content
stringlengths
7
928k
avg_line_length
float64
3.5
33.8k
max_line_length
int64
6
139k
alphanum_fraction
float64
0.08
0.96
licenses
sequence
repository_name
stringlengths
7
104
path
stringlengths
4
230
size
int64
7
928k
lang
stringclasses
1 value
#!/usr/bin/env python3 # Copyright 2021 Xiaomi Corporation (Author: Liyong Guo, Fangjun Kuang) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import logging from collections import defaultdict from pathlib import Path from typing import Dict, List, Optional, Tuple import k2 import sentencepiece as spm import torch import torch.nn as nn from asr_datamodule import LibriSpeechAsrDataModule from conformer import Conformer from icefall.bpe_graph_compiler import BpeCtcTrainingGraphCompiler from icefall.checkpoint import average_checkpoints, load_checkpoint from icefall.decode import ( get_lattice, nbest_decoding, nbest_oracle, one_best_decoding, rescore_with_attention_decoder, rescore_with_n_best_list, rescore_with_whole_lattice, ) from icefall.lexicon import Lexicon from icefall.utils import ( AttributeDict, get_texts, setup_logger, store_transcripts, str2bool, write_error_stats, ) def get_parser(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument( "--epoch", type=int, default=34, help="It specifies the checkpoint to use for decoding." "Note: Epoch counts from 0.", ) parser.add_argument( "--avg", type=int, default=20, help="Number of checkpoints to average. Automatically select " "consecutive checkpoints before the checkpoint specified by " "'--epoch'. ", ) parser.add_argument( "--method", type=str, default="attention-decoder", help="""Decoding method. Supported values are: - (0) ctc-decoding. Use CTC decoding. It uses a sentence piece model, i.e., lang_dir/bpe.model, to convert word pieces to words. It needs neither a lexicon nor an n-gram LM. - (1) 1best. Extract the best path from the decoding lattice as the decoding result. - (2) nbest. Extract n paths from the decoding lattice; the path with the highest score is the decoding result. - (3) nbest-rescoring. Extract n paths from the decoding lattice, rescore them with an n-gram LM (e.g., a 4-gram LM), the path with the highest score is the decoding result. - (4) whole-lattice-rescoring. Rescore the decoding lattice with an n-gram LM (e.g., a 4-gram LM), the best path of rescored lattice is the decoding result. - (5) attention-decoder. Extract n paths from the LM rescored lattice, the path with the highest score is the decoding result. - (6) nbest-oracle. Its WER is the lower bound of any n-best rescoring method can achieve. Useful for debugging n-best rescoring method. """, ) parser.add_argument( "--num-paths", type=int, default=100, help="""Number of paths for n-best based decoding method. Used only when "method" is one of the following values: nbest, nbest-rescoring, attention-decoder, and nbest-oracle """, ) parser.add_argument( "--nbest-scale", type=float, default=0.5, help="""The scale to be applied to `lattice.scores`. It's needed if you use any kinds of n-best based rescoring. Used only when "method" is one of the following values: nbest, nbest-rescoring, attention-decoder, and nbest-oracle A smaller value results in more unique paths. """, ) parser.add_argument( "--export", type=str2bool, default=False, help="""When enabled, the averaged model is saved to conformer_ctc/exp/pretrained.pt. Note: only model.state_dict() is saved. pretrained.pt contains a dict {"model": model.state_dict()}, which can be loaded by `icefall.checkpoint.load_checkpoint()`. """, ) parser.add_argument( "--exp-dir", type=str, default="conformer_mmi/exp_500", help="The experiment dir", ) parser.add_argument( "--lang-dir", type=str, default="data/lang_bpe_500", help="The lang dir", ) parser.add_argument( "--num-decoder-layers", type=int, default=6, help="Number of attention decoder layers", ) return parser def get_params() -> AttributeDict: params = AttributeDict( { "lm_dir": Path("data/lm"), # parameters for conformer "subsampling_factor": 4, "vgg_frontend": False, "use_feat_batchnorm": True, "feature_dim": 80, "nhead": 8, "attention_dim": 512, # parameters for decoding "search_beam": 20, "output_beam": 8, "min_active_states": 30, "max_active_states": 10000, "use_double_scores": True, } ) return params def decode_one_batch( params: AttributeDict, model: nn.Module, HLG: Optional[k2.Fsa], H: Optional[k2.Fsa], bpe_model: Optional[spm.SentencePieceProcessor], batch: dict, word_table: k2.SymbolTable, sos_id: int, eos_id: int, G: Optional[k2.Fsa] = None, ) -> Dict[str, List[List[str]]]: """Decode one batch and return the result in a dict. The dict has the following format: - key: It indicates the setting used for decoding. For example, if no rescoring is used, the key is the string `no_rescore`. If LM rescoring is used, the key is the string `lm_scale_xxx`, where `xxx` is the value of `lm_scale`. An example key is `lm_scale_0.7` - value: It contains the decoding result. `len(value)` equals to batch size. `value[i]` is the decoding result for the i-th utterance in the given batch. Args: params: It's the return value of :func:`get_params`. - params.method is "1best", it uses 1best decoding without LM rescoring. - params.method is "nbest", it uses nbest decoding without LM rescoring. - params.method is "nbest-rescoring", it uses nbest LM rescoring. - params.method is "whole-lattice-rescoring", it uses whole lattice LM rescoring. model: The neural model. HLG: The decoding graph. Used only when params.method is NOT ctc-decoding. H: The ctc topo. Used only when params.method is ctc-decoding. bpe_model: The BPE model. Used only when params.method is ctc-decoding. batch: It is the return value from iterating `lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation for the format of the `batch`. word_table: The word symbol table. sos_id: The token ID of the SOS. eos_id: The token ID of the EOS. G: An LM. It is not None when params.method is "nbest-rescoring" or "whole-lattice-rescoring". In general, the G in HLG is a 3-gram LM, while this G is a 4-gram LM. Returns: Return the decoding result. See above description for the format of the returned dict. """ if HLG is not None: device = HLG.device else: device = H.device feature = batch["inputs"] assert feature.ndim == 3 feature = feature.to(device) # at entry, feature is (N, T, C) supervisions = batch["supervisions"] nnet_output, memory, memory_key_padding_mask = model(feature, supervisions) # nnet_output is (N, T, C) supervision_segments = torch.stack( ( supervisions["sequence_idx"], supervisions["start_frame"] // params.subsampling_factor, supervisions["num_frames"] // params.subsampling_factor, ), 1, ).to(torch.int32) if H is None: assert HLG is not None decoding_graph = HLG else: assert HLG is None assert bpe_model is not None decoding_graph = H lattice = get_lattice( nnet_output=nnet_output, decoding_graph=decoding_graph, supervision_segments=supervision_segments, search_beam=params.search_beam, output_beam=params.output_beam, min_active_states=params.min_active_states, max_active_states=params.max_active_states, subsampling_factor=params.subsampling_factor, ) if params.method == "ctc-decoding": best_path = one_best_decoding( lattice=lattice, use_double_scores=params.use_double_scores ) # Note: `best_path.aux_labels` contains token IDs, not word IDs # since we are using H, not HLG here. # # token_ids is a lit-of-list of IDs token_ids = get_texts(best_path) # hyps is a list of str, e.g., ['xxx yyy zzz', ...] hyps = bpe_model.decode(token_ids) # hyps is a list of list of str, e.g., [['xxx', 'yyy', 'zzz'], ... ] hyps = [s.split() for s in hyps] key = "ctc-decoding" return {key: hyps} if params.method == "nbest-oracle": # Note: You can also pass rescored lattices to it. # We choose the HLG decoded lattice for speed reasons # as HLG decoding is faster and the oracle WER # is only slightly worse than that of rescored lattices. best_path = nbest_oracle( lattice=lattice, num_paths=params.num_paths, ref_texts=supervisions["text"], word_table=word_table, nbest_scale=params.nbest_scale, oov="<UNK>", ) hyps = get_texts(best_path) hyps = [[word_table[i] for i in ids] for ids in hyps] key = f"oracle_{params.num_paths}_nbest_scale_{params.nbest_scale}" # noqa return {key: hyps} if params.method in ["1best", "nbest"]: if params.method == "1best": best_path = one_best_decoding( lattice=lattice, use_double_scores=params.use_double_scores ) key = "no_rescore" else: best_path = nbest_decoding( lattice=lattice, num_paths=params.num_paths, use_double_scores=params.use_double_scores, nbest_scale=params.nbest_scale, ) key = f"no_rescore-nbest-scale-{params.nbest_scale}-{params.num_paths}" # noqa hyps = get_texts(best_path) hyps = [[word_table[i] for i in ids] for ids in hyps] return {key: hyps} assert params.method in [ "nbest-rescoring", "whole-lattice-rescoring", "attention-decoder", ] lm_scale_list = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7] lm_scale_list += [0.8, 0.9, 1.0, 1.1, 1.2, 1.3] lm_scale_list += [1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0] if params.method == "nbest-rescoring": best_path_dict = rescore_with_n_best_list( lattice=lattice, G=G, num_paths=params.num_paths, lm_scale_list=lm_scale_list, nbest_scale=params.nbest_scale, ) elif params.method == "whole-lattice-rescoring": best_path_dict = rescore_with_whole_lattice( lattice=lattice, G_with_epsilon_loops=G, lm_scale_list=lm_scale_list, ) elif params.method == "attention-decoder": # lattice uses a 3-gram Lm. We rescore it with a 4-gram LM. rescored_lattice = rescore_with_whole_lattice( lattice=lattice, G_with_epsilon_loops=G, lm_scale_list=None, ) # TODO: pass `lattice` instead of `rescored_lattice` to # `rescore_with_attention_decoder` best_path_dict = rescore_with_attention_decoder( lattice=rescored_lattice, num_paths=params.num_paths, model=model, memory=memory, memory_key_padding_mask=memory_key_padding_mask, sos_id=sos_id, eos_id=eos_id, nbest_scale=params.nbest_scale, ) else: assert False, f"Unsupported decoding method: {params.method}" ans = dict() if best_path_dict is not None: for lm_scale_str, best_path in best_path_dict.items(): hyps = get_texts(best_path) hyps = [[word_table[i] for i in ids] for ids in hyps] ans[lm_scale_str] = hyps else: for lm_scale in lm_scale_list: ans["empty"] = [[] * lattice.shape[0]] return ans def decode_dataset( dl: torch.utils.data.DataLoader, params: AttributeDict, model: nn.Module, HLG: Optional[k2.Fsa], H: Optional[k2.Fsa], bpe_model: Optional[spm.SentencePieceProcessor], word_table: k2.SymbolTable, sos_id: int, eos_id: int, G: Optional[k2.Fsa] = None, ) -> Dict[str, List[Tuple[List[str], List[str]]]]: """Decode dataset. Args: dl: PyTorch's dataloader containing the dataset to decode. params: It is returned by :func:`get_params`. model: The neural model. HLG: The decoding graph. Used only when params.method is NOT ctc-decoding. H: The ctc topo. Used only when params.method is ctc-decoding. bpe_model: The BPE model. Used only when params.method is ctc-decoding. word_table: It is the word symbol table. sos_id: The token ID for SOS. eos_id: The token ID for EOS. G: An LM. It is not None when params.method is "nbest-rescoring" or "whole-lattice-rescoring". In general, the G in HLG is a 3-gram LM, while this G is a 4-gram LM. Returns: Return a dict, whose key may be "no-rescore" if no LM rescoring is used, or it may be "lm_scale_0.7" if LM rescoring is used. Its value is a list of tuples. Each tuple contains two elements: The first is the reference transcript, and the second is the predicted result. """ results = [] num_cuts = 0 try: num_batches = len(dl) except TypeError: num_batches = "?" results = defaultdict(list) for batch_idx, batch in enumerate(dl): texts = batch["supervisions"]["text"] hyps_dict = decode_one_batch( params=params, model=model, HLG=HLG, H=H, bpe_model=bpe_model, batch=batch, word_table=word_table, G=G, sos_id=sos_id, eos_id=eos_id, ) for lm_scale, hyps in hyps_dict.items(): this_batch = [] assert len(hyps) == len(texts) for hyp_words, ref_text in zip(hyps, texts): ref_words = ref_text.split() this_batch.append((ref_words, hyp_words)) results[lm_scale].extend(this_batch) num_cuts += len(batch["supervisions"]["text"]) if batch_idx % 100 == 0: batch_str = f"{batch_idx}/{num_batches}" logging.info( f"batch {batch_str}, cuts processed until now is {num_cuts}" ) return results def save_results( params: AttributeDict, test_set_name: str, results_dict: Dict[str, List[Tuple[List[int], List[int]]]], ): if params.method == "attention-decoder": # Set it to False since there are too many logs. enable_log = False else: enable_log = True test_set_wers = dict() for key, results in results_dict.items(): recog_path = params.exp_dir / f"recogs-{test_set_name}-{key}.txt" store_transcripts(filename=recog_path, texts=results) if enable_log: logging.info(f"The transcripts are stored in {recog_path}") # The following prints out WERs, per-word error statistics and aligned # ref/hyp pairs. errs_filename = params.exp_dir / f"errs-{test_set_name}-{key}.txt" with open(errs_filename, "w") as f: wer = write_error_stats( f, f"{test_set_name}-{key}", results, enable_log=enable_log ) test_set_wers[key] = wer if enable_log: logging.info( "Wrote detailed error stats to {}".format(errs_filename) ) test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) errs_info = params.exp_dir / f"wer-summary-{test_set_name}.txt" with open(errs_info, "w") as f: print("settings\tWER", file=f) for key, val in test_set_wers: print("{}\t{}".format(key, val), file=f) s = "\nFor {}, WER of different settings are:\n".format(test_set_name) note = "\tbest for {}".format(test_set_name) for key, val in test_set_wers: s += "{}\t{}{}\n".format(key, val, note) note = "" logging.info(s) @torch.no_grad() def main(): parser = get_parser() LibriSpeechAsrDataModule.add_arguments(parser) args = parser.parse_args() args.exp_dir = Path(args.exp_dir) args.lang_dir = Path(args.lang_dir) params = get_params() params.update(vars(args)) setup_logger(f"{params.exp_dir}/log-{params.method}/log-decode") logging.info("Decoding started") logging.info(params) lexicon = Lexicon(params.lang_dir) max_token_id = max(lexicon.tokens) num_classes = max_token_id + 1 # +1 for the blank device = torch.device("cpu") if torch.cuda.is_available(): device = torch.device("cuda", 0) logging.info(f"device: {device}") graph_compiler = BpeCtcTrainingGraphCompiler( params.lang_dir, device=device, sos_token="<sos/eos>", eos_token="<sos/eos>", ) sos_id = graph_compiler.sos_id eos_id = graph_compiler.eos_id if params.method == "ctc-decoding": HLG = None H = k2.ctc_topo( max_token=max_token_id, modified=False, device=device, ) bpe_model = spm.SentencePieceProcessor() bpe_model.load(str(params.lang_dir / "bpe.model")) else: H = None bpe_model = None HLG = k2.Fsa.from_dict( torch.load(f"{params.lang_dir}/HLG.pt", map_location="cpu") ) HLG = HLG.to(device) assert HLG.requires_grad is False if not hasattr(HLG, "lm_scores"): HLG.lm_scores = HLG.scores.clone() if params.method in ( "nbest-rescoring", "whole-lattice-rescoring", "attention-decoder", ): if not (params.lm_dir / "G_4_gram.pt").is_file(): logging.info("Loading G_4_gram.fst.txt") logging.warning("It may take 8 minutes.") with open(params.lm_dir / "G_4_gram.fst.txt") as f: first_word_disambig_id = lexicon.word_table["#0"] G = k2.Fsa.from_openfst(f.read(), acceptor=False) # G.aux_labels is not needed in later computations, so # remove it here. del G.aux_labels # CAUTION: The following line is crucial. # Arcs entering the back-off state have label equal to #0. # We have to change it to 0 here. G.labels[G.labels >= first_word_disambig_id] = 0 G = k2.Fsa.from_fsas([G]).to(device) G = k2.arc_sort(G) torch.save(G.as_dict(), params.lm_dir / "G_4_gram.pt") else: logging.info("Loading pre-compiled G_4_gram.pt") d = torch.load(params.lm_dir / "G_4_gram.pt", map_location="cpu") G = k2.Fsa.from_dict(d).to(device) if params.method in ["whole-lattice-rescoring", "attention-decoder"]: # Add epsilon self-loops to G as we will compose # it with the whole lattice later G = k2.add_epsilon_self_loops(G) G = k2.arc_sort(G) G = G.to(device) # G.lm_scores is used to replace HLG.lm_scores during # LM rescoring. G.lm_scores = G.scores.clone() else: G = None model = Conformer( num_features=params.feature_dim, nhead=params.nhead, d_model=params.attention_dim, num_classes=num_classes, subsampling_factor=params.subsampling_factor, num_decoder_layers=params.num_decoder_layers, vgg_frontend=params.vgg_frontend, use_feat_batchnorm=params.use_feat_batchnorm, ) if params.avg == 1: load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) else: start = params.epoch - params.avg + 1 filenames = [] for i in range(start, params.epoch + 1): if start >= 0: filenames.append(f"{params.exp_dir}/epoch-{i}.pt") logging.info(f"averaging {filenames}") model.load_state_dict(average_checkpoints(filenames)) if params.export: logging.info(f"Export averaged model to {params.exp_dir}/pretrained.pt") torch.save( {"model": model.state_dict()}, f"{params.exp_dir}/pretrained.pt" ) return model.to(device) model.eval() num_param = sum([p.numel() for p in model.parameters()]) logging.info(f"Number of model parameters: {num_param}") librispeech = LibriSpeechAsrDataModule(args) # CAUTION: `test_sets` is for displaying only. # If you want to skip test-clean, you have to skip # it inside the for loop. That is, use # # if test_set == 'test-clean': continue # test_sets = ["test-clean", "test-other"] for test_set, test_dl in zip(test_sets, librispeech.test_dataloaders()): results_dict = decode_dataset( dl=test_dl, params=params, model=model, HLG=HLG, H=H, bpe_model=bpe_model, word_table=lexicon.word_table, G=G, sos_id=sos_id, eos_id=eos_id, ) save_results( params=params, test_set_name=test_set, results_dict=results_dict ) logging.info("Done!") torch.set_num_threads(1) torch.set_num_interop_threads(1) if __name__ == "__main__": main()
33.02446
91
0.605132
[ "Apache-2.0" ]
aarora8/icefall
egs/librispeech/ASR/conformer_mmi/decode.py
22,952
Python
#!/usr/bin/env python # -*- Mode: Python; c-basic-offset: 4; indent-tabs-mode: nil; tab-width: 4 -*- # vi: set ts=4 sw=4 expandtab: # ***** BEGIN LICENSE BLOCK ***** # Version: MPL 1.1/GPL 2.0/LGPL 2.1 # # The contents of this file are subject to the Mozilla Public License Version # 1.1 (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # http://www.mozilla.org/MPL/ # # Software distributed under the License is distributed on an "AS IS" basis, # WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License # for the specific language governing rights and limitations under the # License. # # The Original Code is [Open Source Virtual Machine.]. # # The Initial Developer of the Original Code is # Adobe System Incorporated. # Portions created by the Initial Developer are Copyright (C) 2004-2006 # the Initial Developer. All Rights Reserved. # # Contributor(s): # Adobe AS3 Team # # Alternatively, the contents of this file may be used under the terms of # either the GNU General Public License Version 2 or later (the "GPL"), or # the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), # in which case the provisions of the GPL or the LGPL are applicable instead # of those above. If you wish to allow use of your version of this file only # under the terms of either the GPL or the LGPL, and not to allow others to # use your version of this file under the terms of the MPL, indicate your # decision by deleting the provisions above and replace them with the notice # and other provisions required by the GPL or the LGPL. If you do not delete # the provisions above, a recipient may use your version of this file under # the terms of any one of the MPL, the GPL or the LGPL. # # ***** END LICENSE BLOCK ***** import os import subprocess import sys def compile_abc(target, files, deps=None, configs=None): asc_jar = os.environ.get('ASC', os.path.realpath('../../../utils/asc.jar')) javacmd = ['java', '-ea', '-DAS3', '-DAVMPLUS', '-classpath', asc_jar, 'macromedia.asc.embedding.ScriptCompiler', '-builtin'] if deps: javacmd.extend("../%s/%s.abc" % (dep, dep) for dep in deps) javacmd.extend(['-out', target]) javacmd.extend(files) javacmd.extend(configs) p = subprocess.Popen(javacmd, cwd=target) p.wait() def main(): configs = sys.argv[1:] if configs == []: # Build without float suppot by default configs = ['-config', 'CONFIG::VMCFG_FLOAT=false'] compile_abc("builtin", ["builtin.as", "Vector.as", "DescribeType.as", "JSON.as", "Math.as", "Error.as", "Date.as", "RegExp.as", "IDataInput.as", "IDataOutput.as", "ByteArray.as", "Proxy.as", "XML.as", "Dictionary.as"], configs=configs) compile_abc("shell", ["Capabilities.as", "Domain.as", "System.as"], deps=["builtin"], configs=configs) compile_abc("avmplus", ["avmplus.as"], deps=["builtin"], configs=configs) if __name__ == "__main__": main()
42.8
239
0.697263
[ "Apache-2.0" ]
Acidburn0zzz/shumway
src/avm2/generated/generate.py
2,996
Python
#!/usr/bin/env python class FilterModule(object): def filters(self): return {'json_env_map': self.json_env_map} def json_env_map(self, env): return [{'name': k, 'value': str(v)} for k,v in env.items()]
24.444444
66
0.65
[ "MIT" ]
antoine-fl/ansible-clever
filter_plugins/env_json_map.py
220
Python
#!/usr/bin/env python # -*- coding: utf-8 -*- class TrafficWeight: def __init__(self): self.request = 0 self.response = 0 class PacketInterval: def __init__(self): self.firstPacket = 0 self.lastPacket = 0
17.461538
24
0.651982
[ "MIT" ]
AntoineRondelet/SideChannelLeaksOverHTTPS
src/utils.py
227
Python
# Dana jest posortowana tablica A[1, ..., n] oraz liczba x. Proszę napisać program, który stwierdza # czy istnieją indeksy i oraz j takie, że A[i] + A[j] = x. def sum_search(T, x): l = 0 r = len(T) - 1 while l <= r: if T[l] + T[r] == x: return True elif T[l] + T[r] > x: r -= 1 else: l += 1 return False T = [2, 5, 8, 12, 16, 19, 20, 25, 34, 55, 81] x = 37 print(sum_search(T, x))
21.952381
99
0.488069
[ "MIT" ]
Szymon-Budziak/ASD_exercises_solutions
Exercises/Exercises_01/07_exercise.py
466
Python
# Generated by Django 2.2.12 on 2020-07-05 18:03 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('vote', '0002_request_track'), ] operations = [ migrations.AddField( model_name='track', name='metadata_locked', field=models.BooleanField(default=False), ), ]
20.421053
53
0.600515
[ "BSD-3-Clause" ]
colons/nkd.su
nkdsu/apps/vote/migrations/0003_track_metadata_locked.py
388
Python
# IMPORTATION STANDARD # IMPORTATION THIRDPARTY import pytest # IMPORTATION INTERNAL from openbb_terminal.cryptocurrency.defi import terraengineer_model @pytest.mark.vcr @pytest.mark.parametrize( "asset,address", [("ust", "terra1tmnqgvg567ypvsvk6rwsga3srp7e3lg6u0elp8")], ) def test_get_history_asset_from_terra_address(asset, address, recorder): df = terraengineer_model.get_history_asset_from_terra_address( asset=asset, address=address, ) recorder.capture(df)
23.952381
72
0.771372
[ "MIT" ]
23errg/GamestonkTerminal
tests/openbb_terminal/cryptocurrency/defi/test_terraengineer_model.py
503
Python
from __future__ import print_function # Part of the JBEI Quantitative Metabolic Modeling Library (JQMM) # Copyright (c) 2016, The Regents of the University of California. # For licensing details see "license.txt" and "legal.txt". from builtins import str import re import core import NamedRangedNumber class Gene(NamedRangedNumber.NamedRangedNumber): """ Class for single genes, and values typically associated with them. Typically it is instantiated with a string representing a name, and a value. Since genes can potentially have multiple names due to conflicting standards, the superclass also supports receiving a list of names during instantiation, instead of a string. The first name in the list will be considered the canonical name when rendering the gene as a string. The given value can be an integer, a float, a ranged number, or a string representation of any of these, but is kept internally and exported as a ranged number. """ def __init__(self, names, value=None): if isinstance(names, list): nameList = names else: nameList = [names] for name in nameList: assert ' ' not in name.strip(), "Gene names cannot contain spaces: '" + name + "'" super(Gene, self).__init__(names, value) def addName(self, name): assert ' ' not in name.strip(), "Gene names cannot contain spaces: '" + name + "'" super(Gene, self).addName(name) class GeneSet(NamedRangedNumber.NamedRangedNumberSet): """ Class for a set of GeneSet objects, derived from NamedRangedNumberSet. """ def __init__(self, contents=None): super(GeneSet, self).__init__(contents) def recastSet(self, victimSet, preferExistingObjects=True, preferExistingValues=False): itemsToRecast = victimSet.contentsList recastItems = self.recastItems(itemsToRecast, preferExistingObjects, preferExistingValues) return GeneSet(recastItems) @staticmethod def createSetsFromStrings(structureString="", valueString=None): """ Construct a list of GeneSet objects based on the given strings. The first string, structureString, determines the number of GeneSets to create. An empty string will return an empty list. A string containing anything else will return one or more subsets. The number of subsets is determined by the number of times the separator string " or " occurs in the structureString. For example, "(setA) or (setB) or (setC) or geneD or geneE or (setF)" will create six subsets. "(setA)", "(setC)", "geneD", etc are substrings that declare the contents of each set. There are two accepted ways to format the substrings: Method #1: substrings example: "aName=[aLow:aBest:aHigh] and bName=[bLow:bBest:bHigh] and cName=value and dName" valueString=None In this example, four NamedRangedNumber objects will be created in total: aName and bName specify rangedNumber values for NamedRangedNumber, cName specifies just one floating point number that is converted to a rangedNumber, and dName crates a NamedRangedNumber with the value set to None. valueString can be left out entirely. Method #2: substrings example: "aName and dName and cName and qName" valueString example: "aName=[aLow:aBest:aHigh] bName=[bLow:bBest:bHigh] cName=value dName=value fName=value" In this example, four NamedRangedNumber objects will be created, but only two of them will be assigned values (the other two will have values of None). This happens because the structureString declares what items are in the set, while the valueString only assigns values. If a value is given in the second string for a name that is not listed in the first, that value is ignored. No item is created for it. While it is possible to supply a mixture of methods 1 and 2, it is not recommended practice. Values assigned via method 2 take precedence over values assigned via method 1, even if the value assigned is "=None". Note that Gene objects are re-used from one set to the next. That is, if the same name is mentioned in two different substrings, only one Gene object will be created but it will be placed in two subsets. """ givenValues = {} if valueString is not None: pairs = valueString.split() # Split on whitespace, no need to strip for pair in pairs: parts = pair.split('=') name = parts[0] if parts[1:2]: givenValues[name] = parts[1] subSets = [] structureString = structureString.strip() # Stripping initial surrounding whitespace in order to check for a blank entry if structureString != "": collectionStrings = re.split("\s+or\s+", structureString) for collectionStr in collectionStrings: items = [] # Sections of the string are sometimes enclosed in parenthesis. # Plus, sometime garbage from badly-done embeds comes up, like so: # <html:p> GENE_ASSOCIATION :( b1901 and b1900 and ( b1898 and b1899 ) ) </html:p> collectionStr = collectionStr.replace('(',' ').replace(')',' ').strip() itemStrings = re.split("\s+and\s+", collectionStr) for itemString in itemStrings: item = Gene.fromString(itemString) if item.canonicalName in givenValues: item.set(givenValues[item.canonicalName]) items.append(item) if items: subSets.append(GeneSet(items)) # is a list of GeneSets return subSets if __name__ == "__main__": test() def test(): try: vError = False print("Instantiating from illegal string \"test=[2,3,4]\", expecting failure ...") a = Gene.fromString("test=[2,3,4]") except ValueError: vError = True print("\tGot ValueError as expected.") pass assert vError, "NamedRangedNumber accepted wrong input." print("\nInstantiating from string value \"test=[2:3:4]\" ...") a = Gene.fromString("test=[2:3:4]") assert a.canonicalName == 'test', "Name wrong" b = Gene.fromString("dorks=[0.5:1:1.5]") c = a + 3 print("\t" + str(a) + ' + 3 = ' + str(c)) d = a + b print("\t" + str(a) + ' + ' + str(b) + ' = ' + str(d)) assert d.value.best == 4.0, "Addition failure, d.value.best should be 4.0." print("\nInstantiating a GeneSet from an invalid string, expecting failure:") strA = "(bob fred frank) or (jed and Bill123) and (fred & billyBob) or captainAmerica" print("\t" + strA) try: aError = False geneSets = GeneSet.createSetsFromStrings(strA) except AssertionError: aError = True print("\tGot AssertionError as expected.") pass assert aError, "GeneSet.createSetsFromStrings accepted wrong input." print("\nInstantiating a GeneSet from strings:") strA = "(bob and fred and frank) or (jed and Bill123) or (fred and billyBob) or captainAmerica" strB = "bob=12 fred=45 frank=[1:2:3] jed=10.1 Bill123=1" print("\t" + strA) print("\t" + strB) subSets = GeneSet.createSetsFromStrings(strA, strB) masterSet = GeneSet() newSubSets = [] print("Master set:") for subSet in subSets: newSubSets.append(masterSet.recastSet(subSet)) print("\t" + str(masterSet)) print("Subsets consolidated, for embedding:") print("\t" + GeneSet.createStringFromSets(newSubSets)) print("Significance test result for master set:" + str(masterSet.testSignificance(12)))
45.327586
128
0.651198
[ "Unlicense" ]
somtirtharoy/jqmm
code/core/Genes.py
7,887
Python
# Copyright 2019, The TensorFlow Federated Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A simple executor that operates synchronously in eager TensorFlow mode.""" from typing import Any, MutableMapping, Optional import cachetools import tensorflow as tf from tensorflow_federated.proto.v0 import computation_pb2 as pb from tensorflow_federated.python.common_libs import py_typecheck from tensorflow_federated.python.common_libs import serialization_utils from tensorflow_federated.python.common_libs import structure from tensorflow_federated.python.common_libs import tracing from tensorflow_federated.python.core.api import computation_base from tensorflow_federated.python.core.api import computation_types from tensorflow_federated.python.core.api import typed_object from tensorflow_federated.python.core.impl import computation_impl from tensorflow_federated.python.core.impl import type_utils from tensorflow_federated.python.core.impl.compiler import building_blocks from tensorflow_federated.python.core.impl.executors import executor_base from tensorflow_federated.python.core.impl.executors import executor_value_base from tensorflow_federated.python.core.impl.types import type_analysis from tensorflow_federated.python.core.impl.types import type_conversions from tensorflow_federated.python.core.impl.types import type_serialization from tensorflow_federated.python.core.impl.utils import tensorflow_utils from tensorflow_federated.python.tensorflow_libs import graph_merge # Cache size here is simply heuristic, no formal analysis. _TF_FUNCTION_CACHE_SIZE = 100 def _get_wrapped_function_from_comp(comp, must_pin_function_to_cpu, param_type, device): """Extracts the TensorFlow function from serialized computation. Args: comp: An instance of `pb.Computation`. must_pin_function_to_cpu: A boolean flag to indicate if the computation is forced to be on CPUs. param_type: A `tff.Type` instance or None. device: A `tf.config.LogicalDevice` or None. Returns: A TensorFlow ConcreteFunction. """ def function_to_wrap(): """No-arg function to import graph def. We pass a no-arg function to `tf.compat.v1.wrap_function` to avoid the leftover placeholders that can result from binding arguments to the imported graphdef via `input_map`. The correct signature will be added to this function later, via the `prune` call below. Returns: Result of importing graphdef backing `comp`. """ graph_def = serialization_utils.unpack_graph_def(comp.tensorflow.graph_def) init_op = comp.tensorflow.initialize_op if init_op: graph_def = tensorflow_utils.add_control_deps_for_init_op( graph_def, init_op) def _import_fn(): return tf.import_graph_def( graph_merge.uniquify_shared_names(graph_def), name='') if must_pin_function_to_cpu: with tf.device('cpu'): return _import_fn() elif device is not None: with tf.device(device.name): return _import_fn() else: return _import_fn() wrapped_noarg_fn = tf.compat.v1.wrap_function(function_to_wrap, signature=[]) if param_type is not None: input_tensor_names = tensorflow_utils.extract_tensor_names_from_binding( comp.tensorflow.parameter) else: input_tensor_names = [] output_tensor_names = tensorflow_utils.extract_tensor_names_from_binding( comp.tensorflow.result) import_graph = wrapped_noarg_fn.graph try: wrapped_fn = wrapped_noarg_fn.prune( feeds=tf.nest.map_structure(import_graph.as_graph_element, input_tensor_names), fetches=tf.nest.map_structure(import_graph.as_graph_element, output_tensor_names), ) except KeyError as e: raise TypeError( 'Caught exception trying to prune graph `{g}` with ' 'feeds {feeds} and fetches {fetches}. This indicates that these ' 'names may not refer to tensors in the graph. .\nException: {e}'.format( g=import_graph, feeds=input_tensor_names, fetches=output_tensor_names, e=e)) return wrapped_fn def embed_tensorflow_computation(comp, type_spec=None, device=None): """Embeds a TensorFlow computation for use in the eager context. Args: comp: An instance of `pb.Computation`. type_spec: An optional `tff.Type` instance or something convertible to it. device: An optional `tf.config.LogicalDevice`. Returns: Either a one-argument or a zero-argument callable that executes the computation in eager mode. Raises: TypeError: If arguments are of the wrong types, e.g., in `comp` is not a TensorFlow computation. """ # TODO(b/134543154): Decide whether this belongs in `tensorflow_utils.py` # since it deals exclusively with eager mode. Incubate here, and potentially # move there, once stable. py_typecheck.check_type(comp, pb.Computation) comp_type = type_serialization.deserialize_type(comp.type) type_spec = computation_types.to_type(type_spec) if type_spec is not None: if not type_spec.is_equivalent_to(comp_type): raise TypeError('Expected a computation of type {}, got {}.'.format( type_spec, comp_type)) else: type_spec = comp_type # TODO(b/155198591): Currently, TF will raise on any function returning a # `tf.data.Dataset` not pinned to CPU. We should follow up here and remove # this gating when we can. must_pin_function_to_cpu = type_analysis.contains(type_spec.result, lambda t: t.is_sequence()) which_computation = comp.WhichOneof('computation') if which_computation != 'tensorflow': unexpected_building_block = building_blocks.ComputationBuildingBlock.from_proto( comp) raise TypeError('Expected a TensorFlow computation, found {}.'.format( unexpected_building_block)) if type_spec.is_function(): param_type = type_spec.parameter result_type = type_spec.result else: param_type = None result_type = type_spec wrapped_fn = _get_wrapped_function_from_comp(comp, must_pin_function_to_cpu, param_type, device) param_fns = [] if param_type is not None: for spec in structure.flatten(type_spec.parameter): if spec.is_tensor(): param_fns.append(lambda x: x) else: py_typecheck.check_type(spec, computation_types.SequenceType) param_fns.append(tf.data.experimental.to_variant) result_fns = [] for spec in structure.flatten(result_type): if spec.is_tensor(): result_fns.append(lambda x: x) else: py_typecheck.check_type(spec, computation_types.SequenceType) tf_structure = type_conversions.type_to_tf_structure(spec.element) def fn(x, tf_structure=tf_structure): return tf.data.experimental.from_variant(x, tf_structure) result_fns.append(fn) def _fn_to_return(arg, param_fns, wrapped_fn): # pylint:disable=missing-docstring param_elements = [] if arg is not None: arg_parts = structure.flatten(arg) if len(arg_parts) != len(param_fns): raise RuntimeError('Expected {} arguments, found {}.'.format( len(param_fns), len(arg_parts))) for arg_part, param_fn in zip(arg_parts, param_fns): param_elements.append(param_fn(arg_part)) result_parts = wrapped_fn(*param_elements) # There is a tf.wrap_function(...) issue b/144127474 that variables created # from tf.import_graph_def(...) inside tf.wrap_function(...) is not # destroyed. So get all the variables from `wrapped_fn` and destroy # manually. # TODO(b/144127474): Remove this manual cleanup once tf.wrap_function(...) # is fixed. resources = [] for op in wrapped_fn.graph.get_operations(): if op.type == 'VarHandleOp': resources += op.outputs if resources: for resource in wrapped_fn.prune(feeds={}, fetches=resources)(): tf.raw_ops.DestroyResourceOp(resource=resource) result_elements = [] for result_part, result_fn in zip(result_parts, result_fns): result_elements.append(result_fn(result_part)) return structure.pack_sequence_as(result_type, result_elements) fn_to_return = lambda arg, p=param_fns, w=wrapped_fn: _fn_to_return(arg, p, w) # pylint: disable=function-redefined if must_pin_function_to_cpu: old_fn_to_return = fn_to_return def fn_to_return(x): with tf.device('cpu'): return old_fn_to_return(x) elif device is not None: old_fn_to_return = fn_to_return def fn_to_return(x): with tf.device(device.name): return old_fn_to_return(x) # pylint: enable=function-redefined if param_type is not None: return lambda arg: fn_to_return(arg) # pylint: disable=unnecessary-lambda else: return lambda: fn_to_return(None) def to_representation_for_type( value: Any, tf_function_cache: MutableMapping[str, Any], type_spec: Optional[computation_types.Type] = None, device: Optional[tf.config.LogicalDevice] = None) -> Any: """Verifies or converts the `value` to an eager object matching `type_spec`. WARNING: This function is only partially implemented. It does not support data sets at this point. The output of this function is always an eager tensor, eager dataset, a representation of a TensorFlow computation, or a nested structure of those that matches `type_spec`, and when `device` has been specified, everything is placed on that device on a best-effort basis. TensorFlow computations are represented here as zero- or one-argument Python callables that accept their entire argument bundle as a single Python object. Args: value: The raw representation of a value to compare against `type_spec` and potentially to be converted. tf_function_cache: A cache obeying `dict` semantics that can be used to look up previously embedded TensorFlow functions. type_spec: An instance of `tff.Type`, can be `None` for values that derive from `typed_object.TypedObject`. device: An optional `tf.config.LogicalDevice` to place the value on (for tensor-level values). Returns: Either `value` itself, or a modified version of it. Raises: TypeError: If the `value` is not compatible with `type_spec`. """ type_spec = type_utils.reconcile_value_with_type_spec(value, type_spec) if isinstance(value, computation_base.Computation): return to_representation_for_type( computation_impl.ComputationImpl.get_proto(value), tf_function_cache, type_spec, device) elif isinstance(value, pb.Computation): key = (value.SerializeToString(), str(type_spec), device.name if device else None) cached_fn = tf_function_cache.get(key) if cached_fn is not None: return cached_fn embedded_fn = embed_tensorflow_computation(value, type_spec, device) tf_function_cache[key] = embedded_fn return embedded_fn elif type_spec.is_struct(): type_elem = structure.to_elements(type_spec) value_elem = (structure.to_elements(structure.from_container(value))) result_elem = [] if len(type_elem) != len(value_elem): raise TypeError('Expected a {}-element tuple, found {} elements.'.format( len(type_elem), len(value_elem))) for (t_name, el_type), (v_name, el_val) in zip(type_elem, value_elem): if t_name != v_name: raise TypeError( 'Mismatching element names in type vs. value: {} vs. {}.'.format( t_name, v_name)) el_repr = to_representation_for_type(el_val, tf_function_cache, el_type, device) result_elem.append((t_name, el_repr)) return structure.Struct(result_elem) elif device is not None: py_typecheck.check_type(device, tf.config.LogicalDevice) with tf.device(device.name): return to_representation_for_type( value, tf_function_cache, type_spec=type_spec, device=None) elif isinstance(value, EagerValue): return value.internal_representation elif isinstance(value, executor_value_base.ExecutorValue): raise TypeError( 'Cannot accept a value embedded within a non-eager executor.') elif type_spec.is_tensor(): if not tf.is_tensor(value): value = tf.convert_to_tensor(value, dtype=type_spec.dtype) elif hasattr(value, 'read_value'): # a tf.Variable-like result, get a proper tensor. value = value.read_value() value_type = ( computation_types.TensorType(value.dtype.base_dtype, value.shape)) if not type_spec.is_assignable_from(value_type): raise TypeError( 'The apparent type {} of a tensor {} does not match the expected ' 'type {}.'.format(value_type, value, type_spec)) return value elif type_spec.is_sequence(): if isinstance(value, list): value = tensorflow_utils.make_data_set_from_elements( None, value, type_spec.element) py_typecheck.check_type(value, type_conversions.TF_DATASET_REPRESENTATION_TYPES) element_type = computation_types.to_type(value.element_spec) value_type = computation_types.SequenceType(element_type) type_spec.check_assignable_from(value_type) return value else: raise TypeError('Unexpected type {}.'.format(type_spec)) class EagerValue(executor_value_base.ExecutorValue): """A representation of an eager value managed by the eager executor.""" def __init__(self, value, tf_function_cache, type_spec=None, device=None): """Creates an instance of a value in this executor. Args: value: Depending on `type_spec`, either a `tf.Tensor`, `tf.data.Dataset`, or a nested structure of these stored in an `Struct`. tf_function_cache: A cache obeying `dict` semantics that can be used to look up previously embedded TensorFlow functions. type_spec: An instance of `tff.Type` that represents a tensor, a dataset, or a nested structure of these. device: An optional `tf.config.LogicalDevice` on which to place the value. """ if type_spec is None: py_typecheck.check_type(value, typed_object.TypedObject) type_spec = value.type_signature else: type_spec = computation_types.to_type(type_spec) py_typecheck.check_type(type_spec, computation_types.Type) self._type_signature = type_spec self._value = to_representation_for_type(value, tf_function_cache, type_spec, device) @property def internal_representation(self): """Returns a representation of the eager value embedded in the executor. This property is only intended for use by the eager executor and tests. Not for consumption by consumers of the executor interface. """ return self._value @property def type_signature(self): return self._type_signature @tracing.trace async def compute(self): return self._value class EagerTFExecutor(executor_base.Executor): """The eager executor only runs TensorFlow, synchronously, in eager mode. TODO(b/134764569): Add support for data as a building block. This executor understands the following TFF types: tensors, sequences, named tuples, and functions. It does not understand placements, federated, or abstract types. This executor understands the following kinds of TFF computation building blocks: tensorflow computations, and external data. It does not understand lambda calculus or any compositional constructs. Tuples and selections can only be created using `create_struct()` and `create_selection()` in the API. The arguments to be ingested can be Python constants of simple types, nested structures of those, as well as eager tensors and eager datasets. The external data references must identify files available in the executor's filesystem. The exact format is yet to be documented. The executor will be able to place work on specific devices (e.g., on GPUs). In contrast to the reference executor, it handles data sets in a pipelined fashion, and does not place limits on the data set sizes. It also avoids marshaling TensorFlow values in and out between calls. It does not deal with multithreading, checkpointing, federated computations, and other concerns to be covered by separate executor components. It runs the operations it supports in a synchronous fashion. Asynchrony and other aspects not supported here should be handled by composing this executor with other executors into a complex executor stack, rather than mixing in all the logic. """ def __init__(self, device=None): """Creates a new instance of an eager executor. Args: device: An optional `tf.config.LogicalDevice` that this executor will schedule all of its operations to run on. For example, the list of logical devices can be obtained using `tf.config.list_logical_devices()`. Raises: RuntimeError: If not executing eagerly. TypeError: If the device is not a `tf.config.LogicalDevice`. ValueError: If there is no device `device`. """ if not tf.executing_eagerly(): raise RuntimeError('The eager executor may only be used in eager mode.') if device is not None: py_typecheck.check_type(device, tf.config.LogicalDevice) self._device = device else: self._device = None self._tf_function_cache = cachetools.LRUCache(_TF_FUNCTION_CACHE_SIZE) @tracing.trace(span=True) async def create_value(self, value, type_spec=None): """Embeds `value` of type `type_spec` within this executor. Args: value: An object that represents the value to embed within the executor. type_spec: The `tff.Type` of the value represented by this object, or something convertible to it. Can optionally be `None` if `value` is an instance of `typed_object.TypedObject`. Returns: An instance of `EagerValue`. Raises: RuntimeError: If not executing eagerly. TypeError: If the arguments are of the wrong types. ValueError: If the type was not specified and cannot be determined from the value. """ if not tf.executing_eagerly(): raise RuntimeError('The eager executor may only be used in eager mode.') return EagerValue(value, self._tf_function_cache, type_spec, self._device) @tracing.trace async def create_call(self, comp, arg=None): """Creates a call to `comp` with optional `arg`. Args: comp: As documented in `executor_base.Executor`. arg: As documented in `executor_base.Executor`. Returns: An instance of `EagerValue` representing the result of the call. Raises: RuntimeError: If not executing eagerly. TypeError: If the arguments are of the wrong types. """ py_typecheck.check_type(comp, EagerValue) if arg is not None: py_typecheck.check_type(arg, EagerValue) if not comp.type_signature.is_function(): raise TypeError('Expected a functional type, found {}'.format( comp.type_signature)) if comp.type_signature.parameter is not None: return EagerValue( comp.internal_representation(arg.internal_representation), # pytype: disable=attribute-error self._tf_function_cache, comp.type_signature.result, self._device) elif arg is None: return EagerValue(comp.internal_representation(), self._tf_function_cache, comp.type_signature.result, self._device) else: raise TypeError('Cannot pass an argument to a no-argument function.') @tracing.trace async def create_struct(self, elements): """Creates a tuple of `elements`. Args: elements: As documented in `executor_base.Executor`. Returns: An instance of `EagerValue` that represents the constructed tuple. """ elements = structure.to_elements(structure.from_container(elements)) val_elements = [] type_elements = [] for k, v in elements: py_typecheck.check_type(v, EagerValue) val_elements.append((k, v.internal_representation)) type_elements.append((k, v.type_signature)) return EagerValue( structure.Struct(val_elements), self._tf_function_cache, computation_types.StructType([ (k, v) if k is not None else v for k, v in type_elements ])) @tracing.trace async def create_selection(self, source, index=None, name=None): """Creates a selection from `source`. Args: source: As documented in `executor_base.Executor`. index: As documented in `executor_base.Executor`. name: As documented in `executor_base.Executor`. Returns: An instance of `EagerValue` that represents the constructed selection. Raises: TypeError: If arguments are of the wrong types. ValueError: If either both, or neither of `name` and `index` are present. """ py_typecheck.check_type(source, EagerValue) py_typecheck.check_type(source.type_signature, computation_types.StructType) py_typecheck.check_type(source.internal_representation, structure.Struct) if index is not None: py_typecheck.check_type(index, int) if name is not None: raise ValueError( 'Cannot simultaneously specify name {} and index {}.'.format( name, index)) else: return EagerValue(source.internal_representation[index], self._tf_function_cache, source.type_signature[index]) elif name is not None: py_typecheck.check_type(name, str) return EagerValue( getattr(source.internal_representation, str(name)), self._tf_function_cache, getattr(source.type_signature, str(name))) else: raise ValueError('Must specify either name or index.') def close(self): pass
40.007117
103
0.718244
[ "Apache-2.0" ]
ddayzzz/federated
tensorflow_federated/python/core/impl/executors/eager_tf_executor.py
22,484
Python
import torch import argparse from bindsnet.network import Network from bindsnet.learning import Hebbian from bindsnet.pipeline import EnvironmentPipeline from bindsnet.encoding import bernoulli from bindsnet.network.monitors import Monitor from bindsnet.environment import GymEnvironment from bindsnet.network.topology import Connection from bindsnet.network.nodes import Input, LIFNodes from bindsnet.pipeline.action import select_multinomial parser = argparse.ArgumentParser() parser.add_argument("-n", type=int, default=1000000) parser.add_argument("--seed", type=int, default=0) parser.add_argument("--n_neurons", type=int, default=100) parser.add_argument("--dt", type=float, default=1.0) parser.add_argument("--plot_interval", type=int, default=10) parser.add_argument("--render_interval", type=int, default=10) parser.add_argument("--print_interval", type=int, default=100) parser.add_argument("--gpu", dest="gpu", action="store_true") parser.set_defaults(plot=False, render=False, gpu=False) args = parser.parse_args() n = args.n seed = args.seed n_neurons = args.n_neurons dt = args.dt plot_interval = args.plot_interval render_interval = args.render_interval print_interval = args.print_interval gpu = args.gpu if gpu: torch.set_default_tensor_type("torch.cuda.FloatTensor") torch.cuda.manual_seed_all(seed) else: torch.manual_seed(seed) # Build network. network = Network(dt=dt) # Layers of neurons. inpt = Input(shape=(1, 1, 1, 80, 80), traces=True) # Input layer exc = LIFNodes(n=n_neurons, refrac=0, traces=True) # Excitatory layer readout = LIFNodes(n=4, refrac=0, traces=True) # Readout layer layers = {"X": inpt, "E": exc, "R": readout} # Connections between layers. # Input -> excitatory. w = 0.01 * torch.rand(layers["X"].n, layers["E"].n) input_exc_conn = Connection( source=layers["X"], target=layers["E"], w=0.01 * torch.rand(layers["X"].n, layers["E"].n), wmax=0.02, norm=0.01 * layers["X"].n, ) # Excitatory -> readout. exc_readout_conn = Connection( source=layers["E"], target=layers["R"], w=0.01 * torch.rand(layers["E"].n, layers["R"].n), update_rule=Hebbian, nu=[1e-2, 1e-2], norm=0.5 * layers["E"].n, ) # Spike recordings for all layers. spikes = {} for layer in layers: spikes[layer] = Monitor(layers[layer], ["s"], time=plot_interval) # Voltage recordings for excitatory and readout layers. voltages = {} for layer in set(layers.keys()) - {"X"}: voltages[layer] = Monitor(layers[layer], ["v"], time=plot_interval) # Add all layers and connections to the network. for layer in layers: network.add_layer(layers[layer], name=layer) network.add_connection(input_exc_conn, source="X", target="E") network.add_connection(exc_readout_conn, source="E", target="R") # Add all monitors to the network. for layer in layers: network.add_monitor(spikes[layer], name="%s_spikes" % layer) if layer in voltages: network.add_monitor(voltages[layer], name="%s_voltages" % layer) # Load the Breakout environment. environment = GymEnvironment("BreakoutDeterministic-v4") environment.reset() pipeline = EnvironmentPipeline( network, environment, encoding=bernoulli, time=1, history=5, delta=10, plot_interval=plot_interval, print_interval=print_interval, render_interval=render_interval, action_function=select_multinomial, output="R", ) total = 0 rewards = [] avg_rewards = [] lengths = [] avg_lengths = [] i = 0 try: while i < n: result = pipeline.env_step() pipeline.step(result) is_done = result[2] if is_done: pipeline.reset_state_variables() i += 1 except KeyboardInterrupt: environment.close()
27.791045
72
0.713212
[ "MIT" ]
Singular-Brain/ProjectBrain
bindsnet_master/examples/breakout/random_network_baseline.py
3,724
Python
""" Ensemble the predictions from different model outputs. """ import argparse import json import pickle import numpy as np from collections import Counter from data.loader import DataLoader from utils import scorer, constant def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('pred_files', nargs='+', help='A list of prediction files written by eval.py.') parser.add_argument('--data_dir', default='dataset/tacred') parser.add_argument('--dataset', default='test', help='Evaluate on dev or test set.') parser.add_argument('--weights', default='') args = parser.parse_args() return args def main(): args = parse_args() print("Loading data file...") filename = args.data_dir + '/{}.json'.format(args.dataset) with open(filename, 'r') as infile: data = json.load(infile, encoding='utf8') labels = [d['relation'] for d in data] # read predictions print("Loading {} prediction files...".format(len(args.pred_files))) scores_list = [] for path in args.pred_files: with open(path, 'rb') as infile: scores = pickle.load(infile) scores_list += [scores] print("Calculating ensembled predictions...") predictions = [] scores_by_examples = list(zip(*scores_list)) assert len(scores_by_examples) == len(data) for scores in scores_by_examples: if len(args.weights) == 0: pred = ensemble(scores) else: pred = weight_sum(scores, args.weights) predictions += [pred] id2label = dict([(v,k) for k,v in constant.LABEL_TO_ID.items()]) predictions = [id2label[p] for p in predictions] scorer.score(labels, predictions, verbose=True) def ensemble(scores): """ Ensemble by majority vote. """ c = Counter() for probs in zip(scores): idx = int(np.argmax(np.array(probs))) c.update([idx]) best = c.most_common(1)[0][0] return best def weight_sum(scores, weights): weights = list(map(lambda x: float(x), weights.split(' '))) aggregate_scores = np.zeros(len(scores[0])) for model_scores, weight in zip(scores, weights): scores_weights = np.array(model_scores) * weight aggregate_scores += scores_weights best = int(np.argmax(aggregate_scores)) return best if __name__ == '__main__': main()
31.533333
103
0.652854
[ "Apache-2.0" ]
gstoica27/tacred-exploration
ensemble.py
2,365
Python
import os import sys import shutil import subprocess from config import rfam_local as conf from config import gen_config as gc from utils import genome_search_utils as gsu # ------------------------------------------------------------------------ def split_genome_to_chunks(updir, upid): """ updir: upid: return: """ # get updir location upid_fasta = os.path.join(updir, upid + '.fa') seq_chunks_dir = os.path.join(updir, "search_chunks") if not os.path.exists(seq_chunks_dir): os.mkdir(seq_chunks_dir) os.chmod(seq_chunks_dir, 0777) # check if we need to split the seq_file if gsu.count_nucleotides_in_fasta(upid_fasta) >= gc.SPLIT_SIZE: # split sequence file into smalled chunks gsu.split_seq_file(upid_fasta, gc.SPLIT_SIZE, dest_dir=seq_chunks_dir) # now index the fasta files seq_files = os.listdir(seq_chunks_dir) for seq_file in seq_files: seq_file_loc = os.path.join(seq_chunks_dir, seq_file) cmd = "%s --index %s" % (conf.ESL_SFETCH, seq_file_loc) subprocess.call(cmd, shell=True) # for input consistency if the sequence file is small, copy it in the # search_chunks directory else: # copy file shutil.copyfile(upid_fasta, os.path.join(seq_chunks_dir, upid + '.fa')) # index file cmd = "%s --index %s" % (conf.ESL_SFETCH, os.path.join(seq_chunks_dir, upid + '.fa')) subprocess.call(cmd, shell=True) # ------------------------------------------------------------------------ if __name__ == '__main__': project_dir = sys.argv[1] # this can be a file of upids or a upid string UPXXXXXXXX upid_input = sys.argv[2] if os.path.isfile(upid_input): fp = open(upid_input, 'r') upids = [x.strip() for x in fp] fp.close() for upid in upids: suffix = upid[-3:] subdir_loc = os.path.join(project_dir, suffix) updir_loc = os.path.join(subdir_loc, upid) split_genome_to_chunks(updir_loc, upid) else: # get updir location and subdir suffix = upid_input[-3:] subdir_loc = os.path.join(project_dir, suffix) updir_loc = os.path.join(subdir_loc, upid_input) split_genome_to_chunks(updir_loc, upid_input)
31.259259
82
0.557267
[ "Apache-2.0" ]
Rfam/rfam-production
scripts/support/split_genomes.py
2,532
Python
#!/usr/bin/env python """Pathspecs are methods of specifying the path on the client. The GRR client has a number of drivers to virtualize access to different objects to create a Virtual File System (VFS) abstraction. These are called 'VFS Handlers' and they provide typical file-like operations (e.g. read, seek, tell and stat). It is possible to recursively apply different drivers in the correct order to arrive at a certain file like object. In order to specify how drivers should be applied we use 'Path Specifications' or pathspec. Each VFS handler is constructed from a previous handler and a pathspec. The pathspec is just a collection of arguments which make sense to the specific VFS handler. The type of the handler is carried by the pathtype parameter. On the server the PathSpec is represented as a PathSpec object, and stored as an attribute of the AFF4 object. This module defines this abstraction. """ import itertools import posixpath import re from grr.lib import rdfvalue from grr.lib import utils from grr.lib.rdfvalues import standard as rdf_standard from grr.lib.rdfvalues import structs as rdf_structs from grr.proto import jobs_pb2 from grr.server import artifact_utils INTERPOLATED_REGEX = re.compile(r"%%([^%]+?)%%") # Grouping pattern: e.g. {test.exe,foo.doc,bar.txt} GROUPING_PATTERN = re.compile("{([^}]+,[^}]+)}") class PathSpec(rdf_structs.RDFProtoStruct): """A path specification. The pathspec protobuf is a recursive protobuf which contains components. This class makes it easier to manipulate these structures by providing useful helpers. """ protobuf = jobs_pb2.PathSpec rdf_deps = [ rdfvalue.ByteSize, "PathSpec", # TODO(user): recursive definition. ] def CopyConstructor(self, other): # pylint: disable=protected-access self.SetRawData(other._CopyRawData()) # pylint: enable=protected-access self.age = other.age def __len__(self): """Return the total number of path components.""" i = -1 for i, _ in enumerate(self): pass return i + 1 def __getitem__(self, item): for i, element in enumerate(self): if i == item: return element raise IndexError("Pathspec index (%s) out of range" % item) def __iter__(self): """Only iterate over all components from the current pointer.""" element = self while element.HasField("pathtype"): yield element if element.HasField("nested_path"): element = element.nested_path else: break def Insert(self, index, rdfpathspec=None, **kwarg): """Insert a single component at index.""" if rdfpathspec is None: rdfpathspec = self.__class__(**kwarg) if index == 0: # Copy ourselves to a temp copy. nested_proto = self.__class__() nested_proto.SetRawData(self.GetRawData()) # Replace ourselves with the new object. self.SetRawData(rdfpathspec.GetRawData()) # Append the temp copy to the end. self.last.nested_path = nested_proto else: previous = self[index - 1] rdfpathspec.last.nested_path = previous.nested_path previous.nested_path = rdfpathspec def Append(self, component=None, **kwarg): """Append a new pathspec component to this pathspec.""" if component is None: component = self.__class__(**kwarg) if self.HasField("pathtype"): self.last.nested_path = component else: for k, v in kwarg.items(): setattr(self, k, v) self.SetRawData(component.GetRawData()) return self def CollapsePath(self): return utils.JoinPath(*[x.path for x in self]) def Pop(self, index=0): """Removes and returns the pathspec at the specified index.""" if index < 0: index += len(self) if index == 0: result = self.__class__() result.SetRawData(self.GetRawData()) self.SetRawData(self.nested_path.GetRawData()) else: # Get the raw protobufs for the previous member. previous = self[index - 1] result = previous.nested_path # Manipulate the previous members protobuf to patch the next component in. previous.nested_path = result.nested_path result.nested_path = None return result @property def first(self): return self @property def last(self): if self.HasField("pathtype") and self.pathtype != self.PathType.UNSET: return list(self)[-1] return self def Dirname(self): """Get a new copied object with only the directory path.""" result = self.Copy() while 1: last_directory = posixpath.dirname(result.last.path) if last_directory != "/" or len(result) <= 1: result.last.path = last_directory # Make sure to clear the inode information. result.last.inode = None break result.Pop(-1) return result def Basename(self): for component in reversed(self): basename = posixpath.basename(component.path) if basename: return basename return "" def Validate(self): if not self.HasField("pathtype") or self.pathtype == self.PathType.UNSET: raise ValueError("No path type set in PathSpec.") AFF4_PREFIXES = { 0: "/fs/os", # PathSpec.PathType.OS 1: "/fs/tsk", # PathSpec.PathType.TSK 2: "/registry", # PathSpec.PathType.REGISTRY 3: "/devices/memory", # PathSpec.PathType.MEMORY 4: "/temp", # PathSpec.PathType.TMPFILE } def AFF4Path(self, client_urn): """Returns the AFF4 URN this pathspec will be stored under. Args: client_urn: A ClientURN. Returns: A urn that corresponds to this pathspec. Raises: ValueError: If pathspec is not of the correct type. """ # If the first level is OS and the second level is TSK its probably a mount # point resolution. We map it into the tsk branch. For example if we get: # path: \\\\.\\Volume{1234}\\ # pathtype: OS # mount_point: /c:/ # nested_path { # path: /windows/ # pathtype: TSK # } # We map this to aff4://client_id/fs/tsk/\\\\.\\Volume{1234}\\/windows/ if not self.HasField("pathtype"): raise ValueError("Can't determine AFF4 path without a valid pathtype.") first_component = self[0] dev = first_component.path if first_component.HasField("offset"): # We divide here just to get prettier numbers in the GUI dev += ":" + str(first_component.offset / 512) if (len(self) > 1 and first_component.pathtype == PathSpec.PathType.OS and self[1].pathtype == PathSpec.PathType.TSK): result = [self.AFF4_PREFIXES[PathSpec.PathType.TSK], dev] # Skip the top level pathspec. start = 1 else: # For now just map the top level prefix based on the first pathtype result = [self.AFF4_PREFIXES[first_component.pathtype]] start = 0 for p in self[start]: component = p.path # The following encode different pathspec properties into the AFF4 path in # such a way that unique files on the client are mapped to unique URNs in # the AFF4 space. Note that this transformation does not need to be # reversible since we always use the PathSpec when accessing files on the # client. if p.HasField("offset"): component += ":" + str(p.offset / 512) # Support ADS names. if p.HasField("stream_name"): component += ":" + p.stream_name result.append(component) return client_urn.Add("/".join(result)) class GlobExpression(rdfvalue.RDFString): """A glob expression for a client path. A glob expression represents a set of regular expressions which match files on the client. The Glob expression supports the following expansions: 1) Client attribute expansions are surrounded with %% characters. They will be expanded from the client AFF4 object. 2) Groupings are collections of alternates. e.g. {foo.exe,bar.sys} 3) Wild cards like * and ? """ context_help_url = "investigating-with-grr/flows/specifying-file-paths.html" RECURSION_REGEX = re.compile(r"\*\*(\d*)") def Validate(self): """GlobExpression is valid.""" if len(self.RECURSION_REGEX.findall(self._value)) > 1: raise ValueError("Only one ** is permitted per path: %s." % self._value) def Interpolate(self, client=None): kb = client.Get(client.Schema.KNOWLEDGE_BASE) patterns = artifact_utils.InterpolateKbAttributes(self._value, kb) for pattern in patterns: # Normalize the component path (this allows us to resolve ../ # sequences). pattern = utils.NormalizePath(pattern.replace("\\", "/")) for pattern in self.InterpolateGrouping(pattern): yield pattern def InterpolateGrouping(self, pattern): """Interpolate inline globbing groups.""" components = [] offset = 0 for match in GROUPING_PATTERN.finditer(pattern): components.append([pattern[offset:match.start()]]) # Expand the attribute into the set of possibilities: alternatives = match.group(1).split(",") components.append(set(alternatives)) offset = match.end() components.append([pattern[offset:]]) # Now calculate the cartesian products of all these sets to form all # strings. for vector in itertools.product(*components): yield u"".join(vector) def _ReplaceRegExGrouping(self, grouping): alternatives = grouping.group(1).split(",") return "(" + "|".join(re.escape(s) for s in alternatives) + ")" def _ReplaceRegExPart(self, part): if part == "**/": return "(?:.*\\/)?" elif part == "*": return "[^\\/]*" elif part == "?": return "[^\\/]" elif GROUPING_PATTERN.match(part): return GROUPING_PATTERN.sub(self._ReplaceRegExGrouping, part) else: return re.escape(part) REGEX_SPLIT_PATTERN = re.compile( "(" + "|".join(["{[^}]+,[^}]+}", "\\?", "\\*\\*\\/?", "\\*"]) + ")") def AsRegEx(self): """Return the current glob as a simple regex. Note: No interpolation is performed. Returns: A RegularExpression() object. """ parts = self.__class__.REGEX_SPLIT_PATTERN.split(self._value) result = "".join(self._ReplaceRegExPart(p) for p in parts) return rdf_standard.RegularExpression("(?i)\\A%s\\Z" % result)
30.449704
80
0.667314
[ "Apache-2.0" ]
mrhania/grr
grr/lib/rdfvalues/paths.py
10,292
Python
#!/usr/bin/env python3 # Copyright (c) 2020 The Garliccoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. '''Test generateblock rpc. ''' from test_framework.test_framework import GarliccoinTestFramework from test_framework.util import ( assert_equal, assert_raises_rpc_error, ) class GenerateBlockTest(GarliccoinTestFramework): def set_test_params(self): self.num_nodes = 1 def skip_test_if_missing_module(self): self.skip_if_no_wallet() def run_test(self): node = self.nodes[0] self.log.info('Generate an empty block to address') address = node.getnewaddress() hash = node.generateblock(output=address, transactions=[])['hash'] block = node.getblock(blockhash=hash, verbose=2) assert_equal(len(block['tx']), 1) assert_equal(block['tx'][0]['vout'][0]['scriptPubKey']['address'], address) self.log.info('Generate an empty block to a descriptor') hash = node.generateblock('addr(' + address + ')', [])['hash'] block = node.getblock(blockhash=hash, verbosity=2) assert_equal(len(block['tx']), 1) assert_equal(block['tx'][0]['vout'][0]['scriptPubKey']['address'], address) self.log.info('Generate an empty block to a combo descriptor with compressed pubkey') combo_key = '0279be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798' combo_address = 'bcrt1qw508d6qejxtdg4y5r3zarvary0c5xw7kygt080' hash = node.generateblock('combo(' + combo_key + ')', [])['hash'] block = node.getblock(hash, 2) assert_equal(len(block['tx']), 1) assert_equal(block['tx'][0]['vout'][0]['scriptPubKey']['address'], combo_address) self.log.info('Generate an empty block to a combo descriptor with uncompressed pubkey') combo_key = '0408ef68c46d20596cc3f6ddf7c8794f71913add807f1dc55949fa805d764d191c0b7ce6894c126fce0babc6663042f3dde9b0cf76467ea315514e5a6731149c67' combo_address = 'mkc9STceoCcjoXEXe6cm66iJbmjM6zR9B2' hash = node.generateblock('combo(' + combo_key + ')', [])['hash'] block = node.getblock(hash, 2) assert_equal(len(block['tx']), 1) assert_equal(block['tx'][0]['vout'][0]['scriptPubKey']['address'], combo_address) # Generate 110 blocks to spend node.generatetoaddress(110, address) # Generate some extra mempool transactions to verify they don't get mined for _ in range(10): node.sendtoaddress(address, 0.001) self.log.info('Generate block with txid') txid = node.sendtoaddress(address, 1) hash = node.generateblock(address, [txid])['hash'] block = node.getblock(hash, 1) assert_equal(len(block['tx']), 2) assert_equal(block['tx'][1], txid) self.log.info('Generate block with raw tx') utxos = node.listunspent(addresses=[address]) raw = node.createrawtransaction([{'txid':utxos[0]['txid'], 'vout':utxos[0]['vout']}],[{address:1}]) signed_raw = node.signrawtransactionwithwallet(raw)['hex'] hash = node.generateblock(address, [signed_raw])['hash'] block = node.getblock(hash, 1) assert_equal(len(block['tx']), 2) txid = block['tx'][1] assert_equal(node.gettransaction(txid)['hex'], signed_raw) self.log.info('Fail to generate block with out of order txs') raw1 = node.createrawtransaction([{'txid':txid, 'vout':0}],[{address:0.9999}]) signed_raw1 = node.signrawtransactionwithwallet(raw1)['hex'] txid1 = node.sendrawtransaction(signed_raw1) raw2 = node.createrawtransaction([{'txid':txid1, 'vout':0}],[{address:0.999}]) signed_raw2 = node.signrawtransactionwithwallet(raw2)['hex'] assert_raises_rpc_error(-25, 'TestBlockValidity failed: bad-txns-inputs-missingorspent', node.generateblock, address, [signed_raw2, txid1]) self.log.info('Fail to generate block with txid not in mempool') missing_txid = '0000000000000000000000000000000000000000000000000000000000000000' assert_raises_rpc_error(-5, 'Transaction ' + missing_txid + ' not in mempool.', node.generateblock, address, [missing_txid]) self.log.info('Fail to generate block with invalid raw tx') invalid_raw_tx = '0000' assert_raises_rpc_error(-22, 'Transaction decode failed for ' + invalid_raw_tx, node.generateblock, address, [invalid_raw_tx]) self.log.info('Fail to generate block with invalid address/descriptor') assert_raises_rpc_error(-5, 'Invalid address or descriptor', node.generateblock, '1234', []) self.log.info('Fail to generate block with a ranged descriptor') ranged_descriptor = 'pkh(tpubD6NzVbkrYhZ4XgiXtGrdW5XDAPFCL9h7we1vwNCpn8tGbBcgfVYjXyhWo4E1xkh56hjod1RhGjxbaTLV3X4FyWuejifB9jusQ46QzG87VKp/0/*)' assert_raises_rpc_error(-8, 'Ranged descriptor not accepted. Maybe pass through deriveaddresses first?', node.generateblock, ranged_descriptor, []) self.log.info('Fail to generate block with a descriptor missing a private key') child_descriptor = 'pkh(tpubD6NzVbkrYhZ4XgiXtGrdW5XDAPFCL9h7we1vwNCpn8tGbBcgfVYjXyhWo4E1xkh56hjod1RhGjxbaTLV3X4FyWuejifB9jusQ46QzG87VKp/0\'/0)' assert_raises_rpc_error(-5, 'Cannot derive script without private keys', node.generateblock, child_descriptor, []) if __name__ == '__main__': GenerateBlockTest().main()
51.598131
155
0.694983
[ "MIT" ]
Garlic-HM/garliccoin
test/functional/rpc_generateblock.py
5,521
Python
from operator import attrgetter import pyangbind.lib.xpathhelper as xpathhelper from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType, RestrictedClassType, TypedListType from pyangbind.lib.yangtypes import YANGBool, YANGListType, YANGDynClass, ReferenceType from pyangbind.lib.base import PybindBase from decimal import Decimal from bitarray import bitarray import __builtin__ class cluster_id(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module brocade-common-def - based on the path /routing-system/router/router-bgp/router-bgp-attributes/cluster-id. Each member element of the container is represented as a class variable - with a specific YANG type. """ __slots__ = ('_pybind_generated_by', '_path_helper', '_yang_name', '_rest_name', '_extmethods', '__cluster_id_value','__cluster_id_ipv4_address',) _yang_name = 'cluster-id' _rest_name = 'cluster-id' _pybind_generated_by = 'container' def __init__(self, *args, **kwargs): path_helper_ = kwargs.pop("path_helper", None) if path_helper_ is False: self._path_helper = False elif path_helper_ is not None and isinstance(path_helper_, xpathhelper.YANGPathHelper): self._path_helper = path_helper_ elif hasattr(self, "_parent"): path_helper_ = getattr(self._parent, "_path_helper", False) self._path_helper = path_helper_ else: self._path_helper = False extmethods = kwargs.pop("extmethods", None) if extmethods is False: self._extmethods = False elif extmethods is not None and isinstance(extmethods, dict): self._extmethods = extmethods elif hasattr(self, "_parent"): extmethods = getattr(self._parent, "_extmethods", None) self._extmethods = extmethods else: self._extmethods = False self.__cluster_id_ipv4_address = YANGDynClass(base=RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\\.){3}([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])(%[\\p{N}\\p{L}]+)?'}), is_leaf=True, yang_name="cluster-id-ipv4-address", rest_name="ipv4-address", parent=self, choice=(u'ch-cluster-id', u'ca-cluster-id-ipv4-address'), path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Route-Reflector Cluster-ID as IP address', u'alt-name': u'ipv4-address'}}, namespace='urn:brocade.com:mgmt:brocade-bgp', defining_module='brocade-bgp', yang_type='inet:ipv4-address', is_config=True) self.__cluster_id_value = YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'1..65535']}), is_leaf=True, yang_name="cluster-id-value", rest_name="id", parent=self, choice=(u'ch-cluster-id', u'ca-cluster-id'), path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Route-Reflector Cluster-ID as 32 bit quantity', u'cli-drop-node-name': None, u'alt-name': u'id'}}, namespace='urn:brocade.com:mgmt:brocade-bgp', defining_module='brocade-bgp', yang_type='decimal-number', is_config=True) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path()+[self._yang_name] else: return [u'routing-system', u'router', u'router-bgp', u'router-bgp-attributes', u'cluster-id'] def _rest_path(self): if hasattr(self, "_parent"): if self._rest_name: return self._parent._rest_path()+[self._rest_name] else: return self._parent._rest_path() else: return [u'router', u'bgp', u'cluster-id'] def _get_cluster_id_value(self): """ Getter method for cluster_id_value, mapped from YANG variable /routing_system/router/router_bgp/router_bgp_attributes/cluster_id/cluster_id_value (decimal-number) """ return self.__cluster_id_value def _set_cluster_id_value(self, v, load=False): """ Setter method for cluster_id_value, mapped from YANG variable /routing_system/router/router_bgp/router_bgp_attributes/cluster_id/cluster_id_value (decimal-number) If this variable is read-only (config: false) in the source YANG file, then _set_cluster_id_value is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_cluster_id_value() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'1..65535']}), is_leaf=True, yang_name="cluster-id-value", rest_name="id", parent=self, choice=(u'ch-cluster-id', u'ca-cluster-id'), path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Route-Reflector Cluster-ID as 32 bit quantity', u'cli-drop-node-name': None, u'alt-name': u'id'}}, namespace='urn:brocade.com:mgmt:brocade-bgp', defining_module='brocade-bgp', yang_type='decimal-number', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """cluster_id_value must be of a type compatible with decimal-number""", 'defined-type': "brocade-bgp:decimal-number", 'generated-type': """YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'1..65535']}), is_leaf=True, yang_name="cluster-id-value", rest_name="id", parent=self, choice=(u'ch-cluster-id', u'ca-cluster-id'), path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Route-Reflector Cluster-ID as 32 bit quantity', u'cli-drop-node-name': None, u'alt-name': u'id'}}, namespace='urn:brocade.com:mgmt:brocade-bgp', defining_module='brocade-bgp', yang_type='decimal-number', is_config=True)""", }) self.__cluster_id_value = t if hasattr(self, '_set'): self._set() def _unset_cluster_id_value(self): self.__cluster_id_value = YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'1..65535']}), is_leaf=True, yang_name="cluster-id-value", rest_name="id", parent=self, choice=(u'ch-cluster-id', u'ca-cluster-id'), path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Route-Reflector Cluster-ID as 32 bit quantity', u'cli-drop-node-name': None, u'alt-name': u'id'}}, namespace='urn:brocade.com:mgmt:brocade-bgp', defining_module='brocade-bgp', yang_type='decimal-number', is_config=True) def _get_cluster_id_ipv4_address(self): """ Getter method for cluster_id_ipv4_address, mapped from YANG variable /routing_system/router/router_bgp/router_bgp_attributes/cluster_id/cluster_id_ipv4_address (inet:ipv4-address) """ return self.__cluster_id_ipv4_address def _set_cluster_id_ipv4_address(self, v, load=False): """ Setter method for cluster_id_ipv4_address, mapped from YANG variable /routing_system/router/router_bgp/router_bgp_attributes/cluster_id/cluster_id_ipv4_address (inet:ipv4-address) If this variable is read-only (config: false) in the source YANG file, then _set_cluster_id_ipv4_address is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_cluster_id_ipv4_address() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\\.){3}([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])(%[\\p{N}\\p{L}]+)?'}), is_leaf=True, yang_name="cluster-id-ipv4-address", rest_name="ipv4-address", parent=self, choice=(u'ch-cluster-id', u'ca-cluster-id-ipv4-address'), path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Route-Reflector Cluster-ID as IP address', u'alt-name': u'ipv4-address'}}, namespace='urn:brocade.com:mgmt:brocade-bgp', defining_module='brocade-bgp', yang_type='inet:ipv4-address', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """cluster_id_ipv4_address must be of a type compatible with inet:ipv4-address""", 'defined-type': "inet:ipv4-address", 'generated-type': """YANGDynClass(base=RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\\.){3}([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])(%[\\p{N}\\p{L}]+)?'}), is_leaf=True, yang_name="cluster-id-ipv4-address", rest_name="ipv4-address", parent=self, choice=(u'ch-cluster-id', u'ca-cluster-id-ipv4-address'), path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Route-Reflector Cluster-ID as IP address', u'alt-name': u'ipv4-address'}}, namespace='urn:brocade.com:mgmt:brocade-bgp', defining_module='brocade-bgp', yang_type='inet:ipv4-address', is_config=True)""", }) self.__cluster_id_ipv4_address = t if hasattr(self, '_set'): self._set() def _unset_cluster_id_ipv4_address(self): self.__cluster_id_ipv4_address = YANGDynClass(base=RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\\.){3}([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])(%[\\p{N}\\p{L}]+)?'}), is_leaf=True, yang_name="cluster-id-ipv4-address", rest_name="ipv4-address", parent=self, choice=(u'ch-cluster-id', u'ca-cluster-id-ipv4-address'), path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Route-Reflector Cluster-ID as IP address', u'alt-name': u'ipv4-address'}}, namespace='urn:brocade.com:mgmt:brocade-bgp', defining_module='brocade-bgp', yang_type='inet:ipv4-address', is_config=True) cluster_id_value = __builtin__.property(_get_cluster_id_value, _set_cluster_id_value) cluster_id_ipv4_address = __builtin__.property(_get_cluster_id_ipv4_address, _set_cluster_id_ipv4_address) __choices__ = {u'ch-cluster-id': {u'ca-cluster-id': [u'cluster_id_value'], u'ca-cluster-id-ipv4-address': [u'cluster_id_ipv4_address']}} _pyangbind_elements = {'cluster_id_value': cluster_id_value, 'cluster_id_ipv4_address': cluster_id_ipv4_address, }
72.424051
725
0.718081
[ "Apache-2.0" ]
extremenetworks/pybind
pybind/slxos/v17r_1_01a/routing_system/router/router_bgp/router_bgp_attributes/cluster_id/__init__.py
11,443
Python
from django.contrib import messages, auth from django.contrib.auth.decorators import login_required from payments.forms import MakePaymentForm from django.shortcuts import render, get_object_or_404, redirect from django.core.urlresolvers import reverse from django.template.context_processors import csrf from django.conf import settings from services.models import Service import stripe stripe.api_key = settings.STRIPE_SECRET @login_required(login_url="/accounts/login?next=payments/buy_now") def buy_now(request, id): if request.method == 'POST': form = MakePaymentForm(request.POST) if form.is_valid(): try: # service = get_object_or_404(Service, pk=id) customer = stripe.Charge.create( amount= int(total*100), currency="EUR", description=request.user.email, card=form.cleaned_data['stripe_id'], ) except stripe.error.CardError: messages.error(request, "Your card was declined!") if customer.paid: messages.success(request, "You have successfully paid") return redirect(reverse('all_services')) else: messages.error(request, "Unable to take payment") else: messages.error(request, "We were unable to take a payment with that card!") else: form = MakePaymentForm() services = get_object_or_404(Service, pk=id) args = {'form': form, 'publishable': settings.STRIPE_PUBLISHABLE, 'services': services} args.update(csrf(request)) return render(request, 'pay.html', args)
34.510204
91
0.645772
[ "MIT" ]
lilschmitz/Lifestyle_Fitness_Site
payments/views.py
1,691
Python
#!/usr/bin/env python2.7 # William Lam # wwww.virtuallyghetto.com # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import pyVim.connect as connect import getpass import requests import ssl ssl._create_default_https_context = ssl._create_unverified_context # Snippet borrowed from Michael Rice # https://gist.github.com/michaelrice/a6794a017e349fc65d01 requests.packages.urllib3.disable_warnings() try: _create_unverified_https_context = ssl._create_unverified_context except AttributeError: # Legacy Python that doesn't verify HTTPS certificates by default pass else: # Handle target environment that doesn't support HTTPS verification ssl._create_default_https_context = _create_unverified_https_context # Demonstrates configuring the Message of the Day (MOTD) on vCenter Server # Example output: # > logged in to vcsa # > Setting vCenter Server MOTD to "Hello from virtuallyGhetto" # > logout parser = argparse.ArgumentParser() parser.add_argument('-s', '--host', required=True, action='store', help='Remote host to connect to') parser.add_argument('-u', '--user', required=True, action='store', help='User name to use when connecting to host') parser.add_argument('-p', '--password', required=False, action='store', help='Password to use when connecting to host') parser.add_argument('-o', '--port', required=False, action='store', help="port to use, default 443", default=443) parser.add_argument('-m', '--message', required=True, action='store', help='Message to be used for VC MOTD') args = parser.parse_args() if args.password: password = args.password else: password = getpass.getpass( prompt='Enter password for host %s and user %s: ' % (args.host, args.user)) si = connect.SmartConnect(host=args.host, user=args.user, pwd=password, port=int(args.port)) print "logged in to %s" % args.host print "Setting vCenter Server MOTD to \"%s\"" % args.message si.content.sessionManager.UpdateServiceMessage(message=args.message) print "logout" si.content.sessionManager.Logout()
32.977528
74
0.656899
[ "Apache-2.0" ]
whchoi98/whchoi_pyvmomi-community-samples
samples/set_vcenter_motd.py
2,935
Python
# -------------- #Importing header files import pandas as pd import numpy as np import matplotlib.pyplot as plt #Path of the file is stored in the variable path data=pd.read_csv(path) #Code starts here data.rename(columns={'Total':'Total_Medals'},inplace=True) # Data Loading data['Better_Event'] = np.where(data['Total_Summer']> data['Total_Winter'], 'Summer', 'Winter') data['Better_Event'] =np.where(data['Total_Summer'] ==data['Total_Winter'],'Both',data['Better_Event']) better_event=data['Better_Event'].value_counts().idxmax() data.head() # Summer or Winter # Top 10 data.head(10) # Plotting top 10 # Top Performing Countries top_countries=data[['Country_Name','Total_Summer', 'Total_Winter','Total_Medals']] top_countries=top_countries[:-1] top_countries # Best in the world def top_ten(df,col): country_list=[] country_list= list((top_countries.nlargest(10,col)['Country_Name'])) return country_list top_10_summer=top_ten(top_countries,'Total_Summer') top_10_winter=top_ten(top_countries,'Total_Winter') top_10=top_ten(top_countries,'Total_Medals') a=set(top_10_summer).intersection(set(top_10_winter)) b=a.intersection(set(top_10)) common=list(b) summer_df= data[data['Country_Name'].isin(top_10_summer)] summer_df.head() winter_df= data[data['Country_Name'].isin(top_10_winter)] winter_df.head() top_df= data[data['Country_Name'].isin(top_10)] top_df.head() plt.figure(figsize=(10,10)) plt.bar(summer_df['Country_Name'],summer_df['Total_Summer']) plt.xticks(rotation=30) plt.show() summer_df['Golden_Ratio']=summer_df['Gold_Summer']/summer_df['Total_Summer'] summer_max_ratio=max(summer_df['Golden_Ratio']) summer_max_ratio summer_country_gold=summer_df.loc[summer_df['Gold_Summer'].idxmax(),'Country_Name'] summer_country_gold winter_df['Golden_Ratio']=summer_df['Gold_Winter']/summer_df['Total_Winter'] winter_max_ratio=max(winter_df['Golden_Ratio']) winter_country_gold=winter_df.loc[winter_df['Gold_Winter'].idxmax(),'Country_Name'] winter_country_gold top_df['Golden_Ratio']=top_df['Gold_Total']/top_df['Total_Medals'] top_max_ratio=max(top_df['Golden_Ratio']) top_country_gold=top_df.loc[top_df['Golden_Ratio'].idxmax(),'Country_Name'] top_country_gold data_1=data[:-1] data_1['Total_Points']=data_1['Gold_Total']*3+data_1['Silver_Total']*2+data_1['Bronze_Total']*1 most_points=max(data_1['Total_Points']) most_points best_country=data_1.loc[data_1['Total_Points'].idxmax(),'Country_Name'] best_country # Plotting the best best=data[data['Country_Name']==best_country] best best=best[['Gold_Total','Silver_Total','Bronze_Total']] best best.plot.bar() plt.xlabel("United States") plt.ylabel("Medals") plt.xticks(rotation=45)
31.388235
103
0.775487
[ "MIT" ]
Monika199211/olympics-data-analysis
code.py
2,668
Python
from functools import partial as curry from django import forms from django.utils import timezone from django.utils.text import slugify from django.utils.translation import ugettext_lazy as _ from pinax.images.models import ImageSet from mdeditor.fields import MDTextFormField from .conf import settings from .models import Post, Revision, Section from .signals import post_published from .utils import load_path_attr FIELDS = [ "section", "author", "markup", "title", "slug", "teaser", "content", "description", "state" ] class PostFormMixin: @property def markup_choice(self): return self.cleaned_data["markup"] def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) post = self.instance latest_revision = post.latest() if latest_revision: # set initial data from the latest revision self.fields["teaser"].initial = latest_revision.teaser self.fields["content"].initial = latest_revision.content def save_post(self, post): published = False if post.pk is None or Post.objects.filter(pk=post.pk, published=None).count(): if self.cleaned_data["state"] == Post.STATE_CHOICES[-1][0]: post.published = timezone.now() published = True render_func = curry( load_path_attr( settings.PINAX_BLOG_MARKUP_CHOICE_MAP[self.markup_choice]["parser"] ) ) post.teaser_html = render_func(self.cleaned_data["teaser"]) post.content_html = render_func(self.cleaned_data["content"]) post.updated = timezone.now() post.save() r = Revision() r.post = post r.title = post.title r.teaser = self.cleaned_data["teaser"] r.content = self.cleaned_data["content"] r.author = post.author r.updated = post.updated r.published = post.published r.save() if published: post_published.send(sender=Post, post=post) return post class AdminPostForm(PostFormMixin, forms.ModelForm): title = forms.CharField( label=_("Title"), max_length=90, widget=forms.TextInput(attrs={"style": "width: 50%;"}), ) slug = forms.CharField( label=_("Slug"), widget=forms.TextInput(attrs={"style": "width: 50%;"}) ) teaser = forms.CharField( label=_("Teaser"), widget=forms.Textarea(attrs={"style": "width: 80%;"}), ) content = MDTextFormField() description = forms.CharField( label=_("Description"), widget=forms.Textarea(attrs={"style": "width: 80%;"}), required=False ) class Meta: model = Post fields = FIELDS class Media: js = settings.PINAX_BLOG_ADMIN_JS def save(self, blog=None): post = super().save(commit=False) if blog: post.blog = blog return self.save_post(post) class PostForm(PostFormMixin, forms.ModelForm): markup_choice = "markdown" teaser = forms.CharField(widget=forms.Textarea()) content = MDTextFormField() class Meta: model = Post fields = [ "section", "title", "teaser", "content", "description", "state" ] def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) if Section.objects.count() < 2: self.section = Section.objects.first() del self.fields["section"] else: self.section = None def save(self, blog=None, author=None): post = super().save(commit=False) if blog: post.blog = blog if author: post.author = author post.image_set = ImageSet.objects.create(created_by=author) if self.section: post.section = self.section post.slug = slugify(post.title) post.markup = self.markup_choice return self.save_post(post)
26.558442
86
0.593643
[ "MIT" ]
Zorking/pinax-blog
pinax/blog/forms.py
4,090
Python
from mininet.topo import Topo class Project1_Topo_0866007(Topo): def __init__(self): Topo.__init__(self) # Add hosts h1 = self.addHost('h1', ip='192.168.0.1/24') h2 = self.addHost('h2', ip='192.168.0.2/24') h3 = self.addHost('h3', ip='192.168.0.3/24') h4 = self.addHost('h4', ip='192.168.0.4/24') # Add switches s1 = self.addSwitch('s1') s2 = self.addSwitch('s2') s3 = self.addSwitch('s3') s4 = self.addSwitch('s4') # Add links self.addLink(h1, s1) self.addLink(h2, s1) self.addLink(h3, s2) self.addLink(h4, s2) self.addLink(s1, s3) self.addLink(s1, s4) self.addLink(s2, s3) self.addLink(s2, s4) topos = {'topo_0866007': Project1_Topo_0866007}
25.46875
52
0.548466
[ "MIT" ]
shoulderhu/0866007-sdn-lab
project1_0866007/bonus_0866007.py
815
Python
# Copyright 2011 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import osx_trace import optparse import os import subprocess import sys import StringIO from exceptions import * class MockTrace(object): def __init__(self): self.reset() def reset(self): self._call_return_value = 0 self._calls = [] def call(self, args, sudo=False): self._calls.append((args, sudo)) return self._call_return_value @property def calls(self): return self._calls def set_call_return_value(self, value): self._call_return_value = value @property def codes_file(self): return "trace.codes" def osx_trace_main(*args): old_sys_argv = sys.argv old_sys_stdout = sys.stdout old_sys_stderr = sys.stderr try: sys.argv = [old_sys_argv[0]] sys.argv.extend(args) parser = optparse.OptionParser(usage=osx_trace.main_usage()) sys.stdout = StringIO.StringIO() sys.stderr = sys.stdout return osx_trace.main(parser) finally: sys.argv = old_sys_argv sys.stdout = old_sys_stdout sys.stderr = old_sys_stderr class OSXTraceTest(unittest.TestCase): def setUp(self): self._real_create_trace_cmd = osx_trace.create_trace_cmd def tearDown(self): osx_trace.create_trace_cmd = self._real_create_trace_cmd # Sanity check of the full script etc. def test_toplevel_script_smoketest(self): script = os.path.join(os.path.dirname(__file__), "../osx-trace") assert os.path.exists(script) p = subprocess.Popen([script, "help"], stdout=subprocess.PIPE, stderr=subprocess.STDOUT) (stdout, stderr) = p.communicate() self.assertTrue(stdout.startswith("Usage: osx-trace <command> [options]")) def test_trace_but_cant_compile(self): osx_trace.create_trace_cmd = lambda x: CompilerNeededException() ret = osx_trace_main("record") assert ret != 0 def test_record_empty(self): osx_trace.create_trace_cmd = lambda x: MockTrace() ret = osx_trace_main("record") assert ret != 0 def test_record(self): trace = MockTrace() osx_trace.create_trace_cmd = lambda options: trace ret = osx_trace_main("record", "test.trace") assert ret == 0 calls = trace.calls self.assertEquals(3, len(calls)) self.assertTrue(calls[0][1]) # sudo self.assertEquals(["-r"], calls[0][0]) self.assertTrue(calls[1][1]) # sudo self.assertEquals("-L", calls[1][0][0]) self.assertEquals(2, len(calls[1][0])) self.assertFalse(calls[2][1]) # not sudo self.assertEquals(6, len(calls[2][0])) self.assertEquals("-t", calls[2][0][0]) self.assertEquals("-R", calls[2][0][1]) self.assertEquals("-o", calls[2][0][3]) self.assertEquals("test.trace", calls[2][0][4]) self.assertEquals("trace.codes", calls[2][0][5])
29.061947
92
0.704324
[ "Apache-2.0" ]
natduca/osx-trace
src/osx_trace_test.py
3,284
Python
import datetime from django.contrib.syndication import feeds, views from django.core.exceptions import ImproperlyConfigured from django.test import TestCase from django.utils import tzinfo from django.utils.feedgenerator import rfc2822_date, rfc3339_date from models import Entry from xml.dom import minidom try: set except NameError: from sets import Set as set class FeedTestCase(TestCase): fixtures = ['feeddata.json'] def assertChildNodes(self, elem, expected): actual = set([n.nodeName for n in elem.childNodes]) expected = set(expected) self.assertEqual(actual, expected) def assertChildNodeContent(self, elem, expected): for k, v in expected.items(): self.assertEqual( elem.getElementsByTagName(k)[0].firstChild.wholeText, v) def assertCategories(self, elem, expected): self.assertEqual(set(i.firstChild.wholeText for i in elem.childNodes if i.nodeName == 'category'), set(expected)); ###################################### # Feed view ###################################### class SyndicationFeedTest(FeedTestCase): """ Tests for the high-level syndication feed framework. """ def test_rss2_feed(self): """ Test the structure and content of feeds generated by Rss201rev2Feed. """ response = self.client.get('/syndication/rss2/') doc = minidom.parseString(response.content) # Making sure there's only 1 `rss` element and that the correct # RSS version was specified. feed_elem = doc.getElementsByTagName('rss') self.assertEqual(len(feed_elem), 1) feed = feed_elem[0] self.assertEqual(feed.getAttribute('version'), '2.0') # Making sure there's only one `channel` element w/in the # `rss` element. chan_elem = feed.getElementsByTagName('channel') self.assertEqual(len(chan_elem), 1) chan = chan_elem[0] # Find the last build date d = Entry.objects.latest('date').date ltz = tzinfo.LocalTimezone(d) last_build_date = rfc2822_date(d.replace(tzinfo=ltz)) self.assertChildNodes(chan, ['title', 'link', 'description', 'language', 'lastBuildDate', 'item', 'atom:link', 'ttl', 'copyright', 'category']) self.assertChildNodeContent(chan, { 'title': 'My blog', 'description': 'A more thorough description of my blog.', 'link': 'http://example.com/blog/', 'language': 'en', 'lastBuildDate': last_build_date, #'atom:link': '', 'ttl': '600', 'copyright': 'Copyright (c) 2007, Sally Smith', }) self.assertCategories(chan, ['python', 'django']); # Ensure the content of the channel is correct self.assertChildNodeContent(chan, { 'title': 'My blog', 'link': 'http://example.com/blog/', }) # Check feed_url is passed self.assertEqual( chan.getElementsByTagName('atom:link')[0].getAttribute('href'), 'http://example.com/syndication/rss2/' ) # Find the pubdate of the first feed item d = Entry.objects.get(pk=1).date ltz = tzinfo.LocalTimezone(d) pub_date = rfc2822_date(d.replace(tzinfo=ltz)) items = chan.getElementsByTagName('item') self.assertEqual(len(items), Entry.objects.count()) self.assertChildNodeContent(items[0], { 'title': 'My first entry', 'description': 'Overridden description: My first entry', 'link': 'http://example.com/blog/1/', 'guid': 'http://example.com/blog/1/', 'pubDate': pub_date, 'author': '[email protected] (Sally Smith)', }) self.assertCategories(items[0], ['python', 'testing']); for item in items: self.assertChildNodes(item, ['title', 'link', 'description', 'guid', 'category', 'pubDate', 'author']) def test_rss091_feed(self): """ Test the structure and content of feeds generated by RssUserland091Feed. """ response = self.client.get('/syndication/rss091/') doc = minidom.parseString(response.content) # Making sure there's only 1 `rss` element and that the correct # RSS version was specified. feed_elem = doc.getElementsByTagName('rss') self.assertEqual(len(feed_elem), 1) feed = feed_elem[0] self.assertEqual(feed.getAttribute('version'), '0.91') # Making sure there's only one `channel` element w/in the # `rss` element. chan_elem = feed.getElementsByTagName('channel') self.assertEqual(len(chan_elem), 1) chan = chan_elem[0] self.assertChildNodes(chan, ['title', 'link', 'description', 'language', 'lastBuildDate', 'item', 'atom:link', 'ttl', 'copyright', 'category']) # Ensure the content of the channel is correct self.assertChildNodeContent(chan, { 'title': 'My blog', 'link': 'http://example.com/blog/', }) self.assertCategories(chan, ['python', 'django']) # Check feed_url is passed self.assertEqual( chan.getElementsByTagName('atom:link')[0].getAttribute('href'), 'http://example.com/syndication/rss091/' ) items = chan.getElementsByTagName('item') self.assertEqual(len(items), Entry.objects.count()) self.assertChildNodeContent(items[0], { 'title': 'My first entry', 'description': 'Overridden description: My first entry', 'link': 'http://example.com/blog/1/', }) for item in items: self.assertChildNodes(item, ['title', 'link', 'description']) self.assertCategories(item, []) def test_atom_feed(self): """ Test the structure and content of feeds generated by Atom1Feed. """ response = self.client.get('/syndication/atom/') feed = minidom.parseString(response.content).firstChild self.assertEqual(feed.nodeName, 'feed') self.assertEqual(feed.getAttribute('xmlns'), 'http://www.w3.org/2005/Atom') self.assertChildNodes(feed, ['title', 'subtitle', 'link', 'id', 'updated', 'entry', 'rights', 'category', 'author']) for link in feed.getElementsByTagName('link'): if link.getAttribute('rel') == 'self': self.assertEqual(link.getAttribute('href'), 'http://example.com/syndication/atom/') entries = feed.getElementsByTagName('entry') self.assertEqual(len(entries), Entry.objects.count()) for entry in entries: self.assertChildNodes(entry, ['title', 'link', 'id', 'summary', 'category', 'updated', 'rights', 'author']) summary = entry.getElementsByTagName('summary')[0] self.assertEqual(summary.getAttribute('type'), 'html') def test_custom_feed_generator(self): response = self.client.get('/syndication/custom/') feed = minidom.parseString(response.content).firstChild self.assertEqual(feed.nodeName, 'feed') self.assertEqual(feed.getAttribute('django'), 'rocks') self.assertChildNodes(feed, ['title', 'subtitle', 'link', 'id', 'updated', 'entry', 'spam', 'rights', 'category', 'author']) entries = feed.getElementsByTagName('entry') self.assertEqual(len(entries), Entry.objects.count()) for entry in entries: self.assertEqual(entry.getAttribute('bacon'), 'yum') self.assertChildNodes(entry, ['title', 'link', 'id', 'summary', 'ministry', 'rights', 'author', 'updated', 'category']) summary = entry.getElementsByTagName('summary')[0] self.assertEqual(summary.getAttribute('type'), 'html') def test_title_escaping(self): """ Tests that titles are escaped correctly in RSS feeds. """ response = self.client.get('/syndication/rss2/') doc = minidom.parseString(response.content) for item in doc.getElementsByTagName('item'): link = item.getElementsByTagName('link')[0] if link.firstChild.wholeText == 'http://example.com/blog/4/': title = item.getElementsByTagName('title')[0] self.assertEquals(title.firstChild.wholeText, u'A &amp; B &lt; C &gt; D') def test_naive_datetime_conversion(self): """ Test that datetimes are correctly converted to the local time zone. """ # Naive date times passed in get converted to the local time zone, so # check the recived zone offset against the local offset. response = self.client.get('/syndication/naive-dates/') doc = minidom.parseString(response.content) updated = doc.getElementsByTagName('updated')[0].firstChild.wholeText d = Entry.objects.latest('date').date ltz = tzinfo.LocalTimezone(d) latest = rfc3339_date(d.replace(tzinfo=ltz)) self.assertEqual(updated, latest) def test_aware_datetime_conversion(self): """ Test that datetimes with timezones don't get trodden on. """ response = self.client.get('/syndication/aware-dates/') doc = minidom.parseString(response.content) updated = doc.getElementsByTagName('updated')[0].firstChild.wholeText self.assertEqual(updated[-6:], '+00:42') def test_feed_url(self): """ Test that the feed_url can be overridden. """ response = self.client.get('/syndication/feedurl/') doc = minidom.parseString(response.content) for link in doc.getElementsByTagName('link'): if link.getAttribute('rel') == 'self': self.assertEqual(link.getAttribute('href'), 'http://example.com/customfeedurl/') def test_item_link_error(self): """ Test that a ImproperlyConfigured is raised if no link could be found for the item(s). """ self.assertRaises(ImproperlyConfigured, self.client.get, '/syndication/articles/') def test_template_feed(self): """ Test that the item title and description can be overridden with templates. """ response = self.client.get('/syndication/template/') doc = minidom.parseString(response.content) feed = doc.getElementsByTagName('rss')[0] chan = feed.getElementsByTagName('channel')[0] items = chan.getElementsByTagName('item') self.assertChildNodeContent(items[0], { 'title': 'Title in your templates: My first entry', 'description': 'Description in your templates: My first entry', 'link': 'http://example.com/blog/1/', }) def test_add_domain(self): """ Test add_domain() prefixes domains onto the correct URLs. """ self.assertEqual( views.add_domain('example.com', '/foo/?arg=value'), 'http://example.com/foo/?arg=value' ) self.assertEqual( views.add_domain('example.com', 'http://djangoproject.com/doc/'), 'http://djangoproject.com/doc/' ) self.assertEqual( views.add_domain('example.com', 'https://djangoproject.com/doc/'), 'https://djangoproject.com/doc/' ) self.assertEqual( views.add_domain('example.com', 'mailto:[email protected]'), 'mailto:[email protected]' ) ###################################### # Deprecated feeds ###################################### class DeprecatedSyndicationFeedTest(FeedTestCase): """ Tests for the deprecated API (feed() view and the feed_dict etc). """ def test_empty_feed_dict(self): """ Test that an empty feed_dict raises a 404. """ response = self.client.get('/syndication/depr-feeds-empty/aware-dates/') self.assertEquals(response.status_code, 404) def test_nonexistent_slug(self): """ Test that a non-existent slug raises a 404. """ response = self.client.get('/syndication/depr-feeds/foobar/') self.assertEquals(response.status_code, 404) def test_rss_feed(self): """ A simple test for Rss201rev2Feed feeds generated by the deprecated system. """ response = self.client.get('/syndication/depr-feeds/rss/') doc = minidom.parseString(response.content) feed = doc.getElementsByTagName('rss')[0] self.assertEqual(feed.getAttribute('version'), '2.0') chan = feed.getElementsByTagName('channel')[0] self.assertChildNodes(chan, ['title', 'link', 'description', 'language', 'lastBuildDate', 'item', 'atom:link']) items = chan.getElementsByTagName('item') self.assertEqual(len(items), Entry.objects.count()) def test_complex_base_url(self): """ Tests that the base url for a complex feed doesn't raise a 500 exception. """ response = self.client.get('/syndication/depr-feeds/complex/') self.assertEquals(response.status_code, 404)
39.631737
151
0.607993
[ "BSD-3-Clause" ]
Smarsh/django
tests/regressiontests/syndication/tests.py
13,237
Python
import requests from logging import getLogger from bs4 import BeautifulSoup from requests import Session from typing import List from urllib.parse import quote_plus from .book import Book from ..base import HEADERS class BahanAjar: def __init__(self, email: str, password: str, login: bool = True): self.session: Session = Session() self.session.headers.update(HEADERS) self.email = email self.password = password self._my_books: List[Book] = [] self.logger = getLogger(self.__class__.__name__) if login and self.login(): self.logger.debug("Berhasil login ke bahan ajar") def login(self, email: str = None, password: str = None) -> bool: try: email = email if email else self.email password = password if password else self.password url = f"http://bahanajar.ut.ac.id/Homes/login_frame/{email}/{password}//////?service=" res = self.session.post(url) return res.ok except Exception as E: self.logger.exception(E) return False @property def my_books(self) -> List[Book]: if self._my_books: return self._my_books url = "http://bahanajar.ut.ac.id/Homes/my_books" res = self.session.get(url) if not res.ok or "No books are available" in res.text: return [] soup: BeautifulSoup = BeautifulSoup(res.text, "lxml") soup = soup.find("div", id="bookHolder").find_all( "div", class_="publib_bkthumb" ) if not len(soup) > 0: return [] else: self._my_books = [Book.from_bkthumb(bktm) for bktm in soup] return self._my_books @my_books.deleter def my_books(self): del self._my_books @staticmethod def search(query: str, start: int = 0) -> List[Book]: url = f"http://bahanajar.ut.ac.id/ebookstore/ajax_load_search_books/0/{quote_plus(query)}" res = requests.get(url) if not res.ok: return [] soup: BeautifulSoup = BeautifulSoup(res.text, "lxml") soup = soup.find("div", class_="book_stnd").find_all("div", class_="newb_bg") if not len(soup) > 0: return [] return [Book.from_newb_bg(newb_bg) for newb_bg in soup]
35.212121
98
0.609725
[ "MIT" ]
UnivTerbuka/ut-telegram-bot
libs/bahan_ajar/bahan_ajar.py
2,324
Python
""" Provides linkedin api-related code """ import random import logging from time import sleep import json from linkedin_api.utils.helpers import get_id_from_urn from linkedin_api.client import Client logger = logging.getLogger(__name__) class Linkedin(object): """ Class for accessing Linkedin API. """ _MAX_UPDATE_COUNT = 100 # max seems to be 100 _MAX_SEARCH_COUNT = 49 # max seems to be 49 _MAX_REPEATED_REQUESTS = ( 200 ) # VERY conservative max requests count to avoid rate-limit def __init__(self, username, password): self.client = Client(debug=True) self.client.authenticate(username, password) self.logger = logger def search(self, params, max_results=None, results=[]): """ Do a search. """ sleep( random.randint(0, 1) ) # sleep a random duration to try and evade suspention count = ( max_results if max_results and max_results <= Linkedin._MAX_SEARCH_COUNT else Linkedin._MAX_SEARCH_COUNT ) default_params = { "count": count, "guides": "List()", "origin": "GLOBAL_SEARCH_HEADER", "q": "guided", "start": len(results), } default_params.update(params) res = self.client.session.get( f"{self.client.API_BASE_URL}/search/cluster", params=default_params ) data = res.json() total_found = data.get("paging", {}).get("total") # recursive base case if ( len(data["elements"]) == 0 or (max_results is not None and len(results) >= max_results) or total_found is None or len(results) >= total_found or (max_results is not None and len(results) / max_results >= Linkedin._MAX_REPEATED_REQUESTS) ): return results results.extend(data["elements"][0]["elements"]) self.logger.debug(f"results grew: {len(results)}") return self.search(params, results=results, max_results=max_results) def search_people( self, keywords=None, connection_of=None, network_depth=None, regions=None, industries=None, ): """ Do a people search. """ guides = ["v->PEOPLE"] if connection_of: guides.append(f"facetConnectionOf->{connection_of}") if network_depth: guides.append(f"facetNetwork->{network_depth}") if regions: guides.append(f'facetGeoRegion->{"|".join(regions)}') if industries: guides.append(f'facetIndustry->{"|".join(industries)}') params = {"guides": "List({})".format(",".join(guides))} if keywords: params["keywords"] = keywords data = self.search(params) results = [] for item in data: search_profile = item["hitInfo"][ "com.linkedin.voyager.search.SearchProfile" ] profile_id = search_profile["id"] distance = search_profile["distance"]["value"] results.append( { "urn_id": profile_id, "distance": distance, "public_id": search_profile["miniProfile"]["publicIdentifier"], } ) return results def search_companies(self, max_results=None, results=[]): """ Do a company search Note: try swap from blended search to cluster """ sleep( random.randint(2, 5) ) # sleep a random duration to try and evade suspention #Search params from main search, here for reference ''' default_params = { "count": count, "guides": "List()", "origin": "GLOBAL_SEARCH_HEADER", "q": "guided", "start": len(results), } ''' default_params = { "origin": "GLOBAL_SEARCH_HEADER", "guides": "List(resultType->companies)", "count": "10", "q": "guided", "filters": "List(resultType->companies)", "start": len(results) } res = self.client.session.get( f"{self.client.API_BASE_URL}/search/blended?keywords=s&origin=GLOBAL_SEARCH_HEADER&count=10&guides=List(resultType-%3Ecompanies)&q=all&filters=List(resultType-%3Ecompanies)&start={len(results)}" ) data = res.json() total_found = data.get("paging", {}).get("total") if ( len(data["elements"]) == 0 or len(data["elements"][0]["elements"]) == 0 or total_found is None or (max_results is not None and len(results) >= max_results) or (max_results is not None and len(results) / max_results >= Linkedin._MAX_REPEATED_REQUESTS) ): return results results.extend(data["elements"][0]["elements"]) self.logger.debug(f"results grew: {len(results)}") return self.search_companies(max_results=max_results, results=results) def get_profile_contact_info(self, public_id=None, urn_id=None): """ Return data for a single profile. [public_id] - public identifier i.e. tom-quirk-1928345 [urn_id] - id provided by the related URN """ res = self.client.session.get( f"{self.client.API_BASE_URL}/identity/profiles/{public_id or urn_id}/profileContactInfo" ) data = res.json() contact_info = { "email_address": data.get("emailAddress"), "websites": [], "phone_numbers": data.get("phoneNumbers", []), } websites = data.get("websites", []) for item in websites: if "com.linkedin.voyager.identity.profile.StandardWebsite" in item["type"]: item["label"] = item["type"][ "com.linkedin.voyager.identity.profile.StandardWebsite" ]["category"] elif "" in item["type"]: item["label"] = item["type"][ "com.linkedin.voyager.identity.profile.CustomWebsite" ]["label"] del item["type"] contact_info["websites"] = websites return contact_info def get_profile(self, public_id=None, urn_id=None): """ Return data for a single profile. [public_id] - public identifier i.e. tom-quirk-1928345 [urn_id] - id provided by the related URN """ sleep( random.randint(2, 5) ) # sleep a random duration to try and evade suspention res = self.client.session.get( f"{self.client.API_BASE_URL}/identity/profiles/{public_id or urn_id}/profileView" ) data = res.json() if data and "status" in data and data["status"] != 200: self.logger.info("request failed: {}".format(data["message"])) return {} # massage [profile] data profile = data["profile"] if "miniProfile" in profile: if "picture" in profile["miniProfile"]: profile["displayPictureUrl"] = profile["miniProfile"]["picture"][ "com.linkedin.common.VectorImage" ]["rootUrl"] profile["profile_id"] = get_id_from_urn(profile["miniProfile"]["entityUrn"]) del profile["miniProfile"] del profile["defaultLocale"] del profile["supportedLocales"] del profile["versionTag"] del profile["showEducationOnProfileTopCard"] # massage [experience] data experience = data["positionView"]["elements"] for item in experience: if "company" in item and "miniCompany" in item["company"]: if "logo" in item["company"]["miniCompany"]: logo = item["company"]["miniCompany"]["logo"].get( "com.linkedin.common.VectorImage" ) if logo: item["companyLogoUrl"] = logo["rootUrl"] del item["company"]["miniCompany"] profile["experience"] = experience # massage [skills] data skills = [item["name"] for item in data["skillView"]["elements"]] profile["skills"] = skills # massage [education] data education = data["educationView"]["elements"] for item in education: if "school" in item: if "logo" in item["school"]: item["school"]["logoUrl"] = item["school"]["logo"][ "com.linkedin.common.VectorImage" ]["rootUrl"] del item["school"]["logo"] profile["education"] = education return profile def get_profile_connections(self, urn_id): """ Return a list of profile ids connected to profile of given [urn_id] """ return self.search_people(connection_of=urn_id, network_depth="F") def get_profile_networkinfo(self, urn_id): """ Return the nework info connected to the profile of the given [urn_id] """ sleep( random.randint(2, 5) ) # sleep a random duration to try and evade suspention res = self.client.session.get( f"{self.client.API_BASE_URL}/identity/profiles/{urn_id}/networkinfo" ) return res.json() def get_company_updates(self, public_id=None, urn_id=None, max_results=None, results=[]): """" Return a list of company posts [public_id] - public identifier ie - microsoft [urn_id] - id provided by the related URN """ sleep( random.randint(2, 5) ) # sleep a random duration to try and evade suspention params = { "companyUniversalName": {public_id or urn_id}, "q": "companyFeedByUniversalName", "moduleKey": "member-share", "count": Linkedin._MAX_UPDATE_COUNT, "start": len(results), } res = self.client.session.get( f"{self.client.API_BASE_URL}/feed/updates", params=params ) data = res.json() if ( len(data["elements"]) == 0 or (max_results is not None and len(results) >= max_results) or (max_results is not None and len(results) / max_results >= Linkedin._MAX_REPEATED_REQUESTS) ): return results results.extend(data["elements"]) self.logger.debug(f"results grew: {len(results)}") return self.get_company_updates(public_id=public_id, urn_id=urn_id, results=results, max_results=max_results) def get_profile_updates(self, public_id=None, urn_id=None, max_results=None, results=[]): """" Return a list of profile posts [public_id] - public identifier i.e. tom-quirk-1928345 [urn_id] - id provided by the related URN """ sleep( random.randint(2, 5) ) # sleep a random duration to try and evade suspention params = { "profileId": {public_id or urn_id}, "q": "memberShareFeed", "moduleKey": "member-share", "count": Linkedin._MAX_UPDATE_COUNT, "start": len(results), } res = self.client.session.get( f"{self.client.API_BASE_URL}/feed/updates", params=params ) data = res.json() if ( len(data["elements"]) == 0 or (max_results is not None and len(results) >= max_results) or (max_results is not None and len(results) / max_results >= Linkedin._MAX_REPEATED_REQUESTS) ): return results results.extend(data["elements"]) self.logger.debug(f"results grew: {len(results)}") return self.get_profile_updates(public_id=public_id, urn_id=urn_id, results=results, max_results=max_results) def get_current_profile_views(self): """ Get profile view statistics, including chart data. """ res = self.client.session.get( f"{self.client.API_BASE_URL}/identity/panels" ) data = res.json() return data['elements'][0]['value']['com.linkedin.voyager.identity.me.ProfileViewsByTimePanel'] def get_school(self, public_id): """ Return data for a single school. [public_id] - public identifier i.e. uq """ sleep( random.randint(2, 5) ) # sleep a random duration to try and evade suspention params = { "decoration": ( """ ( autoGenerated,backgroundCoverImage, companyEmployeesSearchPageUrl,companyPageUrl,confirmedLocations*,coverPhoto,dataVersion,description, entityUrn,followingInfo,foundedOn,headquarter,jobSearchPageUrl,lcpTreatment,logo,name,type,overviewPhoto, paidCompany,partnerCompanyUrl,partnerLogo,partnerLogoImage,rankForTopCompanies,salesNavigatorCompanyUrl, school,showcase,staffCount,staffCountRange,staffingCompany,topCompaniesListName,universalName,url, companyIndustries*,industries,specialities, acquirerCompany~(entityUrn,logo,name,industries,followingInfo,url,paidCompany,universalName), affiliatedCompanies*~(entityUrn,logo,name,industries,followingInfo,url,paidCompany,universalName), groups*~(entityUrn,largeLogo,groupName,memberCount,websiteUrl,url), showcasePages*~(entityUrn,logo,name,industries,followingInfo,url,description,universalName) ) """ ), "q": "universalName", "universalName": public_id, } res = self.client.session.get( f"{self.client.API_BASE_URL}/organization/companies", params=params ) data = res.json() if data and "status" in data and data["status"] != 200: self.logger.info("request failed: {}".format(data["message"])) return {} school = data["elements"][0] return school def get_similar_companies(self, public_id): """ Return similar companies for a single company. [public_id] - public identifier i.e. univeristy-of-queensland """ sleep( random.randint(2, 5) ) # sleep a random duration to try and evade suspention res = self.client.session.get( f"{self.client.API_BASE_URL}/organization/companies?count={Linkedin._MAX_SEARCH_COUNT}&companyUniversalName={public_id}&q=similarCompanies&start=0&decorationId=com.linkedin.voyager.deco.organization.web.WebSimilarCompanyCardWithRelevanceReason-3" ) data = res.json() return data def get_company(self, public_id): """ Return data for a single company. [public_id] - public identifier i.e. univeristy-of-queensland """ sleep( random.randint(2, 5) ) # sleep a random duration to try and evade suspention params = { "decoration": ( """ ( affiliatedCompaniesWithEmployeesRollup,affiliatedCompaniesWithJobsRollup,articlePermalinkForTopCompanies, autoGenerated,backgroundCoverImage,companyEmployeesSearchPageUrl, companyPageUrl,confirmedLocations*,coverPhoto,dataVersion,description,entityUrn,followingInfo, foundedOn,headquarter,jobSearchPageUrl,lcpTreatment,logo,name,type,overviewPhoto,paidCompany, partnerCompanyUrl,partnerLogo,partnerLogoImage,permissions,rankForTopCompanies, salesNavigatorCompanyUrl,school,showcase,staffCount,staffCountRange,staffingCompany, topCompaniesListName,universalName,url,companyIndustries*,industries,specialities, acquirerCompany~(entityUrn,logo,name,industries,followingInfo,url,paidCompany,universalName), affiliatedCompanies*~(entityUrn,logo,name,industries,followingInfo,url,paidCompany,universalName), groups*~(entityUrn,largeLogo,groupName,memberCount,websiteUrl,url), showcasePages*~(entityUrn,logo,name,industries,followingInfo,url,description,universalName) ) """ ), "q": "universalName", "universalName": public_id, } res = self.client.session.get( f"{self.client.API_BASE_URL}/organization/companies", params=params ) data = res.json() if data and "status" in data and data["status"] != 200: self.logger.info("request failed: {}".format(data["message"])) return {} company = data["elements"][0] return company def get_conversation_details(self, profile_urn_id): """ Return the conversation (or "message thread") details for a given [public_profile_id] """ # passing `params` doesn't work properly, think it's to do with List(). # Might be a bug in `requests`? res = self.client.session.get( f"{self.client.API_BASE_URL}/messaging/conversations?\ keyVersion=LEGACY_INBOX&q=participants&recipients=List({profile_urn_id})" ) data = res.json() item = data["elements"][0] item["id"] = get_id_from_urn(item["entityUrn"]) return item def get_conversations(self): """ Return list of conversations the user is in. """ params = {"keyVersion": "LEGACY_INBOX"} res = self.client.session.get( f"{self.client.API_BASE_URL}/messaging/conversations", params=params ) return res.json() def get_conversation(self, conversation_urn_id): """ Return the full conversation at a given [conversation_urn_id] """ res = self.client.session.get( f"{self.client.API_BASE_URL}/messaging/conversations/{conversation_urn_id}/events" ) return res.json() def send_message(self, conversation_urn_id, message_body): """ Return the full conversation at a given [conversation_urn_id] """ params = {"action": "create"} payload = json.dumps( { "eventCreate": { "value": { "com.linkedin.voyager.messaging.create.MessageCreate": { "body": message_body, "attachments": [], "attributedBody": {"text": message_body, "attributes": []}, "mediaAttachments": [], } } } } ) res = self.client.session.post( f"{self.client.API_BASE_URL}/messaging/conversations/{conversation_urn_id}/events", params=params, data=payload, ) return res.status_code == 201
34.379679
258
0.575932
[ "MIT" ]
Alexander-Bakogeorge/linkedin-api
linkedin_api/linkedin.py
19,287
Python
import os import sys sys.path.append( os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))) ) from src.DbHelper import DbHelper persons = [ 'Lucy', 'Franz', 'Susanne', 'Jonathan', 'Max', 'Stephan', 'Julian', 'Frederike', 'Amy', 'Miriam', 'Jonas', 'Anna', 'Sebastian' ] addresses = [ f'Musterstraße {i}' for i in range(1,11)] accounts = [ f'Bank Account {i}' for i in range(1, 14)] phones = [f'Phone Number {i}' for i in range(1,12)] creditcards = [f'Credit Card Number {i}' for i in range(1,14)] socialsecuritynumbers = [f'SSN {i}' for i in range(1,10)] nodes = { 'Person':('name', persons), 'Address':('address', addresses), 'BankAccount':('account', accounts), 'CreditCard':('number', creditcards), 'SSN':('ssn', socialsecuritynumbers) } if __name__ == "__main__": # See https://neo4j.com/developer/aura-connect-driver/ for Aura specific connection URL. scheme = "neo4j" # Connecting to Aura, use the "neo4j+s" URI scheme host_name = "localhost" port = 7687 # Bolt Port https://neo4j.com/docs/operations-manual/current/configuration/ports/ | .NET | Java | JavaScript | Go | Python url = f"{scheme}://{host_name}:{port}" user = 'neo4j' password = 'neo4j' db_helper = DbHelper(url, user, password) for Label, values in nodes.items(): PropertyKey = values[0] for PropertyValue in values[1]: db_helper.run_query( 'CREATE (node:' + Label + ' {' + PropertyKey + ': "' + PropertyValue + '" }) RETURN node.' + PropertyKey ) db_helper.close()
28.118644
139
0.614225
[ "MIT" ]
LFeret/masterseminar
src/Simple_Fraud_Detection/solution/01_fill_fraud_db_with_nodes.py
1,660
Python
# Keypirinha launcher (keypirinha.com) import keypirinha as kp import keypirinha_util as kpu import keypirinha_net as kpnet import json import os, sys sys.path.append(os.path.join(os.path.dirname(__file__), "lib")) from faker import Faker class FakerData(kp.Plugin): ITEMCAT = kp.ItemCategory.USER_BASE + 1 ITEMRESULT = kp.ItemCategory.USER_BASE + 2 # The default ammount of suggestions to show after the user selected the faker category DEFAULT_MAX_RESULTS = 5 # The default language used to instantiate Faker DEFAULT_LANGUAGE = 'en_US' def __init__(self): super().__init__() self.current_output = [] def on_start(self): self.read_config() pass def on_events(self, flags): if flags & kp.Events.PACKCONFIG: self.read_config() def on_catalog(self): self.set_catalog([ self.create_item( category=kp.ItemCategory.KEYWORD, label="Faker", short_desc="Generate fake data", target="Faker", args_hint=kp.ItemArgsHint.REQUIRED, hit_hint=kp.ItemHitHint.KEEPALL ) ]) def on_suggest(self, user_input, items_chain): if not items_chain or items_chain[0].category() != kp.ItemCategory.KEYWORD: return suggestions = [] # Generate outputs if len(items_chain) == 2: items = [] # We don't want to generate the output each time the user enter a new query # Let's keep the output, so this way Keypirinha itself can filter it if not self.current_output: for x in range(0, self.max_results): try: items.append(str(getattr(self.fakeGenerator, items_chain[1].target())())) except Exception as error: items.append(str(error)) continue if len(items) > 0: # Remove duplicated items = list(set(items)) # Append suggestions for x in items: self.current_output.append( self.create_item( category=self.ITEMRESULT, label=x, short_desc='Press Enter to copy', target=x, args_hint=kp.ItemArgsHint.FORBIDDEN, hit_hint=kp.ItemHitHint.IGNORE, loop_on_suggest=False ) ) suggestions = self.current_output # Generate suggestions categories else: self.current_output = [] lines = self.load_text_resource('providers.json') data = json.loads(lines) for item in data: try: suggestions.append( self.create_item( category=self.ITEMCAT, label=item['name'], short_desc=item['description'], target=item['function'], args_hint=kp.ItemArgsHint.FORBIDDEN, hit_hint=kp.ItemHitHint.IGNORE, icon_handle=self.load_icon("res://{}/icons/{}.png".format(self.package_full_name(), item['name'][0].upper())), loop_on_suggest=True ) ) except Exception as error: self.err("Could not generate suggestion for fake data category: {}".format(item['name']), error) self.set_suggestions(suggestions, kp.Match.FUZZY, kp.Sort.DEFAULT) def on_execute(self, item, action): if (item.category() == self.ITEMCAT): to_clipboard = getattr(self.fakeGenerator, item.target())() elif (item.category() == self.ITEMRESULT): to_clipboard = item.label() kpu.set_clipboard(to_clipboard) def read_config(self): settings = self.load_settings() self.max_results = int(settings.get("max_results", section="main", fallback=self.DEFAULT_MAX_RESULTS)) self.language = settings.get("language", section="main", fallback=self.DEFAULT_LANGUAGE) self.fakeGenerator = Faker(self.language)
27.919355
117
0.691797
[ "MIT" ]
Fuhrmann/keypirinha-faker-data
src/fakerdata.py
3,462
Python
from queue import Queue, Empty, Full from ..core import DriverBase, format_msg import pika class Driver(DriverBase): def __init__(self, exchange, queue, routing_key=None, buffer_maxsize=None, *args, **kwargs): super().__init__() self._args = args self._kwargs = kwargs self._exchange = exchange self._queue = queue self._routing_key = routing_key or queue self._buffer = Queue(buffer_maxsize) \ if buffer_maxsize is not None else None self._declared = False def run(self, driver_id, ts, fields, tags): if not fields: return msg = format_msg(ts, driver_id, tags, fields) try: with pika.BlockingConnection( pika.ConnectionParameters(*self._args, **self._kwargs)) as c: channel = c.channel() self._publish(channel, msg) # Flush buffer if self._buffer is not None: try: while True: msg = self._buffer.get_nowait() self._publish(channel, msg) except Empty: pass except pika.exceptions.AMQPError: # Add to buffer if self._buffer is not None: try: self._buffer.put_nowait(msg) except Full: pass def _declare(self, channel): if not self._declared: channel.exchange_declare(exchange=self._exchange, durable=True) channel.queue_declare(queue=self._queue, durable=True) channel.queue_bind( exchange=self._exchange, queue=self._queue, routing_key=self._routing_key ) self._declared = True def _publish(self, channel, msg): self._declare(channel) channel.basic_publish( exchange=self._exchange, routing_key=self._routing_key, body=msg, properties=pika.BasicProperties(delivery_mode=2) )
33.65625
78
0.539926
[ "Apache-2.0" ]
frantp/iot-sensor-reader
piot/outputs/amqp.py
2,154
Python
# -*- coding: utf-8 -*- import subprocess def test_too_many_arguments_in_fixture(absolute_path): """ End-to-End test to check arguments count. It is required due to how 'function_type' parameter works inside 'flake8'. Otherwise it is not set, unit tests can not cover `is_method` correctly. """ filename = absolute_path('fixtures', 'config', 'wrong_arguments.py') process = subprocess.Popen( ['flake8', '--select', 'Z', filename], stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) stdout, _ = process.communicate() assert stdout.count(b'Z211') == 4
25.958333
76
0.654896
[ "MIT" ]
AlwxSin/wemake-python-styleguide
tests/test_checkers/test_high_complexity.py
623
Python
import itertools try: import theano import theano.tensor as T from theano.gradient import disconnected_grad except ImportError: theano = None T = None from ._backend import Backend from .. import make_graph_backend_decorator class _TheanoBackend(Backend): def __init__(self): super().__init__("Theano") @staticmethod def is_available(): return theano is not None @Backend._assert_backend_available def is_compatible(self, function, arguments): if not isinstance(function, T.TensorVariable): return False return all([isinstance(argument, T.TensorVariable) for argument in arguments]) def _compile_function_without_warnings(self, *args, **kwargs): return theano.function(*args, **kwargs, on_unused_input="ignore") @Backend._assert_backend_available def compile_function(self, function, arguments): """Compiles a Theano graph into a callable.""" return self._compile_function_without_warnings(arguments, function) @Backend._assert_backend_available def compute_gradient(self, function, arguments): """Returns a compiled function computing the gradient of ``function`` with respect to ``arguments``. """ if len(arguments) == 1: (argument,) = arguments gradient = T.grad(function, argument) return self._compile_function_without_warnings(arguments, gradient) gradient = T.grad(function, arguments) return self._compile_function_without_warnings(arguments, gradient) def _compute_unary_hessian_vector_product(self, gradient, argument): """Returns a function accepting two arguments to compute a Hessian-vector product of a scalar-valued unary function. """ argument_type = argument.type() try: Rop = T.Rop(gradient, argument, argument_type) except NotImplementedError: proj = T.sum(gradient * disconnected_grad(argument_type)) Rop = T.grad(proj, argument) return self._compile_function_without_warnings( [argument, argument_type], Rop) def _compute_nary_hessian_vector_product(self, gradients, arguments): """Returns a function accepting `2 * len(arguments)` arguments to compute a Hessian-vector product of a multivariate function. Notes ----- The implementation is based on TensorFlow's '_hessian_vector_product' function in 'tensorflow.python.ops.gradients_impl'. """ argument_types = [argument.type() for argument in arguments] try: Rop = T.Rop(gradients, arguments, argument_types) except NotImplementedError: proj = [T.sum(gradient * disconnected_grad(argument_type)) for gradient, argument_type in zip(gradients, argument_types)] proj_grad = [T.grad(proj_elem, arguments, disconnected_inputs="ignore", return_disconnected="None") for proj_elem in proj] proj_grad_transpose = map(list, zip(*proj_grad)) proj_grad_stack = [ T.stacklists([c for c in row if c is not None]) for row in proj_grad_transpose] Rop = [T.sum(stack, axis=0) for stack in proj_grad_stack] return self._compile_function_without_warnings( list(itertools.chain(arguments, argument_types)), Rop) @Backend._assert_backend_available def compute_hessian_vector_product(self, function, arguments): """Computes the directional derivative of the gradient, which is equivalent to computing a Hessian-vector product with the direction vector. """ if len(arguments) == 1: (argument,) = arguments gradient = T.grad(function, argument) return self._compute_unary_hessian_vector_product( gradient, argument) gradients = T.grad(function, arguments) return self._compute_nary_hessian_vector_product(gradients, arguments) Theano = make_graph_backend_decorator(_TheanoBackend)
39.211009
79
0.649509
[ "BSD-3-Clause" ]
Andrew-Wyn/pymanopt
pymanopt/autodiff/backends/_theano.py
4,274
Python
#!-*-coding:utf-8-*- import sys # import PyQt4 QtCore and QtGui modules from PyQt5.QtWidgets import * from PyQt5.QtGui import * from PyQt5 import QtCore from pylinac import VMAT from dmlc import Ui_MainWindow class DirectoryPath(object): def __init__(self, pathDir, getCountImages): self._pathDir = pathDir self._fieldOpenPathfile = "" self._dmlcopenfilenamepath = "" self._getCountImages = getCountImages @property def pathDir(self): return getattr(self, '_pathDir') @pathDir.setter def pathDir(self, pathDir): self._pathDir = pathDir @property def fieldOpenPathfile(self): return getattr(self, '_fieldOpenPathfile') @fieldOpenPathfile.setter def fieldOpenPathfile(self, fieldOpenPathfile): self._fieldOpenPathfile = fieldOpenPathfile @property def dmlcopenfilenamepath(self): return getattr(self, '_dmlcopenfilenamepath') @dmlcopenfilenamepath.setter def dmlcopenfilenamepath(self, dmlcopenfilenamepath): self._dmlcopenfilenamepath = dmlcopenfilenamepath class MainWindow(QMainWindow, Ui_MainWindow): """MainWindow inherits QMainWindow""" def __init__(self, parent: object = None) -> object: super(MainWindow, self).__init__(parent) self.ui = Ui_MainWindow() self.ui.setupUi(self) def openFileNameDialog(self): options = QFileDialog.Options() options |= QFileDialog.DontUseNativeDialog fileName, _ = QFileDialog.getOpenFileName(self, "QFileDialog.getOpenFileName()", "", "All Files (*);;Python Files (*.py)", options=options) if fileName: print(fileName) def OpenDialog(self): options = QFileDialog.Options() options |= QFileDialog.DontUseNativeDialog fileName, _ = QFileDialog.getOpenFileName(self, "QFileDialog.getOpenFileName()", "", "All Files (*);;DICOM Files (*.dcm)", options=options) if fileName: DirectoryPath.fieldOpenPathfile = fileName def OpenDmlcFiles(self): options = QFileDialog.Options() options |= QFileDialog.DontUseNativeDialog fileName, _ = QFileDialog.getOpenFileName(self, "QFileDialog.getOpenFileName()", "", "All Files (*);;DICOM Files (*.dcm)", options=options) if fileName: DirectoryPath.dmlcopenfilenamepath = fileName def DmlcCalculations(self, cal1, cal2, textparam): if cal1: leeds = VMAT(images=[DirectoryPath.fieldOpenPathfile, DirectoryPath.dmlcopenfilenamepath], delivery_types=['open', 'dmlc']) leeds.analyze(test='drmlc', tolerance=1.3, x_offset=0) leeds.plot_analyzed_subimage('profile') leeds.save_analyzed_subimage('myprofile.png', subimage='profile') print(leeds.return_results()) leeds.plot_analyzed_image() leeds.publish_pdf(DirectoryPath.dmlcopenfilenamepath + '.pdf') if cal2: drgs = VMAT(images=[DirectoryPath.fieldOpenPathfile, DirectoryPath.dmlcopenfilenamepath], delivery_types=['open', 'drgs']) drgs.analyze(test='drgs', tolerance=1.3, x_offset=10) drgs.save_analyzed_subimage('myprofiledrgs.png', subimage='profile') print(drgs.return_results()) drgs.plot_analyzed_image() drgs.publish_pdf(DirectoryPath.dmlcopenfilenamepath + 'drgs' + '.pdf', author=textparam, unit="TrueBeamSTX") def __del__(self): self.ui = None # -----------------------------------------------------# if __name__ == '__main__': # create application app = QApplication(sys.argv) app.setApplicationName('Dmlc') d = DirectoryPath(pathDir="", getCountImages=0) # create widget w = MainWindow() w.setWindowTitle('Dmlc') w.show() # connection # QObject.connect( app, SIGNAL( 'lastWindowClosed()' ), app, SLOT( 'quit()' ) ) # execute application sys.exit(app.exec_())
35.784483
120
0.630691
[ "MIT" ]
bozhikovstanislav/UI-Pylinac
VMAT/Dmlc/main.py
4,151
Python
import numpy as np import pickle import math try: from utilities import dot_loss, next_batch except ImportError: from utilities.utilities import dot_loss, next_batch class DontCacheRef(Exception): pass class BasicConverter(object): def __init__(self, learning_rate = 0.05, batch_size = 1, num_epochs = 300, threshold = 0.02, add_layer_dynamic = False, layer_to_expand = 0): # training control self._learning_rate = learning_rate self._batchSize = batch_size self._num_epochs = num_epochs self._threshold = threshold self._add_layer_dynamic = add_layer_dynamic self._layer_to_expand = int(layer_to_expand) # training history self._updatedLoss = 1000.0 self._diffs = [] self._losses = [] self._updates = [] self._epoch = 0 def losses(self): return self._losses def diffs(self): return self._diffs def updates(self): return self._updates def save_history(self, fname): f_train = open(fname, 'wb') training_data = [self._losses, self._diffs, self._updates] pickle.dump(training_data, f_train) f_train.close() def get_refs(self, base_model, datapoints, scaler = None, conv_1d = False, conv_2d = False, cache_data = True): try: if not cache_data: raise DontCacheRef() # Return the cached list of reference outputs for the base model return (self.__datapoints, self.__refs) except (DontCacheRef, AttributeError) as e: # Create the list of reference outputs for the base model if conv_1d and conv_2d: print('ERROR: conv_1d and conv_2d are mutually exclusive') return None refs = [] flattened = [] for point in datapoints: spoint = point if scaler and not conv_2d: spoint = scaler.transform([point]) prob = 0.0 if conv_1d: prob = base_model.predict_proba(np.expand_dims(np.expand_dims(spoint, axis = 2), axis = 0))[0][0] elif conv_2d: # this will match if original model was trained with correct dimensionality prob = base_model.predict_proba(np.expand_dims(spoint, axis = 0)) else: prob = base_model.predict_proba(spoint.reshape(1, -1))[0][0] refs.append(prob) flattened.append(spoint.flatten().tolist()) self.__datapoints = np.asarray(flattened) self.__refs = np.asarray(refs) return (self.__datapoints, self.__refs) def convert_model(self, drone_model, base_model, datapoints, scaler = None, conv_1d = False, conv_2d = False, cache_data = True, epoch_reset = False): # Get the list of reference outputs for the base model datapoints_for_drone, refs = self.get_refs(base_model, datapoints, scaler, conv_1d, conv_2d, cache_data) inflate = 0 # to inflate the learning without change iterations if epoch_reset: self._epoch = 0 avloss = 0 # convert until min epochs are passed and leave only if loss at minima while (self._epoch < self._num_epochs) or (self._updatedLoss < avloss): # initialize the total loss for the epoch epochloss = [] # loop over our data in batches for (batchX, batchY) in next_batch(datapoints_for_drone, refs, self._batchSize): batchY = np.array(batchY) if batchX.shape[0] != self._batchSize: print('Batch size insufficient (%s), continuing...' % batchY.shape[0]) continue # Find current output and calculate loss for our graph preds = drone_model.evaluate_total(batchX, debug = False) loss, error = dot_loss(preds, batchY) epochloss.append(loss) # Update the model drone_model.update(batchX, batchY, self._learning_rate) avloss = np.average(epochloss) diff = 0.0 if self._epoch > 0: # is the relative improvement of the loss too small, smaller than threshold diff = math.fabs(avloss - self._losses[-1]) / avloss self._diffs.append(diff) self._losses.append(avloss) update = 0 modify = True if (diff < self._threshold) else False if modify: # If it is less than the threshold, is it below # where we last updated, has the drone learned enough # # - skip checks if we have never updated before # - do at least 6 learning iterations before attempting new update # - use asymptotic exponential to push model to learn # until its loss is far enough away from previous update, inflate += 1 # iterate inflating modify = True if self._updatedLoss == 1000.0 else (avloss < (self._updatedLoss - (50.0 * (1.0 - np.exp(-0.04 * inflate)) * diff * avloss))) and (inflate > 5) if modify: update = 1 inflate = 0 print('Model conversion not sufficient, updating...') print('Last updated loss: %s' % self._updatedLoss) self._updatedLoss = avloss if self._add_layer_dynamic: drone_model.add_layer_dynamic() else: drone_model.expand_layer_dynamic(self._layer_to_expand) print('Model structure is now:') drone_model.print_layers() self._updates.append(update) print('Epoch: %s, loss %s, diff %.5f, last updated loss %.5f' % (self._epoch, avloss, diff, self._updatedLoss)) # update our loss history list by taking the average loss # across all batches if self._epoch == 0: # be consistent at the first epoch self._losses.append(avloss) self._diffs.append(math.fabs(avloss - self._updatedLoss) / avloss) self._updates.append(0) self._epoch += 1 return drone_model class AdvancedConverter(object): def __init__(self, learning_rate = 0.05, batch_size = 1, num_epochs = 300, threshold = 0.02, add_layer_dynamic = False, layer_to_expand = None): # training control self._learning_rate = learning_rate self._batchSize = batch_size self._num_epochs = num_epochs self._threshold = threshold self._add_layer_dynamic = add_layer_dynamic self.__round_robin = False if layer_to_expand is None: self.__round_robin = True self._layer_to_expand = int(layer_to_expand) if layer_to_expand is not None else None # training history self._updatedLoss = 1000.0 self._diffs = [] self._losses = [] self._updates = [] self._epoch = 0 self.__rr_begin = 0 self.__rr_last = 0 def losses(self): return self._losses def diffs(self): return self._diffs def updates(self): return self._updates def round_robin(self, num_layers): self.__rr_last = self.__rr_begin self.__rr_begin = np.random.ranint(0, num_layers - 1) # careful, expanding last layer will change output number return self.__rr_last def save_history(self, fname): f_train = open(fname, 'wb') training_data = [self._losses, self._diffs, self._updates] pickle.dump(training_data, f_train) f_train.close() def get_refs(self, base_model, datapoints, scaler = None, cache_data = True): try: if not cache_data: raise DontCacheRef() # Return the cached list of reference outputs for the base model return (self.__datapoints, self.__refs) except(DontCacheRef, AttributeError) as e: # Create the list of reference outputs for the base model refs = [] datapoints_for_drone = datapoints if scaler: datapoints_for_drone = scaler.transform(datapoints) for point in datapoints_for_drone: prob = base_model.predict_proba(point) refs.append(prob) self.__datapoints = datapoints_for_drone self.__refs = refs return (self.__datapoints, self.__refs) def convert_model(self, drone_model, base_model, datapoints, scaler = None, cache_data = True, epoch_reset = False): # Get the list of reference outputs for the base model datapoints_for_drone, refs = self.get_refs(base_model, datapoints, scaler, cache_data) inflate = 0 # to inflate the learning without change iterations if epoch_reset: self._epoch = 0 avloss = 0 # convert until min epochs are passed and leave only if loss at minima while (self._epoch < self._num_epochs) or (self._updatedLoss < avloss): # initialize the total loss for the epoch epochloss = [] # loop over our data in batches for (batchX, batchY) in next_batch(datapoints_for_drone, refs, self._batchSize): batchY = np.array(batchY) if batchX.shape[0] != self._batchSize: print('Batch size insufficient ({}), continuing...'.format(batchY.shape[0])) continue # Find current output and calculate loss for our graph preds = drone_model.evaluate_total(batchX, debug = False) loss, error = dot_loss(preds, batchY) epochloss.append(loss) # Update the model drone_model.update(batchX, batchY, self._learning_rate) avloss = np.average(epochloss) diff = 0.0 if self._epoch > 0: # is the relative improvement of the loss too small, smaller than threshold diff = math.fabs(avloss - self._losses[-1]) / avloss self._diffs.append(diff) self._losses.append(avloss) update = 0 modify = True if (diff < self._threshold) else False if modify: # If it is less than the threshold, is it below # where we last updated, has the drone learned enough # # - skip checks if we have never updated before # - do at least 6 learning iterations before attempting new update # - use asymptotic exponential to push model to learn # until its loss is far enough away from previous update, inflate += 1 # iterate inflating modify = True if self._updatedLoss == 1000.0 else (avloss < (self._updatedLoss - (50.0 * (1.0 - np.exp(-0.04 * inflate)) * diff * avloss))) and (inflate > 5) if modify: update = 1 inflate = 0 print('Model conversion not sufficient, updating...') print('Last updated loss: %s' % self._updatedLoss) self._updatedLoss = avloss if self._add_layer_dynamic: drone_model.add_layer_dynamic() elif self._layer_to_expand is not None: drone_model.expand_layer_dynamic(self._layer_to_expand) else: drone_model.expand_layer_dynamic(self.round_robin(drone_model.num_layers())) print('Model structure is now:') drone_model.print_layers() self._updates.append(update) print('Epoch: %s, loss %s, diff %.5f, last updated loss %.5f' % (self._epoch, avloss, diff, self._updatedLoss)) # update our loss history list by taking the average loss # across all batches if self._epoch == 0: # be consistent at the first epoch self._losses.append(avloss) self._diffs.append(math.fabs(avloss - self._updatedLoss) / avloss) self._updates.append(0) self._epoch += 1 return drone_model
45.261649
177
0.578001
[ "BSD-3-Clause" ]
Tevien/HEPDrone
nndrone/converters.py
12,628
Python
from . import registry def step(match): def outer(func): registry.add(match, func) def inner(*args, **kwargs): func(*args, **kwargs) return inner return outer
18.636364
35
0.565854
[ "Apache-2.0" ]
tswicegood/maxixe
maxixe/decorators.py
205
Python
import emoji emoji.emojize('\:sunglasses:?') #Transformação #Comentário String['Curso em Videos Python'] frase[9:13] frase[9:21:2] frase[:5] frase[15:] frase[9::3] #Aula Curso Em Video Python 9 => revisão 2 [13/07/2020 14h00m] #Funcionalidades de Trasnformação Objeti.Methodo() #Comentário frase.find('deo') #Acha, busca frase.find('Android') #Acha, busca frase.replace('Python','Android') #Subistui frase.lower() #tudo em minusculo frase.capitelize() #tudo maiusculo frase.title() frase = ['Aprenda Python'] frase.rstrip() # o lado direito "r" é uma keyword de direita frase.lstrip() # strip vai remover os, somente os espaços da esquerda keyword "r" #Funcionalidade Divisão de Strings [Cadeia de Caracteres] frase.split() # '-'.join(frase) #vc vai juntar todos os elementos de frase e vai usar esse separador aqui '-'
24.055556
94
0.702079
[ "MIT" ]
ErosMLima/python-server-connection
natural-languages-python.py
876
Python
_HAS_OPS = False def _register_extensions(): import os import imp import torch # load the custom_op_library and register the custom ops lib_dir = os.path.dirname(__file__) _, path, _ = imp.find_module("_C", [lib_dir]) torch.ops.load_library(path) try: _register_extensions() _HAS_OPS = True except (ImportError, OSError): pass def _check_cuda_version(): """ Make sure that CUDA versions match between the pytorch install and torchvision install """ if not _HAS_OPS: return -1 import torch _version = torch.ops.torchvision._cuda_version() if _version != -1 and torch.version.cuda is not None: tv_version = str(_version) if int(tv_version) < 10000: tv_major = int(tv_version[0]) tv_minor = int(tv_version[2]) else: tv_major = int(tv_version[0:2]) tv_minor = int(tv_version[3]) t_version = torch.version.cuda t_version = t_version.split('.') t_major = int(t_version[0]) t_minor = int(t_version[1]) if t_major != tv_major or t_minor != tv_minor: raise RuntimeError("Detected that PyTorch and torchvision were compiled with different CUDA versions. " "PyTorch has CUDA Version={}.{} and torchvision has CUDA Version={}.{}. " "Please reinstall the torchvision that matches your PyTorch install." .format(t_major, t_minor, tv_major, tv_minor)) return _version _check_cuda_version()
31
115
0.619861
[ "BSD-3-Clause" ]
AryanRaj315/vision
torchvision/extension.py
1,581
Python
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """SequenceFile Dataset.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from tensorflow import dtypes from tensorflow.compat.v1 import data from tensorflow_io.core.python.ops import _load_library hadoop_ops = _load_library('_hadoop_ops.so') class SequenceFileDataset(data.Dataset): """A Sequence File Dataset that reads the sequence file.""" def __init__(self, filenames): """Create a `SequenceFileDataset`. `SequenceFileDataset` allows a user to read data from a hadoop sequence file. A sequence file consists of (key value) pairs sequentially. At the moment, `org.apache.hadoop.io.Text` is the only serialization type being supported, and there is no compression support. For example: ```python dataset = SequenceFileDataset("/foo/bar.seq") iterator = dataset.make_one_shot_iterator() next_element = iterator.get_next() # Prints the (key, value) pairs inside a hadoop sequence file. while True: try: print(sess.run(next_element)) except tf.errors.OutOfRangeError: break ``` Args: filenames: A `tf.string` tensor containing one or more filenames. """ self._filenames = tf.convert_to_tensor( filenames, dtype=dtypes.string, name="filenames") super(SequenceFileDataset, self).__init__() def _inputs(self): return [] def _as_variant_tensor(self): return hadoop_ops.sequence_file_dataset( self._filenames, (dtypes.string, dtypes.string)) @property def output_classes(self): return tf.Tensor, tf.Tensor @property def output_shapes(self): return (tf.TensorShape([]), tf.TensorShape([])) @property def output_types(self): return dtypes.string, dtypes.string
32.480519
80
0.708517
[ "Apache-2.0" ]
HubBucket-Team/io
tensorflow_io/hadoop/python/ops/hadoop_dataset_ops.py
2,501
Python
import os from os.path import splitext names=os.listdir() number=1 f_name="" videos=[] ext = [".3g2", ".3gp", ".asf", ".asx", ".avi", ".flv", ".m2ts", ".mkv", ".mov", ".mp4", ".mpg", ".mpeg", ".rm", ".swf", ".vob", ".wmv"] for fileName in names: if fileName.endswith(tuple(ext)): f_name, f_ext= splitext(fileName) videos.append(f_name) vidIteretor=iter(videos) for sub in names: if sub.endswith(".srt"): os.rename(sub, next(vidIteretor)+".srt")
21.391304
135
0.579268
[ "MIT" ]
eren-ozdemir/get-subtitles
RenameSubs.py
492
Python
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import paddle.fluid.layers as layers from paddle.fluid.executor import Executor import paddle.fluid.core as core from paddle.fluid.backward import append_backward import numpy class TestWhileOp(unittest.TestCase): def test_simple_forward(self): d0 = layers.data( "d0", shape=[10], append_batch_size=False, dtype='float32') d1 = layers.data( "d1", shape=[10], append_batch_size=False, dtype='float32') d2 = layers.data( "d2", shape=[10], append_batch_size=False, dtype='float32') i = layers.zeros(shape=[1], dtype='int64') i.stop_gradient = True init = layers.zeros(shape=[10], dtype='float32') mem_array = layers.array_write(x=init, i=i) data_array = layers.array_write(x=d0, i=i) i = layers.increment(i) layers.array_write(d1, i, array=data_array) i = layers.increment(i) layers.array_write(d2, i, array=data_array) i = layers.zeros(shape=[1], dtype='int64') i.stop_gradient = True array_len = layers.fill_constant(shape=[1], dtype='int64', value=3) array_len.stop_gradient = True cond = layers.less_than(x=i, y=array_len) while_op = layers.While(cond=cond) with while_op.block(): d = layers.array_read(array=data_array, i=i) prev = layers.array_read(array=mem_array, i=i) result = layers.sums(input=[d, prev]) i = layers.increment(x=i, in_place=True) layers.array_write(result, i=i, array=mem_array) layers.less_than(x=i, y=array_len, cond=cond) sum_result = layers.array_read(array=mem_array, i=i) loss = layers.mean(sum_result) append_backward(loss) cpu = core.CPUPlace() exe = Executor(cpu) d = [] for i in range(3): d.append(numpy.random.random(size=[10]).astype('float32')) outs = exe.run(feed={'d0': d[0], 'd1': d[1], 'd2': d[2]}, fetch_list=[sum_result]) self.assertAlmostEqual(numpy.sum(d), numpy.sum(outs[0]), delta=0.01) if __name__ == '__main__': unittest.main()
35.222222
76
0.629513
[ "Apache-2.0" ]
skylarch/Paddle
python/paddle/fluid/tests/unittests/test_while_op.py
2,853
Python
from models.joint_fpn import JointFpn from trainers.segmentation_trainer import SegmentationTrainer from data_generators.joint_data_generator import JointDataGenerator from data_generators.scenenet_rgbd_data_generator import ScenenetRGBDDataGenerator from utils.config import process_config from utils.dirs import create_dirs from utils.utils import get_args import tensorflow as tf from utils import factory from tensorflow.keras.mixed_precision import experimental as mixed_precision def main(): # capture the config path from the run arguments # then process the json configuration file try: args = get_args() config = process_config(args.config) except: print("missing or invalid arguments") exit(0) # use mixed precision for training if config.exp.mixed_precision: print('Use mixed precision training') policy = mixed_precision.Policy('mixed_float16') mixed_precision.set_policy(policy) if config.exp.jpa_optimization: tf.config.optimizer.set_jit(True) # create the experiments dirs create_dirs([config.callbacks.tensorboard_log_dir, config.callbacks.checkpoint_dir]) print('Create the training data generator.') if config.generator.is_scenenet == True: train_data = ScenenetRGBDDataGenerator(config) else: train_data = JointDataGenerator(config) validation_data = None if type(config.validation.img_dir) == str: print('Create the validation data generator.') validation_data = JointDataGenerator( config, is_training_set=False) print('Create the model.') model = factory.create(config.model.class_name)(config, train_data) print('Create the trainer') trainer = SegmentationTrainer( model, train_data, config, validation_generator=validation_data) print('Start training the model.') trainer.train() if __name__ == '__main__': main()
32.377049
82
0.729114
[ "Apache-2.0" ]
Barchid/Indoor_Segmentation
train_joint.py
1,975
Python
# coding: utf-8 import warnings import numpy as np import pandas as pd from packaging import version from sklearn.metrics import pairwise_distances_chunked from sklearn.utils import check_X_y,check_random_state from sklearn.preprocessing import LabelEncoder import functools from pyclustering.cluster.clarans import clarans from pyclustering.utils import timedcall from pyclustering.utils import (draw_clusters, average_inter_cluster_distance, average_intra_cluster_distance, average_neighbor_distance) import sklearn from sklearn.metrics import (davies_bouldin_score, silhouette_score, pairwise_distances, calinski_harabasz_score ) # They changed the name of calinski_harabaz_score in later version of sklearn: # https://github.com/scikit-learn/scikit-learn/blob/c4733f4895c1becdf587b38970f6f7066656e3f9/doc/whats_new/v0.20.rst#id2012 sklearn_version = version.parse(sklearn.__version__) nm_chg_ver = version.parse("0.23") if sklearn_version >= nm_chg_ver: from sklearn.metrics import calinski_harabasz_score as _cal_score else: from sklearn.metrics import calinski_harabaz_score as _cal_score def _get_clust_pairs(clusters): return [(i, j) for i in clusters for j in clusters if i > j] def _dunn(data=None, dist=None, labels=None): clusters = set(labels) inter_dists = [ dist[np.ix_(labels == i, labels == j)].min() for i, j in _get_clust_pairs(clusters) ] intra_dists = [ dist[np.ix_(labels == i, labels == i)].max() for i in clusters ] return min(inter_dists) / max(intra_dists) def dunn(dist, labels): return _dunn(data=None, dist=dist, labels=labels) def cop(data, dist, labels): clusters = set(labels) cpairs = _get_clust_pairs(clusters) prox_lst = [ dist[np.ix_(labels == i[0], labels == i[1])].max() for i in cpairs ] out_l = [] for c in clusters: c_data = data[labels == c] c_center = c_data.mean(axis=0, keepdims=True) c_intra = pairwise_distances(c_data, c_center).mean() c_prox = [prox for pair, prox in zip(cpairs, prox_lst) if c in pair] c_inter = min(c_prox) to_add = len(c_data) * c_intra / c_inter out_l.append(to_add) return sum(out_l) / len(labels) def _silhouette_score2(data=None, dist=None, labels=None): return silhouette_score(dist, labels, metric='precomputed') def _davies_bouldin_score2(data=None, dist=None, labels=None): with warnings.catch_warnings(): warnings.filterwarnings('ignore', 'divide by zero') return davies_bouldin_score(data, labels) def _calinski_harabaz_score2(data=None, dist=None, labels=None): return _cal_score(data, labels) def check_number_of_labels(n_labels, n_samples): if not 1 < n_labels < n_samples: raise ValueError("Number of labels is %d. Valid values are 2 " "to n_samples - 1 (inclusive)" % n_labels) def cluster_dist_reduce(D_chunk, start, labels, label_freqs): # accumulate distances from each sample to each cluster clust_dists = np.zeros((len(D_chunk), len(label_freqs)), dtype=D_chunk.dtype) for i in range(len(D_chunk)): clust_dists[i] += np.bincount(labels, weights=D_chunk[i], minlength=len(label_freqs)) # intra_index selects intra-cluster distances within clust_dists intra_index = (np.arange(len(D_chunk)), labels[start:start + len(D_chunk)]) # intra_clust_dists are averaged over cluster size outside this function intra_clust_dists = clust_dists[intra_index] # of the remaining distances we normalise and extract the minimum clust_dists[intra_index] = np.inf clust_dists /= label_freqs inter_clust_dists = clust_dists.min(axis=1) return intra_clust_dists, inter_clust_dists def inter_cluster_dist(data=None, dist=None, labels=None): _, inter_dist = cluster_distances(dist, labels, metric='precomputed') return inter_dist def intra_cluster_dist(data=None, dist=None, labels=None): intra_dist, _ = cluster_distances(dist, labels, metric='precomputed') return intra_dist def cluster_distances(X, labels, *, metric='precomputed', random_state=None, **kwds): return intra_inter_distances(X, labels, metric=metric, **kwds) def intra_inter_distances(X, labels, metric='precomputed'): # Check for non-zero diagonal entries in precomputed distance matrix atol = np.finfo(X.dtype).eps * 100 if np.any(np.abs(np.diagonal(X)) > atol): raise ValueError( 'The precomputed distance matrix contains non-zero ' 'elements on the diagonal. Use np.fill_diagonal(X, 0).' ) le = LabelEncoder() labels = le.fit_transform(labels) n_samples = len(labels) label_freqs = np.bincount(labels) check_number_of_labels(len(le.classes_), n_samples) reduce_func = functools.partial(cluster_dist_reduce, labels=labels, label_freqs=label_freqs) results = zip(*pairwise_distances_chunked(X, reduce_func=reduce_func)) intra_clust_dists, inter_clust_dists = results intra_clust_dists = np.concatenate(intra_clust_dists) inter_clust_dists = np.concatenate(inter_clust_dists) return np.mean(intra_clust_dists),np.mean(inter_clust_dists) def clarans_labels(clarans_object): labels_clarans = clarans_object.get_clusters() labels=pd.DataFrame(labels_clarans).T.melt(var_name='clusters')\ .dropna() labels['value']=labels.value.astype(int) labels=labels.sort_values(['value'])\ .set_index('value')\ .values\ .flatten() return labels def calculate_clarans_cvi(data,initial_cluster,dist=None): cvi_df = pd.DataFrame(columns=['avg_inter_dist','silhouette','calinski', 'avg_intra_dist','davies','dunn']) df_list = data.values.tolist() dist=pairwise_distances(data) np.fill_diagonal(dist, 0) for k in range(initial_cluster,10): print(k) clarans_model = clarans(df_list,k,3,5) (_, result) =timedcall(clarans_model.process) labels = clarans_labels(result) # avg_inter_dist = inter_cluster_dist(dist=dist,labels=labels) sihlouette = silhouette_score(dist=dist, labels=labels) davies = davies_bouldin_score(data, labels) calinski = calinski_harabasz_score(data, labels) # avg_intra_dist = intra_cluster_dist(dist=dist,labels=labels) dunn_ = dunn(dist,labels) cvi_df.loc[k] = [avg_inter_dist,sihlouette, davies,calinski,avg_intra_dist,dunn_] print(cvi_df) del clarans_model return cvi_df
37.988827
123
0.691324
[ "Unlicense" ]
wgova/automations
clust_indices.py
6,800
Python
import numpy GenSpeedF = 0 IntSpdErr = 0 LastGenTrq = 0 LastTime = 0 LastTimePC = 0 LastTimeVS = 0 PitCom = numpy.zeros(3) VS_Slope15 = 0 VS_Slope25 = 0 VS_SySp = 0 VS_TrGnSp = 0
33.538462
52
0.298165
[ "Apache-2.0" ]
tonino102008/openfast
ExampleCases/OpFAST_WF1x1/globalDISCON.py
436
Python
from .base import Uploader from .photo import PhotoUploader from .doc import DocUploader from .audio import AudioUploader
24.4
32
0.836066
[ "MIT" ]
Doncode/vkbottle
vkbottle/api/uploader/__init__.py
122
Python
# Copyright (C) 2018-2022 Intel Corporation # SPDX-License-Identifier: Apache-2.0 import numpy as np import pytest from common.onnx_layer_test_class import Caffe2OnnxLayerTest class TestImageScaler(Caffe2OnnxLayerTest): def create_net(self, shape, scale, ir_version): """ ONNX net IR net Input->ImageScaler->Output => Input->ScaleShift(Power) """ # # Create ONNX model # import onnx from onnx import helper from onnx import TensorProto input = helper.make_tensor_value_info('input', TensorProto.FLOAT, shape) output = helper.make_tensor_value_info('output', TensorProto.FLOAT, shape) bias = np.random.randint(-10, 10, shape[1]).astype(np.float) node_def = onnx.helper.make_node( 'ImageScaler', inputs=['input'], outputs=['output'], bias=bias, scale=scale ) # Create the graph (GraphProto) graph_def = helper.make_graph( [node_def], 'test_model', [input], [output], ) # Create the model (ModelProto) onnx_net = helper.make_model(graph_def, producer_name='test_model') # # Create reference IR net # ref_net = None return onnx_net, ref_net def create_net_const(self, shape, scale, precision, ir_version): """ ONNX net IR net Input->Concat(+scaled const)->Output => Input->Concat(+const) """ # # Create ONNX model # import onnx from onnx import helper from onnx import TensorProto concat_axis = 0 output_shape = shape.copy() output_shape[concat_axis] *= 2 input = helper.make_tensor_value_info('input', TensorProto.FLOAT, shape) output = helper.make_tensor_value_info('output', TensorProto.FLOAT, output_shape) constant = np.random.randint(-127, 127, shape).astype(np.float) bias = np.random.randint(-10, 10, shape[1]).astype(np.float) node_const_def = onnx.helper.make_node( 'Constant', inputs=[], outputs=['const1'], value=helper.make_tensor( name='const_tensor', data_type=TensorProto.FLOAT, dims=constant.shape, vals=constant.flatten(), ), ) node_def = onnx.helper.make_node( 'ImageScaler', inputs=['const1'], outputs=['scale'], bias=bias, scale=scale ) node_concat_def = onnx.helper.make_node( 'Concat', inputs=['input', 'scale'], outputs=['output'], axis=concat_axis ) # Create the graph (GraphProto) graph_def = helper.make_graph( [node_const_def, node_def, node_concat_def], 'test_model', [input], [output], ) # Create the model (ModelProto) onnx_net = helper.make_model(graph_def, producer_name='test_model') # # Create reference IR net # ir_const = constant * scale + np.expand_dims(np.expand_dims([bias], 2), 3) if precision == 'FP16': ir_const = ir_const.astype(np.float16) ref_net = None return onnx_net, ref_net test_data_precommit = [dict(shape=[2, 4, 6, 8], scale=4.5), dict(shape=[1, 1, 10, 12], scale=0.5)] test_data = [dict(shape=[1, 1, 10, 12], scale=0.5), dict(shape=[1, 3, 10, 12], scale=1.5), dict(shape=[6, 8, 10, 12], scale=4.5)] @pytest.mark.parametrize("params", test_data_precommit) def test_image_scaler_precommit(self, params, ie_device, precision, ir_version, temp_dir): self._test(*self.create_net(**params, ir_version=ir_version), ie_device, precision, ir_version, temp_dir=temp_dir) @pytest.mark.parametrize("params", test_data) @pytest.mark.nightly def test_image_scaler(self, params, ie_device, precision, ir_version, temp_dir): self._test(*self.create_net(**params, ir_version=ir_version), ie_device, precision, ir_version, temp_dir=temp_dir) @pytest.mark.parametrize("params", test_data_precommit) def test_image_scaler_const_precommit(self, params, ie_device, precision, ir_version, temp_dir): self._test(*self.create_net_const(**params, precision=precision, ir_version=ir_version), ie_device, precision, ir_version, temp_dir=temp_dir) @pytest.mark.parametrize("params", test_data) @pytest.mark.nightly def test_image_scaler_const(self, params, ie_device, precision, ir_version, temp_dir): self._test(*self.create_net_const(**params, precision=precision, ir_version=ir_version), ie_device, precision, ir_version, temp_dir=temp_dir)
31.518519
103
0.57971
[ "Apache-2.0" ]
3Demonica/openvino
tests/layer_tests/onnx_tests/test_image_scaler.py
5,106
Python
lista = ['item1', 'item2', 'item3', 123, 12.43, 898.34, 00.989] print(lista) del lista[0] # pode remover tudo ou apenas um item de um indice permanentemente popped = lista.pop(0) #pode remover um item pelo indice de uma lista, porem o item tirado pode ser posto em uma variavel lista.remove('item3') # pode remover um item pelo valor / remove o primeiro valor da lista print(lista) print(popped) valores = list(range(0, 11)) # list cria uma lista print(valores) valores_1 = [7, 3, 6, 9, 7, 8, 2, 1, 78, 90, 23, 45, 56, 21, 3] print(valores_1) valores_1.sort() # coloca os itens de forma ordenada em uma lista permanentemente print(valores_1) valores_1.sort(reverse=True) # faz o mesmo de cima, porem inverte a ordem print(valores_1) print(len(valores_1)) # len conta a quantidade de elementos de uma lista ou varavel valores_1[0] = 'new' #substitui um valor de indice por outro no mesmo indice valores_1.append('alex') # adiciona um objeto no final da lista valores_1.insert(4, 'camila') # insere um item em um indice especifico print(valores_1) print('\n') a = [12, 43, 76, 35, 24] # lista b = a # cria uma ligação com a lista print(f'{a}\n{b}') b.remove(43) print(f'{a}\n{b}') c = a[:] # [:] usado para criar uma copia de uma lista que pode ser modificado como quiser c.append('jack') print(f'{a}\n{b}\n{c}')
37.6
120
0.711246
[ "MIT" ]
Alex4gtx/estudos
python/cursoemvideo-python/03-mundo-3/listas/lista 1/listas.py
1,318
Python
import random ### Advantage Logic ### def advantage(rollfunc): roll1 = rollfunc roll2 = rollfunc if roll1 > roll2: return roll1 else: return roll2 ### Disadvantage Logic ### def disadvantage(rollfunc): roll1 = rollfunc roll2 = rollfunc if roll1 < roll2: return roll1 else: return roll2 ### Die Rolls ### def rolld4(sides:int=4): return random.randint(1, sides) def rolld6(sides:int=6): return random.randint(1, sides) def rolld8(sides:int=8): return random.randint(1, sides) def rolld10(sides:int=10): return random.randint(1, sides) def rolld12(sides:int=12): return random.randint(1, sides) def rolld20(sides:int=20): return random.randint(1, sides)
20.162162
35
0.651475
[ "MIT" ]
bwnelb/dnd5e
DieRolls.py
746
Python
# Copyright 2021 NVIDIA Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np from legate.pandas.common import types as ty class SeriesAccessor(object): def __init__(self, series): self._series = series self._column = series._frame._columns[0] def _construct_result(self, column): return self._series.__ctor__( frame=self._series._frame.replace_columns([column]) ) class CategoricalAccessor(SeriesAccessor): def __init__(self, series): super(CategoricalAccessor, self).__init__(series) assert ty.is_categorical_dtype(self._column.dtype) @property def codes(self): return self._construct_result(self._column.get_codes()) class DatetimeProperties(SeriesAccessor): def __init__(self, series): super(DatetimeProperties, self).__init__(series) assert self._column.dtype == ty.ts_ns @property def year(self): return self._get_dt_field("year") @property def month(self): return self._get_dt_field("month") @property def day(self): return self._get_dt_field("day") @property def hour(self): return self._get_dt_field("hour") @property def minute(self): return self._get_dt_field("minute") @property def second(self): return self._get_dt_field("second") @property def weekday(self): return self._get_dt_field("weekday") def _get_dt_field(self, field): dtype = ty.get_dt_field_type(self._column.dtype, field) return self._construct_result(self._column.get_dt_field(field, dtype)) class StringMethods(SeriesAccessor): def __init__(self, series): super(StringMethods, self).__init__(series) assert ty.is_string_dtype(self._column.dtype) def contains(self, pat, case=True, flags=0, na=np.NaN, regex=True): if pat is None and not case: raise AttributeError("'NoneType' object has no attribute 'upper'") assert pat is not None and regex return self._construct_result(self._column.contains(pat)) def pad(self, width, side="left", fillchar=" "): if len(fillchar) != 1: raise TypeError("fillchar must be a character, not str") return self._construct_result( self._column.pad(width, side=side, fillchar=fillchar) ) def strip(self, to_strip=None): return self._construct_result(self._column.strip(to_strip=to_strip)) def zfill(self, width): return self._construct_result(self._column.zfill(width)) def lower(self): return self._construct_result(self._column.lower()) def upper(self): return self._construct_result(self._column.upper()) def swapcase(self): return self._construct_result(self._column.swapcase()) def to_datetime(self, format): if format is None: raise ValueError("Format must be provided") return self._construct_result(self._column.to_datetime(format))
30.059322
78
0.68424
[ "Apache-2.0" ]
Pandinosaurus/legate.pandas
legate/pandas/frontend/accessors.py
3,547
Python
""" This is the UGaLi analysis sub-package. Classes related to higher-level data analysis live here. Modules objects : mask : """
13.454545
56
0.655405
[ "MIT" ]
DarkEnergySurvey/ugali
ugali/analysis/__init__.py
148
Python
from keras.models import Sequential, load_model from keras.layers.core import Dense, Dropout, Activation,Flatten from keras.layers.recurrent import LSTM, GRU, SimpleRNN from keras.layers.convolutional import Convolution2D, Convolution1D, MaxPooling2D, MaxPooling1D, AveragePooling2D from keras.layers.normalization import BatchNormalization from keras.layers.advanced_activations import ELU, PReLU, LeakyReLU from keras.layers.wrappers import TimeDistributed from keras.optimizers import SGD, Adagrad, RMSprop from keras.callbacks import Callback, ModelCheckpoint, EarlyStopping from keras.utils.io_utils import HDF5Matrix from scipy import signal import scipy.io import scipy.io.wavfile as wav import numpy as np import h5py import librosa import sys import os def make_spectrum_phase(y, FRAMESIZE, OVERLAP, FFTSIZE): D=librosa.stft(y,n_fft=FRAMESIZE,hop_length=OVERLAP,win_length=FFTSIZE,window=scipy.signal.hamming) Sxx = np.log10(abs(D)**2) print(str(D) + " the value for D") phase = np.exp(1j * np.angle(D)) print(str(phase) + " the value of phase") mean = np.mean(Sxx, axis=1).reshape((257,1)) std = np.std(Sxx, axis=1).reshape((257,1))+1e-12 Sxx = (Sxx-mean)/std return Sxx, phase, mean, std def recons_spec_phase(Sxx_r, phase): Sxx_r = np.sqrt(10**Sxx_r) R = np.multiply(Sxx_r , phase) result = librosa.istft(R, hop_length=256, win_length=512, window=scipy.signal.hamming) return result def predict(modelpath, noisylistpath): model=load_model(modelpath) #"weights/DNN_spec_20160425v2.hdf5" FRAMESIZE = 512 OVERLAP = 256 FFTSIZE = 512 RATE = 16000 FRAMEWIDTH = 2 FBIN = FRAMESIZE//2+1 # noisylistpath = sys.argv[2] noisylistpath = noisylistpath with open(noisylistpath, 'r') as f: for line in f: print(line) filename = line.split('/')[-1][:] print(filename) y,sr=librosa.load(line[:],sr=RATE) training_data = np.empty((10000, FBIN, FRAMEWIDTH*2+1)) # For Noisy data Sxx, phase, mean, std = make_spectrum_phase(y, FRAMESIZE, OVERLAP, FFTSIZE) idx = 0 for i in range(FRAMEWIDTH, Sxx.shape[1]-FRAMEWIDTH): # 5 Frmae training_data[idx,:,:] = Sxx[:,i-FRAMEWIDTH:i+FRAMEWIDTH+1] # For Noisy data idx = idx + 1 X_train = training_data[:idx] X_train = np.reshape(X_train,(idx,-1)) predict = model.predict(X_train) count=0 for i in range(FRAMEWIDTH, Sxx.shape[1]-FRAMEWIDTH): Sxx[:,i] = predict[count] count+=1 # # The un-enhanced part of spec should be un-normalized Sxx[:, :FRAMEWIDTH] = (Sxx[:, :FRAMEWIDTH] * std) + mean Sxx[:, -FRAMEWIDTH:] = (Sxx[:, -FRAMEWIDTH:] * std) + mean recons_y = recons_spec_phase(Sxx, phase) output = librosa.util.fix_length(recons_y, y.shape[0]) wav.write("static/wav/enhanced.wav",RATE,np.int16(output*32767)) return os.path.join("static","wav","enhanced.wav")
36.235294
113
0.663312
[ "Apache-2.0" ]
SharanRajani/SoundQX
test_gen_spec.py
3,080
Python
from myelin.utils import CallbackList, Experience class RLInteraction: """An episodic interaction between an agent and an environment.""" def __init__(self, env, agent, callbacks=None, termination_conditions=None): self.env = env self.agent = agent self.callbacks = CallbackList(callbacks) if termination_conditions is None: self.termination_conditions = [lambda a: False] else: self.termination_conditions = termination_conditions self.episode = 0 self.step = 0 @property def info(self): return { 'episode': self.episode, 'step': self.step } def should_continue(self): for termination_condition in self.termination_conditions: if termination_condition(self.info): print(termination_condition) return False return True def start(self): """Starts agent-environment interaction.""" self.callbacks.on_interaction_begin() while self.should_continue(): self.callbacks.on_episode_begin(self.episode) self.env.reset() self.step = 0 while not self.env.is_terminal(): self.callbacks.on_step_begin(self.step) state = self.env.get_state() action = self.agent.get_action(state) next_state, reward, done, info = self.env.step(action) experience = Experience(state, action, reward, next_state, done) self.agent.update(experience) self.callbacks.on_step_end(self.step) self.step += 1 self.callbacks.on_episode_end(self.episode, self.step) self.episode += 1 self.callbacks.on_interaction_end(self.episode)
35.921569
80
0.606987
[ "MIT" ]
davidrobles/myelin
myelin/core/interactions.py
1,832
Python
from __future__ import division import numpy as np from scipy import ndimage as ndi from ..morphology import dilation, erosion, square from ..util import img_as_float, view_as_windows from ..color import gray2rgb def _find_boundaries_subpixel(label_img): """See ``find_boundaries(..., mode='subpixel')``. Notes ----- This function puts in an empty row and column between each *actual* row and column of the image, for a corresponding shape of $2s - 1$ for every image dimension of size $s$. These "interstitial" rows and columns are filled as ``True`` if they separate two labels in `label_img`, ``False`` otherwise. I used ``view_as_windows`` to get the neighborhood of each pixel. Then I check whether there are two labels or more in that neighborhood. """ ndim = label_img.ndim max_label = np.iinfo(label_img.dtype).max label_img_expanded = np.zeros([(2 * s - 1) for s in label_img.shape], label_img.dtype) pixels = (slice(None, None, 2), ) * ndim label_img_expanded[pixels] = label_img edges = np.ones(label_img_expanded.shape, dtype=bool) edges[pixels] = False label_img_expanded[edges] = max_label windows = view_as_windows(np.pad(label_img_expanded, 1, mode='constant', constant_values=0), (3,) * ndim) boundaries = np.zeros_like(edges) for index in np.ndindex(label_img_expanded.shape): if edges[index]: values = np.unique(windows[index].ravel()) if len(values) > 2: # single value and max_label boundaries[index] = True return boundaries def find_boundaries(label_img, connectivity=1, mode='thick', background=0): """Return bool array where boundaries between labeled regions are True. Parameters ---------- label_img : array of int or bool An array in which different regions are labeled with either different integers or boolean values. connectivity: int in {1, ..., `label_img.ndim`}, optional A pixel is considered a boundary pixel if any of its neighbors has a different label. `connectivity` controls which pixels are considered neighbors. A connectivity of 1 (default) means pixels sharing an edge (in 2D) or a face (in 3D) will be considered neighbors. A connectivity of `label_img.ndim` means pixels sharing a corner will be considered neighbors. mode: string in {'thick', 'inner', 'outer', 'subpixel'} How to mark the boundaries: - thick: any pixel not completely surrounded by pixels of the same label (defined by `connectivity`) is marked as a boundary. This results in boundaries that are 2 pixels thick. - inner: outline the pixels *just inside* of objects, leaving background pixels untouched. - outer: outline pixels in the background around object boundaries. When two objects touch, their boundary is also marked. - subpixel: return a doubled image, with pixels *between* the original pixels marked as boundary where appropriate. background: int, optional For modes 'inner' and 'outer', a definition of a background label is required. See `mode` for descriptions of these two. Returns ------- boundaries : array of bool, same shape as `label_img` A bool image where ``True`` represents a boundary pixel. For `mode` equal to 'subpixel', ``boundaries.shape[i]`` is equal to ``2 * label_img.shape[i] - 1`` for all ``i`` (a pixel is inserted in between all other pairs of pixels). Examples -------- >>> labels = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ... [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ... [0, 0, 0, 0, 0, 5, 5, 5, 0, 0], ... [0, 0, 1, 1, 1, 5, 5, 5, 0, 0], ... [0, 0, 1, 1, 1, 5, 5, 5, 0, 0], ... [0, 0, 1, 1, 1, 5, 5, 5, 0, 0], ... [0, 0, 0, 0, 0, 5, 5, 5, 0, 0], ... [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ... [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=np.uint8) >>> find_boundaries(labels, mode='thick').astype(np.uint8) array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 1, 1, 0, 0], [0, 0, 1, 1, 1, 1, 1, 1, 1, 0], [0, 1, 1, 1, 1, 1, 0, 1, 1, 0], [0, 1, 1, 0, 1, 1, 0, 1, 1, 0], [0, 1, 1, 1, 1, 1, 0, 1, 1, 0], [0, 0, 1, 1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 1, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=uint8) >>> find_boundaries(labels, mode='inner').astype(np.uint8) array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 1, 1, 0, 0], [0, 0, 1, 1, 1, 1, 0, 1, 0, 0], [0, 0, 1, 0, 1, 1, 0, 1, 0, 0], [0, 0, 1, 1, 1, 1, 0, 1, 0, 0], [0, 0, 0, 0, 0, 1, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=uint8) >>> find_boundaries(labels, mode='outer').astype(np.uint8) array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 1, 1, 0, 0], [0, 0, 1, 1, 1, 1, 0, 0, 1, 0], [0, 1, 0, 0, 1, 1, 0, 0, 1, 0], [0, 1, 0, 0, 1, 1, 0, 0, 1, 0], [0, 1, 0, 0, 1, 1, 0, 0, 1, 0], [0, 0, 1, 1, 1, 1, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=uint8) >>> labels_small = labels[::2, ::3] >>> labels_small array([[0, 0, 0, 0], [0, 0, 5, 0], [0, 1, 5, 0], [0, 0, 5, 0], [0, 0, 0, 0]], dtype=uint8) >>> find_boundaries(labels_small, mode='subpixel').astype(np.uint8) array([[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 1, 1, 0], [0, 0, 0, 1, 0, 1, 0], [0, 1, 1, 1, 0, 1, 0], [0, 1, 0, 1, 0, 1, 0], [0, 1, 1, 1, 0, 1, 0], [0, 0, 0, 1, 0, 1, 0], [0, 0, 0, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0]], dtype=uint8) >>> bool_image = np.array([[False, False, False, False, False], ... [False, False, False, False, False], ... [False, False, True, True, True], ... [False, False, True, True, True], ... [False, False, True, True, True]], dtype=np.bool) >>> find_boundaries(bool_image) array([[False, False, False, False, False], [False, False, True, True, True], [False, True, True, True, True], [False, True, True, False, False], [False, True, True, False, False]], dtype=bool) """ if label_img.dtype == 'bool': label_img = label_img.astype(np.uint8) ndim = label_img.ndim selem = ndi.generate_binary_structure(ndim, connectivity) if mode != 'subpixel': boundaries = dilation(label_img, selem) != erosion(label_img, selem) if mode == 'inner': foreground_image = (label_img != background) boundaries &= foreground_image elif mode == 'outer': max_label = np.iinfo(label_img.dtype).max background_image = (label_img == background) selem = ndi.generate_binary_structure(ndim, ndim) inverted_background = np.array(label_img, copy=True) inverted_background[background_image] = max_label adjacent_objects = ((dilation(label_img, selem) != erosion(inverted_background, selem)) & ~background_image) boundaries &= (background_image | adjacent_objects) return boundaries else: boundaries = _find_boundaries_subpixel(label_img) return boundaries def mark_boundaries(image, label_img, color=(1, 1, 0), outline_color=None, mode='outer', background_label=0): """Return image with boundaries between labeled regions highlighted. Parameters ---------- image : (M, N[, 3]) array Grayscale or RGB image. label_img : (M, N) array of int Label array where regions are marked by different integer values. color : length-3 sequence, optional RGB color of boundaries in the output image. outline_color : length-3 sequence, optional RGB color surrounding boundaries in the output image. If None, no outline is drawn. mode : string in {'thick', 'inner', 'outer', 'subpixel'}, optional The mode for finding boundaries. background_label : int, optional Which label to consider background (this is only useful for modes ``inner`` and ``outer``). Returns ------- marked : (M, N, 3) array of float An image in which the boundaries between labels are superimposed on the original image. See Also -------- find_boundaries """ marked = img_as_float(image, force_copy=True) if marked.ndim == 2: marked = gray2rgb(marked) if mode == 'subpixel': # Here, we want to interpose an extra line of pixels between # each original line - except for the last axis which holds # the RGB information. ``ndi.zoom`` then performs the (cubic) # interpolation, filling in the values of the interposed pixels marked = ndi.zoom(marked, [2 - 1/s for s in marked.shape[:-1]] + [1], mode='reflect') boundaries = find_boundaries(label_img, mode=mode, background=background_label) if outline_color is not None: outlines = dilation(boundaries, square(3)) marked[outlines] = outline_color marked[boundaries] = color return marked
43.030172
83
0.54102
[ "MIT" ]
IZ-ZI/-EECS-393-_Attendance-System
venv/lib/python3.8/site-packages/skimage/segmentation/boundaries.py
9,983
Python
from __future__ import print_function import argparse import gym from itertools import count import numpy as np import mxnet as mx import mxnet.ndarray as F from mxnet import gluon from mxnet.gluon import nn from mxnet import autograd parser = argparse.ArgumentParser(description='MXNet actor-critic example') parser.add_argument('--gamma', type=float, default=0.99, metavar='G', help='discount factor (default: 0.99)') parser.add_argument('--seed', type=int, default=543, metavar='N', help='random seed (default: 1)') parser.add_argument('--render', action='store_true', help='render the environment') parser.add_argument('--log-interval', type=int, default=10, metavar='N', help='interval between training status logs (default: 10)') args = parser.parse_args() env = gym.make('CartPole-v0') env.seed(args.seed) class Policy(gluon.Block): def __init__(self, **kwargs): super(Policy, self).__init__(**kwargs) with self.name_scope(): self.dense = nn.Dense(16, in_units=4, activation='relu') self.action_pred = nn.Dense(2, in_units=16) self.value_pred = nn.Dense(1, in_units=16) def forward(self, x): x = self.dense(x) probs = self.action_pred(x) values = self.value_pred(x) return F.softmax(probs), values net = Policy() net.collect_params().initialize(mx.init.Uniform(0.02)) trainer = gluon.Trainer(net.collect_params(), 'adam', {'learning_rate': 3e-2}) loss = gluon.loss.L1Loss() running_reward = 10 for epoch in count(1): state = env.reset() rewards = [] values = [] heads = [] actions = [] with autograd.record(): # Sample a sequence of actions for t in range(10000): state = mx.nd.array(np.expand_dims(state, 0)) prob, value = net(state) action, logp = mx.nd.sample_multinomial(prob, get_prob=True) state, reward, done, _ = env.step(action.asnumpy()[0]) if args.render: env.render() rewards.append(reward) values.append(value) actions.append(action.asnumpy()[0]) heads.append(logp) if done: break # reverse accumulate and normalize rewards running_reward = running_reward * 0.99 + t * 0.01 R = 0 for i in range(len(rewards)-1, -1, -1): R = rewards[i] + args.gamma * R rewards[i] = R rewards = np.array(rewards) rewards -= rewards.mean() rewards /= rewards.std() + np.finfo(rewards.dtype).eps # compute loss and gradient L = sum([loss(value, mx.nd.array([r])) for r, value in zip(rewards, values)]) final_nodes = [L] for logp, r, v in zip(heads, rewards, values): reward = r - v.asnumpy()[0,0] # Here we differentiate the stochastic graph, corresponds to the # first term of equation (6) in https://arxiv.org/pdf/1506.05254.pdf # Optimizer minimizes the loss but we want to maximizing the reward, # so use we use -reward here. final_nodes.append(logp*(-reward)) autograd.backward(final_nodes) trainer.step(t) if epoch % args.log_interval == 0: print('Episode {}\tLast length: {:5d}\tAverage length: {:.2f}'.format( epoch, t, running_reward)) if running_reward > 200: print("Solved! Running reward is now {} and " "the last episode runs to {} time steps!".format(running_reward, t)) break
34.846154
85
0.604029
[ "Apache-2.0" ]
Jeffery-Song/MXNet-RDMA
example/gluon/actor_critic.py
3,624
Python
import click from typing import Sequence, Tuple from click.formatting import measure_table, iter_rows class OrderedCommand(click.Command): def get_params(self, ctx): rv = super().get_params(ctx) rv.sort(key=lambda o: (not o.required, o.name)) return rv def format_options(self, ctx, formatter) -> None: """Writes all the options into the formatter if they exist.""" opts = [] for param in self.get_params(ctx): rv = param.get_help_record(ctx) if rv is not None: opts.append(rv) if opts: with formatter.section("Options"): self.write_dl(formatter, opts) @staticmethod def write_dl(formatter, rows: Sequence[Tuple[str, str]], col_max: int = 30, col_spacing: int = 2) -> None: rows = list(rows) widths = measure_table(rows) if len(widths) != 2: raise TypeError("Expected two columns for definition list") first_col = min(widths[0], col_max) + col_spacing for first, second in iter_rows(rows, len(widths)): formatter.write(f"{'':>{formatter.current_indent}}{first}") if not second: formatter.write("\n") continue if len(first) <= first_col - col_spacing: formatter.write(" " * (first_col - len(first))) else: formatter.write("\n") formatter.write(" " * (first_col + formatter.current_indent)) if "[" in second: text, meta = second.split("[") formatter.write(f"[{meta} {text}\n") else: formatter.write(f"{second}\n") def add_options(options): def _add_options(func): for option in reversed(options): func = option(func) return func return _add_options class Defaults: DOCKER_IMAGE = "docker.io/yellowdogco/virtual-screening-worker-public:3.3.0" PORTAL_API_URL = "https://portal.yellowdog.co/api" NAMESPACE = "virtual-screening" RETRIES = 10 shared_options = [ click.option("--api_key_id", envvar="API_KEY_ID", required=True, help="The application's API key ID for authenticating with the platform API. It is recommended to " "supply this via the environment variable API_KEY_ID"), click.option("--api_key_secret", envvar="API_KEY_SECRET", required=True, help="The application's API key secret for authenticating with the platform API. It is recommended to " "supply this via the environment variable API_KEY_SECRET"), click.option("--template_id", envvar="TEMPLATE_ID", required=True, help="The compute requirement template ID to use for provisioning compute"), click.option("--platform_api_url", envvar="PLATFORM_API_URL", default=Defaults.PORTAL_API_URL, help="The URL of the platform API"), click.option("--namespace", envvar="NAMESPACE", default=Defaults.NAMESPACE, help="The namespace within which all work and compute will be created"), click.option("--docker_image", envvar="DOCKER_IMAGE", default=Defaults.DOCKER_IMAGE, help="The docker image that will be executed by the workers"), click.option("--retries", envvar="RETRIES", type=int, default=Defaults.RETRIES, help="The number of times each failed task should be retried"), ]
40.964706
120
0.617461
[ "Apache-2.0" ]
yellowdog/virtual-screening-public
src/cli.py
3,482
Python
from django.utils.translation import ugettext_lazy as _ from mayan.apps.events.classes import EventTypeNamespace namespace = EventTypeNamespace( label=_('File metadata'), name='file_metadata' ) event_file_metadata_document_file_submit = namespace.add_event_type( label=_('Document file submitted for file metadata processing'), name='document_version_submit' ) event_file_metadata_document_file_finish = namespace.add_event_type( label=_('Document file file metadata processing finished'), name='document_version_finish' )
33.058824
69
0.782918
[ "Apache-2.0" ]
CMU-313/fall-2021-hw2-451-unavailable-for-legal-reasons
mayan/apps/file_metadata/events.py
562
Python
import argparse import glob import os import time import vlc import cv2 import numpy as np from enum import Enum from tqdm import tqdm from PIL import Image, ImageDraw, ImageFont from align.align_trans import get_reference_facial_points from align.detector import load_detect_faces_models, process_faces from align.visualization_utils import draw_fps, show_results from util.extract_feature_v2 import extract_feature_for_img, load_face_id_model MIN_FACE_PROB = 0.9 STREAM_DIR = '/home/ec2-user/projects/facelab-data/stream-data' RESULT_DIR = '/home/ec2-user/projects/facelab-data/results' ID_FEATURES_DIR = '/home/ec2-user/projects/facelab-data/test_Aligned/' FACE_ID_MODEL_ROOT = '/home/ec2-user/projects/facelab-data/models/backbone_ir50_ms1m_epoch120.pth' FONT_PATH = '/usr/share/fonts/dejavu/DejaVuSans.ttf' class Mode(Enum): DEMO = 1 FILE = 2 def __str__(self): return self.name @staticmethod def from_string(s): try: return Mode[s] except KeyError: raise ValueError() def load_id_files(id_features_dir): id_npy = {} for path in glob.glob('{}/*.npy'.format(id_features_dir)): name = os.path.splitext(os.path.basename(path))[0] id_npy[name] = np.load(path) return id_npy def check_identity(id_npy, query_features, max_min_dist=1.0): distances_from_id = {} for name, id_npy_arr in id_npy.items(): distances_from_id[name] = [] for id_npy_row in id_npy_arr: dist = np.linalg.norm(id_npy_row - query_features) distances_from_id[name].append(dist) min_dist = np.finfo(float).max name_match = '' for name, distances in distances_from_id.items(): avg = np.mean(distances) if avg < min_dist: min_dist = avg name_match = name if min_dist > max_min_dist: name_match = 'Unknown' return name_match, min_dist def process_and_viz_img(pil_img, det_models, face_id_model, reference, crop_size, id_npy, font): # Detect bboxes and landmarks for all faces in the image and warp the # faces. face_results = process_faces( img=pil_img, det_models=det_models, reference=reference, crop_size=crop_size) # Filter results by detection probability. filtered_face_results = [] for face_result in face_results: face_prob = face_result.bounding_box[4] if face_prob < MIN_FACE_PROB: print('Skipping detection with low face probability: {:.2f}'.format(face_prob)) continue filtered_face_results.append(face_result) face_results = filtered_face_results identity_list = [] for face_result in face_results: features = extract_feature_for_img( img=face_result.warped_face, backbone=face_id_model) # features is tensor, so converting to numpy arr below identity, min_dist = check_identity( id_npy=id_npy, query_features=features.numpy()) identity_list.append((identity, '({:.2f})'.format(min_dist))) # Visualize the results viz_img = show_results( img=pil_img, bounding_boxes=[ fr.bounding_box for fr in face_results ], facial_landmarks=[ fr.landmark for fr in face_results ], names=identity_list, font=font) if identity_list: names = list(zip(*identity_list))[0] else: names = [] return viz_img, names def play_sound_for_name(name): name_to_sound_file = { 'neelam': '/Users/bkovacs/Documents/neelam-how-is-it-going.m4a', 'kovi': '/Users/bkovacs/Documents/balazs-how-is-it-going.m4a', } name = name.lower() if name not in name_to_sound_file: return player = vlc.MediaPlayer(name_to_sound_file[name]) player.play() def play_sound_if_needed(names, name_to_last_time_seen, cur_time, min_elapsed_to_play=3): for name in names: if (name not in name_to_last_time_seen or name_to_last_time_seen[name] + min_elapsed_to_play < cur_time): play_sound_for_name(name) name_to_last_time_seen[name] = cur_time def demo(det_models, face_id_model, reference, crop_size, id_npy, max_size, font): cap = cv2.VideoCapture(0) name_to_last_time_seen = {} try: while cap.isOpened(): start_time = time.time() ret, image_np = cap.read() if ret and cap.isOpened(): # Process frame # BGR -> RGB pil_img = Image.fromarray(image_np[..., ::-1]) pil_img.thumbnail((max_size, max_size)) viz_img, names = process_and_viz_img( pil_img=pil_img, det_models=det_models, face_id_model=face_id_model, reference=reference, crop_size=crop_size, id_npy=id_npy, font=font, ) cur_time = time.time() play_sound_if_needed( names=names, name_to_last_time_seen=name_to_last_time_seen, cur_time=cur_time) fps = 1.0 / (cur_time - start_time) draw_fps( img=viz_img, font=font, fps=fps, ) # Display the resulting frame viz_img_bgr = np.array(viz_img)[..., ::-1] cv2.imshow('Face Detection Demo', viz_img_bgr) # Quit if we press 'q'. if (cv2.waitKey(1) & 0xFF) == ord('q'): break finally: # When everything is done, release the capture. cap.release() cv2.destroyAllWindows() def process_files(input_dir, output_dir, det_models, face_id_model, reference, crop_size, id_npy, max_size, font): if not os.path.exists(output_dir): os.makedirs(output_dir) image_names = list(os.listdir(input_dir)) for img_idx in tqdm(range(len(image_names))): image_name = image_names[img_idx] pil_img = Image.open(os.path.join(input_dir, image_name)) pil_img.thumbnail((max_size, max_size)) viz_img, _ = process_and_viz_img( pil_img=pil_img, det_models=det_models, face_id_model=face_id_model, reference=reference, crop_size=crop_size, id_npy=id_npy, font=font, ) viz_img.save(os.path.join(output_dir, '{}-stream.jpg'.format(img_idx))) def main(mode, face_id_model_root, id_features_dir, font_path): print('Loading models...') det_models = load_detect_faces_models() face_id_model = load_face_id_model(model_root=face_id_model_root) id_npy = load_id_files(id_features_dir) crop_size = 112 max_size = 1024 reference = get_reference_facial_points(default_square=True) font = ImageFont.FreeTypeFont(font=font_path, size=24) print('Starting image processing...') if mode == Mode.DEMO: demo( det_models=det_models, face_id_model=face_id_model, reference=reference, crop_size=crop_size, id_npy=id_npy, max_size=max_size, font=font) elif mode == Mode.FILE: process_files( input_dir=STREAM_DIR, output_dir=RESULT_DIR, det_models=det_models, face_id_model=face_id_model, reference=reference, crop_size=crop_size, id_npy=id_npy, max_size=max_size, font=font) else: raise ValueError('Invalid mode: {}'.format(mode)) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--mode', type=Mode.from_string, default=Mode.DEMO, choices=list(Mode)) parser.add_argument('--face_id_model_root', type=str, default=FACE_ID_MODEL_ROOT) parser.add_argument('--id_features_dir', type=str, default=ID_FEATURES_DIR) parser.add_argument('--font_path', type=str, default=FONT_PATH) return parser.parse_args() if __name__ == '__main__': args = parse_args() main(args.mode, args.face_id_model_root, args.id_features_dir, args.font_path)
30.844828
98
0.587144
[ "MIT" ]
kovibalu/face.evoLVe.PyTorch
test_video_stream.py
8,945
Python
from userinput import * from types import SimpleNamespace import sys from PyQt5.QtCore import pyqtSignal as pys class numberInput(QtWidgets.QMainWindow,Ui_MainWindow): input_num=pys(str) def __init__(self,opacity=1,loc=(200,200),parent=None): super(numberInput,self).__init__(parent) self.setupUi(self) #self.setWindowFlags(QtCore.Qt.FramelessWindowHint) self.btn=SimpleNamespace(name="",text="") self.setTransparency(opacity) self.input_text="" self.close_btn.clicked.connect(self.close) self.move(loc[0],loc[1]) self.setWindowFlags(QtCore.Qt.FramelessWindowHint) self.b1.clicked.connect(self.getNumbers) self.b2.clicked.connect(self.getNumbers) self.b3.clicked.connect(self.getNumbers) self.b4.clicked.connect(self.getNumbers) self.b5.clicked.connect(self.getNumbers) self.b6.clicked.connect(self.getNumbers) self.b7.clicked.connect(self.getNumbers) self.b8.clicked.connect(self.getNumbers) self.b9.clicked.connect(self.getNumbers) self.b0.clicked.connect(self.getNumbers) self.ok.clicked.connect(self.submit_inputs) self.clr.clicked.connect(self.clear_text) self.del_btn.clicked.connect(self.delete_text) def getNumbers(self): self.btn.name=self.sender().objectName() self.btn.text=self.sender().text() self.input_text+=self.btn.text self.display.setText(self.input_text) def delete_text(self): self.input_text=self.input_text[:-1] self.display.setText(self.input_text) def clear_text(self): self.display.clear() self.input_text="" def submit_inputs(self): self.input_num.emit(self.input_text) self.close() def setTransparency(self,pos): self.setWindowOpacity(pos) if __name__ == "__main__": app = QtWidgets.QApplication(sys.argv) numInput=numberInput() numInput.setWindowFlags(QtCore.Qt.FramelessWindowHint) numInput.show() sys.exit(app.exec_())
31.8
61
0.638365
[ "MIT" ]
magxTz/udventVersion2.0
udvent_reworked_v2_2_friday/input_Number.py
2,226
Python
""" Copyright 2020 The Magma Authors. This source code is licensed under the BSD-style license found in the LICENSE file in the root directory of this source tree. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ # pylint: disable=protected-access import asyncio from unittest import TestCase, main, mock from magma.common.service_registry import ServiceRegistry from magma.magmad.sync_rpc_client import SyncRPCClient from orc8r.protos.sync_rpc_service_pb2 import ( GatewayRequest, GatewayResponse, SyncRPCRequest, SyncRPCResponse, ) class SyncRPCClientTests(TestCase): """ Tests for the SyncRPCClient """ def setUp(self): loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) self._loop = loop self._sync_rpc_client = SyncRPCClient(loop=loop, response_timeout=3) self._sync_rpc_client._conn_closed_table = { 12345: False } ServiceRegistry.add_service('test', '0.0.0.0', 0) ServiceRegistry._PROXY_CONFIG = {'local_port': 2345, 'cloud_address': 'test', 'proxy_cloud_connections': True} self._req_body = GatewayRequest(gwId="test id", authority='mobility', path='/magma.MobilityService' '/ListAddedIPv4Blocks', headers={'te': 'trailers', 'content-type': 'application/grpc', 'user-agent': 'grpc-python/1.4.0', 'grpc-accept-encoding': 'identity'}, payload=bytes.fromhex('0000000000')) self._expected_resp = GatewayResponse(status="400", headers={"test_key": "test_val"}, payload=b'\x00' b'\x00\x00\x00\n\n\x08') self._expected_err_msg = "test error" def test_forward_request_conn_closed(self): self._sync_rpc_client.forward_request( SyncRPCRequest(reqId=12345, connClosed=True)) self.assertEqual(self._sync_rpc_client._conn_closed_table[12345], True) def test_send_sync_rpc_response(self): expected = SyncRPCResponse(reqId=123, respBody=self._expected_resp) self._sync_rpc_client._response_queue.put(expected) res = self._sync_rpc_client.send_sync_rpc_response() actual = next(res) self.assertEqual(expected, actual) expected = SyncRPCResponse(heartBeat=True) actual = next(res) self.assertEqual(expected, actual) def test_retry_connect_sleep(self): self._sync_rpc_client._current_delay = 0 for i in range(5): self._sync_rpc_client._retry_connect_sleep() if i == 4: self.assertEqual(self._sync_rpc_client.RETRY_MAX_DELAY_SECS, self._sync_rpc_client._current_delay) else: self.assertEqual(2 ** i, self._sync_rpc_client._current_delay) def test_disconnect_sync_rpc_event(self): disconnect_sync_rpc_event_mock = mock.patch( 'magma.magmad.events.disconnected_sync_rpc_stream') with disconnect_sync_rpc_event_mock as disconnect_sync_rpc_streams: self._sync_rpc_client._cleanup_and_reconnect() disconnect_sync_rpc_streams.assert_called_once_with() if __name__ == "__main__": main()
41.907216
79
0.588438
[ "BSD-3-Clause" ]
0xa6e/magma
orc8r/gateway/python/magma/magmad/tests/sync_rpc_client_tests.py
4,065
Python
from typing import Dict, List from sortedcontainers import SortedDict from shamrock.types.blockchain_format.coin import Coin from shamrock.types.blockchain_format.sized_bytes import bytes32 from shamrock.types.mempool_item import MempoolItem class Mempool: def __init__(self, max_size_in_cost: int): self.spends: Dict[bytes32, MempoolItem] = {} self.sorted_spends: SortedDict = SortedDict() self.additions: Dict[bytes32, MempoolItem] = {} self.removals: Dict[bytes32, MempoolItem] = {} self.max_size_in_cost: int = max_size_in_cost self.total_mempool_cost: int = 0 def get_min_fee_rate(self, cost: int) -> float: """ Gets the minimum fpc rate that a transaction with specified cost will need in order to get included. """ if self.at_full_capacity(cost): current_cost = self.total_mempool_cost # Iterates through all spends in increasing fee per cost for fee_per_cost, spends_with_fpc in self.sorted_spends.items(): for spend_name, item in spends_with_fpc.items(): current_cost -= item.cost # Removing one at a time, until our transaction of size cost fits if current_cost + cost <= self.max_size_in_cost: return fee_per_cost raise ValueError( f"Transaction with cost {cost} does not fit in mempool of max cost {self.max_size_in_cost}" ) else: return 0 def remove_from_pool(self, item: MempoolItem): """ Removes an item from the mempool. """ removals: List[Coin] = item.removals additions: List[Coin] = item.additions for rem in removals: del self.removals[rem.name()] for add in additions: del self.additions[add.name()] del self.spends[item.name] del self.sorted_spends[item.fee_per_cost][item.name] dic = self.sorted_spends[item.fee_per_cost] if len(dic.values()) == 0: del self.sorted_spends[item.fee_per_cost] self.total_mempool_cost -= item.cost assert self.total_mempool_cost >= 0 def add_to_pool( self, item: MempoolItem, ): """ Adds an item to the mempool by kicking out transactions (if it doesn't fit), in order of increasing fee per cost """ while self.at_full_capacity(item.cost): # Val is Dict[hash, MempoolItem] fee_per_cost, val = self.sorted_spends.peekitem(index=0) to_remove = list(val.values())[0] self.remove_from_pool(to_remove) self.spends[item.name] = item # sorted_spends is Dict[float, Dict[bytes32, MempoolItem]] if item.fee_per_cost not in self.sorted_spends: self.sorted_spends[item.fee_per_cost] = {} self.sorted_spends[item.fee_per_cost][item.name] = item for add in item.additions: self.additions[add.name()] = item for coin in item.removals: self.removals[coin.name()] = item self.total_mempool_cost += item.cost def at_full_capacity(self, cost: int) -> bool: """ Checks whether the mempool is at full capacity and cannot accept a transaction with size cost. """ return self.total_mempool_cost + cost > self.max_size_in_cost
37.315217
120
0.629187
[ "Apache-2.0" ]
zcomputerwiz/shamrock-blockchain
shamrock/full_node/mempool.py
3,433
Python
import time import copy import pickle import warnings import numpy as np import scipy.sparse as sp import torch import torch.nn.functional as F from sklearn.metrics import roc_auc_score, average_precision_score, precision_recall_curve, auc def sparse_to_tuple(sparse_mx): if not sp.isspmatrix_coo(sparse_mx): sparse_mx = sparse_mx.tocoo() coords = np.vstack((sparse_mx.row, sparse_mx.col)).transpose() values = sparse_mx.data shape = sparse_mx.shape return coords, values, shape def get_scores(edges_pos, edges_neg, A_pred, adj_label): # get logists and labels preds = A_pred[edges_pos.T] preds_neg = A_pred[edges_neg.T] logists = np.hstack([preds, preds_neg]) labels = np.hstack([np.ones(preds.size(0)), np.zeros(preds_neg.size(0))]) # logists = A_pred.view(-1) # labels = adj_label.to_dense().view(-1) # calc scores roc_auc = roc_auc_score(labels, logists) ap_score = average_precision_score(labels, logists) precisions, recalls, thresholds = precision_recall_curve(labels, logists) pr_auc = auc(recalls, precisions) warnings.simplefilter('ignore', RuntimeWarning) f1s = np.nan_to_num(2*precisions*recalls/(precisions+recalls)) best_comb = np.argmax(f1s) f1 = f1s[best_comb] pre = precisions[best_comb] rec = recalls[best_comb] thresh = thresholds[best_comb] # calc reconstracted adj_mat and accuracy with the threshold for best f1 adj_rec = copy.deepcopy(A_pred) adj_rec[adj_rec < thresh] = 0 adj_rec[adj_rec >= thresh] = 1 labels_all = adj_label.to_dense().view(-1).long() preds_all = adj_rec.view(-1).long() recon_acc = (preds_all == labels_all).sum().float() / labels_all.size(0) results = {'roc': roc_auc, 'pr': pr_auc, 'ap': ap_score, 'pre': pre, 'rec': rec, 'f1': f1, 'acc': recon_acc, 'adj_recon': adj_rec} return results def train_model(args, dl, vgae): optimizer = torch.optim.Adam(vgae.parameters(), lr=args.lr) # weights for log_lik loss adj_t = dl.adj_train norm_w = adj_t.shape[0]**2 / float((adj_t.shape[0]**2 - adj_t.sum()) * 2) pos_weight = torch.FloatTensor([float(adj_t.shape[0]**2 - adj_t.sum()) / adj_t.sum()]).to(args.device) # move input data and label to gpu if needed features = dl.features.to(args.device) adj_label = dl.adj_label.to_dense().to(args.device) best_vali_criterion = 0.0 best_state_dict = None vgae.train() for epoch in range(args.epochs): t = time.time() A_pred = vgae(features) optimizer.zero_grad() loss = log_lik = norm_w*F.binary_cross_entropy_with_logits(A_pred, adj_label, pos_weight=pos_weight) if not args.gae: kl_divergence = 0.5/A_pred.size(0) * (1 + 2*vgae.logstd - vgae.mean**2 - torch.exp(2*vgae.logstd)).sum(1).mean() loss -= kl_divergence A_pred = torch.sigmoid(A_pred).detach().cpu() r = get_scores(dl.val_edges, dl.val_edges_false, A_pred, dl.adj_label) print('Epoch{:3}: train_loss: {:.4f} recon_acc: {:.4f} val_roc: {:.4f} val_ap: {:.4f} f1: {:.4f} time: {:.4f}'.format( epoch+1, loss.item(), r['acc'], r['roc'], r['ap'], r['f1'], time.time()-t)) if r[args.criterion] > best_vali_criterion: best_vali_criterion = r[args.criterion] best_state_dict = copy.deepcopy(vgae.state_dict()) # r_test = get_scores(dl.test_edges, dl.test_edges_false, A_pred, dl.adj_label) r_test = r print(" test_roc: {:.4f} test_ap: {:.4f} test_f1: {:.4f} test_recon_acc: {:.4f}".format( r_test['roc'], r_test['ap'], r_test['f1'], r_test['acc'])) loss.backward() optimizer.step() print("Done! final results: test_roc: {:.4f} test_ap: {:.4f} test_f1: {:.4f} test_recon_acc: {:.4f}".format( r_test['roc'], r_test['ap'], r_test['f1'], r_test['acc'])) vgae.load_state_dict(best_state_dict) return vgae def gen_graphs(args, dl, vgae): adj_orig = dl.adj_orig assert adj_orig.diagonal().sum() == 0 # sp.csr_matrix if args.gae: pickle.dump(adj_orig, open(f'graphs/{args.dataset}_graph_0_gae.pkl', 'wb')) else: pickle.dump(adj_orig, open(f'graphs/{args.dataset}_graph_0.pkl', 'wb')) # sp.lil_matrix pickle.dump(dl.features_orig, open(f'graphs/{args.dataset}_features.pkl', 'wb')) features = dl.features.to(args.device) for i in range(args.gen_graphs): with torch.no_grad(): A_pred = vgae(features) A_pred = torch.sigmoid(A_pred).detach().cpu() r = get_scores(dl.val_edges, dl.val_edges_false, A_pred, dl.adj_label) adj_recon = A_pred.numpy() np.fill_diagonal(adj_recon, 0) # np.ndarray if args.gae: filename = f'graphs/{args.dataset}_graph_{i+1}_logits_gae.pkl' else: filename = f'graphs/{args.dataset}_graph_{i+1}_logits.pkl' pickle.dump(adj_recon, open(filename, 'wb'))
41.770492
126
0.635597
[ "MIT" ]
DM2-ND/GAug
vgae/utils.py
5,096
Python
# -*- coding: utf-8 -*- # @Author: Yanqi Gu # @Date: 2019-04-20 16:30:52 # @Last Modified by: Yanqi Gu # @Last Modified time: 2019-04-20 16:57:49
25
42
0.613333
[ "MIT" ]
Guyanqi/DPC4.5
DPDecisionTree/__init__.py
150
Python
def is_alpha(c): result = ord('A') <= ord(c.upper()) <= ord('Z') return result def is_ascii(c): result = 0 <= ord(c) <= 127 return result def is_ascii_extended(c): result = 128 <= ord(c) <= 255 return result
16.857143
51
0.567797
[ "MIT" ]
GoodPeopleAI/django-htk
utils/text/general.py
236
Python
# Copyright (c) 2016,2017,2018,2019 MetPy Developers. # Distributed under the terms of the BSD 3-Clause License. # SPDX-License-Identifier: BSD-3-Clause """Contains a collection of generally useful calculation tools.""" import functools from operator import itemgetter import numpy as np from numpy.core.numeric import normalize_axis_index import numpy.ma as ma from scipy.spatial import cKDTree import xarray as xr from ..cbook import broadcast_indices, result_type from ..interpolate import interpolate_1d, log_interpolate_1d from ..package_tools import Exporter from ..units import atleast_1d, check_units, concatenate, diff, units from ..xarray import check_axis, preprocess_xarray exporter = Exporter(globals()) UND = 'UND' UND_ANGLE = -999. DIR_STRS = ( 'N', 'NNE', 'NE', 'ENE', 'E', 'ESE', 'SE', 'SSE', 'S', 'SSW', 'SW', 'WSW', 'W', 'WNW', 'NW', 'NNW', UND ) # note the order matters! MAX_DEGREE_ANGLE = 360 * units.degree BASE_DEGREE_MULTIPLIER = 22.5 * units.degree DIR_DICT = {dir_str: i * BASE_DEGREE_MULTIPLIER for i, dir_str in enumerate(DIR_STRS)} DIR_DICT[UND] = np.nan @exporter.export @preprocess_xarray def resample_nn_1d(a, centers): """Return one-dimensional nearest-neighbor indexes based on user-specified centers. Parameters ---------- a : array-like 1-dimensional array of numeric values from which to extract indexes of nearest-neighbors centers : array-like 1-dimensional array of numeric values representing a subset of values to approximate Returns ------- An array of indexes representing values closest to given array values """ ix = [] for center in centers: index = (np.abs(a - center)).argmin() if index not in ix: ix.append(index) return ix @exporter.export @preprocess_xarray def nearest_intersection_idx(a, b): """Determine the index of the point just before two lines with common x values. Parameters ---------- a : array-like 1-dimensional array of y-values for line 1 b : array-like 1-dimensional array of y-values for line 2 Returns ------- An array of indexes representing the index of the values just before the intersection(s) of the two lines. """ # Difference in the two y-value sets difference = a - b # Determine the point just before the intersection of the lines # Will return multiple points for multiple intersections sign_change_idx, = np.nonzero(np.diff(np.sign(difference))) return sign_change_idx @exporter.export @preprocess_xarray @units.wraps(('=A', '=B'), ('=A', '=B', '=B')) def find_intersections(x, a, b, direction='all', log_x=False): """Calculate the best estimate of intersection. Calculates the best estimates of the intersection of two y-value data sets that share a common x-value set. Parameters ---------- x : array-like 1-dimensional array of numeric x-values a : array-like 1-dimensional array of y-values for line 1 b : array-like 1-dimensional array of y-values for line 2 direction : string, optional specifies direction of crossing. 'all', 'increasing' (a becoming greater than b), or 'decreasing' (b becoming greater than a). Defaults to 'all'. log_x : bool, optional Use logarithmic interpolation along the `x` axis (i.e. for finding intersections in pressure coordinates). Default is False. Returns ------- A tuple (x, y) of array-like with the x and y coordinates of the intersections of the lines. """ # Change x to logarithmic if log_x=True if log_x is True: x = np.log(x) # Find the index of the points just before the intersection(s) nearest_idx = nearest_intersection_idx(a, b) next_idx = nearest_idx + 1 # Determine the sign of the change sign_change = np.sign(a[next_idx] - b[next_idx]) # x-values around each intersection _, x0 = _next_non_masked_element(x, nearest_idx) _, x1 = _next_non_masked_element(x, next_idx) # y-values around each intersection for the first line _, a0 = _next_non_masked_element(a, nearest_idx) _, a1 = _next_non_masked_element(a, next_idx) # y-values around each intersection for the second line _, b0 = _next_non_masked_element(b, nearest_idx) _, b1 = _next_non_masked_element(b, next_idx) # Calculate the x-intersection. This comes from finding the equations of the two lines, # one through (x0, a0) and (x1, a1) and the other through (x0, b0) and (x1, b1), # finding their intersection, and reducing with a bunch of algebra. delta_y0 = a0 - b0 delta_y1 = a1 - b1 intersect_x = (delta_y1 * x0 - delta_y0 * x1) / (delta_y1 - delta_y0) # Calculate the y-intersection of the lines. Just plug the x above into the equation # for the line through the a points. One could solve for y like x above, but this # causes weirder unit behavior and seems a little less good numerically. intersect_y = ((intersect_x - x0) / (x1 - x0)) * (a1 - a0) + a0 # If there's no intersections, return if len(intersect_x) == 0: return intersect_x, intersect_y # Return x to linear if log_x is True if log_x is True: intersect_x = np.exp(intersect_x) # Check for duplicates duplicate_mask = (np.ediff1d(intersect_x, to_end=1) != 0) # Make a mask based on the direction of sign change desired if direction == 'increasing': mask = sign_change > 0 elif direction == 'decreasing': mask = sign_change < 0 elif direction == 'all': return intersect_x[duplicate_mask], intersect_y[duplicate_mask] else: raise ValueError('Unknown option for direction: {0}'.format(str(direction))) return intersect_x[mask & duplicate_mask], intersect_y[mask & duplicate_mask] def _next_non_masked_element(a, idx): """Return the next non masked element of a masked array. If an array is masked, return the next non-masked element (if the given index is masked). If no other unmasked points are after the given masked point, returns none. Parameters ---------- a : array-like 1-dimensional array of numeric values idx : integer index of requested element Returns ------- Index of next non-masked element and next non-masked element """ try: next_idx = idx + a[idx:].mask.argmin() if ma.is_masked(a[next_idx]): return None, None else: return next_idx, a[next_idx] except (AttributeError, TypeError, IndexError): return idx, a[idx] def _delete_masked_points(*arrs): """Delete masked points from arrays. Takes arrays and removes masked points to help with calculations and plotting. Parameters ---------- arrs : one or more array-like source arrays Returns ------- arrs : one or more array-like arrays with masked elements removed """ if any(hasattr(a, 'mask') for a in arrs): keep = ~functools.reduce(np.logical_or, (np.ma.getmaskarray(a) for a in arrs)) return tuple(ma.asarray(a[keep]) for a in arrs) else: return arrs @exporter.export @preprocess_xarray def reduce_point_density(points, radius, priority=None): r"""Return a mask to reduce the density of points in irregularly-spaced data. This function is used to down-sample a collection of scattered points (e.g. surface data), returning a mask that can be used to select the points from one or more arrays (e.g. arrays of temperature and dew point). The points selected can be controlled by providing an array of ``priority`` values (e.g. rainfall totals to ensure that stations with higher precipitation remain in the mask). The points and radius can be specified with units. If none are provided, meters are assumed. Parameters ---------- points : (N, K) array-like N locations of the points in K dimensional space radius : `pint.Quantity` or float Minimum radius allowed between points. If units are not provided, meters is assumed. priority : (N, K) array-like, optional If given, this should have the same shape as ``points``; these values will be used to control selection priority for points. Returns ------- (N,) array-like of boolean values indicating whether points should be kept. This can be used directly to index numpy arrays to return only the desired points. Examples -------- >>> metpy.calc.reduce_point_density(np.array([1, 2, 3]), 1.) array([ True, False, True]) >>> metpy.calc.reduce_point_density(np.array([1, 2, 3]), 1., ... priority=np.array([0.1, 0.9, 0.3])) array([False, True, False]) """ # Handle input with units. Assume meters if units are not specified if hasattr(radius, 'units'): radius = radius.to('m').m if hasattr(points, 'units'): points = points.to('m').m # Handle 1D input if points.ndim < 2: points = points.reshape(-1, 1) # Make a kd-tree to speed searching of data. tree = cKDTree(points) # Need to use sorted indices rather than sorting the position # so that the keep mask matches *original* order. if priority is not None: # Need to sort the locations in decreasing priority. sorted_indices = np.argsort(priority)[::-1] else: # Take advantage of iterator nature of range here to avoid making big lists sorted_indices = range(len(points)) # Keep all points initially keep = np.ones(len(points), dtype=np.bool) # Loop over all the potential points for ind in sorted_indices: # Only proceed if we haven't already excluded this point if keep[ind]: # Find the neighbors and eliminate them neighbors = tree.query_ball_point(points[ind], radius) keep[neighbors] = False # We just removed ourselves, so undo that keep[ind] = True return keep def _get_bound_pressure_height(pressure, bound, heights=None, interpolate=True): """Calculate the bounding pressure and height in a layer. Given pressure, optional heights, and a bound, return either the closest pressure/height or interpolated pressure/height. If no heights are provided, a standard atmosphere ([NOAA1976]_) is assumed. Parameters ---------- pressure : `pint.Quantity` Atmospheric pressures bound : `pint.Quantity` Bound to retrieve (in pressure or height) heights : `pint.Quantity`, optional Atmospheric heights associated with the pressure levels. Defaults to using heights calculated from ``pressure`` assuming a standard atmosphere. interpolate : boolean, optional Interpolate the bound or return the nearest. Defaults to True. Returns ------- `pint.Quantity` The bound pressure and height. """ # avoid circular import if basic.py ever imports something from tools.py from .basic import height_to_pressure_std, pressure_to_height_std # Make sure pressure is monotonically decreasing sort_inds = np.argsort(pressure)[::-1] pressure = pressure[sort_inds] if heights is not None: heights = heights[sort_inds] # Bound is given in pressure if bound.dimensionality == {'[length]': -1.0, '[mass]': 1.0, '[time]': -2.0}: # If the bound is in the pressure data, we know the pressure bound exactly if bound in pressure: bound_pressure = bound # If we have heights, we know the exact height value, otherwise return standard # atmosphere height for the pressure if heights is not None: bound_height = heights[pressure == bound_pressure] else: bound_height = pressure_to_height_std(bound_pressure) # If bound is not in the data, return the nearest or interpolated values else: if interpolate: bound_pressure = bound # Use the user specified bound if heights is not None: # Interpolate heights from the height data bound_height = log_interpolate_1d(bound_pressure, pressure, heights) else: # If not heights given, use the standard atmosphere bound_height = pressure_to_height_std(bound_pressure) else: # No interpolation, find the closest values idx = (np.abs(pressure - bound)).argmin() bound_pressure = pressure[idx] if heights is not None: bound_height = heights[idx] else: bound_height = pressure_to_height_std(bound_pressure) # Bound is given in height elif bound.dimensionality == {'[length]': 1.0}: # If there is height data, see if we have the bound or need to interpolate/find nearest if heights is not None: if bound in heights: # Bound is in the height data bound_height = bound bound_pressure = pressure[heights == bound] else: # Bound is not in the data if interpolate: bound_height = bound # Need to cast back to the input type since interp (up to at least numpy # 1.13 always returns float64. This can cause upstream users problems, # resulting in something like np.append() to upcast. bound_pressure = (np.interp(np.atleast_1d(bound.m), heights.m, pressure.m).astype(result_type(bound)) * pressure.units) else: idx = (np.abs(heights - bound)).argmin() bound_pressure = pressure[idx] bound_height = heights[idx] else: # Don't have heights, so assume a standard atmosphere bound_height = bound bound_pressure = height_to_pressure_std(bound) # If interpolation is on, this is all we need, if not, we need to go back and # find the pressure closest to this and refigure the bounds if not interpolate: idx = (np.abs(pressure - bound_pressure)).argmin() bound_pressure = pressure[idx] bound_height = pressure_to_height_std(bound_pressure) # Bound has invalid units else: raise ValueError('Bound must be specified in units of length or pressure.') # If the bound is out of the range of the data, we shouldn't extrapolate if not (_greater_or_close(bound_pressure, np.nanmin(pressure.m) * pressure.units) and _less_or_close(bound_pressure, np.nanmax(pressure.m) * pressure.units)): raise ValueError('Specified bound is outside pressure range.') if heights is not None and not (_less_or_close(bound_height, np.nanmax(heights.m) * heights.units) and _greater_or_close(bound_height, np.nanmin(heights.m) * heights.units)): raise ValueError('Specified bound is outside height range.') return bound_pressure, bound_height @exporter.export @preprocess_xarray @check_units('[length]') def get_layer_heights(heights, depth, *args, bottom=None, interpolate=True, with_agl=False): """Return an atmospheric layer from upper air data with the requested bottom and depth. This function will subset an upper air dataset to contain only the specified layer using the heights only. Parameters ---------- heights : array-like Atmospheric heights depth : `pint.Quantity` The thickness of the layer args : array-like Atmospheric variable(s) measured at the given pressures bottom : `pint.Quantity`, optional The bottom of the layer interpolate : bool, optional Interpolate the top and bottom points if they are not in the given data. Defaults to True. with_agl : bool, optional Returns the heights as above ground level by subtracting the minimum height in the provided heights. Defaults to False. Returns ------- `pint.Quantity, pint.Quantity` The height and data variables of the layer """ # Make sure pressure and datavars are the same length for datavar in args: if len(heights) != len(datavar): raise ValueError('Height and data variables must have the same length.') # If we want things in AGL, subtract the minimum height from all height values if with_agl: sfc_height = np.min(heights) heights = heights - sfc_height # If the bottom is not specified, make it the surface if bottom is None: bottom = heights[0] # Make heights and arguments base units heights = heights.to_base_units() bottom = bottom.to_base_units() # Calculate the top of the layer top = bottom + depth ret = [] # returned data variables in layer # Ensure heights are sorted in ascending order sort_inds = np.argsort(heights) heights = heights[sort_inds] # Mask based on top and bottom inds = _greater_or_close(heights, bottom) & _less_or_close(heights, top) heights_interp = heights[inds] # Interpolate heights at bounds if necessary and sort if interpolate: # If we don't have the bottom or top requested, append them if top not in heights_interp: heights_interp = np.sort(np.append(heights_interp.m, top.m)) * heights.units if bottom not in heights_interp: heights_interp = np.sort(np.append(heights_interp.m, bottom.m)) * heights.units ret.append(heights_interp) for datavar in args: # Ensure that things are sorted in ascending order datavar = datavar[sort_inds] if interpolate: # Interpolate for the possibly missing bottom/top values datavar_interp = interpolate_1d(heights_interp, heights, datavar) datavar = datavar_interp else: datavar = datavar[inds] ret.append(datavar) return ret @exporter.export @preprocess_xarray @check_units('[pressure]') def get_layer(pressure, *args, heights=None, bottom=None, depth=100 * units.hPa, interpolate=True): r"""Return an atmospheric layer from upper air data with the requested bottom and depth. This function will subset an upper air dataset to contain only the specified layer. The bottom of the layer can be specified with a pressure or height above the surface pressure. The bottom defaults to the surface pressure. The depth of the layer can be specified in terms of pressure or height above the bottom of the layer. If the top and bottom of the layer are not in the data, they are interpolated by default. Parameters ---------- pressure : array-like Atmospheric pressure profile args : array-like Atmospheric variable(s) measured at the given pressures heights: array-like, optional Atmospheric heights corresponding to the given pressures. Defaults to using heights calculated from ``p`` assuming a standard atmosphere [NOAA1976]_. bottom : `pint.Quantity`, optional The bottom of the layer as a pressure or height above the surface pressure. Defaults to the highest pressure or lowest height given. depth : `pint.Quantity`, optional The thickness of the layer as a pressure or height above the bottom of the layer. Defaults to 100 hPa. interpolate : bool, optional Interpolate the top and bottom points if they are not in the given data. Defaults to True. Returns ------- `pint.Quantity, pint.Quantity` The pressure and data variables of the layer """ # If we get the depth kwarg, but it's None, set it to the default as well if depth is None: depth = 100 * units.hPa # Make sure pressure and datavars are the same length for datavar in args: if len(pressure) != len(datavar): raise ValueError('Pressure and data variables must have the same length.') # If the bottom is not specified, make it the surface pressure if bottom is None: bottom = np.nanmax(pressure.m) * pressure.units bottom_pressure, bottom_height = _get_bound_pressure_height(pressure, bottom, heights=heights, interpolate=interpolate) # Calculate the top if whatever units depth is in if depth.dimensionality == {'[length]': -1.0, '[mass]': 1.0, '[time]': -2.0}: top = bottom_pressure - depth elif depth.dimensionality == {'[length]': 1}: top = bottom_height + depth else: raise ValueError('Depth must be specified in units of length or pressure') top_pressure, _ = _get_bound_pressure_height(pressure, top, heights=heights, interpolate=interpolate) ret = [] # returned data variables in layer # Ensure pressures are sorted in ascending order sort_inds = np.argsort(pressure) pressure = pressure[sort_inds] # Mask based on top and bottom pressure inds = (_less_or_close(pressure, bottom_pressure) & _greater_or_close(pressure, top_pressure)) p_interp = pressure[inds] # Interpolate pressures at bounds if necessary and sort if interpolate: # If we don't have the bottom or top requested, append them if not np.any(np.isclose(top_pressure, p_interp)): p_interp = np.sort(np.append(p_interp.m, top_pressure.m)) * pressure.units if not np.any(np.isclose(bottom_pressure, p_interp)): p_interp = np.sort(np.append(p_interp.m, bottom_pressure.m)) * pressure.units ret.append(p_interp[::-1]) for datavar in args: # Ensure that things are sorted in ascending order datavar = datavar[sort_inds] if interpolate: # Interpolate for the possibly missing bottom/top values datavar_interp = log_interpolate_1d(p_interp, pressure, datavar) datavar = datavar_interp else: datavar = datavar[inds] ret.append(datavar[::-1]) return ret @exporter.export @preprocess_xarray def find_bounding_indices(arr, values, axis, from_below=True): """Find the indices surrounding the values within arr along axis. Returns a set of above, below, good. Above and below are lists of arrays of indices. These lists are formulated such that they can be used directly to index into a numpy array and get the expected results (no extra slices or ellipsis necessary). `good` is a boolean array indicating the "columns" that actually had values to bound the desired value(s). Parameters ---------- arr : array-like Array to search for values values: array-like One or more values to search for in `arr` axis : int The dimension of `arr` along which to search. from_below : bool, optional Whether to search from "below" (i.e. low indices to high indices). If `False`, the search will instead proceed from high indices to low indices. Defaults to `True`. Returns ------- above : list of arrays List of broadcasted indices to the location above the desired value below : list of arrays List of broadcasted indices to the location below the desired value good : array Boolean array indicating where the search found proper bounds for the desired value """ # The shape of generated indices is the same as the input, but with the axis of interest # replaced by the number of values to search for. indices_shape = list(arr.shape) indices_shape[axis] = len(values) # Storage for the found indices and the mask for good locations indices = np.empty(indices_shape, dtype=np.int) good = np.empty(indices_shape, dtype=np.bool) # Used to put the output in the proper location store_slice = [slice(None)] * arr.ndim # Loop over all of the values and for each, see where the value would be found from a # linear search for level_index, value in enumerate(values): # Look for changes in the value of the test for <= value in consecutive points # Taking abs() because we only care if there is a flip, not which direction. switches = np.abs(np.diff((arr <= value).astype(np.int), axis=axis)) # Good points are those where it's not just 0's along the whole axis good_search = np.any(switches, axis=axis) if from_below: # Look for the first switch; need to add 1 to the index since argmax is giving the # index within the difference array, which is one smaller. index = switches.argmax(axis=axis) + 1 else: # Generate a list of slices to reverse the axis of interest so that searching from # 0 to N is starting at the "top" of the axis. arr_slice = [slice(None)] * arr.ndim arr_slice[axis] = slice(None, None, -1) # Same as above, but we use the slice to come from the end; then adjust those # indices to measure from the front. index = arr.shape[axis] - 1 - switches[tuple(arr_slice)].argmax(axis=axis) # Set all indices where the results are not good to 0 index[~good_search] = 0 # Put the results in the proper slice store_slice[axis] = level_index indices[tuple(store_slice)] = index good[tuple(store_slice)] = good_search # Create index values for broadcasting arrays above = broadcast_indices(arr, indices, arr.ndim, axis) below = broadcast_indices(arr, indices - 1, arr.ndim, axis) return above, below, good def _greater_or_close(a, value, **kwargs): r"""Compare values for greater or close to boolean masks. Returns a boolean mask for values greater than or equal to a target within a specified absolute or relative tolerance (as in :func:`numpy.isclose`). Parameters ---------- a : array-like Array of values to be compared value : float Comparison value Returns ------- array-like Boolean array where values are greater than or nearly equal to value. """ return (a > value) | np.isclose(a, value, **kwargs) def _less_or_close(a, value, **kwargs): r"""Compare values for less or close to boolean masks. Returns a boolean mask for values less than or equal to a target within a specified absolute or relative tolerance (as in :func:`numpy.isclose`). Parameters ---------- a : array-like Array of values to be compared value : float Comparison value Returns ------- array-like Boolean array where values are less than or nearly equal to value. """ return (a < value) | np.isclose(a, value, **kwargs) @exporter.export @preprocess_xarray def lat_lon_grid_deltas(longitude, latitude, **kwargs): r"""Calculate the delta between grid points that are in a latitude/longitude format. Calculate the signed delta distance between grid points when the grid spacing is defined by delta lat/lon rather than delta x/y Parameters ---------- longitude : array_like array of longitudes defining the grid latitude : array_like array of latitudes defining the grid kwargs Other keyword arguments to pass to :class:`~pyproj.Geod` Returns ------- dx, dy: at least two dimensional arrays of signed deltas between grid points in the x and y direction Notes ----- Accepts 1D, 2D, or higher arrays for latitude and longitude Assumes [..., Y, X] for >=2 dimensional arrays """ from pyproj import Geod # Inputs must be the same number of dimensions if latitude.ndim != longitude.ndim: raise ValueError('Latitude and longitude must have the same number of dimensions.') # If we were given 1D arrays, make a mesh grid if latitude.ndim < 2: longitude, latitude = np.meshgrid(longitude, latitude) geod_args = {'ellps': 'sphere'} if kwargs: geod_args = kwargs g = Geod(**geod_args) forward_az, _, dy = g.inv(longitude[..., :-1, :], latitude[..., :-1, :], longitude[..., 1:, :], latitude[..., 1:, :]) dy[(forward_az < -90.) | (forward_az > 90.)] *= -1 forward_az, _, dx = g.inv(longitude[..., :, :-1], latitude[..., :, :-1], longitude[..., :, 1:], latitude[..., :, 1:]) dx[(forward_az < 0.) | (forward_az > 180.)] *= -1 return dx * units.meter, dy * units.meter @exporter.export def grid_deltas_from_dataarray(f): """Calculate the horizontal deltas between grid points of a DataArray. Calculate the signed delta distance between grid points of a DataArray in the horizontal directions, whether the grid is lat/lon or x/y. Parameters ---------- f : `xarray.DataArray` Parsed DataArray on a latitude/longitude grid, in (..., lat, lon) or (..., y, x) dimension order Returns ------- dx, dy: arrays of signed deltas between grid points in the x and y directions with dimensions matching those of `f`. See Also -------- lat_lon_grid_deltas """ if f.metpy.crs['grid_mapping_name'] == 'latitude_longitude': dx, dy = lat_lon_grid_deltas(f.metpy.x, f.metpy.y, initstring=f.metpy.cartopy_crs.proj4_init) slc_x = slc_y = tuple([np.newaxis] * (f.ndim - 2) + [slice(None)] * 2) else: dx = np.diff(f.metpy.x.metpy.unit_array.to('m').magnitude) * units('m') dy = np.diff(f.metpy.y.metpy.unit_array.to('m').magnitude) * units('m') slc = [np.newaxis] * (f.ndim - 2) slc_x = tuple(slc + [np.newaxis, slice(None)]) slc_y = tuple(slc + [slice(None), np.newaxis]) return dx[slc_x], dy[slc_y] def xarray_derivative_wrap(func): """Decorate the derivative functions to make them work nicely with DataArrays. This will automatically determine if the coordinates can be pulled directly from the DataArray, or if a call to lat_lon_grid_deltas is needed. """ @functools.wraps(func) def wrapper(f, **kwargs): if 'x' in kwargs or 'delta' in kwargs: # Use the usual DataArray to pint.Quantity preprocessing wrapper return preprocess_xarray(func)(f, **kwargs) elif isinstance(f, xr.DataArray): # Get axis argument, defaulting to first dimension axis = f.metpy.find_axis_name(kwargs.get('axis', 0)) # Initialize new kwargs with the axis number new_kwargs = {'axis': f.get_axis_num(axis)} if check_axis(f[axis], 'time'): # Time coordinate, need to get time deltas new_kwargs['delta'] = f[axis].metpy.time_deltas elif check_axis(f[axis], 'longitude'): # Longitude coordinate, need to get grid deltas new_kwargs['delta'], _ = grid_deltas_from_dataarray(f) elif check_axis(f[axis], 'latitude'): # Latitude coordinate, need to get grid deltas _, new_kwargs['delta'] = grid_deltas_from_dataarray(f) else: # General coordinate, use as is new_kwargs['x'] = f[axis].metpy.unit_array # Calculate and return result as a DataArray result = func(f.metpy.unit_array, **new_kwargs) return xr.DataArray(result.magnitude, coords=f.coords, dims=f.dims, attrs={'units': str(result.units)}) else: # Error raise ValueError('Must specify either "x" or "delta" for value positions when "f" ' 'is not a DataArray.') return wrapper @exporter.export @xarray_derivative_wrap def first_derivative(f, **kwargs): """Calculate the first derivative of a grid of values. Works for both regularly-spaced data and grids with varying spacing. Either `x` or `delta` must be specified, or `f` must be given as an `xarray.DataArray` with attached coordinate and projection information. If `f` is an `xarray.DataArray`, and `x` or `delta` are given, `f` will be converted to a `pint.Quantity` and the derivative returned as a `pint.Quantity`, otherwise, if neither `x` nor `delta` are given, the attached coordinate information belonging to `axis` will be used and the derivative will be returned as an `xarray.DataArray`. This uses 3 points to calculate the derivative, using forward or backward at the edges of the grid as appropriate, and centered elsewhere. The irregular spacing is handled explicitly, using the formulation as specified by [Bowen2005]_. Parameters ---------- f : array-like Array of values of which to calculate the derivative axis : int or str, optional The array axis along which to take the derivative. If `f` is ndarray-like, must be an integer. If `f` is a `DataArray`, can be a string (referring to either the coordinate dimension name or the axis type) or integer (referring to axis number), unless using implicit conversion to `pint.Quantity`, in which case it must be an integer. Defaults to 0. x : array-like, optional The coordinate values corresponding to the grid points in `f`. delta : array-like, optional Spacing between the grid points in `f`. Should be one item less than the size of `f` along `axis`. Returns ------- array-like The first derivative calculated along the selected axis. See Also -------- second_derivative """ n, axis, delta = _process_deriv_args(f, kwargs) # create slice objects --- initially all are [:, :, ..., :] slice0 = [slice(None)] * n slice1 = [slice(None)] * n slice2 = [slice(None)] * n delta_slice0 = [slice(None)] * n delta_slice1 = [slice(None)] * n # First handle centered case slice0[axis] = slice(None, -2) slice1[axis] = slice(1, -1) slice2[axis] = slice(2, None) delta_slice0[axis] = slice(None, -1) delta_slice1[axis] = slice(1, None) combined_delta = delta[tuple(delta_slice0)] + delta[tuple(delta_slice1)] delta_diff = delta[tuple(delta_slice1)] - delta[tuple(delta_slice0)] center = (- delta[tuple(delta_slice1)] / (combined_delta * delta[tuple(delta_slice0)]) * f[tuple(slice0)] + delta_diff / (delta[tuple(delta_slice0)] * delta[tuple(delta_slice1)]) * f[tuple(slice1)] + delta[tuple(delta_slice0)] / (combined_delta * delta[tuple(delta_slice1)]) * f[tuple(slice2)]) # Fill in "left" edge with forward difference slice0[axis] = slice(None, 1) slice1[axis] = slice(1, 2) slice2[axis] = slice(2, 3) delta_slice0[axis] = slice(None, 1) delta_slice1[axis] = slice(1, 2) combined_delta = delta[tuple(delta_slice0)] + delta[tuple(delta_slice1)] big_delta = combined_delta + delta[tuple(delta_slice0)] left = (- big_delta / (combined_delta * delta[tuple(delta_slice0)]) * f[tuple(slice0)] + combined_delta / (delta[tuple(delta_slice0)] * delta[tuple(delta_slice1)]) * f[tuple(slice1)] - delta[tuple(delta_slice0)] / (combined_delta * delta[tuple(delta_slice1)]) * f[tuple(slice2)]) # Now the "right" edge with backward difference slice0[axis] = slice(-3, -2) slice1[axis] = slice(-2, -1) slice2[axis] = slice(-1, None) delta_slice0[axis] = slice(-2, -1) delta_slice1[axis] = slice(-1, None) combined_delta = delta[tuple(delta_slice0)] + delta[tuple(delta_slice1)] big_delta = combined_delta + delta[tuple(delta_slice1)] right = (delta[tuple(delta_slice1)] / (combined_delta * delta[tuple(delta_slice0)]) * f[tuple(slice0)] - combined_delta / (delta[tuple(delta_slice0)] * delta[tuple(delta_slice1)]) * f[tuple(slice1)] + big_delta / (combined_delta * delta[tuple(delta_slice1)]) * f[tuple(slice2)]) return concatenate((left, center, right), axis=axis) @exporter.export @xarray_derivative_wrap def second_derivative(f, **kwargs): """Calculate the second derivative of a grid of values. Works for both regularly-spaced data and grids with varying spacing. Either `x` or `delta` must be specified, or `f` must be given as an `xarray.DataArray` with attached coordinate and projection information. If `f` is an `xarray.DataArray`, and `x` or `delta` are given, `f` will be converted to a `pint.Quantity` and the derivative returned as a `pint.Quantity`, otherwise, if neither `x` nor `delta` are given, the attached coordinate information belonging to `axis` will be used and the derivative will be returned as an `xarray.DataArray`. This uses 3 points to calculate the derivative, using forward or backward at the edges of the grid as appropriate, and centered elsewhere. The irregular spacing is handled explicitly, using the formulation as specified by [Bowen2005]_. Parameters ---------- f : array-like Array of values of which to calculate the derivative axis : int or str, optional The array axis along which to take the derivative. If `f` is ndarray-like, must be an integer. If `f` is a `DataArray`, can be a string (referring to either the coordinate dimension name or the axis type) or integer (referring to axis number), unless using implicit conversion to `pint.Quantity`, in which case it must be an integer. Defaults to 0. x : array-like, optional The coordinate values corresponding to the grid points in `f`. delta : array-like, optional Spacing between the grid points in `f`. There should be one item less than the size of `f` along `axis`. Returns ------- array-like The second derivative calculated along the selected axis. See Also -------- first_derivative """ n, axis, delta = _process_deriv_args(f, kwargs) # create slice objects --- initially all are [:, :, ..., :] slice0 = [slice(None)] * n slice1 = [slice(None)] * n slice2 = [slice(None)] * n delta_slice0 = [slice(None)] * n delta_slice1 = [slice(None)] * n # First handle centered case slice0[axis] = slice(None, -2) slice1[axis] = slice(1, -1) slice2[axis] = slice(2, None) delta_slice0[axis] = slice(None, -1) delta_slice1[axis] = slice(1, None) combined_delta = delta[tuple(delta_slice0)] + delta[tuple(delta_slice1)] center = 2 * (f[tuple(slice0)] / (combined_delta * delta[tuple(delta_slice0)]) - f[tuple(slice1)] / (delta[tuple(delta_slice0)] * delta[tuple(delta_slice1)]) + f[tuple(slice2)] / (combined_delta * delta[tuple(delta_slice1)])) # Fill in "left" edge slice0[axis] = slice(None, 1) slice1[axis] = slice(1, 2) slice2[axis] = slice(2, 3) delta_slice0[axis] = slice(None, 1) delta_slice1[axis] = slice(1, 2) combined_delta = delta[tuple(delta_slice0)] + delta[tuple(delta_slice1)] left = 2 * (f[tuple(slice0)] / (combined_delta * delta[tuple(delta_slice0)]) - f[tuple(slice1)] / (delta[tuple(delta_slice0)] * delta[tuple(delta_slice1)]) + f[tuple(slice2)] / (combined_delta * delta[tuple(delta_slice1)])) # Now the "right" edge slice0[axis] = slice(-3, -2) slice1[axis] = slice(-2, -1) slice2[axis] = slice(-1, None) delta_slice0[axis] = slice(-2, -1) delta_slice1[axis] = slice(-1, None) combined_delta = delta[tuple(delta_slice0)] + delta[tuple(delta_slice1)] right = 2 * (f[tuple(slice0)] / (combined_delta * delta[tuple(delta_slice0)]) - f[tuple(slice1)] / (delta[tuple(delta_slice0)] * delta[tuple(delta_slice1)]) + f[tuple(slice2)] / (combined_delta * delta[tuple(delta_slice1)])) return concatenate((left, center, right), axis=axis) @exporter.export def gradient(f, **kwargs): """Calculate the gradient of a grid of values. Works for both regularly-spaced data, and grids with varying spacing. Either `coordinates` or `deltas` must be specified, or `f` must be given as an `xarray.DataArray` with attached coordinate and projection information. If `f` is an `xarray.DataArray`, and `coordinates` or `deltas` are given, `f` will be converted to a `pint.Quantity` and the gradient returned as a tuple of `pint.Quantity`, otherwise, if neither `coordinates` nor `deltas` are given, the attached coordinate information belonging to `axis` will be used and the gradient will be returned as a tuple of `xarray.DataArray`. Parameters ---------- f : array-like Array of values of which to calculate the derivative coordinates : array-like, optional Sequence of arrays containing the coordinate values corresponding to the grid points in `f` in axis order. deltas : array-like, optional Sequence of arrays or scalars that specify the spacing between the grid points in `f` in axis order. There should be one item less than the size of `f` along the applicable axis. axes : sequence, optional Sequence of strings (if `f` is a `xarray.DataArray` and implicit conversion to `pint.Quantity` is not used) or integers that specify the array axes along which to take the derivatives. Defaults to all axes of `f`. If given, and used with `coordinates` or `deltas`, its length must be less than or equal to that of the `coordinates` or `deltas` given. Returns ------- tuple of array-like The first derivative calculated along each specified axis of the original array See Also -------- laplacian, first_derivative Notes ----- If this function is used without the `axes` parameter, the length of `coordinates` or `deltas` (as applicable) should match the number of dimensions of `f`. """ pos_kwarg, positions, axes = _process_gradient_args(f, kwargs) return tuple(first_derivative(f, axis=axis, **{pos_kwarg: positions[ind]}) for ind, axis in enumerate(axes)) @exporter.export def laplacian(f, **kwargs): """Calculate the laplacian of a grid of values. Works for both regularly-spaced data, and grids with varying spacing. Either `coordinates` or `deltas` must be specified, or `f` must be given as an `xarray.DataArray` with attached coordinate and projection information. If `f` is an `xarray.DataArray`, and `coordinates` or `deltas` are given, `f` will be converted to a `pint.Quantity` and the gradient returned as a tuple of `pint.Quantity`, otherwise, if neither `coordinates` nor `deltas` are given, the attached coordinate information belonging to `axis` will be used and the gradient will be returned as a tuple of `xarray.DataArray`. Parameters ---------- f : array-like Array of values of which to calculate the derivative coordinates : array-like, optional The coordinate values corresponding to the grid points in `f` deltas : array-like, optional Spacing between the grid points in `f`. There should be one item less than the size of `f` along the applicable axis. axes : sequence, optional Sequence of strings (if `f` is a `xarray.DataArray` and implicit conversion to `pint.Quantity` is not used) or integers that specify the array axes along which to take the derivatives. Defaults to all axes of `f`. If given, and used with `coordinates` or `deltas`, its length must be less than or equal to that of the `coordinates` or `deltas` given. Returns ------- array-like The laplacian See Also -------- gradient, second_derivative Notes ----- If this function is used without the `axes` parameter, the length of `coordinates` or `deltas` (as applicable) should match the number of dimensions of `f`. """ pos_kwarg, positions, axes = _process_gradient_args(f, kwargs) derivs = [second_derivative(f, axis=axis, **{pos_kwarg: positions[ind]}) for ind, axis in enumerate(axes)] laplac = sum(derivs) if isinstance(derivs[0], xr.DataArray): # Patch in the units that are dropped laplac.attrs['units'] = derivs[0].attrs['units'] return laplac def _broadcast_to_axis(arr, axis, ndim): """Handle reshaping coordinate array to have proper dimensionality. This puts the values along the specified axis. """ if arr.ndim == 1 and arr.ndim < ndim: new_shape = [1] * ndim new_shape[axis] = arr.size arr = arr.reshape(*new_shape) return arr def _process_gradient_args(f, kwargs): """Handle common processing of arguments for gradient and gradient-like functions.""" axes = kwargs.get('axes', range(f.ndim)) def _check_length(positions): if 'axes' in kwargs and len(positions) < len(axes): raise ValueError('Length of "coordinates" or "deltas" cannot be less than that ' 'of "axes".') elif 'axes' not in kwargs and len(positions) != len(axes): raise ValueError('Length of "coordinates" or "deltas" must match the number of ' 'dimensions of "f" when "axes" is not given.') if 'deltas' in kwargs: if 'coordinates' in kwargs or 'x' in kwargs: raise ValueError('Cannot specify both "coordinates" and "deltas".') _check_length(kwargs['deltas']) return 'delta', kwargs['deltas'], axes elif 'coordinates' in kwargs: _check_length(kwargs['coordinates']) return 'x', kwargs['coordinates'], axes elif isinstance(f, xr.DataArray): return 'pass', axes, axes # only the axis argument matters else: raise ValueError('Must specify either "coordinates" or "deltas" for value positions ' 'when "f" is not a DataArray.') def _process_deriv_args(f, kwargs): """Handle common processing of arguments for derivative functions.""" n = f.ndim axis = normalize_axis_index(kwargs.get('axis', 0), n) if f.shape[axis] < 3: raise ValueError('f must have at least 3 point along the desired axis.') if 'delta' in kwargs: if 'x' in kwargs: raise ValueError('Cannot specify both "x" and "delta".') delta = atleast_1d(kwargs['delta']) if delta.size == 1: diff_size = list(f.shape) diff_size[axis] -= 1 delta_units = getattr(delta, 'units', None) delta = np.broadcast_to(delta, diff_size, subok=True) if not hasattr(delta, 'units') and delta_units is not None: delta = delta * delta_units else: delta = _broadcast_to_axis(delta, axis, n) elif 'x' in kwargs: x = _broadcast_to_axis(kwargs['x'], axis, n) delta = diff(x, axis=axis) else: raise ValueError('Must specify either "x" or "delta" for value positions.') return n, axis, delta @exporter.export @preprocess_xarray def parse_angle(input_dir): """Calculate the meteorological angle from directional text. Works for abbrieviations or whole words (E -> 90 | South -> 180) and also is able to parse 22.5 degreee angles such as ESE/East South East Parameters ---------- input_dir : string or array-like Directional text such as west, [south-west, ne], etc Returns ------- `pint.Quantity` The angle in degrees """ if isinstance(input_dir, str): # abb_dirs = abbrieviated directions abb_dirs = _clean_direction([_abbrieviate_direction(input_dir)]) elif hasattr(input_dir, '__len__'): # handle np.array, pd.Series, list, and array-like input_dir_str = ','.join(_clean_direction(input_dir, preprocess=True)) abb_dir_str = _abbrieviate_direction(input_dir_str) abb_dirs = _clean_direction(abb_dir_str.split(',')) else: # handle unrecognizable scalar return np.nan return itemgetter(*abb_dirs)(DIR_DICT) def _clean_direction(dir_list, preprocess=False): """Handle None if preprocess, else handles anything not in DIR_STRS.""" if preprocess: # primarily to remove None from list so ','.join works return [UND if not isinstance(the_dir, str) else the_dir for the_dir in dir_list] else: # remove extraneous abbrieviated directions return [UND if the_dir not in DIR_STRS else the_dir for the_dir in dir_list] def _abbrieviate_direction(ext_dir_str): """Convert extended (non-abbrievated) directions to abbrieviation.""" return (ext_dir_str .upper() .replace('_', '') .replace('-', '') .replace(' ', '') .replace('NORTH', 'N') .replace('EAST', 'E') .replace('SOUTH', 'S') .replace('WEST', 'W') ) @exporter.export @preprocess_xarray def angle_to_direction(input_angle, full=False, level=3): """Convert the meteorological angle to directional text. Works for angles greater than or equal to 360 (360 -> N | 405 -> NE) and rounds to the nearest angle (355 -> N | 404 -> NNE) Parameters ---------- input_angle : numeric or array-like numeric Angles such as 0, 25, 45, 360, 410, etc full : boolean True returns full text (South), False returns abbrieviated text (S) level : int Level of detail (3 = N/NNE/NE/ENE/E... 2 = N/NE/E/SE... 1 = N/E/S/W) Returns ------- direction The directional text """ try: # strip units temporarily origin_units = input_angle.units input_angle = input_angle.m except AttributeError: # no units associated origin_units = units.degree if not hasattr(input_angle, '__len__') or isinstance(input_angle, str): input_angle = [input_angle] scalar = True else: scalar = False # clean any numeric strings, negatives, and None # does not handle strings with alphabet input_angle = np.array(input_angle).astype(float) with np.errstate(invalid='ignore'): # warns about the np.nan input_angle[np.where(input_angle < 0)] = np.nan input_angle = input_angle * origin_units # normalizer used for angles > 360 degree to normalize between 0 - 360 normalizer = np.array(input_angle.m / MAX_DEGREE_ANGLE.m, dtype=int) norm_angles = abs(input_angle - MAX_DEGREE_ANGLE * normalizer) if level == 3: nskip = 1 elif level == 2: nskip = 2 elif level == 1: nskip = 4 else: err_msg = 'Level of complexity cannot be less than 1 or greater than 3!' raise ValueError(err_msg) angle_dict = {i * BASE_DEGREE_MULTIPLIER.m * nskip: dir_str for i, dir_str in enumerate(DIR_STRS[::nskip])} angle_dict[MAX_DEGREE_ANGLE.m] = 'N' # handle edge case of 360. angle_dict[UND_ANGLE] = UND # round to the nearest angles for dict lookup # 0.001 is subtracted so there's an equal number of dir_str from # np.arange(0, 360, 22.5), or else some dir_str will be preferred # without the 0.001, level=2 would yield: # ['N', 'N', 'NE', 'E', 'E', 'E', 'SE', 'S', 'S', # 'S', 'SW', 'W', 'W', 'W', 'NW', 'N'] # with the -0.001, level=2 would yield: # ['N', 'N', 'NE', 'NE', 'E', 'E', 'SE', 'SE', # 'S', 'S', 'SW', 'SW', 'W', 'W', 'NW', 'NW'] multiplier = np.round( (norm_angles / BASE_DEGREE_MULTIPLIER / nskip) - 0.001).m round_angles = (multiplier * BASE_DEGREE_MULTIPLIER.m * nskip) round_angles[np.where(np.isnan(round_angles))] = UND_ANGLE dir_str_arr = itemgetter(*round_angles)(angle_dict) # for array if full: dir_str_arr = ','.join(dir_str_arr) dir_str_arr = _unabbrieviate_direction(dir_str_arr) if not scalar: dir_str = dir_str_arr.split(',') else: dir_str = dir_str_arr.replace(',', ' ') else: dir_str = dir_str_arr return dir_str def _unabbrieviate_direction(abb_dir_str): """Convert abbrieviated directions to non-abbrieviated direction.""" return (abb_dir_str .upper() .replace(UND, 'Undefined ') .replace('N', 'North ') .replace('E', 'East ') .replace('S', 'South ') .replace('W', 'West ') .replace(' ,', ',') ).strip() def _remove_nans(*variables): """Remove NaNs from arrays that cause issues with calculations. Takes a variable number of arguments Returns masked arrays in the same order as provided """ mask = None for v in variables: if mask is None: mask = np.isnan(v) else: mask |= np.isnan(v) # Mask everyone with that joint mask ret = [] for v in variables: ret.append(v[~mask]) return ret
37.743357
95
0.640413
[ "BSD-3-Clause" ]
Exi666/MetPy
src/metpy/calc/tools.py
53,973
Python
# Copyright 2020-2022 Cambridge Quantum Computing # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING, Optional, Union, Dict from pytket.backends import ResultHandle, StatusEnum from pytket.circuit import Circuit # type: ignore from .common import _QsharpBaseBackend, BackendResult if TYPE_CHECKING: from typing import MutableMapping from qsharp.loader import QSharpCallable # type: ignore ResourcesResult = Dict[str, int] class QsharpEstimatorBackend(_QsharpBaseBackend): """Backend for estimating resources of a circuit using the QDK.""" def _calculate_results( self, qscall: "QSharpCallable", n_shots: Optional[int] = None ) -> Union[BackendResult, "MutableMapping"]: results = qscall.estimate_resources() results["Measure"] = 0 # Measures were added by qscompile() return results # type: ignore def get_resources(self, circuit: Union[Circuit, ResultHandle]) -> ResourcesResult: """Calculate resource estimates for circuit. :param circuit: Circuit to calculate or result handle to retrieve for :type circuit: Union[Circuit, ResultHandle] :return: Resource estimate :rtype: Dict[str, int] """ if isinstance(circuit, Circuit): handle = self.process_circuits([circuit])[0] elif isinstance(circuit, ResultHandle): handle = circuit circ_status = self.circuit_status(handle) if circ_status.status is not StatusEnum.COMPLETED: raise ValueError(f"Handle is '{circ_status}'") else: raise TypeError( "Provide either a Circuit to run or a ResultHandle to a previously " "submitted circuit." ) return self._cache[handle]["resource"] # type: ignore
38.95
86
0.694052
[ "Apache-2.0" ]
dhaycraft/pytket-extensions
modules/pytket-qsharp/pytket/extensions/qsharp/backends/estimator.py
2,337
Python
# Copyright 2020, Kay Hayen, mailto:[email protected] # # Python test originally created or extracted from other peoples work. The # parts from me are licensed as below. It is at least Free Software where # it's copied from other people. In these cases, that will normally be # indicated. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # module_value1 = 5 module_value2 = 3 def calledRepeatedly(): # Force frame and eliminate forward propagation (currently). module_value1 # Make sure we have a local variable x anyway x = 2 local_value = module_value1 # construct_begin for x in range(local_value, local_value+3): pass # construct_end import itertools for x in itertools.repeat(None, 50000): calledRepeatedly() print("OK.")
30.813953
78
0.712453
[ "Apache-2.0" ]
CoyoteLeo/Nuitka
tests/benchmarks/constructs/LoopSmallRange.py
1,325
Python
# Cliente import socket HOST = socket.gethostname() # Endereco IP do Servidor PORT = 9999 # Porta que o Servidor esta udp = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) dest = (HOST, PORT) print('Para sair, digite $ + Enter') msg = input("Entre com a mensagem:\n") udp.sendto (msg.encode('utf-8'), dest) while msg != '$': # terminação do programa (msg, servidor) = udp.recvfrom(1024) print(servidor, msg.decode('utf-8')) msg = input() udp.sendto (msg.encode('utf-8'), dest) udp.close()
33.666667
54
0.679208
[ "MIT" ]
LC-ardovino/INFNET
Projeto_de_Bloco/Etapa8/Ex03_cli.py
507
Python
import sys import random import numpy as np import cv2 src = cv2.imread('vlcsnap-2021-02-04-10h00m02s260.png') #src = cv2.imread('2_11_11.png') if src is None: print('Image load failed!') sys.exit() src = cv2.resize(src, (0, 0), fx=0.5, fy=0.5) src_gray = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY) h, w = src.shape[:2] dst1 = np.zeros((h, w, 3), np.uint8) dst2 = np.zeros((h, w, 3), np.uint8) # 이진화 _, src_bin = cv2.threshold(src_gray, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU) # 외곽선 검출 contours, _ = cv2.findContours(src_bin, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) for i in range(len(contours)): pts = contours[i] c = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)) cv2.drawContours(dst1, contours, i, c, 1) # 너무 작은 객체는 제외 if (cv2.contourArea(pts) < 1000): continue # 외곽선 근사화 approx = cv2.approxPolyDP(pts, cv2.arcLength(pts, True)*0.02, True) # 컨벡스가 아니면 제외 if not cv2.isContourConvex(approx): continue if len(approx) == 4: cv2.drawContours(dst2, contours, i, c, 2) print(contours) cv2.imshow('src', src) cv2.imshow('src_bin', src_bin) cv2.imshow('dst1', dst1) cv2.imshow('dst2', dst2) cv2.waitKey() cv2.destroyAllWindows()
22.285714
81
0.653846
[ "MIT" ]
qwerlarlgus/YOLO_Projec
contours.py
1,312
Python
from typing import Literal EventType = Literal['call', 'line', 'return']
15
45
0.706667
[ "BSD-3-Clause" ]
Web-Dev-Collaborative/nbtutor
nbtutor/ipython/models/types.py
75
Python
from rqalpha.api import * def init(context): context.S1 = "510500.XSHG" context.UNIT = 10000 context.INIT_S = 2 context.MARGIN = 0.08 context.FIRST_P = 0 context.holdid = 0 context.sellcount = 0 context.inited = False logger.info("RunInfo: {}".format(context.run_info)) def before_trading(context): pass def current_p(context): return context.FIRST_P - ((context.holdid * context.MARGIN) * context.FIRST_P) def next_buy_p(context): if context.portfolio.cash < context.UNIT: return -1 return context.FIRST_P - (((context.holdid + 1) * context.MARGIN) * context.FIRST_P) def next_sell_p(context): if context.portfolio.market_value < context.UNIT: return -1 return context.FIRST_P - (((context.holdid - 1) * context.MARGIN) * context.FIRST_P) def handle_bar(context, bar_dict): bar = bar_dict[context.S1] if context.inited is True: nextB = next_buy_p(context) nextS = next_sell_p(context) if context.inited is False: context.inited = True order_value(context.S1, context.UNIT * context.INIT_S, price=bar.close) context.current_cash = 0 context.holdid = 0 context.FIRST_P = bar.open logger.info("Make first fire portfolio: {}".format(context.portfolio)) elif bar.low <= nextB <= bar.high: res = order_value(context.S1, context.UNIT, nextB) if res.status == ORDER_STATUS.FILLED: context.holdid += 1 else: logger.info("Buy failed: {}".format(res)) elif bar.high < nextB: res = order_value(context.S1, context.UNIT, price=bar.high) if res.status == ORDER_STATUS.FILLED: context.holdid += 1 else: logger.info("Buy failed: {}".format(res)) elif bar.low <= nextS <= bar.high: res = order_value(context.S1, -1 * context.UNIT, price=nextS) if res.status == ORDER_STATUS.FILLED: context.holdid -= 1 context.sellcount += 1 logger.info("----- Sell count: {}".format(context.sellcount)) else: logger.info("Sell failed: {}".format(res)) elif nextS != -1 and bar.low > nextS: res = order_value(context.S1, -1 * context.UNIT, price=bar.low) if res.status == ORDER_STATUS.FILLED: context.holdid -= 1 context.sellcount += 1 logger.info("----- Sell count: {}".format(context.sellcount)) else: logger.info("Sell failed: {}".format(res)) def after_trading(context): logger.info("Hold count: {}".format(context.holdid + 1)) profit = (context.portfolio.cash + context.portfolio.market_value - context.portfolio.starting_cash) profit_pct = profit / (context.portfolio.market_value - profit) logger.info("after_trading: market_value {}, profit {}, percent {}". format(context.portfolio.market_value, profit, profit_pct))
33.534091
104
0.626567
[ "Apache-2.0" ]
HackReborn/rqalpha
rqalpha/examples/mg_same_value.py
2,951
Python
from app.db import with_session from logic.admin import get_query_metastore_by_id def get_metastore_loader_class_by_name(name: str): from .loaders import ALL_METASTORE_LOADERS for loader in ALL_METASTORE_LOADERS: if loader.__name__ == name: return loader raise ValueError(f"Unknown loader name {name}") @with_session def get_metastore_loader(metastore_id: int, session=None): metastore = get_query_metastore_by_id(id=metastore_id, session=session) metastore_dict = metastore.to_dict_admin() return get_metastore_loader_class_by_name(metastore_dict["loader"])(metastore_dict) def load_metastore(metastore_id: int): loader = get_metastore_loader(metastore_id) loader.load()
29.28
87
0.775956
[ "Apache-2.0" ]
Aka-shi/querybook
querybook/server/lib/metastore/__init__.py
732
Python
import rain_alert
7
18
0.761905
[ "Unlicense" ]
frnkvsk/python100days
day35_env_sms/main.py
21
Python
# -*- coding: utf-8 -*- # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os import inspect from sphinx import apidoc __location__ = os.path.join(os.getcwd(), os.path.dirname( inspect.getfile(inspect.currentframe()))) package = "asm_challenge" namespace = [] namespace_pkg = ".".join([namespace[-1], package]) if namespace else package # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # sys.path.insert(0, os.path.abspath('.')) # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.intersphinx', 'sphinx.ext.todo', 'sphinx.ext.autosummary', 'sphinx.ext.viewcode', 'sphinx.ext.coverage', 'sphinx.ext.doctest', 'sphinx.ext.ifconfig', 'sphinx.ext.pngmath'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. # source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'asm_challenge' copyright = u'2015, Jose Luis Bellod Cisneros' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '' # Is set by calling `setup.py docs` # The full version, including alpha/beta/rc tags. release = '' # Is set by calling `setup.py docs` # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # today = '' # Else, today_fmt is used as the format for a strftime call. # today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all documents. # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. # keep_warnings = False # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'alabaster' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. # html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". try: from namespace_pkg import __version__ as version except ImportError: pass else: release = version # A shorter title for the navigation bar. Default is the same as html_title. # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. # html_logo = "" # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. # html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. # html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. # html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. # html_additional_pages = {} # If false, no module index is generated. # html_domain_indices = True # If false, no index is generated. # html_use_index = True # If true, the index is split into individual pages for each letter. # html_split_index = False # If true, links to the reST sources are added to the pages. # html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. # html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. # html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'asm_challenge-doc' # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # 'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]) latex_documents = [ ('index', 'user_guide.tex', u'asm_challenge Documentation', u'Jose Luis Bellod Cisneros', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. # latex_logo = "" # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # latex_use_parts = False # If true, show page references after internal links. # latex_show_pagerefs = False # If true, show URL addresses after external links. # latex_show_urls = False # Documents to append as an appendix to all manuals. # latex_appendices = [] # If false, no module index is generated. # latex_domain_indices = True # -- External mapping --------------------------------------------------------- python_version = '.'.join(map(str, sys.version_info[0:2])) intersphinx_mapping = { 'sphinx': ('http://sphinx.pocoo.org', None), 'python': ('http://docs.python.org/' + python_version, None), 'matplotlib': ('http://matplotlib.sourceforge.net', None), 'numpy': ('http://docs.scipy.org/doc/numpy', None), 'sklearn': ('http://scikit-learn.org/stable', None), 'pandas': ('http://pandas.pydata.org/pandas-docs/stable', None), 'scipy': ('http://docs.scipy.org/doc/scipy/reference/', None), }
33.65272
85
0.708566
[ "Apache-2.0" ]
josl/ASM_challenge
docs/conf.py
8,043
Python
# -*- coding: utf-8 -*- import scrapy from city_scrapers.spider import Spider from datetime import datetime, timedelta from dateutil.parser import parse as dateparse import re class Chi_school_community_action_councilSpider(Spider): name = 'chi_school_community_action_council' long_name = 'Chicago Public Schools Community Action Council' allowed_domains = ['cps.edu'] start_urls = ['http://cps.edu/FACE/Pages/CAC.aspx'] def parse(self, response): """ `parse` should always `yield` a dict that follows the Event Schema <https://city-bureau.github.io/city-scrapers/06_event_schema.html>. Change the `_parse_id`, `_parse_name`, etc methods to fit your scraping needs. """ month_counter = datetime.today().month # Sets month counter to the current month, which is passed to parse_start for x in range(12): # iterates through every month in the year after the current month if month_counter > 12: break else: for item in response.css("ul").css('li')[17:]: try: if item.css("strong").css("a::attr(href)").extract()[0] == 'http://www.humboldtparkportal.org/': continue except: pass data = { '_type': 'event', 'name': self._parse_name(item), 'description': self._parse_description(item), 'classification': self._parse_classification(item), 'start_time': self._parse_start(item, month_counter), 'end_time': self._parse_end(item), 'timezone': self._parse_timezone(item), 'status': self._parse_status(item), 'all_day': self._parse_all_day(item), 'location': self._parse_location(item), 'sources': self._parse_sources(response), 'community_area' : self._parse_community_area(item) } data['id'] = self._generate_id(data) data['end_time'] = data['start_time'] + timedelta(hours=3) #adds 3 hours to start time yield data month_counter += 1 # month counter is increased by 1 month with each iteration of the for loop # self._parse_next(response) yields more responses to parse if necessary. # uncomment to find a "next" url # yield self._parse_next(response) def _parse_community_area(self, item): """ Parse or generate community area. """ if len(item.css('li').css('strong::text').extract()) == 1: community_name = item.css('li').css('strong::text').extract() else: community_name = item.css('li').css('strong').css('a::text').extract() return community_name[0] def _parse_name(self, item): """ Parse or generate event name. """ if len(item.css('li').css('strong::text').extract()) == 1: community_name = item.css('li').css('strong::text').extract() else: community_name = item.css('li').css('strong').css('a::text').extract() return community_name[0] + ' Community Action Council' def _parse_description(self, item): """ Parse or generate event description. """ return "Community Action Councils, or CACs, consist of 25-30 voting members who are " \ "directly involved in developing a strategic plan for educational success within " \ "their communities. CAC members include parents; elected officials; faith-based " \ "institutions, health care and community-based organizations; Local School" \ " Council (LSC) members; business leaders; educators and school administrators; " \ "staff members from Chicago's Sister Agencies; community residents; " \ "and students. There are nine CACs across Chicago. Each works to empower the " \ "community they serve to lead the improvement of local quality education." def _parse_classification(self, item): """ Parse or generate classification (e.g. public health, education, etc). """ return 'Education' def _parse_start(self, item, month_counter): """ Parse start date and time. Accepts month_counter as an argument from top level parse function to iterate through all months in the year. """ def parse_day(source): '''Parses the source material and retrieves the day of the week that the meeting occurs. ''' day_source = source[0] day_regex = re.compile(r'[a-zA-Z]+day') mo = day_regex.search(day_source) return mo.group().lower() def parse_time(source): '''Parses the source material and retrieves the time that the meeting occurs. ''' time_source = source[1] time_regex = re.compile(r'(1[012]|[1-9]):[0-5][0-9](am|pm)') mo = time_regex.search(time_source) return mo.group() def count_days(day, week_count): '''Because the source material provides meeting dates on a reoccuring schedule, we must use the parsed day from the parse_day function and the ''' today = datetime.today() week_day = {'monday': 0, 'tuesday': 1, 'wednesday': 2, 'thursday': 3, 'friday': 4, 'saturday': 5, 'sunday': 6} week_counter = 0 for x in range(1, 31): try: current_date = datetime(today.year, month_counter, x) #uses month counter from top level parse func. if current_date.weekday() == week_day[day]: week_counter += 1 if week_counter == int(week_count): return current_date except ValueError as e: # will break loop if range exceeds the number of days in the month break def concat_date(meeting_date, time): '''Combines the meeting date with the time the meeting occurs. Function return a datetime object. ''' return dateparse( str(meeting_date.year) + '-' + str(meeting_date.month) + '-' + str(meeting_date.day) + ' ' + time) def get_start(source): '''Combines above defined parse_day, parse_time, count_days, and concat_date functions to get the start date from the source. If a start time cannot be found the UNIX epoch date is returned. ''' day = parse_day(source) week_count = source[0].strip()[ 0] # selects first character in the source, which is usually the week count if week_count.isdigit(): time = parse_time(source) meeting_date = count_days(day, week_count) start = concat_date(meeting_date, time) else: pass return start source = item.css('li::text').extract() return get_start(source) def _parse_end(self, item): """ Parse end date and time. """ return 'Estimated 3 hours' def _parse_timezone(self, item): """ Parse or generate timzone in tzinfo format. """ return 'America/Chicago' def _parse_all_day(self, item): """ Parse or generate all-day status. Defaults to False. """ return False def _parse_location(self, item): """ Parse or generate location. Latitude and longitude can be left blank and will be geocoded later. """ source = item.css('li::text').extract()[1] return { 'url': None, 'name': source[source.find("at")+2:source.find("(")].replace('the', ''), 'address': source[source.find("(")+1:source.find(")")], 'coordinates': { 'latitude': None, 'longitude': None, }, } def _parse_status(self, item): """ Parse or generate status of meeting. Can be one of: * cancelled * tentative * confirmed * passed By default, return "tentative" """ return 'Tentative' def _parse_sources(self, response): """ Parse or generate sources. """ return [{ 'url': response.url, 'note': '', }]
41.277778
120
0.549237
[ "MIT" ]
jim/city-scrapers
city_scrapers/spiders/chi_school_community_action_council.py
8,916
Python
import logging LOG = logging.getLogger(__name__) class FlushAndLockMySQLAction(object): def __init__(self, client, extra_flush=True): self.client = client self.extra_flush = extra_flush def __call__(self, event, snapshot_fsm, snapshot_vol): if event == 'pre-snapshot': if self.extra_flush: LOG.debug("Executing FLUSH TABLES") self.client.flush_tables() LOG.debug("Executing FLUSH TABLES WITH READ LOCK") LOG.info("Acquiring read-lock and flushing tables") self.client.flush_tables_with_read_lock() elif event == 'post-snapshot': LOG.info("Releasing read-lock") self.client.unlock_tables()
35.047619
63
0.634511
[ "BSD-3-Clause" ]
a5a351e7/holland
plugins/holland.backup.mysql_lvm/holland/backup/mysql_lvm/actions/mysql/lock.py
736
Python
# -*- coding: utf-8 -*- # # Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Command to list all credentials for a registry.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals from googlecloudsdk.api_lib.cloudiot import registries from googlecloudsdk.calliope import base from googlecloudsdk.command_lib.iot import resource_args from googlecloudsdk.core.resource import resource_projector class List(base.ListCommand): """List credentials for a registry.""" @staticmethod def Args(parser): parser.display_info.AddFormat( 'table(index, publicKeyCertificate.format,' 'publicKeyCertificate.x509Details.issuer,' 'publicKeyCertificate.x509Details.subject,' 'publicKeyCertificate.x509Details.startTime,' 'publicKeyCertificate.x509Details.expiryTime,' 'publicKeyCertificate.x509Details.signatureAlgorithm,' 'publicKeyCertificate.x509Details.publicKeyType)') base.URI_FLAG.RemoveFromParser(parser) base.PAGE_SIZE_FLAG.RemoveFromParser(parser) resource_args.AddRegistryResourceArg(parser, 'for which to list credentials', positional=False) def Run(self, args): """Run the list command.""" client = registries.RegistriesClient() registry_ref = args.CONCEPTS.registry.Parse() registry = client.Get(registry_ref) for idx, credential in enumerate(registry.credentials): serializable = resource_projector.MakeSerializable(credential) serializable['index'] = idx yield serializable
37.724138
74
0.73309
[ "Apache-2.0" ]
bshaffer/google-cloud-sdk
lib/surface/iot/registries/credentials/list.py
2,188
Python
from torch import nn from pytorch_widedeep.wdtypes import * # noqa: F403 from pytorch_widedeep.models.tabular.mlp._layers import MLP from pytorch_widedeep.models.tabular._base_tabular_model import ( BaseTabularModelWithAttention, ) from pytorch_widedeep.models.tabular.transformers._encoders import SaintEncoder class SAINT(BaseTabularModelWithAttention): r"""Defines a `SAINT model <https://arxiv.org/abs/2106.01342>`_ that can be used as the ``deeptabular`` component of a Wide & Deep model or independently by itself. Parameters ---------- column_idx: Dict Dict containing the index of the columns that will be passed through the model. Required to slice the tensors. e.g. {'education': 0, 'relationship': 1, 'workclass': 2, ...} cat_embed_input: List, Optional, default = None List of Tuples with the column name and number of unique values and embedding dimension. e.g. [(education, 11), ...] cat_embed_dropout: float, default = 0.1 Categorical embeddings dropout use_cat_bias: bool, default = False, Boolean indicating if bias will be used for the categorical embeddings cat_embed_activation: Optional, str, default = None, Activation function for the categorical embeddings, if any. `'tanh'`, `'relu'`, `'leaky_relu'` and `'gelu'` are supported. full_embed_dropout: bool, default = False Boolean indicating if an entire embedding (i.e. the representation of one column) will be dropped in the batch. See: :obj:`pytorch_widedeep.models.transformers._layers.FullEmbeddingDropout`. If ``full_embed_dropout = True``, ``cat_embed_dropout`` is ignored. shared_embed: bool, default = False The idea behind ``shared_embed`` is described in the Appendix A in the `TabTransformer paper <https://arxiv.org/abs/2012.06678>`_: `'The goal of having column embedding is to enable the model to distinguish the classes in one column from those in the other columns'`. In other words, the idea is to let the model learn which column is embedded at the time. add_shared_embed: bool, default = False The two embedding sharing strategies are: 1) add the shared embeddings to the column embeddings or 2) to replace the first ``frac_shared_embed`` with the shared embeddings. See :obj:`pytorch_widedeep.models.transformers._layers.SharedEmbeddings` frac_shared_embed: float, default = 0.25 The fraction of embeddings that will be shared (if ``add_shared_embed = False``) by all the different categories for one particular column. continuous_cols: List, Optional, default = None List with the name of the numeric (aka continuous) columns cont_norm_layer: str, default = "batchnorm" Type of normalization layer applied to the continuous features. Options are: 'layernorm', 'batchnorm' or None. cont_embed_dropout: float, default = 0.1, Continuous embeddings dropout use_cont_bias: bool, default = True, Boolean indicating if bias will be used for the continuous embeddings cont_embed_activation: str, default = None Activation function to be applied to the continuous embeddings, if any. `'tanh'`, `'relu'`, `'leaky_relu'` and `'gelu'` are supported. input_dim: int, default = 32 The so-called *dimension of the model*. Is the number of embeddings used to encode the categorical and/or continuous columns n_heads: int, default = 8 Number of attention heads per Transformer block use_qkv_bias: bool, default = False Boolean indicating whether or not to use bias in the Q, K, and V projection layers n_blocks: int, default = 2 Number of SAINT-Transformer blocks. 1 in the paper. attn_dropout: float, default = 0.2 Dropout that will be applied to the Multi-Head Attention column and row layers ff_dropout: float, default = 0.1 Dropout that will be applied to the FeedForward network transformer_activation: str, default = "gelu" Transformer Encoder activation function. `'tanh'`, `'relu'`, `'leaky_relu'`, `'gelu'`, `'geglu'` and `'reglu'` are supported mlp_hidden_dims: List, Optional, default = None MLP hidden dimensions. If not provided it will default to ``[l, 4*l, 2*l]`` where ``l`` is the MLP's input dimension mlp_activation: str, default = "relu" MLP activation function. `'tanh'`, `'relu'`, `'leaky_relu'` and `'gelu'` are supported mlp_dropout: float, default = 0.1 Dropout that will be applied to the final MLP mlp_batchnorm: bool, default = False Boolean indicating whether or not to apply batch normalization to the dense layers mlp_batchnorm_last: bool, default = False Boolean indicating whether or not to apply batch normalization to the last of the dense layers mlp_linear_first: bool, default = False Boolean indicating whether the order of the operations in the dense layer. If ``True: [LIN -> ACT -> BN -> DP]``. If ``False: [BN -> DP -> LIN -> ACT]`` Attributes ---------- cat_and_cont_embed: ``nn.Module`` This is the module that processes the categorical and continuous columns saint_blks: ``nn.Sequential`` Sequence of SAINT-Transformer blocks saint_mlp: ``nn.Module`` MLP component in the model output_dim: int The output dimension of the model. This is a required attribute neccesary to build the ``WideDeep`` class Example -------- >>> import torch >>> from pytorch_widedeep.models import SAINT >>> X_tab = torch.cat((torch.empty(5, 4).random_(4), torch.rand(5, 1)), axis=1) >>> colnames = ['a', 'b', 'c', 'd', 'e'] >>> cat_embed_input = [(u,i) for u,i in zip(colnames[:4], [4]*4)] >>> continuous_cols = ['e'] >>> column_idx = {k:v for v,k in enumerate(colnames)} >>> model = SAINT(column_idx=column_idx, cat_embed_input=cat_embed_input, continuous_cols=continuous_cols) >>> out = model(X_tab) """ def __init__( self, column_idx: Dict[str, int], cat_embed_input: Optional[List[Tuple[str, int]]] = None, cat_embed_dropout: float = 0.1, use_cat_bias: bool = False, cat_embed_activation: Optional[str] = None, full_embed_dropout: bool = False, shared_embed: bool = False, add_shared_embed: bool = False, frac_shared_embed: float = 0.25, continuous_cols: Optional[List[str]] = None, cont_norm_layer: str = None, cont_embed_dropout: float = 0.1, use_cont_bias: bool = True, cont_embed_activation: Optional[str] = None, input_dim: int = 32, use_qkv_bias: bool = False, n_heads: int = 8, n_blocks: int = 2, attn_dropout: float = 0.1, ff_dropout: float = 0.2, transformer_activation: str = "gelu", mlp_hidden_dims: Optional[List[int]] = None, mlp_activation: str = "relu", mlp_dropout: float = 0.1, mlp_batchnorm: bool = False, mlp_batchnorm_last: bool = False, mlp_linear_first: bool = True, ): super(SAINT, self).__init__( column_idx=column_idx, cat_embed_input=cat_embed_input, cat_embed_dropout=cat_embed_dropout, use_cat_bias=use_cat_bias, cat_embed_activation=cat_embed_activation, full_embed_dropout=full_embed_dropout, shared_embed=shared_embed, add_shared_embed=add_shared_embed, frac_shared_embed=frac_shared_embed, continuous_cols=continuous_cols, cont_norm_layer=cont_norm_layer, embed_continuous=True, cont_embed_dropout=cont_embed_dropout, use_cont_bias=use_cont_bias, cont_embed_activation=cont_embed_activation, input_dim=input_dim, ) self.column_idx = column_idx self.cat_embed_input = cat_embed_input self.cat_embed_dropout = cat_embed_dropout self.full_embed_dropout = full_embed_dropout self.shared_embed = shared_embed self.add_shared_embed = add_shared_embed self.frac_shared_embed = frac_shared_embed self.continuous_cols = continuous_cols self.cont_embed_activation = cont_embed_activation self.cont_embed_dropout = cont_embed_dropout self.cont_norm_layer = cont_norm_layer self.input_dim = input_dim self.use_qkv_bias = use_qkv_bias self.n_heads = n_heads self.n_blocks = n_blocks self.attn_dropout = attn_dropout self.ff_dropout = ff_dropout self.transformer_activation = transformer_activation self.mlp_hidden_dims = mlp_hidden_dims self.mlp_activation = mlp_activation self.mlp_dropout = mlp_dropout self.mlp_batchnorm = mlp_batchnorm self.mlp_batchnorm_last = mlp_batchnorm_last self.mlp_linear_first = mlp_linear_first self.with_cls_token = "cls_token" in column_idx self.n_cat = len(cat_embed_input) if cat_embed_input is not None else 0 self.n_cont = len(continuous_cols) if continuous_cols is not None else 0 self.n_feats = self.n_cat + self.n_cont # Embeddings are instantiated at the base model # Transformer blocks self.saint_blks = nn.Sequential() for i in range(n_blocks): self.saint_blks.add_module( "saint_block" + str(i), SaintEncoder( input_dim, n_heads, use_qkv_bias, attn_dropout, ff_dropout, transformer_activation, self.n_feats, ), ) attn_output_dim = ( self.input_dim if self.with_cls_token else self.n_feats * self.input_dim ) # Mlp if not mlp_hidden_dims: mlp_hidden_dims = [ attn_output_dim, attn_output_dim * 4, attn_output_dim * 2, ] else: mlp_hidden_dims = [attn_output_dim] + mlp_hidden_dims self.saint_mlp = MLP( mlp_hidden_dims, mlp_activation, mlp_dropout, mlp_batchnorm, mlp_batchnorm_last, mlp_linear_first, ) # the output_dim attribute will be used as input_dim when "merging" the models self.output_dim: int = mlp_hidden_dims[-1] def forward(self, X: Tensor) -> Tensor: x = self._get_embeddings(X) x = self.saint_blks(x) if self.with_cls_token: x = x[:, 0, :] else: x = x.flatten(1) return self.saint_mlp(x) @property def attention_weights(self) -> List: r"""List with the attention weights. Each element of the list is a tuple where the first and the second elements are the column and row attention weights respectively The shape of the attention weights is: - column attention: :math:`(N, H, F, F)` - row attention: :math:`(1, H, N, N)` where *N* is the batch size, *H* is the number of heads and *F* is the number of features/columns in the dataset """ attention_weights = [] for blk in self.saint_blks: attention_weights.append( (blk.col_attn.attn_weights, blk.row_attn.attn_weights) ) return attention_weights
41.565371
110
0.642013
[ "MIT" ]
TangleSpace/pytorch-widedeep
pytorch_widedeep/models/tabular/transformers/saint.py
11,763
Python
#!/usr/bin/env python # encoding: utf-8 import socket import sys import tempfile import time import subprocess import os # function to get free port from ycmd def GetUnusedLocalhostPort(): sock = socket.socket() # This tells the OS to give us any free port in the range [1024 - 65535] sock.bind(('', 0)) port = sock.getsockname()[1] sock.close() return port SERVER = ('127.0.0.1', GetUnusedLocalhostPort()) # A wrapper for subprocess.Popen that works around a Popen bug on Windows. def SafePopen(args, **kwargs): if kwargs.get('stdin') is None: kwargs['stdin'] = subprocess.PIPE if sys.platform == 'win32' else None return subprocess.Popen(args, **kwargs) class JavaviBridge(): pythonVersion = sys.version_info.major sock = None popen = None logfile = None def setupServer(self, javabin, args, classpath): is_win = sys.platform == 'win32' separator = (';' if is_win else ':') fileSeparator = ('\\' if is_win else '/') classpathset = set(classpath.split(separator)) environ = os.environ.copy() if 'CLASSPATH' in environ: classpathset.union(environ['CLASSPATH'].split(separator)) environ['CLASSPATH'] = separator.join(classpathset) if vim.eval('get(g:, "JavaComplete_JavaviLogLevel", 0)') != 0: defaulttmp = tempfile.gettempdir() + fileSeparator + 'javavi_log' logdir = vim.eval( "get(g:, 'JavaComplete_JavaviLogDirectory', '%s')" % defaulttmp) if not os.path.isdir(logdir): os.mkdir(logdir) self.logfile = open("%s%s%s" % ( logdir, fileSeparator, "javavi_stdout.log"), "a") output = self.logfile else: output = subprocess.PIPE args = [javabin] + args + ['-D', str(SERVER[1])] if is_win and vim.eval('has("gui_running")'): info = subprocess.STARTUPINFO() info.dwFlags = 1 info.wShowWindow = 0 self.popen = SafePopen(args, env=environ, stdout = output, stderr = output, startupinfo = info) else: self.popen = SafePopen(args, env=environ, stdout = output, stderr = output) def pid(self): return self.popen.pid def port(self): return SERVER[1] def poll(self): if self.popen: return self.popen.poll() is None else: return 0 def terminateServer(self): if self.popen: self.popen.terminate() self.popen.wait() if self.logfile: self.logfile.close() def makeSocket(self): try: self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) except socket.error as msg: self.sock = None try: self.sock.connect(SERVER) time.sleep(.1) except socket.error as msg: self.sock.close() self.sock = None if self.sock is None: print('could not open socket, try again') return self.sock.setblocking(0) def send(self, data): if self.sock is None: self.makeSocket() if self.sock is None: return '' if self.pythonVersion == 3: self.sock.sendall((str(data) + '\n').encode('UTF-8')) else: self.sock.sendall((data.decode('UTF-8') + '\n').encode('UTF-8')) totalData = [] while 1: try: data = self.sock.recv(4096) if not data or len(data) == 0: break totalData.append(data.decode('UTF-8')) time.sleep(.01) except: if totalData: break self.sock.close() self.sock = None return ''.join(totalData)
28.210145
107
0.552787
[ "MIT", "BSD-3-Clause" ]
darconeous/shattings
vim/bundle/vim-javacomplete2/autoload/javavibridge.py
3,893
Python
"""This file defines the database connection, plus some terminal commands for setting up and tearing down the database. Do not import anything directly from `backend.database._core`. Instead, import from `backend.database`. """ from typing import Optional import os import pandas as pd import click from flask import current_app from flask.cli import AppGroup from flask.cli import with_appcontext from werkzeug.utils import secure_filename from sqlalchemy.exc import ResourceClosedError from flask_sqlalchemy import SQLAlchemy import psycopg2.errors from psycopg2 import connect from psycopg2.extensions import connection from ..config import TestingConfig from ..utils import dev_only db = SQLAlchemy() QUERIES_DIR = os.path.abspath( os.path.join(os.path.dirname(__file__), "queries") ) def execute_query(filename: str) -> Optional[pd.DataFrame]: """Run SQL from a file. It will return a Pandas DataFrame if it selected anything; otherwise it will return None. I do not recommend you use this function too often. In general we should be using the SQLAlchemy ORM. That said, it's a nice convenience, and there are times where this function is genuinely something you want to run. """ with open(os.path.join(QUERIES_DIR, secure_filename(filename))) as f: query = f.read() with db.engine.connect() as conn: res = conn.execute(query) try: df = pd.DataFrame(res.fetchall(), columns=res.keys()) return df except ResourceClosedError: return None @click.group("psql", cls=AppGroup) @with_appcontext @click.pass_context def db_cli(ctx: click.Context): """Collection of database commands.""" ctx.obj = connect( user=current_app.config["POSTGRES_USER"], password=current_app.config["POSTGRES_PASSWORD"], host=current_app.config["POSTGRES_HOST"], port=current_app.config["POSTGRES_PORT"], dbname="postgres", ) pass_psql_admin_connection = click.make_pass_decorator(connection) @db_cli.command("create") @click.option( "--overwrite/--no-overwrite", default=False, is_flag=True, show_default=True, help="If true, overwrite the database if it exists.", ) @pass_psql_admin_connection @click.pass_context @dev_only def create_database( ctx: click.Context, conn: connection, overwrite: bool = False ): """Create the database from nothing.""" database = current_app.config["POSTGRES_DB"] cursor = conn.cursor() cursor.execute("ROLLBACK") if overwrite: cursor.execute( f"SELECT bool_or(datname = '{database}') FROM pg_database;" ) exists = cursor.fetchall()[0][0] if exists: ctx.invoke(delete_database) try: cursor.execute(f"CREATE DATABASE {database};") except psycopg2.errors.lookup("42P04"): click.echo(f"Database {database!r} already exists.") cursor.execute("ROLLBACK") else: click.echo(f"Created database {database!r}.") @db_cli.command("init") def init_database(): """Initialize the database schemas. Run this after the database has been created. """ database = current_app.config["POSTGRES_DB"] db.create_all() click.echo(f"Initialized the database {database!r}.") @db_cli.command("gen-examples") def gen_examples_command(): """Generate 2 incident examples in the database.""" execute_query("example_incidents.sql") click.echo("Added 2 example incidents to the database.") @db_cli.command("delete") @click.option( "--test-db", "-t", default=False, is_flag=True, help=f"Deletes the database {TestingConfig.POSTGRES_DB!r}.", ) @pass_psql_admin_connection @dev_only def delete_database(conn: connection, test_db: bool): """Delete the database.""" if test_db: database = TestingConfig.POSTGRES_DB else: database = current_app.config["POSTGRES_DB"] cursor = conn.cursor() cursor.execute("ROLLBACK") # Don't validate name for `police_data_test`. if database != TestingConfig.POSTGRES_DB: # Make sure we want to do this. click.echo(f"Are you sure you want to delete database {database!r}?") click.echo( "Type in the database name '" + click.style(database, fg="red") + "' to confirm" ) confirmation = click.prompt("Database name") if database != confirmation: click.echo( "The input does not match. " "The database will not be deleted." ) return None try: cursor.execute(f"DROP DATABASE {database};") except psycopg2.errors.lookup("3D000"): click.echo(f"Database {database!r} does not exist.") cursor.execute("ROLLBACK") else: click.echo(f"Database {database!r} was deleted.")
28.816568
80
0.675975
[ "MIT" ]
stianberghansen/police-data-trust
backend/database/core.py
4,870
Python
#! /usr/bin/env python # -*- coding: latin-1; -*- ''' Copyright 2018 University of Liège Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' from wrap import * metafor = None def params(q={}): """ default model parameters """ p={} p['tolNR'] = 1.0e-7 # Newton-Raphson tolerance p['tend'] = 1. # final time p['dtmax'] = 0.005 # max time step p['bndno'] = 17 # interface boundary number # BC type #p['bctype'] = 'pressure' # uniform pressure #p['bctype'] = 'deadload' # uniform nodal load #p['bctype'] = 'pydeadload1' # uniform nodal load (python) p['bctype'] = 'pydeadloads' # variable loads #p['bctype'] = 'slave' # variable loads (mpi) p.update(q) return p def getMetafor(p={}): global metafor if metafor: return metafor metafor = Metafor() p = params(p) domain = metafor.getDomain() geometry = domain.getGeometry() geometry.setDimPlaneStrain(1.0) # import .geo from toolbox.gmsh import GmshImport f = os.path.join(os.path.dirname(__file__), "waterColoumnFallWithFlexibleObstacle_Mtf_Pfem.msh") importer = GmshImport(f, domain) importer.execute2D() groupset = domain.getGeometry().getGroupSet() # solid elements / material interactionset = domain.getInteractionSet() app1 = FieldApplicator(1) app1.push( groupset(21) ) # physical group 100: beam interactionset.add( app1 ) materset = domain.getMaterialSet() materset.define( 1, ElastHypoMaterial ) mater1 = materset(1) mater1.put(MASS_DENSITY, 2500.0) # [kg/m³] mater1.put(ELASTIC_MODULUS, 1.0e6) # [Pa] mater1.put(POISSON_RATIO, 0.) # [-] prp = ElementProperties(Volume2DElement) app1.addProperty(prp) prp.put (MATERIAL, 1) prp.put(EASS, 2) prp.put(EASV, 2) prp.put(PEAS, 1e-12) # boundary conditions loadingset = domain.getLoadingSet() #Physical Line(101) - clamped side of the beam loadingset.define(groupset(19), Field1D(TX,RE)) loadingset.define(groupset(19), Field1D(TY,RE)) #Physical Line(102) - free surface of the beam #Physical Line(103) - upper surface of the beam (for tests only) mim = metafor.getMechanicalIterationManager() mim.setMaxNbOfIterations(4) mim.setResidualTolerance(p['tolNR']) ti = AlphaGeneralizedTimeIntegration(metafor) metafor.setTimeIntegration(ti) # visu if 0: tsm = metafor.getTimeStepManager() tsm.setInitialTime(0.0, 1.0) tsm.setNextTime(1.0, 1, 1.0) # results #vmgr = metafor.getValuesManager() #vmgr.add(1, MiscValueExtractor(metafor, EXT_T), 'time') #vmgr.add(2, DbNodalValueExtractor(groupset(104), Field1D(TY,RE)), 'dy') return metafor def getRealTimeExtractorsList(mtf): extractorsList = [] # --- Extractors list starts --- # # --- Extractors list ends --- # return extractorsList
27.757813
100
0.639178
[ "Apache-2.0" ]
mlucio89/CUPyDO
tests/PFEM_Metafor/waterColoumnFallWithFlexibleObstacle_obstacle_Mtf_E_1_0e6_EAS.py
3,555
Python
#!/usr/bin/env python import numpy import scipy from scipy import io data_dict = scipy.io.loadmat('../data/hmsvm_data_large_integer.mat', struct_as_record=False) parameter_list=[[data_dict]] def structure_discrete_hmsvm_bmrm (m_data_dict=data_dict): import shogun as sg try: _ = sg.create_machine("DualLibQPBMSOSVM") except: print("DualLibQPBMSOSVM not available") return labels_array = m_data_dict['label'][0] idxs = numpy.nonzero(labels_array == -1) labels_array[idxs] = 0 labels = sg.SequenceLabels(labels_array, 250, 500, 2) features = sg.RealMatrixFeatures(m_data_dict['signal'].astype(float), 250, 500) num_obs = 4 # given by the data file used model = sg.create_structured_model("HMSVMModel", features=features, labels=labels, state_model_type="SMT_TWO_STATE", num_obs=num_obs) sosvm = sg.create_machine("DualLibQPBMSOSVM", model=model, labels=labels, m_lambda=5000.0) sosvm.train() #print sosvm.get_w() predicted = sosvm.apply(features) evaluator = sg.create_evaluation("StructuredAccuracy") acc = evaluator.evaluate(predicted, labels) #print('Accuracy = %.4f' % acc) if __name__ == '__main__': print("Discrete HMSVM BMRM") structure_discrete_hmsvm_bmrm(*parameter_list[0])
27.909091
92
0.754886
[ "BSD-3-Clause" ]
AbhinavTalari/shogun
examples/undocumented/python/structure_discrete_hmsvm_bmrm.py
1,228
Python
### # Copyright (c) 2003-2005, Jeremiah Fincher # Copyright (c) 2009, James McCoy # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, # this list of conditions, and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions, and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the author of this software nor the name of # contributors to this software may be used to endorse or promote products # derived from this software without specific prior written consent. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. ### import re from supybot.test import * import supybot.utils as utils nicks = ['fatjim','scn','moshez','LordVan','MetaCosm','pythong','fishfart', 'alb','d0rt','jemfinch','StyxAlso','fors','deltab','gd', 'hellz_hunter','are_j|pub_comp','jason_','dreid','sayke_','winjer', 'TenOfTen','GoNoVas','queuetue','the|zzz','Hellfried','Therion', 'shro','DaCa','rexec','polin8','r0ky','aaron_','ironfroggy','eugene', 'faassen','tirloni','mackstann','Yhg1s','ElBarono','vegai','shang', 'typo_','kikoforgetme','asqui','TazyTiggy','fab','nixman','liiwi', 'AdamV','paolo','red_one','_AleX_','lament','jamessan','supybot', 'macr0_zzz','plaisthos','redghost','disco','mphardy','gt3','mathie', 'jonez','r0ky-office','tic','d33p','ES3merge','talin','af','flippo', 'sholden','ameoba','shepherg','j2','Acapnotic','dash','merlin262', 'Taaus','_moshez','rik','jafo__','blk-majik','JT__','itamar', 'kermit-','davidmccabe','glyph','jojo','dave_p','goo','hyjinx', 'SamB','exarkun','drewp','Ragica','skylan','redgore','k3','Ra1stlin', 'StevenK','carball','h3x','carljm','_jacob','teratorn','frangen', 'phed','datazone','Yaggo','acct_','nowhere','pyn','ThomasWaldmann', 'dunker','pilotLight','brainless','LoganH_','jmpnz','steinn', 'EliasREC','lowks__','OldSmrf','Mad77','snibril','delta','psy', 'skimpIzu','Kengur','MoonFallen','kotkis','Hyperi'] def group(seq, groupSize, noneFill=True): """Groups a given sequence into sublists of length groupSize.""" ret = [] L = [] i = groupSize for elt in seq: if i > 0: L.append(elt) else: ret.append(L) i = groupSize L = [] L.append(elt) i -= 1 if L: if noneFill: while len(L) < groupSize: L.append(None) ret.append(L) return ret class StringTestCase(PluginTestCase): plugins = ('String', 'Format', 'Status') def testLen(self): self.assertResponse('len foo', '3') self.assertHelp('len') def testNoErrors(self): self.assertNotError('levenshtein Python Perl') def testSoundex(self): self.assertNotError('soundex jemfinch') self.assertNotRegexp('soundex foobar 3:30', 'ValueError') def testChr(self): for i in range(256): c = chr(i) regexp = r'%s|%s' % (re.escape(c), re.escape(repr(c))) self.assertRegexp('chr %s' % i, regexp) def testOrd(self): for c in map(chr, range(256)): i = ord(c) self.assertResponse('ord %s' % utils.str.dqrepr(c), str(i)) def testUnicode(self): self.assertResponse('unicodename ☃', 'SNOWMAN') self.assertResponse('unicodesearch SNOWMAN', '☃') #self.assertResponse('unicodename ?', # 'No name found for this character.') self.assertResponse('unicodesearch FOO', 'Error: No character found with this name.') def testMd5(self): self.assertResponse('md5 supybot', '1360578d1276e945cc235654a53f9c65') def testEncodeDecode(self): # This no longer works correctly. It almost seems like were throwing # in a repr() somewhere. s = 'the recalcitrant jamessan tests his scramble function' self.assertNotRegexp('encode aldkfja foobar', 'LookupError') self.assertNotRegexp('decode asdflkj foobar', 'LookupError') self.assertResponse('decode zlib [encode zlib %s]' % s, s) self.assertRegexp('decode base64 $BCfBg7;9D;R(B', 'padded with') def testRe(self): self.assertResponse('re "m/system time/" [status cpu]', 'system time') self.assertResponse('re s/user/luser/g user user', 'luser luser') self.assertResponse('re s/user/luser/ user user', 'luser user') self.assertNotRegexp('re m/foo/ bar', 'has no attribute') self.assertResponse('re m/a\\S+y/ "the bot angryman is hairy"', 'angry') self.assertResponse('re m/a\\S+y/g "the bot angryman is hairy"', 'angry and airy') def testReNotEmptyString(self): self.assertError('re s//foo/g blah') def testReWorksWithJustCaret(self): self.assertResponse('re s/^/foo/ bar', 'foobar') def testReNoEscapingUnpackListOfWrongSize(self): self.assertNotRegexp('re foo bar baz', 'unpack list of wrong size') def testReBug850931(self): self.assertResponse(r're s/\b(\w+)\b/\1./g foo bar baz', 'foo. bar. baz.') def testNotOverlongRe(self): self.assertError('re [strjoin "" s/./ [eval \'xxx\'*400]] blah blah') def testXor(self): # This no longer works correctly. It almost seems like were throwing # in a repr() somewhere. L = [nick for nick in nicks if '|' not in nick and '[' not in nick and ']' not in nick] for s0, s1, s2, s3, s4, s5, s6, s7, s8, s9 in group(L, 10): data = '%s%s%s%s%s%s%s%s%s' % (s0, s1, s2, s3, s4, s5, s6, s7, s8) self.assertResponse('xor %s [xor %s %s]' % (s9, s9, data), data) # vim:set shiftwidth=4 softtabstop=4 expandtab textwidth=79:
43.5
80
0.625862
[ "BSD-3-Clause" ]
AntumDeluge/Limnoria
plugins/String/test.py
6,964
Python
# Copyright 2013: Mirantis Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Contains the Rally objects.""" from rally.common.objects.credential import Credential # noqa from rally.common.objects.deploy import Deployment # noqa from rally.common.objects.endpoint import Endpoint # noqa from rally.common.objects.task import Task # noqa from rally.common.objects.verification import Verification # noqa
43.772727
78
0.751817
[ "Apache-2.0" ]
LorenzoBianconi/rally
rally/common/objects/__init__.py
963
Python
from itertools import combinations from typing import Callable, Dict, Set, Tuple, Union import networkx as nx import pandas as pd from causal_networkx import ADMG from causal_networkx.discovery.classes import ConstraintDiscovery def _has_both_edges(dag, i, j): return dag.has_edge(i, j) and dag.has_edge(j, i) def _has_any_edge(dag, i, j): return dag.has_edge(i, j) or dag.has_edge(j, i) class PC(ConstraintDiscovery): def __init__( self, ci_estimator: Callable, alpha: float = 0.05, init_graph: Union[nx.Graph, ADMG] = None, fixed_edges: nx.Graph = None, max_cond_set_size: int = None, **ci_estimator_kwargs, ): """Peter and Clarke (PC) algorithm for causal discovery. Assumes causal sufficiency, that is, all confounders in the causal graph are observed variables. Parameters ---------- ci_estimator : Callable The conditional independence test function. The arguments of the estimator should be data, node, node to compare, conditioning set of nodes, and any additional keyword arguments. alpha : float, optional The significance level for the conditional independence test, by default 0.05. init_graph : nx.Graph | ADMG, optional An initialized graph. If ``None``, then will initialize PC using a complete graph. By default None. fixed_edges : nx.Graph, optional An undirected graph with fixed edges. If ``None``, then will initialize PC using a complete graph. By default None. max_cond_set_size : int, optional Maximum size of the conditioning set, by default None. Used to limit the computation spent on the algorithm. ci_estimator_kwargs : dict Keyword arguments for the ``ci_estimator`` function. Attributes ---------- graph_ : PAG The graph discovered. separating_sets_ : dict The dictionary of separating sets, where it is a nested dictionary from the variable name to the variable it is being compared to the set of variables in the graph that separate the two. """ super().__init__( ci_estimator, alpha, init_graph, fixed_edges, max_cond_set_size, **ci_estimator_kwargs ) def learn_skeleton(self, X: pd.DataFrame) -> Tuple[nx.Graph, Dict[str, Dict[str, Set]]]: """Learn skeleton from data. Parameters ---------- X : pd.DataFrame Dataset. Returns ------- skel_graph : nx.Graph The skeleton graph. sep_set : Dict[str, Dict[str, Set]] The separating set. """ graph, sep_set, fixed_edges = self._initialize_graph(X) skel_graph, sep_set = self._learn_skeleton_from_neighbors(X, graph, sep_set, fixed_edges) return skel_graph, sep_set def fit(self, X: pd.DataFrame) -> None: """Fit PC algorithm on dataset 'X'.""" # learn skeleton skel_graph, sep_set = self.learn_skeleton(X) # perform CI tests to orient edges into a DAG graph = self._orient_edges(skel_graph, sep_set) self.separating_sets_ = sep_set self.graph_ = graph def _orient_edges(self, skel_graph, sep_set): """Orient edges in a skeleton graph to estimate the causal DAG, or CPDAG. Uses the separation sets to orient edges via conditional independence testing. Parameters ---------- skel_graph : nx.Graph A skeleton graph. If ``None``, then will initialize PC using a complete graph. By default None. sep_set : _type_ _description_ """ dag = skel_graph.to_directed() node_ids = skel_graph.nodes() for (i, j) in combinations(node_ids, 2): adj_i = set(dag.successors(i)) if j in adj_i: continue adj_j = set(dag.successors(j)) if i in adj_j: continue if sep_set[i][j] is None: continue common_k = adj_i & adj_j for k in common_k: if k not in sep_set[i][j]: if dag.has_edge(k, i): # _logger.debug('S: remove edge (%s, %s)' % (k, i)) dag.remove_edge(k, i) if dag.has_edge(k, j): # _logger.debug('S: remove edge (%s, %s)' % (k, j)) dag.remove_edge(k, j) # For all the combination of nodes i and j, apply the following # rules. old_dag = dag.copy() while True: for (i, j) in combinations(node_ids, 2): # Rule 1: Orient i-j into i->j whenever there is an arrow k->i # such that k and j are nonadjacent. # # Check if i-j. if _has_both_edges(dag, i, j): # Look all the predecessors of i. for k in dag.predecessors(i): # Skip if there is an arrow i->k. if dag.has_edge(i, k): continue # Skip if k and j are adjacent. if _has_any_edge(dag, k, j): continue # Make i-j into i->j # _logger.debug("R1: remove edge (%s, %s)" % (j, i)) dag.remove_edge(j, i) break # Rule 2: Orient i-j into i->j whenever there is a chain # i->k->j. # # Check if i-j. if _has_both_edges(dag, i, j): # Find nodes k where k is i->k. succs_i = set() for k in dag.successors(i): if not dag.has_edge(k, i): succs_i.add(k) # Find nodes j where j is k->j. preds_j = set() for k in dag.predecessors(j): if not dag.has_edge(j, k): preds_j.add(k) # Check if there is any node k where i->k->j. if len(succs_i & preds_j) > 0: # Make i-j into i->j # _logger.debug("R2: remove edge (%s, %s)" % (j, i)) dag.remove_edge(j, i) # Rule 3: Orient i-j into i->j whenever there are two chains # i-k->j and i-l->j such that k and l are nonadjacent. # # Check if i-j. if _has_both_edges(dag, i, j): # Find nodes k where i-k. adj_i = set() for k in dag.successors(i): if dag.has_edge(k, i): adj_i.add(k) # For all the pairs of nodes in adj_i, for (k, l) in combinations(adj_i, 2): # Skip if k and l are adjacent. if _has_any_edge(dag, k, l): continue # Skip if not k->j. if dag.has_edge(j, k) or (not dag.has_edge(k, j)): continue # Skip if not l->j. if dag.has_edge(j, l) or (not dag.has_edge(l, j)): continue # Make i-j into i->j. # _logger.debug('R3: remove edge (%s, %s)' % (j, i)) dag.remove_edge(j, i) break # Rule 4: Orient i-j into i->j whenever there are two chains # i-k->l and k->l->j such that k and j are nonadjacent. # # However, this rule is not necessary when the PC-algorithm # is used to estimate a DAG. if nx.is_isomorphic(dag, old_dag): break old_dag = dag.copy() return dag
38.933962
98
0.500969
[ "BSD-3-Clause" ]
adam2392/causal-networkx
causal_networkx/discovery/pcalg.py
8,254
Python
# Copyright 2016 Rackspace # Copyright 2016 Intel Corporation # # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import os from alembic import command as alembic_command from alembic import script as alembic_script from oslo_db.sqlalchemy import enginefacade from oslo_db.sqlalchemy import test_fixtures from oslo_db.sqlalchemy import test_migrations import sqlalchemy.types as types from glance.db.sqlalchemy import alembic_migrations from glance.db.sqlalchemy.alembic_migrations import versions from glance.db.sqlalchemy import models from glance.db.sqlalchemy import models_metadef import glance.tests.utils as test_utils class AlembicMigrationsMixin(object): def setUp(self): super(AlembicMigrationsMixin, self).setUp() self.engine = enginefacade.writer.get_engine() def _get_revisions(self, config, head=None): head = head or 'heads' scripts_dir = alembic_script.ScriptDirectory.from_config(config) revisions = list(scripts_dir.walk_revisions(base='base', head=head)) revisions = list(reversed(revisions)) revisions = [rev.revision for rev in revisions] return revisions def _migrate_up(self, config, engine, revision, with_data=False): if with_data: data = None pre_upgrade = getattr(self, '_pre_upgrade_%s' % revision, None) if pre_upgrade: data = pre_upgrade(engine) alembic_command.upgrade(config, revision) if with_data: check = getattr(self, '_check_%s' % revision, None) if check: check(engine, data) def test_walk_versions(self): alembic_config = alembic_migrations.get_alembic_config(self.engine) for revision in self._get_revisions(alembic_config): self._migrate_up(alembic_config, self.engine, revision, with_data=True) class TestMysqlMigrations(test_fixtures.OpportunisticDBTestMixin, AlembicMigrationsMixin, test_utils.BaseTestCase): FIXTURE = test_fixtures.MySQLOpportunisticFixture def test_mysql_innodb_tables(self): test_utils.db_sync(engine=self.engine) total = self.engine.execute( "SELECT COUNT(*) " "FROM information_schema.TABLES " "WHERE TABLE_SCHEMA='%s'" % self.engine.url.database) self.assertGreater(total.scalar(), 0, "No tables found. Wrong schema?") noninnodb = self.engine.execute( "SELECT count(*) " "FROM information_schema.TABLES " "WHERE TABLE_SCHEMA='%s' " "AND ENGINE!='InnoDB' " "AND TABLE_NAME!='migrate_version'" % self.engine.url.database) count = noninnodb.scalar() self.assertEqual(0, count, "%d non InnoDB tables created" % count) class TestPostgresqlMigrations(test_fixtures.OpportunisticDBTestMixin, AlembicMigrationsMixin, test_utils.BaseTestCase): FIXTURE = test_fixtures.PostgresqlOpportunisticFixture class TestSqliteMigrations(test_fixtures.OpportunisticDBTestMixin, AlembicMigrationsMixin, test_utils.BaseTestCase): pass class TestMigrations(test_fixtures.OpportunisticDBTestMixin, test_utils.BaseTestCase): def test_no_downgrade(self): migrate_file = versions.__path__[0] for parent, dirnames, filenames in os.walk(migrate_file): for filename in filenames: if filename.split('.')[1] == 'py': model_name = filename.split('.')[0] model = __import__( 'glance.db.sqlalchemy.alembic_migrations.versions.' + model_name) obj = getattr(getattr(getattr(getattr(getattr( model, 'db'), 'sqlalchemy'), 'alembic_migrations'), 'versions'), model_name) func = getattr(obj, 'downgrade', None) self.assertIsNone(func) class ModelsMigrationSyncMixin(object): def setUp(self): super(ModelsMigrationSyncMixin, self).setUp() self.engine = enginefacade.writer.get_engine() def get_metadata(self): for table in models_metadef.BASE_DICT.metadata.sorted_tables: models.BASE.metadata._add_table(table.name, table.schema, table) return models.BASE.metadata def get_engine(self): return self.engine def db_sync(self, engine): test_utils.db_sync(engine=engine) # TODO(akamyshikova): remove this method as soon as comparison with Variant # will be implemented in oslo.db or alembic def compare_type(self, ctxt, insp_col, meta_col, insp_type, meta_type): if isinstance(meta_type, types.Variant): meta_orig_type = meta_col.type insp_orig_type = insp_col.type meta_col.type = meta_type.impl insp_col.type = meta_type.impl try: return self.compare_type(ctxt, insp_col, meta_col, insp_type, meta_type.impl) finally: meta_col.type = meta_orig_type insp_col.type = insp_orig_type else: ret = super(ModelsMigrationSyncMixin, self).compare_type( ctxt, insp_col, meta_col, insp_type, meta_type) if ret is not None: return ret return ctxt.impl.compare_type(insp_col, meta_col) def include_object(self, object_, name, type_, reflected, compare_to): if name in ['migrate_version'] and type_ == 'table': return False return True class ModelsMigrationsSyncMysql(ModelsMigrationSyncMixin, test_migrations.ModelsMigrationsSync, test_fixtures.OpportunisticDBTestMixin, test_utils.BaseTestCase): FIXTURE = test_fixtures.MySQLOpportunisticFixture class ModelsMigrationsSyncPostgres(ModelsMigrationSyncMixin, test_migrations.ModelsMigrationsSync, test_fixtures.OpportunisticDBTestMixin, test_utils.BaseTestCase): FIXTURE = test_fixtures.PostgresqlOpportunisticFixture class ModelsMigrationsSyncSqlite(ModelsMigrationSyncMixin, test_migrations.ModelsMigrationsSync, test_fixtures.OpportunisticDBTestMixin, test_utils.BaseTestCase): pass
38.366492
79
0.631141
[ "Apache-2.0" ]
FuzeSoft/OpenStack-Stein
glance-18.0.0/glance/tests/functional/db/test_migrations.py
7,328
Python
#!/usr/bin/env python # -*- coding: utf-8 -*- # Author: Arne Neumann <[email protected]> """ The ``brat`` module converts discourse graphs into brat annotation files. """ import os import codecs import math import itertools from collections import defaultdict import brewer2mpl from unidecode import unidecode import discoursegraphs as dg from discoursegraphs.readwrite.mmax2 import spanstring2text, spanstring2tokens ANNOTATION_CONF = u""" [entities] Markable [relations] Coreference\tArg1:Markable, Arg2:Markable, <REL-TYPE>:symmetric-transitive # "Markable" annotations can nest arbitrarily ENTITY-NESTING\tArg1:Markable, Arg2:Markable [events] [attributes] """ def brat_output(docgraph, layer=None, show_relations=True): """ converts a document graph with pointing chains into a string representation of a brat *.ann file. Parameters ---------- docgraph : DiscourseDocumentGraph a document graph which might contain pointing chains (e.g. coreference links) layer : str or None the name of the layer that contains the pointing chains (e.g. 'mmax' or 'pocores'). If unspecified, all pointing chains in the document will be considered Returns ------- ret_str : unicode the content of a brat *.ann file """ # we can't rely on the .ns attribute of a merged graph if layer: namespace = dg.layer2namespace(layer) else: namespace = docgraph.ns ret_str = u'' pointing_chains = dg.get_pointing_chains(docgraph, layer=layer) # a token can be part of 1+ markable(s) first_token2markables = defaultdict(list) markable_dict = {} markable_index = 1 for pointing_chain in pointing_chains: for markable in sorted(pointing_chain, key=dg.util.natural_sort_key): span_tokens = spanstring2tokens(docgraph, docgraph.node[markable][namespace+':span']) span_text = dg.tokens2text(docgraph, span_tokens) first_token2markables[span_tokens[0]].append(markable) markable_dict[markable] = (markable_index, span_text, len(span_text)) markable_index += 1 onset = 0 for token_id in docgraph.tokens: tok_len = len(docgraph.get_token(token_id)) if token_id in first_token2markables: for markable in first_token2markables[token_id]: mark_index, mark_text, mark_len = markable_dict[markable] ret_str += u"T{0}\tMarkable {1} {2}\t{3}\n".format( mark_index, onset, onset+mark_len, mark_text) onset += tok_len+1 if show_relations: relation = 1 for pointing_chain in pointing_chains: last_to_first_mention = sorted(pointing_chain, key=dg.util.natural_sort_key, reverse=True) for i in xrange(0, len(pointing_chain)-1): chain_element = markable_dict[last_to_first_mention[i]][0] prev_chain_element = markable_dict[last_to_first_mention[i+1]][0] ret_str += u"R{0}\tCoreference Arg1:T{1} Arg2:T{2}\n".format( relation, chain_element, prev_chain_element) relation += 1 return ret_str def create_visual_conf(docgraph, pointing_chains): """ creates a visual.conf file (as a string) for the given document graph. """ num_of_entities = len(pointing_chains) mapsize = max(3, min(12, num_of_entities)) # 3 <= mapsize <= 12 colormap = brewer2mpl.get_map(name='Paired', map_type='Qualitative', number=mapsize) colors = range(mapsize) * int(math.ceil(num_of_entities / float(mapsize))) # recycle colors if we need more than 12 endless_color_cycle = itertools.cycle(colors) ret_str = u'[drawing]\n\n' for chain in pointing_chains: background_color = colormap.hex_colors[endless_color_cycle.next()] for markable in chain: span_tokens = spanstring2tokens(docgraph, docgraph.node[markable][docgraph.ns+':span']) span_text = dg.tokens2text(docgraph, span_tokens) ascii_markable = unidecode(span_text) ret_str += u'{0}\tbgColor:{1}\n'.format(ascii_markable, background_color) ret_str += '\n[labels]' return ret_str def write_brat(docgraph, output_dir, layer='mmax', show_relations=True): dg.util.create_dir(output_dir) doc_name = os.path.basename(docgraph.name) with codecs.open(os.path.join(output_dir, doc_name+'.txt'), 'wb', encoding='utf-8') as txtfile: txtfile.write(dg.get_text(docgraph)) anno_str = brat_output(docgraph, layer=layer, show_relations=show_relations) with codecs.open(os.path.join(output_dir, 'annotation.conf'), 'wb', encoding='utf-8') as annotation_conf: annotation_conf.write(ANNOTATION_CONF) #~ with codecs.open(os.path.join(output_dir, 'visual.conf'), #~ 'wb', encoding='utf-8') as visual_conf: #~ visual_conf.write(visual_conf_str) with codecs.open(os.path.join(output_dir, doc_name+'.ann'), 'wb', encoding='utf-8') as annfile: annfile.write(anno_str)
35.391892
102
0.661512
[ "BSD-3-Clause" ]
arne-cl/discoursegraphs
src/discoursegraphs/readwrite/brat.py
5,238
Python
from django.shortcuts import render from django.views.generic.detail import DetailView from todos.models import Task def index(request): return render(request, 'frontend/index.html') class TodoDetailView(DetailView): model = Task template_name = 'frontend/index.html'
20.357143
50
0.768421
[ "MIT" ]
yuliiabuchko/todo
frontend/views.py
285
Python
# Copyright (c) 2014 Ben Swartzlander. All rights reserved. # Copyright (c) 2014 Navneet Singh. All rights reserved. # Copyright (c) 2014 Clinton Knight. All rights reserved. # Copyright (c) 2014 Alex Meade. All rights reserved. # Copyright (c) 2014 Bob Callaway. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Tests for NetApp API layer """ from cinder.i18n import _ from cinder import test from cinder.volume.drivers.netapp.dataontap.client import api as netapp_api class NetAppApiElementTransTests(test.TestCase): """Test case for NetApp API element translations.""" def setUp(self): super(NetAppApiElementTransTests, self).setUp() def test_translate_struct_dict_unique_key(self): """Tests if dict gets properly converted to NaElements.""" root = netapp_api.NaElement('root') child = {'e1': 'v1', 'e2': 'v2', 'e3': 'v3'} root.translate_struct(child) self.assertEqual(3, len(root.get_children())) self.assertEqual('v1', root.get_child_content('e1')) self.assertEqual('v2', root.get_child_content('e2')) self.assertEqual('v3', root.get_child_content('e3')) def test_translate_struct_dict_nonunique_key(self): """Tests if list/dict gets properly converted to NaElements.""" root = netapp_api.NaElement('root') child = [{'e1': 'v1', 'e2': 'v2'}, {'e1': 'v3'}] root.translate_struct(child) self.assertEqual(3, len(root.get_children())) children = root.get_children() for c in children: if c.get_name() == 'e1': self.assertIn(c.get_content(), ['v1', 'v3']) else: self.assertEqual('v2', c.get_content()) def test_translate_struct_list(self): """Tests if list gets properly converted to NaElements.""" root = netapp_api.NaElement('root') child = ['e1', 'e2'] root.translate_struct(child) self.assertEqual(2, len(root.get_children())) self.assertIsNone(root.get_child_content('e1')) self.assertIsNone(root.get_child_content('e2')) def test_translate_struct_tuple(self): """Tests if tuple gets properly converted to NaElements.""" root = netapp_api.NaElement('root') child = ('e1', 'e2') root.translate_struct(child) self.assertEqual(2, len(root.get_children())) self.assertIsNone(root.get_child_content('e1')) self.assertIsNone(root.get_child_content('e2')) def test_translate_invalid_struct(self): """Tests if invalid data structure raises exception.""" root = netapp_api.NaElement('root') child = 'random child element' self.assertRaises(ValueError, root.translate_struct, child) def test_setter_builtin_types(self): """Tests str, int, float get converted to NaElement.""" root = netapp_api.NaElement('root') root['e1'] = 'v1' root['e2'] = 1 root['e3'] = 2.0 root['e4'] = 8l self.assertEqual(4, len(root.get_children())) self.assertEqual('v1', root.get_child_content('e1')) self.assertEqual('1', root.get_child_content('e2')) self.assertEqual('2.0', root.get_child_content('e3')) self.assertEqual('8', root.get_child_content('e4')) def test_setter_na_element(self): """Tests na_element gets appended as child.""" root = netapp_api.NaElement('root') root['e1'] = netapp_api.NaElement('nested') self.assertEqual(1, len(root.get_children())) e1 = root.get_child_by_name('e1') self.assertIsInstance(e1, netapp_api.NaElement) self.assertIsInstance(e1.get_child_by_name('nested'), netapp_api.NaElement) def test_setter_child_dict(self): """Tests dict is appended as child to root.""" root = netapp_api.NaElement('root') root['d'] = {'e1': 'v1', 'e2': 'v2'} e1 = root.get_child_by_name('d') self.assertIsInstance(e1, netapp_api.NaElement) sub_ch = e1.get_children() self.assertEqual(2, len(sub_ch)) for c in sub_ch: self.assertIn(c.get_name(), ['e1', 'e2']) if c.get_name() == 'e1': self.assertEqual('v1', c.get_content()) else: self.assertEqual('v2', c.get_content()) def test_setter_child_list_tuple(self): """Tests list/tuple are appended as child to root.""" root = netapp_api.NaElement('root') root['l'] = ['l1', 'l2'] root['t'] = ('t1', 't2') l = root.get_child_by_name('l') self.assertIsInstance(l, netapp_api.NaElement) t = root.get_child_by_name('t') self.assertIsInstance(t, netapp_api.NaElement) for le in l.get_children(): self.assertIn(le.get_name(), ['l1', 'l2']) for te in t.get_children(): self.assertIn(te.get_name(), ['t1', 't2']) def test_setter_no_value(self): """Tests key with None value.""" root = netapp_api.NaElement('root') root['k'] = None self.assertIsNone(root.get_child_content('k')) def test_setter_invalid_value(self): """Tests invalid value raises exception.""" root = netapp_api.NaElement('root') try: root['k'] = netapp_api.NaServer('localhost') except Exception as e: if not isinstance(e, TypeError): self.fail(_('Error not a TypeError.')) def test_setter_invalid_key(self): """Tests invalid value raises exception.""" root = netapp_api.NaElement('root') try: root[None] = 'value' except Exception as e: if not isinstance(e, KeyError): self.fail(_('Error not a KeyError.'))
40.660256
78
0.623837
[ "Apache-2.0" ]
potsmaster/cinder
cinder/tests/unit/volume/drivers/netapp/dataontap/client/test_api.py
6,343
Python
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import jsonfield.fields from django.conf import settings class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('contenttypes', '0001_initial'), ] operations = [ migrations.CreateModel( name='OfflineMessage', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('level', models.IntegerField(default=20)), ('message', models.CharField(max_length=200)), ('created', models.DateTimeField(auto_now_add=True)), ('user', models.ForeignKey(to=settings.AUTH_USER_MODEL, on_delete=models.CASCADE)), ], options={ }, bases=(models.Model,), ), ]
31
114
0.604579
[ "BSD-3-Clause" ]
Fanevanjanahary/django-offline-messages
offline_messages/migrations/0001_initial.py
961
Python
from functools import partial from typing import List, Optional, Union from transformers import (AlbertModel, AlbertTokenizer, BartModel, BigBirdModel, BigBirdTokenizer, BartTokenizer, BertModel, BertTokenizer, CamembertModel, CamembertTokenizer, CTRLModel, CTRLTokenizer, DistilBertModel, DistilBertTokenizer, GPT2Model, GPT2Tokenizer, LongformerModel, LongformerTokenizer, OpenAIGPTModel, OpenAIGPTTokenizer, PreTrainedModel, PreTrainedTokenizer, RobertaModel, RobertaTokenizer, TransfoXLModel, TransfoXLTokenizer, XLMModel, XLMTokenizer, XLNetModel, XLNetTokenizer) from summarizer.summary_processor import SummaryProcessor from summarizer.text_processors.sentence_handler import SentenceHandler from summarizer.transformer_embeddings.bert_embedding import BertEmbedding class BertSummarizer(SummaryProcessor): """Summarizer based on the BERT model.""" def __init__( self, model: Optional[str] = 'bert-large-uncased', custom_model: PreTrainedModel = None, custom_tokenizer: PreTrainedTokenizer = None, hidden: Union[List[int], int] = -2, reduce_option: str = 'mean', sentence_handler: SentenceHandler = SentenceHandler(), random_state: int = 12345, hidden_concat: bool = False, gpu_id: int = 0, ): """ This is the parent Bert Summarizer model. New methods should implement this class. :param model: This parameter is associated with the inherit string parameters from the transformers library. :param custom_model: If you have a pre-trained model, you can add the model class here. :param custom_tokenizer: If you have a custom tokenizer, you can add the tokenizer here. :param hidden: This signifies which layer(s) of the BERT model you would like to use as embeddings. :param reduce_option: Given the output of the bert model, this param determines how you want to reduce results. :param sentence_handler: The handler to process sentences. If want to use coreference, instantiate and pass. CoreferenceHandler instance :param random_state: The random state to reproduce summarizations. :param hidden_concat: Whether or not to concat multiple hidden layers. :param gpu_id: GPU device index if CUDA is available. """ model = BertEmbedding(model, custom_model, custom_tokenizer, gpu_id) model_func = partial(model, hidden=hidden, reduce_option=reduce_option, hidden_concat=hidden_concat) super().__init__(model_func, sentence_handler, random_state) class Summarizer(BertSummarizer): def __init__( self, model: str = 'bert-large-uncased', custom_model: PreTrainedModel = None, custom_tokenizer: PreTrainedTokenizer = None, hidden: Union[List[int], int] = -2, reduce_option: str = 'mean', sentence_handler: SentenceHandler = SentenceHandler(), random_state: int = 12345, hidden_concat: bool = False, gpu_id: int = 0, ): """ This is the main Bert Summarizer class. :param model: This parameter is associated with the inherit string parameters from the transformers library. :param custom_model: If you have a pre-trained model, you can add the model class here. :param custom_tokenizer: If you have a custom tokenizer, you can add the tokenizer here. :param hidden: This signifies which layer of the BERT model you would like to use as embeddings. :param reduce_option: Given the output of the bert model, this param determines how you want to reduce results. :param random_state: The random state to reproduce summarizations. :param hidden_concat: Whether or not to concat multiple hidden layers. :param gpu_id: GPU device index if CUDA is available. """ super(Summarizer, self).__init__( model, custom_model, custom_tokenizer, hidden, reduce_option, sentence_handler, random_state, hidden_concat, gpu_id ) class TransformerSummarizer(BertSummarizer): """ Newer style that has keywords for models and tokenizers, but allows the user to change the type. """ MODEL_DICT = { 'Bert': (BertModel, BertTokenizer), 'OpenAIGPT': (OpenAIGPTModel, OpenAIGPTTokenizer), 'GPT2': (GPT2Model, GPT2Tokenizer), 'CTRL': (CTRLModel, CTRLTokenizer), 'TransfoXL': (TransfoXLModel, TransfoXLTokenizer), 'XLNet': (XLNetModel, XLNetTokenizer), 'XLM': (XLMModel, XLMTokenizer), 'DistilBert': (DistilBertModel, DistilBertTokenizer), } def __init__( self, transformer_type: str = 'Bert', transformer_model_key: str = 'bert-base-uncased', transformer_tokenizer_key: str = None, hidden: Union[List[int], int] = -2, reduce_option: str = 'mean', sentence_handler: SentenceHandler = SentenceHandler(), random_state: int = 12345, hidden_concat: bool = False, gpu_id: int = 0, ): """ :param transformer_type: The Transformer type, such as Bert, GPT2, DistilBert, etc. :param transformer_model_key: The transformer model key. This is the directory for the model. :param transformer_tokenizer_key: The transformer tokenizer key. This is the tokenizer directory. :param hidden: The hidden output layers to use for the summarization. :param reduce_option: The reduce option, such as mean, max, min, median, etc. :param sentence_handler: The sentence handler class to process the raw text. :param random_state: The random state to use. :param hidden_concat: Deprecated hidden concat option. :param gpu_id: GPU device index if CUDA is available. """ try: self.MODEL_DICT['Roberta'] = (RobertaModel, RobertaTokenizer) self.MODEL_DICT['Albert'] = (AlbertModel, AlbertTokenizer) self.MODEL_DICT['Camembert'] = (CamembertModel, CamembertTokenizer) self.MODEL_DICT['Bart'] = (BartModel, BartTokenizer) self.MODEL_DICT['Longformer'] = (LongformerModel, LongformerTokenizer) self.MODEL_DICT['BigBird'] = (BigBirdModel, BigBirdTokenizer) except Exception: pass # older transformer version model_clz, tokenizer_clz = self.MODEL_DICT[transformer_type] model = model_clz.from_pretrained( transformer_model_key, output_hidden_states=True) tokenizer = tokenizer_clz.from_pretrained( transformer_tokenizer_key if transformer_tokenizer_key is not None else transformer_model_key ) super().__init__( None, model, tokenizer, hidden, reduce_option, sentence_handler, random_state, hidden_concat, gpu_id )
48.176871
120
0.673539
[ "MIT" ]
SelvinDatatonic/bert-extractive-summarizer
summarizer/bert.py
7,082
Python
from json import load from typing import Union import pygame as pg from pygame import Surface, event from pygame.display import set_mode, set_caption, set_icon, get_surface, update from pygame.key import get_pressed as get_key_pressed from pygame.mouse import get_pressed as get_mouse_pressed from pygame.time import Clock, get_ticks from pygame.transform import scale from source.imgs.sprite_sheet import load_sprite_sheet from source.scripts.scenes import Game, Menu, Shop, Scene from source.sounds.manager import get_song class App: all_keycodes = tuple(getattr(pg.constants, key_str) for key_str in filter(lambda k: k.startswith("K_"), dir(pg.constants))) def __init__(self, config: dict[str, Union[int, str]] = None): # ## load # # load config if config is None: with open("source/config.json") as file: config = load(file) # get config self.width: int = ... self.height: int = ... self.fps: int = ... self.start_scene: str = ... self.volume: int = ... for name in ["width", "height", "fps", "start_scene", "volume"]: setattr(self, name, config[name]) self.done = True self.clock = Clock() # # load images self.bg_sprite_sheet = load_sprite_sheet("bg_imgs") # ## create and initialize # # create music self.bgm_intro = get_song("intro.wav") self.bgm = get_song("bgm.wav") self.bgm_is_running = False self.bgm_intro.set_volume(self.volume) self.bgm.set_volume(self.volume) # # create scenes self.name = "OREO Clicker" self.screen: Surface self.game = Game(self) self.menu = Menu(self) self.shop = Shop(self) self._scene: Scene = getattr(self, self.start_scene, "menu") # initialize scenes self.game.initialize() self.menu.initialize() self.shop.initialize() @property def scene(self) -> Scene: return self._scene @scene.setter def scene(self, value: Scene): self._scene = value self.update_screen() @property def scene_scale(self): return self.scene.settings["scale"][0] / self.scene.settings["size"][0], \ self.scene.settings["scale"][1] / self.scene.settings["size"][1] def update_screen(self): set_mode(self.scene.settings["scale"]) set_caption(self.scene.settings["title"]) if self.scene.settings["icon"]: set_icon(self.scene.settings["icon"]) # noinspection PyAttributeOutsideInit self.screen = get_surface() @property def scene_screen(self): return Surface(self.game.settings["size"]) def draw(self): self.screen.blit(scale(self.scene.draw(), self.scene.settings["scale"]), (0, 0)) update() def update(self): self.scene.update() def run(self): self.bgm_intro.play() self.done = False self.update_screen() while not self.done: if get_ticks() // (self.fps * 20) >= int(self.bgm_intro.get_length()) and not self.bgm_is_running: self.bgm_intro.stop() self.bgm.play(-1) self.bgm_is_running = True self.draw() self.handle_events() self.handle_input() self.clock.tick(self.fps) self.update() def handle_events(self): for event_ in event.get(): if event_.type == pg.QUIT: self.done = True break if "events_filter" not in self.scene.settings or event_.type in self.scene.settings["events_filter"]: self.scene.handle_event(event) def handle_input(self): self.handle_mouse_press() keys_pressed = get_key_pressed() for keycode in self.all_keycodes: if keys_pressed[keycode]: self.scene.handle_input(keycode) def handle_mouse_press(self): pressed = get_mouse_pressed(3) mouse_pos = self.get_mouse_pos() for key in range(3): if pressed[key]: self.scene.handle_mouse_press(key, mouse_pos) def get_mouse_pos(self): return pg.mouse.get_pos()[0] // self.scene_scale[0], \ pg.mouse.get_pos()[1] // self.scene_scale[1]
31.126761
113
0.600226
[ "Apache-2.0" ]
Mio-coder/clicer
source/scripts/manager.py
4,420
Python
from __future__ import absolute_import from __future__ import print_function import graph_tool.all as gt import numpy as np from .base import LabelGraphClustererBase from .helpers import _membership_to_list_of_communities, _overlapping_membership_to_list_of_communities class StochasticBlockModel: """A Stochastic Blockmodel fit to Label Graph This contains a stochastic block model instance constructed for a block model variant specified in parameters. It can be fit to an instance of a graph and set of weights. More information on how to select parameters can be found in `the extensive introduction into Stochastic Block Models <https://graph-tool.skewed.de/static/doc/demos/inference/inference.html>`_ in graphtool documentation. Parameters ---------- nested: boolean whether to build a nested Stochastic Block Model or the regular variant, will be automatically put under :code:`self.nested`. use_degree_correlation: boolean whether to correct for degree correlation in modeling, will be automatically put under :code:`self.use_degree_correlation`. allow_overlap: boolean whether to allow overlapping clusters or not, will be automatically put under :code:`self.allow_overlap`. weight_model: string or None decide whether to generate a weighted or unweighted graph, will be automatically put under :code:`self.weight_model`. Attributes ---------- model_: graph_tool.inference.BlockState or its subclass an instance of the fitted model obtained from graph-tool """ def __init__(self, nested, use_degree_correlation, allow_overlap, weight_model): self.nested = nested self.use_degree_correlation = use_degree_correlation self.allow_overlap = allow_overlap self.weight_model = weight_model self.model_ = None def fit_predict(self, graph, weights): """Fits model to a given graph and weights list Sets :code:`self.model_` to the state of graphtool's Stochastic Block Model the after fitting. Attributes ---------- graph: graphtool.Graph the graph to fit the model to weights: graphtool.EdgePropertyMap<double> the property map: edge -> weight (double) to fit the model to, if weighted variant is selected Returns ------- numpy.ndarray partition of labels, each sublist contains label indices related to label positions in :code:`y` """ if self.weight_model: self.model_ = self._model_fit_function()( graph, deg_corr=self.use_degree_correlation, overlap=self.allow_overlap, state_args=dict(recs=[weights], rec_types=[self.weight_model]) ) else: self.model_ = self._model_fit_function()( graph, deg_corr=self.use_degree_correlation, overlap=self.allow_overlap ) return self._detect_communities() def _detect_communities(self): if self.nested: lowest_level = self.model_.get_levels()[0] else: lowest_level = self.model_ number_of_communities = lowest_level.get_B() if self.allow_overlap: # the overlaps block returns # membership vector, and also edges vectors, we need just the membership here at the moment membership_vector = list(lowest_level.get_overlap_blocks()[0]) else: membership_vector = list(lowest_level.get_blocks()) if self.allow_overlap: return _overlapping_membership_to_list_of_communities(membership_vector, number_of_communities) return _membership_to_list_of_communities(membership_vector, number_of_communities) def _model_fit_function(self): if self.nested: return gt.minimize_nested_blockmodel_dl else: return gt.minimize_blockmodel_dl class GraphToolLabelGraphClusterer(LabelGraphClustererBase): """Fits a Stochastic Block Model to the Label Graph and infers the communities This clusterer clusters the label space using by fitting a stochastic block model to the label network and inferring the community structure using graph-tool. The obtained community structure is returned as the label clustering. More information on the inference itself can be found in `the extensive introduction into Stochastic Block Models <https://graph-tool.skewed.de/static/doc/demos/inference/inference.html>`_ in graphtool documentation. Parameters ---------- graph_builder: a GraphBuilderBase inherited transformer the graph builder to provide the adjacency matrix and weight map for the underlying graph model: StochasticBlockModel the desired stochastic block model variant to use Attributes ---------- graph_ : graphtool.Graph object representing a label co-occurence graph weights_ : graphtool.EdgeProperty<double> edge weights defined by graph builder stored in a graphtool compatible format .. note :: This functionality is still undergoing research. .. note :: This clusterer is GPL-licenced and will taint your code with GPL restrictions. References ---------- If you use this class please cite: .. code : latex article{peixoto_graph-tool_2014, title = {The graph-tool python library}, url = {http://figshare.com/articles/graph_tool/1164194}, doi = {10.6084/m9.figshare.1164194}, urldate = {2014-09-10}, journal = {figshare}, author = {Peixoto, Tiago P.}, year = {2014}, keywords = {all, complex networks, graph, network, other}} Examples -------- An example code for using this clusterer with a classifier looks like this: .. code-block:: python from sklearn.ensemble import RandomForestClassifier from yyskmultilearn.problem_transform import LabelPowerset from yyskmultilearn.cluster import IGraphLabelGraphClusterer, LabelCooccurrenceGraphBuilder from yyskmultilearn.ensemble import LabelSpacePartitioningClassifier # construct base forest classifier base_classifier = RandomForestClassifier(n_estimators=1000) # construct a graph builder that will include # label relations weighted by how many times they # co-occurred in the data, without self-edges graph_builder = LabelCooccurrenceGraphBuilder( weighted = True, include_self_edges = False ) # select parameters for the model, we fit a flat, # non-degree correlated, partitioning model # which will use fit the normal distribution as the weights model model = StochasticBlockModel( nested=False, use_degree_correlation=True, allow_overlap=False, weight_model='real-normal' ) # setup problem transformation approach with sparse matrices for random forest problem_transform_classifier = LabelPowerset(classifier=base_classifier, require_dense=[False, False]) # setup the clusterer to use, we selected the fast greedy modularity-maximization approach clusterer = GraphToolLabelGraphClusterer(graph_builder=graph_builder, model=model) # setup the ensemble metaclassifier classifier = LabelSpacePartitioningClassifier(problem_transform_classifier, clusterer) # train classifier.fit(X_train, y_train) # predict predictions = classifier.predict(X_test) For more use cases see `the label relations exploration guide <../labelrelations.ipynb>`_. """ def __init__(self, graph_builder, model): super(GraphToolLabelGraphClusterer, self).__init__(graph_builder) self.model = model self.graph_builder = graph_builder def fit_predict(self, X, y): """Performs clustering on y and returns list of label lists Builds a label graph using the provided graph builder's `transform` method on `y` and then detects communities using the selected `method`. Sets :code:`self.weights_` and :code:`self.graph_`. Parameters ---------- X : None currently unused, left for scikit compatibility y : scipy.sparse label space of shape :code:`(n_samples, n_labels)` Returns ------- arrray of arrays of label indexes (numpy.ndarray) label space division, each sublist represents labels that are in that community """ self._build_graph_instance(y) clusters = self.model.fit_predict(self.graph_, weights=self.weights_) return np.array([community for community in clusters if len(community) > 0]) def _build_graph_instance(self, y): edge_map = self.graph_builder.transform(y) g = gt.Graph(directed=False) g.add_vertex(y.shape[1]) self.weights_ = g.new_edge_property('double') for edge, weight in edge_map.items(): e = g.add_edge(edge[0], edge[1]) self.weights_[e] = weight self.graph_ = g
36.699219
115
0.673018
[ "BSD-2-Clause" ]
yuan776/scikit-multilearn
yyskmultilearn/cluster/graphtool.py
9,395
Python
#----------------------------------------------------------------------------- # Copyright (c) 2012 - 2019, Anaconda, Inc., and Bokeh Contributors. # All rights reserved. # # The full license is in the file LICENSE.txt, distributed with this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Boilerplate #----------------------------------------------------------------------------- import pytest ; pytest #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- # Standard library imports # External imports # Bokeh imports from bokeh._testing.util.api import verify_all # Module under test #import bokeh.sampledata.glucose as bsg #----------------------------------------------------------------------------- # Setup #----------------------------------------------------------------------------- ALL = ( 'data', ) #----------------------------------------------------------------------------- # General API #----------------------------------------------------------------------------- Test___all__ = pytest.mark.sampledata(verify_all("bokeh.sampledata.glucose", ALL)) @pytest.mark.sampledata def test_data(pd): import bokeh.sampledata.glucose as bsg assert isinstance(bsg.data, pd.DataFrame) # don't check detail for external data #----------------------------------------------------------------------------- # Dev API #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Private API #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Code #-----------------------------------------------------------------------------
33.915254
82
0.270365
[ "BSD-3-Clause" ]
BiYandong110/bokeh
tests/unit/bokeh/sampledata/test_glucose.py
2,001
Python
# -*- coding: utf-8 -*- # Copyright (c) 2019 - 2021 Geode-solutions # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import os, sys, platform if sys.version_info >= (3,8,0) and platform.system() == "Windows": for path in [x.strip() for x in os.environ['PATH'].split(';') if x]: os.add_dll_directory(path) import opengeode import opengeode_io_py_mesh as mesh_io if __name__ == '__main__': mesh_io.initialize_mesh_io() test_dir = os.path.dirname(__file__) data_dir = os.path.abspath(os.path.join(test_dir, "../../../../tests/data")) surface = opengeode.load_polygonal_surface3D(os.path.join(data_dir, "Armadillo.ply")) if surface.nb_vertices() != 172974: raise ValueError("[Test] Number of vertices in the loaded Surface is not correct" ) if surface.nb_polygons() != 345944: raise ValueError("[Test] Number of polygons in the loaded Surface is not correct" ) opengeode.save_polygonal_surface3D(surface, "Armadillo_save.ply")
46.348837
91
0.74009
[ "MIT" ]
Geode-solutions/OpenGeode-IO
bindings/python/tests/mesh/test-py-ply.py
1,993
Python
# YouTube: https://youtu.be/8lP9h4gaKYA # Publicação: https://caffeinealgorithm.com/blog/20210914/funcao-print-e-strings-em-python/ print('Estamos a usar a função print() e eu sou uma string.') print("Continuo a ser uma string.") print('A Maria disse que o Miguel estava "doente".') # A Maria disse que o Miguel estava "doente". print('I\'m writing in English.') # I'm writing in English. print('Caffeine', 'Algorithm') # Caffeine Algorithm
50
99
0.722222
[ "MIT" ]
caffeinealgorithm/code-programming-series
Programar em Python/02-Funcao-print-e-Strings.py
454
Python
# -*- coding: utf-8 -*- from __future__ import unicode_literals import math DESTRUIDO = 'Destruido' ATIVO = 'Ativo' GRAVIDADE = 10 # m/s^2 class Ator(): """ Classe que representa um ator. Ele representa um ponto cartesiano na tela. """ _caracter_ativo = 'A' _caracter_destruido = ' ' def __init__(self, x=0, y=0): """ Método de inicialização da classe. Deve inicializar os parâmetros x, y, caracter e status :param x: Posição horizontal inicial do ator :param y: Posição vertical inicial do ator """ self.y = y self.x = x self.status = ATIVO def caracter(self): return self._caracter_ativo if self.status == ATIVO else self._caracter_destruido def calcular_posicao(self, tempo): """ Método que calcula a posição do ator em determinado tempo. Deve-se imaginar que o tempo começa em 0 e avança de 0,01 segundos :param tempo: o tempo do jogo :return: posição x, y do ator """ return self.x, self.y def colidir(self, outro_ator, intervalo=1): """ Método que executa lógica de colisão entre dois atores. Só deve haver colisão se os dois atores tiverem seus status ativos. Para colisão, é considerado um quadrado, com lado igual ao parâmetro intervalo, em volta do ponto onde se encontra o ator. Se os atores estiverem dentro desse mesmo quadrado, seus status devem ser alterados para destruido, seus caracteres para destruido também. :param outro_ator: Ator a ser considerado na colisão :param intervalo: Intervalo a ser considerado :return: """ if self.status == ATIVO and outro_ator.status == ATIVO: delta_x = abs(self.x - outro_ator.x) delta_y = abs(self.y - outro_ator.y) if delta_x <= intervalo and delta_y <= intervalo: self.status = outro_ator.status = DESTRUIDO class Obstaculo(Ator): _caracter_ativo = 'O' class Porco(Ator): _caracter_ativo = '@' _caracter_destruido = '+' class DuploLancamentoExcecao(Exception): pass class Passaro(Ator): velocidade_escalar = 10 def __init__(self, x=0, y=0): """ Método de inicialização de pássaro. Deve chamar a inicialização de ator. Além disso, deve armazenar a posição inicial e incializar o tempo de lançamento e angulo de lançamento :param x: :param y: """ super().__init__(x, y) self._x_inicial = x self._y_inicial = y self._tempo_de_lancamento = None self._angulo_de_lancamento = None # radianos def foi_lancado(self): """ Método que retorna verdaeira se o pássaro já foi lançado e falso caso contrário :return: booleano """ return not self._tempo_de_lancamento is None def colidir_com_chao(self): """ Método que executa lógica de colisão com o chão. Toda vez que y for menor ou igual a 0, o status dos Passaro deve ser alterado para destruido, bem como o seu caracter """ pass def calcular_posicao(self, tempo): """ Método que cálcula a posição do passaro de acordo com o tempo. Antes do lançamento o pássaro deve retornar o valor de sua posição inicial Depois do lançamento o pássaro deve calcular de acordo com sua posição inicial, velocidade escalar, ângulo de lancamento, gravidade (constante GRAVIDADE) e o tempo do jogo. Após a colisão, ou seja, ter seus status destruido, o pássaro deve apenas retornar a última posição calculada. :param tempo: tempo de jogo a ser calculada a posição :return: posição x, y """ if self.foi_lancado(): delta_t = tempo - self._tempo_de_lancamento self._calcular_posicao_vertical(delta_t) return super().calcular_posicao(tempo) def lancar(self, angulo, tempo_de_lancamento): """ Lógica que lança o pássaro. Deve armazenar o ângulo e o tempo de lançamento para posteriores cálculo. O ângulo é passado em graus e deve ser transformado em radianos :param angulo: :param tempo_de_lancamento: :return: """ self._angulo_de_lancamento = angulo self._tempo_de_lancamento = tempo_de_lancamento def _calcular_posicao_vertical(self, delta_t): y_atual = self._y_inicial angulo_radianos = math.radians(self._angulo_de_lancamento) y_atual += self.velocidade_escalar * delta_t * math.sin(angulo_radianos) y_atual -= (GRAVIDADE * delta_t ** 2) / 2 self.y = y_atual class PassaroAmarelo(Passaro): _caracter_ativo = 'A' _caracter_destruido = 'a' velocidade_escalar = 30 class PassaroVermelho(Passaro): _caracter_ativo = 'V' _caracter_destruido = 'v' velocidade_escalar = 20
31.157233
118
0.648365
[ "MIT" ]
NTMaia/pythonbirds
atores.py
5,030
Python
import sys sys.path.append("..") import os import torch import torchvision as tv import numpy as np from torch.utils.data import DataLoader from torchvision import models import torch.nn as nn from utils import makedirs, tensor2cuda, load_model from argument import parser from visualization import VanillaBackprop import patch_dataset as patd from model.resnetdsbn import * args = parser() img_folder = 'grad_img' img_folder = os.path.join(img_folder, args.dataset, args.affix) makedirs(img_folder) out_num = 1 transform_test = tv.transforms.Compose([ tv.transforms.Resize(256), tv.transforms.ToTensor() ]) te_dataset = patd.PatchDataset(path_to_images=args.data_root, fold='test', transform=tv.transforms.ToTensor()) te_loader = DataLoader(te_dataset, batch_size=1, shuffle=False, num_workers=1) counter = 0 input_list = [] grad_list = [] label_list = [] for data, label in te_loader: if int(np.sum(label.squeeze().numpy())) > 0: disease = '' for i in range(int(np.sum(label.squeeze().numpy()))): disease_index = np.nonzero(label.squeeze().numpy())[0][i] dis_temp = te_dataset.PRED_LABEL[disease_index] disease = disease + ' ' + dis_temp data, label = tensor2cuda(data), tensor2cuda(label) # model_bns = resnet50dsbn(pretrained=args.pretrain, widefactor=args.widefactor) model_std = models.resnet50() num_classes=8 # model_bns.fc = nn.Linear(model_bns.fc.in_features, num_classes) model_std.fc = nn.Linear(model_std.fc.in_features, num_classes) # load_model(model_bns, args.load_checkpoint) load_model(model_std, '../checkpoint/chexpert_gaussn_0.1/checkpoint_best.pth') if torch.cuda.is_available(): # model_bns.cuda() model_std.cuda() # VBP = VanillaBackprop(model_bns) VBP_std = VanillaBackprop(model_std) # grad_bn0 = VBP.generate_gradients(data, label, [0]) # data: (1,3,96,96) label: (1,3) # grad_bn1 = VBP.generate_gradients(data, label, [1]) grad_std = VBP_std.generate_gradients(data, label) grads = [] # print(grad.shape) for grad in [grad_std]: grad_flat = grad.view(grad.shape[0], -1) # grad: (1, 3x96x96) mean = grad_flat.mean(1, keepdim=True).unsqueeze(2).unsqueeze(3) # (1,1,1,1) std = grad_flat.std(1, keepdim=True).unsqueeze(2).unsqueeze(3) # (1,1,1,1) mean = mean.repeat(1, 1, data.shape[2], data.shape[3]) std = std.repeat(1, 1, data.shape[2], data.shape[3]) grad = torch.max(torch.min(grad, mean+3*std), mean-3*std) print(grad.min(), grad.max()) grad -= grad.min() grad /= grad.max() grad = grad.cpu().numpy().squeeze() # (N, 28, 28) grads.append(grad) # grad *= 255.0 # label = label.cpu().numpy() data = data.cpu().numpy().squeeze() # data *= 255.0 # print('data shape ', data.shape) # print('grad shape ', grad.shape) input_list.append(data) label_list.append(disease) grad_list.append(grads) # np.save(os.path.join(img_folder, 'data.npy'), np.array(input_list)) np.save(os.path.join(img_folder, 'label.npy'), np.array(label_list)) np.save(os.path.join(img_folder, 'grad.npy'), np.array(grad_list))
39.593023
94
0.634655
[ "MIT" ]
peterhan91/Medical-Robust-Training
visualization/visualize.py
3,405
Python
from gzip import decompress from http import cookiejar from json import loads, dumps from os import environ from time import strftime, gmtime from urllib import request def get_url(ticker): env = environ.get('FLASK_ENV', 'development') if env == 'development': url = 'https://www.fundamentus.com.br/amline/cot_hist.php?papel=' else: phproxy = 'http://shortbushash.com/proxy.php' url = phproxy + '?q=https%3A%2F%2Fwww.fundamentus.com.br%2Famline%2Fcot_hist.php%3Fpapel%3D' return url + ticker + '&hl=1a7', env def build_headers(url, env): if env == 'development': headers = [ ('Accept', 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9'), ('Referer', url), ('User-Agent', 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/85.0.4183.102 Safari/537.36'), ] else: headers = [ ('Accept', 'application/json, text/javascript, */*; q=0.01'), ('Accept-Encoding', 'gzip, deflate, br'), ('Referer', url), ('User-Agent', 'PostmanRuntime/7.26.8'), ] return headers def parse_epoch_time(parsed_content): return [[strftime('%Y-%m-%d', gmtime(unix_epoch_time/1000)), price] for [unix_epoch_time, price] in parsed_content] def load_prices(ticker, parse_json=True): url, env = get_url(ticker) cookie_jar = cookiejar.CookieJar() opener = request.build_opener(request.HTTPCookieProcessor(cookie_jar)) opener.addheaders = build_headers(url, env) with opener.open(url) as link: gzip_response = link.read() binary_response = gzip_response.decode() if env == 'development' else decompress(gzip_response) parsed_content = loads(binary_response) content = parse_epoch_time(parsed_content) return dumps(content) if parse_json else content
35.178571
162
0.658883
[ "MIT" ]
pedroeml/stock-projection-service
historical_prices.py
1,970
Python
import numpy as np import numpy.ma as npma from scipy import stats import matplotlib.pyplot as plt import baspy as bp import fnmatch """ Created on Wed Nov 27 18:34 2019 @author: Christine McKenna ======================================================================== Purpose: Plots Supp Fig 2, a pdf of all possible 20-year trends in gsat for CMIP6 piControl simulations for each model. First detrends the raw gsat time series to remove any long term drift, which could bias 20-year trends (e.g. if positive drift, pdf of 20-year trends likely biased positive). Saves pdf of 20-year trends for models used in Supp Fig 8. ======================================================================== """ # Required directories loaddir_CMIP = 'Priestley-Centre/Near_term_warming/analysis_figure_code/'+\ 'SuppFig2/saved_arrays' savedir = 'Priestley-Centre/Near_term_warming/analysis_figure_code/'+\ 'SuppFig8/saved_data' ### ------ Load in CMIP6 data ------ # Load models models = np.load(loaddir_CMIP+'/models_gtas_CMIP6_piControl.npy') # Load catalogue so can extract runids var = 'tas' cat_PI = bp.catalogue(dataset='cmip6',Var=var,Experiment='piControl',\ CMOR='Amon') years = np.linspace(1,20,20) ### Process data, one model and RunID at a time i = 0 fig,axs = plt.subplots(7,7,sharex=True,sharey=True,\ figsize=(15,12)) fig.suptitle('PDFs of rolling GSAT trends for 20-year segments of CMIP6 '+\ 'piControl runs',fontsize=20) axs = axs.ravel() for model in models: ## Get data for model filtmod_PI = cat_PI[cat_PI['Model'] == model] ## Only keep r1i1p1f? runids_PI = np.unique(filtmod_PI['RunID']) runids_PI = fnmatch.filter(runids_PI,'r1i1p1f?') ## Get data for each RunID for runid in runids_PI: ## Load gsat data gsat_tmp = np.load(loaddir_CMIP+'/gtas_'+model+'_'+runid+\ '_CMIP6_piControl.npy') ny = len(gsat_tmp) ## Remove any drift [m,c,_,_,_] = stats.linregress(np.linspace(0,ny-1,ny),gsat_tmp) gsat_lin = m*np.linspace(0,ny-1,ny)+c gsat = gsat_tmp - gsat_lin ## Calculate trends gsat_trends = np.zeros([ny-20]) for y in xrange(0,ny-20): [m,_,_,_,_] = stats.linregress(years,gsat[y:y+20]) gsat_trends[y] = m*10 ## If model used in Supp Fig 8 save pdf of 20y trends if (model == 'BCC-CSM2-MR') or (model == 'MIROC-ES2L'): np.save(savedir+'/gsat_20ytrends_CMIP6_piControl_'+\ model+'.npy',gsat_trends) ### ------ Plot results ------ ### Plot individual models axs[i].hist(gsat_trends,density=True) axs[i].set_title(model,fontsize=13) axs[i].plot(np.zeros([2]),[0,11],'grey',linewidth=1) axs[i].plot(np.ones([2])*(-0.075),[0,11],'black',\ linewidth=1,linestyle='--') axs[i].plot(np.ones([2])*(0.072),[0,11],'black',\ linewidth=1,linestyle='--') axs[i].plot(np.ones([2])*(-0.084),[0,11],'black',\ linewidth=1,linestyle='--') axs[i].plot(np.ones([2])*(0.094),[0,11],'black',\ linewidth=1,linestyle='--') axs[i].tick_params(labelsize=13) i += 1 fig.text(0.5,0.02,'$^{\circ}$C / decade',ha='center',\ va='center',fontsize=18) fig.text(0.02,0.5,'Probability density',ha='center',va='center',\ rotation='vertical',fontsize=18) axs[i-1].set_xlim([-0.3,0.3]) axs[i-1].set_ylim([0,11]) axs[i].axis('off') plt.subplots_adjust(top=0.9,bottom=0.07,left=0.07,right=0.97,\ wspace=0.17,hspace=0.27) plt.show()
33.495575
75
0.573844
[ "Apache-2.0" ]
Priestley-Centre/Near_term_warming
analysis_figure_code/SuppFig2/SuppFig2.py
3,785
Python
import unittest import progresspie class TestCalculationMethods(unittest.TestCase): def test_is_black(self): self.assertEqual(progresspie.is_black(99, 99, 99), False) self.assertEqual(progresspie.is_black(0, 55, 55), False) self.assertEqual(progresspie.is_black(12, 55, 55), False) self.assertEqual(progresspie.is_black(13, 55, 55), True) self.assertEqual(progresspie.is_black(13, 45, 45), False) self.assertEqual(progresspie.is_black(87, 20, 40), True) if __name__ == '__main__': unittest.main()
28
65
0.698214
[ "MIT" ]
paujim/ProgressPie
test_progresspie.py
560
Python
import requests def gen_from_urls(urls: tuple) -> tuple: for resp in (requests.get(url) for url in urls): # yield returns only 1 items at a time. yield len(resp.content), resp.status_code, resp.url if __name__ == "__main__": urls = ( "https://www.oreilly.com/", "https://twitter.com/", "https://www.google.com/", ) for resp_len, status, url in gen_from_urls(urls): print(resp_len, status, url)
24.368421
59
0.609071
[ "MIT" ]
archeranimesh/HeadFirstPython
SRC/Chapter_13-Advanced-Iteration/12_function_yield.py
463
Python
# Copyright 2015 Open Source Robotics Foundation, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import importlib import os import platform from shutil import which import subprocess import sys import time # Make sure we're using Python3 assert sys.version.startswith('3'), "This script is only meant to work with Python3" # Make sure to get osrf_pycommon from the vendor folder vendor_path = os.path.abspath(os.path.join(os.path.dirname(__file__), 'vendor')) sys.path.insert(0, os.path.join(vendor_path, 'osrf_pycommon')) import osrf_pycommon # Assert that we got it from the right place assert osrf_pycommon.__file__.startswith(vendor_path), \ ("osrf_pycommon imported from '{0}' which is not in the vendor folder '{1}'" .format(osrf_pycommon.__file__, vendor_path)) from osrf_pycommon.cli_utils.common import extract_argument_group from osrf_pycommon.terminal_color import sanitize from .packaging import build_and_test_and_package from .util import change_directory from .util import remove_folder from .util import force_color from .util import generated_venv_vars from .util import info from .util import log from .util import UnbufferedIO # Enforce unbuffered output sys.stdout = UnbufferedIO(sys.stdout) sys.stderr = UnbufferedIO(sys.stderr) # One of the maintainers of pyparsing suggests pinning to 2.4.7 for now; # see https://github.com/pyparsing/pyparsing/issues/323 pip_dependencies = [ 'EmPy', 'coverage', 'catkin_pkg', 'flake8', 'flake8-blind-except==0.1.1', 'flake8-builtins', 'flake8-class-newline', 'flake8-comprehensions', 'flake8-deprecated', 'flake8-docstrings', 'flake8-import-order', 'flake8-quotes', 'importlib-metadata', 'mock', 'nose', 'pep8', 'pydocstyle', 'pyflakes', 'pyparsing==2.4.7', 'pytest', 'pytest-cov', 'pytest-mock', 'pytest-repeat', 'pytest-rerunfailures', 'pytest-runner', 'pyyaml', 'vcstool', 'yamllint', ] # https://github.com/pyca/cryptography/issues/5433 pip_cryptography_version = '==3.0' if sys.platform in ('darwin'): pip_dependencies += [ f'cryptography{pip_cryptography_version}', 'lxml', 'netifaces' ] colcon_packages = [ 'colcon-core', 'colcon-defaults', 'colcon-library-path', 'colcon-metadata', 'colcon-mixin', 'colcon-output', 'colcon-package-information', 'colcon-package-selection', 'colcon-parallel-executor', 'colcon-powershell', 'colcon-python-setup-py', 'colcon-recursive-crawl', 'colcon-test-result', 'colcon-cmake', 'colcon-ros', ] if sys.platform != 'win32': colcon_packages += [ 'colcon-bash', 'colcon-zsh', ] gcov_flags = '--coverage' colcon_space_defaults = { 'sourcespace': 'src', 'buildspace': 'build', 'installspace': 'install', } def main(sysargv=None): args = get_args(sysargv=sysargv) blacklisted_package_names = [] if not args.packaging: build_function = build_and_test blacklisted_package_names += [ 'actionlib_msgs', 'common_interfaces', 'cv_bridge', 'opencv_tests', 'ros1_bridge', 'shape_msgs', 'stereo_msgs', 'vision_opencv', ] else: build_function = build_and_test_and_package if sys.platform in ('darwin', 'win32'): blacklisted_package_names += [ 'pendulum_control', 'ros1_bridge', 'rttest', 'tlsf', 'tlsf_cpp', ] # There are no Windows debug packages available for PyQt5 and PySide2, so # python_qt_bindings can't be imported to run or test rqt_graph or # rqt_py_common. if sys.platform == 'win32' and args.cmake_build_type == 'Debug': blacklisted_package_names.append('rqt_graph') blacklisted_package_names.append('rqt_py_common') blacklisted_package_names.append('rqt_reconfigure') # TODO(wjwwood): remove this when a better solution is found, as # this is just a work around for https://github.com/ros2/build_cop/issues/161 # If on Windows, kill any still running `colcon` processes to avoid # problems when trying to delete files from pip or the workspace during # this job. if sys.platform == 'win32': os.system('taskkill /f /im colcon.exe') time.sleep(2) # wait a bit to avoid a race return run(args, build_function, blacklisted_package_names=blacklisted_package_names) def get_args(sysargv=None): parser = argparse.ArgumentParser( description="Builds the ROS2 repositories as a single batch job") parser.add_argument( '--packaging', default=False, action='store_true', help='create an archive of the install space') parser.add_argument( '--repo-file-url', required=True, help="url of the ros2.repos file to fetch and use for the basis of the batch job") parser.add_argument( '--supplemental-repo-file-url', default=None, help="url of a .repos file to fetch and merge with the ros2.repos file") parser.add_argument( '--test-branch', default=None, help="branch to attempt to checkout before doing batch job") parser.add_argument( '--colcon-branch', default=None, help='Use a specific branch of the colcon repositories, if the branch ' "doesn't exist fall back to the default branch (default: latest " 'release)') parser.add_argument( '--white-space-in', nargs='*', default=[], choices=['sourcespace', 'buildspace', 'installspace', 'workspace'], help="which folder structures in which white space should be added") parser.add_argument( '--do-venv', default=False, action='store_true', help="create and use a virtual env in the build process") parser.add_argument( '--os', default=None, choices=['linux', 'osx', 'windows']) parser.add_argument( '--ignore-rmw', nargs='*', default=[], help='ignore the passed RMW implementations as well as supporting packages') parser.add_argument( '--connext-debs', default=False, action='store_true', help="use Debian packages for Connext instead of binaries off the RTI website (Linux only)") parser.add_argument( '--isolated', default=False, action='store_true', help="build and install each package a separate folders") parser.add_argument( '--force-ansi-color', default=False, action='store_true', help="forces this program to output ansi color") parser.add_argument( '--ros-distro', required=True, help="The ROS distribution being built") parser.add_argument( '--ros1-path', default=None, help="path of ROS 1 workspace to be sourced") parser.add_argument( '--mixed-ros-overlay-pkgs', nargs='*', default=[], help='space separated list of packages to be built in an overlay workspace with ROS 1') parser.add_argument( '--colcon-mixin-url', default=None, help='A mixin index url to be included by colcon') parser.add_argument( '--cmake-build-type', default=None, help='select the CMake build type') parser.add_argument( '--build-args', default=None, help="arguments passed to the 'build' verb") parser.add_argument( '--test-args', default=None, help="arguments passed to the 'test' verb") parser.add_argument( '--src-mounted', default=False, action='store_true', help="src directory is already mounted into the workspace") parser.add_argument( '--compile-with-clang', default=False, action='store_true', help="compile with clang instead of gcc") parser.add_argument( '--coverage', default=False, action='store_true', help="enable collection of coverage statistics") parser.add_argument( '--workspace-path', default=None, help="base path of the workspace") parser.add_argument( '--python-interpreter', default=None, help='pass different Python interpreter') parser.add_argument( '--visual-studio-version', default=None, required=(os.name == 'nt'), help='select the Visual Studio version') parser.add_argument( '--source-space', dest='sourcespace', help='source directory path') parser.add_argument( '--build-space', dest='buildspace', help='build directory path') parser.add_argument( '--install-space', dest='installspace', help='install directory path') argv = sysargv[1:] if sysargv is not None else sys.argv[1:] argv, build_args = extract_argument_group(argv, '--build-args') if '--test-args' in argv: argv, test_args = extract_argument_group(argv, '--test-args') else: build_args, test_args = extract_argument_group(build_args, '--test-args') args = parser.parse_args(argv) args.build_args = build_args args.test_args = test_args for name in ('sourcespace', 'buildspace', 'installspace'): space_directory = getattr(args, name) if name in args.white_space_in and space_directory is not None: raise Exception('Argument {} and "--white-space-in" cannot both be used'.format(name)) elif space_directory is None: space_directory = colcon_space_defaults[name] if name in args.white_space_in: space_directory += ' space' setattr(args, name, space_directory) return args def process_coverage(args, job): print('# BEGIN SUBSECTION: coverage analysis') # Capture all gdca/gcno files (all them inside buildspace) coverage_file = os.path.join(args.buildspace, 'coverage.info') cmd = [ 'lcov', '--capture', '--directory', args.buildspace, '--output', str(coverage_file)] print(cmd) subprocess.run(cmd, check=True) # Filter out system coverage and test code cmd = [ 'lcov', '--remove', coverage_file, '--output', coverage_file, '/usr/*', # no system files in reports '/home/rosbuild/*', # remove rti_connext installed in rosbuild '*/test/*', '*/tests/*', '*gtest_vendor*', '*gmock_vendor*'] print(cmd) subprocess.run(cmd, check=True) # Transform results to the cobertura format outfile = os.path.join(args.buildspace, 'coverage.xml') print('Writing coverage.xml report at path {}'.format(outfile)) cmd = ['lcov_cobertura', coverage_file, '--output', outfile] subprocess.run(cmd, check=True) print('# END SUBSECTION') return 0 def build_and_test(args, job): compile_with_clang = args.compile_with_clang and args.os == 'linux' print('# BEGIN SUBSECTION: build') cmd = [ args.colcon_script, 'build', '--base-paths', '"%s"' % args.sourcespace, '--build-base', '"%s"' % args.buildspace, '--install-base', '"%s"' % args.installspace, ] + (['--merge-install'] if not args.isolated else []) + \ args.build_args cmake_args = ['-DBUILD_TESTING=ON', '--no-warn-unused-cli'] if args.cmake_build_type: cmake_args.append( '-DCMAKE_BUILD_TYPE=' + args.cmake_build_type) if compile_with_clang: cmake_args.extend( ['-DCMAKE_C_COMPILER=/usr/bin/clang', '-DCMAKE_CXX_COMPILER=/usr/bin/clang++']) if '--cmake-args' in cmd: index = cmd.index('--cmake-args') cmd[index + 1:index + 1] = cmake_args else: cmd.append('--cmake-args') cmd.extend(cmake_args) if args.coverage: if args.os == 'linux': ament_cmake_args = [ '-DCMAKE_CXX_FLAGS="${CMAKE_CXX_FLAGS} ' + gcov_flags + '"', '-DCMAKE_C_FLAGS="${CMAKE_C_FLAGS} ' + gcov_flags + '"'] if '--ament-cmake-args' in cmd: index = cmd.index('--ament-cmake-args') cmd[index + 1:index + 1] = ament_cmake_args else: cmd.append('--ament-cmake-args') cmd.extend(ament_cmake_args) ret_build = job.run(cmd, shell=True) info("colcon build returned: '{0}'".format(ret_build)) print('# END SUBSECTION') if ret_build: return ret_build print('# BEGIN SUBSECTION: test') test_cmd = [ args.colcon_script, 'test', '--base-paths', '"%s"' % args.sourcespace, '--build-base', '"%s"' % args.buildspace, '--install-base', '"%s"' % args.installspace, ] if not args.isolated: test_cmd.append('--merge-install') if args.coverage: test_cmd.append('--pytest-with-coverage') test_cmd.extend(args.test_args) # In Foxy and prior, xunit2 format is needed to make Jenkins xunit plugin 2.x happy # After Foxy, we introduced per-package changes to make local builds and CI # builds act the same. if args.ros_distro == 'foxy': pytest_args = ['-o', 'junit_family=xunit2'] # We should only have one --pytest-args option, or some options might get ignored if '--pytest-args' in test_cmd: pytest_opts_index = test_cmd.index('--pytest-args') + 1 test_cmd = test_cmd[:pytest_opts_index] + pytest_args + test_cmd[pytest_opts_index:] else: test_cmd.append('--pytest-args') test_cmd.extend(pytest_args) ret_test = job.run(test_cmd, exit_on_error=False, shell=True) info("colcon test returned: '{0}'".format(ret_test)) print('# END SUBSECTION') if ret_test: return ret_test print('# BEGIN SUBSECTION: test-result --all') # Collect the test results ret_test_results = job.run( [args.colcon_script, 'test-result', '--test-result-base', '"%s"' % args.buildspace, '--all'], exit_on_error=False, shell=True ) info("colcon test-result returned: '{0}'".format(ret_test_results)) print('# END SUBSECTION') print('# BEGIN SUBSECTION: test-result') # Collect the test results ret_test_results = job.run( [args.colcon_script, 'test-result', '--test-result-base', '"%s"' % args.buildspace], exit_on_error=False, shell=True ) info("colcon test-result returned: '{0}'".format(ret_test_results)) print('# END SUBSECTION') if args.coverage and args.os == 'linux': process_coverage(args, job) # Uncomment this line to failing tests a failrue of this command. # return 0 if ret_test == 0 and ret_testr == 0 else 1 return 0 def run(args, build_function, blacklisted_package_names=None): if blacklisted_package_names is None: blacklisted_package_names = [] if args.force_ansi_color: force_color() info("run_ros2_batch called with args:") for arg in vars(args): info(sanitize(" - {0}={1}".format(arg, getattr(args, arg)))) job = None args.workspace = 'work space' if 'workspace' in args.white_space_in else 'ws' platform_name = platform.platform().lower() if args.os == 'linux' or platform_name.startswith('linux'): args.os = 'linux' from .linux_batch import LinuxBatchJob job = LinuxBatchJob(args) elif args.os == 'osx' or platform_name.startswith('darwin') or platform_name.startswith('macos'): args.os = 'osx' from .osx_batch import OSXBatchJob job = OSXBatchJob(args) elif args.os == 'windows' or platform_name.startswith('windows'): args.os = 'windows' from .windows_batch import WindowsBatchJob job = WindowsBatchJob(args) if args.do_venv and args.os == 'windows': sys.exit("--do-venv is not supported on windows") # Set the TERM env variable to coerce the output of Make to be colored. os.environ['TERM'] = os.environ.get('TERM', 'xterm-256color') if args.os == 'windows': # Set the ConEmuANSI env variable to trick some programs (vcs) into # printing ANSI color codes on Windows. os.environ['ConEmuANSI'] = 'ON' # Set the appropriate GIT_* env variables in case vcs needs to merge branches os.environ['GIT_AUTHOR_EMAIL'] = '[email protected]' os.environ['GIT_AUTHOR_NAME'] = 'nobody' os.environ['GIT_COMMITTER_EMAIL'] = '[email protected]' os.environ['GIT_COMMITTER_NAME'] = 'nobody' info("Using workspace: @!{0}", fargs=(args.workspace,)) # git doesn't work reliably inside qemu, so we're assuming that somebody # already checked out the code on the host and mounted it in at the right # place in <workspace>/src, which we don't want to remove here. if args.src_mounted: remove_folder(os.path.join(args.workspace, 'build')) remove_folder(os.path.join(args.workspace, 'install')) else: remove_folder(args.workspace) if not os.path.isdir(args.workspace): os.makedirs(args.workspace) # Allow batch job to do OS specific stuff job.pre() # ROS_DOMAIN_ID must be unique to each CI machine on a network to avoid crosstalk if 'ROS_DOMAIN_ID' not in os.environ: raise KeyError('ROS_DOMAIN_ID environment variable must be set') # Check the env job.show_env() colcon_script = None # Enter a venv if asked to, the venv must be in a path without spaces if args.do_venv: print('# BEGIN SUBSECTION: enter virtualenv') if args.os != 'linux': # Do not try this on Linux as elevated privileges are needed. # The Linux host or Docker image will need to ensure the right # version of virtualenv is available. job.run([sys.executable, '-m', 'pip', 'install', '-U', 'virtualenv==16.7.9']) venv_subfolder = 'venv' remove_folder(venv_subfolder) job.run([ sys.executable, '-m', 'virtualenv', '--system-site-packages', '-p', sys.executable, venv_subfolder]) venv_path = os.path.abspath(os.path.join(os.getcwd(), venv_subfolder)) venv, venv_python = generated_venv_vars(venv_path) job.push_run(venv) # job.run is now venv job.push_python(venv_python) # job.python is now venv_python job.show_env() print('# END SUBSECTION') # Now inside of the workspace... with change_directory(args.workspace): print('# BEGIN SUBSECTION: install Python packages') # Update setuptools job.run(['"%s"' % job.python, '-m', 'pip', 'install', '-U', 'pip', 'setuptools'], shell=True) # Print setuptools version job.run(['"%s"' % job.python, '-c', '"import setuptools; print(setuptools.__version__)"'], shell=True) # Print the pip version job.run(['"%s"' % job.python, '-m', 'pip', '--version'], shell=True) # Install pip dependencies pip_packages = list(pip_dependencies) def need_package_from_pipy(pkg_name): try: importlib.import_module(pkg_name) except ModuleNotFoundError: return True return False # We prefer to get mypy from the distribution if it exists. If not we install it via pip. if need_package_from_pipy("mypy"): if args.ros_distro in ["foxy", "galactic"]: pip_packages += ["mypy==0.761"] else: pip_packages += ["mypy==0.931"] # We prefer to get lark from the distribution if it exists. If not we install it via pip. if need_package_from_pipy("lark"): if args.ros_distro in ["foxy", "galactic"]: pip_packages += ["lark-parser==0.8.1"] else: pip_packages += ["lark==1.1.1"] if sys.platform == 'win32': # Install fork of pyreadline containing fix for deprecation warnings # TODO(jacobperron): Until upstream issue is resolved https://github.com/pyreadline/pyreadline/issues/65 pip_packages += ['git+https://github.com/osrf/pyreadline'] if args.cmake_build_type == 'Debug': pip_packages += [ 'https://github.com/ros2/ros2/releases/download/cryptography-archives/cffi-1.14.0-cp38-cp38d-win_amd64.whl', # required by cryptography 'https://github.com/ros2/ros2/releases/download/cryptography-archives/cryptography-2.9.2-cp38-cp38d-win_amd64.whl', 'https://github.com/ros2/ros2/releases/download/lxml-archives/lxml-4.5.1-cp38-cp38d-win_amd64.whl', 'https://github.com/ros2/ros2/releases/download/netifaces-archives/netifaces-0.10.9-cp38-cp38d-win_amd64.whl', 'https://github.com/ros2/ros2/releases/download/numpy-archives/numpy-1.18.4-cp38-cp38d-win_amd64.whl', 'https://github.com/ros2/ros2/releases/download/typed-ast-archives/typed_ast-1.4.1-cp38-cp38d-win_amd64.whl', # required by mypy ] else: pip_packages += [ f'cryptography{pip_cryptography_version}', 'lxml', 'netifaces', 'numpy', ] if not args.colcon_branch: pip_packages += colcon_packages if sys.platform == 'win32': job.run( ['"%s"' % job.python, '-m', 'pip', 'uninstall', '-y'] + colcon_packages, shell=True) # to ensure that the build type specific package is installed job.run( ['"%s"' % job.python, '-m', 'pip', 'uninstall', '-y'] + [f'cryptography{pip_cryptography_version}', 'lxml', 'numpy'], shell=True) pip_cmd = ['"%s"' % job.python, '-m', 'pip', 'install', '-U'] if args.do_venv or sys.platform == 'win32': # Force reinstall so all dependencies are in virtual environment # On Windows since we switch between the debug and non-debug # interpreter all packages need to be reinstalled too pip_cmd.append('--force-reinstall') job.run( pip_cmd + pip_packages, shell=True) # OS X can't invoke a file which has a space in the shebang line # therefore invoking vcs explicitly through Python if args.do_venv: vcs_cmd = [ '"%s"' % job.python, '"%s"' % os.path.join(venv_path, 'bin', 'vcs')] else: vcs_cmd = ['vcs'] if args.colcon_branch: # create .repos file for colcon repositories os.makedirs('colcon', exist_ok=True) with open('colcon/colcon.repos', 'w') as h: h.write('repositories:\n') for name in colcon_packages: h.write(' %s:\n' % name) h.write(' type: git\n') h.write( ' url: https://github.com/colcon/%s.git\n' % name) # clone default branches job.run( vcs_cmd + [ 'import', 'colcon', '--force', '--retry', '5', '--input', 'colcon/colcon.repos'], shell=True) # use -b and --track to checkout correctly when file/folder # with the same name exists job.run( vcs_cmd + [ 'custom', 'colcon', '--args', 'checkout', '-b', args.colcon_branch, '--track', 'origin/' + args.colcon_branch], exit_on_error=False) # install colcon packages from local working copies job.run( ['"%s"' % job.python, '-m', 'pip', 'install', '-U'] + ['colcon/%s' % name for name in colcon_packages], shell=True) if args.do_venv and sys.platform != 'win32': colcon_script = os.path.join(venv_path, 'bin', 'colcon') else: colcon_script = which('colcon') args.colcon_script = colcon_script # Show what pip has job.run(['"%s"' % job.python, '-m', 'pip', 'freeze', '--all'], shell=True) print('# END SUBSECTION') # Fetch colcon mixins if args.colcon_mixin_url: true_cmd = 'VER>NUL' if sys.platform == 'win32' else 'true' job.run([args.colcon_script, 'mixin', 'remove', 'default', '||', true_cmd], shell=True) job.run([args.colcon_script, 'mixin', 'add', 'default', args.colcon_mixin_url], shell=True) job.run([args.colcon_script, 'mixin', 'update', 'default'], shell=True) # Skip git operations on arm because git doesn't work in qemu. Assume # that somebody has already pulled the code on the host and mounted it # in. if not args.src_mounted: print('# BEGIN SUBSECTION: import repositories') repos_file_urls = [args.repo_file_url] if args.supplemental_repo_file_url is not None: repos_file_urls.append(args.supplemental_repo_file_url) repos_filenames = [] for index, repos_file_url in enumerate(repos_file_urls): repos_filename = '{0:02d}-{1}'.format(index, os.path.basename(repos_file_url)) _fetch_repos_file(repos_file_url, repos_filename, job) repos_filenames.append(repos_filename) # Use the repository listing and vcstool to fetch repositories if not os.path.exists(args.sourcespace): os.makedirs(args.sourcespace) for filename in repos_filenames: job.run(vcs_cmd + ['import', '"%s"' % args.sourcespace, '--force', '--retry', '5', '--input', filename], shell=True) print('# END SUBSECTION') if args.test_branch is not None: print('# BEGIN SUBSECTION: checkout custom branch') # Store current branch as well-known branch name for later rebasing info('Attempting to create a well known branch name for all the default branches') job.run(vcs_cmd + ['custom', '.', '--git', '--args', 'checkout', '-b', '__ci_default']) # Attempt to switch all the repositories to a given branch info("Attempting to switch all repositories to the '{0}' branch" .format(args.test_branch)) # use -b and --track to checkout correctly when file/folder with the same name exists vcs_custom_cmd = vcs_cmd + [ 'custom', '.', '--args', 'checkout', '-b', args.test_branch, '--track', 'origin/' + args.test_branch] ret = job.run(vcs_custom_cmd, exit_on_error=False) info("'{0}' returned exit code '{1}'", fargs=(" ".join(vcs_custom_cmd), ret)) print() # Attempt to merge the __ci_default branch into the branch. # This is to ensure that the changes on the branch still work # when applied to the latest version of the default branch. info("Attempting to merge all repositories to the '__ci_default' branch") vcs_custom_cmd = vcs_cmd + ['custom', '.', '--git', '--args', 'merge', '__ci_default'] ret = job.run(vcs_custom_cmd) info("'{0}' returned exit code '{1}'", fargs=(" ".join(vcs_custom_cmd), ret)) print() print('# END SUBSECTION') print('# BEGIN SUBSECTION: repository hashes') # Show the latest commit log on each repository (includes the commit hash). job.run(vcs_cmd + ['log', '-l1', '"%s"' % args.sourcespace], shell=True) print('# END SUBSECTION') print('# BEGIN SUBSECTION: vcs export --exact') # Show the output of 'vcs export --exact` job.run( vcs_cmd + ['export', '--exact', '"%s"' % args.sourcespace], shell=True, # if a repo has been rebased against the default branch vcs can't detect the remote exit_on_error=False) print('# END SUBSECTION') # blacklist rmw packages as well as their dependencies where possible if 'rmw_connext_cpp' in args.ignore_rmw: blacklisted_package_names += [ 'rmw_connext_cpp', 'rosidl_typesupport_connext_c', 'rosidl_typesupport_connext_cpp', ] if 'rmw_connext_dynamic_cpp' in args.ignore_rmw: blacklisted_package_names += [ 'rmw_connext_dynamic_cpp', ] if 'rmw_connext_cpp' in args.ignore_rmw and 'rmw_connext_dynamic_cpp' in args.ignore_rmw: blacklisted_package_names += [ 'connext_cmake_module', 'rmw_connext_shared_cpp', ] if 'rmw_connextdds' in args.ignore_rmw: blacklisted_package_names += [ 'rti_connext_dds_cmake_module', 'rmw_connextdds_common', 'rmw_connextdds', 'rmw_connextddsmicro', ] if 'rmw_cyclonedds_cpp' in args.ignore_rmw: blacklisted_package_names += [ 'cyclonedds', 'cyclonedds_cmake_module', 'rmw_cyclonedds_cpp', ] if 'rmw_fastrtps_cpp' in args.ignore_rmw: blacklisted_package_names += [ 'rmw_fastrtps_cpp', ] if 'rmw_fastrtps_cpp' in args.ignore_rmw and 'rmw_connextdds' in args.ignore_rmw: blacklisted_package_names += [ 'rosidl_typesupport_fastrtps_c', 'rosidl_typesupport_fastrtps_cpp', ] if 'rmw_fastrtps_dynamic_cpp' in args.ignore_rmw: blacklisted_package_names += [ 'rmw_fastrtps_dynamic_cpp', ] if ('rmw_fastrtps_cpp' in args.ignore_rmw and 'rmw_fastrtps_dynamic_cpp' in args.ignore_rmw and # TODO(asorbini) Ideally `rmw_connextdds` would only depend on `fastcdr` # via `rosidl_typesupport_fastrtps_c[pp]`, but they depend on `fastrtps`. 'rmw_connextdds' in args.ignore_rmw): blacklisted_package_names += [ 'fastrtps', 'fastrtps_cmake_module', ] if 'rmw_fastrtps_cpp' in args.ignore_rmw and 'rmw_fastrtps_dynamic_cpp' in args.ignore_rmw: blacklisted_package_names += [ 'rmw_fastrtps_shared_cpp', ] # Allow the batch job to push custom sourcing onto the run command job.setup_env() # create COLCON_IGNORE files in package folders which should not be used if blacklisted_package_names: print('# BEGIN SUBSECTION: ignored packages') print('Trying to ignore the following packages:') [print('- ' + name) for name in blacklisted_package_names] output = subprocess.check_output( [colcon_script, 'list', '--base-paths', args.sourcespace]) for line in output.decode().splitlines(): package_name, package_path, _ = line.split('\t', 2) if package_name in blacklisted_package_names: marker_file = os.path.join(package_path, 'COLCON_IGNORE') print('Create marker file: ' + marker_file) with open(marker_file, 'w'): pass print('# END SUBSECTION') rc = build_function(args, job) job.post() return rc def _fetch_repos_file(url, filename, job): """Use curl to fetch a repos file and display the contents.""" job.run(['curl', '-skL', url, '-o', filename]) log("@{bf}==>@| Contents of `%s`:" % filename) with open(filename, 'r') as f: print(f.read()) if __name__ == '__main__': sys.exit(main())
41.210127
156
0.607753
[ "Apache-2.0" ]
jlblancoc/ci
ros2_batch_job/__main__.py
32,556
Python
"""database session management.""" import logging import os from contextlib import contextmanager from typing import Iterator import attr import psycopg2 import sqlalchemy as sa from fastapi_utils.session import FastAPISessionMaker as _FastAPISessionMaker from sqlalchemy.orm import Session as SqlSession from stac_fastapi.sqlalchemy.config import SqlalchemySettings from stac_fastapi.types import errors logger = logging.getLogger(__name__) class FastAPISessionMaker(_FastAPISessionMaker): """FastAPISessionMaker.""" @contextmanager def context_session(self) -> Iterator[SqlSession]: """Override base method to include exception handling.""" try: yield from self.get_db() except sa.exc.StatementError as e: if isinstance(e.orig, psycopg2.errors.UniqueViolation): raise errors.ConflictError("resource already exists") from e elif isinstance(e.orig, psycopg2.errors.ForeignKeyViolation): raise errors.ForeignKeyError("collection does not exist") from e logger.error(e, exc_info=True) raise errors.DatabaseError("unhandled database error") @attr.s class Session: """Database session management.""" reader_conn_string: str = attr.ib() writer_conn_string: str = attr.ib() @classmethod def create_from_env(cls): """Create from environment.""" return cls( reader_conn_string=os.environ["READER_CONN_STRING"], writer_conn_string=os.environ["WRITER_CONN_STRING"], ) @classmethod def create_from_settings(cls, settings: SqlalchemySettings) -> "Session": """Create a Session object from settings.""" return cls( reader_conn_string=settings.reader_connection_string, writer_conn_string=settings.writer_connection_string, ) def __attrs_post_init__(self): """Post init handler.""" self.reader: FastAPISessionMaker = FastAPISessionMaker(self.reader_conn_string) self.writer: FastAPISessionMaker = FastAPISessionMaker(self.writer_conn_string)
33.650794
87
0.708491
[ "MIT" ]
AsgerPetersen/stac-fastapi
stac_fastapi/sqlalchemy/stac_fastapi/sqlalchemy/session.py
2,120
Python
# -*- coding: utf-8 -*- import pkg_resources import platform API_YOUTU_END_POINT = 'http://api.youtu.qq.com/' API_TENCENTYUN_END_POINT = 'https://youtu.api.qcloud.com/' API_YOUTU_VIP_END_POINT = 'https://vip-api.youtu.qq.com/' APPID = 'xxx' SECRET_ID = 'xxx' SECRET_KEY = 'xx' USER_ID = 'xx' _config = { 'end_point':API_YOUTU_END_POINT, 'appid':APPID, 'secret_id':SECRET_ID, 'secret_key':SECRET_KEY, 'userid':USER_ID, } def get_app_info(): return _config def set_app_info(appid=None, secret_id=None, secret_key=None, userid=None, end_point=None): if appid: _config['appid'] = appid if secret_id: _config['secret_id'] = secret_id if secret_key: _config['secret_key'] = secret_key if userid: _config['userid'] = userid if end_point: _config['end_point'] = end_point
22.5
91
0.666667
[ "MIT" ]
qinyuanpei/wechat-assistant
TencentYoutuyun/conf.py
855
Python