content
stringlengths
7
928k
avg_line_length
float64
3.5
33.8k
max_line_length
int64
6
139k
alphanum_fraction
float64
0.08
0.96
licenses
sequence
repository_name
stringlengths
7
104
path
stringlengths
4
230
size
int64
7
928k
lang
stringclasses
1 value
class Config: def __init__(self, use_cuda=True, hidden_size=512, dropout_p=0.5, n_layers=4, batch_size=32, max_epochs=40, lr=0.0001, teacher_forcing_ratio=1.0, seed=1, max_len=428, worker_num=1 ): self.use_cuda = use_cuda self.hidden_size = hidden_size self.dropout_p = dropout_p self.n_layers = n_layers self.batch_size = batch_size self.max_epochs = max_epochs self.lr = lr self.teacher_forcing_ratio = teacher_forcing_ratio self.seed = seed self.max_len = max_len self.worker_num = worker_num
30.461538
58
0.5
[ "MIT" ]
sooftware/char-rnnlm
package/config.py
792
Python
import numpy as np import scipy as sp import matplotlib.pyplot as plt import matplotlib.mlab as mlab def updateParams(k, alpha, N,sum_log_di, x, h): div_xByAlpha = np.divide(x,alpha) powK_div_xByAlpha = np.power(div_xByAlpha, k) log_div_xByAlpha = np.log(div_xByAlpha) sum_powK_div_diByAlpha = np.sum(np.multiply(powK_div_xByAlpha, h)) sum_prod_OF_powK_div_diByAlpha_AND_log_div_diByAlpha = np.sum(np.multiply(np.multiply(powK_div_xByAlpha,log_div_xByAlpha),h)) sum_prod_OF_powK_div_diByAlpha_AND_logP2_div_diByAlpha = np.sum(np.multiply(np.multiply(powK_div_xByAlpha,np.power(log_div_xByAlpha,2)),h)) #N = d.shape[0] hessian = np.zeros((2,2)) hessian[0,0] = -1.0 * ((N/(k*k)) + sum_prod_OF_powK_div_diByAlpha_AND_logP2_div_diByAlpha) hessian[1,1] = (k/(alpha*alpha)) * (N-(k+1)*sum_powK_div_diByAlpha) hessian[0,1] = hessian[1,0] = (1.0/alpha)*sum_powK_div_diByAlpha + (k/alpha)*sum_prod_OF_powK_div_diByAlpha_AND_log_div_diByAlpha - N/alpha vec = np.zeros((2,1)) vec[0] = -1.0 *( N/k - N*np.log(alpha) + sum_log_di - sum_prod_OF_powK_div_diByAlpha_AND_log_div_diByAlpha) vec[1] = -1.0 *(k/alpha * (sum_powK_div_diByAlpha - N)) param = np.linalg.inv(hessian).dot(vec) return k+param[0], alpha+param[1] if __name__ == "__main__": #loading histograms data = np.loadtxt('myspace.csv',dtype=np.object,comments='#',delimiter=',') h = data[:,1].astype(np.int) h = np.array([x for x in h if x>0]) x = np.array([num for num in range(1, h.shape[0]+1)]) k = 1.0 alpha = 1.0 N = np.sum(h) sum_log_di = np.sum(np.multiply(np.log(x), h)) for i in range(0,20): k,alpha = updateParams(k, alpha, N, sum_log_di, x, h) print i print k print alpha print "________" x_1 = np.linspace(1,500,2500) fig = plt.figure() axs = fig.add_subplot(111) y = N * (k/alpha) * np.multiply(np.power(np.divide(x_1,alpha), k-1), np.exp(-1.0* np.power(np.divide(x_1,alpha), k))) axs.plot(x_1,y, 'b') axs.plot(x, h, 'g') plt.show()
37.071429
143
0.663776
[ "MIT" ]
omartrinidad/pattern-recognition-bit
01/Task13.py
2,076
Python
from nose.tools import eq_, ok_ from nose.plugins.skip import SkipTest # Skip test on PY3 from flask_admin._compat import PY2, as_unicode if not PY2: raise SkipTest('MongoEngine is not Python 3 compatible') from wtforms import fields from flask_admin import form from flask_admin.contrib.mongoengine import ModelView from . import setup from datetime import datetime class CustomModelView(ModelView): def __init__(self, model, name=None, category=None, endpoint=None, url=None, **kwargs): for k, v in kwargs.iteritems(): setattr(self, k, v) super(CustomModelView, self).__init__(model, name, category, endpoint, url) def create_models(db): class Model1(db.Document): test1 = db.StringField(max_length=20) test2 = db.StringField(max_length=20) test3 = db.StringField() test4 = db.StringField() datetime_field = db.DateTimeField() def __str__(self): return self.test1 class Model2(db.Document): string_field = db.StringField() int_field = db.IntField() float_field = db.FloatField() bool_field = db.BooleanField() model1 = db.ReferenceField(Model1) Model1.objects.delete() Model2.objects.delete() return Model1, Model2 def fill_db(Model1, Model2): Model1('test1_val_1', 'test2_val_1').save() Model1('test1_val_2', 'test2_val_2').save() Model1('test1_val_3', 'test2_val_3').save() Model1('test1_val_4', 'test2_val_4').save() Model1(None, 'empty_obj').save() Model2('string_field_val_1', None, None).save() Model2('string_field_val_2', None, None).save() Model2('string_field_val_3', 5000, 25.9).save() Model2('string_field_val_4', 9000, 75.5).save() Model1('datetime_obj1', datetime_field=datetime(2014,4,3,1,9,0)).save() Model1('datetime_obj2', datetime_field=datetime(2013,3,2,0,8,0)).save() def test_model(): app, db, admin = setup() Model1, Model2 = create_models(db) view = CustomModelView(Model1) admin.add_view(view) eq_(view.model, Model1) eq_(view.name, 'Model1') eq_(view.endpoint, 'model1') eq_(view._primary_key, 'id') ok_('test1' in view._sortable_columns) ok_('test2' in view._sortable_columns) ok_('test3' in view._sortable_columns) ok_('test4' in view._sortable_columns) ok_(view._create_form_class is not None) ok_(view._edit_form_class is not None) eq_(view._search_supported, False) eq_(view._filters, None) eq_(view._create_form_class.test1.field_class, fields.StringField) eq_(view._create_form_class.test2.field_class, fields.StringField) eq_(view._create_form_class.test3.field_class, fields.TextAreaField) eq_(view._create_form_class.test4.field_class, fields.TextAreaField) # Make some test clients client = app.test_client() rv = client.get('/admin/model1/') eq_(rv.status_code, 200) rv = client.get('/admin/model1/new/') eq_(rv.status_code, 200) rv = client.post('/admin/model1/new/', data=dict(test1='test1large', test2='test2')) eq_(rv.status_code, 302) model = Model1.objects.first() eq_(model.test1, 'test1large') eq_(model.test2, 'test2') eq_(model.test3, '') eq_(model.test4, '') rv = client.get('/admin/model1/') eq_(rv.status_code, 200) ok_('test1large' in rv.data) url = '/admin/model1/edit/?id=%s' % model.id rv = client.get(url) eq_(rv.status_code, 200) rv = client.post(url, data=dict(test1='test1small', test2='test2large')) eq_(rv.status_code, 302) model = Model1.objects.first() eq_(model.test1, 'test1small') eq_(model.test2, 'test2large') eq_(model.test3, '') eq_(model.test4, '') url = '/admin/model1/delete/?id=%s' % model.id rv = client.post(url) eq_(rv.status_code, 302) eq_(Model1.objects.count(), 0) def test_column_editable_list(): app, db, admin = setup() Model1, Model2 = create_models(db) view = CustomModelView(Model1, column_editable_list=[ 'test1', 'datetime_field']) admin.add_view(view) fill_db(Model1, Model2) client = app.test_client() # Test in-line edit field rendering rv = client.get('/admin/model1/') data = rv.data.decode('utf-8') ok_('data-role="x-editable"' in data) # Form - Test basic in-line edit functionality obj1 = Model1.objects.get(test1 = 'test1_val_3') rv = client.post('/admin/model1/ajax/update/', data={ 'test1-' + str(obj1.id): 'change-success-1', }) data = rv.data.decode('utf-8') ok_('Record was successfully saved.' == data) # confirm the value has changed rv = client.get('/admin/model1/') data = rv.data.decode('utf-8') ok_('change-success-1' in data) # Test validation error obj2 = Model1.objects.get(test1 = 'datetime_obj1') rv = client.post('/admin/model1/ajax/update/', data={ 'datetime_field-' + str(obj2.id): 'problematic-input', }) eq_(rv.status_code, 500) # Test invalid primary key rv = client.post('/admin/model1/ajax/update/', data={ 'test1-1000': 'problematic-input', }) data = rv.data.decode('utf-8') eq_(rv.status_code, 500) # Test editing column not in column_editable_list rv = client.post('/admin/model1/ajax/update/', data={ 'test2-1': 'problematic-input', }) data = rv.data.decode('utf-8') eq_(rv.status_code, 500) # Test in-line editing for relations view = CustomModelView(Model2, column_editable_list=[ 'model1']) admin.add_view(view) obj3 = Model2.objects.get(string_field = 'string_field_val_1') rv = client.post('/admin/model2/ajax/update/', data={ 'model1-' + str(obj3.id): str(obj1.id), }) data = rv.data.decode('utf-8') ok_('Record was successfully saved.' == data) # confirm the value has changed rv = client.get('/admin/model2/') data = rv.data.decode('utf-8') ok_('test1_val_1' in data) def test_column_filters(): app, db, admin = setup() Model1, Model2 = create_models(db) # fill DB with values fill_db(Model1, Model2) # Test string filter view = CustomModelView(Model1, column_filters=['test1']) admin.add_view(view) eq_(len(view._filters), 7) eq_([(f['index'], f['operation']) for f in view._filter_groups[u'Test1']], [ (0, 'contains'), (1, 'not contains'), (2, 'equals'), (3, 'not equal'), (4, 'empty'), (5, 'in list'), (6, 'not in list'), ]) # Make some test clients client = app.test_client() # string - equals rv = client.get('/admin/model1/?flt0_0=test1_val_1') eq_(rv.status_code, 200) data = rv.data.decode('utf-8') ok_('test2_val_1' in data) ok_('test1_val_2' not in data) # string - not equal rv = client.get('/admin/model1/?flt0_1=test1_val_1') eq_(rv.status_code, 200) data = rv.data.decode('utf-8') ok_('test2_val_1' not in data) ok_('test1_val_2' in data) # string - contains rv = client.get('/admin/model1/?flt0_2=test1_val_1') eq_(rv.status_code, 200) data = rv.data.decode('utf-8') ok_('test2_val_1' in data) ok_('test1_val_2' not in data) # string - not contains rv = client.get('/admin/model1/?flt0_3=test1_val_1') eq_(rv.status_code, 200) data = rv.data.decode('utf-8') ok_('test2_val_1' not in data) ok_('test1_val_2' in data) # string - empty rv = client.get('/admin/model1/?flt0_4=1') eq_(rv.status_code, 200) data = rv.data.decode('utf-8') ok_('empty_obj' in data) ok_('test1_val_1' not in data) ok_('test1_val_2' not in data) # string - not empty rv = client.get('/admin/model1/?flt0_4=0') eq_(rv.status_code, 200) data = rv.data.decode('utf-8') ok_('empty_obj' not in data) ok_('test1_val_1' in data) ok_('test1_val_2' in data) # string - in list rv = client.get('/admin/model1/?flt0_5=test1_val_1%2Ctest1_val_2') eq_(rv.status_code, 200) data = rv.data.decode('utf-8') ok_('test2_val_1' in data) ok_('test2_val_2' in data) ok_('test1_val_3' not in data) ok_('test1_val_4' not in data) # string - not in list rv = client.get('/admin/model1/?flt0_6=test1_val_1%2Ctest1_val_2') eq_(rv.status_code, 200) data = rv.data.decode('utf-8') ok_('test2_val_1' not in data) ok_('test2_val_2' not in data) ok_('test1_val_3' in data) ok_('test1_val_4' in data) # Test numeric filter view = CustomModelView(Model2, column_filters=['int_field']) admin.add_view(view) eq_([(f['index'], f['operation']) for f in view._filter_groups[u'Int Field']], [ (0, 'equals'), (1, 'not equal'), (2, 'greater than'), (3, 'smaller than'), (4, 'empty'), (5, 'in list'), (6, 'not in list'), ]) # integer - equals rv = client.get('/admin/model2/?flt0_0=5000') eq_(rv.status_code, 200) data = rv.data.decode('utf-8') ok_('string_field_val_3' in data) ok_('string_field_val_4' not in data) # integer - equals - test validation rv = client.get('/admin/model2/?flt0_0=badval') eq_(rv.status_code, 200) data = rv.data.decode('utf-8') ok_('Invalid Filter Value' in data) # integer - not equal rv = client.get('/admin/model2/?flt0_1=5000') eq_(rv.status_code, 200) data = rv.data.decode('utf-8') ok_('string_field_val_3' not in data) ok_('string_field_val_4' in data) # integer - greater rv = client.get('/admin/model2/?flt0_2=6000') eq_(rv.status_code, 200) data = rv.data.decode('utf-8') ok_('string_field_val_3' not in data) ok_('string_field_val_4' in data) # integer - smaller rv = client.get('/admin/model2/?flt0_3=6000') eq_(rv.status_code, 200) data = rv.data.decode('utf-8') ok_('string_field_val_3' in data) ok_('string_field_val_4' not in data) # integer - empty rv = client.get('/admin/model2/?flt0_4=1') eq_(rv.status_code, 200) data = rv.data.decode('utf-8') ok_('string_field_val_1' in data) ok_('string_field_val_2' in data) ok_('string_field_val_3' not in data) ok_('string_field_val_4' not in data) # integer - not empty rv = client.get('/admin/model2/?flt0_4=0') eq_(rv.status_code, 200) data = rv.data.decode('utf-8') ok_('string_field_val_1' not in data) ok_('string_field_val_2' not in data) ok_('string_field_val_3' in data) ok_('string_field_val_4' in data) # integer - in list rv = client.get('/admin/model2/?flt0_5=5000%2C9000') eq_(rv.status_code, 200) data = rv.data.decode('utf-8') ok_('string_field_val_1' not in data) ok_('string_field_val_2' not in data) ok_('string_field_val_3' in data) ok_('string_field_val_4' in data) # integer - in list - test validation rv = client.get('/admin/model2/?flt0_5=5000%2Cbadval') eq_(rv.status_code, 200) data = rv.data.decode('utf-8') ok_('Invalid Filter Value' in data) # integer - not in list rv = client.get('/admin/model2/?flt0_6=5000%2C9000') eq_(rv.status_code, 200) data = rv.data.decode('utf-8') ok_('string_field_val_1' in data) ok_('string_field_val_2' in data) ok_('string_field_val_3' not in data) ok_('string_field_val_4' not in data) # Test float filter view = CustomModelView(Model2, column_filters=['float_field'], endpoint="_float") admin.add_view(view) eq_([(f['index'], f['operation']) for f in view._filter_groups[u'Float Field']], [ (0, 'equals'), (1, 'not equal'), (2, 'greater than'), (3, 'smaller than'), (4, 'empty'), (5, 'in list'), (6, 'not in list'), ]) # float - equals rv = client.get('/admin/_float/?flt0_0=25.9') eq_(rv.status_code, 200) data = rv.data.decode('utf-8') ok_('string_field_val_3' in data) ok_('string_field_val_4' not in data) # float - equals - test validation rv = client.get('/admin/_float/?flt0_0=badval') eq_(rv.status_code, 200) data = rv.data.decode('utf-8') ok_('Invalid Filter Value' in data) # float - not equal rv = client.get('/admin/_float/?flt0_1=25.9') eq_(rv.status_code, 200) data = rv.data.decode('utf-8') ok_('string_field_val_3' not in data) ok_('string_field_val_4' in data) # float - greater rv = client.get('/admin/_float/?flt0_2=60.5') eq_(rv.status_code, 200) data = rv.data.decode('utf-8') ok_('string_field_val_3' not in data) ok_('string_field_val_4' in data) # float - smaller rv = client.get('/admin/_float/?flt0_3=60.5') eq_(rv.status_code, 200) data = rv.data.decode('utf-8') ok_('string_field_val_3' in data) ok_('string_field_val_4' not in data) # float - empty rv = client.get('/admin/_float/?flt0_4=1') eq_(rv.status_code, 200) data = rv.data.decode('utf-8') ok_('string_field_val_1' in data) ok_('string_field_val_2' in data) ok_('string_field_val_3' not in data) ok_('string_field_val_4' not in data) # float - not empty rv = client.get('/admin/_float/?flt0_4=0') eq_(rv.status_code, 200) data = rv.data.decode('utf-8') ok_('string_field_val_1' not in data) ok_('string_field_val_2' not in data) ok_('string_field_val_3' in data) ok_('string_field_val_4' in data) # float - in list rv = client.get('/admin/_float/?flt0_5=25.9%2C75.5') eq_(rv.status_code, 200) data = rv.data.decode('utf-8') ok_('string_field_val_1' not in data) ok_('string_field_val_2' not in data) ok_('string_field_val_3' in data) ok_('string_field_val_4' in data) # float - in list - test validation rv = client.get('/admin/_float/?flt0_5=25.9%2Cbadval') eq_(rv.status_code, 200) data = rv.data.decode('utf-8') ok_('Invalid Filter Value' in data) # float - not in list rv = client.get('/admin/_float/?flt0_6=25.9%2C75.5') eq_(rv.status_code, 200) data = rv.data.decode('utf-8') ok_('string_field_val_1' in data) ok_('string_field_val_2' in data) ok_('string_field_val_3' not in data) ok_('string_field_val_4' not in data) # Test datetime filter view = CustomModelView(Model1, column_filters=['datetime_field'], endpoint="_datetime") admin.add_view(view) eq_([(f['index'], f['operation']) for f in view._filter_groups[u'Datetime Field']], [ (0, 'equals'), (1, 'not equal'), (2, 'greater than'), (3, 'smaller than'), (4, 'between'), (5, 'not between'), (6, 'empty'), ]) # datetime - equals rv = client.get('/admin/_datetime/?flt0_0=2014-04-03+01%3A09%3A00') eq_(rv.status_code, 200) data = rv.data.decode('utf-8') ok_('datetime_obj1' in data) ok_('datetime_obj2' not in data) # datetime - not equal rv = client.get('/admin/_datetime/?flt0_1=2014-04-03+01%3A09%3A00') eq_(rv.status_code, 200) data = rv.data.decode('utf-8') ok_('datetime_obj1' not in data) ok_('datetime_obj2' in data) # datetime - greater rv = client.get('/admin/_datetime/?flt0_2=2014-04-03+01%3A08%3A00') eq_(rv.status_code, 200) data = rv.data.decode('utf-8') ok_('datetime_obj1' in data) ok_('datetime_obj2' not in data) # datetime - smaller rv = client.get('/admin/_datetime/?flt0_3=2014-04-03+01%3A08%3A00') eq_(rv.status_code, 200) data = rv.data.decode('utf-8') ok_('datetime_obj1' not in data) ok_('datetime_obj2' in data) # datetime - between rv = client.get('/admin/_datetime/?flt0_4=2014-04-02+00%3A00%3A00+to+2014-11-20+23%3A59%3A59') eq_(rv.status_code, 200) data = rv.data.decode('utf-8') ok_('datetime_obj1' in data) ok_('datetime_obj2' not in data) # datetime - not between rv = client.get('/admin/_datetime/?flt0_5=2014-04-02+00%3A00%3A00+to+2014-11-20+23%3A59%3A59') eq_(rv.status_code, 200) data = rv.data.decode('utf-8') ok_('datetime_obj1' not in data) ok_('datetime_obj2' in data) # datetime - empty rv = client.get('/admin/_datetime/?flt0_6=1') eq_(rv.status_code, 200) data = rv.data.decode('utf-8') ok_('test1_val_1' in data) ok_('datetime_obj1' not in data) ok_('datetime_obj2' not in data) # datetime - not empty rv = client.get('/admin/_datetime/?flt0_6=0') eq_(rv.status_code, 200) data = rv.data.decode('utf-8') ok_('test1_val_1' not in data) ok_('datetime_obj1' in data) ok_('datetime_obj2' in data) def test_default_sort(): app, db, admin = setup() M1, _ = create_models(db) M1(test1='c').save() M1(test1='b').save() M1(test1='a').save() eq_(M1.objects.count(), 3) view = CustomModelView(M1, column_default_sort='test1') admin.add_view(view) _, data = view.get_list(0, None, None, None, None) eq_(data[0].test1, 'a') eq_(data[1].test1, 'b') eq_(data[2].test1, 'c') def test_extra_fields(): app, db, admin = setup() Model1, _ = create_models(db) view = CustomModelView( Model1, form_extra_fields={ 'extra_field': fields.StringField('Extra Field') } ) admin.add_view(view) client = app.test_client() rv = client.get('/admin/model1/new/') eq_(rv.status_code, 200) # Check presence and order data = rv.data.decode('utf-8') ok_('Extra Field' in data) pos1 = data.find('Extra Field') pos2 = data.find('Test1') ok_(pos2 < pos1) def test_extra_field_order(): app, db, admin = setup() Model1, _ = create_models(db) view = CustomModelView( Model1, form_columns=('extra_field', 'test1'), form_extra_fields={ 'extra_field': fields.StringField('Extra Field') } ) admin.add_view(view) client = app.test_client() rv = client.get('/admin/model1/new/') eq_(rv.status_code, 200) # Check presence and order data = rv.data.decode('utf-8') pos1 = data.find('Extra Field') pos2 = data.find('Test1') ok_(pos2 > pos1) def test_custom_form_base(): app, db, admin = setup() class TestForm(form.BaseForm): pass Model1, _ = create_models(db) view = CustomModelView( Model1, form_base_class=TestForm ) admin.add_view(view) ok_(hasattr(view._create_form_class, 'test1')) create_form = view.create_form() ok_(isinstance(create_form, TestForm)) def test_subdocument_config(): app, db, admin = setup() class Comment(db.EmbeddedDocument): name = db.StringField(max_length=20, required=True) value = db.StringField(max_length=20) class Model1(db.Document): test1 = db.StringField(max_length=20) subdoc = db.EmbeddedDocumentField(Comment) # Check only view1 = CustomModelView( Model1, form_subdocuments = { 'subdoc': { 'form_columns': ('name',) } } ) ok_(hasattr(view1._create_form_class, 'subdoc')) form = view1.create_form() ok_('name' in dir(form.subdoc.form)) ok_('value' not in dir(form.subdoc.form)) # Check exclude view2 = CustomModelView( Model1, form_subdocuments = { 'subdoc': { 'form_excluded_columns': ('value',) } } ) form = view2.create_form() ok_('name' in dir(form.subdoc.form)) ok_('value' not in dir(form.subdoc.form)) def test_subdocument_class_config(): app, db, admin = setup() from flask_admin.contrib.mongoengine import EmbeddedForm class Comment(db.EmbeddedDocument): name = db.StringField(max_length=20, required=True) value = db.StringField(max_length=20) class Model1(db.Document): test1 = db.StringField(max_length=20) subdoc = db.EmbeddedDocumentField(Comment) class EmbeddedConfig(EmbeddedForm): form_columns = ('name',) # Check only view1 = CustomModelView( Model1, form_subdocuments = { 'subdoc': EmbeddedConfig() } ) form = view1.create_form() ok_('name' in dir(form.subdoc.form)) ok_('value' not in dir(form.subdoc.form)) def test_nested_subdocument_config(): app, db, admin = setup() # Check recursive class Comment(db.EmbeddedDocument): name = db.StringField(max_length=20, required=True) value = db.StringField(max_length=20) class Nested(db.EmbeddedDocument): name = db.StringField(max_length=20, required=True) comment = db.EmbeddedDocumentField(Comment) class Model1(db.Document): test1 = db.StringField(max_length=20) nested = db.EmbeddedDocumentField(Nested) view1 = CustomModelView( Model1, form_subdocuments = { 'nested': { 'form_subdocuments': { 'comment': { 'form_columns': ('name',) } } } } ) form = view1.create_form() ok_('name' in dir(form.nested.form.comment.form)) ok_('value' not in dir(form.nested.form.comment.form)) def test_nested_list_subdocument(): app, db, admin = setup() class Comment(db.EmbeddedDocument): name = db.StringField(max_length=20, required=True) value = db.StringField(max_length=20) class Model1(db.Document): test1 = db.StringField(max_length=20) subdoc = db.ListField(db.EmbeddedDocumentField(Comment)) # Check only view1 = CustomModelView( Model1, form_subdocuments = { 'subdoc': { 'form_subdocuments': { None: { 'form_columns': ('name',) } } } } ) form = view1.create_form() inline_form = form.subdoc.unbound_field.args[2] ok_('name' in dir(inline_form)) ok_('value' not in dir(inline_form)) def test_list_subdocument_validation(): app, db, admin = setup() class Comment(db.EmbeddedDocument): name = db.StringField(max_length=20, required=True) value = db.StringField(max_length=20) class Model1(db.Document): test1 = db.StringField(max_length=20) subdoc = db.ListField(db.EmbeddedDocumentField(Comment)) view = CustomModelView(Model1) admin.add_view(view) client = app.test_client() rv = client.post('/admin/model1/new/', data={'test1': 'test1large', 'subdoc-0-name': 'comment', 'subdoc-0-value': 'test'}) eq_(rv.status_code, 302) rv = client.post('/admin/model1/new/', data={'test1': 'test1large', 'subdoc-0-name': '', 'subdoc-0-value': 'test'}) eq_(rv.status_code, 200) ok_('This field is required' in rv.data) def test_ajax_fk(): app, db, admin = setup() Model1, Model2 = create_models(db) view = CustomModelView( Model2, url='view', form_ajax_refs={ 'model1': { 'fields': ('test1', 'test2') } } ) admin.add_view(view) ok_(u'model1' in view._form_ajax_refs) model = Model1(test1=u'first') model.save() model2 = Model1(test1=u'foo', test2=u'bar').save() # Check loader loader = view._form_ajax_refs[u'model1'] mdl = loader.get_one(model.id) eq_(mdl.test1, model.test1) items = loader.get_list(u'fir') eq_(len(items), 1) eq_(items[0].id, model.id) items = loader.get_list(u'bar') eq_(len(items), 1) eq_(items[0].test1, u'foo') # Check form generation form = view.create_form() eq_(form.model1.__class__.__name__, u'AjaxSelectField') with app.test_request_context('/admin/view/'): ok_(u'value=""' not in form.model1()) form.model1.data = model needle = u'data-json="[&quot;%s&quot;, &quot;first&quot;]"' % as_unicode(model.id) ok_(needle in form.model1()) ok_(u'value="%s"' % as_unicode(model.id) in form.model1()) # Check querying client = app.test_client() req = client.get(u'/admin/view/ajax/lookup/?name=model1&query=foo') eq_(req.data, u'[["%s", "foo"]]' % model2.id) # Check submitting client.post('/admin/view/new/', data={u'model1': as_unicode(model.id)}) mdl = Model2.objects.first() ok_(mdl is not None) ok_(mdl.model1 is not None) eq_(mdl.model1.id, model.id) eq_(mdl.model1.test1, u'first') def test_nested_ajax_refs(): app, db, admin = setup() # Check recursive class Comment(db.Document): name = db.StringField(max_length=20, required=True) value = db.StringField(max_length=20) class Nested(db.EmbeddedDocument): name = db.StringField(max_length=20, required=True) comment = db.ReferenceField(Comment) class Model1(db.Document): test1 = db.StringField(max_length=20) nested = db.EmbeddedDocumentField(Nested) view1 = CustomModelView( Model1, form_subdocuments = { 'nested': { 'form_ajax_refs': { 'comment': { 'fields': ['name'] } } } } ) form = view1.create_form() eq_(type(form.nested.form.comment).__name__, 'AjaxSelectField') ok_('nested-comment' in view1._form_ajax_refs) def test_form_flat_choices(): app, db, admin = setup() class Model(db.Document): name = db.StringField(max_length=20, choices=('a', 'b', 'c')) view = CustomModelView(Model) admin.add_view(view) form = view.create_form() eq_(form.name.choices, [('a', 'a'), ('b', 'b'), ('c', 'c')]) def test_form_args_embeddeddoc(): app, db, admin = setup() class Info(db.EmbeddedDocument): name = db.StringField() age = db.StringField() class Model(db.Document): info = db.EmbeddedDocumentField('Info') timestamp = db.DateTimeField() view = CustomModelView( Model, form_args= { 'info': {'label': 'Information'}, 'timestamp': {'label': 'Last Updated Time'} } ) admin.add_view(view) form = view.create_form() eq_(form.timestamp.label.text, 'Last Updated Time') # This is the failure eq_(form.info.label.text, 'Information') def test_simple_list_pager(): app, db, admin = setup() Model1, _ = create_models(db) class TestModelView(CustomModelView): simple_list_pager = True def get_count_query(self): assert False view = TestModelView(Model1) admin.add_view(view) count, data = view.get_list(0, None, None, None, None) ok_(count is None)
28.31405
104
0.608435
[ "Apache-2.0" ]
hexlism/css_platform
sleepyenv/lib/python2.7/site-packages/Flask_Admin-1.2.0-py2.7.egg/flask_admin/tests/mongoengine/test_basic.py
27,408
Python
""" This file offers the methods to automatically retrieve the graph Mycobacterium sp. 1554424.7. The graph is automatically retrieved from the STRING repository. References --------------------- Please cite the following if you use the data: ```bib @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } ``` """ from typing import Dict from ..automatic_graph_retrieval import AutomaticallyRetrievedGraph from ...ensmallen import Graph # pylint: disable=import-error def MycobacteriumSp15544247( directed: bool = False, preprocess: bool = True, load_nodes: bool = True, verbose: int = 2, cache: bool = True, cache_path: str = "graphs/string", version: str = "links.v11.5", **additional_graph_kwargs: Dict ) -> Graph: """Return new instance of the Mycobacterium sp. 1554424.7 graph. The graph is automatically retrieved from the STRING repository. Parameters ------------------- directed: bool = False Wether to load the graph as directed or undirected. By default false. preprocess: bool = True Whether to preprocess the graph to be loaded in optimal time and memory. load_nodes: bool = True, Whether to load the nodes vocabulary or treat the nodes simply as a numeric range. verbose: int = 2, Wether to show loading bars during the retrieval and building of the graph. cache: bool = True Whether to use cache, i.e. download files only once and preprocess them only once. cache_path: str = "graphs" Where to store the downloaded graphs. version: str = "links.v11.5" The version of the graph to retrieve. The available versions are: - homology.v11.5 - physical.links.v11.5 - links.v11.5 additional_graph_kwargs: Dict Additional graph kwargs. Returns ----------------------- Instace of Mycobacterium sp. 1554424.7 graph. References --------------------- Please cite the following if you use the data: ```bib @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } ``` """ return AutomaticallyRetrievedGraph( graph_name="MycobacteriumSp15544247", repository="string", version=version, directed=directed, preprocess=preprocess, load_nodes=load_nodes, verbose=verbose, cache=cache, cache_path=cache_path, additional_graph_kwargs=additional_graph_kwargs )()
33.380952
223
0.678174
[ "MIT" ]
AnacletoLAB/ensmallen
bindings/python/ensmallen/datasets/string/mycobacteriumsp15544247.py
3,505
Python
from ..data.models import TaskRow from ..data.postgres_async_db import AsyncPostgresDB from .utils import read_body, format_response, handle_exceptions import asyncio class TaskApi(object): _task_table = None lock = asyncio.Lock() def __init__(self, app): app.router.add_route( "GET", "/flows/{flow_id}/runs/{run_number}/steps/{step_name}/" "tasks", self.get_tasks, ) app.router.add_route( "GET", "/flows/{flow_id}/runs/{run_number}/steps/{step_name}/" "tasks/{task_id}", self.get_task, ) app.router.add_route( "POST", "/flows/{flow_id}/runs/{run_number}/steps/{step_name}/" "task", self.create_task, ) self._async_table = AsyncPostgresDB.get_instance().task_table_postgres @format_response @handle_exceptions async def get_tasks(self, request): """ --- description: get all tasks associated with the specified step. tags: - Tasks parameters: - name: "flow_id" in: "path" description: "flow_id" required: true type: "string" - name: "run_number" in: "path" description: "run_number" required: true type: "integer" - name: "step_name" in: "path" description: "step_name" required: true type: "string" produces: - text/plain responses: "200": description: successful operation. Return tasks "405": description: invalid HTTP Method """ flow_name = request.match_info.get("flow_id") run_number = request.match_info.get("run_number") step_name = request.match_info.get("step_name") return await self._async_table.get_tasks(flow_name, run_number, step_name) @format_response @handle_exceptions async def get_task(self, request): """ --- description: get all artifacts associated with the specified task. tags: - Tasks parameters: - name: "flow_id" in: "path" description: "flow_id" required: true type: "string" - name: "run_number" in: "path" description: "run_number" required: true type: "integer" - name: "step_name" in: "path" description: "step_name" required: true type: "string" - name: "task_id" in: "path" description: "task_id" required: true type: "integer" produces: - text/plain responses: "200": description: successful operation. Return task "405": description: invalid HTTP Method """ flow_name = request.match_info.get("flow_id") run_number = request.match_info.get("run_number") step_name = request.match_info.get("step_name") task_id = request.match_info.get("task_id") return await self._async_table.get_task( flow_name, run_number, step_name, task_id ) @format_response @handle_exceptions async def create_task(self, request): """ --- description: This end-point allow to test that service is up. tags: - Tasks parameters: - name: "flow_id" in: "path" description: "flow_id" required: true type: "string" - name: "run_number" in: "path" description: "run_number" required: true type: "integer" - name: "step_name" in: "path" description: "step_name" required: true type: "string" - name: "body" in: "body" description: "body" required: true schema: type: object properties: user_name: type: string tags: type: object system_tags: type: object produces: - 'text/plain' responses: "202": description: successful operation. Return newly registered task "405": description: invalid HTTP Method """ flow_id = request.match_info.get("flow_id") run_number = request.match_info.get("run_number") step_name = request.match_info.get("step_name") body = await read_body(request.content) user = body.get("user_name") tags = body.get("tags") system_tags = body.get("system_tags") task = TaskRow( flow_id=flow_id, run_number=run_number, step_name=step_name, user_name=user, tags=tags, system_tags=system_tags, ) return await self._async_table.add_task(task)
29.264368
86
0.530244
[ "Apache-2.0" ]
ferras/metaflow-service-clone
metadata_service/api/task.py
5,092
Python
from time import sleep from os import system chars = "abcdefghijklmnopqrstuvwxyz1234567890" morseCode = [".-", "-...", "-.-.", "-..", ".", "..-.", "--.", "....", "..", ".---", "-.-", ".-..", "--", "-.", "---", ".--.", "--.-", ".-.", "...", "-", "..-", "...-", ".--", "-..-", "-.--", "--..", ".----", "..---", "...--", "....-", ".....", "-....", "--...", "---..", "----.", "-----"] def toText(morse): global chars global morseCode morse = morse.split(" ") for char in range(len(morse)): if morse[char] == "/": morse[char] = " " else: index = morseCode.index(morse[char]) morse[char] = chars[index] morse = "".join(morse) return morse def toMorse(text): global chars global morseCode text = text.replace(" ", "/ ") text = list(text) for char in range(len(text)): if text[char] != "/" and text[char] != " ": index = chars.index(text[char]) text[char] = morseCode[index] if char != len(text) - 1: text[char] += " " text = "".join(text) return text def flash(morse): unit = 1 system("cls") for char in morse: if char == ".": print(".") sleep(unit) system("cls") sleep(unit) elif char == "-": print(".") sleep(unit * 3) system("cls") sleep(unit) elif char == " ": sleep(unit) system("cls") elif char == "/": sleep(unit) system("cls") if __name__ == "__main__": print(toText(".... . .-.. .-.. --- / -.. .- .. .-.. -.-- / .--. .-. --- --. .-. .- -- -- . .-. / --. --- --- -.. / .-.. ..- -.-. -.- / --- -. / - .... . / -.-. .... .- .-.. .-.. . -. --. . ... / - --- -.. .- -.--")) print(toMorse("hello daily programmer good luck on the challenges today")) flash(".... . .-.. .-.. --- / -.. .- .. .-.. -.-- / .--. .-. --- --. .-. .- -- -- . .-. / --. --- --- -.. / .-.. ..- -.-. -.- / --- -. / - .... . / -.-. .... .- .-.. .-.. . -. --. . ... / - --- -.. .- -.--")
36.966102
289
0.331958
[ "MIT" ]
ngmhprogramming/DailyProgrammer
Everything/python_easy_7.py
2,181
Python
""" How to use RxPY to prepare batches for asyncio client. """ import asyncio from csv import DictReader import rx from rx import operators as ops from rx.scheduler.eventloop import AsyncIOScheduler from influxdb_client import Point from influxdb_client.client.influxdb_client_async import InfluxDBClientAsync def csv_to_generator(csv_file_path): """ Parse your CSV file into generator """ for row in DictReader(open(csv_file_path, 'r')): point = Point('financial-analysis') \ .tag('type', 'vix-daily') \ .field('open', float(row['VIX Open'])) \ .field('high', float(row['VIX High'])) \ .field('low', float(row['VIX Low'])) \ .field('close', float(row['VIX Close'])) \ .time(row['Date']) yield point async def main(): async with InfluxDBClientAsync(url='http://localhost:8086', token='my-token', org='my-org') as client: write_api = client.write_api() """ Async write """ async def async_write(batch): """ Prepare async task """ await write_api.write(bucket='my-bucket', record=batch) return batch """ Prepare batches from generator """ batches = rx \ .from_iterable(csv_to_generator('vix-daily.csv')) \ .pipe(ops.buffer_with_count(500)) \ .pipe(ops.map(lambda batch: rx.from_future(asyncio.ensure_future(async_write(batch)))), ops.merge_all()) done = asyncio.Future() """ Write batches by subscribing to Rx generator """ batches.subscribe(on_next=lambda batch: print(f'Written batch... {len(batch)}'), on_error=lambda ex: print(f'Unexpected error: {ex}'), on_completed=lambda: done.set_result(0), scheduler=AsyncIOScheduler(asyncio.get_event_loop())) """ Wait to finish all writes """ await done if __name__ == "__main__": asyncio.run(main())
29.814286
116
0.581696
[ "MIT" ]
bonitoo-io/influxdb-client-python
examples/asynchronous_batching.py
2,087
Python
# Copyright 2021 ZBW – Leibniz Information Centre for Economics # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import pytest from sklearn.exceptions import NotFittedError from stwfsapy.text_features import mk_text_features from qualle.label_calibration.simple import LabelCalibrator from tests.common import DummyRegressor @pytest.fixture def calibrator(): return LabelCalibrator(DummyRegressor()) def test_lc_predict(calibrator, X): calibrator.fit(X, [3, 5]) assert np.array_equal(calibrator.predict(X), [0, 1]) def test_lc_predict_without_fit_raises_exc(calibrator, X): with pytest.raises(NotFittedError): calibrator.predict(X) def test_lc_fit_fits_regressor_with_txt_features(calibrator, X, mocker): y = [3, 5] txt_features = mk_text_features().fit(X) X_transformed = txt_features.transform(X) spy = mocker.spy(calibrator.regressor, 'fit') calibrator.fit(X, y) spy.assert_called_once() assert (spy.call_args[0][0].toarray() == X_transformed.toarray()).all() assert spy.call_args[0][1] == y
32.428571
75
0.750157
[ "Apache-2.0" ]
annakasprzik/qualle
tests/label_calibration/test_simple.py
1,591
Python
""" main_MST.py Skript illustrating the calculation of a minimum weight spanning tree for an exemplary graph instance. Supplemental Material for the Lecture Notes "Networks - A brief Introduction using a Paradigmatic Combinatorial Optimization Problem" at the international summer school "Modern Computational Science 10 - Energy of the Future" held in Oldenburg, September 3-14, 2018 Author: O. Melchert Date: 2018-09-11 """ import sys from LibMCS2018 import * def main(): G = fetchWeightedGraph(sys.argv[1]) T,Twgt = mstKruskal(G) print mstGraphviz(G,T) main() # EOF: main_MST.py
24.958333
77
0.764608
[ "MIT" ]
omelchert/MCS2018_Networks
main_MST.py
599
Python
import os import requests WEBHOOK_URL = os.environ['DJANGO_WEBHOOK_URL'] def send_message(author_name: str, message: str) -> bool: json_data = { # 'content': f'**{name}**\n\n{message}' 'embeds': [ { 'author': { 'name': author_name, }, 'title': 'New message', 'description': message } ] } response = requests.post(WEBHOOK_URL, json=json_data) return 200 <= response.status_code < 300
23.26087
57
0.500935
[ "MIT" ]
archimedeans/integration-bee
round/webhooks.py
535
Python
""" ASGI config for anyberry project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.2/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'anyberry.settings') application = get_asgi_application()
23.117647
78
0.78626
[ "MIT" ]
Egor4ik325/anyberry
web-api/anyberry/asgi.py
393
Python
""" The MIT License (MIT) Copyright (c) 2017 Andreas Poppele Copyright (c) 2017 Roland Jaeger Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from ..scrabTask import FileTask import os name = "LanguageDetector" version = "1.1.1" class LanguageDetector(FileTask): cpp_extensions = ['.cpp', '.c++', '.cc', '.cxx', '.c', '.h', '.hpp', '.hxx'] c_extensions = ['.c', '.h'] rust_extensions = ['.rs'] ruby_extensions = ['.rb'] java_extensions = ['.java'] go_extensions = ['.go'] php_extensions = ['.php', '.phtml', '.php3', '.php4', '.php5', '.php7', '.phps'] js_extensions = ['.js'] objective_c_extensions = ['.h', '.m', '.mm', '.C'] swift_extensions = ['.swift'] c_sharp_extensions = ['.cs'] python_extensions = ['.py'] """ Tries to detect the programming language of a library based on the file extension Example: LanguageDetector: main_language: C languages: - C - C++ - Python :param task_params: Parameter given explicitly for this task, for all projects, defined in the task.yaml :param global_args: Arguments that will be passed to all tasks. They _might_ contain something that is useful for the task, but the task has to check if it is _there_ as these are user provided. If they are needed to work that check should happen in the argHandler. """ def __init__(self, parameter, global_args): super(LanguageDetector, self).__init__(name, version, parameter, global_args) # dictionary containing the common file extensions # for each of the languages self.__language_extensions = self.__get_language_extensions() self.__report = self.__get_files_per_language() def __get_language_extensions(self): """ :returns: A directory of the considered language extensions """ return { 'C++': self.cpp_extensions, 'C': self.c_extensions, 'Rust': self.rust_extensions, 'Ruby': self.ruby_extensions, 'Java': self.java_extensions, 'Go': self.go_extensions, 'PHP': self.php_extensions, 'JavaScript': self.js_extensions, 'Objective-C': self.objective_c_extensions, 'Swift': self.swift_extensions, 'C#': self.c_sharp_extensions, 'Python': self.python_extensions } def __get_files_per_language(self): """ :returns: A default directory of the considered languages, their extensions and the amount of files that have that extension (default=0) """ return { 'C++': {extension: 0 for extension in self.cpp_extensions}, 'C': {extension: 0 for extension in self.c_extensions}, 'Rust': {extension: 0 for extension in self.rust_extensions}, 'Ruby': {extension: 0 for extension in self.ruby_extensions}, 'Java': {extension: 0 for extension in self.java_extensions}, 'Go': {extension: 0 for extension in self.go_extensions}, 'PHP': {extension: 0 for extension in self.php_extensions}, 'JavaScript': {extension: 0 for extension in self.js_extensions}, 'Objective-C': {extension: 0 for extension in self.objective_c_extensions}, 'Swift': {extension: 0 for extension in self.swift_extensions}, 'C#': {extension: 0 for extension in self.c_sharp_extensions}, 'Python': {extension: 0 for extension in self.python_extensions}, } def __decide_h_extension(self): """ Decides which language 'owns' how many .h files :returns: The report with divided header files """ report = self.__report h_files = report['C']['.h'] if h_files > 0: c_files = (sum(report['C'].values()) - h_files) cpp_files = (sum(report['C++'].values()) - h_files - report['C++']['.c']) oc_files = ( sum(report['Objective-C'].values()) - h_files) lang_fiels = c_files + cpp_files + oc_files # Header only libraries are 'common' in C and C++ # the benefit of doubt goes to C if lang_fiels == 0: report['C']['.h'] = 1 report['C++']['.h'] = 0 report['Objective-C']['.h'] = 0 else: report['C']['.h'] = (h_files * c_files / lang_fiels) report['C++']['.h'] = (h_files * cpp_files / lang_fiels) report['Objective-C']['.h'] = (h_files * oc_files / lang_fiels) return report def __calculate_main_language(self, report): """ Calculates the main language (maximum of files extensions) :param report: The report :returns: The main language. """ max_files = 0 max_lang = None for language in report: lang_fiels = sum(report[language].values()) if max_files < lang_fiels: max_lang = language max_files = lang_fiels return max_lang def __calculate_used_languages(self, report): """ Calculates the used languages by throwing away the extension counts and collapsing them to the language. Only languages that have at least one file extension are kept and will appear in the report :param report: The report :returns: The used languages. """ languages = {} for language in report: total_files = sum(report[language].values()) if total_files > 0: languages[language] = total_files return sorted(languages, key=languages.get, reverse=True) def scrab(self, project, filepath, file): """ Counts the files that have an extension of one of the languages :param project: The project that the scrab task shall analyse :param filepath: The filepath to the file that can be analysed :param file: The file as string that can be analysed :returns: Report that contains the scrabbed information of *this* file - the extensions have either a count of 0 or 1 """ filename, file_extension = os.path.splitext(filepath) for language in self.__language_extensions: if file_extension in self.__language_extensions[language]: self.__report[language][file_extension] += 1 def report(self): """ Decides which headers files are (probable) from which language, calculates the main language and removes redundant / unnecessary detailed information from the report :param report: The complete report this task created :returns: Report that contains all scrabbed information eg.: LanguageDetector: main_language: C languages: - C - C++ - Python """ pre_report = self.__decide_h_extension() main_language = self.__calculate_main_language(pre_report) # write the result to the report report = {} report['main_language'] = main_language report['languages'] = self.__calculate_used_languages(pre_report) return report
35.706564
79
0.561635
[ "MIT" ]
Eyenseo/gitScrabber
gitScrabber/scrabTasks/file/languageDetector.py
9,248
Python
# Core Pkgs import streamlit as st # EDA Pkgs import pandas as pd import numpy as np from PIL import Image # Utils import os import joblib import hashlib # passlib,bcrypt # Data Viz Pkgs import matplotlib.pyplot as plt import matplotlib matplotlib.use('Agg') # DB from managed_db import * # Password def generate_hashes(password): return hashlib.sha256(str.encode(password)).hexdigest() def verify_hashes(password,hashed_text): if generate_hashes(password) == hashed_text: return hashed_text return False feature_names_best = ['age', 'sex', 'steroid', 'antivirals', 'fatigue', 'spiders', 'ascites','varices', 'bilirubin', 'alk_phosphate', 'sgot', 'albumin', 'protime','histology'] gender_dict = {"male":1,"female":2} feature_dict = {"No":1,"Yes":2} def get_value(val,my_dict): for key,value in my_dict.items(): if val == key: return value def get_key(val,my_dict): for key,value in my_dict.items(): if val == key: return key def get_fvalue(val): feature_dict = {"No":1,"Yes":2} for key,value in feature_dict.items(): if val == key: return value # Load ML Models def load_model(model_file): loaded_model = joblib.load(open(os.path.join(model_file),"rb")) return loaded_model # ML Interpretation import lime import lime.lime_tabular html_temp = """ <div style="background-color:{};padding:10px;border-radius:10px"> <h1 style="color:white;text-align:center;">Disease Mortality Prediction </h1> <h5 style="color:white;text-align:center;">Hepatitis B </h5> </div> """ # Avatar Image using a url avatar1 ="https://www.w3schools.com/howto/img_avatar1.png" avatar2 ="https://www.w3schools.com/howto/img_avatar2.png" result_temp =""" <div style="background-color:#464e5f;padding:10px;border-radius:10px;margin:10px;"> <h4 style="color:white;text-align:center;">Algorithm:: {}</h4> <img src="https://www.w3schools.com/howto/img_avatar.png" alt="Avatar" style="vertical-align: middle;float:left;width: 50px;height: 50px;border-radius: 50%;" > <br/> <br/> <p style="text-align:justify;color:white">{} % probalibilty that Patient {}s</p> </div> """ result_temp2 =""" <div style="background-color:#464e5f;padding:10px;border-radius:10px;margin:10px;"> <h4 style="color:white;text-align:center;">Algorithm:: {}</h4> <img src="https://www.w3schools.com/howto/{}" alt="Avatar" style="vertical-align: middle;float:left;width: 50px;height: 50px;border-radius: 50%;" > <br/> <br/> <p style="text-align:justify;color:white">{} % probalibilty that Patient {}s</p> </div> """ prescriptive_message_temp =""" <div style="background-color:silver;overflow-x: auto; padding:10px;border-radius:5px;margin:10px;"> <h3 style="text-align:justify;color:black;padding:10px">Recommended Life style modification</h3> <ul> <li style="text-align:justify;color:black;padding:10px">Exercise Daily</li> <li style="text-align:justify;color:black;padding:10px">Get Plenty of Rest</li> <li style="text-align:justify;color:black;padding:10px">Exercise Daily</li> <li style="text-align:justify;color:black;padding:10px">Avoid Alchol</li> <li style="text-align:justify;color:black;padding:10px">Proper diet</li> <ul> <h3 style="text-align:justify;color:black;padding:10px">Medical Mgmt</h3> <ul> <li style="text-align:justify;color:black;padding:10px">Consult your doctor</li> <li style="text-align:justify;color:black;padding:10px">Take your interferons</li> <li style="text-align:justify;color:black;padding:10px">Go for checkups</li> <ul> </div> """ descriptive_message_temp =""" <div style="background-color:silver;overflow-x: auto; padding:10px;border-radius:5px;margin:10px;"> <h3 style="text-align:justify;color:black;padding:10px">Definition</h3> <p>Hepatitis B is a viral infection that attacks the liver and can cause both acute and chronic disease.</p> </div> """ @st.cache def load_image(img): im =Image.open(os.path.join(img)) return im def change_avatar(sex): if sex == "male": avatar_img = 'img_avatar.png' else: avatar_img = 'img_avatar2.png' return avatar_img def main(): """Hep Mortality Prediction App""" # st.title("Hepatitis Mortality Prediction App") st.markdown(html_temp.format('royalblue'),unsafe_allow_html=True) menu = ["Home","Login","SignUp"] sub_menu = ["Plot","Prediction"] #,"Metrics"] choice = st.sidebar.selectbox("Menu",menu) if choice == "Home": st.subheader("Home") # st.text("What is Hepatitis?") st.markdown(descriptive_message_temp,unsafe_allow_html=True) st.image(load_image('hepimage.jpg')) elif choice == "Login": username = st.sidebar.text_input("Username") password = st.sidebar.text_input("Password",type='password') if st.sidebar.checkbox("Login"): create_usertable() hashed_pswd = generate_hashes(password) result = login_user(username,verify_hashes(password,hashed_pswd)) # if password == "12345": if result: st.success("Welcome {}".format(username)) activity = st.selectbox("Activity",sub_menu) if activity == "Plot": st.subheader("Data Vis Plot") df = pd.read_csv("clean_hepatitis_dataset.csv") st.dataframe(df) df['class'].value_counts().plot(kind='bar') st.pyplot() # Freq Dist Plot freq_df = pd.read_csv("freq_df_hepatitis_dataset.csv") st.bar_chart(freq_df['count']) if st.checkbox("Area Chart"): all_columns = df.columns.to_list() feat_choices = st.multiselect("Choose a Feature",all_columns) new_df = df[feat_choices] st.area_chart(new_df) elif activity == "Prediction": st.subheader("Predictive Analytics") age = st.number_input("Age",7,80) sex = st.radio("Sex",tuple(gender_dict.keys())) steroid = st.radio("Do You Take Steroids?",tuple(feature_dict.keys())) antivirals = st.radio("Do You Take Antivirals?",tuple(feature_dict.keys())) fatigue = st.radio("Do You Have Fatigue",tuple(feature_dict.keys())) spiders = st.radio("Presence of Spider Naeve",tuple(feature_dict.keys())) ascites = st.selectbox("Ascities",tuple(feature_dict.keys())) varices = st.selectbox("Presence of Varices",tuple(feature_dict.keys())) bilirubin = st.number_input("bilirubin Content",0.0,8.0) alk_phosphate = st.number_input("Alkaline Phosphate Content",0.0,296.0) sgot = st.number_input("Sgot",0.0,648.0) albumin = st.number_input("Albumin",0.0,6.4) protime = st.number_input("Prothrombin Time",0.0,100.0) histology = st.selectbox("Histology",tuple(feature_dict.keys())) feature_list = [age,get_value(sex,gender_dict),get_fvalue(steroid),get_fvalue(antivirals),get_fvalue(fatigue),get_fvalue(spiders),get_fvalue(ascites),get_fvalue(varices),bilirubin,alk_phosphate,sgot,albumin,int(protime),get_fvalue(histology)] st.write(len(feature_list)) st.write(feature_list) pretty_result = {"age":age,"sex":sex,"steroid":steroid,"antivirals":antivirals,"fatigue":fatigue,"spiders":spiders,"ascites":ascites,"varices":varices,"bilirubin":bilirubin,"alk_phosphate":alk_phosphate,"sgot":sgot,"albumin":albumin,"protime":protime,"histolog":histology} st.json(pretty_result) single_sample = np.array(feature_list).reshape(1,-1) # ML model_choice = st.selectbox("Select Model",["LR","KNN","DecisionTree"]) if st.button("Predict"): if model_choice == "KNN": loaded_model = load_model("knn_hepB_model.pkl") prediction = loaded_model.predict(single_sample) pred_prob = loaded_model.predict_proba(single_sample) elif model_choice == "DecisionTree": loaded_model = load_model("decision_tree_clf_hepB_model.pkl") prediction = loaded_model.predict(single_sample) pred_prob = loaded_model.predict_proba(single_sample) else: loaded_model = load_model("logistic_regression_hepB_model.pkl") prediction = loaded_model.predict(single_sample) pred_prob = loaded_model.predict_proba(single_sample) # st.write(prediction) # prediction_label = {"Die":1,"Live":2} # final_result = get_key(prediction,prediction_label) if prediction == 1: st.warning("Patient Dies") pred_probability_score = {"Die":pred_prob[0][0]*100,"Live":pred_prob[0][1]*100} st.subheader("Prediction Probability Score using {}".format(model_choice)) st.json(pred_probability_score) st.subheader("Prescriptive Analytics") st.markdown(prescriptive_message_temp,unsafe_allow_html=True) else: st.success("Patient Lives") pred_probability_score = {"Die":pred_prob[0][0]*100,"Live":pred_prob[0][1]*100} st.subheader("Prediction Probability Score using {}".format(model_choice)) st.json(pred_probability_score) if st.checkbox("Interpret"): if model_choice == "KNN": loaded_model = load_model("knn_hepB_model.pkl") elif model_choice == "DecisionTree": loaded_model = load_model("decision_tree_clf_hepB_model.pkl") else: loaded_model = load_model("logistic_regression_hepB_model.pkl") # loaded_model = load_model("models/logistic_regression_model.pkl") # 1 Die and 2 Live df = pd.read_csv("clean_hepatitis_dataset.csv") x = df[['age', 'sex', 'steroid', 'antivirals','fatigue','spiders', 'ascites','varices', 'bilirubin', 'alk_phosphate', 'sgot', 'albumin', 'protime','histology']] feature_names = ['age', 'sex', 'steroid', 'antivirals','fatigue','spiders', 'ascites','varices', 'bilirubin', 'alk_phosphate', 'sgot', 'albumin', 'protime','histology'] class_names = ['Die(1)','Live(2)'] explainer = lime.lime_tabular.LimeTabularExplainer(x.values,feature_names=feature_names, class_names=class_names,discretize_continuous=True) # The Explainer Instance exp = explainer.explain_instance(np.array(feature_list), loaded_model.predict_proba,num_features=13, top_labels=1) exp.show_in_notebook(show_table=True, show_all=False) # exp.save_to_file('lime_oi.html') st.write(exp.as_list()) new_exp = exp.as_list() label_limits = [i[0] for i in new_exp] # st.write(label_limits) label_scores = [i[1] for i in new_exp] plt.barh(label_limits,label_scores) st.pyplot() plt.figure(figsize=(20,10)) fig = exp.as_pyplot_figure() st.pyplot() else: st.warning("Incorrect Username/Password") elif choice == "SignUp": new_username = st.text_input("User name") new_password = st.text_input("Password", type='password') confirm_password = st.text_input("Confirm Password",type='password') if new_password == confirm_password: st.success("Password Confirmed") else: st.warning("Passwords not the same") if st.button("Submit"): create_usertable() hashed_new_password = generate_hashes(new_password) add_userdata(new_username,hashed_new_password) st.success("You have successfully created a new account") st.info("Login to Get Started") if __name__ == '__main__': main()
35.211538
277
0.702713
[ "MIT" ]
Let-Me-Code/Hepatitis-B-Mortality-Prediction
app.py
10,986
Python
# Modification 2020 RangiLyu # Copyright 2018-2019 Open-MMLab. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ...utils import util_mixins class AssignResult(util_mixins.NiceRepr): """ Stores assignments between predicted and truth boxes. Attributes: num_gts (int): the number of truth boxes considered when computing this assignment gt_inds (LongTensor): for each predicted box indicates the 1-based index of the assigned truth box. 0 means unassigned and -1 means ignore. max_overlaps (FloatTensor): the iou between the predicted box and its assigned truth box. labels (None | LongTensor): If specified, for each predicted box indicates the category label of the assigned truth box. Example: >>> # An assign result between 4 predicted boxes and 9 true boxes >>> # where only two boxes were assigned. >>> num_gts = 9 >>> max_overlaps = torch.LongTensor([0, .5, .9, 0]) >>> gt_inds = torch.LongTensor([-1, 1, 2, 0]) >>> labels = torch.LongTensor([0, 3, 4, 0]) >>> self = AssignResult(num_gts, gt_inds, max_overlaps, labels) >>> print(str(self)) # xdoctest: +IGNORE_WANT <AssignResult(num_gts=9, gt_inds.shape=(4,), max_overlaps.shape=(4,), labels.shape=(4,))> >>> # Force addition of gt labels (when adding gt as proposals) >>> new_labels = torch.LongTensor([3, 4, 5]) >>> self.add_gt_(new_labels) >>> print(str(self)) # xdoctest: +IGNORE_WANT <AssignResult(num_gts=9, gt_inds.shape=(7,), max_overlaps.shape=(7,), labels.shape=(7,))> """ def __init__(self, num_gts, gt_inds, max_overlaps, labels=None): self.num_gts = num_gts self.gt_inds = gt_inds self.max_overlaps = max_overlaps self.labels = labels # Interface for possible user-defined properties self._extra_properties = {} @property def num_preds(self): """int: the number of predictions in this assignment""" return len(self.gt_inds) def set_extra_property(self, key, value): """Set user-defined new property.""" assert key not in self.info self._extra_properties[key] = value def get_extra_property(self, key): """Get user-defined property.""" return self._extra_properties.get(key, None) @property def info(self): """dict: a dictionary of info about the object""" basic_info = { "num_gts": self.num_gts, "num_preds": self.num_preds, "gt_inds": self.gt_inds, "max_overlaps": self.max_overlaps, "labels": self.labels, } basic_info.update(self._extra_properties) return basic_info def __nice__(self): """str: a "nice" summary string describing this assign result""" parts = [] parts.append(f"num_gts={self.num_gts!r}") if self.gt_inds is None: parts.append(f"gt_inds={self.gt_inds!r}") else: parts.append(f"gt_inds.shape={tuple(self.gt_inds.shape)!r}") if self.max_overlaps is None: parts.append(f"max_overlaps={self.max_overlaps!r}") else: parts.append("max_overlaps.shape=" f"{tuple(self.max_overlaps.shape)!r}") if self.labels is None: parts.append(f"labels={self.labels!r}") else: parts.append(f"labels.shape={tuple(self.labels.shape)!r}") return ", ".join(parts) @classmethod def random(cls, **kwargs): """Create random AssignResult for tests or debugging. Args: num_preds: number of predicted boxes num_gts: number of true boxes p_ignore (float): probability of a predicted box assinged to an ignored truth p_assigned (float): probability of a predicted box not being assigned p_use_label (float | bool): with labels or not rng (None | int | numpy.random.RandomState): seed or state Returns: :obj:`AssignResult`: Randomly generated assign results. Example: >>> from nanodet.model.head.assigner.assign_result import AssignResult >>> self = AssignResult.random() >>> print(self.info) """ rng = kwargs.get("rng", None) num_gts = kwargs.get("num_gts", None) num_preds = kwargs.get("num_preds", None) p_ignore = kwargs.get("p_ignore", 0.3) p_assigned = kwargs.get("p_assigned", 0.7) p_use_label = kwargs.get("p_use_label", 0.5) num_classes = kwargs.get("p_use_label", 3) import numpy as np if rng is None: rng = np.random.mtrand._rand elif isinstance(rng, int): rng = np.random.RandomState(rng) else: rng = rng if num_gts is None: num_gts = rng.randint(0, 8) if num_preds is None: num_preds = rng.randint(0, 16) if num_gts == 0: max_overlaps = torch.zeros(num_preds, dtype=torch.float32) gt_inds = torch.zeros(num_preds, dtype=torch.int64) if p_use_label is True or p_use_label < rng.rand(): labels = torch.zeros(num_preds, dtype=torch.int64) else: labels = None else: import numpy as np # Create an overlap for each predicted box max_overlaps = torch.from_numpy(rng.rand(num_preds)) # Construct gt_inds for each predicted box is_assigned = torch.from_numpy(rng.rand(num_preds) < p_assigned) # maximum number of assignments constraints n_assigned = min(num_preds, min(num_gts, is_assigned.sum())) assigned_idxs = np.where(is_assigned)[0] rng.shuffle(assigned_idxs) assigned_idxs = assigned_idxs[0:n_assigned] assigned_idxs.sort() is_assigned[:] = 0 is_assigned[assigned_idxs] = True is_ignore = torch.from_numpy(rng.rand(num_preds) < p_ignore) & is_assigned gt_inds = torch.zeros(num_preds, dtype=torch.int64) true_idxs = np.arange(num_gts) rng.shuffle(true_idxs) true_idxs = torch.from_numpy(true_idxs) gt_inds[is_assigned] = true_idxs[:n_assigned] gt_inds = torch.from_numpy(rng.randint(1, num_gts + 1, size=num_preds)) gt_inds[is_ignore] = -1 gt_inds[~is_assigned] = 0 max_overlaps[~is_assigned] = 0 if p_use_label is True or p_use_label < rng.rand(): if num_classes == 0: labels = torch.zeros(num_preds, dtype=torch.int64) else: labels = torch.from_numpy( # remind that we set FG labels to [0, num_class-1] # since mmdet v2.0 # BG cat_id: num_class rng.randint(0, num_classes, size=num_preds) ) labels[~is_assigned] = 0 else: labels = None self = cls(num_gts, gt_inds, max_overlaps, labels) return self def add_gt_(self, gt_labels): """Add ground truth as assigned results. Args: gt_labels (torch.Tensor): Labels of gt boxes """ self_inds = torch.arange( 1, len(gt_labels) + 1, dtype=torch.long, device=gt_labels.device ) self.gt_inds = torch.cat([self_inds, self.gt_inds]) self.max_overlaps = torch.cat( [self.max_overlaps.new_ones(len(gt_labels)), self.max_overlaps] ) if self.labels is not None: self.labels = torch.cat([gt_labels, self.labels])
37.026316
86
0.592514
[ "Apache-2.0" ]
yangzilongdmgy/merge_monster_3d
mmdet3d/models/dense_heads/assigner/assign_result.py
8,442
Python
""" Interface item implementation. There are several notations supported - class box with interface stereotype - folded interface - ball is drawn to indicate provided interface - socket is drawn to indicate required interface Interface item can act as icon of assembly connector, see `gaphor.diagram.connector` module documentation for details. *Documentation of this module does not take into accout assembly connector icon mode.* Folded Interface Item ===================== Folded interface notation is reserved for very simple situations. When interface is folded - only an implementation can be connected (ball - provided interface) - or only usage dependency can be connected (socket - required interface) Above means that interface cannot be folded when - both, usage dependency and implementation are connected - any other lines are connected Dependencies ------------ Dependencies between folded interfaces are *not supported* +---------------------+---------------------+ | *Supported* | *Unsupported* | +=====================+=====================+ | :: | :: | | | | | |A|--( O--|B| | |A|--(--->O--|B| | | Z Z | Z Z | +---------------------+---------------------+ On above diagram, A requires interface Z and B provides interface Z. Additionally, on the right diagram, Z is connected to itself with dependency. There is no need for additional dependency - UML data model provides information, that Z is common for A and B (A requires Z, B provides Z) - on a diagram, both folded interface items (required and provided) represent the same interface, which is easily identifiable with its name Even more, adding a dependency between folded interfaces provides information, on UML data model level, that an interface depenends on itself but it is not the intention of this (*unsupported*) notation. For more examples of non-supported by Gaphor notation, see http://martinfowler.com/bliki/BallAndSocket.html. Folding and Connecting ---------------------- Current approach to folding and connecting lines to an interface is as follows - allow folding/unfolding of an interface only when there is only one implementation or depenedency usage connected - when interface is folded, allow only one implementation or depenedency usage to be connected Folding and unfolding is performed by `InterfacePropertyPage` class. """ import ast from enum import Enum from math import pi from gaphas.canvas import Canvas from gaphas.connector import LinePort from gaphas.geometry import distance_line_point, distance_point_point from gaphas.item import NE, NW, SE, SW from gaphor import UML from gaphor.diagram.classes.klass import ( attribute_watches, attributes_compartment, operation_watches, operations_compartment, ) from gaphor.diagram.classes.stereotype import stereotype_compartments from gaphor.diagram.presentation import ( Classified, ElementPresentation, from_package_str, ) from gaphor.diagram.shapes import Box, EditableText, IconBox, Text, draw_border from gaphor.diagram.support import represents from gaphor.diagram.text import FontWeight, VerticalAlign class Folded(Enum): # Non-folded mode. NONE = 0 # Folded mode, provided (ball) notation. PROVIDED = 1 # Folded mode, required (socket) notation. REQUIRED = 2 # Folded mode, notation of assembly connector icon mode (ball&socket). ASSEMBLY = 3 class Side(Enum): N = 0 E = pi * 0.5 S = pi W = pi * 1.5 class InterfacePort(LinePort): """ Interface connection port. It is simple line port, which changes glue behaviour depending on interface folded state. If interface is folded, then `InterfacePort.glue` method suggests connection in the middle of the port. The port provides rotation angle information as well. Rotation angle is direction the port is facing (i.e. 0 is north, PI/2 is west, etc.). The rotation angle shall be used to determine rotation of required interface notation (socket's arc is in the same direction as the angle). """ def __init__(self, start, end, is_folded, side): super().__init__(start, end) self.is_folded = is_folded # Used by connection logic: self.side = side def glue(self, pos): """ Behaves like simple line port, but for folded interface suggests connection to the middle point of a port. """ if self.is_folded(): px = (self.start.x + self.end.x) / 2 py = (self.start.y + self.end.y) / 2 d = distance_point_point((px, py), pos) return (px, py), d else: d, pl = distance_line_point(self.start, self.end, pos) return pl, d @represents(UML.Interface) class InterfaceItem(ElementPresentation, Classified): """ Interface item supporting class box, folded notations and assembly connector icon mode. When in folded mode, provided (ball) notation is used by default. """ RADIUS_PROVIDED = 10 RADIUS_REQUIRED = 14 def __init__(self, id=None, model=None): super().__init__(id, model) self._folded = Folded.NONE self.side = Side.N handles = self.handles() h_nw = handles[NW] h_ne = handles[NE] h_sw = handles[SW] h_se = handles[SE] def is_folded(): return self._folded != Folded.NONE # edge of element define default element ports self._ports = [ InterfacePort(h_nw.pos, h_ne.pos, is_folded, Side.N), InterfacePort(h_ne.pos, h_se.pos, is_folded, Side.E), InterfacePort(h_se.pos, h_sw.pos, is_folded, Side.S), InterfacePort(h_sw.pos, h_nw.pos, is_folded, Side.W), ] self.watch("show_stereotypes", self.update_shapes).watch( "show_attributes", self.update_shapes ).watch("show_operations", self.update_shapes).watch( "subject[NamedElement].name" ).watch( "subject[NamedElement].namespace.name" ).watch( "subject.appliedStereotype", self.update_shapes ).watch( "subject.appliedStereotype.classifier.name" ).watch( "subject.appliedStereotype.slot", self.update_shapes ).watch( "subject.appliedStereotype.slot.definingFeature.name" ).watch( "subject.appliedStereotype.slot.value", self.update_shapes ).watch( "subject[Interface].supplierDependency", self.update_shapes ) attribute_watches(self, "Interface") operation_watches(self, "Interface") show_stereotypes = UML.properties.attribute("show_stereotypes", int) show_attributes = UML.properties.attribute("show_attributes", int, default=True) show_operations = UML.properties.attribute("show_operations", int, default=True) def load(self, name, value): if name == "folded": self._folded = Folded(ast.literal_eval(value)) else: super().load(name, value) def save(self, save_func): super().save(save_func) save_func("folded", self._folded.value) def _set_folded(self, folded): """ Set folded notation. :param folded: Folded state, see Folded.* enum. """ if self._folded == folded: return self._folded = folded if folded == Folded.NONE: movable = True else: if self._folded == Folded.PROVIDED: icon_size = self.RADIUS_PROVIDED * 2 else: # required interface or assembly icon mode icon_size = self.RADIUS_REQUIRED * 2 self.min_width, self.min_height = icon_size, icon_size self.width, self.height = icon_size, icon_size # update only h_se handle - rest of handles should be updated by # constraints h_nw = self._handles[NW] h_se = self._handles[SE] h_se.pos.x = h_nw.pos.x + self.min_width h_se.pos.y = h_nw.pos.y + self.min_height movable = False for h in self._handles: h.movable = movable self.update_shapes() folded = property( lambda s: s._folded, _set_folded, doc="Check or set folded notation, see Folded.* enum.", ) def pre_update(self, context): assert isinstance(self.canvas, Canvas) connected_items = [c.item for c in self.canvas.get_connections(connected=self)] connectors = any( map(lambda i: isinstance(i.subject, UML.Connector), connected_items) ) if connectors or self._folded != Folded.NONE: provided = connectors or any( map( lambda i: isinstance(i.subject, UML.Implementation), connected_items ) ) required = any( map(lambda i: isinstance(i.subject, UML.Usage), connected_items) ) if required and provided: self.folded = Folded.ASSEMBLY elif required: self.folded = Folded.REQUIRED else: self.folded = Folded.PROVIDED self.update_shapes(connectors=connectors) super().pre_update(context) def update_shapes(self, event=None, connectors=None): if self._folded == Folded.NONE: self.shape = self.class_shape() else: self.shape = self.ball_and_socket_shape(connectors) def class_shape(self): return Box( Box( Text( text=lambda: UML.model.stereotypes_str( self.subject, ("interface",) ), style={"min-width": 0, "min-height": 0}, ), EditableText( text=lambda: self.subject.name or "", style={"font-weight": FontWeight.BOLD}, ), Text( text=lambda: from_package_str(self), style={"font": "sans 8", "min-width": 0, "min-height": 0}, ), style={"padding": (12, 4, 12, 4)}, ), *( self.show_attributes and self.subject and [attributes_compartment(self.subject)] or [] ), *( self.show_operations and self.subject and [operations_compartment(self.subject)] or [] ), *(self.show_stereotypes and stereotype_compartments(self.subject) or []), style={ "min-width": 100, "min-height": 50, "vertical-align": VerticalAlign.TOP, }, draw=draw_border, ) def ball_and_socket_shape(self, connectors=None): assert self.canvas if connectors is None: # distinguish between None and [] connected_items = [ c.item for c in self.canvas.get_connections(connected=self) ] connectors = any( map(lambda i: isinstance(i.subject, UML.Connector), connected_items) ) return IconBox( Box( style={"min-width": self.min_width, "min-height": self.min_height}, draw=self.draw_interface_ball_and_socket, ), Text( text=lambda: UML.model.stereotypes_str(self.subject), style={"min-width": 0, "min-height": 0}, ), EditableText( text=lambda: self.subject.name or "", style={ "font-weight": FontWeight.NORMAL if connectors else FontWeight.BOLD }, ), ) def draw_interface_ball_and_socket(self, _box, context, _bounding_box): cr = context.cairo h_nw = self._handles[NW] cx, cy = (h_nw.pos.x + self.width / 2, h_nw.pos.y + self.height / 2) if self._folded in (Folded.REQUIRED, Folded.ASSEMBLY): r = self.RADIUS_REQUIRED if self.side == Side.N: x, y = r * 2, r elif self.side == Side.E: x, y = r, r * 2 elif self.side == Side.S: x, y = 0, r elif self.side == Side.W: x, y = r, 0 cr.move_to(x, y) cr.arc_negative( cx, cy, self.RADIUS_REQUIRED, self.side.value, pi + self.side.value ) if self._folded in (Folded.PROVIDED, Folded.ASSEMBLY): cr.move_to(cx + self.RADIUS_PROVIDED, cy) cr.arc(cx, cy, self.RADIUS_PROVIDED, 0, pi * 2) cr.stroke()
33.250639
88
0.590032
[ "Apache-2.0" ]
987Frogh/Makehuman
gaphor/diagram/classes/interface.py
13,001
Python
import random import time pc=random.randint(0,10) tentativas=0 chute=0 print('INICIANDO') time.sleep(2) while chute != pc: chute=int(input('Digite um número entre 0 a 10: ')) print('PROCESSANDO') time.sleep(1) if chute < pc: print('Mais, tente novamente.') elif chute > pc: print('Mneos, tente novamente.') tentativas+=1 print('Você acertou com {} tentativas!'.format(tentativas))
24.705882
59
0.661905
[ "MIT" ]
jhonatanmaia/python
study/curso-em-video/exercises/058.py
422
Python
from optparse import OptionParser import os,sys import itertools import re def readSrc(src_dir): lines=[] for root, dirs, files in os.walk(src_dir): for file in files: if file.endswith(".cpp"): lines+=["New_file "+ file] lines_file = open(os.path.join(root, file)).read().splitlines() lines+=lines_file pass pass pass return lines def writeRunLog(dico, filename): st="" for clas in list(dico.keys()): st+="class : "+clas+"\n" st+="=======\n" st+=" - Desc : "+dico[clas]["desc"]+"\n" if (len(list(dico[clas]["parameters"].keys()))>0): st+=" - Params : \n" st+=" ********** \n" pass for param in list(dico[clas]["parameters"].keys()): st+=" + Param : "+param+" ==> Desc : "+dico[clas]["parameters"][param]["desc"]+"\n" st+=" -----\n" if (len(list(dico[clas]["parameters"][param]["dict"].keys()))>0): st+=" + Dicts : \n" st+=" +++++ \n" pass for dic in list(dico[clas]["parameters"][param]["dict"].keys()): st+=" Dict : "+dic+" ==> Desc : "+dico[clas]["parameters"][param]["dict"][dic]["desc"]+"\n" st+=" ----\n" pass pass pass fi=open(filename, "w") fi.write(st) fi.close() return def getLinesWithRegExp(lines): dico={} for xd in ["XD","2XD","3XD"]: debut=0 for line in lines: # on rajoute un blanc pour avoir le dernier mot des commentaires line+=" " if ((len(line.strip())>=8) and (line.split()[0]=="New_file")): debut=1 filename=line.split()[1] # revoir les comm ne marchent pas pour mpcube # elif (re.findall("//.*//[ ]*"+xd,line)): # continue elif (re.findall("//[ ]*"+xd+"[ ]+",line)): # traitement des classes li=re.findall(re.escape(xd)+"(.*)"+re.escape(' '),line)[0].split(' ') li = [x for x in li if x.strip()] desc=re.split("//[ ]*"+xd+"[ ]+",line)[-1] if li[0]=="attr": if (debut<2): raise Exception("error in "+filename+" first line XD "+line) # print dico[nameClass] desc2=li[1:] dico_p={"desc":' '.join(desc2)} dico_p["dict"]={} dico_p["numero"]=len(dico[nameClass]["parameters"]) dico[nameClass]['parameters'][li[1]]=dico_p # print li # print desc2 #1/0 elif li[0]=="ref": if (debut<2): raise Exception("error in "+filename+" first line XD "+line) # print nameClass, line dico[nameClass]["refs"].append([li[1],li[2]]) # 1/0 else: nameClass=li[0] dico[nameClass]={"desc":desc,"parameters":{},"refs":[]} debut=2 pass elif re.findall("//[ ]*"+xd+"_ADD_P+",line): # traitement des parametres if (debut<2): raise Exception("error in "+filename+" first line XD "+line) dico_param={} optionnel=True if (re.findall("Param::REQUIRED",line)): optionnel=False pass print("line:",line) param=line.split('"')[1].lower() mparam=param.split("|")[0] if mparam=="lambda": mparam="lambda_u" dico_param["mparm"]=mparam dico_param["optionnel"]=optionnel dr=line.split(xd+"_ADD_P")[-1].split() desc=param+" "+dr[0]+" "+mparam+" "+str(int(optionnel))+" "+' '.join(dr[1:]) dico_param["desc"]=desc dico_param["numero"]=len(dico[nameClass]["parameters"]) dico_param["dict"]={} dico[nameClass]["parameters"][param]=dico_param pass elif re.findall("//[ ]*"+xd+"_ADD_DICO+",line): # traitement des dictionnaires if (debut<2): raise 'jjjjjjjj' dr=line.split(xd+"_ADD_P")[-1].split() dico_dict={} dico_dict["desc"]=line dict_name=line.split('"')[1].lower() dico[nameClass]["parameters"][param]["dict"][dict_name]=dico_dict pass pass return dico def writeOutPutFile(dico, filename,st_add=""): st="" for clas in list(dico.keys()): st+=dico[clas]["desc"]+"\n" Params=dico[clas]["parameters"] for i in range(len(list(Params.keys()))): ok=0 for j,param in enumerate(Params.keys()): if (i==Params[param]["numero"]): ok=1 break if (ok==0): print("pb",clas,"nmero",i,"params",Params) 1/0 if (len(list(Params[param]["dict"].keys()))==0): st+=" attr "+Params[param]["desc"]+"\n" pass str_dico=" attr "+param+" chaine(into=[" for dic in list(Params[param]["dict"].keys()): str_dico+='"'+dic+'",' pass if (len(list(Params[param]["dict"].keys()))>0): desc=Params[param]["desc"].split()[2:] st+=str_dico+"]) "+' '.join(desc)+"\n" pass pass for ref in dico[clas]["refs"]: st+=" ref "+ref[0]+" "+ref[1]+"\n" pass pass st=st.replace(" double "," floattant ") st=st.replace(" flag "," rien ") st=st.replace(" int "," entier ") st=st.replace(r"'",r"\'") st=st.replace(r"\\'",r"\'") #st="\\'".join(st.split("'")) #st="\\'".join(st.split("\\\\'")) fi=open(filename, "w") fi.write(st_add) fi.write(st) fi.write("\n") fi.close() return def run(result_dir, src_dir): lines=readSrc(src_dir) dico=getLinesWithRegExp(lines) run_log=os.path.join(result_dir,"run.log") writeRunLog(dico, run_log) trad_org=os.path.join(result_dir,"TRAD_2.org") fi=open(trad_org,"r") st_org=fi.read() fi.close() st=st_org trad_add=os.path.join(result_dir,"TRAD2_ajout0") if (os.path.exists(trad_add)): fi=open(trad_add,"r") st+=fi.read() fi.close() trad_ajout=os.path.join(result_dir,"TRAD_2") writeOutPutFile(dico,trad_ajout,st) return def options_script(argv): parser = OptionParser(usage="usage: %prog [options]") parser.add_option("-r", "--result", dest="result_dir", type="string", metavar="<result_dir>", help="choose results directory") parser.add_option("-s", "--src", dest="src_dir", type="string", metavar="<src_dir>", help="choose src directory") parser.set_defaults(result_dir=os.getcwd()) parser.set_defaults(src_dir=os.getcwd()) (options, args) = parser.parse_args(argv) if len(args) > 0: parser.print_help() sys.exit(1) pass if options.result_dir != os.getcwd(): options.result_dir=os.path.join(os.getcwd(),options.result_dir) if not os.path.isdir(options.result_dir): os.mkdir(options.result_dir) pass pass result_dir = os.path.expanduser(options.result_dir) result_dir = os.path.expandvars(result_dir) result_dir = os.path.abspath(result_dir) if not os.path.isdir(result_dir): sys.stderr.write('Error: result dir \"' + result_dir + '\" is not a directory\n') sys.exit(1) pass src_dir = options.src_dir if src_dir!=None: os.path.expanduser(options.src_dir) src_dir = os.path.expandvars(src_dir) src_dir = os.path.abspath(src_dir) if not os.path.isdir(src_dir): sys.stderr.write('Error: source dir \"' + src_dir + '\" is not a directory\n') sys.exit(1) pass pass return result_dir, src_dir def main(argv): """ Main function. """ result_dir, src_dir = options_script(argv) run(result_dir, src_dir) if __name__ == "__main__": main(sys.argv[1:])
33.469231
119
0.478626
[ "BSD-3-Clause" ]
cea-trust-platform/trust-code
Outils/TRIOXDATA/XTriou/Extract_xdata.py
8,702
Python
import zmq import random ctx = zmq.Context(1) sock = ctx.socket(zmq.REP) sock.connect('tcp://127.0.0.1:7001') while True: parts = sock.recv_multipart() print("GOT", parts) if random.randrange(3) == 0: import os, signal os.kill(os.getpid(), signal.SIGKILL) sock.send(b"Echo: " + b' '.join(parts))
23.5
44
0.62614
[ "MIT" ]
asvetlov/zerogw
examples/crashing.py
329
Python
__all__ = [ 'BaseClassificationAggregator', 'BaseImageSegmentationAggregator', 'BaseEmbeddingsAggregator', 'BaseTextsAggregator', 'BasePairwiseAggregator', ] import attr from .. import annotations @attr.s @annotations.manage_docstring class BaseClassificationAggregator: """ This is a base class for all classification aggregators""" labels_: annotations.OPTIONAL_LABELS = attr.ib(init=False) @annotations.manage_docstring def fit(self, data: annotations.LABELED_DATA) -> annotations.Annotation(type='BaseClassificationAggregator', title='self'): raise NotImplementedError() @annotations.manage_docstring def fit_predict(self, data: annotations.LABELED_DATA) -> annotations.TASKS_LABELS: raise NotImplementedError() @attr.s @annotations.manage_docstring class BaseImageSegmentationAggregator: """This is a base class for all image segmentation aggregators""" segmentations_: annotations.TASKS_SEGMENTATIONS = attr.ib(init=False) @annotations.manage_docstring def fit(self, data: annotations.SEGMENTATION_DATA) -> annotations.Annotation(type='BaseImageSegmentationAggregator', title='self'): raise NotImplementedError() @annotations.manage_docstring def fit_predict(self, data: annotations.SEGMENTATION_DATA) -> annotations.TASKS_SEGMENTATIONS: raise NotImplementedError() @attr.s @annotations.manage_docstring class BaseEmbeddingsAggregator: """This is a base class for all embeddings aggregators""" embeddings_and_outputs_: annotations.TASKS_EMBEDDINGS_AND_OUTPUTS = attr.ib(init=False) @annotations.manage_docstring def fit(self, data: annotations.EMBEDDED_DATA) -> annotations.Annotation(type='BaseEmbeddingsAggregator', title='self'): raise NotImplementedError() @annotations.manage_docstring def fit_predict(self, data: annotations.EMBEDDED_DATA) -> annotations.TASKS_EMBEDDINGS_AND_OUTPUTS: raise NotImplementedError() @attr.s @annotations.manage_docstring class BaseTextsAggregator: """ This is a base class for all texts aggregators""" texts_: annotations.TASKS_TEXTS = attr.ib(init=False) @annotations.manage_docstring def fit(self, data: annotations.TEXT_DATA) -> annotations.Annotation(type='BaseTextsAggregator', title='self'): raise NotImplementedError() @annotations.manage_docstring def fit_predict(self, data: annotations.TEXT_DATA) -> annotations.TASKS_TEXTS: raise NotImplementedError() @attr.s @annotations.manage_docstring class BasePairwiseAggregator: """ This is a base class for all pairwise comparison aggregators""" scores_: annotations.LABEL_SCORES = attr.ib(init=False) @annotations.manage_docstring def fit(self, data: annotations.PAIRWISE_DATA) -> annotations.Annotation(type='BasePairwiseAggregator', title='self'): raise NotImplementedError() @annotations.manage_docstring def fit_predict(self, data: annotations.PAIRWISE_DATA) -> annotations.LABEL_SCORES: raise NotImplementedError()
34.612903
124
0.724138
[ "Apache-2.0" ]
artinmajdi/crowd-kit
build/lib/crowdkit/aggregation/base/__init__.py
3,219
Python
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # pytype: skip-file import ast import shlex import subprocess as sp import apache_beam as beam from apache_beam.testing.util import assert_that from apache_beam.testing.util import equal_to def assert_matches_stdout( actual, expected_stdout, normalize_fn=lambda elem: elem, label=''): """Asserts a PCollection of strings matches the expected stdout elements. Args: actual (beam.PCollection): A PCollection. expected (List[str]): A list of stdout elements, one line per element. normalize_fn (Function[any]): A function to normalize elements before comparing them. Can be used to sort lists before comparing. label (str): [optional] Label to make transform names unique. """ def stdout_to_python_object(elem_str): try: elem = ast.literal_eval(elem_str) except (SyntaxError, ValueError): elem = elem_str return normalize_fn(elem) actual = actual | label >> beam.Map(stdout_to_python_object) expected = list(map(stdout_to_python_object, expected_stdout)) assert_that(actual, equal_to(expected), 'assert ' + label) def run_shell_commands(commands, **kwargs): """Runs a list of Notebook-like shell commands. Lines starting with `#` are ignored as comments. Lines starting with `!` are run as commands. Variables like `{variable}` are substituted with **kwargs. """ for cmd in commands: cmd = cmd.strip().lstrip('!').format(**kwargs) sp_cmd = shlex.split(cmd, comments=True, posix=True) if sp_cmd: sp.call(sp_cmd) yield sp_cmd
35.646154
75
0.740613
[ "Apache-2.0" ]
DevangiDas/beam
sdks/python/apache_beam/examples/snippets/util.py
2,317
Python
import numpy as np __all__ = ["Kernel", "Uncorrelated", "ExpSquared", "Matern"] class Kernel(object): def __init__(self, parnames=[], name=''): """ :param parnames: A list of names of the kernel params, used to alias the intrinsic parameter names. This way different instances of the same kernel can have different parameter names. """ if len(parnames) == 0: parnames = self.kernel_params assert len(parnames) == len(self.kernel_params) self.param_alias = dict(zip(self.kernel_params, parnames)) self.params = {} self.name = name def __repr__(self): return '{}({})'.format(self.__class__, self.param_alias.items()) def update(self, **kwargs): """Take a dictionary of parameters, pick out the properly named parameters according to the alias, and put them in the param state dictionary. """ for k in self.kernel_params: self.params[k] = kwargs[self.param_alias[k]] def __call__(self, metric, weights=None, ndim=2, **extras): """Return a covariance matrix, given a metric. Optionally, multiply the output kernel by a weight function to induce non-stationarity. """ k = self.construct_kernel(metric) if ndim != k.ndim: # Either promote to 2 dimensions or demote to 1. # The latter should never happen... k = np.diag(k) if weights is None: return k elif ndim == 2: Sigma = weights[None, :] * k * weights[:, None] else: Sigma = k * weights**2 return Sigma class Uncorrelated(Kernel): # Simple uncorrelated noise model ndim = 1 kernel_params = ['amplitude'] def construct_kernel(self, metric): s = metric.shape[0] jitter = self.params['amplitude']**2 * np.ones(s) if metric.ndim == 2: return np.diag(jitter) elif metric.ndim == 1: return jitter else: raise(NotImplementedError) class ExpSquared(Kernel): ndim = 2 npars = 2 kernel_params = ['amplitude', 'length'] def construct_kernel(self, metric): """Construct an exponential squared covariance matrix. """ a, l = self.params['amplitude'], self.params['length'] Sigma = a**2 * np.exp(-(metric[:, None] - metric[None, :])**2 / (2 * l**2)) return Sigma class Matern(Kernel): ndim = 2 npars = 2 kernel_params = ['amplitude', 'length'] def construct_kernel(self, metric): """Construct a Matern kernel covariance matrix, for \nu=3/2. """ a, l = self.params['amplitude'], self.params['length'] Sigma = np.sqrt(3) * np.abs(metric[:, None] - metric[None, :]) / l Sigma = a**2 * (1 + Sigma) * np.exp(-Sigma) return Sigma class Outliers(Kernel): kernel_params = ['amplitude', 'location'] def construct_kernel(self, metric): raise(NotImplementedError)
30.098039
83
0.582736
[ "MIT" ]
errai34/prospector
prospect/likelihood/kernels.py
3,070
Python
# Copyright 2013-2020 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * from spack.version import Version class Meme(AutotoolsPackage): """The MEME Suite allows the biologist to discover novel motifs in collections of unaligned nucleotide or protein sequences, and to perform a wide variety of other motif-based analyses.""" homepage = "http://meme-suite.org" url = "http://meme-suite.org/meme-software/5.1.1/meme-5.1.1.tar.gz" version('5.3.0', sha256='b2ddec9db972fcf77b29c7deb62df8b1dd8a6638c13c1aa06a5d563c4a7ff756') version('5.2.0', sha256='0cbf8c2172e9b6c07855b8aeec457f4825f0b132f8cbb11192880e2f6033f54f') version('5.1.1', sha256='38d73d256d431ad4eb7da2c817ce56ff2b4e26c39387ff0d6ada088938b38eb5') version('4.12.0', sha256='49ff80f842b59d328588acfcd1d15bf94c55fed661d22b0f95f37430cc363a06') version('4.11.4', sha256='3e869ff57e327a9c8615dbef784e3f1095f7f7a0120cecd55efe10c3f2ee8eb3') variant('mpi', default=True, description='Enable MPI support') variant('image-magick', default=False, description='Enable image-magick for png output') depends_on('zlib', type=('link')) depends_on('libgcrypt', type=('link')) depends_on('perl', type=('build', 'run')) depends_on('[email protected]:', type=('build', 'run')) depends_on('mpi', when='+mpi') depends_on('imagemagick', type=('build', 'run'), when='+image-magick') depends_on('perl-xml-parser', type=('build', 'run')) def url_for_version(self, version): url = 'http://meme-suite.org/meme-software/{0}/meme{1}{2}.tar.gz' sep = '-' if version >= Version('5.0.2') else '_' return url.format(version.up_to(3), sep, version) def configure_args(self): spec = self.spec # have meme build its own versions of libxml2/libxslt, see #6736 args = ['--enable-build-libxml2', '--enable-build-libxslt'] if '~mpi' in spec: args += ['--enable-serial'] return args
44.87234
96
0.697013
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
BenjaminRodenberg/spack
var/spack/repos/builtin/packages/meme/package.py
2,109
Python
# -*- coding: utf-8 -*- """ Created on Sun May 20 11:35:03 2018 @author: DanielM """ import os import numpy as np import shelve # Setup some parameters given by paradigm_frequency_inhibition.py stim_delay = 100 # ms dt = 0.01 # ms stim_dtp = stim_delay / dt data_path = "C:\\Users\\Daniel\\pyDentateData\\tuning\\revised\\frequency_inhibition_data\\" save_path = data_path data_files = [f for f in os.listdir(data_path) if os.path.isfile(os.path.join(data_path, f)) and '.pydd' in f] for x in data_files: interval = int(x.split('_')[8].split('.')[0][1:3]) data = shelve.open(data_path + x) split_name_current = x.split('.') split_name_peaks = list(split_name_current) split_name_current[1] = split_name_current[1] + '_current' name_current = '.'.join(split_name_current) np.savez(save_path + name_current, np.array(data[data.keys()[0]]['populations'][0]['VClamps_i']))
31.172414
110
0.698009
[ "MIT" ]
danielmk/pyDentateeLife2020
analysis/tuning_get_seclamp_currents_frequency.py
904
Python
# -*- coding: utf-8 -*- """Top-level package for medium-shell.""" __author__ = 'Colin Bitterfield' __email__ = '[email protected]' __version__ = '0.1.0'
20
41
0.675
[ "MIT" ]
cbitterfield/medium-shell
medium-shell/__init__.py
160
Python
class Person(object): """ Class Person for testing python. Following packages need to be installed: - requests :param name: person's name, string :param age: person's age, integer :param phone: person's phone, string :rtype: object """ def __init__(self, name, age, phone): self.name = name self.age = age self.phone = phone def print(self): """ Method prints person's data. :return: None """ print("Name: {}, age: {}, phone: {}".format(self.name, self.age, self.phone)) def set_name(self, name): """ Method saves a new name for the person. :param name: new name for the person, string :return: None """ self.name = name def get_name(self): """ Method returns the name of the person. :return: name, string """ return self.name def set_age(self, age): """ Method saves a new age for the person. :param age: new age for the person, integer :return: None """ if type(age) != int: print("not valid age {}".format(age)) return if age >= 0: self.age = age else: print("not valid age {}".format(age)) def get_age(self): """ Method returns the age of the person. :return: age, integer """ return self.age def set_phone(self, phone): """ Method saves a new phone for the person. :param phone: new phone for the person, string :return: None """ self.phone = phone def get_phone(self): """ Method returns the phone of the person. :return: phone, string """ return self.phone class Employee(Person): """ Class Employee for testing python. :param name: person's name, string :param age: person's age, integer :param phone: person's phone, string :param phone: person's title, string :param phone: person's salary, string :param phone: person's location, string :rtype: object """ def __init__(self, name, age, phone, title, salary, location): super().__init__(name, age, phone) self.title = title self.salary = salary self.location = location def get_title(self): """ Method returns the title of the person. :return: title, string """ return self.title def set_title(self, title): """ Method saves a new title for the person. :param title: new title for the person, string :return: None """ self.title = title def get_salary(self): """ Method returns the salary of the person. :return: salary, string """ return self.salary def set_salary(self, salary): """ Method saves a new salary for the person. :param salary: new salary for the person, string :return: None """ if salary >= 0: self.salary = salary def get_location(self): """ Method returns the location of the person. :return: location, string """ return self.location def set_location(self, location): """ Method saves a new location for the person. :param location: new location for the person, string :return: None """ self.location = location def print_businesscard(self): """ Method prints a business card information. :return: None """ print(" Name: {}\n Title: {}\n Phone: {}".format(self.name, self.title, self.phone))
25.109589
92
0.56192
[ "MIT" ]
jhsaraja/testiprojekti
person.py
3,666
Python
# coding: utf8 from spacy.symbols import POS, TAG, DEP, LEMMA, HEAD from spacy.language import Language from spacy.tokens import Doc from spacy.util import get_lang_class import numpy import re class StanfordNLPLanguage(Language): def __init__(self, snlp, meta=None, **kwargs): """Initialize the Language class. Instead of "en" etc. we call the language "stanfordnlp_en" to not cause conflicts with spaCy's built-in languages. Using entry points, this also allows serializing and deserializing the language class and "lang": "stanfordnlp_en" in the meta.json will automatically instantiate this class if this package is available. snlp (stanfordnlp.Pipeline): The loaded StanfordNLP pipeline. kwargs: Optional config parameters. RETURNS (spacy.language.Language): The nlp object. """ lang = snlp.config["lang"] self.lang = "stanfordnlp_" + lang self.Defaults = get_defaults(lang) self.vocab = self.Defaults.create_vocab() self.tokenizer = Tokenizer(snlp, self.vocab) self.pipeline = [] self.max_length = kwargs.get("max_length", 10 ** 6) self._meta = ( {"lang": self.lang, "stanfordnlp": snlp.config} if meta is None else dict(meta) ) self._path = None self._optimizer = None def make_doc(self, text): return self.tokenizer(text) def get_defaults(lang): """Get the language-specific defaults, if available in spaCy. This allows using lexical attribute getters that depend on static language data, e.g. Token.like_num, Token.is_stop, Doc.noun_chunks etc. lang (unicode): The language code. RETURNS (Language.Defaults): The language defaults. """ try: lang_cls = get_lang_class(lang) return lang_cls.Defaults except ImportError: return Language.Defaults class Tokenizer(object): """Because we're only running the StanfordNLP pipeline once and don't split it up into spaCy pipeline components, we'll set all the attributes within a custom tokenizer. The tokenizer is currently expected to implement serialization methods so we're mocking them up here. When loading the serialized nlp object back in, you can pass `snlp` to spacy.load: >>> nlp.to_disk('/path/to/model') >>> nlp = spacy.load('/path/to/model', snlp=snlp) """ to_disk = lambda self, *args, **kwargs: None from_disk = lambda self, *args, **kwargs: None to_bytes = lambda self, *args, **kwargs: None from_bytes = lambda self, *args, **kwargs: None _ws_pattern = re.compile(r"\s+") def __init__(self, snlp, vocab): """Initialize the tokenizer. snlp (stanfordnlp.Pipeline): The initialized StanfordNLP pipeline. vocab (spacy.vocab.Vocab): The vocabulary to use. RETURNS (Tokenizer): The custom tokenizer. """ self.snlp = snlp self.vocab = vocab def __call__(self, text): """Convert a StanfordNLP Doc to a spaCy Doc. text (unicode): The text to process. RETURNS (spacy.tokens.Doc): The spaCy Doc object. """ snlp_doc = self.snlp(text) text = snlp_doc.text tokens, heads = self.get_tokens_with_heads(snlp_doc) if not len(tokens): raise ValueError("No tokens available.") words = [] spaces = [] pos = [] tags = [] deps = [] lemmas = [] offset = 0 is_aligned = self.check_aligned(text, tokens) for i, token in enumerate(tokens): span = text[offset:] if not len(span): break while len(span) and span[0].isspace(): # If we encounter leading whitespace, skip one character ahead offset += 1 span = text[offset:] words.append(token.text) # Make sure all strings are in the vocabulary pos.append(self.vocab.strings.add(token.upos or "")) tags.append(self.vocab.strings.add(token.xpos or "")) deps.append(self.vocab.strings.add(token.dependency_relation or "")) lemmas.append(self.vocab.strings.add(token.lemma or "")) offset += len(token.text) span = text[offset:] if i == len(tokens) - 1: spaces.append(False) elif not is_aligned: spaces.append(True) else: next_token = tokens[i + 1] spaces.append(not span.startswith(next_token.text)) attrs = [POS, TAG, DEP, HEAD] array = numpy.array(list(zip(pos, tags, deps, heads)), dtype="uint64") doc = Doc(self.vocab, words=words, spaces=spaces).from_array(attrs, array) # Overwrite lemmas separately to prevent them from being overwritten by spaCy lemma_array = numpy.array([[lemma] for lemma in lemmas], dtype="uint64") doc.from_array([LEMMA], lemma_array) if any(pos) and any(tags): doc.is_tagged = True if any(deps): doc.is_parsed = True return doc def get_tokens_with_heads(self, snlp_doc): """Flatten the tokens in the StanfordNLP Doc and extract the token indices of the sentence start tokens to set is_sent_start. snlp_doc (stanfordnlp.Document): The processed StanfordNLP doc. RETURNS (list): The tokens (words). """ tokens = [] heads = [] offset = 0 for sentence in snlp_doc.sentences: for token in sentence.tokens: for word in token.words: # Here, we're calculating the absolute token index in the doc, # then the *relative* index of the head, -1 for zero-indexed # and if the governor is 0 (root), we leave it at 0 if word.governor: head = word.governor + offset - len(tokens) - 1 else: head = 0 heads.append(head) tokens.append(word) offset += sum(len(token.words) for token in sentence.tokens) return tokens, heads def check_aligned(self, text, tokens): token_texts = "".join(t.text for t in tokens) return re.sub(self._ws_pattern, "", text) == token_texts
38.580838
85
0.60329
[ "MIT" ]
mehmetilker/spacy-stanfordnlp
spacy_stanfordnlp/language.py
6,443
Python
def train_instance_plot(temp_data_X, temp_data_Y, save_name): plt.figure(figsize=(12,8)) plot_dx = 0 for chdx in range(3): plt.plot(temp_data_X[:, chdx]/np.max(temp_data_X[:, chdx]) + plot_dx*2,color='k') plot_dx += 1 plt.plot(temp_data_Y[:,0]-2,color='b') plt.plot(temp_data_Y[:,1]-3,color='r') plt.plot(temp_data_Y[:,2]-4,color='g') plt.yticks([]) plt.tight_layout() plt.savefig(save_name ,dpi=300) plt.close() return
28.823529
89
0.612245
[ "MIT" ]
MrXiaoXiao/PickNet_keras
src/misc/plot.py
490
Python
import socket from pywincffi.core import dist from pywincffi.dev.testutil import TestCase, mock_library from pywincffi.exceptions import WindowsAPIError from pywincffi.kernel32 import CloseHandle from pywincffi.wintypes import LPWSANETWORKEVENTS, socket_from_object from pywincffi.ws2_32 import ( WSAGetLastError, WSACreateEvent, WSAEventSelect, WSAEnumNetworkEvents) class EventsCase(TestCase): """ Has some common methods used by tests in this module """ def tearDown(self): super(EventsCase, self).tearDown() self.assertEqual(WSAGetLastError(), 0) def create_wsaevent(self): event = WSACreateEvent() self.addCleanup(CloseHandle, event) return event def create_socket_pair(self): """ Creates a local socket listening on a random port. """ # Establish the server's socket server = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.addCleanup(server.close) client = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.addCleanup(client.close) return server, client class TestWSAGetLastError(TestCase): """ Tests for ``pywincffi.ws2_32.events.WSAGetLastError`` """ def test_get_last_error(self): self.addCleanup(self.WSASetLastError, 0) self.WSASetLastError(4242) self.assertEqual(WSAGetLastError(), 4242) class TestWSACreateEvent(TestCase): """ Tests for ``pywincffi.ws2_32.events.WSACreateEvent`` """ def test_invalid_event(self): with mock_library(wsa_invalid_event=lambda _: True): with self.assertRaises(WindowsAPIError): WSACreateEvent() class TestWSAEventSelect(EventsCase): """ Tests for ``pywincffi.ws2_32.events.WSAEventSelect`` """ def test_basic_call(self): # Establish a simple socket server and client _, library = dist.load() sock, _, = self.create_socket_pair() # Setup the event event = self.create_wsaevent() WSAEventSelect( socket_from_object(sock), event, library.FD_WRITE | library.FD_ACCEPT | library.FD_CONNECT ) def test_socket_error(self): def wrapped(*_): _, library = dist.load() return library.SOCKET_ERROR with mock_library(WSAEventSelect=wrapped): # Establish a simple socket server and client _, library = dist.load() sock, _ = self.create_socket_pair() # Setup the event event = self.create_wsaevent() with self.assertRaises(WindowsAPIError): WSAEventSelect( socket_from_object(sock), event, library.FD_WRITE | library.FD_ACCEPT | library.FD_CONNECT ) class TestWSAEnumNetworkEvents(EventsCase): """ Tests for ``pywincffi.ws2_32.events.WSAEnumNetworkEvents`` """ def test_basic_call(self): _, library = dist.load() sock, _ = self.create_socket_pair() events = WSAEnumNetworkEvents(socket_from_object(sock)) self.assertIsInstance(events, LPWSANETWORKEVENTS) self.assertEqual(events.iErrorCode, tuple([0] * library.FD_MAX_EVENTS)) def test_triggers_write_event(self): _, library = dist.load() sock_server, sock_client = self.create_socket_pair() sock_client_wintype = socket_from_object(sock_client) # Listen on one socket and then connect with another. This should # cause an FD_ACCEPT network event to occur. sock_server.bind(("127.0.0.1", 0)) sock_server.listen(0) _, port = sock_server.getsockname() sock_client.connect(("127.0.0.1", port)) sock_client.send(b"Hello world") event = self.create_wsaevent() WSAEventSelect(sock_client_wintype, event, library.FD_WRITE) events = WSAEnumNetworkEvents(sock_client_wintype) self.assertEqual(events.lNetworkEvents, library.FD_WRITE) def test_resets_event(self): _, library = dist.load() sock_server, sock_client = self.create_socket_pair() sock_client_wintype = socket_from_object(sock_client) # Listen on one socket and then connect with another. This should # cause an FD_ACCEPT network event to occur. sock_server.bind(("127.0.0.1", 0)) sock_server.listen(0) _, port = sock_server.getsockname() sock_client.connect(("127.0.0.1", port)) sock_client.send(b"Hello world") waiter = self.create_wsaevent() event = self.create_wsaevent() WSAEventSelect(sock_client_wintype, event, library.FD_WRITE) events = WSAEnumNetworkEvents(sock_client_wintype, hEventObject=waiter) self.assertEqual(events.lNetworkEvents, library.FD_WRITE)
34.359155
79
0.659561
[ "MIT" ]
opalmer/pycffiwin32
tests/test_ws2_32/test_events.py
4,879
Python
try : from facepy import GraphAPI from facepy.exceptions import OAuthError import time from sys import stdout except ImportError: print("Import Error") token = 'Enter-Token-Here' OWNER_NAME = '' photos_together = {} no_of_comments = {} words_in_comment = {} no_of_messages = {} total_chat_length = {} def process_photo_tags(tags): #Until we get an empty result page if 'error' in tags: print("Error = ", error) raise Exception("Error in Response") if 'data' not in tags: return while len(tags['data']) > 0: #Iterating through all the tags in the current result page for tagged_person in tags['data']: name = tagged_person['name'].encode('utf-8') if name == OWNER_NAME: continue if name in photos_together: #If the tag was encountered before increment photos_together[name] += 1 else: #Else initialize new count photos_together[name] = 1 #Get the nect result page if 'paging' in tags and 'next' in tags['paging']: request_str = tags['paging']['next'].replace('https://graph.facebook.com/', '') request_str = request_str.replace('limit=25', 'limit=200') tags = graph.get(request_str) else: tags['data'] = [] def process_photo_comments(comments): if 'error' in comments: print("Error = ", error) raise Exception("Error in Response") if 'data' not in comments: return while len(comments['data']) > 0: for comment in comments['data']: try: commentor = comment['from']['name'].encode('utf-8') if commentor == OWNER_NAME: #Ignore Comment by owner on his own photos continue word_count = len(comment['message'].encode('utf-8').split()) except UnicodeEncodeError: print(comment['message']) raise Exception('Unicode Encoding Error Encountered') if commentor in no_of_comments: #If a comment by this person was encountered before no_of_comments[commentor] += 1 words_in_comment[commentor] += word_count else: #If this is a new commentor no_of_comments[commentor] = 1 words_in_comment[commentor] = word_count if 'paging' in comments and 'next' in comments['paging']: request_str = comments['paging']['next'].replace('https://graph.facebook.com/', '') request_str = request_str.replace('limit=25', 'limit=200') comments = graph.get(request_str) else: comments['data'] = [] def process_photos(photos): if 'error' in photos: print("Error = ", error) raise Exception("Error in Response") no_of_photos = 0 if 'data' not in photos: return while len(photos['data']) > 0: for photo in photos['data']: if 'tags' in photo: process_photo_tags(photo['tags']) if 'comments' in photo: process_photo_comments(photo['comments']) no_of_photos += 1 stdout.write("\rNumber of Photos Processed = %d" % no_of_photos) stdout.flush() if 'paging' in photos and 'next' in photos['paging']: request_str = photos['paging']['next'].replace('https://graph.facebook.com/', '') request_str = request_str.replace('limit=25', 'limit=200') photos = graph.get(request_str) else: photos['data'] = [] def process_texts(texts, friend_name): if 'error' in texts: print("Error = ", error) raise Exception("Error in Response") if 'data' not in texts: return while len(texts['data']) > 0: for text in texts['data']: if 'message' not in text: #This can happen in message with only an attachment and No text continue if friend_name in no_of_messages: no_of_messages[friend_name] += 1 total_chat_length[friend_name] += len(text['message']) else: no_of_messages[friend_name] = 1 total_chat_length[friend_name] = len(text['message']) if 'paging' in texts and 'next' in texts['paging']: request_str = texts['paging']['next'].replace('https://graph.facebook.com/', '') request_str = request_str.replace('limit=25', 'limit=100') success = False while not success: try: texts = graph.get(request_str) success = True except OAuthError: stdout.write("\nCall Limit Exceeded ! Sleeping for 4 min before retrying !!\n") for i in range(250): stdout.write("\rSleeing.......%d" % i) stdout.flush() time.sleep(1) stdout.write("Woke Up! Retrying !!\n") else: texts['data'] = [] def process_all_messages(messages): if 'error' in messages: print("Error = ", error) raise Exception("Error in Response") if 'data' not in messages: return while len(messages['data']) > 0: for chat in messages['data']: if len(chat['to']['data']) != 2: #Ignore Group and self messages continue friend_name = chat['to']['data'][1]['name'].encode('utf-8') if friend_name == OWNER_NAME: friend_name = chat['to']['data'][0]['name'].encode('utf-8') success = False while not success: try: stdout.write("\rProcessing Chat With : %s " % friend_name) stdout.flush() process_texts(chat['comments'], friend_name) success = True except OAuthError: stdout.write("\nCall Limit Exceeded ! Sleeping for 10 min before retrying !!") stdout.flush() no_of_messages[friend_name] = 0 total_chat_length[friend_name] = 0 stdout.write('\n') for i in range(600): stdout.write("\rSleeing.......%d" % i) stdout.flush() time.sleep(1) stdout.write("Woke Up! Retrying !!") if 'paging' in messages and 'next' in messages['paging']: request_str = messages['paging']['next'].replace('https://graph.facebook.com/', '') request_str = request_str.replace('limit=25', 'limit=400') messages = graph.get(request_str) else: mesages['data'] = [] graph = GraphAPI(token) me = graph.get('v2.0/me?fields=id,name') OWNER_NAME = me['name'].encode('utf-8') photos = graph.get('v2.0/me/photos?fields=comments{message,from},tags{name}&limit=100') process_photos(photos) stdout.write('\n\n') stdout.flush() inbox = graph.get('v2.0/me/inbox?fields=comments{message},to&limit=100') process_all_messages(inbox) top_photos = [] for people in photos_together: temp = [] temp.append(people) temp.append(photos_together[people]) top_photos.append(temp) top_photos.sort(key=lambda x: x[1], reverse=True) print("Top People Whom You share photos") for i in range(5): print(i+1, ". ", top_photos[i][0], " - ", top_photos[i][1]) top_commentors = [] for people in no_of_comments: temp = [] temp.append(people) temp.append(no_of_comments[people]) top_commentors.append(temp) top_commentors.sort(key=lambda x: x[1], reverse=True) print("Top People Who comments on your photo") for i in range(5): print(i+1, ". ", top_commentors[i][0], " - ", top_commentors[i][1]) long_commentors = [] for people in words_in_comment: temp = [] temp.append(people) temp.append(words_in_comment[people]) long_commentors.append(temp) long_commentors.sort(key=lambda x: x[1], reverse=True) print("Top People with most content in comments") for i in range(5): print(i+1, ". ", long_commentors[i][0], " - ", long_commentors[i][1]) top_chatboxes = [] for people in no_of_messages: temp = [] temp.append(people) temp.append(no_of_messages[people]) top_chatboxes.append(temp) top_chatboxes.sort(key=lambda x:x[1], reverse=True) print("Top people with most number of Messages") for i in range(5): print(i+1, ". ", top_chatboxes[i][0], " - ", top_chatboxes[i][1]) long_chats = [] for people in total_chat_length: temp = [] temp.append(people) temp.append(total_chat_length[people]) long_chats.append(temp) long_chats.sort(key=lambda x: x[1], reverse=True) print("Top People with most content in inbox") for i in range(5): print(i+1, ". ", long_chats[i][0], " - ", long_chats[i][1]) total_count_of_comments = 0 for num in top_commentors: total_count_of_comments += num[1] print("Total Number of comments across all pics = ", total_count_of_comments)
32.900794
89
0.638162
[ "MIT" ]
ashish1294/facepy-scripts
friendship_py3.py
8,291
Python
import zutils class zhighlighter: def highlight(self, text): return [(zutils.CL_FG, zutils.CL_BG, zutils.AT_BLINK if i % 2 == 0 else zutils.AT_NORMAL) for i in range(len(text))] #LOL!
31.5
124
0.719577
[ "MIT" ]
herimonster/zoid
zhighlighter.py
189
Python
from rest_framework import permissions class PolyaxonPermission(permissions.BasePermission): """ Polyaxon Base permission system. """ def has_object_permission(self, request, view, obj): return False
20.636364
56
0.722467
[ "MPL-2.0" ]
AntonFriberg/polyaxon
polyaxon/scopes/permissions/base.py
227
Python
import glob import json import os import shutil import subprocess from .helpers import * def constructor(*args, default_channel=True, no_rc=True, no_dry_run=False): umamba = get_umamba() cmd = [umamba, "constructor"] + [arg for arg in args if arg] try: res = subprocess.check_output(cmd) if "--json" in args: try: j = json.loads(res) return j except json.decoder.JSONDecodeError as e: print(f"Error when loading JSON output from {res}") raise (e) print(f"Error when executing '{' '.join(cmd)}'") return res.decode() except subprocess.CalledProcessError as e: print(f"Error when executing '{' '.join(cmd)}'") raise (e) class TestInstall: current_root_prefix = os.environ["MAMBA_ROOT_PREFIX"] current_prefix = os.environ["CONDA_PREFIX"] cache = os.path.join(current_root_prefix, "pkgs") env_name = random_string() root_prefix = os.path.expanduser(os.path.join("~", "tmproot" + random_string())) prefix = os.path.join(root_prefix, "envs", env_name) new_cache = os.path.join(root_prefix, "pkgs") @classmethod def setup_class(cls): os.environ["MAMBA_ROOT_PREFIX"] = TestInstall.root_prefix os.environ["CONDA_PREFIX"] = TestInstall.prefix # speed-up the tests os.environ["CONDA_PKGS_DIRS"] = TestInstall.new_cache os.makedirs(TestInstall.new_cache, exist_ok=True) root_pkgs = glob.glob( os.path.join(TestInstall.current_root_prefix, "pkgs", "x*.tar.bz2") ) urls = [] for pkg in root_pkgs: shutil.copy(pkg, TestInstall.new_cache) urls.append( "http://testurl.com/conda-forge/linux-64/" + os.path.basename(pkg) + "#123412341234" ) cls.pkgs = [os.path.basename(pkg) for pkg in root_pkgs] with open(os.path.join(TestInstall.new_cache, "urls"), "w") as furls: furls.write("\n".join(urls)) @classmethod def teardown_class(cls): os.environ["MAMBA_ROOT_PREFIX"] = TestInstall.current_root_prefix os.environ["CONDA_PREFIX"] = TestInstall.current_prefix shutil.rmtree(TestInstall.root_prefix) @classmethod def teardown(cls): os.environ["MAMBA_ROOT_PREFIX"] = TestInstall.root_prefix os.environ["CONDA_PREFIX"] = TestInstall.prefix def test_extract_pkgs(self): constructor("--prefix", TestInstall.root_prefix, "--extract-conda-pkgs") for pkg in self.pkgs: extracted_pkg = os.path.join( TestInstall.root_prefix, "pkgs", pkg.rsplit(".tar.bz2")[0] ) with open( os.path.join(extracted_pkg, "info", "repodata_record.json") ) as rr: repodata_record = json.load(rr) with open(os.path.join(extracted_pkg, "info", "index.json")) as ri: index = json.load(ri) assert repodata_record["fn"] == pkg assert repodata_record["md5"] == "123412341234" assert ( repodata_record["url"] == "http://testurl.com/conda-forge/linux-64/" + pkg ) assert repodata_record["depends"] == index["depends"]
34.173469
84
0.59779
[ "BSD-3-Clause" ]
ExternalRepositories/mamba
micromamba/tests/test_constructor.py
3,349
Python
from __future__ import absolute_import from __future__ import division from __future__ import print_function import typing # NOQA: F401 from nixnet import _cconsts from nixnet import _errors from nixnet import _props from nixnet import constants from nixnet.database import _collection from nixnet.database import _database_object from nixnet.database import _find_object from nixnet.database import _frame # workaround to avoid circular imports caused by mypy type annotations MYPY = False if MYPY: from nixnet.database import _pdu # NOQA: F401 class SubFrame(_database_object.DatabaseObject): """Database subframe""" def __init__( self, **kwargs # type: int ): # type: (...) -> None if not kwargs or '_handle' not in kwargs: raise TypeError() self._handle = kwargs['_handle'] from nixnet.database import _signal self._dyn_signals = _collection.DbCollection( self._handle, constants.ObjectClass.SIGNAL, _cconsts.NX_PROP_SUBFRM_DYN_SIG_REFS, _signal.Signal) def __eq__(self, other): if isinstance(other, self.__class__): return self._handle == other._handle else: return NotImplemented def __ne__(self, other): result = self.__eq__(other) if result is NotImplemented: return result else: return not result def __hash__(self): return hash(self._handle) def __repr__(self): return '{}(handle={})'.format(type(self).__name__, self._handle) def check_config_status(self): # type: () -> None """Check this subframe's configuration status. By default, incorrectly configured subframes in the database are not returned from :any:`Frame.mux_subframes` because they cannot be used in the bus communication. You can change this behavior by setting :any:`Database.show_invalid_from_open` to `True`. When a subframe configuration status becomes invalid after the database is opened, the subframe still is returned from :any:`Frame.mux_subframes` even if :any:`Database.show_invalid_from_open` is `False`. Raises: :any:`XnetError`: The subframe is incorrectly configured. """ status_code = _props.get_subframe_config_status(self._handle) _errors.check_for_error(status_code) def find( self, object_class, # type: typing.Type[_database_object.DatabaseObject] object_name, # type: typing.Text ): # type: (...) -> _database_object.DatabaseObject """Finds an object in the database. This function finds a database object relative to this parent object. This object may be a grandparent or great-grandparent. If this object is a direct parent (for example, :any:`Frame<_frame.Frame>` for :any:`Signal<_signal.Signal>`), the ``object_name`` to search for can be short, and the search proceeds quickly. If this object is not a direct parent (for example, :any:`Database` for :any:`Signal<_signal.Signal>`), the ``object_name`` to search for must be qualified such that it is unique within the scope of this object. For example, if the class of this object is :any:`Cluster`, and ``object_class`` is :any:`Signal<_signal.Signal>`, you can specify ``object_name`` of ``mySignal``, assuming that signal name is unique to the cluster. If not, you must include the :any:`Frame<_frame.Frame>` name as a prefix, such as ``myFrameA.mySignal``. NI-XNET supports the following subclasses of ``DatabaseObject`` as arguments for ``object_class``: * :any:`nixnet.database.Cluster<Cluster>` * :any:`nixnet.database.Frame<_frame.Frame>` * :any:`nixnet.database.Pdu<Pdu>` * :any:`nixnet.database.Signal<_signal.Signal>` * :any:`nixnet.database.SubFrame<SubFrame>` * :any:`nixnet.database.Ecu<Ecu>` * :any:`nixnet.database.LinSched<LinSched>` * :any:`nixnet.database.LinSchedEntry<LinSchedEntry>` Args: object_class(``DatabaseObject``): The class of the object to find. object_name(str): The name of the object to find. Returns: An instance of the found object. Raises: ValueError: Unsupported value provided for argument ``object_class``. :any:`XnetError`: The object is not found. """ return _find_object.find_object(self._handle, object_class, object_name) @property def dyn_signals(self): # type: () -> _collection.DbCollection """:any:`DbCollection`: Returns a collection of dynamic :any:`Signal<_signal.Signal>` objects in the subframe. Those signals are transmitted when the multiplexer signal in the frame has the multiplexer value defined in the subframe. """ return self._dyn_signals @property def frm(self): # type: () -> _frame.Frame """:any:`Frame<_frame.Frame>`: Returns the reference to the parent frame. The parent frame is defined when the subframe is created, and you cannot change it afterwards. """ handle = _props.get_subframe_frm_ref(self._handle) return _frame.Frame(_handle=handle) @property def mux_value(self): # type: () -> int """int: Get or set the multiplexer value for this subframe. This property specifies the multiplexer signal value used when the dynamic signals in this subframe are transmitted in the frame. Only one subframe is transmitted at a time in the frame. There also is a multiplexer value for a signal object as a read-only property. It reflects the value set on the parent subframe object. This property is required. If the property does not contain a valid value, and you create an XNET session that uses this subframe, the session returns an error. To ensure that the property contains a valid value, you can do one of the following: * Use a database file (or alias) to create the session. The file formats require a valid value in the text for this property. * Set a value at runtime using this property. This is needed when you create your own in-memory database (*:memory:*) rather than use a file. The property does not contain a default in this case, so you must set a valid value prior to creating a session. """ return _props.get_subframe_mux_value(self._handle) @mux_value.setter def mux_value(self, value): # type: (int) -> None _props.set_subframe_mux_value(self._handle, value) @property def name(self): # type: () -> typing.Text """str: Get or set the name of the subframe object. Lowercase letters, uppercase letters, numbers, and the underscore (_) are valid characters for the short name. The space ( ), period (.), and other special characters are not supported within the name. The short name must begin with a letter (uppercase or lowercase) or underscore, and not a number. The short name is limited to 128 characters. A subframe name must be unique for all subframes in a frame. This short name does not include qualifiers to ensure that it is unique, such as the database, cluster, and frame name. It is for display purposes. """ return _props.get_subframe_name(self._handle) @name.setter def name(self, value): # type: (typing.Text) -> None _props.set_subframe_name(self._handle, value) @property def pdu(self): # type: () -> _pdu.Pdu """:any:`Pdu`: Returns the subframe's parent PDU. This property returns the reference to the subframe's parent PDU. The parent PDU is defined when the subframe object is created. You cannot change it afterwards. """ from nixnet.database import _pdu # NOQA: F811 handle = _props.get_subframe_pdu_ref(self._handle) return _pdu.Pdu(_handle=handle) @property def name_unique_to_cluster(self): # type: () -> typing.Text """str: Returns a subframe name unique to the cluster that contains the subframe. If the single name is not unique within the cluster, the name is <frame-name>.<subframe-name>. You can pass the name to the `find` function to retrieve the reference to the object, while the single name is not guaranteed success in `find` because it may be not unique in the cluster. """ return _props.get_subframe_name_unique_to_cluster(self._handle)
38.647826
118
0.657779
[ "MIT" ]
bigoulours/nixnet-python
nixnet/database/_subframe.py
8,889
Python
# Databricks notebook source # MAGIC %md-sandbox # MAGIC # MAGIC <div style="text-align: center; line-height: 0; padding-top: 9px;"> # MAGIC <img src="https://databricks.com/wp-content/uploads/2018/03/db-academy-rgb-1200px.png" alt="Databricks Learning" style="width: 600px"> # MAGIC </div> # COMMAND ---------- # MAGIC %md # MAGIC # MAGIC # MAGIC # Incremental Data Ingestion with Auto Loader # MAGIC # MAGIC Incremental ETL is important since it allows us to deal solely with new data that has been encountered since the last ingestion. Reliably processing only the new data reduces redundant processing and helps enterprises reliably scale data pipelines. # MAGIC # MAGIC The first step for any successful data lakehouse implementation is ingesting into a Delta Lake table from cloud storage. # MAGIC # MAGIC Historically, ingesting files from a data lake into a database has been a complicated process. # MAGIC # MAGIC Databricks Auto Loader provides an easy-to-use mechanism for incrementally and efficiently processing new data files as they arrive in cloud file storage. In this notebook, you'll see Auto Loader in action. # MAGIC # MAGIC Due to the benefits and scalability that Auto Loader delivers, Databricks recommends its use as general **best practice** when ingesting data from cloud object storage. # MAGIC # MAGIC ## Learning Objectives # MAGIC By the end of this lesson, you should be able to: # MAGIC * Execute Auto Loader code to incrementally ingest data from cloud storage to Delta Lake # MAGIC * Describe what happens when a new file arrives in a directory configured for Auto Loader # MAGIC * Query a table fed by a streaming Auto Loader query # MAGIC # MAGIC ## Dataset Used # MAGIC This demo uses simplified artificially generated medical data representing heart rate recordings delivered in the JSON format. # MAGIC # MAGIC | Field | Type | # MAGIC | --- | --- | # MAGIC | device_id | int | # MAGIC | mrn | long | # MAGIC | time | double | # MAGIC | heartrate | double | # COMMAND ---------- # MAGIC %md # MAGIC # MAGIC # MAGIC # MAGIC ## Getting Started # MAGIC # MAGIC Run the following cell to reset the demo and configure required variables and help functions. # COMMAND ---------- # MAGIC %run ../Includes/Classroom-Setup-6.1 # COMMAND ---------- # MAGIC %md # MAGIC # MAGIC # MAGIC ## Using Auto Loader # MAGIC # MAGIC In the cell below, a function is defined to demonstrate using Databricks Auto Loader with the PySpark API. This code includes both a Structured Streaming read and write. # MAGIC # MAGIC The following notebook will provide a more robust overview of Structured Streaming. If you wish to learn more about Auto Loader options, refer to the <a href="https://docs.databricks.com/spark/latest/structured-streaming/auto-loader.html" target="_blank">documentation</a>. # MAGIC # MAGIC Note that when using Auto Loader with automatic <a href="https://docs.databricks.com/spark/latest/structured-streaming/auto-loader-schema.html" target="_blank">schema inference and evolution</a>, the 4 arguments shown here should allow ingestion of most datasets. These arguments are explained below. # MAGIC # MAGIC | argument | what it is | how it's used | # MAGIC | --- | --- | --- | # MAGIC | **`data_source`** | The directory of the source data | Auto Loader will detect new files as they arrive in this location and queue them for ingestion; passed to the **`.load()`** method | # MAGIC | **`source_format`** | The format of the source data | While the format for all Auto Loader queries will be **`cloudFiles`**, the format of the source data should always be specified for the **`cloudFiles.format`** option | # MAGIC | **`table_name`** | The name of the target table | Spark Structured Streaming supports writing directly to Delta Lake tables by passing a table name as a string to the **`.table()`** method. Note that you can either append to an existing table or create a new table | # MAGIC | **`checkpoint_directory`** | The location for storing metadata about the stream | This argument is pass to the **`checkpointLocation`** and **`cloudFiles.schemaLocation`** options. Checkpoints keep track of streaming progress, while the schema location tracks updates to the fields in the source dataset | # MAGIC # MAGIC **NOTE**: The code below has been streamlined to demonstrate Auto Loader functionality. We'll see in later lessons that additional transformations can be applied to source data before saving them to Delta Lake. # COMMAND ---------- def autoload_to_table(data_source, source_format, table_name, checkpoint_directory): query = (spark.readStream .format("cloudFiles") .option("cloudFiles.format", source_format) .option("cloudFiles.schemaLocation", checkpoint_directory) .load(data_source) .writeStream .option("checkpointLocation", checkpoint_directory) .option("mergeSchema", "true") .table(table_name)) return query # COMMAND ---------- # MAGIC %md # MAGIC # MAGIC # MAGIC In the following cell, we use the previously defined function and some path variables defined in the setup script to begin an Auto Loader stream. # MAGIC # MAGIC Here, we're reading from a source directory of JSON files. # COMMAND ---------- query = autoload_to_table(data_source = f"{DA.paths.working_dir}/tracker", source_format = "json", table_name = "target_table", checkpoint_directory = f"{DA.paths.checkpoints}/target_table") # COMMAND ---------- # MAGIC %md # MAGIC # MAGIC # MAGIC Because Auto Loader uses Spark Structured Streaming to load data incrementally, the code above doesn't appear to finish executing. # MAGIC # MAGIC We can think of this as a **continuously active query**. This means that as soon as new data arrives in our data source, it will be processed through our logic and loaded into our target table. We'll explore this in just a second. # COMMAND ---------- # MAGIC %md # MAGIC # MAGIC # MAGIC ## Helper Function for Streaming Lessons # MAGIC # MAGIC Our notebook-based lessons combine streaming functions with batch and streaming queries against the results of those operations. These notebooks are for instructional purposes and intended for interactive, cell-by-cell execution. This pattern is not intended for production. # MAGIC # MAGIC Below, we define a helper function that prevents our notebook from executing the next cell just long enough to ensure data has been written out by a given streaming query. This code should not be necessary in a production job. # COMMAND ---------- def block_until_stream_is_ready(query, min_batches=2): import time while len(query.recentProgress) < min_batches: time.sleep(5) # Give it a couple of seconds print(f"The stream has processed {len(query.recentProgress)} batchs") block_until_stream_is_ready(query) # COMMAND ---------- # MAGIC %md # MAGIC # MAGIC # MAGIC ## Query Target Table # MAGIC # MAGIC Once data has been ingested to Delta Lake with Auto Loader, users can interact with it the same way they would any table. # COMMAND ---------- # MAGIC %sql # MAGIC SELECT * FROM target_table # COMMAND ---------- # MAGIC %md # MAGIC # MAGIC # MAGIC Note that the **`_rescued_data`** column is added by Auto Loader automatically to capture any data that might be malformed and not fit into the table otherwise. # MAGIC # MAGIC While Auto Loader captured the field names for our data correctly, note that it encoded all fields as **`STRING`** type. Because JSON is a text-based format, this is the safest and most permissive type, ensuring that the least amount of data is dropped or ignored at ingestion due to type mismatch. # COMMAND ---------- # MAGIC %sql # MAGIC DESCRIBE TABLE target_table # COMMAND ---------- # MAGIC %md # MAGIC # MAGIC # MAGIC Use the cell below to define a temporary view that summarizes the recordings in our target table. # MAGIC # MAGIC We'll use this view below to demonstrate how new data is automatically ingested with Auto Loader. # COMMAND ---------- # MAGIC %sql # MAGIC CREATE OR REPLACE TEMP VIEW device_counts AS # MAGIC SELECT device_id, count(*) total_recordings # MAGIC FROM target_table # MAGIC GROUP BY device_id; # MAGIC # MAGIC SELECT * FROM device_counts # COMMAND ---------- # MAGIC %md # MAGIC # MAGIC # MAGIC ## Land New Data # MAGIC # MAGIC As mentioned previously, Auto Loader is configured to incrementally process files from a directory in cloud object storage into a Delta Lake table. # MAGIC # MAGIC We have configured and are currently executing a query to process JSON files from the location specified by **`source_path`** into a table named **`target_table`**. Let's review the contents of the **`source_path`** directory. # COMMAND ---------- files = dbutils.fs.ls(f"{DA.paths.working_dir}/tracker") display(files) # COMMAND ---------- # MAGIC %md # MAGIC # MAGIC # MAGIC At present, you should see a single JSON file listed in this location. # MAGIC # MAGIC The method in the cell below was configured in our setup script to allow us to model an external system writing data to this directory. Each time you execute the cell below, a new file will land in the **`source_path`** directory. # COMMAND ---------- DA.data_factory.load() # COMMAND ---------- # MAGIC %md # MAGIC # MAGIC # MAGIC List the contents of the **`source_path`** again using the cell below. You should see an additional JSON file for each time you ran the previous cell. # COMMAND ---------- files = dbutils.fs.ls(f"{DA.paths.working_dir}/tracker") display(files) # COMMAND ---------- # MAGIC %md # MAGIC # MAGIC # MAGIC ## Tracking Ingestion Progress # MAGIC # MAGIC Historically, many systems have been configured to either reprocess all records in a source directory to calculate current results or require data engineers to implement custom logic to identify new data that's arrived since the last time a table was updated. # MAGIC # MAGIC With Auto Loader, your table has already been updated. # MAGIC # MAGIC Run the query below to confirm that new data has been ingested. # COMMAND ---------- # MAGIC %sql # MAGIC SELECT * FROM device_counts # COMMAND ---------- # MAGIC %md # MAGIC # MAGIC # MAGIC The Auto Loader query we configured earlier automatically detects and processes records from the source directory into the target table. There is a slight delay as records are ingested, but an Auto Loader query executing with default streaming configuration should update results in near real time. # MAGIC # MAGIC The query below shows the table history. A new table version should be indicated for each **`STREAMING UPDATE`**. These update events coincide with new batches of data arriving at the source. # COMMAND ---------- # MAGIC %sql # MAGIC DESCRIBE HISTORY target_table # COMMAND ---------- # MAGIC %md # MAGIC # MAGIC # MAGIC ## Clean Up # MAGIC Feel free to continue landing new data and exploring the table results with the cells above. # MAGIC # MAGIC When you're finished, run the following cell to stop all active streams and remove created resources before continuing. # COMMAND ---------- DA.cleanup() # COMMAND ---------- # MAGIC %md-sandbox # MAGIC &copy; 2022 Databricks, Inc. All rights reserved.<br/> # MAGIC Apache, Apache Spark, Spark and the Spark logo are trademarks of the <a href="https://www.apache.org/">Apache Software Foundation</a>.<br/> # MAGIC <br/> # MAGIC <a href="https://databricks.com/privacy-policy">Privacy Policy</a> | <a href="https://databricks.com/terms-of-use">Terms of Use</a> | <a href="https://help.databricks.com/">Support</a>
42.167857
315
0.720505
[ "CC0-1.0" ]
databricks-academy/data-engineering-with-databricks
Data-Engineering-with-Databricks/06 - Incremental Data Processing/DE 6.1 - Incremental Data Ingestion with Auto Loader.py
11,807
Python
import numpy as np def log_gaussian(x, mean, sigma): """ Computes the log-probability of X=x for a Gaussian of mean=mean and sigma=sigma Parameters ---------- x mean sigma Returns ------- """ log_pdf = -(x - mean) ** 2 / (2 * sigma ** 2) log_pdf = log_pdf - np.log((np.sqrt(2 * np.pi) * sigma)) return log_pdf def log_gaussian2d(size, x, y, x_cm, y_cm, width, length, psi): scale_w = 1. / (2. * width ** 2) scale_l = 1. / (2. * length ** 2) a = np.cos(psi) ** 2 * scale_l + np.sin(psi) ** 2 * scale_w b = np.sin(2 * psi) * (scale_w - scale_l) / 2. c = np.cos(psi) ** 2 * scale_w + np.sin(psi) ** 2 * scale_l norm = 1. / (2 * np.pi * width * length) log_pdf = - (a * (x - x_cm) ** 2 - 2 * b * (x - x_cm) * (y - y_cm) + c * ( y - y_cm) ** 2) log_pdf += np.log(norm) + np.log(size) return log_pdf
23.333333
83
0.503297
[ "BSD-3-Clause" ]
calispac/cta-lstchain
lstchain/image/pdf.py
910
Python
repeat_age = 0 while repeat_age < 3: age = int( input(f"Check your movie ticket price by typing your age below. You may check {3 - repeat_age} more times\n")) if age < 3: print("Your ticket is free!") elif 3 <= age <= 12: print("Your ticket costs $10") elif age > 12: print("Your ticket costs $15") if repeat_age == 2: break check = input("Would you like to check another ticket price? Type 'quit' to exit this program\n") if check == 'quit': break repeat_age += 1 print(f"Thank you for using our service! You have checked {repeat_age + 1} times")
34.888889
118
0.61465
[ "MIT" ]
kg55555/pypractice
Part 1/Chapter 7/exercise_7.6.py
628
Python
from django.contrib.auth.models import AbstractUser from django.db import models import uuid # class Role(models.Model): # ''' # The Role entries are managed by the system, # automatically created via a Django data migration. # ''' # name = models.CharField(max_length=50, default=1) # def __str__(self): # return self.name class MyUser(AbstractUser): """ Base model for patient and doctor """ ROLE_CHOICES = ( (1, 'patient'), (2, 'doctor'), (3, 'developer'), ) #ID id = models.UUIDField(primary_key=True, default=uuid.uuid4,) #Role role = models.IntegerField(choices=ROLE_CHOICES) #Personal last_name = models.CharField(max_length=100, default='') first_name = models.CharField(max_length=100, default='') middle_name = models.CharField(max_length=100) age = models.IntegerField() blood_type = models.CharField(max_length=50, blank=True, null=True) #Contact Details phone_number = models.CharField(max_length=50) email = models.EmailField(max_length=254, unique=True) #Address street = models.CharField(max_length=50, blank=True, null=True) city = models.CharField(max_length=50) barangay = models.CharField(max_length=50) postal_code = models.IntegerField() #System date_created = models.DateTimeField( auto_now=True, blank=True, null=True ) date_updated = models.DateTimeField( auto_now_add=True, blank=True, null=True ) active_status = models.BooleanField( default=True, blank=True, null=True ) USERNAME_FIELD = 'username' REQUIRED_FIELDS = ['email'] def __str__(self): return f'{self.id}'
28.046154
71
0.628086
[ "MIT" ]
RadySonabu/ThesisAPI
user/models.py
1,823
Python
''' ''' import hashlib import uuid import logging from cassandra.cluster import Cluster from cassandra.policies import DCAwareRoundRobinPolicy from subprocess import PIPE, Popen from kazoo.client import KazooClient from multiprocessing import Process class CassandraAware: def init__(self): self.cluster = Cluster("", protocol_version=4, load_balancing_policy=DCAwareRoundRobinPolicy(local_dc='datacenter1')) self.session = self.cluster.connect("") class KazooAware: def __init__(self): zk = KazooClient(hosts='') zk.start() self.ver = zk.Counter('/ver', default=0x821) class blocks_view(CassandraAware, KazooAware): def __init__(self): logging.info('initialize blocks_view') self.updateBlock = super.session.prepare(''' insert into blocks_view(sha256_id, block_id, ver, raw, sha256, nonce, consent_algorithm, predecessor, counter, setup) values(?, ?, ?, ?, ?, ?, ?, ?, ? toTimestamp(now()))''') self.updateStatusStatement = super.session.prepare('update candidate set processed=true where sha256_id = ?') self.genesis() def runLoop(self): while True: self.run() def publicMining(self, raw): ver = super.ver super.ver += 1 predecessor = self.block_id m = hashlib.sha256() m.update(bytes(raw, 'utf-8')) sha256 = m.hexdigest() self.block_ptr = sha256 block_id = '' # fxxx nonce = '' while True: if block_id.startswith('f'): self.block_id = block_id self.nonce = nonce break nonce = uuid.uuid4().hex with Popen(('./mining', sha256, nonce), stdout=PIPE) as p: block_id = p.stdout.read() m = hashlib.sha256() m.update(bytes(block_id, 'utf-8')) sha256_id = m.hexdigest() self.counter += 1 super.session.execute(self.updateBlock, [sha256_id, block_id, ver, raw, sha256, nonce, 'Mersenne15Mersenne14', predecessor, self.counter]) def genesis(self): self.counter = 0 self.block_id = None raw = ''' In God We Trust ''' self.publicMining(raw) def run(self): rows = super.session.execute('''select sha256_id, pq, proposal, verdict, target, raw_statement, block_id from candidate where ready = true and processed = false''') candidates = [] ids = [] for row in rows: [sha256_id, pq, proposal, verdict, target, raw_statement, block_id] = row # verify the transaction sanity candidates.append('||'.join([pq, proposal, verdict, target, raw_statement, block_id])) ids.append(sha256_id) candidates.sort() candidate_transactions = '@@'.join(candidates) predecessor = self.block_id raw = '<{0}/{1}/{2}>{3}'.format(self.block_ptr, self.nonce, predecessor, candidate_transactions) self.publicMining(raw) for shaId in ids: super.session.execute(self.updateStatusStatement, [shaId]) ''' create table player3(sha256_id text primary key, symbol text, ver bigint, pq0 text, d0 text, f0 text, pq1 text ,d1 text, f1 text, setup timestamp); ''' class player3(CassandraAware, KazooAware): def __init__(self): logging.info('initialize player3') self.newPlayer = super.session.prepare(''' insert into player3(sha256_id, symbol, ver, pq0, d0, f0, pq1, d1, f1, setup) values(?, ?, ?, ?, ?, ?, ?, ?, ?, toTimestamp(now())) ''') def new(self, symbol): ver = super.ver super.ver += 1 m = hashlib.sha256() m.update(bytes(symbol, 'utf-8')) sha256_id = m.hexdigest() numbers = [] with Popen('./openssl genrsa 2048 {0}'.format(sha256_id).split(' '), stdout=PIPE) as p: output = str(p.stdout.read(), 'utf-8') for row in output.split('INTEGER'): numbers.extend(list(filter(lambda x: x.startswith(' :'), row.splitlines()))) pqKey = ''.join(reversed(numbers[1])).lower().replace(':', '') dKey = ''.join(reversed(numbers[3])).lower().replace(':', '') jgKey = ''.join(reversed(numbers[-1])).lower().replace(':', '') pq0 = pqKey.strip() d0 = dKey.strip() f0 = jgKey.strip() with Popen('./openssl genrsa 2048 {0}'.format(sha256_id).split(' '), stdout=PIPE) as p: output = str(p.stdout.read(), 'utf-8') for row in output.split('INTEGER'): numbers.extend(list(filter(lambda x: x.startswith(' :'), row.splitlines()))) pqKey = ''.join(reversed(numbers[1])).lower().replace(':', '') dKey = ''.join(reversed(numbers[3])).lower().replace(':', '') jgKey = ''.join(reversed(numbers[-1])).lower().replace(':', '') pq1 = pqKey.strip() d1 = dKey.strip() f1 = jgKey.strip() super.session.execute(self.newPlayer, [sha256_id, symbol, ver, pq0, d0, f0, pq1, d1, f1]) ''' create table draft(sha256_id text primary key, note_id text, target text, ver bigint, symbol text, quantity bigint, refer text, processed boolean, setup timestamp); create table symbol_chain(sha256_id primary key, symbol text, ver bigint, block_counter bigint, updated timestamp); ''' class draft(CassandraAware, KazooAware): def __init__(self): logging.info('initialize draft') self.newDraft = super.session.prepare(''' insert into draft(sha256_id, note_id, target, ver, symbol, quantity, refer, type, processed, setup) values(?, ?, ?, ?, ?, ?, ?, ?, false, toTimestamp(now()) ''') self.updateSymbolChain = super.session.prepare(''' update symbol_chain set symbol =? , ver= ?, block_counter= ?, updated = toTimestamp(now() where sha256_id = ? ''') def issue(self, symbol, quantity): logging.info('going to issue with symbol:{}'.format(symbol)) ver = super.ver super.ver += 1 m = hashlib.sha256() m.update(bytes(symbol, 'utf-8')) sha256_id = m.hexdigest() result = super.session.execute('select block_counter from symbol_chain where sha256_id = {0}'.format(sha256_id)).one() if not result: counter = 0 else: counter = int(result.block_counter) counter += 1 super.session.execute(self.updateSymbolChain, [symbol, ver, counter, sha256_id]) (block_id) = super.session.execute('select sha256_id from blocks_view where counter = {}'.format(counter)).one() note_id = '{}||{}||{}'.format(symbol, block_id[:16], quantity) super.session.execute(self.newDraft, [m.hexdigest(), note_id[:32], sha256_id, ver, quantity, block_id, 'issue']) def transfer(self, note_id, target, quantity, refer): logging.info('going to transfer {} to {}'.format(note_id, target)) ver = super.ver super.ver += 1 m = hashlib.sha256() m.update(bytes(note_id, 'utf-8')) m.update(bytes(ver, 'utf-8')) sha256_id = m.hexdigest() super.session.execute(self.newDraft, [sha256_id, note_id, target, ver, quantity, refer, 'transfer']) class proposal(CassandraAware, KazooAware): def __init__(self): logging.info('initialize proposal') def runLoop(self): while True: self.process() def process(self): result = super.session.execute(''' select sha256_id, note_id, target, symbol, quantity, refer from draft where processed=false ''') for row in result: [sha256_id, note_id, target, symbol, quantity, refer, type] = row if type == 'issue': self.processIssue() if type == 'transfer': self.processTransfer() super.seesion.execute('''update draft set processed=true where sha256_id = {0} '''.format(sha256_id)) def processIssue(self): # insert into candidate pass def processTransfer(self): # insert into candidate pass if __name__ == '__main__': b = blocks_view() player = player3() d = draft() prop = proposal() Process(target=b.runLoop).start() Process(target=player.new('ABCDEFG')).start() Process(target=d.issue('ABCDEFG', '1')).start() Process(target=prop.runLoop).start()
36.353191
126
0.594288
[ "BSD-3-Clause" ]
rsacpp/repre
clique3.py
8,543
Python
from matplotlib import pyplot as plt from matplotlib_venn import venn2 import glob import compare_two_zlists as cv import math from scipy.stats import hypergeom from decimal import Decimal from math import log def make_venn_matrix(filename_list): fig1 = plt.figure(1) fig1.suptitle('Differentially Expressed Genes Overlap', fontsize=24) subplot_counter = 1 print len(filename_list)*len(filename_list) for zlist1 in filename_list: for zlist2 in filename_list: plt.subplot(len(filename_list), len(filename_list), subplot_counter) offset = math.ceil(float(subplot_counter)/float(len(filename_list))) position = int(subplot_counter - 1) % len(filename_list) + 1 if zlist1 == zlist2: plt.subplot(len(filename_list), len(filename_list), subplot_counter) up_A, up_B, all_changing = cv.get_changing(zlist1) plt.text(0, 0, '{}'.format(zlist1)) plt.text(0, .4, 'Higher in A: {}'.format(str(len(up_A)))) plt.text(0, .2, 'Higher in B: {}'.format(str(len(up_B)))) plt.axis('off') plt.plot() print 'working {}'.format(subplot_counter) subplot_counter+=1 else: plt.subplot(len(filename_list), len(filename_list), subplot_counter) (venn_values, all_union) = cv.compare_two(zlist1, zlist2) color1 = '' color2 = '' if position > offset: color1 = 'MediumVioletRed' color2 = 'OrangeRed' union = venn_values['up_A']['union'] in_common = venn_values['up_A']['common'] unique_1 = venn_values['up_A']['up_1'] unique_2 = venn_values['up_A']['up_2'] if position < offset: color1 = 'LimeGreen' color2 = 'DodgerBlue' union = venn_values['up_B']['union'] in_common = venn_values['up_B']['common'] unique_1 = venn_values['up_B']['up_1'] unique_2 = venn_values['up_B']['up_2'] total_genes = len(all_union) total_1 = unique_1 + in_common total_2 = unique_2 + in_common try: log_prob = Decimal(log(hypergeom.sf(in_common, total_genes, total_1, total_2))) except: log_prob = '-inf' plt.plot(cv.draw_venn(union, in_common, unique_1, unique_2, color1, color2)) if log_prob != '-inf': plt.annotate('log p-value: %2.3f'%log_prob, xy=(0,0), xycoords='axes fraction') else: plt.annotate('log p-value: -inf', xy=(0,0), xycoords='axes fraction') print 'working {}'.format(subplot_counter) print str(total_genes) print str(log_prob) subplot_counter+=1 plt.show() return if __name__ == '__main__': venn_filelist = glob.glob('*zlist') venn_filelist.sort() make_venn_matrix(venn_filelist)
26.835052
84
0.676143
[ "MIT" ]
YeoLab/gscripts
gscripts/general/venn_matrix.py
2,603
Python
from ctypes import cdll, c_int, c_ulonglong, c_char_p import time import json import thread def runList(ll, interpID, inputList): strList = json.dumps(inputList) listID = ll.elconn_list_from_json(strList.encode()) resultID = ll.elconn_call(interpID, listID) return resultID # === load library ll = cdll.LoadLibrary("../sharedlib/elconn.so") # === set return types ll.elconn_get_type.restype = c_int ll.elconn_init.restype = c_ulonglong ll.elconn_list_from_json.restype = c_ulonglong ll.elconn_make_interpreter.restype = c_ulonglong ll.elconn_call.restype = c_ulonglong ll.elconn_connect_remote.restype = c_ulonglong ll.elconn_list_strfirst.restype = c_char_p ll.elconn_list_to_json.restype = c_char_p # === set argument types ll.elconn_list_from_json.argtypes = [c_char_p] ll.elconn_serve_remote.argtypes = [c_char_p, c_ulonglong] # == Manual Test 1 == Using the interpreter initMsg = ll.elconn_init(0) ll.elconn_display_info(initMsg) testList = json.dumps(["format", "Hello, %s!", "World"]) listID = ll.elconn_list_from_json(testList.encode()) ll.elconn_list_print(listID) interpID = ll.elconn_make_interpreter() resultID = ll.elconn_call(interpID, listID) ll.elconn_list_print(resultID) # == Manual Test 2 == Connecting to remote interpreter ll.elconn_serve_remote(b":3003", interpID) time.sleep(1) remoteID = ll.elconn_connect_remote(b"http://localhost:3003") rResultID = ll.elconn_call(remoteID, listID) ll.elconn_list_print(rResultID) # == Manual Test 3 == Value on server someList = json.dumps([":", "test-var", ["store", "hello", 1]]) listID = ll.elconn_list_from_json(someList.encode()) resultID = ll.elconn_call(interpID, listID) someList = json.dumps(["format", "%s there %f", ["test-var"]]) listID = ll.elconn_list_from_json(someList.encode()) resultID = ll.elconn_call(remoteID, listID) rResultID = ll.elconn_call(remoteID, listID) ll.elconn_list_print(rResultID) # == Manual Test 3 == Directory with value on server runList(ll, interpID, [":", "test-map", ["@", "directory"]]) runList(ll, interpID, ["test-map", ":", "a", ["store", "test value 2"]]) resID = runList(ll, remoteID, ["test-map", "a"]) ll.elconn_list_print(resID) # == Manual Test 5 == Request queue runList(ll, interpID, ["test-map", ":", "b", ["@", "requests"]]) runList(ll, interpID, ["test-map", "b", "enque", "[\"some_json\"]"]) resID = runList(ll, remoteID, ["test-map", "b", "block"]) ll.elconn_list_print(resID) # -- schedule something to be enqueued later def do_the_thing(ll, interpID, item, delay): time.sleep(delay) runList(ll, interpID, ["test-map", "b", "enque", item]) thread.start_new_thread(do_the_thing, (ll, interpID, "test-thread", 4)) print("Wait 4 seconds...") resID = runList(ll, remoteID, ["test-map", "b", "block"]) ll.elconn_list_print(resID) # == Maual Test 6 == Getting values someList = json.dumps(["format", "%s there %f", ["test-var"]]) listID = ll.elconn_list_from_json(someList.encode()) firstStr = ll.elconn_list_strfirst(listID) print("firstStr = %s" % firstStr) asJSON = ll.elconn_list_to_json(listID) print("asJSON = %s" % asJSON)
33.225806
72
0.724272
[ "MIT" ]
epicframework/EPIC-Core
connective/connective/python/elconn_trial_script.py
3,090
Python
from lxml import html from Proxy import Proxy import urllib.request import urllib.parse import urllib.error import data import sys import bcolors class Search : #Initializes variables def __init__(self, useproxy, retries = None, verbose = False, sleep = 5): self.urls = [] # contains scraped urls self.blacklist = [] # contains blacklisted proxies self.useproxy = useproxy # dictates use of proxy self.retries = retries # sets the number of search retries, if None => unlimited self.verbose = verbose # sets verbosity level self.sleep = sleep # dictates sleep while searching for urls self.proxyhandler = None if (self.useproxy) : self.proxyhandler = Proxy(self.verbose) self.proxyhandler.proxify() if (self.verbose) : bcolors.printGreen("[+]Search object created!") def print_state(self) : bcolors.printBold("****Printing object state****") bcolors.printBold("URLs:\n") print(str(self.urls)) bcolors.printBold("Blacklist:\n") print(str(self.blacklist)) bcolors.printBold("Settings:\n") print("Retries: " + str(self.retries) + ", Verbose: " + str(self.verbose) + ", Sleep: " + str(self.sleep)) def print_urls(self) : bcolors.printBold("****PRINTING URLS****\n") for url in self.urls : print(str(url)) # Returns the HTML page of a website. # It incorporates error checking and retries # If an unknown error was raised, def get_html(self, url) : if (self.useproxy) : self.proxyhandler.validate_proxy() req = urllib.request.Request(url, None, data.headers) tries = 0 while (self.retries == None or tries < self.retries): try : res = urllib.request.urlopen(req) src = res.read() break except urllib.error.HTTPError as e: if (self.useproxy) : self.update_proxy() if (e.code != 503) : bcolors.printFail("[-]HTTP Error " + str(e) + " was raised!") return None # If we have to retry, append current proxy to blacklist if (self.useproxy) : # Blacklists both proxies if error occured! self.proxyhandler.blacklist_current_proxy(True) tries += 1 return html.fromstring(str(src)) def update_proxy(self, https=False) : self.proxyhandler.proxify(https, True) self.proxyhandler.validate_proxy() def fatal_exception(self,e = None, function_name = None) : bcolors.printFail("A fatal exception has occured!") if (not e == None) : print(str(e)) elif (not function_name == None) : print(str(function_name)) bcolors.printBold("****PROGRAM STATE****") self.print_state() sys.exit(0)
37.256098
115
0.572504
[ "MIT" ]
Spectrum256/webvulns
dev/Search.py
3,055
Python
# !pip install transformers import torch from transformers.file_utils import is_tf_available, is_torch_available, is_torch_tpu_available from transformers import BertTokenizerFast, BertForSequenceClassification from transformers import Trainer, TrainingArguments import numpy as np import random from sklearn.datasets import fetch_20newsgroups from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score def set_seed(seed: int): """ Helper function for reproducible behavior to set the seed in ``random``, ``numpy``, ``torch`` and/or ``tf`` (if installed). Args: seed (:obj:`int`): The seed to set. """ random.seed(seed) np.random.seed(seed) if is_torch_available(): torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) # safe to call this function even if cuda is not available if is_tf_available(): import tensorflow as tf tf.random.set_seed(seed) set_seed(1) # the model we gonna train, base uncased BERT # check text classification models here: https://huggingface.co/models?filter=text-classification model_name = "bert-base-uncased" # max sequence length for each document/sentence sample max_length = 512 # load the tokenizer tokenizer = BertTokenizerFast.from_pretrained(model_name, do_lower_case=True) def read_20newsgroups(test_size=0.2): # download & load 20newsgroups dataset from sklearn's repos dataset = fetch_20newsgroups(subset="all", shuffle=True, remove=("headers", "footers", "quotes")) documents = dataset.data labels = dataset.target # split into training & testing a return data as well as label names return train_test_split(documents, labels, test_size=test_size), dataset.target_names # call the function (train_texts, valid_texts, train_labels, valid_labels), target_names = read_20newsgroups() # tokenize the dataset, truncate when passed `max_length`, # and pad with 0's when less than `max_length` train_encodings = tokenizer(train_texts, truncation=True, padding=True, max_length=max_length) valid_encodings = tokenizer(valid_texts, truncation=True, padding=True, max_length=max_length) class NewsGroupsDataset(torch.utils.data.Dataset): def __init__(self, encodings, labels): self.encodings = encodings self.labels = labels def __getitem__(self, idx): item = {k: torch.tensor(v[idx]) for k, v in self.encodings.items()} item["labels"] = torch.tensor([self.labels[idx]]) return item def __len__(self): return len(self.labels) # convert our tokenized data into a torch Dataset train_dataset = NewsGroupsDataset(train_encodings, train_labels) valid_dataset = NewsGroupsDataset(valid_encodings, valid_labels) # load the model and pass to CUDA model = BertForSequenceClassification.from_pretrained(model_name, num_labels=len(target_names)).to("cuda") def compute_metrics(pred): labels = pred.label_ids preds = pred.predictions.argmax(-1) # calculate accuracy using sklearn's function acc = accuracy_score(labels, preds) return { 'accuracy': acc, } training_args = TrainingArguments( output_dir='./results', # output directory num_train_epochs=3, # total number of training epochs per_device_train_batch_size=8, # batch size per device during training per_device_eval_batch_size=20, # batch size for evaluation warmup_steps=500, # number of warmup steps for learning rate scheduler weight_decay=0.01, # strength of weight decay logging_dir='./logs', # directory for storing logs load_best_model_at_end=True, # load the best model when finished training (default metric is loss) # but you can specify `metric_for_best_model` argument to change to accuracy or other metric logging_steps=400, # log & save weights each logging_steps save_steps=400, evaluation_strategy="steps", # evaluate each `logging_steps` ) trainer = Trainer( model=model, # the instantiated Transformers model to be trained args=training_args, # training arguments, defined above train_dataset=train_dataset, # training dataset eval_dataset=valid_dataset, # evaluation dataset compute_metrics=compute_metrics, # the callback that computes metrics of interest ) # train the model trainer.train() # evaluate the current model after training trainer.evaluate() # saving the fine tuned model & tokenizer model_path = "20newsgroups-bert-base-uncased" model.save_pretrained(model_path) tokenizer.save_pretrained(model_path)
41.078947
115
0.730728
[ "MIT" ]
AJuneSlop/pythoncode-tutorials
machine-learning/nlp/bert-text-classification/train.py
4,683
Python
# DADSA - Assignment 1 # Reece Benson import json from classes import Player as Player from classes import Season as Season from classes import Tournament as Tournament from classes import Round as Round from classes import Match as Match class Handler(): # Define the variables we will be using app = None prize_money = None seasons = { } def __init__(self, _app): if(_app.debug): print("[LOAD]: Loaded Handler!") # Define our Application within this Handler class self.app = _app # Used to load all data into memory def load(self): # This function will create our seasons and implement the genders & players self.load_prize_money() self.load_players() #TODO: Implement load_seasons() # Used to load prize money def load_prize_money(self): with open('./data/rankingPoints.json') as tData: data = json.load(tData) # Make our prize_money a dictionary if(self.prize_money == None): self.prize_money = { } # Make use of the values self.prize_money = [ (rank,pts) for pts in data for rank in data[pts] ] print(self.prize_money) # Used to load players from all seasons into memory def load_players(self): with open('./data/players.json') as tData: data = json.load(tData) # Players are classed within Seasons for season in data: # If the season does not yet exist, create it if(not season in self.seasons): self.seasons[season] = { "players": { } } # Players are then stored within Gender classifications for gender in data[season]: if(not gender in self.seasons[season]["players"]): self.seasons[season]["players"][gender] = [ ] # Append our player in the season, within the gender for player in data[season][gender]: #TODO: Change to using Player class self.seasons[season]["players"][gender].append(player) def get_players(self, season): # Check our Season exists if(not season in self.seasons): return None else: # Check we have players within our Season if("players" in self.seasons[season]): return self.seasons[season]["players"] else: return None
33.8
83
0.582249
[ "MIT" ]
reecebenson/DADSA-Tennis-PartA
.history/classes/Handler_20171106200011.py
2,535
Python
''' Test script for GrFNN, plotting the entrainment for a sin wave of changing frequency. @author T. Kaplan ''' import numpy as np import matplotlib matplotlib.use('TkAgg') import matplotlib.pyplot as plt import time from gfnn import FrequencyType, FrequencyDist, ZParams, GrFNN from plot import spectro_plot # Construct our model by instantiating the class defined above dim_in = 300 freq_dist = FrequencyDist(0.25, 6.0, dim_in, FrequencyType.LINEAR) zparams = ZParams() model = GrFNN(freq_dist, zparams, fs=160) # Stimulus - 50 seconds of FHz sin, at a changing frequency (4->2) F = 4 t1 = np.arange(0, 25, model.dt) x1 = np.sin(2 * np.pi * F * t1) * 0.25 t2 = np.arange(25, 50, model.dt) x2 = np.sin(2 * np.pi * F/2 * t2) * 0.25 # Prepare an initial plot t = np.concatenate([t1, t2]) x = np.concatenate([x1, x2]) px = freq_dist.dist py = np.zeros(px.shape) plt.plot(px, py) zs = np.empty((len(t), dim_in), dtype=np.complex64) t0 = time.time() for i in range(len(t)): out = model(x[i]) zs[i] = out # Update plot: if i % 10 == 0: py = np.abs(out) plt.gca().lines[0].set_ydata(py) plt.gca().relim() plt.gca().autoscale_view() plt.pause(0.01) t1 = time.time() print('Took', round(t1-t0, 2)) plt.show()
24.326923
85
0.658498
[ "MIT" ]
Kappers/oscirhythm
model/sin_example_gfnn.py
1,265
Python
from maestro.core.provider import BaseSyncProvider class NoSQLSyncProvider(BaseSyncProvider): pass
20.8
50
0.836538
[ "BSD-3-Clause" ]
estudio89/maestro-python
maestro/backends/base_nosql/provider.py
104
Python
''' Adapted from https://github.com/IntelligentQuadruped, with permission Description: Module to connect to camera and retrieve RGB and depth data. Currently supports the Intel RealSense R200 Camera. ''' import numpy as np import logging import time import cv2 import matplotlib.pyplot as plt from skimage.transform import rescale from file_support import ensureDir from os import path, makedirs try: import pyrealsense as pyrs except ImportError as error: logging.warning("cam.py: " + str(error)) class Camera: """ Object to get data from R200 """ def __init__(self, max_depth = 4.0, save_images = False, \ t_buffer = 5, output_dir = './Trials/'): """ Intitalizes Camera object """ self.max_depth = max_depth self.save_images = save_images self.clock = time.time() self.t_buffer = t_buffer self.output_dir = output_dir self.data_dir = path.join(self.output_dir,"{}".format(time.strftime("%d_%b_%Y_%H:%M", time.localtime()))) if self.save_images: ensureDir(self.data_dir) pass np.warnings.filterwarnings('ignore') def connect(self): """ Establishes connection to R200 camera """ logging.info("Cam.py: connecting components") self.serv = pyrs.Service() self.dev = self.serv.Device(device_id=0, streams=[\ pyrs.stream.DepthStream(fps=60), pyrs.stream.ColorStream(fps=60)]) def disconnect(self): """ Disconnects from R200 camera """ self.dev.stop() self.serv.stop() logging.info("Cam.py: camera disconnected") def getFrames(self, frames = 5, rgb = False): """ Retrieves depth frames (and RGB if true) from R200 input, cleans and averages depth images """ self.dev.wait_for_frames() # Convert depth to meters depth = self.dev.depth * self.dev.depth_scale col = self.dev.color if self.save_images and (time.time() - self.clock > self.t_buffer): np.save(path.join(self.data_dir,str(time.time())+"_d"),depth) np.save(path.join(self.data_dir,str(time.time())+"_c"),col) self.clock = time.time() for _ in range(frames-1): self.dev.wait_for_frames() # Convert depth to meters curr = self.dev.depth * self.dev.depth_scale depth = np.dstack((depth, curr)) if frames != 1: depth = np.nanmean(depth, 2) depth[depth <= 0] = np.nan depth[depth > self.max_depth] = np.nan if rgb: return depth, col return depth def reduceFrame(self, depth, height_ratio = 0.5, sub_sample = 0.3, reduce_to = 'lower'): """ Takes in a depth image and rescales it Args: height_ratio: Determines fraction of rows to keep sub_sample: Scaling factor for image """ if (height_ratio > 1.0) or (height_ratio < 0.0)\ or (sub_sample > 1.0) or (sub_sample < 0.0): print('height_ratio and sub_sample must be between 0 and 1') exit(1) depth_copy = depth.copy() height = depth_copy.shape[0] h = int(height_ratio*(height)) cols_to_cut = 0 # catches the case when all rows are kept if height_ratio == 1: d_short = depth_copy elif reduce_to == 'lower': d_short = depth_copy[(height - h):,\ cols_to_cut:-(cols_to_cut+1)] elif reduce_to == 'middle_lower': upper_brdr = int(3*(height/4.0) - h/2) lower_brdr = upper_brdr + h d_short = depth_copy[upper_brdr:lower_brdr,\ cols_to_cut:-(cols_to_cut+1)] elif reduce_to == 'middle': upper_brdr = int((height - h)/2.0) lower_brdr = upper_brdr + h d_short = depth_copy[upper_brdr:lower_brdr,\ cols_to_cut:-(cols_to_cut+1)] elif reduce_to == 'middle_upper': upper_brdr = int((height/4.0) - h/2) lower_brdr = upper_brdr + h d_short = depth_copy[upper_brdr:lower_brdr,\ cols_to_cut:-(cols_to_cut+1)] elif reduce_to == 'upper': d_short = depth_copy[:h, cols_to_cut:-(cols_to_cut+1)] d_short[d_short <= 0] = np.nan d_short[d_short > self.max_depth] = np.nan rescaled = rescale(d_short, sub_sample, mode='reflect', multichannel=False, anti_aliasing=True) return rescaled def main(): """ Unit tests """ max_depth = 4.0 numFrames = 10 # height_ratio of 0 crops 0 rows away height_ratio = 0.5 sub_sample = 1 # reduce_to argument can be: 'lower', 'middle_lower', 'middle', 'middle_upper', and 'upper' reduce_to = 'middle_lower' print('Program settings:') print('\tmax_depth: ' + str(max_depth)) print('\tnumFrames: ' + str(numFrames)) print('\theight_ratio: ' + str(height_ratio)) print('\tsub_sample: ' + str(sub_sample)) print('\treduce_to: ' + reduce_to) cam = Camera(max_depth = max_depth) cam.connect() time.sleep(2.5) t1 = time.time() d = cam.getFrames(numFrames) t2 = time.time() printStmt = 'Time to get {0} frames: ' + str(t2 - t1) print(printStmt.format(numFrames)) d_small = cam.reduceFrame(d, height_ratio = height_ratio, sub_sample = sub_sample, reduce_to = reduce_to) # colormap: # https://matplotlib.org/tutorials/colors/colormaps.html # scaled depth plt.figure(figsize = (6, 7)) # figsize = width, height ax2 = plt.subplot(2, 1, 2) plt.imshow(d_small, cmap='gist_rainbow') plt.colorbar() plt.title('Scaled (height_ratio = {0}, sub_sample = {1})'.format(height_ratio, sub_sample)) plt.grid() # original depth # plt.subplot(2, 1, 1, sharex=ax2, sharey=ax2) plt.subplot(2, 1, 1) plt.imshow(d, cmap='gist_rainbow') plt.colorbar() plt.title('Original') plt.grid() plt.subplots_adjust(hspace = 0.3) plt.show() cam.disconnect() if __name__ == "__main__": main()
31.134328
125
0.591243
[ "MIT" ]
marioliu/AutonomousQuadblade
Camera/camera.py
6,258
Python
# -*- coding: utf-8 -*- # Generated by Django 1.11.6 on 2017-11-08 21:18 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('core', '0011_auto_20171108_2343'), ] operations = [ migrations.AddField( model_name='onlinecheckout', name='transaction_date', field=models.DateTimeField(blank=True, null=True), ), ]
22.666667
62
0.630252
[ "MIT" ]
Eleazar-Harold/mpesa_api
mpesa_api/core/migrations/0012_onlinecheckout_transaction_date.py
476
Python
#!/usr/bin/env python # Copyright 2012 La Honda Research Center, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """clean_file_locks.py - Cleans stale interprocess locks This rountine can be used to find and delete stale lock files from nova's interprocess synchroization. It can be used safely while services are running. """ import logging import optparse from nova import flags from nova import log from nova import utils LOG = log.getLogger('nova.utils') FLAGS = flags.FLAGS def parse_options(): """process command line options.""" parser = optparse.OptionParser('usage: %prog [options]') parser.add_option('--verbose', action='store_true', help='List lock files found and deleted') options, args = parser.parse_args() return options, args def main(): """Main loop.""" options, args = parse_options() verbose = options.verbose if verbose: LOG.logger.setLevel(logging.DEBUG) else: LOG.logger.setLevel(logging.INFO) LOG.info('Cleaning stale locks from %s' % FLAGS.lock_path) utils.cleanup_file_locks() LOG.info('Finished') if __name__ == '__main__': main()
26.09375
74
0.713772
[ "Apache-2.0" ]
bopopescu/extra-specs-1
tools/clean_file_locks.py
1,670
Python
from flask import Flask from flask_cors import CORS from . import configs def create_app(): app = Flask(__name__) app.config.from_object(configs.Config) CORS(app, resources={r"/api/*": {"origins": "*"}}) from .controllers import api_blueprint app.register_blueprint(api_blueprint) return app
18.941176
54
0.704969
[ "MIT" ]
BiznetGIO/whois-api
app/__init__.py
322
Python
# Copyright 2018 Yegor Bitensky # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. def get_parameters(func): def wrap(self, values): return func(self, **values) return wrap
34.15
74
0.746706
[ "Apache-2.0" ]
YegorDB/THPoker
tests/utils.py
683
Python
import redis import json from itertools import zip_longest from common.config import REDIS_ADDR, REDIS_PORT, REDIS_DB def batcher(iterable, n): args = [iter(iterable)] * n return zip_longest(*args) def insert2redis(ids, dataList): # dataList [{"videoId": id, "feat": feat, "name": name}] r = redis.Redis(host=REDIS_ADDR, port=REDIS_PORT, db=REDIS_DB) if len(ids) != len(dataList): # TODO return error return "" for k, v in enumerate(ids): r_key = v r_value = dataList[k] r.set(r_key, json.dumps(r_value)) def clean_with_video_id(id): r = redis.StrictRedis(host=REDIS_ADDR, port=REDIS_PORT, db=REDIS_DB) for keybatch in batcher(r.scan_iter('*'), 500): for i in keybatch: if i: if json.loads(r.get(i)).get("videoId") == id: r.delete(i) def total_images(): r = redis.StrictRedis(host=REDIS_ADDR, port=REDIS_PORT, db=REDIS_DB, decode_responses=True) total = r.get("IMG_TOTAL") if not total: r.set("IMG_TOTAL", 0) return 0 return int(total) def total_images_add(): r = redis.StrictRedis(host=REDIS_ADDR, port=REDIS_PORT, db=REDIS_DB, decode_responses=True) total = r.get("IMG_TOTAL") if not total: r.set("IMG_TOTAL", 1) return 1 r.set("IMG_TOTAL", int(total)+1) return int(total)+1 def total_images_reduce(): r = redis.StrictRedis(host=REDIS_ADDR, port=REDIS_PORT, db=REDIS_DB, decode_responses=True) total = r.get("IMG_TOTAL") if not total: r.set("IMG_TOTAL", 0) return 0 r.set("IMG_TOTAL", int(total)-1) return int(total)-1 def search(ids): res = [] r = redis.Redis(host=REDIS_ADDR, port=REDIS_PORT, db=REDIS_DB) for i in ids: v = r.get(i.id) if v and json.loads(v).get('videoId') not in res: res.append([json.loads(v).get('videoId'), i.distance]) return res
29.424242
95
0.625644
[ "Apache-2.0" ]
JackLCL/bootcamp
solutions/video_similarity_search/search-video-demo/search/controller/database.py
1,942
Python
from django.contrib import admin from menus.models import Dish, Menu @admin.register(Menu) class MenuAdmin(admin.ModelAdmin): list_display = ('id', 'name', 'description', 'created', 'updated') search_fields = ('id', 'name', 'description') list_filter = ('created', 'updated') raw_id_fields = ('dishes',) @admin.register(Dish) class DishAdmin(admin.ModelAdmin): list_display = ( 'id', 'name', 'description', 'price', 'time_to_prepare', 'is_vegetarian', 'created', 'updated', ) search_fields = ('id', 'name', 'description') list_filter = ('is_vegetarian', 'created', 'updated')
25.037037
70
0.606509
[ "MIT" ]
dzbrozek/emenu-api
emenuapi/menus/admin.py
676
Python
""" show_interface.py IOSXE parsers for the following show commands: * show interfaces * show ip interfaces <interface> * show ip interface brief * show ip interface brief | include Vlan * show interfaces switchport * show ip interface * show interfaces <interface> * show ipv6 interface * show interfaces accounting * show interfaces status * show interface {interface} transceiver detail """ import os import logging import pprint import re import unittest from genie import parsergen from collections import defaultdict from pyats.log.utils import banner import xmltodict try: import iptools from cnetconf import testmodel except (ImportError, OSError): pass try: from pyats import tcl except Exception: pass from genie.metaparser import MetaParser from genie.metaparser.util import merge_dict, keynames_convert from genie.metaparser.util.schemaengine import Schema, \ Any, \ Optional, \ Or, \ And, \ Default, \ Use # import parser utils from genie.libs.parser.utils.common import Common logger = logging.getLogger(__name__) class ShowInterfacesSchema(MetaParser): """schema for show interfaces show interfaces <interface>""" schema = { Any(): { Optional('oper_status'): str, Optional('line_protocol'): str, Optional('enabled'): bool, Optional('connected'): bool, Optional('description'): str, Optional('type'): str, Optional('link_state'): str, Optional('port_speed'): str, Optional('duplex_mode'): str, Optional('link_type'): str, Optional('media_type'): str, Optional('mtu'): int, Optional('maximum_active_vcs'): str, Optional('vcs_per_vp'): str, Optional('vc_idle_disconnect_time'): str, Optional('vc_auto_creation'): str, Optional('current_vccs'): str, Optional('aal5_crc_errors'): int, Optional('aal5_oversized_sdus'): int, Optional('aal5_sar_timeouts'): int, Optional('vaccess_status'): str, Optional('vaccess_loopback'): str, Optional('base_pppoatm'): str, Optional('dtr_pulsed'): str, Optional('sub_mtu'): int, Optional('medium'): str, Optional('reliability'): str, Optional('txload'): str, Optional('rxload'): str, Optional('mac_address'): str, Optional('phys_address'): str, Optional('delay'): int, Optional('carrier_delay'): int, Optional('carrier_delay_up'): int, Optional('carrier_delay_down'): int, Optional('keepalive'): int, Optional('auto_negotiate'): bool, Optional('arp_type'): str, Optional('arp_timeout'): str, Optional('last_input'): str, Optional('last_output'): str, Optional('output_hang'): str, Optional('autostate'): bool, Optional('queues'): { Optional('input_queue_size'): int, Optional('input_queue_max'): int, Optional('input_queue_drops'): int, Optional('input_queue_flushes'): int, Optional('total_output_drop'): int, Optional('queue_strategy'): str, Optional('output_queue_size'): int, Optional('output_queue_max'): int, Optional('threshold'): int, Optional('drops'): int, }, Optional('flow_control'): {Optional('receive'): bool, Optional('send'): bool, }, Optional('port_channel'): {Optional('port_channel_member'): bool, Optional('port_channel_int'): str, Optional('port_channel_member_intfs'): list, Optional('active_members'): int, Optional('num_of_pf_jumbo_supported_members'): int, }, Optional('bandwidth'): int, Optional('counters'): {Optional('rate'): {Optional('load_interval'): int, Optional('in_rate'): int, Optional('in_rate_pkts'): int, Optional('out_rate'): int, Optional('out_rate_pkts'): int, Optional('in_rate_bps'): int, Optional('in_rate_pps'): int, Optional('out_rate_bps'): int, Optional('out_rate_pps'): int, }, Optional('in_multicast_pkts'): int, Optional('in_broadcast_pkts'): int, Optional('in_crc_errors'): int, Optional('in_giants'): int, Optional('in_pkts'): int, Optional('in_frame'): int, Optional('in_runts'): int, Optional('in_overrun'): int, Optional('in_ignored'): int, Optional('in_watchdog'): int, Optional('in_with_dribble'): int, Optional('in_octets'): int, Optional('in_errors'): int, Optional('in_abort'): int, Optional('in_no_buffer'): int, Optional('in_throttles'): int, Optional('in_mac_pause_frames'): int, Optional('out_pkts'): int, Optional('out_octets'): int, Optional('out_multicast_pkts'): int, Optional('out_broadcast_pkts'): int, Optional('out_errors'): int, Optional('out_collision'): int, Optional('out_interface_resets'): int, Optional('out_unknown_protocl_drops'): int, Optional('out_babbles'): int, Optional('out_deferred'): int, Optional('out_underruns'): int, Optional('out_late_collision'): int, Optional('out_lost_carrier'): int, Optional('out_no_carrier'): int, Optional('out_babble'): int, Optional('out_mac_pause_frames'): int, Optional('out_buffer_failure'): int, Optional('out_buffers_swapped'): int, Optional('last_clear'): str, }, Optional('encapsulations'): {Optional('encapsulation'): str, Optional('first_dot1q'): str, Optional('second_dot1q'): str, Optional('native_vlan'): int, }, Optional('ipv4'): {Any(): {Optional('ip'): str, Optional('prefix_length'): str, Optional('secondary'): bool }, Optional('unnumbered'): { 'interface_ref': str, }, }, }, } class ShowInterfaces(ShowInterfacesSchema): """parser for show interfaces show interfaces <interface>""" cli_command = ['show interfaces','show interfaces {interface}'] exclude = ['in_octets', 'in_pkts', 'out_octets', 'out_pkts', 'in_rate', 'in_rate_pkts', 'out_rate', 'out_rate_pkts', 'input_queue_size', 'in_broadcast_pkts', 'in_multicast_pkts', 'last_output', 'out_unknown_protocl_drops', 'last_input', 'input_queue_drops', 'out_interface_resets', 'rxload', 'txload', 'last_clear', 'in_crc_errors', 'in_errors', 'in_giants', 'unnumbered', 'mac_address', 'phys_address', 'out_lost_carrier', '(Tunnel.*)', 'input_queue_flushes', 'reliability'] def cli(self,interface="",output=None): if output is None: if interface: cmd = self.cli_command[1].format(interface=interface) else: cmd = self.cli_command[0] out = self.device.execute(cmd) else: out = output # GigabitEthernet1 is up, line protocol is up # Port-channel12 is up, line protocol is up (connected) # Vlan1 is administratively down, line protocol is down , Autostate Enabled # Dialer1 is up (spoofing), line protocol is up (spoofing) p1 = re.compile(r'^(?P<interface>[\w\/\.\-]+) +is +(?P<enabled>[\w\s]+)(?: ' r'+\S+)?, +line +protocol +is +(?P<line_protocol>\w+)(?: ' r'*\((?P<attribute>\S+)\)|( +\, +Autostate +(?P<autostate>\S+)))?.*$') p1_1 = re.compile(r'^(?P<interface>[\w\/\.\-]+) +is' r' +(?P<enabled>[\w\s]+),' r' +line +protocol +is +(?P<line_protocol>\w+)' r'( *, *(?P<attribute>[\w\s]+))?$') # Hardware is Gigabit Ethernet, address is 0057.d2ff.428c (bia 0057.d2ff.428c) # Hardware is Loopback p2 = re.compile(r'^Hardware +is +(?P<type>[a-zA-Z0-9\-\/\s\+]+)' r'(, *address +is +(?P<mac_address>[a-z0-9\.]+)' r' *\(bia *(?P<phys_address>[a-z0-9\.]+)\))?$') # Hardware is LTE Adv CAT6 - Multimode LTE/DC-HSPA+/HSPA+/HSPA/UMTS/EDGE/GPRS p2_2 = re.compile(r'Hardware +is +(?P<type>[a-zA-Z0-9\-\/\+ ]+)' r'(?P<mac_address>.*)(?P<phys_address>.*)') # Description: desc # Description: Pim Register Tunnel (Encap) for RP 10.186.1.1 p3 = re.compile(r'^Description: *(?P<description>.*)$') # Secondary address 10.2.2.2/24 p4 = re.compile(r'^Secondary +Address +is +(?P<ipv4>(?P<ip>[0-9\.]+)' r'\/(?P<prefix_length>[0-9]+))$') # Internet address is 10.4.4.4/24 p5 = re.compile(r'^Internet +[A|a]ddress +is +(?P<ipv4>(?P<ip>[0-9\.x]+)' r'\/(?P<prefix_length>[0-9]+))$') # MTU 1500 bytes, BW 768 Kbit/sec, DLY 3330 usec, # MTU 1500 bytes, BW 10000 Kbit, DLY 1000 usec, # MTU 1600 bytes, sub MTU 1600, BW 3584 Kbit/sec, DLY 410 usec, # MTU 1500 bytes, BW 5200 Kbit/sec, RxBW 25000 Kbit/sec, DLY 100 usec, p6 = re.compile(r'^MTU +(?P<mtu>\d+) +bytes(, +sub +MTU +' r'(?P<sub_mtu>\d+))?, +BW +(?P<bandwidth>[0-9]+) +Kbit(\/sec)?' r'(, +RxBW +[0-9]+ +Kbit(\/sec)?)?, +' r'DLY +(?P<delay>[0-9]+) +usec,$') # reliability 255/255, txload 1/255, rxload 1/255 p7 = re.compile(r'^reliability +(?P<reliability>[\d\/]+),' r' +txload +(?P<txload>[\d\/]+), +rxload' r' +(?P<rxload>[\d\/]+)$') # Encapsulation LOOPBACK, loopback not set # Encapsulation 802.1Q Virtual LAN, Vlan ID 20, medium is p2p # Encapsulation ARPA, medium is broadcast # Encapsulation QinQ Virtual LAN, outer ID 10, inner ID 20 # Encapsulation 802.1Q Virtual LAN, Vlan ID 1., loopback not set # Encapsulation 802.1Q Virtual LAN, Vlan ID 105. # Encapsulation(s): AAL5 p8 = re.compile(r'^Encapsulation(\(s\):)? +(?P<encapsulation>[\w\s\.]+)' r'(, +(?P<rest>.*))?$') # Keepalive set (10 sec) p10 = re.compile(r'^Keepalive +set +\((?P<keepalive>[0-9]+)' r' +sec\)$') # Auto-duplex, 1000Mb/s, media type is 10/100/1000BaseTX # Full-duplex, 1000Mb/s, link type is auto, media type is # Full Duplex, 1000Mbps, link type is auto, media type is RJ45 # Full Duplex, Auto Speed, link type is auto, media type is RJ45 # Full Duplex, 10000Mbps, link type is force-up, media type is unknown media type # full-duplex, 1000 Mb/s # auto-duplex, auto-speed # auto-duplex, 10 Gb/s, media type is 10G # Full Duplex, 10000Mbps, link type is force-up, media type is SFP-LR # Full-duplex, 100Gb/s, link type is force-up, media type is QSFP 100G SR4 p11 = re.compile(r'^(?P<duplex_mode>\w+)[\-\s]+[d|D]uplex\, ' r'+(?P<port_speed>[\w\s\/]+|[a|A]uto-[S|s]peed|Auto ' r'(S|s)peed)(?:(?:\, +link +type +is ' r'+(?P<link_type>\S+))?(?:\, *(media +type +is| )' r'*(?P<media_type>[\w\/\- ]+)?)(?: +media +type)?)?$') # input flow-control is off, output flow-control is unsupported p12 = re.compile(r'^(input|output) +flow-control +is +(?P<receive>\w+), +' '(output|input) +flow-control +is +(?P<send>\w+)$') # ARP type: ARPA, ARP Timeout 04:00:00 p13 = re.compile(r'^ARP +type: +(?P<arp_type>\w+), +' 'ARP +Timeout +(?P<arp_timeout>[\w\:\.]+)$') # Last input never, output 00:01:05, output hang never p14 = re.compile(r'^Last +input +(?P<last_input>[\w\.\:]+), +' 'output +(?P<last_output>[\w\.\:]+), ' 'output +hang +(?P<output_hang>[\w\.\:]+)$') # Members in this channel: Gi1/0/2 # Members in this channel: Fo1/0/2 Fo1/0/4 p15 = re.compile(r'^Members +in +this +channel: +' '(?P<port_channel_member_intfs>[\w\/\.\s\,]+)$') # No. of active members in this channel: 12 p15_1 = re.compile(r'^No\. +of +active +members +in +this +' 'channel: +(?P<active_members>\d+)$') # Member 2 : GigabitEthernet0/0/10 , Full-duplex, 900Mb/s p15_2 = re.compile(r'^Member +\d+ +: +(?P<interface>\S+) +,' ' +\S+, +\S+$') # No. of PF_JUMBO supported members in this channel : 0 p15_3 = re.compile(r'^No\. +of +PF_JUMBO +supported +members +' 'in +this +channel +: +(?P<number>\d+)$') # Last clearing of "show interface" counters 1d02h p16 = re.compile(r'^Last +clearing +of +\"show +interface\" +counters +' '(?P<last_clear>[\w\:\.]+)$') # Input queue: 0/375/0/0 (size/max/drops/flushes); Total output drops: 0 p17 = re.compile(r'^Input +queue: +(?P<size>\d+)\/(?P<max>\d+)\/' '(?P<drops>\d+)\/(?P<flushes>\d+) +' '\(size\/max\/drops\/flushes\); +' 'Total +output +drops: +(?P<output_drop>\d+)$') # Queueing strategy: fifo # Queueing strategy: Class-based queueing p18 = re.compile(r'^Queueing +strategy: +(?P<queue_strategy>\S+).*$') # Output queue: 0/0 (size/max) # Output queue: 0/1000/64/0 (size/max total/threshold/drops) p19 = re.compile(r'^Output +queue: +(?P<size>\d+)\/(?P<max>\d+)' '(?:\/(?P<threshold>\d+)\/(?P<drops>\d+))? ' '+\(size\/max(?: +total\/threshold\/drops\))?.*$') # 5 minute input rate 0 bits/sec, 0 packets/sec p20 = re.compile(r'^(?P<load_interval>[0-9\#]+)' ' *(?P<unit>(minute|second|minutes|seconds)) *input *rate' ' *(?P<in_rate>[0-9]+) *bits/sec,' ' *(?P<in_rate_pkts>[0-9]+) *packets/sec$') # 5 minute output rate 0 bits/sec, 0 packets/sec p21 = re.compile(r'^(?P<load_interval>[0-9\#]+)' ' *(minute|second|minutes|seconds) *output *rate' ' *(?P<out_rate>[0-9]+) *bits/sec,' ' *(?P<out_rate_pkts>[0-9]+) *packets/sec$') # 0 packets input, 0 bytes, 0 no buffer # 13350 packets input, 2513375 bytes p22 = re.compile(r'^(?P<in_pkts>[0-9]+) +packets +input, +(?P<in_octets>[0-9]+) ' '+bytes(?:, +(?P<in_no_buffer>[0-9]+) +no +buffer)?$') # Received 4173 broadcasts (0 IP multicasts) # Received 535996 broadcasts (535961 multicasts) p23 = re.compile(r'^Received +(?P<in_broadcast_pkts>\d+) +broadcasts +' '\((?P<in_multicast_pkts>\d+) *(IP)? *multicasts\)$') # 0 runts, 0 giants, 0 throttles p24 = re.compile(r'^(?P<in_runts>[0-9]+) *runts,' ' *(?P<in_giants>[0-9]+) *giants,' ' *(?P<in_throttles>[0-9]+) *throttles$') # 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored # 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort p25 = re.compile(r'^(?P<in_errors>[0-9]+) +input +errors, +' '(?P<in_crc_errors>[0-9]+) +CRC, +' '(?P<in_frame>[0-9]+) +frame, +' '(?P<in_overrun>[0-9]+) +overrun, +' '(?P<in_ignored>[0-9]+) +ignored' '(, *(?P<in_abort>[0-9]+) +abort)?$') # 0 watchdog, 535961 multicast, 0 pause input p26 = re.compile(r'^(?P<in_watchdog>[0-9]+) +watchdog, +' '(?P<in_multicast_pkts>[0-9]+) +multicast, +' '(?P<in_pause_input>[0-9]+) +pause +input$') # 0 input packets with dribble condition detected p27 = re.compile(r'^(?P<in_with_dribble>[0-9]+) +input +packets +with +' 'dribble +condition +detected$') # 23376 packets output, 3642296 bytes, 0 underruns # 13781 packets output, 2169851 bytes p28 = re.compile(r'^(?P<out_pkts>[0-9]+) +packets +output, +(?P<out_octets>[0-9]+) ' '+bytes(?:\, +(?P<out_underruns>[0-9]+) +underruns)?$') # Received 4173 broadcasts (0 IP multicasts) # Received 535996 broadcasts (535961 multicasts) p29 = re.compile(r'^Received +(?P<out_broadcast_pkts>\d+) +broadcasts +' '\((?P<out_multicast_pkts>\d+) *(IP)? *multicasts\)$') # 0 output errors, 0 collisions, 2 interface resets # 0 output errors, 0 interface resets p30 = re.compile(r'^(?P<out_errors>[0-9]+) +output +errors,' '( *(?P<out_collision>[0-9]+) +collisions,)? +' '(?P<out_interface_resets>[0-9]+) +interface +resets$') # 0 unknown protocol drops p31 = re.compile(r'^(?P<out_unknown_protocl_drops>[0-9]+) +' 'unknown +protocol +drops$') # 0 babbles, 0 late collision, 0 deferred p32 = re.compile(r'^(?P<out_babble>[0-9]+) +babbles, +' '(?P<out_late_collision>[0-9]+) +late +collision, +' '(?P<out_deferred>[0-9]+) +deferred$') # 0 lost carrier, 0 no carrier, 0 pause output # 0 lost carrier, 0 no carrier p33 = re.compile(r'^(?P<out_lost_carrier>\d+) +lost +carrier, +' r'(?P<out_no_carrier>\d+) +no +carrier(, +(?P<out_pause_output>\d+) +' r'pause +output)?$') # 0 output buffer failures, 0 output buffers swapped out p34 = re.compile(r'^(?P<out_buffer_failure>[0-9]+) +output +buffer +failures, +' '(?P<out_buffers_swapped>[0-9]+) +output +buffers +swapped +out$') # Interface is unnumbered. Using address of Loopback0 (10.4.1.1) # Interface is unnumbered. Using address of GigabitEthernet0/2.1 (192.168.154.1) p35 = re.compile(r'^Interface +is +unnumbered. +Using +address +of +' '(?P<unnumbered_intf>[\w\/\.]+) +' '\((?P<unnumbered_ip>[\w\.\:]+)\)$') # 8 maximum active VCs, 1024 VCs per VP, 1 current VCCs p36 = re.compile(r'^(?P<maximum_active_vcs>\d+) +maximum +active +VCs, +' r'(?P<vcs_per_vp>\d+) +VCs +per +VP, +(?P<current_vccs>\d+) +current +VCCs$') # VC Auto Creation Disabled. p37 = re.compile(r'^VC +Auto +Creation +(?P<vc_auto_creation>\S+)\.$') # VC idle disconnect time: 300 seconds p38 = re.compile(r'^VC +idle +disconnect +time: +(?P<vc_idle_disconnect_time>\d+) +' r'seconds$') # AAL5 CRC errors : 0 p39 = re.compile(r'^(?P<key>\S+ +CRC +errors) +: +(?P<val>\d+)$') # AAL5 SAR Timeouts : 0 p40 = re.compile(r'^(?P<key>\S+ +SAR +Timeouts) +: +(?P<val>\d+)$') # AAL5 Oversized SDUs : 0 p41 = re.compile(r'^(?P<key>\S+ +Oversized +SDUs) +: +(?P<val>\d+)$') # LCP Closed # LCP Closed, loopback not set p42 = re.compile(r'^LCP\s+(?P<state>\S+)(,\s+loopback\s+(?P<loopback>[\S\s]+))?$') # Base PPPoATM vaccess p43 = re.compile(r'^Base PPPoATM +(?P<base_pppoatm>\S+)$') # Vaccess status 0x44, loopback not set p44 = re.compile(r'^Vaccess\s+status\s+(?P<status>\S+),\s+' r'loopback\s+(?P<loopback>[\S\s]+)$') # DTR is pulsed for 5 seconds on reset p45 = re.compile(r'^DTR +is +pulsed +for +(?P<dtr_pulsed>\d+) +' r'seconds +on +reset$') interface_dict = {} unnumbered_dict = {} for line in out.splitlines(): line = line.strip() # GigabitEthernet1 is up, line protocol is up # Port-channel12 is up, line protocol is up (connected) # Vlan1 is administratively down, line protocol is down , Autostate Enabled # Dialer1 is up (spoofing), line protocol is up (spoofing) m = p1.match(line) m1 = p1_1.match(line) m = m if m else m1 if m: interface = m.groupdict()['interface'] enabled = m.groupdict()['enabled'] line_protocol = m.groupdict()['line_protocol'] connected = m.groupdict()['attribute'] if m.groupdict()['autostate']: autostate = m.groupdict()['autostate'].lower() else: autostate = None if interface not in interface_dict: interface_dict[interface] = {} interface_dict[interface]['port_channel'] = {} interface_dict[interface]['port_channel']\ ['port_channel_member'] = False if 'administratively down' in enabled or 'delete' in enabled: interface_dict[interface]['enabled'] = False else: interface_dict[interface]['enabled'] = True if line_protocol: interface_dict[interface]\ ['line_protocol'] = line_protocol interface_dict[interface]\ ['oper_status'] = line_protocol if connected: interface_dict[interface]['connected'] = True if connected == 'connected' else False if autostate: interface_dict[interface]['autostate'] = True if autostate == 'enabled' else False continue # Hardware is Gigabit Ethernet, address is 0057.d2ff.428c (bia 0057.d2ff.428c) # Hardware is Loopback m = p2.match(line) # Hardware is LTE Adv CAT6 - Multimode LTE/DC-HSPA+/HSPA+/HSPA/UMTS/EDGE/GPRS m1 = p2_2.match(line) m = m if m else m1 if m: types = m.groupdict()['type'] mac_address = m.groupdict()['mac_address'] phys_address = m.groupdict()['phys_address'] interface_dict[interface]['type'] = types if mac_address: interface_dict[interface]['mac_address'] = mac_address if phys_address: interface_dict[interface]['phys_address'] = phys_address continue # Description: desc # Description: Pim Register Tunnel (Encap) for RP 10.186.1.1 m = p3.match(line) if m: description = m.groupdict()['description'] interface_dict[interface]['description'] = description continue # Secondary address 10.2.2.2/24 m = p4.match(line) if m: ip_sec = m.groupdict()['ip'] prefix_length_sec = m.groupdict()['prefix_length'] address_sec = m.groupdict()['ipv4'] if 'ipv4' not in interface_dict[interface]: interface_dict[interface]['ipv4'] = {} if address_sec not in interface_dict[interface]['ipv4']: interface_dict[interface]['ipv4'][address_sec] = {} interface_dict[interface]['ipv4'][address_sec]\ ['ip'] = ip_sec interface_dict[interface]['ipv4'][address_sec]\ ['prefix_length'] = prefix_length_sec interface_dict[interface]['ipv4'][address_sec]\ ['secondary'] = True continue # Internet Address is 10.4.4.4/24 m = p5.match(line) if m: ip = m.groupdict()['ip'] prefix_length = m.groupdict()['prefix_length'] address = m.groupdict()['ipv4'] if 'ipv4' not in interface_dict[interface]: interface_dict[interface]['ipv4'] = {} if address not in interface_dict[interface]['ipv4']: interface_dict[interface]['ipv4'][address] = {} interface_dict[interface]['ipv4'][address]\ ['ip'] = ip interface_dict[interface]['ipv4'][address]\ ['prefix_length'] = prefix_length continue # MTU 1500 bytes, BW 768 Kbit/sec, DLY 3330 usec, # MTU 1500 bytes, BW 10000 Kbit, DLY 1000 usec, m = p6.match(line) if m: mtu = m.groupdict()['mtu'] sub_mtu = m.groupdict().get('sub_mtu', None) bandwidth = m.groupdict()['bandwidth'] if m.groupdict()['delay']: interface_dict[interface]['delay'] = int(m.groupdict()['delay']) if mtu: interface_dict[interface]['mtu'] = int(mtu) if sub_mtu: interface_dict[interface]['sub_mtu'] = int(sub_mtu) if bandwidth: interface_dict[interface]['bandwidth'] = int(bandwidth) continue # reliability 255/255, txload 1/255, rxload 1/255 m = p7.match(line) if m: reliability = m.groupdict()['reliability'] txload = m.groupdict()['txload'] rxload = m.groupdict()['rxload'] interface_dict[interface]['reliability'] = reliability interface_dict[interface]['txload'] = txload interface_dict[interface]['rxload'] = rxload continue # Encapsulation LOOPBACK, loopback not set # Encapsulation 802.1Q Virtual LAN, Vlan ID 20, medium is p2p # Encapsulation ARPA, medium is broadcast # Encapsulation QinQ Virtual LAN, outer ID 10, inner ID 20 # Encapsulation 802.1Q Virtual LAN, Vlan ID 1., loopback not set # Encapsulation 802.1Q Virtual LAN, Vlan ID 105. m = p8.match(line) if m: encapsulation = m.groupdict()['encapsulation'] encapsulation = m.groupdict()['encapsulation'].lower() encapsulation = encapsulation.replace("802.1q virtual lan","dot1q") if 'encapsulations' not in interface_dict[interface]: interface_dict[interface]['encapsulations'] = {} interface_dict[interface]['encapsulations']\ ['encapsulation'] = encapsulation rest = m.groupdict()['rest'] if not rest: continue # Vlan ID 20, medium is p2p m1 = re.compile(r'(Vlan +ID +(?P<first_dot1q>[0-9]+),)?' ' *medium +is +(?P<medium>[a-z0-9]+)$').match(rest) # will update key when output is valid m2 = re.compile(r'loopback +(?P<loopback>[\w\s]+)$').match(rest) # outer ID 10, inner ID 20 m3 = re.compile(r'outer +ID +(?P<first>[0-9]+), +' 'inner +ID (?P<second>[0-9]+)$').match(rest) # Vlan ID 1., loopback not set # Vlan ID 105. m4 = re.compile(r'Vlan +ID +(?P<first_dot1q>\d+).' '|(?:,(?P<rest>[\s\w]+))$').match(rest) if m1: first_dot1q = m1.groupdict()['first_dot1q'] if first_dot1q: interface_dict[interface]['encapsulations']\ ['first_dot1q'] = first_dot1q interface_dict[interface]['medium'] = m.groupdict()['medium'] elif m3: first_dot1q = m3.groupdict()['first'] second_dot1q = m3.groupdict()['second'] interface_dict[interface]['encapsulations']\ ['first_dot1q'] = first_dot1q interface_dict[interface]['encapsulations']\ ['second_dot1q'] = second_dot1q elif m4: first_dot1q = m4.groupdict()['first_dot1q'] if first_dot1q: interface_dict[interface]['encapsulations']\ ['first_dot1q'] = first_dot1q continue # Keepalive set (10 sec) m = p10.match(line) if m: keepalive = m.groupdict()['keepalive'] if keepalive: interface_dict[interface]['keepalive'] = int(keepalive) continue # Auto-duplex, 1000Mb/s, media type is 10/100/1000BaseTX # Full-duplex, 1000Mb/s, link type is auto, media type is # Full Duplex, 1000Mbps, link type is auto, media type is RJ45 # Full Duplex, Auto Speed, link type is auto, media type is RJ45 # Full Duplex, 10000Mbps, link type is force-up, media type is unknown media type # full-duplex, 1000 Mb/s # auto-duplex, auto-speed # auto-duplex, 10 Gb/s, media type is 10G # Full Duplex, 10000Mbps, link type is force-up, media type is SFP-LR # Full-duplex, 100Gb/s, link type is force-up, media type is QSFP 100G SR4 m = p11.match(line) if m: duplex_mode = m.groupdict()['duplex_mode'].lower() port_speed = m.groupdict()['port_speed'].lower().replace('-speed', '') link_type = m.groupdict()['link_type'] media_type = m.groupdict()['media_type'] interface_dict[interface]['duplex_mode'] = duplex_mode interface_dict[interface]['port_speed'] = port_speed if link_type: interface_dict[interface]['link_type'] = link_type if 'auto' in link_type: interface_dict[interface]['auto_negotiate'] = True else: interface_dict[interface]['auto_negotiate'] = False if media_type: unknown = re.search(r'[U|u]nknown',media_type) if unknown: interface_dict[interface]['media_type'] = 'unknown' else: interface_dict[interface]['media_type'] = media_type continue # input flow-control is off, output flow-control is unsupported m = p12.match(line) if m: receive = m.groupdict()['receive'].lower() send = m.groupdict()['send'].lower() if 'flow_control' not in interface_dict[interface]: interface_dict[interface]['flow_control'] = {} if 'on' in receive: interface_dict[interface]['flow_control']['receive'] = True elif 'off' in receive or 'unsupported' in receive: interface_dict[interface]['flow_control']['receive'] = False if 'on' in send: interface_dict[interface]['flow_control']['send'] = True elif 'off' in send or 'unsupported' in send: interface_dict[interface]['flow_control']['send'] = False continue # Carrier delay is 10 sec p_cd = re.compile(r'^Carrier +delay +is +(?P<carrier_delay>\d+).*$') m = p_cd.match(line) if m: group = m.groupdict() sub_dict = interface_dict.setdefault(interface, {}) sub_dict['carrier_delay'] = int(group['carrier_delay']) # Asymmetric Carrier-Delay Up Timer is 2 sec # Asymmetric Carrier-Delay Down Timer is 10 sec p_cd_2 = re.compile(r'^Asymmetric +Carrier-Delay +(?P<type>Down|Up)' ' +Timer +is +(?P<carrier_delay>\d+).*$') m = p_cd_2.match(line) if m: group = m.groupdict() tp = group['type'].lower() sub_dict = interface_dict.setdefault(interface, {}) if tp == 'up': sub_dict['carrier_delay_up'] = int(group['carrier_delay']) else: sub_dict['carrier_delay_down'] = int(group['carrier_delay']) # ARP type: ARPA, ARP Timeout 04:00:00 m = p13.match(line) if m: arp_type = m.groupdict()['arp_type'].lower() arp_timeout = m.groupdict()['arp_timeout'] interface_dict[interface]['arp_type'] = arp_type interface_dict[interface]['arp_timeout'] = arp_timeout continue # Last input never, output 00:01:05, output hang never m = p14.match(line) if m: last_input = m.groupdict()['last_input'] last_output = m.groupdict()['last_output'] output_hang = m.groupdict()['output_hang'] interface_dict[interface]['last_input'] = last_input interface_dict[interface]['last_output'] = last_output interface_dict[interface]['output_hang'] = output_hang continue # Members in this channel: Gi1/0/2 # Members in this channel: Fo1/0/2 Fo1/0/4 m = p15.match(line) if m: interface_dict[interface]['port_channel']\ ['port_channel_member'] = True intfs = m.groupdict()['port_channel_member_intfs'].split(' ') intfs = [Common.convert_intf_name(i.strip()) for i in intfs] interface_dict[interface]['port_channel']\ ['port_channel_member_intfs'] = intfs # build connected interface port_channel for intf in intfs: if intf not in interface_dict: interface_dict[intf] = {} if 'port_channel' not in interface_dict[intf]: interface_dict[intf]['port_channel'] = {} interface_dict[intf]['port_channel']['port_channel_member'] = True interface_dict[intf]['port_channel']['port_channel_int'] = interface continue # No. of active members in this channel: 12 m = p15_1.match(line) if m: group = m.groupdict() active_members = int(group['active_members']) interface_dict[interface]['port_channel']\ ['port_channel_member'] = True interface_dict[interface]['port_channel']\ ['active_members'] = active_members continue # Member 2 : GigabitEthernet0/0/10 , Full-duplex, 900Mb/s m = p15_2.match(line) if m: group = m.groupdict() intf = group['interface'] if 'port_channel_member_intfs' not in interface_dict[interface]['port_channel']: interface_dict[interface]['port_channel']\ ['port_channel_member_intfs'] = [] interface_dict[interface]['port_channel']\ ['port_channel_member_intfs'].append(intf) continue # No. of PF_JUMBO supported members in this channel : 0 m = p15_3.match(line) if m: group = m.groupdict() number = int(group['number']) interface_dict[interface]['port_channel']\ ['num_of_pf_jumbo_supported_members'] = number continue # Last clearing of "show interface" counters 1d02h m = p16.match(line) if m: last_clear = m.groupdict()['last_clear'] continue # Input queue: 0/375/0/0 (size/max/drops/flushes); Total output drops: 0 m = p17.match(line) if m: if 'queues' not in interface_dict[interface]: interface_dict[interface]['queues'] = {} interface_dict[interface]['queues']['input_queue_size'] = \ int(m.groupdict()['size']) interface_dict[interface]['queues']['input_queue_max'] = \ int(m.groupdict()['max']) interface_dict[interface]['queues']['input_queue_drops'] = \ int(m.groupdict()['drops']) interface_dict[interface]['queues']['input_queue_flushes'] = \ int(m.groupdict()['flushes']) interface_dict[interface]['queues']['total_output_drop'] = \ int(m.groupdict()['output_drop']) continue # Queueing strategy: fifo # Queueing strategy: Class-based queueing m = p18.match(line) if m: if 'queues' not in interface_dict[interface]: interface_dict[interface]['queues'] = {} interface_dict[interface]['queues']['queue_strategy'] = \ m.groupdict()['queue_strategy'] continue # Output queue: 0/0 (size/max) # Output queue: 0/1000/64/0 (size/max total/threshold/drops) m = p19.match(line) if m: if 'queues' not in interface_dict[interface]: interface_dict[interface]['queues'] = {} interface_dict[interface]['queues']['output_queue_size'] = \ int(m.groupdict()['size']) interface_dict[interface]['queues']['output_queue_max'] = \ int(m.groupdict()['max']) if m.groupdict()['threshold'] and m.groupdict()['drops']: interface_dict[interface]['queues']['threshold'] = \ int(m.groupdict()['threshold']) interface_dict[interface]['queues']['drops'] = \ int(m.groupdict()['drops']) continue # 5 minute input rate 0 bits/sec, 0 packets/sec m = p20.match(line) if m: load_interval = int(m.groupdict()['load_interval']) in_rate = int(m.groupdict()['in_rate']) in_rate_pkts = int(m.groupdict()['in_rate_pkts']) unit = m.groupdict()['unit'] # covert minutes to seconds if 'minute' in unit: load_interval = load_interval * 60 if 'counters' not in interface_dict[interface]: interface_dict[interface]['counters'] = {} if 'rate' not in interface_dict[interface]['counters']: interface_dict[interface]['counters']['rate'] = {} interface_dict[interface]['counters']['rate']\ ['load_interval'] = load_interval interface_dict[interface]['counters']['rate']\ ['in_rate'] = in_rate interface_dict[interface]['counters']['rate']\ ['in_rate_pkts'] = in_rate_pkts if 'last_clear' not in interface_dict[interface]['counters']: try: last_clear except Exception: pass else: interface_dict[interface]['counters']\ ['last_clear'] = last_clear continue # 5 minute output rate 0 bits/sec, 0 packets/sec m = p21.match(line) if m: out_rate = int(m.groupdict()['out_rate']) out_rate_pkts = int(m.groupdict()['out_rate_pkts']) interface_dict[interface]['counters']['rate']\ ['out_rate'] = out_rate interface_dict[interface]['counters']['rate']\ ['out_rate_pkts'] = out_rate_pkts continue # 0 packets input, 0 bytes, 0 no buffer m = p22.match(line) if m: if 'counters' not in interface_dict[interface]: interface_dict[interface]['counters'] = {} interface_dict[interface]['counters']['in_pkts'] = \ int(m.groupdict()['in_pkts']) interface_dict[interface]['counters']['in_octets'] = \ int(m.groupdict()['in_octets']) if m.groupdict()['in_no_buffer']: interface_dict[interface]['counters']['in_no_buffer'] = \ int(m.groupdict()['in_no_buffer']) continue # Received 4173 broadcasts (0 IP multicasts) # Received 535996 broadcasts (535961 multicasts) m = p23.match(line) if m: interface_dict[interface]['counters']['in_multicast_pkts'] = \ int(m.groupdict()['in_broadcast_pkts']) interface_dict[interface]['counters']['in_broadcast_pkts'] = \ int(m.groupdict()['in_multicast_pkts']) continue # 0 runts, 0 giants, 0 throttles m = p24.match(line) if m: interface_dict[interface]['counters']['in_runts'] = \ int(m.groupdict()['in_runts']) interface_dict[interface]['counters']['in_giants'] = \ int(m.groupdict()['in_giants']) interface_dict[interface]['counters']['in_throttles'] = \ int(m.groupdict()['in_throttles']) continue # 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored # 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort m = p25.match(line) if m: interface_dict[interface]['counters']['in_errors'] = \ int(m.groupdict()['in_errors']) interface_dict[interface]['counters']['in_crc_errors'] = \ int(m.groupdict()['in_crc_errors']) interface_dict[interface]['counters']['in_frame'] = \ int(m.groupdict()['in_frame']) interface_dict[interface]['counters']['in_overrun'] = \ int(m.groupdict()['in_overrun']) interface_dict[interface]['counters']['in_ignored'] = \ int(m.groupdict()['in_ignored']) if m.groupdict()['in_abort']: interface_dict[interface]['counters']['in_abort'] = \ int(m.groupdict()['in_abort']) continue # 0 watchdog, 535961 multicast, 0 pause input m = p26.match(line) if m: interface_dict[interface]['counters']['in_watchdog'] = \ int(m.groupdict()['in_watchdog']) interface_dict[interface]['counters']['in_multicast_pkts'] = \ int(m.groupdict()['in_multicast_pkts']) interface_dict[interface]['counters']['in_mac_pause_frames'] = \ int(m.groupdict()['in_pause_input']) continue # 0 input packets with dribble condition detected m = p27.match(line) if m: interface_dict[interface]['counters']['in_with_dribble'] = \ int(m.groupdict()['in_with_dribble']) continue # 23376 packets output, 3642296 bytes, 0 underruns m = p28.match(line) if m: interface_dict[interface]['counters']['out_pkts'] = \ int(m.groupdict()['out_pkts']) interface_dict[interface]['counters']['out_octets'] = \ int(m.groupdict()['out_octets']) if m.groupdict()['out_underruns']: interface_dict[interface]['counters']['out_underruns'] = \ int(m.groupdict()['out_underruns']) continue # Received 4173 broadcasts (0 IP multicasts) # Received 535996 broadcasts (535961 multicasts) m = p29.match(line) if m: interface_dict[interface]['counters']['out_broadcast_pkts'] = \ int(m.groupdict()['out_broadcast_pkts']) interface_dict[interface]['counters']['out_multicast_pkts'] = \ int(m.groupdict()['out_multicast_pkts']) continue # 0 output errors, 0 collisions, 2 interface resets # 0 output errors, 0 interface resets m = p30.match(line) if m: interface_dict[interface]['counters']['out_errors'] = \ int(m.groupdict()['out_errors']) interface_dict[interface]['counters']['out_interface_resets'] = \ int(m.groupdict()['out_interface_resets']) if m.groupdict()['out_collision']: interface_dict[interface]['counters']['out_collision'] = \ int(m.groupdict()['out_collision']) continue # 0 unknown protocol drops m = p31.match(line) if m: interface_dict[interface]['counters']['out_unknown_protocl_drops'] = \ int(m.groupdict()['out_unknown_protocl_drops']) continue # 0 babbles, 0 late collision, 0 deferred m = p32.match(line) if m: interface_dict[interface]['counters']['out_babble'] = \ int(m.groupdict()['out_babble']) interface_dict[interface]['counters']['out_late_collision'] = \ int(m.groupdict()['out_late_collision']) interface_dict[interface]['counters']['out_deferred'] = \ int(m.groupdict()['out_deferred']) continue # 0 lost carrier, 0 no carrier, 0 pause output m = p33.match(line) if m: interface_dict[interface]['counters']['out_lost_carrier'] = \ int(m.groupdict()['out_lost_carrier']) interface_dict[interface]['counters']['out_no_carrier'] = \ int(m.groupdict()['out_no_carrier']) out_pause_output = m.groupdict().get('out_pause_output', None) if out_pause_output: interface_dict[interface]['counters']['out_mac_pause_frames'] = \ int(m.groupdict()['out_pause_output']) continue # 0 output buffer failures, 0 output buffers swapped out m = p34.match(line) if m: interface_dict[interface]['counters']['out_buffer_failure'] = \ int(m.groupdict()['out_buffer_failure']) interface_dict[interface]['counters']['out_buffers_swapped'] = \ int(m.groupdict()['out_buffers_swapped']) continue # Interface is unnumbered. Using address of Loopback0 (10.4.1.1) # Interface is unnumbered. Using address of GigabitEthernet0/2.1 (192.168.154.1) m = p35.match(line) if m: unnumbered_dict[interface] = {} unnumbered_dict[interface]['unnumbered_intf'] = m.groupdict()['unnumbered_intf'] unnumbered_dict[interface]['unnumbered_ip'] = m.groupdict()['unnumbered_ip'] continue # 8 maximum active VCs, 1024 VCs per VP, 1 current VCCs m = p36.match(line) if m: group = m.groupdict() maximum_active_vcs = group['maximum_active_vcs'] vcs_per_vp = group['vcs_per_vp'] current_vccs = group['current_vccs'] interface_dict[interface].update({'maximum_active_vcs': maximum_active_vcs}) interface_dict[interface].update({'vcs_per_vp': vcs_per_vp}) interface_dict[interface].update({'current_vccs': current_vccs}) continue # VC Auto Creation Disabled. m = p37.match(line) if m: group = m.groupdict() vc_auto_creation = group['vc_auto_creation'] interface_dict[interface].update({'vc_auto_creation': vc_auto_creation}) continue # VC idle disconnect time: 300 seconds m = p38.match(line) if m: group = m.groupdict() vc_idle_disconnect_time = group['vc_idle_disconnect_time'] interface_dict[interface].update({'vc_idle_disconnect_time': vc_idle_disconnect_time}) continue # AAL5 CRC errors : 0 m = p39.match(line) if m: group = m.groupdict() interface_dict[interface].update({'aal5_crc_errors': int(group['val'])}) continue # AAL5 SAR Timeouts : 0 m = p40.match(line) if m: group = m.groupdict() interface_dict[interface].update({'aal5_oversized_sdus': int(group['val'])}) continue # AAL5 Oversized SDUs : 0 m = p41.match(line) if m: group = m.groupdict() interface_dict[interface].update({'aal5_sar_timeouts': int(group['val'])}) continue # LCP Closed m = p42.match(line) if m: group = m.groupdict() interface_dict[interface].update({'lcp_state': group['state']}) loopback = group.get('loopback', None) if loopback: interface_dict[interface].update({'lcp_loopack': loopback}) continue # Base PPPoATM vaccess m = p43.match(line) if m: group = m.groupdict() interface_dict[interface].update({'base_pppoatm': group['base_pppoatm']}) continue # Vaccess status 0x44, loopback not set m = p44.match(line) if m: group = m.groupdict() interface_dict[interface].update({'vaccess_status': group['status']}) interface_dict[interface].update({'vaccess_loopback': group['loopback']}) continue # DTR is pulsed for 5 seconds on reset m = p45.match(line) if m: group = m.groupdict() interface_dict[interface].update({'dtr_pulsed': group['dtr_pulsed']}) continue # create strucutre for unnumbered interface if not unnumbered_dict: return(interface_dict) for intf in unnumbered_dict: unnumbered_intf = unnumbered_dict[intf]['unnumbered_intf'] unnumbered_ip = unnumbered_dict[intf]['unnumbered_ip'] if unnumbered_intf in interface_dict: if 'ipv4' in interface_dict[unnumbered_intf]: for ip in interface_dict[unnumbered_intf]['ipv4']: if unnumbered_ip in ip: if 'ipv4' not in interface_dict[intf]: interface_dict[intf]['ipv4'] = {} if ip not in interface_dict[intf]['ipv4']: interface_dict[intf]['ipv4'][ip] = {} m = re.search('([\w\.\:]+)\/(\d+)', ip) interface_dict[intf]['ipv4'][ip]['ip'] = m.groups()[0] interface_dict[intf]['ipv4'][ip]['prefix_length'] = m.groups()[1] interface_dict[intf]['ipv4']['unnumbered'] = {} interface_dict[intf]['ipv4']['unnumbered']\ ['interface_ref'] = unnumbered_intf return(interface_dict) # parser using parsergen # ---------------------- class ShowIpInterfaceBriefSchema(MetaParser): """Parser for show ip interface brief""" schema = {'interface': {Any(): {Optional('vlan_id'): {Optional(Any()): {'ip_address': str, Optional('interface_is_ok'): str, Optional('method'): str, Optional('status'): str, Optional('protocol'): str} }, Optional('ip_address'): str, Optional('interface_is_ok'): str, Optional('method'): str, Optional('status'): str, Optional('protocol'): str} }, } class ShowIpInterfaceBrief(ShowIpInterfaceBriefSchema): """Parser for: show ip interface brief parser class implements detail parsing mechanisms for cli and yang output. """ exclude = ['method', '(Tunnel.*)'] #************************* # schema - class variable # # Purpose is to make sure the parser always return the output # (nested dict) that has the same data structure across all supported # parsing mechanisms (cli(), yang(), xml()). def __init__ (self, *args, **kwargs): super().__init__(*args, **kwargs) cli_command = ['show ip interface brief {interface}','show ip interface brief'] def cli(self, interface='',output=None): """parsing mechanism: cli Function cli() defines the cli type output parsing mechanism which typically contains 3 steps: exe cuting, transforming, returning """ parsed_dict = {} if output is None: if interface: cmd = self.cli_command[0].format(interface=interface) else: cmd = self.cli_command[1] out = self.device.execute(cmd) else: out = output if out: res = parsergen.oper_fill_tabular(device_output=out, device_os='iosxe', table_terminal_pattern=r"^\n", header_fields= [ "Interface", "IP-Address", "OK\?", "Method", "Status", "Protocol" ], label_fields= [ "Interface", "ip_address", "interface_is_ok", "method", "status", "protocol" ], index=[0]) # Building the schema out of the parsergen output if res.entries: for intf, intf_dict in res.entries.items(): intf = Common.convert_intf_name(intf) del intf_dict['Interface'] parsed_dict.setdefault('interface', {}).update({intf: intf_dict}) return (parsed_dict) def yang(self): """ parsing mechanism: yang Function yang() defines the yang type output parsing mechanism which typically contains 3 steps: executing, transforming, returning """ pass def yang_cli(self): cli_output = self.cli() yang_output = self.yang() merged_output = merge_dict(yang_output,cli_output) return merged_output class ShowIpInterfaceBriefPipeVlan(ShowIpInterfaceBrief): """Parser for: show ip interface brief | include Vlan parser class implements detail parsing mechanisms for cli and yang output. """ #************************* # schema - class variable # # Purpose is to make sure the parser always return the output # (nested dict) that has the same data structure across all supported # parsing mechanisms (cli(), yang(), xml()). cli_command = "show ip interface brief | include Vlan" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.cmd = self.cli_command def cli(self): super(ShowIpInterfaceBriefPipeVlan, self).cli() def yang(self): """parsing mechanism: yang Function yang() defines the yang type output parsing mechanism which typically contains 3 steps: executing, transforming, returning """ ret = {} cmd = '''<native><interface><Vlan/></interface></native>''' output = self.device.get(('subtree', cmd)) for data in output.data: for native in data: for interface in native: vlan_id = None interface_name = None ip_address = None ip_mask = None for vlan in interface: # Remove the namespace text = vlan.tag[vlan.tag.find('}')+1:] #ydk.models.ned_edison.ned.Native.Interface.Vlan.name #ydk.models.xe_recent_edison.Cisco_IOS_XE_native.Native.Interface.Vlan.name if text == 'name': vlan_id = vlan.text interface_name = 'Vlan' + str(vlan_id) continue if text == 'ip': for ip in vlan: text = ip.tag[ip.tag.find('}')+1:] #ydk.models.ned_edison.ned.Native.Interface.Vlan.ip.address #ydk.models.xe_recent_edison.Cisco_IOS_XE_native.Native.Interface.Vlan.ip.address if text == 'address': for address in ip: text = address.tag[address.tag.find('}')+1:] #ydk.models.ned_edison.ned.Native.Interface.Vlan.ip.address.primary #ydk.models.xe_recent_edison.Cisco_IOS_XE_native.Native.Interface.Vlan.ip.address.primary if text == 'primary': for primary in address: # Remove the namespace text = primary.tag[primary.tag.find('}')+1:] #ydk.models.ned_edison.ned.Native.Interface.Vlan.ip.address.primary.address #ydk.models.xe_recent_edison.Cisco_IOS_XE_native.Native.Interface.Vlan.ip.address.primary.address if text == 'address': ip_address = primary.text continue #ydk.models.ned_edison.ned.Native.Interface.Vlan.ip.address.primary.mask #ydk.models.xe_recent_edison.Cisco_IOS_XE_native.Native.Interface.Vlan.ip.address.primary.mask if text == 'mask': ip_mask = primary.text continue # Let's build it now if 'interface' not in ret: ret['interface'] = {} if interface_name is not None: ret['interface'][interface_name] = {} if vlan_id is not None: ret['interface'][interface_name]['vlan_id'] = {} ret['interface'][interface_name]['vlan_id'][vlan_id] = {} if ip_address is not None: ret['interface'][interface_name]['vlan_id'][vlan_id]['ip_address'] = ip_address else: ret['interface'][interface_name]['vlan_id'][vlan_id]['ip_address'] = 'unassigned' return ret def yang_cli(self): super(ShowIpInterfaceBriefPipeVlan, self).yang_cli() class ShowIpInterfaceBriefPipeIpSchema(MetaParser): """Schema for show ip interface brief | include <WORD>""" schema = {'interface': {Any(): {Optional('ip_address'): str, Optional('interface_ok'): str, Optional('method'): str, Optional('interface_status'): str, Optional('protocol_status'): str} }, } class ShowIpInterfaceBriefPipeIp(ShowIpInterfaceBriefPipeIpSchema): """Parser for: show ip interface brief | include <WORD> parser class implements detail parsing mechanisms for cli and yang output. """ #************************* # schema - class variable # # Purpose is to make sure the parser always return the output # (nested dict) that has the same data structure across all supported # parsing mechanisms (cli(), yang(), xml()). cli_command = 'show ip interface brief | include {ip}' def cli(self, ip,output=None): if output is None: out = self.device.execute(self.cli_command.format(ip=ip)) else: out = output interface_dict = {} # GigabitEthernet0/0 10.1.18.80 YES manual up up p = re.compile(r'^\s*(?P<interface>[a-zA-Z0-9\/\.\-]+) ' '+(?P<ip_address>[a-z0-9\.]+) +(?P<interface_ok>[A-Z]+) ' '+(?P<method>[a-zA-Z]+) +(?P<interface_status>[a-z\s]+) ' '+(?P<protocol_status>[a-z]+)$') for line in out.splitlines(): line = line.strip() m = p.match(line) if m: interface = m.groupdict()['interface'] if 'interface' not in interface_dict: interface_dict['interface'] = {} if interface not in interface_dict['interface']: interface_dict['interface'][interface] = {} interface_dict['interface'][interface]['ip_address'] = \ m.groupdict()['ip_address'] interface_dict['interface'][interface]['interface_ok'] = \ m.groupdict()['interface_ok'] interface_dict['interface'][interface]['method'] = \ m.groupdict()['method'] interface_dict['interface'][interface]['interface_status'] = \ m.groupdict()['interface_status'].strip() interface_dict['interface'][interface]['protocol_status'] = \ m.groupdict()['protocol_status'] continue return interface_dict class ShowInterfacesSwitchportSchema(MetaParser): """Schema for show interfaces switchport""" schema = { Any(): { 'switchport_enable': bool, 'switchport_mode': str, Optional('operational_mode'): str, Optional('port_channel'): { Optional('port_channel_int'): str, Optional('port_channel_member_intfs'): list, Optional('port_channel_member'): bool, }, Optional('encapsulation'): { Optional('administrative_encapsulation'): str, Optional('operational_encapsulation'): str, Optional('native_vlan'): str, Optional('native_vlan_name'): str, }, Optional('negotiation_of_trunk'): bool, Optional('access_vlan'): str, Optional('access_vlan_name'): str, Optional('voice_vlan'): str, Optional('voice_vlan_name'): str, Optional('native_vlan_tagging'): bool, Optional('private_vlan'): { Optional('host_association'): str, Optional('mapping'): str, Optional('native_vlan'): str, Optional('native_vlan_tagging'): bool, Optional('encapsulation'): str, Optional('normal_vlans'): str, Optional('associations'): str, Optional('trunk_mappings'): str, Optional('operational'): str, }, Optional('trunk_vlans'): str, Optional('pruning_vlans'): str, Optional('capture_mode'): bool, Optional('capture_vlans'): str, Optional('protected'): bool, Optional('unknown_unicast_blocked'): bool, Optional('unknown_multicast_blocked'): bool, Optional('appliance_trust'): str, }, } class ShowInterfacesSwitchport(ShowInterfacesSwitchportSchema): """parser for show interfaces switchport""" cli_command = ['show interfaces switchport','show interfaces {interface} switchport'] def cli(self, interface='', output=None): if output is None: if interface: cmd = self.cli_command[1].format(interface=interface) else: cmd = self.cli_command[0] out = self.device.execute(cmd) else: out = output ret_dict = {} private_trunk_mappings = None private_operational = None for line in out.splitlines(): line = line.strip() # Name: Gi1/0/2 p1 = re.compile(r'^Name: +(?P<intf>[\w\/\.\-]+)$') m = p1.match(line) if m: intf = Common.convert_intf_name(m.groupdict()['intf']) if intf not in ret_dict: ret_dict[intf] = {} continue # Switchport: Enabled p2 = re.compile(r'^Switchport: +(?P<switchport_enable>\w+)$') m = p2.match(line) if m: if m.groupdict()['switchport_enable'].lower() == 'enabled': ret_dict[intf]['switchport_enable'] = True else: ret_dict[intf]['switchport_enable'] = False continue # Administrative Mode: trunk p3 = re.compile(r'^Administrative +Mode: +(?P<switchport_mode>[\w\s]+)$') m = p3.match(line) if m: ret_dict[intf]['switchport_mode'] = m.groupdict()['switchport_mode'] continue # Operational Mode: trunk (member of bundle Po12) # Operational Mode: down (suspended member of bundle Po12) p4 = re.compile(r'^Operational +Mode: +(?P<operational_mode>[\w\s]+)' r'( +\((?P<dummy>[\w\s]+)? *member +of +bundle ' r'+(?P<port_channel_int>[\w\/\.\-]+)\))?$') m = p4.match(line) if m: ret_dict[intf]['operational_mode'] = m.groupdict()['operational_mode'] bundle_intf = m.groupdict()['port_channel_int'] if bundle_intf: if 'port_channel' not in ret_dict[intf]: ret_dict[intf]['port_channel'] = {} bundle_intf = Common.convert_intf_name(bundle_intf) ret_dict[intf]['port_channel']['port_channel_int'] = bundle_intf ret_dict[intf]['port_channel']['port_channel_member'] = True # bundle interface is port_channel interface as well if bundle_intf not in ret_dict: ret_dict[bundle_intf] = {} if 'port_channel' not in ret_dict[bundle_intf]: ret_dict[bundle_intf]['port_channel'] = {} ret_dict[bundle_intf]['port_channel']['port_channel_member'] = True # append the list if 'port_channel_member_intfs' in ret_dict[bundle_intf]['port_channel']: port_list = ret_dict[bundle_intf]['port_channel']['port_channel_member_intfs'] port_list.append(intf) ret_dict[bundle_intf]['port_channel']['port_channel_member_intfs'] = port_list else: ret_dict[bundle_intf]['port_channel']['port_channel_member_intfs'] = [intf] continue # Administrative Trunking Encapsulation: dot1q p5 = re.compile(r'^Administrative +Trunking +Encapsulation: +' '(?P<encapsulation>\w+)$') m = p5.match(line) if m: if 'encapsulation' not in ret_dict[intf]: ret_dict[intf]['encapsulation'] = {} ret_dict[intf]['encapsulation']['administrative_encapsulation'] = \ m.groupdict()['encapsulation'].lower() continue # Operational Trunking Encapsulation: dot1q p6 = re.compile(r'^Operational +Trunking +Encapsulation: +' '(?P<encapsulation>\w+)$') m = p6.match(line) if m: if 'encapsulation' not in ret_dict[intf]: ret_dict[intf]['encapsulation'] = {} ret_dict[intf]['encapsulation']['operational_encapsulation'] = \ m.groupdict()['encapsulation'].lower() continue # Negotiation of Trunking: On p7 = re.compile(r'^Negotiation +of +Trunking: +(?P<negotiation_of_trunk>\w+)$') m = p7.match(line) if m: negotiation_of_trunk = m.groupdict()['negotiation_of_trunk'].lower() if 'on' in negotiation_of_trunk: ret_dict[intf]['negotiation_of_trunk'] = True elif 'off' in negotiation_of_trunk: ret_dict[intf]['negotiation_of_trunk'] = False continue # Access Mode VLAN: 1 (default) # Access Mode VLAN: 100 (Falback-Data) p8 = re.compile(r'^Access +Mode +VLAN: +(?P<access_vlan>[\d\-]+)' '( *\((?P<access_vlan_name>.+)\))?$') m = p8.match(line) if m: ret_dict[intf]['access_vlan'] = m.groupdict()['access_vlan'] if m.groupdict()['access_vlan_name']: ret_dict[intf]['access_vlan_name'] = m.groupdict()['access_vlan_name'] continue # Trunking Native Mode VLAN: 1 (default) p9 = re.compile(r'^Trunking +Native +Mode +VLAN: +(?P<native_vlan>[\d\-]+)' '( *\((?P<native_vlan_name>.+)\))?$') m = p9.match(line) if m: if 'encapsulation' not in ret_dict[intf]: ret_dict[intf]['encapsulation'] = {} ret_dict[intf]['encapsulation']['native_vlan'] = m.groupdict()['native_vlan'] if m.groupdict()['native_vlan_name']: ret_dict[intf]['encapsulation']['native_vlan_name'] = m.groupdict()['native_vlan_name'] continue # Administrative Native VLAN tagging: enabled p10 = re.compile(r'^Administrative +Native +VLAN +tagging: +' '(?P<tagging>\w+)$') m = p10.match(line) if m: if 'enable' in m.groupdict()['tagging'].lower(): ret_dict[intf]['native_vlan_tagging'] = True else: ret_dict[intf]['native_vlan_tagging'] = False continue # Voice VLAN: none # Voice VLAN: 100 (Fallback-Voice) p11 = re.compile(r'^Voice +VLAN: +(?P<vlan>[\d\-]+)' '( *\((?P<voice_vlan_name>.+)\))?$') m = p11.match(line) if m: ret_dict[intf]['voice_vlan'] = m.groupdict()['vlan'] if m.groupdict()['voice_vlan_name']: ret_dict[intf]['voice_vlan_name'] = m.groupdict()['voice_vlan_name'] continue # Administrative private-vlan host-association: none p12 = re.compile(r'^Administrative +private-vlan +' 'host-association: +(?P<ret>[\w\-]+)$') m = p12.match(line) if m: if 'private_vlan' not in ret_dict[intf]: ret_dict[intf]['private_vlan'] = {} ret = m.groupdict()['ret'].lower() if ret != 'none': ret_dict[intf]['private_vlan']['host_association'] = m.groupdict()['ret'] continue # Administrative private-vlan mapping: none p13 = re.compile(r'^Administrative +private-vlan +' 'mapping: +(?P<ret>[\w\-]+)$') m = p13.match(line) if m: if 'private_vlan' not in ret_dict[intf]: ret_dict[intf]['private_vlan'] = {} ret = m.groupdict()['ret'].lower() if ret != 'none': ret_dict[intf]['private_vlan']['mapping'] = m.groupdict()['ret'] continue # Administrative private-vlan trunk native VLAN: none p14 = re.compile(r'^Administrative +private-vlan +' 'trunk +native +VLAN: +(?P<ret>[\w\-]+)$') m = p14.match(line) if m: if 'private_vlan' not in ret_dict[intf]: ret_dict[intf]['private_vlan'] = {} ret = m.groupdict()['ret'].lower() if ret != 'none': ret_dict[intf]['private_vlan']['native_vlan'] = m.groupdict()['ret'] continue # Administrative private-vlan trunk Native VLAN tagging: enabled p15 = re.compile(r'^Administrative +private-vlan +' 'trunk +Native +VLAN +tagging: +(?P<ret>[\w\-]+)$') m = p15.match(line) if m: if 'private_vlan' not in ret_dict[intf]: ret_dict[intf]['private_vlan'] = {} ret = m.groupdict()['ret'].lower() if 'enable' in ret: ret_dict[intf]['private_vlan']['native_vlan_tagging'] = True else: ret_dict[intf]['private_vlan']['native_vlan_tagging'] = False continue # Administrative private-vlan trunk encapsulation: dot1q p16 = re.compile(r'^Administrative +private-vlan +' 'trunk +encapsulation: +(?P<ret>[\w\-]+)$') m = p16.match(line) if m: if 'private_vlan' not in ret_dict[intf]: ret_dict[intf]['private_vlan'] = {} ret = m.groupdict()['ret'].lower() if ret != 'none': ret_dict[intf]['private_vlan']['encapsulation'] = m.groupdict()['ret'] continue # Administrative private-vlan trunk normal VLANs: none p17 = re.compile(r'^Administrative +private-vlan +' 'trunk +normal +VLANs: +(?P<ret>[\w\-]+)$') m = p17.match(line) if m: if 'private_vlan' not in ret_dict[intf]: ret_dict[intf]['private_vlan'] = {} ret = m.groupdict()['ret'].lower() if ret != 'none': ret_dict[intf]['private_vlan']['normal_vlans'] = m.groupdict()['ret'] continue # Administrative private-vlan trunk associations: none p18 = re.compile(r'^Administrative +private-vlan +' 'trunk +associations: +(?P<ret>[\w\-]+)$') m = p18.match(line) if m: if 'private_vlan' not in ret_dict[intf]: ret_dict[intf]['private_vlan'] = {} ret = m.groupdict()['ret'].lower() if ret != 'none': ret_dict[intf]['private_vlan']['associations'] = m.groupdict()['ret'] continue # Administrative private-vlan trunk mappings: none # Administrative private-vlan trunk mappings: p19 = re.compile(r'^Administrative +private-vlan +' 'trunk +mappings:( *(?P<ret>[\w\-]+))?$') m = p19.match(line) if m: if 'private_vlan' not in ret_dict[intf]: ret_dict[intf]['private_vlan'] = {} private_trunk_mappings = m.groupdict()['ret'] if private_trunk_mappings and private_trunk_mappings.lower() != 'none': ret_dict[intf]['private_vlan']['trunk_mappings'] = private_trunk_mappings private_trunk_mappings = '' continue # 10 (VLAN0010) 100 (VLAN0100) if isinstance(private_trunk_mappings, str): p19_1 = re.compile(r'^(?P<mappings>[\w\(\)\s]+)$') m = p19_1.match(line) if m: ret = m.groupdict()['mappings'] private_trunk_mappings += ' {}'.format(ret) ret_dict[intf]['private_vlan']['trunk_mappings'] = private_trunk_mappings.strip() # reset private_trunk_mappings private_trunk_mappings = None continue # Operational private-vlan: none # Operational private-vlan: p20 = re.compile(r'^Operational +private-vlan:' '( *(?P<private_operational>[\w\-]+))?$') m = p20.match(line) if m: if 'private_vlan' not in ret_dict[intf]: ret_dict[intf]['private_vlan'] = {} private_operational = m.groupdict()['private_operational'] if private_operational and private_operational.lower() != 'none': ret_dict[intf]['private_vlan']['operational'] = private_operational private_operational = '' continue # Trunking VLANs Enabled: 200-211 # Trunking VLANs Enabled: 100,101,110-120,121,130,170,180, p21 = re.compile(r'^Trunking +VLANs +Enabled: +(?P<trunk_vlans>[\w\-\,\s]+)$') m = p21.match(line) if m: ret_dict[intf]['trunk_vlans'] = m.groupdict()['trunk_vlans'].lower() continue # 10 (VLAN0010) 100 (VLAN0100) if isinstance(private_operational, str): p20_1 = re.compile(r'^(?P<private_operational>[\w\(\)\s]+)$') m = p20_1.match(line) if m: ret = m.groupdict()['private_operational'] private_operational += ' {}'.format(ret) ret_dict[intf]['private_vlan']['operational'] = private_operational.strip() # reset private_trunk_mappings private_operational = None continue # 1111,2222,3333, 500-55, p21_1 = re.compile(r'^(?P<trunk_vlans>[\d\,\-]+)$') m = p21_1.match(line) if m: ret_dict[intf]['trunk_vlans'] += m.groupdict()['trunk_vlans'].lower() continue # Pruning VLANs Enabled: 2-1001 p22 = re.compile(r'^Pruning +VLANs +Enabled: +(?P<pruning_vlans>[\w\-]+)$') m = p22.match(line) if m: ret_dict[intf]['pruning_vlans'] = m.groupdict()['pruning_vlans'].lower() continue # Capture Mode Disabled p23 = re.compile(r'^Capture +Mode +(?P<mode>\w+)$') m = p23.match(line) if m: mode = m.groupdict()['mode'].lower() if 'disabled' in mode: ret_dict[intf]['capture_mode'] = False else: ret_dict[intf]['capture_mode'] = True continue # Capture VLANs Allowed: ALL p24 = re.compile(r'^Capture +VLANs +Allowed: +(?P<capture_vlans>[\w\-]+)$') m = p24.match(line) if m: ret_dict[intf]['capture_vlans'] = m.groupdict()['capture_vlans'].lower() continue # Protected: false p25 = re.compile(r'^Protected: +(?P<protected>\w+)$') m = p25.match(line) if m: if 'false' in m.groupdict()['protected'].lower(): ret_dict[intf]['protected'] = False else: ret_dict[intf]['protected'] = True continue # Unknown unicast blocked: disabled p26 = re.compile(r'^Unknown +unicast +blocked: +(?P<block>\w+)$') m = p26.match(line) if m: if 'disabled' in m.groupdict()['block'].lower(): ret_dict[intf]['unknown_unicast_blocked'] = False else: ret_dict[intf]['unknown_unicast_blocked'] = True continue # Unknown multicast blocked: disabled p27 = re.compile(r'^Unknown +multicast +blocked: +(?P<block>\w+)$') m = p27.match(line) if m: if 'disabled' in m.groupdict()['block'].lower(): ret_dict[intf]['unknown_multicast_blocked'] = False else: ret_dict[intf]['unknown_multicast_blocked'] = True continue # Appliance trust: none p28 = re.compile(r'^Appliance +trust: +(?P<trust>[\w\-]+)$') m = p28.match(line) if m: if m.groupdict()['trust'] != 'none': ret_dict[intf]['appliance_trust'] = m.groupdict()['trust'] continue return ret_dict class ShowIpInterfaceSchema(MetaParser): """Schema for show ip interface show ip interface <interface>""" schema = { Any(): { 'enabled': bool, 'oper_status': str, Optional('ipv4'): { Any(): { 'ip': str, Optional('prefix_length'): str, Optional('secondary'): bool, Optional('broadcast_address'): str, }, }, Optional('mtu'): int, Optional('address_determined_by'): str, Optional('helper_address'): Or(str, list), Optional('directed_broadcast_forwarding'): bool, Optional('outbound_common_access_list'): str, Optional('outbound_access_list'): str, Optional('inbound_common_access_list'): str, Optional('inbound_access_list'): str, Optional('proxy_arp'): bool, Optional('local_proxy_arp'): bool, Optional('security_level'): str, Optional('split_horizon'): bool, Optional('icmp'): { Optional('redirects'): str, Optional('unreachables'): str, Optional('mask_replies'): str, }, Optional('wccp'): { Optional('redirect_outbound'): bool, Optional('redirect_inbound'): bool, Optional('redirect_exclude'): bool, }, Optional('ip_fast_switching'): bool, Optional('ip_flow_switching'): bool, Optional('ip_cef_switching'): bool, Optional('ip_cef_switching_turbo_vector'): bool, Optional('ip_null_turbo_vector'): bool, Optional('vrf'): str, Optional('unicast_routing_topologies'): { 'topology': { Any(): { 'status': str, } }, }, Optional('ip_multicast_fast_switching'): bool, Optional('ip_multicast_distributed_fast_switching'): bool, Optional('ip_route_cache_flags'): list, Optional('router_discovery'): bool, Optional('ip_output_packet_accounting'): bool, Optional('ip_access_violation_accounting'): bool, Optional('tcp_ip_header_compression'): bool, Optional('rtp_ip_header_compression'): bool, Optional('probe_proxy_name_replies'): bool, Optional('policy_routing'): bool, Optional('network_address_translation'): bool, Optional('bgp_policy_mapping'): bool, Optional('input_features'): list, Optional('multicast_groups'): list, }, } class ShowIpInterface(ShowIpInterfaceSchema): """Parser for show ip interface show ip interface <interface>""" cli_command = ['show ip interface','show ip interface {interface}'] exclude = ['unnumbered', 'address_determined_by', '(Tunnel.*)', 'joins', 'leaves'] def cli(self,interface="",output=None): if output is None: if interface: cmd = self.cli_command[1].format(interface=interface) else: cmd = self.cli_command[0] out = self.device.execute(cmd) else: out = output interface_dict = {} unnumbered_dict = {} for line in out.splitlines(): line = line.strip() # Vlan211 is up, line protocol is up # GigabitEthernet2 is administratively down, line protocol is down p1 = re.compile(r'^(?P<interface>[\w\/\.\-]+) +is' r' +(?P<enabled>[\w\s]+),' r' +line +protocol +is +(?P<oper_status>\w+)$') m = p1.match(line) if m: interface = m.groupdict()['interface'] enabled = m.groupdict()['enabled'].lower() if interface not in interface_dict: interface_dict[interface] = {} if 'administratively down' in enabled or 'delete' in enabled: interface_dict[interface]['enabled'] = False else: interface_dict[interface]['enabled'] = True interface_dict[interface]['oper_status'] = \ m.groupdict()['oper_status'].lower() # initial variables multicast_groups = [] continue # Internet address is 192.168.76.1/24 p2 = re.compile(r'^Internet +[A|a]ddress +is +(?P<ipv4>(?P<ip>[0-9\.]+)' r'\/(?P<prefix_length>[0-9]+))$') m = p2.match(line) if m: ip = m.groupdict()['ip'] prefix_length = m.groupdict()['prefix_length'] address = m.groupdict()['ipv4'] if 'ipv4' not in interface_dict[interface]: interface_dict[interface]['ipv4'] = {} if address not in interface_dict[interface]['ipv4']: interface_dict[interface]['ipv4'][address] = {} interface_dict[interface]['ipv4'][address]\ ['ip'] = ip interface_dict[interface]['ipv4'][address]\ ['prefix_length'] = prefix_length interface_dict[interface]['ipv4'][address]\ ['secondary'] = False continue # Interface is unnumbered. Using address of GigabitEthernet0/0.101 (10.1.98.10) p2_0 = re.compile(r'^Interface +is +unnumbered. +Using +address +of +(\S+)' r' +\((?P<ipv4>(?P<ip>[0-9\.]+))\)$') m = p2_0.match(line) if m: ip = m.groupdict()['ip'] address = m.groupdict()['ipv4'] if 'ipv4' not in interface_dict[interface]: interface_dict[interface]['ipv4'] = {} if address not in interface_dict[interface]['ipv4']: interface_dict[interface]['ipv4'][address] = {} interface_dict[interface]['ipv4'][address]\ ['ip'] = ip interface_dict[interface]['ipv4'][address]\ ['secondary'] = False continue # Secondary address 10.2.2.2/24 p2_1 = re.compile(r'^Secondary +address +(?P<ipv4>(?P<ip>[0-9\.]+)' r'\/(?P<prefix_length>[0-9]+))$') m = p2_1.match(line) if m: ip = m.groupdict()['ip'] prefix_length = m.groupdict()['prefix_length'] address = m.groupdict()['ipv4'] if 'ipv4' not in interface_dict[interface]: interface_dict[interface]['ipv4'] = {} if address not in interface_dict[interface]['ipv4']: interface_dict[interface]['ipv4'][address] = {} interface_dict[interface]['ipv4'][address]\ ['ip'] = ip interface_dict[interface]['ipv4'][address]\ ['prefix_length'] = prefix_length interface_dict[interface]['ipv4'][address]\ ['secondary'] = True continue # Internet address will be negotiated using DHCP # Internet address will be negotiated using IPCP p2_2 = re.compile(r'^Internet +[A|a]ddress +will +be +negotiated ' r'+using +(?P<negotiated>DHCP|IPCP)$') m = p2_2.match(line) if m: negotiated_holder = m.groupdict() if 'DHCP' in negotiated_holder.get('negotiated'): address='dhcp_negotiated' if 'IPCP' in negotiated_holder.get('negotiated'): address='ipcp_negotiated' ipv4_dict = interface_dict[interface].setdefault('ipv4',{}) ipv4_dict.setdefault(address, {}) ipv4_dict[address]['ip'] = address continue # Broadcast address is 255.255.255.255 p3 = re.compile(r'^Broadcast +address +is +(?P<address>[\w\.\:]+)$') m = p3.match(line) if m: interface_dict[interface]['ipv4'][address]['broadcast_address'] = \ m.groupdict()['address'] continue # Address determined by configuration file # Address determined by non-volatile memory p36 = re.compile(r'^Address +determined +by +(?P<file>[\w\s\-]+)$') m = p36.match(line) if m: interface_dict[interface]['address_determined_by'] = \ m.groupdict()['file'] continue # MTU is 1500 bytes p4 = re.compile(r'^MTU +is +(?P<mtu>\d+) +bytes$') m = p4.match(line) if m: interface_dict[interface]['mtu'] = \ int(m.groupdict()['mtu']) continue # Helper address is not set p5 = re.compile(r'^Helper +address +is +not +set$') m = p5.match(line) if m: continue # Helper address is 10.1.1.1 p5_0 = re.compile(r'^Helper +address +is +(?P<address>[\d\.]+)$') m = p5_0.match(line) if m: interface_dict[interface]['helper_address'] = \ [m.groupdict()['address']] continue # Helper addresses are 10.1.1.1 p5_1 = re.compile(r'^Helper +addresses +are +(?P<address>[\w\.\:\s]+)$') m = p5_1.match(line) if m: helper_flag = True if 'not set' not in m.groupdict()['address']: helper_list = [] helper_list.append(m.groupdict()['address']) interface_dict[interface]['helper_address'] = \ helper_list continue # 10.2.2.2 p5_2 = re.compile(r'^(?P<address>[\d\.]+)$') m = p5_2.match(line) if m: if helper_flag: helper_list.append(m.groupdict()['address']) continue else: helper_flag = False # Directed broadcast forwarding is disabled p6 = re.compile(r'^Directed +broadcast +forwarding +is +(?P<status>\w+)$') m = p6.match(line) if m: if 'disabled' in m.groupdict()['status']: interface_dict[interface]['directed_broadcast_forwarding'] = False else: interface_dict[interface]['directed_broadcast_forwarding'] = True continue # Multicast reserved groups joined: 224.0.0.1 224.0.0.2 224.0.0.22 224.0.0.13 p41 = re.compile(r'^Multicast +reserved +groups +joined: +(?P<multicast_groups>[\w\s\.]+)$') m = p41.match(line) if m: multicast_groups_address = str(m.groupdict()['multicast_groups']) #Split string of addressed into a list multicast_groups = multicast_groups_address.split() interface_dict[interface]['multicast_groups']\ = sorted(multicast_groups) continue # Multicast reserved groups joined: 224.0.0.1 224.0.0.2 224.0.0.22 224.0.0.13 p41_1 = re.compile(r'(?P<multicast_groups>\d+\.\d+\.\d+\.\d+)') m = p41_1.findall(line) if m and multicast_groups: multicast_groups.extend(m) interface_dict[interface]['multicast_groups']\ = sorted(multicast_groups) continue # Outgoing Common access list is not set p7 = re.compile(r'^Outgoing +Common +access +list +is +' r'(?P<access_list>.+)$') m = p7.match(line) if m: if 'not set' not in m.groupdict()['access_list']: interface_dict[interface]['outbound_common_access_list'] = \ m.groupdict()['access_list'] continue # Outgoing access list is not set p8 = re.compile(r'^Outgoing +access +list +is +' r'(?P<access_list>.+)$') m = p8.match(line) if m: if 'not set' not in m.groupdict()['access_list']: interface_dict[interface]['outbound_access_list'] = \ m.groupdict()['access_list'] continue # Inbound Common access list is not set p9 = re.compile(r'^Inbound +Common +access +list +is +' r'(?P<access_list>.+)$') m = p9.match(line) if m: if 'not set' not in m.groupdict()['access_list']: interface_dict[interface]['inbound_common_access_list'] = \ m.groupdict()['access_list'] continue # Inbound access list is not set p10 = re.compile(r'^Inbound +access +list +is +' r'(?P<access_list>.+)$') m = p10.match(line) if m: if 'not set' not in m.groupdict()['access_list']: interface_dict[interface]['inbound_access_list'] = \ m.groupdict()['access_list'] continue # Proxy ARP is enabled p11 = re.compile(r'^Proxy +ARP +is +' r'(?P<status>\w+)$') m = p11.match(line) if m: if 'disabled' in m.groupdict()['status']: interface_dict[interface]['proxy_arp'] = False else: interface_dict[interface]['proxy_arp'] = True continue # Local Proxy ARP is disabled p12 = re.compile(r'^Local +Proxy +ARP +is +' r'(?P<status>\w+)$') m = p12.match(line) if m: if 'disabled' in m.groupdict()['status']: interface_dict[interface]['local_proxy_arp'] = False else: interface_dict[interface]['local_proxy_arp'] = True continue # Security level is default p13 = re.compile(r'^Security +level +is +' r'(?P<level>\w+)$') m = p13.match(line) if m: interface_dict[interface]['security_level'] = m.groupdict()['level'] continue # Split horizon is enabled p14 = re.compile(r'^Split +horizon +is +' r'(?P<status>\w+)$') m = p14.match(line) if m: if 'disabled' in m.groupdict()['status']: interface_dict[interface]['split_horizon'] = False else: interface_dict[interface]['split_horizon'] = True continue # ICMP redirects are always sent p15 = re.compile(r'^ICMP +redirects +are +' r'(?P<sent>[\w\s]+)$') m = p15.match(line) if m: if 'icmp' not in interface_dict[interface]: interface_dict[interface]['icmp'] = {} if 'not set' not in m.groupdict()['sent']: interface_dict[interface]['icmp']['redirects'] = \ m.groupdict()['sent'] continue # ICMP unreachables are always sent p16 = re.compile(r'^ICMP +unreachables +are +' r'(?P<sent>[\w\s]+)$') m = p16.match(line) if m: if 'icmp' not in interface_dict[interface]: interface_dict[interface]['icmp'] = {} if 'not set' not in m.groupdict()['sent']: interface_dict[interface]['icmp']['unreachables'] = \ m.groupdict()['sent'] continue # ICMP mask replies are never sent p17 = re.compile(r'^ICMP +mask +replies +are +' r'(?P<sent>[\w\s]+)$') m = p17.match(line) if m: if 'icmp' not in interface_dict[interface]: interface_dict[interface]['icmp'] = {} if 'not set' not in m.groupdict()['sent']: interface_dict[interface]['icmp']['mask_replies'] = \ m.groupdict()['sent'] continue # IP fast switching is enabled p18 = re.compile(r'^IP +fast +switching +is +' r'(?P<status>\w+)$') m = p18.match(line) if m: if 'disabled' in m.groupdict()['status']: interface_dict[interface]['ip_fast_switching'] = False else: interface_dict[interface]['ip_fast_switching'] = True continue # IP Flow switching is disabled p19 = re.compile(r'^IP +Flow +switching +is +' r'(?P<status>\w+)$') m = p19.match(line) if m: if 'disabled' in m.groupdict()['status']: interface_dict[interface]['ip_flow_switching'] = False else: interface_dict[interface]['ip_flow_switching'] = True continue # IP CEF switching is enabled p20 = re.compile(r'^IP +CEF +switching +is +' r'(?P<status>\w+)$') m = p20.match(line) if m: if 'disabled' in m.groupdict()['status']: interface_dict[interface]['ip_cef_switching'] = False else: interface_dict[interface]['ip_cef_switching'] = True continue # IP CEF switching turbo vector p21 = re.compile(r'^IP +CEF +switching +turbo +vector$') m = p21.match(line) if m: interface_dict[interface]['ip_cef_switching_turbo_vector'] = True continue # IP Null turbo vector p22 = re.compile(r'^IP +Null +turbo +vector$') m = p22.match(line) if m: interface_dict[interface]['ip_null_turbo_vector'] = True continue # VPN Routing/Forwarding "Mgmt-vrf" p23 = re.compile(r'^VPN +Routing\/Forwarding +\"(?P<vrf>[\w\-]+)\"$') m = p23.match(line) if m: interface_dict[interface]['vrf'] = m.groupdict()['vrf'] continue # Associated unicast routing topologies: # Topology "base", operation state is UP p24 = re.compile(r'^Associated +unicast +routing +topologies:$') m = p24.match(line) if m: if 'unicast_routing_topologies' not in interface_dict[interface]: interface_dict[interface]['unicast_routing_topologies'] = {} continue p24_1 = re.compile(r'^Topology +\"(?P<topo>\w+)\", +' r'operation +state +is +(?P<topo_status>\w+)$') m = p24_1.match(line) if m: if 'unicast_routing_topologies' in interface_dict[interface]: if 'topology' not in interface_dict[interface]\ ['unicast_routing_topologies']: interface_dict[interface]['unicast_routing_topologies']['topology'] = {} topo = m.groupdict()['topo'] if topo not in interface_dict[interface]\ ['unicast_routing_topologies']['topology']: interface_dict[interface]['unicast_routing_topologies']\ ['topology'][topo] = {} interface_dict[interface]['unicast_routing_topologies']\ ['topology'][topo]['status'] = m.groupdict()['topo_status'].lower() continue # IP multicast fast switching is disabled p25 = re.compile(r'^IP +multicast +fast +switching +is +' r'(?P<status>\w+)$') m = p25.match(line) if m: if 'disabled' in m.groupdict()['status']: interface_dict[interface]['ip_multicast_fast_switching'] = False else: interface_dict[interface]['ip_multicast_fast_switching'] = True continue # IP multicast distributed fast switching is disabled p25 = re.compile(r'^IP +multicast +distributed +fast +switching +is +' r'(?P<status>\w+)$') m = p25.match(line) if m: if 'disabled' in m.groupdict()['status']: interface_dict[interface]['ip_multicast_distributed_fast_switching'] = False else: interface_dict[interface]['ip_multicast_distributed_fast_switching'] = True continue # IP route-cache flags are Fast, CEF p26 = re.compile(r'^IP +route\-cache +flags +are +(?P<flags>[\w\s\,]+)$') m = p26.match(line) if m: ret = m.groupdict()['flags'].split(',') ret = [i.strip() for i in ret] interface_dict[interface]['ip_route_cache_flags'] = sorted(ret) continue # Router Discovery is disabled p27 = re.compile(r'^Router +Discovery +is +' r'(?P<status>\w+)$') m = p27.match(line) if m: if 'disabled' in m.groupdict()['status']: interface_dict[interface]['router_discovery'] = False else: interface_dict[interface]['router_discovery'] = True continue # IP output packet accounting is disabled p28 = re.compile(r'^IP +output +packet +accounting +is +' r'(?P<status>\w+)$') m = p28.match(line) if m: if 'disabled' in m.groupdict()['status']: interface_dict[interface]['ip_output_packet_accounting'] = False else: interface_dict[interface]['ip_output_packet_accounting'] = True continue # IP access violation accounting is disabled p29 = re.compile(r'^IP +access +violation +accounting +is +' r'(?P<status>\w+)$') m = p29.match(line) if m: if 'disabled' in m.groupdict()['status']: interface_dict[interface]['ip_access_violation_accounting'] = False else: interface_dict[interface]['ip_access_violation_accounting'] = True continue # TCP/IP header compression is disabled p30 = re.compile(r'^TCP\/IP +header +compression +is +' r'(?P<status>\w+)$') m = p30.match(line) if m: if 'disabled' in m.groupdict()['status']: interface_dict[interface]['tcp_ip_header_compression'] = False else: interface_dict[interface]['tcp_ip_header_compression'] = True continue # RTP/IP header compression is disabled p31 = re.compile(r'^RTP\/IP +header +compression +is +' r'(?P<status>\w+)$') m = p31.match(line) if m: if 'disabled' in m.groupdict()['status']: interface_dict[interface]['rtp_ip_header_compression'] = False else: interface_dict[interface]['rtp_ip_header_compression'] = True continue # Probe proxy name replies are disabled p32 = re.compile(r'^Probe +proxy +name +replies +are +' r'(?P<status>\w+)$') m = p32.match(line) if m: if 'disabled' in m.groupdict()['status']: interface_dict[interface]['probe_proxy_name_replies'] = False else: interface_dict[interface]['probe_proxy_name_replies'] = True continue # Policy routing is disabled p33 = re.compile(r'^Policy +routing +is +' r'(?P<status>\w+)$') m = p33.match(line) if m: if 'disabled' in m.groupdict()['status']: interface_dict[interface]['policy_routing'] = False else: interface_dict[interface]['policy_routing'] = True continue # Network address translation is disabled p34 = re.compile(r'^Network +address +translation +is +' r'(?P<status>\w+)$') m = p34.match(line) if m: if 'disabled' in m.groupdict()['status']: interface_dict[interface]['network_address_translation'] = False else: interface_dict[interface]['network_address_translation'] = True continue # BGP Policy Mapping is disabled p35 = re.compile(r'^BGP +Policy +Mapping +is +' r'(?P<status>\w+)$') m = p35.match(line) if m: if 'disabled' in m.groupdict()['status']: interface_dict[interface]['bgp_policy_mapping'] = False else: interface_dict[interface]['bgp_policy_mapping'] = True continue # Input features: MCI Check # Input features: QoS Classification, QoS Marking, MCI Check p36 = re.compile(r'^Input +features: +(?P<input_feature>[\w\s\,]+)$') m = p36.match(line) if m: features = m.groupdict()['input_feature'].split(',') features = [i.strip() for i in features] interface_dict[interface]['input_features'] = sorted(features) continue # IPv4 WCCP Redirect outbound is disable p37 = re.compile(r'^IPv4 +WCCP +Redirect +outbound +is +(?P<status>\w+)$') m = p37.match(line) if m: if 'wccp' not in interface_dict[interface]: interface_dict[interface]['wccp'] = {} if 'disabled' in m.groupdict()['status']: interface_dict[interface]['wccp']\ ['redirect_outbound'] = False else: interface_dict[interface]['wccp']\ ['redirect_outbound'] = True continue # IPv4 WCCP Redirect inbound is disabled p38 = re.compile(r'^IPv4 +WCCP +Redirect +inbound +is +(?P<status>\w+)$') m = p38.match(line) if m: if 'wccp' not in interface_dict[interface]: interface_dict[interface]['wccp'] = {} if 'disabled' in m.groupdict()['status']: interface_dict[interface]['wccp']\ ['redirect_inbound'] = False else: interface_dict[interface]['wccp']\ ['redirect_inbound'] = True # IPv4 WCCP Redirect exclude is disabled p39 = re.compile(r'^IPv4 +WCCP +Redirect +exclude +is +(?P<status>\w+)$') m = p39.match(line) if m: if 'wccp' not in interface_dict[interface]: interface_dict[interface]['wccp'] = {} if 'disabled' in m.groupdict()['status']: interface_dict[interface]['wccp']\ ['redirect_exclude'] = False else: interface_dict[interface]['wccp']\ ['redirect_exclude'] = True # Interface is unnumbered. Using address of Loopback11 (192.168.151.1) p40 = re.compile(r'^Interface +is +unnumbered. +Using +address +of +' r'(?P<unnumbered_intf>[\w\/\-\.]+) +' r'\((?P<unnumbered_ip>[\w\.\:]+)\)$') m = p40.match(line) if m: unnumbered_dict[interface] = {} unnumbered_intf = m.groupdict()['unnumbered_intf'] unnumbered_ip = m.groupdict()['unnumbered_ip'] unnumbered_dict[interface]['unnumbered_intf'] = unnumbered_intf unnumbered_dict[interface]['unnumbered_ip'] = unnumbered_ip if unnumbered_intf in interface_dict: if 'ipv4' in interface_dict[unnumbered_intf]: for address in interface_dict[unnumbered_intf]['ipv4']: if unnumbered_ip in address: ip_dict = interface_dict[interface].\ setdefault('ipv4', {}).setdefault(address, {}) m = re.search('([\w\.\:]+)\/(\d+)', address) ip_dict['ip'] = m.groups()[0] ip_dict['prefix_length'] = m.groups()[1] ip_dict['secondary'] = False break else: address = unnumbered_ip if 'ipv4' not in interface_dict[interface]: interface_dict[interface]['ipv4'] = {} if address not in interface_dict[interface]['ipv4']: interface_dict[interface]['ipv4'][address] = {} interface_dict[interface]['ipv4'][address]['ip'] = address continue return interface_dict class ShowIpv6InterfaceSchema(MetaParser): """Schema for show ipv6 interface""" schema = { Any(): { 'oper_status': str, 'enabled': bool, Optional('autoconf'): bool, 'ipv6': { Any(): { 'ip': str, Optional('prefix_length'): str, Optional('status'): str, Optional('origin'): str, Optional('anycast'): bool, Optional('eui_64'): bool, Optional('virtual'): bool, Optional('autoconf'): { 'valid_lifetime': int, 'preferred_lifetime': int, }, }, 'enabled': bool, Optional('icmp'): { Optional('error_messages_limited'): int, Optional('redirects'): bool, Optional('unreachables'): str, }, Optional('nd'): { Optional('suppress'): bool, Optional('dad_enabled'): bool, Optional('dad_attempts'): int, Optional('reachable_time'): int, Optional('using_time'): int, Optional('ns_retransmit_interval'): int, Optional('advertised_reachable_time'): int, Optional('advertised_retransmit_interval'): int, Optional('router_advertisements_interval'): int, Optional('router_advertisements_live'): int, Optional('advertised_default_router_preference'): str, Optional('advertised_retransmit_interval_unspecified'): bool, Optional('advertised_reachable_time_unspecified'): bool, }, Optional('unnumbered'): { 'interface_ref': str, }, }, Optional('mtu'): int, Optional('vrf'): str, Optional('addresses_config_method'): str, Optional('joined_group_addresses'): list, }, } class ShowIpv6Interface(ShowIpv6InterfaceSchema): """Parser for show ipv6 interface""" cli_command = ['show ipv6 interface {interface}','show ipv6 interface'] def cli(self, interface='',output=None): if output is None: if not interface: cmd = self.cli_command[1] else: cmd = self.cli_command[0].format(interface=interface) out = self.device.execute(cmd) else: out = output ret_dict = {} ipv6 = False joined_group = [] # status code dict: status_code = {'ten': 'tentative', 'dep': 'duplicate', 'pre': 'preferre'} for line in out.splitlines(): line = line.strip() # Vlan211 is up, line protocol is up # GigabitEthernet1/0/1 is administratively down, line protocol is down p1 = re.compile(r'^(?P<interface>[\w\/\.\-]+) +is' r' +(?P<enabled>[\w\s]+),' r' +line +protocol +is +(?P<oper_status>\w+)$') m = p1.match(line) if m: intf = m.groupdict()['interface'] enabled = m.groupdict()['enabled'].lower() if intf not in ret_dict: ret_dict[intf] = {} if 'administratively down' in enabled: ret_dict[intf]['enabled'] = False else: ret_dict[intf]['enabled'] = True ret_dict[intf]['oper_status'] = \ m.groupdict()['oper_status'].lower() # initial list variable again for new interface joined_group = [] continue # IPv6 is enabled, link-local address is FE80::257:D2FF:FE28: # IPv6 is tentative, link-local address is FE80::257:D2FF:FEFF:428C [TEN] # IPv6 is tentative, link-local address is FE80::257:D2FF:FEFF:428C [UNA/TEN] p2 = re.compile(r'^IPv6 +is +(?P<status>\w+), +' 'link-local +address +is +(?P<link_local>[\w\:]+)' '( *\[(?P<type>[\w\/]+)\])?$') m = p2.match(line) if m: status = m.groupdict()['status'] link_addr = m.groupdict()['link_local'] if 'ipv6' not in ret_dict[intf]: ret_dict[intf]['ipv6'] = {} if link_addr not in ret_dict[intf]['ipv6']: ret_dict[intf]['ipv6'][link_addr] = {} ret_dict[intf]['ipv6'][link_addr]['ip'] = link_addr ret_dict[intf]['ipv6'][link_addr]['origin'] = 'link_layer' if status.lower() in ['preferred', 'deprecated', 'invalid', 'inaccessible', 'unknown', 'tentative', 'duplicate', 'optimistic']: ret_dict[intf]['ipv6'][link_addr]['status'] = status.lower() else: ret_dict[intf]['ipv6'][link_addr]['status'] = 'valid' continue # No Virtual link-local address(es): # Virtual link-local address(es): # FE80::5:73FF:FEA0:16 [UNA/OOD] p21 = re.compile(r'^Virtual +link\-local +address\(es\)\:$') m = p21.match(line) if m: ipv6 = True continue p21_1 = re.compile(r'^(?P<ipv6>[\w\:]+)' '( *\[(?P<type>[\w\/]+)\])?$') m = p21_1.match(line) if m and ipv6: if 'ipv6' not in ret_dict[intf]: ret_dict[intf]['ipv6'] = {} address = '{ip}'.format(ip=m.groupdict()['ipv6']) if address not in ret_dict[intf]['ipv6']: ret_dict[intf]['ipv6'][address] = {} ret_dict[intf]['ipv6'][address]['ip'] = m.groupdict()['ipv6'] ret_dict[intf]['ipv6'][address]['virtual'] = True ip_type = m.groupdict()['type'] if ip_type and 'any' in ip_type.lower(): ret_dict[intf]['ipv6'][address]['anycast'] = True elif ip_type and 'eui' in ip_type.lower(): ret_dict[intf]['ipv6'][address]['eui_64'] = True elif ip_type: for code in ip_type.lower().split('/'): if code in status_code: ret_dict[intf]['ipv6'][address]['status'] = status_code[code] else: ret_dict[intf]['ipv6'][address]['status'] = 'valid' continue # Stateless address autoconfig enabled p3 = re.compile(r'^Stateless +address +autoconfig +enabled$') m = p3.match(line) if m: ret_dict[intf]['autoconf'] = True continue # Global unicast address(es): # 2001:10::14:1, subnet is 2001:10::14:0/112 # 2001:DB8:3:3::3, subnet is 2001:DB8:3:3::/64 [ANY/TEN] p4 = re.compile(r'^Global +unicast +address\(es\):$') m = p4.match(line) if m: ipv6 = True continue p4_1 = re.compile(r'^(?P<ipv6>[\w\:]+), +subnet +is +(?P<dum1>(?P<dum2>[\w\:]+)' '\/(?P<prefix_length>[0-9]+))' '( *\[(?P<type>[\w\/]+)\])?$') m = p4_1.match(line) if m and ipv6: if 'ipv6' not in ret_dict[intf]: ret_dict[intf]['ipv6'] = {} address = '{ip}/{mask}'.format(ip=m.groupdict()['ipv6'], mask=m.groupdict()['prefix_length']) if address not in ret_dict[intf]['ipv6']: ret_dict[intf]['ipv6'][address] = {} ret_dict[intf]['ipv6'][address]['ip'] = m.groupdict()['ipv6'] ret_dict[intf]['ipv6'][address]['prefix_length'] = \ m.groupdict()['prefix_length'] try: status except Exception: pass else: if status.lower() in ['preferred', 'deprecated', 'invalid', 'inaccessible', 'unknown', 'tentative', 'duplicate', 'optimistic']: ret_dict[intf]['ipv6'][address]['status'] = status.lower() else: ret_dict[intf]['ipv6'][address]['status'] = 'valid' ret_dict[intf]['ipv6']['enabled'] = True ip_type = m.groupdict()['type'] if ip_type and 'any' in ip_type.lower(): ret_dict[intf]['ipv6'][address]['anycast'] = True elif ip_type and 'eui' in ip_type.lower(): ret_dict[intf]['ipv6'][address]['eui_64'] = True elif ip_type: for code in ip_type.lower().split('/'): if code in status_code: ret_dict[intf]['ipv6'][address]['status'] = status_code[code] else: ret_dict[intf]['ipv6'][address]['status'] = 'valid' continue # valid lifetime 2591911 preferred lifetime 604711 p4_2 = re.compile(r'^valid +lifetime +(?P<valid>\d+) +' 'preferred +lifetime +(?P<preferred>\d+)$') m = p4_2.match(line) if m and ipv6: try: address except Exception: pass else: if 'autoconf' not in ret_dict[intf]['ipv6'][address]: ret_dict[intf]['ipv6'][address]['autoconf'] = {} ret_dict[intf]['ipv6'][address]['autoconf']\ ['valid_lifetime'] = int(m.groupdict()['valid']) ret_dict[intf]['ipv6'][address]['autoconf']\ ['preferred_lifetime'] = int(m.groupdict()['preferred']) continue # Joined group address(es): # FF02::1 # FF02::1:FF14:1 # FF02::1:FF28:1A71 p5 = re.compile(r'^Joined +group +address\(es\):$') m = p5.match(line) if m: ipv6 = False continue p5_1 = re.compile(r'^(?P<address>[\w\:]+)$') m = p5_1.match(line) if m and not ipv6: joined_group.append(m.groupdict()['address']) ret_dict[intf]['joined_group_addresses'] = sorted(joined_group) continue # MTU is 1500 bytes p6 = re.compile(r'^MTU +is +(?P<mtu>\d+) +bytes$') m = p6.match(line) if m: ret_dict[intf]['mtu'] = int(m.groupdict()['mtu']) continue # VPN Routing/Forwarding "VRF1" p6 = re.compile(r'^VPN +Routing\/Forwarding +\"(?P<vrf>[\w\-]+)\"$') m = p6.match(line) if m: ret_dict[intf]['vrf'] = m.groupdict()['vrf'] continue # ICMP error messages limited to one every 100 milliseconds p7 = re.compile(r'^ICMP +error +messages +limited +to +one +' 'every +(?P<limited>\d+) +milliseconds$') m = p7.match(line) if m: if 'ipv6' not in ret_dict[intf]: ret_dict[intf]['ipv6'] = {} if 'icmp' not in ret_dict[intf]['ipv6']: ret_dict[intf]['ipv6']['icmp'] = {} ret_dict[intf]['ipv6']['icmp']['error_messages_limited'] = \ int(m.groupdict()['limited']) continue # ICMP redirects are enabled p8 = re.compile(r'^ICMP +redirects +are +(?P<status>\w+)$') m = p8.match(line) if m: if 'ipv6' not in ret_dict[intf]: ret_dict[intf]['ipv6'] = {} if 'icmp' not in ret_dict[intf]['ipv6']: ret_dict[intf]['ipv6']['icmp'] = {} if 'enabled' in m.groupdict()['status']: ret_dict[intf]['ipv6']['icmp']['redirects'] = True else: ret_dict[intf]['ipv6']['icmp']['redirects'] = False continue # ICMP unreachables are sent p9 = re.compile(r'^ICMP +unreachables +are +(?P<status>[\w\s]+)$') m = p9.match(line) if m: if 'ipv6' not in ret_dict[intf]: ret_dict[intf]['ipv6'] = {} if 'icmp' not in ret_dict[intf]['ipv6']: ret_dict[intf]['ipv6']['icmp'] = {} if 'not sent' not in m.groupdict()['status']: ret_dict[intf]['ipv6']['icmp']['unreachables'] = m.groupdict()['status'] continue # ND DAD is enabled, number of DAD attempts: 1 p10 = re.compile(r'^ND +DAD +is +(?P<status>\w+), +' 'number +of +DAD +attempts: +(?P<attempts>\d+)$') m = p10.match(line) if m: nd_dict = ret_dict.setdefault(intf, {}).setdefault('ipv6', {}).setdefault('nd', {}) nd_dict.setdefault('suppress', False) if 'enabled' in m.groupdict()['status']: nd_dict['dad_enabled'] = True else: nd_dict['dad_enabled'] = False nd_dict['dad_attempts'] = int(m.groupdict()['attempts']) continue # ND reachable time is 30000 milliseconds (using 30000) p11 = re.compile(r'^ND +reachable +time +is (?P<time>\d+) +milliseconds' ' +\(using +(?P<use>\d+)\)$') m = p11.match(line) if m: nd_dict = ret_dict.setdefault(intf, {}).setdefault('ipv6', {}).setdefault('nd', {}) nd_dict.setdefault('suppress', False) nd_dict['reachable_time'] = int(m.groupdict()['time']) nd_dict['using_time'] = int(m.groupdict()['use']) continue # ND NS retransmit interval is 1000 milliseconds p12 = re.compile(r'^ND +NS +retransmit +interval +is' ' +(?P<interval>\d+) +milliseconds$') m = p12.match(line) if m: nd_dict = ret_dict.setdefault(intf, {}).setdefault('ipv6', {}).setdefault('nd', {}) nd_dict.setdefault('suppress', False) nd_dict['ns_retransmit_interval'] = int(m.groupdict()['interval']) continue # ND advertised reachable time is 0 (unspecified) p13 = re.compile(r'^ND +advertised +reachable +time +is +(?P<time>\d+)' ' +\((?P<dummy>\S+)\)$') m = p13.match(line) if m: nd_dict = ret_dict.setdefault(intf, {}).setdefault('ipv6', {}).setdefault('nd', {}) nd_dict.setdefault('suppress', False) nd_dict['advertised_reachable_time'] = int(m.groupdict()['time']) if m.groupdict()['dummy'] == 'unspecified': nd_dict['advertised_reachable_time_unspecified'] = True else: nd_dict['advertised_reachable_time_unspecified'] = False continue # ND advertised retransmit interval is 0 (unspecified) p14 = re.compile(r'^ND +advertised +retransmit +interval +is +(?P<time>\d+)' ' +\((?P<dummy>\S+)\)$') m = p14.match(line) if m: nd_dict = ret_dict.setdefault(intf, {}).setdefault('ipv6', {}).setdefault('nd', {}) nd_dict.setdefault('suppress', False) nd_dict['advertised_retransmit_interval'] = int(m.groupdict()['time']) if m.groupdict()['dummy'] == 'unspecified': nd_dict['advertised_retransmit_interval_unspecified'] = True else: nd_dict['advertised_retransmit_interval_unspecified'] = False continue # ND router advertisements are sent every 200 seconds p15 = re.compile(r'^ND +router +advertisements +are +sent +' 'every +(?P<time>\d+) +seconds$') m = p15.match(line) if m: nd_dict = ret_dict.setdefault(intf, {}).setdefault('ipv6', {}).setdefault('nd', {}) nd_dict.setdefault('suppress', False) nd_dict['router_advertisements_interval'] = int(m.groupdict()['time']) continue # ND router advertisements live for 1800 seconds p16 = re.compile(r'^ND +router +advertisements +live +for +' '(?P<time>\d+) +seconds$') m = p16.match(line) if m: nd_dict = ret_dict.setdefault(intf, {}).setdefault('ipv6', {}).setdefault('nd', {}) nd_dict.setdefault('suppress', False) nd_dict['router_advertisements_live'] = int(m.groupdict()['time']) continue # ND advertised default router preference is Medium p17 = re.compile(r'^ND +advertised +default +router +preference +' 'is +(?P<prefer>\w+)$') m = p17.match(line) if m: nd_dict = ret_dict.setdefault(intf, {}).setdefault('ipv6', {}).setdefault('nd', {}) nd_dict.setdefault('suppress', False) nd_dict['advertised_default_router_preference'] = m.groupdict()['prefer'] continue # ND RAs are suppressed (periodic) p17_1 = re.compile(r'^ND +RAs +are +suppressed.*$') m = p17_1.match(line) if m: nd_dict = ret_dict.setdefault(intf, {}).setdefault('ipv6', {}).setdefault('nd', {}) nd_dict.update({'suppress': True}) continue # Hosts use stateless autoconfig for addresses. p18 = re.compile(r'^Hosts +use +(?P<addr_conf_method>[\w\s]+) +for +addresses.$') m = p18.match(line) if m: ret_dict[intf]['addresses_config_method'] = \ m.groupdict()['addr_conf_method'] continue # Interface is unnumbered. Using address of Loopback0 p19 = re.compile(r'^Interface +is +unnumbered. +Using +address +of' ' +(?P<unnumbered_intf>[\w\/\.]+)$') m = p19.match(line) if m: if 'ipv6' not in ret_dict[intf]: ret_dict[intf]['ipv6'] = {} if 'unnumbered' not in ret_dict[intf]['ipv6']: ret_dict[intf]['ipv6']['unnumbered'] = {} ret_dict[intf]['ipv6']['unnumbered']['interface_ref'] = \ Common.convert_intf_name(m.groupdict()['unnumbered_intf']) continue # No global unicast address is configured p20 = re.compile(r'^No +global +unicast +address +is +configured$') m = p20.match(line) if m: if 'ipv6' not in ret_dict[intf]: ret_dict[intf]['ipv6'] = {} ret_dict[intf]['ipv6']['enabled'] = False continue return ret_dict class ShowInterfacesTrunkSchema(MetaParser): """Schema for show interfaces trunk""" schema = { 'interface': { Any(): { 'name': str, 'mode': str, 'encapsulation': str, 'status': str, 'native_vlan': str, 'vlans_allowed_on_trunk': str, 'vlans_allowed_active_in_mgmt_domain': str, 'vlans_in_stp_forwarding_not_pruned': str } } } class ShowInterfacesTrunk(ShowInterfacesTrunkSchema): """parser for show interfaces trunk""" cli_command = 'show interfaces trunk' def cli(self,output=None): if output is None: out = self.device.execute(self.cli_command) else: out = output # initial regexp pattern p1 = re.compile(r'^(?P<name>[\w\-\/\.]+) +(?P<mode>\w+) +(?P<encapsulation>\S+) +' '(?P<status>\w+) +(?P<native_vlan>\d+)$') p2 = re.compile('^Port +Vlans +allowed +on +trunk$') p3 = re.compile('^Port +Vlans +allowed +and +active +in +management +domain$') p4 = re.compile('^Port +Vlans +in +spanning +tree +forwarding +state +and +not +pruned$') p5 = re.compile('^(?P<name>[\w\-\/\.]+) +(?P<vlans>none\s*|[\d\-\,\s]+)$') # initial variables ret_dict = {} vlan_list_type = None for line in out.splitlines(): line = line.strip() # Gi1/0/4 on 802.1q trunking 1 # Gi1/0/4 auto n-isl trunking 1 # Gi1/0/23 on isl trunking 1 # Gi1/0/24 on 802.1q trunking 1 # Po12 auto n-802.1q trunking 1 m = p1.match(line) if m: group = m.groupdict() intf = Common.convert_intf_name(group.pop('name')) intf_dict = ret_dict.setdefault('interface', {}).setdefault(intf, {}) intf_dict['name'] = intf intf_dict.update({k:v for k,v in group.items()}) continue # Port Vlans allowed on trunk if p2.match(line): vlan_list_type = 'vlans_allowed_on_trunk' continue # Port Vlans allowed and active in management domain if p3.match(line): vlan_list_type = 'vlans_allowed_active_in_mgmt_domain' continue # Port Vlans in spanning tree forwarding state and not pruned if p4.match(line): vlan_list_type = 'vlans_in_stp_forwarding_not_pruned' continue # Gi1/0/4 200-211 m = p5.match(line) if m: group = m.groupdict() intf = Common.convert_intf_name(group['name']) intf_dict = ret_dict.setdefault('interface', {}).setdefault(intf, {}) intf_dict.setdefault(vlan_list_type, group['vlans']) if group['vlans'] else None continue return ret_dict class ShowInterfacesCountersSchema(MetaParser): """Schema for show interfaces <WORD> counters""" schema = { 'interface': { Any(): { Any(): { # in or out 'octets': int, 'ucast_pkts': int, 'mcast_pkts': int, 'bcast_pkts': int, 'name': str }, }, } } class ShowInterfacesCounters(ShowInterfacesCountersSchema): """parser for show interfaces <WORD> counters""" cli_command = 'show interfaces {interface} counters' def cli(self, interface,output=None): if output is None: out = self.device.execute(self.cli_command.format(interface=interface)) else: out = output # initial regexp pattern p1 = re.compile(r'^(?P<name>[\w\-\/\.]+) +(?P<octets>\d+) +(?P<ucast_pkts>\d+) +' '(?P<mcast_pkts>\d+) +(?P<bcast_pkts>\d+)$') p2 = re.compile(r'Port +InOctets +InUcastPkts +InMcastPkts +InBcastPkts') p2_1 = re.compile(r'Port +OutOctets +OutUcastPkts +OutMcastPkts +OutBcastPkts') # initial variables ret_dict = {} for line in out.splitlines(): line = line.strip() # decide the in or out packets if p2.match(line): in_out = 'in' continue if p2_1.match(line): in_out = 'out' continue # Gi1/0/4 on 802.1q trunking 1 m = p1.match(line) if m: group = m.groupdict() intf = Common.convert_intf_name(group.pop('name')) intf_dict = ret_dict.setdefault('interface', {}).setdefault(intf, {}).setdefault(in_out, {}) intf_dict['name'] = intf intf_dict.update({k:int(v) for k,v in group.items()}) continue return ret_dict class ShowInterfacesAccountingSchema(MetaParser): """Schema for show interfaces accounting""" schema = { Any(): { Optional('description'): str, 'accounting': { Any(): { 'pkts_in': int, 'pkts_out': int, 'chars_in': int, 'chars_out': int, } } } } class ShowInterfacesAccounting(ShowInterfacesAccountingSchema): """Parser for: show interfaces accounting show interfaces <interface> accounting """ cli_command = ['show interfaces {interface} accounting','show interfaces accounting'] exclude = ['pkts_in', 'pkts_out', 'chars_in', 'chars_out'] def cli(self, interface=None,output=None): if output is None: if not interface: cmd = self.cli_command[1] else: cmd = self.cli_command[0].format(interface=interface) out = self.device.execute(cmd) else: out = output # initial return disctionary ret_dict = {} # initial regexp pattern # GigabitEthernet0/0/0/0 # GigabitEthernet11 OOB Net p1 = re.compile(r'^(?P<interface>[a-zA-Z\-\d\/\.]+)(?P<description>( (\S)+)*)$') # Tunnel0 Pim Register Tunnel (Encap) for RP 10.186.1.1 p1_1 = re.compile(r'^(?P<interface>Tunnel\d+) +Pim +Register +' 'Tunnel +\(Encap\) +for +RP +(?P<rp>[\w\.]+)$') # IPV4_UNICAST 9943 797492 50 3568 p2 = re.compile(r'^(?P<protocol>[\w\_\-\s]+)\s+(?P<pkts_in>\d+)\s+' '(?P<chars_in>\d+)\s+(?P<pkts_out>\d+)\s+' '(?P<chars_out>\d+)') # No traffic sent or received on this interface. p3 = re.compile(r'^No +traffic +sent +or +received +on +this +interface\.$') for line in out.splitlines(): if line: line = line.strip() else: continue m = p3.match(line) if m: continue # GigabitEthernet0/0/0/0 # GigabitEthernet11 OOB Net m = p1.match(line) if m: intf = m.groupdict()['interface'] description = m.groupdict()['description'] continue # IPV4_UNICAST 9943 797492 50 3568 m = p2.match(line) if m: protocol_dict = m.groupdict() protocol = protocol_dict.pop('protocol').lower().strip() ret_dict.setdefault(intf, {}).\ setdefault('accounting', {}).setdefault(protocol, {}) ret_dict[intf]['accounting'][protocol].update({k: int(v) \ for k, v in protocol_dict.items()}) if description: ret_dict[intf].setdefault('description', description.strip()) continue return ret_dict # ==================================================== # schema for show interfaces stats # ==================================================== class ShowInterfacesStatsSchema(MetaParser): """Schema for: show interfaces <interface> stats show interfaces stats""" schema = { Any(): { 'switching_path': { Any(): { 'pkts_in': int, 'pkts_out': int, 'chars_in': int, 'chars_out': int, }, } }, } # ==================================================== # parser for show interfaces stats # ==================================================== class ShowInterfacesStats(ShowInterfacesStatsSchema): """Parser for : show interfaces <interface> stats show interfaces stats""" cli_command = ['show interfaces stats' ,'show interfaces {interface} stats'] exclude = ['chars_in' , 'chars_out', 'pkts_in', 'pkts_out'] def cli(self, interface="", output=None): if output is None: if interface: cmd = self.cli_command[1].format(interface=interface) else: cmd = self.cli_command[0] out = self.device.execute(cmd) else: out = output # initialize result dict result_dict = {} # GigabitEthernet0/0/0 p1 = re.compile(r'^\s*(?P<interface>[\w./]+)$') # Switching path Pkts In Chars In Pkts Out Chars Out # Processor 33 2507 33 2490 p2 = re.compile(r'^\s*(?P<path>[\w\- ]*?) +(?P<pkts_in>[\d]+) +(?P<chars_in>[\d]+)' ' +(?P<pkts_out>[\d]+) +(?P<chars_out>[\d]+)$') for line in out.splitlines(): line = line.rstrip() m = p1.match(line) if m: interface = m.groupdict()['interface'] path_dict = result_dict.setdefault(interface, {}).setdefault('switching_path', {}) continue m = p2.match(line) if m: group = m.groupdict() path = group.pop('path').replace(" ", "_").replace("-", "_").lower() tmp_dict = path_dict.setdefault(path, {}) tmp_dict.update({k: int(v) for k, v in group.items()}) continue return result_dict # ==================================================== # parser for show interfaces description # ==================================================== class ShowInterfacesDescriptionSchema(MetaParser): """schema for show interfaces description """ schema = { 'interfaces': { Any(): { 'status': str, 'protocol': str, Optional('description'): str } } } class ShowInterfacesDescription(ShowInterfacesDescriptionSchema): """parser for show interfaces description """ cli_command = ['show interfaces description', 'show interfaces {interface} description'] def cli(self, interface="", output=None): if output is None: if interface: cmd = self.cli_command[1].format(interface=interface) else: cmd = self.cli_command[0] out = self.device.execute(cmd) else: out = output result_dict = {} index = 1 #Interface Status Protocol Description #Gi0/0 up up #Gi0/1 admin down down to router2 p1 = re.compile(r'(?P<interface>(\S+)) +(?P<status>(\S+)([\s+](\S+))?) +(?P<protocol>(\S+))(?: +(?P<description>(.*)))?$') for line in out.splitlines(): line = line.strip() #Interface Status Protocol Description #Gi0/0 up up #Gi0/1 admin down down to router2 m = p1.match(line) if m and m.groupdict()['protocol'] != 'Protocol': group = m.groupdict() interface = Common.convert_intf_name(group['interface']) intf_dict = result_dict.setdefault('interfaces', {}).setdefault(interface, {}) intf_dict['status'] = group['status'] intf_dict['protocol'] = group['protocol'] if group['description'] is not None: intf_dict['description'] = str(group['description']) else: intf_dict['description'] = "" index += 1 continue return result_dict # ==================================================== # schema for show interfaces status # ==================================================== class ShowInterfacesStatusSchema(MetaParser): """Schema for: show interfaces status""" schema = { 'interfaces': { Any(): { Optional('name'): str, 'status': str, 'vlan': str, 'duplex_code': str, 'port_speed': str, Optional('type'): str, } } } # ==================================================== # parser for show interfaces status # ==================================================== class ShowInterfacesStatus(ShowInterfacesStatusSchema): """parser for * show interfaces status """ cli_command = 'show interfaces status' def cli(self, output=None): if output is None: out = self.device.execute(self.cli_command) else: out = output result_dict = {} # Port Name Status Vlan Duplex Speed Type # Gi1/2 TelenlqPOIU notconnect 125 full 100 10/100/1000-TX # Gi1/3 SE connected 132 a-full a-1000 10/100/1000-TX # Gi1/7 notconnect 99 auto auto 10/100/1000-TX # Gi1/10 To cft123 connected trunk a-full a-1000 10/100/1000-TX # Gi1/1/0/1 FAST-HELLO connected 4094 a-full a-1000 10/100/1000BaseTX # Te1/1/2 VSL connected trunk full a-10G 10GBase-SR # Te2/1/20 disabled 1 full auto No XCVR # Te2/1/21 VSL LINK1 disabled 1 full auto No XCVR # Po10 VSL LINK2 connected trunk a-full a-10G p1 = re.compile(r'^(?P<interfaces>\S+)(?:\s+(?P<name>([\S\s]+)))?' r'\s+(?P<status>(connected|notconnect|suspended|inactive|disabled|err-disabled|monitoring))' r'\s+(?P<vlan>\S+)\s+(?P<duplex_code>[\S\-]+)\s+(?P<port_speed>[\S\-]+)(\s+(?P<type>.+))?$') for line in out.splitlines(): line = line.strip() m = p1.match(line) if m: group = m.groupdict() intf_dict = result_dict.setdefault('interfaces', {}).\ setdefault(Common.convert_intf_name(group['interfaces']), {}) name_val = group['name'].strip() if len(name_val)>0 : intf_dict['name'] = name_val keys = ['status', 'vlan', 'duplex_code', 'port_speed', 'type'] for k in keys: if group[k]: intf_dict[k] = group[k].strip() continue return result_dict # ========================================================== # Parser for show interface {interface} transceiver detail # ========================================================== class ShowInterfaceTransceiverDetailSchema(MetaParser): """Schema for: show interface {interface} transceiver detail""" schema = { 'interfaces': { Any(): {# interface name Optional('cisco_extended_id_number'): str, Optional('cisco_id'): str, Optional('cisco_part_number'): str, Optional('cisco_product_id'): str, Optional('cisco_vendor_id'): str, Optional('name'): str, Optional('nominal_bitrate'): str, Optional('number_of_lanes'): str, Optional('part_number'): str, Optional('revision'): str, Optional('serial_number'): str, Optional('transceiver'): str, Optional('type'): str, Any(): str, } } } class ShowInterfaceTransceiverDetail(ShowInterfaceTransceiverDetailSchema): """parser for * show interface {interface} transceiver detail """ cli_command = 'show interface {interface} transceiver detail' def cli(self, interface, output=None): if output is None: out = self.device.execute(self.cli_command.format(interface=interface)) else: out = output result_dict = {} # transceiver is present # type is 10Gbase-LR # name is CISCO-FINISAR # part number is FTLX1474D3BCL-CS p1 = re.compile(r'^(?P<key>[\S\s]+) +is +(?P<value>[\S\s]+)$') # number of lanes 1 p2 = re.compile(r'^number +of +lanes +(?P<lanes>[\d]+)$') for line in out.splitlines(): line = line.strip() # transceiver is present # type is 10Gbase-LR m = p1.match(line) if m: group = m.groupdict() key = group['key'].strip().replace(" ", '_').lower() value = group['value'].strip() intf_dict = result_dict.setdefault('interfaces', {}).setdefault(interface, {}) intf_dict.update({key: value}) continue # number of lanes 1 m = p2.match(line) if m: intf_dict['number_of_lanes'] = m.groupdict()['lanes'] continue return result_dict
44.005934
145
0.479359
[ "Apache-2.0" ]
Tristou27/genieparser
src/genie/libs/parser/iosxe/show_interface.py
155,737
Python
import subprocess import tator def test_activities(host, token, video_type, video): cmd = [ 'python3', 'examples/activities.py', '--host', host, '--token', token, '--video_type_id', str(video_type), '--video_id', str(video), ] subprocess.run(cmd, check=True)
21.4
52
0.573209
[ "MIT" ]
cvisionai/tator-py
test/examples/test_activities.py
321
Python
import os from setuptools import setup, find_packages from guizero import __name__, __package__, __version__, __author__ ## This is a Python 3 package only from sys import version_info if version_info.major != 3: print("This package will only work with Python 3. \n" "If you already have Python 3 installed try 'pip3 install guizero'.") __desc__ = 'Python module to allow learners to easily create GUIs' __author_email__ = '[email protected]' __license__ = 'BSD' __url__ = 'https://github.com/lawsie/guizero' __requires__ = [] __extras_require__={ 'images': ["pillow>=4.3.0"] } __python_requires__ = ">=3" __keywords__ = [ "GUI", "guizero", "interface", ] __classifiers__ = [ "Development Status :: 5 - Production/Stable", "Topic :: Education", "Topic :: Software Development :: User Interfaces", "Topic :: Education", "Intended Audience :: Education", "Intended Audience :: Developers", "License :: OSI Approved :: BSD License", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10", ] __long_description__ = """# guizero guizero is designed to allow new learners to quickly and easily create GUIs for their programs. There is comprehensive documentation at [lawsie.github.io/guizero](https://lawsie.github.io/guizero/) ## Install If you can download and unzip a file, you can [install guizero](https://lawsie.github.io/guizero/#easy-install) - **no special permissions or administrator rights are required**. If you have administrator rights and are connected to the internet, you can use [pip to quickly install guizero]((https://lawsie.github.io/guizero/#install-using-pip). guizero only requires `tkinter` to be installed, which is included with a standard Python installation on all platforms except Linux. A python module to allow learners to easily create GUIs. guizero is designed to be used by new learners. ## Use guizero is simple to use, taking away much of the complexity of creating simple GUIs. ```python from guizero import App, Text app = App(title="Hello world") message = Text(app, text="Welcome to the Hello world app!") app.display() ``` """ setup( name=__name__, version=__version__, author=__author__, author_email=__author_email__, description=__desc__, long_description=__long_description__, long_description_content_type='text/markdown', license=__license__, keywords=__keywords__, url=__url__, packages=find_packages(), classifiers=__classifiers__, install_requires=__requires__, extras_require = __extras_require__, python_requires=__python_requires__, )
33.627907
178
0.720609
[ "BSD-3-Clause" ]
hormigaAzul/guizero
setup.py
2,892
Python
import os import logging import seqlog from seqlog import StructuredRootLogger, StructuredLogger, ConsoleStructuredLogHandler if bool(os.environ.get('PROD')): # Production logging setup url = os.environ.get('SEQ_URL') key = os.environ.get('SEQ_BOT_KEY') if not key: raise Exception('SEQ_BOT_KEY not found but SEQ_URL was specified') seqlog.log_to_seq( # Initialize the seq logging url before the secrets are loaded # this is ok because seq logging only happens in prod server_url=url, api_key=key, level=logging.INFO, batch_size=5, auto_flush_timeout=10, # seconds override_root_logger=False, ) else: # Development logging setup logging.setLoggerClass(StructuredLogger) logging.root = StructuredRootLogger(logging.WARNING) logging.Logger.root = logging.root logging.Logger.manager = logging.Manager(logging.Logger.root) logging.basicConfig( format='%(asctime)s %(levelname)s %(message)s', handlers=[ ConsoleStructuredLogHandler() ], level=logging.INFO, )
27.585366
86
0.678161
[ "MIT" ]
ClemBotProject/ClemBot
ClemBot.Bot/bot/__init__.py
1,131
Python
import filecmp import os from os.path import abspath, dirname, join, exists import pytest from image_diet import storage THIS_DIR = abspath(dirname(__file__)) @pytest.fixture def dietstorage(): dietstorage = storage.DietStorage() # Filesystem storage parameters dietstorage.location = THIS_DIR dietstorage.file_permissions_mode = 0o644 return dietstorage def test_the_right_storage_has_been_imported(): from django.core import files assert files.storage.FileSystemStorage == storage.STORAGE_CLASS def test_get_configuration_returns_parsed_configuration(): config = storage.get_configuration() assert config['commands']['fake'] == 'fakecmd' assert config['commands']['advpng'] == 'advpng' def test_mixin_reads_default_configuration(): mixin = storage.DietMixin() assert hasattr(mixin, 'config') assert mixin.config['commands']['optipng'] == 'optipng' assert mixin.temp_dir == '/tmp' def test_mixin_also_reads_custom_configuration(): mixin = storage.DietMixin() assert mixin.config['commands']['optipng'] == 'optipng' assert mixin.config['commands']['fake'] == 'fakecmd' assert mixin.config['notreal'] == 'not a real value' def test_save_to_temp_copies_content_to_same_named_file_in_temp_directory(): mixin = storage.DietMixin() filename = 'stockholm.jpg' path = join(THIS_DIR, 'test_files', 'stockholm.jpg') with open(path, 'rb') as f: content = f.read() tmppath = join(mixin.temp_dir, filename) try: assert exists(tmppath) is False assert mixin.save_to_temp(path, content) == tmppath assert exists(tmppath) assert filecmp.cmp(path, tmppath) finally: os.remove(tmppath) def test_save_method_saves_text_file(dietstorage): filename = 'tempfile.txt' content = "This file is empty." path = join(THIS_DIR, filename) tmppath = dietstorage.save_to_temp(path, content) new_path = dietstorage.save(path, open(tmppath, 'r')) try: assert exists(new_path) assert open(new_path, 'r').read() == content assert not exists(tmppath) finally: os.remove(new_path) def prepare_test_files(filename): copy_filename = 'copy_' + filename tmppath = join('/tmp', filename) copypath = join('/tmp', copy_filename) path = join(THIS_DIR, 'test_files', filename) with open(path, 'rb') as f: content = f.read() with open(copypath, 'wb') as f: f.write(content) # Original test_file , working copy (can be changed), internal copy if it # exists and content of original file return (path, copypath, tmppath, content) def test_save_method_saves_binary_file(dietstorage): path, copypath, tmppath, content = prepare_test_files('stockholm.jpg') new_path = dietstorage.save(path, open(copypath, 'rb')) try: assert exists(new_path) assert open(new_path, 'rb').read() == content assert not exists(tmppath) finally: os.remove(new_path) os.remove(copypath) def test_save_method_compresses(dietstorage): path, copypath, tmppath, content = prepare_test_files('png_test.png') new_path = dietstorage.save(path, open(copypath, 'rb')) try: assert exists(new_path) assert len(open(new_path, 'rb').read()) < len(content) assert not exists(tmppath) finally: os.remove(new_path) os.remove(copypath) def test_logger_logs_errors(caplog, dietstorage): # Delete configuration section so that DietException will be raised del dietstorage.config['commands'] filename = 'stockholm.jpg' path = join(THIS_DIR, 'test_files', 'stockholm.jpg') tmppath = join(dietstorage.temp_dir, filename) try: dietstorage.save(path, open(path, 'rb')) except storage.diet.DietException as e: assert not exists(tmppath) assert isinstance(e, storage.diet.ConfigurationErrorDietException) records = list(caplog.records()) assert len(records) == 1 record = records[0] assert record.levelname == 'ERROR' assert record.message.startswith('Missing key(s) in configuration: ') def test_storage_logs_file_access_errors(caplog, dietstorage): dietstorage.temp_dir = '/doesnotexist' filename = 'stockholm.jpg' path = join(THIS_DIR, 'test_files', 'stockholm.jpg') tmppath = join(dietstorage.temp_dir, filename) try: dietstorage.save(path, open(path, 'rb')) except (OSError, IOError): assert not exists(tmppath) records = list(caplog.records()) assert len(records) == 1 record = records[0] assert record.levelname == 'ERROR' assert record.message.startswith('Cannot save to temp dir') def test_save_method_cleans_temp_directory(dietstorage): filename = 'stockholm.jpg' path = join(THIS_DIR, 'test_files', 'stockholm.jpg') tmppath = join(dietstorage.temp_dir, filename) new_path = dietstorage.save(path, open(path, 'rb')) try: assert not exists(tmppath) finally: os.remove(new_path)
27.497297
77
0.686259
[ "MIT" ]
samastur/image-diet2
tests/test_storage.py
5,087
Python
import pytest from model_mommy import mommy from rest_framework import status import json ''' This set of tests exists to test all example requests used in the API documentation if any of these tests break, but others do not, you should first check that the specified request is still valid. If the request is no longer valid, the documentation requires an update alongside of its test Note that these tests don't test the accuracy of the responses, just that they return a 200 response code. Testing the accuracy of these requests should be done in relevant app testing suites ''' @pytest.fixture(scope="session") def documentation_test_data(): mommy.make('awards.Award', _quantity=1, _fill_optional=True) @pytest.mark.parametrize("url, req", [ ("/api/v1/awards/", {"filters": []}), ("/api/v1/awards/", {"filters": [{"field": "date_signed", "operation": "greater_than_or_equal", "value": "2016-06-01"}]}), ("/api/v1/awards/", {"filters": [{"field": "date_signed", "operation": "greater_than_or_equal", "value": "2016-06-01"}, {"field": "date_signed", "operation": "less_than", "value": "2017-06-01"}]}), ("/api/v1/awards/", {"filters": [{"combine_method": "OR", "filters": [{"field": "type", "operation": "equals", "value": "A"}, {"field": "type", "operation": "equals", "value": "B"}]}]}), ("/api/v1/awards/", {"filters": [{"field": "date_signed", "operation": "greater_than_or_equal", "value": "2016-06-01"}, {"combine_method": "OR", "filters": [{"field": "type", "operation": "equals", "value": "A"}, {"combine_method": "AND", "filters": [{"field": "type", "operation": "equals", "value": "B"}, {"field": "date_signed", "operation": "less_than", "value": "2017-06-01"}]}]}]}), ("/api/v1/awards/", {"filters": [{"field": "recipient__recipient_name", "operation": "equals", "value": "GENERAL ELECTRIC COMPANY"}]}), ("/api/v1/awards/", {"fields": ["description", "recipient"]}), ("/api/v1/awards/", {"exclude": ["type"]}), ("/api/v1/awards/", {"verbose": True}), ("/api/v1/awards/", {"fields": ["type"], "filters": [{"field": "date_signed", "operation": "greater_than", "value": "2016-06-01"}]}), ("/api/v1/awards/", {"order": ["recipient__recipient_name"]}), ("/api/v1/awards/", {"order": ["-recipient__recipient_name"]}), ("/api/v1/awards/", {"page": 5, "limit": 10}), ("/api/v1/awards/total/", {"field": "total_obligation", "group": "date_signed__fy"}), ("/api/v1/awards/total/", {"field": "total_obligation", "group": "date_signed", "aggregate": "count", "date_part": "month"}), ]) @pytest.mark.django_db def test_intro_tutorial_post_requests(client, url, req, documentation_test_data): assert client.post( url, data=json.dumps(req), content_type='application/json').status_code == status.HTTP_200_OK @pytest.mark.parametrize("url", [ "/api/v1/awards/", "/api/v1/transactions/", "/api/v1/awards/?awarding_agency=1788", "/api/v1/awards/?type=A&piid=LB01", "/api/v1/awards/?page=5&limit=10", ]) @pytest.mark.django_db def test_intro_tutorial_get_requests(client, url, documentation_test_data): assert client.get( url).status_code == status.HTTP_200_OK @pytest.mark.parametrize("url, req", [ ("/api/v1/awards/", {"filters": [{"field": "awarding_agency__toptier_agency__cgac_code", "operation": "equals", "value": "097"}]}), ("/api/v1/awards/", {"filters": [{"field": "type", "operation": "in", "value": ["A", "B", "C", "D"]}]}), ("/api/v1/awards/", {"filters": [{"field": "latest_transaction__contract_data", "operation": "is_null", "value": False}]}), ("/api/v1/awards/", {"filters": [{"field": "place_of_performance__state_code", "operation": "not_equals", "value": "NJ"}]}) ]) @pytest.mark.django_db def test_recipe_post_requests(client, url, req, documentation_test_data): assert client.post( url, data=json.dumps(req), content_type='application/json').status_code == status.HTTP_200_OK @pytest.mark.parametrize("url", [ "/api/v1/awards/?awarding_agency__toptier_agency__cgac_code=097", ]) @pytest.mark.django_db def test_recipe_get_requests(client, url, documentation_test_data): assert client.get( url).status_code == status.HTTP_200_OK
49.54902
118
0.550257
[ "CC0-1.0" ]
COEJKnight/five
usaspending_api/api_docs/tests/test_documentation_examples.py
5,054
Python
#!/usr/bin/env python import os import sys if __name__ == '__main__': os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'dj8bihu.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv)
33.6875
73
0.686456
[ "MIT" ]
RileyGe/dj8bihu
manage.py
539
Python
"""project URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from . import views as example_views app_name = 'example' urlpatterns = [ path('', admin.site.urls), # path('api-auth/', include('rest_framework.urls', namespace='rest_framework')), path('users/<int:pk>/', example_views.UserDetailView().as_view(), name='user_detail'), path('users/', example_views.UserCreateListView().as_view(), name='user_list_create') ]
35.666667
90
0.71028
[ "BSD-3-Clause" ]
sewi2/simple-django-template
project/example/urls.py
1,070
Python
import uuid import requests; import os; from PIL import Image from io import BytesIO __name__ = "download_images" def download(link, counter, size, root_folder, class_name): IMG_SIZE = size, size response = requests.get(link, timeout=3.000) file = BytesIO(response.content) img = Image.open(file) if size > 0: IMG_SIZE = size, size img.thumbnail(IMG_SIZE, Image.ANTIALIAS) # Split last part of url to get image name img_name = link.rsplit('/', 1)[1] img_type = img_name.split('.')[1] if img_type.lower() != "jpg": raise Exception("Cannot download these type of file") else: #Check if another file of the same name already exists id = uuid.uuid1() img.save(f"./{root_folder}/{class_name}/{class_name}-{id.hex}.jpg", "JPEG")
30.185185
83
0.653988
[ "MIT" ]
Bergolfs/idt
idt/utils/download_images.py
815
Python
import time import cv2 import numpy as np j = 1 while 1: path = 'Bearing/' + str(j) + '.jpg' img = cv2.imread(path) img_copy = img.copy() img = cv2.blur(img, (1, 1)) gray = cv2.cvtColor(img_copy, cv2.COLOR_BGR2GRAY) # flag, img_copy = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY) imgray = cv2.Canny(img_copy, 600, 100, 3) # Canny边缘检测,参数可更改 # cv2.imshow("imgray",imgray) ret, thresh = cv2.threshold(imgray, 127, 255, cv2.THRESH_BINARY) cv2.imshow("thresh", thresh) contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # contours为轮廓集,可以计算轮廓的长度、面积等 ux = 0 uy = 0 for cnt in contours: if len(cnt) > 50: # S1 = cv2.contourArea(cnt) # 格林公式计算的实际面积 ell = cv2.fitEllipse(cnt) # 拟合椭圆 ellipse = [ center(x, y) , long short (a, b), angle ] x = int(ell[0][0]) y = int(ell[0][1]) a = ell[1][0] b = ell[1][1] # S2 = math.pi * ell[1][0] * ell[1][1] # 理论面积 if (b / a) < 1.2: # and a > 0 and b > 0 and a < 0 and b < 0: # 面积比例 uy = y ux = x img = cv2.ellipse(img, ell, (0, 0, 200), 2) cv2.circle(img, (x, y), 2, (255, 255, 255), 3) cv2.putText(img, str((x, y)), (x + 20, y + 10), 0, 0.5, [225, 255, 255], thickness=1, lineType=cv2.LINE_AA) print("长轴: " + str(a) + " " + "短轴: " + str(b) + " " + str(ell[0][0]) + " " + str(ell[0][1])) cv2.imshow("ell", img) j+=1 if j==44: j=1 time.sleep(0.5) cv2.waitKey(20)
34.541667
120
0.496984
[ "Apache-2.0" ]
Thinkin99/intelligent_visionforce_assemble
ellcircle_detect.py
1,772
Python
# Generated by Django 2.0.8 on 2018-09-21 10:31 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('app_challenges', '0001_initial'), ] operations = [ migrations.AlterField( model_name='challenge', name='challenge_code', field=models.CharField(blank=True, max_length=5, null=True, unique=True, verbose_name='Challenge Code'), ), ]
24.157895
116
0.62963
[ "MIT" ]
Audiotuete/backend_challenge_api
app_challenges/migrations/0002_auto_20180921_1031.py
459
Python
# -*- coding: utf-8 -*- # PLEASE DO NOT EDIT THIS FILE, IT IS GENERATED AND WILL BE OVERWRITTEN: # https://github.com/ccxt/ccxt/blob/master/CONTRIBUTING.md#how-to-contribute-code from ccxt.async_support.base.exchange import Exchange import base64 import hashlib import math from ccxt.base.errors import ExchangeError from ccxt.base.errors import ArgumentsRequired from ccxt.base.errors import InvalidOrder from ccxt.base.errors import OrderNotFound from ccxt.base.errors import DDoSProtection class btcmarkets (Exchange): def describe(self): return self.deep_extend(super(btcmarkets, self).describe(), { 'id': 'btcmarkets', 'name': 'BTC Markets', 'countries': ['AU'], # Australia 'rateLimit': 1000, # market data cached for 1 second(trades cached for 2 seconds) 'has': { 'CORS': False, 'fetchOHLCV': True, 'fetchOrder': True, 'fetchOrders': True, 'fetchClosedOrders': 'emulated', 'fetchOpenOrders': True, 'fetchMyTrades': True, 'cancelOrders': True, }, 'urls': { 'logo': 'https://user-images.githubusercontent.com/1294454/29142911-0e1acfc2-7d5c-11e7-98c4-07d9532b29d7.jpg', 'api': { 'public': 'https://api.btcmarkets.net', 'private': 'https://api.btcmarkets.net', 'web': 'https://btcmarkets.net/data', }, 'www': 'https://btcmarkets.net', 'doc': 'https://github.com/BTCMarkets/API', }, 'api': { 'public': { 'get': [ 'market/{id}/tick', 'market/{id}/orderbook', 'market/{id}/trades', 'v2/market/{id}/tickByTime/{timeframe}', 'v2/market/{id}/trades', 'v2/market/active', ], }, 'private': { 'get': [ 'account/balance', 'account/{id}/tradingfee', 'fundtransfer/history', 'v2/order/open', 'v2/order/open/{id}', 'v2/order/history/{instrument}/{currency}/', 'v2/order/trade/history/{id}', 'v2/transaction/history/{currency}', ], 'post': [ 'fundtransfer/withdrawCrypto', 'fundtransfer/withdrawEFT', 'order/create', 'order/cancel', 'order/history', 'order/open', 'order/trade/history', 'order/createBatch', # they promise it's coming soon... 'order/detail', ], }, 'web': { 'get': [ 'market/BTCMarkets/{id}/tickByTime', ], }, }, 'timeframes': { '1m': 'minute', '1h': 'hour', '1d': 'day', }, 'exceptions': { '3': InvalidOrder, '6': DDoSProtection, }, }) async def fetch_transactions(self, code=None, since=None, limit=None, params={}): await self.load_markets() request = {} if limit is not None: request['limit'] = limit if since is not None: request['since'] = since response = await self.privateGetFundtransferHistory(self.extend(request, params)) transactions = response['fundTransfers'] return self.parseTransactions(transactions, None, since, limit) def parse_transaction_status(self, status): # todo: find more statuses statuses = { 'Complete': 'ok', } return self.safe_string(statuses, status, status) def parse_transaction(self, item, currency=None): # # { # status: 'Complete', # fundTransferId: 1904311906, # description: 'ETH withdraw from [[email protected]] to Address: 0xF123aa44FadEa913a7da99cc2eE202Db684Ce0e3 amount: 8.28965701 fee: 0.00000000', # creationTime: 1529418358525, # currency: 'ETH', # amount: 828965701, # fee: 0, # transferType: 'WITHDRAW', # errorMessage: null, # lastUpdate: 1529418376754, # cryptoPaymentDetail: { # address: '0xF123aa44FadEa913a7da99cc2eE202Db684Ce0e3', # txId: '0x8fe483b6f9523559b9ebffb29624f98e86227d2660d4a1fd4785d45e51c662c2' # } # } # # { # status: 'Complete', # fundTransferId: 494077500, # description: 'BITCOIN Deposit, B 0.1000', # creationTime: 1501077601015, # currency: 'BTC', # amount: 10000000, # fee: 0, # transferType: 'DEPOSIT', # errorMessage: null, # lastUpdate: 1501077601133, # cryptoPaymentDetail: null # } # # { # "fee": 0, # "amount": 56, # "status": "Complete", # "currency": "BCHABC", # "lastUpdate": 1542339164044, # "description": "BitcoinCashABC Deposit, P 0.00000056", # "creationTime": 1542339164003, # "errorMessage": null, # "transferType": "DEPOSIT", # "fundTransferId": 2527326972, # "cryptoPaymentDetail": null # } # timestamp = self.safe_integer(item, 'creationTime') lastUpdate = self.safe_integer(item, 'lastUpdate') transferType = self.safe_string(item, 'transferType') cryptoPaymentDetail = self.safe_value(item, 'cryptoPaymentDetail', {}) address = self.safe_string(cryptoPaymentDetail, 'address') txid = self.safe_string(cryptoPaymentDetail, 'txId') type = None if transferType == 'DEPOSIT': type = 'deposit' elif transferType == 'WITHDRAW': type = 'withdrawal' else: type = transferType fee = self.safe_float(item, 'fee') status = self.parse_transaction_status(self.safe_string(item, 'status')) ccy = self.safe_string(item, 'currency') code = self.common_currency_code(ccy) # todo: self logic is duplicated below amount = self.safe_float(item, 'amount') if amount is not None: amount = amount * 1e-8 return { 'id': self.safe_string(item, 'fundTransferId'), 'txid': txid, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'address': address, 'tag': None, 'type': type, 'amount': amount, 'currency': code, 'status': status, 'updated': lastUpdate, 'fee': { 'currency': code, 'cost': fee, }, 'info': item, } async def fetch_markets(self, params={}): response = await self.publicGetV2MarketActive(params) result = [] markets = self.safe_value(response, 'markets') for i in range(0, len(markets)): market = markets[i] baseId = self.safe_string(market, 'instrument') quoteId = self.safe_string(market, 'currency') id = baseId + '/' + quoteId base = self.common_currency_code(baseId) quote = self.common_currency_code(quoteId) symbol = base + '/' + quote # todo: refactor self fee = 0.0085 if (quote == 'AUD') else 0.0022 pricePrecision = 2 amountPrecision = 4 minAmount = 0.001 # where does it come from? minPrice = None if quote == 'AUD': if (base == 'XRP') or (base == 'OMG'): pricePrecision = 4 amountPrecision = -math.log10(minAmount) minPrice = math.pow(10, -pricePrecision) precision = { 'amount': amountPrecision, 'price': pricePrecision, } limits = { 'amount': { 'min': minAmount, 'max': None, }, 'price': { 'min': minPrice, 'max': None, }, 'cost': { 'min': None, 'max': None, }, } result.append({ 'info': market, 'id': id, 'symbol': symbol, 'base': base, 'quote': quote, 'baseId': baseId, 'quoteId': quoteId, 'active': None, 'maker': fee, 'taker': fee, 'limits': limits, 'precision': precision, }) return result async def fetch_balance(self, params={}): await self.load_markets() balances = await self.privateGetAccountBalance(params) result = {'info': balances} for i in range(0, len(balances)): balance = balances[i] currencyId = self.safe_string(balance, 'currency') code = self.common_currency_code(currencyId) multiplier = 100000000 total = self.safe_float(balance, 'balance') / multiplier used = self.safe_float(balance, 'pendingFunds') / multiplier free = total - used account = { 'free': free, 'used': used, 'total': total, } result[code] = account return self.parse_balance(result) def parse_ohlcv(self, ohlcv, market=None, timeframe='1m', since=None, limit=None): multiplier = 100000000 # for price and volume return [ ohlcv[0], float(ohlcv[1]) / multiplier, float(ohlcv[2]) / multiplier, float(ohlcv[3]) / multiplier, float(ohlcv[4]) / multiplier, float(ohlcv[5]) / multiplier, ] async def fetch_ohlcv(self, symbol, timeframe='1m', since=None, limit=None, params={}): await self.load_markets() market = self.market(symbol) request = { 'id': market['id'], 'timeWindow': self.timeframes[timeframe], } if since is not None: request['since'] = since response = await self.webGetMarketBTCMarketsIdTickByTime(self.extend(request, params)) return self.parse_ohlcvs(response['ticks'], market, timeframe, since, limit) async def fetch_order_book(self, symbol, limit=None, params={}): await self.load_markets() market = self.market(symbol) request = { 'id': market['id'], } response = await self.publicGetMarketIdOrderbook(self.extend(request, params)) timestamp = self.safe_integer(response, 'timestamp') if timestamp is not None: timestamp *= 1000 return self.parse_order_book(response, timestamp) def parse_ticker(self, ticker, market=None): timestamp = self.safe_integer(ticker, 'timestamp') if timestamp is not None: timestamp *= 1000 symbol = None if market is not None: symbol = market['symbol'] last = self.safe_float(ticker, 'lastPrice') return { 'symbol': symbol, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'high': None, 'low': None, 'bid': self.safe_float(ticker, 'bestBid'), 'bidVolume': None, 'ask': self.safe_float(ticker, 'bestAsk'), 'askVolume': None, 'vwap': None, 'open': None, 'close': last, 'last': last, 'previousClose': None, 'change': None, 'percentage': None, 'average': None, 'baseVolume': self.safe_float(ticker, 'volume24h'), 'quoteVolume': None, 'info': ticker, } async def fetch_ticker(self, symbol, params={}): await self.load_markets() market = self.market(symbol) request = { 'id': market['id'], } response = await self.publicGetMarketIdTick(self.extend(request, params)) return self.parse_ticker(response, market) def parse_trade(self, trade, market=None): timestamp = self.safe_integer(trade, 'timestamp') if timestamp is not None: timestamp *= 1000 symbol = None if market is not None: symbol = market['symbol'] id = self.safe_string(trade, 'tid') price = self.safe_float(trade, 'price') amount = self.safe_float(trade, 'amount') cost = None if amount is not None: if price is not None: cost = amount * price return { 'info': trade, 'id': id, 'order': None, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'symbol': symbol, 'type': None, 'side': None, 'takerOrMaker': None, 'price': price, 'amount': amount, 'cost': cost, 'fee': None, } async def fetch_trades(self, symbol, since=None, limit=None, params={}): await self.load_markets() market = self.market(symbol) request = { # 'since': 59868345231, 'id': market['id'], } response = await self.publicGetMarketIdTrades(self.extend(request, params)) return self.parse_trades(response, market, since, limit) async def create_order(self, symbol, type, side, amount, price=None, params={}): await self.load_markets() market = self.market(symbol) multiplier = 100000000 # for price and volume orderSide = 'Bid' if (side == 'buy') else 'Ask' request = self.ordered({ 'currency': market['quote'], }) request['currency'] = market['quote'] request['instrument'] = market['base'] request['price'] = int(price * multiplier) request['volume'] = int(amount * multiplier) request['orderSide'] = orderSide request['ordertype'] = self.capitalize(type) request['clientRequestId'] = str(self.nonce()) response = await self.privatePostOrderCreate(self.extend(request, params)) id = self.safe_string(response, 'id') return { 'info': response, 'id': id, } async def cancel_orders(self, ids, symbol=None, params={}): await self.load_markets() for i in range(0, len(ids)): ids[i] = int(ids[i]) request = { 'orderIds': ids, } return await self.privatePostOrderCancel(self.extend(request, params)) async def cancel_order(self, id, symbol=None, params={}): await self.load_markets() return await self.cancel_orders([id]) def calculate_fee(self, symbol, type, side, amount, price, takerOrMaker='taker', params={}): market = self.markets[symbol] rate = market[takerOrMaker] currency = None cost = None if market['quote'] == 'AUD': currency = market['quote'] cost = float(self.cost_to_precision(symbol, amount * price)) else: currency = market['base'] cost = float(self.amount_to_precision(symbol, amount)) return { 'type': takerOrMaker, 'currency': currency, 'rate': rate, 'cost': float(self.fee_to_precision(symbol, rate * cost)), } def parse_my_trade(self, trade, market): multiplier = 100000000 timestamp = self.safe_integer(trade, 'creationTime') side = self.safe_float(trade, 'side') side = 'buy' if (side == 'Bid') else 'sell' # BTCMarkets always charge in AUD for AUD-related transactions. feeCurrencyCode = None symbol = None if market is not None: feeCurrencyCode = market['quote'] if (market['quote'] == 'AUD') else market['base'] symbol = market['symbol'] id = self.safe_string(trade, 'id') price = self.safe_float(trade, 'price') if price is not None: price /= multiplier amount = self.safe_float(trade, 'volume') if amount is not None: amount /= multiplier feeCost = self.safe_float(trade, 'fee') if feeCost is not None: feeCost /= multiplier cost = None if price is not None: if amount is not None: cost = price * amount orderId = self.safe_string(trade, 'orderId') return { 'info': trade, 'id': id, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'order': orderId, 'symbol': symbol, 'type': None, 'side': side, 'price': price, 'amount': amount, 'cost': cost, 'fee': { 'currency': feeCurrencyCode, 'cost': feeCost, }, } def parse_my_trades(self, trades, market=None, since=None, limit=None): result = [] for i in range(0, len(trades)): trade = self.parse_my_trade(trades[i], market) result.append(trade) return result def parse_order(self, order, market=None): multiplier = 100000000 side = 'buy' if (order['orderSide'] == 'Bid') else 'sell' type = 'limit' if (order['ordertype'] == 'Limit') else 'market' timestamp = self.safe_integer(order, 'creationTime') if market is None: market = self.market(order['instrument'] + '/' + order['currency']) status = 'open' if order['status'] == 'Failed' or order['status'] == 'Cancelled' or order['status'] == 'Partially Cancelled' or order['status'] == 'Error': status = 'canceled' elif order['status'] == 'Fully Matched' or order['status'] == 'Partially Matched': status = 'closed' price = self.safe_float(order, 'price') / multiplier amount = self.safe_float(order, 'volume') / multiplier remaining = self.safe_float(order, 'openVolume', 0.0) / multiplier filled = amount - remaining trades = self.parse_my_trades(order['trades'], market) numTrades = len(trades) cost = filled * price average = None lastTradeTimestamp = None if numTrades > 0: cost = 0 for i in range(0, numTrades): trade = trades[i] cost = self.sum(cost, trade[i]['cost']) if filled > 0: average = cost / filled lastTradeTimestamp = trades[numTrades - 1]['timestamp'] id = self.safe_string(order, 'id') return { 'info': order, 'id': id, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'lastTradeTimestamp': lastTradeTimestamp, 'symbol': market['symbol'], 'type': type, 'side': side, 'price': price, 'cost': cost, 'amount': amount, 'filled': filled, 'remaining': remaining, 'average': average, 'status': status, 'trades': trades, 'fee': None, } async def fetch_order(self, id, symbol=None, params={}): await self.load_markets() ids = [int(id)] request = { 'orderIds': ids, } response = await self.privatePostOrderDetail(self.extend(request, params)) numOrders = len(response['orders']) if numOrders < 1: raise OrderNotFound(self.id + ' No matching order found: ' + id) order = response['orders'][0] return self.parse_order(order) def create_paginated_request(self, market, since=None, limit=None): limit = 100 if (limit is None) else limit since = 0 if (since is None) else since request = self.ordered({ 'currency': market['quoteId'], 'instrument': market['baseId'], 'limit': limit, 'since': since, }) return request async def fetch_orders(self, symbol=None, since=None, limit=None, params={}): if symbol is None: raise ArgumentsRequired(self.id + ': fetchOrders requires a `symbol` argument.') await self.load_markets() market = self.market(symbol) request = self.create_paginated_request(market, since, limit) response = await self.privatePostOrderHistory(self.extend(request, params)) return self.parse_orders(response['orders'], market) async def fetch_open_orders(self, symbol=None, since=None, limit=None, params={}): if symbol is None: raise ArgumentsRequired(self.id + ': fetchOpenOrders requires a `symbol` argument.') await self.load_markets() market = self.market(symbol) request = self.create_paginated_request(market, since, limit) response = await self.privatePostOrderOpen(self.extend(request, params)) return self.parse_orders(response['orders'], market) async def fetch_closed_orders(self, symbol=None, since=None, limit=None, params={}): orders = await self.fetch_orders(symbol, since, limit, params) return self.filter_by(orders, 'status', 'closed') async def fetch_my_trades(self, symbol=None, since=None, limit=None, params={}): if symbol is None: raise ArgumentsRequired(self.id + ': fetchMyTrades requires a `symbol` argument.') await self.load_markets() market = self.market(symbol) request = self.create_paginated_request(market, since, limit) response = await self.privatePostOrderTradeHistory(self.extend(request, params)) return self.parse_my_trades(response['trades'], market) def nonce(self): return self.milliseconds() def sign(self, path, api='public', method='GET', params={}, headers=None, body=None): uri = '/' + self.implode_params(path, params) url = self.urls['api'][api] + uri if api == 'private': self.check_required_credentials() nonce = str(self.nonce()) auth = None headers = { 'apikey': self.apiKey, 'timestamp': nonce, } if method == 'POST': headers['Content-Type'] = 'application/json' auth = uri + "\n" + nonce + "\n" # eslint-disable-line quotes body = self.json(params) auth += body else: query = self.keysort(self.omit(params, self.extract_params(path))) queryString = '' if query: queryString = self.urlencode(query) url += '?' + queryString queryString += "\n" # eslint-disable-line quotes auth = uri + "\n" + queryString + nonce + "\n" # eslint-disable-line quotes secret = base64.b64decode(self.secret) signature = self.hmac(self.encode(auth), secret, hashlib.sha512, 'base64') headers['signature'] = self.decode(signature) else: if params: url += '?' + self.urlencode(params) return {'url': url, 'method': method, 'body': body, 'headers': headers} def handle_errors(self, code, reason, url, method, headers, body, response): if response is None: return # fallback to default error handler if 'success' in response: if not response['success']: error = self.safe_string(response, 'errorCode') message = self.id + ' ' + self.json(response) if error in self.exceptions: ExceptionClass = self.exceptions[error] raise ExceptionClass(message) else: raise ExchangeError(message)
38.633282
156
0.517489
[ "MIT" ]
QuoineFinancial/ccxt
python/ccxt/async_support/btcmarkets.py
25,073
Python
#!/usr/bin/env python # -*- coding: utf-8 -*- # 该例程将发布/person_info话题,自定义消息类型learning_communication::PersonMsg import rospy from learning_communication.msg import PersonMsg def velocity_publisher(): # ROS节点初始化 rospy.init_node('person_publisher', anonymous=True) # 创建一个Publisher,发布名为/person_info的topic,消息类型为PersonMsg,队列长度10 person_info_pub = rospy.Publisher('/person_info', PersonMsg, queue_size=10) #设置循环的频率 rate = rospy.Rate(10) while not rospy.is_shutdown(): # 初始化PersonMsg类型的消息 person_msg = PersonMsg() person_msg.name = "Tom"; person_msg.age = 18; person_msg.sex = PersonMsg.male; # 发布消息 person_info_pub.publish(person_msg) rospy.loginfo("Publsh person message[%s, %d, %d]", person_msg.name, person_msg.age, person_msg.sex) # 按照循环频率延时 rate.sleep() if __name__ == '__main__': try: velocity_publisher() except rospy.ROSInterruptException: pass
25.026316
79
0.700315
[ "Apache-2.0" ]
Colin1245/ROS-Theory-Application-Shenlan
3.ROS_communication/learning_communication/scripts/person_publisher.py
1,089
Python
#one.py print('hello') def func(): print("Func() in one.py") print("TOP LEVEL IN one.py") if __name__ == "__main__": print("one.py is being run directly!") else: print("one.py has been imported!")
16.833333
39
0.658416
[ "MIT" ]
bitadept/codebook
Programming Languages & Libraries/Python/Python Complete Bootcamp/__name__ and __main__/one.py
202
Python
# Copyright 2018 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Numpy implementations of TensorFlow general top-level functions.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools # Dependency imports import numpy as np from tensorflow_probability.python.internal.backend.numpy import _utils as utils from tensorflow_probability.python.internal.backend.numpy import ops from tensorflow_probability.python.internal.backend.numpy.linalg_impl import einsum from tensorflow_probability.python.internal.backend.numpy.linalg_impl import norm from tensorflow_probability.python.internal.backend.numpy.linalg_impl import tensordot __all__ = [ 'concat', 'einsum', 'expand_dims', 'fill', 'gather', 'gather_nd', 'linspace', 'meshgrid', 'norm', 'one_hot', 'ones', 'ones_like', 'pad', 'range', 'rank', 'reshape', 'reverse', 'repeat', 'roll', 'searchsorted', 'shape', 'size', 'slice', 'split', 'squeeze', 'stack', 'tensordot', 'tile', 'transpose', 'unstack', 'where', 'zeros', 'zeros_like', # 'boolean_mask', # 'foldl', # 'foldr', ] JAX_MODE = False if JAX_MODE: import jax # pylint: disable=g-import-not-at-top def _astuple(x): try: return tuple(x) except TypeError: return x def _gather( # pylint: disable=unused-argument params, indices, validate_indices=None, axis=None, batch_dims=0, name=None): """gather.""" indices = ops.convert_to_tensor(indices, dtype_hint=np.int32) if validate_indices is not None: raise NotImplementedError( 'Argument `validate_indices != None` is currently unimplemented.') if batch_dims < 0: raise NotImplementedError('Negative `batch_dims` is currently unsupported.') if axis is None: axis = batch_dims if axis < 0: axis = axis + len(params.shape) # NOTE: For only the numpy backend, this function could create a single result # ndarray and use in-place updates. For the Jax backend, this function # vmaps `np.take`. if JAX_MODE: take = lambda params, indices: np.take(params, indices, # pylint: disable=g-long-lambda axis=axis - batch_dims) take = functools.reduce( lambda g, f: f(g), [jax.vmap] * int(batch_dims), take ) return take(params, indices) params = ops.convert_to_tensor(params) res = np.array([ np.take(params[i], indices[i], axis=axis - batch_dims) for i in np.ndindex(*params.shape[:batch_dims]) ]) return np.reshape( res, params.shape[:axis] + indices.shape[batch_dims:] + params.shape[axis+1:]) def _args_to_matching_arrays(args_list, dtype_hint=None): """Converts a list to array using the first element for dtype. This method is used to match the behavior of `tf.concat`. Args: args_list: A list or tuple of arguments. dtype_hint: An optional hint used when converting the args to tensors. Returns: A list of tensors. """ dtype = None for arg in args_list: if ops.is_tensor(arg): dtype = arg.dtype break if dtype is None: ret = [] for arg in args_list: ret.append(ops.convert_to_tensor(arg, dtype, dtype_hint=dtype_hint)) if dtype is None: dtype = ret[-1].dtype else: ret = [ops.convert_to_tensor(arg, dtype) for arg in args_list] return ret def _concat(values, axis, name='concat'): del name if axis is None: raise ValueError('None values for `axis` argument not supported.') if not isinstance(values, (list, tuple)): values = [values] if len(values) == 1: return values[0] values = _args_to_matching_arrays(values) return np.concatenate(values, axis=axis) def _gather_nd_single(params, indices): idx = tuple(np.moveaxis(indices, -1, 0)) return params[idx] def _gather_nd( # pylint: disable=unused-argument params, indices, batch_dims=0, name=None): """gather_nd.""" indices = ops.convert_to_tensor(indices, dtype_hint=np.int32) if batch_dims < 0: raise NotImplementedError('Negative `batch_dims` is currently unsupported.') if not JAX_MODE and batch_dims > 0: raise NotImplementedError( '`batch_dims > 0` currently unsupported in NumPy backend.') gather_nd_ = _gather_nd_single if JAX_MODE: gather_nd_ = functools.reduce( lambda g, f: f(g), [jax.vmap] * int(batch_dims), gather_nd_ ) return gather_nd_(params, indices) def _linspace(start, stop, num, name=None, axis=0): # pylint: disable=unused-argument """Match TF behavior with np.linspace.""" start = ops.convert_to_tensor(start) # Match TF weirdness arising from truediv(int32, int32) = float64 if np.issubdtype(start.dtype, np.integer): start = start.astype(np.float64) stop = ops.convert_to_tensor(stop, dtype=start.dtype) num = ops.convert_to_tensor(num, dtype_hint=np.int32) if not np.issubdtype(num.dtype, np.integer): raise TypeError('`num` must be an integer but got {}'.format(num.dtype)) num = num.astype(np.int32) return np.linspace(start, stop, num, axis=axis).astype(start.dtype) def _one_hot( # pylint: disable=unused-argument indices, depth, on_value=None, off_value=None, axis=None, dtype=None, name=None): """One hot.""" if on_value is None: on_value = 1 if off_value is None: off_value = 0 if dtype is None: dtype = utils.common_dtype([on_value, off_value], np.float32) indices = np.array(indices) depth = np.array(depth) pred = abs(np.arange(depth, dtype=indices.dtype) - indices[..., np.newaxis]) > 0 y_out = np.where(pred, np.array(off_value, dtype), np.array(on_value, dtype)) if axis is not None: y_out = np.moveaxis(y_out, -1, axis) return y_out def _ones_like(input, dtype=None, name=None): # pylint: disable=redefined-builtin,unused-argument return np.ones_like(input, dtype=utils.numpy_dtype(dtype)) # TODO(b/136555907): Add unit-test. def _pad( # pylint: disable=unused-argument tensor, paddings, mode='CONSTANT', constant_values=0, name=None): return np.pad( tensor, paddings, mode=mode.lower(), constant_values=constant_values) def _range(start, limit=None, delta=1, dtype=None, name='range'): # pylint: disable=unused-argument """Emulates tf.range.""" # Emulating dtype inference logic from tf.range dtype = utils.numpy_dtype(dtype) start = ops.convert_to_tensor(start, dtype=dtype) limit = None if limit is None else ops.convert_to_tensor(limit, dtype=dtype) delta = ops.convert_to_tensor(delta, dtype=dtype) if dtype is None: dtype_hierarchy = [np.int32, np.int64, np.float32, np.float64] inferred_dtype = max([arg.dtype for arg in [start, limit, delta] if arg is not None], key=dtype_hierarchy.index) else: inferred_dtype = dtype return np.arange(start, limit, delta).astype(inferred_dtype) def _reverse(tensor, axis, name=None): # pylint: disable=unused-argument if np.array(axis).ndim == 0: return np.flip(tensor, axis) for ax in axis: tensor = np.flip(tensor, ax) return tensor if JAX_MODE: _searchsorted_vmap_sides = { side: jax.vmap(functools.partial(jax.numpy.searchsorted, side=side)) for side in ('left', 'right') } def _searchsorted( # pylint: disable=unused-argument sorted_sequence, values, side='left', out_type=np.int32, name=None): """Find indices for insertion for list to remain sorted.""" if JAX_MODE: try: func = _searchsorted_vmap_sides[side] except KeyError: raise ValueError("'%s' is an invalid value for keyword 'side'" % side) sorted_sequence_2d = np.reshape(sorted_sequence, (-1, sorted_sequence.shape[-1])) values_2d = np.reshape(values, (-1, values.shape[-1])) if sorted_sequence_2d.shape[0] != values_2d.shape[0]: raise ValueError('Leading dim_size of both tensors must match.') return np.reshape(func(sorted_sequence_2d, values_2d).astype(out_type), values.shape) # We don't use np.searchsorted in the numpy backend because it doesn't support # batching. sorted_sequence = sorted_sequence[..., np.newaxis, :] values = values[..., :, np.newaxis] if side == 'left': is_in_right_location = sorted_sequence < values elif side == 'right': is_in_right_location = sorted_sequence <= values return np.sum(is_in_right_location, axis=-1).astype(out_type) def _shape(input, out_type=np.int32, name=None): # pylint: disable=redefined-builtin,unused-argument return ops.convert_to_tensor(ops.convert_to_tensor(input).shape).astype( out_type) def _size(input, out_type=np.int32, name=None): # pylint: disable=redefined-builtin, unused-argument return np.asarray(np.prod(ops.convert_to_tensor(input).shape), dtype=out_type) builtin_slice = slice # pylint: disable=invalid-name def _slice(input_, begin, size, name=None): # pylint: disable=unused-argument,redefined-outer-name slices = tuple( builtin_slice(b, b + s if s != -1 else None) for b, s in zip(begin, size)) return input_[slices] def _split(value, num_or_size_splits, axis=0, num=None, name='split'): # pylint: disable=unused-argument """Map tf.split -> np.split.""" indices_or_sections = np.array(num_or_size_splits) if indices_or_sections.ndim == 1: if any(idx == -1 for idx in indices_or_sections): # Numpy parameterizes by split indices and returns nsplits+1 arrays. total_splits = sum(idx for idx in indices_or_sections if idx != -1) remainder = int(max(0, np.array(value).shape[axis] - total_splits)) indices_or_sections = [ idx if idx != -1 else remainder for idx in indices_or_sections ] indices_or_sections = np.cumsum(np.array(indices_or_sections))[:-1] return np.split(value, indices_or_sections, axis) def _stack(values, axis=0, name='stack'): del name if axis is None: raise ValueError('None values for `axis` argument not supported.') values = _args_to_matching_arrays(values) return np.stack(values, axis=axis) def _transpose(a, perm=None, conjugate=False, name='transpose'): # pylint: disable=unused-argument x = np.transpose(a, perm) return np.conjugate(x) if conjugate else x def _zeros_like(input, dtype=None, name=None): # pylint: disable=redefined-builtin,unused-argument return np.zeros_like(input, dtype=utils.numpy_dtype(dtype)) # --- Begin Public Functions -------------------------------------------------- concat = utils.copy_docstring( 'tf.concat', _concat) expand_dims = utils.copy_docstring( 'tf.expand_dims', lambda input, axis, name=None: np.expand_dims(input, axis)) fill = utils.copy_docstring( 'tf.fill', lambda dims, value, name=None: np.full(dims, value)) gather = utils.copy_docstring( 'tf.gather', _gather) gather_nd = utils.copy_docstring( 'tf.gather_nd', _gather_nd) reverse = utils.copy_docstring('tf.reverse', _reverse) linspace = utils.copy_docstring( 'tf.linspace', _linspace) meshgrid = utils.copy_docstring( 'tf.meshgrid', np.meshgrid) norm = utils.copy_docstring( 'tf.norm', norm) one_hot = utils.copy_docstring( 'tf.one_hot', _one_hot) ones = utils.copy_docstring( 'tf.ones', lambda shape, dtype=np.float32, name=None: np.ones( # pylint: disable=g-long-lambda shape, utils.numpy_dtype(dtype))) ones_like = utils.copy_docstring( 'tf.ones_like', _ones_like) pad = utils.copy_docstring( 'tf.pad', _pad) range = utils.copy_docstring( # pylint: disable=redefined-builtin 'tf.range', _range) rank = utils.copy_docstring( 'tf.rank', lambda input, name=None: np.int32(np.array(input).ndim)) # pylint: disable=redefined-builtin,g-long-lambda repeat = utils.copy_docstring( 'tf.repeat', lambda input, repeats, axis=None, name=None: np.repeat( # pylint: disable=g-long-lambda input, repeats, axis=axis)) reshape = utils.copy_docstring( 'tf.reshape', lambda tensor, shape, name=None: np.reshape( # pylint: disable=g-long-lambda ops.convert_to_tensor(tensor), shape)) roll = utils.copy_docstring( 'tf.roll', lambda input, shift, axis: np.roll(input, shift, axis)) # pylint: disable=unnecessary-lambda searchsorted = utils.copy_docstring( 'tf.searchsorted', _searchsorted) shape = utils.copy_docstring( 'tf.shape', _shape) size = utils.copy_docstring( 'tf.size', _size) slice = utils.copy_docstring( # pylint: disable=redefined-builtin 'tf.slice', _slice) split = utils.copy_docstring('tf.split', _split) squeeze = utils.copy_docstring( 'tf.squeeze', lambda input, axis=None, name=None: np.squeeze(input, _astuple(axis))) stack = utils.copy_docstring( 'tf.stack', _stack) tile = utils.copy_docstring( 'tf.tile', lambda input, multiples, name=None: np.tile(np.array(input), multiples)) transpose = utils.copy_docstring( 'tf.transpose', _transpose) unstack = utils.copy_docstring( 'tf.unstack', lambda value, num=None, axis=0, name='unstack': tuple( # pylint: disable=g-long-lambda np.squeeze(x, axis=axis) for x in np.split(value, value.shape[axis] if num is None else num, axis))) where = utils.copy_docstring( 'tf.where', lambda condition, x=None, y=None, name=None: np.where(condition, x, y)) zeros = utils.copy_docstring( 'tf.zeros', lambda shape, dtype=np.float32, name=None: np.zeros( # pylint: disable=g-long-lambda shape, utils.numpy_dtype(dtype))) zeros_like = utils.copy_docstring( 'tf.zeros_like', _zeros_like)
29.736626
111
0.679076
[ "Apache-2.0" ]
michalbrys/probability
tensorflow_probability/python/internal/backend/numpy/numpy_array.py
14,452
Python
import netrc, os, unittest, sys, textwrap from test import test_support temp_filename = test_support.TESTFN class NetrcTestCase(unittest.TestCase): def make_nrc(self, test_data): test_data = textwrap.dedent(test_data) mode = 'w' if sys.platform != 'cygwin': mode += 't' with open(temp_filename, mode) as fp: fp.write(test_data) self.addCleanup(os.unlink, temp_filename) return netrc.netrc(temp_filename) def test_default(self): nrc = self.make_nrc("""\ machine host1.domain.com login log1 password pass1 account acct1 default login log2 password pass2 """) self.assertEqual(nrc.hosts['host1.domain.com'], ('log1', 'acct1', 'pass1')) self.assertEqual(nrc.hosts['default'], ('log2', None, 'pass2')) def test_macros(self): nrc = self.make_nrc("""\ macdef macro1 line1 line2 macdef macro2 line3 line4 """) self.assertEqual(nrc.macros, {'macro1': ['line1\n', 'line2\n'], 'macro2': ['line3\n', 'line4\n']}) def _test_passwords(self, nrc, passwd): nrc = self.make_nrc(nrc) self.assertEqual(nrc.hosts['host.domain.com'], ('log', 'acct', passwd)) def test_password_with_leading_hash(self): self._test_passwords("""\ machine host.domain.com login log password #pass account acct """, '#pass') def test_password_with_trailing_hash(self): self._test_passwords("""\ machine host.domain.com login log password pass# account acct """, 'pass#') def test_password_with_internal_hash(self): self._test_passwords("""\ machine host.domain.com login log password pa#ss account acct """, 'pa#ss') def _test_comment(self, nrc, passwd='pass'): nrc = self.make_nrc(nrc) self.assertEqual(nrc.hosts['foo.domain.com'], ('bar', None, passwd)) self.assertEqual(nrc.hosts['bar.domain.com'], ('foo', None, 'pass')) def test_comment_before_machine_line(self): self._test_comment("""\ # comment machine foo.domain.com login bar password pass machine bar.domain.com login foo password pass """) def test_comment_before_machine_line_no_space(self): self._test_comment("""\ #comment machine foo.domain.com login bar password pass machine bar.domain.com login foo password pass """) def test_comment_before_machine_line_hash_only(self): self._test_comment("""\ # machine foo.domain.com login bar password pass machine bar.domain.com login foo password pass """) def test_comment_at_end_of_machine_line(self): self._test_comment("""\ machine foo.domain.com login bar password pass # comment machine bar.domain.com login foo password pass """) def test_comment_at_end_of_machine_line_no_space(self): self._test_comment("""\ machine foo.domain.com login bar password pass #comment machine bar.domain.com login foo password pass """) def test_comment_at_end_of_machine_line_pass_has_hash(self): self._test_comment("""\ machine foo.domain.com login bar password #pass #comment machine bar.domain.com login foo password pass """, '#pass') @unittest.skipUnless(os.name == 'posix', 'POSIX only test') def test_security(self): # This test is incomplete since we are normally not run as root and # therefore can't test the file ownership being wrong. d = test_support.TESTFN os.mkdir(d) self.addCleanup(test_support.rmtree, d) fn = os.path.join(d, '.netrc') with open(fn, 'wt') as f: f.write("""\ machine foo.domain.com login bar password pass default login foo password pass """) with test_support.EnvironmentVarGuard() as environ: environ.set('HOME', d) os.chmod(fn, 0600) nrc = netrc.netrc() self.assertEqual(nrc.hosts['foo.domain.com'], ('bar', None, 'pass')) os.chmod(fn, 0o622) self.assertRaises(netrc.NetrcParseError, netrc.netrc) def test_main(): test_support.run_unittest(NetrcTestCase) if __name__ == "__main__": test_main()
36.381679
80
0.573017
[ "Apache-2.0" ]
Jeff-Tian/mybnb
Python27/Lib/test/test_netrc.py
4,766
Python
"""pycodestyle support.""" from pycodestyle import BaseReport, StyleGuide, get_parser, _parse_multi_options from pylama.lint import Linter as Abstract try: from StringIO import StringIO except ImportError: from io import StringIO class Linter(Abstract): """pycodestyle runner.""" @staticmethod def run(path, code=None, params=None, **meta): """Check code with pycodestyle. :return list: List of errors. """ parser = get_parser() for option in parser.option_list: if option.dest and option.dest in params: value = params[option.dest] if isinstance(value, str): params[option.dest] = option.convert_value(option, value) for key in ["filename", "exclude", "select", "ignore"]: if key in params and isinstance(params[key], str): params[key] = _parse_multi_options(params[key]) P8Style = StyleGuide(reporter=_PycodestyleReport, **params) buf = StringIO(code) return P8Style.input_file(path, lines=buf.readlines()) class _PycodestyleReport(BaseReport): def __init__(self, *args, **kwargs): super(_PycodestyleReport, self).__init__(*args, **kwargs) self.errors = [] def init_file(self, filename, lines, expected, line_offset): """Prepare storage for errors.""" super(_PycodestyleReport, self).init_file( filename, lines, expected, line_offset) self.errors = [] def error(self, line_number, offset, text, check): """Save errors.""" code = super(_PycodestyleReport, self).error( line_number, offset, text, check) if code: self.errors.append(dict( text=text, type=code.replace('E', 'C'), col=offset + 1, lnum=line_number, )) def get_file_results(self): """Get errors. :return list: List of errors. """ return self.errors
28.704225
80
0.597645
[ "MIT" ]
BHills15/vimrc
vimfiles/bundle/vim-python/submodules/pylama/pylama/lint/pylama_pycodestyle.py
2,038
Python
# Microsoft Azure Linux Agent # # Copyright 2014 Microsoft Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Requires Python 2.4+ and Openssl 1.0+ # """ Module conf loads and parses configuration file """ import os import azurelinuxagent.common.utils.fileutil as fileutil from azurelinuxagent.common.exception import AgentConfigError class ConfigurationProvider(object): """ Parse amd store key:values in /etc/waagent.conf. """ def __init__(self): self.values = dict() def load(self, content): if not content: raise AgentConfigError("Can't not parse empty configuration") for line in content.split('\n'): if not line.startswith("#") and "=" in line: parts = line.split()[0].split('=') value = parts[1].strip("\" ") if value != "None": self.values[parts[0]] = value else: self.values[parts[0]] = None def get(self, key, default_val): val = self.values.get(key) return val if val is not None else default_val def get_switch(self, key, default_val): val = self.values.get(key) if val is not None and val.lower() == 'y': return True elif val is not None and val.lower() == 'n': return False return default_val def get_int(self, key, default_val): try: return int(self.values.get(key)) except TypeError: return default_val except ValueError: return default_val __conf__ = ConfigurationProvider() def load_conf_from_file(conf_file_path, conf=__conf__): """ Load conf file from: conf_file_path """ if os.path.isfile(conf_file_path) == False: raise AgentConfigError(("Missing configuration in {0}" "").format(conf_file_path)) try: content = fileutil.read_file(conf_file_path) conf.load(content) except IOError as err: raise AgentConfigError(("Failed to load conf file:{0}, {1}" "").format(conf_file_path, err)) def enable_rdma(conf=__conf__): return conf.get_switch("OS.EnableRDMA", False) or \ conf.get_switch("OS.UpdateRdmaDriver", False) or \ conf.get_switch("OS.CheckRdmaDriver", False) def get_logs_verbose(conf=__conf__): return conf.get_switch("Logs.Verbose", False) def get_lib_dir(conf=__conf__): return conf.get("Lib.Dir", "/var/lib/waagent") def get_published_hostname(conf=__conf__): return os.path.join(get_lib_dir(conf), 'published_hostname') def get_dvd_mount_point(conf=__conf__): return conf.get("DVD.MountPoint", "/mnt/cdrom/secure") def get_agent_pid_file_path(conf=__conf__): return conf.get("Pid.File", "/var/run/waagent.pid") def get_ext_log_dir(conf=__conf__): return conf.get("Extension.LogDir", "/var/log/azure") def get_openssl_cmd(conf=__conf__): return conf.get("OS.OpensslPath", "/usr/bin/openssl") def get_home_dir(conf=__conf__): return conf.get("OS.HomeDir", "/home") def get_passwd_file_path(conf=__conf__): return conf.get("OS.PasswordPath", "/etc/shadow") def get_sudoers_dir(conf=__conf__): return conf.get("OS.SudoersDir", "/etc/sudoers.d") def get_sshd_conf_file_path(conf=__conf__): return conf.get("OS.SshdConfigPath", "/etc/ssh/sshd_config") def get_root_device_scsi_timeout(conf=__conf__): return conf.get("OS.RootDeviceScsiTimeout", None) def get_ssh_host_keypair_type(conf=__conf__): return conf.get("Provisioning.SshHostKeyPairType", "rsa") def get_provision_enabled(conf=__conf__): return conf.get_switch("Provisioning.Enabled", True) def get_allow_reset_sys_user(conf=__conf__): return conf.get_switch("Provisioning.AllowResetSysUser", False) def get_regenerate_ssh_host_key(conf=__conf__): return conf.get_switch("Provisioning.RegenerateSshHostKeyPair", False) def get_delete_root_password(conf=__conf__): return conf.get_switch("Provisioning.DeleteRootPassword", False) def get_decode_customdata(conf=__conf__): return conf.get_switch("Provisioning.DecodeCustomData", False) def get_execute_customdata(conf=__conf__): return conf.get_switch("Provisioning.ExecuteCustomData", False) def get_password_cryptid(conf=__conf__): return conf.get("Provisioning.PasswordCryptId", "6") def get_password_crypt_salt_len(conf=__conf__): return conf.get_int("Provisioning.PasswordCryptSaltLength", 10) def get_monitor_hostname(conf=__conf__): return conf.get_switch("Provisioning.MonitorHostName", False) def get_httpproxy_host(conf=__conf__): return conf.get("HttpProxy.Host", None) def get_httpproxy_port(conf=__conf__): return conf.get_int("HttpProxy.Port", None) def get_detect_scvmm_env(conf=__conf__): return conf.get_switch("DetectScvmmEnv", False) def get_resourcedisk_format(conf=__conf__): return conf.get_switch("ResourceDisk.Format", False) def get_resourcedisk_enable_swap(conf=__conf__): return conf.get_switch("ResourceDisk.EnableSwap", False) def get_resourcedisk_mountpoint(conf=__conf__): return conf.get("ResourceDisk.MountPoint", "/mnt/resource") def get_resourcedisk_mountoptions(conf=__conf__): return conf.get("ResourceDisk.MountOptions", None) def get_resourcedisk_filesystem(conf=__conf__): return conf.get("ResourceDisk.Filesystem", "ext3") def get_resourcedisk_swap_size_mb(conf=__conf__): return conf.get_int("ResourceDisk.SwapSizeMB", 0) def get_autoupdate_gafamily(conf=__conf__): return conf.get("AutoUpdate.GAFamily", "Prod") def get_autoupdate_enabled(conf=__conf__): return conf.get_switch("AutoUpdate.Enabled", True) def get_autoupdate_frequency(conf=__conf__): return conf.get_int("Autoupdate.Frequency", 3600) def get_enable_overprovisioning(conf=__conf__): return conf.get_switch("EnableOverProvisioning", False)
28.270742
74
0.708372
[ "Apache-2.0" ]
vittyvk/WALinuxAgent
azurelinuxagent/common/conf.py
6,474
Python
import discord from discord.ext import commands import humanize import traceback import random import datetime import json class Information(commands.Cog): def __init__(self, client): self.client = client self.launched_at = datetime.datetime.utcnow() @commands.Cog.listener() async def on_ready(self): print("Information is ready") @commands.command(aliases = ["guild", "guildinfo", "si"]) async def serverinfo(self, ctx): findbots = sum(1 for member in ctx.guild.members if member.bot) roles = sum(1 for role in ctx.guild.roles) embed = discord.Embed(title = 'Infomation about ' + ctx.guild.name + '.', colour = ctx.author.color) embed.set_thumbnail(url = str(ctx.guild.icon_url)) embed.add_field(name = "Guild's name: ", value = ctx.guild.name) embed.add_field(name = "Guild's owner: ", value = str(ctx.guild.owner)) embed.add_field(name = "Guild's verification level: ", value = str(ctx.guild.verification_level)) embed.add_field(name = "Guild's id: ", value = f"`{ctx.guild.id}`") embed.add_field(name = "Guild's member count: ", value = f"{ctx.guild.member_count}") embed.add_field(name="Bots", value=f"`{findbots}`", inline=True) embed.add_field(name = "Guild created at: ", value = str(ctx.guild.created_at.strftime("%a, %d %B %Y, %I:%M %p UTC"))) embed.add_field(name = "Number of Roles:", value = f"`{roles}`") embed.set_footer(text='Bot Made by NightZan999#0194') embed.set_author(name = ctx.author.name, icon_url = ctx.author.avatar_url) await ctx.send(embed = embed) @commands.command(aliases = ["ci"]) async def channelinfo(self, ctx, channel : discord.TextChannel = None): if channel == None: channel = ctx.channel em = discord.Embed(title = f"Info about {channel.name}", color = ctx.author.color, description = f"Here is an insight into {channel.mention}") em.add_field(name = "ID:", value = f"`{channel.id}`") em.add_field(name = "Name:", value = f"`{channel.name}`") em.add_field(name = "Server it belongs to:", value = f"{channel.guild.name}", inline = True) try: em.add_field(name = "Category ID:", value = f"`{channel.category_id}`", inline = False) except: pass em.add_field(name = "Topic:", value = f"`{channel.topic}`") em.add_field(name = "Slowmode:", value = f"`{channel.slowmode_delay}`", inline = True) em.add_field(name = "People who can see the channel:", value = f"`{len(channel.members)}`", inline = False) em.add_field(name = "Is NSFW:", value = f"`{channel.is_nsfw()}`") em.add_field(name = "Is News:", value = f"`{channel.is_news()}`", inline = True) em.set_footer(text = "invite me ;)", icon_url = ctx.author.avatar_url) em.set_thumbnail(url = str(ctx.guild.icon_url)) em.set_author(name = ctx.author.name, icon_url = ctx.author.avatar_url) await ctx.send(embed = em) @commands.command() async def userinfo(self, ctx, member : discord.Member = None): if member == None: member = ctx.author pos = sum(m.joined_at < member.joined_at for m in ctx.guild.members if m.joined_at is not None) roles = [role for role in member.roles] embed = discord.Embed(title = "👨 Info", color = discord.Color.random(), description = f"Information about: {member.name}") embed.add_field(name = "Nickname", value = member.nick or None) embed.add_field(name = "Verification Pending", value = member.pending) embed.add_field(name = "Status:", value = member.raw_status) if member.mobile_status: device = "Mobile" elif member.desktop_status: device = "Desktop" elif member.web_status: device= "Web" embed.add_field(name = "Discord Device:", value = device) embed.add_field(name = "Color", value = member.color) embed.add_field(name = "Mention:", value = member.mention) embed.add_field(name = "Top Role:", value = member.top_role.mention) embed.add_field(name = "Voice State:", value = member.voice or None) embed.set_footer(icon_url=member.avatar_url, text=f'Requested By: {ctx.author.name}') await ctx.send(embed=embed) @userinfo.error async def userinfo_error(self, ctx, error): if isinstance(error, commands.BadArgument): em = discord.Embed(title = f"<:fail:761292267360485378> Userinfo Error", color = ctx.author.color) em.add_field(name = f"Reason:", value = f"Arguments were of the wrong data type!") em.add_field(name = "Args", value = "```diff\n+ imp userinfo <user>\n- imp userinfo e\n```") em.set_thumbnail(url = ctx.author.avatar_url) em.set_author(name = ctx.author.name, icon_url = ctx.author.avatar_url) await ctx.send(embed = em) @commands.command() async def whois(self,ctx, user : discord.Member = None): if user == None: user = ctx.author em = discord.Embed(title = user.name, color = user.color) em.add_field(name = "ID:", value = user.id) em.set_thumbnail(url = user.avatar_url) em.set_footer(text='Bot Made by NightZan999#0194') em.set_author(name = ctx.author.name, icon_url = ctx.author.avatar_url) await ctx.send(embed = em) @whois.error async def whois_error(self, ctx, error): if isinstance(error, commands.BadArgument): em = discord.Embed(title = f"<:fail:761292267360485378> Whois Error", color = ctx.author.color) em.add_field(name = f"Reason:", value = f"Arguments were of the wrong data type!") em.add_field(name = "Args", value = "```\nimp whois [@user]\n```") em.set_thumbnail(url = ctx.author.avatar_url) em.set_author(name = ctx.author.name, icon_url = ctx.author.avatar_url) await ctx.send(embed = em) @commands.command(aliases = ["bi"]) async def botinfo(self, ctx): embed = discord.Embed(title = "Botinfo", color = ctx.author.color, description = "TheImperialGod, is an awesome customizable discord bot with awesome features. Check some information about the bot below!" ) embed.add_field(name = "First went live on:", value = "1 / 10 / 2020") embed.add_field(name = "Started coding on:", value = "26 / 9 / 2020") embed.add_field(name = f"Creator", value = f"NightZan999#0194") embed.add_field(name = 'Hosting', value = f"Chaotic Destiny Hosting ") embed.add_field(name = "Servers:", value = f'`{len(self.client.guilds)}`') embed.add_field(name = 'Customizable Settings:', value = f"Automoderation and utilities! ") embed.add_field(name = "Database:", value = "SQLite3") embed.add_field(name = "Website:", value = "<:VERIFIED_DEVELOPER:761297621502656512> [Web Dashboard](https://theimperialgod.ml)") embed.add_field(name = "Number of Commands:", value = f"`{len(self.client.commands)}` (including special owner commands)") embed.add_field(name = "**Tech:**", value = "```diff\n+ Library : discord.py\n+ Database : AIOSQLite\n+ Hosting Services : Chaotic Destiny Hosting!\n```", inline = False) embed.add_field(name = "Users:", value = f'`{len(self.client.users)}`') embed.set_footer(text='Bot Made by NightZan999#0194', icon_url = ctx.author.avatar_url) embed.set_author(name = ctx.author.name, icon_url = ctx.author.avatar_url) await ctx.send(embed = embed) @commands.command() async def ping(self, ctx): embed = discord.Embed(title = ":ping_pong: Pong!", color = ctx.author.color, description = "The number rlly doesn't matter. Smh!") embed.add_field(name= "Client Latency", value = f"`{round(self.client.latency * 1000)}ms`") embed.set_author(name = ctx.author.name, icon_url = ctx.author.avatar_url) embed.set_footer(text='Bot Made by NightZan999#0194') await ctx.send(embed = embed) @commands.command() async def credits(self, ctx): em = discord.Embed(title = ":scroll: Credits of TheImperialGod", color = ctx.author.color, description = "Github link is [here](https://github.com/NightZan999/TheImperialGod)") em.add_field(name = "#1 NightZan999", value = f"""I have done everything on TheImperialGod, coded the entire bot, taken feedback, grown it to {len(self.client.guilds)} servers.\nI am even writing this right now!\nMy hopes are to you, if you like this bot type: `imp support`. That shows you ways to support TheImperialGod"\n\nI have written 70,000 lines of code for the bot and the website, so yeah-""") em.add_field(name = '#2 Github', value = "I did do all the coding, but I made TheImperialGod open source, this is why many people respond to my issues. Some people have corrected some glitches, and a full credits list is avalible on github") em.set_author(name = ctx.author.name, icon_url = ctx.author.avatar_url) em.set_footer(text = "invite me now!") await ctx.send(embed = em) @commands.command() async def uptime(self, ctx): current_time = datetime.datetime.utcnow() uptime = (current_time - self.launched_at) em = discord.Embed(title = "<:zancool:819065864153595945> My Uptime", color = ctx.author.color) em.add_field(name = "Uptime", value = f"I have been online for **{humanize.naturaldelta(uptime)}**") em.set_author(name = ctx.author.name, icon_url = ctx.author.avatar_url) em.set_footer(text = "Requested by {}".format(ctx.author.name), icon_url = ctx.author.avatar_url) await ctx.send(embed = em) @commands.command() async def roleinfo(self, ctx, *, role_: discord.Role = None): role = role_ if role is None: await ctx.send("Please provide a valid role") em = discord.Embed(title = f"Info about {role.name}", color = ctx.author.color, description = f"Here is an insight into {role.mention}") em.add_field(name = "ID:", value = f"`{role.id}`") em.add_field(name = "Name:", value = f"`{role.name}`") em.add_field(name = "Server it belongs to:", value = f"{role.guild.name}", inline = True) em.add_field(name = "Hoisted:", value = f"`{role.hoist}`") em.add_field(name = "Managed by extension:", value = f"`{role.managed}`", inline = True) em.add_field(name = "Boost Role:", value = f"`{role.is_premium_subscriber()}`", inline = True) em.add_field(name = "Mentionable:", value = f"`{role.mentionable}`" ) em.add_field(name = "Is Default:", value = f"`{role.is_default()}`", inline = True) em.add_field(name = "Bot Role:", value = f"`{role.is_bot_managed()}`", inline = True) em.add_field(name = "Color:", value = f"{role.color}") em.add_field(name = "Created At:", value = f"{role.created_at}", inline = True) em.add_field(name = "People with it:", value =f"{len(role.members)}", inline = True) msg = "```diff\n" if role.permissions.administrator: msg += "+ Administrator\n" else: msg += "- Administrator\n" if role.permissions.manage_guild: msg += "+ Manage Server\n" else: msg += "- Manage Server\n" if role.permissions.mention_everyone: msg += "+ Ping Everyone\n" else: msg += "- Ping Everyone\n" if role.permissions.manage_roles: msg += "+ Manage Roles\n" else: msg += "- Manage Roles\n" if role.permissions.manage_channels: msg += "+ Manage Channels\n" else: msg += "- Manage Channels\n" if role.permissions.ban_members: msg += "+ Ban Members\n" else: msg += "- Ban Members\n" if role.permissions.kick_members: msg += "+ Kick Members\n" else: msg += "- Kick Members\n" if role.permissions.view_audit_log: msg += "+ View Audit Log\n" else: msg += "- View Audit Log\n" if role.permissions.manage_messages: msg += "+ Manage Messages\n" else: msg += "- Manage Messages\n" if role.permissions.add_reactions: msg += "+ Add Reactions\n" else: msg += "- Add Reactions\n" if role.permissions.view_channel: msg += "+ Read Messages\n" else: msg += "- Read Messages\n" if role.permissions.send_messages: msg += "+ Send Messages\n" else: msg += "- Send Messages\n" if role.permissions.embed_links: msg += "+ Embed Links\n" else: msg += "- Embed Links\n" if role.permissions.read_message_history: msg += "+ Read Message History\n" else: msg += "- Read Message History\n" if role.permissions.view_guild_insights: msg += "+ View Guild Insights\n" else: msg += "- View Guild Insights\n" if role.permissions.connect: msg += "+ Join VC\n" else: msg += "- Join VC\n" if role.permissions.speak: msg += "+ Speak in VC\n" else: msg += "- Speak in VC\n" if role.permissions.change_nickname: msg += "+ Change Nickname\n" else: msg += "- Change Nickname\n" if role.permissions.manage_nicknames: msg += "+ Manage Nicknames\n" else: msg += "- Manage Nicknames\n" if role.permissions.manage_webhooks: msg += "+ Manage Webhooks\n" else: msg += "- Manage Webhooks\n" if role.permissions.manage_emojis: msg += "+ Manage Emojis\n" else: msg += "- Manage Emojis\n" msg += "\n```" em.add_field(name = "Permissions:", value = msg, inline = False) em.set_footer(text = "invite me ;)", icon_url = ctx.author.avatar_url) em.set_thumbnail(url = str(ctx.guild.icon_url)) em.set_author(name = ctx.author.name, icon_url = ctx.author.avatar_url) await ctx.send(embed = em) @commands.command() async def evalhelp(self, ctx): em = discord.Embed(title = "Help with eval!", color = discord.Color.random(), description = "Check this help image for help with Jishaku!") em.set_image(url = "https://ibb.co/MhythwM") await ctx.send(embed = em) @commands.command() async def stats(self, ctx): em = discord.Embed(title= "Stats about me", color = self.client.user.color, description = "My stats :partying_face:") em.add_field(name = "Users:", value = f"{len(self.client.users)}") em.add_field(name = "Servers:", value = f"{len(self.client.guilds)}") em.add_field(name = "Total Commands:", value = f"{len(self.client.commands)}") em.add_field(name = "Channels:", value = f"{len(self.client.channels)}") await ctx.send(embed = em) def setup(client): client.add_cog(Information(client))
50.25817
411
0.606346
[ "CC0-1.0" ]
EaBro/TheImperialGod
TheImperialGod/cogs/info/info.py
15,382
Python
# -*- coding: utf-8 -*- import dash import dash_core_components as dcc import dash_html_components as html import plotly.plotly as py import plotly.graph_objs as go import networkx as nx import pickle import boto3 import io import numpy import pandas ############################ # Load data BUCKET_NAME = 'blog-seq-data' # replace with your bucket name # list of topics KEY = 'graph_and_labels' # replace with your object key s3 = boto3.client('s3') obj = s3.get_object(Bucket=BUCKET_NAME, Key=KEY) obj_str = obj['Body'].read() graph_mat,topic_labels,dist_mat,doc_topic_mat = pickle.loads(obj_str) topic_list = list(topic_labels.values()) # article info KEY = 'article_info' # replace with your object key s3 = boto3.client('s3') obj = s3.get_object(Bucket=BUCKET_NAME, Key=KEY) obj_str = obj['Body'].read() adf = pickle.loads(obj_str) # topic sequence KEY = 'topic_seq' # replace with your object key s3 = boto3.client('s3') obj = s3.get_object(Bucket=BUCKET_NAME, Key=KEY) obj_str = obj['Body'].read() topic_sequence = pickle.loads(obj_str) ############################ app = dash.Dash() server = app.server ############################ # Layout section app.layout = html.Div(children=[ html.H1(children='Blog curator'), html.Div(children=''' Pick a topic you'd like to learn about: '''), dcc.Dropdown( id='my-dropdown', options=[{'label':topic, 'value':topic_no} for topic_no, topic in enumerate(topic_list)], value=0 ), html.Div(id='output-container',style={'padding': 10}), html.Div(children=''' Select where you want to start and finish your reading: '''), html.Div(id='output-container',style={'padding': 10}), html.Div(id='my-datatable') ]) ############################## # Callbacks @app.callback( dash.dependencies.Output('my-datatable', 'children'), [dash.dependencies.Input('my-dropdown', 'value')]) def update_rows(selected_value): output_arr = [] for doc_no, topic in enumerate(topic_sequence[selected_value]): if doc_no != 0 and topic == selected_value: continue else: topic = int(topic) test_str = adf.iloc[topic]['title'] + '. ' + adf.iloc[topic]['author'] + ' ' + adf.iloc[topic]['link'] + ' ' + adf.iloc[topic]['source'] output_arr.append(html.H3(topic_list[int(topic)])) output_arr.append(html.P(test_str)) return output_arr ############################## ''' external_css = ["https://fonts.googleapis.com/css?family=Product+Sans:400,400i,700,700i", "https://cdn.rawgit.com/plotly/dash-app-stylesheets/2cc54b8c03f4126569a3440aae611bbef1d7a5dd/stylesheet.css"] for css in external_css: app.css.append_css({"external_url": css}) ''' app.css.append_css({'external_url': 'https://codepen.io/chriddyp/pen/bWLwgP.css'}) if __name__ == '__main__': app.run_server(debug=True)
28.686275
148
0.64149
[ "MIT" ]
avbatchelor/insight-articles-project
src/dash_app/my_app_v8.py
2,926
Python
# -*- coding: utf-8 -*- # @Time : 2020/7/7 9:11 # @Author : lightsmile # @Software: PyCharm from lightutils import get_file_name if __name__ == '__main__': print(get_file_name("hello_world.py"))
20.5
42
0.663415
[ "MIT" ]
smilelight/lightUtils
examples/get_file_name_demo.py
205
Python
#!/usr/bin/env python3 # Copyright (c) 2018 The Bethel Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. from test_framework.test_framework import BethelTestFramework from test_framework.staticr_util import * import time class StaticRTxSend(BethelTestFramework): """Tests the tx sending after softfork activation.""" def __init__(self): super().__init__() self.setup_clean_chain = True self.num_nodes = 1 def setup_network(self, split=False): self.nodes = self.setup_nodes() self.is_network_split = split def run_test(self): #check that a transaction can be sent after the reward changes to static activate_staticr(self.nodes[0]) blockcount = self.nodes[0].getblockcount() address = self.nodes[0].getnewaddress() txid = self.nodes[0].sendtoaddress(address, 100) # wait for a new block to be mined while self.nodes[0].getblockcount() == blockcount: print("waiting for a new block...") time.sleep(5) transaction = self.nodes[0].gettransaction(txid) # check the transaction confirmed assert(transaction["confirmations"] > 0) if __name__ == '__main__': StaticRTxSend().main()
30.044444
80
0.678994
[ "MIT" ]
diyathrajapakshe/bethel-core
qa/rpc-tests/staticr-tx-send.py
1,352
Python
import time import base64 from datetime import datetime import sys import json from redis_support_py3.graph_query_support_py3 import Query_Support from redis_support_py3.construct_data_handlers_py3 import Generate_Handlers from modbus_redis_server_py3.modbus_serial_ctrl_py3 import ModbusSerialCtrl from modbus_redis_server_py3.msg_manager_py3 import MessageManager from modbus_redis_server_py3.rs485_mgr_py3 import RS485_Mgr from modbus_redis_server_py3.modbus_serial_ctrl_py3 import ModbusSerialCtrl from modbus_redis_server_py3.msg_manager_py3 import MessageManager from modbus_redis_server_py3.modbus_statistics_py3 import Statistic_Handler #from redis_support_py3.redis_rpc_server_py3 import Redis_Rpc_Server class Modbus_Server( object ): def __init__( self, msg_handler,generate_handlers,data_structures,remote_dict): # fill in proceedures self.msg_handler = msg_handler self.statistic_handler = Statistic_Handler(generate_handlers,data_structures,remote_dict) self.rpc_server_handle = generate_handlers.construct_rpc_sever(data_structures["PLC_RPC_SERVER"] ) self.rpc_server_handle.register_call_back( "modbus_relay", self.process_modbus_message) self.rpc_server_handle.register_call_back( "ping_message", self.process_ping_message) self.rpc_server_handle.add_time_out_function(self.process_null_msg) self.rpc_server_handle.start() def process_ping_message(self, address): temp = self.msg_handler.ping_devices([address]) return temp[0]["result"] def process_modbus_message( self,input_msg ): address = input_msg[0] self.statistic_handler.process_start_message( address ) failure, retries, output_message = self.msg_handler.process_msg( input_msg ) if failure != 0: output_msg = "@" self.statistic_handler.log_bad_message( address, retries ) else: self.statistic_handler.log_good_message( address, retries ) self.statistic_handler.process_end_message() return output_message def process_null_msg( self ): self.statistic_handler.process_null_message() def find_remotes(qs,link_name): return_value = {} query_list = [] query_list = qs.add_match_relationship( query_list,relationship="SITE",label=redis_site["site"] ) query_list = qs.add_match_relationship( query_list,relationship="PLC_SERVER",label=plc_server_name ) query_list = qs.add_match_relationship( query_list, relationship = "IO_LINK",label=link_name) query_list = qs.add_match_terminal( query_list, relationship = "REMOTE_UNIT") remote_sets, remote_sources = qs.match_list(query_list) for i in remote_sources: return_value[i["modbus_address"]] = i["parameters"] return return_value if __name__ == "__main__": plc_server_name = sys.argv[1] file_handle = open("system_data_files/redis_server.json",'r') data = file_handle.read() file_handle.close() redis_site = json.loads(data) qs = Query_Support( redis_site ) # find data structures query_list = [] query_list = qs.add_match_relationship( query_list,relationship="SITE",label=redis_site["site"] ) query_list = qs.add_match_relationship( query_list,relationship="PLC_SERVER",label=plc_server_name ) query_list = qs.add_match_terminal( query_list, relationship = "PACKAGE", property_mask={"name":"PLC_SERVER_DATA"} ) package_sets, package_sources = qs.match_list(query_list) package = package_sources[0] generate_handlers = Generate_Handlers(package,qs) data_structures = package["data_structures"] # # finding IO_LINKS # # query_list = [] query_list = qs.add_match_relationship( query_list,relationship="SITE",label=redis_site["site"] ) query_list = qs.add_match_relationship( query_list,relationship="PLC_SERVER",label=plc_server_name ) query_list = qs.add_match_terminal( query_list, relationship = "IO_LINK") serial_sets, serial_sources = qs.match_list(query_list) rs485_interface = RS485_Mgr() interfaces = {} for i in serial_sources: i["handler"] = rs485_interface interfaces[i["name"]] = i msg_mgr = MessageManager() for i,item in interfaces.items(): remote_dict = find_remotes(qs,item["name"]) modbus_serial_ctrl = ModbusSerialCtrl( item, remote_dict) for j,k in remote_dict.items(): msg_mgr.add_device( k["address"], modbus_serial_ctrl ) #print(msg_mgr.ping_devices([100])) Modbus_Server( msg_mgr,generate_handlers,data_structures,remote_dict )
36.560284
107
0.671581
[ "MIT" ]
NanoDataCenter/nano_data_center
code/modbus_server_py3.py
5,155
Python
"""Python wrappers around TensorFlow ops. This file is MACHINE GENERATED! Do not edit. """ import collections as _collections import six as _six from tensorflow.python import pywrap_tensorflow as _pywrap_tensorflow from tensorflow.python.eager import context as _context from tensorflow.python.eager import core as _core from tensorflow.python.eager import execute as _execute from tensorflow.python.framework import dtypes as _dtypes from tensorflow.python.framework import errors as _errors from tensorflow.python.framework import tensor_shape as _tensor_shape from tensorflow.core.framework import op_def_pb2 as _op_def_pb2 # Needed to trigger the call to _set_call_cpp_shape_fn. from tensorflow.python.framework import common_shapes as _common_shapes from tensorflow.python.framework import op_def_registry as _op_def_registry from tensorflow.python.framework import ops as _ops from tensorflow.python.framework import op_def_library as _op_def_library from tensorflow.python.util.deprecation import deprecated_endpoints from tensorflow.python.util.tf_export import tf_export _block_lstm_outputs = ["i", "cs", "f", "o", "ci", "co", "h"] _BlockLSTMOutput = _collections.namedtuple( "BlockLSTM", _block_lstm_outputs) @tf_export('block_lstm') def block_lstm(seq_len_max, x, cs_prev, h_prev, w, wci, wcf, wco, b, forget_bias=1, cell_clip=3, use_peephole=False, name=None): r"""Computes the LSTM cell forward propagation for all the time steps. This is equivalent to applying LSTMBlockCell in a loop, like so: ```python for x1 in unpack(x): i1, cs1, f1, o1, ci1, co1, h1 = LSTMBlock( x1, cs_prev, h_prev, w, wci, wcf, wco, b) cs_prev = cs1 h_prev = h1 i.append(i1) cs.append(cs1) f.append(f1) o.append(o1) ci.append(ci1) co.append(co1) h.append(h1) return pack(i), pack(cs), pack(f), pack(o), pack(ci), pack(ch), pack(h) ``` Args: seq_len_max: A `Tensor` of type `int64`. Maximum time length actually used by this input. Outputs are padded with zeros beyond this length. x: A `Tensor`. Must be one of the following types: `half`, `float32`. The sequence input to the LSTM, shape (timelen, batch_size, num_inputs). cs_prev: A `Tensor`. Must have the same type as `x`. Value of the initial cell state. h_prev: A `Tensor`. Must have the same type as `x`. Initial output of cell (to be used for peephole). w: A `Tensor`. Must have the same type as `x`. The weight matrix. wci: A `Tensor`. Must have the same type as `x`. The weight matrix for input gate peephole connection. wcf: A `Tensor`. Must have the same type as `x`. The weight matrix for forget gate peephole connection. wco: A `Tensor`. Must have the same type as `x`. The weight matrix for output gate peephole connection. b: A `Tensor`. Must have the same type as `x`. The bias vector. forget_bias: An optional `float`. Defaults to `1`. The forget gate bias. cell_clip: An optional `float`. Defaults to `3`. Value to clip the 'cs' value to. use_peephole: An optional `bool`. Defaults to `False`. Whether to use peephole weights. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (i, cs, f, o, ci, co, h). i: A `Tensor`. Has the same type as `x`. The input gate over the whole time sequence. cs: A `Tensor`. Has the same type as `x`. The cell state before the tanh over the whole time sequence. f: A `Tensor`. Has the same type as `x`. The forget gate over the whole time sequence. o: A `Tensor`. Has the same type as `x`. The output gate over the whole time sequence. ci: A `Tensor`. Has the same type as `x`. The cell input over the whole time sequence. co: A `Tensor`. Has the same type as `x`. The cell after the tanh over the whole time sequence. h: A `Tensor`. Has the same type as `x`. The output h vector over the whole time sequence. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: if forget_bias is None: forget_bias = 1 forget_bias = _execute.make_float(forget_bias, "forget_bias") if cell_clip is None: cell_clip = 3 cell_clip = _execute.make_float(cell_clip, "cell_clip") if use_peephole is None: use_peephole = False use_peephole = _execute.make_bool(use_peephole, "use_peephole") _, _, _op = _op_def_lib._apply_op_helper( "BlockLSTM", seq_len_max=seq_len_max, x=x, cs_prev=cs_prev, h_prev=h_prev, w=w, wci=wci, wcf=wcf, wco=wco, b=b, forget_bias=forget_bias, cell_clip=cell_clip, use_peephole=use_peephole, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("forget_bias", _op.get_attr("forget_bias"), "cell_clip", _op.get_attr("cell_clip"), "use_peephole", _op.get_attr("use_peephole"), "T", _op.get_attr("T")) _execute.record_gradient( "BlockLSTM", _inputs_flat, _attrs, _result, name) _result = _BlockLSTMOutput._make(_result) return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "BlockLSTM", name, _ctx._post_execution_callbacks, seq_len_max, x, cs_prev, h_prev, w, wci, wcf, wco, b, "forget_bias", forget_bias, "cell_clip", cell_clip, "use_peephole", use_peephole) _result = _BlockLSTMOutput._make(_result) return _result except _core._FallbackException: return block_lstm_eager_fallback( seq_len_max, x, cs_prev, h_prev, w, wci, wcf, wco, b, forget_bias=forget_bias, cell_clip=cell_clip, use_peephole=use_peephole, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def block_lstm_eager_fallback(seq_len_max, x, cs_prev, h_prev, w, wci, wcf, wco, b, forget_bias=1, cell_clip=3, use_peephole=False, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function block_lstm """ _ctx = ctx if ctx else _context.context() if forget_bias is None: forget_bias = 1 forget_bias = _execute.make_float(forget_bias, "forget_bias") if cell_clip is None: cell_clip = 3 cell_clip = _execute.make_float(cell_clip, "cell_clip") if use_peephole is None: use_peephole = False use_peephole = _execute.make_bool(use_peephole, "use_peephole") _attr_T, _inputs_T = _execute.args_to_matching_eager([x, cs_prev, h_prev, w, wci, wcf, wco, b], _ctx) (x, cs_prev, h_prev, w, wci, wcf, wco, b) = _inputs_T seq_len_max = _ops.convert_to_tensor(seq_len_max, _dtypes.int64) _inputs_flat = [seq_len_max, x, cs_prev, h_prev, w, wci, wcf, wco, b] _attrs = ("forget_bias", forget_bias, "cell_clip", cell_clip, "use_peephole", use_peephole, "T", _attr_T) _result = _execute.execute(b"BlockLSTM", 7, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "BlockLSTM", _inputs_flat, _attrs, _result, name) _result = _BlockLSTMOutput._make(_result) return _result _ops.RegisterShape("BlockLSTM")(None) _block_lstm_grad_outputs = ["x_grad", "cs_prev_grad", "h_prev_grad", "w_grad", "wci_grad", "wcf_grad", "wco_grad", "b_grad"] _BlockLSTMGradOutput = _collections.namedtuple( "BlockLSTMGrad", _block_lstm_grad_outputs) @tf_export('block_lstm_grad') def block_lstm_grad(seq_len_max, x, cs_prev, h_prev, w, wci, wcf, wco, b, i, cs, f, o, ci, co, h, cs_grad, h_grad, use_peephole, name=None): r"""Computes the LSTM cell backward propagation for the entire time sequence. This implementation is to be used in conjunction of LSTMBlock. Args: seq_len_max: A `Tensor` of type `int64`. Maximum time length actually used by this input. Outputs are padded with zeros beyond this length. x: A `Tensor`. Must be one of the following types: `half`, `float32`. The sequence input to the LSTM, shape (timelen, batch_size, num_inputs). cs_prev: A `Tensor`. Must have the same type as `x`. Value of the initial cell state. h_prev: A `Tensor`. Must have the same type as `x`. Initial output of cell (to be used for peephole). w: A `Tensor`. Must have the same type as `x`. The weight matrix. wci: A `Tensor`. Must have the same type as `x`. The weight matrix for input gate peephole connection. wcf: A `Tensor`. Must have the same type as `x`. The weight matrix for forget gate peephole connection. wco: A `Tensor`. Must have the same type as `x`. The weight matrix for output gate peephole connection. b: A `Tensor`. Must have the same type as `x`. The bias vector. i: A `Tensor`. Must have the same type as `x`. The input gate over the whole time sequence. cs: A `Tensor`. Must have the same type as `x`. The cell state before the tanh over the whole time sequence. f: A `Tensor`. Must have the same type as `x`. The forget gate over the whole time sequence. o: A `Tensor`. Must have the same type as `x`. The output gate over the whole time sequence. ci: A `Tensor`. Must have the same type as `x`. The cell input over the whole time sequence. co: A `Tensor`. Must have the same type as `x`. The cell after the tanh over the whole time sequence. h: A `Tensor`. Must have the same type as `x`. The output h vector over the whole time sequence. cs_grad: A `Tensor`. Must have the same type as `x`. The current gradient of cs. h_grad: A `Tensor`. Must have the same type as `x`. The gradient of h vector. use_peephole: A `bool`. Whether to use peephole weights. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (x_grad, cs_prev_grad, h_prev_grad, w_grad, wci_grad, wcf_grad, wco_grad, b_grad). x_grad: A `Tensor`. Has the same type as `x`. The gradient of x to be back-propped. cs_prev_grad: A `Tensor`. Has the same type as `x`. The gradient of cs_prev to be back-propped. h_prev_grad: A `Tensor`. Has the same type as `x`. The gradient of h_prev to be back-propped. w_grad: A `Tensor`. Has the same type as `x`. The gradient for w to be back-propped. wci_grad: A `Tensor`. Has the same type as `x`. The gradient for wci to be back-propped. wcf_grad: A `Tensor`. Has the same type as `x`. The gradient for wcf to be back-propped. wco_grad: A `Tensor`. Has the same type as `x`. The gradient for wco to be back-propped. b_grad: A `Tensor`. Has the same type as `x`. The gradient for w to be back-propped. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: use_peephole = _execute.make_bool(use_peephole, "use_peephole") _, _, _op = _op_def_lib._apply_op_helper( "BlockLSTMGrad", seq_len_max=seq_len_max, x=x, cs_prev=cs_prev, h_prev=h_prev, w=w, wci=wci, wcf=wcf, wco=wco, b=b, i=i, cs=cs, f=f, o=o, ci=ci, co=co, h=h, cs_grad=cs_grad, h_grad=h_grad, use_peephole=use_peephole, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("use_peephole", _op.get_attr("use_peephole"), "T", _op.get_attr("T")) _execute.record_gradient( "BlockLSTMGrad", _inputs_flat, _attrs, _result, name) _result = _BlockLSTMGradOutput._make(_result) return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "BlockLSTMGrad", name, _ctx._post_execution_callbacks, seq_len_max, x, cs_prev, h_prev, w, wci, wcf, wco, b, i, cs, f, o, ci, co, h, cs_grad, h_grad, "use_peephole", use_peephole) _result = _BlockLSTMGradOutput._make(_result) return _result except _core._FallbackException: return block_lstm_grad_eager_fallback( seq_len_max, x, cs_prev, h_prev, w, wci, wcf, wco, b, i, cs, f, o, ci, co, h, cs_grad, h_grad, use_peephole=use_peephole, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def block_lstm_grad_eager_fallback(seq_len_max, x, cs_prev, h_prev, w, wci, wcf, wco, b, i, cs, f, o, ci, co, h, cs_grad, h_grad, use_peephole, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function block_lstm_grad """ _ctx = ctx if ctx else _context.context() use_peephole = _execute.make_bool(use_peephole, "use_peephole") _attr_T, _inputs_T = _execute.args_to_matching_eager([x, cs_prev, h_prev, w, wci, wcf, wco, b, i, cs, f, o, ci, co, h, cs_grad, h_grad], _ctx) (x, cs_prev, h_prev, w, wci, wcf, wco, b, i, cs, f, o, ci, co, h, cs_grad, h_grad) = _inputs_T seq_len_max = _ops.convert_to_tensor(seq_len_max, _dtypes.int64) _inputs_flat = [seq_len_max, x, cs_prev, h_prev, w, wci, wcf, wco, b, i, cs, f, o, ci, co, h, cs_grad, h_grad] _attrs = ("use_peephole", use_peephole, "T", _attr_T) _result = _execute.execute(b"BlockLSTMGrad", 8, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "BlockLSTMGrad", _inputs_flat, _attrs, _result, name) _result = _BlockLSTMGradOutput._make(_result) return _result _ops.RegisterShape("BlockLSTMGrad")(None) _lstm_block_cell_outputs = ["i", "cs", "f", "o", "ci", "co", "h"] _LSTMBlockCellOutput = _collections.namedtuple( "LSTMBlockCell", _lstm_block_cell_outputs) @tf_export('lstm_block_cell') def lstm_block_cell(x, cs_prev, h_prev, w, wci, wcf, wco, b, forget_bias=1, cell_clip=3, use_peephole=False, name=None): r"""Computes the LSTM cell forward propagation for 1 time step. This implementation uses 1 weight matrix and 1 bias vector, and there's an optional peephole connection. This kernel op implements the following mathematical equations: ```python xh = [x, h_prev] [i, f, ci, o] = xh * w + b f = f + forget_bias if not use_peephole: wci = wcf = wco = 0 i = sigmoid(cs_prev * wci + i) f = sigmoid(cs_prev * wcf + f) ci = tanh(ci) cs = ci .* i + cs_prev .* f cs = clip(cs, cell_clip) o = sigmoid(cs * wco + o) co = tanh(cs) h = co .* o ``` Args: x: A `Tensor`. Must be one of the following types: `half`, `float32`. The input to the LSTM cell, shape (batch_size, num_inputs). cs_prev: A `Tensor`. Must have the same type as `x`. Value of the cell state at previous time step. h_prev: A `Tensor`. Must have the same type as `x`. Output of the previous cell at previous time step. w: A `Tensor`. Must have the same type as `x`. The weight matrix. wci: A `Tensor`. Must have the same type as `x`. The weight matrix for input gate peephole connection. wcf: A `Tensor`. Must have the same type as `x`. The weight matrix for forget gate peephole connection. wco: A `Tensor`. Must have the same type as `x`. The weight matrix for output gate peephole connection. b: A `Tensor`. Must have the same type as `x`. The bias vector. forget_bias: An optional `float`. Defaults to `1`. The forget gate bias. cell_clip: An optional `float`. Defaults to `3`. Value to clip the 'cs' value to. use_peephole: An optional `bool`. Defaults to `False`. Whether to use peephole weights. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (i, cs, f, o, ci, co, h). i: A `Tensor`. Has the same type as `x`. The input gate. cs: A `Tensor`. Has the same type as `x`. The cell state before the tanh. f: A `Tensor`. Has the same type as `x`. The forget gate. o: A `Tensor`. Has the same type as `x`. The output gate. ci: A `Tensor`. Has the same type as `x`. The cell input. co: A `Tensor`. Has the same type as `x`. The cell after the tanh. h: A `Tensor`. Has the same type as `x`. The output h vector. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: if forget_bias is None: forget_bias = 1 forget_bias = _execute.make_float(forget_bias, "forget_bias") if cell_clip is None: cell_clip = 3 cell_clip = _execute.make_float(cell_clip, "cell_clip") if use_peephole is None: use_peephole = False use_peephole = _execute.make_bool(use_peephole, "use_peephole") _, _, _op = _op_def_lib._apply_op_helper( "LSTMBlockCell", x=x, cs_prev=cs_prev, h_prev=h_prev, w=w, wci=wci, wcf=wcf, wco=wco, b=b, forget_bias=forget_bias, cell_clip=cell_clip, use_peephole=use_peephole, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("forget_bias", _op.get_attr("forget_bias"), "cell_clip", _op.get_attr("cell_clip"), "use_peephole", _op.get_attr("use_peephole"), "T", _op.get_attr("T")) _execute.record_gradient( "LSTMBlockCell", _inputs_flat, _attrs, _result, name) _result = _LSTMBlockCellOutput._make(_result) return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "LSTMBlockCell", name, _ctx._post_execution_callbacks, x, cs_prev, h_prev, w, wci, wcf, wco, b, "forget_bias", forget_bias, "cell_clip", cell_clip, "use_peephole", use_peephole) _result = _LSTMBlockCellOutput._make(_result) return _result except _core._FallbackException: return lstm_block_cell_eager_fallback( x, cs_prev, h_prev, w, wci, wcf, wco, b, forget_bias=forget_bias, cell_clip=cell_clip, use_peephole=use_peephole, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def lstm_block_cell_eager_fallback(x, cs_prev, h_prev, w, wci, wcf, wco, b, forget_bias=1, cell_clip=3, use_peephole=False, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function lstm_block_cell """ _ctx = ctx if ctx else _context.context() if forget_bias is None: forget_bias = 1 forget_bias = _execute.make_float(forget_bias, "forget_bias") if cell_clip is None: cell_clip = 3 cell_clip = _execute.make_float(cell_clip, "cell_clip") if use_peephole is None: use_peephole = False use_peephole = _execute.make_bool(use_peephole, "use_peephole") _attr_T, _inputs_T = _execute.args_to_matching_eager([x, cs_prev, h_prev, w, wci, wcf, wco, b], _ctx) (x, cs_prev, h_prev, w, wci, wcf, wco, b) = _inputs_T _inputs_flat = [x, cs_prev, h_prev, w, wci, wcf, wco, b] _attrs = ("forget_bias", forget_bias, "cell_clip", cell_clip, "use_peephole", use_peephole, "T", _attr_T) _result = _execute.execute(b"LSTMBlockCell", 7, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "LSTMBlockCell", _inputs_flat, _attrs, _result, name) _result = _LSTMBlockCellOutput._make(_result) return _result _ops.RegisterShape("LSTMBlockCell")(None) _lstm_block_cell_grad_outputs = ["cs_prev_grad", "dicfo", "wci_grad", "wcf_grad", "wco_grad"] _LSTMBlockCellGradOutput = _collections.namedtuple( "LSTMBlockCellGrad", _lstm_block_cell_grad_outputs) @tf_export('lstm_block_cell_grad') def lstm_block_cell_grad(x, cs_prev, h_prev, w, wci, wcf, wco, b, i, cs, f, o, ci, co, cs_grad, h_grad, use_peephole, name=None): r"""Computes the LSTM cell backward propagation for 1 timestep. This implementation is to be used in conjunction of LSTMBlockCell. Args: x: A `Tensor`. Must be one of the following types: `half`, `float32`. The input to the LSTM cell, shape (batch_size, num_inputs). cs_prev: A `Tensor`. Must have the same type as `x`. The previous cell state. h_prev: A `Tensor`. Must have the same type as `x`. The previous h state. w: A `Tensor`. Must have the same type as `x`. The weight matrix. wci: A `Tensor`. Must have the same type as `x`. The weight matrix for input gate peephole connection. wcf: A `Tensor`. Must have the same type as `x`. The weight matrix for forget gate peephole connection. wco: A `Tensor`. Must have the same type as `x`. The weight matrix for output gate peephole connection. b: A `Tensor`. Must have the same type as `x`. The bias vector. i: A `Tensor`. Must have the same type as `x`. The input gate. cs: A `Tensor`. Must have the same type as `x`. The cell state before the tanh. f: A `Tensor`. Must have the same type as `x`. The forget gate. o: A `Tensor`. Must have the same type as `x`. The output gate. ci: A `Tensor`. Must have the same type as `x`. The cell input. co: A `Tensor`. Must have the same type as `x`. The cell after the tanh. cs_grad: A `Tensor`. Must have the same type as `x`. The current gradient of cs. h_grad: A `Tensor`. Must have the same type as `x`. The gradient of h vector. use_peephole: A `bool`. Whether the cell uses peephole connections. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (cs_prev_grad, dicfo, wci_grad, wcf_grad, wco_grad). cs_prev_grad: A `Tensor`. Has the same type as `x`. The gradient of cs to be back-propped. dicfo: A `Tensor`. Has the same type as `x`. The derivative wrt to [i, cs, f, o]. wci_grad: A `Tensor`. Has the same type as `x`. The gradient for wci to be back-propped. wcf_grad: A `Tensor`. Has the same type as `x`. The gradient for wcf to be back-propped. wco_grad: A `Tensor`. Has the same type as `x`. The gradient for wco to be back-propped. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: use_peephole = _execute.make_bool(use_peephole, "use_peephole") _, _, _op = _op_def_lib._apply_op_helper( "LSTMBlockCellGrad", x=x, cs_prev=cs_prev, h_prev=h_prev, w=w, wci=wci, wcf=wcf, wco=wco, b=b, i=i, cs=cs, f=f, o=o, ci=ci, co=co, cs_grad=cs_grad, h_grad=h_grad, use_peephole=use_peephole, name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = ("use_peephole", _op.get_attr("use_peephole"), "T", _op.get_attr("T")) _execute.record_gradient( "LSTMBlockCellGrad", _inputs_flat, _attrs, _result, name) _result = _LSTMBlockCellGradOutput._make(_result) return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "LSTMBlockCellGrad", name, _ctx._post_execution_callbacks, x, cs_prev, h_prev, w, wci, wcf, wco, b, i, cs, f, o, ci, co, cs_grad, h_grad, "use_peephole", use_peephole) _result = _LSTMBlockCellGradOutput._make(_result) return _result except _core._FallbackException: return lstm_block_cell_grad_eager_fallback( x, cs_prev, h_prev, w, wci, wcf, wco, b, i, cs, f, o, ci, co, cs_grad, h_grad, use_peephole=use_peephole, name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def lstm_block_cell_grad_eager_fallback(x, cs_prev, h_prev, w, wci, wcf, wco, b, i, cs, f, o, ci, co, cs_grad, h_grad, use_peephole, name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function lstm_block_cell_grad """ _ctx = ctx if ctx else _context.context() use_peephole = _execute.make_bool(use_peephole, "use_peephole") _attr_T, _inputs_T = _execute.args_to_matching_eager([x, cs_prev, h_prev, w, wci, wcf, wco, b, i, cs, f, o, ci, co, cs_grad, h_grad], _ctx) (x, cs_prev, h_prev, w, wci, wcf, wco, b, i, cs, f, o, ci, co, cs_grad, h_grad) = _inputs_T _inputs_flat = [x, cs_prev, h_prev, w, wci, wcf, wco, b, i, cs, f, o, ci, co, cs_grad, h_grad] _attrs = ("use_peephole", use_peephole, "T", _attr_T) _result = _execute.execute(b"LSTMBlockCellGrad", 5, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "LSTMBlockCellGrad", _inputs_flat, _attrs, _result, name) _result = _LSTMBlockCellGradOutput._make(_result) return _result _ops.RegisterShape("LSTMBlockCellGrad")(None) def _InitOpDefLibrary(op_list_proto_bytes): op_list = _op_def_pb2.OpList() op_list.ParseFromString(op_list_proto_bytes) _op_def_registry.register_op_list(op_list) op_def_lib = _op_def_library.OpDefLibrary() op_def_lib.add_op_list(op_list) return op_def_lib # op { # name: "BlockLSTM" # input_arg { # name: "seq_len_max" # type: DT_INT64 # } # input_arg { # name: "x" # type_attr: "T" # } # input_arg { # name: "cs_prev" # type_attr: "T" # } # input_arg { # name: "h_prev" # type_attr: "T" # } # input_arg { # name: "w" # type_attr: "T" # } # input_arg { # name: "wci" # type_attr: "T" # } # input_arg { # name: "wcf" # type_attr: "T" # } # input_arg { # name: "wco" # type_attr: "T" # } # input_arg { # name: "b" # type_attr: "T" # } # output_arg { # name: "i" # type_attr: "T" # } # output_arg { # name: "cs" # type_attr: "T" # } # output_arg { # name: "f" # type_attr: "T" # } # output_arg { # name: "o" # type_attr: "T" # } # output_arg { # name: "ci" # type_attr: "T" # } # output_arg { # name: "co" # type_attr: "T" # } # output_arg { # name: "h" # type_attr: "T" # } # attr { # name: "forget_bias" # type: "float" # default_value { # f: 1 # } # } # attr { # name: "cell_clip" # type: "float" # default_value { # f: 3 # } # } # attr { # name: "use_peephole" # type: "bool" # default_value { # b: false # } # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_HALF # type: DT_FLOAT # } # } # } # } # op { # name: "BlockLSTMGrad" # input_arg { # name: "seq_len_max" # type: DT_INT64 # } # input_arg { # name: "x" # type_attr: "T" # } # input_arg { # name: "cs_prev" # type_attr: "T" # } # input_arg { # name: "h_prev" # type_attr: "T" # } # input_arg { # name: "w" # type_attr: "T" # } # input_arg { # name: "wci" # type_attr: "T" # } # input_arg { # name: "wcf" # type_attr: "T" # } # input_arg { # name: "wco" # type_attr: "T" # } # input_arg { # name: "b" # type_attr: "T" # } # input_arg { # name: "i" # type_attr: "T" # } # input_arg { # name: "cs" # type_attr: "T" # } # input_arg { # name: "f" # type_attr: "T" # } # input_arg { # name: "o" # type_attr: "T" # } # input_arg { # name: "ci" # type_attr: "T" # } # input_arg { # name: "co" # type_attr: "T" # } # input_arg { # name: "h" # type_attr: "T" # } # input_arg { # name: "cs_grad" # type_attr: "T" # } # input_arg { # name: "h_grad" # type_attr: "T" # } # output_arg { # name: "x_grad" # type_attr: "T" # } # output_arg { # name: "cs_prev_grad" # type_attr: "T" # } # output_arg { # name: "h_prev_grad" # type_attr: "T" # } # output_arg { # name: "w_grad" # type_attr: "T" # } # output_arg { # name: "wci_grad" # type_attr: "T" # } # output_arg { # name: "wcf_grad" # type_attr: "T" # } # output_arg { # name: "wco_grad" # type_attr: "T" # } # output_arg { # name: "b_grad" # type_attr: "T" # } # attr { # name: "use_peephole" # type: "bool" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_HALF # type: DT_FLOAT # } # } # } # } # op { # name: "LSTMBlockCell" # input_arg { # name: "x" # type_attr: "T" # } # input_arg { # name: "cs_prev" # type_attr: "T" # } # input_arg { # name: "h_prev" # type_attr: "T" # } # input_arg { # name: "w" # type_attr: "T" # } # input_arg { # name: "wci" # type_attr: "T" # } # input_arg { # name: "wcf" # type_attr: "T" # } # input_arg { # name: "wco" # type_attr: "T" # } # input_arg { # name: "b" # type_attr: "T" # } # output_arg { # name: "i" # type_attr: "T" # } # output_arg { # name: "cs" # type_attr: "T" # } # output_arg { # name: "f" # type_attr: "T" # } # output_arg { # name: "o" # type_attr: "T" # } # output_arg { # name: "ci" # type_attr: "T" # } # output_arg { # name: "co" # type_attr: "T" # } # output_arg { # name: "h" # type_attr: "T" # } # attr { # name: "forget_bias" # type: "float" # default_value { # f: 1 # } # } # attr { # name: "cell_clip" # type: "float" # default_value { # f: 3 # } # } # attr { # name: "use_peephole" # type: "bool" # default_value { # b: false # } # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_HALF # type: DT_FLOAT # } # } # } # } # op { # name: "LSTMBlockCellGrad" # input_arg { # name: "x" # type_attr: "T" # } # input_arg { # name: "cs_prev" # type_attr: "T" # } # input_arg { # name: "h_prev" # type_attr: "T" # } # input_arg { # name: "w" # type_attr: "T" # } # input_arg { # name: "wci" # type_attr: "T" # } # input_arg { # name: "wcf" # type_attr: "T" # } # input_arg { # name: "wco" # type_attr: "T" # } # input_arg { # name: "b" # type_attr: "T" # } # input_arg { # name: "i" # type_attr: "T" # } # input_arg { # name: "cs" # type_attr: "T" # } # input_arg { # name: "f" # type_attr: "T" # } # input_arg { # name: "o" # type_attr: "T" # } # input_arg { # name: "ci" # type_attr: "T" # } # input_arg { # name: "co" # type_attr: "T" # } # input_arg { # name: "cs_grad" # type_attr: "T" # } # input_arg { # name: "h_grad" # type_attr: "T" # } # output_arg { # name: "cs_prev_grad" # type_attr: "T" # } # output_arg { # name: "dicfo" # type_attr: "T" # } # output_arg { # name: "wci_grad" # type_attr: "T" # } # output_arg { # name: "wcf_grad" # type_attr: "T" # } # output_arg { # name: "wco_grad" # type_attr: "T" # } # attr { # name: "use_peephole" # type: "bool" # } # attr { # name: "T" # type: "type" # allowed_values { # list { # type: DT_HALF # type: DT_FLOAT # } # } # } # } _op_def_lib = _InitOpDefLibrary(b"\n\215\002\n\tBlockLSTM\022\017\n\013seq_len_max\030\t\022\006\n\001x\"\001T\022\014\n\007cs_prev\"\001T\022\013\n\006h_prev\"\001T\022\006\n\001w\"\001T\022\010\n\003wci\"\001T\022\010\n\003wcf\"\001T\022\010\n\003wco\"\001T\022\006\n\001b\"\001T\032\006\n\001i\"\001T\032\007\n\002cs\"\001T\032\006\n\001f\"\001T\032\006\n\001o\"\001T\032\007\n\002ci\"\001T\032\007\n\002co\"\001T\032\006\n\001h\"\001T\"\033\n\013forget_bias\022\005float\032\005%\000\000\200?\"\031\n\tcell_clip\022\005float\032\005%\000\000@@\"\030\n\014use_peephole\022\004bool\032\002(\000\"\021\n\001T\022\004type:\006\n\0042\002\023\001\n\351\002\n\rBlockLSTMGrad\022\017\n\013seq_len_max\030\t\022\006\n\001x\"\001T\022\014\n\007cs_prev\"\001T\022\013\n\006h_prev\"\001T\022\006\n\001w\"\001T\022\010\n\003wci\"\001T\022\010\n\003wcf\"\001T\022\010\n\003wco\"\001T\022\006\n\001b\"\001T\022\006\n\001i\"\001T\022\007\n\002cs\"\001T\022\006\n\001f\"\001T\022\006\n\001o\"\001T\022\007\n\002ci\"\001T\022\007\n\002co\"\001T\022\006\n\001h\"\001T\022\014\n\007cs_grad\"\001T\022\013\n\006h_grad\"\001T\032\013\n\006x_grad\"\001T\032\021\n\014cs_prev_grad\"\001T\032\020\n\013h_prev_grad\"\001T\032\013\n\006w_grad\"\001T\032\r\n\010wci_grad\"\001T\032\r\n\010wcf_grad\"\001T\032\r\n\010wco_grad\"\001T\032\013\n\006b_grad\"\001T\"\024\n\014use_peephole\022\004bool\"\021\n\001T\022\004type:\006\n\0042\002\023\001\n\200\002\n\rLSTMBlockCell\022\006\n\001x\"\001T\022\014\n\007cs_prev\"\001T\022\013\n\006h_prev\"\001T\022\006\n\001w\"\001T\022\010\n\003wci\"\001T\022\010\n\003wcf\"\001T\022\010\n\003wco\"\001T\022\006\n\001b\"\001T\032\006\n\001i\"\001T\032\007\n\002cs\"\001T\032\006\n\001f\"\001T\032\006\n\001o\"\001T\032\007\n\002ci\"\001T\032\007\n\002co\"\001T\032\006\n\001h\"\001T\"\033\n\013forget_bias\022\005float\032\005%\000\000\200?\"\031\n\tcell_clip\022\005float\032\005%\000\000@@\"\030\n\014use_peephole\022\004bool\032\002(\000\"\021\n\001T\022\004type:\006\n\0042\002\023\001\n\247\002\n\021LSTMBlockCellGrad\022\006\n\001x\"\001T\022\014\n\007cs_prev\"\001T\022\013\n\006h_prev\"\001T\022\006\n\001w\"\001T\022\010\n\003wci\"\001T\022\010\n\003wcf\"\001T\022\010\n\003wco\"\001T\022\006\n\001b\"\001T\022\006\n\001i\"\001T\022\007\n\002cs\"\001T\022\006\n\001f\"\001T\022\006\n\001o\"\001T\022\007\n\002ci\"\001T\022\007\n\002co\"\001T\022\014\n\007cs_grad\"\001T\022\013\n\006h_grad\"\001T\032\021\n\014cs_prev_grad\"\001T\032\n\n\005dicfo\"\001T\032\r\n\010wci_grad\"\001T\032\r\n\010wcf_grad\"\001T\032\r\n\010wco_grad\"\001T\"\024\n\014use_peephole\022\004bool\"\021\n\001T\022\004type:\006\n\0042\002\023\001")
36.591667
2,646
0.624488
[ "MIT" ]
JustinACoder/H22-GR3-UnrealAI
Plugins/UnrealEnginePython/Binaries/Win64/Lib/site-packages/tensorflow/contrib/rnn/ops/gen_lstm_ops.py
35,128
Python
import numpy as np from torch import nn import torch.optim as optim import torch import matplotlib.pyplot as plt import pandas as pd import data_loader as dl import time import copy import utility import yaml import trainer from PIL import Image from os import path Image.MAX_IMAGE_PIXELS = None from scipy.io import savemat from sklearn.model_selection import train_test_split from torchvision import transforms import os.path from os import path BATCH_SIZE = 32 EPOCHS = 100 LR = 0.001 ANNEAL_STRAT = "cos" FEATURE_EXTRACT = False APPLY_ZCA_TRANS = True DATA_DIR = 'data/train_images' NETS = ['resnext'] # train on resnext IMAGE_SIZES = [64, 128, 224] # train for 4 resolutions def main(): # Load the meta data file df = pd.read_csv('./data/train.csv') df, label_encoder = utility.encode_labels(df) num_classes = len(df['label'].value_counts()) np.save('./data/label_encoder_classes.npy', label_encoder.classes_) # Generate the ZCA matrix if enabled for image_size in IMAGE_SIZES: # train for every res if APPLY_ZCA_TRANS: print("Making ZCA matrix ...") data_loader = dl.get_full_data_loader(df, data_dir=DATA_DIR, batch_size=BATCH_SIZE, image_size=image_size) train_dataset_arr = next(iter(data_loader))[0].numpy() zca = utility.ZCA() zca.fit(train_dataset_arr) zca_dic = {"zca_matrix": zca.ZCA_mat, "zca_mean": zca.mean} savemat("./data/zca_data.mat", zca_dic) print("Completed making ZCA matrix") # Define normalization normalize = transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], ) # Define specific transforms train_transform = transforms.Compose([ utility.AddPadding(), transforms.Resize((image_size,image_size)), transforms.RandomHorizontalFlip(p=0.5), transforms.RandomRotation(degrees=(-90, 90)), transforms.RandomVerticalFlip(p=0.5), transforms.ColorJitter(.4,.4,.4), transforms.ToTensor(), normalize ]) valid_transform = transforms.Compose([ utility.AddPadding(), transforms.Resize((image_size,image_size)), transforms.ToTensor(), normalize ]) # Create a train and valid dataset train_dataset = dl.HotelImagesDataset(df, root_dir=DATA_DIR, transform=train_transform) valid_dataset = dl.HotelImagesDataset(df, root_dir=DATA_DIR, transform=valid_transform) # Get a train and valid data loader train_loader, valid_loader = dl.get_train_valid_loader(train_dataset, valid_dataset, batch_size=BATCH_SIZE, random_seed=0) for net_type in NETS: # train for every net model = utility.initialize_net(num_classes, net_type, feature_extract=FEATURE_EXTRACT) # If old model exists, take state from it if path.exists(f"./models/model_{net_type}.pt"): print("Resuming training on trained model ...") model = utility.load_latest_model(model, f'./models/model_{net_type}.pt') # Gather the parameters to be optimized/updated in this run. params_to_update = utility.get_model_params_to_train(model, FEATURE_EXTRACT) # Send model to GPU device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = model.to(device) # Make criterion criterion = nn.CrossEntropyLoss() # Make optimizer + scheduler optimizer = torch.optim.SGD(params_to_update, lr=0.01, momentum=0.9) scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.01, patience=3) trained_model = trainer.train_model(device=device, model=model, optimizer=optimizer, criterion=criterion, train_loader=train_loader, valid_loader=valid_loader, scheduler=scheduler, net_type=net_type, epochs=EPOCHS, apply_zca_trans=APPLY_ZCA_TRANS) utility.save_current_model(trained_model, f"./models/model_{net_type}.pt") if __name__ == "__main__": main()
42.193798
93
0.516994
[ "MIT" ]
micqu/hotel-challenge
main.py
5,443
Python
# -*- coding: utf-8 -*- from __future__ import division, print_function, unicode_literals from django.core.urlresolvers import reverse from django.http import QueryDict from .crypto import generate_randomness from .models import SQRLNut from .utils import get_user_ip class SQRLInitialization(object): """ SQRL class for initializing SQRL transaction. This class is mainly responsible for initially creating and storing :obj:`.models.SQRLNut`. Also this class has helper properties for getting SQRL urls. Parameters ---------- request : HttpRequest Django standard request object nut : SQRLNut, optional SQRLNut for which to do SQRL initialization """ def __init__(self, request, nut=None): self.request = request if nut is not None: self.nut = nut def get_or_create_session_key(self): """ Get or create the session key from the request object. When not present yet, this initializes the session for the user. As a result, the request then returns session cookie to the user via session middleware. """ session_key = self.request.session.session_key if session_key is None: self.request.session.create() session_key = self.request.session.session_key return session_key @property def nut(self): """ Cached property for getting :obj:`.models.SQRLNut`. When accessed for the first time, this property either replaces or creates new :obj:`.models.SQRLNut` by using :meth:`.managers.SQRLNutManager.replace_or_create`. All the data for the creation of the nut is created by using :meth:`.generate_nut_kwargs`. """ if hasattr(self, '_nut'): return self._nut self._nut = SQRLNut.objects.replace_or_create( **self.generate_nut_kwargs() ) return self._nut @nut.setter def nut(self, value): self._nut = value def generate_nut_kwargs(self): """ Generate kwargs which can be used to create new :obj:`.models.SQRLNut`. Returns ------- dict All required kwargs to instantiate and create :obj:`.models.SQRLNut`. """ randomness = generate_randomness(64) l = len(randomness) // 2 return { 'session_key': self.get_or_create_session_key(), 'nonce': randomness[:l], 'transaction_nonce': randomness[l:], 'is_transaction_complete': False, 'ip_address': get_user_ip(self.request), } def get_sqrl_url(self): """ Get the server URL of where SQRL client will make first request. This method should be customized when a custom namespace should be used by the SQRL client when generating on the fly per-site public-private keypair. For example this can be used when a web site is a SAAS in which different "sub-sites" are determined tenant within a URL path - ``mysaas.com/<tenant>``. In that case the returned SQRL auth url should be something like - ``mysaas.com/mytenant:sqrl/auth/?nut=<nut value>``. By using ``:`` within the path will let SQRL client know that up until that point full domain name should be used to generate public-private keypair. """ return reverse('sqrl:auth') def get_sqrl_url_params(self): """ Get SQRL url params to be added as querystring params in the SQRL url. By default this only adds ``nut=<nut>``. Returns ------- str URLEncoded querystring params """ qd = QueryDict('', mutable=True) qd.update({ 'nut': self.nut.nonce, }) return qd.urlencode() @property def url(self): """ Property for getting only server-side SQRL auth view URL. This does not include the full domain within the URL. The URL is always relative to the current domain of the site. """ return ( '{url}?{params}' ''.format(url=self.get_sqrl_url(), params=self.get_sqrl_url_params()) ) @property def sqrl_url(self): """ Property for getting full SQRL auth view URL including SQRL scheme and full domain with port. """ return ( '{scheme}://{host}{url}' ''.format(scheme='sqrl' if self.request.is_secure() else 'qrl', host=self.request.get_host(), url=self.url) )
31.581081
101
0.609114
[ "MIT" ]
JamesonNetworks/django-sqrl
sqrl/sqrl.py
4,674
Python
from abc import abstractmethod import math import numpy as np import torch as th import torch.nn as nn import torch.nn.functional as F from .fp16_util import convert_module_to_f16, convert_module_to_f32, convert_module_to_f16_2 from .nn import ( checkpoint, conv_nd, linear, avg_pool_nd, zero_module, normalization, timestep_embedding, PositionalEncoding, LayerNorm32, FFN, ) class AttentionPool2d(nn.Module): """ Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py """ def __init__( self, spacial_dim: int, embed_dim: int, num_heads_channels: int, output_dim: int = None, ): super().__init__() self.positional_embedding = nn.Parameter( th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5 ) self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1) self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1) self.num_heads = embed_dim // num_heads_channels self.attention = QKVAttention(self.num_heads) def forward(self, x): b, c, *_spatial = x.shape x = x.reshape(b, c, -1) # NC(HW) x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1) x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1) x = self.qkv_proj(x) x = self.attention(x) x = self.c_proj(x) return x[:, :, 0] class TimestepBlock(nn.Module): """ Any module where forward() takes timestep embeddings as a second argument. """ @abstractmethod def forward(self, x, emb): """ Apply the module to `x` given `emb` timestep embeddings. """ class ConditionalBlock(nn.Module): """ Any module where forward() takes y as a second argument. """ @abstractmethod def forward(self, x, y): """ Apply the module to `x` given `y`. """ class TimestepEmbedSequential(nn.Sequential, TimestepBlock): """ A sequential module that passes timestep embeddings to the children that support it as an extra input. """ def forward(self, x, emb, y=None): for layer in self: if isinstance(layer, TimestepBlock): x = layer(x, emb) elif isinstance(layer, ConditionalBlock): x = layer(x, y=y) else: x = layer(x) return x class Upsample(nn.Module): """ An upsampling layer with an optional convolution. :param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then upsampling occurs in the inner-two dimensions. """ def __init__(self, channels, use_conv, dims=2, out_channels=None): super().__init__() self.channels = channels self.out_channels = out_channels or channels self.use_conv = use_conv self.dims = dims if use_conv: self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=1) def forward(self, x): assert x.shape[1] == self.channels if self.dims == 3: x = F.interpolate( x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest" ) else: x = F.interpolate(x, scale_factor=2, mode="nearest") if self.use_conv: x = self.conv(x) return x class Downsample(nn.Module): """ A downsampling layer with an optional convolution. :param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then downsampling occurs in the inner-two dimensions. """ def __init__(self, channels, use_conv, dims=2, out_channels=None): super().__init__() self.channels = channels self.out_channels = out_channels or channels self.use_conv = use_conv self.dims = dims stride = 2 if dims != 3 else (1, 2, 2) if use_conv: self.op = conv_nd( dims, self.channels, self.out_channels, 3, stride=stride, padding=1 ) else: assert self.channels == self.out_channels self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) def forward(self, x): assert x.shape[1] == self.channels return self.op(x) class ResBlock(TimestepBlock): """ A residual block that can optionally change the number of channels. :param channels: the number of input channels. :param emb_channels: the number of timestep embedding channels. :param dropout: the rate of dropout. :param out_channels: if specified, the number of out channels. :param use_conv: if True and out_channels is specified, use a spatial convolution instead of a smaller 1x1 convolution to change the channels in the skip connection. :param dims: determines if the signal is 1D, 2D, or 3D. :param use_checkpoint: if True, use gradient checkpointing on this module. :param up: if True, use this block for upsampling. :param down: if True, use this block for downsampling. """ def __init__( self, channels, emb_channels, dropout, out_channels=None, use_conv=False, use_scale_shift_norm=False, dims=2, use_checkpoint=False, up=False, down=False, ): super().__init__() self.channels = channels self.emb_channels = emb_channels self.dropout = dropout self.out_channels = out_channels or channels self.use_conv = use_conv self.use_checkpoint = use_checkpoint self.use_scale_shift_norm = use_scale_shift_norm self.in_layers = nn.Sequential( normalization(channels), nn.SiLU(), conv_nd(dims, channels, self.out_channels, 3, padding=1), ) self.updown = up or down if up: self.h_upd = Upsample(channels, False, dims) self.x_upd = Upsample(channels, False, dims) elif down: self.h_upd = Downsample(channels, False, dims) self.x_upd = Downsample(channels, False, dims) else: self.h_upd = self.x_upd = nn.Identity() self.emb_layers = nn.Sequential( nn.SiLU(), linear( emb_channels, 2 * self.out_channels if use_scale_shift_norm else self.out_channels, ), ) self.out_layers = nn.Sequential( normalization(self.out_channels), nn.SiLU(), nn.Dropout(p=dropout), zero_module( conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1) ), ) if self.out_channels == channels: self.skip_connection = nn.Identity() elif use_conv: self.skip_connection = conv_nd( dims, channels, self.out_channels, 3, padding=1 ) else: self.skip_connection = conv_nd(dims, channels, self.out_channels, 1) def forward(self, x, emb): """ Apply the block to a Tensor, conditioned on a timestep embedding. :param x: an [N x C x ...] Tensor of features. :param emb: an [N x emb_channels] Tensor of timestep embeddings. :return: an [N x C x ...] Tensor of outputs. """ return checkpoint( self._forward, (x, emb), self.parameters(), self.use_checkpoint ) def _forward(self, x, emb): if self.updown: in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] h = in_rest(x) h = self.h_upd(h) x = self.x_upd(x) h = in_conv(h) else: h = self.in_layers(x) emb_out = self.emb_layers(emb).type(h.dtype) while len(emb_out.shape) < len(h.shape): emb_out = emb_out[..., None] if self.use_scale_shift_norm: out_norm, out_rest = self.out_layers[0], self.out_layers[1:] scale, shift = th.chunk(emb_out, 2, dim=1) h = out_norm(h) * (1 + scale) + shift h = out_rest(h) else: h = h + emb_out h = self.out_layers(h) return self.skip_connection(x) + h class SubAttentionBlock(nn.Module): """ An attention block that allows spatial positions to attend to each other. Originally ported from here, but adapted to the N-d case. https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66. """ def __init__( self, channels, num_heads=1, num_head_channels=-1, use_checkpoint=False, use_new_attention_order=False, cross=False, enc_attn_dim=None, norm_type='group', dropout=0., ): super().__init__() self.channels = channels if num_head_channels == -1: self.num_heads = num_heads else: assert ( channels % num_head_channels == 0 ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}" self.num_heads = channels // num_head_channels self.use_checkpoint = use_checkpoint self.norm = normalization(channels) if norm_type == 'group' else LayerNorm32(channels) qkv_dim = channels * 3 if not cross else channels self.qkv = conv_nd(1, channels, qkv_dim, 1) # split heads before split qkv self.attention = QKVAttentionLegacy(self.num_heads, dropout=dropout) self.proj_out = conv_nd(1, channels, channels, 1) if norm_type == 'group': self.proj_out = zero_module(self.proj_out) self.dropout = nn.Dropout(p=dropout) if cross and channels != enc_attn_dim: self.adjust_kv_dim = conv_nd(1, enc_attn_dim, channels, 1) def forward(self, x, y=None): return checkpoint(self._forward, (x, y), self.parameters(), self.use_checkpoint) def _forward(self, x, y): b, c, *spatial = x.shape x = x.reshape(b, c, -1) qkv = self.qkv(self.norm(x)) if hasattr(self, 'adjust_kv_dim'): y = self.adjust_kv_dim(y) h = self.attention(qkv, y=y) h = self.dropout(self.proj_out(h)) return (x + h).reshape(b, c, *spatial) class AttentionBlock(ConditionalBlock): """ An attention block that allows spatial positions to attend to each other. Originally ported from here, but adapted to the N-d case. https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66. """ def __init__(self, *args, **kwargs): super().__init__() self.attn1 = SubAttentionBlock(*args, **{**kwargs, **{'cross': False}}) if kwargs['cross']: self.attn2 = SubAttentionBlock(*args, **kwargs) def forward(self, x, y=None): x = self.attn1(x) if hasattr(self, 'attn2'): x = self.attn2(x, y) return x def count_flops_attn(model, _x, y): """ A counter for the `thop` package to count the operations in an attention operation. Meant to be used like: macs, params = thop.profile( model, inputs=(inputs, timestamps), custom_ops={QKVAttention: QKVAttention.count_flops}, ) """ b, c, *spatial = y[0].shape num_spatial = int(np.prod(spatial)) # We perform two matmuls with the same number of ops. # The first computes the weight matrix, the second computes # the combination of the value vectors. matmul_ops = 2 * b * (num_spatial ** 2) * c model.total_ops += th.DoubleTensor([matmul_ops]) class QKVAttentionLegacy(nn.Module): """ A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping """ def __init__(self, n_heads, dropout=0.): super().__init__() self.n_heads = n_heads self.dropout = nn.Dropout(p=dropout) def forward(self, qkv, y): """ Apply QKV attention. :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs. :return: an [N x (H * C) x T] tensor after attention. """ bs, width, length = qkv.shape if y is None: assert width % (3 * self.n_heads) == 0 ch = width // (3 * self.n_heads) q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1) else: assert width % (self.n_heads) == 0 ch = width // (self.n_heads) q = qkv.reshape(bs * self.n_heads, ch, length) k = v = y.reshape(bs * self.n_heads, ch, -1) scale = 1 / math.sqrt(math.sqrt(ch)) weight = th.einsum( "bct,bcs->bts", q * scale, k * scale ) # More stable with f16 than dividing afterwards weight = self.dropout(th.softmax(weight.float(), dim=-1).type(weight.dtype)) a = th.einsum("bts,bcs->bct", weight, v) return a.reshape(bs, -1, length) @staticmethod def count_flops(model, _x, y): return count_flops_attn(model, _x, y) class QKVAttention(nn.Module): """ A module which performs QKV attention and splits in a different order. """ def __init__(self, n_heads): super().__init__() self.n_heads = n_heads def forward(self, qkv): """ Apply QKV attention. :param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs. :return: an [N x (H * C) x T] tensor after attention. """ bs, width, length = qkv.shape assert width % (3 * self.n_heads) == 0 ch = width // (3 * self.n_heads) q, k, v = qkv.chunk(3, dim=1) scale = 1 / math.sqrt(math.sqrt(ch)) weight = th.einsum( "bct,bcs->bts", (q * scale).view(bs * self.n_heads, ch, length), (k * scale).view(bs * self.n_heads, ch, length), ) # More stable with f16 than dividing afterwards weight = th.softmax(weight.float(), dim=-1).type(weight.dtype) a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length)) return a.reshape(bs, -1, length) @staticmethod def count_flops(model, _x, y): return count_flops_attn(model, _x, y) class TransformerEncoder(nn.Module): def __init__(self, enc_attn_dim, vocab_size, use_checkpoint, clip=False, dropout=0.): super().__init__() d_model = enc_attn_dim self.use_checkpoint = use_checkpoint self.encoder = nn.ModuleList([]) for _ in range(d_model//64): self.encoder += [AttentionBlock(d_model, num_heads=d_model//64, norm_type='layernorm', cross=False, use_checkpoint=use_checkpoint, dropout=dropout)] self.encoder += [FFN(d_model, dropout=dropout)] self.pos_enc = PositionalEncoding(d_model, dropout=dropout) self.emb = nn.Embedding(vocab_size, d_model) if clip: self.clip_proj = conv_nd(1, enc_attn_dim, enc_attn_dim, 1) def forward(self, text): x = self.pos_enc(self.emb(text)).transpose(1, 2) for idx, layer in enumerate(self.encoder): x = checkpoint(layer.forward, (x,), layer.parameters(), self.use_checkpoint) if not hasattr(self, 'clip_proj'): return x else: return self.clip_proj(x[th.arange(x.shape[0]), :, text.argmax(dim=-1)].unsqueeze(-1)).squeeze(-1) class UNetModel(nn.Module): """ The full UNet model with attention and timestep embedding. :param in_channels: channels in the input Tensor. :param model_channels: base channel count for the model. :param out_channels: channels in the output Tensor. :param num_res_blocks: number of residual blocks per downsample. :param attention_resolutions: a collection of downsample rates at which attention will take place. May be a set, list, or tuple. For example, if this contains 4, then at 4x downsampling, attention will be used. :param dropout: the dropout probability. :param channel_mult: channel multiplier for each level of the UNet. :param conv_resample: if True, use learned convolutions for upsampling and downsampling. :param dims: determines if the signal is 1D, 2D, or 3D. :param text_length: if specified (as an int), then this model will be conditional. :param use_checkpoint: use gradient checkpointing to reduce memory usage. :param num_heads: the number of attention heads in each attention layer. :param num_heads_channels: if specified, ignore num_heads and instead use a fixed channel width per attention head. :param num_heads_upsample: works with num_heads to set a different number of heads for upsampling. Deprecated. :param use_scale_shift_norm: use a FiLM-like conditioning mechanism. :param resblock_updown: use residual blocks for up/downsampling. :param use_new_attention_order: use a different attention pattern for potentially increased efficiency. """ def __init__( self, image_size, in_channels, model_channels, out_channels, num_res_blocks, attention_resolutions, dropout=0, channel_mult=(1, 2, 4, 8), conv_resample=True, dims=2, use_checkpoint=False, use_fp16=True, num_heads=1, num_head_channels=-1, num_heads_upsample=-1, use_scale_shift_norm=True, resblock_updown=True, use_new_attention_order=False, enc_attn_dim=None, vocab_size=None, cross=True, text_level=False, dropout_text=0, cond_text=False, ): super().__init__() if num_heads_upsample == -1: num_heads_upsample = num_heads self.image_size = image_size self.in_channels = in_channels self.model_channels = model_channels self.out_channels = out_channels self.num_res_blocks = num_res_blocks self.attention_resolutions = attention_resolutions self.dropout = dropout self.channel_mult = channel_mult self.conv_resample = conv_resample self.use_checkpoint = use_checkpoint self.dtype = th.float16 if use_fp16 else th.float32 self.num_heads = num_heads self.num_head_channels = num_head_channels self.num_heads_upsample = num_heads_upsample self.cond_text = cond_text time_embed_dim = model_channels * 4 self.time_embed = nn.Sequential( linear(model_channels, time_embed_dim), nn.SiLU(), linear(time_embed_dim, time_embed_dim), ) if self.cond_text: self.text_encoder = TransformerEncoder(enc_attn_dim, vocab_size, use_checkpoint, dropout=dropout_text) else: cross = False self.input_blocks = nn.ModuleList( [ TimestepEmbedSequential( conv_nd(dims, in_channels, model_channels, 3, padding=1) ) ] ) self._feature_size = model_channels input_block_chans = [model_channels] ch = model_channels ds = 1 for level, mult in enumerate(channel_mult): for _ in range(num_res_blocks): layers = [ ResBlock( ch, time_embed_dim, dropout, out_channels=mult * model_channels, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, ) ] ch = mult * model_channels if ds in attention_resolutions: layers.append( AttentionBlock( ch, use_checkpoint=use_checkpoint, num_heads=num_heads, num_head_channels=num_head_channels, use_new_attention_order=use_new_attention_order, enc_attn_dim=enc_attn_dim, cross=cross, ) ) self.input_blocks.append(TimestepEmbedSequential(*layers)) self._feature_size += ch input_block_chans.append(ch) if level != len(channel_mult) - 1: out_ch = ch self.input_blocks.append( TimestepEmbedSequential( ResBlock( ch, time_embed_dim, dropout, out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, down=True, ) if resblock_updown else Downsample( ch, conv_resample, dims=dims, out_channels=out_ch ) ) ) ch = out_ch input_block_chans.append(ch) ds *= 2 self._feature_size += ch self.middle_block = TimestepEmbedSequential( ResBlock( ch, time_embed_dim, dropout, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, ), AttentionBlock( ch, use_checkpoint=use_checkpoint, num_heads=num_heads, num_head_channels=num_head_channels, use_new_attention_order=use_new_attention_order, enc_attn_dim=enc_attn_dim, cross=cross, ), ResBlock( ch, time_embed_dim, dropout, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, ), ) self._feature_size += ch self.output_blocks = nn.ModuleList([]) for level, mult in list(enumerate(channel_mult))[::-1]: for i in range(num_res_blocks + 1): ich = input_block_chans.pop() layers = [ ResBlock( ch + ich, time_embed_dim, dropout, out_channels=model_channels * mult, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, ) ] ch = model_channels * mult if ds in attention_resolutions: layers.append( AttentionBlock( ch, use_checkpoint=use_checkpoint, num_heads=num_heads_upsample, num_head_channels=num_head_channels, use_new_attention_order=use_new_attention_order, enc_attn_dim=enc_attn_dim, cross=cross, ) ) if level and i == num_res_blocks: out_ch = ch layers.append( ResBlock( ch, time_embed_dim, dropout, out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, up=True, ) if resblock_updown else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch) ) ds //= 2 self.output_blocks.append(TimestepEmbedSequential(*layers)) self._feature_size += ch self.out = nn.Sequential( normalization(ch), nn.SiLU(), zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)), ) def convert_to_fp16(self): """ Convert the torso of the model to float16. """ self.input_blocks.apply(convert_module_to_f16) self.middle_block.apply(convert_module_to_f16) self.output_blocks.apply(convert_module_to_f16) if hasattr(self, 'text_encoder'): self.text_encoder.apply(convert_module_to_f16_2) def convert_to_fp32(self): """ Convert the torso of the model to float32. """ self.input_blocks.apply(convert_module_to_f32) self.middle_block.apply(convert_module_to_f32) self.output_blocks.apply(convert_module_to_f32) if hasattr(self, 'text_encoder'): self.text_encoder.apply(convert_module_to_f32) def forward(self, x, timesteps, y=None): """ Apply the model to an input batch. :param x: an [N x C x ...] Tensor of inputs. :param timesteps: a 1-D batch of timesteps. :param y: an [N, L] Tensor of texts, if conditional. :return: an [N x C x ...] Tensor of outputs. """ hs = [] emb = self.time_embed(timestep_embedding(timesteps, self.model_channels)) if hasattr(self, 'text_encoder'): y = self.text_encoder(y) else: y = None h = x.type(self.dtype) for module in self.input_blocks: h = module(h, emb, y=y) hs.append(h) h = self.middle_block(h, emb, y=y) for module in self.output_blocks: h = th.cat([h, hs.pop()], dim=1) h = module(h, emb, y=y) h = h.type(x.dtype) return self.out(h) class SuperResModel(UNetModel): """ A UNetModel that performs super-resolution. Expects an extra kwarg `low_res` to condition on a low-resolution image. """ def __init__(self, image_size, in_channels, *args, **kwargs): super().__init__(image_size, in_channels * 2, *args, **kwargs) def forward(self, x, timesteps, **kwargs): _, _, new_height, new_width = x.shape upsampled = F.interpolate(kwargs.pop("low_res"), (new_height, new_width), mode="bilinear") x = th.cat([x, upsampled], dim=1) return super().forward(x, timesteps, **kwargs) class Classifier(nn.Module): """ The half UNet model with attention and timestep embedding + text encoder as CLIP. """ def __init__( self, image_size, in_channels, model_channels, num_res_blocks, attention_resolutions, dropout=0, channel_mult=(1, 2, 4, 8), conv_resample=True, dims=2, use_checkpoint=False, use_fp16=True, num_heads=1, num_head_channels=-1, num_heads_upsample=-1, use_scale_shift_norm=True, resblock_updown=True, use_new_attention_order=False, enc_attn_dim=None, vocab_size=None, cross=False, dropout_text=0, ): super().__init__() self.image_encoder = ImageEncoder( image_size, in_channels, model_channels, num_res_blocks, attention_resolutions, dropout=dropout, channel_mult=channel_mult, conv_resample=conv_resample, dims=dims, use_checkpoint=use_checkpoint, use_fp16=use_fp16, num_heads=num_heads, num_head_channels=num_head_channels, num_heads_upsample=num_heads_upsample, use_scale_shift_norm=use_scale_shift_norm, resblock_updown=resblock_updown, use_new_attention_order=use_new_attention_order, enc_attn_dim=enc_attn_dim, cross=cross, ) self.text_encoder = TransformerEncoder(enc_attn_dim, vocab_size, use_checkpoint, clip=True, dropout=dropout_text) self.logit_scale = LogitScale() def convert_to_fp16(self): self.text_encoder.apply(convert_module_to_f16_2) self.image_encoder.apply(convert_module_to_f16) def convert_to_fp32(self): self.text_encoder.apply(convert_module_to_f32) self.image_encoder.apply(convert_module_to_f32) def clip_loss(x, timesteps, y): image_features = self.image_encoder(x, timesteps) text_features = self.text_encoder(y) logit_scale = self.logit_scale(image_features.dtype) return clip_loss(image_features, text_features, logit_scale) class LogitScale(nn.Module): def __init__(self): super().__init__() self.logit_scale = nn.Parameter(th.ones([]) * np.log(1 / 0.07)) self.max_log_temp = np.log(100) def forward(self, dtype): logit_scale = self.max_log_temp - F.softplus(self.max_log_temp - self.logit_scale) return logit_scale.exp().type(dtype) class TextEncoder(nn.Module): def __init__( self, enc_attn_dim, vocab_size, use_checkpoint, dropout_text, ): super().__init__() self.text_encoder = TransformerEncoder(enc_attn_dim, vocab_size, use_checkpoint, clip=True, dropout=dropout_text) def forward(self, y): text_features = self.text_encoder(y) return F.normalize(text_features, dim=-1) class ImageEncoder(nn.Module): """ The half UNet model with attention and timestep embedding. """ def __init__( self, image_size, in_channels, model_channels, num_res_blocks, attention_resolutions, dropout=0, channel_mult=(1, 2, 4, 8), conv_resample=True, dims=2, use_checkpoint=False, use_fp16=True, num_heads=1, num_head_channels=-1, num_heads_upsample=-1, use_scale_shift_norm=True, resblock_updown=True, use_new_attention_order=False, enc_attn_dim=None, cross=False, ): super().__init__() if num_heads_upsample == -1: num_heads_upsample = num_heads self.in_channels = in_channels self.model_channels = model_channels self.num_res_blocks = num_res_blocks self.attention_resolutions = attention_resolutions self.dropout = dropout self.channel_mult = channel_mult self.conv_resample = conv_resample self.use_checkpoint = use_checkpoint self.dtype = th.float16 if use_fp16 else th.float32 self.num_heads = num_heads self.num_head_channels = num_head_channels self.num_heads_upsample = num_heads_upsample time_embed_dim = model_channels * 4 self.time_embed = nn.Sequential( linear(model_channels, time_embed_dim), nn.SiLU(), linear(time_embed_dim, time_embed_dim), ) self.input_blocks = nn.ModuleList( [ TimestepEmbedSequential( conv_nd(dims, in_channels, model_channels, 3, padding=1) ) ] ) self._feature_size = model_channels input_block_chans = [model_channels] ch = model_channels ds = 1 for level, mult in enumerate(channel_mult): for _ in range(num_res_blocks): layers = [ ResBlock( ch, time_embed_dim, dropout, out_channels=mult * model_channels, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, ) ] ch = mult * model_channels if ds in attention_resolutions: layers.append( AttentionBlock( ch, use_checkpoint=use_checkpoint, num_heads=num_heads, num_head_channels=num_head_channels, use_new_attention_order=use_new_attention_order, cross=cross, ) ) self.input_blocks.append(TimestepEmbedSequential(*layers)) self._feature_size += ch input_block_chans.append(ch) if level != len(channel_mult) - 1: out_ch = ch self.input_blocks.append( TimestepEmbedSequential( ResBlock( ch, time_embed_dim, dropout, out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, down=True, ) if resblock_updown else Downsample( ch, conv_resample, dims=dims, out_channels=out_ch ) ) ) ch = out_ch input_block_chans.append(ch) ds *= 2 self._feature_size += ch self.middle_block = TimestepEmbedSequential( ResBlock( ch, time_embed_dim, dropout, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, ), AttentionBlock( ch, use_checkpoint=use_checkpoint, num_heads=num_heads, num_head_channels=num_head_channels, use_new_attention_order=use_new_attention_order, cross=cross, ), ResBlock( ch, time_embed_dim, dropout, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, ), ) self._feature_size += ch assert num_head_channels != -1 self.out = nn.Sequential( normalization(ch), nn.SiLU(), AttentionPool2d( (image_size // ds), ch, num_head_channels, enc_attn_dim ), ) def forward(self, x, timesteps): """ Apply the model to an input batch. :param x: an [N x C x ...] Tensor of inputs. :param timesteps: a 1-D batch of timesteps. :return: an [N x K] Tensor of outputs. """ emb = self.time_embed(timestep_embedding(timesteps, self.model_channels)) results = [] h = x.type(self.dtype) for module in self.input_blocks: h = module(h, emb) h = self.middle_block(h, emb).type(self.dtype) image_features = self.out(h) # normalized features image_features = F.normalize(image_features, dim=-1) return image_features
34.767331
160
0.55646
[ "MIT" ]
AranKomat/Diff-DALLE
diff_dalle/unet.py
36,610
Python
''' This file is automatically generated; Do not edit it. :) ''' VERSION_INFO = { 'final': True, 'version': '1.19.0', 'branch_nick': 'feature-0-Rucio_1_19_0_release_preparation', 'revision_id': 'dd9f8f94d94996ab5b3aa45b4c23ccc77cff604a', 'revno': 7719 }
22.916667
64
0.676364
[ "Apache-2.0" ]
pujanm/rucio
lib/rucio/vcsversion.py
275
Python
#! /usr/bin/env python """ cryptopy.cipher.aes_sbox_analysis AES Sbox Analysis - a simple analysis of the AES Sbox that determines the number and size of the permutation subgroups in the transformation. Could be extended to examine any Sbox ... Copyright (c) 2002 by Paul A. Lambert Read LICENSE.txt for license information. 2002-12-05 Added validation of equation form of AES 2002-06-01 Original """ # The AES Sbox sbbytes = (0x63,0x7c,0x77,0x7b,0xf2,0x6b,0x6f,0xc5, 0x30,0x01,0x67,0x2b,0xfe,0xd7,0xab,0x76, 0xca,0x82,0xc9,0x7d,0xfa,0x59,0x47,0xf0, 0xad,0xd4,0xa2,0xaf,0x9c,0xa4,0x72,0xc0, 0xb7,0xfd,0x93,0x26,0x36,0x3f,0xf7,0xcc, 0x34,0xa5,0xe5,0xf1,0x71,0xd8,0x31,0x15, 0x04,0xc7,0x23,0xc3,0x18,0x96,0x05,0x9a, 0x07,0x12,0x80,0xe2,0xeb,0x27,0xb2,0x75, 0x09,0x83,0x2c,0x1a,0x1b,0x6e,0x5a,0xa0, 0x52,0x3b,0xd6,0xb3,0x29,0xe3,0x2f,0x84, 0x53,0xd1,0x00,0xed,0x20,0xfc,0xb1,0x5b, 0x6a,0xcb,0xbe,0x39,0x4a,0x4c,0x58,0xcf, 0xd0,0xef,0xaa,0xfb,0x43,0x4d,0x33,0x85, 0x45,0xf9,0x02,0x7f,0x50,0x3c,0x9f,0xa8, 0x51,0xa3,0x40,0x8f,0x92,0x9d,0x38,0xf5, 0xbc,0xb6,0xda,0x21,0x10,0xff,0xf3,0xd2, 0xcd,0x0c,0x13,0xec,0x5f,0x97,0x44,0x17, 0xc4,0xa7,0x7e,0x3d,0x64,0x5d,0x19,0x73, 0x60,0x81,0x4f,0xdc,0x22,0x2a,0x90,0x88, 0x46,0xee,0xb8,0x14,0xde,0x5e,0x0b,0xdb, 0xe0,0x32,0x3a,0x0a,0x49,0x06,0x24,0x5c, 0xc2,0xd3,0xac,0x62,0x91,0x95,0xe4,0x79, 0xe7,0xc8,0x37,0x6d,0x8d,0xd5,0x4e,0xa9, 0x6c,0x56,0xf4,0xea,0x65,0x7a,0xae,0x08, 0xba,0x78,0x25,0x2e,0x1c,0xa6,0xb4,0xc6, 0xe8,0xdd,0x74,0x1f,0x4b,0xbd,0x8b,0x8a, 0x70,0x3e,0xb5,0x66,0x48,0x03,0xf6,0x0e, 0x61,0x35,0x57,0xb9,0x86,0xc1,0x1d,0x9e, 0xe1,0xf8,0x98,0x11,0x69,0xd9,0x8e,0x94, 0x9b,0x1e,0x87,0xe9,0xce,0x55,0x28,0xdf, 0x8c,0xa1,0x89,0x0d,0xbf,0xe6,0x42,0x68, 0x41,0x99,0x2d,0x0f,0xb0,0x54,0xbb,0x16) def groups(subbytes): gdict={} # a dictionary of the cycles indexed by the first cycle element touched=[0 for i in range(len(subbytes))] for i in range(len(sbbytes)): touched.append(0) for i in range(len(sbbytes)): element = i cycle = [] if not touched[element]: for j in range (i,len(sbbytes)): touched[element] = 1 cycle.append(element) element = sbbytes[element] if element == i: break gdict[cycle[1]]=cycle else: pass return gdict def grpv(subbytes): """" Returns a list of tuples (cycle start, cycle size) """ v=[] z=groups(subbytes) for i in z.keys(): v.append( [i, len(z[i])] ) return v def sgv(subbytes): x = grpv(subbytes) sum = 0 for i in x: sum = sum + i[1] return sum def main(): cycles = grpv(sbbytes) print 'The AES sbox contains ', print len(cycles), print 'permutation subgroups' print 'The AES sbox subgroups (start, length) are:' print cycles # Make this test module runnable from the command prompt if __name__ == "__main__": main()
33.009524
81
0.585978
[ "MIT" ]
Twilight0/script.module.cryptolib
lib/cryptopy/cipher/aes_sbox_analysis.py
3,466
Python
import csv # csv reader functions from collections.abc import Counter # count uniques in a file quickly, O(nlogn) from decimal import Decimal # just to show decimals with lower precision # Global Variables # from cfltools.settings import APPFOLDER class IpAddress: def __init__(self, ip, numOccurances): self.ip = ip self.numOccurances = numOccurances self.startTime = float('inf') self.endTime = float('-inf') def findTimeColumn(row): """Dynamically determine which column of a log file contains dates. Parameters: row: A row of a logfile Returns: iterator: An integer defining the row that contains a valid date string. """ import dateparser iterator = 0 for item in row: if item.isdigit(): # This is a hacky way of avoiding integers from # being detected as date/time information iterator += 1 continue this = dateparser.parse(item) if this: return iterator iterator += 1 return None def findIpColumn(row): import re iterator = 0 # What's below are two regular expressions that pattern match to IP # addresses. I tried using a library for this (netaddr) but that # started matching to long integers that happened to have the right # bits for an IP address. ipv4_address = re.compile(""" ^(?:(?:[0-9]|[1-9][0-9]|1[0-9] {2}|2[0-4][0-9]|25[0-5])\\.) {3}(?:[0-9]|[1-9][0-9]|1[0-9] {2}|2[0-4][0-9]|25[0-5])$ """, re.VERBOSE) ipv6_address = re.compile(""" ^(?:(?:[0-9A-Fa-f]{1,4}:) {6}(?:[0-9A-Fa-f]{1,4}:[0-9A-Fa-f]{1,4}| (?:(?:[0-9]|[1-9][0-9]|1[0-9] {2}|2[0-4][0-9]|25[0-5])\\.) {3}(?:[0-9]|[1-9][0-9]|1[0-9] {2}|2[0-4][0-9]|25[0-5]))|:: (?:[0-9A-Fa-f]{1,4}:) {5}(?:[0-9A-Fa-f]{1,4}: [0-9A-Fa-f]{1,4}|(?:(?:[0-9]|[1-9][0-9]|1[0-9] {2}|2[0-4][0-9]|25[0-5])\\.) {3}(?:[0-9]|[1-9][0-9]|1[0-9] {2}|2[0-4][0-9]|25[0-5]))|(?:[0-9A-Fa-f]{1,4})?:: (?:[0-9A-Fa-f]{1,4}:) {4}(?:[0-9A-Fa-f]{1,4}:[0-9A-Fa-f]{1,4}| (?:(?:[0-9]|[1-9][0-9]|1[0-9] {2}|2[0-4][0-9]|25[0-5])\\.) {3}(?:[0-9]|[1-9][0-9]|1[0-9] {2}|2[0-4][0-9]|25[0-5]))| (?:[0-9A-Fa-f]{1,4}:[0-9A-Fa-f]{1,4})?:: (?:[0-9A-Fa-f]{1,4}:) {3}(?:[0-9A-Fa-f]{1,4}:[0-9A-Fa-f]{1,4}| (?:(?:[0-9]|[1-9][0-9]|1[0-9] {2}|2[0-4][0-9]|25[0-5])\\.) {3}(?:[0-9]|[1-9][0-9]|1[0-9] {2}|2[0-4][0-9]|25[0-5]))| (?:(?:[0-9A-Fa-f]{1,4}:){,2}[0-9A-Fa-f]{1,4})?:: (?:[0-9A-Fa-f]{1,4}:) {2}(?:[0-9A-Fa-f]{1,4}:[0-9A-Fa-f]{1,4}| (?:(?:[0-9]|[1-9][0-9]|1[0-9] {2}|2[0-4][0-9]|25[0-5])\\.) {3}(?:[0-9]|[1-9][0-9]|1[0-9] {2}|2[0-4][0-9]|25[0-5]))| (?:(?:[0-9A-Fa-f]{1,4}:){,3}[0-9A-Fa-f]{1,4})?:: [0-9A-Fa-f]{1,4}:(?:[0-9A-Fa-f]{1,4}: [0-9A-Fa-f]{1,4}|(?:(?:[0-9]|[1-9][0-9]|1[0-9] {2}|2[0-4][0-9]|25[0-5])\\.) {3}(?:[0-9]|[1-9][0-9]|1[0-9] {2}|2[0-4][0-9]|25[0-5]))| (?:(?:[0-9A-Fa-f]{1,4}:){,4}[0-9A-Fa-f]{1,4})?:: (?:[0-9A-Fa-f]{1,4}:[0-9A-Fa-f]{1,4}| (?:(?:[0-9]|[1-9][0-9]|1[0-9] {2}|2[0-4][0-9]|25[0-5])\\.) {3}(?:[0-9]|[1-9][0-9]|1[0-9] {2}|2[0-4][0-9]|25[0-5]))| (?:(?:[0-9A-Fa-f]{1,4}:){,5}[0-9A-Fa-f]{1,4})?:: [0-9A-Fa-f]{1,4}|(?:(?:[0-9A-Fa-f]{1,4}:) {,6}[0-9A-Fa-f]{1,4})?::)$ """, re.VERBOSE) # and that's how you regex IPv6 for item in row: ipv4_check = ipv4_address.match(item) ipv6_check = ipv6_address.match(item) if ipv4_check or ipv6_check: return iterator iterator = iterator + 1 print("Could not find a column containing IP addresses!") print("Error in getuniqueip.py, findIpColumn()") exit(1) def scrapeIPs(filename): """Scrapes all IP addresses from a logfile. """ # Encoding must be UTF-8 to allow for international chars file = open(filename, encoding='utf-8') logfile_reader = csv.reader(file) # csv reader class # Put all of the IP addresses into one list. # print('Getting the size of the logfile....\n') # Count the number of rows so we can track progress later. logsize = sum(1 for row in logfile_reader) # Determine which row contains an IP address. file.seek(0) next(logfile_reader) row = next(logfile_reader) ip_column = findIpColumn(row) file.seek(0) # Return to the top of the csv. next(logfile_reader) # Skip the header row. print('Processing ' + str(logsize) + ' entries.') iterator = 0 all_ip_address = [] for entry in logfile_reader: try: # For each entry, we will append that entry's IP address to # a list of all the IPs. We'll return that list later. entry_ip_address = entry[ip_column] all_ip_address.append(entry_ip_address) iterator = iterator + 1 if iterator % 1000 == 0: percentDone = round(Decimal((iterator / logsize) * 100), 2) string = 'Currently: Scraping all IPs from file. Entry ' + \ str(iterator) + ' of ' + str(logsize) + \ ' Percent Done: ' + str(percentDone) + '%.' print(string, end='\r') except UserWarning: print('\n* * * Invalid entry detected on line ' + str(iterator) + '.') iterator = iterator + 1 print('Line data: ') print('Using column {} for IP address.'.format(ip_column)) print('Data from that column, for this entry, ' 'was {}.'.format(entry[ip_column])) print(entry) print('\n') return all_ip_address def getUniqueIps(all_ip_address): # Run Counter() on the complete list of IPs. # iterator = 0 counted_ip_address = Counter(all_ip_address) unique_ip_address = [] print('=== Creating list of unique IPs. ===') logsize = len(counted_ip_address) for address in counted_ip_address: try: # Create a new IpAddress() object for each discovered # IP. Store the address and the counts for its appearance # in that object. this_addr = address this_count = counted_ip_address[address] newIpAddress = IpAddress(this_addr, this_count) unique_ip_address.append(newIpAddress) iterator = iterator + 1 if (iterator % 1000) == 0: percentDone = round(Decimal((iterator / logsize) * 100), 2) string = 'Currently: Creating Unique IP List. Entry ' + \ str(iterator) + ' of ' + str(logsize) + \ ' Percent Done: ' + str(percentDone) + '%.' print(string, end='\r') except UserWarning: print('\nError creating IP address object!') print('Crash data:') print('\tThe address line was:') print(address) # Sort the list by most frequently occuring IP. # percentDone = 100 string = 'Currently: Generating report. Entry ' + str(iterator) + \ ' of ' + str(logsize) + ' Percent Done: ' + str(percentDone) + \ '%.' print(string, '\n') unique_ip_address.sort(key=lambda x: x.numOccurances, reverse=True) return unique_ip_address def sendUniqueToDatabase(unique_ip_address, APPFOLDER, incident_id, conn): print(APPFOLDER) c = conn.cursor() for ip in unique_ip_address: c.execute(""" INSERT INTO ipaddrs(ip,number_occurances,incident_id, start_time,end_time) VALUES(?,?,?,?,?) """, (ip.ip, ip.numOccurances, incident_id, ip.startTime, ip.endTime)) conn.commit() def getTimerange(filename, unique_ip_address): """Naive method to determine the time range during which an IP address appears in a logfile. This is sort of hacky. I'm using timestring to process fairly arbitrary text input strings for dates from logs, converting those into POSIX dates and times, and then comparing that to a simple integer stored in the object to establish our range. Parameters: filename: The logfile we are examining in this job. unique_ip_address: A list of IpAddress() objects. Returns: unique_ip_address: A list of unique IPAddress() objects with dates included. """ import csv import dateparser print('Determining date/time ranges for each unique IP...') file = open(filename, 'r', encoding='utf-8') logfile_reader = csv.reader(file) next(logfile_reader) row = next(logfile_reader) ip_column = findIpColumn(row) time_column = findTimeColumn(row) file.seek(0) next(logfile_reader) # TODO: get this runtime under O(n^2) for ip in unique_ip_address: file.seek(0) for entry in logfile_reader: if ip.ip == entry[ip_column]: entry_time = dateparser.parse(entry[time_column], settings={'TIMEZONE': 'UTC', 'RETURN_AS_TIMEZONE_AWARE': True }).timestamp() if ip.startTime > entry_time: ip.startTime = entry_time if ip.endTime < entry_time: ip.endTime = entry_time return unique_ip_address def run(filename, incident_id, seen): import configparser config = configparser.ConfigParser() config.read(APPFOLDER + '/cfltools.ini') all_ip_address = scrapeIPs(filename) unique_ip_address = getUniqueIps(all_ip_address) unique_ip_address = getTimerange(filename, unique_ip_address) if not seen: import sqlite3 db_connection = sqlite3.connect(config['USER']['db_loc']) print('Adding to database located at {}...'.format(config['USER']['db_loc'])) sendUniqueToDatabase(unique_ip_address, APPFOLDER, incident_id, db_connection) db_connection.close() else: print('File was already added to database. Skipping database export.') def main(): pass if __name__ == "__main__": main()
41.375
86
0.489167
[ "MIT" ]
bradley-evans/cfltools
cfltools/depreciated/getuniqueip.py
11,585
Python
# -*- coding: utf-8 -*- """Top-level package for {{ cookiecutter.project_name }}.""" __project__ = "{{ cookiecutter.project_name }}" __author__ = "{{ cookiecutter.full_name }}" __email__ = "{{ cookiecutter.email }}" __version__ = "{{ cookiecutter.version }}"
29
60
0.666667
[ "Apache-2.0" ]
AKhranovskiy/cookiecutter-python
{{cookiecutter.project_name}}/{{cookiecutter.project_slug}}/__init__.py
261
Python
# custom PosLemmaTagger based on Chatterbot tagger import string from chatterbot import languages import spacy from chatterbot import tagging class CustomPosLemmaTagger(tagging.PosLemmaTagger): def __init__(self, language=None): super(CustomPosLemmaTagger, self).__init__(language=None) def get_bigram_pair_string(self, text): """ Return a string of text containing part-of-speech, lemma pairs. """ bigram_pairs = [] if len(text) <= 2: text_without_punctuation = text.translate(self.punctuation_table) if len(text_without_punctuation) >= 1: text = text_without_punctuation document = self.nlp(text) if len(text) <= 2: bigram_pairs = [ token.lemma_.lower() for token in document ] else: tokens = [ token for token in document if token.is_alpha and not token.is_stop ] if len(tokens) < 2: tokens = [ token for token in document if token.is_alpha ] for index in range(0, len(tokens)): bigram_pairs.append('{}:{}'.format( tokens[index].pos_, tokens[index].lemma_.lower() )) if not bigram_pairs: bigram_pairs = [ token.lemma_.lower() for token in document ] return ' '.join(bigram_pairs)
27.925926
83
0.55305
[ "BSD-3-Clause" ]
sciutrux/cbotami
tagging.py
1,508
Python
"""Download handlers for different schemes""" import logging from twisted.internet import defer from scrapy import signals from scrapy.exceptions import NotConfigured, NotSupported from scrapy.utils.httpobj import urlparse_cached from scrapy.utils.misc import create_instance, load_object from scrapy.utils.python import without_none_values logger = logging.getLogger(__name__) class DownloadHandlers: def __init__(self, crawler): self._crawler = crawler self._schemes = {} # stores acceptable schemes on instancing | 存储实例化可接受的协议 self._handlers = {} # stores instanced handlers for schemes | 存储实例化可接受的处理函数 self._notconfigured = {} # remembers failed handlers | 存储失败的处理程序 # 返回不为None的处理函数路径 handlers = without_none_values( crawler.settings.getwithbase('DOWNLOAD_HANDLERS')) for scheme, clspath in handlers.items(): # 实例化各个协议的处理函数 self._schemes[scheme] = clspath self._load_handler(scheme, skip_lazy=True) # s.engine_stopped todo 这里有一个信号,暂时还不知道具体用处 crawler.signals.connect(self._close, signals.engine_stopped) def _get_handler(self, scheme): """Lazy-load the downloadhandler for a scheme only on the first request for that scheme. 仅在对该协议的第一个请求时才延迟加载该协议的下载处理程序。 """ # 注释的第一次请求才延迟再加是在init初始化就加载完成, 这里不会重复加载的意思 if scheme in self._handlers: return self._handlers[scheme] if scheme in self._notconfigured: return None if scheme not in self._schemes: self._notconfigured[scheme] = 'no handler available for that scheme' return None return self._load_handler(scheme) def _load_handler(self, scheme, skip_lazy=False): path = self._schemes[scheme] try: # 将路径对应的类导入 dhcls = load_object(path) if skip_lazy and getattr(dhcls, 'lazy', True): # 自定义懒加载或者类中自带这个属性,则跳过 return None # 实例化 dh = create_instance( objcls=dhcls, settings=self._crawler.settings, crawler=self._crawler, ) except NotConfigured as ex: # 报错,则加入到未配置的协议 self._notconfigured[scheme] = str(ex) return None except Exception as ex: logger.error('Loading "%(clspath)s" for scheme "%(scheme)s"', {"clspath": path, "scheme": scheme}, exc_info=True, extra={'crawler': self._crawler}) self._notconfigured[scheme] = str(ex) return None else: # 如果没报错,则加入到字典中,并返回实例 self._handlers[scheme] = dh return dh def download_request(self, request, spider): # 这里就是真正的下载器了 scheme = urlparse_cached(request).scheme # 利用合适的协议,找到合适的处理函数 handler = self._get_handler(scheme) if not handler: raise NotSupported(f"Unsupported URL scheme '{scheme}': {self._notconfigured[scheme]}") return handler.download_request(request, spider) @defer.inlineCallbacks def _close(self, *_a, **_kw): for dh in self._handlers.values(): if hasattr(dh, 'close'): yield dh.close()
35.569892
99
0.620314
[ "BSD-3-Clause" ]
Hugking/scrapy
scrapy/core/downloader/handlers/__init__.py
3,766
Python
#!/usr/bin/env python # -*- coding:utf-8 _*- # @author : Lin Luo / Bruce Liu # @time : 2020/1/3 21:35 # @contact : [email protected] / [email protected] import argparse parser = argparse.ArgumentParser() parser.add_argument_group() parser.add_argument('-c', '--config', help='config file for run and operation', required=False) group = parser.add_mutually_exclusive_group() group.add_argument('-a', '--add', help='add sk with ip', required=False) group.add_argument('-d', '--delete', help='delete sk by sk or ip', required=False) # group.add_argument('-e', '-examine', help='examine the status of ip', required=False) group.add_argument('-r', '--run', help='run the main project', action='store_true', required=False) group.add_argument('-t', '--test', help='test the config file, default path is conf/odyn.conf', action='store_true', required=False) group.add_argument('-s', '--stop', help='stop the main project', action='store_true', required=False) args = parser.parse_args()
50.6
116
0.697628
[ "Apache-2.0" ]
BruceWW/odyn
utils/args.py
1,012
Python
import numpy as np from yt.data_objects.selection_objects.data_selection_objects import ( YTSelectionContainer, YTSelectionContainer3D, ) from yt.data_objects.static_output import Dataset from yt.funcs import ensure_list, validate_iterable, validate_object from yt.geometry.selection_routines import points_in_cells from yt.utilities.exceptions import YTIllDefinedCutRegion from yt.utilities.on_demand_imports import _scipy class YTCutRegion(YTSelectionContainer3D): """ This is a data object designed to allow individuals to apply logical operations to fields and filter as a result of those cuts. Parameters ---------- data_source : YTSelectionContainer3D The object to which cuts will be applied. conditionals : list of strings A list of conditionals that will be evaluated. In the namespace available, these conditionals will have access to 'obj' which is a data object of unknown shape, and they must generate a boolean array. For instance, conditionals = ["obj['temperature'] < 1e3"] Examples -------- >>> import yt >>> ds = yt.load("RedshiftOutput0005") >>> sp = ds.sphere("max", (1.0, 'Mpc')) >>> cr = ds.cut_region(sp, ["obj['temperature'] < 1e3"]) """ _type_name = "cut_region" _con_args = ("base_object", "conditionals") _derived_quantity_chunking = "all" def __init__( self, data_source, conditionals, ds=None, field_parameters=None, base_object=None, locals=None, ): if locals is None: locals = {} validate_object(data_source, YTSelectionContainer) validate_iterable(conditionals) for condition in conditionals: validate_object(condition, str) validate_object(ds, Dataset) validate_object(field_parameters, dict) validate_object(base_object, YTSelectionContainer) if base_object is not None: # passing base_object explicitly has been deprecated, # but we handle it here for backward compatibility if data_source is not None: raise RuntimeError("Cannot use both base_object and data_source") data_source = base_object self.conditionals = ensure_list(conditionals) if isinstance(data_source, YTCutRegion): # If the source is also a cut region, add its conditionals # and set the source to be its source. # Preserve order of conditionals. self.conditionals = data_source.conditionals + self.conditionals data_source = data_source.base_object super(YTCutRegion, self).__init__( data_source.center, ds, field_parameters, data_source=data_source ) self.base_object = data_source self.locals = locals self._selector = None # Need to interpose for __getitem__, fwidth, fcoords, icoords, iwidth, # ires and get_data def chunks(self, fields, chunking_style, **kwargs): # We actually want to chunk the sub-chunk, not ourselves. We have no # chunks to speak of, as we do not data IO. for chunk in self.index._chunk(self.base_object, chunking_style, **kwargs): with self.base_object._chunked_read(chunk): with self._chunked_read(chunk): self.get_data(fields) yield self def get_data(self, fields=None): fields = ensure_list(fields) self.base_object.get_data(fields) ind = self._cond_ind for field in fields: f = self.base_object[field] if f.shape != ind.shape: parent = getattr(self, "parent", self.base_object) self.field_data[field] = parent[field][self._part_ind(field[0])] else: self.field_data[field] = self.base_object[field][ind] @property def blocks(self): # We have to take a slightly different approach here. Note that all # that .blocks has to yield is a 3D array and a mask. for obj, m in self.base_object.blocks: m = m.copy() with obj._field_parameter_state(self.field_parameters): for cond in self.conditionals: ss = eval(cond) m = np.logical_and(m, ss, m) if not np.any(m): continue yield obj, m @property def _cond_ind(self): ind = None obj = self.base_object locals = self.locals.copy() if "obj" in locals: raise RuntimeError( '"obj" has been defined in the "locals" ; ' "this is not supported, please rename the variable." ) locals["obj"] = obj with obj._field_parameter_state(self.field_parameters): for cond in self.conditionals: res = eval(cond, locals) if ind is None: ind = res if ind.shape != res.shape: raise YTIllDefinedCutRegion(self.conditionals) np.logical_and(res, ind, ind) return ind def _part_ind_KDTree(self, ptype): """Find the particles in cells using a KDTree approach.""" parent = getattr(self, "parent", self.base_object) units = "code_length" pos = np.stack( [ self[("index", "x")].to(units), self[("index", "y")].to(units), self[("index", "z")].to(units), ], axis=1, ).value dx = np.stack( [ self[("index", "dx")].to(units), self[("index", "dy")].to(units), self[("index", "dz")].to(units), ], axis=1, ).value ppos = np.stack( [ parent[(ptype, "particle_position_x")], parent[(ptype, "particle_position_y")], parent[(ptype, "particle_position_z")], ], axis=1, ).value mask = np.zeros(ppos.shape[0], dtype=bool) levels = self[("index", "grid_level")].astype("int32").value if levels.size == 0: return mask levelmin = levels.min() levelmax = levels.max() for lvl in range(levelmax, levelmin - 1, -1): # Filter out cells not in the current level lvl_mask = levels == lvl dx_loc = dx[lvl_mask] pos_loc = pos[lvl_mask] grid_tree = _scipy.spatial.cKDTree(pos_loc, boxsize=1) # Compute closest cell for all remaining particles dist, icell = grid_tree.query( ppos[~mask], distance_upper_bound=dx_loc.max(), p=np.inf ) mask_loc = np.isfinite(dist[:]) # Check that particles within dx of a cell are in it i = icell[mask_loc] dist = np.abs(ppos[~mask][mask_loc, :] - pos_loc[i]) tmp_mask = np.all(dist <= (dx_loc[i] / 2), axis=1) mask_loc[mask_loc] = tmp_mask # Update the particle mask with particles found at this level mask[~mask] |= mask_loc return mask def _part_ind_brute_force(self, ptype): parent = getattr(self, "parent", self.base_object) units = "code_length" mask = points_in_cells( self[("index", "x")].to(units), self[("index", "y")].to(units), self[("index", "z")].to(units), self[("index", "dx")].to(units), self[("index", "dy")].to(units), self[("index", "dz")].to(units), parent[(ptype, "particle_position_x")].to(units), parent[(ptype, "particle_position_y")].to(units), parent[(ptype, "particle_position_z")].to(units), ) return mask def _part_ind(self, ptype): # If scipy is installed, use the fast KD tree # implementation. Else, fall back onto the direct # brute-force algorithm. try: _scipy.spatial.KDTree return self._part_ind_KDTree(ptype) except ImportError: return self._part_ind_brute_force(ptype) @property def icoords(self): return self.base_object.icoords[self._cond_ind, :] @property def fcoords(self): return self.base_object.fcoords[self._cond_ind, :] @property def ires(self): return self.base_object.ires[self._cond_ind] @property def fwidth(self): return self.base_object.fwidth[self._cond_ind, :] def _get_bbox(self): """ Get the bounding box for the cut region. Here we just use the bounding box for the source region. """ return self.base_object._get_bbox()
35.13834
83
0.579865
[ "BSD-3-Clause-Clear" ]
chummels/yt
yt/data_objects/selection_objects/cut_region.py
8,890
Python
# terrascript/data/onelogin.py # Automatically generated by tools/makecode.py (24-Sep-2021 15:23:37 UTC) # # For imports without namespace, e.g. # # >>> import terrascript.data.onelogin # # instead of # # >>> import terrascript.data.onelogin.onelogin # # This is only available for 'official' and 'partner' providers. from terrascript.data.onelogin.onelogin import *
24.8
73
0.739247
[ "BSD-2-Clause" ]
mjuenema/python-terrascript
terrascript/data/onelogin.py
372
Python
import cv2 import os import json from collections import defaultdict filelist_path = '/data/zfp/data/jinan/filelist.json' img_path = '/data/zfp/data/jinan/visual/%s_fusion.png' builidng_txt = '/data/zfp/code/mmdetection/results_merge/building/building.txt' output_dir = '/data/zfp/code/mmdetection/visual/building' score_thresh = 0.7 result = defaultdict(list) with open(builidng_txt) as f: content = f.read().strip().split('\n') content = [c.strip().split() for c in content] for c in content: id_ = int(c[0]) score = float(c[1]) bbox = list(map(int, map(float, c[2:]))) if score > score_thresh: result[id_].append(bbox) with open(filelist_path) as f: filelist = json.load(f) print(list(filelist.items())[0]) id2name = dict() valset = [] for k, v in filelist.items(): id2name[v['id']] = k if v['split'] == 'val': valset.append(v['id']) for val_id in valset: img = cv2.imread(img_path % id2name[val_id]) for bbox in result[val_id]: x1, y1, x2, y2 = bbox cv2.rectangle(img, (x1, y1), (x2, y2), (0, 0, 255), 2) cv2.imwrite(os.path.join(output_dir, id2name[val_id] + '.png'), img)
31.184211
79
0.640506
[ "Apache-2.0" ]
abcxs/polyrnn
mytools/building_jinan/visual.py
1,185
Python
# -*- coding: utf-8 -*- """Common collection classes.""" from __future__ import print_function, division, absolute_import from functools import reduce from collections import Mapping, Set from .compat import isiterable, iteritems, odict, text_type def make_immutable(value): # this function is recursive, and if nested data structures fold back on themselves, # there will likely be recursion errors if isinstance(value, Mapping): if isinstance(value, frozendict): return value return frozendict((k, make_immutable(v)) for k, v in iteritems(value)) elif isinstance(value, Set): if isinstance(value, frozenset): return value return frozenset(make_immutable(v) for v in value) elif isiterable(value): if isinstance(value, tuple): return value return tuple(make_immutable(v) for v in value) else: return value # http://stackoverflow.com/a/14620633/2127762 class AttrDict(dict): """Sub-classes dict, and further allows attribute-like access to dictionary items. Examples: >>> d = AttrDict({'a': 1}) >>> d.a, d['a'], d.get('a') (1, 1, 1) >>> d.b = 2 >>> d.b, d['b'] (2, 2) """ def __init__(self, *args, **kwargs): super(AttrDict, self).__init__(*args, **kwargs) self.__dict__ = self class frozendict(odict): def __key(self): return tuple((k, self[k]) for k in sorted(self)) def __hash__(self): return hash(self.__key()) def __eq__(self, other): try: return self.__key() == other.__key() except AttributeError: if isinstance(other, Mapping): return self.__key() == frozendict(other).__key() return False def first(seq, key=lambda x: bool(x), default=None, apply=lambda x: x): """Give the first value that satisfies the key test. Args: seq (iterable): key (callable): test for each element of iterable default: returned when all elements fail test apply (callable): applied to element before return, but not to default value Returns: first element in seq that passes key, mutated with optional apply Examples: >>> first([0, False, None, [], (), 42]) 42 >>> first([0, False, None, [], ()]) is None True >>> first([0, False, None, [], ()], default='ohai') 'ohai' >>> import re >>> m = first(re.match(regex, 'abc') for regex in ['b.*', 'a(.*)']) >>> m.group(1) 'bc' The optional `key` argument specifies a one-argument predicate function like that used for `filter()`. The `key` argument, if supplied, must be in keyword form. For example: >>> first([1, 1, 3, 4, 5], key=lambda x: x % 2 == 0) 4 """ return next((apply(x) for x in seq if key(x)), default() if callable(default) else default) def firstitem(map, key=lambda k, v: bool(k), default=None, apply=lambda k, v: (k, v)): return next((apply(k, v) for k, v in map if key(k, v)), default) def last(seq, key=lambda x: bool(x), default=None, apply=lambda x: x): return next((apply(x) for x in reversed(seq) if key(x)), default) def call_each(seq): """Calls each element of sequence to invoke the side effect. Args: seq: Returns: None """ try: reduce(lambda _, y: y(), seq) except TypeError as e: if text_type(e) != "reduce() of empty sequence with no initial value": raise
30.355932
95
0.595757
[ "BSD-3-Clause" ]
AXGKl/be_black
lib/python3.7/site-packages/conda/_vendor/auxlib/collection.py
3,582
Python
def event_handler(source,evt): if evt == lv.EVENT.CLICKED: if source == btn1: # treat "clicked" events only for btn1 print("Clicked") elif evt == lv.EVENT.VALUE_CHANGED: print("Toggled") # create a simple button btn1 = lv.btn(lv.scr_act(),None) # attach the callback btn1.set_event_cb(event_handler) btn1.align(None,lv.ALIGN.CENTER,0,-40) label=lv.label(btn1,None) label.set_text("Button") # create a toggle button btn2 = lv.btn(lv.scr_act(),None) # attach the callback btn2.set_event_cb(event_handler) btn2.align(None,lv.ALIGN.CENTER,0,40) btn2.set_checkable(True) btn2.toggle() #btn2.set_fit2(lv.FIT.NONE,lv.FIT.TIGHT) label=lv.label(btn2,None) label.set_text("Toggled")
25.275862
50
0.694407
[ "MIT" ]
Dimsmary/OpenSTM
ArduinoProject/DAC_CONTROLLER/lib/lv_demos/src/lv_ex_widgets/lv_ex_btn/lv_ex_btn_1.py
733
Python
"""List options for creating Placement Groups""" # :license: MIT, see LICENSE for more details. import click from SoftLayer.CLI import environment from SoftLayer.CLI import formatting from SoftLayer.managers.vs_placement import PlacementManager as PlacementManager @click.command() @environment.pass_env def cli(env): """List options for creating a placement group.""" manager = PlacementManager(env.client) routers = manager.get_routers() env.fout(get_router_table(routers)) rules = manager.get_all_rules() env.fout(get_rule_table(rules)) def get_router_table(routers): """Formats output from _get_routers and returns a table. """ table = formatting.Table(['Datacenter', 'Hostname', 'Backend Router Id'], "Available Routers") for router in routers: datacenter = router['topLevelLocation']['longName'] table.add_row([datacenter, router['hostname'], router['id']]) return table def get_rule_table(rules): """Formats output from get_all_rules and returns a table. """ table = formatting.Table(['Id', 'KeyName'], "Rules") for rule in rules: table.add_row([rule['id'], rule['keyName']]) return table
30.410256
98
0.711636
[ "MIT" ]
ATGE/softlayer-python
SoftLayer/CLI/virt/placementgroup/create_options.py
1,186
Python
# -*- coding: utf-8 -*- # # ----------------------------------------------------------------------------------- # Copyright (c) Microsoft Open Technologies (Shanghai) Co. Ltd. All rights reserved. # # The MIT License (MIT) # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # ----------------------------------------------------------------------------------- import sys sys.path.append("..") from hackathon import Component, RequiredFeature from flask import g from hackathon.database.models import UserHackathonRel, Experiment, UserProfile, Team from hackathon.hackathon_response import bad_request, precondition_failed, internal_server_error, not_found, ok from hackathon.constants import EStatus, RGStatus, ReservedUser import json class RegisterManager(Component): hackathon_manager = RequiredFeature("hackathon_manager") user_manager = RequiredFeature("user_manager") def get_hackathon_registration(self, num=None): registers = self.db.find_all_objects_order_by(UserHackathonRel, num, # limit num UserHackathonRel.create_time.desc(), hackathon_id=g.hackathon.id) return map(lambda x: self.get_registration_with_profile(x), registers) def get_registration_with_profile(self, register): register_dic = register.dic() register_dic['user'] = self.user_manager.user_display_info(register.user) return register_dic def get_registration_by_id(self, id): return self.db.get_object(UserHackathonRel, id) def get_registration_by_user_and_hackathon(self, user_id, hackathon_id): return self.db.find_first_object_by(UserHackathonRel, user_id=user_id, hackathon_id=hackathon_id) def check_register_enrollment(self, hackathon): max = int(json.loads(hackathon.basic_info)['max_enrollment']) if max == 0: # means no limit return True else: current_num = self.db.count(UserHackathonRel, UserHackathonRel.hackathon_id == hackathon.id) return max > current_num def validate_created_args(self, hackathon, args): self.log.debug("create_register: %r" % args) user_id = args['user_id'] register = self.get_registration_by_user_and_hackathon(user_id, hackathon.id) if register is not None and register.deleted == 0: self.log.debug("user %d already registered on hackathon %d" % (user_id, hackathon.id)) return False, register.dic() if hackathon.registration_start_time > self.util.get_now(): return False, precondition_failed("hackathon registration not opened", friendly_message="报名尚未开始") if hackathon.registration_end_time < self.util.get_now(): return False, precondition_failed("hackathon registration has ended", friendly_message="报名已经结束") if not self.check_register_enrollment(hackathon): return False, precondition_failed("hackathon registers reach the upper threshold", friendly_message="报名人数已满") return True, "" def create_registration(self, hackathon, args): state, return_info = self.validate_created_args(hackathon, args) if not state: return return_info try: args["status"] = hackathon.is_auto_approve() and RGStatus.AUTO_PASSED or RGStatus.UNAUDIT return self.db.add_object_kwargs(UserHackathonRel, **args).dic() except Exception as e: self.log.error(e) return internal_server_error("fail to create register") def update_registration(self, args): self.log.debug("update_registration: %r" % args) try: id = args['id'] register = self.get_registration_by_id(id) if register is None: # we can also create a new object here. return not_found("registration not found") self.log.debug("update a existed register") update_items = dict(dict(args).viewitems() - register.dic().viewitems()) if "create_time" in update_items: update_items.pop("create_time") update_items["update_time"] = self.util.get_now() self.db.update_object(register, **update_items) return register.dic() except Exception as e: self.log.error(e) return internal_server_error("fail to update register") def delete_registration(self, args): if "id" not in args: return bad_request("id not invalid") try: register = self.db.find_first_object_by(UserHackathonRel, id == args['id']) if register is not None: self.db.delete_object(register) return ok() except Exception as ex: self.log.error(ex) return internal_server_error("failed in delete register: %s" % args["id"]) def get_registration_detail(self, user_id, hackathon): detail = { "hackathon": hackathon.dic(), "user": self.user_manager.user_display_info(g.user) } rel = self.get_registration_by_user_and_hackathon(user_id, hackathon.id) if rel is None: # return nothing return detail detail["registration"] = rel.dic() # experiment try: experiment = self.db.find_first_object(Experiment, Experiment.user_id == user_id, Experiment.hackathon_id == hackathon.id, Experiment.status.in_([EStatus.STARTING, EStatus.RUNNING])) if experiment is not None: detail["experiment"] = experiment.dic() except Exception as e: self.log.error(e) return detail def is_user_registered(self, user_id, hackathon): # reservedUser (-1) if user_id == ReservedUser.DefaultUserID: return True # admin if self.hackathon_manager.validate_admin_privilege(user_id, hackathon.id): return True # user reg = self.get_registration_by_user_and_hackathon(user_id, hackathon.id) if reg is not None: return reg.status == RGStatus.AUTO_PASSED or reg.status == RGStatus.AUDIT_PASSED return False def get_user_profile(self, user_id): return self.db.find_first_object_by(UserProfile, user_id=user_id) def create_user_profile(self, args): self.log.debug("create_user_profile: %r" % args) try: exist = self.get_user_profile(g.user.id) if not exist: return self.db.add_object_kwargs(UserProfile, **args).dic() else: return self.update_user_profile(args) except Exception as e: self.log.debug(e) return internal_server_error("failed to create user profile") def update_user_profile(self, args): self.log.debug("update_user_profile") try: u_id = args["user_id"] user_profile = self.db.find_first_object_by(UserProfile, user_id=u_id) if user_profile: self.db.update_object(user_profile, **args) return user_profile.dic() else: return not_found("fail to update user profile") except Exception as e: self.log.debug(e) return internal_server_error("failed to update user profile")
43.029703
111
0.63035
[ "MIT" ]
akondasif/open-hackathon-bak_01
open-hackathon-server/src/hackathon/registration/register_mgr.py
8,728
Python
""" Takes the gradients of the solution to the screen mapping potential problem and reconstructs the perpendicular deflection field. """ import numpy as np import scipy as sp import scipy.interpolate import scipy.misc import scipy.ndimage from .constants import M_PROTON_G, ESU, C_CMS def reconstruct(ri, li, rs, v, x, y, phix, phiy): """ Takes x, y gradients to the solution to screen mapping potential problem and reconstructs the perpendicular deflection fields wBx and wBy. Args: ri (float): Distance from source to plasma (cm). li (float): Distance across plasma (cm). rs (float): Distance from plasma to screen (cm). v (float): Velocity of protons (cm/s). x (array): Plasma x-coordinates (cm). y (array): Plasma x-coordinates (cm). phix (array): Gradient of screen mapping potential in x-direction. phiy (array): Gradient of screen mapping potential in y-direction. Returns: wBx (array) """ # TODO Add in option for masking the path-int B field. # Input variables. magnify = (rs + ri + .5*li)/(ri+.5*li) map_pot_x = np.copy(phix) map_pot_y = np.copy(phiy) plasma_x = np.copy(x) plasma_y = np.copy(y) # We multiply the whole expression by magnify to put the perp-deflection # fields into screen coordinates. wBx = magnify*(v/rs)*(map_pot_x - plasma_x) wBy = magnify*(v/rs)*(map_pot_y - plasma_y) return(wBx, wBy) def magpath(wBx, wBy): """ Takes the perpendicular deflection field and reconstructs the path integrated magnetic field. Args: wBx (array): x-component perpendicular deflection field. wBy (array): y-component perpendicular deflection field. Returns: Bxpath (array): Path integrated magnetic field x-component. Bypath (array): Path integrated magnetic field y-component. """ Bxpath = -(M_PROTON_G*C_CMS/ESU)*wBy Bypath = (M_PROTON_G*C_CMS/ESU)*wBx return(Bxpath, Bypath) def fluximage(ri, li, rs, v, x, y, N, wBx, wBy): """ Creates a flux image out of a perpendicular deflection field. Args: ri: li: rs: v: x (array): Perpendicular deflection field x-coordinates. y (array): Perpendicular deflection field y-coordinates. wBx (array): Perpendicular deflection field x-component. wBy (array): Perpendicular deflection field y-component. Returns: flux_image (array): Generated flux image. """ # TODO Maybe change this to act on the reference flux. magnify = (rs+ri+.5*li)/(ri+.5*li) print('Creating interpolator functions...') #fx = sp.interpolate.RegularGridInterpolator((x[:,0],y[0,:]),x, # bounds_error=False) #fy = sp.interpolate.RegularGridInterpolator((x[:,0],y[0,:]),y, # bounds_error=False) fwBx = sp.interpolate.RegularGridInterpolator((x[:,0],y[0,:]),wBx, bounds_error=False) fwBy = sp.interpolate.RegularGridInterpolator((x[:,0],y[0,:]),wBy, bounds_error=False) print('DONE') prot_num = int(np.sqrt(N)) dx = x[1,0] - x[0,0] dy = y[0,1] - y[0,0] # Need to fix this-- cuts off some of the protons when moving to the centers # of the bins. samp_x = np.linspace(x[0,0]+.5*dx, x[-1,0]-.5*dx, num=prot_num) samp_y = np.linspace(y[0,0]+.5*dy, y[0,-1]-.5*dy, num=prot_num) samp_x, samp_y = np.meshgrid(samp_x, samp_y, indexing='ij') print('Interpolating proton deflections...') # The sampling of the coordinates is useless. #samp_x = fx((samp_x, samp_y)) #samp_y = fy((samp_x, samp_y)) samp_wBx = fwBx((samp_x, samp_y)) samp_wBy = fwBy((samp_x, samp_y)) print('DONE') screen_x = magnify*samp_x + (rs/v)*samp_wBx screen_y = magnify*samp_y + (rs/v)*samp_wBy print('Histogramming protons...') flux_image = np.histogram2d(screen_x.ravel(), screen_y.ravel(),bins=x.shape) print('DONE') return(flux_image[0]) def fluximage2(x, y, phix, phiy, flux0, scale_fact=1, scale_order=3): """ An alternative approach to creating a flux image out of a perpendicular deflection field. Args: x (array): Plasma x-coordinates (cm). y (array): Plasma x-coordinates (cm). phix (array): Gradient of screen mapping potential in x-direction. phiy (array): Gradient of screen mapping potential in y-direction. scale_fact: Integer factor by which to upscale arrays before analysis; a larger number slows the algorithm but fills out low-flux regions better scale_order: Order of the spline interpolation for scipy.ndimage.zoom Returns: flux_image (array): Generated flux image. """ xgv = x[:,0].flatten() ygv = y[0,:].flatten() if scale_fact != 1: print("Rescaling...") xgv = scipy.ndimage.zoom(xgv, scale_fact, order=scale_order) ygv = scipy.ndimage.zoom(ygv, scale_fact, order=scale_order) phix = scipy.ndimage.zoom(phix, scale_fact, order=scale_order) phiy = scipy.ndimage.zoom(phiy, scale_fact, order=scale_order) flux0 = scipy.ndimage.zoom(flux0, scale_fact, order=scale_order) dx = np.mean(np.diff(xgv)) dy = np.mean(np.diff(ygv)) x_edges = np.append(xgv - dx/2.0, xgv[-1] + dx/2.0) y_edges = np.append(ygv - dy/2.0, ygv[-1] + dy/2.0) print('Performing histogram...') flux_image, _, _ = np.histogram2d(phix.flatten(), phiy.flatten(), bins=[x_edges, y_edges], weights=flux0.flatten()) if scale_fact != 1: print("Descaling...") flux_image = scipy.misc.imresize(flux_image, 1./scale_fact, mode='F') print('DONE') return(flux_image) def fluximage3(ri, li, rs, v, x, y, N, wBx, wBy, Ntest): """ A Monte Carlo approach to creating a flux image out of a perpendicular deflection field. Args: ri: li: rs: v: N: Number of protons in reality x (array): Perpendicular deflection field x-coordinates. y (array): Perpendicular deflection field y-coordinates. wBx (array): Perpendicular deflection field x-component. wBy (array): Perpendicular deflection field y-component. Ntest: Number of test protons (Monte Carlo) Returns: flux_image (array): Generated flux image. """ # magnify = (rs + ri + li)/(ri) magnify = (rs+li+ri)/(ri+.5*li) xgv = x[:,0].flatten() ygv = y[0,:].flatten() xmin = np.min(xgv) xmax = np.max(xgv) ymin = np.min(ygv) ymax = np.max(ygv) dx = np.mean(np.diff(xgv)) dy = np.mean(np.diff(ygv)) x_edges = np.append(xgv - dx/2.0, xgv[-1] + dx/2.0) y_edges = np.append(ygv - dy/2.0, ygv[-1] + dy/2.0) # xd: N-element 1d Numpy Array, x positions of particles at deflection plane, in SI units # yd: N-element 1d Numpy Array, y positions of particles at deflection plane, in SI units xd = np.random.uniform(xmin, xmax, size=(Ntest,)) yd = np.random.uniform(ymin, ymax, size=(Ntest,)) xyd = np.stack((xd, yd), axis=1) #del xd, yd #wBx_rbv = sp.interpolate.RectBivariateSpline(xgv, ygv, wBx) #wBy_rbv = sp.interpolate.RectBivariateSpline(xgv, ygv, wBy) #wBxd = wBx_rbv.ev(xd, yd) #wByd = wBy_rbv.ev(xd, yd) wBxd = sp.interpolate.interpn((xgv, ygv), wBx, xyd, method='linear') wByd = sp.interpolate.interpn((xgv, ygv), wBy, xyd, method='linear') xfd = xd + rs/(magnify*v) * wBxd yfd = yd + rs/(magnify*v) * wByd print("Histogramming reference...") flux_ref, _, _ = np.histogram2d(xd, yd, bins=[x_edges, y_edges]) flux_ref = flux_ref * N/Ntest print("Histogramming signal...") flux_image, _, _ = np.histogram2d(xfd, yfd, bins=[x_edges, y_edges]) flux_image = flux_image * N/Ntest print('DONE') return(flux_image, flux_ref)
33.609053
152
0.614057
[ "MIT" ]
flash-center/PROBLEM
problem/deflect.py
8,167
Python
# coding: utf-8 try: from lxml import etree except ImportError: try: # Python 2.5 import xml.etree.cElementTree as etree except ImportError: try: # Python 2.5 import xml.etree.ElementTree as etree except ImportError: try: # normal cElementTree install import cElementTree as etree except ImportError: import elementtree.ElementTree as etree # raises ImportError def create_element_recursively(parent, path): nodes = path.split('/') node = parent for n_str in nodes: n = node.find(n_str) if n is None: node = etree.SubElement(node, n_str) else: node = n return node
24.625
55
0.558376
[ "MIT" ]
fdelvalle/sdk-python
maxipago/utils/xml.py
788
Python
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections import logging import numpy as np import sys import os import warnings import paddle import paddle.nn.quant.quant_layers as quant_layers from paddle.fluid import dygraph, core, framework, unique_name from paddle.fluid.executor import Executor, global_scope from paddle.fluid.param_attr import ParamAttr from paddle.fluid.initializer import Constant from paddle.fluid.dygraph.io import INFER_MODEL_SUFFIX, INFER_PARAMS_SUFFIX from paddle.fluid.io import load_inference_model, save_inference_model from paddle.fluid.log_helper import get_logger from .. import quantization_pass from . import utils __all__ = ['ImperativeQuantAware'] _logger = get_logger( __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s') class ImperativeQuantAware(object): """ Applying quantization aware training (QAT) to the dgraph model. """ def __init__( self, quantizable_layer_type=['Conv2D', 'Linear', 'Conv2DTranspose'], weight_quantize_type='abs_max', activation_quantize_type='moving_average_abs_max', weight_bits=8, activation_bits=8, moving_rate=0.9, weight_preprocess_layer=None, act_preprocess_layer=None, weight_quantize_layer=None, act_quantize_layer=None): """ The constructor for ImperativeQuantAware. Args: quantizable_layer_type(list[str | layer]): List the type of layers that will be quantized. Default is ['Conv2D', 'Linear']. weight_quantize_type(str): quantization type for weights, which supports 'abs_max' and 'channel_wise_abs_max'. activation_quantize_type(str): quantization type for activations, which supports 'abs_max' and 'moving_average_abs_max' now. If using 'abs_max' mode, the quantization scale will be calculated dynamically each step in both training and testing period. If using 'moving_average_abs_max', the static quantization scale will be calculated during training and used in inference. weight_bits(int): quantization bit number for weights, whereas the bias is not quantized. activation_bits(int): quantization bit number for activations. moving_rate(float): the parameter for 'moving_average_abs_max' quantization. weight_preprocess_layer(paddle.nn.Layer, optional): A paddle Layer that defines how to preprocess weight before quantization. Using this can quickly test if user's preprocess method works or not. The input is non-quantized weight and function returns processed weight to be quantized. If None, the weight will be quantized directly. Default is None. act_preprocess_layer(paddle.nn.Layer, optional): A paddle Layer that defines how to preprocess activation before quantization. Using this can quickly test if user's preprocess method works or not. The input is non-quantized activation and function returns processed activation to be quantized. If None, the activation will be quantized directly. Default is None. weight_quantize_layer(paddle.nn.Layer, optional): A paddle Layer that defines how to quantize weight. Using this can quickly test if user's quantization method works or not. In this layer, user should both define quantization method and dequantization method, that is, the function's input is non-quantized weight and returns dequantized weight. If None, will use uantization op defined by 'weight_quantize_type'. Default is None. act_quantize_layer(paddle.nn.Layer, optional): A paddle Layer that defines how to quantize activation. Using this can quickly test if user's quantization method works or not. In this layer, user should both define quantization method and dequantization method, that is, the function's input is non-quantized activation and returns dequantized activation. If None, will use quantization op defined by 'activation_quantize_type'. Default is None. Note: If user sets attribute 'skip_quant' to a Layer that support dynamic quantization and sets it to true, the layer would not be quantized during training. If this attribute is not sets or the attribute is false, the Layer would be qunatized in training. Examples 1: .. code-block:: python import paddle from paddle.fluid.contrib.slim.quantization \ import ImperativeQuantAware from paddle.vision.models \ import resnet model = resnet.resnet50(pretrained=True) imperative_qat = ImperativeQuantAware( weight_quantize_type='abs_max', activation_quantize_type='moving_average_abs_max') # Add the fake quant logical. # The original model will be rewrite. # The outscale of outputs in supportted layers would be calculated. imperative_qat.quantize(model) # Fine-tune the quantized model # ... # Save quant model for the inference. imperative_qat.save_quantized_model( layer=model, model_path="./resnet50_qat", input_spec=[ paddle.static.InputSpec( shape=[None, 3, 224, 224], dtype='float32')]) Examples 2: .. code-block:: python import paddle from paddle.fluid.contrib.slim.quantization \ import ImperativeQuantAware class ImperativeModel(paddle.nn.Layer): def __init__(self): super(ImperativeModel, self).__init__() # self.linear_0 would skip the quantization. self.linear_0 = paddle.nn.Linear(784, 400) self.linear_0.skip_quant = True # self.linear_1 would not skip the quantization. self.linear_1 = paddle.nn.Linear(400, 10) self.linear_1.skip_quant = False def forward(self, inputs): x = self.linear_0(inputs) x = self.linear_1(inputs) return x model = ImperativeModel() imperative_qat = ImperativeQuantAware( weight_quantize_type='abs_max', activation_quantize_type='moving_average_abs_max') # Add the fake quant logical. # The original model will be rewrite. # # There is only one Layer(self.linear1) would be added the # fake quant logical. imperative_qat.quantize(model) # Fine-tune the quantized model # ... # Save quant model for the inference. imperative_qat.save_quantized_model( layer=model, model_path="./imperative_model_qat") """ super(ImperativeQuantAware, self).__init__() kwargs = { "quantizable_layer_type": quantizable_layer_type, "weight_quantize_type": weight_quantize_type, "activation_quantize_type": activation_quantize_type, "weight_bits": weight_bits, "activation_bits": activation_bits, "moving_rate": moving_rate, "weight_preprocess_layer": weight_preprocess_layer, "act_preprocess_layer": act_preprocess_layer, "weight_quantize_layer": weight_quantize_layer, "act_quantize_layer": act_quantize_layer } self._quantize_inputs = ImperativeQuantizeInputs(**kwargs) self._quantize_outputs = ImperativeQuantizeOutputs(moving_rate) def quantize(self, model): """ According to weights' and activations' quantization types, the model will be added some fake quant ops, such as fake_quantize_dequantize_moving_average_abs_max, fake_quantize_dequantize_abs_max and so on. At the same time, the out_scale value of outputs would be calculated. Args: model(paddle.nn.Layer): the model to be quantized. Returns: None Examples: .. code-block:: python import paddle from paddle.fluid.contrib.slim.quantization \ import ImperativeQuantAware class ImperativeModel(paddle.nn.Layer): def __init__(self): super(ImperativeModel, self).__init__() # self.linear_0 would skip the quantization. self.linear_0 = paddle.nn.Linear(784, 400) self.linear_0.skip_quant = True # self.linear_1 would not skip the quantization. self.linear_1 = paddle.nn.Linear(400, 10) self.linear_1.skip_quant = False def forward(self, inputs): x = self.linear_0(inputs) x = self.linear_1(inputs) return x model = ImperativeModel() imperative_qat = ImperativeQuantAware( weight_quantize_type='abs_max', activation_quantize_type='moving_average_abs_max') # Add the fake quant logical. # The original model will be rewrite. # # There is only one Layer(self.linear1) would be added the # fake quant logical. imperative_qat.quantize(model) """ assert isinstance(model, dygraph.Layer), \ "The model must be the instance of dygraph.Layer." self._quantize_inputs.apply(model) self._quantize_outputs.apply(model) def save_quantized_model(self, layer, path, input_spec=None, **config): self._quantize_outputs.save_quantized_model(layer, path, input_spec, **config) class ImperativeQuantizeInputs(object): """ Based on the input params, add the quant_dequant computational logic both for activation inputs and weight inputs. """ def __init__( self, quantizable_layer_type=['Conv2D', 'Linear', 'Conv2DTranspose'], weight_quantize_type='abs_max', activation_quantize_type='moving_average_abs_max', weight_bits=8, activation_bits=8, moving_rate=0.9, weight_preprocess_layer=None, act_preprocess_layer=None, weight_quantize_layer=None, act_quantize_layer=None): """ The constructor for ImperativeQuantizeInputs. Please refer to the args of ImperativeQuantAware. """ super(ImperativeQuantizeInputs, self).__init__() self._quantizable_layer_type = tuple( utils.layer_name_map[layer] if layer in utils.layer_name_map else layer for layer in quantizable_layer_type) for layer in self._quantizable_layer_type: assert not isinstance(layer, str) \ and layer in utils.fake_quant_input_layers, \ "%s is unspported to be quantized." % layer quantize_type = { 'abs_max', 'moving_average_abs_max', 'channel_wise_abs_max' } assert weight_quantize_type != 'moving_average_abs_max' \ and weight_quantize_type in quantize_type, \ "Unsupported weight_quantize_type: %s. It can only " \ "be abs_max or channel_wise_abs_max." % weight_quantize_type # TODO (jc): activation_quantize_type supports range_abs_max assert activation_quantize_type == 'moving_average_abs_max', \ "Unsupported activation_quantize_type: %s. It can " \ "only be moving_average_abs_max now." \ % activation_quantize_type bits_check = lambda bits: isinstance(bits, int) \ and bits >= 0 and bits <= 16 assert bits_check(weight_bits), \ "weight_bits should be 1, 2,... or 16." assert bits_check(activation_bits), \ "activation_bits should be 1, 2,... or 16." layer_check = lambda method: method is None or \ issubclass(method, dygraph.layers.Layer) assert layer_check(weight_preprocess_layer), \ "weight_preprocess should be nn.Layer." assert layer_check(act_preprocess_layer), \ "act_preprocess should be nn.Layer." assert layer_check(weight_quantize_layer), \ "weight_quantize should be nn.Layer." assert layer_check(act_quantize_layer), \ "act_quantize should be nn.Layer." self._kwargs = { "weight_quantize_type": weight_quantize_type, "activation_quantize_type": activation_quantize_type, "weight_bits": weight_bits, "activation_bits": activation_bits, "moving_rate": moving_rate, "weight_pre_layer": weight_preprocess_layer, "act_pre_layer": act_preprocess_layer, "weight_quant_layer": weight_quantize_layer, "act_quant_layer": act_quantize_layer } def apply(self, model): """ Quantize the weights and activations to calculate for specific layers. Args: model(paddle.nn.Layer): The target model which would calculate the input quantization scale. Returns: None """ assert isinstance(model, dygraph.Layer), \ "The model must be the instance of dygraph.Layer." for name, cur_layer in model.named_sublayers(): if not isinstance(cur_layer, self._quantizable_layer_type) \ or (hasattr(cur_layer, "skip_quant") \ and cur_layer.skip_quant == True): continue parent_layer, sub_name = \ utils.find_parent_layer_and_sub_name(model, name) cur_quant_layer = self._get_input_quantized_layer(cur_layer) setattr(parent_layer, sub_name, cur_quant_layer) def _get_input_quantized_layer(self, layer): quant_layer_name = None for key, value in utils.layer_name_map.items(): if isinstance(layer, value): quant_layer_name = 'Quantized' + key break assert quant_layer_name is not None, \ "The layer %s is unsupported to be quantized." \ % layer.full_name() return quant_layers.__dict__[quant_layer_name](layer, **self._kwargs) class ImperativeQuantizeOutputs(object): """ Calculate the output scales for target layers. """ def __init__(self, moving_rate=0.9): """ The constructor for ImperativeQuantizeOutputs. Args: moving_rate(float): The decay coefficient of moving average. The default value is 0.9. """ super(ImperativeQuantizeOutputs, self).__init__() self._moving_rate = moving_rate def apply(self, model): """ Insert the `moving_average_abs_max_scale` layers to calculate the output scales for specific layers in the dygraph model. Args: model(paddle.nn.Layer): The target model which would be calculate the output quantization scale. Returns: None """ assert isinstance(model, dygraph.Layer), \ "The model must be the instance of dygraph.Layer." for cur_name, cur_layer in model.named_sublayers(): if '_act_preprocess' in cur_name: continue if not self._is_target_layer(cur_layer): continue parent_layer, sub_name = \ utils.find_parent_layer_and_sub_name(model, cur_name) if isinstance(cur_layer, tuple(utils.fake_quant_output_layers)): cur_quant_layer = quant_layers.FakeQuantMAOutputScaleLayer( cur_layer, self._moving_rate) else: cur_quant_layer = quant_layers.MAOutputScaleLayer( cur_layer, self._moving_rate) setattr(parent_layer, sub_name, cur_quant_layer) def save_quantized_model(self, model, path, input_spec=None, **config): """ Save the quantized model for the inference. Args: model (Layer): The model to be saved. path (str): The path prefix to save model. The format is ``dirname/file_prefix`` or ``file_prefix``. input_spec (list[InputSpec|Tensor], optional): Describes the input of the saved model's forward method, which can be described by InputSpec or example Tensor. If None, all input variables of the original Layer's forward method would be the inputs of the saved model. Default None. **configs (dict, optional): Other save configuration options for compatibility. We do not recommend using these configurations, they may be removed in the future. If not necessary, DO NOT use them. Default None. The following options are currently supported: (1) output_spec (list[Tensor]): Selects the output targets of the saved model. By default, all return variables of original Layer's forward method are kept as the output of the saved model. If the provided ``output_spec`` list is not all output variables, the saved model will be pruned according to the given ``output_spec`` list. Returns: None """ assert isinstance(model, dygraph.Layer), \ "The model must be the instance of dygraph.Layer." paddle.jit.save(layer=model, path=path, input_spec=input_spec, **config) is_dynamic_mode = False if paddle.in_dynamic_mode(): is_dynamic_mode = True paddle.enable_static() place = core.CPUPlace() scope = global_scope() exe = Executor(place) dirname = os.path.dirname(path) basename = os.path.basename(path) model_filename = basename + INFER_MODEL_SUFFIX params_filename = basename + INFER_PARAMS_SUFFIX [infer_program, feed_target_names, fetch_targets] = ( load_inference_model( dirname=dirname, executor=exe, model_filename=model_filename, params_filename=params_filename)) self._gather_scales(infer_program, scope) self._set_skip_quant_attr(infer_program) save_inference_model( dirname=dirname, feeded_var_names=feed_target_names, target_vars=fetch_targets, executor=exe, main_program=infer_program.clone(), model_filename=model_filename, params_filename=params_filename) if is_dynamic_mode: paddle.disable_static() def _is_target_layer(self, layer): """ Whether the layer needs to calculate output scales. """ flag = False if isinstance(layer, dygraph.Layer): # exclude fake_quant ops in quant_layers file if utils.is_leaf_layer(layer) and \ not isinstance(layer, tuple(utils.fake_quant_leaf_layers)): flag = True if isinstance(layer, tuple(utils.fake_quant_wrap_layers)): flag = True if isinstance(layer, paddle.nn.quant.FloatFunctionalLayer): flag = True return flag def _gather_scales(self, program, scope): """ Get all scales from fake ops, save them into the corresponding ops and delete all moving_average_abs_max_scale ops. """ def _gather_input_scale(): target_ops = [] skip_ops = utils.fake_quantize_dequantize_op_types + \ ["moving_average_abs_max_scale"] for block in program.blocks: for op in block.ops: if op.type not in skip_ops: target_ops.append(op) for op in target_ops: for in_var_name in utils._get_op_input_var_names(op): previous_op = utils.find_previous_op(op.block, in_var_name) if previous_op is not None and \ ("quantize_dequantize" in previous_op.type or \ previous_op.type == "moving_average_abs_max_scale"): scale_name = previous_op.output('OutScale')[0] in_scale = utils.load_variable_data(scope, scale_name) in_scale = utils.fp_numpy_to_naive(in_scale) argname, index = utils._get_input_name_index( op, in_var_name) op._set_attr(argname + str(index) + "_threshold", in_scale) def _gather_output_scale(): target_ops = [] for block in program.blocks: for op in block.ops: if op.type == "moving_average_abs_max_scale": target_ops.append(op) for op in target_ops: in_var_name = op.input('X')[0] out_var_name = op.output('Out')[0] block = op.block previous_op = utils.find_previous_op(block, in_var_name) next_ops = utils.find_next_ops(block, out_var_name) out_scale_name = op.output('OutScale')[0] out_scale = utils.load_variable_data(scope, out_scale_name) out_scale = utils.fp_numpy_to_naive(out_scale) if previous_op.type != "feed": argname, index = utils._get_output_name_index(previous_op, in_var_name) previous_op._set_attr(argname + str(index) + "_threshold", out_scale) previous_op._set_attr("out_threshold", out_scale) for next_op in next_ops: next_op._rename_input(out_var_name, in_var_name) _gather_input_scale() _gather_output_scale() def _set_skip_quant_attr(self, program): """ Label the skip quantized ops. """ for block in program.blocks: for op in block.ops: if self._is_skip_quant_op(block, op): op._set_attr("skip_quant", True) def _is_skip_quant_op(self, block, in_op): """ The input op should be skipped quantization. 1. the type of input op should be conv2d, depthwise_conv2d or matmul 2. the previous ops of the input op are not fake_quantize_dequantize ops """ target_op_types = [ "conv2d", "depthwise_conv2d", "matmul", "conv2d_transpose" ] if in_op.type not in target_op_types: return False previous_ops = [utils.find_previous_op(block, arg_name) \ for arg_name in in_op.input_arg_names] return any(op is not None and op.type not in \ utils.fake_quantize_dequantize_op_types for op in previous_ops)
40.595395
88
0.60453
[ "Apache-2.0" ]
MissPenguin/Paddle
python/paddle/fluid/contrib/slim/quantization/imperative/qat.py
24,682
Python
#!/usr/bin/env python # -*- coding: utf-8 -*- # refer to `https://bitbucket.org/akorn/wheezy.captcha` import random import string import os.path from io import BytesIO from PIL import Image from PIL import ImageFilter from PIL.ImageDraw import Draw from PIL.ImageFont import truetype class Bezier: def __init__(self): self.tsequence = tuple([t / 20.0 for t in range(21)]) self.beziers = {} def pascal_row(self, n): """ Returns n-th row of Pascal's triangle """ result = [1] x, numerator = 1, n for denominator in range(1, n // 2 + 1): x *= numerator x /= denominator result.append(x) numerator -= 1 if n & 1 == 0: result.extend(reversed(result[:-1])) else: result.extend(reversed(result)) return result def make_bezier(self, n): """ Bezier curves: http://en.wikipedia.org/wiki/B%C3%A9zier_curve#Generalization """ try: return self.beziers[n] except KeyError: combinations = self.pascal_row(n - 1) result = [] for t in self.tsequence: tpowers = (t ** i for i in range(n)) upowers = ((1 - t) ** i for i in range(n - 1, -1, -1)) coefs = [c * a * b for c, a, b in zip(combinations, tpowers, upowers)] result.append(coefs) self.beziers[n] = result return result class Captcha(object): def __init__(self): self._bezier = Bezier() self._dir = os.path.dirname(__file__) # self._captcha_path = os.path.join(self._dir, '..', 'static', 'captcha') @staticmethod def instance(): if not hasattr(Captcha, "_instance"): Captcha._instance = Captcha() return Captcha._instance def initialize(self, width=200, height=75, color=None, text=None, fonts=None): # self.image = Image.new('RGB', (width, height), (255, 255, 255)) # 4位验证随机码 self._text = text if text else random.sample(string.ascii_uppercase + string.ascii_uppercase + '3456789', 4) # print(self._text) self.fonts = fonts if fonts else \ [os.path.join(self._dir, 'fonts', font) for font in ['Arial.ttf', 'Georgia.ttf', 'actionj.ttf']] self.width = width self.height = height self._color = color if color else self.random_color(0, 200, random.randint(220, 255)) @staticmethod def random_color(start, end, opacity=None): red = random.randint(start, end) green = random.randint(start, end) blue = random.randint(start, end) if opacity is None: return red, green, blue return red, green, blue, opacity # draw image def background(self, image): Draw(image).rectangle([(0, 0), image.size], fill=self.random_color(238, 255)) return image @staticmethod def smooth(image): return image.filter(ImageFilter.SMOOTH) def curve(self, image, width=4, number=6, color=None): dx, height = image.size dx /= number path = [(dx * i, random.randint(0, height)) for i in range(1, number)] bcoefs = self._bezier.make_bezier(number - 1) points = [] for coefs in bcoefs: points.append(tuple(sum([coef * p for coef, p in zip(coefs, ps)]) for ps in zip(*path))) Draw(image).line(points, fill=color if color else self._color, width=width) return image def noise(self, image, number=50, level=2, color=None): width, height = image.size dx = width / 10 width -= dx dy = height / 10 height -= dy draw = Draw(image) for i in range(number): x = int(random.uniform(dx, width)) y = int(random.uniform(dy, height)) draw.line(((x, y), (x + level, y)), fill=color if color else self._color, width=level) return image def text(self, image, fonts, font_sizes=None, drawings=None, squeeze_factor=0.75, color=None): color = color if color else self._color fonts = tuple([truetype(name, size) for name in fonts for size in font_sizes or (65, 70, 75)]) draw = Draw(image) char_images = [] for c in self._text: font = random.choice(fonts) c_width, c_height = draw.textsize(c, font=font) char_image = Image.new('RGB', (c_width, c_height), (0, 0, 0)) char_draw = Draw(char_image) char_draw.text((0, 0), c, font=font, fill=color) char_image = char_image.crop(char_image.getbbox()) for drawing in drawings: d = getattr(self, drawing) char_image = d(char_image) char_images.append(char_image) width, height = image.size offset = int((width - sum(int(i.size[0] * squeeze_factor) for i in char_images[:-1]) - char_images[-1].size[0]) / 2) for char_image in char_images: c_width, c_height = char_image.size mask = char_image.convert('L').point(lambda i: i * 1.97) image.paste(char_image, (offset, int((height - c_height) / 2)), mask) offset += int(c_width * squeeze_factor) return image # draw text @staticmethod def warp(image, dx_factor=0.27, dy_factor=0.21): width, height = image.size dx = width * dx_factor dy = height * dy_factor x1 = int(random.uniform(-dx, dx)) y1 = int(random.uniform(-dy, dy)) x2 = int(random.uniform(-dx, dx)) y2 = int(random.uniform(-dy, dy)) image2 = Image.new('RGB', (width + abs(x1) + abs(x2), height + abs(y1) + abs(y2))) image2.paste(image, (abs(x1), abs(y1))) width2, height2 = image2.size return image2.transform( (width, height), Image.QUAD, (x1, y1, -x1, height2 - y2, width2 + x2, height2 + y2, width2 - x2, -y1)) @staticmethod def offset(image, dx_factor=0.1, dy_factor=0.2): width, height = image.size dx = int(random.random() * width * dx_factor) dy = int(random.random() * height * dy_factor) image2 = Image.new('RGB', (width + dx, height + dy)) image2.paste(image, (dx, dy)) return image2 @staticmethod def rotate(image, angle=25): return image.rotate( random.uniform(-angle, angle), Image.BILINEAR, expand=1) def captcha(self, path=None, fmt='JPEG'): """Create a captcha. Args: path: save path, default None. fmt: image format, PNG / JPEG. Returns: A tuple, (name, text, StringIO.value). For example: ('fXZJN4AFxHGoU5mIlcsdOypa', 'JGW9', '\x89PNG\r\n\x1a\n\x00\x00\x00\r...') """ image = Image.new('RGB', (self.width, self.height), (255, 255, 255)) image = self.background(image) image = self.text(image, self.fonts, drawings=['warp', 'rotate', 'offset']) image = self.curve(image) image = self.noise(image) image = self.smooth(image) name = "".join(random.sample(string.ascii_lowercase + string.ascii_uppercase + '3456789', 24)) text = "".join(self._text) out = BytesIO() image.save(out, format=fmt) if path: image.save(os.path.join(path, name), fmt) return name, text, out.getvalue() def generate_captcha(self): self.initialize() return self.captcha("") # 全局变量。使用就调用generate_captcha()即可 captcha = Captcha.instance() if __name__ == '__main__': x = captcha.generate_captcha() y = "%s.jpg" % x[1] print(x) with open(y,"wb") as f: f.write(x[2])
34.764957
116
0.547019
[ "MIT" ]
rymmx/My_information
info/utils/captcha/captcha.py
8,171
Python
#!/usr/bin/env python # -*- coding: utf-8 -*- """pipreqs - Generate pip requirements.txt file based on imports Usage: pipreqs [options] <path> Options: --use-local Use ONLY local package info instead of querying PyPI --pypi-server <url> Use custom PyPi server --proxy <url> Use Proxy, parameter will be passed to requests library. You can also just set the environments parameter in your terminal: $ export HTTP_PROXY="http://10.10.1.10:3128" $ export HTTPS_PROXY="https://10.10.1.10:1080" --debug Print debug information --ignore <dirs>... Ignore extra directories, each separated by a comma --encoding <charset> Use encoding parameter for file open --savepath <file> Save the list of requirements in the given file --print Output the list of requirements in the standard output --force Overwrite existing requirements.txt --diff <file> Compare modules in requirements.txt to project imports. --clean <file> Clean up requirements.txt by removing modules that are not imported in project. """ from __future__ import print_function, absolute_import import os import sys import re import logging import codecs import ast import traceback from docopt import docopt import requests from yarg import json2package from yarg.exceptions import HTTPError from pipreqs import __version__ REGEXP = [ re.compile(r'^import (.+)$'), re.compile(r'^from ((?!\.+).*?) import (?:.*)$') ] if sys.version_info[0] > 2: open_func = open py2 = False else: open_func = codecs.open py2 = True py2_exclude = ["concurrent", "concurrent.futures"] def get_all_imports(path, encoding=None, extra_ignore_dirs=None): imports = set() raw_imports = set() candidates = [] ignore_errors = False ignore_dirs = [".hg", ".svn", ".git", ".tox", "__pycache__", "env", "venv"] if extra_ignore_dirs: ignore_dirs_parsed = [] for e in extra_ignore_dirs: ignore_dirs_parsed.append(os.path.basename(os.path.realpath(e))) ignore_dirs.extend(ignore_dirs_parsed) for root, dirs, files in os.walk(path): dirs[:] = [d for d in dirs if d not in ignore_dirs] candidates.append(os.path.basename(root)) files = [fn for fn in files if os.path.splitext(fn)[1] == ".py"] candidates += [os.path.splitext(fn)[0] for fn in files] for file_name in files: with open_func(os.path.join(root, file_name), "r", encoding=encoding) as f: contents = f.read() try: tree = ast.parse(contents) for node in ast.walk(tree): if isinstance(node, ast.Import): for subnode in node.names: raw_imports.add(subnode.name) elif isinstance(node, ast.ImportFrom): raw_imports.add(node.module) except Exception as exc: if ignore_errors: traceback.print_exc(exc) logging.warn("Failed on file: %s" % os.path.join(root, file_name)) continue else: logging.error("Failed on file: %s" % os.path.join(root, file_name)) raise exc # Clean up imports for name in [n for n in raw_imports if n]: # Sanity check: Name could have been None if the import statement was as from . import X # Cleanup: We only want to first part of the import. # Ex: from django.conf --> django.conf. But we only want django as an import cleaned_name, _, _ = name.partition('.') imports.add(cleaned_name) packages = set(imports) - set(set(candidates) & set(imports)) logging.debug('Found packages: {0}'.format(packages)) with open(join("stdlib"), "r") as f: data = [x.strip() for x in f.readlines()] data = [x for x in data if x not in py2_exclude] if py2 else data return sorted(list(set(packages) - set(data))) def filter_line(l): return len(l) > 0 and l[0] != "#" def generate_requirements_file(path, imports): with open(path, "w") as out_file: logging.debug('Writing {num} requirements: {imports} to {file}'.format( num=len(imports), file=path, imports=", ".join([x['name'] for x in imports]) )) fmt = '{name}=={version}' out_file.write('\n'.join(fmt.format(**item) if item['version'] else '{name}'.format(**item) for item in imports) + '\n') def output_requirements(imports): logging.debug('Writing {num} requirements: {imports} to stdout'.format( num=len(imports), imports=", ".join([x['name'] for x in imports]) )) fmt = '{name}=={version}' print('\n'.join(fmt.format(**item) if item['version'] else '{name}'.format(**item) for item in imports)) def get_imports_info(imports, pypi_server="https://pypi.python.org/pypi/", proxy=None): result = [] for item in imports: try: response = requests.get("{0}{1}/json".format(pypi_server, item), proxies=proxy) if response.status_code == 200: if hasattr(response.content, 'decode'): data = json2package(response.content.decode()) else: data = json2package(response.content) elif response.status_code >= 300: raise HTTPError(status_code=response.status_code, reason=response.reason) except HTTPError: logging.debug( 'Package %s does not exist or network problems', item) continue result.append({'name': item, 'version': data.latest_release_id}) return result def get_locally_installed_packages(encoding=None): packages = {} ignore = ["tests", "_tests", "egg", "EGG", "info"] for path in sys.path: for root, dirs, files in os.walk(path): for item in files: if "top_level" in item: with open_func(os.path.join(root, item), "r", encoding=encoding) as f: package = root.split(os.sep)[-1].split("-") try: package_import = f.read().strip().split("\n") except: continue for i_item in package_import: if ((i_item not in ignore) and (package[0] not in ignore)): version = None if len(package) > 1: version = package[1].replace( ".dist", "").replace(".egg", "") packages[i_item] = { 'version': version, 'name': package[0] } return packages def get_import_local(imports, encoding=None): local = get_locally_installed_packages() result = [] for item in imports: if item.lower() in local: result.append(local[item.lower()]) # removing duplicates of package/version result_unique = [ dict(t) for t in set([ tuple(d.items()) for d in result ]) ] return result_unique def get_pkg_names(pkgs): result = [] with open(join("mapping"), "r") as f: data = [x.strip().split(":") for x in f.readlines()] for pkg in pkgs: toappend = pkg for item in data: if item[0] == pkg: toappend = item[1] break if toappend not in result: result.append(toappend) return result def get_name_without_alias(name): if "import " in name: match = REGEXP[0].match(name.strip()) if match: name = match.groups(0)[0] return name.partition(' as ')[0].partition('.')[0].strip() def join(f): return os.path.join(os.path.dirname(__file__), f) def parse_requirements(file_): """Parse a requirements formatted file. Traverse a string until a delimiter is detected, then split at said delimiter, get module name by element index, create a dict consisting of module:version, and add dict to list of parsed modules. Args: file_: File to parse. Raises: OSerror: If there's any issues accessing the file. Returns: tuple: The contents of the file, excluding comments. """ modules = [] delim = ["<", ">", "=", "!", "~"] # https://www.python.org/dev/peps/pep-0508/#complete-grammar try: f = open_func(file_, "r") except OSError: logging.error("Failed on file: {}".format(file_)) raise else: data = [x.strip() for x in f.readlines() if x != "\n"] finally: f.close() data = [x for x in data if x[0].isalpha()] for x in data: if not any([y in x for y in delim]): # Check for modules w/o a specifier. modules.append({"name": x, "version": None}) for y in x: if y in delim: module = x.split(y) module_name = module[0] module_version = module[-1].replace("=", "") module = {"name": module_name, "version": module_version} if module not in modules: modules.append(module) break return modules def compare_modules(file_, imports): """Compare modules in a file to imported modules in a project. Args: file_ (str): File to parse for modules to be compared. imports (tuple): Modules being imported in the project. Returns: tuple: The modules not imported in the project, but do exist in the specified file. """ modules = parse_requirements(file_) imports = [imports[i]["name"] for i in range(len(imports))] modules = [modules[i]["name"] for i in range(len(modules))] modules_not_imported = set(modules) - set(imports) return modules_not_imported def diff(file_, imports): """Display the difference between modules in a file and imported modules.""" modules_not_imported = compare_modules(file_, imports) logging.info("The following modules are in {} but do not seem to be imported: " "{}".format(file_, ", ".join(x for x in modules_not_imported))) def clean(file_, imports): """Remove modules that aren't imported in project from file.""" modules_not_imported = compare_modules(file_, imports) re_remove = re.compile("|".join(modules_not_imported)) to_write = [] try: f = open_func(file_, "r+") except OSError: logging.error("Failed on file: {}".format(file_)) raise else: for i in f.readlines(): if re_remove.match(i) is None: to_write.append(i) f.seek(0) f.truncate() for i in to_write: f.write(i) finally: f.close() logging.info("Successfully cleaned up requirements in " + file_) def init(args): encoding = args.get('--encoding') extra_ignore_dirs = args.get('--ignore') if extra_ignore_dirs: extra_ignore_dirs = extra_ignore_dirs.split(',') candidates = get_all_imports(args['<path>'], encoding=encoding, extra_ignore_dirs=extra_ignore_dirs) candidates = get_pkg_names(candidates) logging.debug("Found imports: " + ", ".join(candidates)) pypi_server = "https://pypi.python.org/pypi/" proxy = None if args["--pypi-server"]: pypi_server = args["--pypi-server"] if args["--proxy"]: proxy = {'http': args["--proxy"], 'https': args["--proxy"]} if args["--use-local"]: logging.debug( "Getting package information ONLY from local installation.") imports = get_import_local(candidates, encoding=encoding) else: logging.debug("Getting packages information from Local/PyPI") local = get_import_local(candidates, encoding=encoding) # Get packages that were not found locally difference = [x for x in candidates if x.lower() not in [z['name'].lower() for z in local]] imports = local + get_imports_info(difference, proxy=proxy, pypi_server=pypi_server) path = (args["--savepath"] if args["--savepath"] else os.path.join(args['<path>'], "requirements.txt")) if args["--diff"]: diff(args["--diff"], imports) return if args["--clean"]: clean(args["--clean"], imports) return if not args["--print"] and not args["--savepath"] and not args["--force"] and os.path.exists(path): logging.warning("Requirements.txt already exists, " "use --force to overwrite it") return if args["--print"]: output_requirements(imports) logging.info("Successfully output requirements") else: generate_requirements_file(path, imports) logging.info("Successfully saved requirements file in " + path) def main(): # pragma: no cover args = docopt(__doc__, version=__version__) log_level = logging.DEBUG if args['--debug'] else logging.INFO logging.basicConfig(level=log_level, format='%(levelname)s: %(message)s') try: init(args) except KeyboardInterrupt: sys.exit(0) if __name__ == '__main__': main() # pragma: no cover
34.692308
108
0.565267
[ "MIT" ]
0mp/pipenv
pipenv/vendor/pipreqs/pipreqs.py
13,981
Python
#!/usr/bin/env python3 # Copyright (c) 2017-2021 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # # Test getblockstats rpc call # from test_framework.blocktools import COINBASE_MATURITY from test_framework.test_framework import BlinkhashTestFramework from test_framework.util import ( assert_equal, assert_raises_rpc_error, ) import json import os TESTSDIR = os.path.dirname(os.path.realpath(__file__)) class GetblockstatsTest(BlinkhashTestFramework): start_height = 101 max_stat_pos = 2 def add_options(self, parser): parser.add_argument('--gen-test-data', dest='gen_test_data', default=False, action='store_true', help='Generate test data') parser.add_argument('--test-data', dest='test_data', default='data/rpc_getblockstats.json', action='store', metavar='FILE', help='Test data file') def set_test_params(self): self.num_nodes = 1 self.setup_clean_chain = True self.supports_cli = False def get_stats(self): return [self.nodes[0].getblockstats(hash_or_height=self.start_height + i) for i in range(self.max_stat_pos+1)] def generate_test_data(self, filename): mocktime = 1525107225 self.nodes[0].setmocktime(mocktime) self.nodes[0].createwallet(wallet_name="testwallet") self.nodes[0].generatetoaddress(COINBASE_MATURITY + 1, self.nodes[0].getnewaddress()) address = self.nodes[0].get_deterministic_priv_key().address self.nodes[0].sendtoaddress(address=address, amount=10, subtractfeefromamount=True) self.generate(self.nodes[0], 1) self.nodes[0].sendtoaddress(address=address, amount=10, subtractfeefromamount=True) self.nodes[0].sendtoaddress(address=address, amount=10, subtractfeefromamount=False) self.nodes[0].settxfee(amount=0.003) self.nodes[0].sendtoaddress(address=address, amount=1, subtractfeefromamount=True) self.sync_all() self.generate(self.nodes[0], 1) self.expected_stats = self.get_stats() blocks = [] tip = self.nodes[0].getbestblockhash() blockhash = None height = 0 while tip != blockhash: blockhash = self.nodes[0].getblockhash(height) blocks.append(self.nodes[0].getblock(blockhash, 0)) height += 1 to_dump = { 'blocks': blocks, 'mocktime': int(mocktime), 'stats': self.expected_stats, } with open(filename, 'w', encoding="utf8") as f: json.dump(to_dump, f, sort_keys=True, indent=2) def load_test_data(self, filename): with open(filename, 'r', encoding="utf8") as f: d = json.load(f) blocks = d['blocks'] mocktime = d['mocktime'] self.expected_stats = d['stats'] # Set the timestamps from the file so that the nodes can get out of Initial Block Download self.nodes[0].setmocktime(mocktime) self.sync_all() for b in blocks: self.nodes[0].submitblock(b) def run_test(self): test_data = os.path.join(TESTSDIR, self.options.test_data) if self.options.gen_test_data: self.generate_test_data(test_data) else: self.load_test_data(test_data) self.sync_all() stats = self.get_stats() # Make sure all valid statistics are included but nothing else is expected_keys = self.expected_stats[0].keys() assert_equal(set(stats[0].keys()), set(expected_keys)) assert_equal(stats[0]['height'], self.start_height) assert_equal(stats[self.max_stat_pos]['height'], self.start_height + self.max_stat_pos) for i in range(self.max_stat_pos+1): self.log.info('Checking block %d\n' % (i)) assert_equal(stats[i], self.expected_stats[i]) # Check selecting block by hash too blockhash = self.expected_stats[i]['blockhash'] stats_by_hash = self.nodes[0].getblockstats(hash_or_height=blockhash) assert_equal(stats_by_hash, self.expected_stats[i]) # Make sure each stat can be queried on its own for stat in expected_keys: for i in range(self.max_stat_pos+1): result = self.nodes[0].getblockstats(hash_or_height=self.start_height + i, stats=[stat]) assert_equal(list(result.keys()), [stat]) if result[stat] != self.expected_stats[i][stat]: self.log.info('result[%s] (%d) failed, %r != %r' % ( stat, i, result[stat], self.expected_stats[i][stat])) assert_equal(result[stat], self.expected_stats[i][stat]) # Make sure only the selected statistics are included (more than one) some_stats = {'minfee', 'maxfee'} stats = self.nodes[0].getblockstats(hash_or_height=1, stats=list(some_stats)) assert_equal(set(stats.keys()), some_stats) # Test invalid parameters raise the proper json exceptions tip = self.start_height + self.max_stat_pos assert_raises_rpc_error(-8, 'Target block height %d after current tip %d' % (tip+1, tip), self.nodes[0].getblockstats, hash_or_height=tip+1) assert_raises_rpc_error(-8, 'Target block height %d is negative' % (-1), self.nodes[0].getblockstats, hash_or_height=-1) # Make sure not valid stats aren't allowed inv_sel_stat = 'asdfghjkl' inv_stats = [ [inv_sel_stat], ['minfee' , inv_sel_stat], [inv_sel_stat, 'minfee'], ['minfee', inv_sel_stat, 'maxfee'], ] for inv_stat in inv_stats: assert_raises_rpc_error(-8, 'Invalid selected statistic %s' % inv_sel_stat, self.nodes[0].getblockstats, hash_or_height=1, stats=inv_stat) # Make sure we aren't always returning inv_sel_stat as the culprit stat assert_raises_rpc_error(-8, 'Invalid selected statistic aaa%s' % inv_sel_stat, self.nodes[0].getblockstats, hash_or_height=1, stats=['minfee' , 'aaa%s' % inv_sel_stat]) # Mainchain's genesis block shouldn't be found on regtest assert_raises_rpc_error(-5, 'Block not found', self.nodes[0].getblockstats, hash_or_height='000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f') # Invalid number of args assert_raises_rpc_error(-1, 'getblockstats hash_or_height ( stats )', self.nodes[0].getblockstats, '00', 1, 2) assert_raises_rpc_error(-1, 'getblockstats hash_or_height ( stats )', self.nodes[0].getblockstats) if __name__ == '__main__': GetblockstatsTest().main()
41.916667
121
0.629225
[ "MIT" ]
blinkhash/blinkhash-core
test/functional/rpc_getblockstats.py
7,042
Python
"""Training run script""" import argparse import json from pathlib import Path from bisect import bisect_left import torch import torch_geometric as tg import matplotlib.pyplot as plt import local2global as l2g from local2global_embedding.embedding import speye, train, embedding, VGAE_model, VGAE_loss, reconstruction_auc from local2global_embedding.network import largest_connected_component, TGraph from local2global_embedding.patches import create_patch_data from local2global_embedding.clustering import distributed_clustering, fennel_clustering, louvain_clustering, metis_clustering class ResultsDict: """ Class for keeping track of results """ @classmethod def load(cls, filename, replace=False): """ restore results from file Args: filename: input json file replace: set the replace attribute Returns: populated ResultsDict """ self = cls(replace=replace) with open(filename) as f: self._data.update(json.load(f)) return self def save(self, filename): """ dump contents to json file Args: filename: output file path """ with open(filename, 'w') as f: json.dump(self._data, f) def __init__(self, replace=False): """ initialise empty ResultsDict Args: replace: set the replace attribute (default: ``False``) """ self._data = {'dims': [], 'auc': [], 'args': []} self.replace = replace #: if ``True``, updates replace existing data, if ``False``, updates append data def __getitem__(self, item): return self._data[item] def _update_index(self, index, aucs: list, args=None): """ update data for a given index Args: index: integer index into data lists aucs: new auc values (should be a list) args: new args data (optional) """ if self.replace: self['auc'][index] = aucs self['args'][index] = args else: self['auc'][index].extend(aucs) self['args'][index].extend([args] * len(aucs)) def _insert_index(self, index: int, dim: int, aucs: list, args=None): """ insert new data at index Args: index: integer index into data lists dim: data dimension for index aucs: new auc values args: new args data (optional) """ self['auc'].insert(index, aucs) self['dims'].insert(index, dim) self['args'].insert(index, [args] * len(aucs)) def update_dim(self, dim, aucs, args=None): """ update data for given dimension Args: dim: dimension to update aucs: new auc values args: new args data (optional) if ``self.contains_dim(dim) == True``, behaviour depends on the value of ``self.replace`` """ index = bisect_left(self['dims'], dim) if index < len(self['dims']) and self['dims'][index] == dim: self._update_index(index, aucs, args) else: self._insert_index(index, dim, aucs, args) def max_auc(self, dim=None): """ return maximum auc values Args: dim: if ``dim=None``, return list of values for all dimension, else only return maximum value for ``dim``. """ if dim is None: return [max(aucs) for aucs in self['auc']] else: index = bisect_left(self['dims'], dim) if index < len(self['dims']) and self['dims'][index] == dim: return max(self['auc'][index]) else: return 0. def contains_dim(self, dim): """ equivalent to ``dim in self['dims']`` """ index = bisect_left(self['dims'], dim) return index < len(self['dims']) and self['dims'][index] == dim def reduce_to_dims(self, dims): """ remove all data for dimensions not in ``dims`` Args: dims: list of dimensions to keep """ index = [i for i, d in enumerate(dims) if self.contains_dim(d)] for key1 in self._data: if isinstance(self._data[key1], list): self._data[key1] = [self[key1][i] for i in index] return self def runs(self, dim=None): """ return the number of runs Args: dim: if ``dim is None``, return list of number of runs for all dimension, else return number of runs for dimension ``dim``. """ if dim is None: return [len(x) for x in self['auc']] else: index = bisect_left(self['dims'], dim) if index < len(self['dims']) and self['dims'][index] == dim: return len(self['auc'][index]) else: return 0 _dataloaders = {} #: dataloaders def dataloader(name): """ decorator for registering dataloader functions Args: name: data set name """ def loader(func): _dataloaders[name] = func return func return loader @dataloader('Cora') def _load_cora(): return tg.datasets.Planetoid(name='Cora', root='/tmp/cora')[0] @dataloader('PubMed') def _load_pubmed(): return tg.datasets.Planetoid(name='PubMed', root='/tmp/pubmed')[0] @dataloader('AMZ_computers') def _load_amazon_computers(): return tg.datasets.Amazon(root='/tmp/amazon', name='Computers')[0] @dataloader('AMZ_photo') def _load_amazon_photos(): return tg.datasets.Amazon(root='/tmp/amazon', name='photo')[0] def load_data(name): """ load data set Args: name: name of data set (one of {names}) Returns: largest connected component of data set """ data = _dataloaders[name]() data = largest_connected_component(data=data) data.num_nodes = data.x.shape[0] return data load_data.__doc__ = load_data.__doc__.format(names=list(_dataloaders.keys())) def prepare_patches(output_folder, **kwargs): """ initialise patch data if ``output_folder`` does not exist, else load existing patch data Args: output_folder: folder for storing patch data **kwargs: arguments passed to :py:func:`~local2global_embedding.patches.create_patch_data` Returns: patch_data, patch_graph """ output_folder = Path(output_folder) if output_folder.is_dir(): patch_graph = torch.load(output_folder / 'patch_graph.pt') patch_data = [torch.load(output_folder / f"patch{i}.pt") for i in range(patch_graph.num_nodes)] else: patch_data, patch_graph = create_patch_data(**kwargs) output_folder.mkdir(parents=True) torch.save(patch_graph, output_folder / 'patch_graph.pt') for i, data in enumerate(patch_data): torch.save(data, output_folder / f'patch{i}.pt') return patch_data, patch_graph def csvlist(input_type=str): """ Create an argparse type that parses comma separated lists of type ``input_type`` Args: input_type: type of list elements Returns: list parser """ def make_list(input_str): return [input_type(s) for s in input_str.split(',')] make_list.__doc__ = f""" argparse type that parses comma separated list of type {input_type} Args: input_str: string to be parsed Returns: list of elements of type {input_type} """ return make_list _parser = argparse.ArgumentParser(description="Run training example.") _parser.add_argument('--data', default='Cora', choices=_dataloaders.keys(), help='Dataset to load') _parser.add_argument('--no_features', action='store_true', help='Discard features and use node identity.') _parser.add_argument('--num_epochs', type=int, default=200, help='Number of training epochs') _parser.add_argument('--runs', type=int, default=10, help='Number of training runs (keep best result)') _parser.add_argument('--dims', type=csvlist(int), default=[2], help='Embedding dimensions (comma-separated)') _parser.add_argument('--hidden_multiplier', type=int, default=2, help='Hidden dim is `hidden_multiplier` * `dim`') _parser.add_argument('--target_patch_degree', type=float, default=4.0, help='Target patch degree for sparsification.') _parser.add_argument('--min_overlap', type=int, default=None, help='Minimum target patch overlap (defaults to `max(dims) + 1`)') _parser.add_argument('--target_overlap', type=int, default=None, help='Target patch overlap (defaults to twice `min_overlap`)') _parser.add_argument('--gamma', type=float, default=0.0, help="Value of 'gamma' for RMST sparsification.") _parser.add_argument('--sparsify', default='resistance', help="Sparsification method to use.", choices={'resistance', 'rmst', 'none'}) _parser.add_argument('--cluster', default='metis', choices={'louvain', 'distributed', 'fennel', 'metis'}, help="Clustering method to use") _parser.add_argument('--num_clusters', default=10, type=int, help="Target number of clusters for fennel, or metis.") _parser.add_argument('--beta', default=0.1, type=float, help="Beta value for distributed") _parser.add_argument('--num_iters', default=None, type=int, help="Maximum iterations for distributed or fennel (default depends on method choice)") _parser.add_argument('--lr', default=0.01, type=float, help='Learning rate') _parser.add_argument('--dist', action='store_true', help='use distance decoder instead of inner product decoder') _parser.add_argument('--output', default='.', help='output folder') _parser.add_argument('--device', default=None, help="Device used for training e.g., 'cpu', 'cuda'") _parser.add_argument('--plot', action='store_true', help='Plot embedding performance') _parser.add_argument('--verbose', action='store_true', help='Show progress info') def run(**kwargs): """ Run training example. By default this function writes results to the current working directory. To override this use the ``output`` keyword argument. This function reproduces figure 1(a) of [#l2g]_ if called as ``run(dims=[2**i for i in range(1, 8)], plot=True)``. Keyword Args: data: Name of data set to load (one of {``'Cora'``, ``'PubMed'``, ``'AMZ_computers'``, ``'AMZ_photo'``}) (default: ``'Cora'``) no_features: If ``True``, discard features and use node identity. (default: ``False``) num_epochs: Number of training epochs (default: ``200``) runs: Number of training runs (keep best result) (default: ``1``) dims: list of embedding dimensions (default: ``[2]``) hidden_multiplier: Hidden dimension is ``hidden_multiplier * dim`` target_patch_degree: Target patch degree for resistance sparsification. (default: ``4``) min_overlap: Minimum target patch overlap (default: ``max(dims) + 1``) target_overlap: Target patch overlap (default: ``2 * max(dims)``) gamma: Value of 'gamma' for RMST sparsification (default: ``0``) sparsify: Sparsification method to use (one of {``'resistance'``, ``'none'``, ``'rmst'``}) (default: ``'resistance'``) cluster: Clustering method to use (one of {``'louvain'``, ``'fennel'`` , ``'distributed'``, ``'metis'``}) (default: ``'metis'``) num_clusters: Target number of clusters for distributed, fennel, or metis. num_iters: Maximum iterations for distributed or fennel lr: Learning rate dist: If ``True``, use distance decoder instead of inner product decoder (default: ``False``) output: output folder (default: ``'.'``) device: Device used for training e.g., 'cpu', 'cuda' (defaults to ``'cuda'`` if available else ``'cpu'``) plot: If ``True``, plot embedding performance (default: ``False``) verbose: If ``True``, show progress info (default: ``False``) This function only accepts keyword arguments and is also exposed as a command-line interface. .. rubric:: References .. [#l2g] L. G. S. Jeub et al. “Local2Global: Scaling global representation learning on graphs via local training”. DLG-KDD’21. 2021. `arXiv:2107.12224 [cs.LG] <https://arxiv.org/abs/2107.12224>`_. """ # support calling this as a python function with keyword arguments args = _parser.parse_args([]) for key, value in kwargs.items(): if key in args: setattr(args, key, value) else: raise TypeError(f'Unknown argument {key}') output_folder = Path(args.output) data = load_data(args.data) neg_edges = tg.utils.negative_sampling(data.edge_index, data.num_nodes) graph = TGraph(data.edge_index, data.edge_attr) basename = args.data dims = args.dims num_epochs = args.num_epochs runs = args.runs min_overlap = args.min_overlap if args.min_overlap is not None else max(dims) + 1 target_overlap = args.target_overlap if args.target_overlap is not None else 2 * max(dims) if args.no_features: data.x = None # remove node features (trained with identity) basename += '_no_features' if args.dist: basename += '_dist' if args.sparsify == 'resistance': sp_string = f"resistance_deg{args.target_patch_degree}" elif args.sparsify == 'rmst': sp_string = f"rmst_gamma{args.gamma}" elif args.sparsify == 'none': sp_string = "no_sparsify" else: raise RuntimeError(f"Unknown sparsification method '{args.sparsify}'.") if args.cluster == 'louvain': cluster_fun = lambda: louvain_clustering(graph) cluster_string = 'louvain' elif args.cluster == 'distributed': cluster_fun = lambda: distributed_clustering(graph, args.beta, rounds=args.num_iters) cluster_string = f'distributed_beta{args.beta}_it{args.num_iters}' elif args.cluster == 'fennel': cluster_fun = lambda: fennel_clustering(graph, num_clusters=args.num_clusters, randomise_order=True, num_iters=args.num_iters) cluster_string = f"fennel_n{args.num_clusters}_it{args.num_iters}" elif args.cluster == 'metis': cluster_fun = lambda: metis_clustering(graph, num_clusters=args.num_clusters) cluster_string = f"metis_n{args.num_clusters}" else: raise RuntimeError(f"Unknown cluster method '{args.cluster}'.") cluster_file = output_folder / f"{args.data}_{cluster_string}_clusters.pt" if cluster_file.is_file(): clusters = torch.load(cluster_file) else: clusters = cluster_fun() torch.save(clusters, cluster_file) patch_folder = output_folder / f'{args.data}_{cluster_string}_{sp_string}_mo{min_overlap}_to{target_overlap}_patches' patch_data, patch_graph = prepare_patches( output_folder=patch_folder, data=data, partition_tensor=clusters, min_overlap=min_overlap, target_overlap=target_overlap, sparsify_method=args.sparsify, gamma=args.gamma, target_patch_degree=args.target_patch_degree, verbose=args.verbose) if args.verbose: print(f'total edges: {data.num_edges}') print(f'total patch edges: {sum(c.num_edges for c in patch_data)}') if args.no_features: data.x = speye(data.num_nodes) # add identity as node features for training full model # compute baseline full model if necessary baseline_file = output_folder / f'{basename}_full_info.json' training_args = {'lr': args.lr, 'num_epochs': args.num_epochs, 'hidden_multiplier': args.hidden_multiplier} if baseline_file.is_file(): baseline_data = ResultsDict.load(baseline_file) else: baseline_data = ResultsDict() for d in dims: r = baseline_data.runs(d) if r < runs: if args.verbose: print(f'training full model for {runs-r} runs and d={d}') for r_it in range(r, runs): if args.verbose: print(f"full model (d={d}) run {r_it + 1} of {runs}") data = data.to(args.device) model = train(data, VGAE_model(d, d * args.hidden_multiplier, data.num_features, dist=args.dist).to(args.device), loss_fun=VGAE_loss, num_epochs=num_epochs, lr=args.lr, verbose=args.verbose, ) coords = embedding(model, data) auc = reconstruction_auc(coords, data, dist=args.dist) if auc > baseline_data.max_auc(d): if args.verbose: print(f"new best (auc={auc})") torch.save(model.state_dict(), output_folder / f'{basename}_full_d{d}_best_model.pt') torch.save(coords, output_folder / f'{basename}_full_d{d}_best_coords.pt') baseline_data.update_dim(d, [auc], training_args) baseline_data.save(baseline_file) results_file = patch_folder / f'{basename}_l2g_info.json' nt_results_file = patch_folder / f'{basename}_nt_info.json' if results_file.is_file(): results = ResultsDict.load(results_file, replace=True) else: results = ResultsDict(replace=True) if nt_results_file.is_file(): nt_results = ResultsDict.load(nt_results_file, replace=True) else: nt_results = ResultsDict(replace=True) for d in dims: patch_list = [] update_aligned_embedding = False for p_ind, patch in enumerate(patch_data): patch_result_file = patch_folder / f'{basename}_patch{p_ind}_info.json' if patch_result_file.is_file(): patch_results = ResultsDict.load(patch_result_file) else: patch_results = ResultsDict() coords_file = patch_folder / f'{basename}_patch{p_ind}_d{d}_best_coords.pt' if coords_file.is_file(): best_coords = torch.load(coords_file) r = patch_results.runs(d) if args.no_features: patch.x = speye(patch.num_nodes) if r < runs: if args.verbose: print(f'training patch{p_ind} for {runs-r} runs and d={d}') patch = patch.to(args.device) for r_it in range(r, runs): if args.verbose: print(f"patch{p_ind} (d={d}) run {r_it+1} of {runs}") model = train(patch, VGAE_model(d, d * args.hidden_multiplier, patch.num_features, dist=args.dist).to(args.device), loss_fun=VGAE_loss, num_epochs=num_epochs, lr=args.lr, ) coords = embedding(model, patch) auc = reconstruction_auc(coords, patch, dist=args.dist) if auc > patch_results.max_auc(d): if args.verbose: print(f"new best (auc={auc})") best_coords = coords torch.save(model.state_dict(), patch_folder / f'{basename}_patch{p_ind}_d{d}_best_model.pt') torch.save(best_coords, coords_file) update_aligned_embedding = True patch_results.update_dim(d, [auc], training_args) patch_results.save(patch_result_file) patch_list.append(l2g.Patch(patch.nodes.cpu().numpy(), best_coords.cpu().numpy())) patched_embedding_file = patch_folder / f'{basename}_d{d}_coords.pt' patched_embedding_file_nt = patch_folder / f'{basename}_d{d}_ntcoords.pt' if update_aligned_embedding or not patched_embedding_file.is_file(): prob = l2g.WeightedAlignmentProblem(patch_list, patch_edges=patch_graph.edges()) ntcoords = prob.mean_embedding() coords = prob.get_aligned_embedding() torch.save(coords, patched_embedding_file) torch.save(ntcoords, patched_embedding_file_nt) results.update_dim(d, [reconstruction_auc(torch.as_tensor(coords), data, neg_edges, dist=args.dist)]) nt_results.update_dim(d, [reconstruction_auc(torch.as_tensor(ntcoords), data, neg_edges, dist=args.dist)]) results.save(results_file) nt_results.save(nt_results_file) baseline_data = baseline_data.reduce_to_dims(dims) results = results.reduce_to_dims(dims) nt_results = nt_results.reduce_to_dims(dims) if args.plot: plt.figure() plt.plot(dims, [max(v) for v in baseline_data['auc']], label='full, inner product', marker='o', color='tab:blue') plt.plot(dims, results['auc'], '--', label='l2g, inner product', marker='>', color='tab:blue') plt.plot(dims, nt_results['auc'], ':', label='no-trans, inner product', color='tab:blue', linewidth=1) plt.xscale('log') plt.xticks(dims, dims) plt.minorticks_off() plt.xlabel('embedding dimension') plt.ylabel('AUC') plt.legend() oversampling_ratio = sum(p.num_edges for p in patch_data) / data.num_edges plt.title(f"oversampling ratio: {oversampling_ratio:.2}, #patches: {len(patch_data)}") plt.savefig(output_folder / f"{basename}_{cluster_string}_{sp_string}_mo{min_overlap}_to{target_overlap}.pdf") plt.show() if __name__ == '__main__': # run main script args = _parser.parse_args() run(**vars(args))
39.61302
147
0.61773
[ "MIT" ]
LJeub/Local2Global_embedding
local2global_embedding/run.py
21,912
Python