content
stringlengths
7
928k
avg_line_length
float64
3.5
33.8k
max_line_length
int64
6
139k
alphanum_fraction
float64
0.08
0.96
licenses
sequence
repository_name
stringlengths
7
104
path
stringlengths
4
230
size
int64
7
928k
lang
stringclasses
1 value
from typing import Tuple import yaml class World: world = None """ The first index is the Y coordinate, and the second index is the X coordinate :type world: List[List[int]] """ width = None """ :type width: int """ height = None """ :type height: int """ def __init__(self, path): self.world = [] self.load(path) def get_value(self, coordinates: Tuple[int, int]) -> int: return self.world[coordinates[0]][coordinates[1]] def load(self, path): self.world = [] with open(path, 'r') as f: yml = yaml.load(f) self.height = yml['info']['height'] self.width = yml['info']['width'] # Create an empty world for y in range(0, self.height): self.world.append([]) for x in range(0, self.width): self.world[y].append(0) row_index = -1 for row in yml['data']: row_index += 1 col_index = -2 # If our row is an even row, it is a horizontal row. # All the streets have an offset of +1 on a horizontal row if row_index % 2 == 0: col_index += 1 for col in row: col_index += 2 self.world[row_index][col_index] = col
21.95082
81
0.511576
[ "MIT" ]
Sidesplitter/Informatica-Olympiade-2016-2017
src/B2/world.py
1,339
Python
import os import sys sys.path.append('../') import speedify from speedify import State, Priority, SpeedifyError, SpeedifyAPIError import speedifysettings import speedifyutil import logging import unittest import time logging.basicConfig(handlers=[logging.FileHandler('test.log'),logging.StreamHandler(sys.stdout)],format='%(asctime)s\t%(levelname)s\t%(module)s\t%(message)s', level=logging.INFO) # Test the speedify library # assumes you're logged in class TestSpeedify(unittest.TestCase): #Note doesn't test login/logout. but then we have to deal with credentials being stored. def setUp(self): speedify.encryption(True) speedify.transport("auto") speedify.jumbo(True) speedify.crashreports(True) speedify.packetaggregation(True) speedify.routedefault(True) speedify.connectmethod("closest") speedify.disconnect() def test_connect(self): serverinfo = speedify.connect_closest() state = speedify.show_state() self.assertEqual(state,State.CONNECTED) self.assertIn("tag", serverinfo) self.assertIn("country", serverinfo) def test_connect_country(self): serverinfo = speedify.connect_country("sg") state = speedify.show_state() self.assertEqual(state,State.CONNECTED) self.assertIn("tag", serverinfo) self.assertIn("country", serverinfo) self.assertEqual(serverinfo["country"], "sg") new_serverinfo = speedify.show_currentserver() self.assertEqual(new_serverinfo["country"], "sg") def test_transport(self): mysettings = speedify.transport("https") serverinfo = speedify.connect() mysettings = speedify.show_settings() self.assertEqual(mysettings["transportMode"], "https") # to make sure runtime changed, could check stats and look for connectionstats : connections[] : protocol mysettings = speedify.transport("tcp") self.assertEqual(mysettings["transportMode"], "tcp") serverinfo = speedify.connect() mysettings = speedify.show_settings() self.assertEqual(mysettings["transportMode"], "tcp") def test_bad_country(self): #logging.disable(logging.ERROR); logging.info("Testing error handling, ignore next few errors") state = speedify.show_state() self.assertEqual(state,State.LOGGED_IN) logging.debug("connecting to bad country") with self.assertRaises(SpeedifyAPIError): speedify.connect_country("pp") logging.debug("after connecting to bad country") state = speedify.show_state() self.assertEqual(state,State.LOGGED_IN) logging.info("Done testing error handling") #logging.disable(logging.NOTSET) def test_disconnect(self): speedify.connect_closest() state = speedify.show_state() self.assertEqual(state,State.CONNECTED) speedify.disconnect() state = speedify.show_state() self.assertEqual(state,speedify.State.LOGGED_IN) def test_connectmethod(self): speedify.connect_closest() speedify.connectmethod("private", "jp") #pull settings from speedify to be sure they really set cm_settings = speedify.show_connectmethod() self.assertEqual(cm_settings["connectMethod"],"private") # country is ignored on self.assertEqual(cm_settings["country"], "") self.assertEqual(cm_settings["num"], 0) self.assertEqual(cm_settings["city"], "") speedify.connectmethod("p2p") cm_settings = speedify.show_connectmethod() self.assertEqual(cm_settings["connectMethod"],"p2p") self.assertEqual(cm_settings["country"], "") self.assertEqual(cm_settings["num"], 0) self.assertEqual(cm_settings["city"], "") retval = speedify.connectmethod("country", country="sg") cm_settings = speedify.show_connectmethod() self.assertEqual(cm_settings["connectMethod"],"country") self.assertEqual(cm_settings["country"], "sg") # the settings were returned by the actual connectmethod call, # and should be exactly the same self.assertEqual(cm_settings["connectMethod"],retval["connectMethod"]) self.assertEqual(cm_settings["country"], retval["country"]) self.assertEqual(cm_settings["num"],retval["num"]) self.assertEqual(cm_settings["city"], retval["city"]) speedify.connectmethod("closest") cm_settings = speedify.show_connectmethod() self.assertEqual(cm_settings["connectMethod"],"closest") self.assertEqual(cm_settings["country"], "") self.assertEqual(cm_settings["num"], 0) self.assertEqual(cm_settings["city"], "") def test_version(self): version = speedify.show_version() self.assertIn("maj",version) # expect at least Speedify 8.0 self.assertGreater(version["maj"], 7) self.assertIn("min",version) self.assertIn("bug",version) self.assertIn("build",version) def test_settings(self): # test some basic settings speedify.packetaggregation(False) speedify.jumbo(False) my_settings = speedify.show_settings() self.assertFalse(my_settings["packetAggregation"]) self.assertFalse(my_settings["jumboPackets"]) speedify.packetaggregation(True) speedify.jumbo(True) my_settings = speedify.show_settings() self.assertTrue(my_settings["packetAggregation"]) self.assertTrue(my_settings["jumboPackets"]) def test_badarguments(self): # reaching into private methods to force some errors to be sure they're handled try: goterror = False #invalid command speedify._run_speedify_cmd(["invalidcommand"]) except speedify.SpeedifyError as sapie: self.assertTrue("Unknown Parameter" in sapie.message) goterror = True self.assertTrue(goterror) try: #valid command, missing required argument goterror = False speedify._run_speedify_cmd(["overflow"]) except speedify.SpeedifyError as sapie: self.assertTrue("Missing parameters" in sapie.message) goterror = True self.assertTrue(goterror) try: goterror = False #valid command, invalid argument speedify._run_speedify_cmd(["overflow", "bob"]) except speedify.SpeedifyError as sapie: self.assertTrue("Invalid parameters" in sapie.message) goterror = True self.assertTrue(goterror) def test_privacy(self): speedify.crashreports(False) privacy_settings = speedify.show_privacy() self.assertFalse(privacy_settings["crashReports"]) speedify.crashreports(True) privacy_settings = speedify.show_privacy() self.assertTrue(privacy_settings["crashReports"]) if os.name == 'nt': #the windows only calls speedify.killswitch(True) privacy_settings = speedify.show_privacy() self.assertTrue(privacy_settings["killswitch"]) speedify.killswitch(False) privacy_settings = speedify.show_privacy() self.assertFalse(privacy_settings["killswitch"]) else: # shouldn't be there if we're not windows with self.assertRaises(SpeedifyError): logging.disable(logging.ERROR); speedify.killswitch(True) logging.disable(logging.NOTSET) def test_routedefault(self): speedify.connect() if not speedifyutil.using_speedify(): time.sleep(3) self.assertTrue(speedifyutil.using_speedify()) speedify.routedefault(False) self.assertFalse(speedify.show_settings()[ "enableDefaultRoute"]) time.sleep(1) if speedifyutil.using_speedify(): # try twice in case it takes a moment to settle time.sleep(1) self.assertFalse(speedifyutil.using_speedify()) speedify.routedefault(True) # for whatever reason getting the route back takes longer than giving it up self.assertTrue(speedify.show_settings()[ "enableDefaultRoute"]) time.sleep(2) if not speedifyutil.using_speedify(): # try twice in case it takes a moment to settle time.sleep(2) self.assertTrue(speedifyutil.using_speedify()) def test_serverlist(self): # also tests connecting to one server server_list = speedify.show_servers() self.assertIn("public", server_list) public_list = server_list["public"] server_info = public_list[0] self.assertIn("tag", server_info) self.assertIn("country", server_info) self.assertIn("city", server_info) self.assertIn("num", server_info) self.assertFalse(server_info["isPrivate"]) connectstring = server_info["tag"] new_server = speedify.connect(connectstring) self.assertEqual(new_server["tag"], connectstring) self.assertEqual(server_info["country"], new_server["country"]) self.assertEqual(server_info["city"], new_server["city"]) self.assertEqual(server_info["num"], new_server["num"]) def test_stats(self): speedify.connect_closest() report_list = speedify.stats(2) self.assertTrue(report_list) #Check for non empty list reports = [item[0] for item in report_list] self.assertIn("adapters", reports) #Check for at least one adapters report def test_adapters(self): adapters = speedify.show_adapters() self.assertTrue(adapters) adapterIDs = [adapter['adapterID'] for adapter in adapters] self._set_and_test_adapter_list(adapterIDs, Priority.BACKUP, 10000000) self._set_and_test_adapter_list(adapterIDs, Priority.ALWAYS, 0) def test_encryption(self): adapters = speedify.show_adapters() self.assertTrue(adapters) # just grab first adapter for testing adapterID = [adapter['adapterID'] for adapter in adapters][0] speedify.adapter_encryption(adapterID, False) mysettings = speedify.show_settings() perConnectionEncryptionEnabled = mysettings["perConnectionEncryptionEnabled"] self.assertTrue(perConnectionEncryptionEnabled) encrypted = mysettings["encrypted"] perConnectionEncryptionSettings = mysettings["perConnectionEncryptionSettings"] firstadapter = perConnectionEncryptionSettings[0] self.assertEqual(firstadapter["adapterID"], adapterID) self.assertEqual(firstadapter["encrypted"], False) # main thing should still be encrypted just not our one adapter self.assertTrue(encrypted) speedify.encryption(False) #this should both turn off encryption and wipe the custom settings mysettings = speedify.show_settings() perConnectionEncryptionEnabled = mysettings["perConnectionEncryptionEnabled"] self.assertFalse(perConnectionEncryptionEnabled) encrypted = mysettings["encrypted"] self.assertFalse(encrypted) # now let's test with only the adapter being encrypted speedify.adapter_encryption(adapterID, True) mysettings = speedify.show_settings() perConnectionEncryptionEnabled = mysettings["perConnectionEncryptionEnabled"] self.assertTrue(perConnectionEncryptionEnabled) encrypted = mysettings["encrypted"] perConnectionEncryptionSettings = mysettings["perConnectionEncryptionSettings"] firstadapter = perConnectionEncryptionSettings[0] self.assertEqual(firstadapter["adapterID"], adapterID) self.assertEqual(firstadapter["encrypted"], True) speedify.encryption(True) #this should both turn on encryption and wipe the custom settings mysettings = speedify.show_settings() perConnectionEncryptionEnabled = mysettings["perConnectionEncryptionEnabled"] self.assertFalse(perConnectionEncryptionEnabled) encrypted = mysettings["encrypted"] self.assertTrue(encrypted) def _set_and_test_adapter_list(self, adapterIDs, priority, limit): for adapterID in adapterIDs: speedify.adapter_priority(adapterID, priority) speedify.adapter_ratelimit(adapterID, limit) speedify.adapter_datalimit_daily(adapterID, limit) speedify.adapter_datalimit_monthly(adapterID, limit,0) updated_adapters = speedify.show_adapters() priorities = [adapter['priority'] for adapter in updated_adapters] rate_limits = [adapter['rateLimit'] for adapter in updated_adapters] daily_limits = [adapter['dataUsage']['usageDailyLimit'] for adapter in updated_adapters] monthly_limits = [adapter['dataUsage']['usageMonthlyLimit'] for adapter in updated_adapters] for set_priority, rate_limit, daily_limit, monthly_limit in zip(priorities, rate_limits, daily_limits, monthly_limits): # Disconnected adapters speedify is aware of will have an unchangable priority never if (set_priority != Priority.NEVER.value): self.assertEqual(set_priority, priority.value) self.assertEqual(rate_limit, limit) self.assertEqual(daily_limit, limit) self.assertEqual(monthly_limit, limit) if __name__ == '__main__': speedifysettings.apply_speedify_settings(speedifysettings.speedify_defaults) unittest.main() speedifysettings.apply_speedify_settings(speedifysettings.speedify_defaults)
44.280645
179
0.678298
[ "Apache-2.0" ]
Sarvesh-Kesharwani/speedify-py
tests/test_speedify.py
13,727
Python
""" Adds the source files to the path for files in any subdirectory TODO: check that we have not alredy added to our path. """ import os import sys fileLocation = os.path.dirname(os.path.abspath(__file__)) sourceLocation = os.path.abspath(os.path.join(fileLocation, 'RCWA/source/')) nkLocation = os.path.abspath(os.path.join(fileLocation, 'RCWA/nkData/')) netlistLocation = os.path.abspath(os.path.join(fileLocation, 'RCWA/netlist/')) testLocation = os.path.abspath(os.path.join(fileLocation, 'RCWA/test/')) sys.path.insert(0, sourceLocation) sys.path.insert(0, nkLocation) sys.path.insert(0, netlistLocation) sys.path.insert(0, testLocation)
35.833333
78
0.765891
[ "MIT" ]
FelixSCT/rcwa
context.py
645
Python
# -*- coding: utf-8 -*- from operator import attrgetter from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType from pyangbind.lib.yangtypes import RestrictedClassType from pyangbind.lib.yangtypes import TypedListType from pyangbind.lib.yangtypes import YANGBool from pyangbind.lib.yangtypes import YANGListType from pyangbind.lib.yangtypes import YANGDynClass from pyangbind.lib.yangtypes import ReferenceType from pyangbind.lib.base import PybindBase from collections import OrderedDict from decimal import Decimal from bitarray import bitarray import six # PY3 support of some PY2 keywords (needs improved) if six.PY3: import builtins as __builtin__ long = int elif six.PY2: import __builtin__ class config(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module openconfig-interfaces - based on the path /interfaces/interface/subinterfaces/subinterface/ipv4/unnumbered/interface-ref/config. Each member element of the container is represented as a class variable - with a specific YANG type. YANG Description: Configured reference to interface / subinterface """ __slots__ = ("_path_helper", "_extmethods", "__interface", "__subinterface") _yang_name = "config" _pybind_generated_by = "container" def __init__(self, *args, **kwargs): self._path_helper = False self._extmethods = False self.__interface = YANGDynClass( base=six.text_type, is_leaf=True, yang_name="interface", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/interfaces/ip", defining_module="openconfig-if-ip", yang_type="leafref", is_config=True, ) self.__subinterface = YANGDynClass( base=six.text_type, is_leaf=True, yang_name="subinterface", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/interfaces/ip", defining_module="openconfig-if-ip", yang_type="leafref", is_config=True, ) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path() + [self._yang_name] else: return [ "interfaces", "interface", "subinterfaces", "subinterface", "ipv4", "unnumbered", "interface-ref", "config", ] def _get_interface(self): """ Getter method for interface, mapped from YANG variable /interfaces/interface/subinterfaces/subinterface/ipv4/unnumbered/interface_ref/config/interface (leafref) YANG Description: Reference to a base interface. If a reference to a subinterface is required, this leaf must be specified to indicate the base interface. """ return self.__interface def _set_interface(self, v, load=False): """ Setter method for interface, mapped from YANG variable /interfaces/interface/subinterfaces/subinterface/ipv4/unnumbered/interface_ref/config/interface (leafref) If this variable is read-only (config: false) in the source YANG file, then _set_interface is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_interface() directly. YANG Description: Reference to a base interface. If a reference to a subinterface is required, this leaf must be specified to indicate the base interface. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass( v, base=six.text_type, is_leaf=True, yang_name="interface", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/interfaces/ip", defining_module="openconfig-if-ip", yang_type="leafref", is_config=True, ) except (TypeError, ValueError): raise ValueError( { "error-string": """interface must be of a type compatible with leafref""", "defined-type": "leafref", "generated-type": """YANGDynClass(base=six.text_type, is_leaf=True, yang_name="interface", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/interfaces/ip', defining_module='openconfig-if-ip', yang_type='leafref', is_config=True)""", } ) self.__interface = t if hasattr(self, "_set"): self._set() def _unset_interface(self): self.__interface = YANGDynClass( base=six.text_type, is_leaf=True, yang_name="interface", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/interfaces/ip", defining_module="openconfig-if-ip", yang_type="leafref", is_config=True, ) def _get_subinterface(self): """ Getter method for subinterface, mapped from YANG variable /interfaces/interface/subinterfaces/subinterface/ipv4/unnumbered/interface_ref/config/subinterface (leafref) YANG Description: Reference to a subinterface -- this requires the base interface to be specified using the interface leaf in this container. If only a reference to a base interface is requuired, this leaf should not be set. """ return self.__subinterface def _set_subinterface(self, v, load=False): """ Setter method for subinterface, mapped from YANG variable /interfaces/interface/subinterfaces/subinterface/ipv4/unnumbered/interface_ref/config/subinterface (leafref) If this variable is read-only (config: false) in the source YANG file, then _set_subinterface is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_subinterface() directly. YANG Description: Reference to a subinterface -- this requires the base interface to be specified using the interface leaf in this container. If only a reference to a base interface is requuired, this leaf should not be set. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass( v, base=six.text_type, is_leaf=True, yang_name="subinterface", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/interfaces/ip", defining_module="openconfig-if-ip", yang_type="leafref", is_config=True, ) except (TypeError, ValueError): raise ValueError( { "error-string": """subinterface must be of a type compatible with leafref""", "defined-type": "leafref", "generated-type": """YANGDynClass(base=six.text_type, is_leaf=True, yang_name="subinterface", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='http://openconfig.net/yang/interfaces/ip', defining_module='openconfig-if-ip', yang_type='leafref', is_config=True)""", } ) self.__subinterface = t if hasattr(self, "_set"): self._set() def _unset_subinterface(self): self.__subinterface = YANGDynClass( base=six.text_type, is_leaf=True, yang_name="subinterface", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace="http://openconfig.net/yang/interfaces/ip", defining_module="openconfig-if-ip", yang_type="leafref", is_config=True, ) interface = __builtin__.property(_get_interface, _set_interface) subinterface = __builtin__.property(_get_subinterface, _set_subinterface) _pyangbind_elements = OrderedDict( [("interface", interface), ("subinterface", subinterface)] )
38.756
338
0.618846
[ "Apache-2.0" ]
ABitMoreDepth/napalm-yang
napalm_yang/models/openconfig/interfaces/interface/subinterfaces/subinterface/ipv4/unnumbered/interface_ref/config/__init__.py
9,689
Python
# # Copyright 2020 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # class BaseStatus(object): @classmethod def status_list(cls): return [cls.__dict__[k] for k in cls.__dict__.keys() if not callable(getattr(cls, k)) and not k.startswith("__")] @classmethod def contains(cls, status): return status in cls.status_list() class BaseStateTransitionRule(object): RULES = {} @classmethod def if_pass(cls, src_status, dest_status): if src_status not in cls.RULES: return False if dest_status not in cls.RULES[src_status]: return False else: return True class StatusSet(BaseStatus): WAITING = 'waiting' READY = 'ready' RUNNING = "running" CANCELED = "canceled" TIMEOUT = "timeout" FAILED = "failed" SUCCESS = "success" SKIPPED = "skipped" @classmethod def get_level(cls, status): return dict(zip(cls.status_list(), range(len(cls.status_list())))).get(status, None) class JobStatus(BaseStatus): WAITING = StatusSet.WAITING READY = StatusSet.READY RUNNING = StatusSet.RUNNING CANCELED = StatusSet.CANCELED TIMEOUT = StatusSet.TIMEOUT FAILED = StatusSet.FAILED SUCCESS = StatusSet.SUCCESS class StateTransitionRule(BaseStateTransitionRule): RULES = { StatusSet.WAITING: [StatusSet.READY, StatusSet.RUNNING, StatusSet.CANCELED, StatusSet.TIMEOUT, StatusSet.FAILED, StatusSet.SUCCESS], StatusSet.READY: [StatusSet.WAITING, StatusSet.RUNNING, StatusSet.CANCELED, StatusSet.TIMEOUT, StatusSet.FAILED], StatusSet.RUNNING: [StatusSet.CANCELED, StatusSet.TIMEOUT, StatusSet.FAILED, StatusSet.SUCCESS], StatusSet.CANCELED: [StatusSet.WAITING], StatusSet.TIMEOUT: [StatusSet.FAILED, StatusSet.SUCCESS, StatusSet.WAITING], StatusSet.FAILED: [StatusSet.WAITING], StatusSet.SUCCESS: [StatusSet.WAITING], } class PlayStatus(BaseStatus): WAITING = StatusSet.WAITING READY = StatusSet.READY RUNNING = StatusSet.RUNNING CANCELED = StatusSet.CANCELED TIMEOUT = StatusSet.TIMEOUT FAILED = StatusSet.FAILED SUCCESS = StatusSet.SUCCESS class StateTransitionRule(BaseStateTransitionRule): RULES = { StatusSet.WAITING: [StatusSet.READY, StatusSet.RUNNING, StatusSet.CANCELED, StatusSet.TIMEOUT, StatusSet.FAILED, StatusSet.SUCCESS], StatusSet.READY: [StatusSet.RUNNING, StatusSet.CANCELED, StatusSet.TIMEOUT, StatusSet.FAILED], StatusSet.RUNNING: [StatusSet.CANCELED, StatusSet.TIMEOUT, StatusSet.FAILED, StatusSet.SUCCESS], StatusSet.CANCELED: [StatusSet.WAITING], StatusSet.TIMEOUT: [StatusSet.FAILED, StatusSet.SUCCESS], StatusSet.FAILED: [StatusSet.WAITING], StatusSet.SUCCESS: [], } class TaskStatus(BaseStatus): WAITING = StatusSet.WAITING RUNNING = StatusSet.RUNNING CANCELED = StatusSet.CANCELED TIMEOUT = StatusSet.TIMEOUT FAILED = StatusSet.FAILED SUCCESS = StatusSet.SUCCESS SKIPPED = StatusSet.SKIPPED class StateTransitionRule(BaseStateTransitionRule): RULES = { StatusSet.WAITING: [StatusSet.RUNNING, StatusSet.TIMEOUT, StatusSet.FAILED, StatusSet.SUCCESS, StatusSet.SKIPPED], StatusSet.RUNNING: [StatusSet.CANCELED, StatusSet.TIMEOUT, StatusSet.FAILED, StatusSet.SUCCESS, StatusSet.SKIPPED], StatusSet.CANCELED: [StatusSet.WAITING], StatusSet.TIMEOUT: [StatusSet.FAILED, StatusSet.SUCCESS], StatusSet.FAILED: [], StatusSet.SUCCESS: [], StatusSet.SKIPPED: [] } class EndStatus(BaseStatus): CANCELED = StatusSet.CANCELED TIMEOUT = StatusSet.TIMEOUT FAILED = StatusSet.FAILED COMPLETE = StatusSet.SUCCESS SKIPPED = StatusSet.SKIPPED class StandbyStatus(BaseStatus): WAITING = StatusSet.WAITING READY = StatusSet.READY class OngoingStatus(BaseStatus): WAITING = StatusSet.WAITING READY = StatusSet.READY RUNNING = StatusSet.RUNNING class InterruptStatus(BaseStatus): CANCELED = StatusSet.CANCELED TIMEOUT = StatusSet.TIMEOUT FAILED = StatusSet.FAILED class NoneKillStatus(BaseStatus): WAITING = StatusSet.WAITING READY = StatusSet.READY CANCELED = StatusSet.CANCELED TIMEOUT = StatusSet.TIMEOUT FAILED = StatusSet.FAILED SUCCESS = StatusSet.SUCCESS SKIPPED = StatusSet.SKIPPED
33.423841
144
0.69467
[ "Apache-2.0" ]
cold-code/FATE-Cloud
fate-manager/hyperion/entity/types.py
5,047
Python
# testing/assertions.py # Copyright (C) 2005-2021 the SQLAlchemy authors and contributors # <see AUTHORS file> # # This module is part of SQLAlchemy and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php from __future__ import absolute_import import contextlib import re import sys import warnings from . import assertsql from . import config from . import engines from . import mock from .exclusions import db_spec from .util import fail from .. import exc as sa_exc from .. import schema from .. import sql from .. import types as sqltypes from .. import util from ..engine import default from ..engine import url from ..sql.selectable import LABEL_STYLE_TABLENAME_PLUS_COL from ..util import compat from ..util import decorator def expect_warnings(*messages, **kw): """Context manager which expects one or more warnings. With no arguments, squelches all SAWarning and RemovedIn20Warning emitted via sqlalchemy.util.warn and sqlalchemy.util.warn_limited. Otherwise pass string expressions that will match selected warnings via regex; all non-matching warnings are sent through. The expect version **asserts** that the warnings were in fact seen. Note that the test suite sets SAWarning warnings to raise exceptions. """ # noqa return _expect_warnings( (sa_exc.RemovedIn20Warning, sa_exc.SAWarning), messages, **kw ) @contextlib.contextmanager def expect_warnings_on(db, *messages, **kw): """Context manager which expects one or more warnings on specific dialects. The expect version **asserts** that the warnings were in fact seen. """ spec = db_spec(db) if isinstance(db, util.string_types) and not spec(config._current): yield else: with expect_warnings(*messages, **kw): yield def emits_warning(*messages): """Decorator form of expect_warnings(). Note that emits_warning does **not** assert that the warnings were in fact seen. """ @decorator def decorate(fn, *args, **kw): with expect_warnings(assert_=False, *messages): return fn(*args, **kw) return decorate def expect_deprecated(*messages, **kw): return _expect_warnings(sa_exc.SADeprecationWarning, messages, **kw) def expect_deprecated_20(*messages, **kw): return _expect_warnings(sa_exc.RemovedIn20Warning, messages, **kw) def emits_warning_on(db, *messages): """Mark a test as emitting a warning on a specific dialect. With no arguments, squelches all SAWarning failures. Or pass one or more strings; these will be matched to the root of the warning description by warnings.filterwarnings(). Note that emits_warning_on does **not** assert that the warnings were in fact seen. """ @decorator def decorate(fn, *args, **kw): with expect_warnings_on(db, assert_=False, *messages): return fn(*args, **kw) return decorate def uses_deprecated(*messages): """Mark a test as immune from fatal deprecation warnings. With no arguments, squelches all SADeprecationWarning failures. Or pass one or more strings; these will be matched to the root of the warning description by warnings.filterwarnings(). As a special case, you may pass a function name prefixed with // and it will be re-written as needed to match the standard warning verbiage emitted by the sqlalchemy.util.deprecated decorator. Note that uses_deprecated does **not** assert that the warnings were in fact seen. """ @decorator def decorate(fn, *args, **kw): with expect_deprecated(*messages, assert_=False): return fn(*args, **kw) return decorate @contextlib.contextmanager def _expect_warnings( exc_cls, messages, regex=True, assert_=True, py2konly=False ): if regex: filters = [re.compile(msg, re.I | re.S) for msg in messages] else: filters = messages seen = set(filters) real_warn = warnings.warn def our_warn(msg, *arg, **kw): if isinstance(msg, exc_cls): exception = type(msg) msg = str(msg) elif arg: exception = arg[0] else: exception = None if not exception or not issubclass(exception, exc_cls): return real_warn(msg, *arg, **kw) if not filters: return for filter_ in filters: if (regex and filter_.match(msg)) or ( not regex and filter_ == msg ): seen.discard(filter_) break else: real_warn(msg, *arg, **kw) with mock.patch("warnings.warn", our_warn), mock.patch( "sqlalchemy.util.SQLALCHEMY_WARN_20", True ), mock.patch( "sqlalchemy.util.deprecations.SQLALCHEMY_WARN_20", True ), mock.patch( "sqlalchemy.engine.row.LegacyRow._default_key_style", 2 ): yield if assert_ and (not py2konly or not compat.py3k): assert not seen, "Warnings were not seen: %s" % ", ".join( "%r" % (s.pattern if regex else s) for s in seen ) def global_cleanup_assertions(): """Check things that have to be finalized at the end of a test suite. Hardcoded at the moment, a modular system can be built here to support things like PG prepared transactions, tables all dropped, etc. """ _assert_no_stray_pool_connections() def _assert_no_stray_pool_connections(): engines.testing_reaper.assert_all_closed() def eq_regex(a, b, msg=None): assert re.match(b, a), msg or "%r !~ %r" % (a, b) def eq_(a, b, msg=None): """Assert a == b, with repr messaging on failure.""" assert a == b, msg or "%r != %r" % (a, b) def ne_(a, b, msg=None): """Assert a != b, with repr messaging on failure.""" assert a != b, msg or "%r == %r" % (a, b) def le_(a, b, msg=None): """Assert a <= b, with repr messaging on failure.""" assert a <= b, msg or "%r != %r" % (a, b) def is_instance_of(a, b, msg=None): assert isinstance(a, b), msg or "%r is not an instance of %r" % (a, b) def is_none(a, msg=None): is_(a, None, msg=msg) def is_not_none(a, msg=None): is_not(a, None, msg=msg) def is_true(a, msg=None): is_(bool(a), True, msg=msg) def is_false(a, msg=None): is_(bool(a), False, msg=msg) def is_(a, b, msg=None): """Assert a is b, with repr messaging on failure.""" assert a is b, msg or "%r is not %r" % (a, b) def is_not(a, b, msg=None): """Assert a is not b, with repr messaging on failure.""" assert a is not b, msg or "%r is %r" % (a, b) # deprecated. See #5429 is_not_ = is_not def in_(a, b, msg=None): """Assert a in b, with repr messaging on failure.""" assert a in b, msg or "%r not in %r" % (a, b) def not_in(a, b, msg=None): """Assert a in not b, with repr messaging on failure.""" assert a not in b, msg or "%r is in %r" % (a, b) # deprecated. See #5429 not_in_ = not_in def startswith_(a, fragment, msg=None): """Assert a.startswith(fragment), with repr messaging on failure.""" assert a.startswith(fragment), msg or "%r does not start with %r" % ( a, fragment, ) def eq_ignore_whitespace(a, b, msg=None): a = re.sub(r"^\s+?|\n", "", a) a = re.sub(r" {2,}", " ", a) b = re.sub(r"^\s+?|\n", "", b) b = re.sub(r" {2,}", " ", b) assert a == b, msg or "%r != %r" % (a, b) def _assert_proper_exception_context(exception): """assert that any exception we're catching does not have a __context__ without a __cause__, and that __suppress_context__ is never set. Python 3 will report nested as exceptions as "during the handling of error X, error Y occurred". That's not what we want to do. we want these exceptions in a cause chain. """ if not util.py3k: return if ( exception.__context__ is not exception.__cause__ and not exception.__suppress_context__ ): assert False, ( "Exception %r was correctly raised but did not set a cause, " "within context %r as its cause." % (exception, exception.__context__) ) def assert_raises(except_cls, callable_, *args, **kw): return _assert_raises(except_cls, callable_, args, kw, check_context=True) def assert_raises_context_ok(except_cls, callable_, *args, **kw): return _assert_raises(except_cls, callable_, args, kw) def assert_raises_message(except_cls, msg, callable_, *args, **kwargs): return _assert_raises( except_cls, callable_, args, kwargs, msg=msg, check_context=True ) def assert_raises_message_context_ok( except_cls, msg, callable_, *args, **kwargs ): return _assert_raises(except_cls, callable_, args, kwargs, msg=msg) def _assert_raises( except_cls, callable_, args, kwargs, msg=None, check_context=False ): with _expect_raises(except_cls, msg, check_context) as ec: callable_(*args, **kwargs) return ec.error class _ErrorContainer(object): error = None @contextlib.contextmanager def _expect_raises(except_cls, msg=None, check_context=False): ec = _ErrorContainer() if check_context: are_we_already_in_a_traceback = sys.exc_info()[0] try: yield ec success = False except except_cls as err: ec.error = err success = True if msg is not None: assert re.search( msg, util.text_type(err), re.UNICODE ), "%r !~ %s" % (msg, err) if check_context and not are_we_already_in_a_traceback: _assert_proper_exception_context(err) print(util.text_type(err).encode("utf-8")) # assert outside the block so it works for AssertionError too ! assert success, "Callable did not raise an exception" def expect_raises(except_cls, check_context=True): return _expect_raises(except_cls, check_context=check_context) def expect_raises_message(except_cls, msg, check_context=True): return _expect_raises(except_cls, msg=msg, check_context=check_context) class AssertsCompiledSQL(object): def assert_compile( self, clause, result, params=None, checkparams=None, for_executemany=False, check_literal_execute=None, check_post_param=None, dialect=None, checkpositional=None, check_prefetch=None, use_default_dialect=False, allow_dialect_select=False, supports_default_values=True, literal_binds=False, render_postcompile=False, schema_translate_map=None, render_schema_translate=False, default_schema_name=None, ): if use_default_dialect: dialect = default.DefaultDialect() dialect.supports_default_values = supports_default_values elif allow_dialect_select: dialect = None else: if dialect is None: dialect = getattr(self, "__dialect__", None) if dialect is None: dialect = config.db.dialect elif dialect == "default": dialect = default.DefaultDialect() dialect.supports_default_values = supports_default_values elif dialect == "default_enhanced": dialect = default.StrCompileDialect() elif isinstance(dialect, util.string_types): dialect = url.URL.create(dialect).get_dialect()() if default_schema_name: dialect.default_schema_name = default_schema_name kw = {} compile_kwargs = {} if schema_translate_map: kw["schema_translate_map"] = schema_translate_map if params is not None: kw["column_keys"] = list(params) if literal_binds: compile_kwargs["literal_binds"] = True if render_postcompile: compile_kwargs["render_postcompile"] = True if for_executemany: kw["for_executemany"] = True if render_schema_translate: kw["render_schema_translate"] = True from sqlalchemy import orm if isinstance(clause, orm.dynamic.AppenderQuery): clause = clause._statement if isinstance(clause, orm.Query): compile_state = clause._compile_state() compile_state.statement._label_style = ( LABEL_STYLE_TABLENAME_PLUS_COL ) clause = compile_state.statement if compile_kwargs: kw["compile_kwargs"] = compile_kwargs class DontAccess(object): def __getattribute__(self, key): raise NotImplementedError( "compiler accessed .statement; use " "compiler.current_executable" ) class CheckCompilerAccess(object): def __init__(self, test_statement): self.test_statement = test_statement self._annotations = {} self.supports_execution = getattr( test_statement, "supports_execution", False ) if self.supports_execution: self._execution_options = test_statement._execution_options if isinstance( test_statement, (sql.Insert, sql.Update, sql.Delete) ): self._returning = test_statement._returning if isinstance(test_statement, (sql.Insert, sql.Update)): self._inline = test_statement._inline self._return_defaults = test_statement._return_defaults def _default_dialect(self): return self.test_statement._default_dialect() def compile(self, dialect, **kw): return self.test_statement.compile.__func__( self, dialect=dialect, **kw ) def _compiler(self, dialect, **kw): return self.test_statement._compiler.__func__( self, dialect, **kw ) def _compiler_dispatch(self, compiler, **kwargs): if hasattr(compiler, "statement"): with mock.patch.object( compiler, "statement", DontAccess() ): return self.test_statement._compiler_dispatch( compiler, **kwargs ) else: return self.test_statement._compiler_dispatch( compiler, **kwargs ) # no construct can assume it's the "top level" construct in all cases # as anything can be nested. ensure constructs don't assume they # are the "self.statement" element c = CheckCompilerAccess(clause).compile(dialect=dialect, **kw) param_str = repr(getattr(c, "params", {})) if util.py3k: param_str = param_str.encode("utf-8").decode("ascii", "ignore") print( ("\nSQL String:\n" + util.text_type(c) + param_str).encode( "utf-8" ) ) else: print( "\nSQL String:\n" + util.text_type(c).encode("utf-8") + param_str ) cc = re.sub(r"[\n\t]", "", util.text_type(c)) eq_(cc, result, "%r != %r on dialect %r" % (cc, result, dialect)) if checkparams is not None: eq_(c.construct_params(params), checkparams) if checkpositional is not None: p = c.construct_params(params) eq_(tuple([p[x] for x in c.positiontup]), checkpositional) if check_prefetch is not None: eq_(c.prefetch, check_prefetch) if check_literal_execute is not None: eq_( { c.bind_names[b]: b.effective_value for b in c.literal_execute_params }, check_literal_execute, ) if check_post_param is not None: eq_( { c.bind_names[b]: b.effective_value for b in c.post_compile_params }, check_post_param, ) class ComparesTables(object): def assert_tables_equal(self, table, reflected_table, strict_types=False): assert len(table.c) == len(reflected_table.c) for c, reflected_c in zip(table.c, reflected_table.c): eq_(c.name, reflected_c.name) assert reflected_c is reflected_table.c[c.name] eq_(c.primary_key, reflected_c.primary_key) eq_(c.nullable, reflected_c.nullable) if strict_types: msg = "Type '%s' doesn't correspond to type '%s'" assert isinstance(reflected_c.type, type(c.type)), msg % ( reflected_c.type, c.type, ) else: self.assert_types_base(reflected_c, c) if isinstance(c.type, sqltypes.String): eq_(c.type.length, reflected_c.type.length) eq_( {f.column.name for f in c.foreign_keys}, {f.column.name for f in reflected_c.foreign_keys}, ) if c.server_default: assert isinstance( reflected_c.server_default, schema.FetchedValue ) assert len(table.primary_key) == len(reflected_table.primary_key) for c in table.primary_key: assert reflected_table.primary_key.columns[c.name] is not None def assert_types_base(self, c1, c2): assert c1.type._compare_type_affinity( c2.type ), "On column %r, type '%s' doesn't correspond to type '%s'" % ( c1.name, c1.type, c2.type, ) class AssertsExecutionResults(object): def assert_result(self, result, class_, *objects): result = list(result) print(repr(result)) self.assert_list(result, class_, objects) def assert_list(self, result, class_, list_): self.assert_( len(result) == len(list_), "result list is not the same size as test list, " + "for class " + class_.__name__, ) for i in range(0, len(list_)): self.assert_row(class_, result[i], list_[i]) def assert_row(self, class_, rowobj, desc): self.assert_( rowobj.__class__ is class_, "item class is not " + repr(class_) ) for key, value in desc.items(): if isinstance(value, tuple): if isinstance(value[1], list): self.assert_list(getattr(rowobj, key), value[0], value[1]) else: self.assert_row(value[0], getattr(rowobj, key), value[1]) else: self.assert_( getattr(rowobj, key) == value, "attribute %s value %s does not match %s" % (key, getattr(rowobj, key), value), ) def assert_unordered_result(self, result, cls, *expected): """As assert_result, but the order of objects is not considered. The algorithm is very expensive but not a big deal for the small numbers of rows that the test suite manipulates. """ class immutabledict(dict): def __hash__(self): return id(self) found = util.IdentitySet(result) expected = {immutabledict(e) for e in expected} for wrong in util.itertools_filterfalse( lambda o: isinstance(o, cls), found ): fail( 'Unexpected type "%s", expected "%s"' % (type(wrong).__name__, cls.__name__) ) if len(found) != len(expected): fail( 'Unexpected object count "%s", expected "%s"' % (len(found), len(expected)) ) NOVALUE = object() def _compare_item(obj, spec): for key, value in spec.items(): if isinstance(value, tuple): try: self.assert_unordered_result( getattr(obj, key), value[0], *value[1] ) except AssertionError: return False else: if getattr(obj, key, NOVALUE) != value: return False return True for expected_item in expected: for found_item in found: if _compare_item(found_item, expected_item): found.remove(found_item) break else: fail( "Expected %s instance with attributes %s not found." % (cls.__name__, repr(expected_item)) ) return True def sql_execution_asserter(self, db=None): if db is None: from . import db as db return assertsql.assert_engine(db) def assert_sql_execution(self, db, callable_, *rules): with self.sql_execution_asserter(db) as asserter: result = callable_() asserter.assert_(*rules) return result def assert_sql(self, db, callable_, rules): newrules = [] for rule in rules: if isinstance(rule, dict): newrule = assertsql.AllOf( *[assertsql.CompiledSQL(k, v) for k, v in rule.items()] ) else: newrule = assertsql.CompiledSQL(*rule) newrules.append(newrule) return self.assert_sql_execution(db, callable_, *newrules) def assert_sql_count(self, db, callable_, count): self.assert_sql_execution( db, callable_, assertsql.CountStatements(count) ) def assert_multiple_sql_count(self, dbs, callable_, counts): recs = [ (self.sql_execution_asserter(db), db, count) for (db, count) in zip(dbs, counts) ] asserters = [] for ctx, db, count in recs: asserters.append(ctx.__enter__()) try: return callable_() finally: for asserter, (ctx, db, count) in zip(asserters, recs): ctx.__exit__(None, None, None) asserter.assert_(assertsql.CountStatements(count)) @contextlib.contextmanager def assert_execution(self, db, *rules): with self.sql_execution_asserter(db) as asserter: yield asserter.assert_(*rules) def assert_statement_count(self, db, count): return self.assert_execution(db, assertsql.CountStatements(count))
30.965007
81
0.590299
[ "MIT" ]
ai-mocap/sqlalchemy
lib/sqlalchemy/testing/assertions.py
23,007
Python
import collections import datetime from django.utils.translation import gettext_lazy as _ from .base import * # noqa # Override static and media URL for prefix in WSGI server. # https://code.djangoproject.com/ticket/25598 STATIC_URL = '/2016/static/' MEDIA_URL = '/2016/media/' CONFERENCE_DEFAULT_SLUG = 'pycontw-2016' TALK_PROPOSAL_DURATION_CHOICES = ( ('NOPREF', _('No preference')), ('PREF25', _('Prefer 25min')), ('PREF45', _('Prefer 45min')), ) EVENTS_DAY_NAMES = collections.OrderedDict([ (datetime.date(2016, 6, 3), _('Day 1')), (datetime.date(2016, 6, 4), _('Day 2')), (datetime.date(2016, 6, 5), _('Day 3')), ])
25.192308
58
0.674809
[ "MIT" ]
DoubleTakoMeat/pycon.tw
src/pycontw2016/settings/production/pycontw2016.py
655
Python
"""llvm Tool-specific initialization for LLVM """ # # Copyright (c) 2009 VMware, Inc. # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # import os import os.path import re import sys import distutils.version import SCons.Errors import SCons.Util required_llvm_version = '3.3' def generate(env): env['llvm'] = False try: llvm_dir = os.environ['LLVM'] except KeyError: # Do nothing -- use the system headers/libs llvm_dir = None else: if not os.path.isdir(llvm_dir): raise SCons.Errors.InternalError("Specified LLVM directory not found") if env['debug']: llvm_subdir = 'Debug' else: llvm_subdir = 'Release' llvm_bin_dir = os.path.join(llvm_dir, llvm_subdir, 'bin') if not os.path.isdir(llvm_bin_dir): llvm_bin_dir = os.path.join(llvm_dir, 'bin') if not os.path.isdir(llvm_bin_dir): raise SCons.Errors.InternalError("LLVM binary directory not found") env.PrependENVPath('PATH', llvm_bin_dir) if env['platform'] == 'windows': # XXX: There is no llvm-config on Windows, so assume a standard layout if llvm_dir is None: print('scons: LLVM environment variable must be specified when building for windows') return # Try to determine the LLVM version from llvm/Config/config.h llvm_config = os.path.join(llvm_dir, 'include/llvm/Config/llvm-config.h') if not os.path.exists(llvm_config): print('scons: could not find %s' % llvm_config) return llvm_version_major_re = re.compile(r'^#define LLVM_VERSION_MAJOR ([0-9]+)') llvm_version_minor_re = re.compile(r'^#define LLVM_VERSION_MINOR ([0-9]+)') llvm_version = None llvm_version_major = None llvm_version_minor = None for line in open(llvm_config, 'rt'): mo = llvm_version_major_re.match(line) if mo: llvm_version_major = mo.group(1) mo = llvm_version_minor_re.match(line) if mo: llvm_version_minor = mo.group(1) if llvm_version_major is not None and llvm_version_minor is not None: llvm_version = distutils.version.LooseVersion('%s.%s' % (llvm_version_major, llvm_version_minor)) if llvm_version is None: print('scons: could not determine the LLVM version from %s' % llvm_config) return if llvm_version < distutils.version.LooseVersion(required_llvm_version): print('scons: LLVM version %s found, but %s is required' % (llvm_version, required_llvm_version)) return env.Prepend(CPPPATH = [os.path.join(llvm_dir, 'include')]) env.AppendUnique(CPPDEFINES = [ 'HAVE_STDINT_H', ]) env.Prepend(LIBPATH = [os.path.join(llvm_dir, 'lib')]) # LIBS should match the output of `llvm-config --libs engine mcjit bitwriter x86asmprinter irreader` if llvm_version >= distutils.version.LooseVersion('5.0'): env.Prepend(LIBS = [ 'LLVMX86Disassembler', 'LLVMX86AsmParser', 'LLVMX86CodeGen', 'LLVMSelectionDAG', 'LLVMAsmPrinter', 'LLVMDebugInfoCodeView', 'LLVMCodeGen', 'LLVMScalarOpts', 'LLVMInstCombine', 'LLVMTransformUtils', 'LLVMBitWriter', 'LLVMX86Desc', 'LLVMMCDisassembler', 'LLVMX86Info', 'LLVMX86AsmPrinter', 'LLVMX86Utils', 'LLVMMCJIT', 'LLVMExecutionEngine', 'LLVMTarget', 'LLVMAnalysis', 'LLVMProfileData', 'LLVMRuntimeDyld', 'LLVMObject', 'LLVMMCParser', 'LLVMBitReader', 'LLVMMC', 'LLVMCore', 'LLVMSupport', 'LLVMIRReader', 'LLVMAsmParser', 'LLVMDemangle', 'LLVMGlobalISel', 'LLVMDebugInfoMSF', 'LLVMBinaryFormat', ]) elif llvm_version >= distutils.version.LooseVersion('4.0'): env.Prepend(LIBS = [ 'LLVMX86Disassembler', 'LLVMX86AsmParser', 'LLVMX86CodeGen', 'LLVMSelectionDAG', 'LLVMAsmPrinter', 'LLVMDebugInfoCodeView', 'LLVMCodeGen', 'LLVMScalarOpts', 'LLVMInstCombine', 'LLVMTransformUtils', 'LLVMBitWriter', 'LLVMX86Desc', 'LLVMMCDisassembler', 'LLVMX86Info', 'LLVMX86AsmPrinter', 'LLVMX86Utils', 'LLVMMCJIT', 'LLVMExecutionEngine', 'LLVMTarget', 'LLVMAnalysis', 'LLVMProfileData', 'LLVMRuntimeDyld', 'LLVMObject', 'LLVMMCParser', 'LLVMBitReader', 'LLVMMC', 'LLVMCore', 'LLVMSupport', 'LLVMIRReader', 'LLVMAsmParser', 'LLVMDemangle', 'LLVMGlobalISel', 'LLVMDebugInfoMSF', ]) elif llvm_version >= distutils.version.LooseVersion('3.9'): env.Prepend(LIBS = [ 'LLVMX86Disassembler', 'LLVMX86AsmParser', 'LLVMX86CodeGen', 'LLVMSelectionDAG', 'LLVMAsmPrinter', 'LLVMDebugInfoCodeView', 'LLVMCodeGen', 'LLVMScalarOpts', 'LLVMInstCombine', 'LLVMInstrumentation', 'LLVMTransformUtils', 'LLVMBitWriter', 'LLVMX86Desc', 'LLVMMCDisassembler', 'LLVMX86Info', 'LLVMX86AsmPrinter', 'LLVMX86Utils', 'LLVMMCJIT', 'LLVMExecutionEngine', 'LLVMTarget', 'LLVMAnalysis', 'LLVMProfileData', 'LLVMRuntimeDyld', 'LLVMObject', 'LLVMMCParser', 'LLVMBitReader', 'LLVMMC', 'LLVMCore', 'LLVMSupport', 'LLVMIRReader', 'LLVMASMParser' ]) elif llvm_version >= distutils.version.LooseVersion('3.7'): env.Prepend(LIBS = [ 'LLVMBitWriter', 'LLVMX86Disassembler', 'LLVMX86AsmParser', 'LLVMX86CodeGen', 'LLVMSelectionDAG', 'LLVMAsmPrinter', 'LLVMCodeGen', 'LLVMScalarOpts', 'LLVMProfileData', 'LLVMInstCombine', 'LLVMInstrumentation', 'LLVMTransformUtils', 'LLVMipa', 'LLVMAnalysis', 'LLVMX86Desc', 'LLVMMCDisassembler', 'LLVMX86Info', 'LLVMX86AsmPrinter', 'LLVMX86Utils', 'LLVMMCJIT', 'LLVMTarget', 'LLVMExecutionEngine', 'LLVMRuntimeDyld', 'LLVMObject', 'LLVMMCParser', 'LLVMBitReader', 'LLVMMC', 'LLVMCore', 'LLVMSupport' ]) elif llvm_version >= distutils.version.LooseVersion('3.6'): env.Prepend(LIBS = [ 'LLVMBitWriter', 'LLVMX86Disassembler', 'LLVMX86AsmParser', 'LLVMX86CodeGen', 'LLVMSelectionDAG', 'LLVMAsmPrinter', 'LLVMCodeGen', 'LLVMScalarOpts', 'LLVMProfileData', 'LLVMInstCombine', 'LLVMTransformUtils', 'LLVMipa', 'LLVMAnalysis', 'LLVMX86Desc', 'LLVMMCDisassembler', 'LLVMX86Info', 'LLVMX86AsmPrinter', 'LLVMX86Utils', 'LLVMMCJIT', 'LLVMTarget', 'LLVMExecutionEngine', 'LLVMRuntimeDyld', 'LLVMObject', 'LLVMMCParser', 'LLVMBitReader', 'LLVMMC', 'LLVMCore', 'LLVMSupport' ]) elif llvm_version >= distutils.version.LooseVersion('3.5'): env.Prepend(LIBS = [ 'LLVMMCDisassembler', 'LLVMBitWriter', 'LLVMMCJIT', 'LLVMRuntimeDyld', 'LLVMX86Disassembler', 'LLVMX86AsmParser', 'LLVMX86CodeGen', 'LLVMSelectionDAG', 'LLVMAsmPrinter', 'LLVMX86Desc', 'LLVMObject', 'LLVMMCParser', 'LLVMBitReader', 'LLVMX86Info', 'LLVMX86AsmPrinter', 'LLVMX86Utils', 'LLVMJIT', 'LLVMExecutionEngine', 'LLVMCodeGen', 'LLVMScalarOpts', 'LLVMInstCombine', 'LLVMTransformUtils', 'LLVMipa', 'LLVMAnalysis', 'LLVMTarget', 'LLVMMC', 'LLVMCore', 'LLVMSupport' ]) else: env.Prepend(LIBS = [ 'LLVMMCDisassembler', 'LLVMBitWriter', 'LLVMX86Disassembler', 'LLVMX86AsmParser', 'LLVMX86CodeGen', 'LLVMX86Desc', 'LLVMSelectionDAG', 'LLVMAsmPrinter', 'LLVMMCParser', 'LLVMX86AsmPrinter', 'LLVMX86Utils', 'LLVMX86Info', 'LLVMMCJIT', 'LLVMJIT', 'LLVMExecutionEngine', 'LLVMCodeGen', 'LLVMScalarOpts', 'LLVMInstCombine', 'LLVMTransformUtils', 'LLVMipa', 'LLVMAnalysis', 'LLVMTarget', 'LLVMMC', 'LLVMCore', 'LLVMSupport', 'LLVMRuntimeDyld', 'LLVMObject' ]) env.Append(LIBS = [ 'imagehlp', 'psapi', 'shell32', 'advapi32' ]) if env['msvc']: # Some of the LLVM C headers use the inline keyword without # defining it. env.Append(CPPDEFINES = [('inline', '__inline')]) # Match some of the warning options from llvm/cmake/modules/HandleLLVMOptions.cmake env.AppendUnique(CXXFLAGS = [ '/wd4355', # 'this' : used in base member initializer list '/wd4624', # 'derived class' : destructor could not be generated because a base class destructor is inaccessible ]) if env['build'] in ('debug', 'checked'): # LLVM libraries are static, build with /MT, and they # automatically link agains LIBCMT. When we're doing a # debug build we'll be linking against LIBCMTD, so disable # that. env.Append(LINKFLAGS = ['/nodefaultlib:LIBCMT']) else: llvm_config = os.environ.get('LLVM_CONFIG', 'llvm-config') if not env.Detect(llvm_config): print('scons: %s script not found' % llvm_config) return llvm_version = env.backtick('%s --version' % llvm_config).rstrip() llvm_version = distutils.version.LooseVersion(llvm_version) if llvm_version < distutils.version.LooseVersion(required_llvm_version): print('scons: LLVM version %s found, but %s is required' % (llvm_version, required_llvm_version)) return try: # Treat --cppflags specially to prevent NDEBUG from disabling # assertion failures in debug builds. cppflags = env.ParseFlags('!%s --cppflags' % llvm_config) try: cppflags['CPPDEFINES'].remove('NDEBUG') except ValueError: pass env.MergeFlags(cppflags) # Match llvm --fno-rtti flag cxxflags = env.backtick('%s --cxxflags' % llvm_config).split() if '-fno-rtti' in cxxflags: env.Append(CXXFLAGS = ['-fno-rtti']) components = ['engine', 'mcjit', 'bitwriter', 'x86asmprinter', 'mcdisassembler', 'irreader'] env.ParseConfig('%s --libs ' % llvm_config + ' '.join(components)) env.ParseConfig('%s --ldflags' % llvm_config) if llvm_version >= distutils.version.LooseVersion('3.5'): env.ParseConfig('%s --system-libs' % llvm_config) env.Append(CXXFLAGS = ['-std=c++11']) except OSError: print('scons: llvm-config version %s failed' % llvm_version) return assert llvm_version is not None env['llvm'] = True print('scons: Found LLVM version %s' % llvm_version) env['LLVM_VERSION'] = llvm_version # Define HAVE_LLVM macro with the major/minor version number (e.g., 0x0206 for 2.6) llvm_version_major = int(llvm_version.version[0]) llvm_version_minor = int(llvm_version.version[1]) llvm_version_hex = '0x%02x%02x' % (llvm_version_major, llvm_version_minor) env.Prepend(CPPDEFINES = [('HAVE_LLVM', llvm_version_hex)]) def exists(env): return True # vim:set ts=4 sw=4 et:
45.384615
128
0.598844
[ "MIT" ]
VincentWei/mg-mesa3d
scons/llvm.py
12,980
Python
#!/usr/bin/env python # In this example we show the use of the # vtkBandedPolyDataContourFilter. This filter creates separate, # constant colored bands for a range of scalar values. Each band is # bounded by two scalar values, and the cell data lying within the # value has the same cell scalar value. import vtk from vtk.util.misc import vtkGetDataRoot VTK_DATA_ROOT = vtkGetDataRoot() # The lookup table is similar to that used by maps. Two hues are used: # a brown for land, and a blue for water. The value of the hue is # changed to give the effect of elevation. Scale = 5 lutWater = vtk.vtkLookupTable() lutWater.SetNumberOfColors(10) lutWater.SetHueRange(0.58, 0.58) lutWater.SetSaturationRange(0.5, 0.1) lutWater.SetValueRange(0.5, 1.0) lutWater.Build() lutLand = vtk.vtkLookupTable() lutLand.SetNumberOfColors(10) lutLand.SetHueRange(0.1, 0.1) lutLand.SetSaturationRange(0.4, 0.1) lutLand.SetValueRange(0.55, 0.9) lutLand.Build() # The DEM reader reads data and creates an output image. demModel = vtk.vtkDEMReader() demModel.SetFileName(VTK_DATA_ROOT + "/Data/SainteHelens.dem") demModel.Update() # We shrink the terrain data down a bit to yield better performance for # this example. shrinkFactor = 4 shrink = vtk.vtkImageShrink3D() shrink.SetShrinkFactors(shrinkFactor, shrinkFactor, 1) shrink.SetInputConnection(demModel.GetOutputPort()) shrink.AveragingOn() # Convert the image into polygons. geom = vtk.vtkImageDataGeometryFilter() geom.SetInputConnection(shrink.GetOutputPort()) # Warp the polygons based on elevation. warp = vtk.vtkWarpScalar() warp.SetInputConnection(geom.GetOutputPort()) warp.SetNormal(0, 0, 1) warp.UseNormalOn() warp.SetScaleFactor(Scale) # Create the contour bands. bcf = vtk.vtkBandedPolyDataContourFilter() bcf.SetInput(warp.GetPolyDataOutput()) bcf.GenerateValues(15, demModel.GetOutput().GetScalarRange()) bcf.SetScalarModeToIndex() bcf.GenerateContourEdgesOn() # Compute normals to give a better look. normals = vtk.vtkPolyDataNormals() normals.SetInputConnection(bcf.GetOutputPort()) normals.SetFeatureAngle(60) normals.ConsistencyOff() normals.SplittingOff() demMapper = vtk.vtkPolyDataMapper() demMapper.SetInputConnection(normals.GetOutputPort()) demMapper.SetScalarRange(0, 10) demMapper.SetLookupTable(lutLand) demMapper.SetScalarModeToUseCellData() demActor = vtk.vtkLODActor() demActor.SetMapper(demMapper) ## Create contour edges edgeMapper = vtk.vtkPolyDataMapper() edgeMapper.SetInput(bcf.GetContourEdgesOutput()) edgeMapper.SetResolveCoincidentTopologyToPolygonOffset() edgeActor = vtk.vtkActor() edgeActor.SetMapper(edgeMapper) edgeActor.GetProperty().SetColor(0, 0, 0) ## Test clipping # Create the contour bands. bcf2 = vtk.vtkBandedPolyDataContourFilter() bcf2.SetInput(warp.GetPolyDataOutput()) bcf2.ClippingOn() bcf2.GenerateValues(10, 1000, 2000) bcf2.SetScalarModeToValue() # Compute normals to give a better look. normals2 = vtk.vtkPolyDataNormals() normals2.SetInputConnection(bcf2.GetOutputPort()) normals2.SetFeatureAngle(60) normals2.ConsistencyOff() normals2.SplittingOff() lut = vtk.vtkLookupTable() lut.SetNumberOfColors(10) demMapper2 = vtk.vtkPolyDataMapper() demMapper2.SetInputConnection(normals2.GetOutputPort()) demMapper2.SetScalarRange(demModel.GetOutput().GetScalarRange()) demMapper2.SetLookupTable(lut) demMapper2.SetScalarModeToUseCellData() demActor2 = vtk.vtkLODActor() demActor2.SetMapper(demMapper2) demActor2.AddPosition(0, 15000, 0) # Create the RenderWindow, Renderer and both Actors ren = vtk.vtkRenderer() renWin = vtk.vtkRenderWindow() renWin.AddRenderer(ren) iren = vtk.vtkRenderWindowInteractor() iren.SetRenderWindow(renWin) # Add the actors to the renderer, set the background and size ren.AddActor(demActor) ren.AddActor(demActor2) ren.AddActor(edgeActor) ren.SetBackground(.4, .4, .4) renWin.SetSize(375, 200) cam = vtk.vtkCamera() cam.SetPosition(-17438.8, 2410.62, 25470.8) cam.SetFocalPoint(3985.35, 11930.6, 5922.14) cam.SetViewUp(0, 0, 1) ren.SetActiveCamera(cam) ren.ResetCamera() cam.Zoom(2) iren.Initialize() iren.SetDesiredUpdateRate(1) def CheckAbort(obj, event): foo = renWin.GetEventPending() if foo != 0: renWin.SetAbortRender(1) renWin.AddObserver("AbortCheckEvent", CheckAbort) renWin.Render() renWin.Render() iren.Start()
28.546667
72
0.79262
[ "BSD-3-Clause" ]
Armand0s/VTK
Examples/VisualizationAlgorithms/Python/BandContourTerrain.py
4,282
Python
# Copyright 2017 Google LLC. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from this # software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """Tests for deepvariant .variant_caller.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys if 'google' in sys.modules and 'google.protobuf' not in sys.modules: del sys.modules['google'] from absl.testing import absltest from absl.testing import parameterized import mock import numpy as np import numpy.testing as npt from deeptrio import testdata from deeptrio import variant_caller from deepvariant.protos import deepvariant_pb2 from third_party.nucleus.util import variant_utils from third_party.nucleus.util import variantcall_utils def setUpModule(): testdata.init() def _reference_model_options(p_error, max_gq, gq_resolution=1): return deepvariant_pb2.VariantCallerOptions( sample_name='UNKNOWN', p_error=p_error, max_gq=max_gq, gq_resolution=gq_resolution, ploidy=2) class PlaceholderVariantCaller(variant_caller.VariantCaller): """A placeholder VariantCaller. This class provides a get_candidates implementation and so allows the base class to be instantiated and its methods tested. """ def __init__(self, p_error, max_gq, gq_resolution=1, use_cache_table=False, max_cache_coverage=100): super(PlaceholderVariantCaller, self).__init__( options=_reference_model_options(p_error, max_gq, gq_resolution), use_cache_table=use_cache_table, max_cache_coverage=max_cache_coverage) def get_candidates(self, allele_counter, target_sample): return None class VariantCallerTests(parameterized.TestCase): def fake_allele_counter(self, start_pos, counts): allele_counter = mock.Mock() # pylint: disable=g-complex-comprehension allele_counter.summary_counts.return_value = [ deepvariant_pb2.AlleleCountSummary( ref_supporting_read_count=n_ref, total_read_count=n_ref + n_alt, ref_base=ref, reference_name='chr1', position=start_pos + i) for i, (n_alt, n_ref, ref) in enumerate(counts) ] allele_counter.counts.return_value = counts # pylint: enable=g-complex-comprehension return allele_counter # R code to produce the testdata expectation table. # expected <- function(n_ref, n_alt, perr, max_gq = 100) { # p_ref <- dbinom(n_alt, n_ref, perr) # p_het <- dbinom(n_alt, n_ref, 0.5) # p_alt <- dbinom(n_ref - n_alt, n_ref, perr) # raw <- c(p_ref, p_het, p_alt) # norm <- raw / sum(raw) # gq = min(floor(-10 * log10(1 - norm[1])), max_gq) # likelihoods = paste(sprintf("%.6f", log10(norm)), collapse=", ") # likelihoods = paste("[", likelihoods, "]", sep="") # result = paste(n_ref, n_alt, perr, 100, 1, likelihoods, gq, sep=", ") # cat(paste("[", result, "],\n", sep="")) # } # # for (n in c(10, 20)) { # for (k in seq(0, n)) { # expected(n, k, 0.01) # } # } # # for (perr in c(0.1, 0.01, 0.001, 0.0001)) { # expected(10, 0, perr) # expected(10, 1, perr) # } # # for (n_ref in c(10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 1000, 10000)) { # expected(n_ref, 0, 0.01) # } @parameterized.parameters( # No coverage case. [0, 0, 0.01, 100, [-0.477121, -0.477121, -0.477121], 1], # Test systematically values of n and k. [10, 0, 0.01, 100, [-0.000469, -2.967121, -19.956821], 29], [10, 1, 0.01, 100, [-0.044109, -1.015126, -16.009190], 10], [10, 2, 0.01, 100, [-1.063830, -0.039211, -13.037641], 0], [10, 3, 0.01, 100, [-3.020668, -0.000414, -11.003209], 0], [10, 4, 0.01, 100, [-5.015893, -0.000004, -9.007163], 0], [10, 5, 0.01, 100, [-7.011524, -0.000000, -7.011524], 0], [10, 6, 0.01, 100, [-9.007163, -0.000004, -5.015893], 0], [10, 7, 0.01, 100, [-11.003209, -0.000414, -3.020668], 0], [10, 8, 0.01, 100, [-13.037641, -0.039211, -1.063830], 0], [10, 9, 0.01, 100, [-16.009190, -1.015126, -0.044109], 0], [10, 10, 0.01, 100, [-19.956821, -2.967121, -0.000469], 0], [20, 0, 0.01, 100, [-0.000001, -5.933304, -39.912704], 59], [20, 1, 0.01, 100, [-0.000050, -3.937719, -35.921484], 39], [20, 2, 0.01, 100, [-0.004935, -1.946968, -31.935098], 19], [20, 3, 0.01, 100, [-0.328657, -0.275056, -28.267550], 2], [20, 4, 0.01, 100, [-2.053097, -0.003860, -26.000720], 0], [20, 5, 0.01, 100, [-4.044911, -0.000039, -24.001263], 0], [20, 6, 0.01, 100, [-6.040508, -0.000000, -22.005589], 0], [20, 7, 0.01, 100, [-8.036143, -0.000000, -20.009954], 0], [20, 8, 0.01, 100, [-10.031778, -0.000000, -18.014319], 0], [20, 9, 0.01, 100, [-12.027413, -0.000000, -16.018683], 0], [20, 10, 0.01, 100, [-14.023048, -0.000000, -14.023048], 0], [20, 11, 0.01, 100, [-16.018683, -0.000000, -12.027413], 0], [20, 12, 0.01, 100, [-18.014319, -0.000000, -10.031778], 0], [20, 13, 0.01, 100, [-20.009954, -0.000000, -8.036143], 0], [20, 14, 0.01, 100, [-22.005589, -0.000000, -6.040508], 0], [20, 15, 0.01, 100, [-24.001263, -0.000039, -4.044911], 0], [20, 16, 0.01, 100, [-26.000720, -0.003860, -2.053097], 0], [20, 17, 0.01, 100, [-28.267550, -0.275056, -0.328657], 0], [20, 18, 0.01, 100, [-31.935098, -1.946968, -0.004935], 0], [20, 19, 0.01, 100, [-35.921484, -3.937719, -0.000050], 0], [20, 20, 0.01, 100, [-39.912704, -5.933304, -0.000001], 0], # Testing different values of p_error. [10, 0, 0.1, 100, [-0.001215, -2.553940, -9.543640], 25], [10, 1, 0.1, 100, [-0.010811, -1.609294, -7.644752], 16], [10, 0, 0.01, 100, [-0.000469, -2.967121, -19.956821], 29], [10, 1, 0.01, 100, [-0.044109, -1.015126, -16.009190], 10], [10, 0, 0.001, 100, [-0.000428, -3.006383, -29.996083], 30], [10, 1, 0.001, 100, [-0.297847, -0.304236, -24.294371], 3], [10, 0, 1e-04, 100, [-0.000424, -3.010290, -39.999990], 30], [10, 1, 1e-04, 100, [-1.032394, -0.042303, -33.032046], 0], # Test scaling of calculation with more coverage, hitting max_gq. [10, 0, 0.01, 100, [-0.000469, -2.967121, -19.956821], 29], [20, 0, 0.01, 100, [-0.000001, -5.933304, -39.912704], 59], [30, 0, 0.01, 100, [-0.000000, -8.899956, -59.869056], 88], [40, 0, 0.01, 100, [-0.000000, -11.866608, -79.825408], 100], [50, 0, 0.01, 100, [-0.000000, -14.833260, -99.781760], 100], [60, 0, 0.01, 100, [0.000000, -17.799911, -119.738112], 100], [70, 0, 0.01, 100, [0.000000, -20.766563, -139.694464], 100], [80, 0, 0.01, 100, [0.000000, -23.733215, -159.650816], 100], [90, 0, 0.01, 100, [0.000000, -26.699867, -179.607168], 100], [100, 0, 0.01, 100, [0.000000, -29.666519, -199.563519], 100], ) def test_ref_calc(self, total_n, alt_n, p_error, max_gq, expected_likelihoods, expected_gq): caller = PlaceholderVariantCaller(p_error, max_gq) gq, likelihoods = caller.reference_confidence(total_n - alt_n, total_n) npt.assert_allclose(expected_likelihoods, likelihoods, atol=1e-6) self.assertEqual(expected_gq, gq) @parameterized.parameters( # Values below max_allowed_reads are returned without modification. [0, 10, 100, (0, 10)], [5, 10, 100, (5, 10)], [10, 10, 100, (10, 10)], [10, 100, 100, (10, 100)], [100, 100, 100, (100, 100)], # Checks that the rescaling works when n_total_reads > max_allowed. [0, 200, 100, (0, 100)], [0, 200, 100, (0, 100)], [0, 1000, 100, (0, 100)], [0, 10000, 100, (0, 100)], [1, 200, 100, (1, 100)], [1, 1000, 100, (1, 100)], [1, 10000, 100, (1, 100)], [1, 100000, 100, (1, 100)], [2, 200, 100, (1, 100)], [3, 200, 100, (2, 100)], [4, 200, 100, (2, 100)], [10, 200, 100, (5, 100)], [50, 200, 100, (25, 100)], [100, 200, 100, (50, 100)], [200, 200, 100, (100, 100)], # I saw a bug at runtime, and the testcase makes sure we scale values of # n_ref_reads close to n_total_reads appropriately. [99, 100, 100, (99, 100)], ) def test_rescale_read_counts(self, n_ref, n_total, max_allowed_reads, expected): actual = variant_caller._rescale_read_counts_if_necessary( n_ref, n_total, max_allowed_reads) self.assertEqual(actual, expected) # pylint: disable=g-complex-comprehension @parameterized.parameters((n_ref, n_alt_fraction) for n_ref in [1000, 10000, 100000, 1000000] for n_alt_fraction in [0.0, 0.01, 0.02]) # pylint: enable=g-complex-comprehension def test_handles_large_reference_counts(self, n_ref, n_alt_fraction): """Tests that we don't blow up when the coverage gets really high.""" caller = PlaceholderVariantCaller(0.01, 100) n_alt = int(n_alt_fraction * n_ref) gq, likelihoods = caller._calc_reference_confidence(n_ref, n_ref + n_alt) self.assertTrue( np.isfinite(likelihoods).all(), 'Non-finite likelihoods {}'.format(likelihoods)) self.assertEqual(100, gq) @parameterized.parameters(*variant_caller.CANONICAL_DNA_BASES) def test_gvcf_basic(self, ref): options = _reference_model_options(0.01, 100) caller = PlaceholderVariantCaller(0.01, 100) allele_counter = self.fake_allele_counter(100, [(0, 0, ref)]) gvcfs = list(caller.make_gvcfs(allele_counter.summary_counts())) self.assertLen(gvcfs, 1) self.assertGVCF( gvcfs[0], ref=ref, gq=1.0, start=100, end=101, min_dp=0, chrom='chr1', gls=[-0.47712125472] * 3, sample_name=options.sample_name) @parameterized.parameters('N', 'R', 'W', 'B') def test_gvcf_basic_skips_iupac_ref_base(self, ref): caller = PlaceholderVariantCaller(0.01, 100) allele_counter = self.fake_allele_counter(100, [(0, 0, ref)]) self.assertEmpty(list(caller.make_gvcfs(allele_counter.summary_counts()))) @parameterized.parameters('X', '>', '!') def test_gvcf_basic_raises_with_bad_ref_base(self, ref): caller = PlaceholderVariantCaller(0.01, 100) allele_counter = self.fake_allele_counter(100, [(0, 0, ref)]) with self.assertRaisesRegexp(ValueError, 'Invalid reference base={}'.format(ref)): list(caller.make_gvcfs(allele_counter.summary_counts())) def assertGVCF(self, gvcf, ref, gq, start, end, min_dp, chrom='chr1', gls=None, sample_name=None, gts=None): if chrom: self.assertEqual(gvcf.reference_name, chrom) call = variant_utils.only_call(gvcf) self.assertNotEmpty(gvcf.reference_name) self.assertEqual(gvcf.reference_bases, ref) self.assertEqual(gvcf.alternate_bases, ['<*>']) self.assertEqual(gvcf.start, start) self.assertEqual(gvcf.end, end if end else start + 1) self.assertEqual(variantcall_utils.get_gq(call), gq) self.assertNotEmpty(call.genotype_likelihood) self.assertIn('MIN_DP', call.info) self.assertLen(call.info['MIN_DP'].values, 1) self.assertEqual(variantcall_utils.get_min_dp(call), min_dp) if gls is not None: npt.assert_allclose(list(gvcf.calls[0].genotype_likelihood), gls) if sample_name: self.assertEqual(gvcf.calls[0].call_set_name, sample_name) if gts is not None: self.assertEqual(list(gvcf.calls[0].genotype), gts) @parameterized.parameters( # Check some basics. ([(0, 0, 'A')], [dict(start=1, end=2, ref='A', gq=1, min_dp=0)]), # Two equal records are merged, and the reference base is the first one. ([(0, 0, 'A'), (0, 0, 'C')], [dict(start=1, end=3, ref='A', gq=1, min_dp=0)]), ([(0, 0, 'C'), (0, 0, 'A')], [dict(start=1, end=3, ref='C', gq=1, min_dp=0)]), # Three equal records are merged into a single block. ([(0, 0, 'A'), (0, 0, 'C'), (0, 0, 'T')], [dict(start=1, end=4, ref='A', gq=1, min_dp=0)]), # We don't merge together different GQ value blocks: ([(0, 0, 'A'), (0, 100, 'C')], [ dict(start=1, end=2, ref='A', gq=1, min_dp=0), dict(start=2, end=3, ref='C', gq=100, min_dp=100), ]), ([(0, 100, 'A'), (0, 0, 'C')], [ dict(start=1, end=2, ref='A', gq=100, min_dp=100), dict(start=2, end=3, ref='C', gq=1, min_dp=0), ]), ([(0, 0, 'A'), (0, 20, 'C'), (0, 100, 'T')], [ dict(start=1, end=2, ref='A', gq=1, min_dp=0), dict(start=2, end=3, ref='C', gq=59, min_dp=20), dict(start=3, end=4, ref='T', gq=100, min_dp=100), ]), ) def test_make_gvcfs(self, counts, expecteds): allele_counts = self.fake_allele_counter(1, counts).summary_counts() caller = PlaceholderVariantCaller(0.01, 100) gvcfs = list(caller.make_gvcfs(allele_counts)) self.assertLen(gvcfs, len(expecteds)) for actual, expected in zip(gvcfs, expecteds): self.assertGVCF(actual, **expected) @parameterized.parameters( dict( gq_resolution=1, expecteds=[ dict(start=1, end=2, ref='A', gq=53, min_dp=18), dict(start=2, end=3, ref='C', gq=56, min_dp=19), dict(start=3, end=4, ref='A', gq=0, min_dp=35), dict(start=4, end=5, ref='T', gq=0, min_dp=20), dict(start=5, end=6, ref='A', gq=0, min_dp=16), dict(start=6, end=7, ref='A', gq=72, min_dp=31), dict(start=7, end=8, ref='C', gq=83, min_dp=35), dict(start=8, end=9, ref='T', gq=59, min_dp=20), dict(start=9, end=10, ref='G', gq=56, min_dp=19), ]), # Binning by 3 does not cause any records to be merged. dict( gq_resolution=3, expecteds=[ dict(start=1, end=2, ref='A', gq=53, min_dp=18), dict(start=2, end=3, ref='C', gq=56, min_dp=19), dict(start=3, end=4, ref='A', gq=0, min_dp=35), dict(start=4, end=5, ref='T', gq=0, min_dp=20), dict(start=5, end=6, ref='A', gq=0, min_dp=16), dict(start=6, end=7, ref='A', gq=72, min_dp=31), dict(start=7, end=8, ref='C', gq=83, min_dp=35), dict(start=8, end=9, ref='T', gq=59, min_dp=20), dict(start=9, end=10, ref='G', gq=56, min_dp=19), ]), # Binning by 4 causes the first merge, of the first two records. dict( gq_resolution=4, expecteds=[ dict(start=1, end=3, ref='A', gq=53, min_dp=18), dict(start=3, end=4, ref='A', gq=0, min_dp=35), dict(start=4, end=5, ref='T', gq=0, min_dp=20), dict(start=5, end=6, ref='A', gq=0, min_dp=16), dict(start=6, end=7, ref='A', gq=72, min_dp=31), dict(start=7, end=8, ref='C', gq=83, min_dp=35), dict(start=8, end=9, ref='T', gq=59, min_dp=20), dict(start=9, end=10, ref='G', gq=56, min_dp=19), ]), dict( gq_resolution=10, expecteds=[ dict(start=1, end=3, ref='A', gq=53, min_dp=18), dict(start=3, end=4, ref='A', gq=0, min_dp=35), dict(start=4, end=5, ref='T', gq=0, min_dp=20), dict(start=5, end=6, ref='A', gq=0, min_dp=16), dict(start=6, end=7, ref='A', gq=72, min_dp=31), dict(start=7, end=8, ref='C', gq=83, min_dp=35), dict(start=8, end=10, ref='T', gq=56, min_dp=19), ]), dict( gq_resolution=45, expecteds=[ dict(start=1, end=3, ref='A', gq=53, min_dp=18), dict(start=3, end=4, ref='A', gq=0, min_dp=35), dict(start=4, end=5, ref='T', gq=0, min_dp=20), dict(start=5, end=6, ref='A', gq=0, min_dp=16), dict(start=6, end=10, ref='A', gq=56, min_dp=19), ]), ) def test_quantize_gvcfs(self, gq_resolution, expecteds): # Each count tuple is n_alt, n_ref, ref_base. # The third, fourth, and the fifth ones should never be merged, since # either het or hom_alt has bigger GL than hom_ref. counts = [(0, 18, 'A'), (0, 19, 'C'), (35, 0, 'A'), (10, 10, 'T'), (4, 12, 'A'), (1, 30, 'A'), (1, 34, 'C'), (0, 20, 'T'), (0, 19, 'G')] allele_counts = self.fake_allele_counter(1, counts).summary_counts() caller = PlaceholderVariantCaller(0.01, 100, gq_resolution) gvcfs = list(caller.make_gvcfs(allele_counts)) self.assertLen(gvcfs, len(expecteds)) for actual, expected in zip(gvcfs, expecteds): self.assertGVCF(actual, **expected) @parameterized.parameters(True, False) def test_gvcfs_counts(self, include_gvcfs): # Only tests the 'gvcfs' creation part of calls_and_gvcfs. The `calls` # portion of this method needs to be tested in subclasses, which have # implemented the get_candidates method. counts = [(0, 0, 'A'), (10, 10, 'G'), (0, 0, 'G'), (0, 0, 'G'), (10, 10, 'T')] caller = PlaceholderVariantCaller(0.01, 100) allele_counter = self.fake_allele_counter(10, counts) allele_counters = {} allele_counters['sample_id'] = allele_counter _, gvcfs = caller.calls_and_gvcfs(allele_counters, include_gvcfs, 'sample_id') # We expect our gvcfs to occur at the 10 position and that 12 and 13 have # been merged into a 2 bp block, if enabled. Otherwise should be empty. if include_gvcfs: self.assertLen(gvcfs, 4) # Expected diploid genotype likelihoods when there's no coverage. The # chance of having each genotype is 1/3, in log10 space. flat_gls = np.log10([1.0 / 3] * 3) self.assertGVCF( gvcfs[0], ref='A', start=10, end=11, gq=1, min_dp=0, gls=flat_gls) self.assertGVCF( gvcfs[1], ref='G', start=11, end=12, gq=0, min_dp=20, gls=np.array([-14.0230482368, -7.993606e-15, -14.0230482368]), # The genotype should NOT be called here ("./.") as the likelihood # for het is greater than hom_ref. gts=[-1, -1]) self.assertGVCF( gvcfs[2], ref='G', start=12, end=14, gq=1, min_dp=0, gls=flat_gls) else: self.assertEmpty(gvcfs) _CACHE_COVERAGE = 20 # Outside class so we can refer to it in @Parameters. class VariantCallerCacheTests(parameterized.TestCase): @classmethod def setUpClass(cls): super(VariantCallerCacheTests, cls).setUpClass() cls.raw_caller = PlaceholderVariantCaller(0.1, 50, use_cache_table=False) cls.cache_caller = PlaceholderVariantCaller( 0.1, 50, use_cache_table=True, max_cache_coverage=_CACHE_COVERAGE) # pylint: disable=g-complex-comprehension @parameterized.parameters((n_alt, n_total) for n_total in range(_CACHE_COVERAGE + 1) for n_alt in range(n_total + 1)) # pylint: enable=g-complex-comprehension def test_caching(self, n_alt, n_total): # Note that we only expect the gq and gls to be close if we are not # rescaling the counts, so we are only looping over values that should be # cached. In practice the cache is set to values sufficiently large that # these differences don't matter, but for this test we are limiting the # cache size to a small value in _CACHE_COVERAGE so we can test that the # cache lookups are correct. raw_gq, raw_gls = self.raw_caller.reference_confidence(n_alt, n_total) cache_gq, cache_gls = self.cache_caller.reference_confidence(n_alt, n_total) self.assertEqual(raw_gq, cache_gq) npt.assert_allclose(raw_gls, cache_gls) if __name__ == '__main__': absltest.main()
43.432049
80
0.600738
[ "BSD-3-Clause" ]
FrogEnthusiast7/deepvariant
deeptrio/variant_caller_test.py
21,412
Python
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import enum from typing import Dict @enum.unique class EmbOptimType(enum.Enum): SGD = "sgd" # uses non-deterministic updates (atomicAdd(..)) with duplicate ids EXACT_SGD = ( "exact_sgd" # uses deterministic updates (via sorting + segment reduction) ) LAMB = "lamb" ADAM = "adam" # exact/dedup: gradients to the same row are applied with coalesce then apply # together, instead of applied in sequence (approx). EXACT_ADAGRAD = "exact_adagrad" EXACT_ROWWISE_ADAGRAD = "exact_row_wise_adagrad" LARS_SGD = "lars_sgd" PARTIAL_ROWWISE_ADAM = "partial_row_wise_adam" PARTIAL_ROWWISE_LAMB = "partial_row_wise_lamb" ROWWISE_ADAGRAD = "row_wise_adagrad" MADGRAD = "madgrad" def __str__(self) -> str: return self.value @enum.unique class SparseType(enum.Enum): FP32 = "fp32" FP16 = "fp16" INT8 = "int8" INT4 = "int4" INT2 = "int2" def __str__(self) -> str: return self.value @staticmethod def from_int(ty: int) -> "SparseType": if ty == 0: return SparseType("fp32") elif ty == 1: return SparseType("fp16") elif ty == 2: return SparseType("int8") elif ty == 3: return SparseType("int4") elif ty == 4: return SparseType("int2") else: raise ValueError(f"Unsupported sparse type: {ty}") def as_int(self) -> int: return { SparseType.FP32.value: 0, SparseType.FP16.value: 1, SparseType.INT8.value: 2, SparseType.INT4.value: 3, SparseType.INT2.value: 4, }[self.value] def bit_rate(self) -> int: return { SparseType.FP32.value: 32, SparseType.FP16.value: 16, SparseType.INT8.value: 8, SparseType.INT4.value: 4, SparseType.INT2.value: 2, }[self.value] def align_size(self) -> int: return { SparseType.FP32.value: 1, SparseType.FP16.value: 2, SparseType.INT8.value: 4, SparseType.INT4.value: 8, SparseType.INT2.value: 16, }[self.value] def is_float(self) -> bool: if self.value == SparseType.FP32.value or self.value == SparseType.FP16.value: return True else: return False ELEMENT_SIZE: Dict[SparseType, int] = { SparseType.FP32: 4, SparseType.FP16: 2, SparseType.INT8: 1, # SparseType.INT4: 0.5, }
27.59
86
0.594418
[ "BSD-3-Clause" ]
842974287/FBGEMM
fbgemm_gpu/fbgemm_gpu/split_embedding_configs.py
2,759
Python
""" Builder for web assembly """ import subprocess import sys from SCons.Script import AlwaysBuild, Default, DefaultEnvironment try: subprocess.check_output(["em++", "--version"]) except FileNotFoundError: print( "Could not find emscripten. Maybe install it? (e.g. `brew install emscripten` on macOS. See also: https://emscripten.org/docs/getting_started/downloads.html)", file=sys.stderr, ) exit(1) env = DefaultEnvironment() env.Append( LINKFLAGS=["--bind"], ) env.Replace( CXX="em++", CC="emcc", AR="emar", RANLIB="emranlib", PROGSUFFIX=".html" ) # # Target: Build wasm # target_bin = env.BuildProgram() # # Default targets # Default([target_bin])
17.512195
167
0.66156
[ "MIT" ]
johnboiles/platformio-platform-wasm
builder/main.py
718
Python
#!/usr/bin/env python # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Finetuning the library models for sequence classification on GLUE.""" # You can also adapt this script on your own text classification task. Pointers for this are left as comments. import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import numpy as np from datasets import load_dataset, load_metric import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, PretrainedConfig, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process from transformers.utils import check_min_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.6.0.dev0") task_to_keys = { "cola": ("sentence", None), "mnli": ("premise", "hypothesis"), "mrpc": ("sentence1", "sentence2"), "qnli": ("question", "sentence"), "qqp": ("question1", "question2"), "rte": ("sentence1", "sentence2"), "sst2": ("sentence", None), "stsb": ("sentence1", "sentence2"), "wnli": ("sentence1", "sentence2"), } logger = logging.getLogger(__name__) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. Using `HfArgumentParser` we can turn this class into argparse arguments to be able to specify them on the command line. """ task_name: Optional[str] = field( default=None, metadata={"help": "The name of the task to train on: " + ", ".join(task_to_keys.keys())}, ) max_seq_length: int = field( default=128, metadata={ "help": "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." }, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) pad_to_max_length: bool = field( default=True, metadata={ "help": "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." }, ) max_train_samples: Optional[int] = field( default=None, metadata={ "help": "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." }, ) max_eval_samples: Optional[int] = field( default=None, metadata={ "help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." }, ) max_predict_samples: Optional[int] = field( default=None, metadata={ "help": "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." }, ) train_file: Optional[str] = field( default=None, metadata={"help": "A csv or a json file containing the training data."} ) validation_file: Optional[str] = field( default=None, metadata={"help": "A csv or a json file containing the validation data."} ) test_file: Optional[str] = field(default=None, metadata={"help": "A csv or a json file containing the test data."}) def __post_init__(self): if self.task_name is not None: self.task_name = self.task_name.lower() if self.task_name not in task_to_keys.keys(): raise ValueError("Unknown task, you should pick one in " + ",".join(task_to_keys.keys())) elif self.train_file is None or self.validation_file is None: raise ValueError("Need either a GLUE task or a training/validation file.") else: train_extension = self.train_file.split(".")[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." validation_extension = self.validation_file.split(".")[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) use_fast_tokenizer: bool = field( default=True, metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, ) model_revision: str = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) use_auth_token: bool = field( default=False, metadata={ "help": "Will use the token generated when running `transformers-cli login` (necessary to use this script " "with private models)." }, ) def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() # Detecting last checkpoint. last_checkpoint = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: last_checkpoint = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN) # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info(f"Training/evaluation parameters {training_args}") # Set seed before initializing model. set_seed(training_args.seed) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use as labels the column called 'label' and as pair of sentences the # sentences in columns called 'sentence1' and 'sentence2' if such column exists or the first two columns not named # label if at least two columns are provided. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.task_name is not None: # Downloading and loading a dataset from the hub. datasets = load_dataset("glue", data_args.task_name, cache_dir=model_args.cache_dir) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. data_files = {"train": data_args.train_file, "validation": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: train_extension = data_args.train_file.split(".")[-1] test_extension = data_args.test_file.split(".")[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." data_files["test"] = data_args.test_file else: raise ValueError("Need either a GLUE task or a test file for `do_predict`.") for key in data_files.keys(): logger.info(f"load a local file for {key}: {data_files[key]}") if data_args.train_file.endswith(".csv"): # Loading a dataset from local csv files datasets = load_dataset("csv", data_files=data_files, cache_dir=model_args.cache_dir) else: # Loading a dataset from local json files datasets = load_dataset("json", data_files=data_files, cache_dir=model_args.cache_dir) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels if data_args.task_name is not None: is_regression = data_args.task_name == "stsb" if not is_regression: label_list = datasets["train"].features["label"].names num_labels = len(label_list) else: num_labels = 1 else: # Trying to have good defaults here, don't hesitate to tweak to your needs. is_regression = datasets["train"].features["label"].dtype in ["float32", "float64"] if is_regression: num_labels = 1 else: # A useful fast method: # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.unique label_list = datasets["train"].unique("label") label_list.sort() # Let's sort it for determinism num_labels = len(label_list) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=num_labels, finetuning_task=data_args.task_name, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) model = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # Preprocessing the datasets if data_args.task_name is not None: sentence1_key, sentence2_key = task_to_keys[data_args.task_name] else: # Again, we try to have some nice defaults but don't hesitate to tweak to your use case. non_label_column_names = [name for name in datasets["train"].column_names if name != "label"] if "sentence1" in non_label_column_names and "sentence2" in non_label_column_names: sentence1_key, sentence2_key = "sentence1", "sentence2" else: if len(non_label_column_names) >= 2: sentence1_key, sentence2_key = non_label_column_names[:2] else: sentence1_key, sentence2_key = non_label_column_names[0], None # Padding strategy if data_args.pad_to_max_length: padding = "max_length" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch padding = False # Some models have set the order of the labels to use, so let's make sure we do use it. label_to_id = None if ( model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id and data_args.task_name is not None and not is_regression ): # Some have all caps in their config, some don't. label_name_to_id = {k.lower(): v for k, v in model.config.label2id.items()} if list(sorted(label_name_to_id.keys())) == list(sorted(label_list)): label_to_id = {i: int(label_name_to_id[label_list[i]]) for i in range(num_labels)} else: logger.warning( "Your model seems to have been trained with labels, but they don't match the dataset: ", f"model labels: {list(sorted(label_name_to_id.keys()))}, dataset labels: {list(sorted(label_list))}." "\nIgnoring the model labels as a result.", ) elif data_args.task_name is None and not is_regression: label_to_id = {v: i for i, v in enumerate(label_list)} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length) def preprocess_function(examples): # Tokenize the texts args = ( (examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key]) ) result = tokenizer(*args, padding=padding, max_length=max_seq_length, truncation=True) # Map labels to IDs (not necessary for GLUE tasks) if label_to_id is not None and "label" in examples: result["label"] = [(label_to_id[l] if l != -1 else -1) for l in examples["label"]] return result datasets = datasets.map(preprocess_function, batched=True, load_from_cache_file=not data_args.overwrite_cache) if training_args.do_train: if "train" not in datasets: raise ValueError("--do_train requires a train dataset") train_dataset = datasets["train"] if data_args.max_train_samples is not None: train_dataset = train_dataset.select(range(data_args.max_train_samples)) if training_args.do_eval: if "validation" not in datasets and "validation_matched" not in datasets: raise ValueError("--do_eval requires a validation dataset") eval_dataset = datasets["validation_matched" if data_args.task_name == "mnli" else "validation"] if data_args.max_eval_samples is not None: eval_dataset = eval_dataset.select(range(data_args.max_eval_samples)) if training_args.do_predict or data_args.task_name is not None or data_args.test_file is not None: if "test" not in datasets and "test_matched" not in datasets: raise ValueError("--do_predict requires a test dataset") predict_dataset = datasets["test_matched" if data_args.task_name == "mnli" else "test"] if data_args.max_predict_samples is not None: predict_dataset = predict_dataset.select(range(data_args.max_predict_samples)) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(train_dataset)), 3): logger.info(f"Sample {index} of the training set: {train_dataset[index]}.") # Get the metric function if data_args.task_name is not None: metric = load_metric("glue", data_args.task_name) # TODO: When datasets metrics include regular accuracy, make an else here and remove special branch from # compute_metrics # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(p: EvalPrediction): preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions preds = np.squeeze(preds) if is_regression else np.argmax(preds, axis=1) if data_args.task_name is not None: result = metric.compute(predictions=preds, references=p.label_ids) if len(result) > 1: result["combined_score"] = np.mean(list(result.values())).item() return result elif is_regression: return {"mse": ((preds - p.label_ids) ** 2).mean().item()} else: return {"accuracy": (preds == p.label_ids).astype(np.float32).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: data_collator = default_data_collator elif training_args.fp16: data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8) else: data_collator = None # Initialize our Trainer trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, compute_metrics=compute_metrics, tokenizer=tokenizer, data_collator=data_collator, ) # Training if training_args.do_train: checkpoint = None if training_args.resume_from_checkpoint is not None: checkpoint = training_args.resume_from_checkpoint elif last_checkpoint is not None: checkpoint = last_checkpoint train_result = trainer.train(resume_from_checkpoint=checkpoint) metrics = train_result.metrics max_train_samples = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset) ) metrics["train_samples"] = min(max_train_samples, len(train_dataset)) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("train", metrics) trainer.save_metrics("train", metrics) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***") # Loop to handle MNLI double evaluation (matched, mis-matched) tasks = [data_args.task_name] eval_datasets = [eval_dataset] if data_args.task_name == "mnli": tasks.append("mnli-mm") eval_datasets.append(datasets["validation_mismatched"]) for eval_dataset, task in zip(eval_datasets, tasks): metrics = trainer.evaluate(eval_dataset=eval_dataset) max_eval_samples = ( data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset) ) metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset)) trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics) if training_args.do_predict: logger.info("*** Predict ***") # Loop to handle MNLI double evaluation (matched, mis-matched) tasks = [data_args.task_name] predict_datasets = [predict_dataset] if data_args.task_name == "mnli": tasks.append("mnli-mm") predict_datasets.append(datasets["test_mismatched"]) for predict_dataset, task in zip(predict_datasets, tasks): # Removing the `label` columns because it contains -1 and Trainer won't like that. predict_dataset.remove_columns_("label") predictions = trainer.predict(predict_dataset, metric_key_prefix="predict").predictions predictions = np.squeeze(predictions) if is_regression else np.argmax(predictions, axis=1) output_predict_file = os.path.join(training_args.output_dir, f"predict_results_{task}.txt") if trainer.is_world_process_zero(): with open(output_predict_file, "w") as writer: logger.info(f"***** Predict results {task} *****") writer.write("index\tprediction\n") for index, item in enumerate(predictions): if is_regression: writer.write(f"{index}\t{item:3.3f}\n") else: item = label_list[item] writer.write(f"{index}\t{item}\n") if training_args.push_to_hub: kwargs = {"finetuned_from": model_args.model_name_or_path, "tags": "text-classification"} if data_args.task_name is not None: kwargs["language"] = "en" kwargs["dataset_tags"] = "glue" kwargs["dataset_args"] = data_args.task_name kwargs["dataset"] = f"GLUE {data_args.task_name.upper()}" trainer.push_to_hub(**kwargs) def _mp_fn(index): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
44.514925
119
0.666639
[ "Apache-2.0" ]
MarcelWilnicki/transformers
examples/pytorch/text-classification/run_glue.py
23,860
Python
import tensorflow as tf import math as m from rec_errors import euclidean_norm_squared def silverman_rule_of_thumb(N: int): return tf.pow(4/(3*N), 0.4) def cw_1d(X, y=None): def N0(mean, variance): return 1.0/(tf.sqrt(2.0 * m.pi * variance)) * tf.exp((-(mean**2))/(2*variance)) N = tf.cast(tf.shape(X)[0], tf.float32) if y is None: y = silverman_rule_of_thumb(N) A = tf.subtract(tf.expand_dims(X, 0), tf.expand_dims(X, 1)) return (1.0/(N*N)) * tf.reduce_sum(N0(A, 2*y)) + N0(0.0, 2.0 + 2*y) - (2/N) * tf.reduce_sum(N0(X, 1.0 + 2*y)) def cw_2d(X, y=None): def __phi(x): def __phi_f(s): t = s/7.5 return tf.exp(-s/2) * (1 + 3.5156229*t**2 + 3.0899424*t**4 + 1.2067492*t**6 + 0.2659732*t**8 + 0.0360768*t**10 + 0.0045813*t**12) def __phi_g(s): t = s/7.5 return tf.sqrt(2/s) * (0.39894228 + 0.01328592*t**(-1) + 0.00225319*t**(-2) - 0.00157565*t**(-3) + 0.0091628*t**(-4) - 0.02057706*t**(-5) + 0.02635537*t**(-6) - 0.01647633*t**(-7) + 0.00392377*t**(-8)) a = 7.5 return __phi_f(tf.minimum(x, a)) - __phi_f(a) + __phi_g(tf.maximum(x, a)) N = tf.cast(tf.shape(X)[0], tf.float32) if y is None: y = silverman_rule_of_thumb(N) A = 1/(N*N*tf.sqrt(y)) B = 2.0/(N*tf.sqrt(y+0.5)) A1 = euclidean_norm_squared(tf.subtract(tf.expand_dims(X, 0), tf.expand_dims(X, 1)), axis=2)/(4*y) B1 = euclidean_norm_squared(X, axis=1)/(2+4*y) return 1/tf.sqrt(1+y) + A*tf.reduce_sum(__phi(A1)) - B*tf.reduce_sum(__phi(B1)) def cw(X, y=None): D = tf.cast(tf.shape(X)[1], tf.float32) N = tf.cast(tf.shape(X)[0], tf.float32) if y is None: y = silverman_rule_of_thumb(N) K = 1/(2*D-3) A1 = euclidean_norm_squared(tf.subtract(tf.expand_dims(X, 0), tf.expand_dims(X, 1)), axis=2) A = (1/(N**2)) * tf.reduce_sum((1/tf.sqrt(y + K*A1))) B1 = euclidean_norm_squared(X, axis=1) B = (2/N)*tf.reduce_sum((1/tf.sqrt(y + 0.5 + K*B1))) return (1/tf.sqrt(1+y)) + A - B def cw_choose(z_dim: int): if z_dim == 1: return cw_1d elif z_dim == 2: return cw_2d elif z_dim >= 20: return cw else: raise ValueError('Not defined for this latent dimension') def cw_sampling(X, y=None): def phi_sampling(s, D): return tf.pow(1.0 + 4.0*s/(2.0*D-3), -0.5) D = tf.cast(tf.shape(X)[1], tf.float32) N = tf.cast(tf.shape(X)[0], tf.float32) D_int = tf.cast(D, tf.int32) N_int = tf.cast(N, tf.int32) if y is None: y = silverman_rule_of_thumb(N) YDistr = tf.contrib.distributions.MultivariateNormalDiag(loc=tf.zeros(D_int, tf.float32), scale_diag=tf.ones(D_int, tf.float32)) Y = YDistr.sample(N_int) T = 1.0/(2.0*N*tf.sqrt(m.pi*y)) A0 = euclidean_norm_squared(tf.subtract(tf.expand_dims(X, 0), tf.expand_dims(X, 1)), axis=2) A = tf.reduce_sum(phi_sampling(A0/(4*y), D)) B0 = euclidean_norm_squared(tf.subtract(tf.expand_dims(Y, 0), tf.expand_dims(Y, 1)), axis=2) B = tf.reduce_sum(phi_sampling(B0/(4*y), D)) C0 = euclidean_norm_squared(tf.subtract(tf.expand_dims(X, 0), tf.expand_dims(Y, 1)), axis=2) C = tf.reduce_sum(phi_sampling(C0/(4*y), D)) return T*(A + B - 2*C)
32.685714
117
0.558275
[ "MIT" ]
gmum/cwae
src/cw.py
3,432
Python
from tkinter import * #Palomo, Nemuel Rico O. class ButtonLab: def __init__(self, window): self.color = Button(window, text='Color', fg='red', bg='blue') self.button = Button(window, text='<---Click to change the color of the button :)', fg='black', command=self.changeColor) self.color.place(x=120, y=150) self.button.place(x=200, y=150) def changeColor(self): self.color.config(bg='yellow') window = Tk() mywin = ButtonLab(window) window.title('Button (The Coders)') window.geometry("500x220+10+10") window.mainloop()
19.774194
130
0.613377
[ "Apache-2.0" ]
nemuelpalomo/OOP--58002
Lab (The Coders) #5.py
613
Python
# BEGIN GENERATED CONTENT (do not edit below this line) # This content is generated by ./gengl.py. # Wrapper for /usr/include/GL/glx.h from OpenGL import platform, constant from ctypes import * c_void = None # H (/usr/include/GL/glx.h:26) GLX_VERSION_1_1 = constant.Constant( 'GLX_VERSION_1_1', 1 ) GLX_VERSION_1_2 = constant.Constant( 'GLX_VERSION_1_2', 1 ) GLX_VERSION_1_3 = constant.Constant( 'GLX_VERSION_1_3', 1 ) GLX_VERSION_1_4 = constant.Constant( 'GLX_VERSION_1_4', 1 ) GLX_USE_GL = constant.Constant( 'GLX_USE_GL', 1 ) GLX_BUFFER_SIZE = constant.Constant( 'GLX_BUFFER_SIZE', 2 ) GLX_LEVEL = constant.Constant( 'GLX_LEVEL', 3 ) GLX_RGBA = constant.Constant( 'GLX_RGBA', 4 ) GLX_DOUBLEBUFFER = constant.Constant( 'GLX_DOUBLEBUFFER', 5 ) GLX_STEREO = constant.Constant( 'GLX_STEREO', 6 ) GLX_AUX_BUFFERS = constant.Constant( 'GLX_AUX_BUFFERS', 7 ) GLX_RED_SIZE = constant.Constant( 'GLX_RED_SIZE', 8 ) GLX_GREEN_SIZE = constant.Constant( 'GLX_GREEN_SIZE', 9 ) GLX_BLUE_SIZE = constant.Constant( 'GLX_BLUE_SIZE', 10 ) GLX_ALPHA_SIZE = constant.Constant( 'GLX_ALPHA_SIZE', 11 ) GLX_DEPTH_SIZE = constant.Constant( 'GLX_DEPTH_SIZE', 12 ) GLX_STENCIL_SIZE = constant.Constant( 'GLX_STENCIL_SIZE', 13 ) GLX_ACCUM_RED_SIZE = constant.Constant( 'GLX_ACCUM_RED_SIZE', 14 ) GLX_ACCUM_GREEN_SIZE = constant.Constant( 'GLX_ACCUM_GREEN_SIZE', 15 ) GLX_ACCUM_BLUE_SIZE = constant.Constant( 'GLX_ACCUM_BLUE_SIZE', 16 ) GLX_ACCUM_ALPHA_SIZE = constant.Constant( 'GLX_ACCUM_ALPHA_SIZE', 17 ) GLX_BAD_SCREEN = constant.Constant( 'GLX_BAD_SCREEN', 1 ) GLX_BAD_ATTRIBUTE = constant.Constant( 'GLX_BAD_ATTRIBUTE', 2 ) GLX_NO_EXTENSION = constant.Constant( 'GLX_NO_EXTENSION', 3 ) GLX_BAD_VISUAL = constant.Constant( 'GLX_BAD_VISUAL', 4 ) GLX_BAD_CONTEXT = constant.Constant( 'GLX_BAD_CONTEXT', 5 ) GLX_BAD_VALUE = constant.Constant( 'GLX_BAD_VALUE', 6 ) GLX_BAD_ENUM = constant.Constant( 'GLX_BAD_ENUM', 7 ) GLX_VENDOR = constant.Constant( 'GLX_VENDOR', 1 ) GLX_VERSION = constant.Constant( 'GLX_VERSION', 2 ) GLX_EXTENSIONS = constant.Constant( 'GLX_EXTENSIONS', 3 ) GLX_CONFIG_CAVEAT = constant.Constant( 'GLX_CONFIG_CAVEAT', 32 ) GLX_DONT_CARE = constant.Constant( 'GLX_DONT_CARE', 4294967295 ) GLX_X_VISUAL_TYPE = constant.Constant( 'GLX_X_VISUAL_TYPE', 34 ) GLX_TRANSPARENT_TYPE = constant.Constant( 'GLX_TRANSPARENT_TYPE', 35 ) GLX_TRANSPARENT_INDEX_VALUE = constant.Constant( 'GLX_TRANSPARENT_INDEX_VALUE', 36 ) GLX_TRANSPARENT_RED_VALUE = constant.Constant( 'GLX_TRANSPARENT_RED_VALUE', 37 ) GLX_TRANSPARENT_GREEN_VALUE = constant.Constant( 'GLX_TRANSPARENT_GREEN_VALUE', 38 ) GLX_TRANSPARENT_BLUE_VALUE = constant.Constant( 'GLX_TRANSPARENT_BLUE_VALUE', 39 ) GLX_TRANSPARENT_ALPHA_VALUE = constant.Constant( 'GLX_TRANSPARENT_ALPHA_VALUE', 40 ) GLX_WINDOW_BIT = constant.Constant( 'GLX_WINDOW_BIT', 1 ) GLX_PIXMAP_BIT = constant.Constant( 'GLX_PIXMAP_BIT', 2 ) GLX_PBUFFER_BIT = constant.Constant( 'GLX_PBUFFER_BIT', 4 ) GLX_AUX_BUFFERS_BIT = constant.Constant( 'GLX_AUX_BUFFERS_BIT', 16 ) GLX_FRONT_LEFT_BUFFER_BIT = constant.Constant( 'GLX_FRONT_LEFT_BUFFER_BIT', 1 ) GLX_FRONT_RIGHT_BUFFER_BIT = constant.Constant( 'GLX_FRONT_RIGHT_BUFFER_BIT', 2 ) GLX_BACK_LEFT_BUFFER_BIT = constant.Constant( 'GLX_BACK_LEFT_BUFFER_BIT', 4 ) GLX_BACK_RIGHT_BUFFER_BIT = constant.Constant( 'GLX_BACK_RIGHT_BUFFER_BIT', 8 ) GLX_DEPTH_BUFFER_BIT = constant.Constant( 'GLX_DEPTH_BUFFER_BIT', 32 ) GLX_STENCIL_BUFFER_BIT = constant.Constant( 'GLX_STENCIL_BUFFER_BIT', 64 ) GLX_ACCUM_BUFFER_BIT = constant.Constant( 'GLX_ACCUM_BUFFER_BIT', 128 ) GLX_NONE = constant.Constant( 'GLX_NONE', 32768 ) GLX_SLOW_CONFIG = constant.Constant( 'GLX_SLOW_CONFIG', 32769 ) GLX_TRUE_COLOR = constant.Constant( 'GLX_TRUE_COLOR', 32770 ) GLX_DIRECT_COLOR = constant.Constant( 'GLX_DIRECT_COLOR', 32771 ) GLX_PSEUDO_COLOR = constant.Constant( 'GLX_PSEUDO_COLOR', 32772 ) GLX_STATIC_COLOR = constant.Constant( 'GLX_STATIC_COLOR', 32773 ) GLX_GRAY_SCALE = constant.Constant( 'GLX_GRAY_SCALE', 32774 ) GLX_STATIC_GRAY = constant.Constant( 'GLX_STATIC_GRAY', 32775 ) GLX_TRANSPARENT_RGB = constant.Constant( 'GLX_TRANSPARENT_RGB', 32776 ) GLX_TRANSPARENT_INDEX = constant.Constant( 'GLX_TRANSPARENT_INDEX', 32777 ) GLX_VISUAL_ID = constant.Constant( 'GLX_VISUAL_ID', 32779 ) GLX_SCREEN = constant.Constant( 'GLX_SCREEN', 32780 ) GLX_NON_CONFORMANT_CONFIG = constant.Constant( 'GLX_NON_CONFORMANT_CONFIG', 32781 ) GLX_DRAWABLE_TYPE = constant.Constant( 'GLX_DRAWABLE_TYPE', 32784 ) GLX_RENDER_TYPE = constant.Constant( 'GLX_RENDER_TYPE', 32785 ) GLX_X_RENDERABLE = constant.Constant( 'GLX_X_RENDERABLE', 32786 ) GLX_FBCONFIG_ID = constant.Constant( 'GLX_FBCONFIG_ID', 32787 ) GLX_RGBA_TYPE = constant.Constant( 'GLX_RGBA_TYPE', 32788 ) GLX_COLOR_INDEX_TYPE = constant.Constant( 'GLX_COLOR_INDEX_TYPE', 32789 ) GLX_MAX_PBUFFER_WIDTH = constant.Constant( 'GLX_MAX_PBUFFER_WIDTH', 32790 ) GLX_MAX_PBUFFER_HEIGHT = constant.Constant( 'GLX_MAX_PBUFFER_HEIGHT', 32791 ) GLX_MAX_PBUFFER_PIXELS = constant.Constant( 'GLX_MAX_PBUFFER_PIXELS', 32792 ) GLX_PRESERVED_CONTENTS = constant.Constant( 'GLX_PRESERVED_CONTENTS', 32795 ) GLX_LARGEST_PBUFFER = constant.Constant( 'GLX_LARGEST_PBUFFER', 32796 ) GLX_WIDTH = constant.Constant( 'GLX_WIDTH', 32797 ) GLX_HEIGHT = constant.Constant( 'GLX_HEIGHT', 32798 ) GLX_EVENT_MASK = constant.Constant( 'GLX_EVENT_MASK', 32799 ) GLX_DAMAGED = constant.Constant( 'GLX_DAMAGED', 32800 ) GLX_SAVED = constant.Constant( 'GLX_SAVED', 32801 ) GLX_WINDOW = constant.Constant( 'GLX_WINDOW', 32802 ) GLX_PBUFFER = constant.Constant( 'GLX_PBUFFER', 32803 ) GLX_PBUFFER_HEIGHT = constant.Constant( 'GLX_PBUFFER_HEIGHT', 32832 ) GLX_PBUFFER_WIDTH = constant.Constant( 'GLX_PBUFFER_WIDTH', 32833 ) GLX_RGBA_BIT = constant.Constant( 'GLX_RGBA_BIT', 1 ) GLX_COLOR_INDEX_BIT = constant.Constant( 'GLX_COLOR_INDEX_BIT', 2 ) GLX_PBUFFER_CLOBBER_MASK = constant.Constant( 'GLX_PBUFFER_CLOBBER_MASK', 134217728 ) GLX_SAMPLE_BUFFERS = constant.Constant( 'GLX_SAMPLE_BUFFERS', 100000 ) GLX_SAMPLES = constant.Constant( 'GLX_SAMPLES', 100001 ) class struct___GLXcontextRec(Structure): __slots__ = [ ] struct___GLXcontextRec._fields_ = [ ('_opaque_struct', c_int) ] class struct___GLXcontextRec(Structure): __slots__ = [ ] struct___GLXcontextRec._fields_ = [ ('_opaque_struct', c_int) ] GLXContext = POINTER(struct___GLXcontextRec) # /usr/include/GL/glx.h:178 XID = c_ulong # /usr/include/X11/X.h:66 GLXPixmap = XID # /usr/include/GL/glx.h:179 GLXDrawable = XID # /usr/include/GL/glx.h:180 class struct___GLXFBConfigRec(Structure): __slots__ = [ ] struct___GLXFBConfigRec._fields_ = [ ('_opaque_struct', c_int) ] class struct___GLXFBConfigRec(Structure): __slots__ = [ ] struct___GLXFBConfigRec._fields_ = [ ('_opaque_struct', c_int) ] GLXFBConfig = POINTER(struct___GLXFBConfigRec) # /usr/include/GL/glx.h:182 GLXFBConfigID = XID # /usr/include/GL/glx.h:183 GLXContextID = XID # /usr/include/GL/glx.h:184 GLXWindow = XID # /usr/include/GL/glx.h:185 GLXPbuffer = XID # /usr/include/GL/glx.h:186 GLX_PbufferClobber = constant.Constant( 'GLX_PbufferClobber', 0 ) GLX_BufferSwapComplete = constant.Constant( 'GLX_BufferSwapComplete', 1 ) class struct_anon_103(Structure): __slots__ = [ 'visual', 'visualid', 'screen', 'depth', 'class', 'red_mask', 'green_mask', 'blue_mask', 'colormap_size', 'bits_per_rgb', ] class struct_anon_18(Structure): __slots__ = [ 'ext_data', 'visualid', 'class', 'red_mask', 'green_mask', 'blue_mask', 'bits_per_rgb', 'map_entries', ] class struct__XExtData(Structure): __slots__ = [ 'number', 'next', 'free_private', 'private_data', ] XPointer = c_char_p # /usr/include/X11/Xlib.h:84 struct__XExtData._fields_ = [ ('number', c_int), ('next', POINTER(struct__XExtData)), ('free_private', POINTER(CFUNCTYPE(c_int, POINTER(struct__XExtData)))), ('private_data', XPointer), ] XExtData = struct__XExtData # /usr/include/X11/Xlib.h:163 VisualID = c_ulong # /usr/include/X11/X.h:76 struct_anon_18._fields_ = [ ('ext_data', POINTER(XExtData)), ('visualid', VisualID), ('class', c_int), ('red_mask', c_ulong), ('green_mask', c_ulong), ('blue_mask', c_ulong), ('bits_per_rgb', c_int), ('map_entries', c_int), ] Visual = struct_anon_18 # /usr/include/X11/Xlib.h:246 struct_anon_103._fields_ = [ ('visual', POINTER(Visual)), ('visualid', VisualID), ('screen', c_int), ('depth', c_int), ('class', c_int), ('red_mask', c_ulong), ('green_mask', c_ulong), ('blue_mask', c_ulong), ('colormap_size', c_int), ('bits_per_rgb', c_int), ] XVisualInfo = struct_anon_103 # /usr/include/X11/Xutil.h:294 class struct__XDisplay(Structure): __slots__ = [ ] struct__XDisplay._fields_ = [ ('_opaque_struct', c_int) ] class struct__XDisplay(Structure): __slots__ = [ ] struct__XDisplay._fields_ = [ ('_opaque_struct', c_int) ] Display = struct__XDisplay # /usr/include/X11/Xlib.h:495 glXChooseVisual = platform.createBaseFunction( 'glXChooseVisual', dll=platform.GL, resultType=POINTER(XVisualInfo), argTypes=[POINTER(Display), c_int, POINTER(c_int)], doc='glXChooseVisual( POINTER(Display)(dpy), c_int(screen), POINTER(c_int)(attribList) ) -> POINTER(XVisualInfo)', argNames=['dpy', 'screen', 'attribList'], ) glXCreateContext = platform.createBaseFunction( 'glXCreateContext', dll=platform.GL, resultType=GLXContext, argTypes=[POINTER(Display), POINTER(XVisualInfo), GLXContext, c_int], doc='glXCreateContext( POINTER(Display)(dpy), POINTER(XVisualInfo)(vis), GLXContext(shareList), c_int(direct) ) -> GLXContext', argNames=['dpy', 'vis', 'shareList', 'direct'], ) glXDestroyContext = platform.createBaseFunction( 'glXDestroyContext', dll=platform.GL, resultType=None, argTypes=[POINTER(Display), GLXContext], doc='glXDestroyContext( POINTER(Display)(dpy), GLXContext(ctx) ) -> None', argNames=['dpy', 'ctx'], ) glXMakeCurrent = platform.createBaseFunction( 'glXMakeCurrent', dll=platform.GL, resultType=c_int, argTypes=[POINTER(Display), GLXDrawable, GLXContext], doc='glXMakeCurrent( POINTER(Display)(dpy), GLXDrawable(drawable), GLXContext(ctx) ) -> c_int', argNames=['dpy', 'drawable', 'ctx'], ) glXCopyContext = platform.createBaseFunction( 'glXCopyContext', dll=platform.GL, resultType=None, argTypes=[POINTER(Display), GLXContext, GLXContext, c_ulong], doc='glXCopyContext( POINTER(Display)(dpy), GLXContext(src), GLXContext(dst), c_ulong(mask) ) -> None', argNames=['dpy', 'src', 'dst', 'mask'], ) glXSwapBuffers = platform.createBaseFunction( 'glXSwapBuffers', dll=platform.GL, resultType=None, argTypes=[POINTER(Display), GLXDrawable], doc='glXSwapBuffers( POINTER(Display)(dpy), GLXDrawable(drawable) ) -> None', argNames=['dpy', 'drawable'], ) Pixmap = XID # /usr/include/X11/X.h:102 glXCreateGLXPixmap = platform.createBaseFunction( 'glXCreateGLXPixmap', dll=platform.GL, resultType=GLXPixmap, argTypes=[POINTER(Display), POINTER(XVisualInfo), Pixmap], doc='glXCreateGLXPixmap( POINTER(Display)(dpy), POINTER(XVisualInfo)(visual), Pixmap(pixmap) ) -> GLXPixmap', argNames=['dpy', 'visual', 'pixmap'], ) glXDestroyGLXPixmap = platform.createBaseFunction( 'glXDestroyGLXPixmap', dll=platform.GL, resultType=None, argTypes=[POINTER(Display), GLXPixmap], doc='glXDestroyGLXPixmap( POINTER(Display)(dpy), GLXPixmap(pixmap) ) -> None', argNames=['dpy', 'pixmap'], ) glXQueryExtension = platform.createBaseFunction( 'glXQueryExtension', dll=platform.GL, resultType=c_int, argTypes=[POINTER(Display), POINTER(c_int), POINTER(c_int)], doc='glXQueryExtension( POINTER(Display)(dpy), POINTER(c_int)(errorb), POINTER(c_int)(event) ) -> c_int', argNames=['dpy', 'errorb', 'event'], ) glXQueryVersion = platform.createBaseFunction( 'glXQueryVersion', dll=platform.GL, resultType=c_int, argTypes=[POINTER(Display), POINTER(c_int), POINTER(c_int)], doc='glXQueryVersion( POINTER(Display)(dpy), POINTER(c_int)(maj), POINTER(c_int)(min) ) -> c_int', argNames=['dpy', 'maj', 'min'], ) glXIsDirect = platform.createBaseFunction( 'glXIsDirect', dll=platform.GL, resultType=c_int, argTypes=[POINTER(Display), GLXContext], doc='glXIsDirect( POINTER(Display)(dpy), GLXContext(ctx) ) -> c_int', argNames=['dpy', 'ctx'], ) glXGetConfig = platform.createBaseFunction( 'glXGetConfig', dll=platform.GL, resultType=c_int, argTypes=[POINTER(Display), POINTER(XVisualInfo), c_int, POINTER(c_int)], doc='glXGetConfig( POINTER(Display)(dpy), POINTER(XVisualInfo)(visual), c_int(attrib), POINTER(c_int)(value) ) -> c_int', argNames=['dpy', 'visual', 'attrib', 'value'], ) glXGetCurrentContext = platform.createBaseFunction( 'glXGetCurrentContext', dll=platform.GL, resultType=GLXContext, argTypes=[], doc='glXGetCurrentContext( ) -> GLXContext', argNames=[], ) glXGetCurrentDrawable = platform.createBaseFunction( 'glXGetCurrentDrawable', dll=platform.GL, resultType=GLXDrawable, argTypes=[], doc='glXGetCurrentDrawable( ) -> GLXDrawable', argNames=[], ) glXWaitGL = platform.createBaseFunction( 'glXWaitGL', dll=platform.GL, resultType=None, argTypes=[], doc='glXWaitGL( ) -> None', argNames=[], ) glXWaitX = platform.createBaseFunction( 'glXWaitX', dll=platform.GL, resultType=None, argTypes=[], doc='glXWaitX( ) -> None', argNames=[], ) Font = XID # /usr/include/X11/X.h:100 glXUseXFont = platform.createBaseFunction( 'glXUseXFont', dll=platform.GL, resultType=None, argTypes=[Font, c_int, c_int, c_int], doc='glXUseXFont( Font(font), c_int(first), c_int(count), c_int(list) ) -> None', argNames=['font', 'first', 'count', 'list'], ) glXQueryExtensionsString = platform.createBaseFunction( 'glXQueryExtensionsString', dll=platform.GL, resultType=c_char_p, argTypes=[POINTER(Display), c_int], doc='glXQueryExtensionsString( POINTER(Display)(dpy), c_int(screen) ) -> c_char_p', argNames=['dpy', 'screen'], ) glXQueryServerString = platform.createBaseFunction( 'glXQueryServerString', dll=platform.GL, resultType=c_char_p, argTypes=[POINTER(Display), c_int, c_int], doc='glXQueryServerString( POINTER(Display)(dpy), c_int(screen), c_int(name) ) -> c_char_p', argNames=['dpy', 'screen', 'name'], ) glXGetClientString = platform.createBaseFunction( 'glXGetClientString', dll=platform.GL, resultType=c_char_p, argTypes=[POINTER(Display), c_int], doc='glXGetClientString( POINTER(Display)(dpy), c_int(name) ) -> c_char_p', argNames=['dpy', 'name'], ) glXGetCurrentDisplay = platform.createBaseFunction( 'glXGetCurrentDisplay', dll=platform.GL, resultType=POINTER(Display), argTypes=[], doc='glXGetCurrentDisplay( ) -> POINTER(Display)', argNames=[], ) glXChooseFBConfig = platform.createBaseFunction( 'glXChooseFBConfig', dll=platform.GL, resultType=POINTER(GLXFBConfig), argTypes=[POINTER(Display), c_int, POINTER(c_int), POINTER(c_int)], doc='glXChooseFBConfig( POINTER(Display)(dpy), c_int(screen), POINTER(c_int)(attribList), POINTER(c_int)(nitems) ) -> POINTER(GLXFBConfig)', argNames=['dpy', 'screen', 'attribList', 'nitems'], ) glXGetFBConfigAttrib = platform.createBaseFunction( 'glXGetFBConfigAttrib', dll=platform.GL, resultType=c_int, argTypes=[POINTER(Display), GLXFBConfig, c_int, POINTER(c_int)], doc='glXGetFBConfigAttrib( POINTER(Display)(dpy), GLXFBConfig(config), c_int(attribute), POINTER(c_int)(value) ) -> c_int', argNames=['dpy', 'config', 'attribute', 'value'], ) glXGetFBConfigs = platform.createBaseFunction( 'glXGetFBConfigs', dll=platform.GL, resultType=POINTER(GLXFBConfig), argTypes=[POINTER(Display), c_int, POINTER(c_int)], doc='glXGetFBConfigs( POINTER(Display)(dpy), c_int(screen), POINTER(c_int)(nelements) ) -> POINTER(GLXFBConfig)', argNames=['dpy', 'screen', 'nelements'], ) glXGetVisualFromFBConfig = platform.createBaseFunction( 'glXGetVisualFromFBConfig', dll=platform.GL, resultType=POINTER(XVisualInfo), argTypes=[POINTER(Display), GLXFBConfig], doc='glXGetVisualFromFBConfig( POINTER(Display)(dpy), GLXFBConfig(config) ) -> POINTER(XVisualInfo)', argNames=['dpy', 'config'], ) Window = XID # /usr/include/X11/X.h:96 glXCreateWindow = platform.createBaseFunction( 'glXCreateWindow', dll=platform.GL, resultType=GLXWindow, argTypes=[POINTER(Display), GLXFBConfig, Window, POINTER(c_int)], doc='glXCreateWindow( POINTER(Display)(dpy), GLXFBConfig(config), Window(win), POINTER(c_int)(attribList) ) -> GLXWindow', argNames=['dpy', 'config', 'win', 'attribList'], ) glXDestroyWindow = platform.createBaseFunction( 'glXDestroyWindow', dll=platform.GL, resultType=None, argTypes=[POINTER(Display), GLXWindow], doc='glXDestroyWindow( POINTER(Display)(dpy), GLXWindow(window) ) -> None', argNames=['dpy', 'window'], ) glXCreatePixmap = platform.createBaseFunction( 'glXCreatePixmap', dll=platform.GL, resultType=GLXPixmap, argTypes=[POINTER(Display), GLXFBConfig, Pixmap, POINTER(c_int)], doc='glXCreatePixmap( POINTER(Display)(dpy), GLXFBConfig(config), Pixmap(pixmap), POINTER(c_int)(attribList) ) -> GLXPixmap', argNames=['dpy', 'config', 'pixmap', 'attribList'], ) glXDestroyPixmap = platform.createBaseFunction( 'glXDestroyPixmap', dll=platform.GL, resultType=None, argTypes=[POINTER(Display), GLXPixmap], doc='glXDestroyPixmap( POINTER(Display)(dpy), GLXPixmap(pixmap) ) -> None', argNames=['dpy', 'pixmap'], ) glXCreatePbuffer = platform.createBaseFunction( 'glXCreatePbuffer', dll=platform.GL, resultType=GLXPbuffer, argTypes=[POINTER(Display), GLXFBConfig, POINTER(c_int)], doc='glXCreatePbuffer( POINTER(Display)(dpy), GLXFBConfig(config), POINTER(c_int)(attribList) ) -> GLXPbuffer', argNames=['dpy', 'config', 'attribList'], ) glXDestroyPbuffer = platform.createBaseFunction( 'glXDestroyPbuffer', dll=platform.GL, resultType=None, argTypes=[POINTER(Display), GLXPbuffer], doc='glXDestroyPbuffer( POINTER(Display)(dpy), GLXPbuffer(pbuf) ) -> None', argNames=['dpy', 'pbuf'], ) glXQueryDrawable = platform.createBaseFunction( 'glXQueryDrawable', dll=platform.GL, resultType=None, argTypes=[POINTER(Display), GLXDrawable, c_int, POINTER(c_uint)], doc='glXQueryDrawable( POINTER(Display)(dpy), GLXDrawable(draw), c_int(attribute), POINTER(c_uint)(value) ) -> None', argNames=['dpy', 'draw', 'attribute', 'value'], ) glXCreateNewContext = platform.createBaseFunction( 'glXCreateNewContext', dll=platform.GL, resultType=GLXContext, argTypes=[POINTER(Display), GLXFBConfig, c_int, GLXContext, c_int], doc='glXCreateNewContext( POINTER(Display)(dpy), GLXFBConfig(config), c_int(renderType), GLXContext(shareList), c_int(direct) ) -> GLXContext', argNames=['dpy', 'config', 'renderType', 'shareList', 'direct'], ) glXMakeContextCurrent = platform.createBaseFunction( 'glXMakeContextCurrent', dll=platform.GL, resultType=c_int, argTypes=[POINTER(Display), GLXDrawable, GLXDrawable, GLXContext], doc='glXMakeContextCurrent( POINTER(Display)(dpy), GLXDrawable(draw), GLXDrawable(read), GLXContext(ctx) ) -> c_int', argNames=['dpy', 'draw', 'read', 'ctx'], ) glXGetCurrentReadDrawable = platform.createBaseFunction( 'glXGetCurrentReadDrawable', dll=platform.GL, resultType=GLXDrawable, argTypes=[], doc='glXGetCurrentReadDrawable( ) -> GLXDrawable', argNames=[], ) glXQueryContext = platform.createBaseFunction( 'glXQueryContext', dll=platform.GL, resultType=c_int, argTypes=[POINTER(Display), GLXContext, c_int, POINTER(c_int)], doc='glXQueryContext( POINTER(Display)(dpy), GLXContext(ctx), c_int(attribute), POINTER(c_int)(value) ) -> c_int', argNames=['dpy', 'ctx', 'attribute', 'value'], ) glXSelectEvent = platform.createBaseFunction( 'glXSelectEvent', dll=platform.GL, resultType=None, argTypes=[POINTER(Display), GLXDrawable, c_ulong], doc='glXSelectEvent( POINTER(Display)(dpy), GLXDrawable(drawable), c_ulong(mask) ) -> None', argNames=['dpy', 'drawable', 'mask'], ) glXGetSelectedEvent = platform.createBaseFunction( 'glXGetSelectedEvent', dll=platform.GL, resultType=None, argTypes=[POINTER(Display), GLXDrawable, POINTER(c_ulong)], doc='glXGetSelectedEvent( POINTER(Display)(dpy), GLXDrawable(drawable), POINTER(c_ulong)(mask) ) -> None', argNames=['dpy', 'drawable', 'mask'], ) # ARB_get_proc_address (/usr/include/GL/glx.h:327) GLX_ARB_get_proc_address = constant.Constant( 'GLX_ARB_get_proc_address', 1 ) __GLXextFuncPtr = CFUNCTYPE(None) # /usr/include/GL/glx.h:330 GLubyte = c_ubyte # /usr/include/GL/gl.h:162 glXGetProcAddressARB = platform.createBaseFunction( 'glXGetProcAddressARB', dll=platform.GL, resultType=__GLXextFuncPtr, argTypes=[POINTER(GLubyte)], doc='glXGetProcAddressARB( POINTER(GLubyte)() ) -> __GLXextFuncPtr', argNames=[''], ) glXGetProcAddress = platform.createBaseFunction( 'glXGetProcAddress', dll=platform.GL, resultType=POINTER(CFUNCTYPE(None)), argTypes=[POINTER(GLubyte)], doc='glXGetProcAddress( POINTER(GLubyte)(procname) ) -> POINTER(CFUNCTYPE(None))', argNames=['procname'], ) # GLXEXT_LEGACY (/usr/include/GL/glx.h:344) # VERSION_1_3 (/usr/include/GL/glxext.h:55) # VERSION_1_4 (/usr/include/GL/glxext.h:114) # ARB_get_proc_address (/usr/include/GL/glxext.h:119) # ARB_multisample (/usr/include/GL/glxext.h:122) # ARB_vertex_buffer_object (/usr/include/GL/glxext.h:127) # ARB_fbconfig_float (/usr/include/GL/glxext.h:131) # ARB_framebuffer_sRGB (/usr/include/GL/glxext.h:136) # ARB_create_context (/usr/include/GL/glxext.h:140) # ARB_create_context_profile (/usr/include/GL/glxext.h:148) # ARB_create_context_robustness (/usr/include/GL/glxext.h:154) # SGIS_multisample (/usr/include/GL/glxext.h:161) # EXT_visual_info (/usr/include/GL/glxext.h:166) # SGI_swap_control (/usr/include/GL/glxext.h:185) # SGI_video_sync (/usr/include/GL/glxext.h:188) # SGI_make_current_read (/usr/include/GL/glxext.h:191) # SGIX_video_source (/usr/include/GL/glxext.h:194) # EXT_visual_rating (/usr/include/GL/glxext.h:197) # EXT_import_context (/usr/include/GL/glxext.h:204) # SGIX_fbconfig (/usr/include/GL/glxext.h:210) # SGIX_pbuffer (/usr/include/GL/glxext.h:224) # SGI_cushion (/usr/include/GL/glxext.h:252) # SGIX_video_resize (/usr/include/GL/glxext.h:255) # SGIX_dmbuffer (/usr/include/GL/glxext.h:260) # SGIX_swap_group (/usr/include/GL/glxext.h:264) # SGIX_swap_barrier (/usr/include/GL/glxext.h:267) # SGIS_blended_overlay (/usr/include/GL/glxext.h:270) # SGIS_shared_multisample (/usr/include/GL/glxext.h:274) # SUN_get_transparent_index (/usr/include/GL/glxext.h:279) # 3DFX_multisample (/usr/include/GL/glxext.h:282) # MESA_copy_sub_buffer (/usr/include/GL/glxext.h:287) # MESA_pixmap_colormap (/usr/include/GL/glxext.h:290) # MESA_release_buffers (/usr/include/GL/glxext.h:293) # MESA_set_3dfx_mode (/usr/include/GL/glxext.h:296) # SGIX_visual_select_group (/usr/include/GL/glxext.h:301) # OML_swap_method (/usr/include/GL/glxext.h:305) # OML_sync_control (/usr/include/GL/glxext.h:312) # NV_float_buffer (/usr/include/GL/glxext.h:315) # SGIX_hyperpipe (/usr/include/GL/glxext.h:319) # MESA_agp_offset (/usr/include/GL/glxext.h:332) # EXT_fbconfig_packed_float (/usr/include/GL/glxext.h:335) # EXT_framebuffer_sRGB (/usr/include/GL/glxext.h:340) # EXT_texture_from_pixmap (/usr/include/GL/glxext.h:344) # NV_present_video (/usr/include/GL/glxext.h:380) # NV_video_out (/usr/include/GL/glxext.h:384) # NV_swap_group (/usr/include/GL/glxext.h:397) # NV_video_capture (/usr/include/GL/glxext.h:400) # EXT_swap_control (/usr/include/GL/glxext.h:406) # NV_copy_image (/usr/include/GL/glxext.h:411) # INTEL_swap_event (/usr/include/GL/glxext.h:414) # NV_multisample_coverage (/usr/include/GL/glxext.h:421) # AMD_gpu_association (/usr/include/GL/glxext.h:426) # EXT_create_context_es2_profile (/usr/include/GL/glxext.h:439) # ARB_get_proc_address (/usr/include/GL/glxext.h:446) # SGIX_video_source (/usr/include/GL/glxext.h:450) # SGIX_fbconfig (/usr/include/GL/glxext.h:454) # SGIX_pbuffer (/usr/include/GL/glxext.h:459) # NV_video_output (/usr/include/GL/glxext.h:476) # NV_video_capture (/usr/include/GL/glxext.h:480) # VERSION_1_3 (/usr/include/GL/glxext.h:521) # VERSION_1_4 (/usr/include/GL/glxext.h:563) # ARB_get_proc_address (/usr/include/GL/glxext.h:571) # ARB_multisample (/usr/include/GL/glxext.h:579) # ARB_fbconfig_float (/usr/include/GL/glxext.h:583) # ARB_framebuffer_sRGB (/usr/include/GL/glxext.h:587) # ARB_create_context (/usr/include/GL/glxext.h:591) # ARB_create_context_profile (/usr/include/GL/glxext.h:599) # ARB_create_context_robustness (/usr/include/GL/glxext.h:603) # SGIS_multisample (/usr/include/GL/glxext.h:607) # EXT_visual_info (/usr/include/GL/glxext.h:611) # SGI_swap_control (/usr/include/GL/glxext.h:615) # SGI_video_sync (/usr/include/GL/glxext.h:623) # SGI_make_current_read (/usr/include/GL/glxext.h:633) # SGIX_video_source (/usr/include/GL/glxext.h:643) # EXT_visual_rating (/usr/include/GL/glxext.h:655) # EXT_import_context (/usr/include/GL/glxext.h:659) # SGIX_fbconfig (/usr/include/GL/glxext.h:675) # SGIX_pbuffer (/usr/include/GL/glxext.h:693) # SGI_cushion (/usr/include/GL/glxext.h:709) # SGIX_video_resize (/usr/include/GL/glxext.h:717) # SGIX_dmbuffer (/usr/include/GL/glxext.h:733) # SGIX_swap_group (/usr/include/GL/glxext.h:743) # SGIX_swap_barrier (/usr/include/GL/glxext.h:751) # SUN_get_transparent_index (/usr/include/GL/glxext.h:761) # MESA_copy_sub_buffer (/usr/include/GL/glxext.h:769) # MESA_pixmap_colormap (/usr/include/GL/glxext.h:777) # MESA_release_buffers (/usr/include/GL/glxext.h:785) # MESA_set_3dfx_mode (/usr/include/GL/glxext.h:793) # SGIX_visual_select_group (/usr/include/GL/glxext.h:801) # OML_swap_method (/usr/include/GL/glxext.h:805) # OML_sync_control (/usr/include/GL/glxext.h:809) # NV_float_buffer (/usr/include/GL/glxext.h:825) # SGIX_hyperpipe (/usr/include/GL/glxext.h:829) # MESA_agp_offset (/usr/include/GL/glxext.h:876) # EXT_fbconfig_packed_float (/usr/include/GL/glxext.h:884) # EXT_framebuffer_sRGB (/usr/include/GL/glxext.h:888) # EXT_texture_from_pixmap (/usr/include/GL/glxext.h:892) # NV_present_video (/usr/include/GL/glxext.h:902) # NV_video_output (/usr/include/GL/glxext.h:912) # NV_swap_group (/usr/include/GL/glxext.h:930) # NV_video_capture (/usr/include/GL/glxext.h:948) # EXT_swap_control (/usr/include/GL/glxext.h:964) # NV_copy_image (/usr/include/GL/glxext.h:972) # INTEL_swap_event (/usr/include/GL/glxext.h:980) # NV_multisample_coverage (/usr/include/GL/glxext.h:984) # NV_vertex_array_range (/usr/include/GL/glx.h:359) GLsizei = c_int # /usr/include/GL/gl.h:165 GLfloat = c_float # /usr/include/GL/gl.h:166 glXAllocateMemoryNV = platform.createBaseFunction( 'glXAllocateMemoryNV', dll=platform.GL, resultType=POINTER(c_void), argTypes=[GLsizei, GLfloat, GLfloat, GLfloat], doc='glXAllocateMemoryNV( GLsizei(size), GLfloat(readfreq), GLfloat(writefreq), GLfloat(priority) ) -> POINTER(c_void)', argNames=['size', 'readfreq', 'writefreq', 'priority'], ) GLvoid = None # /usr/include/GL/gl.h:158 glXFreeMemoryNV = platform.createBaseFunction( 'glXFreeMemoryNV', dll=platform.GL, resultType=None, argTypes=[POINTER(GLvoid)], doc='glXFreeMemoryNV( POINTER(GLvoid)(pointer) ) -> None', argNames=['pointer'], ) # ARB_render_texture (/usr/include/GL/glx.h:374) GLX_ARB_render_texture = constant.Constant( 'GLX_ARB_render_texture', 1 ) glXBindTexImageARB = platform.createBaseFunction( 'glXBindTexImageARB', dll=platform.GL, resultType=c_int, argTypes=[POINTER(Display), GLXPbuffer, c_int], doc='glXBindTexImageARB( POINTER(Display)(dpy), GLXPbuffer(pbuffer), c_int(buffer) ) -> c_int', argNames=['dpy', 'pbuffer', 'buffer'], ) glXReleaseTexImageARB = platform.createBaseFunction( 'glXReleaseTexImageARB', dll=platform.GL, resultType=c_int, argTypes=[POINTER(Display), GLXPbuffer, c_int], doc='glXReleaseTexImageARB( POINTER(Display)(dpy), GLXPbuffer(pbuffer), c_int(buffer) ) -> c_int', argNames=['dpy', 'pbuffer', 'buffer'], ) glXDrawableAttribARB = platform.createBaseFunction( 'glXDrawableAttribARB', dll=platform.GL, resultType=c_int, argTypes=[POINTER(Display), GLXDrawable, POINTER(c_int)], doc='glXDrawableAttribARB( POINTER(Display)(dpy), GLXDrawable(draw), POINTER(c_int)(attribList) ) -> c_int', argNames=['dpy', 'draw', 'attribList'], ) # NV_float_buffer (/usr/include/GL/glx.h:387) # MESA_swap_frame_usage (/usr/include/GL/glx.h:399) GLX_MESA_swap_frame_usage = constant.Constant( 'GLX_MESA_swap_frame_usage', 1 ) glXGetFrameUsageMESA = platform.createBaseFunction( 'glXGetFrameUsageMESA', dll=platform.GL, resultType=c_int, argTypes=[POINTER(Display), GLXDrawable, POINTER(c_float)], doc='glXGetFrameUsageMESA( POINTER(Display)(dpy), GLXDrawable(drawable), POINTER(c_float)(usage) ) -> c_int', argNames=['dpy', 'drawable', 'usage'], ) glXBeginFrameTrackingMESA = platform.createBaseFunction( 'glXBeginFrameTrackingMESA', dll=platform.GL, resultType=c_int, argTypes=[POINTER(Display), GLXDrawable], doc='glXBeginFrameTrackingMESA( POINTER(Display)(dpy), GLXDrawable(drawable) ) -> c_int', argNames=['dpy', 'drawable'], ) glXEndFrameTrackingMESA = platform.createBaseFunction( 'glXEndFrameTrackingMESA', dll=platform.GL, resultType=c_int, argTypes=[POINTER(Display), GLXDrawable], doc='glXEndFrameTrackingMESA( POINTER(Display)(dpy), GLXDrawable(drawable) ) -> c_int', argNames=['dpy', 'drawable'], ) glXQueryFrameTrackingMESA = platform.createBaseFunction( 'glXQueryFrameTrackingMESA', dll=platform.GL, resultType=c_int, argTypes=[POINTER(Display), GLXDrawable, POINTER(c_int64), POINTER(c_int64), POINTER(c_float)], doc='glXQueryFrameTrackingMESA( POINTER(Display)(dpy), GLXDrawable(drawable), POINTER(c_int64)(swapCount), POINTER(c_int64)(missedFrames), POINTER(c_float)(lastMissedUsage) ) -> c_int', argNames=['dpy', 'drawable', 'swapCount', 'missedFrames', 'lastMissedUsage'], ) # MESA_swap_control (/usr/include/GL/glx.h:419) GLX_MESA_swap_control = constant.Constant( 'GLX_MESA_swap_control', 1 ) glXSwapIntervalMESA = platform.createBaseFunction( 'glXSwapIntervalMESA', dll=platform.GL, resultType=c_int, argTypes=[c_uint], doc='glXSwapIntervalMESA( c_uint(interval) ) -> c_int', argNames=['interval'], ) glXGetSwapIntervalMESA = platform.createBaseFunction( 'glXGetSwapIntervalMESA', dll=platform.GL, resultType=c_int, argTypes=[], doc='glXGetSwapIntervalMESA( ) -> c_int', argNames=[], ) # EXT_texture_from_pixmap (/usr/include/GL/glx.h:436) class struct_anon_111(Structure): __slots__ = [ 'event_type', 'draw_type', 'serial', 'send_event', 'display', 'drawable', 'buffer_mask', 'aux_buffer', 'x', 'y', 'width', 'height', 'count', ] struct_anon_111._fields_ = [ ('event_type', c_int), ('draw_type', c_int), ('serial', c_ulong), ('send_event', c_int), ('display', POINTER(Display)), ('drawable', GLXDrawable), ('buffer_mask', c_uint), ('aux_buffer', c_uint), ('x', c_int), ('y', c_int), ('width', c_int), ('height', c_int), ('count', c_int), ] GLXPbufferClobberEvent = struct_anon_111 # /usr/include/GL/glx.h:502 class struct_anon_112(Structure): __slots__ = [ 'type', 'serial', 'send_event', 'display', 'drawable', 'event_type', 'ust', 'msc', 'sbc', ] struct_anon_112._fields_ = [ ('type', c_int), ('serial', c_ulong), ('send_event', c_int), ('display', POINTER(Display)), ('drawable', GLXDrawable), ('event_type', c_int), ('ust', c_int64), ('msc', c_int64), ('sbc', c_int64), ] GLXBufferSwapComplete = struct_anon_112 # /usr/include/GL/glx.h:514 class struct___GLXEvent(Union): __slots__ = [ 'glxpbufferclobber', 'glxbufferswapcomplete', 'pad', ] struct___GLXEvent._fields_ = [ ('glxpbufferclobber', GLXPbufferClobberEvent), ('glxbufferswapcomplete', GLXBufferSwapComplete), ('pad', c_long * 24), ] GLXEvent = struct___GLXEvent # /usr/include/GL/glx.h:520 __all__ = ['GLX_VERSION_1_1', 'GLX_VERSION_1_2', 'GLX_VERSION_1_3', 'GLX_VERSION_1_4', 'GLX_USE_GL', 'GLX_BUFFER_SIZE', 'GLX_LEVEL', 'GLX_RGBA', 'GLX_DOUBLEBUFFER', 'GLX_STEREO', 'GLX_AUX_BUFFERS', 'GLX_RED_SIZE', 'GLX_GREEN_SIZE', 'GLX_BLUE_SIZE', 'GLX_ALPHA_SIZE', 'GLX_DEPTH_SIZE', 'GLX_STENCIL_SIZE', 'GLX_ACCUM_RED_SIZE', 'GLX_ACCUM_GREEN_SIZE', 'GLX_ACCUM_BLUE_SIZE', 'GLX_ACCUM_ALPHA_SIZE', 'GLX_BAD_SCREEN', 'GLX_BAD_ATTRIBUTE', 'GLX_NO_EXTENSION', 'GLX_BAD_VISUAL', 'GLX_BAD_CONTEXT', 'GLX_BAD_VALUE', 'GLX_BAD_ENUM', 'GLX_VENDOR', 'GLX_VERSION', 'GLX_EXTENSIONS', 'GLX_CONFIG_CAVEAT', 'GLX_DONT_CARE', 'GLX_X_VISUAL_TYPE', 'GLX_TRANSPARENT_TYPE', 'GLX_TRANSPARENT_INDEX_VALUE', 'GLX_TRANSPARENT_RED_VALUE', 'GLX_TRANSPARENT_GREEN_VALUE', 'GLX_TRANSPARENT_BLUE_VALUE', 'GLX_TRANSPARENT_ALPHA_VALUE', 'GLX_WINDOW_BIT', 'GLX_PIXMAP_BIT', 'GLX_PBUFFER_BIT', 'GLX_AUX_BUFFERS_BIT', 'GLX_FRONT_LEFT_BUFFER_BIT', 'GLX_FRONT_RIGHT_BUFFER_BIT', 'GLX_BACK_LEFT_BUFFER_BIT', 'GLX_BACK_RIGHT_BUFFER_BIT', 'GLX_DEPTH_BUFFER_BIT', 'GLX_STENCIL_BUFFER_BIT', 'GLX_ACCUM_BUFFER_BIT', 'GLX_NONE', 'GLX_SLOW_CONFIG', 'GLX_TRUE_COLOR', 'GLX_DIRECT_COLOR', 'GLX_PSEUDO_COLOR', 'GLX_STATIC_COLOR', 'GLX_GRAY_SCALE', 'GLX_STATIC_GRAY', 'GLX_TRANSPARENT_RGB', 'GLX_TRANSPARENT_INDEX', 'GLX_VISUAL_ID', 'GLX_SCREEN', 'GLX_NON_CONFORMANT_CONFIG', 'GLX_DRAWABLE_TYPE', 'GLX_RENDER_TYPE', 'GLX_X_RENDERABLE', 'GLX_FBCONFIG_ID', 'GLX_RGBA_TYPE', 'GLX_COLOR_INDEX_TYPE', 'GLX_MAX_PBUFFER_WIDTH', 'GLX_MAX_PBUFFER_HEIGHT', 'GLX_MAX_PBUFFER_PIXELS', 'GLX_PRESERVED_CONTENTS', 'GLX_LARGEST_PBUFFER', 'GLX_WIDTH', 'GLX_HEIGHT', 'GLX_EVENT_MASK', 'GLX_DAMAGED', 'GLX_SAVED', 'GLX_WINDOW', 'GLX_PBUFFER', 'GLX_PBUFFER_HEIGHT', 'GLX_PBUFFER_WIDTH', 'GLX_RGBA_BIT', 'GLX_COLOR_INDEX_BIT', 'GLX_PBUFFER_CLOBBER_MASK', 'GLX_SAMPLE_BUFFERS', 'GLX_SAMPLES', 'GLXContext', 'GLXPixmap', 'GLXDrawable', 'GLXFBConfig', 'GLXFBConfigID', 'GLXContextID', 'GLXWindow', 'GLXPbuffer', 'GLX_PbufferClobber', 'GLX_BufferSwapComplete', 'glXChooseVisual', 'glXCreateContext', 'glXDestroyContext', 'glXMakeCurrent', 'glXCopyContext', 'glXSwapBuffers', 'glXCreateGLXPixmap', 'glXDestroyGLXPixmap', 'glXQueryExtension', 'glXQueryVersion', 'glXIsDirect', 'glXGetConfig', 'glXGetCurrentContext', 'glXGetCurrentDrawable', 'glXWaitGL', 'glXWaitX', 'glXUseXFont', 'glXQueryExtensionsString', 'glXQueryServerString', 'glXGetClientString', 'glXGetCurrentDisplay', 'glXChooseFBConfig', 'glXGetFBConfigAttrib', 'glXGetFBConfigs', 'glXGetVisualFromFBConfig', 'glXCreateWindow', 'glXDestroyWindow', 'glXCreatePixmap', 'glXDestroyPixmap', 'glXCreatePbuffer', 'glXDestroyPbuffer', 'glXQueryDrawable', 'glXCreateNewContext', 'glXMakeContextCurrent', 'glXGetCurrentReadDrawable', 'glXQueryContext', 'glXSelectEvent', 'glXGetSelectedEvent', 'GLX_ARB_get_proc_address', 'glXGetProcAddressARB', 'glXGetProcAddress', 'glXAllocateMemoryNV', 'glXFreeMemoryNV', 'GLX_ARB_render_texture', 'glXBindTexImageARB', 'glXReleaseTexImageARB', 'glXDrawableAttribARB', 'GLX_MESA_swap_frame_usage', 'glXGetFrameUsageMESA', 'glXBeginFrameTrackingMESA', 'glXEndFrameTrackingMESA', 'glXQueryFrameTrackingMESA', 'GLX_MESA_swap_control', 'glXSwapIntervalMESA', 'glXGetSwapIntervalMESA', 'GLXPbufferClobberEvent', 'GLXBufferSwapComplete', 'GLXEvent'] # END GENERATED CONTENT (do not edit above this line)
43.576456
189
0.734286
[ "BSD-2-Clause" ]
frederica07/Dragon_Programming_Process
PyOpenGL-3.0.2/OpenGL/raw/_GLX.py
35,907
Python
#!/usr/bin/python3 import gameinstance from colour import Colour from constants import Constants from vec2 import vec2 from misc import Fade import sdl2 import hud class Menu(gameinstance.GameInstance): """Game menu representation.""" # Variables to control menu background. backgrounds = [] current_bg = 0 bg_offset_at_start = None #250 bg_offset = None #bg_offset_at_start bg_dimness_peak = None #0x88 bg_dimness_current = None #0xff bg_diminish_rate = None #0.33 def __init__(self, renderer, highscores=None): # Background stuff. Menu.bg_offset_at_start = 250 Menu.bg_offset = Menu.bg_offset_at_start Menu.bg_dimness_peak = 0x88 Menu.bg_dimness_current = 0xff Menu.bg_diminish_rate = 0.33 self.choice = None self.is_open = True self.title = hud.Text('pyNoid', renderer, Constants.TITLE_FONT_SIZE) self.title.position = vec2(50, 50) self.credits = hud.Text('Kacper Tonia 2017/18', renderer, Constants.TINY_FONT_SIZE) self.credits.position = self.title.position + vec2(self.title.size[0]//2, self.title.size[1]) grey = Colour.greyscale(0.75) sub1 = hud.Button.buildClickableText('New Game', renderer, Colour.White, grey, grey, Constants.MENU_FONT_SIZE ) sub2 = hud.Button.buildClickableText('Exit', renderer, Colour.White, grey, grey, Constants.MENU_FONT_SIZE ) self.menu = hud.VerticalContainer([sub1, sub2], Constants.WINDOW_SIZE.y//2) if highscores: leaderboard = [] player_name_length = max([len(x[0]) for x in highscores]) score_length = max([len(str(x[1])) for x in highscores]) s_format = '{:>%d} {}{}' % player_name_length for idx,item in enumerate(highscores): leaderboard.append( hud.Text(s_format.format( item[0], item[1], ' '*(score_length-len(str(item[1])))), renderer, Constants.FONT_SIZE_1, Colour.greyscale((5-idx) / 5.0 )) ) self.render_content = hud.VerticalContainer(leaderboard, Constants.WINDOW_SIZE.y*3//4) else: self.render_content = [] def update(self): """Update game state.""" Menu.bg_offset += 2 if Menu.bg_offset > 0.85 * Constants.WINDOW_SIZE.x: Menu.bg_dimness_current += Menu.bg_diminish_rate if Menu.bg_dimness_current >= 0xff: Menu.current_bg = (Menu.current_bg + 1) % len(Menu.backgrounds) Menu.bg_offset = Menu.bg_offset_at_start Menu.bg_dimness_current = 0xff elif Menu.bg_dimness_current > Menu.bg_dimness_peak: Menu.bg_dimness_current -= Menu.bg_diminish_rate def handleEvent(self, e): """Process relevant events.""" for i in self.menu.elem: i.handleEvent(e) if self.menu.elem[0].isPressed(): self.fading = True elif self.menu.elem[1].isPressed(): self.is_open = False def render(self, renderer): """Render scene.""" rect = (Constants.WINDOW_SIZE.x - Menu.bg_offset, 0, *Constants.WINDOW_SIZE) renderer.copy(Menu.backgrounds[Menu.current_bg], None, rect) renderer.fill((0, 0, Constants.WINDOW_SIZE.x, Constants.WINDOW_SIZE.y), (0, 0, 0, Menu.bg_dimness_current)) self.title.render(renderer) self.credits.render(renderer) self.menu.render(renderer) if self.render_content: self.render_content.render(renderer) if self.fading: self.fader.draw(renderer) if self.fader.finished(): self.fading = False self.fader.reset() self.choice = 0 def isOpen(self): """Returns False if GameInstance should be no longer active.""" return self.is_open def typeOf(self): return 'Menu'
31.145455
109
0.718622
[ "MIT" ]
marax27/pyNoid
menu.py
3,426
Python
from .config import * import MySQLdb class DBReader: def __init__(self): self.conn = None self.db = None # Initalize the connection self.db = MySQLdb.connect(user=DB_USER, passwd=DB_PASS, db=DB_NAME, host=DB_HOST, port=DB_PORT) if self.db == None: raise Exception("DBLogger: Unable to connect to database.") self.conn = self.db.cursor() def close(self): if self.conn != None: self.conn.close() self.conn = None def query_one(self, table, columns, where): sql = "SELECT %s FROM %s WHERE %s LIMIT 1" % (columns, table, where) self.conn.execute(sql) if self.conn.rowcount == 1: return self.conn.fetchone() else: return None def query(self, sql): self.conn.execute(sql) if self.conn.rowcount >= 1: row = self.conn.fetchone() while row != None: yield row row = self.conn.fetchone() else: return class DBLogger: def __init__(self, datasource=None, channel=None, page=0): self.conn = None if datasource == None: #datasource must be provided if DBLogger is desired return None self.db = None self.channel = channel self.page = page # Initalize the connection try: self.db = MySQLdb.connect(user=DB_USER, passwd=DB_PASS, db=DB_NAME, host=DB_HOST, port=DB_PORT) except Exception as e: raise Exception("DBLogger was unable to connect to the database: " \ +"(error %d): %s (Note: connection values should be in config.py)." \ +"error %s" % e) if self.db == None: #this backup check may be redundant raise Exception("DBLogger: Unable to connect to database.") self.conn = self.db.cursor() # Set the ds_id attribute to correspond to the requested data source name self.conn.execute("SELECT ds_id FROM datasources WHERE ds_name LIKE %s LIMIT 1", (datasource,)) if self.conn.rowcount == 1: self.ds_id = self.conn.fetchone() else: print("No datasource found matching name:", datasource) def close(self): if self.conn != None: self.conn.close() self.conn = None def set_channel(self, chan, page): self.channel = chan self.page = page def add_packet(self, full=None, scapy=None, bytes=None, rssi=None, location=None, datetime=None, channel=None, page=0): if (self.conn==None): raise Exception("DBLogger requires active connection status.") # Use values in 'full' parameter to provide data for undefined other parameters if bytes == None and 'bytes' in full: bytes = full['bytes'] if rssi == None and 'rssi' in full: rssi = full['rssi'] if datetime == None and 'datetime' in full: datetime = full['datetime'] if location == None and 'location' in full: location = full['location'] # Get the location ID, or create one, if GPS data is available loc_id = self.add_location(location) if location is not None else None # Dissect the packet's bytes, using the Scapy'd version in parameter scapy if provided if scapy == None: # Import Scapy extensions import logging logging.getLogger("scapy.runtime").setLevel(logging.ERROR) from scapy.all import Dot15d4 scapy = Dot15d4(bytes) #from kbutils import hexdump #scapy.show2() # This try/except logic is dumb, but Scapy will just throw an exception if the field doesn't exist try: srcaddr = scapy.src_addr except: srcaddr = None try: srcpan = scapy.src_panid except: srcpan = None srcdevid = self.add_device(srcaddr, srcpan) try: destaddr = scapy.dest_addr except: destaddr = None try: destpanid = scapy.dest_panid except: destpanid = None destdevid = self.add_device(destaddr, destpanid) sql = [] sql.append("ds_id=%d" % self.ds_id) sql.append("db_datetime=NOW()") if datetime != None: sql.append("cap_datetime='%s'" % str(datetime)) if self.channel != None: sql.append("channel=%d" % self.channel) if self.page: sql.append("page=%d" % self.page) if srcdevid != None: sql.append("source=%d" % srcdevid) if destdevid != None: sql.append("dest=%d" % destdevid) if rssi != None: sql.append("rssi=%d" % rssi) if loc_id != None: sql.append("loc_id=%d" % loc_id) if channel != None: sql.append("channel=%d" % channel) # TODO: bug? why is this in here twice? if page: sql.append("page=%d" % page) # TODO: bug? sql.append("fcf_panidcompress=%d" % scapy.fcf_panidcompress) sql.append("fcf_ackreq=%d" % scapy.fcf_ackreq) sql.append("fcf_pending=%d" % scapy.fcf_pending) sql.append("fcf_security=%d" % scapy.fcf_security) sql.append("fcf_frametype=%d" % scapy.fcf_frametype) sql.append("fcf_srcaddrmode=%d" % scapy.fcf_srcaddrmode) sql.append("fcf_framever=%d" % scapy.fcf_framever) sql.append("fcf_destaddrmode=%d" % scapy.fcf_destaddrmode) sql.append("seqnum=%d" % scapy.seqnum) # adding the bytes of the packet are handled in the insert method b/c they are binary return self.insert(' '.join(['INSERT INTO packets SET', ', '.join(sql)]), packetbytes=bytes) def add_location(self, location): if (self.conn==None): raise Exception("DBLogger requires active connection status.") (lon, lat, alt) = location self.conn.execute("SELECT loc_id FROM locations WHERE %s AND %s AND %s LIMIT 1" % \ ( ("longitude = '%f'" % lon) if lon != None else "longitude IS NULL" , \ ("latitude = '%f'" % lat) if lat != None else "latitude IS NULL" , \ ("elevation = '%f'" % alt) if alt != None else "elevation IS NULL" )) res = self.conn.fetchone() if (res != None): return res #location already in db, return loc_id else: self.conn.execute("INSERT INTO locations SET %s, %s, %s" % \ ( ("longitude = '%f'" % lon) if lon != None else "longitude = NULL" , \ ("latitude = '%f'" % lat) if lat != None else "latitude = NULL" , \ ("elevation = '%f'" % alt) if alt != None else "elevation = NULL" )) if self.conn.rowcount != 1: raise Exception("Location insert did not succeed.") self.db.commit() return self.conn.lastrowid def add_device(self, shortaddr, panid): if (self.conn==None): raise Exception("DBLogger requires active connection status.") self.conn.execute("SELECT dev_id FROM devices WHERE %s AND %s LIMIT 1" % \ ( ("short_addr = '%04x'" % shortaddr) if shortaddr != None else "short_addr IS NULL" , \ ("pan_id = '%04x'" % panid) if panid != None else "pan_id IS NULL" )) res = self.conn.fetchone() if (res != None): return res #device already exists else: self.conn.execute("INSERT INTO devices SET %s, %s" % \ (("short_addr = '%04x'" % shortaddr) if shortaddr != None else "short_addr = NULL" , \ ("pan_id = '%04x'" % panid) if panid != None else "pan_id = NULL" )) if self.conn.rowcount != 1: raise Exception("Device insert did not succeed.") self.db.commit() return self.conn.lastrowid def insert(self, sql, packetbytes=None): params = None if packetbytes != None: sql = sql + ", packetbytes=%s" params = (MySQLdb.Binary(packetbytes), ) self.conn.execute(sql, params) if self.conn.rowcount != 1: raise Exception("DBLogger: Insert did not succeed.") self.db.commit() return self.conn.lastrowid
47.508671
116
0.576956
[ "BSD-3-Clause" ]
dmnugu4755642434/killerbee
killerbee/dblog.py
8,219
Python
import asyncio from pyrogram.types import Message from tronx import app from tronx.helpers import ( gen, ) app.CMD_HELP.update( {"spam" : ( "spam", { "spam [number] [text]" : "You Know The Use Of This Command.", "dspam [delay] [count] [msg]" : "Delay spam use it to spam with a delay between spamming msg." } ) } ) @app.on_message(gen("spam", allow = ["sudo"])) async def spam(_, m: Message): replied = m.reply_to_message reply_to_id = replied.message_id if replied else "" if not replied and len(m.command) > 1: await m.delete() times = m.command[1] to_spam = " ".join(m.command[2:]) if m.chat.type in ["supergroup", "group"]: for _ in range(int(times)): await app.send_message( m.chat.id, to_spam, reply_to_message_id=reply_to_id ) await asyncio.sleep(0.20) elif m.chat.type == "private": await m.delete() for _ in range(int(times)): await app.send_message( m.chat.id, to_spam ) await asyncio.sleep(0.20) elif replied and len(m.command) > 1: await m.delete() times = m.command[1] print(f"{times} messages will be sent") cont = m.reply_to_message.message_id if m.chat.type in ["supergroup", "group", "private"]: for x in range(int(times)): await app.copy_message( m.chat.id, m.chat.id, m.reply_to_message.message_id ) else: return @app.on_message(gen("dspam", allow = ["sudo"])) async def delay_spam(_, m: Message): if len(m.command) > 2 and not m.reply_to_message: await m.delete() msg = m.text.split(None, 3) sec = int(msg[1]) times = int(msg[2]) text = msg[3] for x in range(times): await app.send_message( m.chat.id, text ) await asyncio.sleep(sec) else: await app.send_edit(m,"Something wrong in spam command !")
20.976744
96
0.636364
[ "MIT" ]
JayPatel1314/Tron
tronx/modules/spam.py
1,804
Python
from keras.preprocessing.image import img_to_array import imutils import cv2 from keras.models import load_model import numpy as np import geocoder import streamlink #import mysql.connector as con #mydb = con.connect( # host="localhost", # user="yourusername", # passwd="yourpassword", # database="mydatabase" #) #mycursor = mydb.cursor() g = geocoder.ip('me') # parameters for loading data and images detection_model_path = 'C:\\Users\\rajiyer\\Documents\\Test Data\\Sentiment Analysis\\Emotion-recognition-master\\haarcascade_files\\haarcascade_frontalface_default.xml' emotion_model_path = 'C:\\Users\\rajiyer\\Documents\\Test Data\\Sentiment Analysis\\Emotion-recognition-master\\models\\_mini_XCEPTION.102-0.66.hdf5' # hyper-parameters for bounding boxes shape # loading models face_detection = cv2.CascadeClassifier(detection_model_path) emotion_classifier = load_model(emotion_model_path, compile=False) EMOTIONS = ["angry" ,"disgust","scared", "happy", "sad", "surprised", "neutral"] #feelings_faces = [] #for index, emotion in enumerate(EMOTIONS): # feelings_faces.append(cv2.imread('emojis/' + emotion + '.png', -1)) # starting video streaming url = 'https://youtu.be/Bchx0mS7XOY' streams = streamlink.streams(url) cv2.namedWindow('Live Footage') camera = cv2.VideoCapture(streams["360p"].url) f= open("C:\\Users\\rajiyer\\Documents\\Test Data\\Probability.txt","a+") while True: frame = camera.read()[1] #reading the frame frame = imutils.resize(frame,width=300) gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) faces = face_detection.detectMultiScale(gray,scaleFactor=1.1,minNeighbors=5,minSize=(30,30),flags=cv2.CASCADE_SCALE_IMAGE) canvas = np.zeros((250, 300, 3), dtype="uint8") frameClone = frame.copy() if len(faces) > 0: faces = sorted(faces, reverse=True, key=lambda x: (x[2] - x[0]) * (x[3] - x[1]))[0] (fX, fY, fW, fH) = faces # Extract the ROI of the face from the grayscale image, resize it to a fixed 28x28 pixels, and then prepare # the ROI for classification via the CNN roi = gray[fY:fY + fH, fX:fX + fW] roi = cv2.resize(roi, (64, 64)) roi = roi.astype("float") / 255.0 roi = img_to_array(roi) roi = np.expand_dims(roi, axis=0) preds = emotion_classifier.predict(roi)[0] emotion_probability = np.max(preds) label = EMOTIONS[preds.argmax()] else: continue for (i, (emotion, prob)) in enumerate(zip(EMOTIONS, preds)): # construct the label text text = "{}: {:.2f}%".format(emotion, prob * 100) #sql = "INSERT INTO predData (Metadata, Probability) VALUES (%s, %s)" #val = ("Meta", prob * 100) f.write(text) str1 = ''.join(str(e) for e in g.latlng) f.write(str1) #mycursor.execute(sql, val) #mydb.commit() # draw the label + probability bar on the canvas # emoji_face = feelings_faces[np.argmax(preds)] w = int(prob * 300) cv2.rectangle(canvas, (7, (i * 35) + 5), (w, (i * 35) + 35), (0, 0, 255), -1) cv2.putText(canvas, text, (10, (i * 35) + 23), cv2.FONT_HERSHEY_SIMPLEX, 0.45, (255, 255, 255), 2) cv2.putText(frameClone, label, (fX, fY - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 0, 255), 2) cv2.rectangle(frameClone, (fX, fY), (fX + fW, fY + fH), (0, 0, 255), 2) # for c in range(0, 3): # frame[200:320, 10:130, c] = emoji_face[:, :, c] * \ # (emoji_face[:, :, 3] / 255.0) + frame[200:320, # 10:130, c] * (1.0 - emoji_face[:, :, 3] / 255.0) cv2.imshow('your_face', frameClone) cv2.imshow("Probabilities", canvas) if cv2.waitKey(1) & 0xFF == ord('q'): break camera.release() cv2.destroyAllWindows()
36.405405
169
0.600346
[ "BSD-3-Clause" ]
ActuarialIntelligence/Base
src/ActuarialIntelligence.Infrastructure.PythonScripts/StreamFootageAnalyse.py
4,041
Python
from collections import namedtuple from datetime import datetime import pprint import pickle import json import sqlite3 BUILDINGS = ['AGNEW', 'LARNA', 'AJ E', 'AJPAV', 'AQUAC', 'AA', 'ADRF', 'ARMRY', 'ART C', 'BEEF', 'BFH', 'BRNCH', 'PRC', 'BURCH', 'BUR', 'CAM', 'CARNA', 'CAM M', 'CAPRI', 'CSB', 'LIBR', 'COL', 'CMMID', 'CSSER', 'CHEMP', 'COLSQ', 'COLS2', 'CEC', 'CO', 'CIC', 'DAIRY', 'DAV', 'DER', 'DTRIK', 'DBHCC', 'DB', 'DTNA', 'DURHM', 'EGG E', 'ENGEL', 'FEM', 'FST', 'FRALN', 'FSBRN', 'GBJ', 'GOODW', 'GLCDB', 'GH', 'HAHN N', 'HAHN S', 'HARP', 'HEND', 'HILL', 'HOLD', 'HORSE', 'HABB1', 'HUTCH', 'CRCIA', 'TC', 'ICTAS', 'ILSB', 'HAN', 'JCH', 'KENT', 'KAMF', 'LANE', 'STAD', 'LATH', 'WLH', 'LEE', 'LARTS', 'LFSCI', 'LITRV', 'LYRIC', 'MAJWM', 'EMPOR', 'MCB', 'MCCOM', 'MRYMN', 'MIL', 'MAC', 'NCB', 'NEB', 'NHW', 'NEW', 'NOR', 'GRNDP', 'SEC', 'OWENS', 'PK', 'PAM', 'PAT', 'PAYNE', 'PY', 'PAB', 'PWCOM', 'PRICE', 'P HSE', 'PRINT', 'PRT E', 'PSC', 'RAND', 'RCTR1', 'ROB', 'SANDY', 'SARDO', 'SAUND', 'SEITZ', 'SHANK', 'SHEEP', 'SHULT', 'SEB', 'SL TW', 'SLUSH', 'SM CC', 'SMYTH', 'SOL', 'SQUIR', 'SURGE', 'SWINE', 'HAHN', 'TESKE', 'T101', 'CPAP', 'TORG', 'UPEST', 'VTC', 'NOVAC', 'NVC', 'VMIA', 'VM 1', 'VM 2', 'VM 3', 'VM4C1', 'WAL', 'GYM', 'WHIT', 'WMS', 'BROOK', 'BFPC'] BUILDING_NAMES = ['Agnew Hall', 'Alphin-Stuart Arena', 'Ambler Johnston East', 'Animal Judging Pavilion', 'Aquaculture Facility', 'Architectural Annex', 'Architecture Demo & Res Fac', 'Armory (Art)', 'Art & Design Learning Center', 'Beef Barn', 'Bishop-Favrao Hall', 'Branch Building', 'Brooder House', 'Burchard Hall', 'Burruss Hall', 'Campbell Arena', 'Campbell Arena', 'Campbell Main', 'Capri Building', 'Career Services Building', 'Carol M. Newman Library', 'Cassell Coliseum', 'Center Molecular Med Infec Dis', 'Center for Space Sci & Engr Re', 'Chemistry Physics Building', 'Collegiate Square', 'Collegiate Square Two', 'Continuing Education Center', 'Cowgill Hall', 'Cranwell Int\'l Center', 'Dairy Barn', 'Davidson Hall', 'Derring Hall', 'Dietrick Hall', 'Donaldson Brown Hotel & Conf', 'Donaldson-Brown Hall', 'Downtown North', 'Durham Hall', 'Eggleston East', 'Engel Hall', 'Femoyer Hall', 'Food Science & Technology Lab', 'Fralin Biotechnology Center', 'Free Stall Barn', 'G. Burke Johnston Student Ctr', 'Goodwin Hall', 'Graduate Life Ctr Dnldsn Brown', 'Greenhouse', 'Hahn Hall North Wing', 'Hahn Hall South Wing', 'Harper', 'Henderson Hall', 'Hillcrest', 'Holden Hall', 'Horse Barn', 'Human & Ag Biosciences Bldg 1', 'Hutcheson Hall', 'ICTAS A', 'Indoor Tennis Courts', 'Inst for Crit Tech & Appld Sci', 'Integrated Life Sciences Bldg', 'John W. Hancock Jr. Hall', 'Julian Cheatham Hall', 'Kent Square', 'Kroehling Adv Material Foundry', 'Lane Hall', 'Lane Stadium', 'Latham Hall', 'Lavery Hall', 'Lee', 'Liberal Arts Building', 'Life Sciences I', 'Litton-Reaves Hall', 'Lyric Theater', 'Major Williams Hall', 'Math Emporium', 'McBryde Hall', 'McComas Hall', 'Merryman Athletic Facility', 'Military Building/Laundry', 'Moss Arts Center', 'New Classroom Building', 'New Engineering Building', 'New Hall West', 'Newman', 'Norris Hall', 'Old Grand Piano Building', 'Old Security Building', 'Owens Hall', 'PK', 'Pamplin Hall', 'Patton Hall', 'Payne', 'Peddrew-Yates', 'Performing Arts Building', 'Pointe West Commons', 'Price Hall', 'Price House', 'Print Shop', 'Pritchard East', 'Psychological Services Center', 'Randolph Hall', 'Riverside Center 1', 'Robeson Hall', 'Sandy Hall', 'Sardo Laboratory', 'Saunders Hall', 'Seitz Hall', 'Shanks Hall', 'Sheep Barn', 'Shultz Hall', 'Signature Engineering Building', 'Slusher Tower', 'Slusher Wing', 'Smith Career Center', 'Smyth Hall', 'Solitude', 'Squires Student Center', 'Surge Space Building', 'Swine Center', 'T. Marshall Hahn, Jr. Hall', 'Teske House', 'Theatre 101', 'Thomas Conner House', 'Torgersen Hall', 'Urban Pest Control Facility', 'VT/Carilion Medicl Sch/Res Ins', 'VT/UVA Northern VA Ctr', 'VT/UVA Northern VA Ctr', 'Vet Med Instructional Addition', 'Vet Med Phase 1', 'Vet Med Phase 2', 'Vet Med Phase 3', 'Vet Med Phase 4C-Non-Client', 'Wallace Hall', 'War Memorial Gymnasium', 'Whittemore Hall', 'Williams Hall', 'Wood Engineering Lab', 'Wood Processing Lab'] TERMS = ['201601', '201606', '201607', '201609', '201612', '201701', '201706', '201707', '201709', '201712', '201801', '201806', '201807', '201809', '201812', '201901', '201906', '201907', '201909', '201912', '202001', '202006', '202007', '202009', '202012'] TERM_NAMES = ['Spring 2016', 'Summer I 2016', 'Summer II 2016', 'Fall 2016', 'Winter 2017', 'Spring 2017', 'Summer I 2017', 'Summer II 2017', 'Fall 2017', 'Winter 2018', 'Spring 2018', 'Summer I 2018', 'Summer II 2018', 'Fall 2018', 'Winter 2019', 'Spring 2019', 'Summer I 2019', 'Summer II 2019', 'Fall 2019', 'Winter 2020', 'Spring 2020', 'Summer I 2020', 'Summer II 2020', 'Fall 2020 (tentative)', 'Winter 2021'] DAYS = ['U', 'M', 'T', 'W', 'R', 'F', 'S'] ATTRIBS = ['06', 'AV01', 'AV02', 'AV03', 'AV04', 'AV05', 'AV06', 'AV07', 'AV08', 'AV09', 'AV10', 'AV11', 'AV12', 'AV15', 'FX13', 'FX14', 'PC04', 'PC15', 'PC16', 'PC17', 'PC18', 'PC19', 'PC30', 'PC31', 'PC32', 'ST20', 'ST21', 'ST22', 'ST23', 'ST24', 'ST29', 'TY20', 'TY24', 'TY25', 'TY26', 'TY27', 'TY28', 'TY32', 'TY33'] ATTRIB_NAMES = ['DO NOT USE WHD', 'Sound System', 'Wireless Microphone', 'Slide Projector', 'Technical Support Needed', 'WiFi', 'DVD/VCR Combination Unit', 'Computer Projection', 'Document Camera', 'DVD/Blueray Player', 'Crestron Control', 'AC Outlets at seats/floor', 'Computer Installed', 'Lecture Capture', 'Chalk Board - Multiple', 'Whiteboard - Multiple', 'Do not use', 'Windows', 'Shades or Blinds', 'Handicapped Accessible', 'Do not use', 'Air Conditioning', 'General Assignment Classroom', 'Non General Assignment Clsrm', 'Gen Assignment Restricted Use', 'Tablet Arm Chairs', 'Fixed Seating', 'Tables (round)', 'Do not use', 'Sled style desk', 'Moveable Chairs and Tables', 'Do not use', 'Do not use', 'Computer Lab', 'Auditorium', 'Scale up', 'Interactive Classroom', 'Classroom', 'Tiered Classroom'] ClassBlock = namedtuple('ClassBlock', ['room', 'name', 'crn']) EventBlock = namedtuple('EventBlock', ['room', 'times', 'name']) RoomAttribs = namedtuple('RoomAttribs', ['capacity', 'attribs']) with open('201801-rooms.dat', 'rb') as f: rooms = pickle.load(f) with open('201801-blocks.dat', 'rb') as f: blocks = pickle.load(f) with open('201801-attribs.dat', 'rb') as f: attribs = pickle.load(f) conn = sqlite3.connect(':memory:', detect_types=sqlite3.PARSE_DECLTYPES|sqlite3.PARSE_COLNAMES) c = conn.cursor() c.execute(''' CREATE TABLE buildings (code TEXT PRIMARY KEY, name TEXT, latitude DECIMAL(9,6), longitude DECIMAL(9,6)) ''') c.execute(''' CREATE TABLE rooms (id INT PRIMARY KEY, building_code TEXT, room TEXT, capacity INT, attribs TEXT, FOREIGN KEY(building_code) REFERENCES buildings(code)) ''') c.execute(''' CREATE TABLE classes (id INT PRIMARY KEY, room_id INT, days TEXT, start TIMESTAMP, end TIMESTAMP, crn TEXT, name TEXT, FOREIGN KEY(room_id) REFERENCES rooms(id)) ''') c.execute(''' CREATE TABLE events (id INT PRIMARY KEY, room_id INT, days TEXT, start_day TIMESTAMP, end_day TIMESTAMP, start TIMESTAMP, end TIMESTAMP, name TEXT, FOREIGN KEY(room_id) REFERENCES rooms(id)) ''') conn.commit() # Load buildings and rooms for building, rooms in attribs.items(): c.execute(''' INSERT INTO buildings (code, name) values (?, ?) ''', (building, BUILDING_NAMES[BUILDINGS.index(building)])) for room, value, in rooms.items(): c.execute(''' INSERT INTO rooms (building_code, room, capacity, attribs) values (?, ?, ?, ?) ''', (building, room, value[0], ','.join(value[1]))) # Load classes
97.848101
2,933
0.66119
[ "MIT" ]
branw/campus-cuckoo
scraper/processor.py
7,730
Python
import glob import argparse import os import shutil """ This module helps to filter only the images that have binary masks within a dataset """ if __name__ == '__main__': # Parse command line arguments parser = argparse.ArgumentParser( description='Filter masked data from dataset') parser.add_argument('--data_dir', required=True, metavar="/path/to/dataset", help="Path to dataset") args = parser.parse_args() data_dir = os.path.join(args.data_dir,"data") output_dir = os.path.join(args.data_dir,"data2") #Create paths if not exists if not os.path.exists(output_dir): os.makedirs(output_dir) #Open the train_masked.txt file_base_names = open(os.path.join(args.data_dir,"base_names.txt"), 'r') for name in file_base_names.readlines(): name = name.strip() extentions = [".jpg", ".npz"] for ext in extentions: # Copying files src = os.path.join(data_dir,name+ext) dst = os.path.join(output_dir,name+ext) shutil.copy2(src,dst)
27.8
78
0.630396
[ "MIT" ]
Tubaher/grapes_project
samples/uvas/utils/filter_with_mask.py
1,112
Python
"""GoldenTimes URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.11/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url from django.contrib import admin from django.conf.urls import include from django.views.generic import RedirectView urlpatterns = [ # url(r'^$', RedirectView.as_view(url='http://liujin.jios.org:8888')), url(r'^$', RedirectView.as_view(url='/portal/')), url(r'^admin/', admin.site.urls), url(r'^portal/', include('portal.urls')), url(r'^api/', include('api.urls')), url(r'^api-auth/', include('rest_framework.urls', namespace='rest_framework')) ] from django.conf import settings from django.conf.urls.static import static urlpatterns = urlpatterns + static(settings.STATIC_URL, document_root=settings.STATIC_ROOT) urlpatterns = urlpatterns + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
35.35
91
0.719236
[ "BSD-3-Clause" ]
liuxue0905/GoldenTimes
GoldenTimes/urls.py
1,414
Python
import sys ##print ("This is the name of the script: ", sys.argv[0]) ##print ("Number of arguments: ", len(sys.argv)) ##print ("The arguments are: " , str(sys.argv)) lemmas = [] lemmas_cleaned = [] nums = ['1','2','3','4','5','6','7','8','9','0'] alphabet = ['a','b','c','d','e','f','g','h','i','j','k','k','l','m','n','o', 'p','q','r','s','t','u','v','w','x','y','z', 'ā','â','ā', 'ê','ė', 'ē', 'ô','ō', 'ū','û', 'ī','î'] POS_tags = ['as., st. V. (1)', 'as., st. V. (2)', 'as., st. V. (3a)', 'as., st. V. (3b)', 'as., st. V. (4)', 'as., st. V. (5)', 'as., st. V. (6)', 'as., st. V. (7)', \ 'as., sw. V. (1a)', 'as., sw. V. (1b)', 'as., sw. V. (2)', \ 'as., red. V.',\ 'as., st. M. (a)'] def dict_scrape(POS, dictionaryfile='as_freq.txt'): """Scrapes a dictionary for a given part of speech. POS tags in POS_tags. POS(str), dictionaryfile(str-of-filename) -> list-of-strings """ if POS in POS_tags: with open(dictionaryfile) as to_scrape: for line in to_scrape: if POS in line: lemmas.append(line) for line in lemmas: #1, bāga, as., st. F. (ō)?, sw. F. (n)?: nhd. Streit i=0 for char in line[:44]: if char not in alphabet: i=i+1 lemmas_cleaned.append(line[i:].strip().replace('*','').replace('?','')+'\n') #scrub line of the frequency data, begin with headword? ## print("Found " + str(len(lemmas_cleaned)) + " lemmas matching that category") return lemmas_cleaned dict_scrape(sys.argv[1]) for line in lemmas_cleaned: with open(sys.argv[1][5:],'w+') as to_write: to_write.write(line)
36.142857
167
0.477132
[ "MIT" ]
tykniess/muspilli
dictionaries/archives/dict_scrape.py
1,785
Python
""" mbed SDK Copyright (c) 2011-2016 ARM Limited Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import re import tempfile import datetime import uuid from types import ListType from shutil import rmtree from os.path import join, exists, dirname, basename, abspath, normpath, splitext from os.path import relpath from os import linesep, remove, makedirs from time import time from intelhex import IntelHex from json import load, dump from tools.utils import mkdir, run_cmd, run_cmd_ext, NotSupportedException,\ ToolException, InvalidReleaseTargetException, intelhex_offset from tools.paths import MBED_CMSIS_PATH, MBED_TARGETS_PATH, MBED_LIBRARIES,\ MBED_HEADER, MBED_DRIVERS, MBED_PLATFORM, MBED_HAL, MBED_CONFIG_FILE,\ MBED_LIBRARIES_DRIVERS, MBED_LIBRARIES_PLATFORM, MBED_LIBRARIES_HAL,\ BUILD_DIR from tools.targets import TARGET_NAMES, TARGET_MAP from tools.libraries import Library from tools.toolchains import TOOLCHAIN_CLASSES from jinja2 import FileSystemLoader from jinja2.environment import Environment from tools.config import Config RELEASE_VERSIONS = ['2', '5'] def prep_report(report, target_name, toolchain_name, id_name): """Setup report keys Positional arguments: report - the report to fill target_name - the target being used toolchain_name - the toolchain being used id_name - the name of the executable or library being built """ if not target_name in report: report[target_name] = {} if not toolchain_name in report[target_name]: report[target_name][toolchain_name] = {} if not id_name in report[target_name][toolchain_name]: report[target_name][toolchain_name][id_name] = [] def prep_properties(properties, target_name, toolchain_name, vendor_label): """Setup test properties Positional arguments: properties - the dict to fill target_name - the target the test is targeting toolchain_name - the toolchain that will compile the test vendor_label - the vendor """ if not target_name in properties: properties[target_name] = {} if not toolchain_name in properties[target_name]: properties[target_name][toolchain_name] = {} properties[target_name][toolchain_name]["target"] = target_name properties[target_name][toolchain_name]["vendor"] = vendor_label properties[target_name][toolchain_name]["toolchain"] = toolchain_name def create_result(target_name, toolchain_name, id_name, description): """Create a result dictionary Positional arguments: target_name - the target being built for toolchain_name - the toolchain doing the building id_name - the name of the executable or library being built description - a human readable description of what's going on """ cur_result = {} cur_result["target_name"] = target_name cur_result["toolchain_name"] = toolchain_name cur_result["id"] = id_name cur_result["description"] = description cur_result["elapsed_time"] = 0 cur_result["output"] = "" return cur_result def add_result_to_report(report, result): """Add a single result to a report dictionary Positional arguments: report - the report to append to result - the result to append """ result["date"] = datetime.datetime.utcnow().isoformat() result["uuid"] = str(uuid.uuid1()) target = result["target_name"] toolchain = result["toolchain_name"] id_name = result['id'] result_wrap = {0: result} report[target][toolchain][id_name].append(result_wrap) def get_config(src_paths, target, toolchain_name): """Get the configuration object for a target-toolchain combination Positional arguments: src_paths - paths to scan for the configuration files target - the device we are building for toolchain_name - the string that identifies the build tools """ # Convert src_paths to a list if needed if type(src_paths) != ListType: src_paths = [src_paths] # Pass all params to the unified prepare_resources() toolchain = prepare_toolchain(src_paths, None, target, toolchain_name) # Scan src_path for config files resources = toolchain.scan_resources(src_paths[0]) for path in src_paths[1:]: resources.add(toolchain.scan_resources(path)) # Update configuration files until added features creates no changes prev_features = set() while True: # Update the configuration with any .json files found while scanning toolchain.config.add_config_files(resources.json_files) # Add features while we find new ones features = set(toolchain.config.get_features()) if features == prev_features: break for feature in features: if feature in resources.features: resources += resources.features[feature] prev_features = features toolchain.config.validate_config() if toolchain.config.has_regions: _ = list(toolchain.config.regions) cfg, macros = toolchain.config.get_config_data() features = toolchain.config.get_features() return cfg, macros, features def is_official_target(target_name, version): """ Returns True, None if a target is part of the official release for the given version. Return False, 'reason' if a target is not part of the official release for the given version. Positional arguments: target_name - Name if the target (ex. 'K64F') version - The release version string. Should be a string contained within RELEASE_VERSIONS """ result = True reason = None target = TARGET_MAP[target_name] if hasattr(target, 'release_versions') \ and version in target.release_versions: if version == '2': # For version 2, either ARM or uARM toolchain support is required required_toolchains = set(['ARM', 'uARM']) if not len(required_toolchains.intersection( set(target.supported_toolchains))) > 0: result = False reason = ("Target '%s' must support " % target.name) + \ ("one of the folowing toolchains to be included in the") + \ ((" mbed 2.0 official release: %s" + linesep) % ", ".join(required_toolchains)) + \ ("Currently it is only configured to support the ") + \ ("following toolchains: %s" % ", ".join(target.supported_toolchains)) elif version == '5': # For version 5, ARM, GCC_ARM, and IAR toolchain support is required required_toolchains = set(['ARM', 'GCC_ARM', 'IAR']) required_toolchains_sorted = list(required_toolchains) required_toolchains_sorted.sort() supported_toolchains = set(target.supported_toolchains) supported_toolchains_sorted = list(supported_toolchains) supported_toolchains_sorted.sort() if not required_toolchains.issubset(supported_toolchains): result = False reason = ("Target '%s' must support " % target.name) + \ ("ALL of the folowing toolchains to be included in the") + \ ((" mbed OS 5.0 official release: %s" + linesep) % ", ".join(required_toolchains_sorted)) + \ ("Currently it is only configured to support the ") + \ ("following toolchains: %s" % ", ".join(supported_toolchains_sorted)) elif not target.default_lib == 'std': result = False reason = ("Target '%s' must set the " % target.name) + \ ("'default_lib' to 'std' to be included in the ") + \ ("mbed OS 5.0 official release." + linesep) + \ ("Currently it is set to '%s'" % target.default_lib) else: result = False reason = ("Target '%s' has set an invalid release version of '%s'" % version) + \ ("Please choose from the following release versions: %s" % ', '.join(RELEASE_VERSIONS)) else: result = False if not hasattr(target, 'release_versions'): reason = "Target '%s' " % target.name reason += "does not have the 'release_versions' key set" elif not version in target.release_versions: reason = "Target '%s' does not contain the version '%s' " % \ (target.name, version) reason += "in its 'release_versions' key" return result, reason def transform_release_toolchains(toolchains, version): """ Given a list of toolchains and a release version, return a list of only the supported toolchains for that release Positional arguments: toolchains - The list of toolchains version - The release version string. Should be a string contained within RELEASE_VERSIONS """ if version == '5': return ['ARM', 'GCC_ARM', 'IAR'] else: return toolchains def get_mbed_official_release(version): """ Given a release version string, return a tuple that contains a target and the supported toolchains for that release. Ex. Given '2', return (('LPC1768', ('ARM', 'GCC_ARM')), ('K64F', ('ARM', 'GCC_ARM')), ...) Positional arguments: version - The version string. Should be a string contained within RELEASE_VERSIONS """ mbed_official_release = ( tuple( tuple( [ TARGET_MAP[target].name, tuple(transform_release_toolchains( TARGET_MAP[target].supported_toolchains, version)) ] ) for target in TARGET_NAMES \ if (hasattr(TARGET_MAP[target], 'release_versions') and version in TARGET_MAP[target].release_versions) ) ) for target in mbed_official_release: is_official, reason = is_official_target(target[0], version) if not is_official: raise InvalidReleaseTargetException(reason) return mbed_official_release def add_regions_to_profile(profile, config, toolchain_class): """Add regions to the build profile, if there are any. Positional Arguments: profile - the profile to update config - the configuration object that owns the region toolchain_class - the class of the toolchain being used """ if not profile: return regions = list(config.regions) for region in regions: for define in [(region.name.upper() + "_ADDR", region.start), (region.name.upper() + "_SIZE", region.size)]: profile["common"].append("-D%s=0x%x" % define) active_region = [r for r in regions if r.active][0] for define in [("MBED_APP_START", active_region.start), ("MBED_APP_SIZE", active_region.size)]: profile["ld"].append(toolchain_class.make_ld_define(*define)) print("Using regions in this build:") for region in regions: print(" Region %s size 0x%x, offset 0x%x" % (region.name, region.size, region.start)) def prepare_toolchain(src_paths, build_dir, target, toolchain_name, macros=None, clean=False, jobs=1, notify=None, silent=False, verbose=False, extra_verbose=False, config=None, app_config=None, build_profile=None): """ Prepares resource related objects - toolchain, target, config Positional arguments: src_paths - the paths to source directories target - ['LPC1768', 'LPC11U24', etc.] toolchain_name - ['ARM', 'uARM', 'GCC_ARM', 'GCC_CR'] Keyword arguments: macros - additional macros clean - Rebuild everything if True jobs - how many compilers we can run at once notify - Notify function for logs silent - suppress printing of progress indicators verbose - Write the actual tools command lines used if True extra_verbose - even more output! config - a Config object to use instead of creating one app_config - location of a chosen mbed_app.json file build_profile - a list of mergeable build profiles """ # We need to remove all paths which are repeated to avoid # multiple compilations and linking with the same objects src_paths = [src_paths[0]] + list(set(src_paths[1:])) # If the configuration object was not yet created, create it now config = config or Config(target, src_paths, app_config=app_config) target = config.target try: cur_tc = TOOLCHAIN_CLASSES[toolchain_name] except KeyError: raise KeyError("Toolchain %s not supported" % toolchain_name) profile = {'c': [], 'cxx': [], 'common': [], 'asm': [], 'ld': []} for contents in build_profile or []: for key in profile: profile[key].extend(contents[toolchain_name][key]) if config.has_regions: add_regions_to_profile(profile, config, cur_tc) toolchain = cur_tc(target, notify, macros, silent, build_dir=build_dir, extra_verbose=extra_verbose, build_profile=profile) toolchain.config = config toolchain.jobs = jobs toolchain.build_all = clean toolchain.VERBOSE = verbose return toolchain def merge_region_list(region_list, destination, padding=b'\xFF'): """Merege the region_list into a single image Positional Arguments: region_list - list of regions, which should contain filenames destination - file name to write all regions to padding - bytes to fill gapps with """ merged = IntelHex() print("Merging Regions:") for region in region_list: if region.active and not region.filename: raise ToolException("Active region has no contents: No file found.") if region.filename: print(" Filling region %s with %s" % (region.name, region.filename)) part = intelhex_offset(region.filename, offset=region.start) part_size = (part.maxaddr() - part.minaddr()) + 1 if part_size > region.size: raise ToolException("Contents of region %s does not fit" % region.name) merged.merge(part) pad_size = region.size - part_size if pad_size > 0 and region != region_list[-1]: print(" Padding region %s with 0x%x bytes" % (region.name, pad_size)) merged.puts(merged.maxaddr() + 1, padding * pad_size) if not exists(dirname(destination)): makedirs(dirname(destination)) print("Space used after regions merged: 0x%x" % (merged.maxaddr() - merged.minaddr() + 1)) with open(destination, "wb+") as output: merged.tofile(output, format='bin') def scan_resources(src_paths, toolchain, dependencies_paths=None, inc_dirs=None, base_path=None, collect_ignores=False): """ Scan resources using initialized toolcain Positional arguments src_paths - the paths to source directories toolchain - valid toolchain object dependencies_paths - dependency paths that we should scan for include dirs inc_dirs - additional include directories which should be added to the scanner resources """ # Scan src_path resources = toolchain.scan_resources(src_paths[0], base_path=base_path, collect_ignores=collect_ignores) for path in src_paths[1:]: resources.add(toolchain.scan_resources(path, base_path=base_path, collect_ignores=collect_ignores)) # Scan dependency paths for include dirs if dependencies_paths is not None: for path in dependencies_paths: lib_resources = toolchain.scan_resources(path) resources.inc_dirs.extend(lib_resources.inc_dirs) # Add additional include directories if passed if inc_dirs: if type(inc_dirs) == ListType: resources.inc_dirs.extend(inc_dirs) else: resources.inc_dirs.append(inc_dirs) # Load resources into the config system which might expand/modify resources # based on config data resources = toolchain.config.load_resources(resources) # Set the toolchain's configuration data toolchain.set_config_data(toolchain.config.get_config_data()) if (hasattr(toolchain.target, "release_versions") and "5" not in toolchain.target.release_versions and "rtos" in toolchain.config.lib_config_data): if "Cortex-A" in toolchain.target.core: raise NotSupportedException( ("%s Will be supported in mbed OS 5.6. " "To use the %s, please checkout the mbed OS 5.4 release branch. " "See https://developer.mbed.org/platforms/Renesas-GR-PEACH/#important-notice " "for more information") % (toolchain.target.name, toolchain.target.name)) else: raise NotSupportedException("Target does not support mbed OS 5") return resources def build_project(src_paths, build_path, target, toolchain_name, libraries_paths=None, linker_script=None, clean=False, notify=None, verbose=False, name=None, macros=None, inc_dirs=None, jobs=1, silent=False, report=None, properties=None, project_id=None, project_description=None, extra_verbose=False, config=None, app_config=None, build_profile=None, stats_depth=None): """ Build a project. A project may be a test or a user program. Positional arguments: src_paths - a path or list of paths that contain all files needed to build the project build_path - the directory where all of the object files will be placed target - the MCU or board that the project will compile for toolchain_name - the name of the build tools Keyword arguments: libraries_paths - The location of libraries to include when linking linker_script - the file that drives the linker to do it's job clean - Rebuild everything if True notify - Notify function for logs verbose - Write the actual tools command lines used if True name - the name of the project macros - additional macros inc_dirs - additional directories where include files may be found jobs - how many compilers we can run at once silent - suppress printing of progress indicators report - a dict where a result may be appended properties - UUUUHHHHH beats me project_id - the name put in the report project_description - the human-readable version of what this thing does extra_verbose - even more output! config - a Config object to use instead of creating one app_config - location of a chosen mbed_app.json file build_profile - a dict of flags that will be passed to the compiler stats_depth - depth level for memap to display file/dirs """ # Convert src_path to a list if needed if type(src_paths) != ListType: src_paths = [src_paths] # Extend src_paths wiht libraries_paths if libraries_paths is not None: src_paths.extend(libraries_paths) inc_dirs.extend(map(dirname, libraries_paths)) if clean and exists(build_path): rmtree(build_path) mkdir(build_path) toolchain = prepare_toolchain( src_paths, build_path, target, toolchain_name, macros=macros, clean=clean, jobs=jobs, notify=notify, silent=silent, verbose=verbose, extra_verbose=extra_verbose, config=config, app_config=app_config, build_profile=build_profile) # The first path will give the name to the library name = (name or toolchain.config.name or basename(normpath(abspath(src_paths[0])))) toolchain.info("Building project %s (%s, %s)" % (name, toolchain.target.name, toolchain_name)) # Initialize reporting if report != None: start = time() # If project_id is specified, use that over the default name id_name = project_id.upper() if project_id else name.upper() description = project_description if project_description else name vendor_label = toolchain.target.extra_labels[0] prep_report(report, toolchain.target.name, toolchain_name, id_name) cur_result = create_result(toolchain.target.name, toolchain_name, id_name, description) if properties != None: prep_properties(properties, toolchain.target.name, toolchain_name, vendor_label) try: # Call unified scan_resources resources = scan_resources(src_paths, toolchain, inc_dirs=inc_dirs) # Change linker script if specified if linker_script is not None: resources.linker_script = linker_script # Compile Sources objects = toolchain.compile_sources(resources, resources.inc_dirs) resources.objects.extend(objects) # Link Program if toolchain.config.has_regions: res, _ = toolchain.link_program(resources, build_path, name + "_application") region_list = list(toolchain.config.regions) region_list = [r._replace(filename=res) if r.active else r for r in region_list] res = join(build_path, name) + ".bin" merge_region_list(region_list, res) else: res, _ = toolchain.link_program(resources, build_path, name) memap_instance = getattr(toolchain, 'memap_instance', None) memap_table = '' if memap_instance: # Write output to stdout in text (pretty table) format memap_table = memap_instance.generate_output('table', stats_depth) if not silent: print memap_table # Write output to file in JSON format map_out = join(build_path, name + "_map.json") memap_instance.generate_output('json', stats_depth, map_out) # Write output to file in CSV format for the CI map_csv = join(build_path, name + "_map.csv") memap_instance.generate_output('csv-ci', stats_depth, map_csv) resources.detect_duplicates(toolchain) if report != None: end = time() cur_result["elapsed_time"] = end - start cur_result["output"] = toolchain.get_output() + memap_table cur_result["result"] = "OK" cur_result["memory_usage"] = memap_instance.mem_report cur_result["bin"] = res cur_result["elf"] = splitext(res)[0] + ".elf" cur_result.update(toolchain.report) add_result_to_report(report, cur_result) return res except Exception as exc: if report != None: end = time() if isinstance(exc, NotSupportedException): cur_result["result"] = "NOT_SUPPORTED" else: cur_result["result"] = "FAIL" cur_result["elapsed_time"] = end - start toolchain_output = toolchain.get_output() if toolchain_output: cur_result["output"] += toolchain_output add_result_to_report(report, cur_result) # Let Exception propagate raise def build_library(src_paths, build_path, target, toolchain_name, dependencies_paths=None, name=None, clean=False, archive=True, notify=None, verbose=False, macros=None, inc_dirs=None, jobs=1, silent=False, report=None, properties=None, extra_verbose=False, project_id=None, remove_config_header_file=False, app_config=None, build_profile=None): """ Build a library Positional arguments: src_paths - a path or list of paths that contain all files needed to build the library build_path - the directory where all of the object files will be placed target - the MCU or board that the project will compile for toolchain_name - the name of the build tools Keyword arguments: dependencies_paths - The location of libraries to include when linking name - the name of the library clean - Rebuild everything if True archive - whether the library will create an archive file notify - Notify function for logs verbose - Write the actual tools command lines used if True macros - additional macros inc_dirs - additional directories where include files may be found jobs - how many compilers we can run at once silent - suppress printing of progress indicators report - a dict where a result may be appended properties - UUUUHHHHH beats me extra_verbose - even more output! project_id - the name that goes in the report remove_config_header_file - delete config header file when done building app_config - location of a chosen mbed_app.json file build_profile - a dict of flags that will be passed to the compiler """ # Convert src_path to a list if needed if type(src_paths) != ListType: src_paths = [src_paths] # Build path if archive: # Use temp path when building archive tmp_path = join(build_path, '.temp') mkdir(tmp_path) else: tmp_path = build_path # Clean the build directory if clean and exists(tmp_path): rmtree(tmp_path) mkdir(tmp_path) # Pass all params to the unified prepare_toolchain() toolchain = prepare_toolchain( src_paths, build_path, target, toolchain_name, macros=macros, clean=clean, jobs=jobs, notify=notify, silent=silent, verbose=verbose, extra_verbose=extra_verbose, app_config=app_config, build_profile=build_profile) # The first path will give the name to the library if name is None: name = basename(normpath(abspath(src_paths[0]))) toolchain.info("Building library %s (%s, %s)" % (name, toolchain.target.name, toolchain_name)) # Initialize reporting if report != None: start = time() # If project_id is specified, use that over the default name id_name = project_id.upper() if project_id else name.upper() description = name vendor_label = toolchain.target.extra_labels[0] prep_report(report, toolchain.target.name, toolchain_name, id_name) cur_result = create_result(toolchain.target.name, toolchain_name, id_name, description) cur_result['type'] = 'library' if properties != None: prep_properties(properties, toolchain.target.name, toolchain_name, vendor_label) for src_path in src_paths: if not exists(src_path): error_msg = "The library source folder does not exist: %s", src_path if report != None: cur_result["output"] = error_msg cur_result["result"] = "FAIL" add_result_to_report(report, cur_result) raise Exception(error_msg) try: # Call unified scan_resources resources = scan_resources(src_paths, toolchain, dependencies_paths=dependencies_paths, inc_dirs=inc_dirs) # Copy headers, objects and static libraries - all files needed for # static lib toolchain.copy_files(resources.headers, build_path, resources=resources) toolchain.copy_files(resources.objects, build_path, resources=resources) toolchain.copy_files(resources.libraries, build_path, resources=resources) toolchain.copy_files(resources.json_files, build_path, resources=resources) if resources.linker_script: toolchain.copy_files(resources.linker_script, build_path, resources=resources) if resources.hex_files: toolchain.copy_files(resources.hex_files, build_path, resources=resources) # Compile Sources objects = toolchain.compile_sources(resources, resources.inc_dirs) resources.objects.extend(objects) if archive: toolchain.build_library(objects, build_path, name) if remove_config_header_file: config_header_path = toolchain.get_config_header() if config_header_path: remove(config_header_path) if report != None: end = time() cur_result["elapsed_time"] = end - start cur_result["output"] = toolchain.get_output() cur_result["result"] = "OK" add_result_to_report(report, cur_result) return True except Exception as exc: if report != None: end = time() if isinstance(exc, ToolException): cur_result["result"] = "FAIL" elif isinstance(exc, NotSupportedException): cur_result["result"] = "NOT_SUPPORTED" cur_result["elapsed_time"] = end - start toolchain_output = toolchain.get_output() if toolchain_output: cur_result["output"] += toolchain_output add_result_to_report(report, cur_result) # Let Exception propagate raise ###################### ### Legacy methods ### ###################### def mbed2_obj_path(target_name, toolchain_name): real_tc_name = TOOLCHAIN_CLASSES[toolchain_name].__name__ return join("TARGET_" + target_name, "TOOLCHAIN_" + real_tc_name) def build_lib(lib_id, target, toolchain_name, verbose=False, clean=False, macros=None, notify=None, jobs=1, silent=False, report=None, properties=None, extra_verbose=False, build_profile=None): """ Legacy method for building mbed libraries Positional arguments: lib_id - the library's unique identifier target - the MCU or board that the project will compile for toolchain_name - the name of the build tools Keyword arguments: clean - Rebuild everything if True verbose - Write the actual tools command lines used if True macros - additional macros notify - Notify function for logs jobs - how many compilers we can run at once silent - suppress printing of progress indicators report - a dict where a result may be appended properties - UUUUHHHHH beats me extra_verbose - even more output! build_profile - a dict of flags that will be passed to the compiler """ lib = Library(lib_id) if not lib.is_supported(target, toolchain_name): print('Library "%s" is not yet supported on target %s with toolchain %s' % (lib_id, target.name, toolchain_name)) return False # We need to combine macros from parameter list with macros from library # definition lib_macros = lib.macros if lib.macros else [] if macros: macros.extend(lib_macros) else: macros = lib_macros src_paths = lib.source_dir build_path = lib.build_dir dependencies_paths = lib.dependencies inc_dirs = lib.inc_dirs inc_dirs_ext = lib.inc_dirs_ext if type(src_paths) != ListType: src_paths = [src_paths] # The first path will give the name to the library name = basename(src_paths[0]) if report != None: start = time() id_name = name.upper() description = name vendor_label = target.extra_labels[0] cur_result = None prep_report(report, target.name, toolchain_name, id_name) cur_result = create_result(target.name, toolchain_name, id_name, description) if properties != None: prep_properties(properties, target.name, toolchain_name, vendor_label) for src_path in src_paths: if not exists(src_path): error_msg = "The library source folder does not exist: %s", src_path if report != None: cur_result["output"] = error_msg cur_result["result"] = "FAIL" add_result_to_report(report, cur_result) raise Exception(error_msg) try: # Toolchain instance # Create the desired build directory structure bin_path = join(build_path, mbed2_obj_path(target.name, toolchain_name)) mkdir(bin_path) tmp_path = join(build_path, '.temp', mbed2_obj_path(target.name, toolchain_name)) mkdir(tmp_path) toolchain = prepare_toolchain( src_paths, tmp_path, target, toolchain_name, macros=macros, notify=notify, silent=silent, extra_verbose=extra_verbose, build_profile=build_profile, jobs=jobs, clean=clean) toolchain.info("Building library %s (%s, %s)" % (name.upper(), target.name, toolchain_name)) # Take into account the library configuration (MBED_CONFIG_FILE) config = toolchain.config config.add_config_files([MBED_CONFIG_FILE]) # Scan Resources resources = [] for src_path in src_paths: resources.append(toolchain.scan_resources(src_path)) # Add extra include directories / files which are required by library # This files usually are not in the same directory as source files so # previous scan will not include them if inc_dirs_ext is not None: for inc_ext in inc_dirs_ext: resources.append(toolchain.scan_resources(inc_ext)) # Dependencies Include Paths dependencies_include_dir = [] if dependencies_paths is not None: for path in dependencies_paths: lib_resources = toolchain.scan_resources(path) dependencies_include_dir.extend(lib_resources.inc_dirs) dependencies_include_dir.extend(map(dirname, lib_resources.inc_dirs)) if inc_dirs: dependencies_include_dir.extend(inc_dirs) # Add other discovered configuration data to the configuration object for res in resources: config.load_resources(res) toolchain.set_config_data(toolchain.config.get_config_data()) # Copy Headers for resource in resources: toolchain.copy_files(resource.headers, build_path, resources=resource) dependencies_include_dir.extend( toolchain.scan_resources(build_path).inc_dirs) # Compile Sources objects = [] for resource in resources: objects.extend(toolchain.compile_sources(resource, dependencies_include_dir)) needed_update = toolchain.build_library(objects, bin_path, name) if report != None and needed_update: end = time() cur_result["elapsed_time"] = end - start cur_result["output"] = toolchain.get_output() cur_result["result"] = "OK" add_result_to_report(report, cur_result) return True except Exception: if report != None: end = time() cur_result["result"] = "FAIL" cur_result["elapsed_time"] = end - start toolchain_output = toolchain.get_output() if toolchain_output: cur_result["output"] += toolchain_output add_result_to_report(report, cur_result) # Let Exception propagate raise # We do have unique legacy conventions about how we build and package the mbed # library def build_mbed_libs(target, toolchain_name, verbose=False, clean=False, macros=None, notify=None, jobs=1, silent=False, report=None, properties=None, extra_verbose=False, build_profile=None): """ Function returns True is library was built and false if building was skipped Positional arguments: target - the MCU or board that the project will compile for toolchain_name - the name of the build tools Keyword arguments: verbose - Write the actual tools command lines used if True clean - Rebuild everything if True macros - additional macros notify - Notify function for logs jobs - how many compilers we can run at once silent - suppress printing of progress indicators report - a dict where a result may be appended properties - UUUUHHHHH beats me extra_verbose - even more output! build_profile - a dict of flags that will be passed to the compiler """ if report != None: start = time() id_name = "MBED" description = "mbed SDK" vendor_label = target.extra_labels[0] cur_result = None prep_report(report, target.name, toolchain_name, id_name) cur_result = create_result(target.name, toolchain_name, id_name, description) if properties != None: prep_properties(properties, target.name, toolchain_name, vendor_label) # Check toolchain support if toolchain_name not in target.supported_toolchains: supported_toolchains_text = ", ".join(target.supported_toolchains) print('%s target is not yet supported by toolchain %s' % (target.name, toolchain_name)) print('%s target supports %s toolchain%s' % (target.name, supported_toolchains_text, 's' if len(target.supported_toolchains) > 1 else '')) if report != None: cur_result["result"] = "SKIP" add_result_to_report(report, cur_result) return False try: # Source and Build Paths build_target = join(MBED_LIBRARIES, "TARGET_" + target.name) build_toolchain = join(MBED_LIBRARIES, mbed2_obj_path(target.name, toolchain_name)) mkdir(build_toolchain) # Toolchain tmp_path = join(MBED_LIBRARIES, '.temp', mbed2_obj_path(target.name, toolchain_name)) mkdir(tmp_path) toolchain = prepare_toolchain( [""], tmp_path, target, toolchain_name, macros=macros,verbose=verbose, notify=notify, silent=silent, extra_verbose=extra_verbose, build_profile=build_profile, jobs=jobs, clean=clean) # Take into account the library configuration (MBED_CONFIG_FILE) config = toolchain.config config.add_config_files([MBED_CONFIG_FILE]) toolchain.set_config_data(toolchain.config.get_config_data()) # CMSIS toolchain.info("Building library %s (%s, %s)" % ('CMSIS', target.name, toolchain_name)) cmsis_src = MBED_CMSIS_PATH resources = toolchain.scan_resources(cmsis_src) toolchain.copy_files(resources.headers, build_target) toolchain.copy_files(resources.linker_script, build_toolchain) toolchain.copy_files(resources.bin_files, build_toolchain) objects = toolchain.compile_sources(resources, tmp_path) toolchain.copy_files(objects, build_toolchain) # mbed toolchain.info("Building library %s (%s, %s)" % ('MBED', target.name, toolchain_name)) # Common Headers toolchain.copy_files([MBED_HEADER], MBED_LIBRARIES) library_incdirs = [dirname(MBED_LIBRARIES), MBED_LIBRARIES] for dir, dest in [(MBED_DRIVERS, MBED_LIBRARIES_DRIVERS), (MBED_PLATFORM, MBED_LIBRARIES_PLATFORM), (MBED_HAL, MBED_LIBRARIES_HAL)]: resources = toolchain.scan_resources(dir) toolchain.copy_files(resources.headers, dest) library_incdirs.append(dest) # Target specific sources hal_src = MBED_TARGETS_PATH hal_implementation = toolchain.scan_resources(hal_src) toolchain.copy_files(hal_implementation.headers + hal_implementation.hex_files + hal_implementation.libraries + [MBED_CONFIG_FILE], build_target, resources=hal_implementation) toolchain.copy_files(hal_implementation.linker_script, build_toolchain) toolchain.copy_files(hal_implementation.bin_files, build_toolchain) incdirs = toolchain.scan_resources(build_target).inc_dirs objects = toolchain.compile_sources(hal_implementation, library_incdirs + incdirs) toolchain.copy_files(objects, build_toolchain) # Common Sources mbed_resources = None for dir in [MBED_DRIVERS, MBED_PLATFORM, MBED_HAL]: mbed_resources += toolchain.scan_resources(dir) objects = toolchain.compile_sources(mbed_resources, library_incdirs + incdirs) # A number of compiled files need to be copied as objects as opposed to # way the linker search for symbols in archives. These are: # - mbed_retarget.o: to make sure that the C standard lib symbols get # overridden # - mbed_board.o: mbed_die is weak # - mbed_overrides.o: this contains platform overrides of various # weak SDK functions # - mbed_main.o: this contains main redirection separate_names, separate_objects = ['mbed_retarget.o', 'mbed_board.o', 'mbed_overrides.o', 'mbed_main.o', 'mbed_sdk_boot.o'], [] for obj in objects: for name in separate_names: if obj.endswith(name): separate_objects.append(obj) for obj in separate_objects: objects.remove(obj) toolchain.build_library(objects, build_toolchain, "mbed") for obj in separate_objects: toolchain.copy_files(obj, build_toolchain) if report != None: end = time() cur_result["elapsed_time"] = end - start cur_result["output"] = toolchain.get_output() cur_result["result"] = "OK" add_result_to_report(report, cur_result) return True except Exception as exc: if report != None: end = time() cur_result["result"] = "FAIL" cur_result["elapsed_time"] = end - start toolchain_output = toolchain.get_output() if toolchain_output: cur_result["output"] += toolchain_output cur_result["output"] += str(exc) add_result_to_report(report, cur_result) # Let Exception propagate raise def get_unique_supported_toolchains(release_targets=None): """ Get list of all unique toolchains supported by targets Keyword arguments: release_targets - tuple structure returned from get_mbed_official_release(). If release_targets is not specified, then it queries all known targets """ unique_supported_toolchains = [] if not release_targets: for target in TARGET_NAMES: for toolchain in TARGET_MAP[target].supported_toolchains: if toolchain not in unique_supported_toolchains: unique_supported_toolchains.append(toolchain) else: for target in release_targets: for toolchain in target[1]: if toolchain not in unique_supported_toolchains: unique_supported_toolchains.append(toolchain) if "ARM" in unique_supported_toolchains: unique_supported_toolchains.append("ARMC6") return unique_supported_toolchains def mcu_toolchain_list(release_version='5'): """ Shows list of toolchains """ if isinstance(release_version, basestring): # Force release_version to lowercase if it is a string release_version = release_version.lower() else: # Otherwise default to printing all known targets and toolchains release_version = 'all' version_release_targets = {} version_release_target_names = {} for version in RELEASE_VERSIONS: version_release_targets[version] = get_mbed_official_release(version) version_release_target_names[version] = [x[0] for x in version_release_targets[ version]] if release_version in RELEASE_VERSIONS: release_targets = version_release_targets[release_version] else: release_targets = None unique_supported_toolchains = get_unique_supported_toolchains( release_targets) columns = ["mbed OS %s" % x for x in RELEASE_VERSIONS] + unique_supported_toolchains return "\n".join(columns) def mcu_target_list(release_version='5'): """ Shows target list """ if isinstance(release_version, basestring): # Force release_version to lowercase if it is a string release_version = release_version.lower() else: # Otherwise default to printing all known targets and toolchains release_version = 'all' version_release_targets = {} version_release_target_names = {} for version in RELEASE_VERSIONS: version_release_targets[version] = get_mbed_official_release(version) version_release_target_names[version] = [x[0] for x in version_release_targets[ version]] if release_version in RELEASE_VERSIONS: release_targets = version_release_targets[release_version] else: release_targets = None target_names = [] if release_targets: target_names = [x[0] for x in release_targets] else: target_names = TARGET_NAMES return "\n".join(target_names) def mcu_toolchain_matrix(verbose_html=False, platform_filter=None, release_version='5'): """ Shows target map using prettytable Keyword arguments: verbose_html - emit html instead of a simple table platform_filter - remove results that match the string release_version - get the matrix for this major version number """ # Only use it in this function so building works without extra modules from prettytable import PrettyTable if isinstance(release_version, basestring): # Force release_version to lowercase if it is a string release_version = release_version.lower() else: # Otherwise default to printing all known targets and toolchains release_version = 'all' version_release_targets = {} version_release_target_names = {} for version in RELEASE_VERSIONS: version_release_targets[version] = get_mbed_official_release(version) version_release_target_names[version] = [x[0] for x in version_release_targets[ version]] if release_version in RELEASE_VERSIONS: release_targets = version_release_targets[release_version] else: release_targets = None unique_supported_toolchains = get_unique_supported_toolchains( release_targets) prepend_columns = ["Target"] + ["mbed OS %s" % x for x in RELEASE_VERSIONS] # All tests status table print columns = prepend_columns + unique_supported_toolchains table_printer = PrettyTable(columns) # Align table for col in columns: table_printer.align[col] = "c" table_printer.align["Target"] = "l" perm_counter = 0 target_counter = 0 target_names = [] if release_targets: target_names = [x[0] for x in release_targets] else: target_names = TARGET_NAMES for target in sorted(target_names): if platform_filter is not None: # FIlter out platforms using regex if re.search(platform_filter, target) is None: continue target_counter += 1 row = [target] # First column is platform name for version in RELEASE_VERSIONS: if target in version_release_target_names[version]: text = "Supported" else: text = "-" row.append(text) for unique_toolchain in unique_supported_toolchains: if (unique_toolchain in TARGET_MAP[target].supported_toolchains or (unique_toolchain == "ARMC6" and "ARM" in TARGET_MAP[target].supported_toolchains)): text = "Supported" perm_counter += 1 else: text = "-" row.append(text) table_printer.add_row(row) result = table_printer.get_html_string() if verbose_html \ else table_printer.get_string() result += "\n" result += "Supported targets: %d\n"% (target_counter) if target_counter == 1: result += "Supported toolchains: %d"% (perm_counter) return result def get_target_supported_toolchains(target): """ Returns target supported toolchains list Positional arguments: target - the target to get the supported toolchains of """ return TARGET_MAP[target].supported_toolchains if target in TARGET_MAP \ else None def print_build_results(result_list, build_name): """ Generate result string for build results Positional arguments: result_list - the list of results to print build_name - the name of the build we are printing result for """ result = "" if len(result_list) > 0: result += build_name + "\n" result += "\n".join([" * %s" % f for f in result_list]) result += "\n" return result def print_build_memory_usage(report): """ Generate result table with memory usage values for build results Aggregates (puts together) reports obtained from self.get_memory_summary() Positional arguments: report - Report generated during build procedure. """ from prettytable import PrettyTable columns_text = ['name', 'target', 'toolchain'] columns_int = ['static_ram', 'total_flash'] table = PrettyTable(columns_text + columns_int) for col in columns_text: table.align[col] = 'l' for col in columns_int: table.align[col] = 'r' for target in report: for toolchain in report[target]: for name in report[target][toolchain]: for dlist in report[target][toolchain][name]: for dlistelem in dlist: # Get 'memory_usage' record and build table with # statistics record = dlist[dlistelem] if 'memory_usage' in record and record['memory_usage']: # Note that summary should be in the last record of # 'memory_usage' section. This is why we are # grabbing last "[-1]" record. row = [ record['description'], record['target_name'], record['toolchain_name'], record['memory_usage'][-1]['summary'][ 'static_ram'], record['memory_usage'][-1]['summary'][ 'total_flash'], ] table.add_row(row) result = "Memory map breakdown for built projects (values in Bytes):\n" result += table.get_string(sortby='name') return result def write_build_report(build_report, template_filename, filename): """Write a build report to disk using a template file Positional arguments: build_report - a report generated by the build system template_filename - a file that contains the template for the style of build report filename - the location on disk to write the file to """ build_report_failing = [] build_report_passing = [] for report in build_report: if len(report["failing"]) > 0: build_report_failing.append(report) else: build_report_passing.append(report) env = Environment(extensions=['jinja2.ext.with_']) env.loader = FileSystemLoader('ci_templates') template = env.get_template(template_filename) with open(filename, 'w+') as placeholder: placeholder.write(template.render( failing_builds=build_report_failing, passing_builds=build_report_passing)) def merge_build_data(filename, toolchain_report, app_type): path_to_file = dirname(abspath(filename)) try: build_data = load(open(filename)) except (IOError, ValueError): build_data = {'builds': []} for tgt in toolchain_report.values(): for tc in tgt.values(): for project in tc.values(): for build in project: try: build[0]['elf'] = relpath(build[0]['elf'], path_to_file) build[0]['bin'] = relpath(build[0]['bin'], path_to_file) except KeyError: pass if 'type' not in build[0]: build[0]['type'] = app_type build_data['builds'].append(build[0]) dump(build_data, open(filename, "wb"), indent=4, separators=(',', ': '))
38.458333
101
0.635676
[ "Apache-2.0" ]
SaiVK/BenchIoT
os-lib/mbed-os/tools/build_api.py
54,457
Python
""" Django settings for berlapan project. Generated by 'django-admin startproject' using Django 3.2.7. For more information on this file, see https://docs.djangoproject.com/en/3.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.2/ref/settings/ """ import os from pathlib import Path import dj_database_url # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # for best-practices. # SECURITY WARNING: keep the secret key used in production secret! # Please set SECRET_KEY environment variable in your production environment # (e.g. Heroku). SECRET_KEY = os.getenv('SECRET_KEY', 'django-insecure-nk@v31jj#vq_xd)s9uns%nkmj^o0efdm$-bj7dm8jz=t76_q-c') # Automatically determine environment by detecting if DATABASE_URL variable. # DATABASE_URL is provided by Heroku if a database add-on is added # (e.g. Heroku Postgres). PRODUCTION = os.getenv('DATABASE_URL') is not None # SECURITY WARNING: don't run with debug turned on in production! # If you want to enable debugging on Heroku for learning purposes, # set this to True. DEBUG = not PRODUCTION HEROKU_APP_NAME = os.getenv('HEROKU_APP_NAME', '') ALLOWED_HOSTS = [f'{HEROKU_APP_NAME}.herokuapp.com'] if not PRODUCTION: ALLOWED_HOSTS += ['.localhost', '127.0.0.1', '[::1]'] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'main', 'salingbantu', 'users', 'daftar_vaksinasi', 'donordarah', 'relawanvaksin', 'corsheaders', 'rest_framework', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'whitenoise.middleware.WhiteNoiseMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'corsheaders.middleware.CorsMiddleware', ] ROOT_URLCONF = 'berlapan.urls' CORS_ORIGIN_ALLOW_ALL = True CORS_ALLOW_METHODS =[ 'GET', 'POST', ] TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [ BASE_DIR / 'templates', ], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'berlapan.wsgi.application' # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Set database settings automatically using DATABASE_URL. if PRODUCTION: DATABASES['default'] = dj_database_url.config( conn_max_age=600, ssl_require=True ) # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ # Feel free to change these according to your needs. LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.2/howto/static-files/ STATIC_URL = '/static/' # This is the directory for storing `collectstatic` results. # This shouldn't be included in your Git repository. STATIC_ROOT = BASE_DIR / 'staticfiles' # You can use this directory to store project-wide static files. STATICFILES_DIRS = [ BASE_DIR / 'static', ] # Make sure the directories exist to prevent errors when doing `collectstatic`. for directory in [*STATICFILES_DIRS, STATIC_ROOT]: directory.mkdir(exist_ok=True) # Enable compression and caching features of whitenoise. # You can remove this if it causes problems on your setup.
26.839779
106
0.70914
[ "Unlicense" ]
rafiatha09/berlapan
berlapan/settings.py
4,858
Python
from random import randint import unicornhat as unicorn def run(params): width,height=unicorn.get_shape() while True: x = randint(0, (width-1)) y = randint(0, (height-1)) r = randint(0, 255) g = randint(0, 255) b = randint(0, 255) unicorn.set_pixel(x, y, r, g, b) unicorn.show()
21.625
40
0.563584
[ "MIT" ]
kfechter/unicorn-remote
app/programs/original/random_sparkles.py
346
Python
'''Faça um programa que leia o sexo de uma pessoa, mas só aceite os valores ‘M’ ou ‘F’.Caso esteja errado, peça a digitação novamente até ter um valor correto.''' sexo = str(input('Informe seu sexo: [M/F] ')).strip().upper()[0] while sexo not in 'MmFf': sexo = str(input('Dados inválidos. Por favor, informe seu sexo: ')).strip().upper()[0] print('Sexo {} registrado com sucesso.'.format(sexo))
50
111
0.6875
[ "MIT" ]
Roberto-Sartore/Python
exercicios/PythonExercicios/ex057.py
415
Python
import typing import sys import numpy as np def set_val( a: np.array, i: int, x: int, ) -> typing.NoReturn: while i < a.size: a[i] = max(a[i], x) i += i & -i def get_mx( a: np.array, i: int, ) -> int: mx = 0 while i > 0: mx = max(mx, a[i]) i -= i & -i return mx def solve( n: int, h: np.array, a: np.array, ) -> typing.NoReturn: fw = np.zeros( n + 1, dtype=np.int64, ) mx = 0 for i in range(n): v = get_mx(fw, h[i] - 1) set_val(fw, h[i], v + a[i]) print(get_mx(fw, n)) def main() -> typing.NoReturn: n = int(input()) h = np.array( sys.stdin.readline() .split(), dtype=np.int64, ) a = np.array( sys.stdin.readline() .split(), dtype=np.int64, ) solve(n, h, a) OJ = 'ONLINE_JUDGE' if sys.argv[-1] == OJ: from numba import njit, i8 from numba.pycc import CC cc = CC('my_module') fn = solve sig = (i8, i8[:], i8[:]) get_mx = njit(get_mx) set_val = njit(set_val) cc.export( fn.__name__, sig, )(fn) cc.compile() exit(0) from my_module import solve main()
13.7375
31
0.535032
[ "MIT" ]
kagemeka/competitive-programming
src/atcoder/dp/q/sol_4.py
1,099
Python
""" Solver classes for domain adaptation experiments """ __author__ = "Steffen Schneider" __email__ = "[email protected]" import os, time import pandas as pd import numpy as np from tqdm import tqdm import torch import torch.utils.data import torch.nn as nn from .. import Solver, BaseClassSolver from ... import layers, optim import itertools class DABaseSolver(BaseClassSolver): """ Base Class for Unsupervised Domain Adaptation Approaches """ def __init__(self, *args, **kwargs): super(DABaseSolver, self).__init__(*args, **kwargs) def _init_losses(self, **kwargs): super()._init_losses(**kwargs) self.register_loss(layers.AccuracyScore(), name = 'acc_s', weight = None) self.register_loss(layers.AccuracyScore(), name = 'acc_t', weight = None) class DATeacher(Solver): """ Base Class for Unsupervised Domain Adaptation Approaches using a teacher model """ def __init__(self, model, teacher, dataset, *args, **kwargs): super().__init__(model, dataset, *args, **kwargs) self.teacher = teacher def _init_models(self, **kwargs): super()._init_models(**kwargs) self.register_model(self.teacher, 'teacher') class DABaselineLoss(object): def __init__(self, solver): self.solver = solver def _predict(self, x, y): _ , y_ = self.solver.model(x) if not self.solver.multiclass: y_ = y_.squeeze() y = y.float() return y_, y def __call__(self, batch): losses = {} (x, y) = batch[0] losses['acc_s'] = losses['ce'] = self._predict(x,y) with torch.no_grad(): x,y = batch[1] losses['acc_t'] = self._predict(x,y) return losses class BaselineDASolver(DABaseSolver): """ A domain adaptation solver that actually does not run any adaptation algorithm This is useful to establish baseline results for the case of no adaptation, for measurement of the domain shift between datasets. """ def _init_optims(self, lr = 3e-4, **kwargs): super()._init_optims(**kwargs) self.register_optimizer(torch.optim.Adam(self.model.parameters(), lr=lr, amsgrad=True), DABaselineLoss(self))
26.602273
95
0.629645
[ "MPL-2.0" ]
artix41/salad
salad/solver/da/base.py
2,341
Python
# ------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License (MIT). See LICENSE in the repo root for license information. # ------------------------------------------------------------------------------------------- from pathlib import Path import pytest from abex.plotting.expected_basenames import expected_basenames_2d from cellsig_sim.scripts.run_cell_signalling_loop import main from psbutils.misc import find_subrepo_directory # @pytest.mark.timeout(1800) @pytest.mark.skip("Can cause ADO timeout on all platforms") def test_tutorial_wetlab_simulation(): # For real use, we would want something like --num_iter 15 --num_runs 100, but to test everything is working, # smaller values are sufficient, and reduce the compute time from hours to minutes. num_iter = 2 num_runs = 3 subrepo_dir = find_subrepo_directory() main( [ "--spec_file", f"{subrepo_dir}/tests/data/Specs/tutorial-wetlab-sim.yml", "--num_iter", str(num_iter), "--num_runs", str(num_runs), "--enable_multiprocessing", "--plot_simulated_slices", ] ) results_dir = Path("Results") / "tutorial-wetlab-sim" assert (results_dir / "config.yml").is_file() for i_run in range(num_runs): run_dir = results_dir / "fixed" / f"seed{i_run}" assert (run_dir / "init_batch.csv").is_file() for i_iter in range(1, num_iter + 1): iter_dir = run_dir / f"iter{i_iter}" assert iter_dir.is_dir() basenames = [f.name for f in sorted(iter_dir.iterdir())] assert basenames == expected_basenames_2d(4, variant=2)
42.093023
113
0.593923
[ "MIT" ]
Biological-Computation/station-b-libraries
PyStationB/projects/CellSignalling/slow_tests/simulation/test_cellsig_tutorials.py
1,810
Python
# Solution to Problem 8 # Program outputs today's date and time in the format "Monday, January 10th 2019 at 1:15pm" # To start we import the Python datetime module as dt. from datetime import datetime as dt #now equals the date and time now. now = dt.now() # Copied verbatim initially from stacoverflow Reference 1 below but amended to fit my referenceing of time as now. # Suffix equals 'st' if the date now is 1,21 or 23 else it is 'nd' if the date noe is 2 or 22 else it is 'rd' if date now is 3 or23 for eveything else it is 'th. suffix = 'st' if now in [1,21,31] else 'nd' if now in [2, 22] else 'rd' if now in [3, 23] else 'th' # Display to the user the Heading "Todays Date and Time:" print("Todays Date and time:") # Below displays to the user a the date and time in a string in inverted commas todays date and time in the format Day, Month Date year at Current Time am/pm. # Used Reference 3 below to remove the leading 0 when desplaying the time. print(now.strftime('%A, %B %d%%s %Y at %#I:%M %p',) % suffix,) # Reference 1: https://stackoverflow.com/a/11645978 # Reference 2: https://www.saltycrane.com/blog/2008/06/how-to-get-current-date-and-time-in/ # Reference 3: https://stackoverflow.com/questions/904928/python-strftime-date-without-leading-0One problem is that '{dt.hour}' uses a 24 hour clock :(. Using the second option still brings you back to using '{%#I}' on Windows and '{%-I}' on Unix. – ubomb May 24 '16 at 22:47 # Used lecture from week 6 as a base for the problem also looked at the Python tutorial. # Laura Brogan 19/03/2019
67.869565
276
0.726457
[ "Apache-2.0" ]
LauraBrogan/pands-problem-set-2019
solution-8.py
1,563
Python
import math import chainer import chainer.functions as F import chainer.links as L import numpy as np from .sn_convolution_2d import SNConvolution2D, SNDeconvolution2D from .sn_linear import SNLinear def _upsample(x): h, w = x.shape[2:] return F.unpooling_2d(x, 2, outsize=(h * 2, w * 2)) def _downsample(x): return F.average_pooling_2d(x, 2) def upsample_conv(x, conv): return conv(_upsample(x)) def _upsample_frq(x): h, w = x.shape[2:] return F.unpooling_2d(x, (1,2), outsize=(h, w * 2)) def _downsample_frq(x): return F.average_pooling_2d(x, (1,2)) def upsample_conv_frq(x, conv): return conv(_upsample_frq(x)) class ResBlock(chainer.Chain): def __init__(self, in_channels, out_channels, ksize=3, pad=1, activation=F.leaky_relu, mode='none', bn=False, dr=None): super(ResBlock, self).__init__() initializer = chainer.initializers.GlorotUniform() initializer_sc = chainer.initializers.GlorotUniform() self.activation = activation self.mode = _downsample if mode == 'down' else _upsample if mode == 'up' else None self.learnable_sc = in_channels != out_channels self.dr = dr self.bn = bn with self.init_scope(): self.c1 = L.Convolution2D(in_channels, out_channels, ksize=ksize, pad=pad, initialW=initializer, nobias=bn) self.c2 = L.Convolution2D(out_channels, out_channels, ksize=ksize, pad=pad, initialW=initializer, nobias=bn) if bn: self.b1 = L.BatchNormalization(out_channels) self.b2 = L.BatchNormalization(out_channels) if self.learnable_sc: self.c_sc = L.Convolution2D(in_channels, out_channels, ksize=1, pad=0, initialW=initializer_sc) def residual(self, x): h = x h = self.c1(h) if self.bn: h = self.b1(h) if self.activation: h = self.activation(h) if self.mode: h = self.mode(h) if self.dr: with chainer.using_config('train', True): h = F.dropout(h, self.dr) h = self.c2(h) if self.bn: h = self.b2(h) if self.activation: h = self.activation(h) return h def shortcut(self, x): if self.mode: x = self.mode(x) if self.learnable_sc: x = self.c_sc(x) return x def __call__(self, x): return self.residual(x) + self.shortcut(x) class ConvBlock(chainer.Chain): def __init__(self, in_channels, out_channels, mode='none', activation=F.leaky_relu, bn=False, dr=None): super(ConvBlock, self).__init__() initializer = chainer.initializers.GlorotUniform() self.activation = activation self.bn = bn self.dr = dr with self.init_scope(): if mode == 'none': self.c = L.Convolution2D(in_channels, out_channels, ksize=3, stride=1, pad=1, initialW=initializer, nobias=bn) elif mode == 'none-7': self.c = L.Convolution2D(in_channels, out_channels, ksize=(7,7), stride=1, pad=(3,3), initialW=initializer, nobias=bn) elif mode == 'down': self.c = L.Convolution2D(in_channels, out_channels, ksize=4, stride=2, pad=1, initialW=initializer, nobias=bn) elif mode == 'up': self.c = L.Deconvolution2D(in_channels, out_channels, ksize=4, stride=2, pad=1, initialW=initializer, nobias=bn) elif mode == 'full-down': self.c = L.Convolution2D(in_channels, out_channels, ksize=4, stride=1, pad=0, initialW=initializer, nobias=bn) elif mode == 'frq': self.c = L.Convolution2D(in_channels, out_channels, ksize=(1,9), stride=1, pad=(0,4), initialW=initializer, nobias=bn) elif mode == 'frq-down': self.c = L.Convolution2D(in_channels, out_channels, ksize=(1,9), stride=1, pad=(0,4), initialW=initializer, nobias=bn) self.activation = lambda x: activation(_downsample(x)) elif mode == 'frq-up': self.c = L.Convolution2D(in_channels, out_channels, ksize=(1,9), stride=1, pad=(0,4), initialW=initializer, nobias=bn) self.activation = lambda x: activation(_upsample(x)) elif mode == 'pad': self.c = L.Convolution2D(in_channels, out_channels, ksize=3, stride=1, pad=2, initialW=initializer, nobias=bn) elif mode == 'trim': self.c = L.Convolution2D(in_channels, out_channels, ksize=3, stride=1, pad=0, initialW=initializer, nobias=bn) else: raise Exception('mode is missing') if bn: self.b = L.BatchNormalization(out_channels) def __call__(self, h): if self.dr: with chainer.using_config('train', True): h = F.dropout(h, self.dr) h = self.c(h) if self.bn: h = self.b(h) if self.activation: h = self.activation(h) return h class CoPSBlock(chainer.Chain): def __init__(self, in_channels, out_channels, activation=F.leaky_relu, bn=True): super(CoPSBlock, self).__init__() initializer = chainer.initializers.GlorotUniform() self.activation = activation self.bn = bn with self.init_scope(): self.ps = L.Convolution2D(in_channels, in_channels*4, ksize=1, stride=1, initialW=initializer) self.c = L.Convolution2D(in_channels, out_channels, ksize=3, stride=1, pad=1, initialW=initializer) if bn: self.b = L.BatchNormalization(out_channels) def pixel_shuffle(self, x): out = self.ps(x) b = out.shape[0] c = out.shape[1] h = out.shape[2] w = out.shape[3] out = F.reshape(out, (b, 2, 2, c//4, h, w)) out = F.transpose(out, (0, 3, 4, 1, 5, 2)) out = F.reshape(out, (b, c//4, h*2, w*2)) return out def __call__(self, h): h = self.pixel_shuffle(h) h = self.c(h) if self.bn: h = self.b(h) if self.activation: h = self.activation(h) return h class SNResBlock(chainer.Chain): def __init__(self, in_channels, out_channels, activation=F.leaky_relu, sample='none', dr=None): super(SNResBlock, self).__init__() initializer = chainer.initializers.GlorotUniform() initializer_sc = chainer.initializers.GlorotUniform() self.activation = activation self.dr = dr self.sample = _downsample if sample == 'down' else _upsample if sample == 'up' else None self.learnable_sc = in_channels != out_channels or sample == 'down' or sample == 'up' with self.init_scope(): self.c1 = SNConvolution2D(in_channels, out_channels, ksize=3, pad=1, initialW=initializer) self.c2 = SNConvolution2D(out_channels, out_channels, ksize=3, pad=1, initialW=initializer) if self.learnable_sc: self.c_sc = SNConvolution2D(in_channels, out_channels, ksize=1, pad=0, initialW=initializer_sc) def residual(self, x): h = x h = self.activation(h) h = self.c1(h) if self.sample: h = self.sample(h) if self.dr: with chainer.using_config('train', True): h = F.dropout(h, self.dr) h = self.activation(h) h = self.c2(h) return h def shortcut(self, x): if self.learnable_sc: x = self.c_sc(x) if self.sample: return self.sample(x) else: return x else: return x def __call__(self, x): return self.residual(x) + self.shortcut(x) class SNConvBlock(chainer.Chain): def __init__(self, in_channels, out_channels, mode='none', activation=F.leaky_relu, bn=False, dr=None): super(SNConvBlock, self).__init__() initializer = chainer.initializers.GlorotUniform() self.activation = activation self.bn = bn self.dr = dr with self.init_scope(): if mode == 'none': self.c = SNConvolution2D(in_channels, out_channels, ksize=3, stride=1, pad=1, initialW=initializer, nobias=bn) elif mode == 'none-7': self.c = SNConvolution2D(in_channels, out_channels, ksize=(7,7), stride=1, pad=(3,3), initialW=initializer, nobias=bn) elif mode == 'down': self.c = SNConvolution2D(in_channels, out_channels, ksize=4, stride=2, pad=1, initialW=initializer, nobias=bn) elif mode == 'up': self.c = SNDeconvolution2D(in_channels, out_channels, ksize=4, stride=2, pad=1, initialW=initializer, nobias=bn) elif mode == 'full-down': self.c = SNConvolution2D(in_channels, out_channels, ksize=4, stride=1, pad=0, initialW=initializer, nobias=bn) elif mode == 'frq': self.c = SNConvolution2D(in_channels, out_channels, ksize=(1,9), stride=1, pad=(0,4), initialW=initializer, nobias=bn) elif mode == 'frq-down': self.c = SNConvolution2D(in_channels, out_channels, ksize=(1,9), stride=1, pad=(0,4), initialW=initializer, nobias=bn) self.activation = lambda x: activation(_downsample(x)) elif mode == 'frq-up': self.c = SNConvolution2D(in_channels, out_channels, ksize=(1,9), stride=1, pad=(0,4), initialW=initializer, nobias=bn) self.activation = lambda x: activation(_upsample(x)) else: raise Exception('mode is missing') if bn: self.b = L.BatchNormalization(out_channels) def __call__(self, h): if self.dr: with chainer.using_config('train', True): h = F.dropout(h, self.dr) h = self.c(h) if self.bn: h = self.b(h) if self.activation: h = self.activation(h) return h class SNLinearBlock(chainer.Chain): def __init__(self, in_channels, out_channels, activation=F.leaky_relu, dr=None): super(SNLinearBlock, self).__init__() initializer = chainer.initializers.GlorotUniform() self.activation = activation self.dr = dr if type(out_channels) is tuple: self.out_shape = (-1,)+out_channels else: self.out_shape = None with self.init_scope(): self.l = SNLinear(in_channels, np.prod(out_channels), initialW=initializer) def __call__(self, x): if self.dr: x = F.dropout(x, self.dr) x = self.l(x) x = self.activation(x) if self.out_shape: x = F.reshape(x, self.out_shape) return x class SNMDBlock(chainer.Chain): def __init__(self, in_channels, in_size=4, B=100, C=5, gap=True, dr=None): super(SNMDBlock, self).__init__() initializer = chainer.initializers.GlorotUniform() self.B = B self.C = C self.dr = dr self.gap = gap if gap: in_size = 1 if type(in_size) is int: in_size = (in_size, in_size) with self.init_scope(): self.l = SNLinear(in_size[0] * in_size[1] * in_channels + B, 1, initialW=initializer) self.md = SNLinear(in_size[0] * in_size[1] * in_channels, B * C, initialW=initializer) def __call__(self, x): if self.dr: with chainer.using_config('train', True): x = F.dropout(x, self.dr) if self.gap: x = F.sum(x, axis=(2,3)) N = x.shape[0] #Below code copyed from https://github.com/pfnet-research/chainer-gan-lib/blob/master/minibatch_discrimination/net.py feature = F.reshape(F.leaky_relu(x), (N, -1)) m = F.reshape(self.md(feature), (N, self.B * self.C, 1)) m0 = F.broadcast_to(m, (N, self.B * self.C, N)) m1 = F.transpose(m0, (2, 1, 0)) d = F.absolute(F.reshape(m0 - m1, (N, self.B, self.C, N))) d = F.sum(F.exp(-F.sum(d, axis=2)), axis=2) - 1 h = F.concat([feature, d]) h = self.l(h) return h class SNL1DBlock(chainer.Chain): def __init__(self, in_ch, out_ch, width, activation=F.leaky_relu, dr=None): super(SNL1DBlock, self).__init__() initializer = chainer.initializers.GlorotUniform() self.activation = activation self.dr = dr self.out_ch = out_ch with self.init_scope(): self.l = SNLinear(in_ch*width, out_ch*width, initialW=initializer) def __call__(self, x): if self.dr: x = F.dropout(x, self.dr) x = F.transpose(x, (0, 2, 1, 3)) out_shape = list(x.shape) x = F.reshape(x, (-1, x.shape[2]*x.shape[3])) x = self.l(x) x = self.activation(x) out_shape[2] = self.out_ch x = F.reshape(x, out_shape) x = F.transpose(x, (0, 2, 1, 3)) return x class L1DBlock(chainer.Chain): def __init__(self, in_ch, out_ch, width, activation=F.leaky_relu, dr=None): super(L1DBlock, self).__init__() initializer = chainer.initializers.GlorotUniform() self.activation = activation self.dr = dr self.out_ch = out_ch with self.init_scope(): self.l = L.Linear(in_ch*width, out_ch*width, initialW=initializer) def __call__(self, x): if self.dr: x = F.dropout(x, self.dr) x = F.transpose(x, (0, 2, 1, 3)) out_shape = list(x.shape) x = F.reshape(x, (-1, x.shape[2]*x.shape[3])) x = self.l(x) x = self.activation(x) out_shape[2] = self.out_ch x = F.reshape(x, out_shape) x = F.transpose(x, (0, 2, 1, 3)) return x class CLBlock(chainer.Chain): def __init__(self, in_ch, out_ch, width, activation=F.leaky_relu, liner_out_ch=1, dr=None): super(CLBlock, self).__init__() self.dr = dr if out_ch - liner_out_ch <= 0: raise Exception('out_ch <= liner_out_ch!') with self.init_scope(): self.c = ConvBlock(in_ch, out_ch-liner_out_ch, activation=activation) self.l = L1DBlock(in_ch, liner_out_ch, width, activation) def __call__(self, x): h = x if self.dr: h = F.dropout(h, self.dr) h1 = self.c(h) h2 = self.l(h) h = F.concat([h1,h2]) return h class SNCLBlock(chainer.Chain): def __init__(self, in_ch, out_ch, width, activation=F.leaky_relu, dr=None): super(SNCLBlock, self).__init__() self.dr = dr with self.init_scope(): self.c = SNConvBlock(in_ch, out_ch-1, activation=activation) self.l = SNL1DBlock(in_ch, 1, width, activation) def __call__(self, x): h = x if self.dr: h = F.dropout(h, self.dr) h1 = self.c(h) h2 = self.l(h) h = F.concat([h1,h2]) return h
39.899204
134
0.582103
[ "MIT" ]
VirtualOilCake/Deep_VoiceChanger
nets/block.py
15,042
Python
estado = dict() brasil = list() for c in range(0,3): estado['uf'] = str(input('Uf: ')) estado['sigla'] = str(input('Sigla: ')) brasil.append(estado.copy()) print(brasil) for e in brasil: for k, v in e.items(): print(f'O campo {k} tem valor {v}')
22.583333
43
0.571956
[ "MIT" ]
Kauan677/Projetos-Python
Python/Dicionarios.py
271
Python
# # Copyright (c) YugaByte, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except # in compliance with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under the License # is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express # or implied. See the License for the specific language governing permissions and limitations # under the License. # import importlib import os import pkgutil import platform import shutil import sys import subprocess import traceback YELLOW_COLOR="\033[0;33m" RED_COLOR="\033[0;31m" CYAN_COLOR="\033[0;36m" NO_COLOR="\033[0m" SEPARATOR = "-" * 80 BUILD_GROUP_COMMON = 1 BUILD_GROUP_INSTRUMENTED = 2 BUILD_TYPE_COMMON = 'common' BUILD_TYPE_UNINSTRUMENTED = 'uninstrumented' BUILD_TYPE_ASAN = 'asan' BUILD_TYPE_TSAN = 'tsan' BUILD_TYPES = [BUILD_TYPE_COMMON, BUILD_TYPE_UNINSTRUMENTED, BUILD_TYPE_ASAN, BUILD_TYPE_TSAN] TAR_EXTRACT = 'tar xf {}' # -o -- force overwriting existing files ZIP_EXTRACT = 'unzip -q -o {}' ARCHIVE_TYPES = { '.tar.bz2': TAR_EXTRACT, '.tar.gz': TAR_EXTRACT, '.tar.xz': TAR_EXTRACT, '.tgz': TAR_EXTRACT, '.zip': ZIP_EXTRACT, } def fatal(message): log(message) traceback.print_stack() sys.exit(1) def log(message=""): sys.stderr.write(message + "\n") def colored_log(color, message): sys.stderr.write(color + message + NO_COLOR + "\n") def log_output(prefix, args): process = subprocess.Popen(args, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) for line in iter(process.stdout.readline, ''): log("{}{} {}{}".format(CYAN_COLOR, prefix, NO_COLOR, line.rstrip())) process.stdout.close() exit_code = process.wait() if exit_code: fatal("Execution failed with code: {}".format(exit_code)) def unset_if_set(name): if name in os.environ: log('Unsetting {} for third-party build (was set to "{}").'.format(name, os.environ[name])) del os.environ[name] def log_separator(): log("") log(SEPARATOR) log("") def heading(title): log("") log(SEPARATOR) log(title) log(SEPARATOR) log("") def is_mac(): return platform.system().lower() == 'darwin' def is_linux(): return platform.system().lower() == 'linux' def is_jenkins_user(): return os.environ['USER'] == "jenkins" def is_jenkins(): return 'BUILD_ID' in os.environ and 'JOB_NAME' in os.environ and is_jenkins_user() def remove_path(path): if not os.path.exists(path): return if os.path.islink(path): os.unlink(path) elif os.path.isdir(path): shutil.rmtree(path) else: os.remove(path) def mkdir_if_missing(path): if os.path.exists(path): if not os.path.isdir(path): fatal("Trying to create dir {}, but file with the same path already exists" .format(path)) return os.makedirs(path) def make_archive_name(name, version, download_url): if download_url is None: return '{}-{}{}'.format(name, version, '.tar.gz') for ext in ARCHIVE_TYPES: if download_url.endswith(ext): return '{}-{}{}'.format(name, version, ext) return None def which(exe): return subprocess.check_output(['which', exe]).rstrip() def import_submodules(package, recursive=True): if isinstance(package, str): package = importlib.import_module(package) results = {} for loader, name, is_pkg in pkgutil.walk_packages(package.__path__): full_name = package.__name__ + '.' + name results[full_name] = importlib.import_module(full_name) if recursive and is_pkg: results.update(import_submodules(full_name)) return results class Dependency(object): def __init__(self, name, version, url_pattern, build_group): self.name = name self.version = version self.dir = '{}-{}'.format(name, version) self.underscored_version = version.replace('.', '_') if url_pattern is not None: self.download_url = url_pattern.format(version, self.underscored_version) else: self.download_url = None self.build_group = build_group self.archive_name = make_archive_name(name, version, self.download_url) self.patch_version = 0 def should_build(self, instrumented): return True class ExtraDownload(object): def __init__(self, name, version, url_pattern, dir, post_exec=None): self.name = name self.version = version self.download_url = url_pattern.format(version) self.archive_name = make_archive_name(name, version, self.download_url) self.dir = dir if post_exec is not None: self.post_exec = post_exec class PushDir: def __init__(self, dir): self.dir = dir self.prev = None def __enter__(self): self.prev = os.getcwd() os.chdir(self.dir) def __exit__(self, type, value, traceback): os.chdir(self.prev)
26.299492
99
0.663192
[ "Apache-2.0" ]
everyonce/yugabyte-db
thirdparty/build_definitions/__init__.py
5,181
Python
# # cbpro/order_book.py # David Caseria # # Live order book updated from the Coinbase Websocket Feed from sortedcontainers import SortedDict from decimal import Decimal import pickle from cbpro.public_client import PublicClient from cbpro.websocket_client import WebsocketClient class OrderBook(WebsocketClient): def __init__(self, product_id='BTC-USD', log_to=None): super(OrderBook, self).__init__(products=product_id) self._asks = SortedDict() self._bids = SortedDict() self._client = PublicClient() self._sequence = -1 self._log_to = log_to if self._log_to: assert hasattr(self._log_to, 'write') self._current_ticker = None @property def product_id(self): ''' Currently OrderBook only supports a single product even though it is stored as a list of products. ''' return self.products[0] def on_open(self): self._sequence = -1 print("-- Subscribed to OrderBook! --\n") def on_close(self): print("\n-- OrderBook Socket Closed! --") def reset_book(self): self._asks = SortedDict() self._bids = SortedDict() res = self._client.get_product_order_book(product_id=self.product_id, level=3) for bid in res['bids']: self.add({ 'id': bid[2], 'side': 'buy', 'price': Decimal(bid[0]), 'size': Decimal(bid[1]) }) for ask in res['asks']: self.add({ 'id': ask[2], 'side': 'sell', 'price': Decimal(ask[0]), 'size': Decimal(ask[1]) }) self._sequence = res['sequence'] def on_message(self, message): if self._log_to: pickle.dump(message, self._log_to) sequence = message.get('sequence', -1) if self._sequence == -1: self.reset_book() return if sequence <= self._sequence: # ignore older messages (e.g. before order book initialization from getProductOrderBook) return elif sequence > self._sequence + 1: self.on_sequence_gap(self._sequence, sequence) return msg_type = message['type'] if msg_type == 'open': self.add(message) elif msg_type == 'done' and 'price' in message: self.remove(message) elif msg_type == 'match': self.match(message) self._current_ticker = message elif msg_type == 'change': self.change(message) self._sequence = sequence def on_sequence_gap(self, gap_start, gap_end): self.reset_book() print('Error: messages missing ({} - {}). Re-initializing book at sequence.'.format( gap_start, gap_end, self._sequence)) def add(self, order): order = { 'id': order.get('order_id') or order['id'], 'side': order['side'], 'price': Decimal(order['price']), 'size': Decimal(order.get('size') or order['remaining_size']) } if order['side'] == 'buy': bids = self.get_bids(order['price']) if bids is None: bids = [order] else: bids.append(order) self.set_bids(order['price'], bids) else: asks = self.get_asks(order['price']) if asks is None: asks = [order] else: asks.append(order) self.set_asks(order['price'], asks) def remove(self, order): price = Decimal(order['price']) if order['side'] == 'buy': bids = self.get_bids(price) if bids is not None: bids = [o for o in bids if o['id'] != order['order_id']] if len(bids) > 0: self.set_bids(price, bids) else: self.remove_bids(price) else: asks = self.get_asks(price) if asks is not None: asks = [o for o in asks if o['id'] != order['order_id']] if len(asks) > 0: self.set_asks(price, asks) else: self.remove_asks(price) def match(self, order): size = Decimal(order['size']) price = Decimal(order['price']) if order['side'] == 'buy': bids = self.get_bids(price) if not bids: return assert bids[0]['id'] == order['maker_order_id'] if bids[0]['size'] == size: self.set_bids(price, bids[1:]) else: bids[0]['size'] -= size self.set_bids(price, bids) else: asks = self.get_asks(price) if not asks: return assert asks[0]['id'] == order['maker_order_id'] if asks[0]['size'] == size: self.set_asks(price, asks[1:]) else: asks[0]['size'] -= size self.set_asks(price, asks) def change(self, order): try: new_size = Decimal(order['new_size']) except KeyError: return try: price = Decimal(order['price']) except KeyError: return if order['side'] == 'buy': bids = self.get_bids(price) if bids is None or not any(o['id'] == order['order_id'] for o in bids): return index = [b['id'] for b in bids].index(order['order_id']) bids[index]['size'] = new_size self.set_bids(price, bids) else: asks = self.get_asks(price) if asks is None or not any(o['id'] == order['order_id'] for o in asks): return index = [a['id'] for a in asks].index(order['order_id']) asks[index]['size'] = new_size self.set_asks(price, asks) tree = self._asks if order['side'] == 'sell' else self._bids node = tree.get(price) if node is None or not any(o['id'] == order['order_id'] for o in node): return def get_current_ticker(self): return self._current_ticker def get_current_book(self): result = { 'sequence': self._sequence, 'asks': [], 'bids': [], } for ask in self._asks: try: # There can be a race condition here, where a price point is removed # between these two ops this_ask = self._asks[ask] except KeyError: continue for order in this_ask: result['asks'].append([order['price'], order['size'], order['id']]) for bid in self._bids: try: # There can be a race condition here, where a price point is removed # between these two ops this_bid = self._bids[bid] except KeyError: continue for order in this_bid: result['bids'].append([order['price'], order['size'], order['id']]) return result def get_ask(self): return self._asks.peekitem(0)[0] def get_asks(self, price): return self._asks.get(price) def remove_asks(self, price): del self._asks[price] def set_asks(self, price, asks): self._asks[price] = asks def get_bid(self): return self._bids.peekitem(-1)[0] def get_bids(self, price): return self._bids.get(price) def remove_bids(self, price): del self._bids[price] def set_bids(self, price, bids): self._bids[price] = bids if __name__ == '__main__': import sys import time import datetime as dt class OrderBookConsole(OrderBook): ''' Logs real-time changes to the bid-ask spread to the console ''' def __init__(self, product_id=None): super(OrderBookConsole, self).__init__(product_id=product_id) # latest values of bid-ask spread self._bid = None self._ask = None self._bid_depth = None self._ask_depth = None def on_message(self, message): super(OrderBookConsole, self).on_message(message) # Calculate newest bid-ask spread bid = self.get_bid() bids = self.get_bids(bid) bid_depth = sum([b['size'] for b in bids]) ask = self.get_ask() asks = self.get_asks(ask) ask_depth = sum([a['size'] for a in asks]) if self._bid == bid and self._ask == ask and self._bid_depth == bid_depth and self._ask_depth == ask_depth: # If there are no changes to the bid-ask spread since the last update, no need to print pass else: # If there are differences, update the cache self._bid = bid self._ask = ask self._bid_depth = bid_depth self._ask_depth = ask_depth print('{} {} bid: {:.3f} @ {:.2f}\task: {:.3f} @ {:.2f}'.format( dt.datetime.now(), self.product_id, bid_depth, bid, ask_depth, ask)) order_book = OrderBookConsole() order_book.start() try: while True: time.sleep(10) except KeyboardInterrupt: order_book.close() if order_book.error: sys.exit(1) else: sys.exit(0)
32.036789
119
0.524167
[ "MIT" ]
1M15M3/coinbasepro-python
cbpro/order_book.py
9,579
Python
import json import boto3 import os from helper import AwsHelper import time def startJob(bucketName, objectName, itemId, snsTopic, snsRole, apiName): print("Starting job with itemId: {}, bucketName: {}, objectName: {}".format(itemId, bucketName, objectName)) response = None client = AwsHelper().getClient('rekognition') if(apiName == "labels"): response = client.start_label_detection( Video={ 'S3Object': { 'Bucket': bucketName, 'Name': objectName } }, ClientRequestToken = itemId, NotificationChannel={ 'SNSTopicArn': snsTopic, 'RoleArn': snsRole }, JobTag=itemId ) elif(apiName == "text"): response = client.start_text_detection( Video={ 'S3Object': { 'Bucket': bucketName, 'Name': objectName } }, ClientRequestToken = itemId, NotificationChannel={ 'SNSTopicArn': snsTopic, 'RoleArn': snsRole }, JobTag=itemId ) elif(apiName == "faces"): response = client.start_face_detection( Video={ 'S3Object': { 'Bucket': bucketName, 'Name': objectName } }, ClientRequestToken = itemId, NotificationChannel={ 'SNSTopicArn': snsTopic, 'RoleArn': snsRole }, JobTag=itemId ) elif(apiName == "moderation"): response = client.start_content_moderation( Video={ 'S3Object': { 'Bucket': bucketName, 'Name': objectName } }, ClientRequestToken = itemId, NotificationChannel={ 'SNSTopicArn': snsTopic, 'RoleArn': snsRole }, JobTag=itemId ) elif(apiName == "celebrities"): response = client.start_celebrity_recognition( Video={ 'S3Object': { 'Bucket': bucketName, 'Name': objectName } }, ClientRequestToken = itemId, NotificationChannel={ 'SNSTopicArn': snsTopic, 'RoleArn': snsRole }, JobTag=itemId ) else: response = client.start_label_detection( Video={ 'S3Object': { 'Bucket': bucketName, 'Name': objectName } }, ClientRequestToken = itemId, NotificationChannel={ 'SNSTopicArn': snsTopic, 'RoleArn': snsRole }, JobTag=itemId ) return response["JobId"] def processItem(message, snsTopic, snsRole): print('message:') print(message) messageBody = json.loads(message['Body']) bucketName = messageBody['bucketName'] objectName = messageBody['objectName'] itemId = messageBody['itemId'] apiName = objectName.split("/")[0] print('Bucket Name: ' + bucketName) print('Object Name: ' + objectName) print('Task ID: ' + itemId) print('starting Rekognition job...') jobId = startJob(bucketName, objectName, itemId, snsTopic, snsRole, apiName) if(jobId): print("Started Job with Id: {}".format(jobId)) return jobId def changeVisibility(sqs, qUrl, receipt_handle): try: sqs.change_message_visibility( QueueUrl=qUrl, ReceiptHandle=receipt_handle, VisibilityTimeout=0 ) except Exception as e: print("Failed to change visibility for {} with error: {}".format(receipt_handle, e)) def getMessagesFromQueue(sqs, qUrl,): # Receive message from SQS queue response = sqs.receive_message( QueueUrl=qUrl, MaxNumberOfMessages=1, VisibilityTimeout=60 #14400 ) print('SQS Response Received:') print(response) if('Messages' in response): return response['Messages'] else: print("No messages in queue.") return None def processItems(qUrl, snsTopic, snsRole): sqs = AwsHelper().getClient('sqs') messages = getMessagesFromQueue(sqs, qUrl) jc = 0 totalMessages = 0 hitLimit = False limitException = None if(messages): totalMessages = len(messages) print("Total messages: {}".format(totalMessages)) for message in messages: receipt_handle = message['ReceiptHandle'] try: if(hitLimit): changeVisibility(sqs, qUrl, receipt_handle) else: print("starting job...") processItem(message, snsTopic, snsRole) print("started job...") print('Deleting item from queue...') # Delete received message from queue sqs.delete_message( QueueUrl=qUrl, ReceiptHandle=receipt_handle ) print('Deleted item from queue...') jc += 1 except Exception as e: print("Error while starting job or deleting from queue: {}".format(e)) changeVisibility(sqs, qUrl, receipt_handle) if(e.__class__.__name__ == 'LimitExceededException' or e.__class__.__name__ == "ProvisionedThroughputExceededException"): hitLimit = True limitException = e if(hitLimit): raise limitException() return totalMessages, jc def processRequest(request): qUrl = request['qUrl'] snsTopic = request['snsTopic'] snsRole = request['snsRole'] i = 0 max = 100 totalJobsScheduled = 0 hitLimit = False provisionedThroughputExceededCount = 0 while(i < max): try: tc, jc = processItems(qUrl, snsTopic, snsRole) totalJobsScheduled += jc if(tc == 0): i = max except Exception as e: if(e.__class__.__name__ == 'LimitExceededException'): print("Exception: Hit limit.") hitLimit = True i = max elif(e.__class__.__name__ == "ProvisionedThroughputExceededException"): print("ProvisionedThroughputExceededException.") provisionedThroughputExceededCount += 1 if(provisionedThroughputExceededCount > 5): i = max else: print("Waiting for few seconds...") time.sleep(5) print("Waking up...") i += 1 output = "Started {} jobs.".format(totalJobsScheduled) if(hitLimit): output += " Hit limit." print(output) return { 'statusCode': 200, 'body': output } def lambda_handler(event, context): print("event: {}".format(event)) request = {} request["qUrl"] = os.environ['ASYNC_QUEUE_URL'] request["snsTopic"] = os.environ['SNS_TOPIC_ARN'] request["snsRole"] = os.environ['SNS_ROLE_ARN'] return processRequest(request)
28.02974
112
0.516844
[ "MIT-0" ]
aspi92/amazon-rekognition-serverless-large-scale-image-and-video-processing
rekognition-pipeline/lambda/asyncprocessor/lambda_function.py
7,540
Python
# coding: utf-8 """ Laserfiche API Welcome to the Laserfiche API Swagger Playground. You can try out any of our API calls against your live Laserfiche Cloud account. Visit the developer center for more details: <a href=\"https://developer.laserfiche.com\">https://developer.laserfiche.com</a><p><strong>Build# : </strong>650780</p> # noqa: E501 OpenAPI spec version: 1-alpha Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class Watermark(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'watermark_text': 'str', 'watermark_text_size': 'int', 'watermark_position': 'OneOfWatermarkWatermarkPosition', 'watermark_rotation_angle': 'int', 'is_watermark_mandatory': 'bool', 'watermark_intensity': 'int' } attribute_map = { 'watermark_text': 'watermarkText', 'watermark_text_size': 'watermarkTextSize', 'watermark_position': 'watermarkPosition', 'watermark_rotation_angle': 'watermarkRotationAngle', 'is_watermark_mandatory': 'isWatermarkMandatory', 'watermark_intensity': 'watermarkIntensity' } def __init__(self, watermark_text=None, watermark_text_size=None, watermark_position=None, watermark_rotation_angle=None, is_watermark_mandatory=None, watermark_intensity=None): # noqa: E501 """Watermark - a model defined in Swagger""" # noqa: E501 self._watermark_text = None self._watermark_text_size = None self._watermark_position = None self._watermark_rotation_angle = None self._is_watermark_mandatory = None self._watermark_intensity = None self.discriminator = None if watermark_text is not None: self.watermark_text = watermark_text if watermark_text_size is not None: self.watermark_text_size = watermark_text_size if watermark_position is not None: self.watermark_position = watermark_position if watermark_rotation_angle is not None: self.watermark_rotation_angle = watermark_rotation_angle if is_watermark_mandatory is not None: self.is_watermark_mandatory = is_watermark_mandatory if watermark_intensity is not None: self.watermark_intensity = watermark_intensity @property def watermark_text(self): """Gets the watermark_text of this Watermark. # noqa: E501 The watermark text associated with the tag defintion. # noqa: E501 :return: The watermark_text of this Watermark. # noqa: E501 :rtype: str """ return self._watermark_text @watermark_text.setter def watermark_text(self, watermark_text): """Sets the watermark_text of this Watermark. The watermark text associated with the tag defintion. # noqa: E501 :param watermark_text: The watermark_text of this Watermark. # noqa: E501 :type: str """ self._watermark_text = watermark_text @property def watermark_text_size(self): """Gets the watermark_text_size of this Watermark. # noqa: E501 The size of the watermark text, in points, associated with the tag definition. # noqa: E501 :return: The watermark_text_size of this Watermark. # noqa: E501 :rtype: int """ return self._watermark_text_size @watermark_text_size.setter def watermark_text_size(self, watermark_text_size): """Sets the watermark_text_size of this Watermark. The size of the watermark text, in points, associated with the tag definition. # noqa: E501 :param watermark_text_size: The watermark_text_size of this Watermark. # noqa: E501 :type: int """ self._watermark_text_size = watermark_text_size @property def watermark_position(self): """Gets the watermark_position of this Watermark. # noqa: E501 The position of the watermark on the page. # noqa: E501 :return: The watermark_position of this Watermark. # noqa: E501 :rtype: OneOfWatermarkWatermarkPosition """ return self._watermark_position @watermark_position.setter def watermark_position(self, watermark_position): """Sets the watermark_position of this Watermark. The position of the watermark on the page. # noqa: E501 :param watermark_position: The watermark_position of this Watermark. # noqa: E501 :type: OneOfWatermarkWatermarkPosition """ self._watermark_position = watermark_position @property def watermark_rotation_angle(self): """Gets the watermark_rotation_angle of this Watermark. # noqa: E501 The rotation angle, in degrees, of the watermark associated with the tag definition. # noqa: E501 :return: The watermark_rotation_angle of this Watermark. # noqa: E501 :rtype: int """ return self._watermark_rotation_angle @watermark_rotation_angle.setter def watermark_rotation_angle(self, watermark_rotation_angle): """Sets the watermark_rotation_angle of this Watermark. The rotation angle, in degrees, of the watermark associated with the tag definition. # noqa: E501 :param watermark_rotation_angle: The watermark_rotation_angle of this Watermark. # noqa: E501 :type: int """ self._watermark_rotation_angle = watermark_rotation_angle @property def is_watermark_mandatory(self): """Gets the is_watermark_mandatory of this Watermark. # noqa: E501 A boolean indicating whether or not the watermark associated with the tag is mandatory. # noqa: E501 :return: The is_watermark_mandatory of this Watermark. # noqa: E501 :rtype: bool """ return self._is_watermark_mandatory @is_watermark_mandatory.setter def is_watermark_mandatory(self, is_watermark_mandatory): """Sets the is_watermark_mandatory of this Watermark. A boolean indicating whether or not the watermark associated with the tag is mandatory. # noqa: E501 :param is_watermark_mandatory: The is_watermark_mandatory of this Watermark. # noqa: E501 :type: bool """ self._is_watermark_mandatory = is_watermark_mandatory @property def watermark_intensity(self): """Gets the watermark_intensity of this Watermark. # noqa: E501 The intensity of the watermark associated with the tag definition. Valid value ranges from 0 to 100, with -1 as the default values. # noqa: E501 :return: The watermark_intensity of this Watermark. # noqa: E501 :rtype: int """ return self._watermark_intensity @watermark_intensity.setter def watermark_intensity(self, watermark_intensity): """Sets the watermark_intensity of this Watermark. The intensity of the watermark associated with the tag definition. Valid value ranges from 0 to 100, with -1 as the default values. # noqa: E501 :param watermark_intensity: The watermark_intensity of this Watermark. # noqa: E501 :type: int """ self._watermark_intensity = watermark_intensity def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(Watermark, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, Watermark): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
36.217391
314
0.653716
[ "BSD-2-Clause" ]
Layer8Err/laserfiche-api
laserfiche_api/models/watermark.py
9,163
Python
#!/usr/bin/env python # -*- coding: utf-8 -*- # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: # pylint: disable=no-member # # @Author: oesteban # @Date: 2016-02-23 19:25:39 # @Email: [email protected] # @Last Modified by: oesteban # @Last Modified time: 2016-02-29 11:43:16 """ Computation of the quality assessment measures on functional MRI """ import os.path as op import numpy as np import nibabel as nb from nitime import algorithms as nta import scipy def gsr(epi_data, mask, direction="y", ref_file=None, out_file=None): """ Computes the :abbr:`GSR (ghost to signal ratio)` [Giannelli2010]_. The procedure is as follows: #. Create a Nyquist ghost mask by circle-shifting the original mask by :math:`N/2`. #. Rotate by :math:`N/2` #. Remove the intersection with the original mask #. Generate a non-ghost background #. Calculate the :abbr:`GSR (ghost to signal ratio)` .. warning :: This should be used with EPI images for which the phase encoding direction is known. :param str epi_file: path to epi file :param str mask_file: path to brain mask :param str direction: the direction of phase encoding (x, y, all) :return: the computed gsr """ direction = direction.lower() if direction[-1] not in ['x', 'y', 'all']: raise Exception("Unknown direction %s, should be one of x, -x, y, -y, all" % direction) if direction == 'all': result = [] for newdir in ['x', 'y']: ofile = None if out_file is not None: fname, ext = op.splitext(ofile) if ext == '.gz': fname, ext2 = op.splitext(fname) ext = ext2 + ext ofile = '%s_%s%s' % (fname, newdir, ext) result += [gsr(epi_data, mask, newdir, ref_file=ref_file, out_file=ofile)] return result # Step 1 n2_mask = np.zeros_like(mask) # Step 2 if direction == "x": n2lim = np.floor(mask.shape[0]/2) n2_mask[:n2lim, :, :] = mask[n2lim:(n2lim*2), :, :] n2_mask[n2lim:(n2lim*2), :, :] = mask[:n2lim, :, :] elif direction == "y": n2lim = np.floor(mask.shape[1]/2) n2_mask[:, :n2lim, :] = mask[:, n2lim:(n2lim*2), :] n2_mask[:, n2lim:(n2lim*2), :] = mask[:, :n2lim, :] elif direction == "z": n2lim = np.floor(mask.shape[2]/2) n2_mask[:, :, :n2lim] = mask[:, :, n2lim:(n2lim*2)] n2_mask[:, :, n2lim:(n2lim*2)] = mask[:, :, :n2lim] # Step 3 n2_mask = n2_mask * (1-mask) # Step 4: non-ghost background region is labeled as 2 n2_mask = n2_mask + 2 * (1 - n2_mask - mask) # Save mask if ref_file is not None and out_file is not None: ref = nb.load(ref_file) out = nb.Nifti1Image(n2_mask, ref.get_affine(), ref.get_header()) out.to_filename(out_file) # Step 5: signal is the entire foreground image ghost = epi_data[n2_mask == 1].mean() - epi_data[n2_mask == 2].mean() signal = epi_data[n2_mask == 0].mean() return float(ghost/signal) def dvars(func, mask, output_all=False, out_file=None): """ Compute the mean :abbr:`DVARS (D referring to temporal derivative of timecourses, VARS referring to RMS variance over voxels)` [Power2012]_. Particularly, the *standardized* :abbr:`DVARS (D referring to temporal derivative of timecourses, VARS referring to RMS variance over voxels)` [Nichols2013]_ are computed. .. note:: Implementation details Uses the implementation of the `Yule-Walker equations from nitime <http://nipy.org/nitime/api/generated/nitime.algorithms.autoregressive.html\ #nitime.algorithms.autoregressive.AR_est_YW>`_ for the :abbr:`AR (auto-regressive)` filtering of the fMRI signal. :param numpy.ndarray func: functional data, after head-motion-correction. :param numpy.ndarray mask: a 3D mask of the brain :param bool output_all: write out all dvars :param str out_file: a path to which the standardized dvars should be saved. :return: the standardized DVARS """ if len(func.shape) != 4: raise RuntimeError( "Input fMRI dataset should be 4-dimensional" % func) # Remove zero-variance voxels across time axis zv_mask = zero_variance(func, mask) idx = np.where(zv_mask > 0) mfunc = func[idx[0], idx[1], idx[2], :] # Robust standard deviation func_sd = (np.percentile(mfunc, 75) - np.percentile(mfunc, 25)) / 1.349 # Demean mfunc -= mfunc.mean(axis=1)[..., np.newaxis] # AR1 ak_coeffs = np.apply_along_axis(nta.AR_est_YW, 1, mfunc, 1) # Predicted standard deviation of temporal derivative func_sd_pd = np.squeeze(np.sqrt((2 * (1 - ak_coeffs[:, 0])).tolist()) * func_sd) diff_sd_mean = func_sd_pd[func_sd_pd > 0].mean() # Compute temporal difference time series func_diff = np.diff(mfunc, axis=1) # DVARS (no standardization) dvars_nstd = func_diff.std(axis=0) # standardization dvars_stdz = dvars_nstd / diff_sd_mean # voxelwise standardization diff_vx_stdz = func_diff / np.array([func_sd_pd] * func_diff.shape[-1]).T dvars_vx_stdz = diff_vx_stdz.std(1, ddof=1) if output_all: gendvars = np.vstack((dvars_stdz, dvars_nstd, dvars_vx_stdz)) else: gendvars = dvars_stdz.reshape(len(dvars_stdz), 1) if out_file is not None: np.savetxt(out_file, gendvars, fmt='%.12f') return gendvars def fd_jenkinson(in_file, rmax=80., out_file=None): """ Compute the :abbr:`FD (framewise displacement)` [Jenkinson2002]_ on a 4D dataset, after ``3dvolreg`` has been executed (generally a file named ``*.affmat12.1D``). :param str in_file: path to epi file :param float rmax: the default radius (as in FSL) of a sphere represents the brain in which the angular displacements are projected. :param str out_file: a path for the output file with the FD :return: the output file with the FD, and the average FD along the time series :rtype: tuple(str, float) .. note :: :code:`infile` should have one 3dvolreg affine matrix in one row - NOT the motion parameters """ import sys import math if out_file is None: fname, ext = op.splitext(op.basename(in_file)) out_file = op.abspath('%s_fdfile%s' % (fname, ext)) # if in_file (coordinate_transformation) is actually the rel_mean output # of the MCFLIRT command, forward that file if 'rel.rms' in in_file: return in_file pm_ = np.genfromtxt(in_file) original_shape = pm_.shape pm = np.zeros((pm_.shape[0], pm_.shape[1] + 4)) pm[:, :original_shape[1]] = pm_ pm[:, original_shape[1]:] = [0.0, 0.0, 0.0, 1.0] # rigid body transformation matrix T_rb_prev = np.matrix(np.eye(4)) flag = 0 X = [0] # First timepoint for i in range(0, pm.shape[0]): # making use of the fact that the order of aff12 matrix is "row-by-row" T_rb = np.matrix(pm[i].reshape(4, 4)) if flag == 0: flag = 1 else: M = np.dot(T_rb, T_rb_prev.I) - np.eye(4) A = M[0:3, 0:3] b = M[0:3, 3] FD_J = math.sqrt( (rmax * rmax / 5) * np.trace(np.dot(A.T, A)) + np.dot(b.T, b)) X.append(FD_J) T_rb_prev = T_rb np.savetxt(out_file, X) return out_file def gcor(func, mask): """ Compute the :abbr:`GCOR (global correlation)`. :param numpy.ndarray func: input fMRI dataset, after motion correction :param numpy.ndarray mask: 3D brain mask :return: the computed GCOR value """ # Remove zero-variance voxels across time axis tv_mask = zero_variance(func, mask) idx = np.where(tv_mask > 0) zscores = scipy.stats.mstats.zscore(func[idx[0], idx[1], idx[2], :], axis=1) avg_ts = zscores.mean(axis=0) return float(avg_ts.transpose().dot(avg_ts) / len(avg_ts)) def zero_variance(func, mask): """ Mask out voxels with zero variance across t-axis :param numpy.ndarray func: input fMRI dataset, after motion correction :param numpy.ndarray mask: 3D brain mask :return: the 3D mask of voxels with nonzero variance across :math:`t`. :rtype: numpy.ndarray """ idx = np.where(mask > 0) func = func[idx[0], idx[1], idx[2], :] tvariance = func.var(axis=1) tv_mask = np.zeros_like(tvariance) tv_mask[tvariance > 0] = 1 newmask = np.zeros_like(mask) newmask[idx] = tv_mask return newmask
31.078292
89
0.620749
[ "Apache-2.0" ]
amakropoulos/structural-pipeline-measures
packages/structural_dhcp_mriqc/structural_dhcp_mriqc/qc/functional.py
8,733
Python
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): """Run administrative tasks.""" os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'tutotrial.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
28.913043
73
0.679699
[ "BSD-3-Clause" ]
aiueocode/djangorest
tutorial/manage.py
665
Python
import os from dominate import document import dominate.tags as tags import shlex import subprocess as sp from tqdm.auto import tqdm style = ( """ #myInput { background-image: url('/css/searchicon.png'); /* Add a search icon to input */ background-position: 10px 12px; /* Position the search icon */ background-repeat: no-repeat; /* Do not repeat the icon image */ width: 100%; /* Full-width */ font-size: 16px; /* Increase font-size */ padding: 12px 20px 12px 40px; /* Add some padding */ border: 1px solid #ddd; /* Add a grey border */ margin-bottom: 12px; /* Add some space below the input */ } #myUL { /* Remove default list styling */ list-style-type: none; padding: 0; margin: 0; } #myUL li a { border: 1px solid #ddd; /* Add a border to all links */ margin-top: -1px; /* Prevent double borders */ background-color: #f6f6f6; /* Grey background color */ padding: 12px; /* Add some padding */ text-decoration: none; /* Remove default text underline */ font-size: 18px; /* Increase the font-size */ color: black; /* Add a black text color */ display: block; /* Make it into a block element to fill the whole list */ } #myUL li a:hover:not(.header) { background-color: #eee; /* Add a hover effect to all links, except for headers */ } """) style2 = ( """ .row { display: flex; } .column { flex: 33.33%; padding: 5px; } """) def runcommand(cmd): p = sp.run(shlex.split(cmd), stdout=sp.PIPE, stderr=sp.PIPE) return p.stdout, p.stderr def generate_html(dirname, outdir, title="images"): if not os.path.exists(outdir): os.makedirs(outdir) doc = document(title=title) with doc.head: tags.style(style) with doc: with tags.ul(id="myUL"): for category in os.listdir(dirname): tags.li(tags.a(category, href=category)) with open(os.path.join(outdir, "index.html"), 'w') as f: f.write(doc.render()) pbar1 = tqdm(os.listdir(dirname), dynamic_ncols=False) for category in pbar1: pbar1.set_description(category) if not os.path.exists(os.path.join(outdir, category)): os.makedirs(os.path.join(outdir, category)) subdoc = document(title=category) with subdoc.head: tags.style(style) with subdoc: tags.a("back", href="..") with tags.ul(id="myUL"): for subcat in os.listdir(os.path.join(dirname, category)): tags.li(tags.a(subcat, href=subcat)) with open(os.path.join(outdir, category, "index.html"), 'w') as f: f.write(subdoc.render()) pbar2 = tqdm(os.listdir(os.path.join(dirname, category)), dynamic_ncols=False) for subcat in pbar2: pbar2.set_description(subcat) if not os.path.exists(os.path.join(outdir, category, subcat)): os.makedirs(os.path.join(outdir, category, subcat)) ssubdoc = document(title=subcat) with ssubdoc.head: tags.style(style2) imgs = [] pbar3 = tqdm(os.listdir(os.path.join(dirname, category, subcat)), dynamic_ncols=False) for img in pbar3: pbar3.set_description(img) imgpng = img.replace(".pdf", ".png") imgs.append(imgpng) runcommand( "convert -density 150 {} -quality 100 {}".format( os.path.join(dirname, category, subcat, img), os.path.join(outdir, category, subcat, imgpng), ) ) with ssubdoc: tags.a("back", href="..") ncols = 3 for idx in range(0, len(imgs), ncols): with tags.div(_class="row"): final = idx+ncols if final>len(imgs)-1: final = len(imgs)-1 for sidx in range(idx, final): with tags.div(_class="column"): tags.img( src=imgs[sidx], alt=os.path.splitext(imgs[sidx])[0], style="height:500px", ) with open(os.path.join(outdir, category, subcat, "index.html"), 'w') as f: f.write(ssubdoc.render())
32.224638
98
0.54756
[ "MIT" ]
shane-breeze/zdb-analysis
zdb/drawing/generate_html.py
4,447
Python
import torch import torch.nn.functional as F import argparse import cv2 import numpy as np from glob import glob import matplotlib.pyplot as plt num_classes = 2 img_height, img_width = 64, 64#572, 572 out_height, out_width = 64, 64#388, 388 GPU = False torch.manual_seed(0) class Mynet(torch.nn.Module): def __init__(self): super(Mynet, self).__init__() # necessarry? enc1 = [] enc1.append(torch.nn.Conv2d(3, 32, kernel_size=3, padding=1, stride=1)) enc1.append(torch.nn.BatchNorm2d(32)) enc1.append(torch.nn.ReLU()) enc1.append(torch.nn.Conv2d(32, 32, kernel_size=3, padding=1, stride=1)) enc1.append(torch.nn.BatchNorm2d(32)) enc1.append(torch.nn.ReLU()) enc1.append(torch.nn.Conv2d(32, 32, kernel_size=3, padding=1, stride=1)) enc1.append(torch.nn.BatchNorm2d(32)) enc1.append(torch.nn.ReLU()) enc1.append(torch.nn.Conv2d(32, 32, kernel_size=3, padding=1, stride=1)) enc1.append(torch.nn.BatchNorm2d(32)) enc1.append(torch.nn.ReLU()) enc1.append(torch.nn.Conv2d(32, 32, kernel_size=3, padding=1, stride=1)) enc1.append(torch.nn.BatchNorm2d(32)) enc1.append(torch.nn.ReLU()) enc1.append(torch.nn.Conv2d(32, 32, kernel_size=3, padding=1, stride=1)) enc1.append(torch.nn.BatchNorm2d(32)) enc1.append(torch.nn.ReLU()) self.enc1 = torch.nn.Sequential(*enc1) self.out = torch.nn.Conv2d(32, 1, kernel_size, padding=0, stride=1)
30.979592
80
0.656126
[ "MIT" ]
skn047/DeepLearningMugenKnock
Question_semaseg/my_answers/bin_loss_pytorch.py
1,518
Python
# -*- coding: utf-8 -*- """ celery.result ~~~~~~~~~~~~~ Task results/state and groups of results. """ from __future__ import absolute_import import time import warnings from collections import deque from contextlib import contextmanager from copy import copy from kombu.utils import cached_property from kombu.utils.compat import OrderedDict from . import current_app from . import states from ._state import _set_task_join_will_block, task_join_will_block from .app import app_or_default from .datastructures import DependencyGraph, GraphFormatter from .exceptions import IncompleteStream, TimeoutError from .five import items, range, string_t, monotonic from .utils import deprecated __all__ = ['ResultBase', 'AsyncResult', 'ResultSet', 'GroupResult', 'EagerResult', 'result_from_tuple'] E_WOULDBLOCK = """\ Never call result.get() within a task! See http://docs.celeryq.org/en/latest/userguide/tasks.html\ #task-synchronous-subtasks In Celery 3.2 this will result in an exception being raised instead of just being a warning. """ def assert_will_not_block(): if task_join_will_block(): warnings.warn(RuntimeWarning(E_WOULDBLOCK)) @contextmanager def allow_join_result(): reset_value = task_join_will_block() _set_task_join_will_block(False) try: yield finally: _set_task_join_will_block(reset_value) class ResultBase(object): """Base class for all results""" #: Parent result (if part of a chain) parent = None class AsyncResult(ResultBase): """Query task state. :param id: see :attr:`id`. :keyword backend: see :attr:`backend`. """ app = None #: Error raised for timeouts. TimeoutError = TimeoutError #: The task's UUID. id = None #: The task result backend to use. backend = None def __init__(self, id, backend=None, task_name=None, app=None, parent=None): self.app = app_or_default(app or self.app) self.id = id self.backend = backend or self.app.backend self.task_name = task_name self.parent = parent self._cache = None def as_tuple(self): parent = self.parent return (self.id, parent and parent.as_tuple()), None serializable = as_tuple # XXX compat def forget(self): """Forget about (and possibly remove the result of) this task.""" self._cache = None self.backend.forget(self.id) def revoke(self, connection=None, terminate=False, signal=None, wait=False, timeout=None): """Send revoke signal to all workers. Any worker receiving the task, or having reserved the task, *must* ignore it. :keyword terminate: Also terminate the process currently working on the task (if any). :keyword signal: Name of signal to send to process if terminate. Default is TERM. :keyword wait: Wait for replies from workers. Will wait for 1 second by default or you can specify a custom ``timeout``. :keyword timeout: Time in seconds to wait for replies if ``wait`` enabled. """ self.app.control.revoke(self.id, connection=connection, terminate=terminate, signal=signal, reply=wait, timeout=timeout) def get(self, timeout=None, propagate=True, interval=0.5, no_ack=True, follow_parents=True, EXCEPTION_STATES=states.EXCEPTION_STATES, PROPAGATE_STATES=states.PROPAGATE_STATES): """Wait until task is ready, and return its result. .. warning:: Waiting for tasks within a task may lead to deadlocks. Please read :ref:`task-synchronous-subtasks`. :keyword timeout: How long to wait, in seconds, before the operation times out. :keyword propagate: Re-raise exception if the task failed. :keyword interval: Time to wait (in seconds) before retrying to retrieve the result. Note that this does not have any effect when using the amqp result store backend, as it does not use polling. :keyword no_ack: Enable amqp no ack (automatically acknowledge message). If this is :const:`False` then the message will **not be acked**. :keyword follow_parents: Reraise any exception raised by parent task. :raises celery.exceptions.TimeoutError: if `timeout` is not :const:`None` and the result does not arrive within `timeout` seconds. If the remote call raised an exception then that exception will be re-raised. """ assert_will_not_block() on_interval = None if follow_parents and propagate and self.parent: on_interval = self._maybe_reraise_parent_error on_interval() if self._cache: if propagate: self.maybe_reraise() return self.result meta = self.backend.wait_for( self.id, timeout=timeout, interval=interval, on_interval=on_interval, no_ack=no_ack, ) if meta: self._maybe_set_cache(meta) status = meta['status'] if status in PROPAGATE_STATES and propagate: raise meta['result'] return meta['result'] wait = get # deprecated alias to :meth:`get`. def _maybe_reraise_parent_error(self): for node in reversed(list(self._parents())): node.maybe_reraise() def _parents(self): node = self.parent while node: yield node node = node.parent def collect(self, intermediate=False, **kwargs): """Iterator, like :meth:`get` will wait for the task to complete, but will also follow :class:`AsyncResult` and :class:`ResultSet` returned by the task, yielding ``(result, value)`` tuples for each result in the tree. An example would be having the following tasks: .. code-block:: python from celery import group from proj.celery import app @app.task(trail=True) def A(how_many): return group(B.s(i) for i in range(how_many))() @app.task(trail=True) def B(i): return pow2.delay(i) @app.task(trail=True) def pow2(i): return i ** 2 Note that the ``trail`` option must be enabled so that the list of children is stored in ``result.children``. This is the default but enabled explicitly for illustration. Calling :meth:`collect` would return: .. code-block:: python >>> from celery.result import ResultBase >>> from proj.tasks import A >>> result = A.delay(10) >>> [v for v in result.collect() ... if not isinstance(v, (ResultBase, tuple))] [0, 1, 4, 9, 16, 25, 36, 49, 64, 81] """ for _, R in self.iterdeps(intermediate=intermediate): yield R, R.get(**kwargs) def get_leaf(self): value = None for _, R in self.iterdeps(): value = R.get() return value def iterdeps(self, intermediate=False): stack = deque([(None, self)]) while stack: parent, node = stack.popleft() yield parent, node if node.ready(): stack.extend((node, child) for child in node.children or []) else: if not intermediate: raise IncompleteStream() def ready(self): """Returns :const:`True` if the task has been executed. If the task is still running, pending, or is waiting for retry then :const:`False` is returned. """ return self.state in self.backend.READY_STATES def successful(self): """Returns :const:`True` if the task executed successfully.""" return self.state == states.SUCCESS def failed(self): """Returns :const:`True` if the task failed.""" return self.state == states.FAILURE def maybe_reraise(self): if self.state in states.PROPAGATE_STATES: raise self.result def build_graph(self, intermediate=False, formatter=None): graph = DependencyGraph( formatter=formatter or GraphFormatter(root=self.id, shape='oval'), ) for parent, node in self.iterdeps(intermediate=intermediate): graph.add_arc(node) if parent: graph.add_edge(parent, node) return graph def __str__(self): """`str(self) -> self.id`""" return str(self.id) def __hash__(self): """`hash(self) -> hash(self.id)`""" return hash(self.id) def __repr__(self): return '<{0}: {1}>'.format(type(self).__name__, self.id) def __eq__(self, other): if isinstance(other, AsyncResult): return other.id == self.id elif isinstance(other, string_t): return other == self.id return NotImplemented def __ne__(self, other): return not self.__eq__(other) def __copy__(self): return self.__class__( self.id, self.backend, self.task_name, self.app, self.parent, ) def __reduce__(self): return self.__class__, self.__reduce_args__() def __reduce_args__(self): return self.id, self.backend, self.task_name, None, self.parent def __del__(self): self._cache = None @cached_property def graph(self): return self.build_graph() @property def supports_native_join(self): return self.backend.supports_native_join @property def children(self): return self._get_task_meta().get('children') def _maybe_set_cache(self, meta): if meta: state = meta['status'] if state == states.SUCCESS or state in states.PROPAGATE_STATES: return self._set_cache(meta) return meta def _get_task_meta(self): if self._cache is None: return self._maybe_set_cache(self.backend.get_task_meta(self.id)) return self._cache def _set_cache(self, d): children = d.get('children') if children: d['children'] = [ result_from_tuple(child, self.app) for child in children ] self._cache = d return d @property def result(self): """When the task has been executed, this contains the return value. If the task raised an exception, this will be the exception instance.""" return self._get_task_meta()['result'] info = result @property def traceback(self): """Get the traceback of a failed task.""" return self._get_task_meta().get('traceback') @property def state(self): """The tasks current state. Possible values includes: *PENDING* The task is waiting for execution. *STARTED* The task has been started. *RETRY* The task is to be retried, possibly because of failure. *FAILURE* The task raised an exception, or has exceeded the retry limit. The :attr:`result` attribute then contains the exception raised by the task. *SUCCESS* The task executed successfully. The :attr:`result` attribute then contains the tasks return value. """ return self._get_task_meta()['status'] status = state @property def task_id(self): """compat alias to :attr:`id`""" return self.id @task_id.setter # noqa def task_id(self, id): self.id = id BaseAsyncResult = AsyncResult # for backwards compatibility. class ResultSet(ResultBase): """Working with more than one result. :param results: List of result instances. """ app = None #: List of results in in the set. results = None def __init__(self, results, app=None, **kwargs): self.app = app_or_default(app or self.app) self.results = results def add(self, result): """Add :class:`AsyncResult` as a new member of the set. Does nothing if the result is already a member. """ if result not in self.results: self.results.append(result) def remove(self, result): """Remove result from the set; it must be a member. :raises KeyError: if the result is not a member. """ if isinstance(result, string_t): result = self.app.AsyncResult(result) try: self.results.remove(result) except ValueError: raise KeyError(result) def discard(self, result): """Remove result from the set if it is a member. If it is not a member, do nothing. """ try: self.remove(result) except KeyError: pass def update(self, results): """Update set with the union of itself and an iterable with results.""" self.results.extend(r for r in results if r not in self.results) def clear(self): """Remove all results from this set.""" self.results[:] = [] # don't create new list. def successful(self): """Was all of the tasks successful? :returns: :const:`True` if all of the tasks finished successfully (i.e. did not raise an exception). """ return all(result.successful() for result in self.results) def failed(self): """Did any of the tasks fail? :returns: :const:`True` if one of the tasks failed. (i.e., raised an exception) """ return any(result.failed() for result in self.results) def maybe_reraise(self): for result in self.results: result.maybe_reraise() def waiting(self): """Are any of the tasks incomplete? :returns: :const:`True` if one of the tasks are still waiting for execution. """ return any(not result.ready() for result in self.results) def ready(self): """Did all of the tasks complete? (either by success of failure). :returns: :const:`True` if all of the tasks has been executed. """ return all(result.ready() for result in self.results) def completed_count(self): """Task completion count. :returns: the number of tasks completed. """ return sum(int(result.successful()) for result in self.results) def forget(self): """Forget about (and possible remove the result of) all the tasks.""" for result in self.results: result.forget() def revoke(self, connection=None, terminate=False, signal=None, wait=False, timeout=None): """Send revoke signal to all workers for all tasks in the set. :keyword terminate: Also terminate the process currently working on the task (if any). :keyword signal: Name of signal to send to process if terminate. Default is TERM. :keyword wait: Wait for replies from worker. Will wait for 1 second by default or you can specify a custom ``timeout``. :keyword timeout: Time in seconds to wait for replies if ``wait`` enabled. """ self.app.control.revoke([r.id for r in self.results], connection=connection, timeout=timeout, terminate=terminate, signal=signal, reply=wait) def __iter__(self): return iter(self.results) def __getitem__(self, index): """`res[i] -> res.results[i]`""" return self.results[index] @deprecated('3.2', '3.3') def iterate(self, timeout=None, propagate=True, interval=0.5): """Deprecated method, use :meth:`get` with a callback argument.""" elapsed = 0.0 results = OrderedDict((result.id, copy(result)) for result in self.results) while results: removed = set() for task_id, result in items(results): if result.ready(): yield result.get(timeout=timeout and timeout - elapsed, propagate=propagate) removed.add(task_id) else: if result.backend.subpolling_interval: time.sleep(result.backend.subpolling_interval) for task_id in removed: results.pop(task_id, None) time.sleep(interval) elapsed += interval if timeout and elapsed >= timeout: raise TimeoutError('The operation timed out') def get(self, timeout=None, propagate=True, interval=0.5, callback=None, no_ack=True): """See :meth:`join` This is here for API compatibility with :class:`AsyncResult`, in addition it uses :meth:`join_native` if available for the current result backend. """ return (self.join_native if self.supports_native_join else self.join)( timeout=timeout, propagate=propagate, interval=interval, callback=callback, no_ack=no_ack) def join(self, timeout=None, propagate=True, interval=0.5, callback=None, no_ack=True): """Gathers the results of all tasks as a list in order. .. note:: This can be an expensive operation for result store backends that must resort to polling (e.g. database). You should consider using :meth:`join_native` if your backend supports it. .. warning:: Waiting for tasks within a task may lead to deadlocks. Please see :ref:`task-synchronous-subtasks`. :keyword timeout: The number of seconds to wait for results before the operation times out. :keyword propagate: If any of the tasks raises an exception, the exception will be re-raised. :keyword interval: Time to wait (in seconds) before retrying to retrieve a result from the set. Note that this does not have any effect when using the amqp result store backend, as it does not use polling. :keyword callback: Optional callback to be called for every result received. Must have signature ``(task_id, value)`` No results will be returned by this function if a callback is specified. The order of results is also arbitrary when a callback is used. To get access to the result object for a particular id you will have to generate an index first: ``index = {r.id: r for r in gres.results.values()}`` Or you can create new result objects on the fly: ``result = app.AsyncResult(task_id)`` (both will take advantage of the backend cache anyway). :keyword no_ack: Automatic message acknowledgement (Note that if this is set to :const:`False` then the messages *will not be acknowledged*). :raises celery.exceptions.TimeoutError: if ``timeout`` is not :const:`None` and the operation takes longer than ``timeout`` seconds. """ assert_will_not_block() time_start = monotonic() remaining = None results = [] for result in self.results: remaining = None if timeout: remaining = timeout - (monotonic() - time_start) if remaining <= 0.0: raise TimeoutError('join operation timed out') value = result.get( timeout=remaining, propagate=propagate, interval=interval, no_ack=no_ack, ) if callback: callback(result.id, value) else: results.append(value) return results def iter_native(self, timeout=None, interval=0.5, no_ack=True): """Backend optimized version of :meth:`iterate`. .. versionadded:: 2.2 Note that this does not support collecting the results for different task types using different backends. This is currently only supported by the amqp, Redis and cache result backends. """ results = self.results if not results: return iter([]) return self.backend.get_many( set(r.id for r in results), timeout=timeout, interval=interval, no_ack=no_ack, ) def join_native(self, timeout=None, propagate=True, interval=0.5, callback=None, no_ack=True): """Backend optimized version of :meth:`join`. .. versionadded:: 2.2 Note that this does not support collecting the results for different task types using different backends. This is currently only supported by the amqp, Redis and cache result backends. """ assert_will_not_block() order_index = None if callback else dict( (result.id, i) for i, result in enumerate(self.results) ) acc = None if callback else [None for _ in range(len(self))] for task_id, meta in self.iter_native(timeout, interval, no_ack): value = meta['result'] if propagate and meta['status'] in states.PROPAGATE_STATES: raise value if callback: callback(task_id, value) else: acc[order_index[task_id]] = value return acc def _failed_join_report(self): return (res for res in self.results if res.backend.is_cached(res.id) and res.state in states.PROPAGATE_STATES) def __len__(self): return len(self.results) def __eq__(self, other): if isinstance(other, ResultSet): return other.results == self.results return NotImplemented def __ne__(self, other): return not self.__eq__(other) def __repr__(self): return '<{0}: [{1}]>'.format(type(self).__name__, ', '.join(r.id for r in self.results)) @property def subtasks(self): """Deprecated alias to :attr:`results`.""" return self.results @property def supports_native_join(self): try: return self.results[0].supports_native_join except IndexError: pass @property def backend(self): return self.app.backend if self.app else self.results[0].backend class GroupResult(ResultSet): """Like :class:`ResultSet`, but with an associated id. This type is returned by :class:`~celery.group`, and the deprecated TaskSet, meth:`~celery.task.TaskSet.apply_async` method. It enables inspection of the tasks state and return values as a single entity. :param id: The id of the group. :param results: List of result instances. """ #: The UUID of the group. id = None #: List/iterator of results in the group results = None def __init__(self, id=None, results=None, **kwargs): self.id = id ResultSet.__init__(self, results, **kwargs) def save(self, backend=None): """Save group-result for later retrieval using :meth:`restore`. Example:: >>> def save_and_restore(result): ... result.save() ... result = GroupResult.restore(result.id) """ return (backend or self.app.backend).save_group(self.id, self) def delete(self, backend=None): """Remove this result if it was previously saved.""" (backend or self.app.backend).delete_group(self.id) def __reduce__(self): return self.__class__, self.__reduce_args__() def __reduce_args__(self): return self.id, self.results def __eq__(self, other): if isinstance(other, GroupResult): return other.id == self.id and other.results == self.results return NotImplemented def __ne__(self, other): return not self.__eq__(other) def __repr__(self): return '<{0}: {1} [{2}]>'.format(type(self).__name__, self.id, ', '.join(r.id for r in self.results)) def as_tuple(self): return self.id, [r.as_tuple() for r in self.results] serializable = as_tuple # XXX compat @property def children(self): return self.results @classmethod def restore(self, id, backend=None): """Restore previously saved group result.""" return ( backend or (self.app.backend if self.app else current_app.backend) ).restore_group(id) class TaskSetResult(GroupResult): """Deprecated version of :class:`GroupResult`""" def __init__(self, taskset_id, results=None, **kwargs): # XXX supports the taskset_id kwarg. # XXX previously the "results" arg was named "subtasks". if 'subtasks' in kwargs: results = kwargs['subtasks'] GroupResult.__init__(self, taskset_id, results, **kwargs) def itersubtasks(self): """Deprecated. Use ``iter(self.results)`` instead.""" return iter(self.results) @property def total(self): """Deprecated: Use ``len(r)``.""" return len(self) @property def taskset_id(self): """compat alias to :attr:`self.id`""" return self.id @taskset_id.setter # noqa def taskset_id(self, id): self.id = id class EagerResult(AsyncResult): """Result that we know has already been executed.""" task_name = None def __init__(self, id, ret_value, state, traceback=None): self.id = id self._result = ret_value self._state = state self._traceback = traceback def _get_task_meta(self): return {'task_id': self.id, 'result': self._result, 'status': self._state, 'traceback': self._traceback} def __reduce__(self): return self.__class__, self.__reduce_args__() def __reduce_args__(self): return (self.id, self._result, self._state, self._traceback) def __copy__(self): cls, args = self.__reduce__() return cls(*args) def ready(self): return True def get(self, timeout=None, propagate=True, **kwargs): if self.successful(): return self.result elif self.state in states.PROPAGATE_STATES: if propagate: raise self.result return self.result wait = get def forget(self): pass def revoke(self, *args, **kwargs): self._state = states.REVOKED def __repr__(self): return '<EagerResult: {0.id}>'.format(self) @property def result(self): """The tasks return value""" return self._result @property def state(self): """The tasks state.""" return self._state status = state @property def traceback(self): """The traceback if the task failed.""" return self._traceback @property def supports_native_join(self): return False def result_from_tuple(r, app=None): # earlier backends may just pickle, so check if # result is already prepared. app = app_or_default(app) Result = app.AsyncResult if not isinstance(r, ResultBase): res, nodes = r if nodes: return app.GroupResult( res, [result_from_tuple(child, app) for child in nodes], ) # previously did not include parent id, parent = res if isinstance(res, (list, tuple)) else (res, None) if parent: parent = result_from_tuple(parent, app) return Result(id, parent=parent) return r from_serializable = result_from_tuple # XXX compat
30.976139
79
0.591071
[ "MIT" ]
CharleyFarley/ovvio
venv/lib/python2.7/site-packages/celery/result.py
28,560
Python
from django.views.generic import ( ListView, DetailView, CreateView, UpdateView, DeleteView, ) from django.urls import reverse_lazy from .models import Pokemon class PokemonListView(ListView): template_name = "pages/pokemon_list.html" model = Pokemon class PokemonDetailView(DetailView): template_name = "pages/pokemon_detail.html" model = Pokemon class PokemonCreateView(CreateView): template_name = "pages/pokemon_create.html" model = Pokemon fields = ['name', 'description', 'owner'] class PokemonUpdateView(UpdateView): template_name = "pages/pokemon_update.html" model = Pokemon fields = ['name', 'description', 'owner'] class PokemonDeleteView(DeleteView): template_name = "pages/pokemon_delete.html" model = Pokemon success_url = reverse_lazy("pokemon_list")
25.545455
47
0.725979
[ "MIT" ]
danieldills/pokemon-django
pokemon/views.py
843
Python
import tensorflow as tf from tensorflow.keras.models import Model import pandas as pd import matplotlib.pyplot as plt import os import logging from .common import create_directories def get_prepared_model(stage: str, no_classes: int, input_shape: list, loss: str, optimizer: str, metrics: list) -> \ Model: """Function creates ANN model and compile. Args: stage ([str]): stage of experiment no_classes ([INT]): No of classes for classification input_shape ([int, int]): Input shape for model's input layer loss ([str]): Loss function for model optimizer ([str]): Optimizer for model metrics ([str]): Metrics to watch while training Returns: model: ANN demo model """ # Define layers LAYERS = [] BASE_LAYERS = [ tf.keras.layers.Flatten(input_shape=input_shape, name='input_layer'), tf.keras.layers.Dense(units=392, activation='relu', name='hidden1'), tf.keras.layers.Dense(units=196, activation='relu', name='hidden2'), tf.keras.layers.Dense(units=no_classes, activation='softmax', name='output_layer') ] KERNEL_INIT_LAYERS = [ tf.keras.layers.Flatten(input_shape=input_shape, name='input_layer'), tf.keras.layers.Dense(units=392, activation='relu', name='hidden1', kernel_initializer='glorot_uniform', bias_initializer='zeros'), tf.keras.layers.Dense(units=196, activation='relu', name='hidden2', kernel_initializer='glorot_uniform', bias_initializer='zeros'), tf.keras.layers.Dense(units=no_classes, activation='softmax', name='output_layer') ] BN_BEFORE_LAYERS = [ tf.keras.layers.Flatten(input_shape=input_shape, name='input_layer'), tf.keras.layers.Dense(units=392, name='hidden1', kernel_initializer='glorot_uniform'), tf.keras.layers.BatchNormalization(), tf.keras.layers.Activation('relu'), tf.keras.layers.Dense(units=196, name='hidden2', kernel_initializer='glorot_uniform'), tf.keras.layers.BatchNormalization(), tf.keras.layers.Activation('relu'), tf.keras.layers.Dense(units=no_classes, activation='softmax', name='output_layer') ] BN_AFTER_LAYERS = [ tf.keras.layers.Flatten(input_shape=input_shape, name='input_layer'), tf.keras.layers.Dense(units=392, activation='relu', name='hidden1', kernel_initializer='glorot_uniform', bias_initializer='zeros'), tf.keras.layers.BatchNormalization(), tf.keras.layers.Dense(units=196, activation='relu', name='hidden2', kernel_initializer='glorot_uniform', bias_initializer='zeros'), tf.keras.layers.BatchNormalization(), tf.keras.layers.Dense(units=no_classes, activation='softmax', name='output_layer') ] logging.info("Creating Model..") if stage == 'BASE_MODEL': LAYERS = BASE_LAYERS elif stage == 'KERNEL_INIT_MODEL': LAYERS = KERNEL_INIT_LAYERS elif stage == 'BN_BEFORE_MODEL': LAYERS = BN_BEFORE_LAYERS elif stage == 'BN_AFTER_MODEL': LAYERS = BN_AFTER_LAYERS model_ann = tf.keras.models.Sequential(LAYERS) logging.info("Compiling Model..") model_ann.compile(loss=loss, optimizer=optimizer, metrics=metrics) return model_ann def save_model(model_dir: str, model: Model, model_suffix: str) -> None: """ args: model_dir: directory to save the model model: model object to save model_suffix: Suffix to save the model """ create_directories([model_dir]) model_file = os.path.join(model_dir, f"{model_suffix}.h5") model.save(model_file) logging.info(f"Saved model: {model_file}") def save_history_plot(history, plot_dir: str, stage: str) -> None: """ Args: history: History object for plotting loss/accuracy curves plot_dir: Directory to save plot files stage: Stage name for training """ pd.DataFrame(history.history).plot(figsize=(10, 8)) plt.grid(True) create_directories([plot_dir]) plot_file = os.path.join(plot_dir, stage + "_loss_accuracy.png") plt.savefig(plot_file) logging.info(f"Loss accuracy plot saved: {plot_file}") def get_callbacks(checkpoint_dir: str, tensorboard_logs: str, stage: str) -> list: """ Args: checkpoint_dir: Directory to save the model at checkpoint tensorboard_logs: Directory to save tensorboard logs stage: Stage name for training Returns: callback_list: List of created callbacks """ create_directories([checkpoint_dir, tensorboard_logs]) tensorboard_cb = tf.keras.callbacks.TensorBoard(tensorboard_logs) early_stopping_cb = tf.keras.callbacks.EarlyStopping(patience=3, restore_best_weights=True) ckpt_file_path = os.path.join(checkpoint_dir, f"{stage}_ckpt_model.h5") checkpoint_cb = tf.keras.callbacks.ModelCheckpoint(filepath=ckpt_file_path, save_best_only=True) callback_list = [tensorboard_cb, early_stopping_cb, checkpoint_cb] logging.info(f"Callbacks created: {callback_list}") return callback_list
40.217054
117
0.680802
[ "MIT" ]
iDataAstro/MNIST_CLASSIFICATION
src/utils/model.py
5,188
Python
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ **Project Name:** MakeHuman **Product Home Page:** http://www.makehumancommunity.org/ **Github Code Home Page:** https://github.com/makehumancommunity/ **Authors:** Thomas Larsson, Jonas Hauquier **Copyright(c):** MakeHuman Team 2001-2019 **Licensing:** AGPL3 This file is part of MakeHuman (www.makehumancommunity.org). This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details. You should have received a copy of the GNU Affero General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. Abstract -------- Geometry export """ import math import numpy as np import log from progress import Progress #---------------------------------------------------------------------- # library_geometry #---------------------------------------------------------------------- def writeLibraryGeometry(fp, meshes, config, shapes=None): progress = Progress(len(meshes), None) fp.write('\n <library_geometries>\n') for mIdx,mesh in enumerate(meshes): if shapes is None: shape = None else: shape = shapes[mIdx] writeGeometry(fp, mesh, config, shape) progress.step() fp.write(' </library_geometries>\n') # TODO make shared function, config.getTransform() and mesh.clone(transform) def rotateCoord(coord, config): if config.meshOrientation == 'yUpFaceZ': pass elif config.meshOrientation == 'yUpFaceX': # z,y,-x coord = np.dstack((coord[:,2],coord[:,1],-coord[:,0]))[0] elif config.meshOrientation == 'zUpFaceNegY': # x,z,-y coord = np.dstack((coord[:,0],-coord[:,2],coord[:,1]))[0] elif config.meshOrientation == 'zUpFaceX': # z,x,y coord = np.dstack((coord[:,2],coord[:,0],coord[:,1]))[0] return coord def writeGeometry(fp, mesh, config, shapes=None): progress = Progress() progress(0) coord = mesh.coord + config.offset coord = rotateCoord(coord, config) nVerts = len(coord) fp.write('\n' + ' <geometry id="%sMesh" name="%s">\n' % (mesh.name,mesh.name) + ' <mesh>\n' + ' <source id="%s-Position">\n' % mesh.name + ' <float_array count="%d" id="%s-Position-array">\n' % (3*nVerts,mesh.name) + ' ') fp.write( ''.join([("%.4f %.4f %.4f " % tuple(co)) for co in coord]) ) fp.write('\n' + ' </float_array>\n' + ' <technique_common>\n' + ' <accessor count="%d" source="#%s-Position-array" stride="3">\n' % (nVerts,mesh.name) + ' <param type="float" name="X"></param>\n' + ' <param type="float" name="Y"></param>\n' + ' <param type="float" name="Z"></param>\n' + ' </accessor>\n' + ' </technique_common>\n' + ' </source>\n') progress(0.2) # Normals if config.useNormals: mesh.calcNormals() vnorm = rotateCoord(mesh.vnorm, config) nNormals = len(mesh.vnorm) fp.write( ' <source id="%s-Normals">\n' % mesh.name + ' <float_array count="%d" id="%s-Normals-array">\n' % (3*nNormals,mesh.name) + ' ') fp.write( ''.join([("%.4f %.4f %.4f " % tuple(no)) for no in vnorm]) ) fp.write('\n' + ' </float_array>\n' + ' <technique_common>\n' + ' <accessor count="%d" source="#%s-Normals-array" stride="3">\n' % (nNormals,mesh.name) + ' <param type="float" name="X"></param>\n' + ' <param type="float" name="Y"></param>\n' + ' <param type="float" name="Z"></param>\n' + ' </accessor>\n' + ' </technique_common>\n' + ' </source>\n') progress(0.35) # UV coordinates nUvVerts = len(mesh.texco) fp.write( ' <source id="%s-UV">\n' % mesh.name + ' <float_array count="%d" id="%s-UV-array">\n' % (2*nUvVerts,mesh.name) + ' ') fp.write( ''.join([("%.4f %.4f " % tuple(uv)) for uv in mesh.texco]) ) fp.write('\n' + ' </float_array>\n' + ' <technique_common>\n' + ' <accessor count="%d" source="#%s-UV-array" stride="2">\n' % (nUvVerts,mesh.name) + ' <param type="float" name="S"></param>\n' + ' <param type="float" name="T"></param>\n' + ' </accessor>\n' + ' </technique_common>\n' + ' </source>\n') progress(0.5, 0.7) # Faces fp.write( ' <vertices id="%s-Vertex">\n' % mesh.name + ' <input semantic="POSITION" source="#%s-Position"/>\n' % mesh.name + ' </vertices>\n') checkFaces(mesh, nVerts, nUvVerts) progress(0.7, 0.9) writePolylist(fp, mesh, config) progress(0.9, 0.99) fp.write( ' </mesh>\n' + ' </geometry>\n') if shapes is not None: shaprog = Progress(len(shapes)) for name,shape in shapes: writeShapeKey(fp, name, shape, mesh, config) shaprog.step() progress(1) def writeShapeKey(fp, name, shape, mesh, config): if len(shape.verts) == 0: log.debug("Shapekey %s has zero verts. Ignored" % name) return progress = Progress() # Verts progress(0) target = mesh.coord.copy() target[:] += config.offset target[shape.verts] += shape.data[np.s_[...]] target = rotateCoord(config.scale*target, config) nVerts = len(target) fp.write( ' <geometry id="%sMeshMorph_%s" name="%s">\n' % (mesh.name, name, name) + ' <mesh>\n' + ' <source id="%sMeshMorph_%s-positions">\n' % (mesh.name, name) + ' <float_array id="%sMeshMorph_%s-positions-array" count="%d">\n' % (mesh.name, name, 3*nVerts) + ' ') fp.write( ''.join([("%.4f %.4f %.4f " % tuple(co)) for co in target]) ) fp.write('\n' + ' </float_array>\n' + ' <technique_common>\n' + ' <accessor source="#%sMeshMorph_%s-positions-array" count="%d" stride="3">\n' % (mesh.name, name, nVerts) + ' <param name="X" type="float"/>\n' + ' <param name="Y" type="float"/>\n' + ' <param name="Z" type="float"/>\n' + ' </accessor>\n' + ' </technique_common>\n' + ' </source>\n') progress(0.3) # Polylist nFaces = len(mesh.fvert) fp.write( ' <vertices id="%sMeshMorph_%s-vertices">\n' % (mesh.name, name) + ' <input semantic="POSITION" source="#%sMeshMorph_%s-positions"/>\n' % (mesh.name, name) + ' </vertices>\n' + ' <polylist count="%d">\n' % nFaces + ' <input semantic="VERTEX" source="#%sMeshMorph_%s-vertices" offset="0"/>\n' % (mesh.name, name) + #' <input semantic="NORMAL" source="#%sMeshMorph_%s-normals" offset="1"/>\n' % (mesh.name, name) + ' <vcount>') fp.write( ''.join(["4 " for fv in mesh.fvert]) ) fp.write('\n' + ' </vcount>\n' + ' <p>') fp.write( ''.join([("%d %d %d %d " % tuple(fv)) for fv in mesh.fvert]) ) fp.write('\n' + ' </p>\n' + ' </polylist>\n' + ' </mesh>\n' + ' </geometry>\n') progress(1) # # writePolylist(fp, mesh, config): # def writePolylist(fp, mesh, config): progress = Progress(2) nFaces = len(mesh.fvert) fp.write( ' <polylist count="%d">\n' % nFaces + ' <input offset="0" semantic="VERTEX" source="#%s-Vertex"/>\n' % mesh.name) if config.useNormals: fp.write( ' <input offset="1" semantic="NORMAL" source="#%s-Normals"/>\n' % mesh.name + ' <input offset="2" semantic="TEXCOORD" source="#%s-UV"/>\n' % mesh.name) else: fp.write( ' <input offset="1" semantic="TEXCOORD" source="#%s-UV"/>\n' % mesh.name) vc = '' p = '' # get number of vertices per face r = mesh.vertsPerFaceForExport for fn,fv in enumerate(mesh.fvert): fuv = mesh.fuvs[fn] vc += str(r) + ' ' if config.useNormals: p += ''.join([("%d %d %d " % (fv[n], fv[n], fuv[n])) for n in range(r)]) else: p += ''.join([("%d %d " % (fv[n], fuv[n])) for n in range(r)]) fp.write( ' <vcount>' + vc + '\n' + ' </vcount>\n' + ' <p>' + p + '\n' + ' </p>\n' + ' </polylist>\n') progress.step() # # checkFaces(mesh, nVerts, nUvVerts): # def checkFaces(mesh, nVerts, nUvVerts): # TODO document: what does this do (apart from slowing down export)? for fn,fvs in enumerate(mesh.fvert): for n,vn in enumerate(fvs): uv = mesh.fuvs[fn][n] if vn > nVerts: raise NameError("v %d > %d" % (vn, nVerts)) if uv > nUvVerts: raise NameError("uv %d > %d" % (uv, nUvVerts))
32.69967
127
0.495458
[ "MIT" ]
Phantori/Radiian-Arts-BioSource
makehuman-master/makehuman/plugins/9_export_collada/dae_geometry.py
9,908
Python
# Copyright (c) MONAI Consortium # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import unittest import numpy as np import torch from parameterized import parameterized from monai.data import CacheDataset, DataLoader, Dataset from monai.transforms import Compose, DataStatsd, Randomizable, SimulateDelayd from monai.utils import set_determinism TEST_CASE_1 = [[{"image": np.asarray([1, 2, 3])}, {"image": np.asarray([4, 5])}]] TEST_CASE_2 = [[{"label": torch.as_tensor([[3], [2]])}, {"label": np.asarray([[1], [2]])}]] class TestDataLoader(unittest.TestCase): def test_values(self): datalist = [ {"image": "spleen_19.nii.gz", "label": "spleen_label_19.nii.gz"}, {"image": "spleen_31.nii.gz", "label": "spleen_label_31.nii.gz"}, ] transform = Compose( [ DataStatsd(keys=["image", "label"], data_shape=False, value_range=False, data_value=True), SimulateDelayd(keys=["image", "label"], delay_time=0.1), ] ) dataset = CacheDataset(data=datalist, transform=transform, cache_rate=0.5, cache_num=1) n_workers = 0 if sys.platform == "win32" else 2 dataloader = DataLoader(dataset=dataset, batch_size=2, num_workers=n_workers) for d in dataloader: self.assertEqual(d["image"][0], "spleen_19.nii.gz") self.assertEqual(d["image"][1], "spleen_31.nii.gz") self.assertEqual(d["label"][0], "spleen_label_19.nii.gz") self.assertEqual(d["label"][1], "spleen_label_31.nii.gz") @parameterized.expand([TEST_CASE_1, TEST_CASE_2]) def test_exception(self, datalist): dataset = Dataset(data=datalist, transform=None) dataloader = DataLoader(dataset=dataset, batch_size=2, num_workers=0) with self.assertRaisesRegex((TypeError, RuntimeError), "Collate error on the key"): for _ in dataloader: pass class _RandomDataset(torch.utils.data.Dataset, Randomizable): def __getitem__(self, index): return self.R.randint(0, 1000, (1,)) def __len__(self): return 8 class TestLoaderRandom(unittest.TestCase): """ Testing data loader working with the randomizable interface """ def setUp(self): set_determinism(0) def tearDown(self): set_determinism(None) def test_randomize(self): dataset = _RandomDataset() dataloader = DataLoader(dataset, batch_size=2, num_workers=3) output = [] for _ in range(2): for batch in dataloader: output.extend(batch.data.numpy().flatten().tolist()) self.assertListEqual(output, [594, 170, 524, 778, 370, 906, 292, 589, 762, 763, 156, 886, 42, 405, 221, 166]) if __name__ == "__main__": unittest.main()
37.202247
117
0.657807
[ "Apache-2.0" ]
Borda/MONAI
tests/test_dataloader.py
3,311
Python
# qubit number=5 # total number=45 import cirq import qiskit from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit import BasicAer, execute, transpile from pprint import pprint from qiskit.test.mock import FakeVigo from math import log2,floor, sqrt, pi import numpy as np import networkx as nx def build_oracle(n: int, f) -> QuantumCircuit: # implement the oracle O_f^\pm # NOTE: use U1 gate (P gate) with \lambda = 180 ==> CZ gate # or multi_control_Z_gate (issue #127) controls = QuantumRegister(n, "ofc") oracle = QuantumCircuit(controls, name="Zf") for i in range(2 ** n): rep = np.binary_repr(i, n) if f(rep) == "1": for j in range(n): if rep[j] == "0": oracle.x(controls[j]) # oracle.h(controls[n]) if n >= 2: oracle.mcu1(pi, controls[1:], controls[0]) for j in range(n): if rep[j] == "0": oracle.x(controls[j]) # oracle.barrier() return oracle def make_circuit(n:int,f) -> QuantumCircuit: # circuit begin input_qubit = QuantumRegister(n,"qc") classical = ClassicalRegister(n, "qm") prog = QuantumCircuit(input_qubit, classical) prog.h(input_qubit[0]) # number=3 prog.h(input_qubit[1]) # number=4 prog.h(input_qubit[2]) # number=5 prog.h(input_qubit[3]) # number=6 prog.h(input_qubit[4]) # number=21 Zf = build_oracle(n, f) repeat = floor(sqrt(2 ** n) * pi / 4) for i in range(1): prog.append(Zf.to_gate(), [input_qubit[i] for i in range(n)]) prog.h(input_qubit[0]) # number=1 prog.h(input_qubit[1]) # number=2 prog.h(input_qubit[2]) # number=7 prog.h(input_qubit[3]) # number=8 prog.h(input_qubit[0]) # number=36 prog.cz(input_qubit[1],input_qubit[0]) # number=37 prog.h(input_qubit[0]) # number=38 prog.x(input_qubit[0]) # number=29 prog.h(input_qubit[0]) # number=42 prog.cz(input_qubit[1],input_qubit[0]) # number=43 prog.h(input_qubit[0]) # number=44 prog.cx(input_qubit[0],input_qubit[1]) # number=32 prog.cx(input_qubit[0],input_qubit[1]) # number=39 prog.x(input_qubit[1]) # number=40 prog.cx(input_qubit[0],input_qubit[1]) # number=41 prog.cx(input_qubit[0],input_qubit[1]) # number=34 prog.h(input_qubit[2]) # number=25 prog.cz(input_qubit[0],input_qubit[2]) # number=26 prog.h(input_qubit[2]) # number=35 prog.h(input_qubit[2]) # number=27 prog.x(input_qubit[2]) # number=23 prog.cx(input_qubit[0],input_qubit[2]) # number=24 prog.x(input_qubit[3]) # number=12 if n>=2: prog.mcu1(pi,input_qubit[1:],input_qubit[0]) prog.x(input_qubit[0]) # number=13 prog.x(input_qubit[1]) # number=14 prog.x(input_qubit[2]) # number=15 prog.x(input_qubit[3]) # number=16 prog.z(input_qubit[1]) # number=31 prog.h(input_qubit[0]) # number=17 prog.h(input_qubit[1]) # number=18 prog.h(input_qubit[2]) # number=19 prog.h(input_qubit[3]) # number=20 prog.h(input_qubit[0]) prog.h(input_qubit[1]) prog.h(input_qubit[2]) prog.h(input_qubit[3]) # circuit end for i in range(n): prog.measure(input_qubit[i], classical[i]) return prog if __name__ == '__main__': key = "00000" f = lambda rep: str(int(rep == key)) prog = make_circuit(5,f) backend = BasicAer.get_backend('qasm_simulator') sample_shot =7924 info = execute(prog, backend=backend, shots=sample_shot).result().get_counts() backend = FakeVigo() circuit1 = transpile(prog,backend,optimization_level=2) writefile = open("../data/startQiskit1005.csv","w") print(info,file=writefile) print("results end", file=writefile) print(circuit1.depth(),file=writefile) print(circuit1,file=writefile) writefile.close()
30.901515
82
0.602844
[ "BSD-3-Clause" ]
UCLA-SEAL/QDiff
benchmark/startQiskit1005.py
4,079
Python
#from mq import * import sys, time import urllib3 #networking library import json try: print("Press CTRL+C to abort.") #mq = MQ(); while True: http = urllib3.PoolManager() #perc = mq.MQPercentage() sys.stdout.write("\r") sys.stdout.write("\033[K") data = { "error":False, "device_id":"device123", "fuse_stat":["0","1","0","1","0"] } encoded_data = json.dumps(data).encode('utf-8')#create JSON object http.request( 'POST', 'http://192.168.43.156/smartdbbox/api/public/api/device/db/update',#IP add server body=encoded_data, headers={'Content-Type': 'application/json'} ) sys.stdout.flush() time.sleep(0.1) except: print("\nAbort by user")
25.65625
93
0.544458
[ "Apache-2.0" ]
haziquehaikal/smartdb
hardware/testing/fusecontrol.py
821
Python
import pytest from mitmproxy.contentviews import protobuf from . import full_eval datadir = "mitmproxy/contentviews/test_protobuf_data/" def test_view_protobuf_request(tdata): v = full_eval(protobuf.ViewProtobuf()) p = tdata.path(datadir + "protobuf01") with open(p, "rb") as f: raw = f.read() content_type, output = v(raw) assert content_type == "Protobuf" assert output == [[('text', '1: 3bbc333c-e61c-433b-819a-0b9a8cc103b8')]] with pytest.raises(ValueError, match="Failed to parse input."): v(b'foobar') @pytest.mark.parametrize("filename", ["protobuf02", "protobuf03"]) def test_format_pbuf(filename, tdata): path = tdata.path(datadir + filename) with open(path, "rb") as f: input = f.read() with open(path + "-decoded") as f: expected = f.read() assert protobuf.format_pbuf(input) == expected
28.483871
76
0.670442
[ "MIT" ]
0x7c48/mitmproxy
test/mitmproxy/contentviews/test_protobuf.py
883
Python
import click from ...runner import events from . import default def handle_after_execution(context: events.ExecutionContext, event: events.AfterExecution) -> None: context.endpoints_processed += 1 default.display_execution_result(context, event) if context.endpoints_processed == event.schema.endpoints_count: click.echo() def handle_event(context: events.ExecutionContext, event: events.ExecutionEvent) -> None: """Short output style shows single symbols in the progress bar. Otherwise, identical to the default output style. """ if isinstance(event, events.Initialized): default.handle_initialized(context, event) if isinstance(event, events.AfterExecution): context.hypothesis_output.extend(event.hypothesis_output) handle_after_execution(context, event) if isinstance(event, events.Finished): default.handle_finished(context, event) if isinstance(event, events.Interrupted): default.handle_interrupted(context, event)
36.285714
99
0.748031
[ "MIT" ]
RonnyPfannschmidt/schemathesis
src/schemathesis/cli/output/short.py
1,016
Python
from ..utils import sortkey, capitalize_first FIGURE_TEX_TEMPLATE = r'\hwgraphic{{{path}}}{{{headword}}}{{{attribution}}}' # change to {filename} if you want to specify full paths. FIGURE_PATH_TEMPLATE = r'figures/ill-{filename}' class Image(object): type = 'img' def sk(self): return sortkey(self.hw) def __init__(self, hw='', img_src='', img_attrib=''): super().__init__() self.hw = hw self.img_src = img_src self.img_attrib = img_attrib def __repr__(self): return "(Image of '{headword}')".format( headword=self.hw ) def render(self, settings={}): figure_path = FIGURE_PATH_TEMPLATE.format(filename=self.img_src) return FIGURE_TEX_TEMPLATE.format( headword=capitalize_first(self.hw), path=figure_path, attribution=self.img_attrib )
27.8125
76
0.622472
[ "MIT" ]
redmer/sfm2latex
sfm2latex/dictionary/Image.py
890
Python
# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### # <pep8 compliant> import bpy def console_namespace(): import console_python get_consoles = console_python.get_console consoles = getattr(get_consoles, "consoles", None) if consoles: for console, stdout, stderr in get_consoles.consoles.values(): return console.locals return {} def is_display_list(listvar): from mathutils import Vector for var in listvar: if type(var) is not Vector: return False return True class VarStates: @staticmethod def store_states(): # Store the display states, called upon unregister the Add-on # This is useful when you press F8 to reload the Addons. # Then this function preserves the display states of the # console variables. state_props = bpy.context.window_manager.MathVisStatePropList variables = get_math_data() for key, ktype in variables.items(): if key and key not in state_props: prop = state_props.add() prop.name = key prop.ktype = ktype.__name__ prop.state = [True, False] @staticmethod def get_index(key): index = bpy.context.window_manager.MathVisStatePropList.find(key) return index @staticmethod def delete(key): state_props = bpy.context.window_manager.MathVisStatePropList index = state_props.find(key) if index != -1: state_props.remove(index) @staticmethod def toggle_display_state(key): state_props = bpy.context.window_manager.MathVisStatePropList if key in state_props: state_props[key].state[0] = not state_props[key].state[0] else: print("Odd: Can not find key %s in MathVisStateProps" % (key)) @staticmethod def toggle_lock_state(key): state_props = bpy.context.window_manager.MathVisStatePropList if key in state_props: state_props[key].state[1] = not state_props[key].state[1] else: print("Odd: Can not find key %s in MathVisStateProps" % (key)) def get_math_data(): from mathutils import Matrix, Vector, Quaternion, Euler locals = console_namespace() if not locals: return {} variables = {} for key, var in locals.items(): if len(key) == 0 or key[0] == "_": continue type_var = type(var) # Rules out sets/dicts. # It's also possible the length check below is slow # for data with underlying linked-list structure. if not hasattr(type_var, "__getitem__"): continue # Don't do a truth test on the data because this causes an error with some # array types, see T66107. len_fn = getattr(type_var, "__len__", None) if len_fn is None: continue if len_fn(var) == 0: continue if type_var in {Matrix, Vector, Quaternion, Euler} or \ type_var in {tuple, list} and is_display_list(var): variables[key] = type_var return variables def cleanup_math_data(): locals = console_namespace() if not locals: return variables = get_math_data() for key in variables.keys(): index = VarStates.get_index(key) if index == -1: continue state_prop = bpy.context.window_manager.MathVisStatePropList.get(key) if state_prop.state[1]: continue del locals[key] bpy.context.window_manager.MathVisStatePropList.remove(index) def console_math_data(): from mathutils import Matrix, Vector, Quaternion, Euler data_matrix = {} data_quat = {} data_euler = {} data_vector = {} data_vector_array = {} for key, var in console_namespace().items(): if key[0] == "_": continue state_prop = bpy.context.window_manager.MathVisStatePropList.get(key) if state_prop: disp, lock = state_prop.state if not disp: continue var_type = type(var) if var_type is Matrix: if len(var.col) != 4 or len(var.row) != 4: if len(var.col) == len(var.row): var = var.to_4x4() else: # todo, support 4x3 matrix continue data_matrix[key] = var elif var_type is Vector: if len(var) < 3: var = var.to_3d() data_vector[key] = var elif var_type is Quaternion: data_quat[key] = var elif var_type is Euler: data_euler[key] = var elif var_type in {list, tuple} and is_display_list(var): data_vector_array[key] = var return data_matrix, data_quat, data_euler, data_vector, data_vector_array
30.22043
82
0.62053
[ "MIT" ]
calculusrobotics/RNNs-for-Bayesian-State-Estimation
Blender 2.91/2.91/scripts/addons/space_view3d_math_vis/utils.py
5,621
Python
from django_unicorn.components import QuerySetType, UnicornView from example.coffee.models import Flavor, Taste class AddFlavorView(UnicornView): is_adding = False flavors = None flavor_qty = 1 flavor_id = None def __init__(self, *args, **kwargs): super().__init__(**kwargs) # calling super is required self.flavor_id = kwargs.get('flavor_id') self.is_adding = False def create(self): if int(self.flavor_qty) > 0: for i in range(int(self.flavor_qty)): flavor = Flavor.objects.create(id = self.flavor_id) flavor.save() print("create flavor") self.is_adding = False self.show_table() def add_flavor(self): self.is_adding = True self.show_table() def cancel(self): self.is_adding = False self.show_table() def show_table(self): self.flavors = Flavor.objects.all() def mount(self): self.show_table()
24.853659
67
0.60157
[ "MIT" ]
Franziskhan/django-unicorn
example/unicorn/components/add_flavor.py
1,019
Python
""" Measure stent migration relative to renals Option to visualize 2 longitudinal scans """ import sys, os import visvis as vv from stentseg.utils.datahandling import select_dir, loadvol, loadmodel, loadmesh from stentseg.stentdirect.stentgraph import create_mesh from stentseg.utils.visualization import show_ctvolume from stentseg.utils import _utils_GUI, PointSet from stentseg.utils.picker import pick3d from stentseg.utils.centerline import find_centerline, points_from_mesh, smooth_centerline, dist_over_centerline from lspeas.analysis.utils_analysis import ExcelAnalysis from stentseg.utils.utils_graphs_pointsets import point_in_pointcloud_closest_to_p #sys.path.insert(0, os.path.abspath('..')) # parent, 2 folders further in pythonPath #import utils_analysis #from utils_analysis import ExcelAnalysis #import get_anaconda_ringparts from lspeas.utils.get_anaconda_ringparts import _get_model_hooks,get_midpoints_peaksvalleys,identify_peaks_valleys #todo: from outline to script: ## Initialize # select the ssdf basedir basedir = select_dir(r'F/LSPEAS\LSPEAS_ssdf', r'F/LSPEAS_ssdf_backup') basedirstl = select_dir(r'D:\Profiles\koenradesma\Dropbox\UTdrive\MedDataMimics\LSPEAS_Mimics\Tests') # select dataset ptcode = 'LSPEAS_003' ctcodes = ctcode1, ctcode2 = 'discharge', '12months' # ctcode2 = None if no second code cropname = 'ring' modelname = 'modelavgreg' vesselname1 = 'LSPEAS_003_D_MK Smoothed_Wrapped1.0_edit-smart 4_copy_001.stl' # LSPEAS_003_D_MK Smoothed_Wrapped1.0_edit-smart 4_copy_noRenals 7_001 vesselname2 = 'LSPEAS_003_12M_MK Smoothed_Wrapped1.0_smart 3_copy_001.stl' sheet_renals_obs = 'renal locations obs1' showAxis = True # True or False showVol = 'ISO' # MIP or ISO or 2D or None ringpart = True # True; False clim0 = (0,2500) # clim0 = -550,500 isoTh = 250 meshradius = 0.7 # create class object for excel analysis foo = ExcelAnalysis() # excel locations initialized in class ## Renal origin coordinates: input by user/read excel # coordinates, left and right most caudal renal # ctcode1 xrenal1, yrenal1, zrenal1 = 132.7, 89.2, 85.5 renal1 = PointSet(list((xrenal1, yrenal1, zrenal1))) # ctcode2 if ctcode2: xrenal2, yrenal2, zrenal2 = 171, 165.1, 39.5 renal2 = PointSet(list((xrenal2, yrenal2, zrenal2))) # renal_left, renal_right = foo.readRenalsExcel(sheet_renals_obs, ptcode, ctcode1) # renal1 = renal_left ## Load (dynamic) stent models, vessel, ct # Load static CT image to add as reference s = loadvol(basedir, ptcode, ctcode1, cropname, 'avgreg') vol1 = s.vol if ctcode2: s = loadvol(basedir, ptcode, ctcode2, cropname, 'avgreg') vol2 = s.vol # load stent model s2 = loadmodel(basedir, ptcode, ctcode1, cropname, modelname) model1 = s2.model modelmesh1 = create_mesh(model1, meshradius) if ctcode2: s2 = loadmodel(basedir, ptcode, ctcode2, cropname, modelname) model2 = s2.model modelmesh2 = create_mesh(model2, meshradius) # Load vessel mesh (output Mimics) vessel1 = loadmesh(basedirstl,ptcode,vesselname1) #inverts Z if ctcode2: vessel2 = loadmesh(basedirstl,ptcode,vesselname2) #inverts Z # get pointset from STL ppvessel1 = points_from_mesh(vessel1, invertZ = False) # removes duplicates if ctcode2: ppvessel2 = points_from_mesh(vessel2, invertZ = False) # removes duplicates ## Create centerline: input start/end # ctcode1 c1_start1 = (153, 86, 104.5) # distal end c1_ends = [(142, 94, 64.5)] # either single point or multiple centerline1 = find_centerline(ppvessel1, c1_start1, c1_ends, 0.5, ndist=20, regfactor=0.2, regsteps=10) centerline1 = smooth_centerline(centerline1, 30) # 20 iterations for stepsize 0.5 is reasonable # ctcode2 if ctcode2: c2_start1 = (190, 165, 60) # distal end c2_ends = [(179, 169, 17)] # either single point or multiple centerline2 = find_centerline(ppvessel2, c2_start1, c2_ends, 0.5, ndist=20, regfactor=0.2, regsteps=10) centerline2 = smooth_centerline(centerline2, 30) # scipy.ndimage.interpolation.zoom # scipy.interpolate.interpn ## Get peak and valley points if False: # ===== OPTION automated detection ===== # get midpoints peaks valleys midpoints_peaks_valleys = get_midpoints_peaksvalleys(model1) # from peaks valley pointcloud identiy peaks and valleys R1_left,R2_left,R1_right,R2_right,R1_ant,R2_ant,R1_post,R2_post = identify_peaks_valleys( midpoints_peaks_valleys, model1, vol1,vis=True) # ===== OPTION excel ===== R1 = foo.readRingExcel(ptcode, ctcode1, ring='R1') R1_ant, R1_post, R1_left, R1_right = R1[0], R1[1], R1[2], R1[3] ## #todo: orientatie aorta bepalen dmv 4 hooks -> gemiddelde hoek # z distance hiermee corrigeren R2 = foo.readRingExcel(ptcode, ctcode1, ring='R2') R2_ant, R2_post, R2_left, R2_right = R2[0], R2[1], R2[2], R2[3] def get_stent_orientation(R1, R2): R1, R2 = np.asarray(R1), np.asarray(R2) R1, R2 = PointSet(R1), PointSet(R2) # turn array ndim2 into PointSet R1_ant, R1_post, R1_left, R1_right = R1[0], R1[1], R1[2], R1[3] R2_ant, R2_post, R2_left, R2_right = R2[0], R2[1], R2[2], R2[3] refvector = [0,0,10] # z-axis angle = (R1_ant-R2_ant).angle(refvector) # order does not matter ## Calculate distance ring peaks and valleys to renal # ===== in Z ===== # proximal to renal is positive; origin is proximal z_dist_R1_ant = list(renal1.flat)[2]-R1_ant[2] z_dist_R1_post = list(renal1.flat)[2]-R1_post[2] z_dist_R1_left = list(renal1.flat)[2]-R1_left[2] z_dist_R1_right = list(renal1.flat)[2]-R1_right[2] # ===== along centerline ===== # point of centerline closest to renal renal1_and_cl_point = point_in_pointcloud_closest_to_p(centerline1, renal1) if ctcode2: renal2_and_cl_point = point_in_pointcloud_closest_to_p(centerline2, renal2) # point of centerline closest to peaks valleys R1_left_and_cl_point = point_in_pointcloud_closest_to_p(centerline1, R1_left) R1_right_and_cl_point = point_in_pointcloud_closest_to_p(centerline1, R1_right) R1_ant_and_cl_point = point_in_pointcloud_closest_to_p(centerline1, R1_ant) R1_post_and_cl_point = point_in_pointcloud_closest_to_p(centerline1, R1_post) # calculate distance over centerline dist_for_R1_left = dist_over_centerline(centerline1, R1_left_and_cl_point[0], renal1_and_cl_point[0]) dist_for_R1_right = dist_over_centerline(centerline1, R1_right_and_cl_point[0], renal1_and_cl_point[0]) dist_for_R1_ant = dist_over_centerline(centerline1, R1_ant_and_cl_point[0], renal1_and_cl_point[0]) dist_for_R1_post = dist_over_centerline(centerline1, R1_post_and_cl_point[0], renal1_and_cl_point[0]) # Main outcome 1: distance 2nd ring valleys to renal # Main outcome 2: migration 2nd ring valleys from discharge to 1, 6, 12 months ## Visualize f = vv.figure(2); vv.clf() f.position = 0.00, 22.00, 1920.00, 1018.00 alpha = 0.5 if ctcode2: a1 = vv.subplot(121) else: a1 = vv.gca() show_ctvolume(vol1, model1, showVol=showVol, clim=clim0, isoTh=isoTh) pick3d(vv.gca(), vol1) model1.Draw(mc='b', mw = 10, lc='g') vm = vv.mesh(modelmesh1) vm.faceColor = 'g' # m = vv.mesh(vessel1) # m.faceColor = (1,0,0, alpha) # red # vis vessel, centerline, renal origo, peaks valleys R1 vv.plot(ppvessel1, ms='.', ls='', mc= 'r', alpha=0.2, mw = 7, axes = a1) # vessel vv.plot(PointSet(list(c1_start1)), ms='.', ls='', mc='g', mw=18, axes = a1) # start1 vv.plot([e[0] for e in c1_ends], [e[1] for e in c1_ends], [e[2] for e in c1_ends], ms='.', ls='', mc='b', mw=18, axes = a1) # ends vv.plot(centerline1, ms='.', ls='', mw=8, mc='y', axes = a1) vv.plot(renal1, ms='.', ls='', mc='m', mw=18, axes = a1) vv.plot(renal1_and_cl_point, ms='.', ls='-', mc='m', mw=18, axes = a1) # vv.plot(R1_left_and_cl_point, ms='.', ls='-', mc='c', mw=18, axes = a1) # vv.plot(R1_right_and_cl_point, ms='.', ls='-', mc='c', mw=18, axes = a1) # vv.plot(R1_ant_and_cl_point, ms='.', ls='-', mc='c', mw=18, axes = a1) # vv.plot(R1_post_and_cl_point, ms='.', ls='-', mc='c', mw=18, axes = a1) vv.xlabel('x (mm)');vv.ylabel('y (mm)');vv.zlabel('z (mm)') vv.title('Analysis for model LSPEAS %s - %s' % (ptcode[7:], ctcode1)) a1.axis.axisColor= 1,1,1 a1.bgcolor= 0,0,0 a1.daspect= 1, 1, -1 # z-axis flipped a1.axis.visible = showAxis if ctcode2: a2 = vv.subplot(122) show_ctvolume(vol2, model2, showVol=showVol, clim=clim0, isoTh=isoTh) pick3d(vv.gca(), vol2) model2.Draw(mc='b', mw = 10, lc='g') vm = vv.mesh(modelmesh2) vm.faceColor = 'g' # m = vv.mesh(vessel2) # m.faceColor = (1,0,0, alpha) # red # vis vessel, centerline, renal origo, peaks valleys R1 vv.plot(ppvessel2, ms='.', ls='', mc= 'r', alpha=0.2, mw = 7, axes = a2) # vessel vv.plot(PointSet(list(c2_start1)), ms='.', ls='', mc='g', mw=18, axes = a2) # start1 vv.plot([e[0] for e in c2_ends], [e[1] for e in c2_ends], [e[2] for e in c2_ends], ms='.', ls='', mc='b', mw=18, axes = a2) # ends vv.plot(centerline2, ms='.', ls='', mw=8, mc='y', axes = a2) vv.plot(renal2, ms='.', ls='', mc='m', mw=18, axes = a2) vv.plot(renal2_and_cl_point, ms='.', ls='-', mc='m', mw=18, axes = a2) vv.xlabel('x (mm)');vv.ylabel('y (mm)');vv.zlabel('z (mm)') vv.title('Analysis for model LSPEAS %s - %s' % (ptcode[7:], ctcode2)) a2.axis.axisColor= 1,1,1 a2.bgcolor= 0,0,0 a2.daspect= 1, 1, -1 # z-axis flipped a2.axis.visible = showAxis
40.776316
136
0.713994
[ "BSD-3-Clause" ]
almarklein/stentseg
lspeas/analysis/stent_migration.py
9,297
Python
""" Django settings for my_site project. Generated by 'django-admin startproject' using Django 1.11.29. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '98!@@ullqs8&yxhj7as31h-$lhdu691dnz@ch$(tsj@pe)ak&7' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'testapp.apps.TestappConfig', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'my_site.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'my_site.wsgi.application' # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_ROOT = os.path.join(BASE_DIR, 'static') STATIC_URL = '/static/' STATICFILES_FINDERS = [ 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', ] SITE_ROOT = os.path.dirname(os.path.realpath(__file__)) STATICFILES_DIRS = ( os.path.join(STATIC_ROOT, 'static/'), )
25.57037
91
0.702202
[ "MIT" ]
garylwatson/mysteamlist
my_site/settings.py
3,452
Python
import py from pypy.rlib.rsdl import RSDL from pypy.rlib.rarithmetic import r_uint from pypy.rpython.lltypesystem import rffi def test_sdl_init(): assert RSDL.Init(RSDL.INIT_VIDEO) >= 0 RSDL.Quit() def test_surface_basic(): assert RSDL.Init(RSDL.INIT_VIDEO) >= 0 surface = RSDL.CreateRGBSurface(0, 150, 50, 32, r_uint(0x000000FF), r_uint(0x0000FF00), r_uint(0x00FF0000), r_uint(0xFF000000)) assert surface assert rffi.getintfield(surface, 'c_w') == 150 assert rffi.getintfield(surface, 'c_h') == 50 RSDL.FreeSurface(surface) RSDL.Quit() def test_get_keyname(): assert RSDL.Init(RSDL.INIT_VIDEO) >= 0 assert RSDL.GetKeyName(RSDL.K_PLUS)[0] == '+' assert RSDL.GetKeyName(RSDL.K_RIGHTPAREN)[0] == ')' assert RSDL.GetKeyName(RSDL.K_z)[0] == 'z' def test_delay_getticks(): assert RSDL.Init(RSDL.INIT_VIDEO) >= 0 RSDL.Delay(10) i = RSDL.GetTicks() assert i >= 10 RSDL.Quit()
29.918919
55
0.591689
[ "MIT" ]
benoitc/pypy
pypy/rlib/rsdl/test/test_basic.py
1,107
Python
import os import sys cwd = os.getcwd() sys.path.append(cwd) import time, math import numpy as np from pnc.interface import Interface from config.manipulator_config import ManipulatorConfig from pnc.robot_system.pinocchio_robot_system import PinocchioRobotSystem class ManipulatorInterface(Interface): def __init__(self): super(ManipulatorInterface, self).__init__() self._robot = PinocchioRobotSystem( cwd + "/robot_model/manipulator/three_link_manipulator.urdf", cwd + "/robot_model/manipulator", True, ManipulatorConfig.PRINT_ROBOT_INFO) def get_command(self, sensor_data): # Update Robot self._robot.update_system( sensor_data["base_com_pos"], sensor_data["base_com_quat"], sensor_data["base_com_lin_vel"], sensor_data["base_com_ang_vel"], sensor_data["base_joint_pos"], sensor_data["base_joint_quat"], sensor_data["base_joint_lin_vel"], sensor_data["base_joint_ang_vel"], sensor_data["joint_pos"], sensor_data["joint_vel"]) # Operational Space Control jtrq_cmd = self._compute_osc_command() jpos_cmd = np.zeros_like(jtrq_cmd) jvel_cmd = np.zeros_like(jtrq_cmd) # Compute Cmd command = self._robot.create_cmd_ordered_dict(jpos_cmd, jvel_cmd, jtrq_cmd) # Increase time variables self._count += 1 self._running_time += ManipulatorConfig.DT return command def _compute_osc_command(self): ## TODO : Implement Operational Space Control jtrq = np.zeros(self._robot.n_a) return jtrq
32.09434
77
0.662551
[ "MIT" ]
junhyeokahn/ASE389
pnc/manipulator_pnc/manipulator_interface.py
1,701
Python
from __future__ import print_function, absolute_import import argparse import os.path as osp import random import numpy as np import sys import collections import copy import time from datetime import timedelta from sklearn.cluster import DBSCAN, KMeans from sklearn.preprocessing import normalize import torch from torch import nn from torch.backends import cudnn from torch.utils.data import DataLoader import torch.nn.functional as F sys.path.append(".") from reid import datasets from reid import models # from reid.models.dsbn import convert_dsbn, convert_bn # from reid.models.csbn import convert_csbn # from reid.models.idm_dsbn import convert_dsbn_idm, convert_bn_idm # from reid.models.xbm import XBM from reid.trainers import RSCTrainer from reid.evaluators import Evaluator, extract_features from reid.utils.data import CommDataset from reid.utils.data import IterLoader from reid.utils.data import transforms as T from reid.utils.data.sampler import RandomMultipleGallerySampler from reid.utils.data.preprocessor import Preprocessor from reid.utils.logging import Logger from reid.utils.serialization import load_checkpoint, save_checkpoint, copy_state_dict from reid.utils.rerank import compute_jaccard_distance start_epoch = best_mAP = 0 def get_data(name, data_dir, combineall=False): # data_dir = '/data/datasets' root = osp.join(data_dir, name) dataset = datasets.create(name, root, combineall=combineall) return dataset def get_train_loader(args, dataset, height, width, batch_size, workers, num_instances, iters, trainset=None): normalizer = T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) train_transformer = T.Compose([ T.Resize((height, width), interpolation=3), T.RandomHorizontalFlip(p=0.5), T.Pad(10), T.RandomCrop((height, width)), T.ToTensor(), normalizer, # T.RandomErasing(probability=0.5, mean=[0.485, 0.456, 0.406]) ]) train_set = sorted(dataset.train) if trainset is None else sorted(trainset) rmgs_flag = num_instances > 0 if rmgs_flag: sampler = RandomMultipleGallerySampler(train_set, num_instances) else: sampler = None train_loader = IterLoader( DataLoader(Preprocessor(train_set, root=dataset.images_dir, transform=train_transformer), batch_size=batch_size, num_workers=workers, sampler=sampler, shuffle=not rmgs_flag, pin_memory=True, drop_last=True), length=iters) return train_loader def get_test_loader(dataset, height, width, batch_size, workers, testset=None): normalizer = T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) test_transformer = T.Compose([ T.Resize((height, width), interpolation=3), T.ToTensor(), normalizer ]) if (testset is None): testset = list(set(dataset.query) | set(dataset.gallery)) test_loader = DataLoader( Preprocessor(testset, root=dataset.images_dir, transform=test_transformer), batch_size=batch_size, num_workers=workers, shuffle=False, pin_memory=True) return test_loader def create_model(args): model = models.create(args.arch, num_features=args.features, norm=False, dropout=args.dropout, num_classes=args.nclass) # use CUDA model.cuda() model = nn.DataParallel(model) return model def main(): args = parser.parse_args() if args.seed is not None: random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) cudnn.deterministic = True main_worker(args) def main_worker(args): global start_epoch, best_mAP start_time = time.monotonic() cudnn.benchmark = True sys.stdout = Logger(osp.join(args.logs_dir, 'log.txt')) print("==========\nArgs:{}\n==========".format(args)) # Create datasets iters = args.iters if (args.iters>0) else None print("==> Load source-domain dataset") train_items = [] for src in args.dataset_source.split(','): dataset = get_data(src, args.data_dir, args.combine_all) train_items.extend(dataset.train) dataset_source = CommDataset(train_items) print("==> Load target-domain dataset") dataset_target = get_data(args.dataset_target, args.data_dir) test_loader_target = get_test_loader(dataset_target, args.height, args.width, args.batch_size, args.workers) train_loader_source = get_train_loader(args, dataset_source, args.height, args.width, args.batch_size, args.workers, args.num_instances, iters) source_classes = dataset_source.num_train_pids args.nclass = source_classes # Create model model = create_model(args) print(model) # Evaluator evaluator = Evaluator(model) # Optimizer params = [{"params": [value]} for _, value in model.named_parameters() if value.requires_grad] optimizer = torch.optim.Adam(params, lr=args.lr, weight_decay=args.weight_decay) lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.step_size, gamma=0.1) # Trainer trainer = RSCTrainer(model, args.nclass, margin=args.margin) for epoch in range(args.epochs): train_loader_source.new_epoch() # train_loader_target.new_epoch() trainer.train(epoch, train_loader_source, optimizer, print_freq=args.print_freq, train_iters=args.iters) if ((epoch+1)%args.eval_step==0 or (epoch==args.epochs-1)): print('Test on target: ', args.dataset_target) _, mAP = evaluator.evaluate(test_loader_target, dataset_target.query, dataset_target.gallery, cmc_flag=True) is_best = (mAP>best_mAP) best_mAP = max(mAP, best_mAP) save_checkpoint({ 'state_dict': model.state_dict(), 'epoch': epoch + 1, 'best_mAP': best_mAP, }, is_best, fpath=osp.join(args.logs_dir, 'checkpoint.pth.tar')) print('\n * Finished epoch {:3d} model mAP: {:5.1%} best: {:5.1%}{}\n'. format(epoch, mAP, best_mAP, ' *' if is_best else '')) lr_scheduler.step() print ('==> Test with the best model on the target domain:') checkpoint = load_checkpoint(osp.join(args.logs_dir, 'model_best.pth.tar')) model.load_state_dict(checkpoint['state_dict']) evaluator.evaluate(test_loader_target, dataset_target.query, dataset_target.gallery, cmc_flag=True) end_time = time.monotonic() print('Total running time: ', timedelta(seconds=end_time - start_time)) if __name__ == '__main__': parser = argparse.ArgumentParser(description="Self-paced contrastive learning on UDA re-ID") # data parser.add_argument('-ds', '--dataset-source', type=str, default='dukemtmc') parser.add_argument('-dt', '--dataset-target', type=str, default='market1501') parser.add_argument('--combine-all', action='store_true', help="if True: combinall train, query, gallery for training;") parser.add_argument('-b', '--batch-size', type=int, default=64) parser.add_argument('-j', '--workers', type=int, default=4) parser.add_argument('--height', type=int, default=256, help="input height") parser.add_argument('--width', type=int, default=128, help="input width") parser.add_argument('--num-instances', type=int, default=4, help="each minibatch consist of " "(batch_size // num_instances) identities, and " "each identity has num_instances instances, " "default: 0 (NOT USE)") # cluster parser.add_argument('--eps', type=float, default=0.6, help="max neighbor distance for DBSCAN") parser.add_argument('--k1', type=int, default=30, help="hyperparameter for jaccard distance") parser.add_argument('--k2', type=int, default=6, help="hyperparameter for jaccard distance") parser.add_argument('--nclass', type=int, default=1000, help="number of classes (source+target)") parser.add_argument('--s-class', type=int, default=1000, help="number of classes (source)") parser.add_argument('--t-class', type=int, default=1000, help="number of classes (target)") # loss parser.add_argument('--margin', type=float, default=0.3, help="margin for triplet loss") parser.add_argument('--mu1', type=float, default=0.5, help="weight for loss_bridge_pred") parser.add_argument('--mu2', type=float, default=0.1, help="weight for loss_bridge_feat") parser.add_argument('--mu3', type=float, default=1, help="weight for loss_div") # model parser.add_argument('-a', '--arch', type=str, default='resnet50_idm', choices=models.names()) parser.add_argument('--features', type=int, default=0) parser.add_argument('--dropout', type=float, default=0) # xbm parameters parser.add_argument('--memorySize', type=int, default=8192, help='meomory bank size') parser.add_argument('--ratio', type=float, default=1, help='memorySize=ratio*data_size') parser.add_argument('--featureSize', type=int, default=2048) parser.add_argument('--use-xbm', action='store_true', help="if True: strong baseline; if False: naive baseline") # optimizer parser.add_argument('--lr', type=float, default=0.00035, help="learning rate") parser.add_argument('--weight-decay', type=float, default=5e-4) parser.add_argument('--epochs', type=int, default=60) parser.add_argument('--iters', type=int, default=200) parser.add_argument('--step-size', type=int, default=30) # training configs parser.add_argument('--seed', type=int, default=1) parser.add_argument('--print-freq', type=int, default=50) parser.add_argument('--eval-step', type=int, default=10) # path working_dir = osp.dirname(osp.abspath(__file__)) parser.add_argument('--data-dir', type=str, default='/data/datasets') parser.add_argument('--logs-dir', type=str, metavar='PATH', default=osp.join(working_dir, 'logs')) # hbchen parser.add_argument('--csdn', type=bool, default=False) main()
39.464945
120
0.651426
[ "MIT" ]
ZhaoChuyang/dgreid
examples/rsc_baseline.py
10,695
Python
# Copyright 2016 Google Inc. All Rights Reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This module contains support for various built-in output mechanisms. Here, a base OutputToFile class is implemented to provide simple output to a file via the pickle serialization mechanism. It can be subclassed to implement alternative serialization schemes, see json_factory.py and mfg_inspector.py for examples. """ import contextlib try: import cPickle as pickle except: import pickle import shutil import tempfile from openhtf import util from openhtf.util import data import six # TODO(wallacbe): Switch to util class Atomic(object): """Class that does atomic write in a contextual manner.""" def __init__(self, filename): self.filename = filename self.temp = tempfile.NamedTemporaryFile(delete=False) def write(self, write_data): if hasattr(write_data, 'decode'): return self.temp.write(write_data) return self.temp.write(write_data.encode()) def close(self): self.temp.close() shutil.move(self.temp.name, self.filename) class OutputToFile(object): """Output the given TestRecord to a file. Instances of this class are intended to be used as an output callback (see Test.add_output_callbacks) to output TestRecord results to a file. This base implementation outputs the TestRecord by serializing it via the pickle module. Subclasses may change this by overriding the serialize_test_record() method. Additionally, subclasses may implement more complex file naming mechanisms by overriding the open_file() method. Args: test_record: The TestRecord to write out to a file. """ def __init__(self, filename_pattern): self.filename_pattern = filename_pattern @staticmethod def serialize_test_record(test_record): """Override method to alter how test records are serialized to file data.""" return pickle.dumps(test_record, -1) @staticmethod def open_file(filename): """Override method to alter file open behavior or file types.""" return Atomic(filename) @contextlib.contextmanager def open_output_file(self, test_record): """Open file based on pattern.""" # Ignore keys for the log filename to not convert larger data structures. record_dict = data.convert_to_base_types( test_record, ignore_keys=('code_info', 'phases', 'log_records')) pattern = self.filename_pattern if isinstance(pattern, six.string_types) or callable(pattern): output_file = self.open_file(util.format_string(pattern, record_dict)) try: yield output_file finally: output_file.close() elif hasattr(self.filename_pattern, 'write'): yield self.filename_pattern else: raise ValueError( 'filename_pattern must be string, callable, or File-like object') def __call__(self, test_record): with self.open_output_file(test_record) as outfile: outfile.write(self.serialize_test_record(test_record))
33.796117
80
0.747774
[ "Apache-2.0" ]
airdeng/openhtf
openhtf/output/callbacks/__init__.py
3,481
Python
# -*- coding: utf-8 -*- # Copyright (c) 2019, 9T9IT and contributors # For license information, please see license.txt from __future__ import unicode_literals import frappe from frappe.model.document import Document class CustomPurchaseReceiptItem(Document): pass
24.272727
49
0.790262
[ "MIT" ]
MdAlAmin-aol/optic_store
optic_store/optic_store/doctype/custom_purchase_receipt_item/custom_purchase_receipt_item.py
267
Python
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import random import torch import torchvision from torchvision.transforms import functional as F class Compose(object): def __init__(self, transforms): self.transforms = transforms def __call__(self, image, target): for t in self.transforms: image, target = t(image, target) return image, target def __repr__(self): format_string = self.__class__.__name__ + "(" for t in self.transforms: format_string += "\n" format_string += " {0}".format(t) format_string += "\n)" return format_string class Resize(object): def __init__(self, min_size, max_size): if not isinstance(min_size, (list, tuple)): min_size = (min_size,) self.min_size = min_size self.max_size = max_size # modified from torchvision to add support for max size def get_size(self, image_size): w, h = image_size size = random.choice(self.min_size) max_size = self.max_size if max_size is not None: min_original_size = float(min((w, h))) max_original_size = float(max((w, h))) if max_original_size / min_original_size * size > max_size: size = int(round(max_size * min_original_size / max_original_size)) if (w <= h and w == size) or (h <= w and h == size): return (h, w) if w < h: ow = size oh = int(size * h / w) else: oh = size ow = int(size * w / h) return (oh, ow) def __call__(self, image, target): size = self.get_size(image.size) image = F.resize(image, size) target = target.resize(image.size) return image, target class FixedResize(object): def __init__(self, min_size, max_size): if not isinstance(min_size, (list, tuple)): min_size = (min_size,) self.min_size = min_size self.max_size = max_size # modified from torchvision to add support for max size def get_size(self, image_size): w, h = image_size size = self.min_size[0] if w < h: return (self.max_size, size) else: return (size, self.max_size) def __call__(self, image, target): size = self.get_size(image.size) image = F.resize(image, size) target = target.resize(image.size) return image, target class RandomHorizontalFlip(object): def __init__(self, prob=0.5): self.prob = prob def __call__(self, image, target): if random.random() < self.prob: image = F.hflip(image) target = target.transpose(0) return image, target class ToTensor(object): def __call__(self, image, target): return F.to_tensor(image), target class Normalize(object): def __init__(self, mean, std, to_bgr255=True): self.mean = mean self.std = std self.to_bgr255 = to_bgr255 def __call__(self, image, target): if self.to_bgr255: image = image[[2, 1, 0]] * 255 image = F.normalize(image, mean=self.mean, std=self.std) return image, target
28.72807
83
0.589618
[ "BSD-2-Clause" ]
zhoulw13/FCOS
fcos_core/data/transforms/transforms.py
3,275
Python
# -*- coding:utf-8 -*- """ FTX Trade module. https://docs.ftx.com/ Project: alphahunter Author: HJQuant Description: Asynchronous driven quantitative trading framework """ import time import zlib import json import copy import hmac import base64 from urllib.parse import urljoin from collections import defaultdict, deque from typing import DefaultDict, Deque, List, Dict, Tuple, Optional, Any from itertools import zip_longest from requests import Request from quant.gateway import ExchangeGateway from quant.state import State from quant.order import Order, Fill, SymbolInfo from quant.tasks import SingleTask, LoopRunTask from quant.position import Position, MARGIN_MODE_CROSSED from quant.asset import Asset from quant.const import MARKET_TYPE_KLINE, INDICATE_ORDER, INDICATE_ASSET, INDICATE_POSITION from quant.utils import tools, logger from quant.utils.websocket import Websocket from quant.utils.http_client import AsyncHttpRequests from quant.utils.decorator import async_method_locker from quant.order import ORDER_ACTION_BUY, ORDER_ACTION_SELL from quant.order import ORDER_TYPE_LIMIT, ORDER_TYPE_MARKET from quant.order import LIQUIDITY_TYPE_MAKER, LIQUIDITY_TYPE_TAKER from quant.order import ORDER_STATUS_SUBMITTED, ORDER_STATUS_PARTIAL_FILLED, ORDER_STATUS_FILLED, ORDER_STATUS_CANCELED, ORDER_STATUS_FAILED from quant.market import Kline, Orderbook, Trade, Ticker __all__ = ("FTXRestAPI", "FTXTrader", ) class FTXRestAPI: """ """ def __init__(self, host, api_key=None, api_secret=None, subaccount_name=None) -> None: self._host = host self._api_key = api_key self._api_secret = api_secret self._subaccount_name = subaccount_name async def _request(self, method: str, path: str, **kwargs) -> Any: url = self._host + "/api/" + path request = Request(method, url, **kwargs) if self._api_key and self._api_secret: self._sign_request(request) _, success, error = await AsyncHttpRequests.fetch(method, url, headers=request.headers, timeout=10, **kwargs) return success, error def _sign_request(self, request: Request) -> None: ts = int(time.time() * 1000) prepared = request.prepare() signature_payload = f'{ts}{prepared.method}{prepared.path_url}'.encode() if prepared.body: signature_payload += prepared.body signature = hmac.new(self._api_secret.encode(), signature_payload, 'sha256').hexdigest() request.headers['FTX-KEY'] = self._api_key request.headers['FTX-SIGN'] = signature request.headers['FTX-TS'] = str(ts) if self._subaccount_name: request.headers['FTX-SUBACCOUNT'] = self._subaccount_name async def list_futures(self) -> List[dict]: return await self._request('GET', 'futures') async def get_future(self, market: str) -> dict: return await self._request('GET', f'futures/{market}') async def list_markets(self) -> List[dict]: return await self._request('GET', 'markets') async def get_orderbook(self, market: str, depth: int = None) -> dict: return await self._request('GET', f'markets/{market}/orderbook', params={'depth': depth}) async def get_trades(self, market: str) -> dict: return await self._request('GET', f'markets/{market}/trades') async def get_account_info(self) -> dict: return await self._request('GET', 'account') async def get_open_orders(self, market: str = None) -> List[dict]: #return await self._request('GET', 'orders', params={'market': market}) return await self._request('GET', 'orders?market={}'.format(market)) async def get_conditional_orders(self, market: str = None) -> List[dict]: #return await self._request('GET', 'conditional_orders', params={'market': market}) return await self._request('GET', 'conditional_orders?market={}'.format(market)) async def place_order(self, market: str, side: str, price: float, size: float, type: str = 'limit', reduce_only: bool = False, ioc: bool = False, post_only: bool = False, client_id: str = None) -> dict: return await self._request('POST', 'orders', json={'market': market, 'side': side, 'price': price, 'size': size, 'type': type, 'reduceOnly': reduce_only, 'ioc': ioc, 'postOnly': post_only, 'clientId': client_id}) async def place_conditional_order( self, market: str, side: str, size: float, type: str = 'stop', limit_price: float = None, reduce_only: bool = False, cancel: bool = True, trigger_price: float = None, trail_value: float = None) -> dict: """ To send a Stop Market order, set type='stop' and supply a trigger_price To send a Stop Limit order, also supply a limit_price To send a Take Profit Market order, set type='trailing_stop' and supply a trigger_price To send a Trailing Stop order, set type='trailing_stop' and supply a trail_value """ assert type in ('stop', 'take_profit', 'trailing_stop') assert type not in ('stop', 'take_profit') or trigger_price is not None, 'Need trigger prices for stop losses and take profits' assert type not in ('trailing_stop') or (trigger_price is None and trail_value is not None), 'Trailing stops need a trail value and cannot take a trigger price' return await self._request('POST', 'conditional_orders', json={'market': market, 'side': side, 'triggerPrice': trigger_price, 'size': size, 'reduceOnly': reduce_only, 'type': 'stop', 'cancelLimitOnTrigger': cancel, 'orderPrice': limit_price}) async def cancel_order(self, order_id: str) -> dict: return await self._request('DELETE', f'orders/{order_id}') async def cancel_orders(self, market_name: str = None, conditional_orders: bool = False, limit_orders: bool = False) -> dict: return await self._request('DELETE', 'orders', json={'market': market_name, 'conditionalOrdersOnly': conditional_orders, 'limitOrdersOnly': limit_orders}) async def get_fills(self) -> List[dict]: return await self._request('GET', 'fills') async def get_balances(self) -> List[dict]: return await self._request('GET', 'wallet/balances') async def get_deposit_address(self, ticker: str) -> dict: return await self._request('GET', f'wallet/deposit_address/{ticker}') async def get_positions(self, show_avg_price: bool = False) -> List[dict]: return await self._request('GET', 'positions', params={'showAvgPrice': str(show_avg_price)}) async def get_kline(self, market_name: str, resolution: int, limit: int = None, start_time: int = None, end_time: int = None) -> dict: #GET /markets/{market_name}/candles?resolution={resolution}&limit={limit}&start_time={start_time}&end_time={end_time} params = {'resolution': resolution} if limit: params["limit"] = limit if start_time: params["start_time"] = start_time if end_time: params["end_time"] = end_time return await self._request('GET', f'markets/{market_name}/candles', params=params) class FTXTrader(Websocket, ExchangeGateway): """ FTX Trade module. You can initialize trader object with some attributes in kwargs. """ def __init__(self, **kwargs): """Initialize.""" self.cb = kwargs["cb"] state = None self._platform = kwargs.get("platform") self._symbols = kwargs.get("symbols") self._strategy = kwargs.get("strategy") self._account = kwargs.get("account") self._access_key = kwargs.get("access_key") self._secret_key = kwargs.get("secret_key") self._subaccount_name = kwargs.get("subaccount_name") if not self._platform: state = State(self._platform, self._account, "param platform miss") elif self._account and (not self._access_key or not self._secret_key): state = State(self._platform, self._account, "param access_key or secret_key miss") elif not self._strategy: state = State(self._platform, self._account, "param strategy miss") elif not self._symbols: state = State(self._platform, self._account, "param symbols miss") if state: logger.error(state, caller=self) SingleTask.run(self.cb.on_state_update_callback, state) return self._host = "https://ftx.com" self._wss = "wss://ftx.com" url = self._wss + "/ws" super(FTXTrader, self).__init__(url, send_hb_interval=15, **kwargs) self.heartbeat_msg = {"op": "ping"} # Initializing our REST API client. self._rest_api = FTXRestAPI(self._host, self._access_key, self._secret_key, self._subaccount_name) #订单簿深度数据 self._orderbooks: DefaultDict[str, Dict[str, DefaultDict[float, float]]] = defaultdict(lambda: {side: defaultdict(float) for side in {'bids', 'asks'}}) self._assets: DefaultDict[str: Dict[str, float]] = defaultdict(lambda: {k: 0.0 for k in {'free', 'locked', 'total'}}) self._syminfo:DefaultDict[str: Dict[str, Any]] = defaultdict(dict) if self._account != None: self.initialize() #如果四个行情回调函数都为空的话,就根本不需要执行市场行情相关代码 if (self.cb.on_kline_update_callback or self.cb.on_orderbook_update_callback or self.cb.on_trade_update_callback or self.cb.on_ticker_update_callback): #市场行情数据 FTXMarket(**kwargs) @property def rest_api(self): return self._rest_api async def create_order(self, symbol, action, price, quantity, order_type=ORDER_TYPE_LIMIT, *args, **kwargs): """ Create an order. Args: symbol: Trade target action: Trade direction, `BUY` or `SELL`. price: Price of each contract. quantity: The buying or selling quantity. order_type: Order type, `MARKET` or `LIMIT`. Returns: order_no: Order ID if created successfully, otherwise it's None. error: Error information, otherwise it's None. """ #{"result": {"avgFillPrice": null, "clientId": null, "createdAt": "2019-11-16T11:08:37.726313+00:00", "filledSize": 0.0, "future": "ETH-PERP", "id": 871282987, "ioc": false, "market": "ETH-PERP", "postOnly": false, "price": 251.0, "reduceOnly": false, "remainingSize": 0.02, "side": "sell", "size": 0.02, "status": "new", "type": "limit"}, "success": true} if action == ORDER_ACTION_BUY: side = "buy" else: side = "sell" size = abs(float(quantity)) price = float(price) if order_type == ORDER_TYPE_LIMIT: ot = "limit" elif order_type == ORDER_TYPE_MARKET: ot = "market" price = None else: raise NotImplementedError success, error = await self._rest_api.place_order(symbol, side, price, size, ot) if error: return None, error if not success["success"]: return None, "place_order error" result = success["result"] return str(result["id"]), None async def revoke_order(self, symbol, *order_nos): """ Revoke (an) order(s). Args: symbol: Trade target order_nos: Order id list, you can set this param to 0 or multiple items. If you set 0 param, you can cancel all orders for this symbol. If you set 1 or multiple param, you can cancel an or multiple order. Returns: 删除全部订单情况: 成功=(True, None), 失败=(False, error information) 删除单个或多个订单情况: (删除成功的订单id[], 删除失败的订单id及错误信息[]),比如删除三个都成功那么结果为([1xx,2xx,3xx], []) """ # If len(order_nos) == 0, you will cancel all orders for this symbol. if len(order_nos) == 0: success, error = await self._rest_api.cancel_orders(symbol) if error: return False, error if not success["success"]: return False, "cancel_orders error" return True, None # If len(order_nos) > 0, you will cancel an or multiple orders. else: result = [] for order_no in order_nos: _, e = await self._rest_api.cancel_order(order_no) if e: result.append((order_no, e)) else: result.append((order_no, None)) return tuple(result), None async def get_assets(self): """ 获取交易账户资产信息 Args: None Returns: assets: Asset if successfully, otherwise it's None. error: Error information, otherwise it's None. """ #{"result": {"backstopProvider": false, "collateral": 110.094266926, "freeCollateral": 109.734306926, "initialMarginRequirement": 0.2, "leverage": 5.0, "liquidating": false, "maintenanceMarginRequirement": 0.03, "makerFee": 0.0002, "marginFraction": 61.1703338848761, "openMarginFraction": 61.170278323147016, "positionLimit": null, "positionLimitUsed": 2.15976, "positions": [{"collateralUsed": 0.35996, "cost": -1.7999, "entryPrice": 179.99, "estimatedLiquidationPrice": 11184.0172926, "future": "ETH-PERP", "initialMarginRequirement": 0.2, "longOrderSize": 0.0, "maintenanceMarginRequirement": 0.03, "netSize": -0.01, "openSize": 0.01, "realizedPnl": 0.01723393, "shortOrderSize": 0.0, "side": "sell", "size": 0.01, "unrealizedPnl": 0.0001}], "takerFee": 0.0007, "totalAccountValue": 110.094366926, "totalPositionSize": 1.7998, "useFttCollateral": true, "username": "[email protected]"}, "success": true} success, error = await self._rest_api.get_account_info() if error: return None, error if not success["success"]: return None, "get_account_info error" data = success["result"] assets = {} total = float(data["collateral"]) free = float(data["freeCollateral"]) locked = total - free assets["USD"] = { "total": total, "free": free, "locked": locked } if assets == self._assets: update = False else: update = True self._assets = assets timestamp = tools.get_cur_timestamp_ms() ast = Asset(self._platform, self._account, self._assets, timestamp, update) return ast, None def _convert_order_format(self, o): """将交易所订单结构转换为本交易系统标准订单结构格式 """ order_no = str(o["id"]) state = o["status"] remain = float(o["remainingSize"]) filled = float(o["filledSize"]) size = float(o["size"]) price = None if o["price"]==None else float(o["price"]) avg_price = None if o["avgFillPrice"]==None else float(o["avgFillPrice"]) if state == "new": status = ORDER_STATUS_SUBMITTED elif state == "open": if remain < size: status = ORDER_STATUS_PARTIAL_FILLED else: status = ORDER_STATUS_SUBMITTED elif state == "closed": if filled < size: status = ORDER_STATUS_CANCELED else: status = ORDER_STATUS_FILLED else: return None info = { "platform": self._platform, "account": self._account, "strategy": self._strategy, "order_no": order_no, "action": ORDER_ACTION_BUY if o["side"] == "buy" else ORDER_ACTION_SELL, "symbol": o["market"], "price": price, "quantity": size, "order_type": ORDER_TYPE_LIMIT if o["type"] == "limit" else ORDER_TYPE_MARKET, "remain": remain, #size-filled会更好 "status": status, "avg_price": avg_price } order = Order(**info) return order async def get_orders(self, symbol): """ 获取当前挂单列表 Args: symbol: Trade target Returns: orders: Order list if successfully, otherwise it's None. error: Error information, otherwise it's None. """ #{"result": [{"avgFillPrice": null, "clientId": null, "createdAt": null, "filledSize": 0.0, "future": "ETH-PERP", "id": 769622011, "ioc": false, "market": "ETH-PERP", "postOnly": false, "price": 152.0, "reduceOnly": false, "remainingSize": 0.002, "side": "buy", "size": 0.002, "status": "open", "type": "limit"}, {"avgFillPrice": null, "clientId": null, "createdAt": null, "filledSize": 0.0, "future": "ETH-PERP", "id": 769620713, "ioc": false, "market": "ETH-PERP", "postOnly": false, "price": 150.0, "reduceOnly": false, "remainingSize": 0.001, "side": "buy", "size": 0.001, "status": "open", "type": "limit"}], "success": true} orders:List[Order] = [] success, error = await self._rest_api.get_open_orders(symbol) if error: return None, error if not success["success"]: return None, "get_open_orders error" data = success["result"] for o in data: order = self._convert_order_format(o) if order == None: return None, "get_open_orders error" orders.append(order) return orders, None async def get_position(self, symbol): """ 获取当前持仓 Args: symbol: Trade target Returns: position: Position if successfully, otherwise it's None. error: Error information, otherwise it's None. """ #{"result": [{"collateralUsed": 0.35986, "cost": -1.7984, "entryPrice": 179.84, "estimatedLiquidationPrice": 11184.0123266, "future": "ETH-PERP", "initialMarginRequirement": 0.2, "longOrderSize": 0.0, "maintenanceMarginRequirement": 0.03, "netSize": -0.01, "openSize": 0.01, "realizedPnl": 0.01866927, "recentAverageOpenPrice": 179.84, "recentPnl": -0.0009, "shortOrderSize": 0.0, "side": "sell", "size": 0.01, "unrealizedPnl": -0.0009}], "success": true} success, error = await self._rest_api.get_positions(True) if error: return None, error if not success["success"]: return None, "get_position error" p = next(filter(lambda x: x['future'] == symbol, success["result"]), None) if p == None: return Position(self._platform, self._account, self._strategy, symbol), None if p["netSize"] == 0: return Position(self._platform, self._account, self._strategy, symbol), None pos = Position(self._platform, self._account, self._strategy, symbol) pos.margin_mode = MARGIN_MODE_CROSSED #ftx只有全仓模式,如果想要逐仓模式的话就用子账户的方式来实现 pos.utime = tools.get_cur_timestamp_ms() if p["netSize"] < 0: #空头仓位 pos.long_quantity = 0 pos.long_avail_qty = 0 pos.long_open_price = 0 pos.long_hold_price = 0 pos.long_liquid_price = 0 pos.long_unrealised_pnl = 0 pos.long_leverage = 0 pos.long_margin = 0 # pos.short_quantity = abs(p["netSize"]) pos.short_avail_qty = pos.short_quantity-p["longOrderSize"] if p["longOrderSize"]<pos.short_quantity else 0 pos.short_open_price = p["recentAverageOpenPrice"] pos.short_hold_price = p["entryPrice"] pos.short_liquid_price = p["estimatedLiquidationPrice"] pos.short_unrealised_pnl = p["unrealizedPnl"] pos.short_leverage = int(1/p["initialMarginRequirement"]) pos.short_margin = p["collateralUsed"] else: #多头仓位 pos.long_quantity = abs(p["netSize"]) pos.long_avail_qty = pos.long_quantity-p["shortOrderSize"] if p["shortOrderSize"]<pos.long_quantity else 0 pos.long_open_price = p["recentAverageOpenPrice"] pos.long_hold_price = p["entryPrice"] pos.long_liquid_price = p["estimatedLiquidationPrice"] pos.long_unrealised_pnl = p["unrealizedPnl"] pos.long_leverage = int(1/p["initialMarginRequirement"]) pos.long_margin = p["collateralUsed"] # pos.short_quantity = 0 pos.short_avail_qty = 0 pos.short_open_price = 0 pos.short_hold_price = 0 pos.short_liquid_price = 0 pos.short_unrealised_pnl = 0 pos.short_leverage = 0 pos.short_margin = 0 return pos, None async def get_symbol_info(self, symbol): """ 获取指定符号相关信息 Args: symbol: Trade target Returns: symbol_info: SymbolInfo if successfully, otherwise it's None. error: Error information, otherwise it's None. """ """ { "success": true, "result": [ { "name": "BTC-0628", "baseCurrency": null, "quoteCurrency": null, "type": "future", "underlying": "BTC", "enabled": true, "ask": 3949.25, "bid": 3949, "last": 10579.52, "priceIncrement": 0.25, "sizeIncrement": 0.001 } ] } """ info = self._syminfo[symbol] if not info: return None, "Symbol not exist" price_tick = float(info["priceIncrement"]) size_tick = float(info["sizeIncrement"]) size_limit = None #原始数据中没有 value_tick = None #原始数据中没有 value_limit = None #原始数据中没有 if info["type"] == "future": base_currency = info["underlying"] quote_currency = "USD" settlement_currency = "USD" else: #"spot" base_currency = info["baseCurrency"] quote_currency = info["quoteCurrency"] settlement_currency = info["quoteCurrency"] symbol_type = info["type"] is_inverse = False multiplier = 1 syminfo = SymbolInfo(self._platform, symbol, price_tick, size_tick, size_limit, value_tick, value_limit, base_currency, quote_currency, settlement_currency, symbol_type, is_inverse, multiplier) return syminfo, None async def invalid_indicate(self, symbol, indicate_type): """ update (an) callback function. Args: symbol: Trade target indicate_type: INDICATE_ORDER, INDICATE_ASSET, INDICATE_POSITION Returns: success: If execute successfully, return True, otherwise it's False. error: If execute failed, return error information, otherwise it's None. """ async def _task(): if indicate_type == INDICATE_ORDER and self.cb.on_order_update_callback: success, error = await self.get_orders(symbol) if error: state = State(self._platform, self._account, "get_orders error: {}".format(error), State.STATE_CODE_GENERAL_ERROR) SingleTask.run(self.cb.on_state_update_callback, state) return for order in success: SingleTask.run(self.cb.on_order_update_callback, order) elif indicate_type == INDICATE_ASSET and self.cb.on_asset_update_callback: success, error = await self.get_assets() if error: state = State(self._platform, self._account, "get_assets error: {}".format(error), State.STATE_CODE_GENERAL_ERROR) SingleTask.run(self.cb.on_state_update_callback, state) return SingleTask.run(self.cb.on_asset_update_callback, success) elif indicate_type == INDICATE_POSITION and self.cb.on_position_update_callback: success, error = await self.get_position(symbol) if error: state = State(self._platform, self._account, "get_position error: {}".format(error), State.STATE_CODE_GENERAL_ERROR) SingleTask.run(self.cb.on_state_update_callback, state) return SingleTask.run(self.cb.on_position_update_callback, success) if indicate_type == INDICATE_ORDER or indicate_type == INDICATE_ASSET or indicate_type == INDICATE_POSITION: SingleTask.run(_task) return True, None else: logger.error("indicate_type error! indicate_type:", indicate_type, caller=self) return False, "indicate_type error" async def _login(self): """FTX的websocket接口真是逗逼,验证成功的情况下居然不会返回任何消息""" ts = int(time.time() * 1000) signature = hmac.new(self._secret_key.encode(), f'{ts}websocket_login'.encode(), 'sha256').hexdigest() args = { 'key': self._access_key, 'sign': signature, 'time': ts } #如果是子账户,就添加相应字段 if self._subaccount_name: args["subaccount"] = self._subaccount_name data = {'op': 'login', 'args': args} await self.send_json(data) async def connected_callback(self): """网络链接成功回调 """ if self._account != None: #账号不为空就要进行登录认证,然后订阅2个需要登录后才能订阅的私有频道:用户挂单通知和挂单成交通知(FTX只支持这2个私有频道) await self._login() #登录认证 success, error = await self._rest_api.list_markets() if error: state = State(self._platform, self._account, "list_markets error: {}".format(error), State.STATE_CODE_GENERAL_ERROR) SingleTask.run(self.cb.on_state_update_callback, state) #初始化过程中发生错误,关闭网络连接,触发重连机制 await self.socket_close() return for info in success["result"]: self._syminfo[info["name"]] = info #符号信息一般不变,获取一次保存好,其他地方要用直接从这个变量获取就可以了 if self.cb.on_order_update_callback != None: for sym in self._symbols: orders, error = await self.get_orders(sym) if error: state = State(self._platform, self._account, "get_orders error: {}".format(error), State.STATE_CODE_GENERAL_ERROR) SingleTask.run(self.cb.on_state_update_callback, state) #初始化过程中发生错误,关闭网络连接,触发重连机制 await self.socket_close() return for o in orders: SingleTask.run(self.cb.on_order_update_callback, o) if self.cb.on_position_update_callback != None: for sym in self._symbols: pos, error = await self.get_position(sym) if error: state = State(self._platform, self._account, "get_position error: {}".format(error), State.STATE_CODE_GENERAL_ERROR) SingleTask.run(self.cb.on_state_update_callback, state) #初始化过程中发生错误,关闭网络连接,触发重连机制 await self.socket_close() return SingleTask.run(self.cb.on_position_update_callback, pos) if self.cb.on_asset_update_callback != None: ast, error = await self.get_assets() if error: state = State(self._platform, self._account, "get_assets error: {}".format(error), State.STATE_CODE_GENERAL_ERROR) SingleTask.run(self.cb.on_state_update_callback, state) #初始化过程中发生错误,关闭网络连接,触发重连机制 await self.socket_close() return SingleTask.run(self.cb.on_asset_update_callback, ast) #`用户挂单通知回调`不为空,就进行订阅 if self.cb.on_order_update_callback != None: await self.send_json({'op': 'subscribe', 'channel': 'orders'}) #`用户挂单成交通知回调`不为空,就进行订阅 if self.cb.on_fill_update_callback != None: await self.send_json({'op': 'subscribe', 'channel': 'fills'}) #计数初始化0 self._subscribe_response_count = 0 async def process(self, msg): """ Process message that received from websocket. Args: msg: message received from websocket. Returns: None. """ if not isinstance(msg, dict): return logger.debug("msg:", json.dumps(msg), caller=self) #{"type": "error", "code": 400, "msg": "Invalid login credentials"} if msg["type"] == "error": state = State(self._platform, self._account, "Websocket connection failed: {}".format(msg), State.STATE_CODE_GENERAL_ERROR) logger.error(state, caller=self) SingleTask.run(self.cb.on_state_update_callback, state) elif msg["type"] == "pong": return elif msg["type"] == "info": if msg["code"] == 20001: #交易所重启了,我们就断开连接,websocket会自动重连 @async_method_locker("FTXTrader._ws_close.locker") async def _ws_close(): await self.socket_close() SingleTask.run(_ws_close) elif msg["type"] == "unsubscribed": return #{'type': 'subscribed', 'channel': 'trades', 'market': 'BTC-PERP'} elif msg["type"] == "subscribed": self._subscribe_response_count = self._subscribe_response_count + 1 #每来一次订阅响应计数就加一 if self._subscribe_response_count == 2: #所有的订阅都成功了,通知上层接口都准备好了 state = State(self._platform, self._account, "Environment ready", State.STATE_CODE_READY) SingleTask.run(self.cb.on_state_update_callback, state) elif msg["type"] == "update": channel = msg['channel'] if channel == 'orders': self._update_order(msg) elif channel == 'fills': self._update_fill(msg) def _update_order(self, order_info): """ Order update. Args: order_info: Order information. Returns: None. """ #new (accepted but not processed yet), open, or closed (filled or cancelled) #开仓 #{"id": 742849571, "clientId": null, "market": "ETH-PERP", "type": "limit", "side": "buy", "price": 150.0, "size": 0.003, "status": "new", "filledSize": 0.0, "remainingSize": 0.003, "reduceOnly": false, "avgFillPrice": null, "postOnly": false, "ioc": false} #150->修改->151 #{"id": 742849571, "clientId": null, "market": "ETH-PERP", "type": "limit", "side": "buy", "price": 150.0, "size": 0.003, "status": "closed", "filledSize": 0.0, "remainingSize": 0.0, "reduceOnly": false, "avgFillPrice": null, "postOnly": false, "ioc": false} #{"id": 742853455, "clientId": null, "market": "ETH-PERP", "type": "limit", "side": "buy", "price": 151.0, "size": 0.003, "status": "new", "filledSize": 0.0, "remainingSize": 0.003, "reduceOnly": false, "avgFillPrice": null, "postOnly": false, "ioc": false} #151->修改->187->成交 #{"id": 742853455, "clientId": null, "market": "ETH-PERP", "type": "limit", "side": "buy", "price": 151.0, "size": 0.003, "status": "closed", "filledSize": 0.0, "remainingSize": 0.0, "reduceOnly": false, "avgFillPrice": null, "postOnly": false, "ioc": false} #{"id": 742862380, "clientId": null, "market": "ETH-PERP", "type": "limit", "side": "buy", "price": 187.0, "size": 0.003, "status": "closed", "filledSize": 0.003, "remainingSize": 0.0, "reduceOnly": false, "avgFillPrice": 186.96, "postOnly": false, "ioc": false} #市价全平仓位 #{"id": 742875876, "clientId": null, "market": "ETH-PERP", "type": "market", "side": "sell", "price": null, "size": 0.003, "status": "closed", "filledSize": 0.003, "remainingSize": 0.0, "reduceOnly": true, "avgFillPrice": 186.79, "postOnly": false, "ioc": true} o = order_info["data"] order = self._convert_order_format(o) if order == None: return SingleTask.run(self.cb.on_order_update_callback, order) def _update_fill(self, fill_info): """ Fill update. Args: fill_info: Fill information. Returns: None. """ #{"channel": "orders", "type": "update", "data": {"id": 751733812, "clientId": null, "market": "ETH-PERP", "type": "limit", "side": "buy", "price": 187.93, "size": 0.001, "status": "closed", "filledSize": 0.001, "remainingSize": 0.0, "reduceOnly": false, "avgFillPrice": 184.25, "postOnly": false, "ioc": false}} #{"channel": "fills", "type": "update", "data": {"id": 5741311, "market": "ETH-PERP", "future": "ETH-PERP", "baseCurrency": null, "quoteCurrency": null, "type": "order", "side": "buy", "price": 184.25, "size": 0.001, "orderId": 751733812, "time": "2019-11-08T09:52:27.366467+00:00", "feeRate": 0.0007, "fee": 0.000128975, "liquidity": "taker"}} data = fill_info["data"] fill_no = str(data["id"]) order_no = str(data["orderId"]) price = float(data["price"]) size = float(data["size"]) fee = float(data["fee"]) ts = tools.utctime_str_to_mts(data["time"], "%Y-%m-%dT%H:%M:%S.%f+00:00") liquidity = LIQUIDITY_TYPE_TAKER if data["liquidity"]=="taker" else LIQUIDITY_TYPE_MAKER info = { "platform": self._platform, "account": self._account, "strategy": self._strategy, "fill_no": fill_no, "order_no": order_no, "side": ORDER_ACTION_BUY if data["side"] == "buy" else ORDER_ACTION_SELL, "symbol": data["market"], "price": price, "quantity": size, "liquidity": liquidity, "fee": fee, "ctime": ts } fill = Fill(**info) SingleTask.run(self.cb.on_fill_update_callback, fill) @staticmethod def mapping_layer(): """ 获取符号映射关系. Returns: layer: 符号映射关系 """ return None #FTX不需要符号映射 class FTXMarket(Websocket): """ FTX Trade module. You can initialize trader object with some attributes in kwargs. """ def __init__(self, **kwargs): """Initialize.""" self._platform = kwargs["platform"] self._symbols = kwargs["symbols"] self._host = "https://ftx.com" self._wss = "wss://ftx.com" url = self._wss + "/ws" super(FTXMarket, self).__init__(url, send_hb_interval=15, **kwargs) self.heartbeat_msg = {"op": "ping"} self._rest_api = FTXRestAPI(self._host, None, None, None) #订单簿深度数据 self._orderbooks: DefaultDict[str, Dict[str, DefaultDict[float, float]]] = defaultdict(lambda: {side: defaultdict(float) for side in {'bids', 'asks'}}) self.initialize() async def _kline_loop_query(self, symbol, *args, **kwargs): #{"result": [{"close": 7088.5, "high": 7090.0, "low": 7085.75, "open": 7090.0, "startTime": "2019-11-26T16:44:00+00:00", "time": 1574786640000.0, "volume": 0.70885}, {"close": 7088.0, "high": 7088.75, "low": 7088.0, "open": 7088.5, "startTime": "2019-11-26T16:45:00+00:00", "time": 1574786700000.0, "volume": 0.708875}], "success": true} success, error = await self._rest_api.get_kline(symbol, 60, 2) #取2个时间窗口的数据 if error: return None, error if not success["success"]: return None, "_kline_loop_query error" result = success["result"] k = result[0] #这里保存的是上一分钟完整的数据 self._update_kline(k, symbol) async def connected_callback(self): """网络链接成功回调 """ #订阅公共频道,无需登录认证 for sym in self._symbols: if self.cb.on_trade_update_callback != None: await self.send_json({'op': 'subscribe', 'channel': 'trades', 'market': sym}) if self.cb.on_orderbook_update_callback != None: await self.send_json({'op': 'subscribe', 'channel': 'orderbook', 'market': sym}) if self.cb.on_ticker_update_callback != None: await self.send_json({'op': 'subscribe', 'channel': 'ticker', 'market': sym}) if self.cb.on_kline_update_callback != None: LoopRunTask.register(self._kline_loop_query, 60, sym) async def process(self, msg): """ Process message that received from websocket. Args: msg: message received from websocket. Returns: None. """ if not isinstance(msg, dict): return logger.debug("msg:", json.dumps(msg), caller=self) #{"type": "pong"} if msg.get("type") == "pong": return #{"type": "error", "code": 400, "msg": "Invalid login credentials"} elif msg["type"] == "error": state = State(self._platform, self._account, "Websocket connection failed: {}".format(msg), State.STATE_CODE_GENERAL_ERROR) logger.error(state, caller=self) SingleTask.run(self.cb.on_state_update_callback, state) elif msg["type"] == "info": if msg["code"] == 20001: #交易所重启了,我们就断开连接,websocket会自动重连 @async_method_locker("FTXMarket._ws_close.locker") async def _ws_close(): await self.socket_close() SingleTask.run(_ws_close) elif msg["type"] == "unsubscribed": return #{'type': 'subscribed', 'channel': 'trades', 'market': 'BTC-PERP'} elif msg["type"] == "subscribed": return elif msg["type"] == "update" or msg["type"] == "partial": channel = msg['channel'] if channel == 'orderbook': self._update_orderbook(msg) elif channel == 'trades': self._update_trades(msg) elif channel == 'ticker': self._update_ticker(msg) def _update_ticker(self, ticker_info): """ ticker update. Args: ticker_info: ticker information. Returns: """ #{"channel": "ticker", "market": "BTC-PERP", "type": "update", "data": {"bid": 9320.0, "ask": 9323.0, "bidSize": 78.506, "askSize": 101.2467, "last": 9333.5, "time": 1573014477.9969265}} ts = int(float(ticker_info["data"]["time"])*1000) #转变为毫秒 p = { "platform": self._platform, "symbol": ticker_info["market"], "ask": ticker_info["data"]["ask"], "bid": ticker_info["data"]["bid"], "last": ticker_info["data"]["last"], "timestamp": ts } ticker = Ticker(**p) SingleTask.run(self.cb.on_ticker_update_callback, ticker) def _update_trades(self, trades_info): """ trades update. Args: trades_info: trades information. Returns: """ #{"channel": "trades", "market": "BTC-PERP", "type": "update", "data": [{"id": 2616562, "price": 9333.25, "size": 0.2143, "side": "sell", "liquidation": false, "time": "2019-11-06T05:19:51.187372+00:00"}]} for t in trades_info["data"]: ts = tools.utctime_str_to_mts(t["time"], "%Y-%m-%dT%H:%M:%S.%f+00:00") p = { "platform": self._platform, "symbol": trades_info["market"], "action": ORDER_ACTION_BUY if t["side"] == "buy" else ORDER_ACTION_SELL, "price": t["price"], "quantity": t["size"], "timestamp": ts } trade = Trade(**p) SingleTask.run(self.cb.on_trade_update_callback, trade) def _reset_orderbook(self, market: str) -> None: if market in self._orderbooks: del self._orderbooks[market] def _get_orderbook(self, market: str) -> Dict[str, List[Tuple[float, float]]]: return { side: sorted( [(price, quantity) for price, quantity in list(self._orderbooks[market][side].items()) if quantity], key=lambda order: order[0] * (-1 if side == 'bids' else 1) ) for side in {'bids', 'asks'} } def _update_orderbook(self, orderbook_info): """ orderbook update. Args: orderbook_info: orderbook information. Returns: """ market = orderbook_info['market'] data = orderbook_info['data'] if data['action'] == 'partial': self._reset_orderbook(market) for side in {'bids', 'asks'}: book = self._orderbooks[market][side] for price, size in data[side]: if size: book[price] = size else: del book[price] #end for checksum = data['checksum'] orderbook = self._get_orderbook(market) checksum_data = [ ':'.join([f'{float(order[0])}:{float(order[1])}' for order in (bid, offer) if order]) for (bid, offer) in zip_longest(orderbook['bids'][:100], orderbook['asks'][:100]) ] computed_result = int(zlib.crc32(':'.join(checksum_data).encode())) if computed_result != checksum: #校验和不对就需要重新订阅深度信息 @async_method_locker("FTXMarket._re_subscribe.locker") async def _re_subscribe(): await self.send_json({'op': 'unsubscribe', 'channel': 'orderbook', 'market': market}) await self.send_json({'op': 'subscribe', 'channel': 'orderbook', 'market': market}) SingleTask.run(_re_subscribe) #校验和不对就退出 return logger.debug("orderbook:", json.dumps(orderbook), caller=self) ts = int(float(data['time'])*1000) #转变为毫秒 p = { "platform": self._platform, "symbol": market, "asks": orderbook['asks'], "bids": orderbook['bids'], "timestamp": ts } ob = Orderbook(**p) SingleTask.run(self.cb.on_orderbook_update_callback, ob) def _update_kline(self, kline_info, symbol): """ kline update. Args: kline_info: kline information. Returns: None. """ info = { "platform": self._platform, "symbol": symbol, "open": kline_info["open"], "high": kline_info["high"], "low": kline_info["low"], "close": kline_info["close"], "volume": kline_info["volume"], "timestamp": tools.utctime_str_to_mts(kline_info["startTime"], "%Y-%m-%dT%H:%M:%S+00:00"), "kline_type": MARKET_TYPE_KLINE } kline = Kline(**info) SingleTask.run(self.cb.on_kline_update_callback, kline)
44.262048
912
0.571873
[ "MIT" ]
a04512/alphahunter
quant/platform/ftx.py
45,427
Python
import os import matplotlib.pyplot as plt plt.style.use("seaborn") import numpy as np from lib.utils import read_csv, find_cargo_root from lib.blocking import block data_folder = os.path.join(find_cargo_root(), "data") save_folder = os.path.join(os.path.dirname(find_cargo_root()), "report", "assets") if not os.path.isdir(save_folder): os.mkdir(save_folder) N = 10 true_val = 15 bruteforce = read_csv(os.path.join(data_folder, "E_vs_MCs_BruteForceMetropolis.csv")) importance = read_csv(os.path.join(data_folder, "E_vs_MCs_ImportanceMetropolis.csv")) x = [100, 1000, 3000, 5000, 7000, 10000] #bruteforce_std = [np.sqrt(block(np.array(vals))[1]) for vals in [bruteforce["energy[au]"][1:up_to] for up_to in x]] #importance_std = [np.sqrt(block(np.array(vals))[1]) for vals in [importance["energy[au]"][1:up_to] for up_to in x]] #plt.plot(x, bruteforce_std, "-o", label="Brute-force") #plt.plot(x, importance_std, "-o", label="Importance") plt.plot(range(len(bruteforce["energy[au]"][1:])), bruteforce["energy[au]"][1:], "-o", label="Brute-force") plt.plot(range(len(importance["energy[au]"][1:])), importance["energy[au]"][1:], "-o", label="Importance") plt.xlabel("Monte Carlo cycles") plt.ylabel(r"Energy") plt.legend() plt.savefig(os.path.join(save_folder, "E_vs_MCs_all.png")) plt.show()
43.266667
116
0.724191
[ "MIT" ]
kmaasrud/vmc
vmc/result_analysis/E_vs_MCs.py
1,298
Python
# -*- coding: utf-8 -*- # Generated by Django 1.11.12 on 2018-04-22 11:53 from __future__ import unicode_literals import company.models from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Company', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(help_text='Company naem', max_length=100, unique=True)), ('description', models.CharField(max_length=500)), ('website', models.URLField(blank=True, help_text='Company website URL')), ('address', models.CharField(blank=True, help_text='Company address', max_length=200)), ('phone', models.CharField(blank=True, max_length=50)), ('email', models.EmailField(blank=True, max_length=254)), ('contact', models.CharField(blank=True, max_length=100)), ('image', models.ImageField(blank=True, max_length=255, null=True, upload_to=company.models.rename_company_image)), ('notes', models.TextField(blank=True)), ], ), ]
38.969697
131
0.61353
[ "MIT" ]
ksanchezcld/InvenTree
InvenTree/company/migrations/0001_initial.py
1,286
Python
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # http://www.sphinx-doc.org/en/master/config # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys sys.path.insert(0, os.path.abspath("..")) sys.path.append(os.path.dirname(__file__)) # -- Project information ----------------------------------------------------- project = "DoubletDetection" copyright = "2019, Adam Gayoso and Jonathan Shor" author = "Adam Gayoso and Jonathan Shor" # The full version, including alpha/beta/rc tags release = "2.5.2" # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = ["sphinx.ext.autodoc", "sphinx.ext.viewcode", "sphinx.ext.napoleon", "m2r"] # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ["_build", "Thumbs.db", ".DS_Store"] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = "sphinx_rtd_theme" # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ["_static"] master_doc = "index"
36
88
0.672414
[ "MIT" ]
dpeerlab/DoubletDetection
docs/conf.py
2,088
Python
from collections import namedtuple Kit = namedtuple('Kit', 'name clip_r1_5 clip_r1_3 clip_r2_5 clip_r2_3 is_directional') _KITS = [ Kit("truseq", 8, 8, 8, 8, False), Kit("accelngs", 10, 10, 19, 5, True), Kit("nebemseq", 5, 5, 11, 5, True) ] KITS = {x.name: x for x in _KITS} SUPPORTED_KITS = {x.name for x in _KITS}
25.461538
86
0.655589
[ "MIT" ]
ahmedelhosseiny/bcbio-nextgen
bcbio/wgbsseq/kits.py
331
Python
""" This module lets you experience the POWER of FUNCTIONS and PARAMETERS. Authors: David Mutchler, Vibha Alangar, Matt Boutell, Dave Fisher, Aaron Wilkin, their colleagues, and Morgan Brown. """ # DONE: 1. PUT YOUR NAME IN THE ABOVE LINE. import rosegraphics as rg def main(): """ Calls the other functions in this module to test and/or demonstrate them. """ drawing_speed = 10 # Bigger numbers mean faster drawing window = rg.TurtleWindow() window.tracer(drawing_speed) # ------------------------------------------------------------------------- # When the _TODO_s ask you to test YOUR code, # comment-out the following two statements and replace them # by calls to better_draw_circles et al as needed. # ------------------------------------------------------------------------- draw_circles(rg.Point(100, 50)) draw_circles(rg.Point(-200, 0)) window.update() window.close_on_mouse_click() ############################################################################### # DONE: 2. # First, RUN this program. You will see that it draws concentric circles # whose radii vary by 15. # # Next, READ: # -- main. # Note that it constructs a TurtleWindow and then calls the function # draw_circles # twice, sending draw_circles one Point the first time # and another Point the second time. # -- The function draw_circles is defined immediately below this _TODO_. # Be sure that you understand its code! Ask questions as needed! # # After you have done the above, change the above _TODO_ to DONE # and continue to the next _TODO_ below. # ############################################################################### def draw_circles(point): """ Constructs a SimpleTurtle, then uses the SimpleTurtle to draw 10 circles such that: -- Each is centered at the given Point, and -- They have radii: 15 30 45 60 75 ..., respectively. """ turtle = rg.SimpleTurtle() # ------------------------------------------------------------------------- # Draw circles centered at the given Point, by telling the SimpleTurtle to: # Step 1: Go to the given Point and point east (towards the right). # Step 2: Go 15 pixels DOWN, with its Pen up. # Then draw a radius R circle. # Note: The circle will be centered at the given Point, # because of the way that the SimpleTurtle draw_circle method works. # Step 3: Repeat Step 2, but using 30 pixels instead of 15, in both places # Step 4: Repeat Step 2, but using 45 pixels instead of 15 # Step 5: Repeat Step 2, but using 60 pixels instead of 15 # etc. # ------------------------------------------------------------------------- turtle.pen_up() turtle.go_to(point) turtle.set_heading(0) # Point "east" (towards the right) for k in range(1, 11): # k becomes 1, 2, 3, ... 10 turtle.pen_up() # Go DOWN 15 pixels, ending up pointing east again turtle.right(90) turtle.forward(15) turtle.left(90) turtle.pen_down() turtle.draw_circle(15 * k) # Radius 15, 30, 45, 60, ... ############################################################################### # DONE: 3a. # The function # better_draw_circles # defined below this _TODO_ starts out exactly the same as the code for # draw_circles # that you read above. # # Your job is to make # better_draw_circles # "better" than draw_circles by adding a PARAMETER for the amount # by which the radii of the concentric circles increase, as described below. # # The new better_draw_circles function can do the same thing as # the draw_circles function, but additionally allows for the radii to # vary by ANY desired amount. Hence, the new version will be MORE POWERFUL. # # So, modify the better_draw_circles function defined BELOW so that # it has a single ADDITIONAL PARAMETER that is the amount # by which the radii of the circles increase. # # For example, if that new parameter is given the value 15, # then the circles should have radii: 15 30 45 60 75 ..., respectively, # just as in draw_circles. But if that new parameter is given the value 3, # then the circles should have radii: 3 6 9 12 15 18 ..., respectively. # # DONE: 3b. # In main at the place indicated, comment-out the two existing calls # to draw_circles and add at least two calls to the improved # better_draw_circles function, to TEST that your modified code is correct # and does indeed allow for different amounts by which the radii can vary. # # ############################################################################# def better_draw_circles(point): """ Starts out the same as the draw_circles function defined ABOVE. You Will make it an IMPROVED, MORE POWERFUL function per the above _TODO_. """ turtle = rg.SimpleTurtle() turtle.pen_up() turtle.go_to(point) turtle.set_heading(0) # Point "east" (towards the right) for k in range(1, 11): # k becomes 1, 2, 3, ... 10 turtle.pen_up() # Go DOWN 15 pixels, ending up pointing east again turtle.right(90) turtle.forward(15) turtle.left(90) turtle.pen_down() print(15*k) # Radius 15, 30, 45, 60, ... ############################################################################### # DO: 4a. # In the previous _TODO_, you made a MORE POWERFUL version # of draw_circles by introducing a new PARAMETER for the amount # by which the radii of the concentric circles increase. # # In this _TODO_, you will implement a function called # even_better_draw_circles # that has FIVE parameters, for: # -- The center of the concentric circles (as it started with) # -- The amount by which the radii vary (as you did above) # -- The number of concentric circles drawn # -- The pen color of each of the concentric circles # -- The pen thickness of each of the concentric circles # # Hence, this even_better_draw_circles function will be # even more POWERFUL than the previous functions, # in that it can draw LOTS of different kinds of circles. # # Start by copy-and-pasting the code from better_draw_circles above # to the body of the even_better_draw_circles function defined below. # Then add parameters and modify the code to make them work! # # TODO: 4b. # In main at the place indicated, comment-out the existing calls # to better_draw_circles and add at least two calls to the improved # even_better_draw_circles function, to TEST that your modified code is # correct and does indeed use its parameters per their descriptions above. # ############################################################################### def even_better_draw_circles(point): """ An improved version of draw_circles, per the _TODO_ above. """ # READ the above _TODO_ and then copy-paste code from better_circles here: ############################################################################### # TODO: 5. # # Finally, comment-out the existing calls to even_better_draw_circles and # add code in main to draw various circles that form a BEAUTIFUL picture! ############################################################################### # ----------------------------------------------------------------------------- # Calls main to start the ball rolling. # ----------------------------------------------------------------------------- main()
38.878173
79
0.58206
[ "MIT" ]
brownme1/02-ObjectsFunctionsAndMethods
src/m5_why_parameters_are_powerful.py
7,659
Python
""" ETNA School API Wrapper ~~~~~~~~~~~~~~~~~~~~~~~ A python wrapper to help make python3 apps/bots using the ETNA API. :copyright: (c) 2019 Yohann MARTIN :license: MIT, see LICENSE for more details. """ __title__ = 'etnapy' __author__ = 'Yohann MARTIN' __license__ = 'MIT' __version__ = "1.0.0" from .user import User from .promo import Promo from .trophy import Trophy from .etnapy import Intra
20.05
67
0.698254
[ "MIT" ]
Astropilot/etnapy
etnapy/__init__.py
401
Python
import pytest import numpy as np import random from cem.backend import backend, NumpyBackend try: from cem.backend import CuPyBackend import cupy as cp skip_cupy_test = False except ImportError: skip_cupy_test = True def test_numpy_backend(): X = random.randint(0, 10) * 10 Y = random.randint(0, 10) * 10 zeros = backend.zeros((X, Y)) ones = backend.ones((X, Y)) assert isinstance(backend, NumpyBackend) assert isinstance(zeros, np.ndarray) assert isinstance(ones, np.ndarray) assert backend.int == np.int64 assert backend.float == np.float64 assert zeros.shape == (X, Y) assert ones.shape == (X, Y) assert backend.sin(ones).any() == np.sin(ones).any() assert backend.cos(ones).any() == np.cos(ones).any() @pytest.mark.skipif(skip_cupy_test, reason='CuPy is not installed.') def test_cupy_backend(): backend.set_backend('cupy') X = random.randint(0, 10) * 10 Y = random.randint(0, 10) * 10 zeros = backend.zeros((X, Y)) ones = backend.ones((X, Y)) assert isinstance(backend, CuPyBackend) assert isinstance(zeros, cp.ndarray) assert isinstance(ones, cp.ndarray) assert backend.int == cp.int64 assert backend.float == cp.float64 assert zeros.shape == (X, Y) assert ones.shape == (X, Y) assert backend.sin(ones).all() == cp.sin(ones).all() assert backend.cos(ones).all() == cp.cos(ones).all() @pytest.mark.skipif(skip_cupy_test, reason='CuPy is not installed.') def test_set_backend(): backend.set_backend('numpy') assert isinstance(backend, NumpyBackend) backend.set_backend('cupy') assert isinstance(backend, CuPyBackend)
28.355932
68
0.674836
[ "MIT" ]
dantehustg/cem
tests/test_backend.py
1,673
Python
""" compatibility OpenTimelineIO 0.12.0 and older """ import os import re import sys import json import opentimelineio as otio from . import utils import clique self = sys.modules[__name__] self.track_types = { "video": otio.schema.TrackKind.Video, "audio": otio.schema.TrackKind.Audio } self.project_fps = None def create_otio_rational_time(frame, fps): return otio.opentime.RationalTime( float(frame), float(fps) ) def create_otio_time_range(start_frame, frame_duration, fps): return otio.opentime.TimeRange( start_time=create_otio_rational_time(start_frame, fps), duration=create_otio_rational_time(frame_duration, fps) ) def create_otio_reference(media_pool_item): metadata = _get_metadata_media_pool_item(media_pool_item) mp_clip_property = media_pool_item.GetClipProperty() path = mp_clip_property["File Path"] reformat_path = utils.get_reformated_path(path, padded=True) padding = utils.get_padding_from_path(path) if padding: metadata.update({ "isSequence": True, "padding": padding }) # get clip property regarding to type mp_clip_property = media_pool_item.GetClipProperty() fps = float(mp_clip_property["FPS"]) if mp_clip_property["Type"] == "Video": frame_start = int(mp_clip_property["Start"]) frame_duration = int(mp_clip_property["Frames"]) else: audio_duration = str(mp_clip_property["Duration"]) frame_start = 0 frame_duration = int(utils.timecode_to_frames( audio_duration, float(fps))) otio_ex_ref_item = None if padding: # if it is file sequence try to create `ImageSequenceReference` # the OTIO might not be compatible so return nothing and do it old way try: dirname, filename = os.path.split(path) collection = clique.parse(filename, '{head}[{ranges}]{tail}') padding_num = len(re.findall("(\\d+)(?=-)", filename).pop()) otio_ex_ref_item = otio.schema.ImageSequenceReference( target_url_base=dirname + os.sep, name_prefix=collection.format("{head}"), name_suffix=collection.format("{tail}"), start_frame=frame_start, frame_zero_padding=padding_num, rate=fps, available_range=create_otio_time_range( frame_start, frame_duration, fps ) ) except AttributeError: pass if not otio_ex_ref_item: # in case old OTIO or video file create `ExternalReference` otio_ex_ref_item = otio.schema.ExternalReference( target_url=reformat_path, available_range=create_otio_time_range( frame_start, frame_duration, fps ) ) # add metadata to otio item add_otio_metadata(otio_ex_ref_item, media_pool_item, **metadata) return otio_ex_ref_item def create_otio_markers(track_item, fps): track_item_markers = track_item.GetMarkers() markers = [] for marker_frame in track_item_markers: note = track_item_markers[marker_frame]["note"] if "{" in note and "}" in note: metadata = json.loads(note) else: metadata = {"note": note} markers.append( otio.schema.Marker( name=track_item_markers[marker_frame]["name"], marked_range=create_otio_time_range( marker_frame, track_item_markers[marker_frame]["duration"], fps ), color=track_item_markers[marker_frame]["color"].upper(), metadata=metadata ) ) return markers def create_otio_clip(track_item): media_pool_item = track_item.GetMediaPoolItem() mp_clip_property = media_pool_item.GetClipProperty() if not self.project_fps: fps = mp_clip_property["FPS"] else: fps = self.project_fps name = track_item.GetName() media_reference = create_otio_reference(media_pool_item) source_range = create_otio_time_range( int(track_item.GetLeftOffset()), int(track_item.GetDuration()), fps ) if mp_clip_property["Type"] == "Audio": return_clips = list() audio_chanels = mp_clip_property["Audio Ch"] for channel in range(0, int(audio_chanels)): clip = otio.schema.Clip( name=f"{name}_{channel}", source_range=source_range, media_reference=media_reference ) for marker in create_otio_markers(track_item, fps): clip.markers.append(marker) return_clips.append(clip) return return_clips else: clip = otio.schema.Clip( name=name, source_range=source_range, media_reference=media_reference ) for marker in create_otio_markers(track_item, fps): clip.markers.append(marker) return clip def create_otio_gap(gap_start, clip_start, tl_start_frame, fps): return otio.schema.Gap( source_range=create_otio_time_range( gap_start, (clip_start - tl_start_frame) - gap_start, fps ) ) def _create_otio_timeline(project, timeline, fps): metadata = _get_timeline_metadata(project, timeline) start_time = create_otio_rational_time( timeline.GetStartFrame(), fps) otio_timeline = otio.schema.Timeline( name=timeline.GetName(), global_start_time=start_time, metadata=metadata ) return otio_timeline def _get_timeline_metadata(project, timeline): media_pool = project.GetMediaPool() root_folder = media_pool.GetRootFolder() ls_folder = root_folder.GetClipList() timeline = project.GetCurrentTimeline() timeline_name = timeline.GetName() for tl in ls_folder: if tl.GetName() not in timeline_name: continue return _get_metadata_media_pool_item(tl) def _get_metadata_media_pool_item(media_pool_item): data = dict() data.update({k: v for k, v in media_pool_item.GetMetadata().items()}) property = media_pool_item.GetClipProperty() or {} for name, value in property.items(): if "Resolution" in name and "" != value: width, height = value.split("x") data.update({ "width": int(width), "height": int(height) }) if "PAR" in name and "" != value: try: data.update({"pixelAspect": float(value)}) except ValueError: if "Square" in value: data.update({"pixelAspect": float(1)}) else: data.update({"pixelAspect": float(1)}) return data def create_otio_track(track_type, track_name): return otio.schema.Track( name=track_name, kind=self.track_types[track_type] ) def add_otio_gap(clip_start, otio_track, track_item, timeline): # if gap between track start and clip start if clip_start > otio_track.available_range().duration.value: # create gap and add it to track otio_track.append( create_otio_gap( otio_track.available_range().duration.value, track_item.GetStart(), timeline.GetStartFrame(), self.project_fps ) ) def add_otio_metadata(otio_item, media_pool_item, **kwargs): mp_metadata = media_pool_item.GetMetadata() # add additional metadata from kwargs if kwargs: mp_metadata.update(kwargs) # add metadata to otio item metadata for key, value in mp_metadata.items(): otio_item.metadata.update({key: value}) def create_otio_timeline(resolve_project): # get current timeline self.project_fps = resolve_project.GetSetting("timelineFrameRate") timeline = resolve_project.GetCurrentTimeline() # convert timeline to otio otio_timeline = _create_otio_timeline( resolve_project, timeline, self.project_fps) # loop all defined track types for track_type in list(self.track_types.keys()): # get total track count track_count = timeline.GetTrackCount(track_type) # loop all tracks by track indexes for track_index in range(1, int(track_count) + 1): # get current track name track_name = timeline.GetTrackName(track_type, track_index) # convert track to otio otio_track = create_otio_track( track_type, track_name) # get all track items in current track current_track_items = timeline.GetItemListInTrack( track_type, track_index) # loop available track items in current track items for track_item in current_track_items: # skip offline track items if track_item.GetMediaPoolItem() is None: continue # calculate real clip start clip_start = track_item.GetStart() - timeline.GetStartFrame() add_otio_gap( clip_start, otio_track, track_item, timeline) # create otio clip and add it to track otio_clip = create_otio_clip(track_item) if not isinstance(otio_clip, list): otio_track.append(otio_clip) else: for index, clip in enumerate(otio_clip): if index == 0: otio_track.append(clip) else: # add previouse otio track to timeline otio_timeline.tracks.append(otio_track) # convert track to otio otio_track = create_otio_track( track_type, track_name) add_otio_gap( clip_start, otio_track, track_item, timeline) otio_track.append(clip) # add track to otio timeline otio_timeline.tracks.append(otio_track) return otio_timeline def write_to_file(otio_timeline, path): otio.adapters.write_to_file(otio_timeline, path)
32.489231
78
0.605834
[ "MIT" ]
dangerstudios/OpenPype
openpype/hosts/resolve/otio/davinci_export.py
10,559
Python
""" generators for the neuron project """ # general imports import sys import os import zipfile # third party imports import numpy as np import nibabel as nib import scipy import keras from keras.utils import np_utils from keras.models import Model # local packages import pynd.ndutils as nd import pytools.patchlib as pl import pytools.timer as timer # reload patchlib (it's often updated right now...) from imp import reload reload(pl) # other neuron (this project) packages from . import dataproc as nrn_proc from . import models as nrn_models class Vol(object): def __init__(self, volpath, ext='.npz', nb_restart_cycle=None, # number of files to restart after name='single_vol', # name fixed_vol_size=True, # assumes each volume is fixed size ): # get filenames at given paths volfiles = _get_file_list(volpath, ext, vol_rand_seed) nb_files = len(volfiles) assert nb_files > 0, "Could not find any files at %s with extension %s" % (volpath, ext) # set up restart cycle for volume files -- # i.e. after how many volumes do we restart if nb_restart_cycle is None: nb_restart_cycle = nb_files # compute subvolume split vol_data = _load_medical_volume(os.path.join(volpath, volfiles[0]), ext) # process volume if data_proc_fn is not None: vol_data = data_proc_fn(vol_data) [f for f in _npz_headers(npz, namelist=['vol_data.npy'])][0][1] nb_patches_per_vol = 1 if fixed_vol_size and (patch_size is not None) and all(f is not None for f in patch_size): nb_patches_per_vol = np.prod(pl.gridsize(vol_data.shape, patch_size, patch_stride)) assert nb_restart_cycle <= (nb_files * nb_patches_per_vol), \ '%s restart cycle (%s) too big (%s) in %s' % \ (name, nb_restart_cycle, nb_files * nb_patches_per_vol, volpath) def vol(volpath, ext='.npz', batch_size=1, expected_nb_files=-1, expected_files=None, data_proc_fn=None, # processing function that takes in one arg (the volume) relabel=None, # relabeling array nb_labels_reshape=0, # reshape to categorial format for keras, need # labels keep_vol_size=False, # whether to keep the volume size on categorical resizing name='single_vol', # name, optional nb_restart_cycle=None, # number of files to restart after patch_size=None, # split the volume in patches? if so, get patch_size patch_stride=1, # split the volume in patches? if so, get patch_stride collapse_2d=None, extract_slice=None, force_binary=False, nb_feats=1, patch_rand=False, patch_rand_seed=None, vol_rand_seed=None, binary=False, yield_incomplete_final_batch=True, verbose=False): """ generator for single volume (or volume patches) from a list of files simple volume generator that loads a volume (via npy/mgz/nii/niigz), processes it, and prepares it for keras model formats if a patch size is passed, breaks the volume into patches and generates those """ # get filenames at given paths volfiles = _get_file_list(volpath, ext, vol_rand_seed) nb_files = len(volfiles) assert nb_files > 0, "Could not find any files at %s with extension %s" % (volpath, ext) # compute subvolume split vol_data = _load_medical_volume(os.path.join(volpath, volfiles[0]), ext) # process volume if data_proc_fn is not None: vol_data = data_proc_fn(vol_data) nb_patches_per_vol = 1 if patch_size is not None and all(f is not None for f in patch_size): if relabel is None and len(patch_size) == (len(vol_data.shape) - 1): tmp_patch_size = [f for f in patch_size] patch_size = [*patch_size, vol_data.shape[-1]] patch_stride = [f for f in patch_stride] patch_stride = [*patch_stride, vol_data.shape[-1]] assert len(vol_data.shape) == len(patch_size), "Vol dims %d are not equal to patch dims %d" % (len(vol_data.shape), len(patch_size)) nb_patches_per_vol = np.prod(pl.gridsize(vol_data.shape, patch_size, patch_stride)) if nb_restart_cycle is None: print("setting restart cycle to", nb_files) nb_restart_cycle = nb_files assert nb_restart_cycle <= (nb_files * nb_patches_per_vol), \ '%s restart cycle (%s) too big (%s) in %s' % \ (name, nb_restart_cycle, nb_files * nb_patches_per_vol, volpath) # check the number of files matches expected (if passed) if expected_nb_files >= 0: assert nb_files == expected_nb_files, \ "number of files do not match: %d, %d" % (nb_files, expected_nb_files) if expected_files is not None: if not (volfiles == expected_files): print('file lists did not match. You should probably stop execution.', file=sys.stderr) print(len(volfiles), len(expected_files)) if verbose: print('nb_restart_cycle:', nb_restart_cycle) # iterate through files fileidx = -1 batch_idx = -1 feat_idx = 0 batch_shape = None while 1: fileidx = np.mod(fileidx + 1, nb_restart_cycle) if verbose and fileidx == 0: print('starting %s cycle' % name) # read next file (circular) try: if verbose: print('opening %s' % os.path.join(volpath, volfiles[fileidx])) file_name = os.path.join(volpath, volfiles[fileidx]) vol_data = _load_medical_volume(file_name, ext, verbose) # print(file_name, " was loaded", vol_data.shape) except: debug_error_msg = "#files: %d, fileidx: %d, nb_restart_cycle: %d. error: %s" print(debug_error_msg % (len(volfiles), fileidx, nb_restart_cycle, sys.exc_info()[0])) raise # process volume if data_proc_fn is not None: vol_data = data_proc_fn(vol_data) # the original segmentation files have non-sequential relabel (i.e. some relabel are # missing to avoid exploding our model, we only care about the relabel that exist. if relabel is not None: vol_data = _relabel(vol_data, relabel) # split volume into patches if necessary and yield if patch_size is None: this_patch_size = vol_data.shape patch_stride = [1 for f in this_patch_size] else: this_patch_size = [f for f in patch_size] for pi, p in enumerate(this_patch_size): if p is None: this_patch_size[pi] = vol_data.shape[pi] patch_stride[pi] = 1 assert ~np.any(np.isnan(vol_data)), "Found a nan for %s" % volfiles[fileidx] assert np.all(np.isfinite(vol_data)), "Found a inf for %s" % volfiles[fileidx] patch_gen = patch(vol_data, this_patch_size, patch_stride=patch_stride, nb_labels_reshape=nb_labels_reshape, batch_size=1, infinite=False, collapse_2d=collapse_2d, patch_rand=patch_rand, patch_rand_seed=patch_rand_seed, keep_vol_size=keep_vol_size) empty_gen = True patch_idx = -1 for lpatch in patch_gen: empty_gen = False patch_idx += 1 # add to feature if np.mod(feat_idx, nb_feats) == 0: vol_data_feats = lpatch else: vol_data_feats = np.concatenate([vol_data_feats, lpatch], np.ndim(lpatch)-1) feat_idx += 1 if binary: vol_data_feats = vol_data_feats.astype(bool) if np.mod(feat_idx, nb_feats) == 0: feats_shape = vol_data_feats[1:] # yield previous batch if the new volume has different patch sizes if batch_shape is not None and (feats_shape != batch_shape): batch_idx = -1 batch_shape = None print('switching patch sizes') yield np.vstack(vol_data_batch) # add to batch of volume data, unless the batch is currently empty if batch_idx == -1: vol_data_batch = [vol_data_feats] batch_shape = vol_data_feats[1:] else: vol_data_batch = [*vol_data_batch, vol_data_feats] # yield patch batch_idx += 1 batch_done = batch_idx == batch_size - 1 files_done = np.mod(fileidx + 1, nb_restart_cycle) == 0 final_batch = yield_incomplete_final_batch and files_done and patch_idx == (nb_patches_per_vol-1) if final_batch: # verbose and print('last batch in %s cycle %d. nb_batch:%d' % (name, fileidx, len(vol_data_batch))) if batch_done or final_batch: batch_idx = -1 q = np.vstack(vol_data_batch) yield q if empty_gen: raise ValueError('Patch generator was empty for file %s', volfiles[fileidx]) def patch(vol_data, # the volume patch_size, # patch size patch_stride=1, # patch stride (spacing) nb_labels_reshape=1, # number of labels for categorical resizing. 0 if no resizing keep_vol_size=False, # whether to keep the volume size on categorical resizing batch_size=1, # batch size collapse_2d=None, patch_rand=False, patch_rand_seed=None, variable_batch_size=False, infinite=False): # whether the generator should continue (re)-generating patches """ generate patches from volume for keras package Yields: patch: nd array of shape [batch_size, *patch_size], unless resized via nb_labels_reshape """ # some parameter setup assert batch_size >= 1, "batch_size should be at least 1" if patch_size is None: patch_size = vol_data.shape for pi,p in enumerate(patch_size): if p is None: patch_size[pi] = vol_data.shape[pi] batch_idx = -1 if variable_batch_size: batch_size = yield # do while. if not infinite, will break at the end while True: # create patch generator gen = pl.patch_gen(vol_data, patch_size, stride=patch_stride, rand=patch_rand, rand_seed=patch_rand_seed) # go through the patch generator empty_gen = True for lpatch in gen: empty_gen = False # reshape output layer as categorical and prep proper size # print(lpatch.shape, nb_labels_reshape, keep_vol_size, patch_size) lpatch = _categorical_prep(lpatch, nb_labels_reshape, keep_vol_size, patch_size) if collapse_2d is not None: lpatch = np.squeeze(lpatch, collapse_2d + 1) # +1 due to batch in first dim # add this patch to the stack if batch_idx == -1: if batch_size == 1: patch_data_batch = lpatch else: patch_data_batch = np.zeros([batch_size, *lpatch.shape[1:]]) patch_data_batch[0, :] = lpatch else: patch_data_batch[batch_idx+1, :] = lpatch # yield patch batch_idx += 1 if batch_idx == batch_size - 1: batch_idx = -1 batch_size_y = yield patch_data_batch if variable_batch_size: batch_size = batch_size_y assert not empty_gen, 'generator was empty. vol size was %s' % ''.join(['%d '%d for d in vol_data.shape]) # if not infinite generation, yield the last batch and break the while if not infinite: if batch_idx >= 0: patch_data_batch = patch_data_batch[:(batch_idx+1), :] yield patch_data_batch break def vol_seg(volpath, segpath, proc_vol_fn=None, proc_seg_fn=None, verbose=False, name='vol_seg', # name, optional ext='.npz', nb_restart_cycle=None, # number of files to restart after nb_labels_reshape=-1, collapse_2d=None, force_binary=False, nb_input_feats=1, relabel=None, vol_rand_seed=None, seg_binary=False, vol_subname='norm', # subname of volume seg_subname='aseg', # subname of segmentation **kwargs): """ generator with (volume, segmentation) verbose is passed down to the base generators.py primitive generator (e.g. vol, here) ** kwargs are any named arguments for vol(...), except verbose, data_proc_fn, ext, nb_labels_reshape and name (which this function will control when calling vol()) """ # get vol generator vol_gen = vol(volpath, **kwargs, ext=ext, nb_restart_cycle=nb_restart_cycle, collapse_2d=collapse_2d, force_binary=False, relabel=None, data_proc_fn=proc_vol_fn, nb_labels_reshape=1, name=name+' vol', verbose=verbose, nb_feats=nb_input_feats, vol_rand_seed=vol_rand_seed) # get seg generator, matching nb_files # vol_files = [f.replace('norm', 'aseg') for f in _get_file_list(volpath, ext)] # vol_files = [f.replace('orig', 'aseg') for f in vol_files] vol_files = [f.replace(vol_subname, seg_subname) for f in _get_file_list(volpath, ext, vol_rand_seed)] seg_gen = vol(segpath, **kwargs, ext=ext, nb_restart_cycle=nb_restart_cycle, collapse_2d=collapse_2d, force_binary=force_binary, relabel=relabel, vol_rand_seed=vol_rand_seed, data_proc_fn=proc_seg_fn, nb_labels_reshape=nb_labels_reshape, keep_vol_size=True, expected_files=vol_files, name=name+' seg', binary=seg_binary, verbose=False) # on next (while): while 1: # get input and output (seg) vols input_vol = next(vol_gen).astype('float16') output_vol = next(seg_gen).astype('float16') # was int8. Why? need float possibility... # output input and output yield (input_vol, output_vol) def vol_cat(volpaths, # expect two folders in here crop=None, resize_shape=None, rescale=None, # processing parameters verbose=False, name='vol_cat', # name, optional ext='.npz', nb_labels_reshape=-1, vol_rand_seed=None, **kwargs): # named arguments for vol(...), except verbose, data_proc_fn, ext, nb_labels_reshape and name (which this function will control when calling vol()) """ generator with (volume, binary_bit) (random order) ONLY works with abtch size of 1 for now verbose is passed down to the base generators.py primitive generator (e.g. vol, here) """ folders = [f for f in sorted(os.listdir(volpaths))] # compute processing function proc_vol_fn = lambda x: nrn_proc.vol_proc(x, crop=crop, resize_shape=resize_shape, interp_order=2, rescale=rescale) # get vol generators generators = () generators_len = () for folder in folders: vol_gen = vol(os.path.join(volpaths, folder), **kwargs, ext=ext, vol_rand_seed=vol_rand_seed, data_proc_fn=proc_vol_fn, nb_labels_reshape=1, name=folder, verbose=False) generators_len += (len(_get_file_list(os.path.join(volpaths, folder), '.npz')), ) generators += (vol_gen, ) bake_data_test = False if bake_data_test: print('fake_data_test', file=sys.stderr) # on next (while): while 1: # build the random order stack order = np.hstack((np.zeros(generators_len[0]), np.ones(generators_len[1]))).astype('int') np.random.shuffle(order) # shuffle for idx in order: gen = generators[idx] # for idx, gen in enumerate(generators): z = np.zeros([1, 2]) #1,1,2 for categorical binary style z[0,idx] = 1 # # z[0,0,0] = idx data = next(gen).astype('float32') if bake_data_test and idx == 0: # data = data*idx data = -data yield (data, z) def add_prior(gen, proc_vol_fn=None, proc_seg_fn=None, prior_type='location', # file-static, file-gen, location prior_file=None, # prior filename prior_feed='input', # input or output patch_stride=1, patch_size=None, batch_size=1, collapse_2d=None, extract_slice=None, force_binary=False, verbose=False, patch_rand=False, patch_rand_seed=None): """ # # add a prior generator to a given generator # with the number of patches in batch matching output of gen """ # get prior if prior_type == 'location': prior_vol = nd.volsize2ndgrid(vol_size) prior_vol = np.transpose(prior_vol, [1, 2, 3, 0]) prior_vol = np.expand_dims(prior_vol, axis=0) # reshape for model elif prior_type == 'file': # assumes a npz filename passed in prior_file with timer.Timer('loading prior', True): data = np.load(prior_file) prior_vol = data['prior'].astype('float16') else: # assumes a volume with timer.Timer('loading prior', True): prior_vol = prior_file.astype('float16') if force_binary: nb_labels = prior_vol.shape[-1] prior_vol[:, :, :, 1] = np.sum(prior_vol[:, :, :, 1:nb_labels], 3) prior_vol = np.delete(prior_vol, range(2, nb_labels), 3) nb_channels = prior_vol.shape[-1] if extract_slice is not None: if isinstance(extract_slice, int): prior_vol = prior_vol[:, :, extract_slice, np.newaxis, :] else: # assume slices prior_vol = prior_vol[:, :, extract_slice, :] # get the prior to have the right volume [x, y, z, nb_channels] assert np.ndim(prior_vol) == 4 or np.ndim(prior_vol) == 3, "prior is the wrong size" # prior generator if patch_size is None: patch_size = prior_vol.shape[0:3] assert len(patch_size) == len(patch_stride) prior_gen = patch(prior_vol, [*patch_size, nb_channels], patch_stride=[*patch_stride, nb_channels], batch_size=batch_size, collapse_2d=collapse_2d, keep_vol_size=True, infinite=True, patch_rand=patch_rand, patch_rand_seed=patch_rand_seed, variable_batch_size=True, nb_labels_reshape=0) assert next(prior_gen) is None, "bad prior gen setup" # generator loop while 1: # generate input and output volumes gen_sample = next(gen) # generate prior batch gs_sample = _get_shape(gen_sample) prior_batch = prior_gen.send(gs_sample) yield (gen_sample, prior_batch) def vol_prior(*args, proc_vol_fn=None, proc_seg_fn=None, prior_type='location', # file-static, file-gen, location prior_file=None, # prior filename prior_feed='input', # input or output patch_stride=1, patch_size=None, batch_size=1, collapse_2d=None, extract_slice=None, force_binary=False, nb_input_feats=1, verbose=False, vol_rand_seed=None, patch_rand=False, **kwargs): # anything else you'd like to pass to vol() """ generator that appends prior to (volume, segmentation) depending on input e.g. could be ((volume, prior), segmentation) """ patch_rand_seed = None if patch_rand: patch_rand_seed = np.random.random() # prepare the vol_seg vol_gen = vol(*args, **kwargs, collapse_2d=collapse_2d, force_binary=False, verbose=verbose, vol_rand_seed=vol_rand_seed) gen = vol(*args, **kwargs, proc_vol_fn=None, proc_seg_fn=None, collapse_2d=collapse_2d, extract_slice=extract_slice, force_binary=force_binary, verbose=verbose, patch_size=patch_size, patch_stride=patch_stride, batch_size=batch_size, vol_rand_seed=vol_rand_seed, patch_rand=patch_rand, patch_rand_seed=patch_rand_seed, nb_input_feats=nb_input_feats) # add prior to output pgen = add_prior(gen, proc_vol_fn=proc_vol_fn, proc_seg_fn=proc_seg_fn, prior_type=prior_type, prior_file=prior_file, prior_feed=prior_feed, patch_stride=patch_stride, patch_size=patch_size, batch_size=batch_size, collapse_2d=collapse_2d, extract_slice=extract_slice, force_binary=force_binary, verbose=verbose, patch_rand=patch_rand, patch_rand_seed=patch_rand_seed, vol_rand_seed=vol_rand_seed) # generator loop while 1: gen_sample, prior_batch = next(pgen) input_vol, output_vol = gen_sample if prior_feed == 'input': yield ([input_vol, prior_batch], output_vol) else: assert prior_feed == 'output' yield (input_vol, [output_vol, prior_batch]) def vol_seg_prior(*args, proc_vol_fn=None, proc_seg_fn=None, prior_type='location', # file-static, file-gen, location prior_file=None, # prior filename prior_feed='input', # input or output patch_stride=1, patch_size=None, batch_size=1, collapse_2d=None, extract_slice=None, force_binary=False, nb_input_feats=1, verbose=False, vol_rand_seed=None, patch_rand=None, **kwargs): """ generator that appends prior to (volume, segmentation) depending on input e.g. could be ((volume, prior), segmentation) """ patch_rand_seed = None if patch_rand: patch_rand_seed = np.random.random() # prepare the vol_seg gen = vol_seg(*args, **kwargs, proc_vol_fn=None, proc_seg_fn=None, collapse_2d=collapse_2d, extract_slice=extract_slice, force_binary=force_binary, verbose=verbose, patch_size=patch_size, patch_stride=patch_stride, batch_size=batch_size, vol_rand_seed=vol_rand_seed, patch_rand=patch_rand, patch_rand_seed=patch_rand_seed, nb_input_feats=nb_input_feats) # add prior to output pgen = add_prior(gen, proc_vol_fn=proc_vol_fn, proc_seg_fn=proc_seg_fn, prior_type=prior_type, prior_file=prior_file, prior_feed=prior_feed, patch_stride=patch_stride, patch_size=patch_size, batch_size=batch_size, collapse_2d=collapse_2d, extract_slice=extract_slice, force_binary=force_binary, verbose=verbose, patch_rand=patch_rand, patch_rand_seed=patch_rand_seed) # generator loop while 1: gen_sample, prior_batch = next(pgen) input_vol, output_vol = gen_sample if prior_feed == 'input': yield ([input_vol, prior_batch], output_vol) else: assert prior_feed == 'output' yield (input_vol, [output_vol, prior_batch]) def vol_prior_hack(*args, proc_vol_fn=None, proc_seg_fn=None, prior_type='location', # file-static, file-gen, location prior_file=None, # prior filename prior_feed='input', # input or output patch_stride=1, patch_size=None, batch_size=1, collapse_2d=None, extract_slice=None, force_binary=False, nb_input_feats=1, verbose=False, vol_rand_seed=None, **kwargs): """ """ # prepare the vol_seg gen = vol_seg_hack(*args, **kwargs, proc_vol_fn=None, proc_seg_fn=None, collapse_2d=collapse_2d, extract_slice=extract_slice, force_binary=force_binary, verbose=verbose, patch_size=patch_size, patch_stride=patch_stride, batch_size=batch_size, vol_rand_seed=vol_rand_seed, nb_input_feats=nb_input_feats) # get prior if prior_type == 'location': prior_vol = nd.volsize2ndgrid(vol_size) prior_vol = np.transpose(prior_vol, [1, 2, 3, 0]) prior_vol = np.expand_dims(prior_vol, axis=0) # reshape for model elif prior_type == 'file': # assumes a npz filename passed in prior_file with timer.Timer('loading prior', True): data = np.load(prior_file) prior_vol = data['prior'].astype('float16') else : # assumes a volume with timer.Timer('astyping prior', verbose): prior_vol = prior_file if not (prior_vol.dtype == 'float16'): prior_vol = prior_vol.astype('float16') if force_binary: nb_labels = prior_vol.shape[-1] prior_vol[:, :, :, 1] = np.sum(prior_vol[:, :, :, 1:nb_labels], 3) prior_vol = np.delete(prior_vol, range(2, nb_labels), 3) nb_channels = prior_vol.shape[-1] if extract_slice is not None: if isinstance(extract_slice, int): prior_vol = prior_vol[:, :, extract_slice, np.newaxis, :] else: # assume slices prior_vol = prior_vol[:, :, extract_slice, :] # get the prior to have the right volume [x, y, z, nb_channels] assert np.ndim(prior_vol) == 4 or np.ndim(prior_vol) == 3, "prior is the wrong size" # prior generator if patch_size is None: patch_size = prior_vol.shape[0:3] assert len(patch_size) == len(patch_stride) prior_gen = patch(prior_vol, [*patch_size, nb_channels], patch_stride=[*patch_stride, nb_channels], batch_size=batch_size, collapse_2d=collapse_2d, keep_vol_size=True, infinite=True, #variable_batch_size=True, # this nb_labels_reshape=0) # assert next(prior_gen) is None, "bad prior gen setup" # generator loop while 1: # generate input and output volumes input_vol = next(gen) if verbose and np.all(input_vol.flat == 0): print("all entries are 0") # generate prior batch # with timer.Timer("with send?"): # prior_batch = prior_gen.send(input_vol.shape[0]) prior_batch = next(prior_gen) if prior_feed == 'input': yield ([input_vol, prior_batch], input_vol) else: assert prior_feed == 'output' yield (input_vol, [input_vol, prior_batch]) def vol_seg_hack(volpath, segpath, proc_vol_fn=None, proc_seg_fn=None, verbose=False, name='vol_seg', # name, optional ext='.npz', nb_restart_cycle=None, # number of files to restart after nb_labels_reshape=-1, collapse_2d=None, force_binary=False, nb_input_feats=1, relabel=None, vol_rand_seed=None, seg_binary=False, vol_subname='norm', # subname of volume seg_subname='aseg', # subname of segmentation **kwargs): """ generator with (volume, segmentation) verbose is passed down to the base generators.py primitive generator (e.g. vol, here) ** kwargs are any named arguments for vol(...), except verbose, data_proc_fn, ext, nb_labels_reshape and name (which this function will control when calling vol()) """ # get vol generator vol_gen = vol(volpath, **kwargs, ext=ext, nb_restart_cycle=nb_restart_cycle, collapse_2d=collapse_2d, force_binary=False, relabel=None, data_proc_fn=proc_vol_fn, nb_labels_reshape=1, name=name+' vol', verbose=verbose, nb_feats=nb_input_feats, vol_rand_seed=vol_rand_seed) # on next (while): while 1: # get input and output (seg) vols input_vol = next(vol_gen).astype('float16') # output input and output yield input_vol def vol_sr_slices(volpath, nb_input_slices, nb_slice_spacing, batch_size=1, ext='.npz', vol_rand_seed=None, nb_restart_cycle=None, name='vol_sr_slices', rand_slices=True, # randomize init slice order (i.e. across entries per batch) given a volume simulate_whole_sparse_vol=False, verbose=False ): """ default generator for slice-wise super resolution """ def indices_to_batch(vol_data, start_indices, nb_slices_in_subvol, nb_slice_spacing): idx = start_indices[0] output_batch = np.expand_dims(vol_data[:,:,idx:idx+nb_slices_in_subvol], 0) input_batch = np.expand_dims(vol_data[:,:,idx:(idx+nb_slices_in_subvol):(nb_slice_spacing+1)], 0) for idx in start_indices[1:]: out_sel = np.expand_dims(vol_data[:,:,idx:idx+nb_slices_in_subvol], 0) output_batch = np.vstack([output_batch, out_sel]) input_batch = np.vstack([input_batch, np.expand_dims(vol_data[:,:,idx:(idx+nb_slices_in_subvol):(nb_slice_spacing+1)], 0)]) output_batch = np.reshape(output_batch, [batch_size, -1, output_batch.shape[-1]]) return (input_batch, output_batch) print('vol_sr_slices: SHOULD PROPERLY RANDOMIZE accross different subjects', file=sys.stderr) volfiles = _get_file_list(volpath, ext, vol_rand_seed) nb_files = len(volfiles) if nb_restart_cycle is None: nb_restart_cycle = nb_files # compute the number of slices we'll need in a subvolume nb_slices_in_subvol = (nb_input_slices - 1) * (nb_slice_spacing + 1) + 1 # iterate through files fileidx = -1 while 1: fileidx = np.mod(fileidx + 1, nb_restart_cycle) if verbose and fileidx == 0: print('starting %s cycle' % name) try: vol_data = _load_medical_volume(os.path.join(volpath, volfiles[fileidx]), ext, verbose) except: debug_error_msg = "#files: %d, fileidx: %d, nb_restart_cycle: %d. error: %s" print(debug_error_msg % (len(volfiles), fileidx, nb_restart_cycle, sys.exc_info()[0])) raise # compute some random slice nb_slices = vol_data.shape[2] nb_start_slices = nb_slices - nb_slices_in_subvol + 1 # prepare batches if simulate_whole_sparse_vol: # if essentially simulate a whole sparse volume for consistent inputs, and yield slices like that: init_slice = 0 if rand_slices: init_slice = np.random.randint(0, high=nb_start_slices-1) all_start_indices = list(range(init_slice, nb_start_slices, nb_slice_spacing+1)) for batch_start in range(0, len(all_start_indices), batch_size*(nb_input_slices-1)): start_indices = [all_start_indices[s] for s in range(batch_start, batch_start + batch_size)] input_batch, output_batch = indices_to_batch(vol_data, start_indices, nb_slices_in_subvol, nb_slice_spacing) yield (input_batch, output_batch) # if just random slices, get a batch of random starts from this volume and that's it. elif rand_slices: assert not simulate_whole_sparse_vol start_indices = np.random.choice(range(nb_start_slices), size=batch_size, replace=False) input_batch, output_batch = indices_to_batch(vol_data, start_indices, nb_slices_in_subvol, nb_slice_spacing) yield (input_batch, output_batch) # go slice by slice (overlapping regions) else: for batch_start in range(0, nb_start_slices, batch_size): start_indices = list(range(batch_start, batch_start + batch_size)) input_batch, output_batch = indices_to_batch(vol_data, start_indices, nb_slices_in_subvol, nb_slice_spacing) yield (input_batch, output_batch) def img_seg(volpath, segpath, batch_size=1, verbose=False, nb_restart_cycle=None, name='img_seg', # name, optional ext='.png', vol_rand_seed=None, **kwargs): """ generator for (image, segmentation) """ def imggen(path, ext, nb_restart_cycle=None): """ TODO: should really use the volume generators for this """ files = _get_file_list(path, ext, vol_rand_seed) if nb_restart_cycle is None: nb_restart_cycle = len(files) idx = -1 while 1: idx = np.mod(idx+1, nb_restart_cycle) im = scipy.misc.imread(os.path.join(path, files[idx]))[:, :, 0] yield im.reshape((1,) + im.shape) img_gen = imggen(volpath, ext, nb_restart_cycle) seg_gen = imggen(segpath, ext) # on next (while): while 1: input_vol = np.vstack([next(img_gen).astype('float16')/255 for i in range(batch_size)]) input_vol = np.expand_dims(input_vol, axis=-1) output_vols = [np_utils.to_categorical(next(seg_gen).astype('int8'), num_classes=2) for i in range(batch_size)] output_vol = np.vstack([np.expand_dims(f, axis=0) for f in output_vols]) # output input and output yield (input_vol, output_vol) # Some internal use functions def _get_file_list(volpath, ext=None, vol_rand_seed=None): """ get a list of files at the given path with the given extension """ files = [f for f in sorted(os.listdir(volpath)) if ext is None or f.endswith(ext)] if vol_rand_seed is not None: np.random.seed(vol_rand_seed) files = np.random.permutation(files).tolist() return files def _load_medical_volume(filename, ext, verbose=False): """ load a medical volume from one of a number of file types """ with timer.Timer('load_vol', verbose >= 2): if ext == '.npz': vol_file = np.load(filename) vol_data = vol_file['vol_data'] elif ext == 'npy': vol_data = np.load(filename) elif ext == '.mgz' or ext == '.nii' or ext == '.nii.gz': vol_med = nib.load(filename) vol_data = vol_med.get_data() else: raise ValueError("Unexpected extension %s" % ext) return vol_data def _categorical_prep(vol_data, nb_labels_reshape, keep_vol_size, patch_size): if nb_labels_reshape > 1: lpatch = _to_categorical(vol_data, nb_labels_reshape, keep_vol_size) # if keep_vol_size: # lpatch = np.reshape(lpatch, [*patch_size, nb_labels_reshape]) elif nb_labels_reshape == 1: lpatch = np.expand_dims(vol_data, axis=-1) else: assert nb_labels_reshape == 0 lpatch = vol_data lpatch = np.expand_dims(lpatch, axis=0) return lpatch def _to_categorical(y, num_classes=None, reshape=True): """ # copy of keras.utils.np_utils.to_categorical, but with a boolean matrix instead of float Converts a class vector (integers) to binary class matrix. E.g. for use with categorical_crossentropy. # Arguments y: class vector to be converted into a matrix (integers from 0 to num_classes). num_classes: total number of classes. # Returns A binary matrix representation of the input. """ oshape = y.shape y = np.array(y, dtype='int').ravel() if not num_classes: num_classes = np.max(y) + 1 n = y.shape[0] categorical = np.zeros((n, num_classes), bool) categorical[np.arange(n), y] = 1 if reshape: categorical = np.reshape(categorical, [*oshape, num_classes]) return categorical def _relabel(vol_data, labels, forcecheck=False): if forcecheck: vd = np.unique(vol_data.flat) assert len(vd) == len(labels), "number of given labels does not match number of actual labels" # by doing zeros, any label not in labels gets left to 0 new_vol_data = np.zeros(vol_data.shape, vol_data.dtype) for idx, val in np.ndenumerate(labels): new_vol_data[vol_data == val] = idx return new_vol_data def _npz_headers(npz, namelist=None): """ taken from https://stackoverflow.com/a/43223420 Takes a path to an .npz file, which is a Zip archive of .npy files. Generates a sequence of (name, shape, np.dtype). namelist is a list with variable names, ending in '.npy'. e.g. if variable 'var' is in the file, namelist could be ['var.npy'] """ with zipfile.ZipFile(npz) as archive: if namelist is None: namelist = archive.namelist() for name in namelist: if not name.endswith('.npy'): continue npy = archive.open(name) version = np.lib.format.read_magic(npy) shape, fortran, dtype = np.lib.format._read_array_header(npy, version) yield name[:-4], shape, dtype def _get_shape(x): if isinstance(x, (list, tuple)): return _get_shape(x[0]) else: return x.shape[0]
37.097836
171
0.587676
[ "MIT" ]
adriaan16/brainstorm
ext/neuron/neuron/generators.py
39,435
Python
import fibra import fibra.net import fibra.event import cPickle as pickle import exceptions import json import time import types import zlib schedule = fibra.schedule() class NULL(object): pass class Timeout(Exception): pass class Disconnect(Exception): pass class Connection(fibra.event.Connection): COMPRESSION_THRESHOLD = 1024 REQUEST_TIMEOUT = 10.0 def __init__(self, *args, **kw): fibra.event.Connection.__init__(self, *args, **kw) self.request_id = 0 self.requests = {} schedule.install(self.check_timeouts()) self.rpc = None def check_timeouts(self): while self.running: now = time.time() for request_id, (T, task) in self.requests.items(): if now - T > self.REQUEST_TIMEOUT: self.requests.pop(request_id) schedule.install(task, Timeout(self.protocol.transport.address)) yield 0.25 def serialize(self, response, obj, headers={}): if 'accept' in headers: if headers['accept'] == 'text/json': response['content-type'] = 'text/json' body = json.dumps(obj) else: response['content-type'] = 'text/pickle' body = pickle.dumps(obj) if len(body) > self.COMPRESSION_THRESHOLD: body = zlib.compress(body) response['compression'] = 'zlib' return body def deserialize(self, headers, body): if headers.get('compression', None) == 'zlib': body = zlib.decompress(body) content_type = headers.get('content-type', None) if content_type == 'text/pickle': body = pickle.loads(body) elif content_type == 'text/json': body = json.loads(body) return body def request(self, name, args, kw): headers = {} body = args, kw request_id = headers["request-id"] = str(self.request_id) headers['method'] = name self.request_id += 1 task = yield fibra.Self() self.requests[request_id] = time.time(), task yield self.send('request', headers, body) response = yield fibra.Suspend() yield fibra.Return(response) def dispatch(self, top, headers, body): if body: body = self.deserialize(headers, body) yield fibra.event.Connection.dispatch(self, top, headers, body) def do_request(self, headers, body): response = {} response['request-id'] = headers['request-id'] result = NULL try: if headers["method"][0] == "_": raise AttributeError('cannot access private methods.') method = getattr(self.rpc, headers['method']) except AttributeError, e: response['exception'] = 'AttributeError' response['msg'] = str(e) else: args, kw = body try: result = method(*args, **kw) while type(result) is types.GeneratorType: result = yield result result = self.serialize(response, result, headers) except Exception, e: response['exception'] = e.__class__.__name__ response['msg'] = str(e) result = NULL yield self.send('response', response, result) def send(self, top, response, body=NULL): if body is NULL: body = "" elif 'content-type' not in response: body = self.serialize(response, body) try: yield fibra.event.Connection.send(self, top, response, body) except fibra.ClosedTube: raise Disconnect() def do_response(self, headers, body): request_id = headers["request-id"] if request_id in self.requests: T, task = self.requests.pop(request_id) if "exception" in headers: schedule.install(task, getattr(exceptions, headers['exception'])(headers['msg'])) else: schedule.install(task, body) yield None else: print "Expired request:", request_id class RPC(object): def __init__(self, connection): self.connection = connection def __getattr__(self, key): return lambda *args, **kw: self.connection.request(key, args, kw)
32.264706
98
0.573154
[ "Unlicense" ]
simonwittber/fibra
fibra/msg.py
4,388
Python
from adminsortable2.admin import SortableAdminMixin from decimal import Decimal from django.contrib import admin from django.contrib.gis import admin as geo_admin from import_export import fields from import_export import widgets from import_export.admin import ImportExportModelAdmin from import_export.resources import ModelResource as ImportExportModelResource from solo.admin import SingletonModelAdmin from .models import Client from .models import Contact from .models import Contract from .models import DashboardItem from .models import Estimate from .models import Invoice from .models import Location from .models import Log from .models import Newsletter from .models import Note from .models import Profile from .models import Project from .models import Proposal from .models import Report from .models import Service from .models import SettingsApp from .models import SettingsCompany from .models import SettingsContract from .models import Task from .models import Testimonial from .models import Time class BooleanWidget(widgets.Widget): """ Convert strings to boolean values """ def clean(self, value): if value == 'Yes': return True else: return False class DecimalWidget(widgets.Widget): """ Convert strings to decimal values """ def clean(self, value): if value: return Decimal(value.replace(',', '')) else: return Decimal(0) class UserWidget(widgets.Widget): """ """ def clean(self, value): return value # Register your models here. class ClientResource(ImportExportModelResource): """ """ class Meta: model = Client # auto fill id? #295 # https://github.com/django-import-export/django-import-export/issues/295 def get_instance(self, instance_loaders, row): return False def before_import(self, dataset, dry_run, file_name=None, user=None): if dataset.headers: dataset.headers = [ str(header).lower().strip() for header in dataset.headers ] if 'id' not in dataset.headers: dataset.headers.append('id') @admin.register(Client) class ClientAdmin(ImportExportModelAdmin): """ """ resource_class = ClientResource class ContactResource(ImportExportModelResource): """ """ client = fields.Field( column_name='client', attribute='client', widget=widgets.ForeignKeyWidget(Client, 'name')) class Meta: model = Contact def get_instance(self, instance_loaders, row): return False def before_import(self, dataset, dry_run, file_name=None, user=None): if dataset.headers: dataset.headers = [ str(header).lower().strip() for header in dataset.headers ] if 'id' not in dataset.headers: dataset.headers.append('id') @admin.register(Contact) class ContactAdmin(ImportExportModelAdmin): """ """ resource_class = ContactResource @admin.register(Contract) class ContractAdmin(ImportExportModelAdmin): """ """ @admin.register(DashboardItem) class DashboardItemAdmin(SortableAdminMixin, admin.ModelAdmin): """ """ class EstimateResource(ImportExportModelResource): """ """ client = fields.Field( column_name='client', attribute='client', widget=widgets.ForeignKeyWidget(Client, 'name')) amount = fields.Field( column_name='estimate_amount', attribute='amount', widget=DecimalWidget()) subtotal = fields.Field( column_name='subtotal', attribute='subtotal', widget=DecimalWidget()) document_id = fields.Field( column_name='estimate_id', attribute='document_id', widget=DecimalWidget()) class Meta: model = Estimate def get_instance(self, instance_loaders, row): return False def before_import(self, dataset, dry_run, file_name=None, user=None): if dataset.headers: dataset.headers = [ str(header).lower().strip() for header in dataset.headers ] if 'id' not in dataset.headers: dataset.headers.append('id') @admin.register(Estimate) class EstimateAdmin(ImportExportModelAdmin): """ """ resource_class = EstimateResource class InvoiceResource(ImportExportModelResource): """ """ client = fields.Field( column_name='client', attribute='client', widget=widgets.ForeignKeyWidget(Client, 'name')) amount = fields.Field( column_name='amount', attribute='amount', widget=DecimalWidget()) paid_amount = fields.Field( column_name='paid_amount', attribute='paid_amount', widget=DecimalWidget()) subtotal = fields.Field( column_name='subtotal', attribute='subtotal', widget=DecimalWidget()) balance = fields.Field( column_name='balance', attribute='balance', widget=DecimalWidget()) document_id = fields.Field( column_name='invoice_id', attribute='document_id', widget=DecimalWidget()) class Meta: model = Invoice def get_instance(self, instance_loaders, row): return False def before_import(self, dataset, dry_run, file_name=None, user=None): if dataset.headers: dataset.headers = [ str(header).lower().strip() for header in dataset.headers ] if 'id' not in dataset.headers: dataset.headers.append('id') @admin.register(Invoice) class InvoiceAdmin(ImportExportModelAdmin): """ """ resource_class = InvoiceResource @admin.register(Location) class LocationAdmin(geo_admin.OSMGeoAdmin): """ """ search_fields = ('name', ) @admin.register(Log) class LogAdmin(ImportExportModelAdmin): """ """ @admin.register(Newsletter) class NewsletterAdmin(ImportExportModelAdmin): """ """ @admin.register(Note) class NoteAdmin(ImportExportModelAdmin): """ """ class ProjectResource(ImportExportModelResource): """ """ client = fields.Field( column_name='client', attribute='client', widget=widgets.ForeignKeyWidget(Client, 'name')) billable_amount = fields.Field( column_name='billable_amount', attribute='billable_amount', widget=DecimalWidget()) budget = fields.Field( column_name='budget', attribute='budget', widget=DecimalWidget()) budget_spent = fields.Field( column_name='budget_spent', attribute='budget_spent', widget=DecimalWidget()) team_costs = fields.Field( column_name='team_costs', attribute='team_costs', widget=DecimalWidget()) total_costs = fields.Field( column_name='total_costs', attribute='total_costs', widget=DecimalWidget()) class Meta: model = Project exclude = ('task', 'team') def get_instance(self, instance_loaders, row): return False def before_import(self, dataset, dry_run, file_name=None, user=None): if dataset.headers: dataset.headers = [ str(header).lower().strip() for header in dataset.headers ] if 'id' not in dataset.headers: dataset.headers.append('id') @admin.register(Profile) class ProfileAdmin(ImportExportModelAdmin): """ """ @admin.register(Project) class ProjectAdmin(ImportExportModelAdmin): """ """ resource_class = ProjectResource @admin.register(Proposal) class ProposalAdmin(ImportExportModelAdmin): """ """ @admin.register(Report) class ReportAdmin(ImportExportModelAdmin): """ """ @admin.register(Service) class ServiceAdmin(ImportExportModelAdmin): """ """ @admin.register(SettingsApp) class SettingsAppAdmin(SingletonModelAdmin): """ """ @admin.register(SettingsCompany) class SettingsCompanyAdmin(SingletonModelAdmin): """ """ @admin.register(SettingsContract) class SettingsContractAdmin(SingletonModelAdmin): """ """ @admin.register(Testimonial) class TestimonialAdmin(ImportExportModelAdmin): """ """ prepopulated_fields = {"slug": ("name", )} class TaskResource(ImportExportModelResource): """ """ class Meta: model = Task exclude = ('unit', 'billable', 'active') def get_instance(self, instance_loaders, row): return False def before_import(self, dataset, dry_run, file_name=None, user=None): if dataset.headers: dataset.headers = [ str(header).lower().strip() for header in dataset.headers ] if 'id' not in dataset.headers: dataset.headers.append('id') @admin.register(Task) class TaskAdmin(ImportExportModelAdmin): """ """ resource_class = TaskResource class TimeResource(ImportExportModelResource): """ """ billable = fields.Field( column_name='billable', attribute='billable', widget=BooleanWidget()) client = fields.Field( column_name='client', attribute='client', widget=widgets.ForeignKeyWidget(Client, 'name')) invoiced = fields.Field( column_name='invoiced', attribute='invoiced', widget=BooleanWidget()) project = fields.Field( column_name='project', attribute='project', widget=widgets.ForeignKeyWidget(Project, 'name')) task = fields.Field( column_name='task', attribute='task', widget=widgets.ForeignKeyWidget(Task, 'name')) user = fields.Field( column_name='user', attribute='user', widget=UserWidget()) class Meta: model = Time def get_instance(self, instance_loaders, row): return False def before_import(self, dataset, dry_run, file_name=None, user=None): if dataset.headers: dataset.headers = [ str(header).lower().strip() for header in dataset.headers ] if 'id' not in dataset.headers: dataset.headers.append('id') @admin.register(Time) class TimeAdmin(ImportExportModelAdmin): """ """ resource_class = TimeResource
23.951049
78
0.649635
[ "MIT" ]
ACLARKNET/aclarknet-database
aclarknet/database/admin.py
10,275
Python
from django.contrib.gis.geos import Point from data_collection.management.commands import BaseXpressDemocracyClubCsvImporter class Command(BaseXpressDemocracyClubCsvImporter): council_id = "E07000146" stations_name = "parl.2019-12-12/Version 1/west-norfolk.gov.uk-1572885849000-.tsv" addresses_name = "parl.2019-12-12/Version 1/west-norfolk.gov.uk-1572885849000-.tsv" elections = ["parl.2019-12-12"] csv_delimiter = "\t" allow_station_point_from_postcode = False def address_record_to_dict(self, record): rec = super().address_record_to_dict(record) uprn = record.property_urn.strip().lstrip("0") if uprn == "10024107639": rec["postcode"] = "" rec["accept_suggestion"] = False if record.addressline1 == "8 Lions Close": rec["postcode"] = "PE38 0AT" return rec def station_record_to_dict(self, record): # Dersingham Village Centre if record.polling_place_id == "17923": rec = super().station_record_to_dict(record) rec["location"] = Point(0.512389, 52.843528, srid=4326) return rec # Windsor Park, KING`S LYNN if record.polling_place_id == "17867": rec = super().station_record_to_dict(record) rec["location"] = Point(0.404833, 52.748556, srid=4326) return rec if record.polling_place_id == "18049": record = record._replace(polling_place_postcode="PE14 9QH") record = record._replace(polling_place_easting="0") record = record._replace(polling_place_northing="0") return super().station_record_to_dict(record)
36.630435
87
0.654599
[ "BSD-3-Clause" ]
alexdutton/UK-Polling-Stations
polling_stations/apps/data_collection/management/commands/import_kings_lynn.py
1,685
Python
# -*- coding: utf-8 -*- # Django settings for basic pinax project. import os.path import posixpath import pinax PINAX_ROOT = os.path.abspath(os.path.dirname(pinax.__file__)) PROJECT_ROOT = os.path.abspath(os.path.dirname(__file__)) # tells Pinax to use the default theme PINAX_THEME = "default" DEBUG = True TEMPLATE_DEBUG = DEBUG # tells Pinax to serve media through the staticfiles app. SERVE_MEDIA = DEBUG INTERNAL_IPS = [ "127.0.0.1", ] ADMINS = [ # ("Your Name", "[email protected]"), ] MANAGERS = ADMINS DATABASES = { "default": { "ENGINE": "django.db.backends.sqlite3", # Add "postgresql_psycopg2", "postgresql", "mysql", "sqlite3" or "oracle". "NAME": "dev.db", # Or path to database file if using sqlite3. "USER": "", # Not used with sqlite3. "PASSWORD": "", # Not used with sqlite3. "HOST": "", # Set to empty string for localhost. Not used with sqlite3. "PORT": "", # Set to empty string for default. Not used with sqlite3. } } # Local time zone for this installation. Choices can be found here: # http://en.wikipedia.org/wiki/List_of_tz_zones_by_name # although not all choices may be available on all operating systems. # If running in a Windows environment this must be set to the same as your # system time zone. TIME_ZONE = "US/Eastern" # Language code for this installation. All choices can be found here: # http://www.i18nguy.com/unicode/language-identifiers.html LANGUAGE_CODE = "en-us" SITE_ID = 1 # If you set this to False, Django will make some optimizations so as not # to load the internationalization machinery. USE_I18N = True # Absolute path to the directory that holds media. # Example: "/home/media/media.lawrence.com/" MEDIA_ROOT = os.path.join(PROJECT_ROOT, "site_media", "media") # URL that handles the media served from MEDIA_ROOT. Make sure to use a # trailing slash if there is a path component (optional in other cases). # Examples: "http://media.lawrence.com", "http://example.com/media/" MEDIA_URL = "/site_media/media/" # Absolute path to the directory that holds static files like app media. # Example: "/home/media/media.lawrence.com/apps/" STATIC_ROOT = os.path.join(PROJECT_ROOT, "site_media", "static") # URL that handles the static files like app media. # Example: "http://media.lawrence.com" STATIC_URL = "/site_media/static/" # Additional directories which hold static files STATICFILES_DIRS = [ os.path.join(PROJECT_ROOT, "media"), os.path.join(PINAX_ROOT, "media", PINAX_THEME), ] # URL prefix for admin media -- CSS, JavaScript and images. Make sure to use a # trailing slash. # Examples: "http://foo.com/media/", "/media/". ADMIN_MEDIA_PREFIX = posixpath.join(STATIC_URL, "admin/") # Make this unique, and don't share it with anybody. SECRET_KEY = "" # List of callables that know how to import templates from various sources. TEMPLATE_LOADERS = [ "django.template.loaders.filesystem.load_template_source", "django.template.loaders.app_directories.load_template_source", ] MIDDLEWARE_CLASSES = [ "django.middleware.common.CommonMiddleware", "django.contrib.sessions.middleware.SessionMiddleware", "django.middleware.csrf.CsrfViewMiddleware", "django.contrib.auth.middleware.AuthenticationMiddleware", "django_openid.consumer.SessionConsumer", "django.contrib.messages.middleware.MessageMiddleware", "pinax.apps.account.middleware.LocaleMiddleware", "pagination.middleware.PaginationMiddleware", "pinax.middleware.security.HideSensistiveFieldsMiddleware", "debug_toolbar.middleware.DebugToolbarMiddleware", ] ROOT_URLCONF = "basic_project.urls" TEMPLATE_DIRS = [ os.path.join(PROJECT_ROOT, "templates"), os.path.join(PINAX_ROOT, "templates", PINAX_THEME), ] TEMPLATE_CONTEXT_PROCESSORS = [ "django.contrib.auth.context_processors.auth", "django.core.context_processors.debug", "django.core.context_processors.i18n", "django.core.context_processors.media", "django.core.context_processors.request", "django.contrib.messages.context_processors.messages", "staticfiles.context_processors.static_url", "pinax.core.context_processors.pinax_settings", "pinax.apps.account.context_processors.account", "notification.context_processors.notification", "announcements.context_processors.site_wide_announcements", ] INSTALLED_APPS = [ # Django "django.contrib.admin", "django.contrib.auth", "django.contrib.contenttypes", "django.contrib.sessions", "django.contrib.sites", "django.contrib.messages", "django.contrib.humanize", "pinax.templatetags", # external "notification", # must be first "staticfiles", "debug_toolbar", "mailer", "uni_form", "django_openid", "ajax_validation", "timezones", "emailconfirmation", "announcements", "pagination", "idios", # Pinax "pinax.apps.account", "pinax.apps.signup_codes", "pinax.apps.analytics", # project "about", "profiles", ] FIXTURE_DIRS = [ os.path.join(PROJECT_ROOT, "fixtures"), ] MESSAGE_STORAGE = "django.contrib.messages.storage.session.SessionStorage" EMAIL_BACKEND = "mailer.backend.DbBackend" ABSOLUTE_URL_OVERRIDES = { "auth.user": lambda o: "/profiles/profile/%s/" % o.username, } AUTH_PROFILE_MODULE = "profiles.Profile" NOTIFICATION_LANGUAGE_MODULE = "account.Account" ACCOUNT_OPEN_SIGNUP = True ACCOUNT_REQUIRED_EMAIL = False ACCOUNT_EMAIL_VERIFICATION = False ACCOUNT_EMAIL_AUTHENTICATION = False ACCOUNT_UNIQUE_EMAIL = EMAIL_CONFIRMATION_UNIQUE_EMAIL = False AUTHENTICATION_BACKENDS = [ "pinax.apps.account.auth_backends.AuthenticationBackend", ] LOGIN_URL = "/account/login/" # @@@ any way this can be a url name? LOGIN_REDIRECT_URLNAME = "what_next" EMAIL_CONFIRMATION_DAYS = 2 EMAIL_DEBUG = DEBUG # URCHIN_ID = "ua-..." DEBUG_TOOLBAR_CONFIG = { "INTERCEPT_REDIRECTS": False, } # local_settings.py can be used to override environment-specific settings # like database and email that differ between development and production. try: from local_settings import * except ImportError: pass
29.773585
122
0.71071
[ "MIT" ]
amarandon/pinax
pinax/projects/basic_project/settings.py
6,312
Python
"""Generates faucet config for given number of switches and number of devices per switch""" import getopt import sys import yaml from forch.utils import proto_dict from forch.proto.faucet_configuration_pb2 import Interface, StackLink, Datapath, \ Vlan, FaucetConfig, LLDPBeacon, Stack CORP_DP_ID = 273 T1_DP_ID_START = 177 T2_DP_ID_START = 1295 FLAT_DP_ID_START = 513 SETUP_VLAN = 171 TEST_VLAN = 272 FLAT_LINK_PORT_START = 6 T1_STACK_PORT_START = 100 T2_STACK_PORT_START = 50 ACCESS_PORT_START_DEFAULT = 101 FLAT_ACCESS_PORT_START = 1 TAP_PORT = 4 FAUCET_EGRESS_PORT = 28 FLAT_EGRESS_PORT = 50 CORP_EGRESS_PORT = 10 LACP_MODE = 3 T1_DP_MAC_PREFIX = '0e:00:00:00:01:' T2_DP_MAC_PREFIX = '0e:00:00:00:02:' FLAT = 'flat' CORP = 'corp' STACK = 'stack' T1_DP = 't1' T2_DP = 't2' # pylint: disable=protected-access # pylint: disable=too-many-arguments class FaucetConfigGenerator(): """Class for generating faucet config for given switches and devices per switch""" def _build_dp_interfaces(self, dp_index, **kwargs): interfaces = {} # add egress interface egress_port = kwargs.get('egress_port') tagged_vlans = kwargs.get('tagged_vlans') lacp = kwargs.get('lacp') if egress_port: self._add_egress_interface(interfaces, egress_port, tagged_vlans, lacp) # add tap interface tap_vlan = kwargs.get('tap_vlan') if tap_vlan: self._add_tap_interface(interfaces, tap_vlan) # add flat link interfaces dps = kwargs.get('dps') if dps: self._add_flat_link_interfaces(interfaces, dps, dp_index) # add stack interfaces linking from t1 to t2 switches t2_dps = kwargs.get('t2_dps') if t2_dps: self._add_t1_stack_interfaces(interfaces, dp_index, t2_dps) # add stack interfaces linking from t2 to t1 switches t1_dps = kwargs.get('t1_dps') if t1_dps: self._add_t2_stack_interfaces(interfaces, dp_index, t1_dps) # add access interfaces access_ports = kwargs.get('access_ports') access_port_start = kwargs.get('access_port_start', ACCESS_PORT_START_DEFAULT) native_vlan = kwargs.get('native_vlan') port_acl = kwargs.get('port_acl') if access_ports: self._add_access_interfaces( interfaces, access_ports, access_port_start, native_vlan, port_acl) return interfaces def _add_egress_interface(self, interfaces, egress_port, tagged_vlans, lacp): if lacp: interfaces[egress_port] = Interface( description='egress', lacp=LACP_MODE, tagged_vlans=tagged_vlans) else: interfaces[egress_port] = Interface( description='egress', tagged_vlans=tagged_vlans) def _add_tap_interface(self, interfaces, tap_vlan): interfaces[TAP_PORT] = Interface(description='tap', tagged_vlans=[tap_vlan]) def _add_flat_link_interfaces(self, interfaces, dps, dp_index): if dp_index < len(dps) - 1: next_dp = dps[dp_index + 1] next_port = FLAT_LINK_PORT_START + dp_index description = ("to %s port %s" % (next_dp, next_port)) interfaces[next_port] = Interface( description=description, stack=StackLink(dp=next_dp, port=next_port)) if dp_index > 0: prev_dp = dps[dp_index - 1] prev_port = FLAT_LINK_PORT_START + (len(dps) + dp_index - 1) % len(dps) description = ("to %s port %s" % (prev_dp, prev_port)) interfaces[prev_port] = Interface( description=description, stack=StackLink(dp=prev_dp, port=prev_port)) def _add_t1_stack_interfaces(self, interfaces, dp_index, t2_dps): t2_port = T2_STACK_PORT_START + dp_index * 2 for index, t2_dp in enumerate(t2_dps): port = T1_STACK_PORT_START + index description = ("to %s port %s" % (t2_dp, t2_port)) interfaces[port] = Interface( description=description, stack=StackLink(dp=t2_dp, port=t2_port)) def _add_t2_stack_interfaces(self, interfaces, dp_index, t1_dps): t1_port = T1_STACK_PORT_START + dp_index for index, t1_dp in enumerate(t1_dps): port = T2_STACK_PORT_START + index * 2 description = ('to %s port %s' % (t1_dp, t1_port)) interfaces[port] = Interface( description=description, stack=StackLink(dp=t1_dp, port=t1_port)) def _add_access_interfaces(self, interfaces, access_ports, access_port_start, native_vlan, port_acl): for index in range(access_ports): interfaces[index + access_port_start] = Interface( description='IoT Device', native_vlan=native_vlan, acl_in=port_acl, max_hosts=1) def _build_datapath_config(self, dp_id, interfaces, mac=None): lldp_beacon = LLDPBeacon(max_per_interval=5, send_interval=5) stack = Stack(priority=1) return Datapath( dp_id=dp_id, faucet_dp_mac=mac, hardware='Generic', lacp_timeout=5, lldp_beacon=lldp_beacon, interfaces=interfaces, stack=stack) def _generate_dp_mac(self, dp_type, dp_index): if dp_type == T1_DP: return T1_DP_MAC_PREFIX + "{:02x}".format(dp_index+1) if dp_type == T2_DP: return T2_DP_MAC_PREFIX + "{:02x}".format(dp_index+1) raise Exception('Unknown dp_type: %s' % dp_type) def create_scale_faucet_config(self, t1_switches, t2_switches, access_ports): """Create Faucet config with stacking topology""" setup_vlan = SETUP_VLAN test_vlan = TEST_VLAN vlans = { setup_vlan: Vlan(description='Faucet IoT'), test_vlan: Vlan(description='Orchestrated Testing') } t1_dps = [('nz-kiwi-t1sw%s' % (dp_index + 1)) for dp_index in range(t1_switches)] t2_dps = [('nz-kiwi-t2sw%s' % (dp_index + 1)) for dp_index in range(t2_switches)] dps = {} for dp_index, dp_name in enumerate(t1_dps): tap_vlan = test_vlan if not dp_index else None interfaces = self._build_dp_interfaces( dp_index, dps=t1_dps, t2_dps=t2_dps, tagged_vlans=[setup_vlan], tap_vlan=tap_vlan, egress_port=FAUCET_EGRESS_PORT, lacp=True) dps[dp_name] = self._build_datapath_config( T1_DP_ID_START + dp_index, interfaces, self._generate_dp_mac(T1_DP, dp_index)) for dp_index, dp_name in enumerate(t2_dps): interfaces = self._build_dp_interfaces( dp_index, t1_dps=t1_dps, access_ports=access_ports, native_vlan=setup_vlan, port_acl='uniform_acl', lacp=True) dps[dp_name] = self._build_datapath_config( T2_DP_ID_START + dp_index, interfaces, self._generate_dp_mac(T2_DP, dp_index)) return FaucetConfig(dps=dps, version=2, include=['uniform.yaml'], vlans=vlans) def create_flat_faucet_config(self, num_switches, num_access_ports): """Create Faucet config with flat topology""" setup_vlan = SETUP_VLAN switches = [('sw%s' % (sw_num + 1)) for sw_num in range(num_switches)] dps = {} vlans = {setup_vlan: Vlan(description='Faucet IoT')} for sw_num, sw_name in enumerate(switches): interfaces = self._build_dp_interfaces( sw_num, dps=switches, egress_port=FAUCET_EGRESS_PORT, tagged_vlans=[setup_vlan], access_ports=num_access_ports, native_vlan=setup_vlan, port_acl='uniform_acl', access_port_start=FLAT_ACCESS_PORT_START, lacp=True) dps[sw_name] = self._build_datapath_config( FLAT_DP_ID_START + sw_num, interfaces, self._generate_dp_mac(T2_DP, sw_num)) return FaucetConfig(dps=dps, version=2, include=['uniform.yaml'], vlans=vlans) def create_corp_faucet_config(self): """Create Faucet config for corp network""" setup_vlan = SETUP_VLAN switch = 'corp' dps = {} interfaces = self._build_dp_interfaces( CORP_DP_ID, tagged_vlans=[setup_vlan], access_ports=1, access_port_start=1, native_vlan=setup_vlan, egress_port=CORP_EGRESS_PORT) dps[switch] = self._build_datapath_config(CORP_DP_ID, interfaces) return FaucetConfig(dps=dps, version=2) def main(argv): """main method for standalone run""" config_generator = FaucetConfigGenerator() filepath = '/tmp/faucet_config_dump' egress = 2 access = 3 devices = 1 topo_type = STACK argv = argv[1:] help_msg = """ <python3> build_config.py -e <egress_switches> -a <access_switches> -d <devices per switch> -p <config path> -t <topology type (flat, corp, stack)> """ try: opts, _ = getopt.getopt( argv, 'he:a:d:p:t:', ['egress=', 'access=', 'devices=', 'path=', 'type=']) except getopt.GetoptError: print(help_msg) sys.exit(2) for opt, arg in opts: if opt == '-h': print(help_msg) sys.exit() elif opt in ('-e', '--egress'): egress = int(arg) elif opt in ('-a', '--access'): access = int(arg) elif opt in ('-d', '--devices'): devices = int(arg) elif opt in ('-p', '--path'): filepath = arg elif opt in ('-t', '--type'): topo_type = arg if topo_type == FLAT: faucet_config = config_generator.create_flat_faucet_config(access, devices) elif topo_type == CORP: faucet_config = config_generator.create_corp_faucet_config() elif topo_type == STACK: faucet_config = config_generator.create_scale_faucet_config(egress, access, devices) else: raise Exception('Unkown topology type: %s' % topo_type) config_map = proto_dict(faucet_config) with open(filepath, 'w') as config_file: yaml.dump(config_map, config_file) if __name__ == '__main__': main(sys.argv)
39.414063
96
0.644896
[ "Apache-2.0" ]
henry54809/forch
testing/python_lib/build_config.py
10,090
Python
import logging import yaml from scanapi.config_loader import load_config_file from scanapi.errors import ( BadConfigurationError, EmptyConfigFileError, InvalidKeyError, InvalidPythonCodeError, ) from scanapi.exit_code import ExitCode from scanapi.reporter import Reporter from scanapi.session import session from scanapi.settings import settings from scanapi.tree import EndpointNode logger = logging.getLogger(__name__) def scan(): """Caller function that tries to scans the file and write the report.""" spec_path = settings["spec_path"] try: api_spec = load_config_file(spec_path) except FileNotFoundError as e: error_message = f"Could not find API spec file: {spec_path}. {str(e)}" logger.error(error_message) raise SystemExit(ExitCode.USAGE_ERROR) except EmptyConfigFileError as e: error_message = f"API spec file is empty. {str(e)}" logger.error(error_message) raise SystemExit(ExitCode.USAGE_ERROR) except yaml.YAMLError as e: error_message = "Error loading specification file." error_message = "{}\nPyYAML: {}".format(error_message, str(e)) logger.error(error_message) raise SystemExit(ExitCode.USAGE_ERROR) try: root_node = EndpointNode(api_spec) results = root_node.run() except (InvalidKeyError, KeyError, InvalidPythonCodeError,) as e: error_message = "Error loading API spec." error_message = "{} {}".format(error_message, str(e)) logger.error(error_message) raise SystemExit(ExitCode.USAGE_ERROR) try: write_report(results) except (BadConfigurationError, InvalidPythonCodeError) as e: logger.error(e) raise SystemExit(ExitCode.USAGE_ERROR) session.exit() def write_report(results): """Constructs a Reporter object and calls the write method of Reporter to push the results to a file. """ reporter = Reporter(settings["output_path"], settings["template"]) reporter.write(results)
30.984848
78
0.706112
[ "MIT" ]
hebertjulio/scanapi
scanapi/scan.py
2,045
Python
print("\079")
13
13
0.615385
[ "MIT" ]
bpbpublications/TEST-YOUR-SKILLS-IN-PYTHON-LANGUAGE
Chapter 02/ch2_17.py
13
Python
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Wrappers for third party pycocotools to be used within object_detection. Note that nothing in this file is tensorflow related and thus cannot be called directly as a slim metric, for example. TODO(jonathanhuang): wrap as a slim metric in metrics.py Usage example: given a set of images with ids in the list image_ids and corresponding lists of numpy arrays encoding groundtruth (boxes and classes) and detections (boxes, scores and classes), where elements of each list correspond to detections/annotations of a single image, then evaluation (in multi-class mode) can be invoked as follows: groundtruth_dict = coco_tools.ExportGroundtruthToCOCO( image_ids, groundtruth_boxes_list, groundtruth_classes_list, max_num_classes, output_path=None) detections_list = coco_tools.ExportDetectionsToCOCO( image_ids, detection_boxes_list, detection_scores_list, detection_classes_list, output_path=None) groundtruth = coco_tools.COCOWrapper(groundtruth_dict) detections = groundtruth.LoadAnnotations(detections_list) evaluator = coco_tools.COCOEvalWrapper(groundtruth, detections, agnostic_mode=False) metrics = evaluator.ComputeMetrics() """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from collections import OrderedDict import copy import time import numpy as np from pycocotools import coco from pycocotools import cocoeval from pycocotools import mask import six from six.moves import range from six.moves import zip import tensorflow.compat.v1 as tf from object_detection.utils import json_utils class COCOWrapper(coco.COCO): """Wrapper for the pycocotools COCO class.""" def __init__(self, dataset, detection_type='bbox'): """COCOWrapper constructor. See http://mscoco.org/dataset/#format for a description of the format. By default, the coco.COCO class constructor reads from a JSON file. This function duplicates the same behavior but loads from a dictionary, allowing us to perform evaluation without writing to external storage. Args: dataset: a dictionary holding bounding box annotations in the COCO format. detection_type: type of detections being wrapped. Can be one of ['bbox', 'segmentation'] Raises: ValueError: if detection_type is unsupported. """ supported_detection_types = ['bbox', 'segmentation'] if detection_type not in supported_detection_types: raise ValueError('Unsupported detection type: {}. ' 'Supported values are: {}'.format( detection_type, supported_detection_types)) self._detection_type = detection_type coco.COCO.__init__(self) self.dataset = dataset self.createIndex() def LoadAnnotations(self, annotations): """Load annotations dictionary into COCO datastructure. See http://mscoco.org/dataset/#format for a description of the annotations format. As above, this function replicates the default behavior of the API but does not require writing to external storage. Args: annotations: python list holding object detection results where each detection is encoded as a dict with required keys ['image_id', 'category_id', 'score'] and one of ['bbox', 'segmentation'] based on `detection_type`. Returns: a coco.COCO datastructure holding object detection annotations results Raises: ValueError: if annotations is not a list ValueError: if annotations do not correspond to the images contained in self. """ results = coco.COCO() results.dataset['images'] = [img for img in self.dataset['images']] tf.logging.info('Loading and preparing annotation results...') tic = time.time() if not isinstance(annotations, list): raise ValueError('annotations is not a list of objects') annotation_img_ids = [ann['image_id'] for ann in annotations] if (set(annotation_img_ids) != (set(annotation_img_ids) & set(self.getImgIds()))): raise ValueError('Results do not correspond to current coco set') results.dataset['categories'] = copy.deepcopy(self.dataset['categories']) if self._detection_type == 'bbox': for idx, ann in enumerate(annotations): bb = ann['bbox'] ann['area'] = bb[2] * bb[3] ann['id'] = idx + 1 ann['iscrowd'] = 0 elif self._detection_type == 'segmentation': for idx, ann in enumerate(annotations): ann['area'] = mask.area(ann['segmentation']) ann['bbox'] = mask.toBbox(ann['segmentation']) ann['id'] = idx + 1 ann['iscrowd'] = 0 tf.logging.info('DONE (t=%0.2fs)', (time.time() - tic)) results.dataset['annotations'] = annotations results.createIndex() return results class COCOEvalWrapper(cocoeval.COCOeval): """Wrapper for the pycocotools COCOeval class. To evaluate, create two objects (groundtruth_dict and detections_list) using the conventions listed at http://mscoco.org/dataset/#format. Then call evaluation as follows: groundtruth = coco_tools.COCOWrapper(groundtruth_dict) detections = groundtruth.LoadAnnotations(detections_list) evaluator = coco_tools.COCOEvalWrapper(groundtruth, detections, agnostic_mode=False) metrics = evaluator.ComputeMetrics() """ def __init__(self, groundtruth=None, detections=None, agnostic_mode=False, iou_type='bbox', oks_sigmas=None): """COCOEvalWrapper constructor. Note that for the area-based metrics to be meaningful, detection and groundtruth boxes must be in image coordinates measured in pixels. Args: groundtruth: a coco.COCO (or coco_tools.COCOWrapper) object holding groundtruth annotations detections: a coco.COCO (or coco_tools.COCOWrapper) object holding detections agnostic_mode: boolean (default: False). If True, evaluation ignores class labels, treating all detections as proposals. iou_type: IOU type to use for evaluation. Supports `bbox', `segm`, `keypoints`. oks_sigmas: Float numpy array holding the OKS variances for keypoints. """ cocoeval.COCOeval.__init__(self, groundtruth, detections, iouType=iou_type) if oks_sigmas is not None: self.params.kpt_oks_sigmas = oks_sigmas if agnostic_mode: self.params.useCats = 0 self._iou_type = iou_type def GetCategory(self, category_id): """Fetches dictionary holding category information given category id. Args: category_id: integer id Returns: dictionary holding 'id', 'name'. """ return self.cocoGt.cats[category_id] def GetAgnosticMode(self): """Returns true if COCO Eval is configured to evaluate in agnostic mode.""" return self.params.useCats == 0 def GetCategoryIdList(self): """Returns list of valid category ids.""" return self.params.catIds def ComputeMetrics(self, include_metrics_per_category=False, all_metrics_per_category=False): """Computes detection/keypoint metrics. Args: include_metrics_per_category: If True, will include metrics per category. all_metrics_per_category: If true, include all the summery metrics for each category in per_category_ap. Be careful with setting it to true if you have more than handful of categories, because it will pollute your mldash. Returns: 1. summary_metrics: a dictionary holding: 'Precision/mAP': mean average precision over classes averaged over IOU thresholds ranging from .5 to .95 with .05 increments 'Precision/[email protected]': mean average precision at 50% IOU 'Precision/[email protected]': mean average precision at 75% IOU 'Precision/mAP (small)': mean average precision for small objects (area < 32^2 pixels). NOTE: not present for 'keypoints' 'Precision/mAP (medium)': mean average precision for medium sized objects (32^2 pixels < area < 96^2 pixels) 'Precision/mAP (large)': mean average precision for large objects (96^2 pixels < area < 10000^2 pixels) 'Recall/AR@1': average recall with 1 detection 'Recall/AR@10': average recall with 10 detections 'Recall/AR@100': average recall with 100 detections 'Recall/AR@100 (small)': average recall for small objects with 100 detections. NOTE: not present for 'keypoints' 'Recall/AR@100 (medium)': average recall for medium objects with 100 detections 'Recall/AR@100 (large)': average recall for large objects with 100 detections 2. per_category_ap: a dictionary holding category specific results with keys of the form: 'Precision mAP ByCategory/category' (without the supercategory part if no supercategories exist). For backward compatibility 'PerformanceByCategory' is included in the output regardless of all_metrics_per_category. If evaluating class-agnostic mode, per_category_ap is an empty dictionary. Raises: ValueError: If category_stats does not exist. """ self.evaluate() self.accumulate() self.summarize() summary_metrics = {} if self._iou_type in ['bbox', 'segm']: summary_metrics = OrderedDict([('Precision/mAP', self.stats[0]), ('Precision/[email protected]', self.stats[1]), ('Precision/[email protected]', self.stats[2]), ('Precision/mAP (small)', self.stats[3]), ('Precision/mAP (medium)', self.stats[4]), ('Precision/mAP (large)', self.stats[5]), ('Recall/AR@1', self.stats[6]), ('Recall/AR@10', self.stats[7]), ('Recall/AR@100', self.stats[8]), ('Recall/AR@100 (small)', self.stats[9]), ('Recall/AR@100 (medium)', self.stats[10]), ('Recall/AR@100 (large)', self.stats[11])]) elif self._iou_type == 'keypoints': category_id = self.GetCategoryIdList()[0] category_name = self.GetCategory(category_id)['name'] summary_metrics = OrderedDict([]) summary_metrics['Precision/mAP ByCategory/{}'.format( category_name)] = self.stats[0] summary_metrics['Precision/[email protected] ByCategory/{}'.format( category_name)] = self.stats[1] summary_metrics['Precision/[email protected] ByCategory/{}'.format( category_name)] = self.stats[2] summary_metrics['Precision/mAP (medium) ByCategory/{}'.format( category_name)] = self.stats[3] summary_metrics['Precision/mAP (large) ByCategory/{}'.format( category_name)] = self.stats[4] summary_metrics['Recall/AR@1 ByCategory/{}'.format( category_name)] = self.stats[5] summary_metrics['Recall/AR@10 ByCategory/{}'.format( category_name)] = self.stats[6] summary_metrics['Recall/AR@100 ByCategory/{}'.format( category_name)] = self.stats[7] summary_metrics['Recall/AR@100 (medium) ByCategory/{}'.format( category_name)] = self.stats[8] summary_metrics['Recall/AR@100 (large) ByCategory/{}'.format( category_name)] = self.stats[9] if not include_metrics_per_category: return summary_metrics, {} if not hasattr(self, 'category_stats'): raise ValueError('Category stats do not exist') per_category_ap = OrderedDict([]) if self.GetAgnosticMode(): return summary_metrics, per_category_ap for category_index, category_id in enumerate(self.GetCategoryIdList()): category = self.GetCategory(category_id)['name'] # Kept for backward compatilbility per_category_ap['PerformanceByCategory/mAP/{}'.format( category)] = self.category_stats[0][category_index] if all_metrics_per_category: per_category_ap['Precision mAP ByCategory/{}'.format( category)] = self.category_stats[0][category_index] per_category_ap['Precision [email protected] ByCategory/{}'.format( category)] = self.category_stats[1][category_index] per_category_ap['Precision [email protected] ByCategory/{}'.format( category)] = self.category_stats[2][category_index] per_category_ap['Precision mAP (small) ByCategory/{}'.format( category)] = self.category_stats[3][category_index] per_category_ap['Precision mAP (medium) ByCategory/{}'.format( category)] = self.category_stats[4][category_index] per_category_ap['Precision mAP (large) ByCategory/{}'.format( category)] = self.category_stats[5][category_index] per_category_ap['Recall AR@1 ByCategory/{}'.format( category)] = self.category_stats[6][category_index] per_category_ap['Recall AR@10 ByCategory/{}'.format( category)] = self.category_stats[7][category_index] per_category_ap['Recall AR@100 ByCategory/{}'.format( category)] = self.category_stats[8][category_index] per_category_ap['Recall AR@100 (small) ByCategory/{}'.format( category)] = self.category_stats[9][category_index] per_category_ap['Recall AR@100 (medium) ByCategory/{}'.format( category)] = self.category_stats[10][category_index] per_category_ap['Recall AR@100 (large) ByCategory/{}'.format( category)] = self.category_stats[11][category_index] return summary_metrics, per_category_ap def _ConvertBoxToCOCOFormat(box): """Converts a box in [ymin, xmin, ymax, xmax] format to COCO format. This is a utility function for converting from our internal [ymin, xmin, ymax, xmax] convention to the convention used by the COCO API i.e., [xmin, ymin, width, height]. Args: box: a [ymin, xmin, ymax, xmax] numpy array Returns: a list of floats representing [xmin, ymin, width, height] """ return [float(box[1]), float(box[0]), float(box[3] - box[1]), float(box[2] - box[0])] def _RleCompress(masks): """Compresses mask using Run-length encoding provided by pycocotools. Args: masks: uint8 numpy array of shape [mask_height, mask_width] with values in {0, 1}. Returns: A pycocotools Run-length encoding of the mask. """ rle = mask.encode(np.asfortranarray(masks)) rle['counts'] = six.ensure_str(rle['counts']) return rle def ExportSingleImageGroundtruthToCoco(image_id, next_annotation_id, category_id_set, groundtruth_boxes, groundtruth_classes, groundtruth_keypoints=None, groundtruth_keypoint_visibilities=None, groundtruth_masks=None, groundtruth_is_crowd=None, groundtruth_area=None): """Export groundtruth of a single image to COCO format. This function converts groundtruth detection annotations represented as numpy arrays to dictionaries that can be ingested by the COCO evaluation API. Note that the image_ids provided here must match the ones given to ExportSingleImageDetectionsToCoco. We assume that boxes and classes are in correspondence - that is: groundtruth_boxes[i, :], and groundtruth_classes[i] are associated with the same groundtruth annotation. In the exported result, "area" fields are always set to the area of the groundtruth bounding box. Args: image_id: a unique image identifier either of type integer or string. next_annotation_id: integer specifying the first id to use for the groundtruth annotations. All annotations are assigned a continuous integer id starting from this value. category_id_set: A set of valid class ids. Groundtruth with classes not in category_id_set are dropped. groundtruth_boxes: numpy array (float32) with shape [num_gt_boxes, 4] groundtruth_classes: numpy array (int) with shape [num_gt_boxes] groundtruth_keypoints: optional float numpy array of keypoints with shape [num_gt_boxes, num_keypoints, 2]. groundtruth_keypoint_visibilities: optional integer numpy array of keypoint visibilities with shape [num_gt_boxes, num_keypoints]. Integer is treated as an enum with 0=not labels, 1=labeled but not visible and 2=labeled and visible. groundtruth_masks: optional uint8 numpy array of shape [num_detections, image_height, image_width] containing detection_masks. groundtruth_is_crowd: optional numpy array (int) with shape [num_gt_boxes] indicating whether groundtruth boxes are crowd. groundtruth_area: numpy array (float32) with shape [num_gt_boxes]. If provided, then the area values (in the original absolute coordinates) will be populated instead of calculated from bounding box coordinates. Returns: a list of groundtruth annotations for a single image in the COCO format. Raises: ValueError: if (1) groundtruth_boxes and groundtruth_classes do not have the right lengths or (2) if each of the elements inside these lists do not have the correct shapes or (3) if image_ids are not integers """ if len(groundtruth_classes.shape) != 1: raise ValueError('groundtruth_classes is ' 'expected to be of rank 1.') if len(groundtruth_boxes.shape) != 2: raise ValueError('groundtruth_boxes is expected to be of ' 'rank 2.') if groundtruth_boxes.shape[1] != 4: raise ValueError('groundtruth_boxes should have ' 'shape[1] == 4.') num_boxes = groundtruth_classes.shape[0] if num_boxes != groundtruth_boxes.shape[0]: raise ValueError('Corresponding entries in groundtruth_classes, ' 'and groundtruth_boxes should have ' 'compatible shapes (i.e., agree on the 0th dimension).' 'Classes shape: %d. Boxes shape: %d. Image ID: %s' % ( groundtruth_classes.shape[0], groundtruth_boxes.shape[0], image_id)) has_is_crowd = groundtruth_is_crowd is not None if has_is_crowd and len(groundtruth_is_crowd.shape) != 1: raise ValueError('groundtruth_is_crowd is expected to be of rank 1.') has_keypoints = groundtruth_keypoints is not None has_keypoint_visibilities = groundtruth_keypoint_visibilities is not None if has_keypoints and not has_keypoint_visibilities: groundtruth_keypoint_visibilities = np.full( (num_boxes, groundtruth_keypoints.shape[1]), 2) groundtruth_list = [] for i in range(num_boxes): if groundtruth_classes[i] in category_id_set: iscrowd = groundtruth_is_crowd[i] if has_is_crowd else 0 if groundtruth_area is not None and groundtruth_area[i] > 0: area = float(groundtruth_area[i]) else: area = float((groundtruth_boxes[i, 2] - groundtruth_boxes[i, 0]) * (groundtruth_boxes[i, 3] - groundtruth_boxes[i, 1])) export_dict = { 'id': next_annotation_id + i, 'image_id': image_id, 'category_id': int(groundtruth_classes[i]), 'bbox': list(_ConvertBoxToCOCOFormat(groundtruth_boxes[i, :])), 'area': area, 'iscrowd': iscrowd } if groundtruth_masks is not None: export_dict['segmentation'] = _RleCompress(groundtruth_masks[i]) if has_keypoints: keypoints = groundtruth_keypoints[i] visibilities = np.reshape(groundtruth_keypoint_visibilities[i], [-1]) coco_keypoints = [] num_valid_keypoints = 0 for keypoint, visibility in zip(keypoints, visibilities): # Convert from [y, x] to [x, y] as mandated by COCO. coco_keypoints.append(float(keypoint[1])) coco_keypoints.append(float(keypoint[0])) coco_keypoints.append(int(visibility)) if int(visibility) > 0: num_valid_keypoints = num_valid_keypoints + 1 export_dict['keypoints'] = coco_keypoints export_dict['num_keypoints'] = num_valid_keypoints groundtruth_list.append(export_dict) return groundtruth_list def ExportGroundtruthToCOCO(image_ids, groundtruth_boxes, groundtruth_classes, categories, output_path=None): """Export groundtruth detection annotations in numpy arrays to COCO API. This function converts a set of groundtruth detection annotations represented as numpy arrays to dictionaries that can be ingested by the COCO API. Inputs to this function are three lists: image ids for each groundtruth image, groundtruth boxes for each image and groundtruth classes respectively. Note that the image_ids provided here must match the ones given to the ExportDetectionsToCOCO function in order for evaluation to work properly. We assume that for each image, boxes, scores and classes are in correspondence --- that is: image_id[i], groundtruth_boxes[i, :] and groundtruth_classes[i] are associated with the same groundtruth annotation. In the exported result, "area" fields are always set to the area of the groundtruth bounding box and "iscrowd" fields are always set to 0. TODO(jonathanhuang): pass in "iscrowd" array for evaluating on COCO dataset. Args: image_ids: a list of unique image identifier either of type integer or string. groundtruth_boxes: list of numpy arrays with shape [num_gt_boxes, 4] (note that num_gt_boxes can be different for each entry in the list) groundtruth_classes: list of numpy arrays (int) with shape [num_gt_boxes] (note that num_gt_boxes can be different for each entry in the list) categories: a list of dictionaries representing all possible categories. Each dict in this list has the following keys: 'id': (required) an integer id uniquely identifying this category 'name': (required) string representing category name e.g., 'cat', 'dog', 'pizza' 'supercategory': (optional) string representing the supercategory e.g., 'animal', 'vehicle', 'food', etc output_path: (optional) path for exporting result to JSON Returns: dictionary that can be read by COCO API Raises: ValueError: if (1) groundtruth_boxes and groundtruth_classes do not have the right lengths or (2) if each of the elements inside these lists do not have the correct shapes or (3) if image_ids are not integers """ category_id_set = set([cat['id'] for cat in categories]) groundtruth_export_list = [] image_export_list = [] if not len(image_ids) == len(groundtruth_boxes) == len(groundtruth_classes): raise ValueError('Input lists must have the same length') # For reasons internal to the COCO API, it is important that annotation ids # are not equal to zero; we thus start counting from 1. annotation_id = 1 for image_id, boxes, classes in zip(image_ids, groundtruth_boxes, groundtruth_classes): image_export_list.append({'id': image_id}) groundtruth_export_list.extend(ExportSingleImageGroundtruthToCoco( image_id, annotation_id, category_id_set, boxes, classes)) num_boxes = classes.shape[0] annotation_id += num_boxes groundtruth_dict = { 'annotations': groundtruth_export_list, 'images': image_export_list, 'categories': categories } if output_path: with tf.gfile.GFile(output_path, 'w') as fid: json_utils.Dump(groundtruth_dict, fid, float_digits=4, indent=2) return groundtruth_dict def ExportSingleImageDetectionBoxesToCoco(image_id, category_id_set, detection_boxes, detection_scores, detection_classes, detection_keypoints=None, detection_keypoint_visibilities=None): """Export detections of a single image to COCO format. This function converts detections represented as numpy arrays to dictionaries that can be ingested by the COCO evaluation API. Note that the image_ids provided here must match the ones given to the ExporSingleImageDetectionBoxesToCoco. We assume that boxes, and classes are in correspondence - that is: boxes[i, :], and classes[i] are associated with the same groundtruth annotation. Args: image_id: unique image identifier either of type integer or string. category_id_set: A set of valid class ids. Detections with classes not in category_id_set are dropped. detection_boxes: float numpy array of shape [num_detections, 4] containing detection boxes. detection_scores: float numpy array of shape [num_detections] containing scored for the detection boxes. detection_classes: integer numpy array of shape [num_detections] containing the classes for detection boxes. detection_keypoints: optional float numpy array of keypoints with shape [num_detections, num_keypoints, 2]. detection_keypoint_visibilities: optional integer numpy array of keypoint visibilities with shape [num_detections, num_keypoints]. Integer is treated as an enum with 0=not labels, 1=labeled but not visible and 2=labeled and visible. Returns: a list of detection annotations for a single image in the COCO format. Raises: ValueError: if (1) detection_boxes, detection_scores and detection_classes do not have the right lengths or (2) if each of the elements inside these lists do not have the correct shapes or (3) if image_ids are not integers. """ if len(detection_classes.shape) != 1 or len(detection_scores.shape) != 1: raise ValueError('All entries in detection_classes and detection_scores' 'expected to be of rank 1.') if len(detection_boxes.shape) != 2: raise ValueError('All entries in detection_boxes expected to be of ' 'rank 2.') if detection_boxes.shape[1] != 4: raise ValueError('All entries in detection_boxes should have ' 'shape[1] == 4.') num_boxes = detection_classes.shape[0] if not num_boxes == detection_boxes.shape[0] == detection_scores.shape[0]: raise ValueError('Corresponding entries in detection_classes, ' 'detection_scores and detection_boxes should have ' 'compatible shapes (i.e., agree on the 0th dimension). ' 'Classes shape: %d. Boxes shape: %d. ' 'Scores shape: %d' % ( detection_classes.shape[0], detection_boxes.shape[0], detection_scores.shape[0] )) detections_list = [] for i in range(num_boxes): if detection_classes[i] in category_id_set: export_dict = { 'image_id': image_id, 'category_id': int(detection_classes[i]), 'bbox': list(_ConvertBoxToCOCOFormat(detection_boxes[i, :])), 'score': float(detection_scores[i]), } if detection_keypoints is not None: keypoints = detection_keypoints[i] num_keypoints = keypoints.shape[0] if detection_keypoint_visibilities is None: detection_keypoint_visibilities = np.full((num_boxes, num_keypoints), 2) visibilities = np.reshape(detection_keypoint_visibilities[i], [-1]) coco_keypoints = [] for keypoint, visibility in zip(keypoints, visibilities): # Convert from [y, x] to [x, y] as mandated by COCO. coco_keypoints.append(float(keypoint[1])) coco_keypoints.append(float(keypoint[0])) coco_keypoints.append(int(visibility)) export_dict['keypoints'] = coco_keypoints export_dict['num_keypoints'] = num_keypoints detections_list.append(export_dict) return detections_list def ExportSingleImageDetectionMasksToCoco(image_id, category_id_set, detection_masks, detection_scores, detection_classes): """Export detection masks of a single image to COCO format. This function converts detections represented as numpy arrays to dictionaries that can be ingested by the COCO evaluation API. We assume that detection_masks, detection_scores, and detection_classes are in correspondence - that is: detection_masks[i, :], detection_classes[i] and detection_scores[i] are associated with the same annotation. Args: image_id: unique image identifier either of type integer or string. category_id_set: A set of valid class ids. Detections with classes not in category_id_set are dropped. detection_masks: uint8 numpy array of shape [num_detections, image_height, image_width] containing detection_masks. detection_scores: float numpy array of shape [num_detections] containing scores for detection masks. detection_classes: integer numpy array of shape [num_detections] containing the classes for detection masks. Returns: a list of detection mask annotations for a single image in the COCO format. Raises: ValueError: if (1) detection_masks, detection_scores and detection_classes do not have the right lengths or (2) if each of the elements inside these lists do not have the correct shapes or (3) if image_ids are not integers. """ if len(detection_classes.shape) != 1 or len(detection_scores.shape) != 1: raise ValueError('All entries in detection_classes and detection_scores' 'expected to be of rank 1.') num_boxes = detection_classes.shape[0] if not num_boxes == len(detection_masks) == detection_scores.shape[0]: raise ValueError('Corresponding entries in detection_classes, ' 'detection_scores and detection_masks should have ' 'compatible lengths and shapes ' 'Classes length: %d. Masks length: %d. ' 'Scores length: %d' % ( detection_classes.shape[0], len(detection_masks), detection_scores.shape[0] )) detections_list = [] for i in range(num_boxes): if detection_classes[i] in category_id_set: detections_list.append({ 'image_id': image_id, 'category_id': int(detection_classes[i]), 'segmentation': _RleCompress(detection_masks[i]), 'score': float(detection_scores[i]) }) return detections_list def ExportDetectionsToCOCO(image_ids, detection_boxes, detection_scores, detection_classes, categories, output_path=None): """Export detection annotations in numpy arrays to COCO API. This function converts a set of predicted detections represented as numpy arrays to dictionaries that can be ingested by the COCO API. Inputs to this function are lists, consisting of boxes, scores and classes, respectively, corresponding to each image for which detections have been produced. Note that the image_ids provided here must match the ones given to the ExportGroundtruthToCOCO function in order for evaluation to work properly. We assume that for each image, boxes, scores and classes are in correspondence --- that is: detection_boxes[i, :], detection_scores[i] and detection_classes[i] are associated with the same detection. Args: image_ids: a list of unique image identifier either of type integer or string. detection_boxes: list of numpy arrays with shape [num_detection_boxes, 4] detection_scores: list of numpy arrays (float) with shape [num_detection_boxes]. Note that num_detection_boxes can be different for each entry in the list. detection_classes: list of numpy arrays (int) with shape [num_detection_boxes]. Note that num_detection_boxes can be different for each entry in the list. categories: a list of dictionaries representing all possible categories. Each dict in this list must have an integer 'id' key uniquely identifying this category. output_path: (optional) path for exporting result to JSON Returns: list of dictionaries that can be read by COCO API, where each entry corresponds to a single detection and has keys from: ['image_id', 'category_id', 'bbox', 'score']. Raises: ValueError: if (1) detection_boxes and detection_classes do not have the right lengths or (2) if each of the elements inside these lists do not have the correct shapes or (3) if image_ids are not integers. """ category_id_set = set([cat['id'] for cat in categories]) detections_export_list = [] if not (len(image_ids) == len(detection_boxes) == len(detection_scores) == len(detection_classes)): raise ValueError('Input lists must have the same length') for image_id, boxes, scores, classes in zip(image_ids, detection_boxes, detection_scores, detection_classes): detections_export_list.extend(ExportSingleImageDetectionBoxesToCoco( image_id, category_id_set, boxes, scores, classes)) if output_path: with tf.gfile.GFile(output_path, 'w') as fid: json_utils.Dump(detections_export_list, fid, float_digits=4, indent=2) return detections_export_list def ExportSegmentsToCOCO(image_ids, detection_masks, detection_scores, detection_classes, categories, output_path=None): """Export segmentation masks in numpy arrays to COCO API. This function converts a set of predicted instance masks represented as numpy arrays to dictionaries that can be ingested by the COCO API. Inputs to this function are lists, consisting of segments, scores and classes, respectively, corresponding to each image for which detections have been produced. Note this function is recommended to use for small dataset. For large dataset, it should be used with a merge function (e.g. in map reduce), otherwise the memory consumption is large. We assume that for each image, masks, scores and classes are in correspondence --- that is: detection_masks[i, :, :, :], detection_scores[i] and detection_classes[i] are associated with the same detection. Args: image_ids: list of image ids (typically ints or strings) detection_masks: list of numpy arrays with shape [num_detection, h, w, 1] and type uint8. The height and width should match the shape of corresponding image. detection_scores: list of numpy arrays (float) with shape [num_detection]. Note that num_detection can be different for each entry in the list. detection_classes: list of numpy arrays (int) with shape [num_detection]. Note that num_detection can be different for each entry in the list. categories: a list of dictionaries representing all possible categories. Each dict in this list must have an integer 'id' key uniquely identifying this category. output_path: (optional) path for exporting result to JSON Returns: list of dictionaries that can be read by COCO API, where each entry corresponds to a single detection and has keys from: ['image_id', 'category_id', 'segmentation', 'score']. Raises: ValueError: if detection_masks and detection_classes do not have the right lengths or if each of the elements inside these lists do not have the correct shapes. """ if not (len(image_ids) == len(detection_masks) == len(detection_scores) == len(detection_classes)): raise ValueError('Input lists must have the same length') segment_export_list = [] for image_id, masks, scores, classes in zip(image_ids, detection_masks, detection_scores, detection_classes): if len(classes.shape) != 1 or len(scores.shape) != 1: raise ValueError('All entries in detection_classes and detection_scores' 'expected to be of rank 1.') if len(masks.shape) != 4: raise ValueError('All entries in masks expected to be of ' 'rank 4. Given {}'.format(masks.shape)) num_boxes = classes.shape[0] if not num_boxes == masks.shape[0] == scores.shape[0]: raise ValueError('Corresponding entries in segment_classes, ' 'detection_scores and detection_boxes should have ' 'compatible shapes (i.e., agree on the 0th dimension).') category_id_set = set([cat['id'] for cat in categories]) segment_export_list.extend(ExportSingleImageDetectionMasksToCoco( image_id, category_id_set, np.squeeze(masks, axis=3), scores, classes)) if output_path: with tf.gfile.GFile(output_path, 'w') as fid: json_utils.Dump(segment_export_list, fid, float_digits=4, indent=2) return segment_export_list def ExportKeypointsToCOCO(image_ids, detection_keypoints, detection_scores, detection_classes, categories, output_path=None): """Exports keypoints in numpy arrays to COCO API. This function converts a set of predicted keypoints represented as numpy arrays to dictionaries that can be ingested by the COCO API. Inputs to this function are lists, consisting of keypoints, scores and classes, respectively, corresponding to each image for which detections have been produced. We assume that for each image, keypoints, scores and classes are in correspondence --- that is: detection_keypoints[i, :, :, :], detection_scores[i] and detection_classes[i] are associated with the same detection. Args: image_ids: list of image ids (typically ints or strings) detection_keypoints: list of numpy arrays with shape [num_detection, num_keypoints, 2] and type float32 in absolute x-y coordinates. detection_scores: list of numpy arrays (float) with shape [num_detection]. Note that num_detection can be different for each entry in the list. detection_classes: list of numpy arrays (int) with shape [num_detection]. Note that num_detection can be different for each entry in the list. categories: a list of dictionaries representing all possible categories. Each dict in this list must have an integer 'id' key uniquely identifying this category and an integer 'num_keypoints' key specifying the number of keypoints the category has. output_path: (optional) path for exporting result to JSON Returns: list of dictionaries that can be read by COCO API, where each entry corresponds to a single detection and has keys from: ['image_id', 'category_id', 'keypoints', 'score']. Raises: ValueError: if detection_keypoints and detection_classes do not have the right lengths or if each of the elements inside these lists do not have the correct shapes. """ if not (len(image_ids) == len(detection_keypoints) == len(detection_scores) == len(detection_classes)): raise ValueError('Input lists must have the same length') keypoints_export_list = [] for image_id, keypoints, scores, classes in zip( image_ids, detection_keypoints, detection_scores, detection_classes): if len(classes.shape) != 1 or len(scores.shape) != 1: raise ValueError('All entries in detection_classes and detection_scores' 'expected to be of rank 1.') if len(keypoints.shape) != 3: raise ValueError('All entries in keypoints expected to be of ' 'rank 3. Given {}'.format(keypoints.shape)) num_boxes = classes.shape[0] if not num_boxes == keypoints.shape[0] == scores.shape[0]: raise ValueError('Corresponding entries in detection_classes, ' 'detection_keypoints, and detection_scores should have ' 'compatible shapes (i.e., agree on the 0th dimension).') category_id_set = set([cat['id'] for cat in categories]) category_id_to_num_keypoints_map = { cat['id']: cat['num_keypoints'] for cat in categories if 'num_keypoints' in cat} for i in range(num_boxes): if classes[i] not in category_id_set: raise ValueError('class id should be in category_id_set\n') if classes[i] in category_id_to_num_keypoints_map: num_keypoints = category_id_to_num_keypoints_map[classes[i]] # Adds extra ones to indicate the visibility for each keypoint as is # recommended by MSCOCO. instance_keypoints = np.concatenate( [keypoints[i, 0:num_keypoints, :], np.expand_dims(np.ones(num_keypoints), axis=1)], axis=1).astype(int) instance_keypoints = instance_keypoints.flatten().tolist() keypoints_export_list.append({ 'image_id': image_id, 'category_id': int(classes[i]), 'keypoints': instance_keypoints, 'score': float(scores[i]) }) if output_path: with tf.gfile.GFile(output_path, 'w') as fid: json_utils.Dump(keypoints_export_list, fid, float_digits=4, indent=2) return keypoints_export_list
45.346639
80
0.668937
[ "Apache-2.0" ]
1911590204/models
research/object_detection/metrics/coco_tools.py
43,170
Python
import os from PySide2 import QtWidgets from mapclientplugins.filechooserstep.ui_configuredialog import Ui_ConfigureDialog INVALID_STYLE_SHEET = 'background-color: rgba(239, 0, 0, 50)' DEFAULT_STYLE_SHEET = '' class ConfigureDialog(QtWidgets.QDialog): """ Configure dialog to present the user with the options to configure this step. """ def __init__(self, parent=None): QtWidgets.QDialog.__init__(self, parent) self._ui = Ui_ConfigureDialog() self._ui.setupUi(self) self._workflow_location = None # Keep track of the previous identifier so that we can track changes # and know how many occurrences of the current identifier there should # be. self._previousIdentifier = '' # Set a place holder for a callable that will get set from the step. # We will use this method to decide whether the identifier is unique. self.identifierOccursCount = None self._previousLocation = '' self._makeConnections() def _makeConnections(self): self._ui.lineEdit0.textChanged.connect(self.validate) self._ui.lineEditFileLocation.textChanged.connect(self.validate) self._ui.pushButtonFileChooser.clicked.connect(self._fileChooserClicked) def _fileChooserClicked(self): # Second parameter returned is the filter chosen location, _ = QtWidgets.QFileDialog.getOpenFileName(self, 'Select File Location', self._previousLocation) if location: self._previousLocation = location display_location = self._output_location(location) self._ui.lineEditFileLocation.setText(display_location) def _output_location(self, location=None): if location is None: display_path = self._ui.lineEditFileLocation.text() else: display_path = location if self._workflow_location and os.path.isabs(display_path): display_path = os.path.relpath(display_path, self._workflow_location) return display_path def setWorkflowLocation(self, location): self._workflow_location = location def accept(self): """ Override the accept method so that we can confirm saving an invalid configuration. """ result = QtWidgets.QMessageBox.Yes if not self.validate(): result = QtWidgets.QMessageBox.warning(self, 'Invalid Configuration', 'This configuration is invalid. ' ' Unpredictable behaviour may result if you choose \'Yes\',' ' are you sure you want to save this configuration?)', QtWidgets.QMessageBox.Yes | QtWidgets.QMessageBox.No, QtWidgets.QMessageBox.No) if result == QtWidgets.QMessageBox.Yes: QtWidgets.QDialog.accept(self) def validate(self): """ Validate the configuration dialog fields. For any field that is not valid set the style sheet to the INVALID_STYLE_SHEET. Return the outcome of the overall validity of the configuration. """ # Determine if the current identifier is unique throughout the workflow # The identifierOccursCount method is part of the interface to the workflow framework. value = self.identifierOccursCount(self._ui.lineEdit0.text()) valid = (value == 0) or (value == 1 and self._previousIdentifier == self._ui.lineEdit0.text()) self._ui.lineEdit0.setStyleSheet(DEFAULT_STYLE_SHEET if valid else INVALID_STYLE_SHEET) non_empty = len(self._ui.lineEditFileLocation.text()) file_path = self._output_location() if self._workflow_location: file_path = os.path.join(self._workflow_location, file_path) location_valid = non_empty and os.path.isfile(file_path) self._ui.lineEditFileLocation.setStyleSheet(DEFAULT_STYLE_SHEET if location_valid else INVALID_STYLE_SHEET) return valid and location_valid def getConfig(self): """ Get the current value of the configuration from the dialog. Also set the _previousIdentifier value so that we can check uniqueness of the identifier over the whole of the workflow. """ self._previousIdentifier = self._ui.lineEdit0.text() config = {'identifier': self._ui.lineEdit0.text(), 'File': self._output_location()} if self._previousLocation: config['previous_location'] = os.path.relpath(self._previousLocation, self._workflow_location) else: config['previous_location'] = '' return config def setConfig(self, config): """ Set the current value of the configuration for the dialog. Also set the _previousIdentifier value so that we can check uniqueness of the identifier over the whole of the workflow. """ self._previousIdentifier = config['identifier'] self._ui.lineEdit0.setText(config['identifier']) self._ui.lineEditFileLocation.setText(config['File']) if 'previous_location' in config: self._previousLocation = os.path.join(self._workflow_location, config['previous_location'])
41.569231
115
0.65544
[ "Apache-2.0" ]
mapclient-plugins/mapclientplugins.filechooserstep
mapclientplugins/filechooserstep/configuredialog.py
5,404
Python
from problem import Problem class DistinctPowers(Problem, name="Distinct powers", expected=9183): @Problem.solution() def brute_force(self): # Good ol fashion set comprehension return len({a ** b for a in range(2, 101) for b in range(2, 101)})
30
74
0.677778
[ "MIT" ]
davisschenk/Project-Euler-Rewrite
problems/p029.py
270
Python
import cv2 import sys cwd = sys.path[0] if __name__ == '__main__': success = True cap = cv2.VideoCapture(cwd + '/face.avi') i = 0 while success: success, img = cap.read() cv2.imwrite(cwd + '/out/frame' + str(i) + '.jpg', img) i = i + 1
17.5
62
0.539286
[ "MIT" ]
yo1995/Daily_Python_Tasks
HLWD_opencv_py/dissect-video-to-img-sequence.py
280
Python
# terrascript/data/mrcrilly/awx.py # Automatically generated by tools/makecode.py (24-Sep-2021 15:12:44 UTC) import terrascript class awx_credential(terrascript.Data): pass class awx_credential_azure_key_vault(terrascript.Data): pass class awx_credentials(terrascript.Data): pass __all__ = [ "awx_credential", "awx_credential_azure_key_vault", "awx_credentials", ]
17.26087
73
0.753149
[ "BSD-2-Clause" ]
mjuenema/python-terrascript
terrascript/data/mrcrilly/awx.py
397
Python
# # (C) Copyright IBM Corp. 2019 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import logging import requests from urllib.parse import urlencode logger = logging.getLogger(__name__) class IBMIAMClient: def __init__(self, iam_config, cf_endpoint, cf_namespace): self.iam_api_key = iam_config.get('api_key', None) self.iam_auth_endpoint = iam_config['ibm_auth_endpoint'] self.cf_endpoint = cf_endpoint self.cf_namespace = cf_namespace def get_iam_token(self): data = urlencode({'grant_type': 'urn:ibm:params:oauth:grant-type:apikey', 'apikey': self.iam_api_key}) headers = { 'content-type': 'application/x-www-form-urlencoded', 'Accept': 'application/json' } res = requests.post(self.iam_auth_endpoint, data=data, headers=headers) if res.status_code != 200: raise RuntimeError("Error: http code {} while retrieving IAM token for API key.".format(res.status_code)) bearer_response = res.json() bearer_token = bearer_response['access_token'] logger.debug(bearer_token) return bearer_token def get_function_namespace_id(self, iam_token): logger.debug("Getting name space id for {}".format(self.cf_namespace)) headers = { 'content-type': 'application/json', 'Accept': 'application/json', 'Authorization': iam_token } url = '/'.join([self.cf_endpoint, 'api', 'v1', 'namespaces']) res = requests.get(url, headers=headers) if res.status_code != 200: raise RuntimeError("Error: http code {} while listing namespaces.".format(res.status_code)) namespaces = res.json() for current_namespace in namespaces['namespaces']: if 'name' in current_namespace and current_namespace['name'] == self.cf_namespace: logger.debug("Found name space id {} for {}".format(current_namespace['id'], self.cf_namespace)) return current_namespace['id'] raise Exception("No IBM Cloud Functions namespace \"{}\" found.".format(self.cf_namespace))
38.289855
117
0.671461
[ "Apache-2.0" ]
class-euproject/lithops
pywren_ibm_cloud/libs/ibm_cloudfunctions/iam.py
2,642
Python
# -*- coding: utf-8 -*- # Copyright (C) 2008-2015, Luis Pedro Coelho <[email protected]> # vim: set ts=4 sts=4 sw=4 expandtab smartindent: # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from __future__ import division import numpy as np from .normalise import normaliselabels from .base import supervised_model __all__ = ['normaliselabels', 'ctransforms'] class threshold_model(object): ''' threshold_model Attributes ---------- threshold : float threshold value ''' def __init__(self, threshold=.5): self.threshold = .5 def apply(self, f): return f >= self.threshold def __repr__(self): return 'threshold_model({})'.format(self.threshold) __str__ = __repr__ class fixed_threshold_learner(object): def __init__(self, threshold=.5): self.threshold = threshold def train(self, features, labels, **kwargs): return threshold_model(self.threshold) def __repr__(self): return 'fixed_threshold_learner({})'.format(self.threshold) __str__ = __repr__ class ctransforms_model(supervised_model): ''' model = ctransforms_model(models) A model that consists of a series of transformations. See Also -------- ctransforms ''' def __init__(self, models): self.models = models def apply_many(self, features): if len(features) == 0: return features for m in self.models: features = m.apply_many(features) return features def __repr__(self): return 'ctransforms_model({})'.format(self.models) __str__ = __repr__ def __getitem__(self, ix): return self.models[ix] def apply(self,features): for T in self.models: features = T.apply(features) return features class ctransforms(object): ''' ctransf = ctransforms(c0, c1, c2, ...) Concatenate transforms. ''' def __init__(self,*args): self.transforms = args def train(self, features, labels, **kwargs): models = [] model = None for T in self.transforms: if model is not None: features = np.array([model.apply(f) for f in features]) model = T.train(features, labels, **kwargs) models.append(model) return ctransforms_model(models) def __repr__(self): return 'ctransforms(*{})'.format(self.transforms) __str__ = __repr__ def set_option(self, opt, val): idx, opt = opt self.transforms[idx].set_option(opt,val)
29.727273
80
0.666389
[ "MIT" ]
cumeadi/milk
milk/supervised/classifier.py
3,597
Python
#!/usr/bin/env python # # __COPYRIGHT__ # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # __revision__ = "__FILE__ __REVISION__ __DATE__ __DEVELOPER__" r""" Verify that we execute TeX in a subdirectory (if that's where the document resides) by checking that all the auxiliary files get created there and not in the top-level directory. Test this when variantDir is used Add use of \include and \includegraphics from within the included file Also check that we find files Test case courtesy Joel B. Mohler. """ import TestSCons test = TestSCons.TestSCons() latex = test.where_is('latex') if not latex: test.skip_test("Could not find 'latex'; skipping test.\n") pdflatex = test.where_is('pdflatex') if not pdflatex: test.skip_test("Could not find 'pdflatex'; skipping test.\n") test.subdir('docs') test.subdir(['docs','content']) test.subdir(['docs','fig']) test.write('SConstruct', """\ import os env = Environment(TOOLS = ['tex', 'pdftex']) env.VariantDir('build', 'docs', duplicate=0) pdf = env.PDF('build/main.tex') """) test.write(['docs','main.tex'], r"""\documentclass{article} \usepackage{makeidx} \makeindex \begin{document} Hi there. \index{info} \include{content/chapter} \printindex{} \end{document} """) test.write(['docs','content','chapter.tex'], r"""Sub-document 1 \input{content/subchap} """) test.write(['docs','content','subchap.tex'], """\ Sub-chapter 2 """) #test.run(arguments = '.') #test.run(arguments = '.', stderr=None, stdout=None) # next line tests that side effect nodes get disambiguated # and their directories created in a variantDir before # the builder tries to populate them and fails test.run(arguments = 'build/main.pdf', stderr=None, stdout=None) test.must_exist(['build', 'main.aux']) test.must_exist(['build', 'main.fls']) test.must_exist(['build', 'main.idx']) test.must_exist(['build', 'main.ilg']) test.must_exist(['build', 'main.ind']) test.must_exist(['build', 'main.log']) test.must_exist(['build', 'main.pdf']) test.must_exist(['build', 'content', 'chapter.aux']) test.must_not_exist('main.aux') test.must_not_exist('main.dvi') test.must_not_exist('main.idx') test.must_not_exist('main.ilg') test.must_not_exist('main.ind') test.must_not_exist('main.log') test.must_not_exist('main.pdf') test.must_not_exist(['docs', 'main.aux']) test.must_not_exist(['docs', 'main.dvi']) test.must_not_exist(['docs', 'main.idx']) test.must_not_exist(['docs', 'main.ilg']) test.must_not_exist(['docs', 'main.ind']) test.must_not_exist(['docs', 'main.log']) test.must_not_exist(['docs', 'main.pdf']) test.must_not_exist(['docs', 'content', 'main.aux']) test.must_not_exist(['docs', 'content', 'main.dvi']) test.must_not_exist(['docs', 'content', 'main.idx']) test.must_not_exist(['docs', 'content', 'main.ilg']) test.must_not_exist(['docs', 'content', 'main.ind']) test.must_not_exist(['docs', 'content', 'main.log']) test.must_not_exist(['docs', 'content', 'main.pdf']) test.must_not_exist(['docs', 'content', 'chapter.aux']) test.up_to_date(arguments = '.', stderr=None, stdout=None) test.write(['docs','content', 'subchap.tex'], """\ Sub-document 2a """) test.not_up_to_date(arguments = '.') #test.up_to_date(arguments = '.', stderr=None, stdout=None) test.pass_test() # Local Variables: # tab-width:4 # indent-tabs-mode:nil # End: # vim: set expandtab tabstop=4 shiftwidth=4:
30.034483
74
0.723766
[ "MIT" ]
Boris-de/scons
test/TEX/subdir_variantdir_include2.py
4,355
Python
from dataclasses import dataclass, field from typing import Optional __NAMESPACE__ = "AttrDecl/name" @dataclass class Root: class Meta: name = "root" namespace = "AttrDecl/name" value_00: Optional[int] = field( default=None, metadata={ "name": "ପ00", "type": "Attribute", } ) value_01: Optional[int] = field( default=None, metadata={ "name": "ଭ01", "type": "Attribute", } ) value_02: Optional[int] = field( default=None, metadata={ "name": "ର02", "type": "Attribute", } ) value_10: Optional[int] = field( default=None, metadata={ "name": "ଲ10", "type": "Attribute", } ) value_11: Optional[int] = field( default=None, metadata={ "name": "ଲ11", "type": "Attribute", } ) value_12: Optional[int] = field( default=None, metadata={ "name": "ଳ12", "type": "Attribute", } ) value_20: Optional[int] = field( default=None, metadata={ "name": "ଶ20", "type": "Attribute", } ) value_21: Optional[int] = field( default=None, metadata={ "name": "ଷ21", "type": "Attribute", } ) value_22: Optional[int] = field( default=None, metadata={ "name": "ହ22", "type": "Attribute", } ) value_30: Optional[int] = field( default=None, metadata={ "name": "ଽ30", "type": "Attribute", } ) value_40: Optional[int] = field( default=None, metadata={ "name": "ଡ଼40", "type": "Attribute", } ) value_41: Optional[int] = field( default=None, metadata={ "name": "ଡ଼41", "type": "Attribute", } ) value_42: Optional[int] = field( default=None, metadata={ "name": "ଢ଼42", "type": "Attribute", } ) value_50: Optional[int] = field( default=None, metadata={ "name": "ୟ50", "type": "Attribute", } ) value_51: Optional[int] = field( default=None, metadata={ "name": "ୠ51", "type": "Attribute", } ) value_52: Optional[int] = field( default=None, metadata={ "name": "ୡ52", "type": "Attribute", } ) value_60: Optional[int] = field( default=None, metadata={ "name": "அ60", "type": "Attribute", } ) value_61: Optional[int] = field( default=None, metadata={ "name": "இ61", "type": "Attribute", } ) value_62: Optional[int] = field( default=None, metadata={ "name": "ஊ62", "type": "Attribute", } ) value_70: Optional[int] = field( default=None, metadata={ "name": "எ70", "type": "Attribute", } ) value_71: Optional[int] = field( default=None, metadata={ "name": "ஏ71", "type": "Attribute", } ) value_72: Optional[int] = field( default=None, metadata={ "name": "ஐ72", "type": "Attribute", } ) value_80: Optional[int] = field( default=None, metadata={ "name": "ஒ80", "type": "Attribute", } ) value_81: Optional[int] = field( default=None, metadata={ "name": "ஓ81", "type": "Attribute", } ) value_82: Optional[int] = field( default=None, metadata={ "name": "க82", "type": "Attribute", } ) value_90: Optional[int] = field( default=None, metadata={ "name": "ங90", "type": "Attribute", } ) value_91: Optional[int] = field( default=None, metadata={ "name": "ங91", "type": "Attribute", } ) value_92: Optional[int] = field( default=None, metadata={ "name": "ச92", "type": "Attribute", } )
21.598086
40
0.421799
[ "MIT" ]
tefra/xsdata-w3c-tests
output/models/sun_data/attr_decl/ad_name/ad_name00104m/ad_name00104m10_xsd/ad_name00104m10.py
4,570
Python
#!/usr/bin/env python """The setup script.""" from setuptools import find_packages, setup with open('README.md') as readme_file: readme = readme_file.read() with open('HISTORY.rst') as history_file: history = history_file.read() with open('requirements.txt') as requirements_file: requirements = requirements_file.read() setup_requirements = ['setuptools_scm', ] test_requirements = ['pytest>=3', 'pytest-runner'] setup( author="USDA ARS Northwest Watershed Research Center", author_email='[email protected]', python_requires='>=3.6', classifiers=[ 'Development Status :: 2 - Pre-Alpha', 'Intended Audience :: Developers', 'License :: CC0 1.0 Universal (CC0 1.0) Public Domain Dedication', 'Natural Language :: English', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', ], description="Take 2 for pysnobal in pure python", entry_points={ 'console_scripts': [ 'pysnobal=pysnobal.cli:main', ], }, install_requires=requirements, license="CC0 1.0", long_description=readme, long_description_content_type="text/markdown", include_package_data=True, keywords='pysnobal', name='pysnobal', packages=find_packages(include=['pysnobal', 'pysnobal.*']), package_data={ 'pysnobal': [ './pysnobal_core_config.ini' ] }, use_scm_version={ 'local_scheme': 'node-and-date', }, setup_requires=setup_requirements, test_suite='pysnobal.tests', tests_require=test_requirements, url='https://github.com/scotthavens/pysnobal', zip_safe=False, )
28.741935
74
0.645903
[ "CC0-1.0" ]
scotthavens/pysnobal
setup.py
1,782
Python
# Copyright (c) 2011 Sam Rushing """ECC secp256k1 OpenSSL wrapper. WARNING: This module does not mlock() secrets; your private keys may end up on disk in swap! Use with caution! This file is modified from python-bitcoinlib. """ import ctypes import ctypes.util import hashlib import sys ssl = ctypes.cdll.LoadLibrary(ctypes.util.find_library ('ssl') or 'libeay32') ssl.BN_new.restype = ctypes.c_void_p ssl.BN_new.argtypes = [] ssl.BN_bin2bn.restype = ctypes.c_void_p ssl.BN_bin2bn.argtypes = [ctypes.c_char_p, ctypes.c_int, ctypes.c_void_p] ssl.BN_CTX_free.restype = None ssl.BN_CTX_free.argtypes = [ctypes.c_void_p] ssl.BN_CTX_new.restype = ctypes.c_void_p ssl.BN_CTX_new.argtypes = [] ssl.AMBKH_compute_key.restype = ctypes.c_int ssl.AMBKH_compute_key.argtypes = [ctypes.c_void_p, ctypes.c_int, ctypes.c_void_p, ctypes.c_void_p] ssl.AMBKSA_sign.restype = ctypes.c_int ssl.AMBKSA_sign.argtypes = [ctypes.c_int, ctypes.c_void_p, ctypes.c_int, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p] ssl.AMBKSA_verify.restype = ctypes.c_int ssl.AMBKSA_verify.argtypes = [ctypes.c_int, ctypes.c_void_p, ctypes.c_int, ctypes.c_void_p, ctypes.c_int, ctypes.c_void_p] ssl.EC_KEY_free.restype = None ssl.EC_KEY_free.argtypes = [ctypes.c_void_p] ssl.EC_KEY_new_by_curve_name.restype = ctypes.c_void_p ssl.EC_KEY_new_by_curve_name.argtypes = [ctypes.c_int] ssl.EC_KEY_get0_group.restype = ctypes.c_void_p ssl.EC_KEY_get0_group.argtypes = [ctypes.c_void_p] ssl.EC_KEY_get0_public_key.restype = ctypes.c_void_p ssl.EC_KEY_get0_public_key.argtypes = [ctypes.c_void_p] ssl.EC_KEY_set_private_key.restype = ctypes.c_int ssl.EC_KEY_set_private_key.argtypes = [ctypes.c_void_p, ctypes.c_void_p] ssl.EC_KEY_set_conv_form.restype = None ssl.EC_KEY_set_conv_form.argtypes = [ctypes.c_void_p, ctypes.c_int] ssl.EC_KEY_set_public_key.restype = ctypes.c_int ssl.EC_KEY_set_public_key.argtypes = [ctypes.c_void_p, ctypes.c_void_p] ssl.i2o_ECPublicKey.restype = ctypes.c_void_p ssl.i2o_ECPublicKey.argtypes = [ctypes.c_void_p, ctypes.c_void_p] ssl.EC_POINT_new.restype = ctypes.c_void_p ssl.EC_POINT_new.argtypes = [ctypes.c_void_p] ssl.EC_POINT_free.restype = None ssl.EC_POINT_free.argtypes = [ctypes.c_void_p] ssl.EC_POINT_mul.restype = ctypes.c_int ssl.EC_POINT_mul.argtypes = [ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p] # this specifies the curve used with AMBKSA. NID_secp256k1 = 714 # from openssl/obj_mac.h SECP256K1_ORDER = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 SECP256K1_ORDER_HALF = SECP256K1_ORDER // 2 # Thx to Sam Devlin for the ctypes magic 64-bit fix. def _check_result(val, func, args): if val == 0: raise ValueError else: return ctypes.c_void_p (val) ssl.EC_KEY_new_by_curve_name.restype = ctypes.c_void_p ssl.EC_KEY_new_by_curve_name.errcheck = _check_result class CECKey(): """Wrapper around OpenSSL's EC_KEY""" POINT_CONVERSION_COMPRESSED = 2 POINT_CONVERSION_UNCOMPRESSED = 4 def __init__(self): self.k = ssl.EC_KEY_new_by_curve_name(NID_secp256k1) def __del__(self): if ssl: ssl.EC_KEY_free(self.k) self.k = None def set_secretbytes(self, secret): priv_key = ssl.BN_bin2bn(secret, 32, ssl.BN_new()) group = ssl.EC_KEY_get0_group(self.k) pub_key = ssl.EC_POINT_new(group) ctx = ssl.BN_CTX_new() if not ssl.EC_POINT_mul(group, pub_key, priv_key, None, None, ctx): raise ValueError("Could not derive public key from the supplied secret.") ssl.EC_POINT_mul(group, pub_key, priv_key, None, None, ctx) ssl.EC_KEY_set_private_key(self.k, priv_key) ssl.EC_KEY_set_public_key(self.k, pub_key) ssl.EC_POINT_free(pub_key) ssl.BN_CTX_free(ctx) return self.k def set_privkey(self, key): self.mb = ctypes.create_string_buffer(key) return ssl.d2i_ECPrivateKey(ctypes.byref(self.k), ctypes.byref(ctypes.pointer(self.mb)), len(key)) def set_pubkey(self, key): self.mb = ctypes.create_string_buffer(key) return ssl.o2i_ECPublicKey(ctypes.byref(self.k), ctypes.byref(ctypes.pointer(self.mb)), len(key)) def get_privkey(self): size = ssl.i2d_ECPrivateKey(self.k, 0) mb_pri = ctypes.create_string_buffer(size) ssl.i2d_ECPrivateKey(self.k, ctypes.byref(ctypes.pointer(mb_pri))) return mb_pri.raw def get_pubkey(self): size = ssl.i2o_ECPublicKey(self.k, 0) mb = ctypes.create_string_buffer(size) ssl.i2o_ECPublicKey(self.k, ctypes.byref(ctypes.pointer(mb))) return mb.raw def get_raw_ambkh_key(self, other_pubkey): ambkh_keybuffer = ctypes.create_string_buffer(32) r = ssl.AMBKH_compute_key(ctypes.pointer(ambkh_keybuffer), 32, ssl.EC_KEY_get0_public_key(other_pubkey.k), self.k, 0) if r != 32: raise Exception('CKey.get_ambkh_key(): AMBKH_compute_key() failed') return ambkh_keybuffer.raw def get_ambkh_key(self, other_pubkey, kdf=lambda k: hashlib.sha256(k).digest()): # FIXME: be warned it's not clear what the kdf should be as a default r = self.get_raw_ambkh_key(other_pubkey) return kdf(r) def sign(self, hash, low_s = True): # FIXME: need unit tests for below cases if not isinstance(hash, bytes): raise TypeError('Hash must be bytes instance; got %r' % hash.__class__) if len(hash) != 32: raise ValueError('Hash must be exactly 32 bytes long') sig_size0 = ctypes.c_uint32() sig_size0.value = ssl.AMBKSA_size(self.k) mb_sig = ctypes.create_string_buffer(sig_size0.value) result = ssl.AMBKSA_sign(0, hash, len(hash), mb_sig, ctypes.byref(sig_size0), self.k) assert 1 == result assert mb_sig.raw[0] == 0x30 assert mb_sig.raw[1] == sig_size0.value - 2 total_size = mb_sig.raw[1] assert mb_sig.raw[2] == 2 r_size = mb_sig.raw[3] assert mb_sig.raw[4 + r_size] == 2 s_size = mb_sig.raw[5 + r_size] s_value = int.from_bytes(mb_sig.raw[6+r_size:6+r_size+s_size], byteorder='big') if (not low_s) or s_value <= SECP256K1_ORDER_HALF: return mb_sig.raw[:sig_size0.value] else: low_s_value = SECP256K1_ORDER - s_value low_s_bytes = (low_s_value).to_bytes(33, byteorder='big') while len(low_s_bytes) > 1 and low_s_bytes[0] == 0 and low_s_bytes[1] < 0x80: low_s_bytes = low_s_bytes[1:] new_s_size = len(low_s_bytes) new_total_size_byte = (total_size + new_s_size - s_size).to_bytes(1,byteorder='big') new_s_size_byte = (new_s_size).to_bytes(1,byteorder='big') return b'\x30' + new_total_size_byte + mb_sig.raw[2:5+r_size] + new_s_size_byte + low_s_bytes def verify(self, hash, sig): """Verify a DER signature""" return ssl.AMBKSA_verify(0, hash, len(hash), sig, len(sig), self.k) == 1 def set_compressed(self, compressed): if compressed: form = self.POINT_CONVERSION_COMPRESSED else: form = self.POINT_CONVERSION_UNCOMPRESSED ssl.EC_KEY_set_conv_form(self.k, form) class CPubKey(bytes): """An encapsulated public key Attributes: is_valid - Corresponds to CPubKey.IsValid() is_fullyvalid - Corresponds to CPubKey.IsFullyValid() is_compressed - Corresponds to CPubKey.IsCompressed() """ def __new__(cls, buf, _cec_key=None): self = super(CPubKey, cls).__new__(cls, buf) if _cec_key is None: _cec_key = CECKey() self._cec_key = _cec_key self.is_fullyvalid = _cec_key.set_pubkey(self) != 0 return self @property def is_valid(self): return len(self) > 0 @property def is_compressed(self): return len(self) == 33 def verify(self, hash, sig): return self._cec_key.verify(hash, sig) def __str__(self): return repr(self) def __repr__(self): # Always have represent as b'<secret>' so test cases don't have to # change for py2/3 if sys.version > '3': return '%s(%s)' % (self.__class__.__name__, super(CPubKey, self).__repr__()) else: return '%s(b%s)' % (self.__class__.__name__, super(CPubKey, self).__repr__())
36.480687
130
0.688235
[ "MIT" ]
Alonewolf-123/AmbankCoin-Core
test/functional/test_framework/key.py
8,500
Python
# -*- coding: utf-8 -*- import errno import os import re import hashlib import tempfile import sys import shutil import logging import click import crayons import delegator import parse import requests import six import stat import warnings try: from weakref import finalize except ImportError: try: from .vendor.backports.weakref import finalize except ImportError: class finalize(object): def __init__(self, *args, **kwargs): logging.warn('weakref.finalize unavailable, not cleaning...') def detach(self): return False from time import time logging.basicConfig(level=logging.ERROR) try: from urllib.parse import urlparse except ImportError: from urlparse import urlparse try: from pathlib import Path except ImportError: try: from .vendor.pathlib2 import Path except ImportError: pass from distutils.spawn import find_executable from contextlib import contextmanager from .patched.piptools.resolver import Resolver from .patched.piptools.repositories.pypi import PyPIRepository from .patched.piptools.scripts.compile import get_pip_command from .patched.piptools import logging as piptools_logging from .patched.piptools.exceptions import NoCandidateFound from .vendor.pip9.download import is_archive_file from .vendor.pip9.exceptions import DistributionNotFound from .vendor.pip9.index import Link from .vendor.pip9._vendor.requests.exceptions import HTTPError, ConnectionError from .pep508checker import lookup from .environments import PIPENV_MAX_ROUNDS, PIPENV_CACHE_DIR if six.PY2: class ResourceWarning(Warning): pass specifiers = [k for k in lookup.keys()] # List of version control systems we support. VCS_LIST = ('git', 'svn', 'hg', 'bzr') SCHEME_LIST = ('http://', 'https://', 'ftp://', 'ftps://', 'file://') requests = requests.Session() def get_requirement(dep): from .vendor.pip9.req.req_install import _strip_extras, Wheel from .vendor import requirements """Pre-clean requirement strings passed to the requirements parser. Ensures that we can accept both local and relative paths, file and VCS URIs, remote URIs, and package names, and that we pass only valid requirement strings to the requirements parser. Performs necessary modifications to requirements object if the user input was a local relative path. :param str dep: A requirement line :returns: :class:`requirements.Requirement` object """ path = None uri = None cleaned_uri = None editable = False dep_link = None # check for editable dep / vcs dep if dep.startswith('-e '): editable = True # Use the user supplied path as the written dependency dep = dep.split(' ', 1)[1] # Split out markers if they are present - similar to how pip does it # See pip9.req.req_install.InstallRequirement.from_line if not any(dep.startswith(uri_prefix) for uri_prefix in SCHEME_LIST): marker_sep = ';' else: marker_sep = '; ' if marker_sep in dep: dep, markers = dep.split(marker_sep, 1) markers = markers.strip() if not markers: markers = None else: markers = None # Strip extras from the requirement so we can make a properly parseable req dep, extras = _strip_extras(dep) # Only operate on local, existing, non-URI formatted paths which are installable if is_installable_file(dep): dep_path = Path(dep) dep_link = Link(dep_path.absolute().as_uri()) if dep_path.is_absolute() or dep_path.as_posix() == '.': path = dep_path.as_posix() else: path = get_converted_relative_path(dep) dep = dep_link.egg_fragment if dep_link.egg_fragment else dep_link.url_without_fragment elif is_vcs(dep): # Generate a Link object for parsing egg fragments dep_link = Link(dep) # Save the original path to store in the pipfile uri = dep_link.url # Construct the requirement using proper git+ssh:// replaced uris or names if available cleaned_uri = clean_git_uri(dep) dep = cleaned_uri if editable: dep = '-e {0}'.format(dep) req = [r for r in requirements.parse(dep)][0] # if all we built was the requirement name and still need everything else if req.name and not any([req.uri, req.path]): if dep_link: if dep_link.scheme.startswith('file') and path and not req.path: req.path = path req.local_file = True req.uri = None else: req.uri = dep_link.url_without_fragment # If the result is a local file with a URI and we have a local path, unset the URI # and set the path instead -- note that local files may have 'path' set by accident elif req.local_file and path and not req.vcs: req.path = path req.uri = None if dep_link and dep_link.is_wheel and not req.name: req.name = os.path.basename(Wheel(dep_link.path).name) elif req.vcs and req.uri and cleaned_uri and cleaned_uri != uri: req.uri = strip_ssh_from_git_uri(req.uri) req.line = strip_ssh_from_git_uri(req.line) req.editable = editable if markers: req.markers = markers if extras: # Bizarrely this is also what pip does... req.extras = [ r for r in requirements.parse('fakepkg{0}'.format(extras)) ][ 0 ].extras return req def cleanup_toml(tml): toml = tml.split('\n') new_toml = [] # Remove all empty lines from TOML. for line in toml: if line.strip(): new_toml.append(line) toml = '\n'.join(new_toml) new_toml = [] # Add newlines between TOML sections. for i, line in enumerate(toml.split('\n')): # Skip the first line. if line.startswith('['): if i > 0: # Insert a newline before the heading. new_toml.append('') new_toml.append(line) # adding new line at the end of the TOML file new_toml.append('') toml = '\n'.join(new_toml) return toml def parse_python_version(output): """Parse a Python version output returned by `python --version`. Return a dict with three keys: major, minor, and micro. Each value is a string containing a version part. Note: The micro part would be `'0'` if it's missing from the input string. """ version_pattern = re.compile(r''' ^ # Beginning of line. Python # Literally "Python". \s # Space. (?P<major>\d+) # Major = one or more digits. \. # Dot. (?P<minor>\d+) # Minor = one or more digits. (?: # Unnamed group for dot-micro. \. # Dot. (?P<micro>\d+) # Micro = one or more digit. )? # Micro is optional because pypa/pipenv#1893. .* # Trailing garbage. $ # End of line. ''', re.VERBOSE) match = version_pattern.match(output) if not match: return None return match.groupdict(default='0') def python_version(path_to_python): if not path_to_python: return None try: c = delegator.run([path_to_python, '--version'], block=False) except Exception: return None c.block() version = parse_python_version(c.out.strip() or c.err.strip()) try: version = u'{major}.{minor}.{micro}'.format(**version) except TypeError: return None return version def escape_grouped_arguments(s): """Prepares a string for the shell (on Windows too!) Only for use on grouped arguments (passed as a string to Popen) """ if s is None: return None # Additional escaping for windows paths if os.name == 'nt': s = "{}".format(s.replace("\\", "\\\\")) return '"' + s.replace("'", "'\\''") + '"' def clean_pkg_version(version): """Uses pip to prepare a package version string, from our internal version.""" return six.u(pep440_version(str(version).replace('==', ''))) class HackedPythonVersion(object): """A Beautiful hack, which allows us to tell pip which version of Python we're using.""" def __init__(self, python_version, python_path): self.python_version = python_version self.python_path = python_path def __enter__(self): os.environ['PIP_PYTHON_VERSION'] = str(self.python_version) os.environ['PIP_PYTHON_PATH'] = str(self.python_path) def __exit__(self, *args): # Restore original Python version information. del os.environ['PIP_PYTHON_VERSION'] def prepare_pip_source_args(sources, pip_args=None): if pip_args is None: pip_args = [] if sources: # Add the source to pip9. pip_args.extend(['-i', sources[0]['url']]) # Trust the host if it's not verified. if not sources[0].get('verify_ssl', True): pip_args.extend( [ '--trusted-host', urlparse(sources[0]['url']).netloc.split(':')[0], ] ) # Add additional sources as extra indexes. if len(sources) > 1: for source in sources[1:]: pip_args.extend(['--extra-index-url', source['url']]) # Trust the host if it's not verified. if not source.get('verify_ssl', True): pip_args.extend( [ '--trusted-host', urlparse(source['url']).hostname, ] ) return pip_args def actually_resolve_reps( deps, index_lookup, markers_lookup, project, sources, verbose, clear, pre ): from pip9 import basecommand, req from pip9._vendor import requests as pip_requests class PipCommand(basecommand.Command): """Needed for pip-tools.""" name = 'PipCommand' constraints = [] req_dir = tempfile.mkdtemp(prefix='pipenv-', suffix='-requirements') for dep in deps: if dep: if dep.startswith('-e '): constraint = req.InstallRequirement.from_editable( dep[len('-e '):] ) else: fd, t = tempfile.mkstemp( prefix='pipenv-', suffix='-requirement.txt', dir=req_dir ) with os.fdopen(fd, 'w') as f: f.write(dep) constraint = [ c for c in req.parse_requirements(t, session=pip_requests) ][ 0 ] # extra_constraints = [] if ' -i ' in dep: index_lookup[constraint.name] = project.get_source( url=dep.split(' -i ')[1] ).get( 'name' ) if constraint.markers: markers_lookup[constraint.name] = str( constraint.markers ).replace( '"', "'" ) constraints.append(constraint) rmtree(req_dir) pip_command = get_pip_command() pip_args = [] if sources: pip_args = prepare_pip_source_args(sources, pip_args) if verbose: print('Using pip: {0}'.format(' '.join(pip_args))) pip_options, _ = pip_command.parse_args(pip_args) session = pip_command._build_session(pip_options) pypi = PyPIRepository( pip_options=pip_options, use_json=False, session=session ) if verbose: logging.log.verbose = True piptools_logging.log.verbose = True resolved_tree = set() resolver = Resolver( constraints=constraints, repository=pypi, clear_caches=clear, prereleases=pre, ) # pre-resolve instead of iterating to avoid asking pypi for hashes of editable packages try: resolved_tree.update(resolver.resolve(max_rounds=PIPENV_MAX_ROUNDS)) except (NoCandidateFound, DistributionNotFound, HTTPError) as e: click.echo( '{0}: Your dependencies could not be resolved. You likely have a mismatch in your sub-dependencies.\n ' 'You can use {1} to bypass this mechanism, then run {2} to inspect the situation.' ''.format( crayons.red('Warning', bold=True), crayons.red('$ pipenv install --skip-lock'), crayons.red('$ pipenv graph'), ), err=True, ) click.echo(crayons.blue(str(e)), err=True) if 'no version found at all' in str(e): click.echo( crayons.blue( 'Please check your version specifier and version number. See PEP440 for more information.' ) ) raise RuntimeError return resolved_tree, resolver def venv_resolve_deps( deps, which, project, pre=False, verbose=False, clear=False, allow_global=False ): from . import resolver import json resolver = escape_grouped_arguments(resolver.__file__.rstrip('co')) cmd = '{0} {1} {2} {3} {4} {5}'.format( escape_grouped_arguments(which('python')), resolver, '--pre' if pre else '', '--verbose' if verbose else '', '--clear' if clear else '', '--system' if allow_global else '', ) os.environ['PIPENV_PACKAGES'] = '\n'.join(deps) c = delegator.run(cmd, block=True) del os.environ['PIPENV_PACKAGES'] try: assert c.return_code == 0 except AssertionError: if verbose: click.echo(c.out, err=True) click.echo(c.err, err=True) else: click.echo(c.err[int(len(c.err) / 2) - 1:], err=True) sys.exit(c.return_code) if verbose: click.echo(c.out.split('RESULTS:')[0], err=True) try: return json.loads(c.out.split('RESULTS:')[1].strip()) except IndexError: raise RuntimeError('There was a problem with locking.') def resolve_deps( deps, which, project, sources=None, verbose=False, python=False, clear=False, pre=False, allow_global=False, ): """Given a list of dependencies, return a resolved list of dependencies, using pip-tools -- and their hashes, using the warehouse API / pip9. """ index_lookup = {} markers_lookup = {} python_path = which('python', allow_global=allow_global) backup_python_path = sys.executable results = [] # First (proper) attempt: with HackedPythonVersion(python_version=python, python_path=python_path): try: resolved_tree, resolver = actually_resolve_reps( deps, index_lookup, markers_lookup, project, sources, verbose, clear, pre, ) except RuntimeError: # Don't exit here, like usual. resolved_tree = None # Second (last-resort) attempt: if resolved_tree is None: with HackedPythonVersion( python_version='.'.join([str(s) for s in sys.version_info[:3]]), python_path=backup_python_path, ): try: # Attempt to resolve again, with different Python version information, # particularly for particularly particular packages. resolved_tree, resolver = actually_resolve_reps( deps, index_lookup, markers_lookup, project, sources, verbose, clear, pre, ) except RuntimeError: sys.exit(1) for result in resolved_tree: if not result.editable: name = pep423_name(result.name) version = clean_pkg_version(result.specifier) index = index_lookup.get(result.name) if not markers_lookup.get(result.name): markers = str( result.markers ) if result.markers and 'extra' not in str( result.markers ) else None else: markers = markers_lookup.get(result.name) collected_hashes = [] if any('python.org' in source['url'] or 'pypi.org' in source['url'] for source in sources): try: # Grab the hashes from the new warehouse API. r = requests.get( 'https://pypi.org/pypi/{0}/json'.format(name), timeout=10, ) api_releases = r.json()['releases'] cleaned_releases = {} for api_version, api_info in api_releases.items(): cleaned_releases[ clean_pkg_version(api_version) ] = api_info for release in cleaned_releases[version]: collected_hashes.append(release['digests']['sha256']) collected_hashes = [ 'sha256:' + s for s in collected_hashes ] except (ValueError, KeyError, ConnectionError): if verbose: click.echo( '{0}: Error generating hash for {1}'.format( crayons.red('Warning', bold=True), name ) ) # Collect un-collectable hashes (should work with devpi). try: collected_hashes = collected_hashes + list( list(resolver.resolve_hashes([result]).items())[0][1] ) except (ValueError, KeyError, ConnectionError, IndexError): if verbose: print('Error generating hash for {}'.format(name)) collected_hashes = sorted(set(collected_hashes)) d = {'name': name, 'version': version, 'hashes': collected_hashes} if index: d.update({'index': index}) if markers: d.update({'markers': markers.replace('"', "'")}) results.append(d) return results def multi_split(s, split): """Splits on multiple given separators.""" for r in split: s = s.replace(r, '|') return [i for i in s.split('|') if len(i) > 0] def convert_deps_from_pip(dep): """"Converts a pip-formatted dependency to a Pipfile-formatted one.""" dependency = {} req = get_requirement(dep) extras = {'extras': req.extras} # File installs. if (req.uri or req.path or is_installable_file(req.name)) and not req.vcs: # Assign a package name to the file, last 7 of it's sha256 hex digest. if not req.uri and not req.path: req.path = os.path.abspath(req.name) hashable_path = req.uri if req.uri else req.path if not req.name: req.name = hashlib.sha256(hashable_path.encode('utf-8')).hexdigest() req.name = req.name[len(req.name) - 7:] # {path: uri} TOML (spec 4 I guess...) if req.uri: dependency[req.name] = {'file': hashable_path} else: dependency[req.name] = {'path': hashable_path} if req.extras: dependency[req.name].update(extras) # Add --editable if applicable if req.editable: dependency[req.name].update({'editable': True}) # VCS Installs. elif req.vcs: if req.name is None: raise ValueError( 'pipenv requires an #egg fragment for version controlled ' 'dependencies. Please install remote dependency ' 'in the form {0}#egg=<package-name>.'.format(req.uri) ) # Crop off the git+, etc part. if req.uri.startswith('{0}+'.format(req.vcs)): req.uri = req.uri[len(req.vcs) + 1:] dependency.setdefault(req.name, {}).update({req.vcs: req.uri}) # Add --editable, if it's there. if req.editable: dependency[req.name].update({'editable': True}) # Add subdirectory, if it's there if req.subdirectory: dependency[req.name].update({'subdirectory': req.subdirectory}) # Add the specifier, if it was provided. if req.revision: dependency[req.name].update({'ref': req.revision}) # Extras: e.g. #egg=requests[security] if req.extras: dependency[req.name].update({'extras': req.extras}) elif req.extras or req.specs or hasattr(req, 'markers'): specs = None # Comparison operators: e.g. Django>1.10 if req.specs: r = multi_split(dep, '!=<>~') specs = dep[len(r[0]):] dependency[req.name] = specs # Extras: e.g. requests[socks] if req.extras: dependency[req.name] = extras if specs: dependency[req.name].update({'version': specs}) if hasattr(req, 'markers'): if isinstance(dependency[req.name], six.string_types): dependency[req.name] = {'version': specs} dependency[req.name].update({'markers': req.markers}) # Bare dependencies: e.g. requests else: dependency[dep] = '*' # Cleanup when there's multiple values, e.g. -e. if len(dependency) > 1: for key in dependency.copy(): if not hasattr(dependency[key], 'keys'): del dependency[key] return dependency def is_star(val): return isinstance(val, six.string_types) and val == '*' def is_pinned(val): return isinstance(val, six.string_types) and val.startswith('==') def convert_deps_to_pip(deps, project=None, r=True, include_index=False): """"Converts a Pipfile-formatted dependency to a pip-formatted one.""" dependencies = [] for dep in deps.keys(): # Default (e.g. '>1.10'). extra = deps[dep] if isinstance(deps[dep], six.string_types) else '' version = '' index = '' # Get rid of '*'. if is_star(deps[dep]) or str(extra) == '{}': extra = '' hash = '' # Support for single hash (spec 1). if 'hash' in deps[dep]: hash = ' --hash={0}'.format(deps[dep]['hash']) # Support for multiple hashes (spec 2). if 'hashes' in deps[dep]: hash = '{0} '.format( ''.join( [' --hash={0} '.format(h) for h in deps[dep]['hashes']] ) ) # Support for extras (e.g. requests[socks]) if 'extras' in deps[dep]: extra = '[{0}]'.format(','.join(deps[dep]['extras'])) if 'version' in deps[dep]: if not is_star(deps[dep]['version']): version = deps[dep]['version'] # For lockfile format. if 'markers' in deps[dep]: specs = '; {0}'.format(deps[dep]['markers']) else: # For pipfile format. specs = [] for specifier in specifiers: if specifier in deps[dep]: if not is_star(deps[dep][specifier]): specs.append( '{0} {1}'.format(specifier, deps[dep][specifier]) ) if specs: specs = '; {0}'.format(' and '.join(specs)) else: specs = '' if include_index and not is_file(deps[dep]) and not is_vcs(deps[dep]): pip_src_args = [] if 'index' in deps[dep]: pip_src_args = [project.get_source(deps[dep]['index'])] else: pip_src_args = project.sources pip_args = prepare_pip_source_args(pip_src_args) index = ' '.join(pip_args) # Support for version control maybe_vcs = [vcs for vcs in VCS_LIST if vcs in deps[dep]] vcs = maybe_vcs[0] if maybe_vcs else None # Support for files. if 'file' in deps[dep]: extra = '{1}{0}'.format(extra, deps[dep]['file']).strip() # Flag the file as editable if it is a local relative path if 'editable' in deps[dep]: dep = '-e ' else: dep = '' # Support for paths. elif 'path' in deps[dep]: extra = '{1}{0}'.format(extra, deps[dep]['path']).strip() # Flag the file as editable if it is a local relative path if 'editable' in deps[dep]: dep = '-e ' else: dep = '' if vcs: extra = '{0}+{1}'.format(vcs, deps[dep][vcs]) # Support for @refs. if 'ref' in deps[dep]: extra += '@{0}'.format(deps[dep]['ref']) extra += '#egg={0}'.format(dep) # Support for subdirectory if 'subdirectory' in deps[dep]: extra += '&subdirectory={0}'.format(deps[dep]['subdirectory']) # Support for editable. if 'editable' in deps[dep]: # Support for --egg. dep = '-e ' else: dep = '' s = '{0}{1}{2}{3}{4} {5}'.format( dep, extra, version, specs, hash, index ).strip() dependencies.append(s) if not r: return dependencies # Write requirements.txt to tmp directory. f = tempfile.NamedTemporaryFile(suffix='-requirements.txt', delete=False) f.write('\n'.join(dependencies).encode('utf-8')) f.close() return f.name def mkdir_p(newdir): """works the way a good mkdir should :) - already exists, silently complete - regular file in the way, raise an exception - parent directory(ies) does not exist, make them as well From: http://code.activestate.com/recipes/82465-a-friendly-mkdir/ """ if os.path.isdir(newdir): pass elif os.path.isfile(newdir): raise OSError( "a file with the same name as the desired dir, '{0}', already exists.".format( newdir ) ) else: head, tail = os.path.split(newdir) if head and not os.path.isdir(head): mkdir_p(head) if tail: os.mkdir(newdir) def is_required_version(version, specified_version): """Check to see if there's a hard requirement for version number provided in the Pipfile. """ # Certain packages may be defined with multiple values. if isinstance(specified_version, dict): specified_version = specified_version.get('version', '') if specified_version.startswith('=='): return version.strip() == specified_version.split('==')[1].strip() return True def strip_ssh_from_git_uri(uri): """Return git+ssh:// formatted URI to git+git@ format""" if isinstance(uri, six.string_types): uri = uri.replace('git+ssh://', 'git+') return uri def clean_git_uri(uri): """Cleans VCS uris from pip9 format""" if isinstance(uri, six.string_types): # Add scheme for parsing purposes, this is also what pip does if uri.startswith('git+') and '://' not in uri: uri = uri.replace('git+', 'git+ssh://') return uri def is_editable(pipfile_entry): if hasattr(pipfile_entry, 'get'): return pipfile_entry.get('editable', False) and any( pipfile_entry.get(key) for key in ('file', 'path') + VCS_LIST ) return False def is_vcs(pipfile_entry): from .vendor import requirements """Determine if dictionary entry from Pipfile is for a vcs dependency.""" if hasattr(pipfile_entry, 'keys'): return any(key for key in pipfile_entry.keys() if key in VCS_LIST) elif isinstance(pipfile_entry, six.string_types): return bool( requirements.requirement.VCS_REGEX.match( clean_git_uri(pipfile_entry) ) ) return False def is_installable_file(path): """Determine if a path can potentially be installed""" from .vendor.pip9.utils import is_installable_dir from .vendor.pip9.utils.packaging import specifiers if hasattr(path, 'keys') and any( key for key in path.keys() if key in ['file', 'path'] ): path = urlparse(path['file']).path if 'file' in path else path['path'] if not isinstance(path, six.string_types) or path == '*': return False # If the string starts with a valid specifier operator, test if it is a valid # specifier set before making a path object (to avoid breaking windows) if any(path.startswith(spec) for spec in '!=<>~'): try: specifiers.SpecifierSet(path) # If this is not a valid specifier, just move on and try it as a path except specifiers.InvalidSpecifier: pass else: return False if not os.path.exists(os.path.abspath(path)): return False lookup_path = Path(path) absolute_path = '{0}'.format(lookup_path.absolute()) if lookup_path.is_dir() and is_installable_dir(absolute_path): return True elif lookup_path.is_file() and is_archive_file(absolute_path): return True return False def is_file(package): """Determine if a package name is for a File dependency.""" if hasattr(package, 'keys'): return any(key for key in package.keys() if key in ['file', 'path']) if os.path.exists(str(package)): return True for start in SCHEME_LIST: if str(package).startswith(start): return True return False def pep440_version(version): """Normalize version to PEP 440 standards""" from .vendor.pip9.index import parse_version # Use pip built-in version parser. return str(parse_version(version)) def pep423_name(name): """Normalize package name to PEP 423 style standard.""" name = name.lower() if any(i not in name for i in (VCS_LIST + SCHEME_LIST)): return name.replace('_', '-') else: return name def proper_case(package_name): """Properly case project name from pypi.org.""" # Hit the simple API. r = requests.get( 'https://pypi.org/pypi/{0}/json'.format(package_name), timeout=0.3, stream=True, ) if not r.ok: raise IOError( 'Unable to find package {0} in PyPI repository.'.format( package_name ) ) r = parse.parse('https://pypi.org/pypi/{name}/json', r.url) good_name = r['name'] return good_name def split_section(input_file, section_suffix, test_function): """ Split a pipfile or a lockfile section out by section name and test function :param dict input_file: A dictionary containing either a pipfile or lockfile :param str section_suffix: A string of the name of the section :param func test_function: A test function to test against the value in the key/value pair >>> split_section(my_lockfile, 'vcs', is_vcs) { 'default': { "six": { "hashes": [ "sha256:832dc0e10feb1aa2c68dcc57dbb658f1c7e65b9b61af69048abc87a2db00a0eb", "sha256:70e8a77beed4562e7f14fe23a786b54f6296e34344c23bc42f07b15018ff98e9" ], "version": "==1.11.0" } }, 'default-vcs': { "e1839a8": { "editable": true, "path": "." } } } """ pipfile_sections = ('packages', 'dev-packages') lockfile_sections = ('default', 'develop') if any(section in input_file for section in pipfile_sections): sections = pipfile_sections elif any(section in input_file for section in lockfile_sections): sections = lockfile_sections else: # return the original file if we can't find any pipfile or lockfile sections return input_file for section in sections: split_dict = {} entries = input_file.get(section, {}) for k in list(entries.keys()): if test_function(entries.get(k)): split_dict[k] = entries.pop(k) input_file['-'.join([section, section_suffix])] = split_dict return input_file def split_file(file_dict): """Split VCS and editable dependencies out from file.""" sections = { 'vcs': is_vcs, 'editable': lambda x: hasattr(x, 'keys') and x.get('editable'), } for k, func in sections.items(): file_dict = split_section(file_dict, k, func) return file_dict def merge_deps( file_dict, project, dev=False, requirements=False, ignore_hashes=False, blocking=False, only=False, ): """ Given a file_dict, merges dependencies and converts them to pip dependency lists. :param dict file_dict: The result of calling :func:`pipenv.utils.split_file` :param :class:`pipenv.project.Project` project: Pipenv project :param bool dev=False: Flag indicating whether dev dependencies are to be installed :param bool requirements=False: Flag indicating whether to use a requirements file :param bool ignore_hashes=False: :param bool blocking=False: :param bool only=False: :return: Pip-converted 3-tuples of [deps, requirements_deps] """ deps = [] requirements_deps = [] for section in list(file_dict.keys()): # Turn develop-vcs into ['develop', 'vcs'] section_name, suffix = section.rsplit( '-', 1 ) if '-' in section and not section == 'dev-packages' else ( section, None ) if not file_dict[section] or section_name not in ( 'dev-packages', 'packages', 'default', 'develop' ): continue is_dev = section_name in ('dev-packages', 'develop') if is_dev and not dev: continue if ignore_hashes: for k, v in file_dict[section]: if 'hash' in v: del v['hash'] # Block and ignore hashes for all suffixed sections (vcs/editable) no_hashes = True if suffix else ignore_hashes block = True if suffix else blocking include_index = True if not suffix else False converted = convert_deps_to_pip( file_dict[section], project, r=False, include_index=include_index ) deps.extend((d, no_hashes, block) for d in converted) if dev and is_dev and requirements: requirements_deps.extend((d, no_hashes, block) for d in converted) return deps, requirements_deps def recase_file(file_dict): """Recase file before writing to output.""" if 'packages' in file_dict or 'dev-packages' in file_dict: sections = ('packages', 'dev-packages') elif 'default' in file_dict or 'develop' in file_dict: sections = ('default', 'develop') for section in sections: file_section = file_dict.get(section, {}) # Try to properly case each key if we can. for key in list(file_section.keys()): try: cased_key = proper_case(key) except IOError: cased_key = key file_section[cased_key] = file_section.pop(key) return file_dict def get_windows_path(*args): """Sanitize a path for windows environments Accepts an arbitrary list of arguments and makes a clean windows path""" return os.path.normpath(os.path.join(*args)) def find_windows_executable(bin_path, exe_name): """Given an executable name, search the given location for an executable""" requested_path = get_windows_path(bin_path, exe_name) if os.path.exists(requested_path): return requested_path # Ensure we aren't adding two layers of file extensions exe_name = os.path.splitext(exe_name)[0] files = [ '{0}.{1}'.format(exe_name, ext) for ext in ['', 'py', 'exe', 'bat'] ] exec_paths = [get_windows_path(bin_path, f) for f in files] exec_files = [ filename for filename in exec_paths if os.path.isfile(filename) ] if exec_files: return exec_files[0] return find_executable(exe_name) def path_to_url(path): return Path(normalize_drive(os.path.abspath(path))).as_uri() def get_converted_relative_path(path, relative_to=os.curdir): """Given a vague relative path, return the path relative to the given location""" return os.path.join('.', os.path.relpath(path, start=relative_to)) def walk_up(bottom): """Mimic os.walk, but walk 'up' instead of down the directory tree. From: https://gist.github.com/zdavkeos/1098474 """ bottom = os.path.realpath(bottom) # Get files in current dir. try: names = os.listdir(bottom) except Exception: return dirs, nondirs = [], [] for name in names: if os.path.isdir(os.path.join(bottom, name)): dirs.append(name) else: nondirs.append(name) yield bottom, dirs, nondirs new_path = os.path.realpath(os.path.join(bottom, '..')) # See if we are at the top. if new_path == bottom: return for x in walk_up(new_path): yield x def find_requirements(max_depth=3): """Returns the path of a Pipfile in parent directories.""" i = 0 for c, d, f in walk_up(os.getcwd()): i += 1 if i < max_depth: if 'requirements.txt': r = os.path.join(c, 'requirements.txt') if os.path.isfile(r): return r raise RuntimeError('No requirements.txt found!') # Borrowed from pew to avoid importing pew which imports psutil # See https://github.com/berdario/pew/blob/master/pew/_utils.py#L82 @contextmanager def temp_environ(): """Allow the ability to set os.environ temporarily""" environ = dict(os.environ) try: yield finally: os.environ.clear() os.environ.update(environ) def is_valid_url(url): """Checks if a given string is an url""" pieces = urlparse(url) return all([pieces.scheme, pieces.netloc]) def download_file(url, filename): """Downloads file from url to a path with filename""" r = requests.get(url, stream=True) if not r.ok: raise IOError('Unable to download file') with open(filename, 'wb') as f: f.write(r.content) def need_update_check(): """Determines whether we need to check for updates.""" mkdir_p(PIPENV_CACHE_DIR) p = os.sep.join((PIPENV_CACHE_DIR, '.pipenv_update_check')) if not os.path.exists(p): return True out_of_date_time = time() - (24 * 60 * 60) if os.path.isfile(p) and os.path.getmtime(p) <= out_of_date_time: return True else: return False def touch_update_stamp(): """Touches PIPENV_CACHE_DIR/.pipenv_update_check""" mkdir_p(PIPENV_CACHE_DIR) p = os.sep.join((PIPENV_CACHE_DIR, '.pipenv_update_check')) try: os.utime(p, None) except OSError: with open(p, 'w') as fh: fh.write('') def normalize_drive(path): """Normalize drive in path so they stay consistent. This currently only affects local drives on Windows, which can be identified with either upper or lower cased drive names. The case is always converted to uppercase because it seems to be preferred. See: <https://github.com/pypa/pipenv/issues/1218> """ if os.name != 'nt' or not isinstance(path, six.string_types): return path drive, tail = os.path.splitdrive(path) # Only match (lower cased) local drives (e.g. 'c:'), not UNC mounts. if drive.islower() and len(drive) == 2 and drive[1] == ':': return '{}{}'.format(drive.upper(), tail) return path def is_readonly_path(fn): """Check if a provided path exists and is readonly. Permissions check is `bool(path.stat & stat.S_IREAD)` or `not os.access(path, os.W_OK)` """ if os.path.exists(fn): return (os.stat(fn).st_mode & stat.S_IREAD) or not os.access( fn, os.W_OK ) return False def set_write_bit(fn): if os.path.exists(fn): os.chmod(fn, stat.S_IWRITE | stat.S_IWUSR) return def rmtree(directory, ignore_errors=False): shutil.rmtree( directory, ignore_errors=ignore_errors, onerror=handle_remove_readonly ) def handle_remove_readonly(func, path, exc): """Error handler for shutil.rmtree. Windows source repo folders are read-only by default, so this error handler attempts to set them as writeable and then proceed with deletion.""" # Check for read-only attribute default_warning_message = 'Unable to remove file due to permissions restriction: {!r}' # split the initial exception out into its type, exception, and traceback exc_type, exc_exception, exc_tb = exc if is_readonly_path(path): # Apply write permission and call original function set_write_bit(path) try: func(path) except (OSError, IOError) as e: if e.errno in [errno.EACCES, errno.EPERM]: warnings.warn( default_warning_message.format(path), ResourceWarning ) return if exc_exception.errno in [errno.EACCES, errno.EPERM]: warnings.warn(default_warning_message.format(path), ResourceWarning) return raise class TemporaryDirectory(object): """Create and return a temporary directory. This has the same behavior as mkdtemp but can be used as a context manager. For example: with TemporaryDirectory() as tmpdir: ... Upon exiting the context, the directory and everything contained in it are removed. """ def __init__(self, suffix, prefix, dir=None): if 'RAM_DISK' in os.environ: import uuid name = uuid.uuid4().hex dir_name = os.path.join(os.environ['RAM_DISK'].strip(), name) os.mkdir(dir_name) self.name = dir_name else: self.name = tempfile.mkdtemp(suffix, prefix, dir) self._finalizer = finalize( self, self._cleanup, self.name, warn_message="Implicitly cleaning up {!r}".format(self), ) @classmethod def _cleanup(cls, name, warn_message): rmtree(name) warnings.warn(warn_message, ResourceWarning) def __repr__(self): return "<{} {!r}>".format(self.__class__.__name__, self.name) def __enter__(self): return self def __exit__(self, exc, value, tb): self.cleanup() def cleanup(self): if self._finalizer.detach(): rmtree(self.name)
33.712393
116
0.586711
[ "MIT" ]
bryant1410/pipenv
pipenv/utils.py
43,253
Python
from ui import * startUI() # # - read the input data: # import MnistLoader # training_data, validation_data, test_data = MnistLoader.load_data_wrapper() # training_data = list(training_data) # # --------------------- # # - network.py example: # from Network import Network, vectorized_result # from NetworkLoader import save, load # # netPath = "E:\\ITMO University\\Интеллектуальные системы и технологии\\Lab5\Lab\\Models\\model_5epochs.json"; # # net = load(netPath) # # # imgPath = "E:\\ITMO University\\Интеллектуальные системы и технологии\\Lab5\\Lab\\HandTestImages\\0.png" # # # predict(imgPath, 7, net) # # # net = Network([784, 30, 10]) # # # net.run(training_data, 5, 10, 3.0, test_data=test_data, monitor_evaluation_cost=True, # # # monitor_evaluation_accuracy=True, # # # monitor_training_cost=True, # # # monitor_training_accuracy=True) # # imgPath = "E:\\ITMO University\\Интеллектуальные системы и технологии\\Lab5\\Lab\\HandTestImages\\0.png" # # #predict(imgPath, net) # # save(net, "E:\ITMO University\Интеллектуальные системы и технологии\Lab5\Lab\Models\model_5epochs.json") # from ui import * # net = "" # startUI() # # ---------------------- # # - network2.py example: # # import network2 # # net = network2.Network([784, 30, 10], cost=network2.CrossEntropyCost) # # #net.large_weight_initializer() # # net.SGD(training_data, 30, 10, 0.1, lmbda = 5.0,evaluation_data=validation_data, # # monitor_evaluation_accuracy=True)
10.374194
113
0.631219
[ "MIT" ]
YuriyAksenov/ImageRecognition
Test.py
1,744
Python
#!/usr/bin/env python import unittest from math import pi # , isnan from random import random import gemmi from gemmi import Position, UnitCell class TestMath(unittest.TestCase): def test_SMat33_transformed_by(self): tensor = gemmi.SMat33f(random(), random(), random(), random(), random(), random()) mat = gemmi.Mat33() mat.fromlist([[random() for _ in range(3)] for _ in range(3)]) t1 = tensor.transformed_by(mat).as_mat33().tolist() t2 = mat.multiply(tensor.as_mat33()).multiply(mat.transpose()).tolist() for i in range(3): for j in range(3): self.assertAlmostEqual(t1[i][j], t2[i][j]) class TestUnitCell(unittest.TestCase): def test_dummy_cell(self): cell = UnitCell() self.assertEqual([cell.a, cell.b, cell.c], [1, 1, 1]) self.assertEqual([cell.alpha, cell.beta, cell.gamma], [90, 90, 90]) self.assertEqual(cell.volume, 1.0) def test_ortho_cell(self): cell = UnitCell(25.14, 39.50, 45.07, 90, 90, 90) pos = Position(5, -6, 7) frac = cell.fractionalize(pos) self.assertAlmostEqual(frac.x, 0.198886, delta=1e-6) self.assertAlmostEqual(frac.y, -0.151899, delta=1e-6) self.assertAlmostEqual(frac.z, 0.155314, delta=1e-6) pos2 = cell.orthogonalize(frac) self.assertAlmostEqual(pos.x, pos2.x, delta=1e-12) self.assertAlmostEqual(pos.y, pos2.y, delta=1e-12) self.assertAlmostEqual(pos.z, pos2.z, delta=1e-12) corner = cell.orthogonalize(gemmi.Fractional(1, 1, 1)) self.assertAlmostEqual(corner.x, cell.a, delta=1e-12) self.assertAlmostEqual(corner.y, cell.b, delta=1e-12) self.assertAlmostEqual(corner.z, cell.c, delta=1e-12) rec = cell.reciprocal() self.assertEqual([rec.alpha, rec.beta, rec.gamma], [90, 90, 90]) self.assertAlmostEqual(rec.a, 1 / cell.a, delta=1e-17) def test_triclinic_cell(self): cell = UnitCell(35.996, 41.601, 45.756, 67.40, 66.90, 74.85) pos = Position(-15, -17, 190) frac = cell.fractionalize(pos) pos2 = cell.orthogonalize(frac) self.assertAlmostEqual(pos.x, pos2.x, delta=1e-12) self.assertAlmostEqual(pos.y, pos2.y, delta=1e-12) self.assertAlmostEqual(pos.z, pos2.z, delta=1e-12) # tested against values from uctbx: # from cctbx import uctbx # uc = uctbx.unit_cell((35.996, 41.601, 45.756, 67.40, 66.90, 74.85)) # uc.d_star_sq((-3, -2, 1)) # uc.d((3, 4, 5)) self.assertAlmostEqual(cell.calculate_1_d2([-3, -2, 1]), 0.0128229081865688, delta=1e-17) self.assertAlmostEqual(cell.calculate_d([3, 4, 5]), 7.7319559244298, delta=1e-13) # uc.metrical_matrix() cctbx_mm = [1295.712016, 1730.643201, 2093.611536, 391.3591013825865, 646.1921687548228, 731.5043620154578] mt = cell.metric_tensor() for a, b in zip(mt.elements(), cctbx_mm): self.assertAlmostEqual(a, b, delta=1e-12) # uc.reciprocal_metrical_matrix() cctbx_rmm = [0.00092792089082916, 0.000689632633981, 0.0006277651322979, -0.000104162588996, -0.000250008091601, -0.000208806754807] rmt = cell.reciprocal_metric_tensor() for a, b in zip(rmt.elements(), cctbx_rmm): self.assertAlmostEqual(a, b, delta=1e-15) def test_atom_to_site(self): cell = UnitCell(35.996, 41.601, 45.756, 67.40, 66.90, 74.85) atom = gemmi.Atom() atom.aniso = gemmi.SMat33f(13.1, 20.1, 11.1, -3.5, 5.5, -0.4) site = gemmi.SmallStructure.Site(atom, cell) # tested against values from cctbx: # from cctbx import uctbx, adptbx # uc = uctbx.unit_cell((35.996, 41.601, 45.756, 67.40, 66.90, 74.85)) # aniso = (13.1, 20.1, 11.1, -3.5, 5.5, -0.4) # ucif = adptbx.u_cart_as_u_cif(uc, aniso) ucif = [11.537759976524049, 19.43436271641311, 11.1, -8.078683096677723, 1.4787260755519491, -3.9018967241279157] for a, b in zip(site.aniso.elements(), ucif): self.assertAlmostEqual(a, b, delta=1e-6) class TestAngles(unittest.TestCase): def test_dihedral_special_cases(self): a = Position(random(), random(), random()) # not sure what it should be in such undefined cases #self.assertTrue(isnan(gemmi.calculate_dihedral(a, a, a, a))) self.assertEqual(gemmi.calculate_dihedral(a, a, a, a), 0.0) # Special cases from scitbx tst_math.py # atan2 is guaranteed to give exact values (I think) p000 = Position(0, 0, 0) p100 = Position(1, 0, 0) p010 = Position(0, 1, 0) def xy_dihedral(last_point): return gemmi.calculate_dihedral(p100, p000, p010, last_point) self.assertEqual(xy_dihedral(Position(1, 1, 0)), 0.0) self.assertEqual(xy_dihedral(Position(-1, 1, 0)), pi) p01_ = Position(0, 1, -1) self.assertEqual(xy_dihedral(p01_), pi/2) p01_.z = 1 self.assertEqual(xy_dihedral(p01_), -pi/2) def test_dihedral(self): # based on from https://stackoverflow.com/questions/20305272/ p0 = Position(24.969, 13.428, 30.692) # N p1 = Position(24.044, 12.661, 29.808) # CA p2 = Position(22.785, 13.482, 29.543) # C p3 = Position(21.951, 13.670, 30.431) # O p4 = Position(23.672, 11.328, 30.466) # CB p5 = Position(22.881, 10.326, 29.620) # CG p6 = Position(23.691, 9.935, 28.389) # CD1 p7 = Position(22.557, 9.096, 30.459) # CD2 def check_dihedral(a, b, c, d, angle): deg = gemmi.calculate_dihedral(a, b, c, d) * 180 / pi self.assertAlmostEqual(deg, angle, places=4) check_dihedral(p0, p1, p2, p3, -71.21515) check_dihedral(p0, p1, p4, p5, -171.94319) check_dihedral(p1, p4, p5, p6, 60.82226) check_dihedral(p1, p4, p5, p7, -177.63641) if __name__ == '__main__': unittest.main()
46.045113
80
0.601241
[ "MPL-2.0", "MPL-2.0-no-copyleft-exception" ]
ConorFWild/gemmi_pandda
tests/test_unitcell.py
6,124
Python
# Coyright 2017-2019 Nativepython Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __version__ = "0.2" from typed_python.internals import Class, Member, Function, UndefinedBehaviorException, makeNamedTuple from typed_python.type_function import TypeFunction from typed_python.hash import sha_hash from typed_python.SerializationContext import SerializationContext from typed_python.type_filter import TypeFilter from typed_python._types import ( Forward, TupleOf, ListOf, Tuple, NamedTuple, OneOf, ConstDict, Alternative, Value, serialize, deserialize, serializeStream, deserializeStream, PointerTo, Dict, validateSerializedObject, validateSerializedObjectStream, decodeSerializedObject, getOrSetTypeResolver ) import typed_python._types as _types # in the c module, these are functions, but because they're not parametrized, # we want them to be actual values. Otherwise, we'll have 'Float64()' # where we would have written 'Float64' etc. Bool = _types.Bool() Int8 = _types.Int8() Int16 = _types.Int16() Int32 = _types.Int32() Int64 = _types.Int64() UInt8 = _types.UInt8() UInt16 = _types.UInt16() UInt32 = _types.UInt32() UInt64 = _types.UInt64() Float32 = _types.Float32() Float64 = _types.Float64() NoneType = _types.NoneType() String = _types.String() Bytes = _types.Bytes() EmbeddedMessage = _types.EmbeddedMessage()
38.916667
102
0.774625
[ "Apache-2.0" ]
szymonlipinski/nativepython
typed_python/__init__.py
1,868
Python
# coding=utf-8 # Copyright 2020 The TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """reddit_disentanglement dataset.""" import collections import csv import itertools import os import tensorflow.compat.v2 as tf import tensorflow_datasets.public_api as tfds _CITATION = """ @article{zhu2019did, title={Who did They Respond to? Conversation Structure Modeling using Masked Hierarchical Transformer}, author={Zhu, Henghui and Nan, Feng and Wang, Zhiguo and Nallapati, Ramesh and Xiang, Bing}, journal={arXiv preprint arXiv:1911.10666}, year={2019} } """ _DESCRIPTION = """ This dataset contains ~3M messages from reddit. Every message is labeled with metadata. The task is to predict the id of its parent message in the corresponding thread. Each record contains a list of messages from one thread. Duplicated and broken records are removed from the dataset. Features are: - id - message id - text - message text - author - message author - created_utc - message UTC timestamp - link_id - id of the post that the comment relates to Target: - parent_id - id of the parent message in the current thread """ _THREAD_KEY = "thread" _MESSAGE_ID = "id" _MESSAGE_TEXT = "text" _MESSAGE_TIMESTAMP = "created_utc" _MESSAGE_AUTHOR = "author" _MESSAGE_LINK_ID = "link_id" _MESSAGE_PARENT_ID = "parent_id" def _read_csv(path): with tf.io.gfile.GFile(path) as f: reader = csv.DictReader(f) for row in reader: if row["id"]: # Filter out broken lines in the original dataset yield row def _deduplicate(data): """Remove duplicated records.""" cnt = collections.Counter(row["id"] for row in data) nonuniq_ids = set(id for id, count in cnt.items() if count > 1) nonuniq_data = [row for row in data if row["id"] in nonuniq_ids] unique_data = [row for row in data if row["id"] not in nonuniq_ids] # Make sure same id records are next to each other for itertools.groupby nonuniq_data = sorted(nonuniq_data, key=lambda row: row["id"]) for _, same_id_data in itertools.groupby(nonuniq_data, lambda row: row["id"]): same_id_data = list(same_id_data) if all(same_id_data[0] == x for x in same_id_data): unique_data.append(same_id_data[0]) else: non_deleted_same_id_data = [row for row in same_id_data if row["author"] != "[deleted]"] if len(non_deleted_same_id_data) != 1: raise ValueError("Found several message with id {} in the original" " data".format(non_deleted_same_id_data[0]["id"])) unique_data.append(non_deleted_same_id_data[0]) return sorted(unique_data, key=lambda row: (row["link_id"], row["created_utc"])) class RedditDisentanglement(tfds.core.GeneratorBasedBuilder): """Reddit Disentanglement dataset.""" VERSION = tfds.core.Version("2.0.0") MANUAL_DOWNLOAD_INSTRUCTIONS = """\ Download https://github.com/henghuiz/MaskedHierarchicalTransformer, decompress raw_data.zip and run generate_dataset.py with your reddit api credentials. Then put train.csv, val.csv and test.csv from the output directory into the manual folder. """ def _info(self): return tfds.core.DatasetInfo( builder=self, description=_DESCRIPTION, features=tfds.features.FeaturesDict({ _THREAD_KEY: tfds.features.Sequence( tfds.features.FeaturesDict({ _MESSAGE_ID: tfds.features.Text(), _MESSAGE_TEXT: tfds.features.Text(), _MESSAGE_TIMESTAMP: tfds.features.Text(), _MESSAGE_AUTHOR: tfds.features.Text(), _MESSAGE_LINK_ID: tfds.features.Text(), _MESSAGE_PARENT_ID: tfds.features.Text() }))}), homepage="https://github.com/henghuiz/MaskedHierarchicalTransformer", citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" return [ tfds.core.SplitGenerator( name=tfds.Split.TRAIN, gen_kwargs={"path": os.path.join( dl_manager.manual_dir, "train.csv")}, ), tfds.core.SplitGenerator( name=tfds.Split.VALIDATION, gen_kwargs={"path": os.path.join( dl_manager.manual_dir, "val.csv")}, ), tfds.core.SplitGenerator( name=tfds.Split.TEST, gen_kwargs={"path": os.path.join( dl_manager.manual_dir, "test.csv")}, ), ] def _generate_examples(self, path): """Yields examples.""" data = list(_read_csv(path)) data = _deduplicate(data) for link_id, one_topic_data in itertools.groupby( data, lambda row: row["link_id"]): one_topic_data = list(one_topic_data) for row in one_topic_data: row["text"] = row.pop("body") yield link_id, {_THREAD_KEY: one_topic_data}
35.253247
105
0.675447
[ "Apache-2.0" ]
Ak0303/datasets
tensorflow_datasets/text/reddit_disentanglement.py
5,429
Python
"""Copyright (c) 2005-2017, University of Oxford. All rights reserved. University of Oxford means the Chancellor, Masters and Scholars of the University of Oxford, having an administrative office at Wellington Square, Oxford OX1 2JD, UK. This file is part of Chaste. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the University of Oxford nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ """ This file contains various classes supporting modifications to CellML models. """ import pycml from pycml import * import validator class ModelModificationError(ValueError): """Error thrown if a model modification is invalid.""" pass class ModelModifier(object): """Base class supporting common model modification functionality. This class contains the logic to deal with adding/deleting variables, components, equations, etc. and connecting things up. It also handles re-analysing the model when modifications have been completed to ensure that PyCml's internal data structures are up-to-date. Instances should be created with the model to modify as a single parameter. Once all modifications have been completed, the finalize method must be called to ensure later processing of the model (e.g. code generation) will succeed. """ def __init__(self, model): """Constructor.""" self.model = model self._units_converter = None self.connections_made = set() def finalize(self, error_handler, pre_units_check_hook=None, check_units=True): """Re-do the model validation steps needed for further processing of the model. Checks connections, etc. and builds up the dependency graph again, then performs a topological sort. If any errors are found during re-validation, the error_handler will be called with the list. Warnings are ignored. TODO: figure out how to determine how much of this is actually needed - InterfaceGenerator can probably get away with less work. """ self._clear_model_caches() # We want to see any errors logging_info = validator.CellMLValidator.setup_logging(show_errors=True, show_warnings=False) # Re-run validation & analysis self.model._check_variable_mappings() if not self.model._cml_validation_errors: assignment_exprs = self.model.search_for_assignments() self.model._check_assigned_vars(assignment_exprs) if not self.model._cml_validation_errors: self.model._classify_variables(assignment_exprs) self.model._order_variables(assignment_exprs) if not self.model._cml_validation_errors and check_units: if callable(pre_units_check_hook): pre_units_check_hook() self.model._check_connection_units(check_for_units_conversions=False) self.model._check_dimensional_consistency(assignment_exprs, xml_context=False, warn_on_units_errors=self.model.get_option('warn_on_units_errors'), check_for_units_conversions=False) if self.model._cml_validation_errors: error_handler(self.model._cml_validation_errors) # Clear up logging validator.CellMLValidator.cleanup_logging(logging_info) def _clear_model_caches(self): """ Clear cached links in the model, since we'll need to recompute many of them once we've finished modifying it. Also clears dependency information. """ for comp in getattr(self.model, u'component', []): for math in getattr(comp, u'math', []): math._unset_cached_links() for var in self.model.get_all_variables(): var.clear_dependency_info() assignment_exprs = self.model.search_for_assignments() for expr in assignment_exprs: expr.clear_dependency_info() def create_new_component(self, cname): """Create a new component in the model, ensuring the name is unique. If a component with name cname already exists, underscores will be added to the component name to make it unique. """ while True: try: self.model.get_component_by_name(cname) cname += u'_' except KeyError: # Component with this name doesn't exist break # Create the component comp = cellml_component.create_new(self.model, cname) self.model._add_component(comp) return comp def connect_variables(self, source, target): """Create a connection between the given source and target variables. The variables are both specified either by a pair (cname,vname), or as cellml_variable objects. The source variable must exist within the model, whereas the target might not, in which case it will be created. Note that in the case that both source and target exist, it might NOT be the case that target obtains its value from source. They might already be connected, and source obtains its value from target. Or they might both obtain their value from a common source. If the variable names are not identical, any variables created will have the same name as the target, if possible. If there's an existing variable with that name, not connected to the source, then underscores will be appended to the name to avoid conflicts. Note that we do check for variables in intermediate components that have the same name as the source and are connected to it, to avoid adding unnecessary variables. Returns the target variable object. """ if isinstance(source, cellml_variable): src_cname, src_vname = source.component.name, source.name else: src_cname, src_vname = source if isinstance(target, cellml_variable): target_cname, target_vname = target.component.name, target.name else: target_cname, target_vname = target src_comp = self.model.get_component_by_name(src_cname) target_comp = self.model.get_component_by_name(target_cname) # print "connect_variables(", src_cname, src_vname, "to", target_cname, target_vname, ")" if src_comp == target_comp: return target_comp.get_variable_by_name(target_vname) # Determine encapsulation paths from target & source to the root src_path = self._parent_path(src_comp) target_path = self._parent_path(target_comp) # print "paths: src=", map(lambda c: c and c.name, src_path), map(lambda c: c and c.name, target_path) # At some point these will share a common path, even if it's just the root itself meeting_index = self._find_common_tail(src_path, target_path) # Construct path from source to target, leaving out the root (None) path = src_path[:meeting_index] if src_path[meeting_index]: path.append(src_path[meeting_index]) path.extend(reversed(target_path[:meeting_index])) # Traverse this path, adding connections at each step next_src_var = src_comp.get_variable_by_name(src_vname) # print "conn", map(lambda c: c.name, path), next_src_var, src_vname, target_vname for i, src_comp in enumerate(path[:-1]): target_comp = path[i+1] # print "step", i, "from", next_src_var, "to", target_comp.name, target_vname next_src_var = self._make_connection(next_src_var, target_comp, target_vname) # print "step", i, "made", next_src_var return next_src_var def _make_connection(self, src_var, target_comp, target_vname): """Make a connection from a source variable to a given component and suggested local name. Note that in the case that both variables already exist and are connected, the existing connection is allowed to flow in either direction. """ src_comp = src_var.component target_var = self._find_or_create_variable(target_comp.name, target_vname, src_var) # print "_make_conn", src_var, target_var, target_comp.name, target_vname # Sanity check the target variable if (target_var.get_type() == VarTypes.Mapped and target_var.get_source_variable(recurse=True) is src_var.get_source_variable(recurse=True)): # print "Connection exists between", src_var, "and target", target_var return target_var elif target_var.get_type() == VarTypes.Unknown: # We've created this variable, so should be ok, but check for gotchas assert not(hasattr(target_var, u'initial_value')) if src_comp is target_comp.parent(): src_if = u'private' target_if = u'public' elif src_comp.parent() is target_comp: src_if = u'public' target_if = u'private' else: assert src_comp.parent() is target_comp.parent() src_if = u'public' target_if = u'public' # One special case: if the src_var is actually obtained from a different # component at this level or above, in which case we should use the real # source, not that given. if getattr(src_var, src_if + u'_interface', u'none') == u'in': src_var = src_var.get_source_variable() # Check and set the interface attributes # print "Connecting source", src_var, src_if, getattr(src_var, src_if + u'_interface', u'none'), src_var.units, # print "to", target_var, target_if, getattr(target_var, target_if + u'_interface', u'none'), target_var.units assert getattr(src_var, src_if + u'_interface', u'none') != u'in' assert getattr(target_var, target_if + u'_interface', u'none') != u'out' src_var.xml_set_attribute((src_if + u'_interface', None), u'out') target_var.xml_set_attribute((target_if + u'_interface', None), u'in') # Create the connection element self._create_connection_element(src_var, target_var) self.connections_made.add(frozenset([src_var, target_var])) # Ensure we handle a later connection attempt between these variables correctly target_var._set_source_variable(src_var) else: # Naming conflict; try again with a different target name return self._make_connection(src_var, target_comp, target_vname + u'_') return target_var def _find_connection_element(self, var1, var2): """Find any connection element containing a connection of the given variables. Returns a pair, the first element of which is either the element or None, and the second of which is a boolean indicating whether the variables need to be swapped in order to match the order of the components in the connection. """ cn1, cn2 = var1.component.name, var2.component.name cnames = set([cn1, cn2]) for conn in getattr(self.model, u'connection', []): mc = conn.map_components if set([mc.component_1, mc.component_2]) == cnames: break else: conn = None if conn: swap = conn.map_components.component_1 == cn2 else: swap = False return conn, swap def _create_connection_element(self, var1, var2): """Create a connection element connecting the given variables and add to the model. If there's already a connection element for the relevant pair of components, we just add another map_variables element to that. """ conn, swap = self._find_connection_element(var1, var2) if conn: if swap: var1, var2 = var2, var1 else: conn = var1.xml_create_element(u'connection', NSS[u'cml']) mapc = var1.xml_create_element(u'map_components', NSS[u'cml'], attributes={u'component_1': var1.component.name, u'component_2': var2.component.name}) conn.xml_append(mapc) self.model.xml_append(conn) mapv = var1.xml_create_element(u'map_variables', NSS[u'cml'], attributes={u'variable_1': var1.name, u'variable_2': var2.name}) conn.xml_append(mapv) def remove_connection(self, var1, var2): """Remove a connection between two variables. Removes the relevant map_variables element. If this results in an empty connection element, removes that as well. """ conn, swap = self._find_connection_element(var1, var2) if not conn: raise ModelModificationError("Cannot remove non-existent connection.") if swap: var1, var2 = var2, var1 # Find the relevant map_variables element mapv = conn.xml_xpath(u'cml:map_variables[@variable_1="%s" and @variable_2="%s"]' % (var1.name, var2.name)) if not mapv: raise ModelModificationError("Cannot remove non-existent connection.") conn.xml_remove_child(mapv[0]) if not hasattr(conn, u'map_variables'): conn.xml_parent.xml_remove_child(conn) def remove_connections(self, var): """Remove all connection elements for the given variable. Removes each relevant map_variables element. If this results in an empty connection element, removes that as well. """ cname, vname = var.component.name, var.name for conn in list(getattr(self.model, u'connection', [])): if cname == conn.map_components.component_1: vid = u'variable_1' elif cname == conn.map_components.component_2: vid = u'variable_2' else: continue for mapv in conn.map_variables: if vname == getattr(mapv, vid, ''): # Found a connection conn.xml_remove_child(mapv) if not hasattr(conn, u'map_variables'): conn.xml_parent.xml_remove_child(conn) # There can't be any more matching map_variables in this connection break def _update_connections(self, oldVar, newVar): """Change all variables connected to oldVar to be mapped to newVar instead.""" vars = [v for v in self.model.get_all_variables() if v.get_source_variable(True) is oldVar] # Remove old connections, including interfaces and types so creating the new connection works for v in vars: self.remove_connections(v) self.del_attr(v, u'public_interface') self.del_attr(v, u'private_interface') v.clear_dependency_info() # Create new connections for v in vars: self.connect_variables(newVar, v) def _find_common_tail(self, l1, l2): """Find the first element at which both lists are identical from then on.""" i = -1 try: while l1[i] == l2[i]: i -= 1 except IndexError: # One list is the tail of the other pass # i now gives the last differing element assert i < -1 return i+1 def _parent_path(self, comp): """Return a path of components from that given to the encapsulation root. The root is specified by None, since we're really dealing with a forest, not a tree. """ path = [comp] while comp: path.append(comp.parent()) comp = comp.parent() return path def _process_operator(self, expr, operator, func, *args, **kwargs): """Apply func to any application of the given operator within the given tree.""" for elt in self.model.xml_element_children(expr): self._process_operator(elt, operator, func, *args, **kwargs) if isinstance(expr, mathml_apply) and expr.operator().localName == operator: func(expr, *args, **kwargs) def _find_or_create_variable(self, cname, vname, source): """Find a given variable in the model, creating it if necessary. We look for a variable in the component named cname with the same name as the source. If it doesn't exist, a variable named vname will be created in that component (unless it already exists). The variable will become a mapped variable with the given source. Hence if it is created it will have the same units. """ try: var = self.model.get_variable_by_name(cname, source.name) raise KeyError() except KeyError: # Have we created it already? try: var = self.model.get_variable_by_name(cname, vname) except KeyError: # Create it and add to model units = source.component.get_units_by_name(source.units) var = self.add_variable(cname, vname, units) return var def add_variable(self, comp, vname, units, **kwargs): """Add a new variable to the given component. Remaining arguments are as for cellml_variable.create_new. Returns the new variable object. """ if not isinstance(comp, cellml_component): comp = self.model.get_component_by_name(comp) units = self.add_units(units) var = cellml_variable.create_new(comp, vname, units.name, **kwargs) comp._add_variable(var) return var def _get_units_object(self, units): """Helper function to convert a units specification into a cellml_units object. The input can be a cellml_units object, in which case we just return it. However, it can also be a serialised CellML units definition, in which case it will be parsed to create the object. """ if isinstance(units, cellml_units): # We're done pass else: units = amara_parse_cellml(unicode(units)) assert isinstance(units, cellml_units) return units def add_units(self, units): """Add a units definition to the model, if it doesn't already exist. If the definition isn't in the model, at whole-model level, it will be added. If the same definition is already available, however, that definition should be used by preference. Will return the actual units object to use. """ units = self.model._get_units_obj(units) try: model_units = self.model.get_units_by_name(units.name) except KeyError: model_units = None if model_units: assert units.uniquify_tuple == model_units.uniquify_tuple units = model_units else: units.name = self._uniquify_name(units.name, self.model.get_units_by_name) self.model.add_units(units.name, units) self.model.xml_append(units) # Ensure referenced units exist for unit in getattr(units, u'unit', []): unit._set_units_element(self.add_units(unit.get_units_element()), override=True) unit.units = unit.get_units_element().name return units def add_expr_to_comp(self, comp, expr): """Add an expression to the mathematics in the given component. comp may be a cellml_component instance or a component name. """ if not isinstance(comp, cellml_component): comp = self.model.get_component_by_name(comp) if not hasattr(comp, u'math'): # Create the math element math = comp.xml_create_element(u'math', NSS[u'm']) comp.xml_append(math) # Append this expression comp.math.xml_append(expr) def remove_expr(self, expr): """Remove an expression (ODE or assignment) from its parent.""" assert isinstance(expr, mathml_apply) if expr.xml_parent: expr.xml_parent.safe_remove_child(expr) expr.xml_parent = None # Not done by Amara... return expr def remove_definition(self, var, keep_initial_value=False): """Remove any existing definition (as an equation) of the given variable. If keep_initial_value is False, then also remove any initial_value attribute. If the variable is Mapped, throw a ModelModificationError. """ if var.get_type() == VarTypes.Mapped: raise ModelModificationError("Cannot remove the equation defining a mapped variable - remove the definition of its source instead") if not keep_initial_value: self.del_attr(var, u'initial_value') # Note: if this is a variable added by a protocol, then it shouldn't have # any dependencies set up yet, so this is a no-op. for dep in var.get_all_expr_dependencies(): self.remove_expr(dep) # We know don't know how it will be defined var.clear_dependency_info() def del_attr(self, elt, localName, ns=None): """Delete an XML attribute from an element, if it exists.""" for (pyname, (qname, ns_)) in elt.xml_attributes.items(): _, name = SplitQName(qname) if ns_ == ns and name == localName: delattr(elt, pyname) def _uniquify_var_name(self, varname, comp): """Ensure varname is unique within the given component. Underscores will be appended to the name until it is unique. The unique name will be returned. """ return self._uniquify_name(varname, comp.get_variable_by_name) def _uniquify_name(self, name, callable): """Ensure the given name is unique within a particular context. The context is determined by the given function: it will be passed candidate names to test for existence, and is expected to throw iff the name is not already used. Underscores will be appended to the given name until callable throws, and the resulting unique name returned. """ while True: try: callable(name) name += u'_' except: break return name def set_units_converter(self, converter): """Set the object used to units-convert variable initial values.""" self._units_converter = converter def get_units_converter(self): """Get the units converter object, if any has been set.""" if not self._units_converter: raise ModelModificationError("No units converter has been set.") return self._units_converter def _convert_initial_value(self, var, units, do_conversion=True): """Convert any initial value of the given variable into the given units. If there is no initial value, returns None. If there is no units converter, leaves the initial_value unchanged. """ if not hasattr(var, u'initial_value'): return None value = var.initial_value if value and self._units_converter and do_conversion: if not var.get_units().equals(units): try: value = self._units_converter.convert_constant(value, var.get_units(), units, var.component) except EvaluationError, e: raise ModelModificationError("Cannot units-convert initial value as requires run-time information:\n" + str(e)) return unicode(value) class InterfaceGenerator(ModelModifier): """Class for generating an interface between a CellML model and external code. This contains functionality for users to describe the interface desired by the external code, i.e. which variables are inputs and/or outputs, and expected units. It will then create a new component within the CellML model containing these variables, and add units conversions where required. The external code then only needs to interact with this new component. """ def __init__(self, model, name='interface', units_converter=None): super(InterfaceGenerator, self).__init__(model) self._interface_component = None self._interface_component_name = name self.set_units_converter(units_converter) def add_input(self, var, units, annotate=True, convert_initial_value=True): """Specify a variable as an input to the model. var should be a cellml_variable object already existing in the model. units should be a suitable input to self._get_units_object. If adding both State and Free variables as inputs, make sure to add the Free variable first, otherwise you will not be able to specify units for it. Set annotate to False if you do not wish a Constant variable to be annotated as a modifiable parameter. If a units converter has been supplied, we will also try to units-convert initial values. This may not be possible if special conversions are used, since they may involve variables whose values are not known at this time. If this is the case, set convert_initial_value to False to avoid applying the conversion. A proper solution requires CellML 1.1 features. The new variable added to the interface component is returned. """ assert isinstance(var, cellml_variable) units = self._get_units_object(units) var = var.get_source_variable(recurse=True) # Ensure we work with source variables only var_name = var.fullname(cellml=True) # Check that the variable has a suitable type to be an input t = var.get_type() if t == VarTypes.Computed: raise ModelModificationError("Cannot specify computed variable " + var.fullname() + " as an input") elif t not in [VarTypes.Constant, VarTypes.Free, VarTypes.State]: raise ModelModificationError("Variable " + var.fullname() + " has unexpected type " + str(t)) # Add a new variable with desired units to the interface component comp = self.get_interface_component() newvar = self.add_variable(comp, var_name, units, id=var.cmeta_id, initial_value=self._convert_initial_value(var, units, convert_initial_value), interfaces={u'public': u'out'}) newvar._set_type(t) # Remove initial value and id from the original, if they exist self.del_attr(var, u'initial_value') self.del_attr(var, u'id', NSS['cmeta']) # If the original variable was a state variable, split the defining equation if t == VarTypes.State: self._split_ode(newvar, var) # Annotate the new variable as a parameter if the original was a constant if t == VarTypes.Constant and annotate: newvar.set_is_modifiable_parameter(True) self._update_connections(var, newvar) return newvar def add_output(self, var, units, annotate=True): """Specify a variable as an output of the model. var should be a cellml_variable object already existing in the model. units should be a suitable input to self._get_units_object. The new variable will take the cmeta:id of the original, and hence existing metadata annotations will refer to the new variable. If annotate is set to True, the new variable will also be annotated as a derived quantity. The new variable added to the interface component is returned. """ assert isinstance(var, cellml_variable) units = self._get_units_object(units) var = var.get_source_variable(recurse=True) var_name = var.fullname(cellml=True) comp = self.get_interface_component() newvar = self.add_variable(comp, var_name, units, id=var.cmeta_id) self.del_attr(var, u'id', NSS['cmeta']) self.connect_variables(var, newvar) if annotate: newvar.set_is_derived_quantity(True) return newvar def add_output_function(self, resultName, operator, argVars, units): """Add an output that's defined as a (MathML) function of existing model variables. The desired units are those of the function's result. The function arguments will be imported with their units as given by the model, and the function calculated. This result will then be units-converted if necessary. The new variable added to the interface component is returned. """ # Add the result variable comp = self.get_interface_component() units = self._get_units_object(units) result_var = self.add_variable(comp, resultName, units) result_var.set_pe_keep(True) # Map the argument variables operands = [] for var in argVars: operands.append(self.add_output(var, var.get_units(), annotate=False).name) # Create the new function and assign it to result_var expr = mathml_apply.create_new(self.model, operator, operands) assign = mathml_apply.create_new(self.model, u'eq', [result_var.name, expr]) self.add_expr_to_comp(comp, assign) return result_var def make_var_constant(self, var, value): """Turn a variable into a constant.""" self.remove_definition(var) var.clear_dependency_info() var.initial_value = unicode(str(value)) var._set_type(VarTypes.Constant) def make_var_computed_constant(self, var, value): """Turn a variable into a Computed variable with constant value definition.""" self.remove_definition(var) var.clear_dependency_info() defn = mathml_apply.create_new(self.model, u'eq', [var.name, (unicode(str(value)), var.get_units().name)]) self.add_expr_to_comp(var.component, defn) var._set_type(VarTypes.Computed) def finalize(self, *args, **kwargs): """Override finalize to also set up standard interface elements not defined individually.""" self._add_all_odes_to_interface() self._transform_derivatives_on_rhs() super(InterfaceGenerator, self).finalize(*args, **kwargs) def _transform_derivatives_on_rhs(self): """Transform any equations with derivatives on the RHS to use the variable defining it instead. self._split_ode must have been used for all derivatives before calling this method. This means that each ODE now has a variable to which the RHS is assigned. Rather than using the derivative directly, which could break the dependency chain if units conversions are used for time, equations should refer to this new variable instead. """ for expr in self.model.search_for_assignments(): self._process_operator(list(expr.operands())[1], u'diff', self._transform_derivative_on_rhs) def _transform_derivative_on_rhs(self, expr): """Transform a derivative on the RHS of an equation to refer to the defining variable. Helper method used by self._transform_derivatives_on_rhs to do the actual transformation. """ # Find the variable to use dep_var = expr.diff.dependent_variable.get_source_variable(recurse=True) indep_var = expr.diff.independent_variable.get_source_variable(recurse=True) ode = dep_var.get_ode_dependency(indep_var) rhs_var = ode.eq.rhs.variable.get_source_variable(recurse=True) # Ensure there's something mapped to it in this component rhs_var = self.connect_variables(rhs_var, (expr.component.name, rhs_var.name)) # Update this expression parent = expr.xml_parent parent.xml_insert_after(expr, mathml_ci.create_new(parent, rhs_var.name)) parent.safe_remove_child(expr) def _split_ode(self, newVar, oldVar): """Split an ODE definition so the derivative goes into the interface component. The RHS stays where it is, and is assigned to a new variable, which is connected to the interface component and assigned to the new derivative. newVar is the new state variable in the interface component, and oldVar will soon be mapped to it by the caller. Any other equations in the model which use the derivative are transformed to use the new variable instead. """ # Get the free variable in the interface component free_var = self.model.find_free_vars()[0] if free_var.component is not newVar.component: free_var = self.add_input(free_var, free_var.get_units()) # Add a new variable to assign the RHS to, with units of the original derivative deriv_name = self._uniquify_var_name(u'd_%s_d_%s' % (oldVar.name, free_var.name), oldVar.component) orig_ode = oldVar.get_all_expr_dependencies()[0] orig_rhs_var = self.add_variable(oldVar.component, deriv_name, orig_ode.eq.lhs.get_units().extract()) # Add an output version of this in the interface, with desired units desired_units = newVar.get_units().quotient(free_var.get_units()) mapped_rhs_var = self.add_output(orig_rhs_var, desired_units, annotate=False) # Replace the original ODE with an assignment orig_rhs = orig_ode.eq.rhs orig_ode.safe_remove_child(orig_rhs) self.remove_expr(orig_ode) self.add_expr_to_comp(oldVar.component, mathml_apply.create_new(self.model, u'eq', [orig_rhs_var.name, orig_rhs])) # Create a new ODE in the interface component new_ode = mathml_diff.create_new(self.model, free_var.name, newVar.name, mapped_rhs_var.name) self.add_expr_to_comp(newVar.component, new_ode) new_ode.classify_variables(root=True, dependencies_only=True) def _add_all_odes_to_interface(self): """All the derivatives should be considered as model outputs, and state variables as model inputs. For any that haven't been done explicitly, this method will add the corresponding state variable as an input, with its original units, which has the desired effect. """ comp = self.get_interface_component() for var in self.model.find_state_vars(): if var.component is not comp: self.add_input(var, var.get_units()) def get_interface_component(self): """Get the new component that will contain the interface. The name will be self._interface_component_name, unless a component with that name already exists, in which case underscores will be added to the component name to make it unique. """ if self._interface_component is None: self._interface_component = self.create_new_component(unicode(self._interface_component_name)) self.model.interface_component_name = unicode(self._interface_component_name) assert not self._interface_component.ignore_component_name return self._interface_component class UnitsConverter(ModelModifier): """Top-level interface to the units conversion code in PyCml. """ def __init__(self, model, warn_only=None, show_xml_context_only=False): super(UnitsConverter, self).__init__(model) if warn_only is None: warn_only = model.get_option('warn_on_units_errors') self.warn_only = warn_only self.show_xml_context_only = show_xml_context_only self.special_conversions = {} self._setup_logger() self._converted_mappings = set() def __del__(self): self._cleanup_logger() def _setup_logger(self): logger = logging.getLogger('units-converter') logger.setLevel(logging.WARNING) formatter = logging.Formatter(fmt="%(name)s: %(message)s") handler = logging.StreamHandler(sys.stderr) handler.setFormatter(formatter) logger.addHandler(handler) self._log_handler = handler def _cleanup_logger(self): """Flush logger & remove handler.""" logger = logging.getLogger('units-converter') self._log_handler.flush() logger.removeHandler(self._log_handler) def try_convert(self, func, *args, **kwargs): """Call the given function, and log any units errors produced.""" try: func(*args, **kwargs) except UnitsError, e: if self.show_xml_context_only: e.show_xml_context_only() if self.warn_only: e.warn = True e.level = logging.WARNING logging.getLogger('units-converter').log(e.level, unicode(e).encode('UTF-8')) def _apply_special_conversion_for_nested_expr(self, expr, defn_units, desired_units): """Apply a special conversion to the given (sub-)expression. This will get called by mathml_units_mixin._add_units_conversion if a special conversion is required by a nested sub-expression. """ for from_units, to_units in self.special_conversions.iterkeys(): if (from_units.dimensionally_equivalent(defn_units) and to_units.dimensionally_equivalent(desired_units)): # We can apply this conversion expr = self.special_conversions[(from_units, to_units)](expr) DEBUG('units-converter', "Used nested special conversion from", repr(from_units), "to", repr(to_units))#, "giving", expr.xml()) break # else: # print "No on nested conv from", repr(from_units), "to", repr(to_units) return expr def _check_special_conversion(self, expr): """Check whether a special conversion applies to the given assignment. Special conversions allow us to do units conversion between dimensionally non-equivalent quantities, by utilising biological knowledge. Available special conversions are added using the add_special_conversion method. """ lhs_units = expr.eq.lhs.get_units() rhs_units = expr.eq.rhs.get_units() if lhs_units.dimensionally_equivalent(rhs_units): return for from_units, to_units in self.special_conversions.iterkeys(): if (from_units.dimensionally_equivalent(rhs_units) and to_units.dimensionally_equivalent(lhs_units)): # We can apply this conversion self.special_conversions[(from_units, to_units)](expr) DEBUG('units-converter', "Used special conversion from", repr(from_units), "to", repr(to_units))#, "giving", expr.xml()) break # else: # print "No on conv from", repr(from_units), "to", repr(to_units) def add_special_conversion(self, from_units, to_units, converter): """Add a new special conversion to the list available. Special conversions allow us to do units conversion between dimensionally non-equivalent quantities, by utilising biological knowledge. The function "converter" will be called with an assignment (top-level mathml_apply instance) that has RHS units equivalent to from_units, and LHS units equivalent to to_units. It should alter the equation in-place (i.e. the object passed to it must contain the final equation) to do an appropriate units conversion, at least so that LHS and RHS dimensions match. """ self.special_conversions[(from_units, to_units)] = converter def modify_rhs(self, expr, operator, var): """Helper method of use to special units conversions. Will modify the given expr in-place, replacing the RHS by an application of the given operator. The operands will be the existing RHS and a ci element referencing the supplied variable object. Connections and variables will be added to ensure that the given variable is available in the component in which expr appears. Returns expr, for ease of chaining expressions. """ assert isinstance(var, cellml_variable) # Ensure var is available in expr's component local_var_name = var.name source_comp = var.component expr_comp = expr.component if source_comp != expr_comp: local_var = self.connect_variables(var, (expr_comp.name, var.fullname(cellml=True))) local_var_name = local_var.name # Change expr rhs = expr.eq.rhs expr.safe_remove_child(rhs) new_rhs = mathml_apply.create_new(var.model, operator, [rhs, local_var_name]) expr.xml_append(new_rhs) return expr def times_rhs_by(self, expr, var): """Helper method of use to special units conversions. Will modify the given expr in-place, post-multiplying the RHS by a reference to the given variable object. Connections and variables will be added to ensure that the given variable is available in the component in which expr appears. Returns expr, for ease of chaining expressions. """ return self.modify_rhs(expr, u'times', var) def divide_rhs_by(self, expr, var): """Helper method of use to special units conversions. Will modify the given expr in-place, post-dividing the RHS by a reference to the given variable object. Connections and variables will be added to ensure that the given variable is available in the component in which expr appears. Returns expr, for ease of chaining expressions. """ return self.modify_rhs(expr, u'divide', var) def convert_assignments(self, exprs): """Apply conversions to any assignments in the given iterable.""" boolean = self.model.get_units_by_name('cellml:boolean') for expr in exprs: if isinstance(expr, mathml_apply): # print 'Converting? assignment', element_xpath(expr) if self.special_conversions: self.try_convert(self._check_special_conversion, expr) self.try_convert(expr._set_in_units, boolean) def convert_constant(self, value, from_units, to_units, comp): """Convert a constant value into desired units.""" from_units = self.add_units(from_units) to_units = self.add_units(to_units) expr = mathml_apply.create_new(self.model, u'eq', [(u'0', to_units.name), (unicode(value), from_units.name)]) self.add_expr_to_comp(comp, expr) # Nasty hack to make expr.is_top_level return True expr._cml_assigns_to = expr.operands().next() if self.special_conversions: self.try_convert(self._check_special_conversion, expr) self.try_convert(expr.eq.rhs._set_in_units, to_units) self.remove_expr(expr) return expr.eq.rhs.evaluate() def convert_mapping(self, mapping, comp1, comp2, var1, var2): """Apply conversions to a mapping between two variables.""" model = self.model # Check for being already converted var_pair = frozenset([var1, var2]) if var_pair in self._converted_mappings: DEBUG('units-converter', 'Skipping already converted mapping', var1, '<->', var2) return else: self._converted_mappings.add(var_pair) # Ensure mapping is var1 := var2; swap vars if needed swapped = False try: if var2.get_source_variable() is var1: swapped = True var1, var2 = var2, var1 comp1, comp2 = comp2, comp1 except TypeError: pass # Get units u1 = var1.get_units() u2 = var2.get_units() DEBUG('units-converter', "Converting mapping of", var1, ":=", var2, "(units:", repr(u1), repr(u2), ")") if not u1.equals(u2): # We need a conversion # Add a copy of var1 to comp1, with units as var2 if getattr(var1, u'public_interface', '') == u'in': in_interface = u'public' else: in_interface = u'private' var1_converter = self.add_variable(comp1, var1.name + u'_converter', u2, interfaces={in_interface: u'in'}) var1._cml_var_type = VarTypes.Computed var1._cml_source_var = None delattr(var1, in_interface + u'_interface') var1_converter._set_source_variable(var2) # Add assignment maths for var1 := var1_converter app = mathml_apply.create_new(model, u'eq', [var1.name, var1_converter.name]) self.add_expr_to_comp(comp1, app) var1._cml_depends_on = [app] app._cml_assigns_to = var1 # Update mapping to var1_converter := var2 if swapped: mapping.variable_2 = var1_converter.name else: mapping.variable_1 = var1_converter.name # Fix usage counts - var1_converter is only used by app, and so var2 usage decreases var1_converter._used() for _ in xrange(var1.get_usage_count()): var2._decrement_usage_count() # Apply units conversion to the assignment self.convert_assignments([app]) # Add the assignment into the sorted list assignments = model.get_assignments() idx = assignments.index(var1) assignments[idx:idx+1] = [var1_converter, app] def convert_connections(self, connections): """Add units conversions for all connections in the given set. :param connections: a set of variable pairs representing connections. For each pair of variables a units conversion will be added if needed and not already performed. """ model = self.model for conn in getattr(model, u'connection', []): comp1 = model.get_component_by_name(conn.map_components.component_1) comp2 = model.get_component_by_name(conn.map_components.component_2) for mapping in conn.map_variables: var1 = model.get_variable_by_name(comp1.name, mapping.variable_1) var2 = model.get_variable_by_name(comp2.name, mapping.variable_2) if frozenset([var1, var2]) in connections: self.convert_mapping(mapping, comp1, comp2, var1, var2) def add_conversions_for_component(self, comp): """Add all units conversions required by the given component. This allows us to only apply the conversions required by an interface component created by an InterfaceGenerator. """ model = self.model if self.special_conversions: self.model._cml_special_units_converter = self._apply_special_conversion_for_nested_expr assignments = model.search_for_assignments(comp) self.convert_assignments(assignments) if self.special_conversions: del self.model._cml_special_units_converter for conn in getattr(model, u'connection', []): cname1 = conn.map_components.component_1 cname2 = conn.map_components.component_2 if comp.name in [cname1, cname2]: comp1 = model.get_component_by_name(cname1) comp2 = model.get_component_by_name(cname2) for mapping in conn.map_variables: var1 = model.get_variable_by_name(cname1, mapping.variable_1) var2 = model.get_variable_by_name(cname2, mapping.variable_2) self.convert_mapping(mapping, comp1, comp2, var1, var2) def add_all_conversions(self): """Add all units conversions required in the given model.""" model = self.model # Mathematical expressions self.convert_assignments(model.get_assignments()) # Connections for conn in getattr(model, u'connection', []): comp1 = model.get_component_by_name(conn.map_components.component_1) comp2 = model.get_component_by_name(conn.map_components.component_2) for mapping in conn.map_variables: var1 = model.get_variable_by_name(comp1.name, mapping.variable_1) var2 = model.get_variable_by_name(comp2.name, mapping.variable_2) self.convert_mapping(mapping, comp1, comp2, var1, var2) return
49.387003
143
0.647885
[ "Apache-2.0", "BSD-3-Clause" ]
gonayl/Chaste
python/pycml/processors.py
50,918
Python
#!/usr/bin/env python # # Run wasm benchmarks in various configurations and report the times. # Run with -h for help. # # Note: this is a copy of wasm-bench.py adapted for d8. # # In the default mode which is "turbofan+liftoff", runs a single shell with # `--no-wasm-tier-up --liftoff` and `--no-wasm-tier-up --no-liftoff` # and prints three tab-separated columns: # # Ion-result Baseline-result Ion/Baseline # # In other benchmarking modes, runs one or two shells with the same argument # (depending on the mode) and prints three tab-separated columns: # # shell1-result shell2-result shell1-result/shell2-result # # When measuring compile times (argument = 0) results are compile # times in ms. # # When measuring run times (argument > 0) results are mostly running # times in ms, except that linpack is 1000000/mflops and scimark is # 10000/score, always as integer values. # # A lower result is always better. Linpack and SciMark outputs are # inverted to make this consistent. # # We measure the running time only for the already-compiled wasm code, # not the end-to-end time including startup and compilation. The # difference in ratios is actually not large, but running time is the # best measure. # # TODO: Annotate results with - and +, derived from # the variance maybe. Switch -s / --significance. # # TODO: catch any exception from the subprocess and print the log if # there was one. # # TODO: Also check the output for other arguments than the default. # Easy: use list of results for for the problems, indexed by problem size # # TODO: In several cases below we'd like to check the entire output, # not just one line of it. Easy: lists of lines, match in order. # # TODO: We might like for the output not to contain any other lines than # the ones we are grepping for. Not very hard - just a flag. import argparse, os, re, subprocess, sys def main(): (mode, numruns, argument, isVerbose, noThreads, dumpData, dumpVariance, dumpRange, patterns) = parse_args() (shell1, shell2) = get_shells(mode) print "# mode=%s, runs=%d, problem size=%s" % (mode, numruns, (str(argument) if argument != None else "default")) if not is_check(mode): print "# Lower score is better" for test in tests: (name, _, fn, _) = test found = len(patterns) == 0 for p in patterns: found = found or re.search(p, name) if not found: continue msg = name + "\t" + ("\t" if len(name) < 8 else "") if is_check(mode): fn(test, isVerbose, noThreads, shell1, get_system1(mode), argument) msg += "did not crash today" else: # Run back-to-back for each shell to reduce caching noise t1 = [] for i in range(numruns): (c, r) = fn(test, isVerbose, noThreads, shell1, get_system1(mode), argument) t1.append(c if argument == 0 else r) t1.sort() t2 = [] if not is_only(mode): for i in range(numruns): (c, r) = fn(test, isVerbose, noThreads, shell2, get_system2(mode), argument) t2.append(c if argument == 0 else r) t2.sort() n1 = t1[len(t1)/2] n2 = 1 if not is_only(mode): n2 = t2[len(t2)/2] score = three_places(n1, n2) msg += str(n1) + "\t" if not is_only(mode): msg += str(n2) + "\t" msg += score if dumpVariance: lo1 = t1[1] hi1 = t1[len(t1)-2] msg += "\t[" + three_places(lo1, n1) + ", " + three_places(hi1, n1) + "]" if not is_only(mode): lo2 = t2[1] hi2 = t2[len(t2)-2] msg += "\t[" + three_places(lo2, n2) + ", " + three_places(hi2, n2) + "]" if dumpRange: lo1 = t1[1] hi1 = t1[len(t1)-2] msg += "\t[" + str(lo1) + ", " + str(hi1) + "]" if not is_only(mode): lo2 = t2[1] hi2 = t2[len(t2)-2] msg += "\t[" + str(lo2) + ", " + str(hi2) + "]" if dumpData: msg += "\t" + str(t1) if not is_only(mode): msg += "\t" + str(t2) print msg def three_places(a, b): if b == 0: return "-----" return str(round(float(a)/float(b)*1000)/1000) def run_std(test, isVerbose, noThreads, shell, mode, argument): (name, program, _, correct) = test if program == None: program = "wasm_" + name + ".js" text = run_test(isVerbose, noThreads, shell, program, mode, argument) return parse_output(text, argument, correct) def run_linpack(test, isVerbose, noThreads, shell, mode, argument): text = run_test(isVerbose, noThreads, shell, "wasm_linpack_float.c.js", mode, argument) if argument == 0: return parse_output(text, 0, None) mflops = float(parse_line(text, r"Unrolled +Single +Precision.*Mflops", 4)) score = int(10000000.0/mflops) return (0,score) def run_scimark(test, isVerbose, noThreads, shell, mode, argument): text = run_test(isVerbose, noThreads, shell, "wasm_lua_scimark.c.js", mode, argument) if argument == 0: return parse_output(text, 0, None) mark = float(parse_line(text, r"SciMark.*small", 2)) score = int(100000.0/mark) return (0,score) tests = [ ("box2d", None, run_std, r"frame averages:.*, range:.* to "), ("bullet", None, run_std, r"ok.*"), ("conditionals", None, run_std, r"ok 144690090"), ("copy", None, run_std, r"sum:2836"), ("corrections", None, run_std, r"final: 40006013:10225."), ("fannkuch", None, run_std, r"4312567891011"), ("fasta", None, run_std, r"CCACTGCACTCCAGCCTGGGCGACAGAGCGAGACTCCGTCTCAAAAAGGCCGGGCGCGGT"), ("fib", "fib.js", run_std, r"fib.40. = 102334155"), ("ifs", None, run_std, r"ok"), #("linpack", None, run_linpack, None), ("binarytrees", "wasm_lua_binarytrees.c.js", run_std, "843\t trees of depth 10\t check: -842"), #("scimark", None, run_scimark, None), ("memops", None, run_std, r"final: 400."), ("primes", None, run_std, r"lastprime: 3043739."), ("raybench", "raybench.js", run_std, r"Render time: .*"), ("rust-fannkuch", "rust-fannkuch.js", run_std, r"fannkuch\(11\) = 556355"), ("skinning", None, run_std, r"blah=0.000000"), ("zlib", "wasm_zlib.c.js", run_std, r"sizes: 100000,25906") ] def run_test(isVerbose, noThreads, shell, program, mode, argument): cmd = [shell] if mode == "liftoff": cmd.append("--no-wasm-tier-up") # Flag --liftoff is implied by --single_threaded cmd.append("--liftoff") if mode == "turbofan": cmd.append("--no-wasm-tier-up") cmd.append("--no-liftoff") if noThreads: cmd.append("----wasm_num_compilation_tasks=1") cmd.append(program) if argument != None: cmd.append("--") cmd.append(str(argument)) if isVerbose: print "# %s" % str(cmd) log = open('output.tmp', 'w') text = subprocess.check_output(cmd, stderr=log, universal_newlines=True).split("\n") log.close() return text def parse_output(text, argument, correct): compileTime = 0 runTime = 0 found = False do_check = argument == None and correct for t in text: if do_check and not found: found = re.match(correct, t) if re.match("WASM COMPILE TIME: ", t): compileTime = int(t[19:]) elif re.match("WASM RUN TIME: ", t): runTime = int(t[15:]) if do_check and not found: print text panic("Did not match expected output " + correct) return (compileTime, runTime) def parse_line(text, correct, fieldno): for t in text: if re.match(correct, t): return re.split(r" +", t)[fieldno-1] panic("Did not match expected output " + correct) def get_shells(mode): shell1 = None shell2 = None if uses_one_shell(mode): shell1 = get_shell("JS_SHELL") shell2 = shell1 else: shell1 = get_shell("JS_SHELL1") shell2 = get_shell("JS_SHELL2") return (shell1, shell2) def get_shell(name): probe = os.getenv(name) if not (probe and os.path.isfile(probe) and os.access(probe, os.X_OK)): panic(name + " does not name an executable shell") return probe def is_check(mode): return mode == "ion_check" or mode == "baseline_check" or mode == "cranelift_check" def uses_one_shell(mode): if is_check(mode) or is_only(mode): return True if get_system1(mode) != get_system2(mode): return True return False def get_system1(mode): if re.search(r"_|\+", mode): return re.split(r"_|\+", mode)[0] return mode def get_system2(mode): if re.search(r"\+", mode): return re.split(r"\+", mode)[1] panic("Mode does not have a second system: " + mode) def is_only(mode): return mode == "liftoff_only" or mode == "turbofan_only" def panic(msg): sys.exit("Error: " + msg) def parse_args(): parser = argparse.ArgumentParser(description= """Run wasm benchmarks in various configurations. When a single JS shell is needed the default program name is 'js'; otherwise it can be overridden with the environment variable JS_SHELL. When two shells are needed they must be named by the environment variables JS_SHELL1 and JS_SHELL2.""") parser.add_argument("-a", "--problem", metavar="argument", type=int, help= """The problem size argument. The default is 3. With argument=0 we effectively only compile the code and compilation time is reported instead. The max is 5.""") parser.add_argument("-c", "--check", metavar="mode", choices=["liftoff", "turbofan", "turbofan+liftoff"], help= """Run only one shell a single run, to see if it works. `mode` must be "ion" or "baseline" or "cranelift".""") parser.add_argument("-d", "--data", action="store_true", help= """Print the measurement data as two comma-separated lists following the normal results.""") parser.add_argument("-i", "--variance", action="store_true", help= """For five or more runs, discard the high and low measurements and print low/median and high/median following the standard columns.""") parser.add_argument("-j", "--range", action="store_true", help= """For five or more runs, discard the high and low measurements and print low and high following the standard columns.""") parser.add_argument("-m", "--mode", metavar="mode", choices=["liftoff", "turbofan", "turbofan+liftoff"], help= """Compare the output of two different shells. `mode` must be "liftoff", "turbofan", or "turbofan+liftoff" where a and b are one of those systems. A single system a means a+a.""") parser.add_argument("-n", "--numruns", metavar="numruns", type=int, help= """The number of iterations to run. The default is 1. The value should be odd. We report the median time.""") parser.add_argument("-o", "--only", metavar="mode", choices=["liftoff", "turbofan", "turbofan+liftoff"], help= """Run only the one shell in the normal manner, and report results according to any other switches""") parser.add_argument("-v", "--verbose", action="store_true", help= """Verbose. Echo commands and other information on stderr.""") parser.add_argument("-t", "--no-threads", action="store_true", help= """Disable threads in the shell, for added timing stability. This will significantly impact compile times, and may impact running time since eg GC runs on the remaining thread with everything else.""") parser.add_argument("pattern", nargs="*", help= """Regular expressions to match against test names""") args = parser.parse_args(); if args.check and args.mode: panic("--check and --mode are incompatible") if args.check and args.only: panic("--check and --only are incompatible") if args.mode and args.only: panic("--mode and --only are incompatible") mode = "turbofan+liftoff" if args.mode: if re.search(r"\+", args.mode): mode = args.mode else: mode = args.mode + "+" + args.mode if args.check: mode = args.check + "_check" if args.only: mode = args.only + "_only" if args.check and args.variance: panic("--check and --variance are incompatible") if args.check and args.range: panic("--check and --range are incompatible") numruns = 1 if args.numruns != None: if args.numruns <= 0: panic("--numruns requires a nonnegative integer") numruns = args.numruns if is_check(mode): numruns = 1 if not (numruns % 2): panic("The number of runs must be odd") if args.variance and numruns < 5: panic("At least five runs required for --variance") if args.range and numruns < 5: panic("At least five runs required for --range") argument = None if args.problem != None: if args.problem < 0 or args.problem > 5: panic("--problem requires an integer between 0 and 5") argument = args.problem if args.verbose: args.data = True return (mode, numruns, argument, args.verbose, args.no_threads, args.data, args.variance, args.range, args.pattern) if __name__ == '__main__': main()
40.00831
119
0.574742
[ "MIT" ]
julian-seward1/embenchen
asm_v_wasm/wasm_bench-d8.py
14,443
Python
from django.db.backends.postgresql.base import DatabaseWrapper as PostgresqlDatabaseWrapper from db.backends.postgresql.creation import DatabaseCreation from db.backends.postgresql.schema import DatabaseSchemaEditor class DatabaseWrapper(PostgresqlDatabaseWrapper): creation_class = DatabaseCreation SchemaEditorClass = DatabaseSchemaEditor
35.2
91
0.863636
[ "Apache-2.0" ]
aaxelb/SHARE
db/backends/postgresql/base.py
352
Python
from typing import Dict, List, Any import numpy as np import cv2 from vcap import ( DetectionNode, DETECTION_NODE_TYPE, OPTION_TYPE, BaseStreamState, BaseBackend, rect_to_coords) from vcap_utils import ( BaseOpenVINOBackend, ) SOS_INDEX = 0 EOS_INDEX = 1 MAX_SEQ_LEN = 28 ALPHABET = ' 0123456789abcdefghijklmnopqrstuvwxyz' # We have to do this because we need there to be a process_frame to use it class OpenVINOModel(BaseOpenVINOBackend): def process_frame(self, frame: np.ndarray, detection_node: DETECTION_NODE_TYPE, options: Dict[str, OPTION_TYPE], state: BaseStreamState) -> DETECTION_NODE_TYPE: raise NotImplemented('This backend is not for processing frames. ' 'It is only used for storing a model.') class Backend(BaseBackend): label_map: Dict[int, str] = {1: "text"} def __init__(self, detector: OpenVINOModel, recognizer_encoder: OpenVINOModel, recognizer_decoder: OpenVINOModel): super().__init__() self.detector = detector self.recognizer_encoder = recognizer_encoder self.recognizer_decoder = recognizer_decoder @property def workload(self) -> float: return (self.detector.workload + self.recognizer_encoder.workload + self.recognizer_decoder.workload) def process_frame(self, frame: np.ndarray, detection_node: DETECTION_NODE_TYPE, options: Dict[str, OPTION_TYPE], state: BaseStreamState) -> DETECTION_NODE_TYPE: n, c, h, w = self.detector.net.inputs['im_data'].shape hidden_shape = self.recognizer_decoder.net.inputs['prev_hidden'].shape input_dict, resize = self.detector.prepare_inputs( frame, frame_input_name="im_data" ) input_dict["im_data"] = (input_dict["im_data"] .reshape((n, c, h, w)).astype(np.float32)) input_image_size = self.detector.net.inputs['im_data'].shape[-2:] input_image_info = np.asarray( [[input_image_size[0], input_image_size[1], 1]], dtype=np.float32) input_dict["im_info"] = input_image_info prediction = self.detector.send_to_batch(input_dict).result() scores = prediction["scores"] detections_filter = scores > options["threshold"] scores = scores[detections_filter] rects = prediction["boxes"][detections_filter] text_features = prediction["text_features"][detections_filter] feature_queues = [] for text_feature in text_features: feature_queues.append( self.recognizer_encoder.send_to_batch({'input': text_feature})) detections = [] for score, rect, feature_queue in zip(scores, rects, feature_queues): feature = feature_queue.result()['output'] feature = np.reshape(feature, (feature.shape[0], feature.shape[1], -1)) feature = np.transpose(feature, (0, 2, 1)) hidden = np.zeros(hidden_shape) prev_symbol_index = np.ones((1,)) * SOS_INDEX text = '' for _ in range(MAX_SEQ_LEN): decoder_output = self.recognizer_decoder.send_to_batch({ 'prev_symbol': prev_symbol_index, 'prev_hidden': hidden, 'encoder_outputs': feature }).result() symbols_distr = decoder_output['output'] prev_symbol_index = int(np.argmax(symbols_distr, axis=1)) if prev_symbol_index == EOS_INDEX: break text += ALPHABET[prev_symbol_index] hidden = decoder_output['hidden'] detections.append(DetectionNode( name="text", coords=rect_to_coords(rect.tolist()), extra_data={ "detection_confidence": float(score), "text": text }, )) return resize.scale_and_offset_detection_nodes(detections)
37
79
0.592479
[ "BSD-3-Clause" ]
aotuai/capsule-zoo
capsules/detector_text_openvino/backend.py
4,255
Python
import dlib from termcolor import colored from face_cropper.core import DLIB_FACE_DETECTING_MIN_SCORE def detect(image: str, verbose: bool = False): """Detects faces on a given image using dlib and returns matches. :param image: Path to access the image to be searched :type image: [string] :param verbose: Wether or not command should output informations :type image: [bool], default to False :raises RuntimeError: When the provided image_path is invalid :return: The detected faces :rtype: [list of dlib.rectangle] """ detector = dlib.get_frontal_face_detector() img = dlib.load_rgb_image(image) dets = detector.run(img, 1, DLIB_FACE_DETECTING_MIN_SCORE)[0] verbose and print( colored( f"Number of faces detected: {len(dets)}\n", "yellow" ) ) detections = [] # Avoiding circular imports from face_cropper.cli.output import colored_detection_output for index, detection in enumerate(dets): detections.append(detection) verbose and print(colored(f"Detection {index + 1}:", "green")) verbose and colored_detection_output(detection) return detections
30.692308
70
0.691729
[ "MIT" ]
Dave-Lopper/face_cropper
face_cropper/core/detector.py
1,197
Python