap) @mock.patch.object(rest_client.KioxiaProvisioner, 'delete_snapshot') def test_delete_snapshot_success(self, mock_delete_snapshot): testsnap = _stub_snapshot() mock_delete_snapshot.return_value = success_prov_response result = self.driver.delete_snapshot(testsnap) mock_delete_snapshot.assert_any_call(testsnap['id']) self.assertIsNone(result) @mock.patch.object(rest_client.KioxiaProvisioner, 'delete_snapshot') def test_delete_snapshot_failure(self, mock_delete_snapshot): testsnap = _stub_snapshot() mock_delete_snapshot.return_value = fail_prov_response self.assertRaises(exception.VolumeBackendAPIException, self.driver.delete_snapshot, testsnap) @mock.patch.object(rest_client.KioxiaProvisioner, 'delete_snapshot') def test_delete_snapshot_exception(self, mock_delete_snapshot): testsnap = _stub_snapshot() mock_delete_snapshot.side_effect = Exception() self.assertRaises(exception.VolumeBackendAPIException, self.driver.delete_snapshot, testsnap) @mock.patch.object(rest_client.KioxiaProvisioner, 'create_snapshot_volume') def test_create_volume_from_snapshot_success(self, mock_create_snapshot_volume): testsnap = _stub_snapshot() testvol = _stub_volume() mock_create_snapshot_volume.return_value = success_prov_response result = self.driver.create_volume_from_snapshot(testvol, testsnap) args, kwargs = mock_create_snapshot_volume.call_args mock_call = args[0] self.assertEqual(mock_call.alias, testvol['name']) self.assertEqual(mock_call.volumeID, testsnap['volume_id']) self.assertEqual(mock_call.snapshotID, testsnap['id']) self.assertEqual(mock_call.protocol, VOL_PROTOCOL) self.assertIsNone(result) @mock.patch.object(rest_client.KioxiaProvisioner, 'create_snapshot_volume') def test_create_volume_from_snapshot_failure(self, mock_create_snapshot_volume): testsnap = _stub_snapshot() testvol = _stub_volume() mock_create_snapshot_volume.return_value = fail_prov_response self.assertRaises(exception.VolumeBackendAPIException, self.driver.create_volume_from_snapshot, testvol, testsnap) @mock.patch.object(rest_client.KioxiaProvisioner, 'create_snapshot_volume') def test_create_volume_from_snapshot_exception( self, mock_create_snapshot_volume): testsnap = _stub_snapshot() testvol = _stub_volume() mock_create_snapshot_volume.side_effect = Exception() self.assertRaises(exception.VolumeBackendAPIException, self.driver.create_volume_from_snapshot, testvol, testsnap) @mock.patch.object(rest_client.KioxiaProvisioner, 'expand_volume') def test_extend_volume_success(self, mock_expand_volume): testvol = _stub_volume() mock_expand_volume.return_value = success_prov_response new_size = VOL_SIZE + 2 result = self.driver.extend_volume(testvol, new_size) mock_expand_volume.assert_any_call(new_size, testvol['id']) self.assertIsNone(result) @mock.patch.object(rest_client.KioxiaProvisioner, 'expand_volume') def test_extend_volume_failure(self, mock_expand_volume): testvol = _stub_volume() mock_expand_volume.return_value = fail_prov_response new_size = VOL_SIZE + 2 self.assertRaises(exception.VolumeBackendAPIException, self.driver.extend_volume, testvol, new_size) @mock.patch.object(rest_client.KioxiaProvisioner, 'expand_volume') def test_extend_volume_exception(self, mock_expand_volume): testvol = _stub_volume() mock_expand_volume.side_effect = Exception() new_size = VOL_SIZE + 2 self.assertRaises(exception.VolumeBackendAPIException, self.driver.extend_volume, testvol, new_size) @mock.patch.object(rest_client.KioxiaProvisioner, 'clone_volume') def test_create_cloned_volume_success(self, mock_clone_volume): testvol = _stub_volume() mock_clone_volume.return_value = success_prov_response result = self.driver.create_cloned_volume(testvol, testvol) args, kwargs = mock_clone_volume.call_args mock_call = args[0] self.assertEqual(mock_call.alias, testvol['name']) self.assertEqual(mock_call.capacity, testvol['size']) self.assertEqual(mock_call.volumeId, testvol['id']) self.assertEqual(mock_call.sourceVolumeId, testvol['id']) self.assertIsNone(result) @mock.patch.object(rest_client.KioxiaProvisioner, 'clone_volume') def test_create_cloned_volume_failure(self, mock_clone_volume): testvol = _stub_volume() mock_clone_volume.return_value = fail_prov_response self.assertRaises(exception.VolumeBackendAPIException, self.driver.create_cloned_volume, testvol, testvol) @mock.patch.object(rest_client.KioxiaProvisioner, 'clone_volume') def test_create_cloned_volume_exception(self, mock_clone_volume): testvol = _stub_volume() mock_clone_volume.side_effect = Exception() self.assertRaises(exception.VolumeBackendAPIException, self.driver.create_cloned_volume, testvol, testvol) def test_convert_host_name(self): name = 'ks-node3-000c2960a794-000c2960a797' result = self.driver._convert_host_name(name) expected = md5(name.encode('utf-8'), usedforsecurity=False).hexdigest() self.assertEqual(result, expected) def test_create_export(self): result = self.driver.create_export(None, None, None) self.assertIsNone(result) def test_ensure_export(self): result = self.driver.ensure_export(None, None) self.assertIsNone(result) def test_remove_export(self): result = self.driver.remove_export(None, None) self.assertIsNone(result) def test_check_for_setup_error(self): result = self.driver.check_for_setup_error() self.assertIsNone(result) def _stub_volume(*args, **kwargs): volume = {'id': kwargs.get('id', VOL_UUID), 'name': kwargs.get('name', VOL_NAME), 'project_id': "test-project", 'display_name': kwargs.get('display_name', VOL_NAME), 'size': kwargs.get('size', VOL_SIZE), 'provider_location': kwargs.get('provider_location', None), 'volume_type_id': kwargs.get('volume_type_id', None)} return volume def _stub_connector(*args, **kwargs): connector = {'uuid': kwargs.get('uuid', CONN_UUID), 'nqn': kwargs.get('nqn', CONN_NQN), 'host': kwargs.get('host', CONN_HOST_NAME)} return connector def _stub_snapshot(*args, **kwargs): volume = {'id': kwargs.get('id', SNAP_UUID), 'name': kwargs.get('name', 'snap2000'), 'volume_id': kwargs.get('id', VOL_UUID)} return volume class TenantEntity: def __init__(self, capacity, consumed): self.tenantId = '0' self.capacity = capacity self.consumedCapacity = consumed class TargetEntity: def __init__(self, name, backend): self.targetName = name self.backend = backend class BackendEntity: def __init__(self, portals): self.portals = portals class PortalEntity: def __init__(self, ip, port, transport): self.ip = ip self.port = port self.transport = transport if __name__ == '__main__': unittest.main()
52.20156
79
0.670254
[ "Apache-2.0" ]
Boye-Z/cinder
cinder/tests/unit/volume/drivers/test_kioxia.py
40,143
Python
# Generated by Django 3.1 on 2020-09-28 07:06 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('base', '0065_bugtracker'), ] operations = [ migrations.RenameField( model_name='bugtracker', old_name='bug', new_name='subject', ), migrations.RenameField( model_name='bugtracker', old_name='user_device_info', new_name='user_device_information', ), migrations.AddField( model_name='bugtracker', name='project', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='base.project'), ), migrations.AlterField( model_name='bugtracker', name='bug_severity', field=models.CharField(choices=[('Low', 'Low'), ('Minor', 'Minor'), ('Major', 'Major'), ('Critical', 'Critical'), ('Not a bug', 'Not a bug')], default=None, max_length=10), ), ]
30.742857
184
0.578996
[ "MIT" ]
gade-raghav/project-enhancements
base/migrations/0066_auto_20200928_0706.py
1,076
Python
"""Top-level package for pomdp-belief-tracking.""" __author__ = """sammie katt""" __email__ = "[email protected]" __version__ = "0.1.0" from pomdp_belief_tracking import pf
22.375
50
0.731844
[ "MIT" ]
kevslinger/pomdp-belief-tracking
pomdp_belief_tracking/__init__.py
179
Python
# -*- coding: utf-8 -*- # ------------------------------------------------------------------------------ # # Copyright 2018-2019 Fetch.AI Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ------------------------------------------------------------------------------ """This package contains the behaviour of a generic seller AEA.""" from typing import cast from aea.skills.behaviours import TickerBehaviour from packages.fetchai.protocols.ledger_api.message import LedgerApiMessage from packages.fetchai.protocols.oef_search.message import OefSearchMessage from packages.fetchai.skills.generic_seller.dialogues import ( LedgerApiDialogues, OefSearchDialogues, ) from packages.fetchai.skills.generic_seller.strategy import GenericStrategy DEFAULT_SERVICES_INTERVAL = 60.0 LEDGER_API_ADDRESS = "fetchai/ledger:0.3.0" class GenericServiceRegistrationBehaviour(TickerBehaviour): """This class implements a behaviour.""" def __init__(self, **kwargs): """Initialise the behaviour.""" services_interval = kwargs.pop( "services_interval", DEFAULT_SERVICES_INTERVAL ) # type: int super().__init__(tick_interval=services_interval, **kwargs) def setup(self) -> None: """ Implement the setup. :return: None """ strategy = cast(GenericStrategy, self.context.strategy) if strategy.is_ledger_tx: ledger_api_dialogues = cast( LedgerApiDialogues, self.context.ledger_api_dialogues ) ledger_api_msg = LedgerApiMessage( performative=LedgerApiMessage.Performative.GET_BALANCE, dialogue_reference=ledger_api_dialogues.new_self_initiated_dialogue_reference(), ledger_id=strategy.ledger_id, address=cast(str, self.context.agent_addresses.get(strategy.ledger_id)), ) ledger_api_msg.counterparty = LEDGER_API_ADDRESS ledger_api_dialogues.update(ledger_api_msg) self.context.outbox.put_message(message=ledger_api_msg) self._register_agent() self._register_service() def act(self) -> None: """ Implement the act. :return: None """ # self._unregister_service() # self._register_service() def teardown(self) -> None: """ Implement the task teardown. :return: None """ self._unregister_service() self._unregister_agent() def _register_agent(self) -> None: """ Register the agent's location. :return: None """ strategy = cast(GenericStrategy, self.context.strategy) description = strategy.get_location_description() oef_search_dialogues = cast( OefSearchDialogues, self.context.oef_search_dialogues ) oef_search_msg = OefSearchMessage( performative=OefSearchMessage.Performative.REGISTER_SERVICE, dialogue_reference=oef_search_dialogues.new_self_initiated_dialogue_reference(), service_description=description, ) oef_search_msg.counterparty = self.context.search_service_address oef_search_dialogues.update(oef_search_msg) self.context.outbox.put_message(message=oef_search_msg) self.context.logger.info("registering agent on SOEF.") def _register_service(self) -> None: """ Register the agent's service. :return: None """ strategy = cast(GenericStrategy, self.context.strategy) description = strategy.get_register_service_description() oef_search_dialogues = cast( OefSearchDialogues, self.context.oef_search_dialogues ) oef_search_msg = OefSearchMessage( performative=OefSearchMessage.Performative.REGISTER_SERVICE, dialogue_reference=oef_search_dialogues.new_self_initiated_dialogue_reference(), service_description=description, ) oef_search_msg.counterparty = self.context.search_service_address oef_search_dialogues.update(oef_search_msg) self.context.outbox.put_message(message=oef_search_msg) self.context.logger.info("registering service on SOEF.") def _unregister_service(self) -> None: """ Unregister service from the SOEF. :return: None """ strategy = cast(GenericStrategy, self.context.strategy) description = strategy.get_unregister_service_description() oef_search_dialogues = cast( OefSearchDialogues, self.context.oef_search_dialogues ) oef_search_msg = OefSearchMessage( performative=OefSearchMessage.Performative.UNREGISTER_SERVICE, dialogue_reference=oef_search_dialogues.new_self_initiated_dialogue_reference(), service_description=description, ) oef_search_msg.counterparty = self.context.search_service_address oef_search_dialogues.update(oef_search_msg) self.context.outbox.put_message(message=oef_search_msg) self.context.logger.info("unregistering service from SOEF.") def _unregister_agent(self) -> None: """ Unregister agent from the SOEF. :return: None """ strategy = cast(GenericStrategy, self.context.strategy) description = strategy.get_location_description() oef_search_dialogues = cast( OefSearchDialogues, self.context.oef_search_dialogues ) oef_search_msg = OefSearchMessage( performative=OefSearchMessage.Performative.UNREGISTER_SERVICE, dialogue_reference=oef_search_dialogues.new_self_initiated_dialogue_reference(), service_description=description, ) oef_search_msg.counterparty = self.context.search_service_address oef_search_dialogues.update(oef_search_msg) self.context.outbox.put_message(message=oef_search_msg) self.context.logger.info("unregistering agent from SOEF.")
38.086705
96
0.670815
[ "Apache-2.0" ]
ejfitzgerald/agents-aea
packages/fetchai/skills/generic_seller/behaviours.py
6,589
Python
"""Convert MUSDB18 dataset to .wav format. Output .wav files contain 5 channels - `0` - The mixture, - `1` - The drums, - `2` - The bass, - `3` - The rest of the accompaniment, - `4` - The vocals. """ import argparse import os import subprocess import tempfile import librosa import numpy as np import soundfile as sf def main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument('origin_dataset_dir', help='Path of the original dataset (.mp4)', type=str) parser.add_argument('new_dataset_dir', help='Output path of .wav dataset', type=str) parser.add_argument('--sr', help='Sample rate. (Default: 22050) ', type=int, default=22050) args = parser.parse_args() origin_dataset_dir = args.origin_dataset_dir new_dataset_dir = args.new_dataset_dir if os.path.isdir(new_dataset_dir): raise FileExistsError(f'{new_dataset_dir} already exists.') else: os.mkdir(new_dataset_dir) os.mkdir(os.path.join(new_dataset_dir, 'train')) os.mkdir(os.path.join(new_dataset_dir, 'test')) with tempfile.TemporaryDirectory() as tmpdir: for subdir in ('train', 'test'): origin_dir = os.path.join(origin_dataset_dir, subdir) files = [f for f in os.listdir(origin_dir) if os.path.splitext(f)[1] == '.mp4'] for file in files: path = os.path.join(origin_dir, file) name = os.path.splitext(file)[0] wav_data = [] # Extract & save the sound of `ch` channel to a temp directory # and then concatenate all channels to a single .wav file for ch in range(5): temp_fn = f'{name}.{ch}.wav' out_path = os.path.join(tmpdir, temp_fn) subprocess.run(['ffmpeg', '-i', path, '-map', f'0:{ch}', out_path]) sound, _ = librosa.load(out_path, sr=args.sr, mono=True) wav_data.append(sound) wav_data = np.stack(wav_data, axis=1) out_path = os.path.join( new_dataset_dir, subdir, f'{name}.wav') sf.write(out_path, wav_data, args.sr) if __name__ == '__main__': main()
35.202899
78
0.558666
[ "MIT" ]
mori97/U-Net_MUSDB18
src/convert_to_wav.py
2,429
Python
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # RobotPy WPILib documentation build configuration file, created by # sphinx-quickstart on Sun Nov 2 21:31:04 2014. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. # # Imports # import sys import os from os.path import abspath, join, dirname sys.path.insert(0, abspath(join(dirname(__file__)))) # -- RTD configuration ------------------------------------------------ # on_rtd is whether we are on readthedocs.org, this line of code grabbed from docs.readthedocs.org on_rtd = os.environ.get("READTHEDOCS", None) == "True" # This is used for linking and such so we link to the thing we're building rtd_version = os.environ.get("READTHEDOCS_VERSION", "latest") if rtd_version not in ["stable", "latest"]: rtd_version = "stable" # -- General configuration ------------------------------------------------ # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ "sphinx.ext.autodoc", "sphinx.ext.autosummary", "sphinx.ext.intersphinx", "sphinx.ext.viewcode", "sphinx_inline_tabs", "sphinxext.opengraph", "sphinx_reredirects", ] ogp_custom_meta_tags = [ '<meta property="og:ignore_canonical" content="true" />', '<meta name="theme-color" content="#3393d5" />', ] # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # The suffix of source filenames. source_suffix = ".rst" # The master toctree document. master_doc = "index" # General information about the project. project = "RobotPy" copyright = "2014-2020, RobotPy development team" intersphinx_mapping = { "commandsv1": ( "https://robotpy.readthedocs.io/projects/commands-v1/en/%s/" % rtd_version, None, ), "commandsv2": ( "https://robotpy.readthedocs.io/projects/commands-v2/en/%s/" % rtd_version, None, ), "pyfrc": ( "https://robotpy.readthedocs.io/projects/pyfrc/en/%s/" % rtd_version, None, ), "networktables": ( "https://robotpy.readthedocs.io/projects/pynetworktables/en/%s/" % rtd_version, None, ), "wpilib": ( "https://robotpy.readthedocs.io/projects/wpilib/en/%s/" % rtd_version, None, ), "hal": ( "https://robotpy.readthedocs.io/projects/hal/en/%s/" % rtd_version, None, ), "robotpy_ext": ( "https://robotpy.readthedocs.io/projects/utilities/en/%s/" % rtd_version, None, ), "cscore": ( "https://robotpy.readthedocs.io/projects/cscore/en/%s/" % rtd_version, None, ), "frc": ("https://docs.wpilib.org/en/stable", None), } redirects = { "2020_notes": "upgrade_notes.html" } # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = "2021" # The full version, including alpha/beta/rc tags. release = version autoclass_content = "both" # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ["_build"] # The name of the Pygments (syntax highlighting) style to use. pygments_style = "sphinx" # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = "default" if not on_rtd: # only import and set the theme if we're building docs locally import sphinx_rtd_theme html_theme = "sphinx_rtd_theme" html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] else: html_theme = "default" # Output file base name for HTML help builder. htmlhelp_basename = "RobotPy" # -- Options for LaTeX output --------------------------------------------- latex_elements = {} # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ ( "index", "RobotPy.tex", "RobotPy Documentation", "RobotPy development team", "manual", ) ] # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ( "index", "RobotPy", "RobotPy Documentation", "RobotPy development team", "RobotPy", "One line description of project.", "Miscellaneous", ) ] # -- Options for Epub output ---------------------------------------------- # Bibliographic Dublin Core info. epub_title = "RobotPy" epub_author = "RobotPy development team" epub_publisher = "RobotPy development team" epub_copyright = "2014-2020, RobotPy development team" # A list of files that should not be packed into the epub file. epub_exclude_files = ["search.html"] # -- Custom Document processing ---------------------------------------------- from robotpy_sphinx.sidebar import generate_sidebar generate_sidebar( globals(), "robotpy", "https://raw.githubusercontent.com/robotpy/docs-sidebar/master/sidebar.toml", )
28.079602
98
0.644401
[ "Apache-2.0" ]
KenwoodFox/robotpy-docs
conf.py
5,644
Python
# Space: O(n) # Time: O(n!) class CombinationIterator: def __init__(self, characters: str, combinationLength: int): self.data = characters self.res = self.combine(self.data, combinationLength) self.counter = 0 self.res_count = len(self.res) def next(self) -> str: if self.hasNext(): res = self.res[self.counter] self.counter += 1 return res def hasNext(self) -> bool: return self.counter < self.res_count def combine(self, data, length): if length > len(data): return [] def dfs(data, index, temp_res, res, length): if len(temp_res) == length: res.append(temp_res) return for i in range(index, len(data)): temp_res += data[i] dfs(data, i + 1, temp_res, res, length) temp_res = temp_res[:-1] return res return dfs(data, 0, '', [], length)
23.619048
64
0.529234
[ "MIT" ]
lht19900714/Leetcode_Python
Algorithms/1286_Iterator_for_Combination/Python/Iterator_for_Combination_Solution_1.py
992
Python
# Copyright (c) 2018 by contributors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # coding: utf-8 """Setup xlearn package.""" from __future__ import absolute_import import sys import os from setuptools import setup, find_packages sys.path.insert(0, '.') CURRENT_DIR = os.path.dirname(__file__) libpath_py = os.path.join(CURRENT_DIR, 'xlearn/libpath.py') libpath = {'__file__': libpath_py} exec(compile(open(libpath_py, "rb").read(), libpath_py, 'exec'), libpath, libpath) LIB_PATH = [os.path.relpath(libfile, CURRENT_DIR) for libfile in libpath['find_lib_path']()] print("Install libxlearn_api from: %s" % LIB_PATH) setup(name='xlearn', version=open(os.path.join(CURRENT_DIR, 'xlearn/VERSION')).read().strip(), description="xLearn Python Package", maintainer='Chao Ma', maintainer_email='[email protected]', zip_safe=False, packages=find_packages(), # this will use MANIFEST.in during install where we specify additional files, # this is the golden line include_package_data=True, install_requires=[ "numpy", "scipy" ], data_files=[('xlearn', LIB_PATH)], license='Apache-2.0', classifiers=['License :: OSI Approved :: Apache Software License'], url='https://github.com/aksnzhy/xlearn')
37.285714
92
0.708265
[ "Apache-2.0" ]
ccgcyber/xlearn
python-package/setup.py
1,827
Python
# Copyright (c) 2015 Brian Haskin Jr. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE import os.path import socket import unittest from pyrimaa import aei, board from pyrimaa.aei import EngineController, EngineException, EngineResponse class MockEngine: def __init__(self, expected): self.log = None self.expected = expected self.event = 0 self._closed = False def is_running(self): return False if self._closed else True def send(self, msg): if self._closed: raise Exception("Mock engine send called after cleanup.") expected = self.expected[self.event] if expected[0] == "raise": self.event += 1 raise expected[1] if expected[0] != "s": raise Exception("Mock engine send called when expecting, %s" % (expected, )) if msg.rstrip() != expected[1]: raise Exception( "Mock engine send called with unexpected message (%s) expected (%s)." % (msg, expected[1])) self.event += 1 def readline(self, timeout=None): if self._closed: raise Exception("Mock engine readline called after cleanup.") expected = self.expected[self.event] if expected[0] != "r": raise Exception("Mock engine readline called when expecting, %s" % (expected[1], )) self.event += 1 return expected[1] def waitfor(self, msg, timeout=0.5): if self._closed: raise Exception("Mock engine waitfor called after cleanup.") msg = msg.rstrip() expected = self.expected[self.event] if expected[0] not in ["r", "raise"]: raise Exception("Mock engine waitfor called when expecting, %s" % (expected, )) responses = [] while expected[0] == "r" and expected[1] != msg: responses.append(expected[1]) self.event += 1 expected = self.expected[self.event] if expected[0] == "r" and msg == expected[1]: responses.append(expected[1]) elif expected[0] == "send_response": pass elif expected[0] == "raise": self.event += 1 raise expected[1]() else: raise Exception( "Mock engine waitfor called with unexpected message (%s)" % (msg, )) self.event += 1 return responses def cleanup(self): if self._closed: raise Exception("Mock engine cleanup called multiple times.") self._closed = True class MockLog: def __init__(self): self.debugging = "" self.information = "" self.warning = "" def debug(self, message): self.debugging += message + '\n' def info(self, message): self.information += message + '\n' def warn(self, message): self.warning += message + '\n' protocol0 = [ ("s", "aei"), ("r", "id name Mock0"), ("r", "id author Janzert"), ("r", "aeiok"), ("s", "isready"), ("r", "readyok"), ("s", "newgame"), ("s", "setposition w [rrrrrrrrdhcemchd DHCMECHDRRRRRRRR]" ), ] bad_protocol = [ ("s", "aei"), ("r", "protocol-version abc"), ("r", "id name Mock"), ("r", "id author Janzert"), ("r", "aeiok"), ("s", "isready"), ("r", "readyok"), ("s", "newgame"), ("s", "setposition g [rrrrrrrrdhcemchd DHCMECHDRRRRRRRR]" ), ("s", "go"), ("s", "stop"), ("s", "quit"), ] protocol1 = [ ("s", "aei"), ("r", "protocol-version 1"), ("r", "id name Mock"), ("r", "id author Janzert"), ("r", "aeiok"), ("s", "isready"), ("r", "log Engine running"), ("r", "readyok"), ("r", ""), ("r", "log Engine initialized"), ("s", "setoption name depth value 4"), ("s", "newgame"), ("s", "setposition g [rrrrrrrrdhcemchd DHCMECHDRRRRRRRR]" ), ("s", "go"), ("s", "stop"), ("r", "info depth 4"), ("r", "bestmove Hb2n Ed2n"), ("s", "makemove Hb2n Ed2n"), ("s", "go ponder"), ("s", "quit"), ] bad_isready_response = [ ("s", "aei"), ("r", "protocol-version 1"), ("r", "id name Mock"), ("r", "id author Janzert"), ("r", "aeiok"), ("s", "isready"), ("r", "readyok"), ("s", "newgame"), ("s", "isready"), ("r", "log Engine shutting down"), ("send_response",), ] aeiok_timeout = [ ("s", "aei"), ("raise", socket.timeout), ] aei_send_error = [ ("raise", IOError), ] class EngineControllerTest(unittest.TestCase): def test_protocol_versions(self): eng = MockEngine(protocol0) ctl = EngineController(eng) self.assertEqual(ctl.ident["name"], "Mock0") self.assertEqual(ctl.ident["author"], "Janzert") self.assertEqual(ctl.protocol_version, 0) ctl.newgame() pos = board.Position(board.Color.GOLD, 4, board.BASIC_SETUP) ctl.setposition(pos) ctl.cleanup() # bad protocol version eng = MockEngine(bad_protocol) eng.log = MockLog() ctl = EngineController(eng) self.assertIn("Unrecognized protocol version", eng.log.warning) pos = board.Position(board.Color.GOLD, 4, board.BASIC_SETUP) ctl.newgame() ctl.setposition(pos) ctl.go() ctl.stop() ctl.quit() def test_controller(self): eng = MockEngine(protocol1) ctl = EngineController(eng) self.assertEqual(ctl.ident["name"], "Mock") self.assertEqual(ctl.ident["author"], "Janzert") self.assertEqual(ctl.protocol_version, 1) self.assertEqual(ctl.is_running(), True) self.assertRaises(socket.timeout, ctl.get_response) resp = ctl.get_response() self.assertIsInstance(resp, EngineResponse) self.assertEqual(resp.type, "log") self.assertEqual(resp.message, eng.expected[eng.event - 1][1].lstrip("log ")) ctl.setoption("depth", 4) ctl.newgame() pos = board.Position(board.Color.GOLD, 4, board.BASIC_SETUP) ctl.setposition(pos) ctl.go() ctl.stop() resp = ctl.get_response() self.assertEqual(resp.type, "info") self.assertEqual(resp.message, eng.expected[eng.event - 1][1].lstrip("info ")) resp = ctl.get_response() self.assertEqual(resp.type, "bestmove") self.assertEqual(resp.move, eng.expected[eng.event - 1][1].lstrip("bestmove ")) ctl.makemove("Hb2n Ed2n") ctl.go("ponder") ctl.quit() ctl.cleanup() # bad response to isready eng = MockEngine(bad_isready_response) ctl = EngineController(eng) ctl.newgame() self.assertRaises(EngineException, ctl.isready) # timeout waiting for aeiok eng = MockEngine(aeiok_timeout) self.assertRaises(EngineException, EngineController, eng) # IOError sending aei eng = MockEngine(aei_send_error) self.assertRaises(EngineException, EngineController, eng) def _check_engine(self, eng): self.assertEqual(eng.is_running(), True) eng.send("aei\n") response = eng.waitfor("aeiok") self.assertEqual(response[-1], "aeiok") self.assertRaises(socket.timeout, eng.readline, timeout=0.05) eng.send("isready\n") response = eng.readline() self.assertEqual(response, "readyok") eng.send("quit\n") eng.waitfor("log") self.assertRaises(EngineException, eng.waitfor, "invalid", timeout=0.05) eng.cleanup() self.assertEqual(eng.active, False) def test_stdioengine(self): eng = aei.get_engine("stdio", "simple_engine") self.assertIsInstance(eng, aei.StdioEngine) self._check_engine(eng) eng = aei.get_engine("stdio", "simple_engine", "aei") self._check_engine(eng) def test_socketengine(self): path = os.path.dirname(__file__) adapter = os.path.join(path, "socketadapter.py") eng = aei.get_engine("socket", adapter) self.assertIsInstance(eng, aei.SocketEngine) self._check_engine(eng) eng = aei.get_engine("socket", adapter, "aei") self.assertIsInstance(eng, aei.SocketEngine) self._check_engine(eng) eng = aei.get_engine("2008cc", adapter + " --legacy") self._check_engine(eng)
33.213058
87
0.58148
[ "MIT" ]
TFiFiE/AEI
pyrimaa/tests/test_aei.py
9,665
Python
#!/usr/bin/env python import numpy as np import datetime as dt import sys, os, pickle, time from keras.models import Model, save_model, load_model from keras.regularizers import l2 from keras.optimizers import SGD, Adam import keras.backend as K import tensorflow as tf import pandas as pd import innvestigate import innvestigate.utils as iutils from ml_functions import read_csv_files, normalize_multivariate_data, log, get_features def brier_score_keras(obs, preds): return K.mean((preds - obs) ** 2) def brier_skill_score_keras(obs, preds): climo = K.mean((obs - K.mean(obs)) ** 2) bs = brier_score_keras(obs, preds) ratio = (bs / climo) return climo def auc(obs, preds): auc = tf.metrics.auc(obs, preds)[1] K.get_session().run(tf.local_variables_initializer()) return auc def log(msg): print( time.ctime(time.time()), msg ) ### NEURAL NETWORK PARAMETERS ### nn_params = { 'num_layers': 1, 'num_neurons': [ 1024 ], 'dropout': 0.1, 'lr': 0.001, 'num_epochs': 30, \ 'report_window_space':[ int(sys.argv[1]) ], 'report_window_time':[ int(sys.argv[2]) ] } dataset = 'RT2020' scaling_dataset = 'NSC3km-12sec' scaling_file = '/glade/work/sobash/NSC_objects/scaling_values_all_%s.pk'%scaling_dataset trained_models_dir = '/glade/work/sobash/NSC_objects/trained_models_paper' sdate = dt.datetime(2020,5,1,0,0,0) edate = dt.datetime(2020,5,10,0,0,0) dateinc = dt.timedelta(days=1) features = get_features('basic') log('Reading Data') # read data and reassign data types to float32 to save memory type_dict = {} for f in features: type_dict[f]='float32' df, numfcsts = read_csv_files(sdate, edate, dataset) print(numfcsts) scaling_values = pickle.load(open(scaling_file, 'rb')) norm_in_data, scaling_values = normalize_multivariate_data(df[features].values.astype(np.float32), features, scaling_values=scaling_values) dense_model = None model_fname = '%s/neural_network_2016_120km_2hr_nn%d_drop%.1f_basic.h5'%(trained_models_dir,nn_params['num_neurons'][0],nn_params['dropout']) dense_model = load_model(model_fname, custom_objects={'brier_score_keras': brier_score_keras, 'brier_skill_score_keras':brier_skill_score_keras, 'auc':auc }) print(norm_in_data.shape) analyzer = innvestigate.create_analyzer('lrp.alpha_2_beta_1', dense_model, neuron_selection_mode='index') a = analyzer.analyze(norm_in_data, 0) a /= np.max(np.abs(a)) a = a.reshape((36,1298,-1)) a = np.mean(a[24,:,:], axis=0) print(a.shape) for i,f in enumerate(features): print(f, a[i]) log('Finished')
31.8
157
0.737421
[ "MIT" ]
ahijevyc/NSC_objects
neural_network_lrp.py
2,544
Python
#!/usr/bin/env python3 import torch import torch.optim as optim import os, sys import warnings import numpy as np current_path = os.path.dirname(os.path.realpath(__file__)) PROJECT_HOME = os.path.abspath(os.path.join(current_path, os.pardir, os.pardir, os.pardir, os.pardir)) if PROJECT_HOME not in sys.path: sys.path.append(PROJECT_HOME) from common.fast_rl.common.utils import EarlyStopping from common.environments import get_data from codes.f_utils import common_utils from common.environments import TimeUnit, TradeEnvironmentType, Action from common.environments import UpbitEnvironment from common.environments import EpsilonGreedyTradeDQNActionSelector, \ ArgmaxTradeActionSelector, RandomTradeDQNActionSelector from common.fast_rl import rl_agent, value_based_model, actions, experience_single, replay_buffer from common.fast_rl.common import utils from common.fast_rl.common import statistics from rl_main.trade_main import visualizer from common.slack import PushSlack pusher = PushSlack() ##### NOTE ##### from codes.a_config.parameters import PARAMETERS as params ##### NOTE ##### warnings.filterwarnings("ignore", category=DeprecationWarning) warnings.filterwarnings("ignore", category=UserWarning) os.environ['KMP_DUPLICATE_LIB_OK'] = 'True' device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') MODEL_SAVE_DIR = os.path.join(PROJECT_HOME, "out", "model_save_files") if not os.path.exists(MODEL_SAVE_DIR): os.makedirs(MODEL_SAVE_DIR) def evaluate(env, agent, verbose=True): experience_source = experience_single.ExperienceSourceSingleEnvFirstLast(env, agent, gamma=params.GAMMA, n_step=params.N_STEP) done = False state = env.reset() agent_state = agent.initial_agent_state() episode_reward = 0.0 num_buys = 0 info = None step_idx = 0 while not done: step_idx += 1 states_input = [] processed_state = experience_source.get_processed_state(state) states_input.append(processed_state) agent_states_input = [] agent_states_input.append(agent_state) new_actions, new_agent_states = agent(states_input, agent_states_input) agent_state = new_agent_states[0] action = new_actions[0] if action == Action.MARKET_BUY.value: num_buys += 1 if num_buys > 10: action_str = "BUY({0})".format(10) else: action_str = "BUY({0})".format(num_buys) else: action_str = env.get_action_meanings()[action] msg = "[{0:2}|{1}] OHLCV: {2}, {3}, {4}, {5}, {6:<10.1f}, Action: {7:7} --> ".format( step_idx, env.data.iloc[env.transaction_state_idx]['datetime_krw'], env.data.iloc[env.transaction_state_idx]['open'], env.data.iloc[env.transaction_state_idx]['high'], env.data.iloc[env.transaction_state_idx]['low'], env.data.iloc[env.transaction_state_idx]['final'], env.data.iloc[env.transaction_state_idx]['volume'], action_str ) next_state, reward, done, info = env.step(action) if action in [Action.HOLD.value]: msg += "Reward: {0:.3f}, hold coin: {1:.1f}".format( reward, info["hold_coin"] ) elif action == Action.MARKET_BUY.value: if num_buys <= 10: coin_krw_str = "{0:.1f}".format(info['coin_krw']) commission_fee_str = "{0:.1f}".format(info['commission_fee']) else: coin_krw_str = "-" commission_fee_str = "-" msg += "Reward: {0:.3f}, slippage: {1:.1f}, coin_unit_price: {2:.1f}, " \ "coin_krw: {3}, commission: {4}, hold coin: {5:.1f}".format( reward, info["slippage"], info["coin_unit_price"], coin_krw_str, commission_fee_str, info["hold_coin"] ) elif action == Action.MARKET_SELL.value: msg += "Reward: {0:.3f}, slippage: {1:.1f}, coin_unit_price: {2:.1f}, " \ "coin_krw: {3:.1f}, commission: {4:.1f}, sold coin: {5:.1f}, profit: {6:.1f}".format( reward, info["slippage"], info["coin_unit_price"], info['coin_krw'], info['commission_fee'], info["sold_coin"], info["profit"] ) else: raise ValueError() if verbose: print(msg) episode_reward += reward state = next_state if verbose: print("SAMPLED TRANSACTION DONE! - START DATETIME: {0}, EPISODE REWARD: {1:>8.3f}, " "PROFIT: {2:>10.1f}, STEPS: {3}".format( env.transaction_start_datetime, episode_reward, info["profit"], step_idx )) return info["profit"], step_idx def train(coin_name, time_unit, train_env, evaluate_env): common_utils.print_fast_rl_params(params) params.BATCH_SIZE *= params.TRAIN_STEP_FREQ net = value_based_model.DuelingDQNSmallCNN( observation_shape=train_env.observation_space.shape, n_actions=train_env.action_space.n ).to(device) print(net) print("ACTION MEANING: {0}".format(train_env.get_action_meanings())) tgt_net = value_based_model.DuelingDQNSmallCNN( observation_shape=train_env.observation_space.shape, n_actions=train_env.action_space.n ).to(device) action_selector = EpsilonGreedyTradeDQNActionSelector(epsilon=params.EPSILON_INIT, env=train_env) agent = rl_agent.DQNAgent(dqn_model=net, action_selector=action_selector, device=device) argmax_action_selector = ArgmaxTradeActionSelector(env=evaluate_env) evaluate_agent = rl_agent.DQNAgent(dqn_model=net, action_selector=argmax_action_selector, device=device) random_action_selector = RandomTradeDQNActionSelector(env=evaluate_env) random_agent = rl_agent.DQNAgent(dqn_model=None, action_selector=random_action_selector, device=device) experience_source = experience_single.ExperienceSourceSingleEnvFirstLast( train_env, agent, gamma=params.GAMMA, n_step=params.N_STEP ) buffer = replay_buffer.ExperienceReplayBuffer(experience_source, buffer_size=params.REPLAY_BUFFER_SIZE) optimizer = optim.Adam(net.parameters(), lr=params.LEARNING_RATE) step_idx = 0 last_loss = 0.0 evaluate_steps = [] evaluate_dqn_total_profits = [] evaluate_random_total_profits = [] early_stopping = EarlyStopping( patience=params.STOP_PATIENCE_COUNT, evaluation_min_threshold=params.TRAIN_STOP_EPISODE_REWARD, verbose=True, delta=0.0, model_save_dir=MODEL_SAVE_DIR, model_save_file_prefix=params.ENVIRONMENT_ID.value + "_" + coin_name + "_" + time_unit.value, agent=agent ) with utils.SpeedTracker(params=params, frame=False, early_stopping=None) as reward_tracker: while step_idx < params.MAX_GLOBAL_STEP: step_idx += params.TRAIN_STEP_FREQ last_entry = buffer.populate(params.TRAIN_STEP_FREQ) if epsilon_tracker: epsilon_tracker.udpate(step_idx) episode_rewards = experience_source.pop_episode_reward_lst() solved = False if episode_rewards: for episode_reward in episode_rewards: reward_tracker.set_episode_reward( episode_reward, step_idx, action_selector.epsilon, last_info=last_entry.info, last_loss=last_loss, model=net ) if reward_tracker.done_episodes % params.TEST_PERIOD_EPISODE == 0: print("#" * 200) print("[TEST START]") evaluate(evaluate_env, evaluate_agent) evaluate_steps.append(step_idx) dqn_total_profit, _ = evaluate_random( "DQN", evaluate_env, evaluate_agent, num_episodes=100 ) evaluate_dqn_total_profits.append(dqn_total_profit) random_total_profit, _ = evaluate_random( "RANDOM", evaluate_env, random_agent, num_episodes=100 ) evaluate_random_total_profits.append(random_total_profit) solved = early_stopping(dqn_total_profit, step_idx=step_idx) visualizer.draw_performance( evaluate_steps, evaluate_dqn_total_profits, evaluate_random_total_profits ) print("[TEST END]") print("#" * 200) if solved: break if solved: break optimizer.zero_grad() batch = buffer.sample(params.BATCH_SIZE) loss_v = value_based_model.calc_loss_double_dqn(batch, net, tgt_net, gamma=params.GAMMA, device=device) loss_v.backward() optimizer.step() draw_loss = min(1.0, loss_v.detach().item()) last_loss = loss_v.detach().item() if step_idx % params.TARGET_NET_SYNC_STEP_PERIOD < params.TRAIN_STEP_FREQ: tgt_net.sync(net) return net def evaluate_random(agent_type, env, agent, num_episodes, verbose=True): num_positive = 0 num_negative = 0 total_profit = 0.0 total_steps = 0 for _ in range(num_episodes): profit, step = evaluate(env, agent, verbose=False) if profit > 0: num_positive += 1 else: num_negative += 1 total_profit += profit total_steps += step avg_num_steps_per_episode = total_steps / num_episodes if verbose: print("###[{0:6}] POSITIVE: {1}/{3}, NEGATIVE: {2}/{3}, TOTAL PROFIT: {4:.1f}, AVG. STEP FOR EPISODE: {5:.1f}".format( agent_type, num_positive, num_negative, num_episodes, total_profit, avg_num_steps_per_episode )) return total_profit, avg_num_steps_per_episode def evaluate_sequential_all(agent_type, env, agent, data_size, verbose=True): num_positive = 0 num_negative = 0 total_profit = 0.0 total_steps = 0 num_episodes = 0 env.transaction_state_idx = 0 while True: num_episodes += 1 profit, step = evaluate(env, agent, verbose=False) if profit > 0: num_positive += 1 else: num_negative += 1 total_profit += profit total_steps += step if env.transaction_state_idx >= data_size - 1: break avg_num_steps_per_episode = total_steps / num_episodes if verbose: print("###[{0:6}] POSITIVE: {1}/{3}, NEGATIVE: {2}/{3}, TOTAL PROFIT: {4:.1f}, AVG. STEP FOR EPISODE: {5:.1f}".format( agent_type, num_positive, num_negative, num_episodes, total_profit, avg_num_steps_per_episode )) return num_positive, num_negative, num_episodes, total_profit, avg_num_steps_per_episode def main(): coin_name = "OMG" time_unit = TimeUnit.ONE_HOUR train_data_info, evaluate_data_info = get_data(coin_name=coin_name, time_unit=time_unit) print(train_data_info["first_datetime_krw"], train_data_info["last_datetime_krw"]) print(evaluate_data_info["first_datetime_krw"], evaluate_data_info["last_datetime_krw"]) train_env = UpbitEnvironment( coin_name=coin_name, time_unit=time_unit, data_info=train_data_info, environment_type=TradeEnvironmentType.TRAIN ) evaluate_random_env = UpbitEnvironment( coin_name=coin_name, time_unit=time_unit, data_info=evaluate_data_info, environment_type=TradeEnvironmentType.TEST_RANDOM, ) net = train(coin_name, time_unit, train_env, evaluate_random_env) print("#### TEST SEQUENTIALLY") evaluate_sequential_env = UpbitEnvironment( coin_name=coin_name, time_unit=time_unit, data_info=evaluate_data_info, environment_type=TradeEnvironmentType.TEST_SEQUENTIAL, ) argmax_action_selector = ArgmaxTradeActionSelector(env=evaluate_sequential_env) evaluate_agent = rl_agent.DQNAgent(dqn_model=net, action_selector=argmax_action_selector, device=device) sequential_dqn_num_positives = [] sequential_dqn_num_negatives = [] sequential_dqn_num_episodes = [] sequential_dqn_num_steps_per_episode = [] sequential_dqn_total_profits = [] for _ in range(10): num_positive, num_negative, num_episodes, total_profit, avg_num_steps_per_episode = evaluate_sequential_all( "DQN", evaluate_sequential_env, evaluate_agent, data_size=len(evaluate_data_info["data"]), verbose=False ) sequential_dqn_num_positives.append(num_positive) sequential_dqn_num_negatives.append(num_negative) sequential_dqn_num_episodes.append(num_episodes) sequential_dqn_total_profits.append(total_profit) sequential_dqn_num_steps_per_episode.append(avg_num_steps_per_episode) dqn_msg = f"SEQUENTIAL: DQN - {np.mean(sequential_dqn_num_episodes):.1f} EPISODES - " \ f"POSITIVE: {np.mean(sequential_dqn_num_positives):.1f}, " \ f"NEGATIVE: {np.mean(sequential_dqn_num_negatives):.1f}, " \ f"AVERAGE PROFIT {np.mean(sequential_dqn_total_profits):.1f}/STD {np.std(sequential_dqn_total_profits):.1f}, " \ f"AVERAGE STEP {np.mean(sequential_dqn_num_steps_per_episode):.1f}" print(dqn_msg) random_action_selector = RandomTradeDQNActionSelector(env=evaluate_sequential_env) random_agent = rl_agent.DQNAgent(dqn_model=None, action_selector=random_action_selector, device=device) sequential_random_num_positives = [] sequential_random_num_negatives = [] sequential_random_num_episodes = [] sequential_random_num_steps_per_episode = [] sequential_random_total_profits = [] for _ in range(10): num_positive, num_negative, num_episodes, total_profit, avg_num_steps_per_episode = evaluate_sequential_all( "RANDOM", evaluate_sequential_env, random_agent, data_size=len(evaluate_data_info["data"]), verbose=False ) sequential_random_num_positives.append(num_positive) sequential_random_num_negatives.append(num_negative) sequential_random_num_episodes.append(num_episodes) sequential_random_total_profits.append(total_profit) sequential_random_num_steps_per_episode.append(avg_num_steps_per_episode) random_msg = f"SEQUENTIAL: RANDOM - {np.mean(sequential_random_num_episodes):.1f} EPISODES - " \ f"POSITIVE: {np.mean(sequential_random_num_positives):.1f}, " \ f"NEGATIVE: {np.mean(sequential_random_num_negatives):.1f}, " \ f"AVERAGE PROFIT {np.mean(sequential_random_total_profits):.1f}/STD {np.std(sequential_random_total_profits):.1f}, " \ f"AVERAGE STEP {np.mean(sequential_random_num_steps_per_episode):.1f}" print(random_msg) pusher.send_message( "me", dqn_msg ) pusher.send_message( "me", random_msg ) if __name__ == "__main__": main()
38.650633
135
0.658807
[ "MIT" ]
linklab/link_rl
codes/f_main/trade_main/upbit_trade_main.py
15,267
Python
import os import warnings warnings.filterwarnings("ignore") shared_params = ('python CPT_STMeta_Simplify_Obj.py ' '--Dataset ChargeStation ' '--CT 6 ' '--PT 7 ' '--TT 4 ' '--GLL 1 ' '--LSTMUnits 64 ' '--GALUnits 64 ' '--GALHeads 2 ' '--DenseUnits 32 ' '--DataRange All ' '--TrainDays All ' '--TC 0.1 ' '--TD 1000 ' '--TI 500 ' '--Epoch 10000 ' '--Train False ' '--lr 2e-5 ' '--Normalize True ' '--patience 0.1 ' '--ESlength 200 ' '--BatchSize 128 ' '--Device 0 ') if __name__ == "__main__": # 可以先选择在 DiDi-Xian, DiDi-Chengdu, Metro-Shanghai, ChargeStation-Beijing 这几个数据集上进行测试,因为耗时比较短 # stability test test_times = 10 for i in range(test_times): os.system(shared_params + '--CT 6 --PT 7 --TT 4 --City Beijing --Group Beijing' ' --K 1 --L 1 --Graph Distance-Correlation --CodeVersion ST_Sim1_%s' % i)
33.447368
107
0.415421
[ "MIT" ]
GRE-EXAMINATION/UCTB
Experiments/StabilityTest/Master_CS_0.py
1,321
Python
# pylint: disable=redefined-outer-name import asyncio import time import pytest DEFAULT_MAX_LATENCY = 10 * 1000 @pytest.mark.asyncio async def test_slow_server(host): if not pytest.enable_microbatch: pytest.skip() A, B = 0.2, 1 data = '{"a": %s, "b": %s}' % (A, B) time_start = time.time() req_count = 10 tasks = tuple( pytest.assert_request( "POST", f"http://{host}/echo_with_delay", headers=(("Content-Type", "application/json"),), data=data, timeout=30, assert_status=200, assert_data=data.encode(), ) for i in range(req_count) ) await asyncio.gather(*tasks) assert time.time() - time_start < 12 req_count = 100 tasks = tuple( pytest.assert_request( "POST", f"http://{host}/echo_with_delay", headers=(("Content-Type", "application/json"),), data=data, assert_status=lambda i: i in (200, 429), ) for i in range(req_count) ) await asyncio.gather(*tasks) @pytest.mark.asyncio async def test_fast_server(host): if not pytest.enable_microbatch: pytest.skip() A, B = 0.0002, 0.01 data = '{"a": %s, "b": %s}' % (A, B) time_start = time.time() req_count = 500 tasks = tuple( pytest.assert_request( "POST", f"http://{host}/echo_with_delay", headers=(("Content-Type", "application/json"),), data=data, timeout=30, assert_status=200, assert_data=data.encode(), ) for i in range(req_count) ) await asyncio.gather(*tasks) assert time.time() - time_start < 5
23.837838
60
0.544785
[ "Apache-2.0" ]
418sec/BentoML
tests/integration/api_server/test_microbatch.py
1,764
Python
import os import numpy as np from scipy.stats import multivariate_normal import inspect from sklearn.metrics.pairwise import pairwise_distances def sample(transition_matrix, means, covs, start_state, n_samples, random_state): n_states, n_features, _ = covs.shape states = np.zeros(n_samples, dtype='int') emissions = np.zeros((n_samples, n_features)) for i in range(n_samples): if i == 0: prev_state = start_state else: prev_state = states[i - 1] state = random_state.choice(n_states, p=transition_matrix[:, prev_state]) emissions[i] = random_state.multivariate_normal( means[state], covs[state]) states[i] = state return emissions, states def make_data(T=20): """ Sample data from a HMM model and compute associated CRF potentials. """ random_state = np.random.RandomState(0) d = 0.2 e = 0.1 transition_matrix = np.array([[1 - 2 * d, d, d], [1 - e, e, 0], [1 - e, 0, e]]) means = np.array([[0, 0], [10, 0], [5, -5]]) covs = np.array([[[1, 0], [0, 1]], [[.2, 0], [0, .3]], [[2, 0], [0, 1]]]) start_state = 0 emissions, states = sample(transition_matrix, means, covs, start_state, n_samples=T, random_state=random_state) emission_log_likelihood = [] for mean, cov in zip(means, covs): rv = multivariate_normal(mean, cov) emission_log_likelihood.append(rv.logpdf(emissions)[:, np.newaxis]) emission_log_likelihood = np.concatenate(emission_log_likelihood, axis=1) log_transition_matrix = np.log(transition_matrix) # CRF potential from HMM model theta = emission_log_likelihood[:, :, np.newaxis] \ + log_transition_matrix[np.newaxis, :, :] return states, emissions, theta def make_alignment_data(): rng = np.random.RandomState(0) m, n = 2, 2 X = rng.randn(m, 3) Y = rng.randn(n, 3) return pairwise_distances(X, Y) / 10 def get_data_path(fn, subfolder='data'): """Return path to filename ``fn`` in the data folder. During testing it is often necessary to load data files. This function returns the full path to files in the ``data`` subfolder by default. Parameters ---------- fn : str File name. subfolder : str, defaults to ``data`` Name of the subfolder that contains the data. Returns ------- str Inferred absolute path to the test data for the module where ``get_data_path(fn)`` is called. Notes ----- The requested path may not point to an existing file, as its existence is not checked. This is from skbio's code base https://github.com/biocore/scikit-bio/blob/master/skbio/util/_testing.py#L50 """ # getouterframes returns a list of tuples: the second tuple # contains info about the caller, and the second element is its # filename callers_filename = inspect.getouterframes(inspect.currentframe())[1][1] path = os.path.dirname(os.path.abspath(callers_filename)) data_path = os.path.join(path, subfolder, fn) return data_path
33.897959
80
0.606562
[ "BSD-3-Clause" ]
VGligorijevic/deepblast
deepblast/utils.py
3,322
Python
from transformers import RobertaConfig from modeling.hf_head.modeling_roberta_parsing import RobertaForGraphPrediction from modeling.sequence_labeling import SequenceLabeling if __name__ == '__main__': config = RobertaConfig(graph_head_hidden_size_mlp_arc=100, graph_head_hidden_size_mlp_rel=100, dropout_classifier=0.1) #config.graph_head_hidden_size_mlp_arc = 100 model = RobertaForGraphPrediction(config) SequenceLabeling( ) # 1. GIVE IT TO PYTORCH LIGHTNING # 2. DEFINE DATA MODULE FOR PARSING --> INPUT + LOSS: TRY TO FIT # 3. Prediction (recover full graph after bpes- breakpoint()
31.5
122
0.77619
[ "Apache-2.0" ]
benjamin-mlr/lightning-language-modeling
parser.py
630
Python
""" Defines useful extended internal coordinate frames """ import numpy as np import McUtils.Numputils as nput from McUtils.Coordinerds import ( ZMatrixCoordinateSystem, CartesianCoordinateSystem, CoordinateSystemConverter, ZMatrixCoordinates, CartesianCoordinates3D, CoordinateSet, CoordinateSystemConverters ) from .MoleculeInterface import AbstractMolecule __all__ = [ "MolecularZMatrixCoordinateSystem", "MolecularCartesianCoordinateSystem" ] __reload_hook__ = [".MoleculeInterface"] def _get_best_axes(first_pos, axes): """ Determine the best pair of inertial axes so that we don't get large-scale breakdowns from the choice of embedding :param first_pos: :type first_pos: :param axes: :type axes: :return: :rtype: """ if axes.ndim > 2: axes = axes[..., (0, 1), :] ax_choice = (0, 1) ax_names = ["A", "B"] else: fp_norm = np.linalg.norm(first_pos) if fp_norm > 1.0e-10: # not chilling at the origin... first_pos = first_pos / fp_norm # check if it lies along an axis or is perpendicular to an axis a_proj = np.dot(first_pos, axes[0]) b_proj = np.dot(first_pos, axes[1]) c_proj = np.dot(first_pos, axes[2]) if np.abs(b_proj) < .05: # lies in the A/C plane if np.abs(a_proj) > .95: ax_choice = (1, 2) ax_names = ["B", "C"] else: ax_choice = (0, 1) ax_names = ["A", "B"] elif np.abs(c_proj) < .05: # lies in the A/B plane if np.abs(a_proj) > .95: ax_choice = (1, 2) ax_names = ["B", "C"] else: ax_choice = (0, 2) ax_names = ["A", "C"] elif np.abs(a_proj) < .05: # lies in the B/C plane if np.abs(b_proj) > .95: ax_choice = (0, 2) ax_names = ["A", "C"] else: ax_choice = (0, 1) ax_names = ["A", "B"] else: # not in any of the planes so no issues ax_choice = (0, 1) ax_names = ["A", "B"] else: ax_choice = (0, 1) ax_names = ["A", "B"] axes = axes[ax_choice,] return axes, ax_names, ax_choice class MolecularZMatrixCoordinateSystem(ZMatrixCoordinateSystem): """ Mirrors the standard ZMatrix coordinate system in _almost_ all regards, but forces an embedding """ name = "MolecularZMatrix" def __init__(self, molecule, converter_options=None, **opts): """ :param molecule: :type molecule: AbstractMolecule :param converter_options: :type converter_options: :param opts: :type opts: """ self.molecule = molecule if converter_options is None: converter_options = opts opts = {} nats = len(molecule.atoms) super().__init__(converter_options=converter_options, dimension=(nats, 3), coordinate_shape=(nats, 3), opts=opts) self.set_embedding() @property def origins(self): return self.converter_options['origins'] @property def axes(self): return self.converter_options['axes'] def pre_convert(self, system): self.set_embedding() def set_embedding(self): molecule = self.molecule com = molecule.center_of_mass axes = molecule.inertial_axes converter_options = self.converter_options if 'ordering' in converter_options: ordering = np.array(converter_options['ordering'], dtype=int) ordering[0, 1] = -3; ordering[0, 2] = -1; ordering[0, 3] = -2 ordering[1, 2] = -1; ordering[1, 3] = -2 ordering[2, 3] = -2 converter_options['ordering'] = ordering first = ordering[0, 0] else: first = 0 first_pos = molecule.coords[first] axes, ax_names, ax_choice = _get_best_axes(first_pos, axes) converter_options['origins'] = com converter_options['axes'] = axes converter_options['axes_labels'] = ax_names converter_options['axes_choice'] = ax_choice converter_options['molecule'] = molecule def jacobian(self, *args, reembed=None, strip_dummies=None, converter_options=None, **kwargs ): if converter_options is None: converter_options = {} merged_convert_options = dict(self.converter_options, **converter_options) try: remb = merged_convert_options['reembed'] if reembed is None else reembed except KeyError: remb = None try: strip_dummies = merged_convert_options['strip_dummies'] if strip_dummies is None else strip_dummies except KeyError: strip_dummies = False if strip_dummies: dummies = self.molecule.dummy_positions else: dummies = None if dummies is not None: main_excludes = np.setdiff1d( np.arange(self.molecule.num_atoms), dummies ) try: self.converter_options['reembed'] = True if remb is None else remb jacs = super().jacobian(*args, converter_options=converter_options, **kwargs) raw_jacs = [] for j in jacs: ext_dim = j.ndim - 2 shp = sum( ((j.shape[i] // 3, 3) for i in range(ext_dim)), () ) + j.shape[-2:] j = j.reshape(shp) if dummies is not None: for i in range(ext_dim): j = np.take(j, main_excludes, axis=2*i) # j.shape[:i] # + (j.shape[i] // 3, 3) # + j.shape[i+1:] # ) raw_jacs.append(j) jacs = raw_jacs return jacs finally: if remb is not None: self.converter_options['reembed'] = remb class MolecularCartesianCoordinateSystem(CartesianCoordinateSystem): """ Mirrors the standard Cartesian coordinate system in _almost_ all regards, but forces an embedding """ name= "MolecularCartesians" def __init__(self, molecule, converter_options=None, **opts): """ :param molecule: :type molecule: AbstractMolecule :param converter_options: :type converter_options: :param opts: :type opts: """ self.molecule = molecule #type: AbstractMolecule nats = len(self.molecule.atoms) if converter_options is None: converter_options = opts opts = {} super().__init__(converter_options=converter_options, dimension=(nats, 3), opts=opts) def pre_convert(self, system): self.set_embedding() def set_embedding(self): """ Sets up the embedding options... :return: :rtype: """ molecule = self.molecule com = molecule.center_of_mass axes = molecule.inertial_axes converter_options = self.converter_options if 'ordering' in converter_options: ordering = np.array(converter_options['ordering'], dtype=int) ordering[0, 1] = -3; ordering[0, 2] = -2; ordering[0, 3] = -1 ordering[1, 2] = -1; ordering[1, 3] = -2 ordering[2, 3] = -2 converter_options['ordering'] = ordering first = ordering[0, 0] else: first = 0 first_pos = molecule.coords[first] axes, ax_names, ax_choice = _get_best_axes(first_pos, axes) converter_options['origins'] = com converter_options['axes'] = axes converter_options['axes_labels'] = ax_names converter_options['axes_choice'] = ax_choice converter_options['molecule'] = molecule def jacobian(self, coords, system, strip_dummies=None, converter_options=None, analytic_deriv_order=None, **kwargs ): if converter_options is None: converter_options = {} merged_convert_options = dict(self.converter_options, **converter_options) try: strip_dummies = merged_convert_options['strip_dummies'] if strip_dummies is None else strip_dummies except KeyError: strip_dummies = False try: analytic_deriv_order = merged_convert_options['analytic_deriv_order'] if analytic_deriv_order is None else analytic_deriv_order except KeyError: analytic_deriv_order = 0 if strip_dummies: dummies = self.molecule.dummy_positions if len(dummies) == 0: dummies = None else: dummies = None if dummies is not None: main_excludes = np.setdiff1d( np.arange(self.molecule.num_atoms), dummies ) else: main_excludes = None jacs = super().jacobian(coords, system, analytic_deriv_order=analytic_deriv_order, converter_options=converter_options, **kwargs) raw_jacs = [] for n,j in enumerate(jacs): # this expects a full filling of the jacobians which maybe I need to not expect... baseline = 2*analytic_deriv_order + len(coords.shape) ext_dim = j.ndim - baseline shp = sum( ((j.shape[i] // 3, 3) for i in range(ext_dim)), () ) + j.shape[-baseline:] j = j.reshape(shp) if dummies is not None: for i in range(ext_dim): j = np.take(j, main_excludes, axis=2*i) for i in range(analytic_deriv_order): j = np.take(j, main_excludes, axis=-2*(i+2)) if len(coords.shape) > 2: j = np.moveaxis(j, -3, 0) raw_jacs.append(j) jacs = raw_jacs return jacs class MolecularCartesianToZMatrixConverter(CoordinateSystemConverter): """ ... """ types = (MolecularCartesianCoordinateSystem, MolecularZMatrixCoordinateSystem) def convert(self, coords, molecule=None, origins=None, axes=None, ordering=None, **kwargs): """ Converts from Cartesian to ZMatrix coords, preserving the embedding :param coords: :type coords: CoordinateSet :param molecule: :type molecule: :param origins: :type origins: :param axes: :type axes: :param ordering: :type ordering: :param kwargs: :type kwargs: :return: :rtype: """ zmcs, opts = self.convert_many(np.array([coords]), molecule=molecule, origins=origins, axes=axes, ordering=ordering, **kwargs) zmcs = zmcs[0] if 'derivs' in opts: derivs = opts['derivs'] reshaped_derivs = [None] * len(derivs) for i, v in enumerate(derivs): reshaped_derivs[i] = v[0] opts['derivs'] = reshaped_derivs return zmcs, opts def convert_many(self, coords, molecule=None, origins=None, axes=None, ordering=None, strip_embedding=True, strip_dummies=False, **kwargs): """ Converts from Cartesian to ZMatrix coords, preserving the embedding :param coords: coordinates in Cartesians to convert :type coords: np.ndarray :param molecule: :type molecule: AbstractMolecule :param origins: the origin for each individual structure :type origins: np.ndarray :param axes: the axes for each structure :type axes: np.ndarray :param ordering: the Z-matrix ordering spec :type ordering: :param strip_embedding: whether to strip the embedding coordinates :type strip_embedding: :param strip_dummies: whether to strip all dummy coordinates :type strip_dummies: :param kwargs: :type kwargs: :return: :rtype: """ n_sys = coords.shape[0] n_coords = coords.shape[1] n_atoms = len(molecule.atoms) # we add three dummy atoms at the origins and along the axes before doing the conversion if origins.ndim == 1: origins = np.broadcast_to(origins[np.newaxis, np.newaxis], (n_sys, 1, 3)) elif origins.ndim == 2: origins = origins[:, np.newaxis, :] if axes.ndim == 2: axes = np.broadcast_to(axes[np.newaxis], (n_sys, 2, 3)) if origins.shape[0] != n_sys: if n_sys % origins.shape[0] != 0: raise ValueError("inconsistent shapes; origins shape {} but coords shape {}".format( origins.shape, coords.shape )) num_coords = n_sys // origins.shape[0] origins = np.broadcast_to(origins[:, np.newaxis, :, :], (origins.shape[0], num_coords) + origins.shape[1:]) origins = origins.reshape((n_sys,) + origins.shape[2:]) if axes.shape[0] != n_sys: if n_sys % axes.shape[0] != 0: raise ValueError("inconsistent shapes; axes shape {} but coords shape {}".format( axes.shape, coords.shape )) num_coords = n_sys // axes.shape[0] axes = np.broadcast_to(axes[:, np.newaxis, :, :], (axes.shape[0], num_coords) + axes.shape[1:]) axes = axes.reshape((n_sys,) + axes.shape[2:]) coords = np.concatenate([origins, origins+axes, coords], axis=1) if ordering is not None: ordering = np.array(ordering, dtype=int) ordering[0, 1] = -3; ordering[0, 2] = -2; ordering[0, 3] = -1 ordering[1, 2] = -2; ordering[1, 3] = -1 ordering[2, 3] = -1 ordering = ordering + 3 ordering = np.concatenate([ [[0, -1, -1, -1], [1, 0, -1, -1], [2, 0, 1, -1]], ordering]) # print("...?", ordering) res = CoordinateSet(coords, CartesianCoordinates3D).convert(ZMatrixCoordinates, ordering=ordering, origins=origins, axes=axes, **kwargs ) if isinstance(res, tuple): zmcs, opts = res else: zmcs = res opts=res.converter_options opts['ordering'] = opts['ordering'][3:] - 3 # zmcs = zmcs[:, 2:] if strip_dummies: dummies = [0, 1, 2] + [x+3 for x in molecule.dummy_positions] # add on axes elif strip_embedding: dummies = [0, 1, 2] else: dummies = None if dummies is not None: main_excludes = np.setdiff1d( np.arange(len(molecule.atoms) + 3), dummies ) sub_excludes = main_excludes - 1 # drop one fewer terms to drop I think... if 'derivs' in opts: derivs = opts['derivs'] reshaped_derivs = [None] * len(derivs) deriv_excludes = np.arange(3, len(molecule.atoms) + 3) for i, v in enumerate(derivs): # drop all terms relating to the embedding of the embedding start_dim = v.ndim - 2*(i+2) for j in range(start_dim, v.ndim-2, 2): v = np.take(v, deriv_excludes, axis=j) v = np.take(v, sub_excludes, axis=-2) reshaped_derivs[i] = v opts['derivs'] = reshaped_derivs zmcs = zmcs[..., sub_excludes, :] # raise Exception(derivs.shape) return zmcs, opts MolecularCartesianToZMatrixConverter = MolecularCartesianToZMatrixConverter() MolecularCartesianToZMatrixConverter.register(CoordinateSystemConverters) class MolecularCartesianToRegularCartesianConverter(CoordinateSystemConverter): """ ... """ types = (MolecularCartesianCoordinateSystem, CartesianCoordinateSystem) def convert(self, coords, **kw): return coords, kw def convert_many(self, coords, **kwargs): """ Converts from Cartesian to ZMatrix coords, preserving the embedding """ return coords, kwargs MolecularCartesianToRegularCartesianConverter = MolecularCartesianToRegularCartesianConverter() MolecularCartesianToRegularCartesianConverter.register() class MolecularZMatrixToCartesianConverter(CoordinateSystemConverter): """ ... """ types = (MolecularZMatrixCoordinateSystem, MolecularCartesianCoordinateSystem) def convert(self, coords, **kw): total_points, opts = self.convert_many(coords[np.newaxis], **kw) return total_points[0], opts def convert_many(self, coords, molecule=None, origins=None, axes=None, ordering=None, reembed=False, axes_choice=None, return_derivs=None, strip_dummies=False, strip_embedding=True, planar_ref_tolerance=None, **kwargs): """ Converts from Cartesian to ZMatrix coords, attempting to preserve the embedding """ from .Molecule import Molecule n_sys = coords.shape[0] n_coords = coords.shape[1] n_atoms = len(molecule.atoms) if n_coords != n_atoms + 2: # means we already added the embedding if n_coords != n_atoms: raise ValueError('Embedding unclear when num_coords ({}) < num_atoms ({})'.format( n_coords, n_atoms )) x_ax = axes[..., 0, :] y_ax = axes[..., 1, :] extra_norms0 = nput.vec_norms(x_ax) extra_norms1 = nput.vec_norms(y_ax) extra_angles, _ = nput.vec_angles(x_ax, y_ax) extra_coords = np.zeros((n_sys, 2, 3)) extra_coords[..., 0, 0] = extra_norms0 extra_coords[..., 1, 0] = extra_norms1 extra_coords[..., 1, 1] = extra_angles coords = np.concatenate([extra_coords, coords], axis=-2) if ordering is not None: ordering = np.array(ordering, dtype=int) ordering = ordering + 3 ordering = np.concatenate([ [[0, -1, -1, -1], [1, 0, -1, -1], [2, 0, 1, -1]], ordering]) refuse_derivs = reembed and coords.squeeze().ndim != 2 res = CoordinateSet(coords, ZMatrixCoordinates).convert(CartesianCoordinates3D, ordering=ordering, origins=origins, axes=axes, return_derivs=(return_derivs and not refuse_derivs), **kwargs) if isinstance(res, tuple): carts, opts = res else: carts = res opts = res.converter_options if reembed: if molecule is None: raise ValueError("can't reembed without a reference structure") embed_carts = carts[..., 3:, :] reembed = not ( carts.squeeze().ndim == 2 and np.allclose(molecule.coords, embed_carts, atol=1.0e-5) ) # agree to like a ten thousandth of an angstrom if reembed: if not return_derivs: embed_carts = molecule.embed_coords(embed_carts, planar_ref_tolerance=planar_ref_tolerance) carts = np.concatenate([ carts[..., :3, :], embed_carts ], axis=-2 ) else: inert_coords, coord_coms, coord_axes = Molecule(molecule.atoms, embed_carts).principle_axis_data if axes_choice is None: axes_choice = (0, 1) guh = self.convert_many(coords, origins=coord_coms, axes=coord_axes[:, axes_choice], molecule=molecule, reembed=False, ordering=ordering, return_derivs=return_derivs, axes_choice=axes_choice, **kwargs ) return guh opts['origins'] = origins opts['axes'] = axes if ordering is not None: opts['ordering'] = ordering[3:] - 3 if strip_dummies: # raise Exception("wwwwaaaaaaaaat") dummies = [0, 1, 2] + [x + 3 for x in molecule.dummy_positions] # add on axes elif strip_embedding: dummies = [0, 1, 2] else: dummies = None if dummies is not None: main_excludes = np.setdiff1d( np.arange(len(molecule.atoms) + 3), dummies ) sub_excludes = main_excludes - 1 # drop one fewer terms to drop I think... if 'derivs' in opts: derivs = opts['derivs'] reshaped_derivs = [None] * len(derivs) deriv_excludes = np.arange(3, len(molecule.atoms) + 3) for i, v in enumerate(derivs): # drop all terms relating to the embedding of the embedding start_dim = v.ndim - i for j in range(start_dim, v.ndim, 2): v = np.take(v, deriv_excludes, axis=j) v = np.take(v, sub_excludes, axis=-2) reshaped_derivs[i] = v opts['derivs'] = reshaped_derivs carts = carts[..., main_excludes, :] return carts, opts MolecularZMatrixToCartesianConverter = MolecularZMatrixToCartesianConverter() MolecularZMatrixToCartesianConverter.register() class MolecularZMatrixToRegularZMatrixConverter(CoordinateSystemConverter): """ ... """ types = (MolecularZMatrixCoordinateSystem, ZMatrixCoordinateSystem) def convert(self, coords, **kw): return coords, kw def convert_many(self, coords, **kwargs): return coords, kwargs MolecularZMatrixToRegularZMatrixConverter = MolecularZMatrixToRegularZMatrixConverter() MolecularZMatrixToRegularZMatrixConverter.register()
38.200972
139
0.530208
[ "MIT" ]
McCoyGroup/Coordinerds
Psience/Molecools/CoordinateSystems.py
23,570
Python
# mypy: allow-untyped-defs import os.path from unittest.mock import patch from tools.manifest.manifest import Manifest from tools.wpt import testfiles def test_getrevish_kwarg(): assert testfiles.get_revish(revish="abcdef") == "abcdef" assert testfiles.get_revish(revish="123456\n") == "123456" def test_getrevish_implicit(): with patch("tools.wpt.testfiles.branch_point", return_value="base"): assert testfiles.get_revish() == "base..HEAD" def test_affected_testfiles(): manifest_json = { "items": { "crashtest": { "a": { "b": { "c": { "foo-crash.html": [ "acdefgh123456", ["null", {}], ] } } } } }, "url_base": "/", "version": 8, } manifest = Manifest.from_json("/", manifest_json) with patch("tools.wpt.testfiles.load_manifest", return_value=manifest): # Dependent affected tests are determined by walking the filesystem, # which doesn't work in our test setup. We would need to refactor # testfiles.affected_testfiles or have a more complex test setup to # support testing those. full_test_path = os.path.join( testfiles.wpt_root, "a", "b", "c", "foo-crash.html") tests_changed, _ = testfiles.affected_testfiles([full_test_path]) assert tests_changed == {full_test_path} def test_exclude_ignored(): default_ignored = [ "resources/testharness.js", "resources/testharnessreport.js", "resources/testdriver.js", "resources/testdriver-vendor.js", ] default_ignored_abs = sorted(os.path.join(testfiles.wpt_root, x) for x in default_ignored) default_changed = [ "foo/bar.html" ] default_changed_abs = sorted(os.path.join(testfiles.wpt_root, x) for x in default_changed) files = default_ignored + default_changed changed, ignored = testfiles.exclude_ignored(files, None) assert sorted(changed) == default_changed_abs assert sorted(ignored) == default_ignored_abs changed, ignored = testfiles.exclude_ignored(files, []) assert sorted(changed) == sorted(default_changed_abs + default_ignored_abs) assert sorted(ignored) == []
33.666667
94
0.60396
[ "BSD-3-Clause" ]
BasixKOR/wpt
tools/wpt/tests/test_testfiles.py
2,424
Python
#!/usr/bin/env python """ _Exists_ Oracle implementation of JobGroup.Exists """ __all__ = [] from WMCore.WMBS.MySQL.JobGroup.Exists import Exists as ExistsJobGroupMySQL class Exists(ExistsJobGroupMySQL): pass
13.6875
75
0.757991
[ "Apache-2.0" ]
JAmadoTest/WMCore
src/python/WMCore/WMBS/Oracle/JobGroup/Exists.py
219
Python
from unittest import TestCase from src.adders import HalfAdder, FullAdder, FourBitFullAdder from tests.utils import decimal_to_boolean_list class HalfAdderTests(TestCase): TRUTH_TABLE = ( # A B S Cout ((False, False), (False, False)), ((False, True), (True, False)), ((True, False), (True, False)), ((True, True), (False, True)), ) def setUp(self): self.half_adder = HalfAdder() def test_truth_table(self): for test_case in self.TRUTH_TABLE: assert self.half_adder.set_inputs(*test_case[0]) == test_case[1] class FullAdderTests(TestCase): TRUTH_TABLE = ( # A B Cin S Cout ((False, False, False), (False, False)), ((False, False, True), (True, False)), ((False, True, False), (True, False)), ((False, True, True), (False, True)), ((True, False, False), (True, False)), ((True, False, True), (False, True)), ((True, True, False), (False, True)), ((True, True, True), (True, True)), ) def setUp(self): self.full_adder = FullAdder() def test_truth_table(self): for test_case in self.TRUTH_TABLE: assert self.full_adder.set_inputs(*test_case[0]) == test_case[1] class FourBitFullAdderTests(TestCase): def setUp(self): self.full_adder = FourBitFullAdder() self.TRUTH_TABLE = [] # Generate the truth table, since it is HUGE for a 4 bit adder # Note: it will generate items like: # (((False, True, False, False), (False, False, True, True)), (False, False, True, True, True)) # and # (((False, True, True, False), (False, True, True, True)), (False, True, True, False, True)) # for 4 + 3 = 7 and 6 + 7 = 13, respectively for addend_1 in range(0, 16): for addend_2 in range(0, 16): self.TRUTH_TABLE.append( ( (decimal_to_boolean_list(addend_1, padding=4), decimal_to_boolean_list(addend_2, padding=4)), decimal_to_boolean_list(addend_1 + addend_2, padding=5), ) ) def test_truth_table(self): for test_case in self.TRUTH_TABLE: # Note, generate the inputs arguments by setting both addends and the carry in (which is always 0 *false*) inputs = (test_case[0][0], test_case[0][1], False) assert self.full_adder.set_inputs(*inputs) == test_case[1] # Test adding 15+15 with a carry in, which will result in 31 assert ( self.full_adder.set_inputs( value_1=(True, True, True, True), value_2=(True, True, True, True), carry_in=True, ) == (True, True, True, True, True) )
35.121951
118
0.557292
[ "MIT" ]
fgarci03/pylectronics
tests/test_adders.py
2,880
Python
#!/usr/bin/python # -*- coding: UTF-8 -*- from scrapy.spiders import Spider from scrapy.spiders import Request import json from hexun.items import HexunItem from utils.urlUtils import UrlUtils from utils.dateTimeUtils import DateTimeUtils class PPSpider(Spider): name = 'pp' urlTemplate = 'http://webftcn.hermes.hexun.com/shf/minute?code=DCEpp{0}&start={1}&number=225&t=1513835351321' start_urls = [ ] allowed_domains = ['*.hexun.com'] def start_requests(self): contractList = DateTimeUtils.getContractList() for contract in contractList: url = self.urlTemplate.format(contract, DateTimeUtils.getStartTime()) yield Request(url=url, callback=self.parseItem) def parseItem(self, response): jsonData = json.loads(response.body_as_unicode().strip(';').strip('(').strip(')')) datas = jsonData['Data'][0] contractName = self.getContractName(response) for dataItem in datas: lldpeItem = HexunItem() lldpeItem['product'] = contractName lldpeItem['dateTime'] = dataItem[0] lldpeItem['price'] = dataItem[1] lldpeItem['amount'] = dataItem[2] lldpeItem['volumn'] = dataItem[3] lldpeItem['avePrice'] = dataItem[4] lldpeItem['openInterest'] = dataItem[5] yield lldpeItem def getContractName(self, response): code = UrlUtils.getQueryValue(response.url, 'code')[-4:] return self.name + code
35.093023
113
0.644135
[ "MIT" ]
judypol/pytonStudy
hexun/hexun/spiders/ppSpider.py
1,509
Python
# Standard Library import copy import json import re from .log_helper import default_logger as logger def format_cfg(cfg): """Format experiment config for friendly display""" # json_str = json.dumps(cfg, indent=2, ensure_ascii=False) # return json_str def list2str(cfg): for key, value in cfg.items(): if isinstance(value, dict): cfg[key] = list2str(value) elif isinstance(value, list): if len(value) == 0 or isinstance(value[0], (int, float)): cfg[key] = str(value) else: for i, item in enumerate(value): if isinstance(item, dict): value[i] = list2str(item) cfg[key] = value return cfg cfg = list2str(copy.deepcopy(cfg)) json_str = json.dumps(cfg, indent=2, ensure_ascii=False).split("\n") # json_str = [re.sub(r"(\"|,$|\{|\}|\[$|\s$)", "", line) for line in json_str if line.strip() not in "{}[]"] json_str = [re.sub(r"(\"|(!\],$)|\s$)", "", line) for line in json_str] cfg_str = "\n".join([line.rstrip() for line in json_str if line.strip()]) return cfg_str def is_number(num): pattern = re.compile(r'^[-+]?[-0-9]\d*\.\d*|[-+]?\.?[0-9]\d*$') res = pattern.match(num) if res: return True return False def try_decode(val): """bool, int, float, or str""" if val.upper() == 'FALSE': return False elif val.upper() == 'TRUE': return True if val.isdigit(): return int(val) if is_number(val): return float(val) return val def merge_opts_into_cfg(opts, cfg): cfg = copy.deepcopy(cfg) if opts is None or len(opts) == 0: return cfg assert len(opts) % 2 == 0 keys, values = opts[0::2], opts[1::2] for key, val in zip(keys, values): logger.info(f'replacing {key}') val = try_decode(val) cur_cfg = cfg # for hooks if '-' in key: key_p, key_s = key.split('-') k_module, k_type = key_p.split('.') cur_cfg = cur_cfg[k_module] flag_exist = False for idx in range(len(cur_cfg)): if cur_cfg[idx]['type'] != k_type: continue flag_exist = True cur_cfg_temp = cur_cfg[idx] key_s = key_s.split('.') for k in key_s[:-1]: cur_cfg_temp = cur_cfg_temp.setdefault(k, {}) cur_cfg_temp[key_s[-1]] = val if not flag_exist: _cur_cfg = {} cur_cfg_temp = _cur_cfg key_s = key_s.split('.') for k in key_s[:-1]: cur_cfg_temp = cur_cfg_temp.setdefault(k, {}) cur_cfg_temp[key_s[-1]] = val cur_cfg.append(_cur_cfg) else: key = key.split('.') for k in key[:-1]: cur_cfg = cur_cfg.setdefault(k, {}) cur_cfg[key[-1]] = val return cfg def upgrade_cfg(cfg): # cfg = upgrade_fp16(cfg) return cfg
30.901961
112
0.510152
[ "Apache-2.0" ]
ModelTC/EOD
up/utils/general/cfg_helper.py
3,152
Python
# Copyright 2020 StreamSets Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest import logging from time import sleep from streamsets.testframework.markers import sdc_min_version from streamsets.sdk.sdc_models import Metrics logger = logging.getLogger(__name__) @pytest.fixture(scope='module') def sdc_common_hook(): def hook(data_collector): data_collector.add_stage_lib('streamsets-datacollector-groovy_2_4-lib') return hook # SDC-11777: provide way to easily see where a pipeline is when it is stuck in STARTING @sdc_min_version('3.15.0') def test_runner_metrics_for_init_and_destroy(sdc_builder, sdc_executor): """Ensure that we properly update metrics when the runner is in starting phase.""" builder = sdc_builder.get_pipeline_builder() SLEEP_SCRIPT = "sleep(5*1000)" # Super simple cluster pipeline source = builder.add_stage('Dev Data Generator') groovy = builder.add_stage('Groovy Evaluator', type='processor') groovy.init_script = SLEEP_SCRIPT groovy.destroy_script = SLEEP_SCRIPT groovy.script = SLEEP_SCRIPT trash = builder.add_stage('Trash') source >> groovy >> trash pipeline = builder.build() sdc_executor.add_pipeline(pipeline) # Start the pipeline, it should take at least 5 seconds (since the sleep) and we check that at least once # we have seen the metrics we're looking for. sdc_executor.start_pipeline(pipeline, wait=False) count = 0 while True: # TLKT-468: SDC object doesn't expose get_pipeline_metrics method metrics_json = sdc_executor.api_client.get_pipeline_metrics(pipeline.id) if metrics_json: metrics = Metrics(metrics_json) logger.info(f"Detected runtime gauge state {metrics.gauge('runner.0.gauge').value['state']}") if metrics.gauge('runner.0.gauge').value['state'] == 'Starting': count += 1 status = sdc_executor.get_pipeline_status(pipeline).response.json() sleep(0.5) if status.get('status') == 'RUNNING': break assert count > 0 sdc_executor.stop_pipeline(pipeline)
33.884615
109
0.72115
[ "Apache-2.0" ]
anubandhan/datacollector-tests
pipeline/test_metrics.py
2,643
Python
#!/usr/bin/env python # # This program shows how to use MPI_Alltoall. Each processor # send/rec a different random number to/from other processors. # # numpy is required import numpy from numpy import * # mpi4py module from mpi4py import MPI import sys def myquit(mes): MPI.Finalize() print(mes) sys.exit() # Initialize MPI and print out hello comm=MPI.COMM_WORLD myid=comm.Get_rank() numprocs=comm.Get_size() print("hello from ",myid," of ",numprocs) # We are going to send/recv a single value to/from # each processor. Here we allocate arrays s_vals=zeros(numprocs,"i") r_vals=zeros(numprocs,"i") # Fill the send arrays with random numbers random.seed(myid) for i in range(0, numprocs): s_vals[i]=random.randint(1,10) print("myid=",myid,"s_vals=",s_vals) # Send/recv to/from all comm.Alltoall(s_vals, r_vals) print("myid=",myid,"r_vals=",r_vals) MPI.Finalize() # Note, the sent values and the recv values are # like a transpose of each other # # mpiexec -n 4 ./P_ex07.py | grep s_v | sort # myid= 0 s_vals= [6 1 4 4] # myid= 1 s_vals= [6 9 6 1] # myid= 2 s_vals= [9 9 7 3] # myid= 3 s_vals= [9 4 9 9] # mpiexec -n 4 ./P_ex07.py | grep r_v | sort # myid= 0 r_vals= [6 6 9 9] # myid= 1 r_vals= [1 9 9 4] # myid= 2 r_vals= [4 6 7 9] # myid= 3 r_vals= [4 1 3 9]
20.453125
63
0.675325
[ "Unlicense" ]
timkphd/examples
array/bot/others/P_ex07.py
1,309
Python
#!/usr/bin/env python # -*- encoding: utf-8 -*- # Copyright 2016 Twitter. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. '''topology_context.py''' import os from collections import namedtuple from heronpy.api.task_hook import (ITaskHook, EmitInfo, SpoutAckInfo, SpoutFailInfo, BoltExecuteInfo, BoltAckInfo, BoltFailInfo) from heronpy.api.topology_context import TopologyContext import heronpy.api.api_constants as api_constants from heron.instance.src.python.utils.metrics import MetricsCollector import heron.instance.src.python.utils.system_constants as system_constants import heron.common.src.python.pex_loader as pex_loader class TopologyContextImpl(TopologyContext): """Implemention of TopologyContext This is created by Heron Instance and passed on to the topology spouts/bolts as the topology context """ # pylint: disable=too-many-instance-attributes def __init__(self, config, topology, task_to_component, my_task_id, metrics_collector, topo_pex_path): self.config = config self.topology = topology self.task_to_component_map = task_to_component self.task_id = my_task_id self.metrics_collector = metrics_collector self.topology_pex_path = os.path.abspath(topo_pex_path) inputs, outputs, out_fields = self._get_inputs_and_outputs_and_outfields(topology) self.inputs = inputs self.outputs = outputs self.component_to_out_fields = out_fields # init task hooks self.task_hooks = [] self._init_task_hooks() ##### Implementation of interface methods ##### def get_task_id(self): """Property to get the task id of this component""" return self.task_id def get_component_id(self): """Property to get the component id of this component""" return self.task_to_component_map.get(self.get_task_id()) def get_cluster_config(self): """Returns the cluster config for this component Note that the returned config is auto-typed map: <str -> any Python object>. """ return self.config def get_topology_name(self): """Returns the name of the topology """ return str(self.topology.name) def register_metric(self, name, metric, time_bucket_in_sec): """Registers a new metric to this context""" collector = self.get_metrics_collector() collector.register_metric(name, metric, time_bucket_in_sec) def get_sources(self, component_id): """Returns the declared inputs to specified component :return: map <streamId namedtuple (same structure as protobuf msg) -> gtype>, or None if not found """ # this is necessary because protobuf message is not hashable StreamId = namedtuple('StreamId', 'id, component_name') if component_id in self.inputs: ret = {} for istream in self.inputs.get(component_id): key = StreamId(id=istream.stream.id, component_name=istream.stream.component_name) ret[key] = istream.gtype return ret else: return None def get_this_sources(self): return self.get_sources(self.get_component_id()) def get_component_tasks(self, component_id): """Returns the task ids allocated for the given component id""" ret = [] for task_id, comp_id in self.task_to_component_map.items(): if comp_id == component_id: ret.append(task_id) return ret def add_task_hook(self, task_hook): """Registers a specified task hook to this context :type task_hook: heron.instance.src.python.utils.topology.ITaskHook :param task_hook: Implementation of ITaskHook """ if not isinstance(task_hook, ITaskHook): raise TypeError("In add_task_hook(): attempt to add non ITaskHook instance, given: %s" % str(type(task_hook))) self.task_hooks.append(task_hook) ##### Other exposed implementation specific methods ##### def get_topology_pex_path(self): """Returns the topology's pex file path""" return self.topology_pex_path def get_metrics_collector(self): """Returns this context's metrics collector""" if self.metrics_collector is None or not isinstance(self.metrics_collector, MetricsCollector): raise RuntimeError("Metrics collector is not registered in this context") return self.metrics_collector ######################################## @classmethod def _get_inputs_and_outputs_and_outfields(cls, topology): inputs = {} outputs = {} out_fields = {} for spout in topology.spouts: inputs[spout.comp.name] = [] # spout doesn't have any inputs outputs[spout.comp.name] = spout.outputs out_fields.update(cls._get_output_to_comp_fields(spout.outputs)) for bolt in topology.bolts: inputs[bolt.comp.name] = bolt.inputs outputs[bolt.comp.name] = bolt.outputs out_fields.update(cls._get_output_to_comp_fields(bolt.outputs)) return inputs, outputs, out_fields @staticmethod def _get_output_to_comp_fields(outputs): out_fields = {} for out_stream in outputs: comp_name = out_stream.stream.component_name stream_id = out_stream.stream.id if comp_name not in out_fields: out_fields[comp_name] = dict() # get the fields of a particular output stream ret = [] for kt in out_stream.schema.keys: ret.append(kt.key) out_fields[comp_name][stream_id] = tuple(ret) return out_fields ######### Task hook related ########## def _init_task_hooks(self): task_hooks_cls_list = self.get_cluster_config().get(api_constants.TOPOLOGY_AUTO_TASK_HOOKS, None) if task_hooks_cls_list is None: return # load pex first topo_pex_path = self.get_topology_pex_path() pex_loader.load_pex(topo_pex_path) for class_name in task_hooks_cls_list: try: task_hook_cls = pex_loader.import_and_get_class(topo_pex_path, class_name) task_hook_instance = task_hook_cls() assert isinstance(task_hook_instance, ITaskHook) self.task_hooks.append(task_hook_instance) except AssertionError: raise RuntimeError("Auto-registered task hook not instance of ITaskHook") except Exception as e: raise RuntimeError("Error with loading task hook class: %s, with error message: %s" % (class_name, str(e))) def invoke_hook_prepare(self): """invoke task hooks for after the spout/bolt's initialize() method""" for task_hook in self.task_hooks: task_hook.prepare(self.get_cluster_config(), self) def invoke_hook_cleanup(self): """invoke task hooks for just before the spout/bolt's cleanup method""" for task_hook in self.task_hooks: task_hook.clean_up() def invoke_hook_emit(self, values, stream_id, out_tasks): """invoke task hooks for every time a tuple is emitted in spout/bolt :type values: list :param values: values emitted :type stream_id: str :param stream_id: stream id into which tuple is emitted :type out_tasks: list :param out_tasks: list of custom grouping target task id """ if len(self.task_hooks) > 0: emit_info = EmitInfo(values=values, stream_id=stream_id, task_id=self.get_task_id(), out_tasks=out_tasks) for task_hook in self.task_hooks: task_hook.emit(emit_info) def invoke_hook_spout_ack(self, message_id, complete_latency_ns): """invoke task hooks for every time spout acks a tuple :type message_id: str :param message_id: message id to which an acked tuple was anchored :type complete_latency_ns: float :param complete_latency_ns: complete latency in nano seconds """ if len(self.task_hooks) > 0: spout_ack_info = SpoutAckInfo(message_id=message_id, spout_task_id=self.get_task_id(), complete_latency_ms=complete_latency_ns * system_constants.NS_TO_MS) for task_hook in self.task_hooks: task_hook.spout_ack(spout_ack_info) def invoke_hook_spout_fail(self, message_id, fail_latency_ns): """invoke task hooks for every time spout fails a tuple :type message_id: str :param message_id: message id to which a failed tuple was anchored :type fail_latency_ns: float :param fail_latency_ns: fail latency in nano seconds """ if len(self.task_hooks) > 0: spout_fail_info = SpoutFailInfo(message_id=message_id, spout_task_id=self.get_task_id(), fail_latency_ms=fail_latency_ns * system_constants.NS_TO_MS) for task_hook in self.task_hooks: task_hook.spout_fail(spout_fail_info) def invoke_hook_bolt_execute(self, heron_tuple, execute_latency_ns): """invoke task hooks for every time bolt processes a tuple :type heron_tuple: HeronTuple :param heron_tuple: tuple that is executed :type execute_latency_ns: float :param execute_latency_ns: execute latency in nano seconds """ if len(self.task_hooks) > 0: bolt_execute_info = \ BoltExecuteInfo(heron_tuple=heron_tuple, executing_task_id=self.get_task_id(), execute_latency_ms=execute_latency_ns * system_constants.NS_TO_MS) for task_hook in self.task_hooks: task_hook.bolt_execute(bolt_execute_info) def invoke_hook_bolt_ack(self, heron_tuple, process_latency_ns): """invoke task hooks for every time bolt acks a tuple :type heron_tuple: HeronTuple :param heron_tuple: tuple that is acked :type process_latency_ns: float :param process_latency_ns: process latency in nano seconds """ if len(self.task_hooks) > 0: bolt_ack_info = BoltAckInfo(heron_tuple=heron_tuple, acking_task_id=self.get_task_id(), process_latency_ms=process_latency_ns * system_constants.NS_TO_MS) for task_hook in self.task_hooks: task_hook.bolt_ack(bolt_ack_info) def invoke_hook_bolt_fail(self, heron_tuple, fail_latency_ns): """invoke task hooks for every time bolt fails a tuple :type heron_tuple: HeronTuple :param heron_tuple: tuple that is failed :type fail_latency_ns: float :param fail_latency_ns: fail latency in nano seconds """ if len(self.task_hooks) > 0: bolt_fail_info = BoltFailInfo(heron_tuple=heron_tuple, failing_task_id=self.get_task_id(), fail_latency_ms=fail_latency_ns * system_constants.NS_TO_MS) for task_hook in self.task_hooks: task_hook.bolt_fail(bolt_fail_info)
37.759197
100
0.692471
[ "Apache-2.0" ]
kalimfaria/heron
heron/instance/src/python/utils/topology/topology_context_impl.py
11,290
Python
''' Created on Sep 18, 2017 @author: jschm ''' from cs115 import map def powerset(lst): """returns the power set of the list - the set of all subsets of the list""" if lst == []: return [[]] #power set is a list of lists #this way is more efficent for getting the combinations of the characters in a list lose_it = powerset(lst[1:]) use_it = map(lambda subset: [lst[0]] + subset, lose_it) return lose_it + use_it print(powerset(['a', 'b', 'c'])) def subset(target, lst): """determines whether or not it is possible to create target sum using the values in the list. Values in teh list can be positive, negative, or zero.""" if target == 0: return True #what if target is 0? if lst == []: return False #use_it = subset(target - lst[0], lst[1:]) #lose_it = subset(target, lst[1:]) """and and or are short-cut operators in python. THe second operand is not evaluated when the overall result can be deduced by evaluating the second operand""" #return use_it or lose_it return subset(target - lst[0], lst[1:]) or subset(target, lst[1:]) print(subset(5,[1,3,2,4,5])) def subset_with_values(target, lst): """Determines whether or not it is possible to create the target sum using values in the list. Values in the list can be positive, negative, or zero. The function returns a tuple of exactly two items. The first is a boolean, that indicates true if the sum is possible and false if it is not. The second element in the tuple is a list of all values that add up to make the target sum.""" if target == 0: return(True, []) if lst == []: return(False, []) use_it = subset_with_values(target - lst[0], lst[1:]) if use_it[0]: return(True, [lst[0]] + use_it[1]) return subset_with_values(target, lst[1:]) print(subset_with_values(8, [7,2,2,2,2])) print(subset_with_values(12, [1,2,4,9])) """ def LCSWithValues2(S1,S2): if S1 == "" or S2 == "": return (0, "") if S1[0] == S2[0]: result = result + S1[0] return (1 + LCSWithValues2(S1[1:], S2[1:]), result) useS1 = LCSWithValues2(S1, S2[1:]) useS2 = LCSWithValues2(S1[1:], S2) if useS1[0] > useS2[0]: return useS1 return useS2 print(LCSWithValues2("sam", "spam")) """ def LCSWithValues(S1,S2): """returns the longest common string""" if S1 == "" or S2 == "": return (0, "") if S1[0] == S2[0]: result = LCSWithValues(S1[1:], S2[1:]) return (1 + result[0], S1[0] + result[1]) useS1 = LCSWithValues(S1, S2[1:]) useS2 = LCSWithValues(S1[1:], S2) if useS1[0] > useS2[0]: return useS1 return useS2 print(LCSWithValues("sam", "spam")) #^^^the LCSWithValues2 does not work because the result variable needs to be defined, and if it is redefined it stays empty always. def coin_row(lst): #one line: return 0 if lst == [] else max(lst[0] + coin_row(lst[2:]), coin_row(lst[1:])) """ if(lst == []): return 0 return max(lst[0] + coin_row(lst[2:]), coin_row(lst[1:])) """ """ if(lst == []): return 0 use_it = lst[0] + coin_row(lst[2:]) lose_it = coin_row(lst[1:]) return max(use_it, lose_it) This is how you set up each function^^^ and then you can make it nicer """ """ if(coin_row(lst[1:])>lst[0]): amount = coin_row(lst[1:]) return max(coin_row(lst[2:]), coin_row(lst[2:])) """ def coin_row_with_values(lst): if lst == []: return [0, []] use_it = coin_row_with_values(lst[2:]) new_sum = lst[0] + use_it[0] #that's the result^ lose_it = coin_row_with_values(lst[1:]) if new_sum > lose_it[0]: #only returns this once I think #nevermind! #print('hello') return [new_sum, [lst[0]] + use_it[1]] return lose_it print(coin_row([10, 5, 5, 5, 10, 10, 1, 1])) print(coin_row_with_values([10, 5, 5, 5, 10, 50, 1, 10, 1, 1, 25])) #can use below as spell-checker def distance(first, second): if first == '': return len(second) if second == '': return len(first) if first[0] == second[0]: return distance(first[1:], second[1:]) substitution = 1 + distance(first[1:], second[1:]) deletion = 1 + distance(first[1:], second) insertion = 1 + distance(first, second[1:]) return min(substitution, deletion, insertion)
31.635714
131
0.604651
[ "MIT" ]
jschmidtnj/CS115
use_it_or_lose_it.py
4,429
Python
# Copyright 2022 The Magenta Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility functions for working with tf.train.SequenceExamples.""" import math import tensorflow.compat.v1 as tf QUEUE_CAPACITY = 500 SHUFFLE_MIN_AFTER_DEQUEUE = QUEUE_CAPACITY // 5 def _shuffle_inputs(input_tensors, capacity, min_after_dequeue, num_threads): """Shuffles tensors in `input_tensors`, maintaining grouping.""" shuffle_queue = tf.RandomShuffleQueue( capacity, min_after_dequeue, dtypes=[t.dtype for t in input_tensors]) enqueue_op = shuffle_queue.enqueue(input_tensors) runner = tf.train.QueueRunner(shuffle_queue, [enqueue_op] * num_threads) tf.train.add_queue_runner(runner) output_tensors = shuffle_queue.dequeue() for i in range(len(input_tensors)): output_tensors[i].set_shape(input_tensors[i].shape) return output_tensors def get_padded_batch(file_list, batch_size, input_size, label_shape=None, num_enqueuing_threads=4, shuffle=False): """Reads batches of SequenceExamples from TFRecords and pads them. Can deal with variable length SequenceExamples by padding each batch to the length of the longest sequence with zeros. Args: file_list: A list of paths to TFRecord files containing SequenceExamples. batch_size: The number of SequenceExamples to include in each batch. input_size: The size of each input vector. The returned batch of inputs will have a shape [batch_size, num_steps, input_size]. label_shape: Shape for labels. If not specified, will use []. num_enqueuing_threads: The number of threads to use for enqueuing SequenceExamples. shuffle: Whether to shuffle the batches. Returns: inputs: A tensor of shape [batch_size, num_steps, input_size] of floats32s. labels: A tensor of shape [batch_size, num_steps] of int64s. lengths: A tensor of shape [batch_size] of int32s. The lengths of each SequenceExample before padding. Raises: ValueError: If `shuffle` is True and `num_enqueuing_threads` is less than 2. """ file_queue = tf.train.string_input_producer(file_list) reader = tf.TFRecordReader() _, serialized_example = reader.read(file_queue) sequence_features = { 'inputs': tf.FixedLenSequenceFeature(shape=[input_size], dtype=tf.float32), 'labels': tf.FixedLenSequenceFeature(shape=label_shape or [], dtype=tf.int64)} _, sequence = tf.parse_single_sequence_example( serialized_example, sequence_features=sequence_features) length = tf.shape(sequence['inputs'])[0] input_tensors = [sequence['inputs'], sequence['labels'], length] if shuffle: if num_enqueuing_threads < 2: raise ValueError( '`num_enqueuing_threads` must be at least 2 when shuffling.') shuffle_threads = int(math.ceil(num_enqueuing_threads) / 2.) # Since there may be fewer records than SHUFFLE_MIN_AFTER_DEQUEUE, take the # minimum of that number and the number of records. min_after_dequeue = count_records( file_list, stop_at=SHUFFLE_MIN_AFTER_DEQUEUE) input_tensors = _shuffle_inputs( input_tensors, capacity=QUEUE_CAPACITY, min_after_dequeue=min_after_dequeue, num_threads=shuffle_threads) num_enqueuing_threads -= shuffle_threads tf.logging.info(input_tensors) return tf.train.batch( input_tensors, batch_size=batch_size, capacity=QUEUE_CAPACITY, num_threads=num_enqueuing_threads, dynamic_pad=True, allow_smaller_final_batch=False) def count_records(file_list, stop_at=None): """Counts number of records in files from `file_list` up to `stop_at`. Args: file_list: List of TFRecord files to count records in. stop_at: Optional number of records to stop counting at. Returns: Integer number of records in files from `file_list` up to `stop_at`. """ num_records = 0 for tfrecord_file in file_list: tf.logging.info('Counting records in %s.', tfrecord_file) for _ in tf.python_io.tf_record_iterator(tfrecord_file): num_records += 1 if stop_at and num_records >= stop_at: tf.logging.info('Number of records is at least %d.', num_records) return num_records tf.logging.info('Total records: %d', num_records) return num_records def flatten_maybe_padded_sequences(maybe_padded_sequences, lengths=None): """Flattens the batch of sequences, removing padding (if applicable). Args: maybe_padded_sequences: A tensor of possibly padded sequences to flatten, sized `[N, M, ...]` where M = max(lengths). lengths: Optional length of each sequence, sized `[N]`. If None, assumes no padding. Returns: flatten_maybe_padded_sequences: The flattened sequence tensor, sized `[sum(lengths), ...]`. """ def flatten_unpadded_sequences(): # The sequences are equal length, so we should just flatten over the first # two dimensions. return tf.reshape(maybe_padded_sequences, [-1] + maybe_padded_sequences.shape.as_list()[2:]) if lengths is None: return flatten_unpadded_sequences() def flatten_padded_sequences(): indices = tf.where(tf.sequence_mask(lengths)) return tf.gather_nd(maybe_padded_sequences, indices) return tf.cond( tf.equal(tf.reduce_min(lengths), tf.shape(maybe_padded_sequences)[1]), flatten_unpadded_sequences, flatten_padded_sequences)
37.223602
80
0.724345
[ "Apache-2.0" ]
KenniVelez/magenta
magenta/common/sequence_example_lib.py
5,993
Python
from dataclasses import dataclass from bindings.csw.query_type import QueryType __NAMESPACE__ = "http://www.opengis.net/cat/csw/2.0.2" @dataclass class Query(QueryType): class Meta: namespace = "http://www.opengis.net/cat/csw/2.0.2"
22.545455
58
0.729839
[ "Apache-2.0" ]
NIVANorge/s-enda-playground
catalog/bindings/csw/query.py
248
Python
""" gaeenv ~~~~~~~ Google App Engine Virtual Environment builder. """ import os from setuptools import setup, find_packages from gaeenv.main import gaeenv_version def read_file(file_name): return open( os.path.join( os.path.dirname(os.path.abspath(__file__)), file_name ) ).read() ldesc = read_file('README') ldesc += "\n\n" + read_file('CHANGES') setup( name='gaeenv', version=gaeenv_version, url='https://github.com/llinder/gaeenv', license='Apache 2.0', author='Lance Linder', author_email='[email protected]', description="Goole App Engine Virtualenv tools", long_description=ldesc, packages = find_packages(exclude="test"), install_requires = ['requests>=2.2.0'], entry_points={ 'console_scripts': ['gaeenv = gaeenv.main:main'] }, zip_safe=False, platforms='any', classifiers=[ 'Development Status :: 3 - Alpha', 'Environment :: Web Environment', 'Intended Audience :: Developers', 'License :: OSI Approved :: Apache Software License', 'Programming Language :: Python', 'Topic :: Software Development :: Libraries :: Python Modules' ] )
25.829787
70
0.633443
[ "Apache-2.0" ]
signalpillar/gaeenv
setup.py
1,214
Python
# based on: https://github.com/ShiqiYu/libfacedetection.train/blob/74f3aa77c63234dd954d21286e9a60703b8d0868/tasks/task1/yufacedetectnet.py # noqa import math from enum import Enum from typing import Callable, Dict, List, Optional, Tuple import torch import torch.nn as nn import torch.nn.functional as F from kornia.geometry.bbox import nms as nms_kornia __all__ = [ "FaceDetector", "FaceDetectorResult", "FaceKeypoint", ] url: str = "https://github.com/ShiqiYu/libfacedetection.train/raw/master/tasks/task1/weights/yunet_final.pth" class FaceKeypoint(Enum): r"""Define the keypoints detected in a face. The left/right convention is based on the screen viewer. """ EYE_LEFT = 0 EYE_RIGHT = 1 NOSE = 2 MOUTH_LEFT = 3 MOUTH_RIGHT = 4 class FaceDetectorResult: r"""Encapsulate the results obtained by the :py:class:`kornia.contrib.FaceDetector`. Args: data: the encoded results coming from the feature detector with shape :math:`(14,)`. """ def __init__(self, data: torch.Tensor) -> None: if len(data) < 15: raise ValueError(f"Result must comes as vector of size(14). Got: {data.shape}.") self._data = data def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> "FaceDetectorResult": """Like :func:`torch.nn.Module.to()` method.""" self._data = self._data.to(device=device, dtype=dtype) return self @property def xmin(self) -> torch.Tensor: """The bounding box top-left x-coordinate.""" return self._data[..., 0] @property def ymin(self) -> torch.Tensor: """The bounding box top-left y-coordinate.""" return self._data[..., 1] @property def xmax(self) -> torch.Tensor: """The bounding box bottom-right x-coordinate.""" return self._data[..., 2] @property def ymax(self) -> torch.Tensor: """The bounding box bottom-right y-coordinate.""" return self._data[..., 3] def get_keypoint(self, keypoint: FaceKeypoint) -> torch.Tensor: """The [x y] position of a given facial keypoint. Args: keypoint: the keypoint type to return the position. """ if keypoint == FaceKeypoint.EYE_LEFT: out = self._data[..., (4, 5)] elif keypoint == FaceKeypoint.EYE_RIGHT: out = self._data[..., (6, 7)] elif keypoint == FaceKeypoint.NOSE: out = self._data[..., (8, 9)] elif keypoint == FaceKeypoint.MOUTH_LEFT: out = self._data[..., (10, 11)] elif keypoint == FaceKeypoint.MOUTH_RIGHT: out = self._data[..., (12, 13)] else: raise ValueError(f"Not valid keypoint type. Got: {keypoint}.") return out @property def score(self) -> torch.Tensor: """The detection score.""" return self._data[..., 14] @property def width(self) -> torch.Tensor: """The bounding box width.""" return self.xmax - self.xmin @property def height(self) -> torch.Tensor: """The bounding box height.""" return self.ymax - self.ymin @property def top_left(self) -> torch.Tensor: """The [x y] position of the top-left coordinate of the bounding box.""" return self._data[..., (0, 1)] @property def top_right(self) -> torch.Tensor: """The [x y] position of the top-left coordinate of the bounding box.""" out = self.top_left out[..., 0] += self.width return out @property def bottom_right(self) -> torch.Tensor: """The [x y] position of the bottom-right coordinate of the bounding box.""" return self._data[..., (2, 3)] @property def bottom_left(self) -> torch.Tensor: """The [x y] position of the top-left coordinate of the bounding box.""" out = self.top_left out[..., 1] += self.height return out class FaceDetector(nn.Module): r"""Detect faces in a given image using a CNN. By default, it uses the method described in :cite:`facedetect-yu`. Args: top_k: the maximum number of detections to return before the nms. confidence_threshold: the threshold used to discard detections. nms_threshold: the threshold used by the nms for iou. keep_top_k: the maximum number of detections to return after the nms. Return: A tensor of shape :math:`(N,15)` to be used with :py:class:`kornia.contrib.FaceDetectorResult`. Example: >>> img = torch.rand(1, 3, 320, 320) >>> detect = FaceDetector() >>> res = detect(img) """ def __init__(self, top_k: int = 5000, confidence_threshold: float = 0.3, nms_threshold: float = 0.3, keep_top_k: int = 750) -> None: super().__init__() self.top_k = top_k self.confidence_threshold = confidence_threshold self.nms_threshold = nms_threshold self.keep_top_k = keep_top_k self.config = { 'name': 'YuFaceDetectNet', 'min_sizes': [[10, 16, 24], [32, 48], [64, 96], [128, 192, 256]], 'steps': [8, 16, 32, 64], 'variance': [0.1, 0.2], 'clip': False, } self.min_sizes: List[List[int]] = [[10, 16, 24], [32, 48], [64, 96], [128, 192, 256]] self.steps: List[int] = [8, 16, 32, 64] self.variance: List[float] = [0.1, 0.2] self.clip: bool = False self.model = YuFaceDetectNet('test', pretrained=True) self.nms: Callable = nms_kornia def preprocess(self, image: torch.Tensor) -> torch.Tensor: return image def postprocess(self, data: Dict[str, torch.Tensor], height: int, width: int) -> torch.Tensor: loc, conf, iou = data['loc'], data['conf'], data['iou'] scale = torch.tensor([ width, height, width, height, width, height, width, height, width, height, width, height, width, height, ], device=loc.device, dtype=loc.dtype) # 14 priors = _PriorBox(self.min_sizes, self.steps, self.clip, image_size=(height, width)) priors = priors.to(loc.device, loc.dtype) boxes = _decode(loc, priors(), self.variance) # Nx14 boxes = boxes * scale # clamp here for the compatibility for ONNX cls_scores, iou_scores = conf[:, 1], iou[:, 0] scores = (cls_scores * iou_scores.clamp(0., 1.)).sqrt() # ignore low scores inds = (scores > self.confidence_threshold) boxes, scores = boxes[inds], scores[inds] # keep top-K before NMS order = scores.sort(descending=True)[1][:self.top_k] boxes, scores = boxes[order], scores[order] # performd NMS # NOTE: nms need to be revise since does not export well to onnx dets = torch.cat((boxes, scores[:, None]), dim=-1) # Nx15 keep = self.nms(boxes[:, :4], scores, self.nms_threshold) if len(keep) > 0: dets = dets[keep, :] # keep top-K faster NMS return dets[:self.keep_top_k] def forward(self, image: torch.Tensor) -> torch.Tensor: img = self.preprocess(image) out = self.model(img) return self.postprocess(out, img.shape[-2], img.shape[-1]) # utils for the network class ConvDPUnit(nn.Sequential): def __init__(self, in_channels, out_channels, withBNRelu=True): super().__init__() self.add_module("conv1", nn.Conv2d(in_channels, out_channels, 1, 1, 0, bias=True, groups=1)) self.add_module("conv2", nn.Conv2d(out_channels, out_channels, 3, 1, 1, bias=True, groups=out_channels)) if withBNRelu: self.add_module("bn", nn.BatchNorm2d(out_channels)) self.add_module("relu", nn.ReLU(inplace=True)) class Conv_head(nn.Sequential): def __init__(self, in_channels: int, mid_channels: int, out_channels: int) -> None: super().__init__() self.add_module("conv1", nn.Conv2d(in_channels, mid_channels, 3, 2, 1, bias=True, groups=1)) self.add_module("bn1", nn.BatchNorm2d(mid_channels)) self.add_module("relu", nn.ReLU(inplace=True)) self.add_module("conv2", ConvDPUnit(mid_channels, out_channels)) class Conv4layerBlock(nn.Sequential): def __init__(self, in_channels: int, out_channels: int, withBNRelu: bool = True) -> None: super().__init__() self.add_module("conv1", ConvDPUnit(in_channels, in_channels, True)) self.add_module("conv2", ConvDPUnit(in_channels, out_channels, withBNRelu)) class YuFaceDetectNet(nn.Module): def __init__(self, phase, pretrained: bool): super().__init__() self.phase = phase self.num_classes = 2 self.model0 = Conv_head(3, 16, 16) self.model1 = Conv4layerBlock(16, 64) self.model2 = Conv4layerBlock(64, 64) self.model3 = Conv4layerBlock(64, 64) self.model4 = Conv4layerBlock(64, 64) self.model5 = Conv4layerBlock(64, 64) self.model6 = Conv4layerBlock(64, 64) self.head = nn.Sequential( Conv4layerBlock(64, 3 * (14 + 2 + 1), False), Conv4layerBlock(64, 2 * (14 + 2 + 1), False), Conv4layerBlock(64, 2 * (14 + 2 + 1), False), Conv4layerBlock(64, 3 * (14 + 2 + 1), False), ) if self.phase == 'train': for m in self.modules(): if isinstance(m, nn.Conv2d): if m.bias is not None: nn.init.xavier_normal_(m.weight.data) m.bias.data.fill_(0.02) else: m.weight.data.normal_(0, 0.01) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() # use torch.hub to load pretrained model if pretrained: pretrained_dict = torch.hub.load_state_dict_from_url( url, map_location=lambda storage, loc: storage ) self.load_state_dict(pretrained_dict, strict=True) self.eval() def forward(self, x: torch.Tensor) -> Dict[str, torch.Tensor]: detection_sources, head_list = [], [] x = self.model0(x) x = F.max_pool2d(x, 2) x = self.model1(x) x = self.model2(x) x = F.max_pool2d(x, 2) x = self.model3(x) detection_sources.append(x) x = F.max_pool2d(x, 2) x = self.model4(x) detection_sources.append(x) x = F.max_pool2d(x, 2) x = self.model5(x) detection_sources.append(x) x = F.max_pool2d(x, 2) x = self.model6(x) detection_sources.append(x) for i, h in enumerate(self.head): x_tmp = h(detection_sources[i]) head_list.append(x_tmp.permute(0, 2, 3, 1).contiguous()) head_data = torch.cat([o.view(o.size(0), -1) for o in head_list], 1) head_data = head_data.view(head_data.size(0), -1, 17) loc_data, conf_data, iou_data = head_data.split((14, 2, 1), dim=-1) if self.phase == "test": loc_data = loc_data.view(-1, 14) conf_data = torch.softmax(conf_data.view(-1, self.num_classes), dim=-1) iou_data = iou_data.view(-1, 1) else: loc_data = loc_data.view(loc_data.size(0), -1, 14) conf_data = conf_data.view(conf_data.size(0), -1, self.num_classes) iou_data = iou_data.view(iou_data.size(0), -1, 1) return {"loc": loc_data, "conf": conf_data, "iou": iou_data} # utils for post-processing # Adapted from https://github.com/Hakuyume/chainer-ssd def _decode(loc: torch.Tensor, priors: torch.Tensor, variances: List[float]) -> torch.Tensor: """Decode locations from predictions using priors to undo the encoding we did for offset regression at train time. Args: loc:location predictions for loc layers. Shape: [num_priors,4]. priors: Prior boxes in center-offset form. Shape: [num_priors,4]. variances: (list[float]) Variances of priorboxes. Return: Tensor containing decoded bounding box predictions. """ boxes = torch.cat(( priors[:, 0:2] + loc[:, 0:2] * variances[0] * priors[:, 2:4], priors[:, 2:4] * torch.exp(loc[:, 2:4] * variances[1]), priors[:, 0:2] + loc[:, 4:6] * variances[0] * priors[:, 2:4], priors[:, 0:2] + loc[:, 6:8] * variances[0] * priors[:, 2:4], priors[:, 0:2] + loc[:, 8:10] * variances[0] * priors[:, 2:4], priors[:, 0:2] + loc[:, 10:12] * variances[0] * priors[:, 2:4], priors[:, 0:2] + loc[:, 12:14] * variances[0] * priors[:, 2:4]), 1) # prepare final output tmp = boxes[:, 0:2] - boxes[:, 2:4] / 2 return torch.cat((tmp, boxes[:, 2:4] + tmp, boxes[:, 4:]), dim=-1) class _PriorBox: def __init__(self, min_sizes: List[List[int]], steps: List[int], clip: bool, image_size: Tuple[int, int]) -> None: self.min_sizes = min_sizes self.steps = steps self.clip = clip self.image_size = image_size self.device: torch.device = torch.device('cpu') self.dtype: torch.dtype = torch.float32 for i in range(4): if(self.steps[i] != math.pow(2, (i + 3))): raise ValueError("steps must be [8,16,32,64]") self.feature_map_2th = [int(int((self.image_size[0] + 1) / 2) / 2), int(int((self.image_size[1] + 1) / 2) / 2)] self.feature_map_3th = [int(self.feature_map_2th[0] / 2), int(self.feature_map_2th[1] / 2)] self.feature_map_4th = [int(self.feature_map_3th[0] / 2), int(self.feature_map_3th[1] / 2)] self.feature_map_5th = [int(self.feature_map_4th[0] / 2), int(self.feature_map_4th[1] / 2)] self.feature_map_6th = [int(self.feature_map_5th[0] / 2), int(self.feature_map_5th[1] / 2)] self.feature_maps = [self.feature_map_3th, self.feature_map_4th, self.feature_map_5th, self.feature_map_6th] def to(self, device: torch.device, dtype: torch.dtype) -> '_PriorBox': self.device = device self.dtype = dtype return self def __call__(self) -> torch.Tensor: anchors: List[float] = [] for k, f in enumerate(self.feature_maps): min_sizes: List[int] = self.min_sizes[k] # NOTE: the nested loop it's to make torchscript happy for i in range(f[0]): for j in range(f[1]): for min_size in min_sizes: s_kx = min_size / self.image_size[1] s_ky = min_size / self.image_size[0] cx = (j + 0.5) * self.steps[k] / self.image_size[1] cy = (i + 0.5) * self.steps[k] / self.image_size[0] anchors += [cx, cy, s_kx, s_ky] # back to torch land output = torch.tensor(anchors, device=self.device, dtype=self.dtype).view(-1, 4) if self.clip: output = output.clamp(max=1, min=0) return output
36.995181
146
0.579887
[ "ECL-2.0", "Apache-2.0" ]
Abdelrhman-Hosny/kornia
kornia/contrib/face_detection.py
15,353
Python
""" Module Doc String """ EMOTIONS = [ "sentimental", "afraid", "proud", "faithful", "terrified", "joyful", "angry", "sad", "jealous", "grateful", "prepared", "embarrassed", "excited", "annoyed", "lonely", "ashamed", "guilty", "surprised", "nostalgic", "confident", "furious", "disappointed", "caring", "trusting", "disgusted", "anticipating", "anxious", "hopeful", "content", "impressed", "apprehensive", "devastated", ] def main(): """ Driver """ if __name__ == "__main__": main()
12.77551
26
0.496805
[ "MIT" ]
ajyl/KEMP
common.py
626
Python
from django.utils import translation from django.utils.translation.trans_real import ( to_language as django_to_language, parse_accept_lang_header as django_parse_accept_lang_header ) from django.test import RequestFactory, TestCase from django.urls import reverse from .. import language_code_to_iso_3166, parse_accept_lang_header, to_language from ..utils import queue_ga_event class UtilsTestCase(TestCase): def test_get_language_code_to_iso_3166(self): self.assertEqual(language_code_to_iso_3166('en-gb'), 'en-GB') self.assertEqual(language_code_to_iso_3166('en-us'), 'en-US') self.assertEqual(language_code_to_iso_3166('fr'), 'fr') def test_to_language(self): self.assertEqual(to_language('en_US'), 'en-US') def test_parse_accept_lang_header_returns_iso_3166_language(self): self.assertEqual( parse_accept_lang_header('en-GB,en;q=0.5'), (('en-GB', 1.0), ('en', 0.5)), ) def test_queue_ga_event_new(self): request = RequestFactory().get('/') request.session = self.client.session queue_ga_event(request, ['send', 'event', 'foo']) self.assertEqual(request.session['ga_events'], [['send', 'event', 'foo']]) def test_queue_ga_event_append(self): request = RequestFactory().get('/') request.session = self.client.session request.session['ga_events'] = [['send', 'event', 'foo']] queue_ga_event(request, ['send', 'event', 'bar']) self.assertEqual(request.session['ga_events'], [['send', 'event', 'foo'], ['send', 'event', 'bar']]) self.assertTrue(request.session.modified) class UtilsIntegrationTestCase(TestCase): """ Test that our overrides to Django translation functions work. """ def test_to_language(self): self.assertEqual(django_to_language('en_US'), 'en-US') def test_parse_accept_lang_header_returns_iso_3166_language(self): self.assertEqual( django_parse_accept_lang_header('en-GB,en;q=0.5'), (('en-GB', 1.0), ('en', 0.5)), ) def test_reverse_produces_correct_url_prefix(self): translation.activate('en-GB') url = reverse('payments:completed') self.assertTrue(url.startswith('/en-GB/')) translation.deactivate()
36.809524
108
0.675722
[ "MPL-2.0", "MPL-2.0-no-copyleft-exception" ]
10allday-Software/donate-wagtail
donate/core/tests/test_utils.py
2,319
Python
# global import ivy import abc import importlib from typing import List # local from ivy_builder.specs.spec import Spec from ivy_builder.specs import DatasetSpec from ivy_builder.specs.spec import locals_to_kwargs # ToDo: fix cyclic imports, so this method can be imported from the builder module def load_class_from_str(full_str): mod_str = '.'.join(full_str.split('.')[:-1]) class_str = full_str.split('.')[-1] return getattr(importlib.import_module(mod_str), class_str) class NetworkSpec(Spec, abc.ABC): def __init__(self, dataset_spec: DatasetSpec = None, dev_strs: List[str] = None, v_keychains=None, keep_v_keychains=False, build_mode='explicit', **kwargs) -> None: """ base class for storing general specifications of the neural network """ kw = locals_to_kwargs(locals()) super().__init__(dataset_spec=dataset_spec, dev_strs=dev_strs, v_keychains=v_keychains, keep_v_keychains=keep_v_keychains, build_mode=build_mode, **kwargs) if 'subnets' in self: for k, subet_spec in self.subnets.items(): if 'network_spec_class' in subet_spec: if isinstance(subet_spec.network_spec_class, str): spec_class = load_class_from_str(subet_spec.network_spec_class) else: spec_class = subet_spec.network_spec_class if isinstance(kwargs['subnets'][k], spec_class): subet_spec = kwargs['subnets'][k] else: subet_spec = spec_class(**{**kwargs['subnets'][k], **dict(dataset_spec=dataset_spec, dev_strs=dev_strs)}) self.subnets[k] = subet_spec if isinstance(subet_spec.network_class, str): self.subnets[k].network_class = load_class_from_str(subet_spec.network_class) else: self.subnets[k].network_class = subet_spec.network_class self.subnets[k].store_vars = ivy.default(self.subnets[k].if_exists('store_vars'), True) self.subnets[k].build_mode = ivy.default(self.subnets[k].if_exists('build_mode'), self.build_mode) self.subnets[k].dataset_spec = dataset_spec self.subnets[k].dev_strs = dev_strs self._kwargs = kw
45.196429
114
0.594232
[ "Apache-2.0" ]
ivy-dl/builder
ivy_builder/specs/network_spec.py
2,531
Python
# coding: utf-8 import pprint import re import six class SetBackupPolicyRequestBody: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'backup_policy': 'BackupPolicy' } attribute_map = { 'backup_policy': 'backup_policy' } def __init__(self, backup_policy=None): """SetBackupPolicyRequestBody - a model defined in huaweicloud sdk""" self._backup_policy = None self.discriminator = None self.backup_policy = backup_policy @property def backup_policy(self): """Gets the backup_policy of this SetBackupPolicyRequestBody. :return: The backup_policy of this SetBackupPolicyRequestBody. :rtype: BackupPolicy """ return self._backup_policy @backup_policy.setter def backup_policy(self, backup_policy): """Sets the backup_policy of this SetBackupPolicyRequestBody. :param backup_policy: The backup_policy of this SetBackupPolicyRequestBody. :type: BackupPolicy """ self._backup_policy = backup_policy def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, SetBackupPolicyRequestBody): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
26.481481
83
0.562937
[ "Apache-2.0" ]
JeffreyDin/huaweicloud-sdk-python-v3
huaweicloud-sdk-dds/huaweicloudsdkdds/v3/model/set_backup_policy_request_body.py
2,860
Python
# -*- coding: utf-8 -*- """ Rewrite ot.bregman.sinkhorn in Python Optimal Transport (https://pythonot.github.io/_modules/ot/bregman.html#sinkhorn) using pytorch operations. Bregman projections for regularized OT (Sinkhorn distance). """ import torch M_EPS = 1e-16 def sinkhorn(a, b, C, reg=1e-1, method='sinkhorn', maxIter=1000, tau=1e3, stopThr=1e-9, verbose=True, log=True, warm_start=None, eval_freq=10, print_freq=200, **kwargs): """ Solve the entropic regularization optimal transport The input should be PyTorch tensors The function solves the following optimization problem: .. math:: \gamma = arg\min_\gamma <\gamma,C>_F + reg\cdot\Omega(\gamma) s.t. \gamma 1 = a \gamma^T 1= b \gamma\geq 0 where : - C is the (ns,nt) metric cost matrix - :math:`\Omega` is the entropic regularization term :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})` - a and b are target and source measures (sum to 1) The algorithm used for solving the problem is the Sinkhorn-Knopp matrix scaling algorithm as proposed in [1]. Parameters ---------- a : torch.tensor (na,) samples measure in the target domain b : torch.tensor (nb,) samples in the source domain C : torch.tensor (na,nb) loss matrix reg : float Regularization term > 0 method : str method used for the solver either 'sinkhorn', 'greenkhorn', 'sinkhorn_stabilized' or 'sinkhorn_epsilon_scaling', see those function for specific parameters maxIter : int, optional Max number of iterations stopThr : float, optional Stop threshol on error ( > 0 ) verbose : bool, optional Print information along iterations log : bool, optional record log if True Returns ------- gamma : (na x nb) torch.tensor Optimal transportation matrix for the given parameters log : dict log dictionary return only if log==True in parameters References ---------- [1] M. Cuturi, Sinkhorn Distances : Lightspeed Computation of Optimal Transport, Advances in Neural Information Processing Systems (NIPS) 26, 2013 See Also -------- """ if method.lower() == 'sinkhorn': return sinkhorn_knopp(a, b, C, reg, maxIter=maxIter, stopThr=stopThr, verbose=verbose, log=log, warm_start=warm_start, eval_freq=eval_freq, print_freq=print_freq, **kwargs) elif method.lower() == 'sinkhorn_stabilized': return sinkhorn_stabilized(a, b, C, reg, maxIter=maxIter, tau=tau, stopThr=stopThr, verbose=verbose, log=log, warm_start=warm_start, eval_freq=eval_freq, print_freq=print_freq, **kwargs) elif method.lower() == 'sinkhorn_epsilon_scaling': return sinkhorn_epsilon_scaling(a, b, C, reg, maxIter=maxIter, maxInnerIter=100, tau=tau, scaling_base=0.75, scaling_coef=None, stopThr=stopThr, verbose=False, log=log, warm_start=warm_start, eval_freq=eval_freq, print_freq=print_freq, **kwargs) else: raise ValueError("Unknown method '%s'." % method) def sinkhorn_knopp(a, b, C, reg=1e-1, maxIter=1000, stopThr=1e-9, verbose=True, log=True, warm_start=None, eval_freq=10, print_freq=200, **kwargs): """ Solve the entropic regularization optimal transport The input should be PyTorch tensors The function solves the following optimization problem: .. math:: \gamma = arg\min_\gamma <\gamma,C>_F + reg\cdot\Omega(\gamma) s.t. \gamma 1 = a \gamma^T 1= b \gamma\geq 0 where : - C is the (ns,nt) metric cost matrix - :math:`\Omega` is the entropic regularization term :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})` - a and b are target and source measures (sum to 1) The algorithm used for solving the problem is the Sinkhorn-Knopp matrix scaling algorithm as proposed in [1]. Parameters ---------- a : torch.tensor (na,) samples measure in the target domain b : torch.tensor (nb,) samples in the source domain C : torch.tensor (na,nb) loss matrix reg : float Regularization term > 0 maxIter : int, optional Max number of iterations stopThr : float, optional Stop threshol on error ( > 0 ) verbose : bool, optional Print information along iterations log : bool, optional record log if True Returns ------- gamma : (na x nb) torch.tensor Optimal transportation matrix for the given parameters log : dict log dictionary return only if log==True in parameters References ---------- [1] M. Cuturi, Sinkhorn Distances : Lightspeed Computation of Optimal Transport, Advances in Neural Information Processing Systems (NIPS) 26, 2013 See Also -------- """ device = a.device na, nb = C.shape assert na >= 1 and nb >= 1, 'C needs to be 2d' assert na == a.shape[0] and nb == b.shape[0], "Shape of a or b does't match that of C" assert reg > 0, 'reg should be greater than 0' assert a.min() >= 0. and b.min() >= 0., 'Elements in a or b less than 0' # unnecessary check for our special case if log: log = {'err': []} if warm_start is not None: u = warm_start['u'] v = warm_start['v'] else: u = torch.ones(na, dtype=a.dtype).to(device) / na v = torch.ones(nb, dtype=b.dtype).to(device) / nb K = torch.empty(C.shape, dtype=C.dtype).to(device) torch.div(C, -reg, out=K) torch.exp(K, out=K) b_hat = torch.empty(b.shape, dtype=C.dtype).to(device) it = 1 err = 1 # allocate memory beforehand KTu = torch.empty(v.shape, dtype=v.dtype).to(device) Kv = torch.empty(u.shape, dtype=u.dtype).to(device) while (err > stopThr and it <= maxIter): upre, vpre = u, v torch.matmul(u, K, out=KTu) v = torch.div(b, KTu + M_EPS) torch.matmul(K, v, out=Kv) u = torch.div(a, Kv + M_EPS) if torch.any(torch.isnan(u)) or torch.any(torch.isnan(v)) or \ torch.any(torch.isinf(u)) or torch.any(torch.isinf(v)): print('Warning: numerical errors at iteration', it) u, v = upre, vpre break if log and it % eval_freq == 0: # we can speed up the process by checking for the error only all # the eval_freq iterations # below is equivalent to: # b_hat = torch.sum(u.reshape(-1, 1) * K * v.reshape(1, -1), 0) # but with more memory efficient b_hat = torch.matmul(u, K) * v err = (b - b_hat).pow(2).sum().item() # err = (b - b_hat).abs().sum().item() log['err'].append(err) if verbose and it % print_freq == 0: print('iteration {:5d}, constraint error {:5e}'.format(it, err)) it += 1 if log: log['u'] = u log['v'] = v log['alpha'] = reg * torch.log(u + M_EPS) log['beta'] = reg * torch.log(v + M_EPS) # transport plan P = u.reshape(-1, 1) * K * v.reshape(1, -1) if log: return P, log else: return P def sinkhorn_stabilized(a, b, C, reg=1e-1, maxIter=1000, tau=1e3, stopThr=1e-9, verbose=False, log=False, warm_start=None, eval_freq=10, print_freq=200, **kwargs): """ Solve the entropic regularization OT problem with log stabilization The function solves the following optimization problem: .. math:: \gamma = arg\min_\gamma <\gamma,C>_F + reg\cdot\Omega(\gamma) s.t. \gamma 1 = a \gamma^T 1= b \gamma\geq 0 where : - C is the (ns,nt) metric cost matrix - :math:`\Omega` is the entropic regularization term :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})` - a and b are target and source measures (sum to 1) The algorithm used for solving the problem is the Sinkhorn-Knopp matrix scaling algorithm as proposed in [1] but with the log stabilization proposed in [3] an defined in [2] (Algo 3.1) Parameters ---------- a : torch.tensor (na,) samples measure in the target domain b : torch.tensor (nb,) samples in the source domain C : torch.tensor (na,nb) loss matrix reg : float Regularization term > 0 tau : float thershold for max value in u or v for log scaling maxIter : int, optional Max number of iterations stopThr : float, optional Stop threshol on error ( > 0 ) verbose : bool, optional Print information along iterations log : bool, optional record log if True Returns ------- gamma : (na x nb) torch.tensor Optimal transportation matrix for the given parameters log : dict log dictionary return only if log==True in parameters References ---------- [1] M. Cuturi, Sinkhorn Distances : Lightspeed Computation of Optimal Transport, Advances in Neural Information Processing Systems (NIPS) 26, 2013 [2] Bernhard Schmitzer. Stabilized Sparse Scaling Algorithms for Entropy Regularized Transport Problems. SIAM Journal on Scientific Computing, 2019 [3] Chizat, L., Peyré, G., Schmitzer, B., & Vialard, F. X. (2016). Scaling algorithms for unbalanced transport problems. arXiv preprint arXiv:1607.05816. See Also -------- """ device = a.device na, nb = C.shape assert na >= 1 and nb >= 1, 'C needs to be 2d' assert na == a.shape[0] and nb == b.shape[0], "Shape of a or b does't match that of C" assert reg > 0, 'reg should be greater than 0' assert a.min() >= 0. and b.min() >= 0., 'Elements in a or b less than 0' if log: log = {'err': []} if warm_start is not None: alpha = warm_start['alpha'] beta = warm_start['beta'] else: alpha = torch.zeros(na, dtype=a.dtype).to(device) beta = torch.zeros(nb, dtype=b.dtype).to(device) u = torch.ones(na, dtype=a.dtype).to(device) / na v = torch.ones(nb, dtype=b.dtype).to(device) / nb def update_K(alpha, beta): """log space computation""" """memory efficient""" torch.add(alpha.reshape(-1, 1), beta.reshape(1, -1), out=K) torch.add(K, -C, out=K) torch.div(K, reg, out=K) torch.exp(K, out=K) def update_P(alpha, beta, u, v, ab_updated=False): """log space P (gamma) computation""" torch.add(alpha.reshape(-1, 1), beta.reshape(1, -1), out=P) torch.add(P, -C, out=P) torch.div(P, reg, out=P) if not ab_updated: torch.add(P, torch.log(u + M_EPS).reshape(-1, 1), out=P) torch.add(P, torch.log(v + M_EPS).reshape(1, -1), out=P) torch.exp(P, out=P) K = torch.empty(C.shape, dtype=C.dtype).to(device) update_K(alpha, beta) b_hat = torch.empty(b.shape, dtype=C.dtype).to(device) it = 1 err = 1 ab_updated = False # allocate memory beforehand KTu = torch.empty(v.shape, dtype=v.dtype).to(device) Kv = torch.empty(u.shape, dtype=u.dtype).to(device) P = torch.empty(C.shape, dtype=C.dtype).to(device) while (err > stopThr and it <= maxIter): upre, vpre = u, v torch.matmul(u, K, out=KTu) v = torch.div(b, KTu + M_EPS) torch.matmul(K, v, out=Kv) u = torch.div(a, Kv + M_EPS) ab_updated = False # remove numerical problems and store them in K if u.abs().sum() > tau or v.abs().sum() > tau: alpha += reg * torch.log(u + M_EPS) beta += reg * torch.log(v + M_EPS) u.fill_(1. / na) v.fill_(1. / nb) update_K(alpha, beta) ab_updated = True if log and it % eval_freq == 0: # we can speed up the process by checking for the error only all # the eval_freq iterations update_P(alpha, beta, u, v, ab_updated) b_hat = torch.sum(P, 0) err = (b - b_hat).pow(2).sum().item() log['err'].append(err) if verbose and it % print_freq == 0: print('iteration {:5d}, constraint error {:5e}'.format(it, err)) it += 1 if log: log['u'] = u log['v'] = v log['alpha'] = alpha + reg * torch.log(u + M_EPS) log['beta'] = beta + reg * torch.log(v + M_EPS) # transport plan update_P(alpha, beta, u, v, False) if log: return P, log else: return P def sinkhorn_epsilon_scaling(a, b, C, reg=1e-1, maxIter=100, maxInnerIter=100, tau=1e3, scaling_base=0.75, scaling_coef=None, stopThr=1e-9, verbose=False, log=False, warm_start=None, eval_freq=10, print_freq=200, **kwargs): """ Solve the entropic regularization OT problem with log stabilization The function solves the following optimization problem: .. math:: \gamma = arg\min_\gamma <\gamma,C>_F + reg\cdot\Omega(\gamma) s.t. \gamma 1 = a \gamma^T 1= b \gamma\geq 0 where : - C is the (ns,nt) metric cost matrix - :math:`\Omega` is the entropic regularization term :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})` - a and b are target and source measures (sum to 1) The algorithm used for solving the problem is the Sinkhorn-Knopp matrix scaling algorithm as proposed in [1] but with the log stabilization proposed in [3] and the log scaling proposed in [2] algorithm 3.2 Parameters ---------- a : torch.tensor (na,) samples measure in the target domain b : torch.tensor (nb,) samples in the source domain C : torch.tensor (na,nb) loss matrix reg : float Regularization term > 0 tau : float thershold for max value in u or v for log scaling maxIter : int, optional Max number of iterations stopThr : float, optional Stop threshol on error ( > 0 ) verbose : bool, optional Print information along iterations log : bool, optional record log if True Returns ------- gamma : (na x nb) torch.tensor Optimal transportation matrix for the given parameters log : dict log dictionary return only if log==True in parameters References ---------- [1] M. Cuturi, Sinkhorn Distances : Lightspeed Computation of Optimal Transport, Advances in Neural Information Processing Systems (NIPS) 26, 2013 [2] Bernhard Schmitzer. Stabilized Sparse Scaling Algorithms for Entropy Regularized Transport Problems. SIAM Journal on Scientific Computing, 2019 [3] Chizat, L., Peyré, G., Schmitzer, B., & Vialard, F. X. (2016). Scaling algorithms for unbalanced transport problems. arXiv preprint arXiv:1607.05816. See Also -------- """ na, nb = C.shape assert na >= 1 and nb >= 1, 'C needs to be 2d' assert na == a.shape[0] and nb == b.shape[0], "Shape of a or b does't match that of C" assert reg > 0, 'reg should be greater than 0' assert a.min() >= 0. and b.min() >= 0., 'Elements in a or b less than 0' def get_reg(it, reg, pre_reg): if it == 1: return scaling_coef else: if (pre_reg - reg) * scaling_base < M_EPS: return reg else: return (pre_reg - reg) * scaling_base + reg if scaling_coef is None: scaling_coef = C.max() + reg it = 1 err = 1 running_reg = scaling_coef if log: log = {'err': []} warm_start = None while (err > stopThr and it <= maxIter): running_reg = get_reg(it, reg, running_reg) P, _log = sinkhorn_stabilized(a, b, C, running_reg, maxIter=maxInnerIter, tau=tau, stopThr=stopThr, verbose=False, log=True, warm_start=warm_start, eval_freq=eval_freq, print_freq=print_freq, **kwargs) warm_start = {} warm_start['alpha'] = _log['alpha'] warm_start['beta'] = _log['beta'] primal_val = (C * P).sum() + reg * (P * torch.log(P)).sum() - reg * P.sum() dual_val = (_log['alpha'] * a).sum() + (_log['beta'] * b).sum() - reg * P.sum() err = primal_val - dual_val log['err'].append(err) if verbose and it % print_freq == 0: print('iteration {:5d}, constraint error {:5e}'.format(it, err)) it += 1 if log: log['alpha'] = _log['alpha'] log['beta'] = _log['beta'] return P, log else: return P
35.175258
157
0.583118
[ "MIT" ]
SelmanOzleyen/DRDM-Count
losses/bregman_pytorch.py
17,062
Python
from typing import List def bubblesort(nums: List[int]): """ sort list """ for i in range(0, len(nums)): for j in range(0, len(nums) - i - 1): if nums[j] > nums[j + 1]: tmp = nums[j] nums[j] = nums[j + 1] nums[j + 1] = tmp return nums
24.384615
45
0.451104
[ "CC0-1.0" ]
vscode-debug-specs/python
bubblesort/bubblesort_logic.py
317
Python
# -*- coding: utf-8 -*- # Copyright 2021 Red Hat # GNU General Public License v3.0+ # (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ############################################# # WARNING # ############################################# # # This file is auto generated by the # cli_rm_builder. # # Manually editing this file is not advised. # # To update the argspec make the desired changes # in the module docstring and re-run # cli_rm_builder. # ############################################# """ The arg spec for the vyos_route_maps module """ class Route_mapsArgs(object): # pylint: disable=R0903 """The arg spec for the vyos_route_maps module""" def __init__(self, **kwargs): pass argument_spec = { "config": { "type": "list", "elements": "dict", "options": { "route_map": {"type": "str"}, "entries": { "aliases": ["rules"], "type": "list", "elements": "dict", "options": { "sequence": {"type": "int"}, "call": {"type": "str"}, "description": {"type": "str"}, "action": { "type": "str", "choices": ["deny", "permit"], }, "continue_sequence": {"type": "int"}, "set": { "type": "dict", "options": { "aggregator": { "type": "dict", "options": { "ip": {"type": "str"}, "as": {"type": "str"}, }, }, "as_path_exclude": {"type": "str"}, "as_path_prepend": {"type": "str"}, "atomic_aggregate": {"type": "bool"}, "bgp_extcommunity_rt": {"type": "str"}, "comm_list": { "type": "dict", "options": { "comm_list": {"type": "str"}, "delete": {"type": "bool"}, }, }, "community": { "type": "dict", "options": {"value": {"type": "str"}}, }, "extcommunity_rt": {"type": "str"}, "extcommunity_soo": {"type": "str"}, "ip_next_hop": {"type": "str"}, "ipv6_next_hop": { "type": "dict", "options": { "ip_type": { "type": "str", "choices": ["global", "local"], }, "value": {"type": "str"}, }, }, "large_community": {"type": "str"}, "local_preference": {"type": "str"}, "metric": {"type": "str"}, "metric_type": { "type": "str", "choices": ["type-1", "type-2"], }, "origin": { "type": "str", "choices": ["egp", "igp", "incomplete"], }, "originator_id": {"type": "str"}, "src": {"type": "str"}, "tag": {"type": "str"}, "weight": {"type": "str"}, }, }, "match": { "type": "dict", "options": { "as_path": {"type": "str"}, "community": { "type": "dict", "options": { "community_list": {"type": "str"}, "exact_match": {"type": "bool"}, }, }, "extcommunity": {"type": "str"}, "interface": {"type": "str"}, "ip": { "type": "dict", "options": { "address": { "type": "dict", "options": { "list_type": { "type": "str", "choices": [ "access-list", "prefix-list", ], }, "value": {"type": "str"}, }, }, "next_hop": { "type": "dict", "options": { "list_type": { "type": "str", "choices": [ "access-list", "prefix-list", ], }, "value": {"type": "str"}, }, }, "route_source": { "type": "dict", "options": { "list_type": { "type": "str", "choices": [ "access-list", "prefix-list", ], }, "value": {"type": "str"}, }, }, }, }, "ipv6": { "type": "dict", "options": { "address": { "type": "dict", "options": { "list_type": { "type": "str", "choices": [ "access-list", "prefix-list", ], }, "value": {"type": "str"}, }, }, "next_hop": {"type": "str"}, }, }, "large_community_large_community_list": { "type": "str" }, "metric": {"type": "int"}, "origin": { "type": "str", "choices": ["ebgp", "ibgp", "incomplete"], }, "peer": {"type": "str"}, "rpki": { "type": "str", "choices": [ "notfound", "invalid", "valid", ], }, }, }, "on_match": { "type": "dict", "options": { "next": {"type": "bool"}, "goto": {"type": "int"}, }, }, }, }, }, }, "running_config": {"type": "str"}, "state": { "type": "str", "choices": [ "deleted", "merged", "overridden", "replaced", "gathered", "rendered", "parsed", ], "default": "merged", }, } # pylint: disable=C0301
45.380952
78
0.196222
[ "MIT" ]
elixir-no-nels/usegalaxy
venv/lib/python3.6/site-packages/ansible_collections/vyos/vyos/plugins/module_utils/network/vyos/argspec/route_maps/route_maps.py
10,483
Python
import setuptools with open("README.md", "r") as fh: long_description = fh.read() setuptools.setup( name="rocketpy", version="0.9.9", install_requires=["numpy>=1.0", "scipy>=1.0", "matplotlib>=3.0", "requests"], maintainer="RocketPy Developers", author="Giovani Hidalgo Ceotto", author_email="[email protected]", description="Advanced 6-DOF trajectory simulation for High-Power Rocketry.", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/giovaniceotto/RocketPy", packages=setuptools.find_packages(), classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], python_requires=">=3.6", )
32.32
81
0.67203
[ "MIT" ]
DeepWater1013/RockedPy
setup.py
808
Python
# Database Lib """ Oracle PostGresSQL SQLite SQLServer Hive Spark """ import os, datetime, pandas, time, re from collections import namedtuple, OrderedDict import jmespath import sqlalchemy from multiprocessing import Queue, Process from xutil.helpers import ( log, elog, slog, get_exception_message, struct, now, get_databases, get_dir_path, get_profile, get_variables, file_exists, str_rmv_indent, ptable, make_rec, get_error_str, ) from xutil.diskio import read_yaml, write_csvs conns = {} _fwklike = lambda k, v: "lower({}) like lower('{}')".format(k, v) _fwkeq = lambda k, v: "{} = '{}'".format(k, v) _fw = lambda sep, _fwkop, **kws: sep.join([_fwkop(k, v) for k, v in kws.items()]) # Format WHERE fwa = lambda _fwkop=_fwkeq, **kws: _fw(' and ', _fwkop, **kws) # Format WHERE AND fwo = lambda _fwkop=_fwkeq, **kws: _fw(' or ', _fwkop, **kws) # Format WHERE OR rows_to_dicts = lambda rows: [row._asdict() for row in rows] class DBConn(object): """Base class for database connections""" _fix_f_name = lambda self, f: f _to_text = lambda self, t: t def __init__(self, conn_dict, profile=None, echo=False): "Inititate connection" self._cred = struct(conn_dict) self._cred.kwargs = conn_dict.get('kwargs', {}) self.name = self._cred.get('name', None) self.username = self._cred.get('username', None) self.type = self._cred.type self.engine = None self._cursor_description = None self.profile = profile self.batch_size = 10000 self.fetch_size = 20000 self.echo = echo self.connect() self.last_connect = now() # Base Template template_base_path = '{}/database/templates/base.yaml'.format( get_dir_path()) self.template_dict = read_yaml(template_base_path) # Specific Type Template template_path = '{}/database/templates/{}.yaml'.format( get_dir_path(), self.type) temp_dict = read_yaml(template_path) for key1 in temp_dict: # Level 1 if isinstance(temp_dict[key1], dict): if key1 not in self.template_dict: self.template_dict[key1] = temp_dict[key1] # Level 2 for key2 in temp_dict[key1]: # Always Overwrite self.template_dict[key1][key2] = temp_dict[key1][key2] else: # Level 1 Non-Dict Overwrite self.template_dict[key1] = temp_dict[key1] self.variables = self._template('variables') if os.getenv('PROFILE_YAML'): other_vars = get_variables() for key in other_vars: self.variables[key] = other_vars[key] self.tmp_folder = self.variables['tmp_folder'] self.set_variables() if echo: log("Connected to {} as {}".format(self._cred.name, self._cred.user)) def connect(self): """Connect to Database""" self.engine = self.get_engine() self.connection = self.engine.connect() def close(self): """Close database connection""" self.conn.connection.close() def reconnect(self, min_tresh=0): """Re-Connect to Database if minute threshold reached""" if (now() - self.last_connect).total_seconds() > min_tresh * 60: log('Reconnecting to {}...'.format(self.name)) self.connect() self.last_connect = now() def set_variables(self): """Set custom variables""" raise Exception("Method 'set_variables' is not implemented!") def get_dialect(self, echo=False): """SQLAlchemy dialect""" raise Exception("Method 'get_dialect' is not implemented!") def get_engine(self, echo=False): import sqlalchemy if not self.engine: self.create_engine(echo=self.echo) self.engine_inspect = sqlalchemy.inspect(self.engine) return self.engine def check_pk(self, table, fields): "Check Primary key to ensure there are not duplicates" if 'where' in fields.lower(): fields, where_clause = fields.lower().split('where') where_clause = 'where ' + where_clause else: where_clause = '' sql = ''' select '{table}' as table, case when count(1) = count({fields}) then 'PASS' else 'FAIL' end as pk_result from {table} {where_clause} '''.format( table=table, fields=fields, where_clause=where_clause, ) data = self.query(sql, echo=False) headers = self._fields print(ptable(headers, data)) if data[0].pk_result == 'FAIL': raise (Exception('PK Text failed for table "{}" with fields "{}"'.format( table, fields))) def _do_execute(self, sql): try: self._cursor_description = None self.fields = None self.result = self.connection.execute(sql) self._cursor_description = self.result._cursor_description() self._fields = self._get_cursor_fields() except Exception as E: if 'not open' in get_error_str(E): pass # error when Oracle doesn't have a cursor open else: log(Exception('Error for SQL:\n' + sql)) raise E def execute_multi(self, sql, dtype='namedtuple', limit=None, echo=True, query_name='Record', log=log): """ Execute multiple SQL statements separtated by ';'. Returns a generator. Example: for fields, rows in conn.execute(sql): print(fields) print(len(rows)) """ self.reconnect(min_tresh=10) data = None fields = None rows = [] message_mapping = { 'drop ': 'Dropping {}.', 'truncate ': 'Truncating {}.', 'select ': 'Selecting {}.', 'create ': 'Creating {}.', 'insert ': 'Inserting {}.', 'alter ': 'Altering {}.', 'update ': 'Updating {}.', 'delete ': 'Deleting {}.', 'exec ': 'Calling Procedure {}.', 'grant ': 'Granting {}.', } sqls = sql.split(';') for sql in sqls: if not sql.strip(): continue sql_ = sql.strip().lower() for word, message in message_mapping.items(): if sql_.startswith(word): if echo: log( message.format(' '.join( sql_.splitlines()[0].split()[1:3]).upper())) break # Call procedure with callproc if sql_.startswith('exec '): procedure = sql_[5:].split('(')[0] args = sql_[5:].split('(')[1][:-1].replace("'", '').split(',') args = [a.strip() for a in args] cursor.callproc(procedure, args) continue try: self._fields = [] rows = self.query( sql, rec_name=query_name, dtype=dtype, limit=limit, echo=echo, log=log) fields = self._fields if '-- pk_test:' in sql.lower() and sql_.startswith('create'): sql_lines = sql_.splitlines() regexp = r'create\s+table\s+(\S*)[\sa-zA-Z\d]+ as' table = re.findall(regexp, sql_lines[0])[0] line = [ l for l in sql_lines if l.strip().lower().startswith('-- pk_test:') ][0] fields = line.split(':')[-1] self.check_pk(table, fields) except Exception as E: message = get_exception_message().lower() if sql_.startswith( 'drop ') and self.error_msg['table_not_exist'] in message: log("WARNING: Table already dropped.") else: raise E if not fields: fields = [] yield fields, rows def execute(self, sql, dtype='tuple', limit=None, echo=True, query_name='Record', log=log): """Execute SQL, return last result""" self.reconnect(min_tresh=10) data = None fields = None rows = [] message_mapping = { 'drop ': 'Dropping {}.', 'truncate ': 'Truncating {}.', 'select ': 'Selecting {}.', 'create ': 'Creating {}.', 'insert ': 'Inserting {}.', 'alter ': 'Altering {}.', 'update ': 'Updating {}.', 'delete ': 'Deleting {}.', 'exec ': 'Calling Procedure {}.', 'grant ': 'Granting {}.', } sql_ = sql.strip().lower() for word, message in message_mapping.items(): if sql_.startswith(word): if echo: log( message.format(' '.join( sql_.splitlines()[0].split()[1:3]).upper())) break # Call procedure with callproc if sql_.startswith('exec '): procedure = sql_[5:].split('(')[0] args = sql_[5:].split('(')[1][:-1].replace("'", '').split(',') args = [a.strip() for a in args] connection = self.engine.raw_connection() try: cursor = connection.cursor() cursor.callproc(procedure, args) self._fields = self._get_cursor_fields(cursor_desc=cursor.description) rows = list(cursor.fetchall()) cursor.close() connection.commit() return fields, rows finally: connection.close() try: self._fields = [] rows = self.query( sql, rec_name=query_name, dtype=dtype, limit=limit, echo=echo, log=log) fields = self._fields if '-- pk_test:' in sql.lower() and sql_.startswith('create'): sql_lines = sql_.splitlines() regexp = r'create\s+table\s+(\S*)[\sa-zA-Z\d]+ as' table = re.findall(regexp, sql_lines[0])[0] line = [ l for l in sql_lines if l.strip().lower().startswith('-- pk_test:') ][0] fields = line.split(':')[-1] self.check_pk(table, fields) except Exception as E: message = get_exception_message().lower() if sql_.startswith( 'drop ') and self.error_msg['table_not_exist'] in message: log("WARNING: Table already dropped.") else: raise E if not fields: fields = [] return fields, rows def insert(self, table, data, echo=False): """Insert records of namedtuple or dicts""" raise Exception('insert not implemented') def drop_table(self, table, log=log): "Drop table" try: sql = self._template('core.drop_table').format(table) self._do_execute(sql) except Exception as E: message = get_exception_message().lower() if self._template('error_filter.table_not_exist') in message: if self.echo: log('Table "{}" already dropped.'.format(table)) else: raise E def create_table(self, table, field_types, drop=False, log=log): "Create table" if drop: self.drop_table(table, log=log) new_ftypes = OrderedDict() for f in field_types: ftype, max_len, dec_len = field_types[f] if dec_len: suff = '({},{})'.format(max_len, dec_len) elif max_len: suff = '({})'.format(max_len) else: suff = '' new_ftypes[f] = self._template('general_type_map')[ftype].replace( '()', suff) field_types_str = ', \n'.join([ self._fix_f_name(field) + ' ' + new_ftypes[field] for field in new_ftypes ]) sql = self._template('core.create_table').format( table=table, col_types=field_types_str, ) # log('Creating table: \n' + sql)) try: self._do_execute(sql) except Exception as e: raise e log('Created table "{}"'.format(table)) def _get_cursor_fields(self, as_dict=False, native_type=True, cursor_desc=None): "Get fields of active Select cursor" fields = OrderedDict() cursor_desc = cursor_desc if cursor_desc else self._cursor_description if cursor_desc == None: return [] for f in cursor_desc: f_name = f[0].lower() if as_dict: if native_type: f_type = f[1] else: f_type = self.reverse_data_map[f[1]] # assign floa/double as needed if 'cx_Oracle.NUMBER' in str(f[1]): if f[4] and f[4] > 11: f_type = 'long' if f[5] and f[5] > 0: f_type = 'double' fields[f_name] = f_type else: fields[f_name] = None if as_dict: return fields else: return list(fields.keys()) def stream(self, sql, rec_name='Record', dtype='namedtuple', yield_chuncks=False, chunk_size=None, limit=None, echo=True): "Stream Select from SQL, yield records as they come in" self.reconnect(min_tresh=10) if echo: log("Streaming SQL for '{}'.".format(rec_name)) fetch_size = limit if limit else self.fetch_size fetch_size = chunk_size if chunk_size else fetch_size try: self._do_execute(sql) except Exception as e: raise e if dtype == 'tuple': make_rec = lambda row: row make_batch = lambda rows: rows elif dtype == 'dataframe': yield_chuncks=True make_batch = lambda rows: pandas.DataFrame(rows, columns=self._fields) else: Record = namedtuple( rec_name.replace(' ', '_').replace('.', '_'), self._fields) make_rec = lambda row: Record(*row) make_batch = lambda rows: [make_rec(r) for r in rows] self._stream_counter = 0 while True: if not self._fields: break rows = self.result.fetchmany(fetch_size) if rows: if yield_chuncks: batch = make_batch(rows) self._stream_counter += len(batch) if len(batch): yield batch else: for row in rows: self._stream_counter += 1 yield make_rec(row) else: break if limit: break # log('Stream finished at {} records.'.format(self._stream_counter)) def query(self, sql, rec_name='Record', dtype='namedtuple', limit=None, echo=True, retrying=False, log=log): "Select from SQL, return list of namedtuples" # if echo: log("Running SQL for '{}'.".format(rec_name)) self.reconnect(min_tresh=10) s_t = datetime.datetime.now() _data = list(self.stream(sql, dtype=dtype, echo=False, limit=limit)) if not self.result.closed: self.result.close() fields = self._fields if not fields: return [] if dtype == 'namedtuple': Record = namedtuple(rec_name.replace(' ', '_').replace('.', '_'), fields) if limit: data = [Record(*row) for row in _data] else: data = [Record(*row) for row in _data] elif dtype == 'tuple': if limit: data = [tuple(row) for row in _data] else: data = [tuple(row) for row in _data] elif dtype == 'dataframe': if limit: data = pandas.DataFrame([row for row in _data], columns=fields) else: data = pandas.DataFrame([row for row in _data], columns=fields) else: raise (Exception('{} is not recongnized.'.format(dtype))) secs = (datetime.datetime.now() - s_t).total_seconds() rate = round(len(data) / secs, 1) if echo: log(" >>> Got {} rows in {} secs [{} r/s].".format( len(data), secs, rate)) return data def _split_schema_table(self, table_name): schema, table = table_name.split('.') if '.' in table_name else ( self.username, table_name) return schema, table def _concat_fields(self, fields, as_text=False): return ' || '.join(fields) def _template(self, template_key_str): val = jmespath.search(template_key_str, self.template_dict) if isinstance(val, str): val = str_rmv_indent(val) return val def get_schemas(self, echo=True): "Get list of schemas." Rec = namedtuple('Schemas', 'schema') self._fields = Rec._fields sql_tmpl = self._template('metadata.schemas') if sql_tmpl: schemas = [r[0] for r in self.query(sql_tmpl)] else: # http://docs.sqlalchemy.org/en/rel_0_9/core/reflection.html#sqlalchemy.engine.reflection.Inspector.get_schemas self.get_engine(echo=echo) schemas = self.engine_inspect.get_schema_names() rows = [Rec(s) for s in schemas] return rows def get_objects(self, schema, object_type='all', echo=True): "Get metadata for objects. object_type in 'all', 'table', 'view'" Rec = namedtuple('Table', 'schema object_name object_type') self._fields = Rec._fields def get_rec(object_name, object_type): r_dict = dict( schema=schema, object_name=object_name, object_type=object_type) return Rec(**r_dict) if object_type == 'all': table_rows = self.get_tables(schema) rows = [get_rec(r.table, 'table') for r in sorted(table_rows)] view_rows = self.get_views(schema) rows += [get_rec(r.view, 'view') for r in sorted(view_rows)] elif object_type == 'table': table_rows = self.get_tables(schema) rows = [get_rec(r.table, 'table') for r in sorted(table_rows)] elif object_type == 'view': view_rows = self.get_views(schema) rows += [get_rec(r.view, 'view') for r in sorted(view_rows)] else: raise Exception('Object type "{}" not supported!'.format(object_type)) return rows def get_tables(self, schema, echo=True): "Get metadata for tables." schemas = schema if isinstance(schema, list) else [schema] def get_tables_for(schema): def get_rec(table): self._fields = ['schema', 'table'] return tuple([schema, table]) # Getting pickle.PicklingError: Can't pickle <class 'xutil.database.base.Table'> Rec = namedtuple('Table', 'schema table') self._fields = Rec._fields r_dict = dict(schema=schema, table=table) return Rec(**r_dict) sql_tmpl = self._template('metadata.tables') if sql_tmpl: tables = self.query(sql_tmpl.format(schema=schema)) if hasattr(self, '_std_get_tables'): tables = self._std_get_tables(schema, tables) else: self.get_engine(echo=echo) tables = self.engine_inspect.get_table_names(schema) return [get_rec(v) for v in sorted(tables)] rows = [] for schema in schemas: for row in get_tables_for(schema): rows.append(row) return rows def get_views(self, schema, echo=True): "Get metadata for views." schemas = schema if isinstance(schema, list) else [schema] def get_views_for(schema): def get_rec(view): self._fields = ['schema', 'view'] return tuple([schema, view]) # pickle.PicklingError: Can't pickle <class 'xutil.database.base.View'> Rec = namedtuple('View', 'schema view') self._fields = Rec._fields r_dict = dict(schema=schema, view=view) return Rec(**r_dict) sql_tmpl = self._template('metadata.views') if sql_tmpl: views = [r[0] for r in self.query(sql_tmpl.format(schema=schema))] else: self.get_engine(echo=echo) views = self.engine_inspect.get_view_names(schema) return [get_rec(v) for v in sorted(views)] rows = [] for schema in schemas: for row in get_views_for(schema): rows.append(row) return rows def get_columns(self, table_name, object_type=None, echo=False, include_schema_table=True, native_type=True): "Get column metadata for table" if include_schema_table: headers = 'schema table id column_name type nullable default autoincrement' else: headers = 'id column_name type nullable default autoincrement' Rec = namedtuple('Columns', headers) self._fields = Rec._fields all_rows = [] table_names = table_name if isinstance(table_name, list) else [table_name] for table_name in table_names: schema, table = self._split_schema_table(table_name) def get_rec(r_dict, column_order): if include_schema_table: r_dict['schema'] = schema r_dict['table'] = table r_dict['column_name'] = r_dict['name'] r_dict['type'] = str(r_dict['type']) if not native_type: r_dict['type']= r_dict['type'].lower() r_dict['type'] = r_dict['type'].split('(')[0] if '(' in r_dict[ 'type'] else r_dict['type'] native_type_map = self._template('native_type_map') if not r_dict['type'] in native_type_map: raise Exception('Field type "{}" not in native_type_map for {}'.format(r_dict['type'], self.type)) r_dict['type'] = native_type_map[r_dict['type']] r_dict['id'] = column_order for k in list(r_dict): if k not in headers.split(): del r_dict[k] if '(' in r_dict['type']: r_dict['type'] = r_dict['type'].split('(')[0] return Rec(**r_dict) sql_tmpl = self._template('metadata.columns') if sql_tmpl: rows = self.query(sql_tmpl.format(table=table, schema=schema)) if hasattr(self, '_std_get_columns'): rows = self._std_get_columns(schema, table, rows) else: self.get_engine(echo=echo) rows = self.engine_inspect.get_columns(table, schema=schema) all_rows += [get_rec(r_dict, i + 1) for i, r_dict in enumerate(rows)] self._fields = Rec._fields return all_rows def get_primary_keys(self, table_name, echo=False): "Get PK metadata for table" Rec = namedtuple('PKs', 'schema table pk_name column_name column_order') self._fields = Rec._fields schema, table = self._split_schema_table(table_name) def get_rec(col, pk_name, column_order): r_dict = {} r_dict['schema'] = schema r_dict['table'] = table r_dict['pk_name'] = pk_name r_dict['column_name'] = col r_dict['column_order'] = column_order return Rec(**r_dict) sql_tmpl = self._template('metadata.primary_keys') if sql_tmpl: rows = self.query(sql_tmpl.format(table=table, schema=schema)) else: self.get_engine(echo=echo) r_dict = self.engine_inspect.get_pk_constraint(table, schema=schema) rows = [ get_rec(col, r_dict['name'], i + 1) for i, col in enumerate(r_dict['constrained_columns']) ] return rows def get_indexes(self, table_name, echo=False): "Get indexes metadata for table" Rec = namedtuple( 'Indexes', 'schema table index_name column_name column_order unique') self._fields = Rec._fields schema, table = self._split_schema_table(table_name) def get_rec(r_dict): r_dict['schema'] = schema r_dict['table'] = table r_dict['index_name'] = r_dict['name'] r_dict['unique'] = str(r_dict['unique']) del r_dict['name'] for i, col in enumerate(r_dict['column_names']): r_dict['column_name'] = col r_dict['column_order'] = i + 1 yield Rec(**r_dict) sql_tmpl = self._template('metadata.indexes') if sql_tmpl: rows = self.query(sql_tmpl.format(table=table, schema=schema)) else: self.get_engine(echo=echo) rows = self.engine_inspect.get_indexes(table, schema=schema) rows = [get_rec(r_dict) for r_dict in rows] return rows def get_ddl(self, table_name, object_type=None, echo=True): "Get ddl for table" Rec = namedtuple('DDL', 'ddl') self._fields = Rec._fields schema, table = self._split_schema_table(table_name) sql_tmpl = self._template('metadata.ddl') if sql_tmpl: rows = self.query( sql_tmpl.format( schema=schema, table=table, obj_type=object_type, )) else: self.get_engine(echo=echo) ddl = self.engine_inspect.get_view_definition(table, schema=schema) rows = [Rec(ddl)] if ddl else [] self._fields = Rec._fields return rows def get_all_columns(self): "Get all columns for all tables / views" sql_tmpl = self._template('metadata.all_columns') if not sql_tmpl: raise Exception('get_all_columns not implemented for {}'.format( self.type)) rows = self.query(sql_tmpl) return rows def get_all_tables(self, filter, as_sql=False): "Get all tables / views" sql_tmpl = self._template('metadata.all_tables') if not sql_tmpl: raise Exception('get_all_tables not implemented for {}'.format(self.type)) sql = sql_tmpl.format(filter=filter) return sql if as_sql else self.query(sql, echo=False) def analyze_fields(self, analysis, table_name, fields=[], as_sql=False, union=True, expr_func_map={}, **kwargs): """Base function for field level analysis expr_func_map: contains mapping for expression to SQL function to all fields """ if '.' not in table_name: raise Exception("table_name must have schema and name in it with a '.'") if analysis not in self.template_dict['analysis']: raise Exception("'{}' not found in template for '{}'.".format( analysis, self.type)) schema, table = self._split_schema_table(table_name) # get field type field_rows = self.get_columns(table_name) field_type = {r.column_name.lower(): r.type for r in field_rows} if not fields: fields = [r.column_name for r in field_rows] for expr in list(expr_func_map): tmpl_path = 'function.' + expr_func_map[expr] expr_func_map[expr] = ',\n'.join([ self._template(tmpl_path).format(field=field) for field in [r.column_name for r in field_rows] ]) sep = ' \nunion all\n' if union else ' \n ;\n' sql = sep.join([ self._template('analysis.' + analysis).format( schema=schema, field=field, table=table, type=field_type[field.lower()] if field else '', **expr_func_map, **kwargs) for field in fields ]) return sql if as_sql else self.query(sql, analysis, echo=False) def analyze_tables(self, analysis, tables=[], as_sql=False, **kwargs): """Base function for table level analysis""" if analysis not in self.template_dict['analysis']: raise Exception("'{}' not found in template for '{}'.".format( analysis, self.type)) if not tables and 'schema' in kwargs: # get all tables rows = self.get_schemas(kwargs['schema']) crt_obj = lambda r: struct(dict(schema=r.schema, table=r.object_name)) objs = [crt_obj(r) for r in rows] else: crt_obj = lambda schema, table: struct(dict(schema=schema, table=table)) objs = [crt_obj(*self._split_schema_table(t)) for t in tables] sql = ' \nunion all\n'.join([ self._template('analysis.' + analysis).format( schema=obj.schema, table=obj.table, **kwargs) for obj in objs ]) return sql if as_sql else self.query(sql, analysis, echo=False) def analyze_join_match(self, t1, t2, t1_field, t2_field, t1_filter='1=1', t2_filter='1=1', as_sql=False, as_text=True, lowercase=True): def get_kwargs(t1, t2, t1_field, t2_field, t1_filter, t2_filter): t1_field_arr = ['t1.' + f for f in t1_field.split(',')] t2_field_arr = ['t2.' + f for f in t2_field.split(',')] t1_field_concat = self._concat_fields(t1_field_arr, as_text=as_text) t2_field_concat = self._concat_fields(t2_field_arr, as_text=as_text) to_text = self._to_text if lowercase: conds = ' and '.join([ 'lower({}) = lower({})'.format(to_text(f), to_text(t2_field_arr[i])) for i, f in enumerate(t1_field_arr) ]) else: conds = ' and '.join([ '{} = {}'.format(to_text(f), to_text(t2_field_arr[i])) for i, f in enumerate(t1_field_arr) ]) t1_fields1 = t1_field t2_fields1 = t2_field t1_field = ', '.join(['t1.' + f for f in t1_field_arr]) t2_field = ', '.join(['t2.' + f for f in t2_field_arr]) return dict( t1=t1, t1_field=t1_field_concat, t1_fields1=t1_fields1, t1_filter=t1_filter, t2=t2, t2_field=t2_field_concat, t2_fields1=t2_fields1, t2_filter=t2_filter, conds=conds, ) kwargs = get_kwargs( t1=t1, t2=t2, t1_field=t1_field, t2_field=t2_field, t1_filter=t1_filter, t2_filter=t2_filter, ) sql = self.analyze_fields( 'table_join_match', t1, [''], as_sql=True, **kwargs) return sql if as_sql else self.query(sql, 'table_join_match', echo=False) def get_conn(db, dbs=None, echo=True, reconnect=False, use_jdbc=False, conn_expire_min=10, spark_hive=False) -> DBConn: global conns dbs = dbs if dbs else get_databases() profile = get_profile() db_dict = struct(dbs[db]) if db_dict.type.lower() == 'hive' and spark_hive: db_dict.type = 'spark' use_jdbc = True if (use_jdbc or ('use_jdbc' in db_dict and db_dict['use_jdbc'])) else use_jdbc if db in conns and not reconnect: if (now() - conns[db].last_connect).total_seconds() / 60 < conn_expire_min: return conns[db] if use_jdbc: log('*USING JDBC for ' + db) from .jdbc import JdbcConn conn = JdbcConn(db_dict, profile=profile) elif db_dict.type.lower() == 'oracle': from .oracle import OracleConn conn = OracleConn(db_dict, echo=echo) elif db_dict.type.lower() == 'spark': from .spark import SparkConn conn = SparkConn(db_dict, echo=echo) elif db_dict.type.lower() == 'hive': from .hive import HiveConn, Beeline if 'use_beeline' in db_dict and db_dict.use_beeline: conn = Beeline(db_dict, echo=echo) else: conn = HiveConn(db_dict, echo=echo) elif db_dict.type.lower() in ('postgresql', 'redshift'): from .postgresql import PostgreSQLConn conn = PostgreSQLConn(db_dict, echo=echo) elif db_dict.type.lower() == 'sqlserver': from .sqlserver import SQLServerConn conn = SQLServerConn(db_dict, echo=echo) elif db_dict.type.lower() == 'sqlite': from .sqlite import SQLiteConn conn = SQLiteConn(db_dict, echo=echo) else: raise Exception(f'Type {db_dict.type} not handled!') conns[db] = conn return conn class SqlX: """ SQL Express functions. Supports CRUD transactional operations. Suppose there is a table named 'cache', sqlx allows: sqlx.x('cache').insert(rows) sqlx.x('cache').insert_one(row) sqlx.x('cache').add(**kws) sqlx.x('cache').delete(where) sqlx.x('cache').update(rows, pk_fields) sqlx.x('cache').update_one(row, pk_cols) sqlx.x('cache').replace(rows, pk_fields) sqlx.x('cache').query(where) sqlx.x('cache').select_one(where) """ def __init__(self, conn: DBConn, table, schema, ntRec: namedtuple): self.conn = conn self.table = table self.schema = schema self.ntRec = ntRec self.pk_fields = None self.table_obj = schema + '.' + table if schema else table self.insert_one = lambda row: self.insert([row]) self.add = lambda **kws: self.insert([self.ntRec(**kws)]) self.update_one = lambda row, pk_cols=None: self.update([row], pk_cols) self.update_rec=lambda pk_cols=None, **kws: self.update([make_rec(**kws)], pk_cols) self.replace_one = lambda row, pk_cols=None: self.replace([row], pk_cols) self.replace_rec=lambda pk_cols=None, **kws: self.replace([make_rec(**kws)], pk_cols) # self.select_one = lambda where: self.select_one(where, one=True) def _get_pk(self): if not self.pk_fields: pk_rows = self.conn.get_primary_keys(self.table_obj) self.pk_fields = [r.column_name for r in pk_rows] return self.pk_fields def insert(self, data): return self.conn.insert(self.table_obj, data) def update(self, data, pk_fields=None): if not pk_fields: pk_fields = self._get_pk() if not pk_fields: raise Exception("Need Keys to perform UPDATE!") t_fields = [x.lower() for x in data[0]._fields] for f in pk_fields: if not f.lower() in t_fields: # if keys not provided, need to make sure PK values are provided in data records raise Exception( "Value of PK field '{}' must be provided to perform UPDATE!". format(f)) self.conn.update(self.table_obj, data, pk_fields, echo=False) def update_one(self, row, pk_cols=None): self.update([row], pk_cols) def update_rec(self, pk_cols=None, **kws): self.update([make_rec(**kws)], pk_cols) def replace(self, data, pk_fields=None): if not pk_fields: pk_fields = self._get_pk() self.conn.replace(self.table_obj, data, pk_fields, echo=False) # def replace_rec(self, pk_cols=None, **kws): # # add default None? # for field in self.ntRec._fields: # kws[field] = kws.get(field, None) # self.replace([self.ntRec(**kws)], pk_cols) def query(self, where='1=1', one=False, limit=None, as_dict=False): rows = self.conn.query( "select * from {} where {}".format(self.table_obj, where), echo=False, limit=limit) rows = rows_to_dicts(rows) if as_dict else rows if one: return rows[0] if rows else None else: return rows def select_one(self, where, field=None, as_dict=False): row = self.query(where, one=True, as_dict=as_dict) if field and row: return row[field] if as_dict else row.__getattribute__(field) return row def delete(self, where): self.conn.execute("delete from {} where {}".format(self.table_obj, where)) def make_sqlx(conn, schema, tables): "Make sqlx lookup function for given tables" table_func_map = {} for table in tables: ntRec = namedtuple(table, tables[table].columns.keys()) table_func_map[table] = SqlX(conn, table, schema, ntRec) # return table_func_map def sqlx(expr) -> SqlX: obj = jmespath.search(expr, table_func_map) if not obj: raise Exception('sqlx: Cannot find "{}"'.format(expr)) return obj return sqlx def get_sql_sources(sql_text, echo=False): """Obtain the source tables of a query """ import sqlparse # replace "as(" to "as (" # this trips up the sql parser in CTEs sql_text = re.sub(r"as\(", "as (", sql_text, 0, re.MULTILINE | re.IGNORECASE) statements = sqlparse.parse(sql_text) cte_aliases = set() sql_sources = {} def get_sources(statement): sources_dict = {} last_kw_from = False last_kw_join = False cte_mode = False last_tok = None done = False while not done: for tok in statement.tokens: if tok.is_group: if cte_mode and isinstance(tok, sqlparse.sql.IdentifierList): for tok2 in tok.tokens: if isinstance(tok2, sqlparse.sql.Identifier): for tok3 in tok2.tokens: if isinstance(tok3, sqlparse.sql.Parenthesis): cte_aliases.add(tok3.parent.normalized.lower()) sources_dict2 = get_sources(tok3) sources_dict = {**sources_dict, **sources_dict2} elif isinstance(tok, sqlparse.sql.Parenthesis): sources_dict2 = get_sources(tok) sources_dict = {**sources_dict, **sources_dict2} else: for tok2 in tok.tokens: if isinstance(tok2, sqlparse.sql.Parenthesis): cte_aliases.add(tok2.parent.normalized.lower()) sources_dict2 = get_sources(tok2) sources_dict = {**sources_dict, **sources_dict2} if (last_kw_from or last_kw_join) and last_tok.is_whitespace: if isinstance(tok, sqlparse.sql.IdentifierList): for tok2 in tok.tokens: if isinstance(tok2, sqlparse.sql.Identifier) and '(' in tok2.value: sources_dict2 = get_sources(tok2) sources_dict = {**sources_dict, **sources_dict2} elif isinstance(tok2, sqlparse.sql.Identifier) and tok2.normalized.lower() not in cte_aliases: if echo: log('+Table = ' + tok2.normalized.lower()) sources_dict[tok2.normalized.lower()] = tok.parent elif isinstance(tok, sqlparse.sql.Identifier) and tok.normalized.lower() not in cte_aliases: if echo: log('+Table = ' + tok.normalized.lower()) sources_dict[tok.normalized.lower()] = tok.parent last_kw_join = False if tok.is_keyword and tok.normalized == 'WITH': cte_mode = True last_kw_from = False elif tok.is_keyword and tok.normalized == 'GROUP': last_kw_join = False last_kw_from = False elif tok.is_keyword and tok.normalized == 'WHERE': last_kw_join = False last_kw_from = False elif tok.is_keyword and tok.normalized == 'ORDER': last_kw_join = False last_kw_from = False elif tok.is_keyword and tok.normalized == 'CREATE': cte_mode = True last_kw_from = False elif tok.is_keyword and tok.normalized == 'SELECT': cte_mode = False last_kw_from = False elif tok.is_keyword and tok.normalized == 'FROM': last_kw_from = True elif tok.is_keyword and 'JOIN' in tok.normalized: last_kw_join = True last_tok = tok done = True return sources_dict for s, statement in enumerate(statements): has_from = False last_kw_create = False last_kw_create_table = False create_table = None for tok in statement.tokens: if isinstance(tok, sqlparse.sql.Identifier) and last_kw_create_table: create_table = tok.normalized last_kw_create_table = False last_kw_create = False if echo: log('-CREATE TABLE ' + create_table) if tok.is_keyword and tok.normalized == 'TABLE' and last_kw_create: last_kw_create_table = True if tok.is_keyword and tok.normalized == 'CREATE': last_kw_create = True if tok.is_keyword and tok.normalized == 'FROM': has_from = True last_tok = tok if has_from: sources_dict = get_sources(statement) if create_table: sql_sources[create_table] = sorted(sources_dict) else: sql_sources[s] = sorted(sources_dict) return sql_sources
31.146559
117
0.609395
[ "MIT" ]
flarco/n1slutil
xutil/database/base.py
38,466
Python
# flake8: noqa # Disable Flake8 because of all the sphinx imports # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # Airflow documentation build configuration file, created by # sphinx-quickstart on Thu Oct 9 20:50:01 2014. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. """Configuration of Airflow Docs""" import os import sys from glob import glob from typing import List import airflow from airflow.configuration import default_config_yaml try: import sphinx_airflow_theme # pylint: disable=unused-import airflow_theme_is_available = True except ImportError: airflow_theme_is_available = False # Hack to allow changing for piece of the code to behave differently while # the docs are being built. The main objective was to alter the # behavior of the utils.apply_default that was hiding function headers os.environ['BUILDING_AIRFLOW_DOCS'] = 'TRUE' # == Sphinx configuration ====================================================== # -- Project information ------------------------------------------------------- # See: https://www.sphinx-doc.org/en/master/usage/configuration.html#project-information # General information about the project. project = 'Airflow' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. # version = '1.0.0' version = airflow.__version__ # The full version, including alpha/beta/rc tags. # release = '1.0.0' release = airflow.__version__ # -- General configuration ----------------------------------------------------- # See: https://www.sphinx-doc.org/en/master/usage/configuration.html # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'provider_init_hack', 'sphinx.ext.autodoc', 'sphinx.ext.coverage', 'sphinx.ext.viewcode', 'sphinx.ext.graphviz', 'sphinxarg.ext', 'sphinxcontrib.httpdomain', 'sphinxcontrib.jinja', 'sphinx.ext.intersphinx', 'autoapi.extension', 'exampleinclude', 'docroles', 'removemarktransform', 'sphinx_copybutton', 'redirects', 'providers_packages_ref', # First, generate redoc 'sphinxcontrib.redoc', # Second, update redoc script "sphinx_script_update", "sphinxcontrib.spelling", ] # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.append(os.path.join(os.path.dirname(__file__), 'exts')) # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns: List[str] = [ # We only link to selected subpackages. '_api/airflow/index.rst', # We have custom page - operators-and-hooks-ref.rst '_api/airflow/providers/index.rst', # Packages with subpackages "_api/airflow/providers/microsoft/index.rst", "_api/airflow/providers/apache/index.rst", "_api/airflow/providers/cncf/index.rst", # Templates or partials 'autoapi_templates', 'howto/operator/google/_partials', 'howto/operator/microsoft/_partials', ] ROOT_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), os.pardir)) def _get_rst_filepath_from_path(filepath: str): if os.path.isdir(filepath): result = filepath elif os.path.isfile(filepath) and filepath.endswith('/__init__.py'): result = filepath.rpartition("/")[0] else: result = filepath.rpartition(".")[0] result += "/index.rst" result = f"_api/{os.path.relpath(result, ROOT_DIR)}" return result # Exclude top-level packages # do not exclude these top-level modules from the doc build: _allowed_top_level = ("exceptions.py",) for path in glob(f"{ROOT_DIR}/airflow/*"): name = os.path.basename(path) if os.path.isfile(path) and not path.endswith(_allowed_top_level): exclude_patterns.append(f"_api/airflow/{name.rpartition('.')[0]}") browsable_packages = ["operators", "hooks", "sensors", "providers", "executors", "models", "secrets"] if os.path.isdir(path) and name not in browsable_packages: exclude_patterns.append(f"_api/airflow/{name}") # Add any paths that contain templates here, relative to this directory. templates_path = ['templates'] # The suffix of source filenames. source_suffix = '.rst' # The master toctree document. master_doc = 'index' # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # If true, keep warnings as "system message" paragraphs in the built documents. keep_warnings = True # -- Options for HTML output --------------------------------------------------- # See: https://www.sphinx-doc.org/en/master/usage/configuration.html#options-for-html-output # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'sphinx_rtd_theme' if airflow_theme_is_available: html_theme = 'sphinx_airflow_theme' # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". html_title = "Airflow Documentation" # A shorter title for the navigation bar. Default is the same as html_title. html_short_title = "" # given, this must be the name of an image file (path relative to the # configuration directory) that is the favicon of the docs. Modern browsers # use this as the icon for tabs, windows and bookmarks. It should be a # Windows-style icon file (.ico), which is 16x16 or 32x32 pixels large. html_favicon = "../airflow/www/static/pin_32.png" # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['static'] # A list of JavaScript filename. The entry must be a filename string or a # tuple containing the filename string and the attributes dictionary. The # filename must be relative to the html_static_path, or a full URI with # scheme like http://example.org/script.js. html_js_files = ['jira-links.js'] # Custom sidebar templates, maps document names to template names. if airflow_theme_is_available: html_sidebars = { '**': [ 'version-selector.html', 'searchbox.html', 'globaltoc.html', ] } # If false, no index is generated. html_use_index = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. html_show_copyright = False # A dictionary of values to pass into the template engine’s context for all pages. html_context = { # Google Analytics ID. # For more information look at: # https://github.com/readthedocs/sphinx_rtd_theme/blob/master/sphinx_rtd_theme/layout.html#L222-L232 'theme_analytics_id': 'UA-140539454-1', } if airflow_theme_is_available: html_context = { # Variables used to build a button for editing the source code # # The path is created according to the following template: # # https://{{ github_host|default("github.com") }}/{{ github_user }}/{{ github_repo }}/ # {{ theme_vcs_pageview_mode|default("blob") }}/{{ github_version }}{{ conf_py_path }} # {{ pagename }}{{ suffix }} # # More information: # https://github.com/readthedocs/readthedocs.org/blob/master/readthedocs/doc_builder/templates/doc_builder/conf.py.tmpl#L100-L103 # https://github.com/readthedocs/sphinx_rtd_theme/blob/master/sphinx_rtd_theme/breadcrumbs.html#L45 # https://github.com/apache/airflow-site/blob/91f760c/sphinx_airflow_theme/sphinx_airflow_theme/suggest_change_button.html#L36-L40 # 'theme_vcs_pageview_mode': 'edit', 'conf_py_path': '/docs/', 'github_user': 'apache', 'github_repo': 'airflow', 'github_version': 'master', 'display_github': 'master', 'suffix': '.rst', } # == Extensions configuration ================================================== # -- Options for sphinxcontrib.jinjac ------------------------------------------ # See: https://github.com/tardyp/sphinx-jinja # Jinja context jinja_contexts = {'config_ctx': {"configs": default_config_yaml()}} # -- Options for sphinx.ext.autodoc -------------------------------------------- # See: https://www.sphinx-doc.org/en/master/usage/extensions/autodoc.html # This value contains a list of modules to be mocked up. This is useful when some external dependencies # are not met at build time and break the building process. autodoc_mock_imports = [ 'MySQLdb', 'adal', 'analytics', 'azure', 'azure.cosmos', 'azure.datalake', 'azure.kusto', 'azure.mgmt', 'boto3', 'botocore', 'bson', 'cassandra', 'celery', 'cloudant', 'cryptography', 'cx_Oracle', 'datadog', 'distributed', 'docker', 'google', 'google_auth_httplib2', 'googleapiclient', 'grpc', 'hdfs', 'httplib2', 'jaydebeapi', 'jenkins', 'jira', 'kubernetes', 'msrestazure', 'pandas', 'pandas_gbq', 'paramiko', 'pinotdb', 'psycopg2', 'pydruid', 'pyhive', 'pyhive', 'pymongo', 'pymssql', 'pysftp', 'qds_sdk', 'redis', 'simple_salesforce', 'slackclient', 'smbclient', 'snowflake', 'sshtunnel', 'tenacity', 'vertica_python', 'winrm', 'zdesk', ] # The default options for autodoc directives. They are applied to all autodoc directives automatically. autodoc_default_options = {'show-inheritance': True, 'members': True} # -- Options for sphinx.ext.intersphinx ---------------------------------------- # See: https://www.sphinx-doc.org/en/master/usage/extensions/intersphinx.html # This config value contains the locations and names of other projects that should # be linked to in this documentation. intersphinx_mapping = { 'boto3': ('https://boto3.amazonaws.com/v1/documentation/api/latest/', None), 'celery': ('https://docs.celeryproject.org/en/stable/', None), 'hdfs': ('https://hdfscli.readthedocs.io/en/latest/', None), 'jinja2': ('https://jinja.palletsprojects.com/en/master/', None), 'mongodb': ('https://api.mongodb.com/python/current/', None), 'pandas': ('https://pandas.pydata.org/pandas-docs/stable/', None), 'python': ('https://docs.python.org/3/', None), 'requests': ('https://requests.readthedocs.io/en/master/', None), 'sqlalchemy': ('https://docs.sqlalchemy.org/en/latest/', None), # google-api 'google-api-core': ('https://googleapis.dev/python/google-api-core/latest', None), 'google-cloud-automl': ('https://googleapis.dev/python/automl/latest', None), 'google-cloud-bigquery': ('https://googleapis.dev/python/bigquery/latest', None), 'google-cloud-bigquery-datatransfer': ('https://googleapis.dev/python/bigquerydatatransfer/latest', None), 'google-cloud-bigquery-storage': ('https://googleapis.dev/python/bigquerystorage/latest', None), 'google-cloud-bigtable': ('https://googleapis.dev/python/bigtable/latest', None), 'google-cloud-container': ('https://googleapis.dev/python/container/latest', None), 'google-cloud-core': ('https://googleapis.dev/python/google-cloud-core/latest', None), 'google-cloud-datacatalog': ('https://googleapis.dev/python/datacatalog/latest', None), 'google-cloud-datastore': ('https://googleapis.dev/python/datastore/latest', None), 'google-cloud-dlp': ('https://googleapis.dev/python/dlp/latest', None), 'google-cloud-kms': ('https://googleapis.dev/python/cloudkms/latest', None), 'google-cloud-language': ('https://googleapis.dev/python/language/latest', None), 'google-cloud-monitoring': ('https://googleapis.dev/python/monitoring/latest', None), 'google-cloud-pubsub': ('https://googleapis.dev/python/pubsub/latest', None), 'google-cloud-redis': ('https://googleapis.dev/python/redis/latest', None), 'google-cloud-spanner': ('https://googleapis.dev/python/spanner/latest', None), 'google-cloud-speech': ('https://googleapis.dev/python/speech/latest', None), 'google-cloud-storage': ('https://googleapis.dev/python/storage/latest', None), 'google-cloud-tasks': ('https://googleapis.dev/python/cloudtasks/latest', None), 'google-cloud-texttospeech': ('https://googleapis.dev/python/texttospeech/latest', None), 'google-cloud-translate': ('https://googleapis.dev/python/translation/latest', None), 'google-cloud-videointelligence': ('https://googleapis.dev/python/videointelligence/latest', None), 'google-cloud-vision': ('https://googleapis.dev/python/vision/latest', None), } # -- Options for sphinx.ext.viewcode ------------------------------------------- # See: https://www.sphinx-doc.org/es/master/usage/extensions/viewcode.html # If this is True, viewcode extension will emit viewcode-follow-imported event to resolve the name of # the module by other extensions. The default is True. viewcode_follow_imported_members = True # -- Options for sphinx-autoapi ------------------------------------------------ # See: https://sphinx-autoapi.readthedocs.io/en/latest/config.html # Paths (relative or absolute) to the source code that you wish to generate # your API documentation from. autoapi_dirs = [ os.path.abspath('../airflow'), ] # A directory that has user-defined templates to override our default templates. autoapi_template_dir = 'autoapi_templates' # A list of patterns to ignore when finding files autoapi_ignore = [ '*/airflow/kubernetes/kubernetes_request_factory/*', '*/_internal*', '*/airflow/**/providers/**/utils/*', '*/node_modules/*', '*/example_dags/*', '*/migrations/*', ] # Keep the AutoAPI generated files on the filesystem after the run. # Useful for debugging. autoapi_keep_files = True # Relative path to output the AutoAPI files into. This can also be used to place the generated documentation # anywhere in your documentation hierarchy. autoapi_root = '_api' # -- Options for ext.exampleinclude -------------------------------------------- exampleinclude_sourceroot = os.path.abspath('..') # -- Options for ext.redirects ------------------------------------------------- redirects_file = 'redirects.txt' # -- Options for sphinxcontrib.redoc ------------------------------------------- # See: https://sphinxcontrib-redoc.readthedocs.io/en/stable/ OPENAPI_FILE = os.path.join(os.path.dirname(__file__), "..", "airflow", "api_connexion", "openapi", "v1.yaml") redoc = [ { 'name': 'Airflow REST API', 'page': 'stable-rest-api-ref', 'spec': OPENAPI_FILE, 'opts': { 'hide-hostname': True, 'no-auto-auth': True, }, }, ] # Options for script updater redoc_script_url = "https://cdn.jsdelivr.net/npm/[email protected]/bundles/redoc.standalone.js"
38.009456
138
0.678505
[ "Apache-2.0" ]
AndersonReyes/airflow
docs/conf.py
16,080
Python
from django.db import models class Todo(models.Model): name = models.CharField(max_length=200)
16.833333
43
0.752475
[ "BSD-3-Clause" ]
jgerigmeyer/jquery-django-superformset
demo/demo/todos/models.py
101
Python
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.paging import ItemPaged from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpRequest, HttpResponse from azure.core.polling import LROPoller, NoPolling, PollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.arm_polling import ARMPolling from .. import models as _models if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Iterable, Optional, TypeVar, Union T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] class RoutesOperations(object): """RoutesOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2020_08_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def _delete_initial( self, resource_group_name, # type: str route_table_name, # type: str route_name, # type: str **kwargs # type: Any ): # type: (...) -> None cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-08-01" accept = "application/json" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'routeTableName': self._serialize.url("route_table_name", route_table_name, 'str'), 'routeName': self._serialize.url("route_name", route_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeTables/{routeTableName}/routes/{routeName}'} # type: ignore def begin_delete( self, resource_group_name, # type: str route_table_name, # type: str route_name, # type: str **kwargs # type: Any ): # type: (...) -> LROPoller[None] """Deletes the specified route from a route table. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param route_table_name: The name of the route table. :type route_table_name: str :param route_name: The name of the route. :type route_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._delete_initial( resource_group_name=resource_group_name, route_table_name=route_table_name, route_name=route_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'routeTableName': self._serialize.url("route_table_name", route_table_name, 'str'), 'routeName': self._serialize.url("route_name", route_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = ARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeTables/{routeTableName}/routes/{routeName}'} # type: ignore def get( self, resource_group_name, # type: str route_table_name, # type: str route_name, # type: str **kwargs # type: Any ): # type: (...) -> "_models.Route" """Gets the specified route from a route table. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param route_table_name: The name of the route table. :type route_table_name: str :param route_name: The name of the route. :type route_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: Route, or the result of cls(response) :rtype: ~azure.mgmt.network.v2020_08_01.models.Route :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.Route"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-08-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'routeTableName': self._serialize.url("route_table_name", route_table_name, 'str'), 'routeName': self._serialize.url("route_name", route_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('Route', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeTables/{routeTableName}/routes/{routeName}'} # type: ignore def _create_or_update_initial( self, resource_group_name, # type: str route_table_name, # type: str route_name, # type: str route_parameters, # type: "_models.Route" **kwargs # type: Any ): # type: (...) -> "_models.Route" cls = kwargs.pop('cls', None) # type: ClsType["_models.Route"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-08-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._create_or_update_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'routeTableName': self._serialize.url("route_table_name", route_table_name, 'str'), 'routeName': self._serialize.url("route_name", route_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(route_parameters, 'Route') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('Route', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('Route', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_or_update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeTables/{routeTableName}/routes/{routeName}'} # type: ignore def begin_create_or_update( self, resource_group_name, # type: str route_table_name, # type: str route_name, # type: str route_parameters, # type: "_models.Route" **kwargs # type: Any ): # type: (...) -> LROPoller["_models.Route"] """Creates or updates a route in the specified route table. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param route_table_name: The name of the route table. :type route_table_name: str :param route_name: The name of the route. :type route_name: str :param route_parameters: Parameters supplied to the create or update route operation. :type route_parameters: ~azure.mgmt.network.v2020_08_01.models.Route :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either Route or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.network.v2020_08_01.models.Route] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.Route"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._create_or_update_initial( resource_group_name=resource_group_name, route_table_name=route_table_name, route_name=route_name, route_parameters=route_parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('Route', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'routeTableName': self._serialize.url("route_table_name", route_table_name, 'str'), 'routeName': self._serialize.url("route_name", route_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = ARMPolling(lro_delay, lro_options={'final-state-via': 'azure-async-operation'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeTables/{routeTableName}/routes/{routeName}'} # type: ignore def list( self, resource_group_name, # type: str route_table_name, # type: str **kwargs # type: Any ): # type: (...) -> Iterable["_models.RouteListResult"] """Gets all routes in a route table. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param route_table_name: The name of the route table. :type route_table_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either RouteListResult or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.network.v2020_08_01.models.RouteListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.RouteListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-08-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'routeTableName': self._serialize.url("route_table_name", route_table_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('RouteListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeTables/{routeTableName}/routes'} # type: ignore
48.290249
210
0.656884
[ "MIT" ]
4thel00z/microsoft-crap-that-doesnt-work
sdk/network/azure-mgmt-network/azure/mgmt/network/v2020_08_01/operations/_routes_operations.py
21,296
Python
import pytest import pandas as pd from sklearn.model_selection import train_test_split TEST_SIZE = 0.33 RANDOM_STATE = 42 @pytest.fixture(scope="module") def binary_dataset(): df = pd.read_csv("./resources/heart.csv") features = df.iloc[0:, :-1] labels = df.iloc[0:, -1].values.ravel() X_train, X_test, y_train, y_test = train_test_split( features, labels, test_size=TEST_SIZE, random_state=RANDOM_STATE ) return X_train, X_test, y_train @pytest.fixture(scope="module") def multiclass_dataset(): df = pd.read_csv("./resources/glass.csv") features = df.iloc[0:, :-1] labels = df.iloc[0:, -1].values.ravel() X_train, X_test, y_train, _ = train_test_split( features, labels, test_size=TEST_SIZE, random_state=RANDOM_STATE ) return X_train, X_test, y_train
25.030303
72
0.691283
[ "BSD-3-Clause" ]
mdietrichstein/skpredict
tests/svm/conftest.py
826
Python
""" Makes python 2 behave more like python 3. Ideally we import this globally so all our python 2 interpreters will assist in spotting errors early. """ # future imports are harmless if they implement behaviour that already exists in the current interpreter version from __future__ import absolute_import, division, print_function import sys from collections import OrderedDict if sys.version_info.major == 2: # Override dict and make items() behave like iteritems() to retain performance class dict(dict): def items(self): return super(dict, self).iteritems() def keys(self): return super(dict, self).iterkeys() def values(self): return super(dict, self).itervalues() class OrderedDict(OrderedDict): def items(self): return super(OrderedDict, self).iteritems() def keys(self): return super(OrderedDict, self).iterkeys() def values(self): return super(OrderedDict, self).itervalues() # Override range with xrange to mimic python3's range range = xrange import cStringIO as io else: unicode = str long = int import io try: from typing import * T = TypeVar('T') except: pass
27.755556
112
0.670136
[ "MIT" ]
peerke88/error-check-tool
errorCheckTool/py23.py
1,249
Python
import rebound import numpy as np import matplotlib.pyplot as plt from IPython.display import display, clear_output from sherlockpipe.nbodies.PlanetInput import PlanetInput class StabilityCalculator: def __init__(self, star_mass): self.star_mass = star_mass def mass_from_radius(self, radius): return radius ** (1 / 0.55) if radius <= 12.1 else radius ** (1 / 0.01) def run(self, planet_params): sim = rebound.Simulation() sim.integrator = "whfast" sim.ri_whfast.safe_mode = 0 sim.dt = 1e-2 sim.add(m=1.0) for planet_param in planet_params: sim.add(m=self.mass_from_radius(planet_param.r) * 0.000003003 / self.star_mass, P=planet_param.P, e=planet_param.e, omega=planet_param.omega) #sim.status() sim.move_to_com() sim.init_megno() sim.exit_max_distance = 20. try: sim.integrate(5e2 * 2. * np.pi, exact_finish_time=0) # integrate for 500 years, integrating to the nearest # for i in range(500): # sim.integrate(sim.t + i * 2 * np.pi) # fig, ax = rebound.OrbitPlot(sim, color=True, unitlabel="[AU]", xlim=[-0.1, 0.1], ylim=[-0.1, 0.1]) # plt.show() # plt.close(fig) #clear_output(wait=True) #timestep for each output to keep the timestep constant and preserve WHFast's symplectic nature megno = sim.calculate_megno() megno = megno if megno < 10 else 10 return megno except rebound.Escape: return 10. # At least one particle got ejected, returning large MEGNO planet_params = [] parameters = [] # grid = 20 # par_e = np.linspace(0.0, 0.7, grid) # par_e1 = np.linspace(0.0, 0.7, grid) # for i in par_e: # for j in par_e1: # parameters.append((PlanetInput(1.74542, 0.01606, 1.12207, 0), PlanetInput(0.03088, 2.97, j))) from rebound.interruptible_pool import InterruptiblePool parameters.append(PlanetInput(5.43440, 1.68792, 0)) parameters.append(PlanetInput(1.74542, 1.12207, 0)) parameters.append(PlanetInput(4.02382, 1.34990, 0)) parameters.append(PlanetInput(2.8611, 1.17643, 0)) parameters.append(PlanetInput(1.58834, 1.07459, 0)) result = StabilityCalculator(0.211299).run(parameters) print("MEGNO: " + str(result)) # pool = InterruptiblePool() # results = pool.map(StabilityCalculator(0.211299).run, parameters) # results2d = np.array(results).reshape(grid, grid) # fig = plt.figure(figsize=(7, 5)) # ax = plt.subplot(111) # extent = [min(par_e), max(par_e), min(par_e1), max(par_e1)] # ax.set_xlim(extent[0], extent[1]) # ax.set_xlabel("ecc1 $e$") # ax.set_ylim(extent[2], extent[3]) # ax.set_ylabel("ecc2 $e1$") # im = ax.imshow(results2d, interpolation="none", vmin=1.9, vmax=10, cmap="RdYlGn_r", origin="lower", aspect='auto', extent=extent) # cb = plt.colorbar(im, ax=ax) # cb.set_label("MEGNO $\\langle Y \\rangle$") # plt.show()
39.44
153
0.649763
[ "MIT" ]
LuisCerdenoMota/SHERLOCK
experimental/megno.py
2,958
Python
# -*- coding: utf-8 -*- from __future__ import print_function from acq4.devices.Device import * from acq4.util import Qt import acq4.util.Mutex as Mutex from collections import OrderedDict class LightSource(Device): """Device tracking the state and properties of multiple illumination sources. """ # emitted when the on/off status of a light changes sigLightChanged = Qt.Signal(object, object) # self, light_name def __init__(self, dm, config, name): Device.__init__(self, dm, config, name) self._sources = OrderedDict() # [name: {'active': bool, 'wavelength': float, 'power': float, ...}, ...] self._lock = Mutex.Mutex() def addSource(self, name, conf): self._sources[name] = conf if 'xkey' in conf: devname, row, col = self._sources[name]['xkey'] dev = self.dm.getDevice(devname) dev.addKeyCallback((row, col), self._hotkeyPressed, (name,)) def describe(self, onlyActive=True): """Return a description of the current state of all active light sources. If onlyActive is False, then information for all sources will be returned, whether or not they are active. """ if onlyActive: return OrderedDict([(n,s) for n,s in self._sources.items() if s['active']]) else: return self._sources.copy() def activeSources(self): """Return the names of all active light sources. """ return [s['name'] for s in self._sources if s['active']] def sourceActive(self, name): """Return True if the named light source is currently active. """ return self._sources[name]['active'] def setSourceActive(self, name, active): """Activate / deactivate a light source. """ raise NotImplementedError() def _updateXkeyLight(self, name): if 'xkey' in self._sources[name]: devname, row, col = self._sources[name]['xkey'] dev = self.dm.getDevice(devname) bl = dev.getBacklights() bl[row,col] = int(self._sources[name]['active']) dev.setBacklights(bl) def _hotkeyPressed(self, dev, changes, name): self.setSourceActive(name, not self.sourceActive(name))
36.645161
114
0.62632
[ "MIT" ]
RonnyBergmann/acq4
acq4/devices/LightSource/LightSource.py
2,272
Python
import asyncio import dataclasses import logging import multiprocessing from concurrent.futures.process import ProcessPoolExecutor from enum import Enum from typing import Dict, List, Optional, Set, Tuple, Union from clvm.casts import int_from_bytes from kujenga.consensus.block_body_validation import validate_block_body from kujenga.consensus.block_header_validation import validate_finished_header_block, validate_unfinished_header_block from kujenga.consensus.block_record import BlockRecord from kujenga.consensus.blockchain_interface import BlockchainInterface from kujenga.consensus.constants import ConsensusConstants from kujenga.consensus.cost_calculator import NPCResult from kujenga.consensus.difficulty_adjustment import get_next_sub_slot_iters_and_difficulty from kujenga.consensus.find_fork_point import find_fork_point_in_chain from kujenga.consensus.full_block_to_block_record import block_to_block_record from kujenga.consensus.multiprocess_validation import PreValidationResult, pre_validate_blocks_multiprocessing from kujenga.full_node.block_store import BlockStore from kujenga.full_node.coin_store import CoinStore from kujenga.full_node.hint_store import HintStore from kujenga.full_node.mempool_check_conditions import get_name_puzzle_conditions from kujenga.types.blockchain_format.coin import Coin from kujenga.types.blockchain_format.sized_bytes import bytes32 from kujenga.types.blockchain_format.sub_epoch_summary import SubEpochSummary from kujenga.types.blockchain_format.vdf import VDFInfo from kujenga.types.coin_record import CoinRecord from kujenga.types.condition_opcodes import ConditionOpcode from kujenga.types.end_of_slot_bundle import EndOfSubSlotBundle from kujenga.types.full_block import FullBlock from kujenga.types.generator_types import BlockGenerator, GeneratorArg from kujenga.types.header_block import HeaderBlock from kujenga.types.unfinished_block import UnfinishedBlock from kujenga.types.unfinished_header_block import UnfinishedHeaderBlock from kujenga.types.weight_proof import SubEpochChallengeSegment from kujenga.util.errors import Err from kujenga.util.generator_tools import get_block_header, tx_removals_and_additions from kujenga.util.ints import uint16, uint32, uint64, uint128 from kujenga.util.streamable import recurse_jsonify log = logging.getLogger(__name__) class ReceiveBlockResult(Enum): """ When Blockchain.receive_block(b) is called, one of these results is returned, showing whether the block was added to the chain (extending the peak), and if not, why it was not added. """ NEW_PEAK = 1 # Added to the peak of the blockchain ADDED_AS_ORPHAN = 2 # Added as an orphan/stale block (not a new peak of the chain) INVALID_BLOCK = 3 # Block was not added because it was invalid ALREADY_HAVE_BLOCK = 4 # Block is already present in this blockchain DISCONNECTED_BLOCK = 5 # Block's parent (previous pointer) is not in this blockchain class Blockchain(BlockchainInterface): constants: ConsensusConstants constants_json: Dict # peak of the blockchain _peak_height: Optional[uint32] # All blocks in peak path are guaranteed to be included, can include orphan blocks __block_records: Dict[bytes32, BlockRecord] # all hashes of blocks in block_record by height, used for garbage collection __heights_in_cache: Dict[uint32, Set[bytes32]] # Defines the path from genesis to the peak, no orphan blocks __height_to_hash: Dict[uint32, bytes32] # All sub-epoch summaries that have been included in the blockchain from the beginning until and including the peak # (height_included, SubEpochSummary). Note: ONLY for the blocks in the path to the peak __sub_epoch_summaries: Dict[uint32, SubEpochSummary] = {} # Unspent Store coin_store: CoinStore # Store block_store: BlockStore # Used to verify blocks in parallel pool: ProcessPoolExecutor # Set holding seen compact proofs, in order to avoid duplicates. _seen_compact_proofs: Set[Tuple[VDFInfo, uint32]] # Whether blockchain is shut down or not _shut_down: bool # Lock to prevent simultaneous reads and writes lock: asyncio.Lock compact_proof_lock: asyncio.Lock hint_store: HintStore @staticmethod async def create( coin_store: CoinStore, block_store: BlockStore, consensus_constants: ConsensusConstants, hint_store: HintStore ): """ Initializes a blockchain with the BlockRecords from disk, assuming they have all been validated. Uses the genesis block given in override_constants, or as a fallback, in the consensus constants config. """ self = Blockchain() self.lock = asyncio.Lock() # External lock handled by full node self.compact_proof_lock = asyncio.Lock() cpu_count = multiprocessing.cpu_count() if cpu_count > 61: cpu_count = 61 # Windows Server 2016 has an issue https://bugs.python.org/issue26903 num_workers = max(cpu_count - 2, 1) self.pool = ProcessPoolExecutor(max_workers=num_workers) log.info(f"Started {num_workers} processes for block validation") self.constants = consensus_constants self.coin_store = coin_store self.block_store = block_store self.constants_json = recurse_jsonify(dataclasses.asdict(self.constants)) self._shut_down = False await self._load_chain_from_store() self._seen_compact_proofs = set() self.hint_store = hint_store return self def shut_down(self): self._shut_down = True self.pool.shutdown(wait=True) async def _load_chain_from_store(self) -> None: """ Initializes the state of the Blockchain class from the database. """ height_to_hash, sub_epoch_summaries = await self.block_store.get_peak_height_dicts() self.__height_to_hash = height_to_hash self.__sub_epoch_summaries = sub_epoch_summaries self.__block_records = {} self.__heights_in_cache = {} block_records, peak = await self.block_store.get_block_records_close_to_peak(self.constants.BLOCKS_CACHE_SIZE) for block in block_records.values(): self.add_block_record(block) if len(block_records) == 0: assert peak is None self._peak_height = None return None assert peak is not None self._peak_height = self.block_record(peak).height assert len(self.__height_to_hash) == self._peak_height + 1 def get_peak(self) -> Optional[BlockRecord]: """ Return the peak of the blockchain """ if self._peak_height is None: return None return self.height_to_block_record(self._peak_height) async def get_full_peak(self) -> Optional[FullBlock]: if self._peak_height is None: return None """ Return list of FullBlocks that are peaks""" block = await self.block_store.get_full_block(self.height_to_hash(self._peak_height)) assert block is not None return block async def get_full_block(self, header_hash: bytes32) -> Optional[FullBlock]: return await self.block_store.get_full_block(header_hash) async def receive_block( self, block: FullBlock, pre_validation_result: Optional[PreValidationResult] = None, fork_point_with_peak: Optional[uint32] = None, ) -> Tuple[ ReceiveBlockResult, Optional[Err], Optional[uint32], Tuple[List[CoinRecord], Dict[bytes, Dict[bytes32, CoinRecord]]], ]: """ This method must be called under the blockchain lock Adds a new block into the blockchain, if it's valid and connected to the current blockchain, regardless of whether it is the child of a head, or another block. Returns a header if block is added to head. Returns an error if the block is invalid. Also returns the fork height, in the case of a new peak. """ genesis: bool = block.height == 0 if self.contains_block(block.header_hash): return ReceiveBlockResult.ALREADY_HAVE_BLOCK, None, None, ([], {}) if not self.contains_block(block.prev_header_hash) and not genesis: return (ReceiveBlockResult.DISCONNECTED_BLOCK, Err.INVALID_PREV_BLOCK_HASH, None, ([], {})) if not genesis and (self.block_record(block.prev_header_hash).height + 1) != block.height: return ReceiveBlockResult.INVALID_BLOCK, Err.INVALID_HEIGHT, None, ([], {}) npc_result: Optional[NPCResult] = None if pre_validation_result is None: if block.height == 0: prev_b: Optional[BlockRecord] = None else: prev_b = self.block_record(block.prev_header_hash) sub_slot_iters, difficulty = get_next_sub_slot_iters_and_difficulty( self.constants, len(block.finished_sub_slots) > 0, prev_b, self ) if block.is_transaction_block(): if block.transactions_generator is not None: try: block_generator: Optional[BlockGenerator] = await self.get_block_generator(block) except ValueError: return ReceiveBlockResult.INVALID_BLOCK, Err.GENERATOR_REF_HAS_NO_GENERATOR, None, ([], {}) assert block_generator is not None and block.transactions_info is not None npc_result = get_name_puzzle_conditions( block_generator, min(self.constants.MAX_BLOCK_COST_CLVM, block.transactions_info.cost), cost_per_byte=self.constants.COST_PER_BYTE, safe_mode=False, ) removals, tx_additions = tx_removals_and_additions(npc_result.npc_list) else: removals, tx_additions = [], [] header_block = get_block_header(block, tx_additions, removals) else: npc_result = None header_block = get_block_header(block, [], []) required_iters, error = validate_finished_header_block( self.constants, self, header_block, False, difficulty, sub_slot_iters, ) if error is not None: return ReceiveBlockResult.INVALID_BLOCK, error.code, None, ([], {}) else: npc_result = pre_validation_result.npc_result required_iters = pre_validation_result.required_iters assert pre_validation_result.error is None assert required_iters is not None error_code, _ = await validate_block_body( self.constants, self, self.block_store, self.coin_store, self.get_peak(), block, block.height, npc_result, fork_point_with_peak, self.get_block_generator, ) if error_code is not None: return ReceiveBlockResult.INVALID_BLOCK, error_code, None, ([], {}) block_record = block_to_block_record( self.constants, self, required_iters, block, None, ) # Always add the block to the database async with self.block_store.db_wrapper.lock: try: header_hash: bytes32 = block.header_hash # Perform the DB operations to update the state, and rollback if something goes wrong await self.block_store.db_wrapper.begin_transaction() await self.block_store.add_full_block(header_hash, block, block_record) fork_height, peak_height, records, (coin_record_change, hint_changes) = await self._reconsider_peak( block_record, genesis, fork_point_with_peak, npc_result ) await self.block_store.db_wrapper.commit_transaction() # Then update the memory cache. It is important that this task is not cancelled and does not throw self.add_block_record(block_record) for fetched_block_record in records: self.__height_to_hash[fetched_block_record.height] = fetched_block_record.header_hash if fetched_block_record.sub_epoch_summary_included is not None: self.__sub_epoch_summaries[ fetched_block_record.height ] = fetched_block_record.sub_epoch_summary_included if peak_height is not None: self._peak_height = peak_height except BaseException: self.block_store.rollback_cache_block(header_hash) await self.block_store.db_wrapper.rollback_transaction() raise if fork_height is not None: # new coin records added assert coin_record_change is not None return ReceiveBlockResult.NEW_PEAK, None, fork_height, (coin_record_change, hint_changes) else: return ReceiveBlockResult.ADDED_AS_ORPHAN, None, None, ([], {}) def get_hint_list(self, npc_result: NPCResult) -> List[Tuple[bytes32, bytes]]: h_list = [] for npc in npc_result.npc_list: for opcode, conditions in npc.conditions: if opcode == ConditionOpcode.CREATE_COIN: for condition in conditions: if len(condition.vars) > 2 and condition.vars[2] != b"": puzzle_hash, amount_bin = condition.vars[0], condition.vars[1] amount = int_from_bytes(amount_bin) coin_id = Coin(npc.coin_name, puzzle_hash, amount).name() h_list.append((coin_id, condition.vars[2])) return h_list async def _reconsider_peak( self, block_record: BlockRecord, genesis: bool, fork_point_with_peak: Optional[uint32], npc_result: Optional[NPCResult], ) -> Tuple[ Optional[uint32], Optional[uint32], List[BlockRecord], Tuple[List[CoinRecord], Dict[bytes, Dict[bytes32, CoinRecord]]], ]: """ When a new block is added, this is called, to check if the new block is the new peak of the chain. This also handles reorgs by reverting blocks which are not in the heaviest chain. It returns the height of the fork between the previous chain and the new chain, or returns None if there was no update to the heaviest chain. """ peak = self.get_peak() lastest_coin_state: Dict[bytes32, CoinRecord] = {} hint_coin_state: Dict[bytes32, Dict[bytes32, CoinRecord]] = {} if genesis: if peak is None: block: Optional[FullBlock] = await self.block_store.get_full_block(block_record.header_hash) assert block is not None if npc_result is not None: tx_removals, tx_additions = tx_removals_and_additions(npc_result.npc_list) else: tx_removals, tx_additions = [], [] if block.is_transaction_block(): assert block.foliage_transaction_block is not None added = await self.coin_store.new_block( block.height, block.foliage_transaction_block.timestamp, block.get_included_reward_coins(), tx_additions, tx_removals, ) else: added, _ = [], [] await self.block_store.set_peak(block_record.header_hash) return uint32(0), uint32(0), [block_record], (added, {}) return None, None, [], ([], {}) assert peak is not None if block_record.weight > peak.weight: # Find the fork. if the block is just being appended, it will return the peak # If no blocks in common, returns -1, and reverts all blocks if block_record.prev_hash == peak.header_hash: fork_height: int = peak.height elif fork_point_with_peak is not None: fork_height = fork_point_with_peak else: fork_height = find_fork_point_in_chain(self, block_record, peak) if block_record.prev_hash != peak.header_hash: roll_changes: List[CoinRecord] = await self.coin_store.rollback_to_block(fork_height) for coin_record in roll_changes: lastest_coin_state[coin_record.name] = coin_record # Rollback sub_epoch_summaries heights_to_delete = [] for ses_included_height in self.__sub_epoch_summaries.keys(): if ses_included_height > fork_height: heights_to_delete.append(ses_included_height) for height in heights_to_delete: log.info(f"delete ses at height {height}") del self.__sub_epoch_summaries[height] # Collect all blocks from fork point to new peak blocks_to_add: List[Tuple[FullBlock, BlockRecord]] = [] curr = block_record.header_hash while fork_height < 0 or curr != self.height_to_hash(uint32(fork_height)): fetched_full_block: Optional[FullBlock] = await self.block_store.get_full_block(curr) fetched_block_record: Optional[BlockRecord] = await self.block_store.get_block_record(curr) assert fetched_full_block is not None assert fetched_block_record is not None blocks_to_add.append((fetched_full_block, fetched_block_record)) if fetched_full_block.height == 0: # Doing a full reorg, starting at height 0 break curr = fetched_block_record.prev_hash records_to_add = [] for fetched_full_block, fetched_block_record in reversed(blocks_to_add): records_to_add.append(fetched_block_record) if fetched_full_block.is_transaction_block(): if fetched_block_record.header_hash == block_record.header_hash: tx_removals, tx_additions, npc_res = await self.get_tx_removals_and_additions( fetched_full_block, npc_result ) else: tx_removals, tx_additions, npc_res = await self.get_tx_removals_and_additions( fetched_full_block, None ) assert fetched_full_block.foliage_transaction_block is not None added_rec = await self.coin_store.new_block( fetched_full_block.height, fetched_full_block.foliage_transaction_block.timestamp, fetched_full_block.get_included_reward_coins(), tx_additions, tx_removals, ) removed_rec: List[Optional[CoinRecord]] = [ await self.coin_store.get_coin_record(name) for name in tx_removals ] # Set additions first, then removals in order to handle ephemeral coin state # Add in height order is also required record: Optional[CoinRecord] for record in added_rec: assert record lastest_coin_state[record.name] = record for record in removed_rec: assert record lastest_coin_state[record.name] = record if npc_res is not None: hint_list: List[Tuple[bytes32, bytes]] = self.get_hint_list(npc_res) await self.hint_store.add_hints(hint_list) # There can be multiple coins for the same hint for coin_id, hint in hint_list: key = hint if key not in hint_coin_state: hint_coin_state[key] = {} hint_coin_state[key][coin_id] = lastest_coin_state[coin_id] # Changes the peak to be the new peak await self.block_store.set_peak(block_record.header_hash) return ( uint32(max(fork_height, 0)), block_record.height, records_to_add, (list(lastest_coin_state.values()), hint_coin_state), ) # This is not a heavier block than the heaviest we have seen, so we don't change the coin set return None, None, [], ([], {}) async def get_tx_removals_and_additions( self, block: FullBlock, npc_result: Optional[NPCResult] = None ) -> Tuple[List[bytes32], List[Coin], Optional[NPCResult]]: if block.is_transaction_block(): if block.transactions_generator is not None: if npc_result is None: block_generator: Optional[BlockGenerator] = await self.get_block_generator(block) assert block_generator is not None npc_result = get_name_puzzle_conditions( block_generator, self.constants.MAX_BLOCK_COST_CLVM, cost_per_byte=self.constants.COST_PER_BYTE, safe_mode=False, ) tx_removals, tx_additions = tx_removals_and_additions(npc_result.npc_list) return tx_removals, tx_additions, npc_result else: return [], [], None else: return [], [], None def get_next_difficulty(self, header_hash: bytes32, new_slot: bool) -> uint64: assert self.contains_block(header_hash) curr = self.block_record(header_hash) if curr.height <= 2: return self.constants.DIFFICULTY_STARTING return get_next_sub_slot_iters_and_difficulty(self.constants, new_slot, curr, self)[1] def get_next_slot_iters(self, header_hash: bytes32, new_slot: bool) -> uint64: assert self.contains_block(header_hash) curr = self.block_record(header_hash) if curr.height <= 2: return self.constants.SUB_SLOT_ITERS_STARTING return get_next_sub_slot_iters_and_difficulty(self.constants, new_slot, curr, self)[0] async def get_sp_and_ip_sub_slots( self, header_hash: bytes32 ) -> Optional[Tuple[Optional[EndOfSubSlotBundle], Optional[EndOfSubSlotBundle]]]: block: Optional[FullBlock] = await self.block_store.get_full_block(header_hash) if block is None: return None curr_br: BlockRecord = self.block_record(block.header_hash) is_overflow = curr_br.overflow curr: Optional[FullBlock] = block assert curr is not None while True: if curr_br.first_in_sub_slot: curr = await self.block_store.get_full_block(curr_br.header_hash) assert curr is not None break if curr_br.height == 0: break curr_br = self.block_record(curr_br.prev_hash) if len(curr.finished_sub_slots) == 0: # This means we got to genesis and still no sub-slots return None, None ip_sub_slot = curr.finished_sub_slots[-1] if not is_overflow: # Pos sub-slot is the same as infusion sub slot return None, ip_sub_slot if len(curr.finished_sub_slots) > 1: # Have both sub-slots return curr.finished_sub_slots[-2], ip_sub_slot prev_curr: Optional[FullBlock] = await self.block_store.get_full_block(curr.prev_header_hash) if prev_curr is None: assert curr.height == 0 prev_curr = curr prev_curr_br = self.block_record(curr.header_hash) else: prev_curr_br = self.block_record(curr.prev_header_hash) assert prev_curr_br is not None while prev_curr_br.height > 0: if prev_curr_br.first_in_sub_slot: prev_curr = await self.block_store.get_full_block(prev_curr_br.header_hash) assert prev_curr is not None break prev_curr_br = self.block_record(prev_curr_br.prev_hash) if len(prev_curr.finished_sub_slots) == 0: return None, ip_sub_slot return prev_curr.finished_sub_slots[-1], ip_sub_slot def get_recent_reward_challenges(self) -> List[Tuple[bytes32, uint128]]: peak = self.get_peak() if peak is None: return [] recent_rc: List[Tuple[bytes32, uint128]] = [] curr: Optional[BlockRecord] = peak while curr is not None and len(recent_rc) < 2 * self.constants.MAX_SUB_SLOT_BLOCKS: if curr != peak: recent_rc.append((curr.reward_infusion_new_challenge, curr.total_iters)) if curr.first_in_sub_slot: assert curr.finished_reward_slot_hashes is not None sub_slot_total_iters = curr.ip_sub_slot_total_iters(self.constants) # Start from the most recent for rc in reversed(curr.finished_reward_slot_hashes): if sub_slot_total_iters < curr.sub_slot_iters: break recent_rc.append((rc, sub_slot_total_iters)) sub_slot_total_iters = uint128(sub_slot_total_iters - curr.sub_slot_iters) curr = self.try_block_record(curr.prev_hash) return list(reversed(recent_rc)) async def validate_unfinished_block( self, block: UnfinishedBlock, skip_overflow_ss_validation=True ) -> PreValidationResult: if ( not self.contains_block(block.prev_header_hash) and not block.prev_header_hash == self.constants.GENESIS_CHALLENGE ): return PreValidationResult(uint16(Err.INVALID_PREV_BLOCK_HASH.value), None, None) unfinished_header_block = UnfinishedHeaderBlock( block.finished_sub_slots, block.reward_chain_block, block.challenge_chain_sp_proof, block.reward_chain_sp_proof, block.foliage, block.foliage_transaction_block, b"", ) prev_b = self.try_block_record(unfinished_header_block.prev_header_hash) sub_slot_iters, difficulty = get_next_sub_slot_iters_and_difficulty( self.constants, len(unfinished_header_block.finished_sub_slots) > 0, prev_b, self ) required_iters, error = validate_unfinished_header_block( self.constants, self, unfinished_header_block, False, difficulty, sub_slot_iters, skip_overflow_ss_validation, ) if error is not None: return PreValidationResult(uint16(error.code.value), None, None) prev_height = ( -1 if block.prev_header_hash == self.constants.GENESIS_CHALLENGE else self.block_record(block.prev_header_hash).height ) npc_result = None if block.transactions_generator is not None: assert block.transactions_info is not None try: block_generator: Optional[BlockGenerator] = await self.get_block_generator(block) except ValueError: return PreValidationResult(uint16(Err.GENERATOR_REF_HAS_NO_GENERATOR.value), None, None) if block_generator is None: return PreValidationResult(uint16(Err.GENERATOR_REF_HAS_NO_GENERATOR.value), None, None) npc_result = get_name_puzzle_conditions( block_generator, min(self.constants.MAX_BLOCK_COST_CLVM, block.transactions_info.cost), cost_per_byte=self.constants.COST_PER_BYTE, safe_mode=False, ) error_code, cost_result = await validate_block_body( self.constants, self, self.block_store, self.coin_store, self.get_peak(), block, uint32(prev_height + 1), npc_result, None, self.get_block_generator, ) if error_code is not None: return PreValidationResult(uint16(error_code.value), None, None) return PreValidationResult(None, required_iters, cost_result) async def pre_validate_blocks_multiprocessing( self, blocks: List[FullBlock], npc_results: Dict[uint32, NPCResult], batch_size: int = 4, wp_summaries: Optional[List[SubEpochSummary]] = None, ) -> Optional[List[PreValidationResult]]: return await pre_validate_blocks_multiprocessing( self.constants, self.constants_json, self, blocks, self.pool, True, npc_results, self.get_block_generator, batch_size, wp_summaries, ) def contains_block(self, header_hash: bytes32) -> bool: """ True if we have already added this block to the chain. This may return false for orphan blocks that we have added but no longer keep in memory. """ return header_hash in self.__block_records def block_record(self, header_hash: bytes32) -> BlockRecord: return self.__block_records[header_hash] def height_to_block_record(self, height: uint32) -> BlockRecord: header_hash = self.height_to_hash(height) return self.block_record(header_hash) def get_ses_heights(self) -> List[uint32]: return sorted(self.__sub_epoch_summaries.keys()) def get_ses(self, height: uint32) -> SubEpochSummary: return self.__sub_epoch_summaries[height] def height_to_hash(self, height: uint32) -> Optional[bytes32]: return self.__height_to_hash[height] def contains_height(self, height: uint32) -> bool: return height in self.__height_to_hash def get_peak_height(self) -> Optional[uint32]: return self._peak_height async def warmup(self, fork_point: uint32): """ Loads blocks into the cache. The blocks loaded include all blocks from fork point - BLOCKS_CACHE_SIZE up to and including the fork_point. Args: fork_point: the last block height to load in the cache """ if self._peak_height is None: return None block_records = await self.block_store.get_block_records_in_range( max(fork_point - self.constants.BLOCKS_CACHE_SIZE, uint32(0)), fork_point ) for block_record in block_records.values(): self.add_block_record(block_record) def clean_block_record(self, height: int): """ Clears all block records in the cache which have block_record < height. Args: height: Minimum height that we need to keep in the cache """ if height < 0: return None blocks_to_remove = self.__heights_in_cache.get(uint32(height), None) while blocks_to_remove is not None and height >= 0: for header_hash in blocks_to_remove: del self.__block_records[header_hash] # remove from blocks del self.__heights_in_cache[uint32(height)] # remove height from heights in cache if height == 0: break height = height - 1 blocks_to_remove = self.__heights_in_cache.get(uint32(height), None) def clean_block_records(self): """ Cleans the cache so that we only maintain relevant blocks. This removes block records that have height < peak - BLOCKS_CACHE_SIZE. These blocks are necessary for calculating future difficulty adjustments. """ if len(self.__block_records) < self.constants.BLOCKS_CACHE_SIZE: return None peak = self.get_peak() assert peak is not None if peak.height - self.constants.BLOCKS_CACHE_SIZE < 0: return None self.clean_block_record(peak.height - self.constants.BLOCKS_CACHE_SIZE) async def get_block_records_in_range(self, start: int, stop: int) -> Dict[bytes32, BlockRecord]: return await self.block_store.get_block_records_in_range(start, stop) async def get_header_blocks_in_range( self, start: int, stop: int, tx_filter: bool = True ) -> Dict[bytes32, HeaderBlock]: hashes = [] for height in range(start, stop + 1): if self.contains_height(uint32(height)): header_hash: bytes32 = self.height_to_hash(uint32(height)) hashes.append(header_hash) blocks: List[FullBlock] = [] for hash in hashes.copy(): block = self.block_store.block_cache.get(hash) if block is not None: blocks.append(block) hashes.remove(hash) blocks_on_disk: List[FullBlock] = await self.block_store.get_blocks_by_hash(hashes) blocks.extend(blocks_on_disk) header_blocks: Dict[bytes32, HeaderBlock] = {} for block in blocks: if self.height_to_hash(block.height) != block.header_hash: raise ValueError(f"Block at {block.header_hash} is no longer in the blockchain (it's in a fork)") if tx_filter is False: header = get_block_header(block, [], []) else: tx_additions: List[CoinRecord] = [ c for c in (await self.coin_store.get_coins_added_at_height(block.height)) if not c.coinbase ] removed: List[CoinRecord] = await self.coin_store.get_coins_removed_at_height(block.height) header = get_block_header( block, [record.coin for record in tx_additions], [record.coin.name() for record in removed] ) header_blocks[header.header_hash] = header return header_blocks async def get_header_block_by_height( self, height: int, header_hash: bytes32, tx_filter: bool = True ) -> Optional[HeaderBlock]: header_dict: Dict[bytes32, HeaderBlock] = await self.get_header_blocks_in_range(height, height, tx_filter) if len(header_dict) == 0: return None if header_hash not in header_dict: return None return header_dict[header_hash] async def get_block_records_at(self, heights: List[uint32], batch_size=900) -> List[BlockRecord]: """ gets block records by height (only blocks that are part of the chain) """ records: List[BlockRecord] = [] hashes = [] assert batch_size < 999 # sqlite in python 3.7 has a limit on 999 variables in queries for height in heights: hashes.append(self.height_to_hash(height)) if len(hashes) > batch_size: res = await self.block_store.get_block_records_by_hash(hashes) records.extend(res) hashes = [] if len(hashes) > 0: res = await self.block_store.get_block_records_by_hash(hashes) records.extend(res) return records async def get_block_record_from_db(self, header_hash: bytes32) -> Optional[BlockRecord]: if header_hash in self.__block_records: return self.__block_records[header_hash] return await self.block_store.get_block_record(header_hash) def remove_block_record(self, header_hash: bytes32): sbr = self.block_record(header_hash) del self.__block_records[header_hash] self.__heights_in_cache[sbr.height].remove(header_hash) def add_block_record(self, block_record: BlockRecord): """ Adds a block record to the cache. """ self.__block_records[block_record.header_hash] = block_record if block_record.height not in self.__heights_in_cache.keys(): self.__heights_in_cache[block_record.height] = set() self.__heights_in_cache[block_record.height].add(block_record.header_hash) async def persist_sub_epoch_challenge_segments( self, ses_block_hash: bytes32, segments: List[SubEpochChallengeSegment] ): return await self.block_store.persist_sub_epoch_challenge_segments(ses_block_hash, segments) async def get_sub_epoch_challenge_segments( self, ses_block_hash: bytes32, ) -> Optional[List[SubEpochChallengeSegment]]: segments: Optional[List[SubEpochChallengeSegment]] = await self.block_store.get_sub_epoch_challenge_segments( ses_block_hash ) if segments is None: return None return segments # Returns 'True' if the info is already in the set, otherwise returns 'False' and stores it. def seen_compact_proofs(self, vdf_info: VDFInfo, height: uint32) -> bool: pot_tuple = (vdf_info, height) if pot_tuple in self._seen_compact_proofs: return True # Periodically cleanup to keep size small. TODO: make this smarter, like FIFO. if len(self._seen_compact_proofs) > 10000: self._seen_compact_proofs.clear() self._seen_compact_proofs.add(pot_tuple) return False async def get_block_generator( self, block: Union[FullBlock, UnfinishedBlock], additional_blocks=None ) -> Optional[BlockGenerator]: if additional_blocks is None: additional_blocks = {} ref_list = block.transactions_generator_ref_list if block.transactions_generator is None: assert len(ref_list) == 0 return None if len(ref_list) == 0: return BlockGenerator(block.transactions_generator, []) result: List[GeneratorArg] = [] previous_block_hash = block.prev_header_hash if ( self.try_block_record(previous_block_hash) and self.height_to_hash(self.block_record(previous_block_hash).height) == previous_block_hash ): # We are not in a reorg, no need to look up alternate header hashes (we can get them from height_to_hash) for ref_height in block.transactions_generator_ref_list: header_hash = self.height_to_hash(ref_height) ref_block = await self.get_full_block(header_hash) assert ref_block is not None if ref_block.transactions_generator is None: raise ValueError(Err.GENERATOR_REF_HAS_NO_GENERATOR) result.append(GeneratorArg(ref_block.height, ref_block.transactions_generator)) else: # First tries to find the blocks in additional_blocks reorg_chain: Dict[uint32, FullBlock] = {} curr: Union[FullBlock, UnfinishedBlock] = block additional_height_dict = {} while curr.prev_header_hash in additional_blocks: prev: FullBlock = additional_blocks[curr.prev_header_hash] additional_height_dict[prev.height] = prev if isinstance(curr, FullBlock): assert curr.height == prev.height + 1 reorg_chain[prev.height] = prev curr = prev peak: Optional[BlockRecord] = self.get_peak() if self.contains_block(curr.prev_header_hash) and peak is not None: # Then we look up blocks up to fork point one at a time, backtracking previous_block_hash = curr.prev_header_hash prev_block_record = await self.block_store.get_block_record(previous_block_hash) prev_block = await self.block_store.get_full_block(previous_block_hash) assert prev_block is not None assert prev_block_record is not None fork = find_fork_point_in_chain(self, peak, prev_block_record) curr_2: Optional[FullBlock] = prev_block assert curr_2 is not None and isinstance(curr_2, FullBlock) reorg_chain[curr_2.height] = curr_2 while curr_2.height > fork and curr_2.height > 0: curr_2 = await self.block_store.get_full_block(curr_2.prev_header_hash) assert curr_2 is not None reorg_chain[curr_2.height] = curr_2 for ref_height in block.transactions_generator_ref_list: if ref_height in reorg_chain: ref_block = reorg_chain[ref_height] assert ref_block is not None if ref_block.transactions_generator is None: raise ValueError(Err.GENERATOR_REF_HAS_NO_GENERATOR) result.append(GeneratorArg(ref_block.height, ref_block.transactions_generator)) else: if ref_height in additional_height_dict: ref_block = additional_height_dict[ref_height] else: header_hash = self.height_to_hash(ref_height) ref_block = await self.get_full_block(header_hash) assert ref_block is not None if ref_block.transactions_generator is None: raise ValueError(Err.GENERATOR_REF_HAS_NO_GENERATOR) result.append(GeneratorArg(ref_block.height, ref_block.transactions_generator)) assert len(result) == len(ref_list) return BlockGenerator(block.transactions_generator, result)
45.399784
119
0.636396
[ "Apache-2.0" ]
Kujenga-Network/kujenga-blockchain
kujenga/consensus/blockchain.py
42,131
Python
class ListData(): def __init__(instance): ### INTERNAL PARAMETERS ############# instance.missing_data_character = " " ##################################### instance.dataset = [] def headers(instance): """ Returns the first row of the instance.dataset Returns: List """ return instance.dataset[0] def data_rows(instance): """ Returns the rows of the instance.dataset except the first rows. Returns: List """ return instance.dataset[1:len(instance.dataset)] def import_csv_file(instance, input_file_path, column_delimiter_pattern_in_input_file, line_head_pattern_to_remove='', line_tail_pattern_to_remove='', cell_head_and_tail_characters_to_remove=''): """ Returns: nothing Examples: >>> # Import a CSV file (yasgui.org formatting) >>> my_list_data = ListData() >>> my_list_data.import_csv_file('test_data//yasgui_output_100.csv', ... column_delimiter_pattern_in_input_file=' , ', ... line_tail_pattern_to_remove=' ,', ... cell_head_and_tail_characters_to_remove='"') Cleaning parameters are set. Output resulting from a demo parsing operation is as following: ----------------------------------LINE 0---------------------------------- <BLANKLINE> ----------------------------------LINE 1---------------------------------- ['publication_type', 'journal_article', 'title', 'publication_year', 'author_name', 'journal_name', 'journal_issue_number', 'journal_volume_number', 'startEndPages', 'publisher_name', 'doi'] ----------------------------------LINE 2---------------------------------- ['Journal Article', 'https://w3id.org/oc/corpus/br/45174', 'An inventory for measuring clinical anxiety: Psychometric properties.', '1988', 'Steer - Robert A.', 'Journal of Consulting and Clinical Psychology', '6', '56', '893--897', 'American Psychological Association (APA)', '10.1037//0022-006x.56.6.893'] <BLANKLINE> CSV file "test_data//yasgui_output_100.csv" is imported as ListData object. >>> # Parse a one-column CSV file >>> my_list_data = ListData() >>> my_list_data.import_csv_file('test_data//one_column_data.csv', ... column_delimiter_pattern_in_input_file=',') Cleaning parameters are set. Output resulting from a demo parsing operation is as following: ----------------------------------LINE 0---------------------------------- <BLANKLINE> ----------------------------------LINE 1---------------------------------- ['doi', ''] ----------------------------------LINE 2---------------------------------- ['10.1163/187607508X384689', ''] <BLANKLINE> CSV file "test_data//one_column_data.csv" is imported as ListData object. >>> my_list_data.get_column_at_index(0) ['doi', '10.1163/187607508X384689', '10.1017/S0954579416000572', '10.1007/s11562-016-0353-7', '10.1016/j.adolescence.2016.09.008', '10.1186/s13561-016-0122-6', '10.1007/s00799-016-0182-6', '10.5194/gmd-2016-266', '10.1007/s00737-015-0531-2', '10.1103/RevModPhys.88.021003', 'https://doi.org/10.1101/167171', 'https://doi.org/10.1016/j.chb.2017.04.047', '10.1016/j.trb.2016.09.005', '10.1016/j.ancene.2016.01.001', '10.1111/adb.12322', '10.1017/njg.2016.45', '10.1080/1359432X.2016.1209489', '10.1117/1.JBO.21.6.066008', '10.5194/gmd-10-3329-2017', '10.1016/j.rser.2017.01.103', '10.1177/2050157916664559', '10.1007/978-3-319-45931-8_17', '10.1007/s11136-015-1171-8', '10.1145/2991079.2991121', '10.1093/cz/zow089', '10.1126/science.aac8167', '10.1007/s00586-016-4606-1', '10.1186/s12937-017-0229-6', '10.1007/s11357-016-9894-1', '10.1080/00130095.2015.1094371', '10.1016/j.epsl.2016.02.028', '10.1371/journal.pone.0168636', '10.1016/j.atmosres.2016.03.016', '10.1111/deci.12206', '10.1126/science.aad9634', '10.1103/PhysRevA.94.012506', '10.4103/0019-5545.196846', '10.1016/j.cedpsych.2017.01.006', '10.3324/haematol.2015.133470', '10.1057/978-1-137-50956-7', '10.1016/j.scico.2016.04.001', 'https://doi.org/10.1016/j.scico.2016.04.001', '10.1080/03081087.2015.1053425', '10.3758/s13423-017-1270-3', '10.1681/ASN.2015030287', '10.1016/j.avb.2016.05.006', '10.1177/0971333616689191', '10.1002/sej.1243', '10.1016/j.foreco.2017.06.023', '10.1103/PhysRevLett.118.071801', 'https://doi.org/10.1093/geront/gnv127', '10.1007/978-3-319-42324-1_16', '10.1109/JBHI.2015.2412656', '10.1016/j.jeem.2016.04.002', '10.1080/00207543.2015.1058982', '10.1038/mp.2016.100', '10.1080/03003930.2016.1194267', '10.1016/j.envint.2017.01.018', '10.1038/pr.2015.179', '10.1177/1753193416669263', '10.1016/j.tre.2016.11.003', '10.1021/acs.jpcc.5b12016', '10.1002/anie.201603510', '10.1073/pnas.1607005113', '(DOI) - 10.1111/cch.12521', '10.1017/S0016756815000886', '10.1080/1350293X.2015.1073507', '10.1152/jn.00701.2015', '10.1371/journal.pone.0170791', '10.1016/j.seares.2016.07.005', '10.1016/j.reseneeco.2016.03.003', '10.1007/s00531-017-1499-0', '10.1007/s41669-017-0014-7', '10.1093/acrefore/9780190228613.013.439', '10.14814/phy2.13201', '10.1016/j.jtrangeo.2016.10.013', '10.1523/JNEUROSCI.3658-16.2017', '10.1192/bjpo.bp.115.000166', '10.1136/bmjgh-2016-000109', '10.7554/eLife.20320.001', '10.1037/pas0000332', '10.1177/1474704916673841', '10.1057/978-1-137-58179-2', '10.1002/ejp.963', '10.1017/thg.2016.78', '10.1038/tpj.2016.32', '10.1016/j.jesp.2017.03.008', '10.1287/trsc.2015.0647', '10.1186/s13015-016-0087-3', '10.1016/j.neuroimage.2016.10.030', '10.1371/journal.pone.0169109', '10.1007/s11367-017-1358-z', '10.1080/1369183X.2015.1061425', '10.2196/mental.4614', '10.1002/arp.1564', '10.1021/acs.orglett.6b01023', '10.3847/1538-4357/aa6c47', 'http://www.socialevraagstukken.nl/veiligheid-creeer-je-met-geborgenheid/', '10.1186/s12888-016-0790-0', '10.1371/journal.pone.0155755'] #>>> Enter parsing paramaters that do not match the contents of the CSV file #>>> Error is not invoked anymore as another from CSV_File takes over. Kept for possible future use #>>> my_list_data = ListData() #>>> try: #... my_list_data.import_csv_file('test_data//one_column_data.txt', #... column_delimiter_pattern_in_input_file='\\n', #... line_head_pattern_to_remove='', #... line_tail_pattern_to_remove='') #... except Exception as error_message: #... print('Exception caught: ' + str(error_message)) Cleaning parameters are set. Output resulting from a demo parsing operation is as following: ----------------------------------LINE 0---------------------------------- <BLANKLINE> Exception caught: No data imported from CSV file "test_data//one_column_data.csv". Parsing parameters provided does not seem to match formatting of the inputted CSV file. """ from preprocessor.csv_tools import CSV_File csv_file = CSV_File(input_file_path, column_delimiter_pattern_in_input_file=column_delimiter_pattern_in_input_file) csv_file.set_parsing_and_cleaning_parameters(line_head_pattern_to_remove=line_head_pattern_to_remove, line_tail_pattern_to_remove=line_tail_pattern_to_remove, cell_head_and_tail_characters_to_remove=cell_head_and_tail_characters_to_remove) with open(csv_file.input_file_path, encoding='utf8') as input_file: for i, each_line in enumerate(input_file): csv_line = csv_file.get_line_at_position_from_file(i + 1) csv_row = csv_file.clean_and_parse_line_to_CSV_Row_using_cleaning_parameters(csv_line) instance.append_row(csv_row) if instance.dataset: # if not empty print('\nCSV file "%s" is imported as ListData object.' % csv_file.input_file_path) else: raise ValueError('No data imported from CSV file "%s". Parsing parameters provided does not seem to match ' 'formatting of the inputted CSV file.' % csv_file.input_file_path) def import_json_object(instance, json_object): """ Converts a JSON formatted object to a ListData object. Args: json_dictionary(dict): a dictionary that is formatted as JSON Returns: Examples: >>> my_json_object = { ... 1: {'label': 'Example', 'value': 3}, ... 2: {'label': 'Test', 'value': 1}, ... 3: {'label': 'Tryout'} ... } >>> print(my_json_object) {1: {'label': 'Example', 'value': 3}, 2: {'label': 'Test', 'value': 1}, 3: {'label': 'Tryout'}} >>> my_list_data = ListData() >>> my_list_data.import_json_object(my_json_object) >>> print(my_list_data.dataset) [['label', 'value'], ['Example', 3], ['Test', 1], ['Tryout', ' ']] """ from preprocessor.legacy_functions.get_header_index import get_header_index # iterate through all entries and their ids in the input Bibliography # (this first iteration is only for indexing all headers in the instance.headers_row. all headers must be # indexed first before starting to add data rows, because adding header names on-the-go would create data rows # of differing lengths) # instance.headers should be empty (and thus, should give an error if attempted to be indexed) try: # if instance.headers is not empty (and thus, does not give an index error) raise exception if instance.headers(): raise Exception('Instance.headers not empty prior to append operation. This method is not compatible ' 'with adding new headers/columns.') # if there an index error, this indicates that the instance.headers() is indeed empty (and therefore cannot # be indexed). except IndexError: headers_list = [] for each_entry_id, each_entry_data in json_object.items(): # add each field name in the input Bibliography to instance.headers_row for each_field_name in each_entry_data.keys(): if each_field_name not in headers_list: # add to headers row headers_list.append(each_field_name) # add the now fully populated instance.headers_row as the first row of the full dataset (instance.dataset) instance.dataset.append(headers_list) # iterate (once again) through all entries and their ids in the input Bibliography # (this second iteration is for adding data rows) for each_entry_id, each_entry_data in json_object.items(): # add a blank list to represent a new row per each entry in inputted Bibliography object. instance.dataset.append([]) # select the last added row current_row = instance.dataset[-1] # make this last added row (i.e., each row) as long as the header row while len(current_row) < len(instance.headers()): current_row.append(instance.missing_data_character) # for each field_name-field_value pair in the input Bibliography for each_field_name, each_field_value in each_entry_data.items(): # extract the index number of the field name's representation in the headers row current_field_name_header_index = get_header_index(each_field_name, instance.dataset) current_row[current_field_name_header_index] = each_field_value def import_bibliography_object(instance, bibliography_object): """ Converts a Bibliography class object to a ListData object. Returns: ListData class object Examples: >>> from triplicator.bibTools import Bibliography >>> my_bibliography = Bibliography() >>> my_bibliography.setEntry('01', 'author', 'John Doe') >>> my_bibliography.setEntry('02', 'author', 'Jane Doe') >>> #my_bibliography.import_data('..//triplicator//example_data//test.bib') >>> print(my_bibliography.entries) {'01': {'author': 'John Doe'}, '02': {'author': 'Jane Doe'}} >>> my_list_data = ListData() >>> my_list_data.import_bibliography_object(my_bibliography) >>> print(my_list_data.dataset) [['author'], ['John Doe'], ['Jane Doe']] """ instance.import_json_object(bibliography_object.entries) def get_column_at_index(instance, index): ''' Allows columns to be selected (i.e., returned) by entering their index position. :return: A list vector that contains values from the queried column :example: >>> my_listdata = ListData() >>> my_listdata.dataset = [['name', 'birth_date'], ['john', 2084], ['jane', 2054]] >>> my_listdata.get_column_at_index(1) ['birth_date', 2084, 2054] ''' ############################################################################################################# # assign the column matching the current_index to a variable column = [each_row[index] for each_row in instance.dataset] return column def get_row_length(instance): """ Gets the length of a sample row from the dataset. Returns: Integer Examples: >>> my_listdata = ListData() >>> my_listdata.dataset = [['name', 'birth_date'], ['john', 2084], ['jane', 2054]] >>> my_listdata.get_row_length() 2 """ probe_index = 0 row_length = 0 try: row_length = len(instance.dataset[probe_index]) except IndexError: raise ('Not possible to probe row at index %s. Nothing found at this index position.' % probe_index) return row_length def transpose_dataset(instance): """ >>> my_listdata = ListData() >>> my_listdata.dataset = [['name', 'birth_date'], ['john', 2084], ['jane', 2054]] >>> my_listdata.transpose_dataset().dataset [['name', 'john', 'jane'], ['birth_date', 2084, 2054]] >>> my_listdata.transpose_dataset().dataset [['name', 'birth_date'], ['john', 2084], ['jane', 2054]] >>> my_listdata.transpose_dataset().dataset == my_listdata.transpose_dataset().transpose_dataset().dataset True """ row_length = instance.get_row_length() columns = [instance.get_column_at_index(i) for i in range(0, row_length)] instance.dataset = columns return instance def merge_all_rows_to_one(instance, value_separator_pattern=' | '): """ >>> my_listdata = ListData().append_row(['john', 2054]).append_row(['john', 3254]) >>> my_listdata.merge_all_rows_to_one().dataset ['john', '2054 | 3254'] >>> my_listdata = ListData() >>> my_listdata.dataset = [['john', 2054], ['john', 3254], ['john', 2672]] >>> my_listdata.merge_all_rows_to_one().dataset ['john', '2054 | 3254 | 2672'] # method does not deal with headers >>> my_listdata.dataset = [['name', 'birth_date'], ['john', 2084], ['john', 2054]] >>> my_listdata.merge_all_rows_to_one().dataset ['name | john', 'birth_date | 2084 | 2054'] # but headers can be easily managed >>> my_listdata.dataset = [['name', 'birth_date'], ['john', 2084], ['john', 2054]] >>> my_listdata.dataset = my_listdata.dataset[1:] >>> my_listdata.merge_all_rows_to_one().dataset ['john', '2084 | 2054'] # different separator pattern (and a transpose-like operation) >>> my_listdata.dataset = [['name', 'birth_date'], ['john', 2084], ['john', 2054], ['jane', 2054]] >>> my_listdata.merge_all_rows_to_one('; ').dataset ['name; john; jane', 'birth_date; 2084; 2054'] >>> type(my_listdata.dataset) <class 'list'> >>> from preprocessor.csv_tools import CSV_Line, CSV_Row, Row_Merge_Buffer >>> line_1 = CSV_Line(' "Journal Article" , "https://w3id.org/oc/corpus/br/45174" , "An inventory for measuring clinical anxiety: Psychometric properties." , "1988" , "Steer - Robert A." , "Journal of Consulting and Clinical Psychology" , "6" , "56" , "893--897" , "American Psychological Association (APA)" , "10.1037//0022-006x.56.6.893" ,') >>> line_2 = CSV_Line(' "Journal Article" , "https://w3id.org/oc/corpus/br/45174" , "An inventory for measuring clinical anxiety: Psychometric properties." , "1988" , "John - Doe B." , "Journal of Consulting and Clinical Psychology" , "6" , "56" , "893--897" , "American Psychological Association (APA)" , "https://doi.org/10.1037//0022-006x.56.6.893" ,') >>> line_1.clean_head_and_tail_from_patterns(' ,', location='tail').clean_head_and_tail_from_patterns(' ', location='head') '"Journal Article" , "https://w3id.org/oc/corpus/br/45174" , "An inventory for measuring clinical anxiety: Psychometric properties." , "1988" , "Steer - Robert A." , "Journal of Consulting and Clinical Psychology" , "6" , "56" , "893--897" , "American Psychological Association (APA)" , "10.1037//0022-006x.56.6.893"' >>> line_2.clean_head_and_tail_from_patterns(' ,', location='tail').clean_head_and_tail_from_patterns(' ', location='head') '"Journal Article" , "https://w3id.org/oc/corpus/br/45174" , "An inventory for measuring clinical anxiety: Psychometric properties." , "1988" , "John - Doe B." , "Journal of Consulting and Clinical Psychology" , "6" , "56" , "893--897" , "American Psychological Association (APA)" , "https://doi.org/10.1037//0022-006x.56.6.893"' >>> row_1 = line_1.parse_line_and_CONVERT_to_CSV_Row(' , ').clean_cell_heads_and_tails_from_characters('"') >>> row_2 = line_2.parse_line_and_CONVERT_to_CSV_Row(' , ').clean_cell_heads_and_tails_from_characters('"') >>> buffer = Row_Merge_Buffer(1) >>> buffer.append_as_first_row_and_reset_buffer(row_1) "https://w3id.org/oc/corpus/br/45174: [['Journal Article', 'https://w3id.org/oc/corpus/br/45174', 'An inventory for measuring clinical anxiety: Psychometric properties.', '1988', 'Steer - Robert A.', 'Journal of Consulting and Clinical Psychology', '6', '56', '893--897', 'American Psychological Association (APA)', '10.1037//0022-006x.56.6.893']]" >>> buffer.append_row_if_ids_match(row_2) "https://w3id.org/oc/corpus/br/45174: [['Journal Article', 'https://w3id.org/oc/corpus/br/45174', 'An inventory for measuring clinical anxiety: Psychometric properties.', '1988', 'Steer - Robert A.', 'Journal of Consulting and Clinical Psychology', '6', '56', '893--897', 'American Psychological Association (APA)', '10.1037//0022-006x.56.6.893'], ['Journal Article', 'https://w3id.org/oc/corpus/br/45174', 'An inventory for measuring clinical anxiety: Psychometric properties.', '1988', 'John - Doe B.', 'Journal of Consulting and Clinical Psychology', '6', '56', '893--897', 'American Psychological Association (APA)', 'https://doi.org/10.1037//0022-006x.56.6.893']]" >>> buffer.merge_all_rows_to_one(' | ') "https://w3id.org/oc/corpus/br/45174: ['Journal Article', 'https://w3id.org/oc/corpus/br/45174', 'An inventory for measuring clinical anxiety: Psychometric properties.', '1988', 'Steer - Robert A. | John - Doe B.', 'Journal of Consulting and Clinical Psychology', '6', '56', '893--897', 'American Psychological Association (APA)', '10.1037//0022-006x.56.6.893 | https://doi.org/10.1037//0022-006x.56.6.893']" # List conversion with actual rows >>> a = ListData() >>> a.dataset = [['Journal Article', 'https://w3id.org/oc/corpus/br/45174', 'An inventory for measuring clinical anxiety: Psychometric properties.', '1988', 'Steer - Robert A.', 'Journal of Consulting and Clinical Psychology', '6', '56', '893--897', 'American Psychological Association (APA)', '10.1037//0022-006x.56.6.893'], ['Journal Article', 'https://w3id.org/oc/corpus/br/45174', 'An inventory for measuring clinical anxiety: Psychometric properties.', '1988', 'John - Doe B.', 'Journal of Consulting and Clinical Psychology', '6', '56', '893--897', 'American Psychological Association (APA)', 'https://doi.org/10.1037//0022-006x.56.6.893']] >>> a.merge_all_rows_to_one(' | ').dataset ['Journal Article', 'https://w3id.org/oc/corpus/br/45174', 'An inventory for measuring clinical anxiety: Psychometric properties.', '1988', 'Steer - Robert A. | John - Doe B.', 'Journal of Consulting and Clinical Psychology', '6', '56', '893--897', 'American Psychological Association (APA)', '10.1037//0022-006x.56.6.893 | https://doi.org/10.1037//0022-006x.56.6.893'] # Row_Merge_Buffer class conversion with actual rows >>> a = Row_Merge_Buffer(1) >>> a.dataset = [['Journal Article', 'https://w3id.org/oc/corpus/br/45174', 'An inventory for measuring clinical anxiety: Psychometric properties.', '1988', 'Steer - Robert A.', 'Journal of Consulting and Clinical Psychology', '6', '56', '893--897', 'American Psychological Association (APA)', '10.1037//0022-006x.56.6.893'], ['Journal Article', 'https://w3id.org/oc/corpus/br/45174', 'An inventory for measuring clinical anxiety: Psychometric properties.', '1988', 'John - Doe B.', 'Journal of Consulting and Clinical Psychology', '6', '56', '893--897', 'American Psychological Association (APA)', 'https://doi.org/10.1037//0022-006x.56.6.893']] >>> a.merge_all_rows_to_one(' | ').dataset ['Journal Article', 'https://w3id.org/oc/corpus/br/45174', 'An inventory for measuring clinical anxiety: Psychometric properties.', '1988', 'Steer - Robert A. | John - Doe B.', 'Journal of Consulting and Clinical Psychology', '6', '56', '893--897', 'American Psychological Association (APA)', '10.1037//0022-006x.56.6.893 | https://doi.org/10.1037//0022-006x.56.6.893'] # Error from empty dataset >>> a = ListData() >>> >>> try: ... a.merge_all_rows_to_one(' | ') # no item to index in empty dataset ... except Exception as error_message: ... print('Exception: ' + str(error_message)) Exception: Dataset to be merged is either empty or not indexable (no item at index [0]). The input dataset is: [] """ try: instance.dataset[0] except IndexError: raise IndexError('Dataset to be merged is either empty or not indexable (no item at index [0]).\nThe input dataset is:\n%s' % str(instance.dataset)) dataset = instance.dataset # initiate merged_row with the first row of the dataset merged_row = dataset[0] for each_row in dataset: current_row = each_row current_cell_position = 0 for each_current_cell, each_merged_cell in zip(current_row, merged_row): if str(each_current_cell) not in str(each_merged_cell): # str conversion needed for 'in' comparison merged_cell = str(each_merged_cell) + value_separator_pattern + str(each_current_cell) merged_row[current_cell_position] = merged_cell current_cell_position += 1 # no need to specify an else scenario, as if compared cells are the same, merged row can stay as is instance.dataset = merged_row return instance def append_row(instance, new_row): """ Appends a row the ListData object's dataset variable. Returns: ListData object (instance) Examples: >>> my_listdata = ListData() >>> my_listdata.append_row([1,2,3]).dataset [[1, 2, 3]] >>> my_listdata.dataset [[1, 2, 3]] >>> my_listdata.append_row(['a','b','c']).dataset [[1, 2, 3], ['a', 'b', 'c']] >>> my_listdata.dataset [[1, 2, 3], ['a', 'b', 'c']] >>> my_listdata.append_row(['x', 'y']).append_row(['z', 't']).append_row(['m', 'n']).dataset [[1, 2, 3], ['a', 'b', 'c'], ['x', 'y'], ['z', 't'], ['m', 'n']] """ instance.dataset.append(new_row) return instance def clear_all(instance): """ Resets ListData object's dataset variable to its empty state. Returns: ListData object Examples: >>> my_listdata = ListData() >>> my_listdata.append_row([1,2,3]).dataset [[1, 2, 3]] >>> my_listdata.dataset [[1, 2, 3]] >>> my_listdata.clear_all().dataset [] >>> my_listdata.dataset [] """ instance.dataset = [] return instance def append_column(instance, new_column_values, new_column_name): """ :param new_column_values: :param new_column_name: :param dataset: :return: Changes the inputted dataset when ran (no need for assigning the output to a variable). :usage: append_column(NEW_COLUMN_VARIABLES_LIST, NEW_COLUMN_NAME_STRING, DATASET) :example: >>> my_list_data = ListData() >>> my_list_data.dataset = [['day', 'month'], [1, 'June'], [3, 'May'], [4, 'Jun']] >>> years_column = [2149, 2150, 2151] >>> my_list_data.append_column(years_column, "year") >>> print(my_list_data.dataset) # changes the original data set without a need to assign the output to a new variable, etc. [['day', 'month', 'year'], [1, 'June', 2149], [3, 'May', 2150], [4, 'Jun', 2151]] """ ############################################################################################################# # Check for duplicate header names if new_column_name in instance.headers(): # if this duplicate check is not included, things go wrong (the duplicate header gets added to column values—a strange behavior, but it is prevented with not allowing duplicate headers). print( "ERROR: Header name already in dataset. Re-run all code up to this point or change header name.\nError " "occured while processing new_column_name: " + str( new_column_name)) raise ValueError( "Header name already in dataset. Please choose a different name. If name is correct, try re-running " "all code up to this point. (See console output for last header name processed.)") if len(new_column_values) != len(instance.data_rows()): raise Exception("Inputted column length must be equal to instance.dataset column length.\n" + 'new_column_values length: ' + str(len(new_column_values)) + '\n' + 'instance.data_rows() length: ' + str(len(instance.data_rows())) ) # Append the inputted column to specified dataset # pass argument to variable new_column = new_column_values # new column = merging of column name and column values new_column.insert(0, new_column_name) # for each row in the dataset, append the new column at the end for i, row in enumerate(instance.dataset): instance.dataset[i].append(new_column[i]) def remove_column(instance, target_column_header): """ Removes a column from dataset. Args: target_column_header(str): Name of the column to be removed. Returns: Nothing; modifies dataset. Examples: >>> example_data = [['day', 'month', 'hour'], ['1', 'June', '12.00'], ['3', 'May', '11.00'], ... ['4', 'Jun', '15.00']] >>> my_list_data = ListData() >>> my_list_data.dataset = example_data >>> print(my_list_data.dataset) [['day', 'month', 'hour'], ['1', 'June', '12.00'], ['3', 'May', '11.00'], ['4', 'Jun', '15.00']] >>> my_list_data.remove_column('hour') >>> print(my_list_data.dataset) [['day', 'month'], ['1', 'June'], ['3', 'May'], ['4', 'Jun']] """ ############################################################################################################# # the column header also needs to be included in removal process from preprocessor.legacy_functions.get_header_index import get_header_index target_index = get_header_index(target_column_header, instance.dataset) for i, row in enumerate(instance.dataset): del (instance.dataset[i][target_index]) def remove_columns(instance, target_column_headers_list): """ Removes multiple columns from dataset. Is a variation of .remove_column() method to support efficient removal of multiple columns. Args: target_column_headers_list(list): A list of strings whose items are the header names of columns to be removed Returns: Nothing; modifies dataset. """ if type(target_column_headers_list) == list: pass else: raise Exception('The argument "target_column_headers_list" must be of "list" type.') for each_column_header in target_column_headers_list: instance.remove_column(each_column_header) def replace_headers(instance, header_replacements_list): """ Replaces headers of a dataset. Args: header_replacements_list(list): A list of strings to replace headers Returns: Nothing; modifies the provided dataset. Examples: >>> example_data = [['day', 'month'], ['1', 'June'], ['3', 'May'], ['4', 'Jun']] >>> my_list_data = ListData() >>> my_list_data.dataset = example_data >>> print(my_list_data.dataset) [['day', 'month'], ['1', 'June'], ['3', 'May'], ['4', 'Jun']] >>> my_list_data.replace_headers(['d', 'm']) >>> print(my_list_data.dataset) [['d', 'm'], ['1', 'June'], ['3', 'May'], ['4', 'Jun']] """ # number of headers inputted should match the number of headers in the dataset if len(header_replacements_list) == len(instance.headers()): pass else: raise Exception('header_replacements_list should be the same length with instance.headers()' + '\n' + 'header_replacements_list length: ' + str(len(header_replacements_list)) + '\n' + 'instance.headers() length: ' + str(len(instance.headers())) ) for i, each_header in enumerate(header_replacements_list): instance.dataset[0][i] = each_header class ListBuffer(ListData): def __init__(self): ListData.__init__(self) # states self.is_empty = True def append_row(self, new_row): """ Overrides the ListData method of the same name to change buffer state to 'not empty' after adding something to the buffer Args: new_row(list, bool, str, int): The object to be added as a new row to buffer Returns: ListData object (self) Examples: # initiate >>> my_buffer = ListBuffer() # empty? >>> my_buffer.is_empty True # simple add >>> a = my_buffer.append_row(['item 1', 'item 2', 'item 3']) # variable assignment is to suppress output # fluent interface >>> my_buffer.append_row(['item 4', 'item 5', 'item 6']). \ append_row(['item 7', 'item 8', 'item 9']).dataset [['item 1', 'item 2', 'item 3'], ['item 4', 'item 5', 'item 6'], ['item 7', 'item 8', 'item 9']] # empty now? >>> my_buffer.is_empty False """ ListData.append_row(self, new_row) self.is_empty = False return self def is_each_row_balanced(self, exclude_special_rows_of_syntax=None): """ Checks whether each row in buffer is balanced (i.e., does not have unmatched parantheses, brackets, etc). Can exclude special row types (e.g., comment) from evaluation. Args: exclude_special_rows_of_syntax(str): specifies what type of rows to exclude from evaluation (e.g., comment rows). Uses predefined syntax settings per specified syntax (e.g., 'bibtex'). Keyword Args: - bibtex (exclude_special_rows_of_syntax): sets evaluation exclusion criteria for bibtex syntax Returns: boolean Examples: >>> # an unbalanced row is present >>> my_buffer = ListBuffer() >>> my_buffer.append_row(['a', 'b', 'c']).append_row(['d', 'e', 'f']).dataset [['a', 'b', 'c'], ['d', 'e', 'f']] >>> my_buffer.append_row(['g', 'h' , '>'])\ .is_each_row_balanced() False >>> # single row from a bib file >>> my_buffer = ListBuffer() >>> my_buffer.append_row(' year = "2017",')\ .is_each_row_balanced() True >>> # bibtex entry start (no exception vs. exception) >>> my_buffer.append_row('@article{96d9add3e2f44e8abbf030170689bc30,')\ .is_each_row_balanced() False >>> my_buffer.is_each_row_balanced(exclude_special_rows_of_syntax='bibtex') True >>> # bibtex comment (no exception vs. exception) >>> my_buffer = ListBuffer() >>> my_buffer.append_row('% This is a comment with an unbalanced characters }]>')\ .is_each_row_balanced() False >>> my_buffer.is_each_row_balanced(exclude_special_rows_of_syntax='bibtex') True >>> # a full bibtex entry with an unbalanced curly bracket at title field >>> my_buffer = ListBuffer() >>> my_buffer.dataset = ['@book{a82caf00e1a143759c7f5543b6c84ea5,', 'title = "{Knowledge Representation for Health Care (AIME 2015 International Joint Workshop, KR4HC/ProHealth 2015)",', 'author = "D Riano and R. Lenz and S Miksch and M Peleg and M. Reichert and {ten Teije}, A.C.M.",', 'year = "2015",', 'doi = "10.1007/978-3-319-26585-8",', 'isbn = "9783319265841",', 'series = "LNAI",', 'publisher = "Springer",', 'number = "9485",', '}', ''] >>> my_buffer.is_each_row_balanced(exclude_special_rows_of_syntax='bibtex') # error False >>> # the same entry with unbalanced curly bracket removed >>> my_buffer.dataset = ['@book{a82caf00e1a143759c7f5543b6c84ea5,', 'title = "Knowledge Representation for Health Care (AIME 2015 International Joint Workshop, KR4HC/ProHealth 2015)",', 'author = "D Riano and R. Lenz and S Miksch and M Peleg and M. Reichert and {ten Teije}, A.C.M.",', 'year = "2015",', 'doi = "10.1007/978-3-319-26585-8",', 'isbn = "9783319265841",', 'series = "LNAI",', 'publisher = "Springer",', 'number = "9485",', '}', ''] >>> my_buffer.is_each_row_balanced(exclude_special_rows_of_syntax='bibtex') True """ from preprocessor.string_tools import String buffer = self.dataset is_balanced_log = [] for each_row in buffer: each_row = String(str(each_row)) if not each_row.is_balanced(): # print('row is not balanced: ', each_row) ### EXCLUSIONS FOR BIBTEX ########################################### if exclude_special_rows_of_syntax == 'bibtex': # print('special syntax = bibtex recognized') # forgive these row types if each_row.is_line_type('bibtex', 'start of entry') \ or each_row.is_line_type('bibtex', 'end of entry') \ or each_row.is_line_type('bibtex', 'comment'): is_balanced_log.append(True) # print("01: appended True to log, because the row is unbalanced but it passed exclusion rules", "the current row (each_row) is: ", "(", type(each_row) ,")", each_row) else: is_balanced_log.append(False) ###################################################################### else: is_balanced_log.append(False) # print("02: appended False to log because row is unbalanced (no exclusion keyword specified) ", "the current row (each_row) is: ", "(", type(each_row) ,")", each_row) else: is_balanced_log.append(True) # print("03: appended True to log because row is balanced ", "the current row (each_row) is: ", "(", type(each_row) ,")", each_row) if False in is_balanced_log: return False else: return True def is_parsable(self, syntax_to_parse_by='bibtex'): """ Args: syntax_to_parse_by: Returns: boolean Examples: # bibtex entry with no issues >>> my_buffer = ListBuffer() >>> my_buffer.dataset = ['@article{5f3ed8a5037f4837be0c7e8e5a1f0948,', ... 'title = "New Horizons biedt eindelijk goede blik op Pluto",', ... 'author = "B. Andeweg",', ... 'year = "2015",', ... 'month = "7",', ... 'journal = "Volkskrant",', ... '}'] >>> my_buffer.is_parsable() True # unmatched " in author field >>> my_buffer = ListBuffer() >>> my_buffer.dataset = ['@article{5f3ed8a5037f4837be0c7e8e5a1f0948,', ... 'title = "New Horizons biedt eindelijk goede blik op Pluto",', ... 'author = "B. "Andeweg",', ... 'year = "2015",', ... 'month = "7",', ... 'journal = "Volkskrant",', ... '}'] >>> my_buffer.is_parsable() False """ if syntax_to_parse_by == 'bibtex': # import and shorten bibtex parser function from pybtex.database.input import bibtex parser = bibtex.Parser() # TODO: test can be made in memory instead of via temporary file (could use 'parser.parse_bytes') with open('temp_buffer_dump.bib', 'w', encoding='utf8') as temp_buffer_dump_file: for each_buffer_row in self.dataset: print(each_buffer_row, file=temp_buffer_dump_file) with open('temp_buffer_dump.bib', encoding='utf8') as temp_buffer_dump_file: try: parsed_file = parser.parse_file(temp_buffer_dump_file) return True except: return False
54.831737
2,984
0.582331
[ "MIT" ]
clokman/KFIR
preprocessor/ListData.py
40,084
Python
"""[HTTPX](https://www.python-httpx.org/) 驱动适配 ```bash nb driver install httpx # 或者 pip install nonebot2[httpx] ``` :::tip 提示 本驱动仅支持客户端 HTTP 连接 ::: FrontMatter: sidebar_position: 3 description: nonebot.drivers.httpx 模块 """ from typing import Type, AsyncGenerator from contextlib import asynccontextmanager from nonebot.typing import overrides from nonebot.drivers._block_driver import BlockDriver from nonebot.drivers import ( Request, Response, WebSocket, HTTPVersion, ForwardMixin, ForwardDriver, combine_driver, ) try: import httpx except ImportError: raise ImportError( "Please install httpx by using `pip install nonebot2[httpx]`" ) from None class Mixin(ForwardMixin): """HTTPX Mixin""" @property @overrides(ForwardMixin) def type(self) -> str: return "httpx" @overrides(ForwardMixin) async def request(self, setup: Request) -> Response: async with httpx.AsyncClient( http2=setup.version == HTTPVersion.H2, proxies=setup.proxy, follow_redirects=True, ) as client: response = await client.request( setup.method, str(setup.url), content=setup.content, data=setup.data, json=setup.json, files=setup.files, headers=tuple(setup.headers.items()), timeout=setup.timeout, ) return Response( response.status_code, headers=response.headers, content=response.content, request=setup, ) @overrides(ForwardMixin) @asynccontextmanager async def websocket(self, setup: Request) -> AsyncGenerator[WebSocket, None]: async with super(Mixin, self).websocket(setup) as ws: yield ws Driver: Type[ForwardDriver] = combine_driver(BlockDriver, Mixin) # type: ignore """HTTPX Driver"""
24.580247
81
0.616273
[ "MIT" ]
A-kirami/nonebot2
nonebot/drivers/httpx.py
2,033
Python
from flask import render_template, request, redirect, send_from_directory, jsonify, Blueprint from direct_answers import choose_direct_answer from direct_answers import search_result_features import indieweb_utils import search_helpers, config, search_page_feeds import requests import json import math import spacy import mf2py main = Blueprint("main", __name__, static_folder="static", static_url_path="") nlp = spacy.load('en_core_web_sm') @main.route("/") def home(): q = request.args.get("q") return render_template("search/submit.html", title="IndieWeb Search", query=q) @main.route("/autocomplete") def search_autocomplete(): query = request.args.get("q") suggest = requests.get("https://es-indieweb-search.jamesg.blog/suggest?q={}&pw={}".format(query, config.ELASTICSEARCH_PASSWORD)) return jsonify(suggest.json()), 200 @main.route("/results", methods=["GET", "POST"]) def results_page(): page = request.args.get("page") site = request.args.get("site") if site and site == "jamesg.blog": # used for special jamesg.blog search redirect, not for open use site = "".join([x for x in site if x.isalpha() or x == "."]) return redirect('/results?query=site:"{}"%20{}'.format(site, request.args.get("query"))) special_result = False if not request.args.get("query"): return redirect("/") query_with_handled_spaces = request.args.get("query").replace("--", "").replace(" ", " ").strip() allowed_chars = [" ", '"', ":", "-", "/", ".", "=", ","] cleaned_value_for_query = ''.join(e for e in query_with_handled_spaces if e.isalnum() or e in allowed_chars).strip() query_values_in_list, query_with_handled_spaces = search_helpers.handle_advanced_search(query_with_handled_spaces) if cleaned_value_for_query.startswith("xray https://") or cleaned_value_for_query.startswith("xray http://"): return redirect("https://xray.p3k.io/parse?url={}".format(cleaned_value_for_query.replace("xray ", ""))) session = requests.Session() if cleaned_value_for_query == "random": random_site = session.get("https://es-indieweb-search.jamesg.blog/random?pw={}".format(config.ELASTICSEARCH_PASSWORD)).json()["domain"] return redirect("https://{}/".format(random_site)) if not request.args.get("query"): return redirect("/") full_query_with_full_stops = ''.join(e for e in query_with_handled_spaces if e.isalnum() or e == " " or e == ".") if len(cleaned_value_for_query) == 0: return redirect("/") do_i_use = "" pagination = "0" if page: # If page cannot be converted into an integer, redirect to homepage try: if int(page) > 1: pagination = (int(page) - 1) * 10 except: return redirect("/") else: page = 1 order = "score" minimal = "false" if request.args.get("order") == "date_asc": order = "date_asc" elif request.args.get("order") == "date_desc": order = "date_desc" cleaned_value_for_query = cleaned_value_for_query.replace("what is", "") if request.args.get("format") and (request.args.get("format") == "json_feed" or request.args.get("format") == "jf2"): minimal = "true" query_params = "" if query_values_in_list.get("site"): query_params += "&site={}".format(query_values_in_list.get("site").replace("%", "")) if request.args.get("query").startswith("discover"): query_params += "&discover=true" if "js:none" in request.args.get("query"): query_params += "&js=false" if query_values_in_list.get("category"): query_params += "&category={}".format(query_values_in_list.get("category")) if query_values_in_list.get("mf2prop"): query_params += "&mf2_property={}".format(query_values_in_list.get("mf2prop")) rows = session.get("https://es-indieweb-search.jamesg.blog/?pw={}&q={}&sort={}&from={}&minimal={}{}".format( config.ELASTICSEARCH_PASSWORD, cleaned_value_for_query.replace("who is", "").replace("code", "").replace("discover ", "").strip(), order, str(pagination), minimal, query_params) ).json() num_of_results = rows["hits"]["total"]["value"] rows = rows["hits"]["hits"] for r in rows: if r["_source"].get("h_card"): r["_source"]["h_card"] = json.loads(r["_source"]["h_card"]) else: r["_source"]["h_card"] = None cleaned_value = cleaned_value_for_query.lower() if page == 1: do_i_use, special_result = choose_direct_answer.choose_featured_snippet( cleaned_value, cleaned_value_for_query, rows, special_result, full_query_with_full_stops, session, nlp ) if len(rows) == 0: out_of_bounds_page = True final_query = cleaned_value_for_query # this code doesn't work right now # identify_mistakes = spell.unknown(cleaned_value.split('"')[-1].split(" ")) # final_query = "" # suggestion = False # cleaned_items = cleaned_value.split('"')[-1].split(" ") # for w in range(0, len(cleaned_items)): # if cleaned_items[w] in identify_mistakes and cleaned_items[w] != "": # final_query += spell.correction(cleaned_items[w]) + " " # suggestion = True # final_query = " " + final_query # else: # final_query += cleaned_items[w] + " " # final_query = "".join(cleaned_value.split('"')[:-1]) + '" ' + final_query else: out_of_bounds_page = False suggestion = False final_query = "" if "random aeropress" in cleaned_value or "generate aeropress" in cleaned_value and request.args.get("type") != "image": special_result = search_result_features.aeropress_recipe() format = request.args.get("format") if format == "json_feed": json_feed = search_page_feeds.process_json_feed(rows, cleaned_value, page, format) return json_feed elif format == "jf2": jf2_feed = search_page_feeds.process_jf2_feed(rows) return jf2_feed elif format == "rss": rss_feed = search_page_feeds.process_rss_feed(rows, cleaned_value, page, format) return rss_feed elif format == "direct_serp_json": if special_result: return jsonify({"text": do_i_use, "featured_serp": special_result}) else: return jsonify({"message": "no custom serp available on this search"}) elif format == "results_page_json": return jsonify({"results": [r["_source"] for r in rows]}) # show one result if a featured snippet is available, even if there are no other results to show if not special_result and not do_i_use and int(num_of_results) == 0: num_of_results = 0 out_of_bounds_page = True else: out_of_bounds_page = False return render_template("search/results.html", results=rows, number_of_results=int(num_of_results), page=int(page), page_count=int(math.ceil(num_of_results / 10)), query=cleaned_value, results_type=request.args.get("type"), out_of_bounds_page=out_of_bounds_page, ordered_by=request.args.get("order"), base_results_query="/results?query=" + cleaned_value_for_query, corrected_text=final_query, suggestion_made=suggestion, special_result=special_result, do_i_use=do_i_use, title="Search results for '{}' query".format(cleaned_value) ) @main.route("/robots.txt") def robots(): return send_from_directory(main.static_folder, "robots.txt") @main.route('/assets/<path:path>') def send_static_images(path): return send_from_directory("static/", path) @main.route("/changelog") def changelog(): return render_template("changelog.html", title="IndieWeb Search Changelog") @main.route("/advanced") def advanced_search(): return render_template( "search/advanced_search.html", title="IndieWeb Search Advanced Search Options" ) @main.route("/api/post-type") def get_original_post_type(): page_to_check = request.args.get("url") mf2_parsed = mf2py.parse(page_to_check) if not mf2_parsed: return jsonify({"status": "failed", "result": ""}) if not mf2_parsed["items"]: return jsonify({"status": "failed", "result": ""}) # get h_entry h_entry = [i for i in mf2_parsed["items"] if i["type"] == ["h-entry"]] result = indieweb_utils.get_post_type(h_entry) return jsonify({"status": "success", "result": result}) @main.route("/api/authorship") def get_post_author(): page_to_check = request.args.get("url") mf2_parsed = mf2py.parse(page_to_check) if not mf2_parsed: return jsonify({"status": "failed", "message": "No microformats could be found on this page", "author": []}) if not mf2_parsed["items"]: return jsonify({"status": "failed", "message": "No microformats could be found on this page", "author": []}) # get h_entry h_entry = [i for i in mf2_parsed["items"] if i["type"] == ["h-entry"]] h_card = [i for i in mf2_parsed["items"] if i["type"] == ["h-card"]] if not h_entry and h_card == []: return jsonify({"status": "failed", "message": "No h-entry could be found on this page", "author": []}) if h_card == []: for i in h_entry["items"]: if i['type'] == ['h-entry']: if i['properties'].get('author'): # if author is h_card if type(i['properties']['author'][0]) == dict and i['properties']['author'][0].get('type') == ['h-card']: h_card = i['properties']['author'][0] elif type(i['properties']['author']) == list: h_card = i['properties']['author'][0] result = indieweb_utils.discover_author(h_card, h_entry, page_to_check, []) return jsonify({"status": "success", "result": result}) @main.route("/stats") def stats(): count_request = requests.get("https://es-indieweb-search.jamesg.blog/count").json() count = count_request["es_count"]["count"] domains = count_request["domains"] headers = { "Authorization": config.ELASTICSEARCH_API_TOKEN } feed_breakdown_request = requests.get("https://es-indieweb-search.jamesg.blog/feed_breakdown", headers=headers).json() special_stats = requests.get("https://es-indieweb-search.jamesg.blog/special_stats", headers=headers).json() top_linked_assets = special_stats["top_ten_links"] link_types = special_stats["link_microformat_instances"] return render_template( "search/stats.html", count=count, domains=domains, title="IndieWeb Search Index Stats", feed_breakdown=feed_breakdown_request, top_linked_assets=top_linked_assets, link_types=link_types ) @main.route("/about") def about(): return render_template("search/about.html", title="About IndieWeb Search")
30.242515
137
0.701416
[ "MIT" ]
capjamesg/indieweb-search
main.py
10,101
Python
# 03_xkcd_multithread_download.py # In dieser Übung geht es darum den Download der Comics zu beschleunigen # indem man mehrere Threads zum downloaden nutzt. import os, threading, requests, bs4 os.chdir(os.path.dirname(__file__)) target_dir='.\\comics' source_url='https://xkcd.com' # Prüfe ob Seite erreichbar url_content=requests.get(source_url) try: url_content.raise_for_status() except: print('URL xkcd.com kann nicht aufgerufen werden. Script wird beendet.') exit() # Downloade die Comics als Thread def download_comic(comic_url): file_name=comic_url.split('/')[-1] new_file=open(target_dir+'\\'+file_name, 'wb') get_comic=requests.get(comic_url) try: get_comic.raise_for_status() for chunk in get_comic.iter_content(10**6): new_file.write(chunk) new_file.close() except: print('Bild-URL %s ist fehlerhaft') % (comic_url) # Sammle die Links zu den Comics und den weiterführenden Seiten link_counter=0 threads=[] def scrape_comic_links(url_name): global link_counter, threads while link_counter != int(comic_target_amount): url_content=requests.get(url_name) try: url_content.raise_for_status() bs4_object=bs4.BeautifulSoup(url_content.text, features='html.parser') bs4_next_result=bs4_object.select('a[rel="prev"]') next_url=bs4_next_result[0].get('href') bs4_comic_result=bs4_object.select('div #comic img') comic_url=bs4_comic_result[0].get('src') comic_url='https://'+comic_url.lstrip('/') url_name=source_url+next_url link_counter+=1 # Starte Download-Thread thread_object=threading.Thread(name='Download_Comic', target=download_comic, args=[comic_url]) thread_object.start() # Füge diesen Thread einer Liste hinzu um später zu prüfen ob alles Abgearbeitet wurde. threads.append(thread_object) except: print('URL nicht gefunden.') return else: link_counter=0 return while True: print('Wieviele Comics sollen heruntergeladen werden?') comic_target_amount=input() if comic_target_amount.isdecimal(): scrape_comic_links(source_url) # Warte bis alle Prozesse abgeschlossen sind. for thread in threads: thread.join() print('Downloads abgeschlossen') break
34.507042
106
0.672653
[ "MIT" ]
Apop85/Scripts
Python/Buch_ATBS/Teil_2/Kapitel_15_Aufgaben_zeitlich_Planen_und_Programme_starten/03_xkcd_multithread_download/03_xkcd_multithread_download.py
2,456
Python
import os from setuptools import setup from ec2audit import __version__ def read(fname): return open(os.path.join(os.path.dirname(__file__), fname)).read() setup(name='ec2audit', version=__version__, description='Dump all EC2 information to a folder suitable for version control', long_description=read('README.rst'), url='http://github.com/RisingOak/ec2audit', author='Cosmin Stejerean', author_email='[email protected]', license='Apache License 2.0', packages=['ec2audit'], scripts=['bin/ec2audit'], tests_require=open('test-requirements.txt').readlines(), install_requires=open('requirements.txt').readlines(), classifiers=[ 'Development Status :: 3 - Alpha', 'Environment :: Console', 'License :: OSI Approved :: Apache Software License', 'Topic :: Utilities' ] )
31.928571
86
0.6566
[ "Apache-2.0" ]
cosmin/ec2audit
setup.py
894
Python
# -*- coding: utf-8 -*- # # Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """List the versions within a key.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals from apitools.base.py import list_pager from googlecloudsdk.api_lib.cloudkms import base as cloudkms_base from googlecloudsdk.calliope import base from googlecloudsdk.command_lib.kms import flags class List(base.ListCommand): r"""List the versions within a key. Lists all of the versions within the given key. ## EXAMPLES The following command lists all versions within the key `frodo`, keyring `fellowship`, and location `global`: $ {command} --location global \ --keyring fellowship \ --key frodo """ @staticmethod def Args(parser): flags.AddKeyResourceFlags(parser) parser.display_info.AddFormat('table(name, state)') def Run(self, args): # pylint: disable=line-too-long client = cloudkms_base.GetClientInstance() messages = cloudkms_base.GetMessagesModule() crypto_key_ref = flags.ParseCryptoKeyName(args) request = messages.CloudkmsProjectsLocationsKeyRingsCryptoKeysCryptoKeyVersionsListRequest( parent=crypto_key_ref.RelativeName()) return list_pager.YieldFromList( client.projects_locations_keyRings_cryptoKeys_cryptoKeyVersions, request, field='cryptoKeyVersions', limit=args.limit, batch_size_attribute='pageSize')
32.15873
95
0.748766
[ "Apache-2.0" ]
bshaffer/google-cloud-sdk
lib/surface/kms/keys/versions/list.py
2,026
Python
import networkx as nx from operator import add with open("input.txt","r") as f: char_map=[list(l.strip('\n')) for l in f.readlines()] top_labels=char_map[:2] top_labels=list(map(add,top_labels[0],top_labels[1])) bottom_labels=char_map[-2:] bottom_labels=list(map(add,bottom_labels[0],bottom_labels[1])) char_map=char_map[2:-2] for i,c in enumerate(char_map[0]): if c=='.': char_map[0][i]=top_labels[i] for i,c in enumerate(char_map[-1]): if c=='.': char_map[-1][i]=bottom_labels[i] left_labels=[] right_labels=[] for i in range(len(char_map)): right_labels.append((char_map[i].pop()+char_map[i].pop())[::-1]) left_labels.append(char_map[i].pop(0)+char_map[i].pop(0)) for i in range(len(char_map)): if char_map[i][0]=='.': char_map[i][0]=left_labels[i] if char_map[i][-1]=='.': char_map[i][-1]=right_labels[i] inner_begin_i=next( (i for i,x in enumerate(char_map) if ' ' in x)) inner_end_i=len(char_map)-next( (i for i,x in enumerate(reversed(char_map)) if ' ' in x))-1 inner_begin_j=char_map[inner_begin_i].index(' ') inner_end_j=len(char_map[inner_end_i])-list(reversed(char_map[inner_end_i])).index(' ')-1 inner_top_labels=[] inner_bottom_labels=[] inner_left_labels=[] inner_right_labels=[] for i in range(inner_begin_i,inner_end_i): inner_left_labels.append(char_map[i][inner_begin_j]+char_map[i][inner_begin_j+1]) inner_right_labels.append(char_map[i][inner_end_j-1]+char_map[i][inner_end_j]) for j in range(inner_begin_j,inner_end_j): inner_top_labels.append(char_map[inner_begin_i][j]+char_map[inner_begin_i+1][j]) inner_bottom_labels.append(char_map[inner_end_i-1][j]+char_map[inner_end_i][j]) for i in range(inner_begin_i,inner_end_i): if char_map[i][inner_begin_j-1]=='.': char_map[i][inner_begin_j-1]=inner_left_labels[i-inner_begin_i] if char_map[i][inner_end_j+1]=='.': char_map[i][inner_end_j+1]=inner_right_labels[i-inner_begin_i] for j in range(inner_begin_j,inner_end_j): if char_map[inner_begin_i-1][j]=='.': char_map[inner_begin_i-1][j]=inner_top_labels[j-inner_begin_j] if char_map[inner_end_i+1][j]=='.': char_map[inner_end_i+1][j]=inner_bottom_labels[j-inner_begin_j] g=nx.Graph() labels=dict() for i in range(len(char_map)): for j in range(len(char_map[i])): if char_map[i][j]=='.': if char_map[i-1][j]!='#':#up g.add_edge((i,j),(i-1,j)) if char_map[i+1][j]!='#':#down g.add_edge((i,j),(i+1,j)) if char_map[i][j+1]!='#':#left g.add_edge((i,j),(i,j+1)) if char_map[i][j-1]!='#':#right g.add_edge((i,j),(i,j-1)) elif len(char_map[i][j])>1:#label if char_map[i][j] not in labels: labels[char_map[i][j]]=[(i,j)] else: labels[char_map[i][j]].append((i,j)) for v in labels.values(): if len(v)==2: g.add_edge(v[0],v[1]) print(nx.shortest_path_length(g,labels["AA"][0],labels["ZZ"][0]))
37.121951
91
0.640604
[ "MIT" ]
Seralpa/Advent-of-code-2019
day20/day20_1.py
3,044
Python
from sqlalchemy import Column, String, Integer, ForeignKey from sqlalchemy.orm import relationship from IocManager import IocManager from models.dao.Entity import Entity class ConnectionDatabase(Entity, IocManager.Base): __tablename__ = "ConnectionDatabase" __table_args__ = {"schema": "Connection"} ConnectionId = Column(Integer, ForeignKey('Connection.Connection.Id')) ConnectorTypeId = Column(Integer, ForeignKey('Connection.ConnectorType.Id')) Sid = Column(String(100), index=False, unique=False, nullable=True) ServiceName = Column(String(100), index=False, unique=False, nullable=True) DatabaseName = Column(String(100), index=False, unique=False, nullable=True) ConnectorType = relationship("ConnectorType", back_populates="Databases") def __init__(self, ConnectionId: int = None, ConnectorTypeId: int = None, Host: str = None, Port: int = None, Sid: str = None, ServiceName: str = None, DatabaseName: str = None, Connection = None, ConnectorType = None, *args, **kwargs): super().__init__(*args, **kwargs) self.ConnectionId: str = ConnectionId self.ConnectorTypeId: str = ConnectorTypeId self.Host: str = Host self.Port: int = Port self.Sid: str = Sid self.ServiceName: str = ServiceName self.DatabaseName: str = DatabaseName self.Connection = Connection self.ConnectorType = ConnectorType
42.864865
80
0.639344
[ "MIT" ]
PythonDataIntegrator/pythondataintegrator
src/api/models/dao/connection/ConnectionDatabase.py
1,586
Python
# Create your views here. from django.contrib.auth import get_user_model from django.db import transaction from rest_framework import status from rest_framework.permissions import IsAuthenticated from rest_framework.response import Response from rest_framework.views import APIView from django.utils.translation import gettext as _ from openbook_common.responses import ApiMessageResponse from openbook_common.serializers import CommonFollowRequestSerializer from openbook_moderation.permissions import IsNotSuspended from openbook_common.utils.helpers import normalise_request_data from openbook_follows.serializers import FollowUserRequestSerializer, FollowSerializer, \ DeleteFollowSerializer, UpdateFollowSerializer, FollowUserSerializer, RequestToFollowUserSerializer, \ ApproveUserFollowRequestSerializer, RejectUserFollowRequestSerializer, ReceivedFollowRequestsRequestSerializer class ReceivedFollowRequests(APIView): permission_classes = (IsAuthenticated, IsNotSuspended) def get(self, request): query_params = request.query_params.dict() user = request.user serializer = ReceivedFollowRequestsRequestSerializer(data=query_params) serializer.is_valid(raise_exception=True) data = serializer.validated_data max_id = data.get('max_id') count = data.get('count', 10) received_follow_requests = user.get_received_follow_requests(max_id=max_id).order_by( '-id')[:count] response_serializer = CommonFollowRequestSerializer(received_follow_requests, many=True, context={'request': request}) return Response(response_serializer.data, status=status.HTTP_200_OK) class RequestToFollowUser(APIView): permission_classes = (IsAuthenticated, IsNotSuspended) def put(self, request): serializer = RequestToFollowUserSerializer(data=request.data, context={"request": request}) serializer.is_valid(raise_exception=True) data = serializer.validated_data user_to_request_to_follow_username = data.get('username') user = request.user with transaction.atomic(): follow_request = user.create_follow_request_for_user_with_username(user_to_request_to_follow_username) response_serializer = CommonFollowRequestSerializer(follow_request, context={"request": request}) return Response(response_serializer.data, status=status.HTTP_201_CREATED) class CancelRequestToFollowUser(APIView): permission_classes = (IsAuthenticated, IsNotSuspended) def post(self, request): serializer = RequestToFollowUserSerializer(data=request.data, context={"request": request}) serializer.is_valid(raise_exception=True) data = serializer.validated_data user_to_cancel_request_for = data.get('username') user = request.user with transaction.atomic(): user.delete_follow_request_for_user_with_username(user_to_cancel_request_for) return ApiMessageResponse(_('Follow request cancelled.'), status=status.HTTP_200_OK) class ApproveUserFollowRequest(APIView): permission_classes = (IsAuthenticated, IsNotSuspended) def post(self, request): serializer = ApproveUserFollowRequestSerializer(data=request.data, context={"request": request}) serializer.is_valid(raise_exception=True) data = serializer.validated_data user_to_approve_follow_request_from_username = data.get('username') user = request.user with transaction.atomic(): user.approve_follow_request_from_user_with_username( user_username=user_to_approve_follow_request_from_username) return ApiMessageResponse(_('Follow request approved.'), status=status.HTTP_200_OK) class RejectUserFollowRequest(APIView): permission_classes = (IsAuthenticated, IsNotSuspended) def post(self, request): serializer = RejectUserFollowRequestSerializer(data=request.data, context={"request": request}) serializer.is_valid(raise_exception=True) data = serializer.validated_data user_to_reject_follow_request_from_username = data.get('username') user = request.user with transaction.atomic(): user.reject_follow_request_from_user_with_username( user_username=user_to_reject_follow_request_from_username) return ApiMessageResponse(_('Follow request rejected.'), status=status.HTTP_200_OK) class FollowUser(APIView): permission_classes = (IsAuthenticated, IsNotSuspended) def post(self, request): request_data = _prepare_request_data_for_validation(request.data) serializer = FollowUserRequestSerializer(data=request_data, context={"request": request}) serializer.is_valid(raise_exception=True) data = serializer.validated_data lists_ids = data.get('lists_ids') user_to_follow_username = data.get('username') user = request.user User = get_user_model() user_to_follow = User.objects.get(username=user_to_follow_username) with transaction.atomic(): follow = user.follow_user_with_id(user_to_follow.pk, lists_ids=lists_ids) response_serializer = FollowSerializer(follow, context={"request": request}) return Response(response_serializer.data, status=status.HTTP_201_CREATED) class UnfollowUser(APIView): permission_classes = (IsAuthenticated, IsNotSuspended) def post(self, request): user = request.user serializer = DeleteFollowSerializer(data=request.data) serializer.is_valid(raise_exception=True) data = serializer.validated_data user_to_unfollow_username = data.get('username') User = get_user_model() user_to_unfollow = User.objects.get(username=user_to_unfollow_username) with transaction.atomic(): user.unfollow_user_with_id(user_to_unfollow.pk) response_serializer = FollowUserSerializer(user_to_unfollow, context={"request": request}) return Response(response_serializer.data, status=status.HTTP_200_OK) class UpdateFollowUser(APIView): permission_classes = (IsAuthenticated, IsNotSuspended) def post(self, request): request_data = _prepare_request_data_for_validation(request.data) user = request.user serializer = UpdateFollowSerializer(data=request_data) serializer.is_valid(raise_exception=True) data = serializer.validated_data lists_ids = data.get('lists_ids') followed_user_username = data.get('username') User = get_user_model() followed_user = User.objects.get(username=followed_user_username) with transaction.atomic(): follow = user.update_follow_for_user_with_id(followed_user.pk, lists_ids=lists_ids) response_serializer = FollowSerializer(follow, context={"request": request}) return Response(response_serializer.data, status=status.HTTP_200_OK) def _prepare_request_data_for_validation(request_data): request_data_copy = normalise_request_data(request_data) lists_ids = request_data_copy.get('lists_ids', None) if isinstance(lists_ids, str): lists_ids = lists_ids.split(',') request_data_copy['lists_ids'] = lists_ids return request_data_copy
37.543147
114
0.741211
[ "MIT" ]
OkunaOrg/okuna-api
openbook_follows/views.py
7,396
Python
""" 本文件用以练习 manim 的各种常用对象 SVGMobject ImageMobject TextMobject TexMobeject Text 参考资料: https://www.bilibili.com/video/BV1CC4y1H7kp XiaoCY 2020-11-27 """ #%% 初始化 from manimlib.imports import * """ 素材文件夹介绍 在 manim 中使用各种素材时可以使用绝对路径声明素材。 为了简单,可以创建 assets 文件夹并放置在 manim 路径下。 如此做,使用素材时可以不加路径。 assets/raster_images/ 放置 png 等格式的位图 assets/svg_images/ 放置 svg 格式的矢量图 assets/sounds/ 一般不用,也可以不创建 """ #%% SVGMobject """ 在 manim 中使用 SVG 图片可以直接使用 SVGMobject, 传入的第一个参数是指向 SVG 文件的字符串, 关键字参数包括 VMobject 的共有属性,有 填充样式 填充颜色 fill_color 或 color 不透明度 fill_opacity 线条样式 线条颜色 stroke_color 或 color 线条宽度 stroke_width 线条不透明度 stroke_opacity 背景线条样式 背景线条颜色 background_stroke_color 或 color 背景线条宽度 background_stroke_width 背景线条不透明度 background_stroke_opacity 光泽样式 光泽尺度 sheen_factor 光泽方向 sheen_direction """ class try_SVGMob(Scene): # 使用 class 创建一个场景,名字可自定义 def construct(self): # 这里 class 和 def 暂且当成是固定的套路吧 # 构造 SVGMobject --- 添加 SVG 图片 mob = SVGMobject( "coin.svg", color = BLUE, # manim 内置部分颜色,参见 https://manim.ml/constants.html#id7 stroke_width = 1.00 ) # SVGMobject 可以使用 VMobject 的所有动画 # 动画暂时不在本练习中具体讲解,这里仅作示意 self.play(FadeInFromLarge(mob)) self.wait(2) #%% ImageMobject """ 与 SVGMobject 相像,插入位图时可使用 ImageMobject, 传入的第一个参数是字符串表示的位图路径, 关键字参数仅有以下部分 图片高度 height (默认为2) 是否反色 invert (默认 False) """ class try_ImageMob(Scene): def construct(self): # 添加位图 mob = ImageMobject( 'smirk.png', height = 3 ) # 由于 ImageMobject 不是 VMobject 的子类,很多动画无法使用 # 但是这里依然不对动画做深入讨论 self.play(FadeInFromLarge(mob)) self.wait(2) #%% TextMobject """ TextMobject 会将字符串作为 LaTeX 的普通字符进行编译 传入的第一个参数为需要添加的字符串,其可以使用 LaTeX 表达式 由于 LaTeX 表达式中常含有反斜线,构造字符串时需要采用双反斜线 或在字符串前添加 r 以消除歧义 TextMobject 是 VMobject,其他属性同 SVGMobject 一个 TextMobject 中也可以传入多个字符串,会单独编译但连在一起显示 这时可以利用索引来访问各个字符串 其他可选参数 arg_separator 传入多个字符串时,设置字符串之间的字符,默认为空格 tex_to_color_map 为一个字典,根据键值自动拆分字符串进行上色 """ class try_TextMob(Scene): def construct(self): # 定义一个字符串(数组),并通过下标进行访问 text = TextMobject( "早安, \\TeX!", r"你好,\LaTeX!", tex_to_color_map = {"\\LaTeX": RED_B} ) self.play(Write(text[0])) self.wait(0.5) # 注意这里用到 text[2] 和 text[3] # 原本不存在,但 tex_to_color_map 为了上色将其自动拆分了 # text[0] = r"早安, \TeX!" # text[1] = "你好," # text[2] = r"\LaTeX" # text[3] = "!" self.play(Transform(text[0],text[1:4])) self.wait(1) #%% TexMobject """ TexMobject 实际上提供了 align* 的数学环境,用于辨析 LaTeX 数学公式 其使用方法和 TextMobject 一样 关于数学公式的 LaTeX 代码可以使用妈叔的在线编辑器 (友情推荐) https://www.latexlive.com/ """ class try_TexMob(Scene): def construct(self): text = TextMobject('欧拉公式') # 这是文字 tex = TexMobject( # 这是公式 r'\mathrm{e}^{\mathrm{i}\pi} + 1 = 0', color = GREEN ) self.play(FadeIn(text)) self.wait(0.5) self.play(ReplacementTransform(text,tex)) self.wait(1) #%% Text """ TextMobject 的文字是经过 LaTeX 编译的, 若仅使用文字(不用 \LaTeX 之类的特殊符号),可以使用 Text 传入的第一个参数为文字字符串,可选参数包括 颜色 color 字体 font 颜色 t2c (字典) """ class try_Text(Scene): def construct(self): text = Text( "Hello World!", font = "Adobe Heiti Std", t2c = { "H": BLUE, "W": RED } ) self.play(Write(text)) self.wait(1)
22.412121
93
0.593564
[ "MIT" ]
iChunyu/LearnPython
manim/tutorial01_Mobjects.py
5,248
Python
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for object_detection.core.box_predictor.""" import numpy as np import tensorflow as tf from google.protobuf import text_format from tf_api.builders import hyperparams_builder from tf_api.core import box_predictor from tf_api.protos import hyperparams_pb2 class MaskRCNNBoxPredictorTest(tf.test.TestCase): def _build_arg_scope_with_hyperparams(self, op_type=hyperparams_pb2.Hyperparams.FC): hyperparams = hyperparams_pb2.Hyperparams() hyperparams_text_proto = """ activation: NONE regularizer { l2_regularizer { } } initializer { truncated_normal_initializer { } } """ text_format.Merge(hyperparams_text_proto, hyperparams) hyperparams.op = op_type return hyperparams_builder.build(hyperparams, is_training=True) def test_get_boxes_with_five_classes(self): image_features = tf.random_uniform([2, 7, 7, 3], dtype=tf.float32) mask_box_predictor = box_predictor.MaskRCNNBoxPredictor( is_training=False, num_classes=5, fc_hyperparams=self._build_arg_scope_with_hyperparams(), use_dropout=False, dropout_keep_prob=0.5, box_code_size=4, ) box_predictions = mask_box_predictor.predict( image_features, num_predictions_per_location=1, scope='BoxPredictor') box_encodings = box_predictions[box_predictor.BOX_ENCODINGS] class_predictions_with_background = box_predictions[ box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND] init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) (box_encodings_shape, class_predictions_with_background_shape) = sess.run( [tf.shape(box_encodings), tf.shape(class_predictions_with_background)]) self.assertAllEqual(box_encodings_shape, [2, 1, 5, 4]) self.assertAllEqual(class_predictions_with_background_shape, [2, 1, 6]) def test_value_error_on_predict_instance_masks_with_no_conv_hyperparms(self): with self.assertRaises(ValueError): box_predictor.MaskRCNNBoxPredictor( is_training=False, num_classes=5, fc_hyperparams=self._build_arg_scope_with_hyperparams(), use_dropout=False, dropout_keep_prob=0.5, box_code_size=4, predict_instance_masks=True) def test_get_instance_masks(self): image_features = tf.random_uniform([2, 7, 7, 3], dtype=tf.float32) mask_box_predictor = box_predictor.MaskRCNNBoxPredictor( is_training=False, num_classes=5, fc_hyperparams=self._build_arg_scope_with_hyperparams(), use_dropout=False, dropout_keep_prob=0.5, box_code_size=4, conv_hyperparams=self._build_arg_scope_with_hyperparams( op_type=hyperparams_pb2.Hyperparams.CONV), predict_instance_masks=True) box_predictions = mask_box_predictor.predict( image_features, num_predictions_per_location=1, scope='BoxPredictor') mask_predictions = box_predictions[box_predictor.MASK_PREDICTIONS] self.assertListEqual([2, 1, 5, 14, 14], mask_predictions.get_shape().as_list()) def test_do_not_return_instance_masks_and_keypoints_without_request(self): image_features = tf.random_uniform([2, 7, 7, 3], dtype=tf.float32) mask_box_predictor = box_predictor.MaskRCNNBoxPredictor( is_training=False, num_classes=5, fc_hyperparams=self._build_arg_scope_with_hyperparams(), use_dropout=False, dropout_keep_prob=0.5, box_code_size=4) box_predictions = mask_box_predictor.predict( image_features, num_predictions_per_location=1, scope='BoxPredictor') self.assertEqual(len(box_predictions), 2) self.assertTrue(box_predictor.BOX_ENCODINGS in box_predictions) self.assertTrue(box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND in box_predictions) def test_value_error_on_predict_keypoints(self): with self.assertRaises(ValueError): box_predictor.MaskRCNNBoxPredictor( is_training=False, num_classes=5, fc_hyperparams=self._build_arg_scope_with_hyperparams(), use_dropout=False, dropout_keep_prob=0.5, box_code_size=4, predict_keypoints=True) class RfcnBoxPredictorTest(tf.test.TestCase): def _build_arg_scope_with_conv_hyperparams(self): conv_hyperparams = hyperparams_pb2.Hyperparams() conv_hyperparams_text_proto = """ regularizer { l2_regularizer { } } initializer { truncated_normal_initializer { } } """ text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams) return hyperparams_builder.build(conv_hyperparams, is_training=True) def test_get_correct_box_encoding_and_class_prediction_shapes(self): image_features = tf.random_uniform([4, 8, 8, 64], dtype=tf.float32) proposal_boxes = tf.random_normal([4, 2, 4], dtype=tf.float32) rfcn_box_predictor = box_predictor.RfcnBoxPredictor( is_training=False, num_classes=2, conv_hyperparams=self._build_arg_scope_with_conv_hyperparams(), num_spatial_bins=[3, 3], depth=4, crop_size=[12, 12], box_code_size=4 ) box_predictions = rfcn_box_predictor.predict( image_features, num_predictions_per_location=1, scope='BoxPredictor', proposal_boxes=proposal_boxes) box_encodings = box_predictions[box_predictor.BOX_ENCODINGS] class_predictions_with_background = box_predictions[ box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND] init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) (box_encodings_shape, class_predictions_shape) = sess.run( [tf.shape(box_encodings), tf.shape(class_predictions_with_background)]) self.assertAllEqual(box_encodings_shape, [8, 1, 2, 4]) self.assertAllEqual(class_predictions_shape, [8, 1, 3]) class ConvolutionalBoxPredictorTest(tf.test.TestCase): def _build_arg_scope_with_conv_hyperparams(self): conv_hyperparams = hyperparams_pb2.Hyperparams() conv_hyperparams_text_proto = """ activation: RELU_6 regularizer { l2_regularizer { } } initializer { truncated_normal_initializer { } } """ text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams) return hyperparams_builder.build(conv_hyperparams, is_training=True) def test_get_boxes_for_five_aspect_ratios_per_location(self): image_features = tf.random_uniform([4, 8, 8, 64], dtype=tf.float32) conv_box_predictor = box_predictor.ConvolutionalBoxPredictor( is_training=False, num_classes=0, conv_hyperparams=self._build_arg_scope_with_conv_hyperparams(), min_depth=0, max_depth=32, num_layers_before_predictor=1, use_dropout=True, dropout_keep_prob=0.8, kernel_size=1, box_code_size=4 ) box_predictions = conv_box_predictor.predict( image_features, num_predictions_per_location=5, scope='BoxPredictor') box_encodings = box_predictions[box_predictor.BOX_ENCODINGS] objectness_predictions = box_predictions[ box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND] init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) (box_encodings_shape, objectness_predictions_shape) = sess.run( [tf.shape(box_encodings), tf.shape(objectness_predictions)]) self.assertAllEqual(box_encodings_shape, [4, 320, 1, 4]) self.assertAllEqual(objectness_predictions_shape, [4, 320, 1]) def test_get_boxes_for_one_aspect_ratio_per_location(self): image_features = tf.random_uniform([4, 8, 8, 64], dtype=tf.float32) conv_box_predictor = box_predictor.ConvolutionalBoxPredictor( is_training=False, num_classes=0, conv_hyperparams=self._build_arg_scope_with_conv_hyperparams(), min_depth=0, max_depth=32, num_layers_before_predictor=1, use_dropout=True, dropout_keep_prob=0.8, kernel_size=1, box_code_size=4 ) box_predictions = conv_box_predictor.predict( image_features, num_predictions_per_location=1, scope='BoxPredictor') box_encodings = box_predictions[box_predictor.BOX_ENCODINGS] objectness_predictions = box_predictions[ box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND] init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) (box_encodings_shape, objectness_predictions_shape) = sess.run( [tf.shape(box_encodings), tf.shape(objectness_predictions)]) self.assertAllEqual(box_encodings_shape, [4, 64, 1, 4]) self.assertAllEqual(objectness_predictions_shape, [4, 64, 1]) def test_get_multi_class_predictions_for_five_aspect_ratios_per_location( self): num_classes_without_background = 6 image_features = tf.random_uniform([4, 8, 8, 64], dtype=tf.float32) conv_box_predictor = box_predictor.ConvolutionalBoxPredictor( is_training=False, num_classes=num_classes_without_background, conv_hyperparams=self._build_arg_scope_with_conv_hyperparams(), min_depth=0, max_depth=32, num_layers_before_predictor=1, use_dropout=True, dropout_keep_prob=0.8, kernel_size=1, box_code_size=4 ) box_predictions = conv_box_predictor.predict( image_features, num_predictions_per_location=5, scope='BoxPredictor') box_encodings = box_predictions[box_predictor.BOX_ENCODINGS] class_predictions_with_background = box_predictions[ box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND] init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) (box_encodings_shape, class_predictions_with_background_shape ) = sess.run([ tf.shape(box_encodings), tf.shape(class_predictions_with_background)]) self.assertAllEqual(box_encodings_shape, [4, 320, 1, 4]) self.assertAllEqual(class_predictions_with_background_shape, [4, 320, num_classes_without_background+1]) def test_get_boxes_for_five_aspect_ratios_per_location_fully_convolutional( self): image_features = tf.placeholder(dtype=tf.float32, shape=[4, None, None, 64]) conv_box_predictor = box_predictor.ConvolutionalBoxPredictor( is_training=False, num_classes=0, conv_hyperparams=self._build_arg_scope_with_conv_hyperparams(), min_depth=0, max_depth=32, num_layers_before_predictor=1, use_dropout=True, dropout_keep_prob=0.8, kernel_size=1, box_code_size=4 ) box_predictions = conv_box_predictor.predict( image_features, num_predictions_per_location=5, scope='BoxPredictor') box_encodings = box_predictions[box_predictor.BOX_ENCODINGS] objectness_predictions = box_predictions[ box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND] init_op = tf.global_variables_initializer() resolution = 32 expected_num_anchors = resolution*resolution*5 with self.test_session() as sess: sess.run(init_op) (box_encodings_shape, objectness_predictions_shape) = sess.run( [tf.shape(box_encodings), tf.shape(objectness_predictions)], feed_dict={image_features: np.random.rand(4, resolution, resolution, 64)}) self.assertAllEqual(box_encodings_shape, [4, expected_num_anchors, 1, 4]) self.assertAllEqual(objectness_predictions_shape, [4, expected_num_anchors, 1]) if __name__ == '__main__': tf.test.main()
39
80
0.712172
[ "MIT" ]
emma-mens/elk-recognition
src/animal_detection/tf_api/core/box_predictor_test.py
12,636
Python
# Copyright 2013-2021 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from __future__ import print_function import collections import copy import itertools import os import pprint import sys import types import warnings from six import string_types import archspec.cpu try: import clingo # There may be a better way to detect this clingo_cffi = hasattr(clingo.Symbol, '_rep') except ImportError: clingo = None # type: ignore clingo_cffi = False import llnl.util.lang import llnl.util.tty as tty import spack import spack.architecture import spack.bootstrap import spack.cmd import spack.compilers import spack.config import spack.dependency import spack.directives import spack.environment as ev import spack.error import spack.package import spack.package_prefs import spack.repo import spack.spec import spack.util.timer import spack.variant import spack.version if sys.version_info >= (3, 3): from collections.abc import Sequence # novm else: from collections import Sequence #: Enumeration like object to mark version provenance version_provenance = collections.namedtuple( # type: ignore 'VersionProvenance', ['external', 'packages_yaml', 'package_py', 'spec'] )(spec=0, external=1, packages_yaml=2, package_py=3) #: String representation of version origins, to emit legible # facts for the ASP solver version_origin_str = { 0: 'spec', 1: 'external', 2: 'packages_yaml', 3: 'package_py' } #: Named tuple to contain information on declared versions DeclaredVersion = collections.namedtuple( 'DeclaredVersion', ['version', 'idx', 'origin'] ) def issequence(obj): if isinstance(obj, string_types): return False return isinstance(obj, (Sequence, types.GeneratorType)) def listify(args): if len(args) == 1 and issequence(args[0]): return list(args[0]) return list(args) def packagize(pkg): if isinstance(pkg, string_types): return spack.repo.path.get_pkg_class(pkg) else: return pkg def specify(spec): if isinstance(spec, spack.spec.Spec): return spec return spack.spec.Spec(spec) class AspObject(object): """Object representing a piece of ASP code.""" def _id(thing): """Quote string if needed for it to be a valid identifier.""" if isinstance(thing, AspObject): return thing elif isinstance(thing, bool): return '"%s"' % str(thing) elif isinstance(thing, int): return str(thing) else: return '"%s"' % str(thing) @llnl.util.lang.key_ordering class AspFunction(AspObject): def __init__(self, name, args=None): self.name = name self.args = () if args is None else args def _cmp_key(self): return (self.name, self.args) def __call__(self, *args): return AspFunction(self.name, args) def symbol(self, positive=True): def argify(arg): if isinstance(arg, bool): return clingo.String(str(arg)) elif isinstance(arg, int): return clingo.Number(arg) else: return clingo.String(str(arg)) return clingo.Function( self.name, [argify(arg) for arg in self.args], positive=positive) def __str__(self): return "%s(%s)" % ( self.name, ', '.join(str(_id(arg)) for arg in self.args)) def __repr__(self): return str(self) class AspFunctionBuilder(object): def __getattr__(self, name): return AspFunction(name) fn = AspFunctionBuilder() def all_compilers_in_config(): return spack.compilers.all_compilers() def extend_flag_list(flag_list, new_flags): """Extend a list of flags, preserving order and precedence. Add new_flags at the end of flag_list. If any flags in new_flags are already in flag_list, they are moved to the end so that they take higher precedence on the compile line. """ for flag in new_flags: if flag in flag_list: flag_list.remove(flag) flag_list.append(flag) def check_same_flags(flag_dict_1, flag_dict_2): """Return True if flag dicts contain the same flags regardless of order.""" types = set(flag_dict_1.keys()).union(set(flag_dict_2.keys())) for t in types: values1 = set(flag_dict_1.get(t, [])) values2 = set(flag_dict_2.get(t, [])) assert values1 == values2 def check_packages_exist(specs): """Ensure all packages mentioned in specs exist.""" repo = spack.repo.path for spec in specs: for s in spec.traverse(): try: check_passed = repo.exists(s.name) or repo.is_virtual(s.name) except Exception as e: msg = 'Cannot find package: {0}'.format(str(e)) check_passed = False tty.debug(msg) if not check_passed: raise spack.repo.UnknownPackageError(str(s.fullname)) class Result(object): """Result of an ASP solve.""" def __init__(self, specs, asp=None): self.asp = asp self.satisfiable = None self.optimal = None self.warnings = None self.nmodels = 0 # specs ordered by optimization level self.answers = [] self.cores = [] # names of optimization criteria self.criteria = [] # Abstract user requests self.abstract_specs = specs # Concrete specs self._concrete_specs = None def print_cores(self): for core in self.cores: tty.msg( "The following constraints are unsatisfiable:", *sorted(str(symbol) for symbol in core)) @property def specs(self): """List of concretized specs satisfying the initial abstract request. """ # The specs were already computed, return them if self._concrete_specs: return self._concrete_specs # Assert prerequisite msg = 'cannot compute specs ["satisfiable" is not True ]' assert self.satisfiable, msg self._concrete_specs = [] best = min(self.answers) opt, _, answer = best for input_spec in self.abstract_specs: key = input_spec.name if input_spec.virtual: providers = [spec.name for spec in answer.values() if spec.package.provides(key)] key = providers[0] self._concrete_specs.append(answer[key]) return self._concrete_specs def _normalize_packages_yaml(packages_yaml): normalized_yaml = copy.copy(packages_yaml) for pkg_name in packages_yaml: is_virtual = spack.repo.path.is_virtual(pkg_name) if pkg_name == 'all' or not is_virtual: continue # Remove the virtual entry from the normalized configuration data = normalized_yaml.pop(pkg_name) is_buildable = data.get('buildable', True) if not is_buildable: for provider in spack.repo.path.providers_for(pkg_name): entry = normalized_yaml.setdefault(provider.name, {}) entry['buildable'] = False externals = data.get('externals', []) keyfn = lambda x: spack.spec.Spec(x['spec']).name for provider, specs in itertools.groupby(externals, key=keyfn): entry = normalized_yaml.setdefault(provider, {}) entry.setdefault('externals', []).extend(specs) return normalized_yaml class PyclingoDriver(object): def __init__(self, cores=True, asp=None): """Driver for the Python clingo interface. Arguments: cores (bool): whether to generate unsatisfiable cores for better error reporting. asp (file-like): optional stream to write a text-based ASP program for debugging or verification. """ global clingo if not clingo: with spack.bootstrap.ensure_bootstrap_configuration(): spack.bootstrap.ensure_clingo_importable_or_raise() import clingo self.out = asp or llnl.util.lang.Devnull() self.cores = cores def title(self, name, char): self.out.write('\n') self.out.write("%" + (char * 76)) self.out.write('\n') self.out.write("%% %s\n" % name) self.out.write("%" + (char * 76)) self.out.write('\n') def h1(self, name): self.title(name, "=") def h2(self, name): self.title(name, "-") def newline(self): self.out.write('\n') def fact(self, head): """ASP fact (a rule without a body).""" symbol = head.symbol() if hasattr(head, 'symbol') else head self.out.write("%s.\n" % str(symbol)) atom = self.backend.add_atom(symbol) self.backend.add_rule([atom], [], choice=self.cores) if self.cores: self.assumptions.append(atom) def solve( self, solver_setup, specs, dump=None, nmodels=0, timers=False, stats=False, tests=False ): timer = spack.util.timer.Timer() # Initialize the control object for the solver self.control = clingo.Control() self.control.configuration.solve.models = nmodels self.control.configuration.asp.trans_ext = 'all' self.control.configuration.asp.eq = '5' self.control.configuration.configuration = 'tweety' self.control.configuration.solve.parallel_mode = '2' self.control.configuration.solver.opt_strategy = "usc,one" # set up the problem -- this generates facts and rules self.assumptions = [] with self.control.backend() as backend: self.backend = backend solver_setup.setup(self, specs, tests=tests) timer.phase("setup") # read in the main ASP program and display logic -- these are # handwritten, not generated, so we load them as resources parent_dir = os.path.dirname(__file__) self.control.load(os.path.join(parent_dir, 'concretize.lp')) self.control.load(os.path.join(parent_dir, "display.lp")) timer.phase("load") # Grounding is the first step in the solve -- it turns our facts # and first-order logic rules into propositional logic. self.control.ground([("base", [])]) timer.phase("ground") # With a grounded program, we can run the solve. result = Result(specs) models = [] # stable models if things go well cores = [] # unsatisfiable cores if they do not def on_model(model): models.append((model.cost, model.symbols(shown=True, terms=True))) solve_kwargs = {"assumptions": self.assumptions, "on_model": on_model, "on_core": cores.append} if clingo_cffi: solve_kwargs["on_unsat"] = cores.append solve_result = self.control.solve(**solve_kwargs) timer.phase("solve") # once done, construct the solve result result.satisfiable = solve_result.satisfiable def stringify(x): if clingo_cffi: # Clingo w/ CFFI will throw an exception on failure try: return x.string except RuntimeError: return str(x) else: return x.string or str(x) if result.satisfiable: # build spec from the best model builder = SpecBuilder(specs) min_cost, best_model = min(models) tuples = [ (sym.name, [stringify(a) for a in sym.arguments]) for sym in best_model ] answers = builder.build_specs(tuples) # add best spec to the results result.answers.append((list(min_cost), 0, answers)) # pull optimization criteria names out of the solution criteria = [ (int(args[0]), args[1]) for name, args in tuples if name == "opt_criterion" ] result.criteria = [t[1] for t in sorted(criteria, reverse=True)] # record the number of models the solver considered result.nmodels = len(models) elif cores: symbols = dict( (a.literal, a.symbol) for a in self.control.symbolic_atoms ) for core in cores: core_symbols = [] for atom in core: sym = symbols[atom] if sym.name == "rule": sym = sym.arguments[0].string core_symbols.append(sym) result.cores.append(core_symbols) if timers: timer.write_tty() print() if stats: print("Statistics:") pprint.pprint(self.control.statistics) return result class SpackSolverSetup(object): """Class to set up and run a Spack concretization solve.""" def __init__(self): self.gen = None # set by setup() self.declared_versions = {} self.possible_versions = {} self.deprecated_versions = {} self.possible_virtuals = None self.possible_compilers = [] self.variant_values_from_specs = set() self.version_constraints = set() self.target_constraints = set() self.compiler_version_constraints = set() self.post_facts = [] # id for dummy variables self._condition_id_counter = itertools.count() # Caches to optimize the setup phase of the solver self.target_specs_cache = None def pkg_version_rules(self, pkg): """Output declared versions of a package. This uses self.possible_versions so that we include any versions that arise from a spec. """ def key_fn(version): # Origins are sorted by order of importance: # 1. Spec from command line # 2. Externals # 3. Package preferences # 4. Directives in package.py return version.origin, version.idx pkg = packagize(pkg) declared_versions = self.declared_versions[pkg.name] most_to_least_preferred = sorted(declared_versions, key=key_fn) for weight, declared_version in enumerate(most_to_least_preferred): self.gen.fact(fn.version_declared( pkg.name, declared_version.version, weight, version_origin_str[declared_version.origin] )) # Declare deprecated versions for this package, if any deprecated = self.deprecated_versions[pkg.name] for v in sorted(deprecated): self.gen.fact(fn.deprecated_version(pkg.name, v)) def spec_versions(self, spec): """Return list of clauses expressing spec's version constraints.""" spec = specify(spec) assert spec.name if spec.concrete: return [fn.version(spec.name, spec.version)] if spec.versions == spack.version.ver(":"): return [] # record all version constraints for later self.version_constraints.add((spec.name, spec.versions)) return [fn.version_satisfies(spec.name, spec.versions)] def target_ranges(self, spec, single_target_fn): target = spec.architecture.target # Check if the target is a concrete target if str(target) in archspec.cpu.TARGETS: return [single_target_fn(spec.name, target)] self.target_constraints.add((spec.name, target)) return [fn.node_target_satisfies(spec.name, target)] def conflict_rules(self, pkg): for trigger, constraints in pkg.conflicts.items(): trigger_id = self.condition(spack.spec.Spec(trigger), name=pkg.name) self.gen.fact(fn.conflict_trigger(trigger_id)) for constraint, _ in constraints: constraint_id = self.condition(constraint, name=pkg.name) self.gen.fact(fn.conflict(pkg.name, trigger_id, constraint_id)) self.gen.newline() def available_compilers(self): """Facts about available compilers.""" self.gen.h2("Available compilers") compilers = self.possible_compilers compiler_versions = collections.defaultdict(lambda: set()) for compiler in compilers: compiler_versions[compiler.name].add(compiler.version) for compiler in sorted(compiler_versions): for v in sorted(compiler_versions[compiler]): self.gen.fact(fn.compiler_version(compiler, v)) self.gen.newline() def compiler_defaults(self): """Set compiler defaults, given a list of possible compilers.""" self.gen.h2("Default compiler preferences") compiler_list = self.possible_compilers.copy() compiler_list = sorted( compiler_list, key=lambda x: (x.name, x.version), reverse=True) ppk = spack.package_prefs.PackagePrefs("all", 'compiler', all=False) matches = sorted(compiler_list, key=ppk) for i, cspec in enumerate(matches): f = fn.default_compiler_preference(cspec.name, cspec.version, i) self.gen.fact(f) # Enumerate target families. This may be redundant, but compilers with # custom versions will be able to concretize properly. for entry in spack.compilers.all_compilers_config(): compiler_entry = entry['compiler'] cspec = spack.spec.CompilerSpec(compiler_entry['spec']) if not compiler_entry.get('target', None): continue self.gen.fact(fn.compiler_supports_target( cspec.name, cspec.version, compiler_entry['target'] )) def compiler_supports_os(self): compilers_yaml = spack.compilers.all_compilers_config() for entry in compilers_yaml: c = spack.spec.CompilerSpec(entry['compiler']['spec']) operating_system = entry['compiler']['operating_system'] self.gen.fact(fn.compiler_supports_os( c.name, c.version, operating_system )) def package_compiler_defaults(self, pkg): """Facts about packages' compiler prefs.""" packages = spack.config.get("packages") pkg_prefs = packages.get(pkg.name) if not pkg_prefs or "compiler" not in pkg_prefs: return compiler_list = self.possible_compilers.copy() compiler_list = sorted( compiler_list, key=lambda x: (x.name, x.version), reverse=True) ppk = spack.package_prefs.PackagePrefs(pkg.name, 'compiler', all=False) matches = sorted(compiler_list, key=ppk) for i, cspec in enumerate(reversed(matches)): self.gen.fact(fn.node_compiler_preference( pkg.name, cspec.name, cspec.version, -i * 100 )) def pkg_rules(self, pkg, tests): pkg = packagize(pkg) # versions self.pkg_version_rules(pkg) self.gen.newline() # variants for name, variant in sorted(pkg.variants.items()): self.gen.fact(fn.variant(pkg.name, name)) single_value = not variant.multi if single_value: self.gen.fact(fn.variant_single_value(pkg.name, name)) self.gen.fact( fn.variant_default_value_from_package_py( pkg.name, name, variant.default) ) else: spec_variant = variant.make_default() defaults = spec_variant.value for val in sorted(defaults): self.gen.fact( fn.variant_default_value_from_package_py( pkg.name, name, val) ) values = variant.values if values is None: values = [] elif isinstance(values, spack.variant.DisjointSetsOfValues): union = set() # Encode the disjoint sets in the logic program for sid, s in enumerate(values.sets): for value in s: self.gen.fact(fn.variant_value_from_disjoint_sets( pkg.name, name, value, sid )) union.update(s) values = union # make sure that every variant has at least one possible value if not values: values = [variant.default] for value in sorted(values): self.gen.fact(fn.variant_possible_value(pkg.name, name, value)) self.gen.newline() # conflicts self.conflict_rules(pkg) # default compilers for this package self.package_compiler_defaults(pkg) # virtuals self.package_provider_rules(pkg) # dependencies self.package_dependencies_rules(pkg, tests) # virtual preferences self.virtual_preferences( pkg.name, lambda v, p, i: self.gen.fact( fn.pkg_provider_preference(pkg.name, v, p, i) ) ) def condition(self, required_spec, imposed_spec=None, name=None): """Generate facts for a dependency or virtual provider condition. Arguments: required_spec (spack.spec.Spec): the spec that triggers this condition imposed_spec (spack.spec.Spec or None): the sepc with constraints that are imposed when this condition is triggered name (str or None): name for `required_spec` (required if required_spec is anonymous, ignored if not) Returns: int: id of the condition created by this function """ named_cond = required_spec.copy() named_cond.name = named_cond.name or name assert named_cond.name, "must provide name for anonymous condtions!" condition_id = next(self._condition_id_counter) self.gen.fact(fn.condition(condition_id)) # requirements trigger the condition requirements = self.checked_spec_clauses( named_cond, body=True, required_from=name) for pred in requirements: self.gen.fact( fn.condition_requirement(condition_id, pred.name, *pred.args) ) if imposed_spec: imposed_constraints = self.checked_spec_clauses( imposed_spec, body=False, required_from=name) for pred in imposed_constraints: # imposed "node"-like conditions are no-ops if pred.name in ("node", "virtual_node"): continue self.gen.fact( fn.imposed_constraint(condition_id, pred.name, *pred.args) ) return condition_id def package_provider_rules(self, pkg): for provider_name in sorted(set(s.name for s in pkg.provided.keys())): self.gen.fact(fn.possible_provider(pkg.name, provider_name)) for provided, whens in pkg.provided.items(): for when in whens: condition_id = self.condition(when, provided, pkg.name) self.gen.fact(fn.provider_condition( condition_id, when.name, provided.name )) self.gen.newline() def package_dependencies_rules(self, pkg, tests): """Translate 'depends_on' directives into ASP logic.""" for _, conditions in sorted(pkg.dependencies.items()): for cond, dep in sorted(conditions.items()): deptypes = dep.type.copy() # Skip test dependencies if they're not requested if not tests: deptypes.discard("test") # ... or if they are requested only for certain packages if not isinstance(tests, bool) and pkg.name not in tests: deptypes.discard("test") # if there are no dependency types to be considered # anymore, don't generate the dependency if not deptypes: continue condition_id = self.condition(cond, dep.spec, pkg.name) self.gen.fact(fn.dependency_condition( condition_id, pkg.name, dep.spec.name )) for t in sorted(deptypes): # there is a declared dependency of type t self.gen.fact(fn.dependency_type(condition_id, t)) self.gen.newline() def virtual_preferences(self, pkg_name, func): """Call func(vspec, provider, i) for each of pkg's provider prefs.""" config = spack.config.get("packages") pkg_prefs = config.get(pkg_name, {}).get("providers", {}) for vspec, providers in pkg_prefs.items(): if vspec not in self.possible_virtuals: continue for i, provider in enumerate(providers): provider_name = spack.spec.Spec(provider).name func(vspec, provider_name, i) def provider_defaults(self): self.gen.h2("Default virtual providers") assert self.possible_virtuals is not None self.virtual_preferences( "all", lambda v, p, i: self.gen.fact( fn.default_provider_preference(v, p, i)) ) def external_packages(self): """Facts on external packages, as read from packages.yaml""" # Read packages.yaml and normalize it, so that it # will not contain entries referring to virtual # packages. packages_yaml = spack.config.get("packages") packages_yaml = _normalize_packages_yaml(packages_yaml) self.gen.h1('External packages') for pkg_name, data in packages_yaml.items(): if pkg_name == 'all': continue # This package does not appear in any repository if pkg_name not in spack.repo.path: continue self.gen.h2('External package: {0}'.format(pkg_name)) # Check if the external package is buildable. If it is # not then "external(<pkg>)" is a fact. external_buildable = data.get('buildable', True) if not external_buildable: self.gen.fact(fn.external_only(pkg_name)) # Read a list of all the specs for this package externals = data.get('externals', []) external_specs = [spack.spec.Spec(x['spec']) for x in externals] # Order the external versions to prefer more recent versions # even if specs in packages.yaml are not ordered that way external_versions = [ (x.version, external_id) for external_id, x in enumerate(external_specs) ] external_versions = [ (v, idx, external_id) for idx, (v, external_id) in enumerate(sorted(external_versions, reverse=True)) ] for version, idx, external_id in external_versions: self.declared_versions[pkg_name].append(DeclaredVersion( version=version, idx=idx, origin=version_provenance.external )) # Declare external conditions with a local index into packages.yaml for local_idx, spec in enumerate(external_specs): condition_id = self.condition(spec) self.gen.fact( fn.possible_external(condition_id, pkg_name, local_idx) ) self.possible_versions[spec.name].add(spec.version) self.gen.newline() def preferred_variants(self, pkg_name): """Facts on concretization preferences, as read from packages.yaml""" preferences = spack.package_prefs.PackagePrefs preferred_variants = preferences.preferred_variants(pkg_name) if not preferred_variants: return for variant_name in sorted(preferred_variants): variant = preferred_variants[variant_name] values = variant.value if not isinstance(values, tuple): values = (values,) # perform validation of the variant and values spec = spack.spec.Spec(pkg_name) spec.update_variant_validate(variant_name, values) for value in values: self.variant_values_from_specs.add( (pkg_name, variant.name, value) ) self.gen.fact(fn.variant_default_value_from_packages_yaml( pkg_name, variant.name, value )) def preferred_targets(self, pkg_name): key_fn = spack.package_prefs.PackagePrefs(pkg_name, 'target') if not self.target_specs_cache: self.target_specs_cache = [ spack.spec.Spec('target={0}'.format(target_name)) for target_name in archspec.cpu.TARGETS ] target_specs = self.target_specs_cache preferred_targets = [x for x in target_specs if key_fn(x) < 0] if not preferred_targets: return preferred = preferred_targets[0] self.gen.fact(fn.package_target_weight( str(preferred.architecture.target), pkg_name, -30 )) def flag_defaults(self): self.gen.h2("Compiler flag defaults") # types of flags that can be on specs for flag in spack.spec.FlagMap.valid_compiler_flags(): self.gen.fact(fn.flag_type(flag)) self.gen.newline() # flags from compilers.yaml compilers = all_compilers_in_config() for compiler in compilers: for name, flags in compiler.flags.items(): for flag in flags: self.gen.fact(fn.compiler_version_flag( compiler.name, compiler.version, name, flag)) def checked_spec_clauses(self, *args, **kwargs): """Wrap a call to spec clauses into a try/except block that raise a comprehensible error message in case of failure. """ requestor = kwargs.pop('required_from', None) try: clauses = self.spec_clauses(*args, **kwargs) except RuntimeError as exc: msg = str(exc) if requestor: msg += ' [required from package "{0}"]'.format(requestor) raise RuntimeError(msg) return clauses def spec_clauses(self, spec, body=False, transitive=True): """Return a list of clauses for a spec mandates are true. Arguments: spec (spack.spec.Spec): the spec to analyze body (bool): if True, generate clauses to be used in rule bodies (final values) instead of rule heads (setters). transitive (bool): if False, don't generate clauses from dependencies (default True) """ clauses = [] # TODO: do this with consistent suffixes. class Head(object): node = fn.node virtual_node = fn.virtual_node node_platform = fn.node_platform_set node_os = fn.node_os_set node_target = fn.node_target_set variant_value = fn.variant_set node_compiler = fn.node_compiler_set node_compiler_version = fn.node_compiler_version_set node_flag = fn.node_flag_set class Body(object): node = fn.node virtual_node = fn.virtual_node node_platform = fn.node_platform node_os = fn.node_os node_target = fn.node_target variant_value = fn.variant_value node_compiler = fn.node_compiler node_compiler_version = fn.node_compiler_version node_flag = fn.node_flag f = Body if body else Head if spec.name: clauses.append( f.node(spec.name) if not spec.virtual else f.virtual_node(spec.name)) clauses.extend(self.spec_versions(spec)) # seed architecture at the root (we'll propagate later) # TODO: use better semantics. arch = spec.architecture if arch: if arch.platform: clauses.append(f.node_platform(spec.name, arch.platform)) if arch.os: clauses.append(f.node_os(spec.name, arch.os)) if arch.target: clauses.extend(self.target_ranges(spec, f.node_target)) # variants for vname, variant in sorted(spec.variants.items()): values = variant.value if not isinstance(values, (list, tuple)): values = [values] for value in values: # * is meaningless for concretization -- just for matching if value == '*': continue # validate variant value only if spec not concrete if not spec.concrete: reserved_names = spack.directives.reserved_names if not spec.virtual and vname not in reserved_names: try: variant_def = spec.package.variants[vname] except KeyError: msg = 'variant "{0}" not found in package "{1}"' raise RuntimeError(msg.format(vname, spec.name)) else: variant_def.validate_or_raise(variant, spec.package) clauses.append(f.variant_value(spec.name, vname, value)) # Tell the concretizer that this is a possible value for the # variant, to account for things like int/str values where we # can't enumerate the valid values self.variant_values_from_specs.add((spec.name, vname, value)) # compiler and compiler version if spec.compiler: clauses.append(f.node_compiler(spec.name, spec.compiler.name)) if spec.compiler.concrete: clauses.append(f.node_compiler_version( spec.name, spec.compiler.name, spec.compiler.version)) elif spec.compiler.versions: clauses.append( fn.node_compiler_version_satisfies( spec.name, spec.compiler.name, spec.compiler.versions)) self.compiler_version_constraints.add( (spec.name, spec.compiler)) # compiler flags for flag_type, flags in spec.compiler_flags.items(): for flag in flags: clauses.append(f.node_flag(spec.name, flag_type, flag)) # dependencies if spec.concrete: clauses.append(fn.concrete(spec.name)) # TODO: add concrete depends_on() facts for concrete dependencies # add all clauses from dependencies if transitive: for dep in spec.traverse(root=False): clauses.extend(self.spec_clauses(dep, body, transitive=False)) return clauses def build_version_dict(self, possible_pkgs, specs): """Declare any versions in specs not declared in packages.""" self.declared_versions = collections.defaultdict(list) self.possible_versions = collections.defaultdict(set) self.deprecated_versions = collections.defaultdict(set) packages_yaml = spack.config.get("packages") packages_yaml = _normalize_packages_yaml(packages_yaml) for pkg_name in possible_pkgs: pkg = spack.repo.get(pkg_name) # All the versions from the corresponding package.py file. Since concepts # like being a "develop" version or being preferred exist only at a # package.py level, sort them in this partial list here def key_fn(item): version, info = item # When COMPARING VERSIONS, the '@develop' version is always # larger than other versions. BUT when CONCRETIZING, the largest # NON-develop version is selected by default. return info.get('preferred', False), not version.isdevelop(), version for idx, item in enumerate(sorted( pkg.versions.items(), key=key_fn, reverse=True )): v, version_info = item self.possible_versions[pkg_name].add(v) self.declared_versions[pkg_name].append(DeclaredVersion( version=v, idx=idx, origin=version_provenance.package_py )) deprecated = version_info.get('deprecated', False) if deprecated: self.deprecated_versions[pkg_name].add(v) # All the preferred version from packages.yaml, versions in external # specs will be computed later version_preferences = packages_yaml.get(pkg_name, {}).get("version", []) for idx, v in enumerate(version_preferences): self.declared_versions[pkg_name].append(DeclaredVersion( version=v, idx=idx, origin=version_provenance.packages_yaml )) for spec in specs: for dep in spec.traverse(): if dep.versions.concrete: # Concrete versions used in abstract specs from cli. They # all have idx equal to 0, which is the best possible. In # any case they will be used due to being set from the cli. self.declared_versions[dep.name].append(DeclaredVersion( version=dep.version, idx=0, origin=version_provenance.spec )) self.possible_versions[dep.name].add(dep.version) def _supported_targets(self, compiler_name, compiler_version, targets): """Get a list of which targets are supported by the compiler. Results are ordered most to least recent. """ supported = [] for target in targets: try: with warnings.catch_warnings(): warnings.simplefilter("ignore") target.optimization_flags(compiler_name, compiler_version) supported.append(target) except archspec.cpu.UnsupportedMicroarchitecture: continue except ValueError: continue return sorted(supported, reverse=True) def platform_defaults(self): self.gen.h2('Default platform') platform = spack.architecture.platform() self.gen.fact(fn.node_platform_default(platform)) def os_defaults(self, specs): self.gen.h2('Possible operating systems') platform = spack.architecture.platform() # create set of OS's to consider possible = set([ platform.front_os, platform.back_os, platform.default_os]) for spec in specs: if spec.architecture and spec.architecture.os: possible.add(spec.architecture.os) # make directives for possible OS's for possible_os in sorted(possible): self.gen.fact(fn.os(possible_os)) # mark this one as default self.gen.fact(fn.node_os_default(platform.default_os)) def target_defaults(self, specs): """Add facts about targets and target compatibility.""" self.gen.h2('Default target') platform = spack.architecture.platform() uarch = archspec.cpu.TARGETS.get(platform.default) self.gen.h2('Target compatibility') compatible_targets = [uarch] + uarch.ancestors additional_targets_in_family = sorted([ t for t in archspec.cpu.TARGETS.values() if (t.family.name == uarch.family.name and t not in compatible_targets) ], key=lambda x: len(x.ancestors), reverse=True) compatible_targets += additional_targets_in_family compilers = self.possible_compilers # this loop can be used to limit the number of targets # considered. Right now we consider them all, but it seems that # many targets can make things slow. # TODO: investigate this. best_targets = set([uarch.family.name]) for compiler in sorted(compilers): supported = self._supported_targets( compiler.name, compiler.version, compatible_targets ) # If we can't find supported targets it may be due to custom # versions in the spec, e.g. gcc@foo. Try to match the # real_version from the compiler object to get more accurate # results. if not supported: compiler_obj = spack.compilers.compilers_for_spec(compiler) compiler_obj = compiler_obj[0] supported = self._supported_targets( compiler.name, compiler_obj.real_version, compatible_targets ) if not supported: continue for target in supported: best_targets.add(target.name) self.gen.fact(fn.compiler_supports_target( compiler.name, compiler.version, target.name)) self.gen.fact(fn.compiler_supports_target( compiler.name, compiler.version, uarch.family.name)) # add any targets explicitly mentioned in specs for spec in specs: if not spec.architecture or not spec.architecture.target: continue target = archspec.cpu.TARGETS.get(spec.target.name) if not target: self.target_ranges(spec, None) continue if target not in compatible_targets: compatible_targets.append(target) i = 0 for target in compatible_targets: self.gen.fact(fn.target(target.name)) self.gen.fact(fn.target_family(target.name, target.family.name)) for parent in sorted(target.parents): self.gen.fact(fn.target_parent(target.name, parent.name)) # prefer best possible targets; weight others poorly so # they're not used unless set explicitly if target.name in best_targets: self.gen.fact(fn.default_target_weight(target.name, i)) i += 1 else: self.gen.fact(fn.default_target_weight(target.name, 100)) self.gen.newline() def virtual_providers(self): self.gen.h2("Virtual providers") assert self.possible_virtuals is not None # what provides what for vspec in sorted(self.possible_virtuals): self.gen.fact(fn.virtual(vspec)) self.gen.newline() def generate_possible_compilers(self, specs): compilers = all_compilers_in_config() cspecs = set([c.spec for c in compilers]) # add compiler specs from the input line to possibilities if we # don't require compilers to exist. strict = spack.concretize.Concretizer().check_for_compiler_existence for spec in specs: for s in spec.traverse(): if not s.compiler or not s.compiler.concrete: continue if strict and s.compiler not in cspecs: raise spack.concretize.UnavailableCompilerVersionError( s.compiler ) else: cspecs.add(s.compiler) self.gen.fact(fn.allow_compiler( s.compiler.name, s.compiler.version )) return cspecs def define_version_constraints(self): """Define what version_satisfies(...) means in ASP logic.""" for pkg_name, versions in sorted(self.version_constraints): # version must be *one* of the ones the spec allows. allowed_versions = [ v for v in sorted(self.possible_versions[pkg_name]) if v.satisfies(versions) ] # This is needed to account for a variable number of # numbers e.g. if both 1.0 and 1.0.2 are possible versions exact_match = [v for v in allowed_versions if v == versions] if exact_match: allowed_versions = exact_match # generate facts for each package constraint and the version # that satisfies it for v in allowed_versions: self.gen.fact(fn.version_satisfies(pkg_name, versions, v)) self.gen.newline() def define_virtual_constraints(self): """Define versions for constraints on virtuals. Must be called before define_version_constraints(). """ # aggregate constraints into per-virtual sets constraint_map = collections.defaultdict(lambda: set()) for pkg_name, versions in self.version_constraints: if not spack.repo.path.is_virtual(pkg_name): continue constraint_map[pkg_name].add(versions) # extract all the real versions mentioned in version ranges def versions_for(v): if isinstance(v, spack.version.Version): return [v] elif isinstance(v, spack.version.VersionRange): result = [v.start] if v.start else [] result += [v.end] if v.end else [] return result elif isinstance(v, spack.version.VersionList): return sum((versions_for(e) for e in v), []) else: raise TypeError("expected version type, found: %s" % type(v)) # define a set of synthetic possible versions for virtuals, so # that `version_satisfies(Package, Constraint, Version)` has the # same semantics for virtuals as for regular packages. for pkg_name, versions in sorted(constraint_map.items()): possible_versions = set( sum([versions_for(v) for v in versions], []) ) for version in sorted(possible_versions): self.possible_versions[pkg_name].add(version) def define_compiler_version_constraints(self): compiler_list = spack.compilers.all_compiler_specs() compiler_list = list(sorted(set(compiler_list))) for pkg_name, cspec in self.compiler_version_constraints: for compiler in compiler_list: if compiler.satisfies(cspec): self.gen.fact( fn.node_compiler_version_satisfies( pkg_name, cspec.name, cspec.versions, compiler.version ) ) self.gen.newline() def define_target_constraints(self): def _all_targets_satisfiying(single_constraint): allowed_targets = [] if ':' not in single_constraint: return [single_constraint] t_min, _, t_max = single_constraint.partition(':') for test_target in archspec.cpu.TARGETS.values(): # Check lower bound if t_min and not t_min <= test_target: continue # Check upper bound if t_max and not t_max >= test_target: continue allowed_targets.append(test_target) return allowed_targets cache = {} for spec_name, target_constraint in sorted(self.target_constraints): # Construct the list of allowed targets for this constraint allowed_targets = [] for single_constraint in str(target_constraint).split(','): if single_constraint not in cache: cache[single_constraint] = _all_targets_satisfiying( single_constraint ) allowed_targets.extend(cache[single_constraint]) for target in allowed_targets: self.gen.fact( fn.node_target_satisfies( spec_name, target_constraint, target ) ) self.gen.newline() def define_variant_values(self): """Validate variant values from the command line. Also add valid variant values from the command line to the possible values for a variant. """ # Tell the concretizer about possible values from specs we saw in # spec_clauses() for pkg, variant, value in sorted(self.variant_values_from_specs): self.gen.fact(fn.variant_possible_value(pkg, variant, value)) def setup(self, driver, specs, tests=False): """Generate an ASP program with relevant constraints for specs. This calls methods on the solve driver to set up the problem with facts and rules from all possible dependencies of the input specs, as well as constraints from the specs themselves. Arguments: specs (list): list of Specs to solve """ self._condition_id_counter = itertools.count() # preliminary checks check_packages_exist(specs) # get list of all possible dependencies self.possible_virtuals = set( x.name for x in specs if x.virtual ) possible = spack.package.possible_dependencies( *specs, virtuals=self.possible_virtuals, deptype=spack.dependency.all_deptypes ) pkgs = set(possible) # driver is used by all the functions below to add facts and # rules to generate an ASP program. self.gen = driver # get possible compilers self.possible_compilers = self.generate_possible_compilers(specs) # traverse all specs and packages to build dict of possible versions self.build_version_dict(possible, specs) self.gen.h1('General Constraints') self.available_compilers() self.compiler_defaults() self.compiler_supports_os() # architecture defaults self.platform_defaults() self.os_defaults(specs) self.target_defaults(specs) self.virtual_providers() self.provider_defaults() self.external_packages() self.flag_defaults() self.gen.h1('Package Constraints') for pkg in sorted(pkgs): self.gen.h2('Package rules: %s' % pkg) self.pkg_rules(pkg, tests=tests) self.gen.h2('Package preferences: %s' % pkg) self.preferred_variants(pkg) self.preferred_targets(pkg) # Inject dev_path from environment env = ev.active_environment() if env: for spec in sorted(specs): for dep in spec.traverse(): _develop_specs_from_env(dep, env) self.gen.h1('Spec Constraints') for spec in sorted(specs): self.gen.h2('Spec: %s' % str(spec)) self.gen.fact( fn.virtual_root(spec.name) if spec.virtual else fn.root(spec.name) ) for clause in self.spec_clauses(spec): self.gen.fact(clause) if clause.name == 'variant_set': self.gen.fact(fn.variant_default_value_from_cli( *clause.args )) self.gen.h1("Variant Values defined in specs") self.define_variant_values() self.gen.h1("Virtual Constraints") self.define_virtual_constraints() self.gen.h1("Version Constraints") self.define_version_constraints() self.gen.h1("Compiler Version Constraints") self.define_compiler_version_constraints() self.gen.h1("Target Constraints") self.define_target_constraints() class SpecBuilder(object): """Class with actions to rebuild a spec from ASP results.""" def __init__(self, specs): self._result = None self._command_line_specs = specs self._flag_sources = collections.defaultdict(lambda: set()) self._flag_compiler_defaults = set() def node(self, pkg): if pkg not in self._specs: self._specs[pkg] = spack.spec.Spec(pkg) def _arch(self, pkg): arch = self._specs[pkg].architecture if not arch: arch = spack.spec.ArchSpec() self._specs[pkg].architecture = arch return arch def node_platform(self, pkg, platform): self._arch(pkg).platform = platform def node_os(self, pkg, os): self._arch(pkg).os = os def node_target(self, pkg, target): self._arch(pkg).target = target def variant_value(self, pkg, name, value): # FIXME: is there a way not to special case 'dev_path' everywhere? if name == 'dev_path': self._specs[pkg].variants.setdefault( name, spack.variant.SingleValuedVariant(name, value) ) return if name == 'patches': self._specs[pkg].variants.setdefault( name, spack.variant.MultiValuedVariant(name, value) ) return self._specs[pkg].update_variant_validate(name, value) def version(self, pkg, version): self._specs[pkg].versions = spack.version.ver([version]) def node_compiler(self, pkg, compiler): self._specs[pkg].compiler = spack.spec.CompilerSpec(compiler) def node_compiler_version(self, pkg, compiler, version): self._specs[pkg].compiler.versions = spack.version.VersionList( [version]) def node_flag_compiler_default(self, pkg): self._flag_compiler_defaults.add(pkg) def node_flag(self, pkg, flag_type, flag): self._specs[pkg].compiler_flags.setdefault(flag_type, []).append(flag) def node_flag_source(self, pkg, source): self._flag_sources[pkg].add(source) def no_flags(self, pkg, flag_type): self._specs[pkg].compiler_flags[flag_type] = [] def external_spec_selected(self, pkg, idx): """This means that the external spec and index idx has been selected for this package. """ packages_yaml = spack.config.get('packages') packages_yaml = _normalize_packages_yaml(packages_yaml) spec_info = packages_yaml[pkg]['externals'][int(idx)] self._specs[pkg].external_path = spec_info.get('prefix', None) self._specs[pkg].external_modules = ( spack.spec.Spec._format_module_list(spec_info.get('modules', None)) ) self._specs[pkg].extra_attributes = spec_info.get( 'extra_attributes', {} ) def depends_on(self, pkg, dep, type): dependency = self._specs[pkg]._dependencies.get(dep) if not dependency: self._specs[pkg]._add_dependency( self._specs[dep], (type,)) else: dependency.add_type(type) def reorder_flags(self): """Order compiler flags on specs in predefined order. We order flags so that any node's flags will take priority over those of its dependents. That is, the deepest node in the DAG's flags will appear last on the compile line, in the order they were specified. The solver determines wihch flags are on nodes; this routine imposes order afterwards. """ # nodes with no flags get flag order from compiler compilers = dict((c.spec, c) for c in all_compilers_in_config()) for pkg in self._flag_compiler_defaults: spec = self._specs[pkg] compiler_flags = compilers[spec.compiler].flags check_same_flags(spec.compiler_flags, compiler_flags) spec.compiler_flags.update(compiler_flags) # index of all specs (and deps) from the command line by name cmd_specs = dict( (s.name, s) for spec in self._command_line_specs for s in spec.traverse()) # iterate through specs with specified flags for pkg, sources in self._flag_sources.items(): spec = self._specs[pkg] # order is determined by the DAG. A spec's flags come after # any from its ancestors on the compile line. order = [ s.name for s in spec.traverse(order='post', direction='parents')] # sort the sources in our DAG order sorted_sources = sorted( sources, key=lambda s: order.index(s)) # add flags from each source, lowest to highest precedence flags = collections.defaultdict(lambda: []) for source_name in sorted_sources: source = cmd_specs[source_name] for name, flag_list in source.compiler_flags.items(): extend_flag_list(flags[name], flag_list) check_same_flags(spec.compiler_flags, flags) spec.compiler_flags.update(flags) def deprecated(self, pkg, version): msg = 'using "{0}@{1}" which is a deprecated version' tty.warn(msg.format(pkg, version)) def build_specs(self, function_tuples): # Functions don't seem to be in particular order in output. Sort # them here so that directives that build objects (like node and # node_compiler) are called in the right order. function_tuples.sort(key=lambda f: { "node": -2, "node_compiler": -1, }.get(f[0], 0)) self._specs = {} for name, args in function_tuples: action = getattr(self, name, None) # print out unknown actions so we can display them for debugging if not action: msg = "%s(%s)" % (name, ", ".join(str(a) for a in args)) tty.debug(msg) continue assert action and callable(action) # ignore predicates on virtual packages, as they're used for # solving but don't construct anything pkg = args[0] if spack.repo.path.is_virtual(pkg): continue action(*args) # namespace assignment is done after the fact, as it is not # currently part of the solve for spec in self._specs.values(): repo = spack.repo.path.repo_for_pkg(spec) spec.namespace = repo.namespace # fix flags after all specs are constructed self.reorder_flags() # inject patches -- note that we' can't use set() to unique the # roots here, because the specs aren't complete, and the hash # function will loop forever. roots = [spec.root for spec in self._specs.values()] roots = dict((id(r), r) for r in roots) for root in roots.values(): spack.spec.Spec.inject_patches_variant(root) # Add external paths to specs with just external modules for s in self._specs.values(): spack.spec.Spec.ensure_external_path_if_external(s) for s in self._specs.values(): _develop_specs_from_env(s, ev.active_environment()) for s in self._specs.values(): s._mark_concrete() for s in self._specs.values(): spack.spec.Spec.ensure_no_deprecated(s) return self._specs def _develop_specs_from_env(spec, env): dev_info = env.dev_specs.get(spec.name, {}) if env else {} if not dev_info: return path = os.path.normpath(os.path.join(env.path, dev_info['path'])) if 'dev_path' in spec.variants: assert spec.variants['dev_path'].value == path else: spec.variants.setdefault( 'dev_path', spack.variant.SingleValuedVariant('dev_path', path) ) spec.constrain(dev_info['spec']) # # These are handwritten parts for the Spack ASP model. # def solve(specs, dump=(), models=0, timers=False, stats=False, tests=False): """Solve for a stable model of specs. Arguments: specs (list): list of Specs to solve. dump (tuple): what to dump models (int): number of models to search (default: 0) """ driver = PyclingoDriver() if "asp" in dump: driver.out = sys.stdout # Check upfront that the variants are admissible for root in specs: for s in root.traverse(): if s.virtual: continue spack.spec.Spec.ensure_valid_variants(s) setup = SpackSolverSetup() return driver.solve(setup, specs, dump, models, timers, stats, tests)
36.265366
85
0.595264
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
AaltoSciComp/spack
lib/spack/spack/solver/asp.py
61,361
Python
import logging import sys from notion.block import PageBlock from notion.client import NotionClient from requests import HTTPError, codes from enex2notion.utils_exceptions import BadTokenException logger = logging.getLogger(__name__) def get_root(token, name): if not token: logger.warning( "No token provided, dry run mode. Nothing will be uploaded to Notion!" ) return None try: client = get_notion_client(token) except BadTokenException: logger.error("Invalid token provided!") sys.exit(1) return get_import_root(client, name) def get_notion_client(token): try: return NotionClient(token_v2=token) except HTTPError as e: # pragma: no cover if e.response.status_code == codes["unauthorized"]: raise BadTokenException raise def get_import_root(client, title): try: top_pages = client.get_top_level_pages() except KeyError: # pragma: no cover # Need empty account to test top_pages = [] for page in top_pages: if isinstance(page, PageBlock) and page.title == title: logger.info(f"'{title}' page found") return page logger.info(f"Creating '{title}' page...") return client.current_space.add_page(title)
25.25
82
0.665651
[ "MIT" ]
vzhd1701/enex2notion
enex2notion/cli_notion.py
1,313
Python
from ds2.orderedmapping.bstmapping import BSTMapping, BSTNode from ds2.orderedmapping.balancedbst import BalancedBST, BalancedBSTNode from ds2.orderedmapping.wbtree import WBTree, WBTreeNode from ds2.orderedmapping.avltree import AVLTree, AVLTreeNode from ds2.orderedmapping.splaytree import SplayTree, SplayTreeNode
52.833333
71
0.873817
[ "MIT" ]
aslisabanci/datastructures
ds2/orderedmapping/__init__.py
317
Python
from flask_testing import TestCase from flask import url_for from core import app, db import unittest from core.models import FeatureRequest, Client, ProductArea import datetime class BaseTest(TestCase): SQLALCHEMY_DATABASE_URI = "sqlite://" TESTING = True def create_app(self): app.config["TESTING"] = True app.config["SQLALCHEMY_DATABASE_URI"] = "sqlite://" return app def setUp(self): db.create_all() def tearDown(self): db.session.remove() db.drop_all() class HomepageTest(BaseTest): def test_homepage(self): "Make sure that homepage works fine" response = self.client.get(url_for("home_view")) assert b"Add a feature request:" in response.data assert b"List feature requests:" in response.data class ListpageTest(BaseTest): def test_empty_listpage(self): "Make sure that empty list page works fine" response = self.client.get(url_for("home_view")) response = self.client.get(url_for("feature_requests_view")) assert b"No feature requests found." in response.data def test_non_empty_listpage(self): "Also that it can display multiple entries" fr = FeatureRequest( title="Title", description="Desc", client=None, client_priority=1, target_date=datetime.date(2018, 1, 1), product_area=None, ) db.session.add(fr) fr2 = FeatureRequest( title="Title", description="Desc", client=None, client_priority=1, target_date=datetime.date(2018, 1, 1), product_area=None, ) db.session.add(fr2) db.session.commit() response = self.client.get(url_for("feature_requests_view")) assert response.data.count(b"Update") == 2 assert response.data.count(b"Delete") == 2 assert ( url_for("feature_requests_update", feature_request_id=1).encode() in response.data ) assert ( url_for("feature_requests_delete", feature_request_id=1).encode() in response.data ) class AddOtherObjectsMixin: "A reusable mixin that adds a client and a product area to the db" def add_other_objects(self): self.cl = Client("C1") db.session.add(self.cl) self.pa = ProductArea("PA1") db.session.add(self.pa) db.session.commit() class CreatepageTest(AddOtherObjectsMixin, BaseTest): def test_createpage(self): "Make sure that the create page works" response = self.client.get(url_for("feature_requests_create")) assert b"Add Feature Request" in response.data assert b"<form method='POST'>" in response.data assert b"form-group has-error" not in response.data def test_createpage_error(self): "The create page should return with error when post data is missing" response = self.client.post( url_for("feature_requests_create"), data=dict( title="Title", description="Desc", client=None, client_priority=1, target_date=datetime.date(2018, 1, 1), product_area=None, ), ) assert b"form-group has-error" in response.data assert b"<form method='POST'>" in response.data assert response.status == "200 OK" def test_createpage_success(self): "The create page should return a 302 FOUND redirect when an entry is submitted" client = Client("C1") db.session.add(client) product_area = ProductArea("PA1") db.session.add(product_area) db.session.commit() response = self.client.post( url_for("feature_requests_create"), data=dict( title="Title", description="Desc", client=client.id, client_priority=1, target_date=datetime.date(2018, 1, 1), product_area=product_area.id, ), ) assert response.status == "302 FOUND" def test_createpage_success_flash(self): """The create page should display the proper flash message when an object is created""" self.add_other_objects() response = self.client.post( url_for("feature_requests_create"), data=dict( title="Title", description="Desc", client=self.cl.id, client_priority=1, target_date=datetime.date(2018, 1, 1), product_area=self.pa.id, ), follow_redirects=True, ) assert response.status == "200 OK" assert b"Feature request created!" in response.data assert response.data.count(b"Update") == 1 assert response.data.count(b"Delete") == 1 assert self.cl.name.encode() in response.data assert self.pa.name.encode() in response.data def test_createpage_change_priorities(self): """The create page should change the priorities of the other objects when a new one has the same priority and client""" self.add_other_objects() fr = FeatureRequest( title="Title", description="Desc", client=self.cl, client_priority=1, target_date=datetime.date(2018, 1, 1), product_area=self.pa, ) db.session.add(fr) db.session.commit() assert FeatureRequest.query.filter_by(id=fr.id).first().client_priority == 1 response = self.client.post( url_for("feature_requests_create"), data=dict( title="Title", description="Desc", client=self.cl.id, client_priority=1, target_date=datetime.date(2018, 1, 1), product_area=self.pa.id, ), follow_redirects=True, ) assert response.status == "200 OK" assert FeatureRequest.query.filter_by(id=fr.id).first().client_priority == 2 class UpdatepageTest(AddOtherObjectsMixin, BaseTest): def add_feature_request(self): "A reusable method for this class" self.fr = FeatureRequest( title="Title", description="Desc", client=None, client_priority=1, target_date=datetime.date(2018, 1, 1), product_area=None, ) db.session.add(self.fr) db.session.commit() def test_updatepage_not_found(self): "Make sure that the update page returs 404 when the obj is not found" response = self.client.get( url_for("feature_requests_update", feature_request_id=1232) ) assert response.status == "404 NOT FOUND" def test_updatepage_ok(self): "Make sure that the update page is displayed properly along with the object" self.add_feature_request() response = self.client.get( url_for("feature_requests_update", feature_request_id=self.fr.id) ) assert "Edit Feature Request: {0}".format(self.fr.id).encode() in response.data assert b"<form method='POST'>" in response.data assert b"form-group has-error" not in response.data assert self.fr.title.encode() in response.data assert self.fr.description.encode() in response.data def test_updatepage_error(self): "The createpage should return an error when data is missing" self.add_feature_request() response = self.client.post( url_for("feature_requests_update", feature_request_id=self.fr.id), data=dict( title="Title", description="Desc", client=None, client_priority=1, target_date=datetime.date(2018, 1, 1), product_area=None, ), ) assert b"form-group has-error" in response.data assert b"<form method='POST'>" in response.data assert response.status == "200 OK" def test_createpage_success(self): "The createpage should properly update the object" self.add_feature_request() self.add_other_objects() newtitle = "The new title" response = self.client.post( url_for("feature_requests_update", feature_request_id=self.fr.id), data=dict( title=newtitle, description="Desc", client=self.cl.id, client_priority=1, target_date=datetime.date(2018, 1, 1), product_area=self.pa.id, ), ) assert response.status == "302 FOUND" assert FeatureRequest.query.filter_by(id=self.fr.id).first().title == newtitle def test_updatepage_success_flash(self): """Make sure that the flash message is displayed correctly and we are redirected to the list view""" self.add_feature_request() self.add_other_objects() response = self.client.post( url_for("feature_requests_update", feature_request_id=self.fr.id), data=dict( title="Title", description="Desc", client=self.cl.id, client_priority=1, target_date=datetime.date(2018, 1, 1), product_area=self.pa.id, ), follow_redirects=True, ) assert response.status == "200 OK" assert b"Feature request updated!" in response.data assert response.data.count(b"Update") == 1 assert response.data.count(b"Delete") == 1 assert self.cl.name.encode() in response.data assert self.pa.name.encode() in response.data def test_updatepage_change_priorities(self): "The updatepage should also update the client priorities" self.add_other_objects() fr = FeatureRequest( title="Title", description="Desc", client=self.cl, client_priority=1, target_date=datetime.date(2018, 1, 1), product_area=self.pa, ) db.session.add(fr) fr2 = FeatureRequest( title="Title", description="Desc", client=self.cl, client_priority=2, target_date=datetime.date(2018, 1, 1), product_area=self.pa, ) db.session.add(fr2) db.session.commit() assert FeatureRequest.query.filter_by(id=fr.id).first().client_priority == 1 assert FeatureRequest.query.filter_by(id=fr2.id).first().client_priority == 2 response = self.client.post( url_for("feature_requests_update", feature_request_id=2), data=dict( title="Title", description="Desc", client=self.cl.id, client_priority=1, target_date=datetime.date(2018, 1, 1), product_area=self.pa.id, ), follow_redirects=True, ) assert response.status == "200 OK" assert FeatureRequest.query.filter_by(id=fr.id).first().client_priority == 2 assert FeatureRequest.query.filter_by(id=fr2.id).first().client_priority == 1 class DeletepageTest(BaseTest): def add_feature_request(self): "A reusable method for this class" self.fr = FeatureRequest( title="Title", description="Desc", client=None, client_priority=1, target_date=datetime.date(2018, 1, 1), product_area=None, ) db.session.add(self.fr) db.session.commit() def test_deletepdatepage_only_post(self): "Make sure that the delete page returns 405 when requested with get" response = self.client.get( url_for("feature_requests_delete", feature_request_id=1232) ) assert response.status == "405 METHOD NOT ALLOWED" def test_deletepdatepage_not_found(self): "Make sure that the delete page returs 404 when the obj is not found" response = self.client.post( url_for("feature_requests_delete", feature_request_id=1232) ) assert response.status == "404 NOT FOUND" def test_deletepage_ok(self): "Make sure that the delete page deletes the obj" self.add_feature_request() assert db.session.query(FeatureRequest.query.filter().exists()).scalar() is True response = self.client.post( url_for("feature_requests_delete", feature_request_id=self.fr.id) ) assert ( db.session.query(FeatureRequest.query.filter().exists()).scalar() is False ) assert response.status == "302 FOUND" def test_deletepage_flash_message(self): "Make sure that the delete page shows the proper flash message" self.add_feature_request() response = self.client.post( url_for("feature_requests_delete", feature_request_id=self.fr.id), follow_redirects=True, ) assert response.status == "200 OK" assert b"Feature request deleted!" in response.data assert response.data.count(b"Update") == 0 assert response.data.count(b"Delete") == 0 if __name__ == "__main__": unittest.main()
35.954907
88
0.594393
[ "Unlicense" ]
spapas/feature-requests
test_core.py
13,555
Python
from .settings import * RESPA_CATERINGS_ENABLED = True RESPA_COMMENTS_ENABLED = True RESPA_PAYMENTS_ENABLED = True # Bambora Payform provider settings RESPA_PAYMENTS_PROVIDER_CLASS = 'payments.providers.BamboraPayformProvider' RESPA_PAYMENTS_BAMBORA_API_URL = 'https://real-bambora-api-url/api' RESPA_PAYMENTS_BAMBORA_API_KEY = 'dummy-key' RESPA_PAYMENTS_BAMBORA_API_SECRET = 'dummy-secret' RESPA_PAYMENTS_BAMBORA_PAYMENT_METHODS = ['dummy-bank'] DJANGO_ADMIN_LOGOUT_REDIRECT_URL='https://hel.fi' RESPA_ADMIN_LOGOUT_REDIRECT_URL='https://hel.fi' # API token auth endpoint MACHINE_TO_MACHINE_AUTH_ENABLED=1
35.764706
75
0.845395
[ "MIT" ]
johlindq/respa
respa/test_settings.py
608
Python
# Theory: Indexes # There are several types of collections to store data in Python. # Positionally ordered collections of elements are usually called # sequences, and both lists and strings belong to them. EAch # element in a list, as well as each character in a string, has an # index that corresponds to its position. Indexes are used to # access elements within a sequence. Indexing is zero-based, so if # you see a person who counts from zero, you must have met a # programmer.
40.333333
66
0.770661
[ "MIT" ]
chanchanchong/PYTHON-TRACK-IN-HYPERSKILL
Computer science/Programming languages/Python/Working with data/Collections/Lists/Indexes/topic.py
484
Python
from __future__ import absolute_import import requests import json import logging from .base import Provider as BaseProvider LOGGER = logging.getLogger(__name__) def ProviderParser(subparser): subparser.description = ''' Zeit Provider requires a token to access its API. You can generate one for your account on the following URL: https://zeit.co/account/tokens''' subparser.add_argument('--auth-token', help='specify your API token') # Implements the DNS Zeit provider. # The API is quite simple: you can list all records, add one record or delete one record. # - list is pretty straightforward: we get all records then filter for given parameters, # - add uses directly the API to add a new record without any added complexity, # - delete uses list + delete: we get the list of all records, filter on the given parameters and delete record by id, # - update uses list + delete + add: we get the list of all records, find record for given identifier, then insert a new record and delete the old record. class Provider(BaseProvider): def __init__(self, options, engine_overrides=None): super(Provider, self).__init__(options, engine_overrides) self.domain_id = None self.api_endpoint = 'https://api.zeit.co/v2/domains' def authenticate(self): result = self._get('/{0}'.format(self.options['domain'])) if not result['uid']: raise Exception('Error, domain {0} not found'.format(self.options['domain'])) self.domain_id = result['uid'] def list_records(self, type=None, name=None, content=None): result = self._get('/{0}/records'.format(self.options['domain'])) raw_records = result['records'] if type: raw_records = [raw_record for raw_record in raw_records if raw_record['type'] == type] if name: raw_records = [raw_record for raw_record in raw_records if raw_record['name'] == self._relative_name(name)] if content: raw_records = [raw_record for raw_record in raw_records if raw_record['value'] == content] records = [] for raw_record in raw_records: records.append({ 'id': raw_record['id'], 'type': raw_record['type'], 'name': self._full_name(raw_record['name']), 'content': raw_record['value'] }) LOGGER.debug('list_records: %s', records) return records def create_record(self, type, name, content): # We ignore creation if a record already exists for given type/name/content records = self.list_records(type, name, content) if records: LOGGER.debug('create_record (ignored, duplicate): %s', records[0]['id']) return True data = { 'type': type, 'name': self._relative_name(name), 'value': content } result = self._post('/{0}/records'.format(self.options['domain']), data) if not result['uid']: raise Exception('Error occured when inserting the new record.') LOGGER.debug('create_record: %s', result['uid']) return True def update_record(self, identifier, type=None, name=None, content=None): # Zeit do not allow to update a record, only add or remove. # So we get the corresponding record, dump or update its content and insert it as a new record. # Then we remove the old record. records = [] if identifier: records = self.list_records() records = [record for record in records if record['id'] == identifier] else: records = self.list_records(type, name) if not records: raise Exception('No record found for identifer: {0}'.format(identifier)) if len(records) > 1: LOGGER.warn('Multiple records have been found for given parameters. Only first one will be updated (id: {0})'.format(records[0]['id'])) data = { 'type': type, 'name': self._relative_name(name), 'value': content } if not type: data['type'] = records[0]['type'] if not name: data['name'] = self._relative_name(records[0]['name']) if not content: data['value'] = records[0]['content'] result = self._post('/{0}/records'.format(self.options['domain']), data) self._delete('/{0}/records/{1}'.format(self.options['domain'], records[0]['id'])) LOGGER.debug('update_record: %s => %s', records[0]['id'], result['uid']) return True def delete_record(self, identifier=None, type=None, name=None, content=None): delete_record_ids = [] if not identifier: records = self.list_records(type, name, content) delete_record_ids = [record['id'] for record in records] else: delete_record_ids.append(identifier) LOGGER.debug('delete_records: %s', delete_record_ids) for delete_record_id in delete_record_ids: self._delete('/{0}/records/{1}'.format(self.options['domain'], delete_record_id)) LOGGER.debug('delete_record: %s', True) return True def _request(self, action='GET', url='/', data=None, query_params=None): if data is None: data = {} if query_params is None: query_params = {} request = requests.request(action, self.api_endpoint + url, params=query_params, data=json.dumps(data), headers={'Authorization': 'Bearer {0}'.format(self.options.get('auth_token'))}) request.raise_for_status() return request.json()
38.695364
156
0.60688
[ "MIT" ]
alexsilva1983/lexicon
lexicon/providers/zeit.py
5,843
Python
# Generated by Django 3.2.9 on 2022-01-01 10:47 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('notes', '0003_auto_20220101_1040'), ] operations = [ migrations.RenameField( model_name='notes', old_name='category', new_name='categories', ), migrations.RemoveField( model_name='notescategory', name='count', ), migrations.AddField( model_name='notesrating', name='comment', field=models.TextField(null=True), ), ]
22.714286
47
0.553459
[ "MIT" ]
ArnedyNavi/studymate
notes/migrations/0004_auto_20220101_1047.py
636
Python
import tkinter as tk from tkinter import ttk import json from dashboard.entities.InputField import InputField from dashboard.entities.StatusField import StatusField class Devices(ttk.Frame): """ Devices Frame for Settings """ def __init__(self, parent, settings): """ Constructs a WarningPopUp :param parent: Parent Frame :param settings: settings class """ self.settings = settings ttk.Frame.__init__(self, parent, relief="raised", borderwidth=2) self.content = ttk.Frame(self, borderwidth=2) self.content.pack(expand=True, fill=tk.X, side='top', anchor='n') self.devices = [] label1 = tk.Label(self.content, text="Apparaten", font=("Verdana", 14), relief="groove") label1.pack(expand=True, fill=tk.X, side='top') self.render_devices() def render_devices(self): # Removed current sidebar buttons for frame in self.devices: frame.pack_forget() # Add sidebar buttons based on json self.settings.load_devices() for serial_number, data in self.settings.devices.items(): self.build_device(serial_number, data) def build_device(self, serial_number, data): button = ttk.Button(self.content, text=data["Name"], width=15, command=lambda: self.settings.show_view(serial_number, self)) button.pack(fill=tk.X, pady=2) self.devices.append(button)
33.111111
96
0.641611
[ "MIT" ]
Hexagoons/GUI-Arduino-Weather-Station
dashboard/entities/Devices.py
1,490
Python