content
stringlengths
7
928k
avg_line_length
float64
3.5
33.8k
max_line_length
int64
6
139k
alphanum_fraction
float64
0.08
0.96
licenses
sequence
repository_name
stringlengths
7
104
path
stringlengths
4
230
size
int64
7
928k
lang
stringclasses
1 value
import glob import os from sqlalchemy import create_engine, exists from sqlalchemy.orm import sessionmaker try: import config except ImportError: config = {'db_user': None, 'db_password': None } from backend.database.objects import DBObjectBase, User, Replay, Model connection_string = 'postgresql:///saltie'.format(config.db_user, config.db_password) print (connection_string) engine = create_engine(connection_string, echo=True) DBObjectBase.metadata.create_all(engine) Session = sessionmaker(bind=engine) session = session() for replay in glob.glob(os.path.join('replays', '*.gz')): base = os.path.basename(replay) uuid = base.split('_')[-1].split('.')[0] ip = base.split('_')[0] user = -1 print (uuid, ip, user) if not session.query(exists().where(User.id == -1)).scalar(): u = User(id=-1, name='Undefined', password='') session.add(u) session.commit() if not session.query(exists().where(Model.model_hash == '0')).scalar(): u = Model(model_hash='0') session.add(u) session.commit() if not session.query(exists().where(Replay.uuid == uuid)).scalar(): r = Replay(uuid=uuid, ip=ip, user=user, model_hash='0', num_team0=1, num_players=1, is_eval=False) session.add(r) print('Added', uuid, ip, user) session.commit()
32.560976
106
0.669663
[ "Apache-2.0" ]
SaltieRL/Distributed-Replays
helpers/convert_existing_replays.py
1,335
Python
import numpy as np import os from sklearn.neighbors import NearestNeighbors from pydrake.multibody.rigid_body import RigidBody from pydrake.all import ( AddFlatTerrainToWorld, AddModelInstancesFromSdfString, AddModelInstanceFromUrdfFile, FindResourceOrThrow, FloatingBaseType, InputPort, Isometry3, OutputPort, RgbdCamera, RigidBodyPlant, RigidBodyTree, RigidBodyFrame, RollPitchYaw, RollPitchYawFloatingJoint, RotationMatrix, Value, VisualElement, ) import meshcat import meshcat.transformations as tf import meshcat.geometry as g # From # https://www.opengl.org/discussion_boards/showthread.php/197893-View-and-Perspective-matrices def normalize(x): return x / np.linalg.norm(x) def save_pointcloud(pc, normals, path): joined = np.hstack([pc.T, normals.T]) np.savetxt(path, joined) def load_pointcloud(path): joined = np.loadtxt(path) return joined[:, 0:3].T, joined[:, 3:6].T def translate(x): T = np.eye(4) T[0:3, 3] = x[:3] return T def get_pose_error(tf_1, tf_2): rel_tf = transform_inverse(tf_1).dot(tf_2) if np.allclose(np.diag(rel_tf[0:3, 0:3]), [1., 1., 1.]): angle_dist = 0. else: # Angle from rotation matrix angle_dist = np.arccos( (np.sum(np.diag(rel_tf[0:3, 0:3])) - 1) / 2.) euclid_dist = np.linalg.norm(rel_tf[0:3, 3]) return euclid_dist, angle_dist # If misalignment_tol = None, returns the average # distance between the model clouds when transformed # by est_tf and gt_tf (using nearest-point lookups # for each point in the gt-tf'd model cloud). # If misalignment_tol is a number, it returns # the percent of points that are misaligned by more # than the misalignment error under the same distance # metric. def get_earth_movers_error(est_tf, gt_tf, model_cloud, misalignment_tol=0.005): # Transform the model cloud into both frames est_model_cloud = transform_points(est_tf, model_cloud) gt_model_cloud = transform_points(gt_tf, model_cloud) # For every point in the model cloud, find the distance # to the closest point in the estimated model cloud, # as a way of finding the swept volume between the # models in those poses. neigh = NearestNeighbors(n_neighbors=1) neigh.fit(gt_model_cloud.T) dist, _ = neigh.kneighbors( est_model_cloud[0:3, :].T, return_distance=True) if misalignment_tol is None: return np.mean(dist) else: return np.mean(dist > misalignment_tol) def draw_points(vis, vis_prefix, name, points, normals=None, colors=None, size=0.001, normals_length=0.01): vis[vis_prefix][name].set_object( g.PointCloud(position=points, color=colors, size=size)) n_pts = points.shape[1] if normals is not None: # Drawing normals for debug lines = np.zeros([3, n_pts*2]) inds = np.array(range(0, n_pts*2, 2)) lines[:, inds] = points[0:3, :] lines[:, inds+1] = points[0:3, :] + \ normals * normals_length vis[vis_prefix]["%s_normals" % name].set_object( meshcat.geometry.LineSegmentsGeometry( lines, None)) def transform_points(tf, pts): return ((tf[:3, :3].dot(pts).T) + tf[:3, 3]).T def transform_inverse(tf): new_tf = np.eye(4) new_tf[:3, :3] = tf[:3, :3].T new_tf[:3, 3] = -new_tf[:3, :3].dot(tf[:3, 3]) return new_tf def lookat(eye, target, up): # For a camera with +x right, +y down, and +z forward. eye = np.array(eye) target = np.array(target) up = np.array(up) F = target[:3] - eye[:3] f = normalize(F) U = normalize(up[:3]) s = np.cross(f, U) # right u = np.cross(s, f) # up M = np.eye(4) M[:3, :3] = np.vstack([s, -u, f]).T # OLD: # flip z -> x # -x -> y # -y -> z # CAMERA FORWARD is +x-axis # CAMERA RIGHT is -y axis # CAMERA UP is +z axis # Why does the Drake documentation lie to me??? T = translate(eye) return T.dot(M) def add_single_instance_to_rbt( rbt, config, instance_config, i, floating_base_type=FloatingBaseType.kRollPitchYaw): class_name = instance_config["class"] if class_name not in config["objects"].keys(): raise ValueError("Class %s not in classes." % class_name) if len(instance_config["pose"]) != 6: raise ValueError("Class %s has pose size != 6. Use RPY plz" % class_name) frame = RigidBodyFrame( "%s_%d" % (class_name, i), rbt.world(), instance_config["pose"][0:3], instance_config["pose"][3:6]) model_path = config["objects"][class_name]["model_path"] _, extension = os.path.splitext(model_path) if extension == ".urdf": AddModelInstanceFromUrdfFile( model_path, floating_base_type, frame, rbt) elif extension == ".sdf": AddModelInstancesFromSdfString( open(model_path).read(), floating_base_type, frame, rbt) else: raise ValueError("Class %s has non-sdf and non-urdf model name." % class_name) def setup_scene(rbt, config): if config["with_ground"] is True: AddFlatTerrainToWorld(rbt) for i, instance_config in enumerate(config["instances"]): add_single_instance_to_rbt(rbt, config, instance_config, i, floating_base_type=FloatingBaseType.kFixed) # Add camera geometry! camera_link = RigidBody() camera_link.set_name("camera_link") # necessary so this last link isn't pruned by the rbt.compile() call camera_link.set_spatial_inertia(np.eye(6)) camera_link.add_joint( rbt.world(), RollPitchYawFloatingJoint( "camera_floating_base", np.eye(4))) rbt.add_rigid_body(camera_link) # - Add frame for camera fixture. camera_frame = RigidBodyFrame( name="rgbd_camera_frame", body=camera_link, xyz=[0.0, 0., 0.], rpy=[0., 0., 0.]) rbt.addFrame(camera_frame) rbt.compile()
31.388889
94
0.626388
[ "BSD-3-Clause" ]
gizatt/pose_estimation_segmentation_analysis
src/utils.py
6,215
Python
import os import sys import tarfile from six.moves.urllib.request import urlretrieve url = 'https://commondatastorage.googleapis.com/books1000/' last_percent_reported = None data_root = '.' # Change me to store data elsewhere def download_progress_hook(count, blockSize, totalSize): """A hook to report the progress of a download. This is mostly intended for users with slow internet connections. Reports every 5% change in download progress. """ global last_percent_reported percent = int(count * blockSize * 100 / totalSize) if last_percent_reported != percent: if percent % 5 == 0: sys.stdout.write("%s%%" % percent) sys.stdout.flush() else: sys.stdout.write(".") sys.stdout.flush() last_percent_reported = percent def maybe_download(filename, expected_bytes, force=False): """Download a file if not present, and make sure it's the right size.""" dest_filename = os.path.join(data_root, filename) if force or not os.path.exists(dest_filename): print('Attempting to download:', filename) filename, _ = urlretrieve(url + filename, dest_filename, reporthook=download_progress_hook) print('\nDownload Complete!') statinfo = os.stat(dest_filename) if statinfo.st_size == expected_bytes: print('Found and verified', dest_filename) else: raise Exception( 'Failed to verify ' + dest_filename + '. Can you get to it with a browser?') return dest_filename train_filename = maybe_download('notMNIST_large.tar.gz', 247336696) test_filename = maybe_download('notMNIST_small.tar.gz', 8458043) num_classes = 10 def maybe_extract(filename, force=False): root = os.path.splitext(os.path.splitext(filename)[0])[0] # remove .tar.gz if os.path.isdir(root) and not force: # You may override by setting force=True. print('%s already present - Skipping extraction of %s.' % (root, filename)) else: print('Extracting data for %s. This may take a while. Please wait.' % root) tar = tarfile.open(filename) sys.stdout.flush() tar.extractall(data_root) tar.close() data_folders = [ os.path.join(root, d) for d in sorted(os.listdir(root)) if os.path.isdir(os.path.join(root, d))] if len(data_folders) != num_classes: raise Exception( 'Expected %d folders, one per class. Found %d instead.' % ( num_classes, len(data_folders))) print(data_folders) return data_folders train_folders = maybe_extract(train_filename) test_folders = maybe_extract(test_filename)
35.918919
99
0.674191
[ "Apache-2.0" ]
fcarsten/ai_playground
udacity_deep_learning/download_data.py
2,658
Python
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from habitat.core.registry import registry from habitat.core.simulator import Simulator def _try_register_igibson_socialnav(): try: import habitat_sim # noqa: F401 has_habitat_sim = True except ImportError as e: has_habitat_sim = False habitat_sim_import_error = e if has_habitat_sim: from habitat.sims.igibson_challenge.social_nav import ( iGibsonSocialNav ) # noqa: F401 from habitat.sims.igibson_challenge.interactive_nav import ( iGibsonInteractiveNav ) # noqa: F401 else: @registry.register_simulator(name="iGibsonSocialNav") class iGibsonSocialNavImportError(Simulator): def __init__(self, *args, **kwargs): raise habitat_sim_import_error @registry.register_simulator(name="iGibsonInteractiveNav") class iGibsonSocialNavImportError(Simulator): def __init__(self, *args, **kwargs): raise habitat_sim_import_error
34.742857
68
0.685855
[ "MIT" ]
qianLyu/habitat-lab
habitat/sims/igibson_challenge/__init__.py
1,216
Python
import unittest from datetime import datetime from unittest.mock import patch from common.repository import Repository from contract_api.config import NETWORKS, NETWORK_ID from contract_api.consumers.service_event_consumer import ServiceCreatedEventConsumer from contract_api.dao.service_repository import ServiceRepository class TestOrganizationEventConsumer(unittest.TestCase): def setUp(self): pass @patch('common.s3_util.S3Util.push_io_bytes_to_s3') @patch('common.ipfs_util.IPFSUtil.read_file_from_ipfs') @patch('common.ipfs_util.IPFSUtil.read_bytesio_from_ipfs') @patch('contract_api.consumers.service_event_consumer.ServiceEventConsumer._fetch_tags') def test_on_service_created_event(self, mock_fetch_tags, nock_read_bytesio_from_ipfs, mock_ipfs_read, mock_s3_push): event = {"data": {'row_id': 202, 'block_no': 6325625, 'event': 'ServiceCreated', 'json_str': "{'orgId': b'snet\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00', 'serviceId': b'gene-annotation-service\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00', 'metadataURI': b'ipfs://QmdGjaVYPMSGpC1qT3LDALSNCCu7JPf7j51H1GQirvQJYf\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00'}", 'processed': b'\x00', 'transactionHash': 'b"\\xa7P*\\xaf\\xfd\\xd5.E\\x8c\\x0bKAF\'\\x15\\x03\\xef\\xdaO\'\\x86/<\\xfb\\xc4\\xf0@\\xf0\\xc1P\\x8c\\xc7"', 'logIndex': '0', 'error_code': 1, 'error_msg': '', 'row_updated': datetime(2019, 10, 21, 9, 59, 37), 'row_created': datetime(2019, 10, 21, 9, 59, 37)}, "name": "ServiceCreated"} connection = Repository(NETWORK_ID, NETWORKS=NETWORKS) service_repository = ServiceRepository(connection) service_repository.delete_service(org_id='snet', service_id='gene-annotation-service') service_repository.delete_service_dependents(org_id='snet', service_id='gene-annotation-service') nock_read_bytesio_from_ipfs.return_value = "some_value to_be_pushed_to_s3_whic_is_mocked" mock_ipfs_read.return_value = { "version": 1, "display_name": "Annotation Service", "encoding": "proto", "service_type": "grpc", "model_ipfs_hash": "QmXqonxB9EvNBe11J8oCYXMQAtPKAb2x8CyFLmQpkvVaLf", "mpe_address": "0x8FB1dC8df86b388C7e00689d1eCb533A160B4D0C", "groups": [ { "group_name": "default_group", "pricing": [ { "price_model": "fixed_price", "price_in_cogs": 1, "default": True } ], "endpoints": [ "https://mozi.ai:8000" ], "group_id": "m5FKWq4hW0foGW5qSbzGSjgZRuKs7A1ZwbIrJ9e96rc=" } ], "assets": { "hero_image": "QmVcE6fEDP764ibadXTjZHk251Lmt5xAxdc4P9mPA4kksk/hero_gene-annotation-2b.png" }, "service_description": { "url": "https://mozi-ai.github.io/annotation-service/", "description": "Use this service to annotate a humane genome with uniform terms, Reactome pathway memberships, and BioGrid protein interactions.", "short_description": "short description" }, "contributors": [ { "name": "dummy dummy", "email_id": "[email protected]" } ] } mock_fetch_tags.return_value = ["test", "", "", [b'\x61\x74\x6F\x6D\x65\x73\x65', b'\x62\x69\x6F\x69\x6E\x66\x6F\x72\x6D\x61\x74\x69\x63\x73']] mock_s3_push.return_value = "https://test-s3-push" org_event_consumer = ServiceCreatedEventConsumer("wss://ropsten.infura.io/ws", "http://ipfs.singularitynet.io", 80) org_event_consumer.on_event(event=event) service = service_repository.get_service(org_id='snet', service_id='gene-annotation-service') service_metadata = service_repository.get_service_metadata(org_id='snet', service_id='gene-annotation-service') service_endpoints = service_repository.get_service_endpoints(org_id='snet', service_id='gene-annotation-service') service_tags = service_repository.get_service_tags(org_id='snet', service_id='gene-annotation-service') assert service == {'org_id': 'snet', 'service_id': 'gene-annotation-service', 'service_path': None, 'ipfs_hash': 'QmdGjaVYPMSGpC1qT3LDALSNCCu7JPf7j51H1GQirvQJYf', 'is_curated': 0} assert service_metadata == {'org_id': 'snet', 'service_id': 'gene-annotation-service', 'display_name': 'Annotation Service', 'description': 'Use this service to annotate a humane genome with uniform terms, Reactome pathway memberships, and BioGrid protein interactions.', 'short_description': 'short description', 'url': 'https://mozi-ai.github.io/annotation-service/', 'json': '', 'model_ipfs_hash': 'QmXqonxB9EvNBe11J8oCYXMQAtPKAb2x8CyFLmQpkvVaLf', 'encoding': 'proto', 'type': 'grpc', 'mpe_address': '0x8FB1dC8df86b388C7e00689d1eCb533A160B4D0C', 'assets_url': '{"hero_image": "https://test-s3-push"}', 'assets_hash': '{"hero_image": "QmVcE6fEDP764ibadXTjZHk251Lmt5xAxdc4P9mPA4kksk/hero_gene-annotation-2b.png"}', 'service_rating': '{"rating": 0.0, "total_users_rated": 0}', 'ranking': 1, 'contributors': '[{"name": "dummy dummy", "email_id": "[email protected]"}]'} assert service_endpoints == [{'org_id': 'snet', 'service_id': 'gene-annotation-service', 'group_id': 'm5FKWq4hW0foGW5qSbzGSjgZRuKs7A1ZwbIrJ9e96rc=', 'endpoint': 'https://mozi.ai:8000'}] assert service_tags == [{'org_id': 'snet', 'service_id': 'gene-annotation-service', 'tag_name': 'atomese'}, {'org_id': 'snet', 'service_id': 'gene-annotation-service', 'tag_name': 'bioinformatics'}]
65.047619
413
0.569985
[ "MIT" ]
vinthedark/snet-marketplace-service
contract_api/testcases/unit_testcases/consumers/test_service_event_consumer.py
6,830
Python
# -*- coding: utf-8 -*- from __future__ import unicode_literals, absolute_import from django.contrib import messages from django.contrib.auth.decorators import login_required from django.core.paginator import Paginator, EmptyPage, PageNotAnInteger from django.shortcuts import render, get_object_or_404 from .forms import PostForm, CommentForm from .models import Post, Comment def post_list(request): queryset_list = Post.objects.all().order_by('-publish', 'id') paginator = Paginator(queryset_list, 25) # Show 25 contacts per page page = request.GET.get('page') try: post_list = paginator.page(page) except PageNotAnInteger: # If page is not an integer, deliver first page. post_list = paginator.page(1) except EmptyPage: # If page is out of range (e.g. 9999), deliver last page of results. post_list = paginator.page(paginator.num_pages) return render(request, "pages/home.html", { 'post_list': post_list, }) def post_detail(request, slug): post = get_object_or_404(Post, slug=slug) if request.method == 'POST': if request.user: form = CommentForm(request.POST) if form.is_valid(): instance = form.save(commit=False) instance.user = request.user instance.post = post instance.save() messages.add_message(request, messages.SUCCESS, 'Comment Added') form = CommentForm() return render(request, 'blog/post_detail.html', { 'post': post, 'form': form, }) @login_required def post_add(request): if request.method == 'POST': form = PostForm(request.POST) if form.is_valid(): instance = form.save(commit=False) instance.user = request.user instance.save() messages.add_message(request, messages.SUCCESS, 'Blog Post Added') form = PostForm() else: form = PostForm() return render(request, 'blog/post_form.html', { 'form': form, })
30.514706
80
0.637108
[ "MIT" ]
sachiv/django_blog
blog/blog/views.py
2,075
Python
import numpy as np import hypothesis import strax.testutils import straxen def channel_split_naive(r, channel_ranges): """Slower but simpler implementation of straxen.split_channel_ranges""" results = [] for left, right in channel_ranges: results.append(r[np.in1d(r['channel'], np.arange(left, right + 1))]) return results @hypothesis.settings(deadline=None) @hypothesis.given(strax.testutils.several_fake_records) def test_channel_split(records): channel_range = np.asarray([[0, 0], [1, 2], [3, 3], [4, 999]]) result = list(straxen.split_channel_ranges(records, channel_range)) result_2 = channel_split_naive(records, channel_range) assert len(result) == len(result_2) for i, _ in enumerate(result): np.testing.assert_array_equal( np.unique(result[i]['channel']), np.unique(result_2[i]['channel'])) np.testing.assert_array_equal(result[i], result_2[i])
32.551724
76
0.700212
[ "BSD-3-Clause" ]
AlexElykov/straxen
tests/test_channel_split.py
944
Python
import pytest from django.urls import reverse, resolve pytestmark = pytest.mark.django_db def test_index(): assert reverse("sample_search:sample_search") == "/sample_search/" assert resolve("/sample_search/").view_name == "sample_search:sample_search"
26.3
80
0.764259
[ "MIT" ]
BFSSI-Bioinformatics-Lab/miseq_portal
miseq_portal/sample_search/tests/test_urls.py
263
Python
import sys import resource from recommender import recommender reload(sys) sys.setdefaultencoding("UTF8") import os import uuid from flask import * from flask.ext.socketio import SocketIO, emit from flask_socketio import join_room, leave_room import psycopg2 import psycopg2.extras psycopg2.extensions.register_type(psycopg2.extensions.UNICODE) psycopg2.extensions.register_type(psycopg2.extensions.UNICODEARRAY) app = Flask(__name__) app.config['SECRET_KEY'] = 'secret!' socketio = SocketIO(app) def connect_to_db(): return psycopg2.connect('dbname=movie_recommendations user=movie_normal password=password host=localhost') # return psycopg2.connect('dbname=movie_recommendations user=postgres password=Cmpgamer1 host=localhost') @socketio.on('connect', namespace='/movie') def makeConnection(): session['uuid'] = uuid.uuid1() print ('Connected') @socketio.on('identify', namespace='/movie') def on_identify(user): print('Identify: ' + user) users[session['uuid']] = {'username' : user} movieSearchQuery = "SELECT movie_title FROM movie_titles WHERE movie_title LIKE %s" newMovieSearch = "select mt.movie_title, my.year from movie_titles mt join movie_years my on mt.id = my.movie_id WHERE movie_title LIKE %s" movieGenreSearch = "select mt.movie_title, mg.movie_genre from movie_titles mt join movie_genres mg on mt.id = mg.movie_id WHERE movie_title LIKE %s" @socketio.on('search', namespace='/movie') def search(searchItem): db = connect_to_db() cur = db.cursor(cursor_factory=psycopg2.extras.DictCursor) searchQuery = "" results = [] queryResults = [] searchTerm = '%{0}%'.format(searchItem) try: cur.execute(newMovieSearch, (searchTerm,)) results = cur.fetchall() except Exception as e: print("Error: Invalid SEARCH in 'movie_titles' table: %s" % e) try: cur.execute(movieGenreSearch, (searchTerm,)) genreResults = cur.fetchall() except Exception as e: print("Error: Invalid SEARCH in 'movie_titles' table: %s" % e) movieGenres = {} copyGenres = genreResults parsedResults = [] movieList = {} prevMovie = None for movie in genreResults: if prevMovie is not None and prevMovie[0] == movie[0]: movieList[movie[0]].append(movie[1]) else: movieList[movie[0]] = [movie[1]] prevMovie = movie for i in range(len(results)): resultsDict = {'text' : results[i]['movie_title'], 'year' : results[i]['year']} if results[i]['movie_title'] in movieList: resultsDict['genres'] = movieList[results[i]['movie_title']] queryResults.append(resultsDict) print(queryResults) cur.close() db.close() emit('searchResults', queryResults) doesUserAlreadyExist = 'SELECT * FROM users WHERE username = %s LIMIT 1' registerNewUser = "INSERT INTO users VALUES (default, %s, %s, %s, crypt(%s, gen_salt('md5')))" @app.route('/register', methods=['GET', 'POST']) def register(): redirectPage = 'landing.html' error = '' if request.method == 'POST': db = connect_to_db() cur = db.cursor(cursor_factory=psycopg2.extras.DictCursor) firstName = request.form['firstName'] lastName = request.form['lastName'] username = request.form['registerUsername'] password = request.form['registerPassword'] password2 = request.form['registerConfirmPassword'] if username.isspace(): error += 'Username is required.\n' if firstName.isspace(): error += 'First Name is required.\n' if lastName.isspace(): error += 'Last Name is required.\n' if password.isspace(): error += 'Password is required.\n' if password2.isspace(): error += 'Password must be entered in twice.\n' if password != password2: error += 'Passwords do not match.\n' if len(error) == 0: try: cur.execute(doesUserAlreadyExist, (username,)) # check whether user already exists if cur.fetchone(): error += 'Username is already taken.\n' else: try: cur.execute(registerNewUser, (firstName, lastName, username, password)) # add user to database db.commit() except Exception as e: print("Error: Invalid INSERT in 'user' table: %s" % e) except Exception as e: print("Error: Invalid SEARCH in 'user' table: %s" % e) cur.close() db.close() if len(error) != 0: redirectPage = 'landing.html' if len(error) != 0: pass # flash error message return render_template(redirectPage, error=error) loginQuery = 'SELECT * from users WHERE username = %s AND password = crypt(%s, password)' @app.route('/login', methods=['GET', 'POST']) def login(): redirectPage = 'landing.html' error = '' results = None if request.method == 'POST': db = connect_to_db() cur = db.cursor(cursor_factory=psycopg2.extras.DictCursor) username = request.form['username'] pw = request.form['password'] try: cur.execute(loginQuery, (username, pw)) results = cur.fetchone() except Exception as e: print("Error: SEARCH in 'user' table: %s" % e) cur.close() db.close() if not results: # user does not exist error += 'Incorrect username or password.\n' else: print(results['username']) session['username'] = results['username'] session['id'] = results['id'] results = [] return redirect(url_for('index')) if len(error) != 0: pass # flash error return render_template(redirectPage, error=error) @app.route('/landing', methods=['GET', 'POST']) def landing(): if 'username' in session: print("index") db = connect_to_db() cur = db.cursor(cursor_factory=psycopg2.extras.DictCursor) #get dynamic top 12 query = "SELECT movie_titles.movie_title, movie_ratings.rating FROM movie_titles INNER JOIN movie_ratings ON movie_titles.id=movie_ratings.movie_id ORDER BY movie_ratings.rating DESC LIMIT 12;" #print("are we getting here?????????????") try: cur.execute(query) results=cur.fetchall() except Exception, e: raise e return render_template('index.html', results=results) else: return render_template('landing.html') @app.route('/', methods=['GET', 'POST']) def index(): if 'username' in session: print("index") db = connect_to_db() cur = db.cursor(cursor_factory=psycopg2.extras.DictCursor) #get dynamic top 12 query = "SELECT movie_titles.movie_title, movie_ratings.rating FROM movie_titles INNER JOIN movie_ratings ON movie_titles.id=movie_ratings.movie_id ORDER BY movie_ratings.rating DESC LIMIT 12;" #print("are we getting here?????????????") try: cur.execute(query) results=cur.fetchall() except Exception, e: raise e return render_template('index.html', results=results) else: return render_template('landing.html') @app.route('/logout', methods=['GET', 'POST']) def logout(): session.clear() return redirect(url_for('index')) movieRatingQuery = "SELECT mt.movie_title as movie_id, u.id, mr.rating FROM movie_ratings mr JOIN users u on u.id = mr.user_id JOIN movie_titles mt ON mt.id = mr.movie_id" movieIDQuery = "SELECT * FROM movie_titles" @socketio.on('recommend', namespace='/movie') def recommend(test): print("Do I get here?") redirectPage = 'recommendations.html' data = {} productid2name = {} userRatings= {} db = connect_to_db() cur = db.cursor(cursor_factory=psycopg2.extras.DictCursor) try: cur.execute(movieRatingQuery) results = cur.fetchall() except Exception as e: print("Error: SEARCH in 'movie_ratings table: %s" % e) for row in results: user = row['id'] movie = row['movie_id'] rating = float(row['rating']) if user in data: currentRatings = data[user] else: currentRatings = {} currentRatings[movie] = rating data[user] = currentRatings try: cur.execute(movieIDQuery) results = cur.fetchall() except Exception as e: print("Error: SEARCH in 'movie_titles' table: %s" % e) cur.close() db.close() movieLens = recommender(5, 15) #Manhattan Distance 5 Nearest Neighbors movieLens.data = data results = movieLens.recommend(session['id']) print(results) queryResults = [] for i,movie in results: queryResults.append({'text': movie[0]}) print(queryResults) emit('recommendationResults', queryResults) getMovieIDQuery= "SELECT movie_titles.id FROM movie_titles JOIN movie_years ON movie_titles.id = movie_years.movie_id WHERE movie_title = %s AND year = %s" insertRateQuery= "INSERT INTO movie_ratings VALUES(default, %s, %s, %s)" ## default, movie_id, user_id, movie_review insertReviewQuery="INSERT INTO movie_reviews VALUES(default, %s, %s, %s)" @app.route('/rateMovie', methods=['GET', 'POST']) def rateMovie(): redirectPage= "index.html" if request.method == 'POST': db = connect_to_db() cur = db.cursor(cursor_factory=psycopg2.extras.DictCursor) movie_title= request.form['moviename'] #both queries rating = request.form['movierating'] #insertRateQuery review = request.form['moviereview'] year = request.form['movieyear'] # print("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~") # print(rating) # print(year) # print(session['id']) # print("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~") try: cur.execute(getMovieIDQuery, (movie_title, year)) movieID = cur.fetchone() except Exception as e: print(e) # # Work out logic to prevent people from rating movies twice. # if rating: try: cur.execute(insertRateQuery, (session['id'], movieID['id'], rating)) db.commit() except Exception as e: pas print(e) else: pass if review: try: cur.execute(insertReviewQuery, (movieID['id'], session['id'], review)) except Exception as e: print(e) else: pass return redirect(url_for('index')) # start the server if __name__ == '__main__': socketio.run(app, host=os.getenv('IP', '0.0.0.0'), port =int(os.getenv('PORT', 8080)), debug=True)
33.679641
201
0.59712
[ "MIT" ]
cmpgamer/Sprint2
.~c9_invoke_iUgkLr.py
11,249
Python
import os import sys import tempfile import pytest import logging from pathlib import Path from dtaidistance import dtw, dtw_ndim, clustering, util_numpy import dtaidistance.dtw_visualisation as dtwvis from dtaidistance.exceptions import PyClusteringException logger = logging.getLogger("be.kuleuven.dtai.distance") directory = None numpyonly = pytest.mark.skipif("util_numpy.test_without_numpy()") scipyonly = pytest.mark.skipif("util_numpy.test_without_scipy()") @numpyonly def test_clustering(): with util_numpy.test_uses_numpy() as np: s = np.array([ [0., 0, 1, 2, 1, 0, 1, 0, 0], [0., 1, 2, 0, 0, 0, 0, 0, 0], [1., 2, 0, 0, 0, 0, 0, 1, 1], [0., 0, 1, 2, 1, 0, 1, 0, 0], [0., 1, 2, 0, 0, 0, 0, 0, 0], [1., 2, 0, 0, 0, 0, 0, 1, 1]]) def test_hook(from_idx, to_idx, distance): assert (from_idx, to_idx) in [(3, 0), (4, 1), (5, 2), (1, 0)] model = clustering.Hierarchical(dtw.distance_matrix_fast, {}, 2, merge_hook=test_hook, show_progress=False) cluster_idx = model.fit(s) assert cluster_idx[0] == {0, 1, 3, 4} assert cluster_idx[2] == {2, 5} @numpyonly def test_clustering_tree(): with util_numpy.test_uses_numpy() as np: s = np.array([ [0., 0, 1, 2, 1, 0, 1, 0, 0], [0., 1, 2, 0, 0, 0, 0, 0, 0], [1., 2, 0, 0, 0, 0, 0, 1, 1], [0., 0, 1, 2, 1, 0, 1, 0, 0], [0., 1, 2, 0, 0, 0, 0, 0, 0], [1., 2, 0, 0, 0, 0, 0, 1, 1], [1., 2, 0, 0, 0, 0, 0, 1, 1]]) def test_hook(from_idx, to_idx, distance): assert (from_idx, to_idx) in [(3, 0), (4, 1), (5, 2), (6, 2), (1, 0), (2, 0)] model = clustering.Hierarchical(dtw.distance_matrix_fast, {}, merge_hook=test_hook, show_progress=False) modelw = clustering.HierarchicalTree(model) cluster_idx = modelw.fit(s) assert cluster_idx[0] == {0, 1, 2, 3, 4, 5, 6} if directory: hierarchy_fn = os.path.join(directory, "hierarchy.png") graphviz_fn = os.path.join(directory, "hierarchy.dot") else: file = tempfile.NamedTemporaryFile() hierarchy_fn = file.name + "_hierarchy.png" graphviz_fn = file.name + "_hierarchy.dot" if not dtwvis.test_without_visualization(): modelw.plot(hierarchy_fn) print("Figure saved to", hierarchy_fn) with open(graphviz_fn, "w") as ofile: print(modelw.to_dot(), file=ofile) print("Dot saved to", graphviz_fn) @numpyonly def test_clustering_tree_ndim(): with util_numpy.test_uses_numpy() as np: s = np.array([ [[0.,0.], [0,0], [1,0], [2,0], [1,0], [0,0], [1,0], [0,0], [0,0]], [[0.,0.], [1,0], [2,0], [0,0], [0,0], [0,0], [0,0], [0,0], [0,0]], [[1.,0.], [2,0], [0,0], [0,0], [0,0], [0,0], [0,0], [1,0], [1,0]]]) model = clustering.Hierarchical(dtw_ndim.distance_matrix_fast, {'ndim':2}, show_progress=False) cluster_idx = model.fit(s) assert cluster_idx[0] == {0, 1, 2} @numpyonly def test_clustering_tree_maxdist(): with util_numpy.test_uses_numpy() as np: s = np.array([ [0., 0, 1, 2, 1, 0, 1, 0, 0], [0., 1, 2, 0, 0, 0, 0, 0, 0], [1., 2, 0, 0, 0, 0, 0, 1, 1], [0., 0, 1, 2, 1, 0, 1, 0, 0], [0., 1, 2, 0, 0, 0, 0, 0, 0], [1., 2, 0, 0, 0, 0, 0, 1, 1], [1., 2, 0, 0, 0, 0, 0, 1, 1]]) def test_hook(from_idx, to_idx, distance): assert (from_idx, to_idx) in [(3, 0), (4, 1), (5, 2), (6, 2), (1, 0), (2, 0)] model = clustering.Hierarchical(dtw.distance_matrix_fast, {}, merge_hook=test_hook, show_progress=False, max_dist=0.1) modelw = clustering.HierarchicalTree(model) cluster_idx = modelw.fit(s) assert cluster_idx[0] == {0, 1, 2, 3, 4, 5, 6} if directory: hierarchy_fn = os.path.join(directory, "hierarchy.png") graphviz_fn = os.path.join(directory, "hierarchy.dot") else: file = tempfile.NamedTemporaryFile() hierarchy_fn = file.name + "_hierarchy.png" graphviz_fn = file.name + "_hierarchy.dot" if not dtwvis.test_without_visualization(): modelw.plot(hierarchy_fn) print("Figure saved to", hierarchy_fn) with open(graphviz_fn, "w") as ofile: print(modelw.to_dot(), file=ofile) print("Dot saved to", graphviz_fn) @scipyonly @numpyonly def test_linkage_tree(): with util_numpy.test_uses_numpy() as np: s = np.array([ [0., 0, 1, 2, 1, 0, 1, 0, 0], [0., 1, 2, 0, 0, 0, 0, 0, 0], [1., 2, 0, 0, 0, 0, 0, 1, 1], [0., 0, 1, 2, 1, 0, 1, 0, 0], [0., 1, 2, 0, 0, 0, 0, 0, 0], [1., 2, 0, 0, 0, 0, 0, 1, 1], [1., 2, 0, 0, 0, 0, 0, 1, 1]]) model = clustering.LinkageTree(dtw.distance_matrix_fast, {}) cluster_idx = model.fit(s) if directory: hierarchy_fn = os.path.join(directory, "hierarchy.png") graphviz_fn = os.path.join(directory, "hierarchy.dot") else: file = tempfile.NamedTemporaryFile() hierarchy_fn = file.name + "_hierarchy.png" graphviz_fn = file.name + "_hierarchy.dot" if not dtwvis.test_without_visualization(): model.plot(hierarchy_fn) print("Figure saved to", hierarchy_fn) with open(graphviz_fn, "w") as ofile: print(model.to_dot(), file=ofile) print("Dot saved to", graphviz_fn) @scipyonly @numpyonly def test_controlchart(): with util_numpy.test_uses_numpy() as np: series = np.zeros((600, 60)) rsrc_fn = os.path.join(os.path.abspath(os.path.dirname(__file__)), 'rsrc', 'synthetic_control.data') with open(rsrc_fn, 'r') as ifile: for idx, line in enumerate(ifile.readlines()): series[idx, :] = line.split() s = [] for idx in range(0, 600, 20): s.append(series[idx, :]) model = clustering.LinkageTree(dtw.distance_matrix_fast, {'parallel': True}) cluster_idx = model.fit(s) if not dtwvis.test_without_visualization(): import matplotlib.pyplot as plt if directory: hierarchy_fn = os.path.join(directory, "hierarchy.png") else: file = tempfile.NamedTemporaryFile() hierarchy_fn = file.name + "_hierarchy.png" fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(10, 10)) show_ts_label = lambda idx: "ts-" + str(idx) # show_ts_label = list(range(len(s))) def curcmap(idx): if idx % 2 == 0: return 'r' return 'g' model.plot(hierarchy_fn, axes=ax, show_ts_label=show_ts_label, show_tr_label=True, ts_label_margin=-10, ts_left_margin=10, ts_sample_length=1, ts_color=curcmap) print("Figure saved to", hierarchy_fn) @scipyonly @numpyonly def test_plotbug1(): with util_numpy.test_uses_numpy() as np: s1 = np.array([0., 0, 1, 2, 1, 0, 1, 0, 0, 2, 1, 0, 0]) s2 = np.array([0., 1, 2, 3, 1, 0, 0, 0, 2, 1, 0, 0]) series = s1, s2 m = clustering.LinkageTree(dtw.distance_matrix, {}) m.fit(series) if not dtwvis.test_without_visualization(): if directory: hierarchy_fn = os.path.join(directory, "clustering.png") else: file = tempfile.NamedTemporaryFile() hierarchy_fn = file.name + "_clustering.png" m.plot(hierarchy_fn) print("Figure save to", hierarchy_fn) @numpyonly def test_clustering_centroid(): with util_numpy.test_uses_numpy() as np: s = np.array([ [0., 0, 1, 2, 1, 0, 1, 0, 0], [0., 1, 2, 0, 0, 0, 0, 0, 0], [1., 2, 0, 0, 0, 0, 0, 1, 1], [0., 0, 1, 2, 1, 0, 1, 0, 0], [0., 1, 2, 0, 0, 0, 0, 0, 0], [1., 2, 0, 0, 0, 0, 0, 1, 1], [1., 2, 0, 0, 0, 0, 0, 1, 1]]) # def test_hook(from_idx, to_idx, distance): # assert (from_idx, to_idx) in [(3, 0), (4, 1), (5, 2), (6, 2), (1, 0), (2, 0)] model = clustering.KMedoids(dtw.distance_matrix_fast, {}, k=3, show_progress=False) try: cluster_idx = model.fit(s) except PyClusteringException: return # assert cluster_idx[0] == {0, 1, 2, 3, 4, 5, 6} if not dtwvis.test_without_visualization(): if directory: png_fn = os.path.join(directory, "centroid.png") else: file = tempfile.NamedTemporaryFile() png_fn = file.name + "_centroid.png" model.plot(png_fn) print("Figure saved to", png_fn) if __name__ == "__main__": logger.setLevel(logging.DEBUG) logger.addHandler(logging.StreamHandler(sys.stdout)) directory = Path(os.environ.get('TESTDIR', Path(__file__).parent)) print(f"Saving files to {directory}") # test_clustering_tree() test_clustering_tree_ndim() # test_clustering_tree_maxdist() # test_linkage_tree() # test_controlchart() # test_plotbug1() # test_clustering_centroid()
37.053435
108
0.525546
[ "Apache-2.0" ]
Baael/dtaidistance
tests/test_clustering.py
9,708
Python
from __future__ import absolute_import from __future__ import division from __future__ import print_function from collections import OrderedDict import logging import numpy as np from ray.rllib.policy.policy import Policy from ray.rllib.policy.sample_batch import SampleBatch from ray.rllib.policy.tf_policy import TFPolicy from ray.rllib.models.catalog import ModelCatalog from ray.rllib.utils.annotations import override from ray.rllib.utils import try_import_tf from ray.rllib.utils.debug import log_once, summarize from ray.rllib.utils.tracking_dict import UsageTrackingDict tf = try_import_tf() logger = logging.getLogger(__name__) class DynamicTFPolicy(TFPolicy): """A TFPolicy that auto-defines placeholders dynamically at runtime. Initialization of this class occurs in two phases. * Phase 1: the model is created and model variables are initialized. * Phase 2: a fake batch of data is created, sent to the trajectory postprocessor, and then used to create placeholders for the loss function. The loss and stats functions are initialized with these placeholders. Initialization defines the static graph. Attributes: observation_space (gym.Space): observation space of the policy. action_space (gym.Space): action space of the policy. config (dict): config of the policy model (TorchModel): TF model instance dist_class (type): TF action distribution class """ def __init__(self, obs_space, action_space, config, loss_fn, stats_fn=None, grad_stats_fn=None, before_loss_init=None, make_model=None, action_sampler_fn=None, existing_inputs=None, existing_model=None, get_batch_divisibility_req=None, obs_include_prev_action_reward=True): """Initialize a dynamic TF policy. Arguments: observation_space (gym.Space): Observation space of the policy. action_space (gym.Space): Action space of the policy. config (dict): Policy-specific configuration data. loss_fn (func): function that returns a loss tensor the policy graph, and dict of experience tensor placeholders stats_fn (func): optional function that returns a dict of TF fetches given the policy and batch input tensors grad_stats_fn (func): optional function that returns a dict of TF fetches given the policy and loss gradient tensors before_loss_init (func): optional function to run prior to loss init that takes the same arguments as __init__ make_model (func): optional function that returns a ModelV2 object given (policy, obs_space, action_space, config). All policy variables should be created in this function. If not specified, a default model will be created. action_sampler_fn (func): optional function that returns a tuple of action and action logp tensors given (policy, model, input_dict, obs_space, action_space, config). If not specified, a default action distribution will be used. existing_inputs (OrderedDict): when copying a policy, this specifies an existing dict of placeholders to use instead of defining new ones existing_model (ModelV2): when copying a policy, this specifies an existing model to clone and share weights with get_batch_divisibility_req (func): optional function that returns the divisibility requirement for sample batches obs_include_prev_action_reward (bool): whether to include the previous action and reward in the model input """ self.config = config self._loss_fn = loss_fn self._stats_fn = stats_fn self._grad_stats_fn = grad_stats_fn self._obs_include_prev_action_reward = obs_include_prev_action_reward # Setup standard placeholders prev_actions = None prev_rewards = None if existing_inputs is not None: obs = existing_inputs[SampleBatch.CUR_OBS] if self._obs_include_prev_action_reward: prev_actions = existing_inputs[SampleBatch.PREV_ACTIONS] prev_rewards = existing_inputs[SampleBatch.PREV_REWARDS] else: obs = tf.placeholder( tf.float32, shape=[None] + list(obs_space.shape), name="observation") if self._obs_include_prev_action_reward: prev_actions = ModelCatalog.get_action_placeholder( action_space) prev_rewards = tf.placeholder( tf.float32, [None], name="prev_reward") self._input_dict = { SampleBatch.CUR_OBS: obs, SampleBatch.PREV_ACTIONS: prev_actions, SampleBatch.PREV_REWARDS: prev_rewards, "is_training": self._get_is_training_placeholder(), } self._seq_lens = tf.placeholder( dtype=tf.int32, shape=[None], name="seq_lens") # Setup model if action_sampler_fn: if not make_model: raise ValueError( "make_model is required if action_sampler_fn is given") self.dist_class = None else: self.dist_class, logit_dim = ModelCatalog.get_action_dist( action_space, self.config["model"]) if existing_model: self.model = existing_model elif make_model: self.model = make_model(self, obs_space, action_space, config) else: self.model = ModelCatalog.get_model_v2( obs_space, action_space, logit_dim, self.config["model"], framework="tf") if existing_inputs: self._state_in = [ v for k, v in existing_inputs.items() if k.startswith("state_in_") ] if self._state_in: self._seq_lens = existing_inputs["seq_lens"] else: self._state_in = [ tf.placeholder(shape=(None, ) + s.shape, dtype=s.dtype) for s in self.model.get_initial_state() ] model_out, self._state_out = self.model(self._input_dict, self._state_in, self._seq_lens) # Setup action sampler if action_sampler_fn: action_sampler, action_logp = action_sampler_fn( self, self.model, self._input_dict, obs_space, action_space, config) else: action_dist = self.dist_class(model_out, self.model) action_sampler = action_dist.sample() action_logp = action_dist.sampled_action_logp() # Phase 1 init sess = tf.get_default_session() or tf.Session() if get_batch_divisibility_req: batch_divisibility_req = get_batch_divisibility_req(self) else: batch_divisibility_req = 1 TFPolicy.__init__( self, obs_space, action_space, sess, obs_input=obs, action_sampler=action_sampler, action_logp=action_logp, loss=None, # dynamically initialized on run loss_inputs=[], model=self.model, state_inputs=self._state_in, state_outputs=self._state_out, prev_action_input=prev_actions, prev_reward_input=prev_rewards, seq_lens=self._seq_lens, max_seq_len=config["model"]["max_seq_len"], batch_divisibility_req=batch_divisibility_req) # Phase 2 init before_loss_init(self, obs_space, action_space, config) if not existing_inputs: self._initialize_loss() @override(TFPolicy) def copy(self, existing_inputs): """Creates a copy of self using existing input placeholders.""" # Note that there might be RNN state inputs at the end of the list if self._state_inputs: num_state_inputs = len(self._state_inputs) + 1 else: num_state_inputs = 0 if len(self._loss_inputs) + num_state_inputs != len(existing_inputs): raise ValueError("Tensor list mismatch", self._loss_inputs, self._state_inputs, existing_inputs) for i, (k, v) in enumerate(self._loss_inputs): if v.shape.as_list() != existing_inputs[i].shape.as_list(): raise ValueError("Tensor shape mismatch", i, k, v.shape, existing_inputs[i].shape) # By convention, the loss inputs are followed by state inputs and then # the seq len tensor rnn_inputs = [] for i in range(len(self._state_inputs)): rnn_inputs.append(("state_in_{}".format(i), existing_inputs[len(self._loss_inputs) + i])) if rnn_inputs: rnn_inputs.append(("seq_lens", existing_inputs[-1])) input_dict = OrderedDict( [(k, existing_inputs[i]) for i, (k, _) in enumerate(self._loss_inputs)] + rnn_inputs) instance = self.__class__( self.observation_space, self.action_space, self.config, existing_inputs=input_dict, existing_model=self.model) instance._loss_input_dict = input_dict loss = instance._do_loss_init(input_dict) loss_inputs = [(k, existing_inputs[i]) for i, (k, _) in enumerate(self._loss_inputs)] TFPolicy._initialize_loss(instance, loss, loss_inputs) if instance._grad_stats_fn: instance._stats_fetches.update( instance._grad_stats_fn(instance, input_dict, instance._grads)) return instance @override(Policy) def get_initial_state(self): if self.model: return self.model.get_initial_state() else: return [] def is_recurrent(self): return len(self._state_in) > 0 def num_state_tensors(self): return len(self._state_in) def _initialize_loss(self): def fake_array(tensor): shape = tensor.shape.as_list() shape = [s if s is not None else 1 for s in shape] return np.zeros(shape, dtype=tensor.dtype.as_numpy_dtype) dummy_batch = { SampleBatch.CUR_OBS: fake_array(self._obs_input), SampleBatch.NEXT_OBS: fake_array(self._obs_input), SampleBatch.DONES: np.array([False], dtype=np.bool), SampleBatch.ACTIONS: fake_array( ModelCatalog.get_action_placeholder(self.action_space)), SampleBatch.REWARDS: np.array([0], dtype=np.float32), } if self._obs_include_prev_action_reward: dummy_batch.update({ SampleBatch.PREV_ACTIONS: fake_array(self._prev_action_input), SampleBatch.PREV_REWARDS: fake_array(self._prev_reward_input), }) state_init = self.get_initial_state() state_batches = [] for i, h in enumerate(state_init): dummy_batch["state_in_{}".format(i)] = np.expand_dims(h, 0) dummy_batch["state_out_{}".format(i)] = np.expand_dims(h, 0) state_batches.append(np.expand_dims(h, 0)) if state_init: dummy_batch["seq_lens"] = np.array([1], dtype=np.int32) for k, v in self.extra_compute_action_fetches().items(): dummy_batch[k] = fake_array(v) # postprocessing might depend on variable init, so run it first here self._sess.run(tf.global_variables_initializer()) postprocessed_batch = self.postprocess_trajectory( SampleBatch(dummy_batch)) # model forward pass for the loss (needed after postprocess to # overwrite any tensor state from that call) self.model(self._input_dict, self._state_in, self._seq_lens) if self._obs_include_prev_action_reward: train_batch = UsageTrackingDict({ SampleBatch.PREV_ACTIONS: self._prev_action_input, SampleBatch.PREV_REWARDS: self._prev_reward_input, SampleBatch.CUR_OBS: self._obs_input, }) loss_inputs = [ (SampleBatch.PREV_ACTIONS, self._prev_action_input), (SampleBatch.PREV_REWARDS, self._prev_reward_input), (SampleBatch.CUR_OBS, self._obs_input), ] else: train_batch = UsageTrackingDict({ SampleBatch.CUR_OBS: self._obs_input, }) loss_inputs = [ (SampleBatch.CUR_OBS, self._obs_input), ] for k, v in postprocessed_batch.items(): if k in train_batch: continue elif v.dtype == np.object: continue # can't handle arbitrary objects in TF elif k == "seq_lens" or k.startswith("state_in_"): continue shape = (None, ) + v.shape[1:] dtype = np.float32 if v.dtype == np.float64 else v.dtype placeholder = tf.placeholder(dtype, shape=shape, name=k) train_batch[k] = placeholder for i, si in enumerate(self._state_in): train_batch["state_in_{}".format(i)] = si train_batch["seq_lens"] = self._seq_lens if log_once("loss_init"): logger.debug( "Initializing loss function with dummy input:\n\n{}\n".format( summarize(train_batch))) self._loss_input_dict = train_batch loss = self._do_loss_init(train_batch) for k in sorted(train_batch.accessed_keys): if k != "seq_lens" and not k.startswith("state_in_"): loss_inputs.append((k, train_batch[k])) TFPolicy._initialize_loss(self, loss, loss_inputs) if self._grad_stats_fn: self._stats_fetches.update( self._grad_stats_fn(self, train_batch, self._grads)) self._sess.run(tf.global_variables_initializer()) def _do_loss_init(self, train_batch): loss = self._loss_fn(self, self.model, self.dist_class, train_batch) if self._stats_fn: self._stats_fetches.update(self._stats_fn(self, train_batch)) # override the update ops to be those of the model self._update_ops = self.model.update_ops() return loss
41.558659
79
0.611843
[ "Apache-2.0" ]
lisadunlap/ray
rllib/policy/dynamic_tf_policy.py
14,878
Python
from sklearn import linear_model # noqa from sklearn.linear_model import LogisticRegressionCV # noqa import logging module_logger = logging.getLogger(__name__)
32.4
61
0.839506
[ "MIT" ]
motleystate/moonstone
moonstone/analysis/regression.py
162
Python
import numpy as np import matplotlib import matplotlib.pyplot as plt from matplotlib.ticker import AutoMinorLocator, MultipleLocator, MaxNLocator from matplotlib.path import Path from matplotlib.patches import PathPatch from matplotlib.colors import BoundaryNorm import matplotlib.image as mpimg Uinf=1 R=15 PI=np.pi alpha = 1 w = alpha/R gamma= -w * 2*PI* R*R angle = np.linspace(0, 360, 360) cp = 1 - (4*(np.sin(angle*(PI/180) )**2) + (2*gamma*np.sin(angle *(PI/180)))/(PI*R*Uinf) + (gamma/(2*PI*R*Uinf))**2 ) fig, ax = plt.subplots() ax.plot(angle, cp, '--k') #ax.plot(angle, Z[edge_x,edge_y], 'ok', markersize=5) #ax.set_ylim(limits[0], limits[1]) #Grid ax.xaxis.set_minor_locator(AutoMinorLocator(4)) ax.yaxis.set_minor_locator(AutoMinorLocator(4)) ax.grid(which='major', color='#CCCCCC', linestyle='-', alpha=1) ax.grid(which='minor', color='#CCCCCC', linestyle='--', alpha=0.5) fig.savefig(f'./cp_{alpha}.png') plt.close()
23.073171
119
0.708245
[ "MIT" ]
ajupatatero/neurasim
util/unit_test/potential_test/cp_potential.py
946
Python
""" Configuration for docs """ # source_link = "https://github.com/[org_name]/jrdsite" # docs_base_url = "https://[org_name].github.io/jrdsite" # headline = "App that does everything" # sub_heading = "Yes, you got that right the first time, everything" def get_context(context): context.brand_html = "jrdsite"
26.083333
68
0.722045
[ "MIT" ]
jrd2017/jrdsite
jrdsite/config/docs.py
313
Python
# MIT License # # Copyright (c) 2017 Tom Runia # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to conditions. # # Author: Deep Learning Course | Fall 2018 # Date Created: 2018-09-04 ################################################################################ from __future__ import absolute_import from __future__ import division from __future__ import print_function import torch.nn as nn import torch class TextGenerationModel(nn.Module): def __init__(self, batch_size, seq_length, vocabulary_size, lstm_num_hidden=256, lstm_num_layers=2, device='cuda:0', input_size=1): super(TextGenerationModel, self).__init__() self.emb_size = 64 self.device = device # self.emb = nn.Embedding(batch_size * seq_length, 64) # self.lstm = nn.LSTM(64, lstm_num_hidden, num_layers=lstm_num_layers, dropout=0) self.lstm = nn.LSTM(input_size, lstm_num_hidden, num_layers=lstm_num_layers, dropout=0) self.linear = nn.Linear(lstm_num_hidden, vocabulary_size) self.h = None def forward(self, x): # Reset hidden layer for Training if self.training: self.h = None # x = self.emb(x.squeeze(-1).type(torch.LongTensor).to(self.device)) out, h = self.lstm(x.transpose(0, 1), self.h) out = self.linear(out) # Handle hidden layer for Inference if not self.training: self.h = h return out def reset_hidden(self): self.h = None
32.745763
95
0.635611
[ "MIT" ]
davide-belli/deep-learning-labs
assignment_2/part3/model.py
1,932
Python
''' xbmcswift2.cli.cli ------------------ The main entry point for the xbmcswift2 console script. CLI commands can be registered in this module. :copyright: (c) 2012 by Jonathan Beluch :license: GPLv3, see LICENSE for more details. ''' import sys from optparse import OptionParser from xbmcswift2.cli.app import RunCommand from xbmcswift2.cli.create import CreateCommand # TODO: Make an ABC for Command COMMANDS = { RunCommand.command: RunCommand, CreateCommand.command: CreateCommand, } # TODO: Make this usage dynamic based on COMMANDS dict USAGE = '''%prog <command> Commands: create Create a new plugin project. run Run an xbmcswift2 plugin from the command line. Help: To see options for a command, run `xbmcswift2 <command> -h` ''' def main(): '''The entry point for the console script xbmcswift2. The 'xbcmswift2' script is command bassed, so the second argument is always the command to execute. Each command has its own parser options and usages. If no command is provided or the -h flag is used without any other commands, the general help message is shown. ''' parser = OptionParser() if len(sys.argv) == 1: parser.set_usage(USAGE) parser.error('At least one command is required.') # spy sys.argv[1] in order to use correct opts/args command = sys.argv[1] if command == '-h': parser.set_usage(USAGE) opts, args = parser.parse_args() if command not in COMMANDS.keys(): parser.error('Invalid command') # We have a proper command, set the usage and options list according to the # specific command manager = COMMANDS[command] if hasattr(manager, 'option_list'): for args, kwargs in manager.option_list: parser.add_option(*args, **kwargs) if hasattr(manager, 'usage'): parser.set_usage(manager.usage) opts, args = parser.parse_args() # Since we are calling a specific comamnd's manager, we no longer need the # actual command in sys.argv so we slice from position 1 manager.run(opts, args[1:])
28.675325
80
0.652627
[ "Apache-2.0" ]
liberty-developer/plugin.video.metalliq-forqed
resources/lib/xbmcswift2/cli/cli.py
2,208
Python
from codecs import open # To use a consistent encoding from os import path from setuptools import setup HERE = path.dirname(path.abspath(__file__)) # Get version info ABOUT = {} with open(path.join(HERE, 'datadog_checks', 'logstash', '__about__.py')) as f: exec(f.read(), ABOUT) # Get the long description from the README file with open(path.join(HERE, 'README.md'), encoding='utf-8') as f: long_description = f.read() def get_dependencies(): dep_file = path.join(HERE, 'requirements.in') if not path.isfile(dep_file): return [] with open(dep_file, encoding='utf-8') as f: return f.readlines() def parse_pyproject_array(name): import os import re from ast import literal_eval pattern = r'^{} = (\[.*?\])$'.format(name) with open(os.path.join(HERE, 'pyproject.toml'), 'r', encoding='utf-8') as f: # Windows \r\n prevents match contents = '\n'.join(line.rstrip() for line in f.readlines()) array = re.search(pattern, contents, flags=re.MULTILINE | re.DOTALL).group(1) return literal_eval(array) CHECKS_BASE_REQ = parse_pyproject_array('dependencies')[0] setup( name='datadog-logstash', version=ABOUT['__version__'], description='The Logstash check', long_description=long_description, long_description_content_type='text/markdown', keywords='datadog agent logstash check', # The project's main homepage. url='https://github.com/DataDog/integrations-extras', # Author details author='[email protected]', author_email='[email protected]', # License license='BSD-3-Clause', # See https://pypi.org/classifiers classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Intended Audience :: System Administrators', 'Topic :: System :: Monitoring', 'License :: OSI Approved :: BSD License', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.7', ], # The package we're going to ship packages=['datadog_checks.logstash'], # Run-time dependencies install_requires=[CHECKS_BASE_REQ], extras_require={'deps': parse_pyproject_array('deps')}, # Extra files to ship with the wheel package include_package_data=True, )
30.194805
81
0.669247
[ "BSD-3-Clause" ]
chrroberts-pure/integrations-extras
logstash/setup.py
2,325
Python
import json import os import pathlib from decouple import config LIVE_DEMO_MODE = config('DEMO_MODE', cast=bool, default=False) PORT = config('PORT', cast=int, default=5000) APP_URL = 'https://bachelor-thesis.herokuapp.com/' DEBUG_MODE = config('DEBUG', cast=bool, default=False) NO_DELAYS = config('NO_DELAYS', cast=bool, default=False) REDIS_URL = config('REDIS_URL') DIALOGFLOW_ACCESS_TOKEN = config('DIALOGFLOW_ACCESS_TOKEN') FACEBOOK_ACCESS_TOKEN = config('FACEBOOK_ACCESS_TOKEN') TELEGRAM_ACCESS_TOKEN = config('TELEGRAM_ACCESS_TOKEN') TWILIO_ACCESS_TOKEN = config('TWILIO_ACCESS_TOKEN') TWILIO_ACCOUNT_SID = config('TWILIO_ACCOUNT_SID') DATABASE_URL = config('DATABASE_URL') ENABLE_CONVERSATION_RECORDING = config('RECORD_CONVERSATIONS', cast=bool, default=True) CONTEXT_LOOKUP_RECENCY = 15 SUPPORT_CHANNEL_ID = -1001265422831 GOOGLE_SERVICE_ACCOUNT_KEY = config('GOOGLE_SERVICE_ACCOUNT_KEY').replace("\\n", "\n") # Insert google private key into a template of the json configuration and add it to environment vars _root_dir = pathlib.Path(os.path.dirname(os.path.abspath(__file__))) if not os.path.exists('tmp'): os.makedirs('tmp') google_service_account_file = _root_dir / 'tmp' / 'service-account-file.json' template = json.load(open(_root_dir / "google-service-template.json", 'r')) template["private_key"] = GOOGLE_SERVICE_ACCOUNT_KEY json.dump(template, open(google_service_account_file, 'w+')) os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = str(google_service_account_file) # Whether to remove the ForceReply markup in Telegram for any non-keyboard message (useful for demo) ALWAYS_REMOVE_MARKUP = LIVE_DEMO_MODE
45.416667
100
0.798165
[ "MIT" ]
JosXa/bachelor-thesis-insurance
settings.py
1,635
Python
# Generated by Django 2.1.4 on 2018-12-29 01:40 import datetime from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('account', '0001_initial'), ] operations = [ migrations.RenameField( model_name='bankaccount', old_name='customer_id', new_name='customer', ), migrations.AlterField( model_name='bankaccount', name='account_opened', field=models.DateTimeField(default=datetime.datetime(2018, 12, 28, 19, 40, 54, 177327)), ), ]
24.16
100
0.594371
[ "MIT" ]
blarmon/bank-account-microservice
account/migrations/0002_auto_20181228_1940.py
604
Python
import logging import os import types from datetime import datetime import pandas as pd from sdgym.data import load_dataset from sdgym.evaluate import compute_scores from sdgym.synthesizers import BaseSynthesizer LOGGER = logging.getLogger(__name__) BASE_DIR = os.path.dirname(__file__) LEADERBOARD_PATH = os.path.join(BASE_DIR, 'leaderboard.csv') DEFAULT_DATASETS = [ "adult", "alarm", "asia", "census", "child", "covtype", "credit", "grid", "gridr", "insurance", "intrusion", "mnist12", "mnist28", "news", "ring" ] def compute_benchmark(synthesizer, datasets=DEFAULT_DATASETS, iterations=3): """Compute the scores of a synthesizer over a list of datasets. The results are returned in a raw format as a ``pandas.DataFrame`` containing: - One row for each dataset+scoring method (for example, a classifier) - One column for each computed metric - The columns: - dataset - distance - name (of the scoring method) - iteration For example, evaluating a synthesizer on the ``adult`` and ``asia`` datasets with 2 iterations produces a table similar to this:: dataset name iter distance accuracy f1 syn_likelihood test_likelihood adult DecisionTree... 0 0.0 0.79 0.65 NaN NaN adult AdaBoost... 0 0.0 0.85 0.67 NaN NaN adult Logistic... 0 0.0 0.79 0.66 NaN NaN adult MLP... 0 0.0 0.84 0.67 NaN NaN adult DecisionTree... 1 0.0 0.80 0.66 NaN NaN adult AdaBoost... 1 0.0 0.86 0.68 NaN NaN adult Logistic... 1 0.0 0.79 0.65 NaN NaN adult MLP... 1 0.0 0.84 0.64 NaN NaN asia Bayesian ... 0 0.0 NaN NaN -2.23 -2.24 asia Bayesian ... 1 0.0 NaN NaN -2.23 -2.24 """ results = list() for dataset_name in datasets: LOGGER.info('Evaluating dataset %s', dataset_name) train, test, meta, categoricals, ordinals = load_dataset(dataset_name, benchmark=True) for iteration in range(iterations): try: synthesized = synthesizer(train, categoricals, ordinals) scores = compute_scores(train, test, synthesized, meta) scores['dataset'] = dataset_name scores['iteration'] = iteration results.append(scores) except Exception: LOGGER.exception('Error computing scores for %s on dataset %s - iteration %s', _get_synthesizer_name(synthesizer), dataset_name, iteration) return pd.concat(results, sort=False) def _dataset_summary(grouped_df): dataset = grouped_df.name scores = grouped_df.mean().dropna() scores.index = dataset + '/' + scores.index return scores def _summarize_scores(scores): """Computes a summary of the scores obtained by a synthesizer. The raw scores returned by the ``compute_benchmark`` function are summarized by grouping them by dataset and computing the average. The results are then put in a ``pandas.Series`` object with one value per dataset and metric. As an example, the summary of a synthesizer that has been evaluated on the ``adult`` and the ``asia`` datasets produces the following output:: adult/accuracy 0.8765 adult/f1_micro 0.7654 adult/f1_macro 0.7654 asia/syn_likelihood -2.5364 asia/test_likelihood -2.4321 dtype: float64 Args: scores (pandas.DataFrame): Raw Scores dataframe as returned by the ``compute_benchmark`` function. Returns: pandas.Series: Summarized scores series in the format described above. """ scores = scores.drop(['distance', 'iteration', 'name'], axis=1, errors='ignore') grouped = scores.groupby('dataset').apply(_dataset_summary) if isinstance(grouped, pd.Series): # If more than one dataset, grouped result is a series # with a multilevel index. return grouped.droplevel(0) # Otherwise, if there is only one dataset, it is DataFrame return grouped.iloc[0] def _get_synthesizer_name(synthesizer): """Get the name of the synthesizer function or class. If the given synthesizer is a function, return its name. If it is a method, return the name of the class to which the method belongs. Args: synthesizer (function or method): The synthesizer function or method. Returns: str: Name of the function or the class to which the method belongs. """ if isinstance(synthesizer, types.MethodType): synthesizer_name = synthesizer.__self__.__class__.__name__ else: synthesizer_name = synthesizer.__name__ return synthesizer_name def _get_synthesizers(synthesizers): """Get the dict of synthesizers from the input value. If the input is a synthesizer or an iterable of synthesizers, get their names and put them on a dict. Args: synthesizers (function, class, list, tuple or dict): A synthesizer (function or method or class) or an iterable of synthesizers or a dict containing synthesizer names as keys and synthesizers as values. Returns: dict[str, function]: dict containing synthesizer names as keys and function as values. Raises: TypeError: if neither a synthesizer or an iterable or a dict is passed. """ if callable(synthesizers): synthesizers = {_get_synthesizer_name(synthesizers): synthesizers} if isinstance(synthesizers, (list, tuple)): synthesizers = { _get_synthesizer_name(synthesizer): synthesizer for synthesizer in synthesizers } elif not isinstance(synthesizers, dict): raise TypeError('`synthesizers` can only be a function, a class, a list or a dict') for name, synthesizer in synthesizers.items(): # If the synthesizer is one of the SDGym Synthesizer classes, # create and instance and replace it with its fit_sample method. if isinstance(synthesizer, type) and issubclass(synthesizer, BaseSynthesizer): synthesizers[name] = synthesizer().fit_sample return synthesizers def benchmark(synthesizers, datasets=DEFAULT_DATASETS, iterations=3, add_leaderboard=True, leaderboard_path=LEADERBOARD_PATH, replace_existing=True): """Compute the benchmark scores for the synthesizers and return a leaderboard. The ``synthesizers`` object can either be a single synthesizer or, an iterable of synthesizers or a dict containing synthesizer names as keys and synthesizers as values. If ``add_leaderboard`` is ``True``, append the obtained scores to the leaderboard stored in the ``lederboard_path``. By default, the leaderboard used is the one which is included in the package, which contains the scores obtained by the SDGym Synthesizers. If ``replace_existing`` is ``True`` and any of the given synthesizers already existed in the leaderboard, the old rows are dropped. Args: synthesizers (function, class, list, tuple or dict): The synthesizer or synthesizers to evaluate. It can be a single synthesizer (function or method or class), or an iterable of synthesizers, or a dict containing synthesizer names as keys and synthesizers as values. If the input is not a dict, synthesizer names will be extracted from the given object. datasets (list[str]): Names of the datasets to use for the benchmark. Defaults to all the ones available. iterations (int): Number of iterations to perform over each dataset and synthesizer. Defaults to 3. add_leaderboard (bool): Whether to append the obtained scores to the previous leaderboard or not. Defaults to ``True``. leaderboard_path (str): Path to where the leaderboard is stored. Defaults to the leaderboard included with the package, which contains the scores obtained by the SDGym synthesizers. replace_existing (bool): Whether to replace old scores or keep them in the returned leaderboard. Defaults to ``True``. Returns: pandas.DataFrame: Table containing one row per synthesizer and one column for each dataset and metric. """ synthesizers = _get_synthesizers(synthesizers) scores = list() for synthesizer_name, synthesizer in synthesizers.items(): synthesizer_scores = compute_benchmark(synthesizer, datasets, iterations) summary_row = _summarize_scores(synthesizer_scores) summary_row.name = synthesizer_name scores.append(summary_row) leaderboard = pd.DataFrame(scores) leaderboard['timestamp'] = datetime.utcnow() if add_leaderboard: old_leaderboard = pd.read_csv( leaderboard_path, index_col=0, parse_dates=['timestamp'] )[leaderboard.columns] if replace_existing: old_leaderboard.drop(labels=[leaderboard.index], errors='ignore', inplace=True) leaderboard = old_leaderboard.append(leaderboard, sort=False) return leaderboard
38.964286
97
0.633364
[ "MIT" ]
csala/SDGym
sdgym/benchmark.py
9,819
Python
from typing import Any, Dict import pandas import numpy as np from sklearn import datasets from opticverge.core.chromosome.abstract_chromosome import AbstractChromosome from opticverge.core.enum.objective import Objective from opticverge.core.log.logger import data_logger, DATA from opticverge.core.solver.abstract_solver import AbstractSolver from opticverge.external.scikit.enum.normaliser import Normaliser from opticverge.external.scikit.enum.scoring_function import Scoring from opticverge.external.scikit.problem.abstract_regression_problem import AbstractRegressionProblem class RedWineQualityPredictionProblem(AbstractRegressionProblem): def __init__(self, scoring_function: Scoring, normaliser: Normaliser = None, folds: int = 1): df = pandas.read_csv("./winequality-red.csv", sep=";", usecols=[ "fixed acidity", "volatile acidity", "citric acid", "residual sugar", "chlorides", "free sulfur dioxide", "total sulfur dioxide", "density", "pH", "sulphates", "alcohol", "quality" ]) data = np.array(df[["fixed acidity", "volatile acidity", "citric acid", "residual sugar", "chlorides", "free sulfur dioxide", "total sulfur dioxide", "density", "pH", "sulphates", "alcohol"]]) target = np.array(df["quality"]) super(RedWineQualityPredictionProblem, self).__init__( Objective.Minimisation, "Red Wine Quality Prediction", data_x=data, target_x=target, normaliser=normaliser, folds=folds, scoring_function=scoring_function ) def log_chromosome(self, chromosome: AbstractChromosome, solver: AbstractSolver, additional_data: Dict[str, Any] = None, separator="|"): data_str = super(RedWineQualityPredictionProblem, self).log_chromosome( chromosome, solver, None ) data_logger.log(DATA, data_str) def objective_function(self, chromosome: AbstractChromosome): super(RedWineQualityPredictionProblem, self).objective_function(chromosome)
42.3
133
0.700236
[ "MIT" ]
opticverge/evolutionary-machine-learning
opticverge/examples/machine_learning/regression/red_wine_quality/problem.py
2,115
Python
""" # Hello Demonstrate: * conversion of regular python script into _Jupyter notebook_ * support **Markdown** * this is a list """ from __future__ import absolute_import, print_function, division """ ## Hello This is a *hello world* function. """ def hello(): """ This is a docstring """ print("hello") """ ## Another Cell 1 """ def main(): hello() """ ### Run this """ if __name__ == '__main__': def what(): main() print(what()) """ ## Another Cell 2 """
10.367347
64
0.582677
[ "BSD-3-Clause" ]
bwohlberg/py2jn
tests/example.py
508
Python
"""Parser for envpy config parser""" # Errors class EnvpyError(Exception): """Base class for all envpy errors.""" class MissingConfigError(EnvpyError): """Raised when a config item is missing from the environment and has no default. """ class ValueTypeError(EnvpyError): """Raised when a Schema is created with an invalid value type""" class ParsingError(EnvpyError): """Raised when the value pulled from the environment cannot be parsed as the given value type.""" # Parsers def _parse_str(value): return value def _parse_int(value): return int(value) def _parse_float(value): return float(value) def _parse_bool(value): is_true = ( value.upper() == "TRUE" or value == "1" ) is_false = ( value.upper() == "FALSE" or value == "0" ) if is_true: return True elif is_false: return False else: raise ValueError() PARSERS = { str: _parse_str, int: _parse_int, float: _parse_float, bool: _parse_bool, } # Parsing logic SENTINAL = object() class Schema: #pylint: disable=too-few-public-methods """Schema that describes a single environment config item Args: value_type (optional, default=str): The type that envpy should try to parse the environment variable into. default (optional): The value that should be used if the variable cannot be found in the environment. """ def __init__(self, value_type=str, default=SENTINAL): if value_type not in PARSERS: raise ValueTypeError() self._parser = PARSERS.get(value_type) self._default = default def parse(self, key, value): """Parse the environment value for a given key against the schema. Args: key: The name of the environment variable. value: The value to be parsed. """ if value is not None: try: return self._parser(value) except Exception: raise ParsingError("Error parsing {}".format(key)) elif self._default is not SENTINAL: return self._default else: raise KeyError(key) def parse_env(config_schema, env): """Parse the values from a given environment against a given config schema Args: config_schema: A dict which maps the variable name to a Schema object that describes the requested value. env: A dict which represents the value of each variable in the environment. """ try: return { key: item_schema.parse(key, env.get(key)) for key, item_schema in config_schema.items() } except KeyError as error: raise MissingConfigError( "Required config not set: {}".format(error.args[0]) )
25.633929
78
0.619993
[ "MIT" ]
jonathanlloyd/envpy
envpy/parser.py
2,871
Python
from . import generator from . import discriminator
17.333333
27
0.807692
[ "MIT" ]
rexwangcc/gengine
GenerativeModels/BGAN/__init__.py
52
Python
# -*- coding: utf-8 -*- """Application configuration. Most configuration is set via environment variables. For local development, use a .env file to set environment variables. """ from environs import Env env = Env() env.read_env() ENV = env.str("FLASK_ENV", default="production") DEBUG = ENV == "development" SQLALCHEMY_DATABASE_URI = env.str("DATABASE_URL") SECRET_KEY = env.str("SECRET_KEY") SEND_FILE_MAX_AGE_DEFAULT = env.int("SEND_FILE_MAX_AGE_DEFAULT") BCRYPT_LOG_ROUNDS = env.int("BCRYPT_LOG_ROUNDS", default=13) DEBUG_TB_ENABLED = DEBUG DEBUG_TB_INTERCEPT_REDIRECTS = False CACHE_TYPE = "simple" # Can be "memcached", "redis", etc. SQLALCHEMY_TRACK_MODIFICATIONS = False APPLICATION_ROOT = "/" SCRIPT_NAME = "/" AUTH_METHOD = env.str("AUTH_METHOD") # can be 'LDAP', 'OMERO' if AUTH_METHOD == "LDAP": LDAP_PORT = env.int("LDAP_PORT", 369) LDAP_HOST = env.str("LDAP_HOST", "localhost") LDAP_READONLY = env.bool("LDAP_READONLY", True) LDAP_BASE_DN = env.str("LDAP_BASE_DN", "") LDAP_BIND_USER_DN = env.str("LDAP_BIND_USER_DN") LDAP_BIND_USER_PASSWORD = env.str("LDAP_BIND_USER_PASSWORD") LDAP_BIND_DIRECT_CREDENTIALS = env.bool("LDAP_BIND_DIRECT_CREDENTIALS") LDAP_ALWAYS_SEARCH_BIND = env.bool("LDAP_ALWAYS_SEARCH_BIND") LDAP_USER_LOGIN_ATTR = env.str("LDAP_USER_LOGIN_ATTR", "uid") LDAP_USER_RDN_ATTR = env.str("LDAP_USER_RDN_ATTR", "uid") LDAP_USER_DN = env.str("LDAP_USER_DN") LDAP_USER_SEARCH_SCOPE = env.str("LDAP_USER_SEARCH_SCOPE", "LEVEL") LDAP_SEARCH_FOR_GROUPS = env.bool("LDAP_SEARCH_FOR_GROUPS", False) elif AUTH_METHOD == "OMERO": OMERO_HOST = env.str("OMERO_HOST", "localhost") OMERO_PORT = env.int("OMERO_PORT", 4064)
34.24
75
0.739486
[ "MIT" ]
centuri-engineering/cataloger
cataloger/settings.py
1,712
Python
# -*- coding: utf-8 -*- """Test human2bytes function.""" import pytest from pcof import bytesconv @pytest.mark.parametrize( "size, unit, result", [ (1, "KB", "1024.00"), (1, "MB", "1048576.00"), (1, "GB", "1073741824.00"), (1, "TB", "1099511627776.00"), (1, "PB", "1125899906842624.00"), (1, "EB", "1152921504606846976.00"), ], ) def test_human2bytes(size, unit, result): assert bytesconv.human2bytes(size, unit) == result @pytest.mark.parametrize( "size, unit, precision, result", [ (1, "KB", 0, "1024"), (2, "GB", 0, "2147483648"), (2, "GB", 1, "2147483648.0"), (2, "GB", 3, "2147483648.000"), ], ) def test_human2bytes_precision(size, unit, precision, result): assert bytesconv.human2bytes(size, unit, precision=precision) == result @pytest.mark.parametrize( "size, unit, base, result", [ (1, "KB", 1000, "1000.00"), (1, "MB", 1000, "1000000.00"), (1, "GB", 1000, "1000000000.00"), (1, "TB", 1000, "1000000000000.00"), (4, "TB", 1000, "4000000000000.00"), (1, "PB", 1000, "1000000000000000.00"), (1, "EB", 1000, "1000000000000000000.00"), ], ) def test_human2bytes_base(size, unit, base, result): assert bytesconv.human2bytes(size, unit, base=base) == result def test_human2bytes_raise(): with pytest.raises(ValueError, match="value is not a number"): bytesconv.human2bytes("notnumber", "KB") with pytest.raises( ValueError, match="invalid unit. It must be KB, MB, GB, TB, PB, EB, ZB" ): bytesconv.human2bytes(1, "XX") # vim: ts=4
26.854839
79
0.572973
[ "MIT" ]
thobiast/pcof
tests/test_bytesconv_human2bytes.py
1,665
Python
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import logging import os import multiprocessing import sys import numpy as np from .wrapped_decorator import signature_safe_contextmanager import six from .framework import Program, default_main_program, Variable from . import core from . import compiler from .. import compat as cpt from .trainer_factory import TrainerFactory __all__ = ['Executor', 'global_scope', 'scope_guard'] g_scope = core.Scope() InferNativeConfig = core.NativeConfig InferAnalysisConfig = core.AnalysisConfig def global_scope(): """ Get the global/default scope instance. There are a lot of APIs use :code:`global_scope` as its default value, e.g., :code:`Executor.run` Examples: .. code-block:: python import paddle.fluid as fluid import numpy fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace()) numpy.array(fluid.global_scope().find_var("data").get_tensor()) Returns: Scope: The global/default scope instance. """ return g_scope def _switch_scope(scope): global g_scope ex = g_scope g_scope = scope return ex @signature_safe_contextmanager def scope_guard(scope): """ Change the global/default scope instance by Python `with` statement. All variable in runtime will assigned to the new scope. Args: scope: The new global/default scope. Examples: .. code-block:: python import paddle.fluid as fluid import numpy new_scope = fluid.Scope() with fluid.scope_guard(new_scope): fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace()) numpy.array(new_scope.find_var("data").get_tensor()) """ ex = _switch_scope(scope) yield _switch_scope(ex) def as_numpy(tensor): """ Convert a Tensor to a numpy.ndarray, its only support Tensor without LoD information. For higher dimensional sequence data, please use LoDTensor directly. Examples: .. code-block:: python import paddle.fluid as fluid import numpy new_scope = fluid.Scope() with fluid.scope_guard(new_scope): fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace()) tensor = new_scope.find_var("data").get_tensor() fluid.executor.as_numpy(tensor) # or numpy.array(new_scope.find_var("data").get_tensor()) Args: tensor(Variable): a instance of Tensor Returns: numpy.ndarray """ if isinstance(tensor, core.LoDTensorArray): return [as_numpy(t) for t in tensor] if isinstance(tensor, list): return [as_numpy(t) for t in tensor] assert isinstance(tensor, core.LoDTensor) lod = tensor.lod() if len(lod) > 0: raise RuntimeError("Some of your fetched tensors hold LoD information. \ They can not be completely cast to Python ndarray. \ Please set the parameter 'return_numpy' as 'False' to \ return LoDTensor itself directly.") if tensor._is_initialized(): return np.array(tensor) else: return None def has_feed_operators(block, feed_targets, feed_holder_name): """ Check whether the block already has feed operators. Return false if the block does not have any feed operators. If some feed operators have been prepended to the block, check that the info contained in these feed operators matches the feed_targets and feed_holder_name. Raise exception when any mismatch is found. Return true when the block has feed operators with matching info. Args: block: a block instance (typically global block of a program) feed_targets: a dictionary of {feed_target_name: feed_target_data} feed_holder_name: the name of the variable that holds the data of all feed targets. The type of this feed_holder variable is FEED_MINIBATCH, which is essentially vector<LoDTensor>. Returns: A boolean value that indicates whether a block has feed operators that match the info contained in feed_targets and feed_holder_name. """ feed_count = 0 for op in block.ops: if op.desc.type() == 'feed': feed_count += 1 assert op.desc.input('X')[0] == feed_holder_name feed_target_name = op.desc.output('Out')[0] if feed_target_name not in feed_targets: raise Exception("'feed_targets' does not have {} variable". format(feed_target_name)) else: break if feed_count > 0 and feed_count != len(feed_targets): raise Exception( "Feed operators in program desc do not match 'feed_targets'") return feed_count > 0 def has_fetch_operators(block, fetch_targets, fetch_holder_name): """ Check whether the block already has fetch operators. Return false if the block does not have any fetch operators. If some fetch operators have been appended to the block, check that the info contained in these fetch operators matches the fetch_targets and fetch_holder_name. Raise exception when any mismatch is found. Return true when the block has fetch operators with matching info. Args: block: a block instance (typically global block of a program) fetch_targets: a dictionary of {fetch_target_name: fetch_target_data} fetch_holder_name: the name of the variable that holds the data of all fetch targets. The type of this fetch_holder variable is FETCH_LIST, which is essentially vector<LoDTensor>. Return: A boolean value that indicates whether a block has fetch operators that match the info contained in fetch_targets and fetch_holder_name. """ fetch_count = 0 for op in block.ops: if op.desc.type() == 'fetch': fetch_count += 1 assert op.desc.output('Out')[0] == fetch_holder_name fetch_target_name = op.desc.input('X')[0] if fetch_target_name not in [ var.desc.name() for var in fetch_targets ]: raise Exception("'fetch_targets' does not have {} variable". format(fetch_target_name)) idx = op.desc.attr('col') assert fetch_target_name == fetch_targets[idx].desc.name() if fetch_count > 0 and fetch_count != len(fetch_targets): raise Exception( "Fetch operators in program desc do not match 'fetch_targets'") return fetch_count > 0 def _fetch_var(name, scope=None, return_numpy=True): """ Fetch the value of the variable with the given name from the given scope. Args: name(str): name of the variable. Typically, only persistable variables can be found in the scope used for running the program. scope(core.Scope|None): scope object. It should be the scope where you pass to Executor.run() when running your program. If None, global_scope() will be used. Default None. return_numpy(bool): whether convert the tensor to numpy.ndarray. Default True. Returns: LodTensor|numpy.ndarray """ assert isinstance(name, str) if scope is None: scope = global_scope() assert isinstance(scope, core._Scope) var = scope.find_var(name) assert var is not None, ( "Cannot find " + name + " in scope. Perhaps you need to make the" " variable persistable by using var.persistable = True in your" " program.") tensor = var.get_tensor() if return_numpy: tensor = as_numpy(tensor) return tensor def _to_name_str(var): if isinstance(var, Variable): return var.desc.name() elif isinstance(var, str): return var elif isinstance(var, six.string_types): return str(var) else: raise TypeError(str(var) + " should be Variable or str") def _get_strong_program_cache_key(program, feed, fetch_list): return str(id(program)) + _get_program_cache_key(feed, fetch_list) def _get_program_cache_key(feed, fetch_list): feed_var_names = list(feed.keys()) fetch_var_names = list(map(_to_name_str, fetch_list)) return str(feed_var_names + fetch_var_names) def _as_lodtensor(data, place): """ Convert numpy.ndarray to Tensor, its only support Tensor without LoD information. For higher dimensional sequence data, please use LoDTensor directly. Examples: >>> import paddle.fluid as fluid >>> place = fluid.CPUPlace() >>> exe = fluid.executor(place) >>> data = np.array(size=(100, 200, 300)) >>> np_outs = map(lambda x: fluid.executor._as_lodtensor(x, place), data) >>> ... Args: data(numpy.ndarray): a instance of array Returns: LoDTensor """ if isinstance(data, list): raise RuntimeError("Some of your feed data hold LoD information. \ They can not be completely cast from a list of Python \ ndarray to LoDTensor. Please convert data to LoDTensor \ directly before feeding the data.\ ") # single tensor case tensor = core.LoDTensor() tensor.set(data, place) return tensor class Executor(object): """ An Executor in Python, supports single/multiple-GPU running, and single/multiple-CPU running. Python executor takes a program, adds feed operators and fetch operators to this program according to feed map and fetch_list. Feed map provides input data for the program. fetch_list provides the variables(or names) that user wants to get after program runs. Note: the executor will run all operators in the program but not only the operators dependent by the fetch_list. It stores the global variables into the global scope, and creates a local scope for the temporary variables. The contents in local scope may be discarded after every minibatch forward/backward finished. But the global scope variables will be persistent through different runs. Examples: .. code-block:: python import paddle.fluid as fluid import paddle.fluid.compiler as compiler import numpy import os use_cuda = True place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() exe = fluid.Executor(place) train_program = fluid.Program() startup_program = fluid.Program() with fluid.program_guard(train_program, startup_program): data = fluid.layers.data(name='X', shape=[1], dtype='float32') hidden = fluid.layers.fc(input=data, size=10) loss = fluid.layers.mean(hidden) fluid.optimizer.SGD(learning_rate=0.01).minimize(loss) # Run the startup program once and only once. # Not need to optimize/compile the startup program. startup_program.random_seed=1 exe.run(startup_program) # Run the main program directly without compile. x = numpy.random.random(size=(10, 1)).astype('float32') loss_data, = exe.run(train_program, feed={"X": x}, fetch_list=[loss.name]) # Or, compiled the program and run. See `CompiledProgram` # for more detail. # NOTE: If you use CPU to run the program, you need # to specify the CPU_NUM, otherwise, fluid will use # all the number of the logic core as the CPU_NUM, # in that case, the batch size of the input should be # greater than CPU_NUM, if not, the process will be # failed by an exception. if not use_cuda: os.environ['CPU_NUM'] = str(2) compiled_prog = compiler.CompiledProgram( train_program).with_data_parallel( loss_name=loss.name) loss_data, = exe.run(compiled_prog, feed={"X": x}, fetch_list=[loss.name]) Args: place(fluid.CPUPlace|fluid.CUDAPlace(n)): indicate the executor run on which device. """ def __init__(self, place): self.place = place self.program_caches = dict() self.ctx_caches = dict() self.scope_caches = dict() self.var_caches = dict() p = core.Place() p.set_place(self.place) self._default_executor = core.Executor(p) self._closed = False def _get_var_cache(self, program_cache_key): return self.var_caches.get(program_cache_key, None) def _get_scope_cache(self, program_cache_key): return self.scope_caches.get(program_cache_key, None) def _get_ctx_cache(self, program_cache_key): return self.ctx_caches.get(program_cache_key, None) def _get_program_cache(self, program_cache_key): return self.program_caches.get(program_cache_key, None) def _add_program_cache(self, program_cache_key, program): self.program_caches[program_cache_key] = program def _add_ctx_cache(self, ctx_cache_key, ctx): self.ctx_caches[ctx_cache_key] = ctx def _add_scope_cache(self, scope_cache_key, scope): self.scope_caches[scope_cache_key] = scope def _add_var_cache(self, var_cache_key, var): self.var_caches[var_cache_key] = var def _add_feed_fetch_ops(self, program, feed, fetch_list, feed_var_name, fetch_var_name): tmp_program = program.clone() global_block = tmp_program.global_block() if feed_var_name in global_block.vars: feed_var = global_block.var(feed_var_name) else: feed_var = global_block.create_var( name=feed_var_name, type=core.VarDesc.VarType.FEED_MINIBATCH, persistable=True) if fetch_var_name in global_block.vars: fetch_var = global_block.var(fetch_var_name) else: fetch_var = global_block.create_var( name=fetch_var_name, type=core.VarDesc.VarType.FETCH_LIST, persistable=True) # prepend feed operators if not has_feed_operators(global_block, feed, feed_var_name): for i, name in enumerate(feed): out = global_block.var(name) global_block._prepend_op( type='feed', inputs={'X': [feed_var]}, outputs={'Out': [out]}, attrs={'col': i}) # append fetch_operators if not has_fetch_operators(global_block, fetch_list, fetch_var_name): for i, var in enumerate(fetch_list): assert isinstance(var, Variable) or isinstance( var, six.string_types), ( "Wrong type for fetch_list[%s]: %s" % (i, type(var))) global_block.append_op( type='fetch', inputs={'X': [var]}, outputs={'Out': [fetch_var]}, attrs={'col': i}) return tmp_program def _feed_data(self, program, feed, feed_var_name, scope): # feed var to framework for op in program.global_block().ops: if op.desc.type() == 'feed': feed_target_name = op.desc.output('Out')[0] cur_feed = feed[feed_target_name] if not isinstance(cur_feed, core.LoDTensor): cur_feed = _as_lodtensor(cur_feed, self.place) idx = op.desc.attr('col') core.set_feed_variable(scope, cur_feed, feed_var_name, idx) else: break def _fetch_data(self, fetch_list, fetch_var_name, scope): outs = [ core.get_fetch_variable(scope, fetch_var_name, i) for i in six.moves.range(len(fetch_list)) ] return outs ''' TODO(typhoonzero): Define "no longer use" meaning? Can user create a new Executor for the same program and run? TODO(panyx0718): Why ParallelExecutor doesn't have close? ''' def close(self): """ Close this executor. You can no longer use this executor after calling this method. For the distributed training, this method would free the resource on PServers related to the current Trainer. Examples: .. code-block:: python import paddle.fluid as fluid cpu = fluid.CPUPlace() exe = fluid.Executor(cpu) # execute training or testing exe.close() """ if not self._closed: self._default_executor.close() self._closed = True def _run_parallel(self, program, scope, feed, fetch_list, fetch_var_name, return_numpy): exe = program._executor if isinstance(feed, dict): feed_tensor_dict = dict() for feed_name in feed: feed_tensor = feed[feed_name] if not isinstance(feed_tensor, core.LoDTensor): feed_tensor = core.LoDTensor() # always set to CPU place, since the tensor need to be splitted # it is fast in CPU feed_tensor.set(feed[feed_name], core.CPUPlace()) feed_tensor_dict[feed_name] = feed_tensor exe.feed_and_split_tensor_into_local_scopes(feed_tensor_dict) elif isinstance(feed, list) or isinstance(feed, tuple): if len(feed) != len(program._places): raise ValueError( "Feed a list of tensor, the list should be the same size as places" ) res = list() for i, each in enumerate(feed): if not isinstance(each, dict): raise TypeError( "Each element of feed list should be a dict") res_dict = dict() for feed_name in each: tensor = each[feed_name] if not isinstance(tensor, core.LoDTensor): tmp = core.LoDTensor() tmp.set(tensor, program._places[i]) tensor = tmp res_dict[feed_name] = tensor res.append(res_dict) exe.feed_tensors_into_local_scopes(res) fetch_var_names = list(map(_to_name_str, fetch_list)) exe.run(fetch_var_names, fetch_var_name) arr = scope.find_var(fetch_var_name).get_lod_tensor_array() if return_numpy: return as_numpy(arr) return [arr[i] for i in range(len(arr))] def _check_fetch_vars_persistable(self, program, fetch_list): for var in fetch_list: if isinstance(var, Variable): persistable = var.persistable else: block_num = program.desc.num_blocks() persistable = None var_name = cpt.to_bytes(var) for i in six.moves.range(block_num): var_desc = program.desc.block(i).find_var(var_name) if var_desc: persistable = var_desc.persistable() break assert persistable is not None, "Variable {} is not found".format( var) if not persistable: logging.warn(""" Detect that build_strategy.memory_optimize = True, but the some variables in the fetch list is not persistable, you may get wrong fetched value, or an exeception may be thrown about cannot find variable of the fetch list. TO FIX this: # Sample conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None) # if you need to fetch conv1, then: conv1.persistable = True """) def run(self, program=None, feed=None, fetch_list=None, feed_var_name='feed', fetch_var_name='fetch', scope=None, return_numpy=True, use_program_cache=False): """ Run program by this Executor. Feed data by feed map, fetch result by fetch_list. Python executor takes a program, add feed operators and fetch operators to this program according to feed map and fetch_list. Feed map provides input data for the program. fetch_list provides the variables(or names) that user want to get after program run. Note: the executor will run all operators in the program but not only the operators dependent by the fetch_list. Examples: .. code-block:: python import paddle.fluid as fluid import numpy # First create the Executor. place = fluid.CPUPlace() # fluid.CUDAPlace(0) exe = fluid.Executor(place) data = fluid.layers.data(name='X', shape=[1], dtype='float32') hidden = fluid.layers.fc(input=data, size=10) loss = fluid.layers.mean(hidden) adam = fluid.optimizer.Adam() adam.minimize(loss) # Run the startup program once and only once. exe.run(fluid.default_startup_program()) x = numpy.random.random(size=(10, 1)).astype('float32') outs = exe.run(feed={'X': x}, fetch_list=[loss.name]) Args: program(Program|CompiledProgram): the program that need to run, if not provided, then default_main_program (not compiled) will be used. feed(dict): feed variable map, e.g. {"image": ImageData, "label": LabelData} fetch_list(list): a list of variable or variable names that user wants to get, this method will return them according to this list. feed_var_name(str): the name for the input variable of feed Operator. fetch_var_name(str): the name for the output variable of fetch Operator. scope(Scope): the scope used to run this program, you can switch it to different scope. default is global_scope return_numpy(bool): if convert the fetched tensor to numpy use_program_cache(bool): whether to use the cached program settings across batches. Setting it be true would be faster only when (1) the program is not compiled with data parallel, and (2) program, feed variable names and fetch_list variable names do not changed compared to the last step. Returns: list(numpy.array): fetch result according to fetch_list. """ try: return self._run_impl( program=program, feed=feed, fetch_list=fetch_list, feed_var_name=feed_var_name, fetch_var_name=fetch_var_name, scope=scope, return_numpy=return_numpy, use_program_cache=use_program_cache) except Exception as e: if not isinstance(e, core.EOFException): print("An exception was thrown!\n {}".format(str(e))) raise e def _run_impl(self, program, feed, fetch_list, feed_var_name, fetch_var_name, scope, return_numpy, use_program_cache): if self._closed: raise RuntimeError("Attempted to use a closed Executor") if scope is None: scope = global_scope() if fetch_list is None: fetch_list = [] compiled = isinstance(program, compiler.CompiledProgram) # For backward compatibility, run directly. if not compiled: return self._run_program( program, self._default_executor, feed=feed, fetch_list=fetch_list, feed_var_name=feed_var_name, fetch_var_name=fetch_var_name, scope=scope, return_numpy=return_numpy, use_program_cache=use_program_cache) else: if fetch_list and program._is_data_parallel and program._program and \ program._build_strategy._use_legacy_memory_optimize_strategy: self._check_fetch_vars_persistable(program._program, fetch_list) program._compile(scope, self.place) if program._is_data_parallel: return self._run_parallel( program, scope=scope, feed=feed, fetch_list=fetch_list, fetch_var_name=fetch_var_name, return_numpy=return_numpy) elif program._is_inference: return self._run_inference(program._executor, feed) else: # TODO(panyx0718): Can compile program to optimize executor # performance. # TODO(panyx0718): executor should be able to run graph. assert program._program, "CompiledProgram is compiled from graph, can only run with_data_parallel." # use_program_cache is not valid with CompiledProgram return self._run_program( program._program, self._default_executor, feed=feed, fetch_list=fetch_list, feed_var_name=feed_var_name, fetch_var_name=fetch_var_name, scope=scope, return_numpy=return_numpy, use_program_cache=False) def _run_program(self, program, exe, feed, fetch_list, feed_var_name, fetch_var_name, scope, return_numpy, use_program_cache): if feed is None: feed = {} elif isinstance(feed, (list, tuple)): assert len(feed) == 1, "Not compiled with data parallel" feed = feed[0] if not isinstance(feed, dict): raise TypeError( "feed requires dict as its Parameter. But you passed in %s" % (type(feed))) if program is None: program = default_main_program() if not isinstance(program, Program): raise TypeError( "Executor requires Program as its Parameter. But you passed in %s" % (type(program))) if use_program_cache: cache_key = _get_strong_program_cache_key(program, feed, fetch_list) cached_program = self._get_program_cache(cache_key) cached_ctx = self._get_ctx_cache(cache_key) cached_scope = self._get_scope_cache(cache_key) cached_var = self._get_var_cache(cache_key) if cached_program is None: cached_program = self._add_feed_fetch_ops( program=program, feed=feed, fetch_list=fetch_list, feed_var_name=feed_var_name, fetch_var_name=fetch_var_name) self._add_program_cache(cache_key, cached_program) fetch_list_str = list(map(_to_name_str, fetch_list)) cached_ctx = self._default_executor.prepare_ctx_cache( cached_program.desc, 0, fetch_list_str, False) cached_var = self._default_executor.create_variables( cached_program.desc, scope, 0) # currently, we cache program, vars, sub_scope here # we suppose that in a life cycle of training, a user # will not create many programs. So, here the basic # rule of caching is to cache all unseen (program, var, scope) # when a user use use_program_cache. cached_scope = scope.new_scope() self._add_ctx_cache(cache_key, cached_ctx) self._add_var_cache(cache_key, cached_var) self._add_scope_cache(cache_key, cached_scope) program = cached_program ctx = cached_ctx scope = cached_scope var = cached_var else: program = self._add_feed_fetch_ops( program=program, feed=feed, fetch_list=fetch_list, feed_var_name=feed_var_name, fetch_var_name=fetch_var_name) self._feed_data(program, feed, feed_var_name, scope) if not use_program_cache: exe.run(program.desc, scope, 0, True, True, fetch_var_name) else: exe.run_cached_prepared_ctx(ctx, scope, False, False, False) outs = self._fetch_data(fetch_list, fetch_var_name, scope) if return_numpy: outs = as_numpy(outs) return outs def _run_inference(self, exe, feed): return exe.run(feed) def _dump_debug_info(self, program=None, trainer=None): with open(str(id(program)) + "_train_desc.prototxt", "w") as fout: fout.write(str(trainer)) if program._fleet_opt: with open("fleet_desc.prototxt", "w") as fout: fout.write(str(program._fleet_opt["fleet_desc"])) def _adjust_pipeline_resource(self, pipeline_opt, dataset, pipeline_num): filelist_length = len(dataset.dataset.get_filelist()) if filelist_length < pipeline_num: pipeline_num = filelist_length print( "Pipeline training: setting the pipeline num to %d is enough because there are only %d files" % (filelist_length, filelist_length)) if filelist_length < pipeline_num * pipeline_opt["concurrency_list"][0]: print( "Pipeline training: setting the 1st element in concurrency_list to %d is enough because there are only %d files" % (filelist_length // pipeline_num, filelist_length)) pipeline_opt["concurrency_list"][ 0] = filelist_length // pipeline_num dataset.set_thread(pipeline_opt["concurrency_list"][0] * pipeline_num) return pipeline_num def _prepare_trainer(self, program=None, dataset=None, scope=None, thread=0, debug=False, fetch_list=None, fetch_info=None, print_period=100): if scope is None: scope = global_scope() if fetch_list is None: fetch_list = [] if fetch_info is None: fetch_info = [] assert len(fetch_list) == len(fetch_info) compiled = isinstance(program, compiler.CompiledProgram) if not compiled: # TODO: Need a better way to distinguish and specify different execution mode if program._pipeline_opt: trainer = TrainerFactory()._create_trainer( program._pipeline_opt) else: trainer = TrainerFactory()._create_trainer(program._fleet_opt) trainer._set_program(program) else: if program._pipeline_opt: trainer = TrainerFactory()._create_trainer( program.program._pipeline_opt) else: trainer = TrainerFactory()._create_trainer( program.program._fleet_opt) trainer._set_program(program.program) # The following thread_num-determined logic will be deprecated if thread <= 0: if dataset.thread_num <= 0: raise RuntimeError( "You should set thread num first, either in Dataset" "or in Executor.train_from_dataset") else: trainer._set_thread(dataset.thread_num) else: trainer._set_thread(thread) trainer._set_debug(debug) trainer._set_fetch_var_and_info(fetch_list, fetch_info, print_period) return scope, trainer def infer_from_dataset(self, program=None, dataset=None, scope=None, thread=0, debug=False, fetch_list=None, fetch_info=None, print_period=100): """ The document of infer_from_dataset is almost the same as train_from_dataset, except that in distributed training, push gradients will be disabled in infer_from_dataset. infer_from_dataset() can be used for evaluation in multi-thread very easily. Args: program(Program|CompiledProgram): the program that needs to be run, if not provided, then default_main_program (not compiled) will be used. dataset(paddle.fluid.Dataset): dataset created outside this function, a user should provide a well-defined dataset before calling this function. Please check the document of Dataset if needed. default is None scope(Scope): the scope used to run this program, you can switch it to different scope for each run. default is global_scope thread(int): number of thread a user wants to run in this function. The actual number of thread will be min(Dataset.thread_num, thread) if thread > 0, default is 0 debug(bool): whether a user wants to run infer_from_dataset, default is False fetch_list(Variable List): fetch variable list, each variable will be printed during training, default is None fetch_info(String List): print information for each variable, default is None print_period(int): the number of mini-batches for each print, default is 100 Returns: None Examples: .. code-block:: python import paddle.fluid as fluid place = fluid.CPUPlace() # you can set place = fluid.CUDAPlace(0) to use gpu exe = fluid.Executor(place) x = fluid.layers.data(name="x", shape=[10, 10], dtype="int64") y = fluid.layers.data(name="y", shape=[1], dtype="int64", lod_level=1) dataset = fluid.DatasetFactory().create_dataset() dataset.set_use_var([x, y]) dataset.set_thread(1) filelist = [] # you should set your own filelist, e.g. filelist = ["dataA.txt"] dataset.set_filelist(filelist) exe.run(fluid.default_startup_program()) exe.infer_from_dataset(program=fluid.default_main_program(), dataset=dataset) """ if dataset == None: raise RuntimeError("dataset is needed and should be initialized") dataset._prepare_to_run() scope, trainer = self._prepare_trainer( program=program, dataset=dataset, scope=scope, thread=thread, debug=debug, fetch_list=fetch_list, fetch_info=fetch_info, print_period=print_period) trainer._set_infer(True) trainer._gen_trainer_desc() self._dump_debug_info(program=program, trainer=trainer) self._default_executor.run_from_dataset(program.desc, scope, dataset.dataset, trainer._desc()) dataset._finish_to_run() return None def train_from_dataset(self, program=None, dataset=None, scope=None, thread=0, debug=False, fetch_list=None, fetch_info=None, print_period=100): """ Train from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset. Given a program, either a program or compiled program, train_from_dataset will consume all data samples in dataset. Input scope can be given by users. By default, scope is global_scope(). The total number of thread run in training is `thread`. Thread number used in training will be minimum value of threadnum in Dataset and the value of thread in this interface. Debug can be set so that executor will display Run-Time for all operators and the throughputs of current training task. Note: train_from_dataset will destroy all resources created within executor for each run. Args: program(Program|CompiledProgram): the program that needs to be run, if not provided, then default_main_program (not compiled) will be used. dataset(paddle.fluid.Dataset): dataset created outside this function, a user should provide a well-defined dataset before calling this function. Please check the document of Dataset if needed. scope(Scope): the scope used to run this program, you can switch it to different scope for each run. default is global_scope thread(int): number of thread a user wants to run in this function. The actual number of thread will be min(Dataset.thread_num, thread) debug(bool): whether a user wants to run train_from_dataset fetch_list(Variable List): fetch variable list, each variable will be printed during training fetch_info(String List): print information for each variable print_period(int): the number of mini-batches for each print Returns: None Examples: .. code-block:: python import paddle.fluid as fluid place = fluid.CPUPlace() # you can set place = fluid.CUDAPlace(0) to use gpu exe = fluid.Executor(place) x = fluid.layers.data(name="x", shape=[10, 10], dtype="int64") y = fluid.layers.data(name="y", shape=[1], dtype="int64", lod_level=1) dataset = fluid.DatasetFactory().create_dataset() dataset.set_use_var([x, y]) dataset.set_thread(1) filelist = [] # you should set your own filelist, e.g. filelist = ["dataA.txt"] dataset.set_filelist(filelist) exe.run(fluid.default_startup_program()) exe.train_from_dataset(program=fluid.default_main_program(), dataset=dataset) """ if dataset == None: raise RuntimeError("dataset is need and should be initialized") if program._pipeline_opt: thread = self._adjust_pipeline_resource(program._pipeline_opt, dataset, thread) dataset._prepare_to_run() scope, trainer = self._prepare_trainer( program=program, dataset=dataset, scope=scope, thread=thread, debug=debug, fetch_list=fetch_list, fetch_info=fetch_info, print_period=print_period) trainer._gen_trainer_desc() self._dump_debug_info(program=program, trainer=trainer) self._default_executor.run_from_dataset(program.desc, scope, dataset.dataset, trainer._desc()) dataset._finish_to_run() return None
40.401388
128
0.598504
[ "Apache-2.0" ]
AnKingOne/Paddle
python/paddle/fluid/executor.py
40,765
Python
def area(l,c): a = l*c return f'A area de um terreno {l}x{c} e de {a}m²' print("Controle de Terrenos") print() largura = float(input("Largura (m): ")) altura = float(input("altura (m): ")) print(area(largura,altura))
28
53
0.633929
[ "MIT" ]
AbelRapha/Python-Exercicios-CeV
Mundo 3/ex096 Funcao que Calcula Area.py
225
Python
import numpy as np import pandas as pd from pandas import DataFrame, MultiIndex, Index, Series, isnull from pandas.compat import lrange from pandas.util.testing import assert_frame_equal, assert_series_equal from .common import MixIn class TestNth(MixIn): def test_first_last_nth(self): # tests for first / last / nth grouped = self.df.groupby('A') first = grouped.first() expected = self.df.loc[[1, 0], ['B', 'C', 'D']] expected.index = Index(['bar', 'foo'], name='A') expected = expected.sort_index() assert_frame_equal(first, expected) nth = grouped.nth(0) assert_frame_equal(nth, expected) last = grouped.last() expected = self.df.loc[[5, 7], ['B', 'C', 'D']] expected.index = Index(['bar', 'foo'], name='A') assert_frame_equal(last, expected) nth = grouped.nth(-1) assert_frame_equal(nth, expected) nth = grouped.nth(1) expected = self.df.loc[[2, 3], ['B', 'C', 'D']].copy() expected.index = Index(['foo', 'bar'], name='A') expected = expected.sort_index() assert_frame_equal(nth, expected) # it works! grouped['B'].first() grouped['B'].last() grouped['B'].nth(0) self.df.loc[self.df['A'] == 'foo', 'B'] = np.nan assert isnull(grouped['B'].first()['foo']) assert isnull(grouped['B'].last()['foo']) assert isnull(grouped['B'].nth(0)['foo']) # v0.14.0 whatsnew df = DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=['A', 'B']) g = df.groupby('A') result = g.first() expected = df.iloc[[1, 2]].set_index('A') assert_frame_equal(result, expected) expected = df.iloc[[1, 2]].set_index('A') result = g.nth(0, dropna='any') assert_frame_equal(result, expected) def test_first_last_nth_dtypes(self): df = self.df_mixed_floats.copy() df['E'] = True df['F'] = 1 # tests for first / last / nth grouped = df.groupby('A') first = grouped.first() expected = df.loc[[1, 0], ['B', 'C', 'D', 'E', 'F']] expected.index = Index(['bar', 'foo'], name='A') expected = expected.sort_index() assert_frame_equal(first, expected) last = grouped.last() expected = df.loc[[5, 7], ['B', 'C', 'D', 'E', 'F']] expected.index = Index(['bar', 'foo'], name='A') expected = expected.sort_index() assert_frame_equal(last, expected) nth = grouped.nth(1) expected = df.loc[[3, 2], ['B', 'C', 'D', 'E', 'F']] expected.index = Index(['bar', 'foo'], name='A') expected = expected.sort_index() assert_frame_equal(nth, expected) # GH 2763, first/last shifting dtypes idx = lrange(10) idx.append(9) s = Series(data=lrange(11), index=idx, name='IntCol') assert s.dtype == 'int64' f = s.groupby(level=0).first() assert f.dtype == 'int64' def test_nth(self): df = DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=['A', 'B']) g = df.groupby('A') assert_frame_equal(g.nth(0), df.iloc[[0, 2]].set_index('A')) assert_frame_equal(g.nth(1), df.iloc[[1]].set_index('A')) assert_frame_equal(g.nth(2), df.loc[[]].set_index('A')) assert_frame_equal(g.nth(-1), df.iloc[[1, 2]].set_index('A')) assert_frame_equal(g.nth(-2), df.iloc[[0]].set_index('A')) assert_frame_equal(g.nth(-3), df.loc[[]].set_index('A')) assert_series_equal(g.B.nth(0), df.set_index('A').B.iloc[[0, 2]]) assert_series_equal(g.B.nth(1), df.set_index('A').B.iloc[[1]]) assert_frame_equal(g[['B']].nth(0), df.loc[[0, 2], ['A', 'B']].set_index('A')) exp = df.set_index('A') assert_frame_equal(g.nth(0, dropna='any'), exp.iloc[[1, 2]]) assert_frame_equal(g.nth(-1, dropna='any'), exp.iloc[[1, 2]]) exp['B'] = np.nan assert_frame_equal(g.nth(7, dropna='any'), exp.iloc[[1, 2]]) assert_frame_equal(g.nth(2, dropna='any'), exp.iloc[[1, 2]]) # out of bounds, regression from 0.13.1 # GH 6621 df = DataFrame({'color': {0: 'green', 1: 'green', 2: 'red', 3: 'red', 4: 'red'}, 'food': {0: 'ham', 1: 'eggs', 2: 'eggs', 3: 'ham', 4: 'pork'}, 'two': {0: 1.5456590000000001, 1: -0.070345000000000005, 2: -2.4004539999999999, 3: 0.46206000000000003, 4: 0.52350799999999997}, 'one': {0: 0.56573799999999996, 1: -0.9742360000000001, 2: 1.033801, 3: -0.78543499999999999, 4: 0.70422799999999997}}).set_index(['color', 'food']) result = df.groupby(level=0, as_index=False).nth(2) expected = df.iloc[[-1]] assert_frame_equal(result, expected) result = df.groupby(level=0, as_index=False).nth(3) expected = df.loc[[]] assert_frame_equal(result, expected) # GH 7559 # from the vbench df = DataFrame(np.random.randint(1, 10, (100, 2)), dtype='int64') s = df[1] g = df[0] expected = s.groupby(g).first() expected2 = s.groupby(g).apply(lambda x: x.iloc[0]) assert_series_equal(expected2, expected, check_names=False) assert expected.name, 0 assert expected.name == 1 # validate first v = s[g == 1].iloc[0] assert expected.iloc[0] == v assert expected2.iloc[0] == v # this is NOT the same as .first (as sorted is default!) # as it keeps the order in the series (and not the group order) # related GH 7287 expected = s.groupby(g, sort=False).first() result = s.groupby(g, sort=False).nth(0, dropna='all') assert_series_equal(result, expected) # doc example df = DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=['A', 'B']) g = df.groupby('A') result = g.B.nth(0, dropna=True) expected = g.B.first() assert_series_equal(result, expected) # test multiple nth values df = DataFrame([[1, np.nan], [1, 3], [1, 4], [5, 6], [5, 7]], columns=['A', 'B']) g = df.groupby('A') assert_frame_equal(g.nth(0), df.iloc[[0, 3]].set_index('A')) assert_frame_equal(g.nth([0]), df.iloc[[0, 3]].set_index('A')) assert_frame_equal(g.nth([0, 1]), df.iloc[[0, 1, 3, 4]].set_index('A')) assert_frame_equal( g.nth([0, -1]), df.iloc[[0, 2, 3, 4]].set_index('A')) assert_frame_equal( g.nth([0, 1, 2]), df.iloc[[0, 1, 2, 3, 4]].set_index('A')) assert_frame_equal( g.nth([0, 1, -1]), df.iloc[[0, 1, 2, 3, 4]].set_index('A')) assert_frame_equal(g.nth([2]), df.iloc[[2]].set_index('A')) assert_frame_equal(g.nth([3, 4]), df.loc[[]].set_index('A')) business_dates = pd.date_range(start='4/1/2014', end='6/30/2014', freq='B') df = DataFrame(1, index=business_dates, columns=['a', 'b']) # get the first, fourth and last two business days for each month key = (df.index.year, df.index.month) result = df.groupby(key, as_index=False).nth([0, 3, -2, -1]) expected_dates = pd.to_datetime( ['2014/4/1', '2014/4/4', '2014/4/29', '2014/4/30', '2014/5/1', '2014/5/6', '2014/5/29', '2014/5/30', '2014/6/2', '2014/6/5', '2014/6/27', '2014/6/30']) expected = DataFrame(1, columns=['a', 'b'], index=expected_dates) assert_frame_equal(result, expected) def test_nth_multi_index(self): # PR 9090, related to issue 8979 # test nth on MultiIndex, should match .first() grouped = self.three_group.groupby(['A', 'B']) result = grouped.nth(0) expected = grouped.first() assert_frame_equal(result, expected) def test_nth_multi_index_as_expected(self): # PR 9090, related to issue 8979 # test nth on MultiIndex three_group = DataFrame( {'A': ['foo', 'foo', 'foo', 'foo', 'bar', 'bar', 'bar', 'bar', 'foo', 'foo', 'foo'], 'B': ['one', 'one', 'one', 'two', 'one', 'one', 'one', 'two', 'two', 'two', 'one'], 'C': ['dull', 'dull', 'shiny', 'dull', 'dull', 'shiny', 'shiny', 'dull', 'shiny', 'shiny', 'shiny']}) grouped = three_group.groupby(['A', 'B']) result = grouped.nth(0) expected = DataFrame( {'C': ['dull', 'dull', 'dull', 'dull']}, index=MultiIndex.from_arrays([['bar', 'bar', 'foo', 'foo'], ['one', 'two', 'one', 'two']], names=['A', 'B'])) assert_frame_equal(result, expected) def test_nth_empty(): # GH 16064 df = DataFrame(index=[0], columns=['a', 'b', 'c']) result = df.groupby('a').nth(10) expected = DataFrame(index=Index([], name='a'), columns=['b', 'c']) assert_frame_equal(result, expected) result = df.groupby(['a', 'b']).nth(10) expected = DataFrame(index=MultiIndex([[], []], [[], []], names=['a', 'b']), columns=['c']) assert_frame_equal(result, expected)
40.225806
79
0.498697
[ "MIT" ]
QiqeMtz/Ethereum_Forecast
lib/python3.6/site-packages/pandas/tests/groupby/test_nth.py
9,976
Python
import tensorflow as tf class Layers(object): def __init__(self): self.name_bank, self.params_trainable = [], [] self.num_params = 0 self.initializer_xavier = tf.initializers.glorot_normal() def elu(self, inputs): return tf.nn.elu(inputs) def relu(self, inputs): return tf.nn.relu(inputs) def sigmoid(self, inputs): return tf.nn.sigmoid(inputs) def softmax(self, inputs): return tf.nn.softmax(inputs) def swish(self, inputs): return tf.nn.swish(inputs) def relu6(self, inputs): return tf.nn.relu6(inputs) def dropout(self, inputs, rate): return tf.nn.dropout(inputs, rate=rate) def maxpool(self, inputs, pool_size, stride_size): return tf.nn.max_pool2d(inputs, ksize=[1, pool_size, pool_size, 1], \ padding='VALID', strides=[1, stride_size, stride_size, 1]) def avgpool(self, inputs, pool_size, stride_size): return tf.nn.avg_pool2d(inputs, ksize=[1, pool_size, pool_size, 1], \ padding='VALID', strides=[1, stride_size, stride_size, 1]) def get_weight(self, vshape, transpose=False, bias=True, name=""): try: idx_w = self.name_bank.index("%s_w" %(name)) if(bias): idx_b = self.name_bank.index("%s_b" %(name)) except: w = tf.Variable(self.initializer_xavier(vshape), \ name="%s_w" %(name), trainable=True, dtype=tf.float32) self.name_bank.append("%s_w" %(name)) self.params_trainable.append(w) tmpparams = 1 for d in vshape: tmpparams *= d self.num_params += tmpparams if(bias): if(transpose): b = tf.Variable(self.initializer_xavier([vshape[-2]]), \ name="%s_b" %(name), trainable=True, dtype=tf.float32) else: b = tf.Variable(self.initializer_xavier([vshape[-1]]), \ name="%s_b" %(name), trainable=True, dtype=tf.float32) self.name_bank.append("%s_b" %(name)) self.params_trainable.append(b) self.num_params += vshape[-2] else: w = self.params_trainable[idx_w] if(bias): b = self.params_trainable[idx_b] if(bias): return w, b else: return w def fullcon(self, inputs, variables): [weights, biasis] = variables out = tf.matmul(inputs, weights) + biasis return out def conv2d(self, inputs, variables, stride_size, padding): [weights, biasis] = variables out = tf.nn.conv2d(inputs, weights, \ strides=[1, stride_size, stride_size, 1], padding=padding) + biasis return out def dwconv2d(self, inputs, variables, stride_size, padding): [weights, biasis] = variables out = tf.nn.depthwise_conv2d(inputs, weights, \ strides=[1, stride_size, stride_size, 1], padding=padding) + biasis return out def batch_norm(self, inputs, name=""): # https://arxiv.org/pdf/1502.03167.pdf mean = tf.reduce_mean(inputs) std = tf.math.reduce_std(inputs) var = std**2 try: idx_offset = self.name_bank.index("%s_offset" %(name)) idx_scale = self.name_bank.index("%s_scale" %(name)) except: offset = tf.Variable(0, \ name="%s_offset" %(name), trainable=True, dtype=tf.float32) self.name_bank.append("%s_offset" %(name)) self.params_trainable.append(offset) self.num_params += 1 scale = tf.Variable(1, \ name="%s_scale" %(name), trainable=True, dtype=tf.float32) self.name_bank.append("%s_scale" %(name)) self.params_trainable.append(scale) self.num_params += 1 else: offset = self.params_trainable[idx_offset] scale = self.params_trainable[idx_scale] offset # zero scale # one out = tf.nn.batch_normalization( x = inputs, mean=mean, variance=var, offset=offset, scale=scale, variance_epsilon=1e-12, name=name ) return out
33.943548
87
0.578997
[ "MIT" ]
YeongHyeon/ReXNet-TF2
source/layers.py
4,209
Python
# python3 imports from re import compile as compile_regex from gettext import gettext as _ # project imports from wintersdeep_postcode.postcode import Postcode from wintersdeep_postcode.exceptions.validation_fault import ValidationFault ## A wrapper for validation of standard postcodes # @remarks see \ref wintersdeep_postcode.postcode_types.standard_postcode class StandardPostcodeValidator(object): ## Areas that only have single digit districts (ignoring sub-divisions) # @remarks loaded from JSON file 'standard_postcode_validator.json' AreasWithOnlySingleDigitDistricts = [] ## Checks if a postcode is in an area with only single digit districts and if # so - that the district specified is only a single digit. # @param cls the type of class that is invoking this method. # @param postcode the postcode to check for conformance to this rule. # @returns True if the postcode violates this rule, else False. @classmethod def CheckAreasWithOnlySingleDigitDistricts(cls, postcode): impacted_by_rule = False if postcode.outward_district >= 10: single_digit_districts = cls.AreasWithOnlySingleDigitDistricts impacted_by_rule = postcode.outward_area in single_digit_districts return impacted_by_rule ## Areas that only have double digit districts (ignoring sub-divisions) # @remarks loaded from JSON file 'standard_postcode_validator.json' AreasWithOnlyDoubleDigitDistricts = [] ## Checks if a postcode is in an area with only double digit districts and # if so - that the district specified has two digits as required. # @param cls the type of class that is invoking this method. # @param postcode the postcode to check for conformance to this rule. # @returns True if the postcode violates this rule, else False. @classmethod def CheckAreasWithOnlyDoubleDigitDistricts(cls, postcode): impacted_by_rule = False if postcode.outward_district <= 9: double_digit_districts = cls.AreasWithOnlyDoubleDigitDistricts impacted_by_rule = postcode.outward_area in double_digit_districts return impacted_by_rule ## Areas that have a district zero. # @remarks loaded from JSON file 'standard_postcode_validator.json' AreasWithDistrictZero = [] ## Checks if a postcode has a district zero if it specified one. # @param cls the type of class that is invoking this method. # @param postcode the postcode to check for conformance to this rule. # @returns True if the postcode violates this rule, else False. @classmethod def CheckAreasWithDistrictZero(cls, postcode): impacted_by_rule = False if postcode.outward_district == 0: areas_with_district_zero = cls.AreasWithDistrictZero impacted_by_rule = not postcode.outward_area in areas_with_district_zero return impacted_by_rule ## Areas that do not have a district 10 # @remarks loaded from JSON file 'standard_postcode_validator.json' AreasWithoutDistrictTen = [] ## Checks if a postcode has a district ten if it specified one. # @param cls the type of class that is invoking this method. # @param postcode the postcode to check for conformance to this rule. # @returns True if the postcode violates this rule, else False. @classmethod def CheckAreasWithoutDistrictTen(cls, postcode): impacted_by_rule = False if postcode.outward_district == 10: areas_without_district_ten = cls.AreasWithoutDistrictTen impacted_by_rule = postcode.outward_area in areas_without_district_ten return impacted_by_rule ## Only a few areas have subdivided districts # @remarks loaded from JSON file 'standard_postcode_validator.json' AreasWithSubdistricts = {} ## If a postcode has subdistricts, check its supposed to. # @param cls the type of class that is invoking this method. # @param postcode the postcode to check for conformance to this rule. # @returns True if the postcode violates this rule, else False. @classmethod def CheckAreasWithSubdistricts(cls, postcode): impacted_by_rule = False if postcode.outward_subdistrict: areas_with_subdistricts = cls.AreasWithSubdistricts impacted_by_rule = not postcode.outward_area in areas_with_subdistricts if not impacted_by_rule: subdivided_districts_in_area = areas_with_subdistricts[postcode.outward_area] if subdivided_districts_in_area: impacted_by_rule = not postcode.outward_district in subdivided_districts_in_area return impacted_by_rule ## If a postcode has a limited selection of subdistricts, makes sure any set are in scope. # @param cls the type of class that is invoking this method. # @param postcode the postcode to check for conformance to this rule. # @returns True if the postcode violates this rule, else False. @classmethod def CheckAreasWithSpecificSubdistricts(cls, postcode): impacted_by_rule = False if postcode.outward_subdistrict: areas_with_subdistricts = cls.AreasWithSubdistricts subdivided_districts_in_area = areas_with_subdistricts.get(postcode.outward_area, {}) specific_subdistrict_codes = subdivided_districts_in_area.get(postcode.outward_district, None) impacted_by_rule = specific_subdistrict_codes and \ not postcode.outward_subdistrict in specific_subdistrict_codes return impacted_by_rule ## Charactesr that are not used in the first position. # @remarks loaded from JSON file 'standard_postcode_validator.json' FirstPositionExcludes = [] ## Checks that a postcode does not include usued characters in the first postition. # @param cls the type of class that is invoking this method. # @param postcode the postcode to check for conformance to this rule. # @returns True if the postcode violates this rule, else False. @classmethod def CheckFirstPositionExcludes(cls, postcode): first_postion_char = postcode.outward_area[0] impacted_by_rule = first_postion_char in cls.FirstPositionExcludes return impacted_by_rule ## Charactesr that are not used in the second position. # @remarks loaded from JSON file 'standard_postcode_validator.json' SecondPositionExcludes = [] ## Checks that a postcode does not include unused characters in the second postition. # @param cls the type of class that is invoking this method. # @param postcode the postcode to check for conformance to this rule. # @returns True if the postcode violates this rule, else False. @classmethod def CheckSecondPositionExcludes(cls, postcode): impacted_by_rule = False if len(postcode.outward_area) > 1: second_postion_char = postcode.outward_area[1] impacted_by_rule = second_postion_char in cls.SecondPositionExcludes return impacted_by_rule ## Charactesr that are used in the third apha position (for single digit areas). # @remarks loaded from JSON file 'standard_postcode_validator.json' SingleDigitAreaSubdistricts = [] ## Checks that a postcode does not include unused subdistricts for single digit areas. # @param cls the type of class that is invoking this method. # @param postcode the postcode to check for conformance to this rule. # @returns True if the postcode violates this rule, else False. @classmethod def CheckSingleDigitAreaSubdistricts(cls, postcode): impacted_by_rule = False if postcode.outward_subdistrict: if len(postcode.outward_area) == 1: allowed_subdistricts = cls.SingleDigitAreaSubdistricts subdistrict = postcode.outward_subdistrict impacted_by_rule = not subdistrict in allowed_subdistricts return impacted_by_rule ## Charactesr that are used in the fourth apha position (for double digit areas). # @remarks loaded from JSON file 'standard_postcode_validator.json' DoubleDigitAreaSubdistricts = [] ## Checks that a postcode does not include unused subdistricts for double digit areas. # @param cls the type of class that is invoking this method. # @param postcode the postcode to check for conformance to this rule. # @returns True if the postcode violates this rule, else False. @classmethod def CheckDoubleDigitAreaSubdistricts(cls, postcode): impacted_by_rule = False if postcode.outward_subdistrict: if len(postcode.outward_area) == 2: allowed_subdistricts = cls.DoubleDigitAreaSubdistricts subdistrict = postcode.outward_subdistrict impacted_by_rule = not subdistrict in allowed_subdistricts return impacted_by_rule ## Charactesr that are not used in the unit string. # @remarks loaded from JSON file 'standard_postcode_validator.json' UnitExcludes = [] ## Checks that a postcode does not include characters in the first character of the unit string that are unused. #  @remarks we check the first/second unit character seperately to provide more comprehensive errors. # @param cls the type of class that is invoking this method. # @param postcode the postcode to check for conformance to this rule. # @returns True if the postcode violates this rule, else False. @classmethod def CheckFirstUnitCharacterExcludes(cls, postcode): character = postcode.inward_unit[0] impacted_by_rule = character in cls.UnitExcludes return impacted_by_rule ## Checks that a postcode does not include characters in the second character of the unit string that are unused. #  @remarks we check the first/second unit character seperately to provide more comprehensive errors. # @param cls the type of class that is invoking this method. # @param postcode the postcode to check for conformance to this rule. # @returns True if the postcode violates this rule, else False. @classmethod def CheckSecondUnitCharacterExcludes(cls, postcode): character = postcode.inward_unit[1] impacted_by_rule = character in cls.UnitExcludes return impacted_by_rule ## Loads various static members used for validation of standard postcodes from # a JSON file - this is expected to be co-located with this class. def load_validator_params_from_json(): from json import load from os.path import dirname, join json_configuration_file = join( dirname(__file__), "standard_postcode_validator.json" ) with open(json_configuration_file, 'r') as file_handle: config_json = load(file_handle) StandardPostcodeValidator.AreasWithDistrictZero = config_json['has-district-zero'] StandardPostcodeValidator.AreasWithoutDistrictTen = config_json['no-district-ten'] StandardPostcodeValidator.AreasWithOnlyDoubleDigitDistricts = config_json['double-digit-districts'] StandardPostcodeValidator.AreasWithOnlySingleDigitDistricts = config_json['single-digit-districts'] StandardPostcodeValidator.SingleDigitAreaSubdistricts = config_json['single-digit-area-subdistricts'] StandardPostcodeValidator.DoubleDigitAreaSubdistricts = config_json['double-digit-area-subdistricts'] StandardPostcodeValidator.SecondPositionExcludes = config_json['second-position-excludes'] StandardPostcodeValidator.FirstPositionExcludes = config_json['first-position-excludes'] StandardPostcodeValidator.UnitExcludes = config_json['unit-excludes'] subdivision_map = config_json["subdivided-districts"] StandardPostcodeValidator.AreasWithSubdistricts = { k: { int(k1): v1 for k1, v1 in v.items() } for k, v in subdivision_map.items() } load_validator_params_from_json() if __name__ == "__main__": ## ## If this is the main entry point - someone might be a little lost? ## print(f"{__file__} ran, but doesn't do anything on its own.") print(f"Check 'https://www.github.com/wintersdeep/wintersdeep_postcode' for usage.")
47.148855
117
0.727273
[ "MIT" ]
WintersDeep/wintersdeep_postcode
wintersdeep_postcode/postcode_types/standard_postcode/standard_postcode_validator.py
12,360
Python
# Generated by Django 2.2.8 on 2019-12-20 17:32 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('m2mbasic', '0002_auto_20191220_1716'), ] operations = [ migrations.CreateModel( name='Product', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=50)), ('similar_products', models.ManyToManyField(related_name='_product_similar_products_+', to='m2mbasic.Product')), ], ), ]
29.272727
128
0.607143
[ "MIT" ]
djangojeng-e/TIL
django/models/m2mbasic/migrations/0003_product.py
644
Python
""" Tests for the :mod:`fiftyone.utils.cvat` module. You must run these tests interactively as follows:: python tests/intensive/cvat_tests.py | Copyright 2017-2022, Voxel51, Inc. | `voxel51.com <https://voxel51.com/>`_ | """ from bson import ObjectId from collections import defaultdict import numpy as np import os import unittest import eta.core.utils as etau import fiftyone as fo import fiftyone.utils.cvat as fouc import fiftyone.zoo as foz from fiftyone.core.expressions import ViewField as F def _find_shape(anno_json, label_id): shape = _parse_shapes(anno_json["shapes"], label_id) if shape is not None: return shape for track in anno_json["tracks"]: shape = _parse_shapes(track["shapes"], label_id) if shape is not None: return shape def _parse_shapes(shapes, label_id): for shape in shapes: for attr in shape["attributes"]: if attr["value"] == label_id: return shape def _get_shape(api, task_id, label_id): anno_json = api.get(api.task_annotation_url(task_id)).json() return _find_shape(anno_json, label_id) def _delete_shape(api, task_id, label_id): anno_json = api.get(api.task_annotation_url(task_id)).json() shape = _find_shape(anno_json, label_id) if shape is not None: del_json = {"version": 1, "tags": [], "shapes": [shape], "tracks": []} del_url = api.task_annotation_url(task_id) + "?action=delete" api.patch(del_url, json=del_json) def _get_label(api, task_id, label=None): attr_id_map, class_id_map = api._get_attr_class_maps(task_id) if isinstance(label, str): label = class_id_map[label] else: label = list(class_id_map.values())[0] return label def _create_annotation( api, task_id, shape=None, tag=None, track=None, points=None, _type=None ): if points is None: points = [10, 20, 30, 40] if _type is None: _type = "rectangle" shapes = [] tags = [] tracks = [] if shape is not None: if not isinstance(shape, dict): label = _get_label(api, task_id, label=shape) shape = { "type": _type, "frame": 0, "label_id": label, "group": 0, "attributes": [], "points": points, "occluded": False, } shapes = [shape] if tag is not None: if not isinstance(tag, dict): label = _get_label(api, task_id, label=tag) tag = { "frame": 0, "label_id": label, "group": 0, "attributes": [], } tags = [tag] if track is not None: if not isinstance(track, dict): label = _get_label(api, task_id, label=track) if isinstance(track, tuple): start, end = track else: start, end = 0, -1 track = { "frame": start, "label_id": label, "group": 0, "shapes": [ { "type": _type, "occluded": False, "points": points, "frame": start, "outside": False, "attributes": [], "z_order": 0, } ], "attributes": [], } if end > start: track["shapes"].append( { "type": _type, "occluded": False, "points": points, "frame": end, "outside": True, "attributes": [], "z_order": 0, } ) tracks.append(track) create_json = { "version": 1, "tags": tags, "shapes": shapes, "tracks": tracks, } create_url = api.task_annotation_url(task_id) + "?action=create" api.patch(create_url, json=create_json) def _update_shape( api, task_id, label_id, label=None, points=None, attributes=None, occluded=None, ): anno_json = api.get(api.task_annotation_url(task_id)).json() shape = _find_shape(anno_json, label_id) if shape is not None: if points is not None: shape["points"] = points if occluded is not None: shape["occluded"] = occluded if attributes is not None: attr_id_map, class_id_map = api._get_attr_class_maps(task_id) if label is None: label_id = shape["label_id"] attr_id_map = attr_id_map[label_id] else: label_id = class_id_map[label] prev_attr_id_map = attr_id_map[shape["label_id"]] prev_attr_id_map = {v: k for k, v in prev_attr_id_map.items()} attr_id_map = attr_id_map[label_id] shape["label_id"] = label_id for attr in shape["attributes"]: spec = prev_attr_id_map[attr["spec_id"]] attr["spec_id"] = attr_id_map[spec] for attr_name, attr_val in attributes: if attr_name in attr_id_map: shape["attributes"].append( {"spec_id": attr_id_map[attr_name], "value": attr_val} ) update_json = { "version": 1, "tags": [], "shapes": [shape], "tracks": [], } update_url = api.task_annotation_url(task_id) + "?action=update" api.patch(update_url, json=update_json) class CVATTests(unittest.TestCase): def test_upload(self): # Test images dataset = foz.load_zoo_dataset("quickstart", max_samples=1).clone() prev_ids = dataset.values("ground_truth.detections.id", unwind=True) anno_key = "anno_key" results = dataset.annotate( anno_key, backend="cvat", label_field="ground_truth", ) api = results.connect_to_api() task_id = results.task_ids[0] shape_id = dataset.first().ground_truth.detections[0].id self.assertIsNotNone(_get_shape(api, task_id, shape_id)) sample_id = list(list(results.frame_id_map.values())[0].values())[0][ "sample_id" ] self.assertEqual(sample_id, dataset.first().id) api.close() dataset.load_annotations(anno_key, cleanup=True) self.assertListEqual( prev_ids, dataset.values("ground_truth.detections.id", unwind=True), ) # Test Videos dataset = foz.load_zoo_dataset( "quickstart-video", max_samples=1 ).clone() prev_ids = dataset.values( "frames.detections.detections.id", unwind=True ) anno_key = "anno_key" results = dataset.annotate( anno_key, backend="cvat", label_field="frames.detections", ) api = results.connect_to_api() task_id = results.task_ids[0] shape_id = dataset.first().frames[1].detections.detections[0].id self.assertIsNotNone(_get_shape(api, task_id, shape_id)) sample_id = list(list(results.frame_id_map.values())[0].values())[0][ "sample_id" ] self.assertEqual(sample_id, dataset.first().id) api.close() dataset.load_annotations(anno_key, cleanup=True) self.assertListEqual( prev_ids, dataset.values("frames.detections.detections.id", unwind=True), ) def test_detection_labelling(self): dataset = ( foz.load_zoo_dataset("quickstart") .select_fields("ground_truth") .clone() ) # Get a subset that contains at least 2 objects dataset = dataset.match(F("ground_truth.detections").length() > 1)[ :2 ].clone() previous_dataset = dataset.clone() previous_label_ids = dataset.values( "ground_truth.detections.id", unwind=True ) anno_key = "anno_key" attributes = {"test": {"type": "text"}} results = dataset.annotate( anno_key, backend="cvat", label_field="ground_truth", attributes=attributes, ) api = results.connect_to_api() task_id = results.task_ids[0] deleted_label_id = previous_label_ids[0] updated_label_id = previous_label_ids[1] _delete_shape(api, task_id, deleted_label_id) _create_annotation(api, task_id, shape=True) _update_shape( api, task_id, updated_label_id, attributes=[("test", "1")] ) dataset.load_annotations(anno_key, cleanup=True) label_ids = dataset.values("ground_truth.detections.id", unwind=True) self.assertEqual(len(label_ids), len(previous_label_ids)) added_label_ids = list(set(label_ids) - set(previous_label_ids)) self.assertEqual(len(added_label_ids), 1) deleted_label_ids = list(set(previous_label_ids) - set(label_ids)) self.assertEqual(len(deleted_label_ids), 1) updated_sample = dataset.filter_labels( "ground_truth", F("_id") == ObjectId(updated_label_id) ).first() prev_updated_sample = previous_dataset.filter_labels( "ground_truth", F("_id") == ObjectId(updated_label_id) ).first() self.assertEqual(len(updated_sample.ground_truth.detections), 1) self.assertEqual(len(prev_updated_sample.ground_truth.detections), 1) self.assertEqual( updated_sample.ground_truth.detections[0].id, prev_updated_sample.ground_truth.detections[0].id, ) self.assertEqual(updated_sample.ground_truth.detections[0].test, 1) api.close() def test_multiple_fields(self): dataset = foz.load_zoo_dataset( "open-images-v6", split="validation", label_types=["detections", "segmentations", "classifications"], classes=["Person"], max_samples=10, ).clone() prev_dataset = dataset.clone() anno_key = "anno_key" label_schema = { "detections": {}, "segmentations": {"type": "instances"}, "positive_labels": {}, "negative_labels": {}, } results = dataset.annotate( anno_key, backend="cvat", label_schema=label_schema, classes=["Person"], ) api = results.connect_to_api() task_id = results.task_ids[0] dataset.load_annotations(anno_key, cleanup=True) api.close() def _remove_bbox(dataset, label_field): view = dataset.set_field( "%s.detections" % label_field, F("detections").map( F().set_field("bounding_box", []).set_field("mask", None) ), ) return view # Ensure ids and attrs are equal view = _remove_bbox(dataset, "detections") prev_view = _remove_bbox(prev_dataset, "detections") self.assertListEqual( view.values("detections", unwind=True), prev_view.values("detections", unwind=True), ) view = _remove_bbox(dataset, "segmentations") prev_view = _remove_bbox(prev_dataset, "segmentations") self.assertListEqual( view.values("segmentations", unwind=True), prev_view.values("segmentations", unwind=True), ) self.assertListEqual( dataset.values("positive_labels", unwind=True), prev_dataset.values("positive_labels", unwind=True), ) self.assertListEqual( dataset.values("negative_labels", unwind=True), prev_dataset.values("negative_labels", unwind=True), ) def test_task_creation_arguments(self): dataset = ( foz.load_zoo_dataset("quickstart", max_samples=4) .select_fields("ground_truth") .clone() ) user = fo.annotation_config.backends.get("cvat", {}) user = user.get("username", None) users = [user] if user is not None else None anno_key = "anno_key" bug_tracker = "test_tracker" results = dataset.annotate( anno_key, backend="cvat", label_field="ground_truth", task_size=2, segment_size=1, task_assignee=users, job_assignees=users, job_reviewers=users, issue_tracker=bug_tracker, ) task_ids = results.task_ids api = results.connect_to_api() self.assertEqual(len(task_ids), 2) for task_id in task_ids: task_json = api.get(api.task_url(task_id)).json() self.assertEqual(task_json["bug_tracker"], bug_tracker) self.assertEqual(task_json["segment_size"], 1) if user is not None: self.assertEqual(task_json["assignee"]["username"], user) for job in api.get(api.jobs_url(task_id)).json(): job_json = api.get(job["url"]).json() if user is not None: self.assertEqual(job_json["assignee"]["username"], user) if api.server_version == 1: self.assertEqual( job_json["reviewer"]["username"], user ) results.print_status() status = results.get_status() self.assertEqual( status["ground_truth"][task_ids[0]]["assignee"]["username"], user, ) dataset.load_annotations(anno_key, cleanup=True) api.close() def test_project(self): dataset = ( foz.load_zoo_dataset("quickstart", max_samples=2) .select_fields("ground_truth") .clone() ) anno_key = "anno_key" project_name = "cvat_unittest_project" results = dataset.annotate( anno_key, backend="cvat", label_field="ground_truth", project_name=project_name, ) api = results.connect_to_api() project_id = api.get_project_id(project_name) self.assertIsNotNone(project_id) self.assertIn(project_id, results.project_ids) anno_key2 = "anno_key2" results2 = dataset.annotate( anno_key2, backend="cvat", label_field="ground_truth", project_name=project_name, ) self.assertNotIn(project_id, results2.project_ids) self.assertIsNotNone(api.get_project_id(project_name)) dataset.load_annotations(anno_key, cleanup=True) self.assertIsNotNone(api.get_project_id(project_name)) dataset.load_annotations(anno_key2, cleanup=True) self.assertIsNotNone(api.get_project_id(project_name)) api.delete_project(project_id) api.close() api = results.connect_to_api() self.assertIsNone(api.get_project_id(project_name)) api.close() def test_example_add_new_label_fields(self): # Test label field arguments dataset = foz.load_zoo_dataset("quickstart", max_samples=10).clone() view = dataset.take(1) anno_key = "cvat_new_field" results = view.annotate( anno_key, label_field="new_classifications", label_type="classifications", classes=["dog", "cat", "person"], ) self.assertIsNotNone(dataset.get_annotation_info(anno_key)) api = results.connect_to_api() task_id = results.task_ids[0] _create_annotation(api, task_id, tag="dog") dataset.load_annotations(anno_key, cleanup=True) tags = view.first().new_classifications.classifications num_tags = len(tags) self.assertEqual(num_tags, 1) self.assertEqual(tags[0].label, "dog") # Test label schema anno_key = "cvat_new_field_schema" label_schema = { "new_classifications_2": { "type": "classifications", "classes": ["dog", "cat", "person"], } } results = view.annotate(anno_key, label_schema=label_schema) self.assertIsNotNone(dataset.get_annotation_info(anno_key)) api.close() api = results.connect_to_api() task_id = results.task_ids[0] _create_annotation(api, task_id, tag="person") dataset.load_annotations(anno_key, cleanup=True) tags = view.first().new_classifications_2.classifications num_tags = len(tags) self.assertEqual(num_tags, 1) self.assertEqual(tags[0].label, "person") dataset.load_annotations(anno_key, cleanup=True) api.close() def test_example_restricting_label_edits(self): dataset = foz.load_zoo_dataset("quickstart").clone() # Grab a sample that contains at least 2 people view = dataset.match( F("ground_truth.detections") .filter(F("label") == "person") .length() > 1 ).limit(1) previous_labels = view.values("ground_truth.detections", unwind=True) previous_person_labels = view.filter_labels( "ground_truth", F("label") == "person" ).values("ground_truth.detections", unwind=True) anno_key = "cvat_edit_restrictions" # The new attributes that we want to populate attributes = { "sex": {"type": "select", "values": ["male", "female"],}, "age": {"type": "text",}, } results = view.annotate( anno_key, label_field="ground_truth", classes=["person", "test"], attributes=attributes, allow_additions=False, allow_deletions=False, allow_label_edits=False, allow_spatial_edits=False, ) self.assertIsNotNone(dataset.get_annotation_info(anno_key)) task_id = results.task_ids[0] api = results.connect_to_api() # Delete label deleted_id = previous_person_labels[0].id _delete_shape(api, task_id, deleted_id) # Add label _create_annotation(api, task_id, shape="person") # Edit label and bounding box edited_id = previous_person_labels[1].id _update_shape( api, task_id, edited_id, label="test", points=[10, 20, 30, 40], attributes=[("sex", "male")], ) dataset.load_annotations(anno_key, cleanup=True) api.close() labels = view.values("ground_truth.detections", unwind=True) person_labels = view.filter_labels( "ground_truth", F("label") == "person" ).values("ground_truth.detections", unwind=True) self.assertListEqual( [d.label for d in labels], [d.label for d in previous_labels], ) self.assertListEqual( [d.bounding_box for d in labels], [d.bounding_box for d in previous_labels], ) self.assertListEqual( [d.id for d in labels], [d.id for d in previous_labels], ) self.assertEqual( len(dataset.filter_labels("ground_truth", F("sex") == "male")), 1, ) def test_issue_1634(self): # tests: https://github.com/voxel51/fiftyone/issues/1634 dataset = ( foz.load_zoo_dataset("quickstart-video", max_samples=1) .select_fields("frames.detections") .clone() ) anno_key = "issue_1634_test" results = dataset.annotate( anno_key, label_field="frames.ground_truth", label_type="detections", classes=["test"], ) task_id = results.task_ids[0] api = results.connect_to_api() # Create overlapping tracks of different type _create_annotation( api, task_id, track=(0, 30), _type="polygon", points=[10, 20, 40, 30, 50, 60], ) _create_annotation( api, task_id, track=(20, 40), ) api.close() imported_dataset = fo.Dataset() with etau.TempDir() as tmp: fouc.import_annotations( imported_dataset, task_ids=[task_id], data_path=tmp, download_media=True, ) imported_dataset.compute_metadata() self.assertEqual( imported_dataset.first().metadata.total_frame_count, dataset.first().metadata.total_frame_count, ) imported_dataset.export( export_dir=tmp, dataset_type=fo.types.CVATVideoDataset ) filename = os.path.splitext( os.path.basename(imported_dataset.first().filepath) )[0] labels_filepath = os.path.join(tmp, "labels", "%s.xml" % filename) with open(labels_filepath, "r") as f: label_file_info = f.read() track_1 = '<track id="1" label="test">' track_2 = '<track id="2" label="test">' polygon_frame_0 = '<polygon frame="0"' polygon_frame_30 = '<polygon frame="30"' box_frame_20 = '<box frame="20"' box_frame_40 = '<box frame="40"' self.assertTrue(track_1 in label_file_info) self.assertTrue(track_2 in label_file_info) self.assertTrue(polygon_frame_0 in label_file_info) self.assertTrue(polygon_frame_30 in label_file_info) self.assertTrue(box_frame_20 in label_file_info) self.assertTrue(box_frame_40 in label_file_info) cvat_video_dataset = fo.Dataset.from_dir( dataset_dir=tmp, dataset_type=fo.types.CVATVideoDataset, ) detections = cvat_video_dataset.values( "frames.detections", unwind=True ) detections = [i for i in detections if i is not None] self.assertEqual(len(detections), 20) polylines = cvat_video_dataset.values( "frames.polylines", unwind=True ) polylines = [i for i in polylines if i is not None] self.assertEqual(len(polylines), 30) dataset.load_annotations(anno_key, cleanup=True) def test_deleted_tasks(self): dataset = foz.load_zoo_dataset("quickstart", max_samples=1).clone() prev_ids = dataset.values("ground_truth.detections.id", unwind=True) anno_key = "anno_key" results = dataset.annotate( anno_key, backend="cvat", label_field="ground_truth", ) api = results.connect_to_api() task_id = results.task_ids[0] api.delete_task(task_id) status = results.get_status() api.close() dataset.load_annotations(anno_key, cleanup=True) self.assertListEqual( dataset.values("ground_truth.detections.id", unwind=True), prev_ids, ) def test_occluded_attr(self): dataset = foz.load_zoo_dataset("quickstart", max_samples=1).clone() anno_key = "cvat_occluded_widget" # Populate a new `occluded` attribute on the existing `ground_truth` labels # using CVAT's occluded widget label_schema = { "ground_truth": {"attributes": {"occluded": {"type": "occluded",}}} } results = dataset.annotate( anno_key, label_schema=label_schema, backend="cvat" ) api = results.connect_to_api() task_id = results.task_ids[0] shape_id = dataset.first().ground_truth.detections[0].id _update_shape(api, task_id, shape_id, occluded=True) dataset.load_annotations(anno_key, cleanup=True) id_occ_map = dict( zip( *dataset.values( [ "ground_truth.detections.id", "ground_truth.detections.occluded", ], unwind=True, ) ) ) self.assertTrue(id_occ_map.pop(shape_id)) self.assertFalse(any(id_occ_map.values())) def test_map_view_stage(self): dataset = ( foz.load_zoo_dataset("quickstart") .select_fields("ground_truth") .clone() ) # Get a subset that contains at least 2 objects dataset = dataset.match(F("ground_truth.detections").length() > 1)[ :1 ].clone() prev_ids = dataset.values("ground_truth.detections.id", unwind=True) # Set one of the detections to upper case sample = dataset.first() label = sample.ground_truth.detections[0].label sample.ground_truth.detections[0].label = label.upper() sample.save() prev_unchanged_label = dataset.select_labels(ids=prev_ids[1]).values( "ground_truth.detections.label", unwind=True )[0] labels = dataset.distinct("ground_truth.detections.label") label_map = {l: l.upper() for l in labels} view = dataset.map_labels("ground_truth", label_map) anno_key = "anno_key" results = view.annotate( anno_key, backend="cvat", label_field="ground_truth", ) api = results.connect_to_api() task_id = results.task_ids[0] deleted_id = prev_ids[0] self.assertIsNotNone(_get_shape(api, task_id, deleted_id)) _create_annotation(api, task_id, shape=labels[0].upper()) _delete_shape(api, task_id, deleted_id) dataset.load_annotations(anno_key, cleanup=True) loaded_ids = dataset.values("ground_truth.detections.id", unwind=True) self.assertEqual(len(loaded_ids), len(prev_ids)) # We expect existing labels to have been updated according to the # mapping unchanged_label = dataset.select_labels(ids=prev_ids[1]).values( "ground_truth.detections.label", unwind=True )[0] self.assertNotEqual(unchanged_label, prev_unchanged_label) # Expect newly created labels to retain whatever class they were # annotated as new_id = list(set(loaded_ids) - set(prev_ids))[0] new_label = dataset.select_labels(ids=new_id).values( "ground_truth.detections.label", unwind=True )[0] self.assertEqual(labels[0].upper(), new_label) def test_dest_field(self): # Test images dataset = foz.load_zoo_dataset("quickstart", max_samples=2).clone() prev_labels = dataset.values("ground_truth", unwind=True) anno_key = "test_dest_field" results = dataset.annotate(anno_key, label_field="ground_truth") dataset.load_annotations( anno_key, cleanup=True, dest_field="test_field", ) self.assertListEqual( prev_labels, dataset.values("ground_truth", unwind=True), ) self.assertListEqual( sorted(dataset.values("ground_truth.detections.id", unwind=True)), sorted(dataset.values("test_field.detections.id", unwind=True)), ) # Test dict dataset = foz.load_zoo_dataset("quickstart", max_samples=2).clone() prev_labels = dataset.values("ground_truth", unwind=True) anno_key = "test_dest_field" label_schema = { "ground_truth": {}, "new_points": {"type": "keypoints", "classes": ["test"],}, "new_polygon": {"type": "polygons", "classes": ["test2"],}, } results = dataset.annotate(anno_key, label_schema=label_schema) api = results.connect_to_api() task_id = results.task_ids[0] _create_annotation( api, task_id, shape="test", _type="points", points=[10, 20, 40, 30, 50, 60], ) _create_annotation( api, task_id, shape="test2", _type="polygon", points=[10, 20, 40, 30, 50, 60], ) dest_field = { "ground_truth": "test_field_1", "new_points": "test_field_2", } dataset.load_annotations( anno_key, cleanup=True, dest_field=dest_field, ) self.assertFalse(dataset.has_sample_field("new_points")) self.assertTrue(dataset.has_sample_field("new_polygon")) self.assertTrue(dataset.has_sample_field("test_field_1")) self.assertTrue(dataset.has_sample_field("test_field_2")) self.assertListEqual( prev_labels, dataset.values("ground_truth", unwind=True), ) self.assertListEqual( sorted(dataset.values("ground_truth.detections.id", unwind=True)), sorted(dataset.values("test_field_1.detections.id", unwind=True)), ) self.assertEqual( len(dataset.values("test_field_2.keypoints.id", unwind=True)), 1, ) self.assertEqual( len(dataset.values("new_polygon.polylines.id", unwind=True)), 1, ) # Test modification dataset = foz.load_zoo_dataset("quickstart", max_samples=2).clone() prev_ids = dataset.values("ground_truth.detections.id", unwind=True) anno_key = "test_dest_field" results = dataset.annotate(anno_key, label_field="ground_truth") api = results.connect_to_api() task_id = results.task_ids[0] shape_id = dataset.first().ground_truth.detections[0].id _delete_shape(api, task_id, shape_id) _create_annotation(api, task_id, shape=True) _create_annotation( api, task_id, shape=True, _type="points", points=[10, 20, 40, 30, 50, 60], ) dataset.load_annotations( anno_key, cleanup=True, dest_field="test_field", unexpected="keep", ) self.assertListEqual( sorted(prev_ids), sorted(dataset.values("ground_truth.detections.id", unwind=True)), ) test_ids = dataset.values("test_field.detections.id", unwind=True) self.assertEqual(len(set(test_ids) - set(prev_ids)), 1) self.assertEqual(len(set(prev_ids) - set(test_ids)), 1) # Test videos dataset = foz.load_zoo_dataset( "quickstart-video", max_samples=1 ).clone() prev_labels = dataset.values("frames.detections", unwind=True) anno_key = "test_dest_field" results = dataset.annotate(anno_key, label_field="frames.detections") dataset.load_annotations( anno_key, cleanup=True, dest_field="frames.test_field", ) self.assertListEqual( prev_labels, dataset.values("frames.detections", unwind=True), ) self.assertListEqual( sorted( dataset.values("frames.detections.detections.id", unwind=True) ), sorted( dataset.values("frames.test_field.detections.id", unwind=True) ), ) if __name__ == "__main__": fo.config.show_progress_bars = False unittest.main(verbosity=2)
33.348739
83
0.572886
[ "Apache-2.0" ]
bisraelsen/fiftyone
tests/intensive/cvat_tests.py
31,748
Python
#!/usr/bin/env python # # Copyright 2007 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from google.net.proto import ProtocolBuffer import array import dummy_thread as thread __pychecker__ = """maxreturns=0 maxbranches=0 no-callinit unusednames=printElemNumber,debug_strs no-special""" class StringProto(ProtocolBuffer.ProtocolMessage): has_value_ = 0 value_ = "" def __init__(self, contents=None): if contents is not None: self.MergeFromString(contents) def value(self): return self.value_ def set_value(self, x): self.has_value_ = 1 self.value_ = x def clear_value(self): if self.has_value_: self.has_value_ = 0 self.value_ = "" def has_value(self): return self.has_value_ def MergeFrom(self, x): assert x is not self if (x.has_value()): self.set_value(x.value()) def Equals(self, x): if x is self: return 1 if self.has_value_ != x.has_value_: return 0 if self.has_value_ and self.value_ != x.value_: return 0 return 1 def IsInitialized(self, debug_strs=None): initialized = 1 if (not self.has_value_): initialized = 0 if debug_strs is not None: debug_strs.append('Required field: value not set.') return initialized def ByteSize(self): n = 0 n += self.lengthString(len(self.value_)) return n + 1 def Clear(self): self.clear_value() def OutputUnchecked(self, out): out.putVarInt32(10) out.putPrefixedString(self.value_) def TryMerge(self, d): while d.avail() > 0: tt = d.getVarInt32() if tt == 10: self.set_value(d.getPrefixedString()) continue if (tt == 0): raise ProtocolBuffer.ProtocolBufferDecodeError d.skipData(tt) def __str__(self, prefix="", printElemNumber=0): res="" if self.has_value_: res+=prefix+("value: %s\n" % self.DebugFormatString(self.value_)) return res kvalue = 1 _TEXT = ( "ErrorCode", "value", ) _TYPES = ( ProtocolBuffer.Encoder.NUMERIC, ProtocolBuffer.Encoder.STRING, ) _STYLE = """""" _STYLE_CONTENT_TYPE = """""" class Integer32Proto(ProtocolBuffer.ProtocolMessage): has_value_ = 0 value_ = 0 def __init__(self, contents=None): if contents is not None: self.MergeFromString(contents) def value(self): return self.value_ def set_value(self, x): self.has_value_ = 1 self.value_ = x def clear_value(self): if self.has_value_: self.has_value_ = 0 self.value_ = 0 def has_value(self): return self.has_value_ def MergeFrom(self, x): assert x is not self if (x.has_value()): self.set_value(x.value()) def Equals(self, x): if x is self: return 1 if self.has_value_ != x.has_value_: return 0 if self.has_value_ and self.value_ != x.value_: return 0 return 1 def IsInitialized(self, debug_strs=None): initialized = 1 if (not self.has_value_): initialized = 0 if debug_strs is not None: debug_strs.append('Required field: value not set.') return initialized def ByteSize(self): n = 0 n += self.lengthVarInt64(self.value_) return n + 1 def Clear(self): self.clear_value() def OutputUnchecked(self, out): out.putVarInt32(8) out.putVarInt32(self.value_) def TryMerge(self, d): while d.avail() > 0: tt = d.getVarInt32() if tt == 8: self.set_value(d.getVarInt32()) continue if (tt == 0): raise ProtocolBuffer.ProtocolBufferDecodeError d.skipData(tt) def __str__(self, prefix="", printElemNumber=0): res="" if self.has_value_: res+=prefix+("value: %s\n" % self.DebugFormatInt32(self.value_)) return res kvalue = 1 _TEXT = ( "ErrorCode", "value", ) _TYPES = ( ProtocolBuffer.Encoder.NUMERIC, ProtocolBuffer.Encoder.NUMERIC, ) _STYLE = """""" _STYLE_CONTENT_TYPE = """""" class Integer64Proto(ProtocolBuffer.ProtocolMessage): has_value_ = 0 value_ = 0 def __init__(self, contents=None): if contents is not None: self.MergeFromString(contents) def value(self): return self.value_ def set_value(self, x): self.has_value_ = 1 self.value_ = x def clear_value(self): if self.has_value_: self.has_value_ = 0 self.value_ = 0 def has_value(self): return self.has_value_ def MergeFrom(self, x): assert x is not self if (x.has_value()): self.set_value(x.value()) def Equals(self, x): if x is self: return 1 if self.has_value_ != x.has_value_: return 0 if self.has_value_ and self.value_ != x.value_: return 0 return 1 def IsInitialized(self, debug_strs=None): initialized = 1 if (not self.has_value_): initialized = 0 if debug_strs is not None: debug_strs.append('Required field: value not set.') return initialized def ByteSize(self): n = 0 n += self.lengthVarInt64(self.value_) return n + 1 def Clear(self): self.clear_value() def OutputUnchecked(self, out): out.putVarInt32(8) out.putVarInt64(self.value_) def TryMerge(self, d): while d.avail() > 0: tt = d.getVarInt32() if tt == 8: self.set_value(d.getVarInt64()) continue if (tt == 0): raise ProtocolBuffer.ProtocolBufferDecodeError d.skipData(tt) def __str__(self, prefix="", printElemNumber=0): res="" if self.has_value_: res+=prefix+("value: %s\n" % self.DebugFormatInt64(self.value_)) return res kvalue = 1 _TEXT = ( "ErrorCode", "value", ) _TYPES = ( ProtocolBuffer.Encoder.NUMERIC, ProtocolBuffer.Encoder.NUMERIC, ) _STYLE = """""" _STYLE_CONTENT_TYPE = """""" class BoolProto(ProtocolBuffer.ProtocolMessage): has_value_ = 0 value_ = 0 def __init__(self, contents=None): if contents is not None: self.MergeFromString(contents) def value(self): return self.value_ def set_value(self, x): self.has_value_ = 1 self.value_ = x def clear_value(self): if self.has_value_: self.has_value_ = 0 self.value_ = 0 def has_value(self): return self.has_value_ def MergeFrom(self, x): assert x is not self if (x.has_value()): self.set_value(x.value()) def Equals(self, x): if x is self: return 1 if self.has_value_ != x.has_value_: return 0 if self.has_value_ and self.value_ != x.value_: return 0 return 1 def IsInitialized(self, debug_strs=None): initialized = 1 if (not self.has_value_): initialized = 0 if debug_strs is not None: debug_strs.append('Required field: value not set.') return initialized def ByteSize(self): n = 0 return n + 2 def Clear(self): self.clear_value() def OutputUnchecked(self, out): out.putVarInt32(8) out.putBoolean(self.value_) def TryMerge(self, d): while d.avail() > 0: tt = d.getVarInt32() if tt == 8: self.set_value(d.getBoolean()) continue if (tt == 0): raise ProtocolBuffer.ProtocolBufferDecodeError d.skipData(tt) def __str__(self, prefix="", printElemNumber=0): res="" if self.has_value_: res+=prefix+("value: %s\n" % self.DebugFormatBool(self.value_)) return res kvalue = 1 _TEXT = ( "ErrorCode", "value", ) _TYPES = ( ProtocolBuffer.Encoder.NUMERIC, ProtocolBuffer.Encoder.NUMERIC, ) _STYLE = """""" _STYLE_CONTENT_TYPE = """""" class DoubleProto(ProtocolBuffer.ProtocolMessage): has_value_ = 0 value_ = 0.0 def __init__(self, contents=None): if contents is not None: self.MergeFromString(contents) def value(self): return self.value_ def set_value(self, x): self.has_value_ = 1 self.value_ = x def clear_value(self): if self.has_value_: self.has_value_ = 0 self.value_ = 0.0 def has_value(self): return self.has_value_ def MergeFrom(self, x): assert x is not self if (x.has_value()): self.set_value(x.value()) def Equals(self, x): if x is self: return 1 if self.has_value_ != x.has_value_: return 0 if self.has_value_ and self.value_ != x.value_: return 0 return 1 def IsInitialized(self, debug_strs=None): initialized = 1 if (not self.has_value_): initialized = 0 if debug_strs is not None: debug_strs.append('Required field: value not set.') return initialized def ByteSize(self): n = 0 return n + 9 def Clear(self): self.clear_value() def OutputUnchecked(self, out): out.putVarInt32(9) out.putDouble(self.value_) def TryMerge(self, d): while d.avail() > 0: tt = d.getVarInt32() if tt == 9: self.set_value(d.getDouble()) continue if (tt == 0): raise ProtocolBuffer.ProtocolBufferDecodeError d.skipData(tt) def __str__(self, prefix="", printElemNumber=0): res="" if self.has_value_: res+=prefix+("value: %s\n" % self.DebugFormat(self.value_)) return res kvalue = 1 _TEXT = ( "ErrorCode", "value", ) _TYPES = ( ProtocolBuffer.Encoder.NUMERIC, ProtocolBuffer.Encoder.DOUBLE, ) _STYLE = """""" _STYLE_CONTENT_TYPE = """""" class VoidProto(ProtocolBuffer.ProtocolMessage): def __init__(self, contents=None): pass if contents is not None: self.MergeFromString(contents) def MergeFrom(self, x): assert x is not self def Equals(self, x): if x is self: return 1 return 1 def IsInitialized(self, debug_strs=None): initialized = 1 return initialized def ByteSize(self): n = 0 return n + 0 def Clear(self): pass def OutputUnchecked(self, out): pass def TryMerge(self, d): while d.avail() > 0: tt = d.getVarInt32() if (tt == 0): raise ProtocolBuffer.ProtocolBufferDecodeError d.skipData(tt) def __str__(self, prefix="", printElemNumber=0): res="" return res _TEXT = ( "ErrorCode", ) _TYPES = ( ProtocolBuffer.Encoder.NUMERIC, ) _STYLE = """""" _STYLE_CONTENT_TYPE = """""" __all__ = ['StringProto','Integer32Proto','Integer64Proto','BoolProto','DoubleProto','VoidProto']
22.085417
97
0.651637
[ "Apache-2.0" ]
Arachnid/google_appengine
google/appengine/api/api_base_pb.py
10,601
Python
# Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Trains and Evaluates the MNIST network using a feed dictionary.""" # pylint: disable=missing-docstring from __future__ import absolute_import from __future__ import division from __future__ import print_function import os.path import time from six.moves import xrange # pylint: disable=redefined-builtin import tensorflow as tf import input_data import c3d_model import numpy as np # Basic model parameters as external flags. flags = tf.app.flags gpu_num = 1 def placeholder_inputs(batch_size): """Generate placeholder variables to represent the input tensors. These placeholders are used as inputs by the rest of the model building code and will be fed from the downloaded data in the .run() loop, below. Args: batch_size: The batch size will be baked into both placeholders. Returns: images_placeholder: Images placeholder. labels_placeholder: Labels placeholder. """ # Note that the shapes of the placeholders match the shapes of the full # image and label tensors, except the first dimension is now batch_size # rather than the full size of the train or test data sets. images_placeholder = tf.placeholder(tf.float32, shape=(batch_size,c3d_model.NUM_FRAMES_PER_CLIP,c3d_model.CROP_SIZE, c3d_model.CROP_SIZE,c3d_model.CHANNELS)) labels_placeholder = tf.placeholder(tf.int64, shape=(batch_size)) return images_placeholder, labels_placeholder def _variable_on_cpu(name, shape, initializer): #with tf.device('/cpu:%d' % cpu_id): with tf.device('/cpu:0'): var = tf.get_variable(name, shape, initializer=initializer) return var def _variable_with_weight_decay(name, shape, stddev, wd): var = _variable_on_cpu(name, shape, tf.truncated_normal_initializer(stddev=stddev)) if wd is not None: weight_decay = tf.nn.l2_loss(var) * wd tf.add_to_collection('losses', weight_decay) return var def run_test(ds_dir, mean_file, model_name, test_list_file, batch_size): tf.reset_default_graph() try: FLAGS = flags.FLAGS FLAGS.batch_size = batch_size except: flags.DEFINE_integer('batch_size', batch_size, 'Batch size.') FLAGS = flags.FLAGS #model_name = "./models-5sec/c3d_ucf_model-4999" #model_name = "./models.5sec/c3d_ucf_model-75450" #model_name = "./models-1sec/c3d_ucf_model-4999" #model_name = "./models.5sec.summarized.1sec/c3d_ucf_model-4999" #model_name = "./models-multi-5sec-5sec_sum_1/c3d_ucf_model-4999" #model_name = "./models-multi-5-5sum1/c3d_ucf_model-9999" num_test_videos = len(list(open(test_list_file,'r'))) print("Number of test videos={}".format(num_test_videos)) # max_bt_sz = -1;min # # for factor in range(1, 31): # if num_test_videos%factor==0: # max_bt_sz=factor # if max_bt_sz == 1: # print("no good batchsize available, setting to 25") # max_bt_sz = 20 # FLAGS.batch_size = max_bt_sz # print("batch size:", FLAGS.batch_size) # Get the sets of images and labels for testing images_placeholder, labels_placeholder = placeholder_inputs(FLAGS.batch_size * gpu_num) with tf.variable_scope('var_name') as var_scope: weights = { 'wc1': _variable_with_weight_decay('wc1', [3, 3, 3, 3, 64], 0.04, 0.00), 'wc2': _variable_with_weight_decay('wc2', [3, 3, 3, 64, 128], 0.04, 0.00), 'wc3a': _variable_with_weight_decay('wc3a', [3, 3, 3, 128, 256], 0.04, 0.00), 'wc3b': _variable_with_weight_decay('wc3b', [3, 3, 3, 256, 256], 0.04, 0.00), 'wc4a': _variable_with_weight_decay('wc4a', [3, 3, 3, 256, 512], 0.04, 0.00), 'wc4b': _variable_with_weight_decay('wc4b', [3, 3, 3, 512, 512], 0.04, 0.00), 'wc5a': _variable_with_weight_decay('wc5a', [3, 3, 3, 512, 512], 0.04, 0.00), 'wc5b': _variable_with_weight_decay('wc5b', [3, 3, 3, 512, 512], 0.04, 0.00), 'wd1': _variable_with_weight_decay('wd1', [8192, 4096], 0.04, 0.001), 'wd2': _variable_with_weight_decay('wd2', [4096, 4096], 0.04, 0.002), 'out': _variable_with_weight_decay('wout', [4096, c3d_model.NUM_CLASSES], 0.04, 0.005) } biases = { 'bc1': _variable_with_weight_decay('bc1', [64], 0.04, 0.0), 'bc2': _variable_with_weight_decay('bc2', [128], 0.04, 0.0), 'bc3a': _variable_with_weight_decay('bc3a', [256], 0.04, 0.0), 'bc3b': _variable_with_weight_decay('bc3b', [256], 0.04, 0.0), 'bc4a': _variable_with_weight_decay('bc4a', [512], 0.04, 0.0), 'bc4b': _variable_with_weight_decay('bc4b', [512], 0.04, 0.0), 'bc5a': _variable_with_weight_decay('bc5a', [512], 0.04, 0.0), 'bc5b': _variable_with_weight_decay('bc5b', [512], 0.04, 0.0), 'bd1': _variable_with_weight_decay('bd1', [4096], 0.04, 0.0), 'bd2': _variable_with_weight_decay('bd2', [4096], 0.04, 0.0), 'out': _variable_with_weight_decay('bout', [c3d_model.NUM_CLASSES], 0.04, 0.0), } logits = [] for gpu_index in range(0, gpu_num): with tf.device('/gpu:%d' % gpu_index): logit = c3d_model.inference_c3d(images_placeholder[gpu_index * FLAGS.batch_size:(gpu_index + 1) * FLAGS.batch_size,:,:,:,:], 0, FLAGS.batch_size, weights, biases) logits.append(logit) logits = tf.concat(logits,0) norm_score = tf.nn.softmax(logits) saver = tf.train.Saver() sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) init = tf.global_variables_initializer() sess.run(init) # Restoring a saved model. if not model_name.__contains__(".meta"): saver = tf.train.import_meta_graph(model_name+'.meta') else: # saver = tf.train.import_meta_graph(model_name) var_list = [v for v in tf.trainable_variables()] saver = tf.train.Saver(weights.values() + biases.values()) saver.restore(sess, model_name) # And then after everything is built, start the testing loop. bufsize = 0 write_file = open("predict_ret.txt", "w+", bufsize) next_start_pos = 0 all_steps = int((num_test_videos - 1) / (FLAGS.batch_size * gpu_num) + 1) print ("num_test_videos, batch_size, gpu_num,all steps", num_test_videos, FLAGS.batch_size, gpu_num, all_steps) total_testing_duration = 0 for step in range(all_steps): # Fill a feed dictionary with the actual set of images and labels # for this particular testing step. start_time = time.time() # try: test_images, test_labels, next_start_pos, _, valid_len = \ input_data.read_clip_and_label( ds_dir, mean_file, test_list_file, FLAGS.batch_size * gpu_num, start_pos=next_start_pos, num_frames_per_clip=c3d_model.NUM_FRAMES_PER_CLIP ) # except: # print("exception occured loading at step:", step) # try: predict_score = norm_score.eval( session=sess, feed_dict={images_placeholder: test_images} ) # except: # print("exception occured prediction at step:", step) duration = time.time() - start_time print('Step %d: %.3f sec' % (step, duration), 'next start index:', next_start_pos) total_testing_duration += duration # try: for i in range(0, valid_len): true_label = test_labels[i], top1_predicted_label = np.argmax(predict_score[i]) # Write results: true label, class prob for true label, predicted label, class prob for predicted label write_file.write('{}, {}, {}, {}\n'.format( true_label[0], predict_score[i][true_label], top1_predicted_label, predict_score[i][top1_predicted_label])) # except: # print ("exception occured saving predictions at step:", step) # break # test only 1 batch print('Prediction time taken =', total_testing_duration) import datetime now = datetime.datetime.now() with open('stats.txt', 'a') as f: f.write(now.strftime("%Y-%m-%d %H:%M\n")) f.write(" testing time:"+ str(total_testing_duration) + "\n") write_file.close() print("done") import sys def main(_): # run_test(sys.argv[1]) ds_dir = "/home/bassel/data/office-actions/office_actions_19/short_clips/resized_frms" mean_file = "../c3d_data_preprocessing/oa_kinetics_calculated_mean.npy" model_name = "c3d_ucf_model-14698" testing_file = "" TESTING_BATCH_SIZE = 16 run_test(ds_dir, mean_file, "model/" + model_name, testing_file, TESTING_BATCH_SIZE) if __name__ == '__main__': tf.app.run()
44.359833
188
0.581305
[ "Apache-2.0" ]
b-safwat/multi_action_recognition
c3d_model/predict_c3d_ucf101.py
10,602
Python
#!/usr/bin/env python """GRR HTTP server implementation.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals import base64 import hashlib import hmac import logging import os import string from cryptography.hazmat.primitives import constant_time from future.builtins import int from future.builtins import str import jinja2 import psutil from typing import Text from werkzeug import exceptions as werkzeug_exceptions from werkzeug import routing as werkzeug_routing from werkzeug import wrappers as werkzeug_wrappers from werkzeug import wsgi as werkzeug_wsgi from grr_response_core import config from grr_response_core.lib import rdfvalue from grr_response_core.lib import utils from grr_response_core.lib.util import precondition from grr_response_server import access_control from grr_response_server import server_logging from grr_response_server.gui import http_api from grr_response_server.gui import webauth CSRF_DELIMITER = b":" CSRF_TOKEN_DURATION = rdfvalue.Duration("10h") def GenerateCSRFToken(user_id, time): """Generates a CSRF token based on a secret key, id and time.""" precondition.AssertType(user_id, Text) precondition.AssertOptionalType(time, int) time = time or rdfvalue.RDFDatetime.Now().AsMicrosecondsSinceEpoch() secret = config.CONFIG.Get("AdminUI.csrf_secret_key", None) if secret is None: raise ValueError("CSRF secret not available.") digester = hmac.new(secret.encode("ascii"), digestmod=hashlib.sha256) digester.update(user_id.encode("ascii")) digester.update(CSRF_DELIMITER) digester.update(str(time).encode("ascii")) digest = digester.digest() token = base64.urlsafe_b64encode(b"%s%s%d" % (digest, CSRF_DELIMITER, time)) return token.rstrip(b"=") def StoreCSRFCookie(user, response): """Decorator for WSGI handler that inserts CSRF cookie into response.""" csrf_token = GenerateCSRFToken(user, None) response.set_cookie( "csrftoken", csrf_token, max_age=CSRF_TOKEN_DURATION.seconds) def ValidateCSRFTokenOrRaise(request): """Decorator for WSGI handler that checks CSRF cookie against the request.""" # CSRF check doesn't make sense for GET/HEAD methods, because they can # (and are) used when downloading files through <a href> links - and # there's no way to set X-CSRFToken header in this case. if request.method in ("GET", "HEAD"): return # In the ideal world only JavaScript can be used to add a custom header, and # only within its origin. By default, browsers don't allow JavaScript to # make cross origin requests. # # Unfortunately, in the real world due to bugs in browsers plugins, it can't # be guaranteed that a page won't set an HTTP request with a custom header # set. That's why we also check the contents of a header via an HMAC check # with a server-stored secret. # # See for more details: # https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet # (Protecting REST Services: Use of Custom Request Headers). csrf_token = request.headers.get("X-CSRFToken", "").encode("ascii") if not csrf_token: logging.info("Did not find headers CSRF token for: %s", request.path) raise werkzeug_exceptions.Forbidden("CSRF token is missing") try: decoded = base64.urlsafe_b64decode(csrf_token + b"==") digest, token_time = decoded.rsplit(CSRF_DELIMITER, 1) token_time = int(token_time) except (TypeError, ValueError): logging.info("Malformed CSRF token for: %s", request.path) raise werkzeug_exceptions.Forbidden("Malformed CSRF token") if len(digest) != hashlib.sha256().digest_size: logging.info("Invalid digest size for: %s", request.path) raise werkzeug_exceptions.Forbidden("Malformed CSRF token digest") expected = GenerateCSRFToken(request.user, token_time) if not constant_time.bytes_eq(csrf_token, expected): logging.info("Non-matching CSRF token for: %s", request.path) raise werkzeug_exceptions.Forbidden("Non-matching CSRF token") current_time = rdfvalue.RDFDatetime.Now().AsMicrosecondsSinceEpoch() if current_time - token_time > CSRF_TOKEN_DURATION.microseconds: logging.info("Expired CSRF token for: %s", request.path) raise werkzeug_exceptions.Forbidden("Expired CSRF token") class RequestHasNoUser(AttributeError): """Error raised when accessing a user of an unautenticated request.""" class HttpRequest(werkzeug_wrappers.Request): """HTTP request object to be used in GRR.""" def __init__(self, *args, **kwargs): super(HttpRequest, self).__init__(*args, **kwargs) self._user = None self.token = None self.timestamp = rdfvalue.RDFDatetime.Now().AsMicrosecondsSinceEpoch() self.method_metadata = None self.parsed_args = None @property def user(self): if self._user is None: raise RequestHasNoUser( "Trying to access Request.user while user is unset.") if not self._user: raise RequestHasNoUser( "Trying to access Request.user while user is empty.") return self._user @user.setter def user(self, value): if not isinstance(value, Text): message = "Expected instance of '%s' but got value '%s' of type '%s'" message %= (Text, value, type(value)) raise TypeError(message) self._user = value def LogAccessWrapper(func): """Decorator that ensures that HTTP access is logged.""" def Wrapper(request, *args, **kwargs): """Wrapping function.""" try: response = func(request, *args, **kwargs) server_logging.LOGGER.LogHttpAdminUIAccess(request, response) except Exception: # pylint: disable=g-broad-except # This should never happen: wrapped function is supposed to handle # all possible exceptions and generate a proper Response object. # Still, handling exceptions here to guarantee that the access is logged # no matter what. response = werkzeug_wrappers.Response("", status=500) server_logging.LOGGER.LogHttpAdminUIAccess(request, response) raise return response return Wrapper def EndpointWrapper(func): return webauth.SecurityCheck(LogAccessWrapper(func)) class AdminUIApp(object): """Base class for WSGI GRR app.""" def __init__(self): self.routing_map = werkzeug_routing.Map() self.routing_map.add( werkzeug_routing.Rule( "/", methods=["HEAD", "GET"], endpoint=EndpointWrapper(self._HandleHomepage))) self.routing_map.add( werkzeug_routing.Rule( "/api/<path:path>", methods=["HEAD", "GET", "POST", "PUT", "PATCH", "DELETE"], endpoint=EndpointWrapper(self._HandleApi))) self.routing_map.add( werkzeug_routing.Rule( "/help/<path:path>", methods=["HEAD", "GET"], endpoint=EndpointWrapper(self._HandleHelp))) def _BuildRequest(self, environ): return HttpRequest(environ) def _BuildToken(self, request, execution_time): """Build an ACLToken from the request.""" token = access_control.ACLToken( username=request.user, reason=request.args.get("reason", ""), process="GRRAdminUI", expiry=rdfvalue.RDFDatetime.Now() + execution_time) for field in ["Remote_Addr", "X-Forwarded-For"]: remote_addr = request.headers.get(field, "") if remote_addr: token.source_ips.append(remote_addr) return token def _HandleHomepage(self, request): """Renders GRR home page by rendering base.html Jinja template.""" _ = request env = jinja2.Environment( loader=jinja2.FileSystemLoader(config.CONFIG["AdminUI.template_root"]), autoescape=True) create_time = psutil.Process(os.getpid()).create_time() context = { "heading": config.CONFIG["AdminUI.heading"], "report_url": config.CONFIG["AdminUI.report_url"], "help_url": config.CONFIG["AdminUI.help_url"], "timestamp": utils.SmartStr(create_time), "use_precompiled_js": config.CONFIG["AdminUI.use_precompiled_js"], # Used in conjunction with FirebaseWebAuthManager. "firebase_api_key": config.CONFIG["AdminUI.firebase_api_key"], "firebase_auth_domain": config.CONFIG["AdminUI.firebase_auth_domain"], "firebase_auth_provider": config.CONFIG["AdminUI.firebase_auth_provider"], "grr_version": config.CONFIG["Source.version_string"] } template = env.get_template("base.html") response = werkzeug_wrappers.Response( template.render(context), mimetype="text/html") # For a redirect-based Firebase authentication scheme we won't have any # user information at this point - therefore checking if the user is # present. try: StoreCSRFCookie(request.user, response) except RequestHasNoUser: pass return response def _HandleApi(self, request): """Handles API requests.""" # Checks CSRF token. CSRF token cookie is updated when homepage is visited # or via GetPendingUserNotificationsCount API call. ValidateCSRFTokenOrRaise(request) response = http_api.RenderHttpResponse(request) # GetPendingUserNotificationsCount is an API method that is meant # to be invoked very often (every 10 seconds). So it's ideal # for updating the CSRF token. # We should also store the CSRF token if it wasn't yet stored at all. if (("csrftoken" not in request.cookies) or response.headers.get( "X-API-Method", "") == "GetPendingUserNotificationsCount"): StoreCSRFCookie(request.user, response) return response def _RedirectToRemoteHelp(self, path): """Redirect to GitHub-hosted documentation.""" allowed_chars = set(string.ascii_letters + string.digits + "._-/") if not set(path) <= allowed_chars: raise RuntimeError("Unusual chars in path %r - " "possible exploit attempt." % path) target_path = os.path.join(config.CONFIG["AdminUI.docs_location"], path) # We have to redirect via JavaScript to have access to and to preserve the # URL hash. We don't know the hash part of the url on the server. return werkzeug_wrappers.Response( """ <script> var friendly_hash = window.location.hash; window.location = '%s' + friendly_hash; </script> """ % target_path, mimetype="text/html") def _HandleHelp(self, request): """Handles help requests.""" help_path = request.path.split("/", 2)[-1] if not help_path: raise werkzeug_exceptions.Forbidden("Error: Invalid help path.") # Proxy remote documentation. return self._RedirectToRemoteHelp(help_path) @werkzeug_wsgi.responder def __call__(self, environ, start_response): """Dispatches a request.""" request = self._BuildRequest(environ) matcher = self.routing_map.bind_to_environ(environ) try: endpoint, _ = matcher.match(request.path, request.method) return endpoint(request) except werkzeug_exceptions.NotFound as e: logging.info("Request for non existent url: %s [%s]", request.path, request.method) return e except werkzeug_exceptions.HTTPException as e: logging.exception("http exception: %s [%s]", request.path, request.method) return e def WSGIHandler(self): """Returns GRR's WSGI handler.""" sdm = werkzeug_wsgi.SharedDataMiddleware(self, { "/": config.CONFIG["AdminUI.document_root"], }) # Use DispatcherMiddleware to make sure that SharedDataMiddleware is not # used at all if the URL path doesn't start with "/static". This is a # workaround for cases when unicode URLs are used on systems with # non-unicode filesystems (as detected by Werkzeug). In this case # SharedDataMiddleware may fail early while trying to convert the # URL into the file path and not dispatch the call further to our own # WSGI handler. return werkzeug_wsgi.DispatcherMiddleware(self, { "/static": sdm, })
34.764368
92
0.704827
[ "Apache-2.0" ]
Codehardt/grr
grr/server/grr_response_server/gui/wsgiapp.py
12,098
Python
# coding: utf8 # try something like # coding: utf8 # try something like def index(): rows = db((db.activity.type=='stand')&(db.activity.status=='accepted')).select() if rows: return dict(projects=rows) else: return plugin_flatpage()
23.818182
84
0.641221
[ "BSD-3-Clause" ]
bkahlerventer/web2conf
controllers/stands.py
262
Python
"""Deep Q learning graph The functions in this file can are used to create the following functions: ======= act ======== Function to chose an action given an observation Parameters ---------- observation: object Observation that can be feed into the output of make_obs_ph stochastic: bool if set to False all the actions are always deterministic (default False) update_eps_ph: float update epsilon a new value, if negative no update happens (default: no update) Returns ------- Tensor of dtype tf.int64 and shape (BATCH_SIZE,) with an action to be performed for every element of the batch. ======= act (in case of parameter noise) ======== Function to chose an action given an observation Parameters ---------- observation: object Observation that can be feed into the output of make_obs_ph stochastic: bool if set to False all the actions are always deterministic (default False) update_eps_ph: float update epsilon to a new value, if negative no update happens (default: no update) reset_ph: bool reset the perturbed policy by sampling a new perturbation update_param_noise_threshold_ph: float the desired threshold for the difference between non-perturbed and perturbed policy update_param_noise_scale_ph: bool whether or not to update the scale of the noise for the next time it is re-perturbed Returns ------- Tensor of dtype tf.int64 and shape (BATCH_SIZE,) with an action to be performed for every element of the batch. ======= train ======= Function that takes a transition (s,a,r,s') and optimizes Bellman equation's error: td_error = Q(s,a) - (r + gamma * max_a' Q(s', a')) loss = huber_loss[td_error] Parameters ---------- obs_t: object a batch of observations action: np.array actions that were selected upon seeing obs_t. dtype must be int32 and shape must be (batch_size,) reward: np.array immediate reward attained after executing those actions dtype must be float32 and shape must be (batch_size,) obs_tp1: object observations that followed obs_t done: np.array 1 if obs_t was the last observation in the episode and 0 otherwise obs_tp1 gets ignored, but must be of the valid shape. dtype must be float32 and shape must be (batch_size,) weight: np.array imporance weights for every element of the batch (gradient is multiplied by the importance weight) dtype must be float32 and shape must be (batch_size,) Returns ------- td_error: np.array a list of differences between Q(s,a) and the target in Bellman's equation. dtype is float32 and shape is (batch_size,) ======= update_target ======== copy the parameters from optimized Q function to the target Q function. In Q learning we actually optimize the following error: Q(s,a) - (r + gamma * max_a' Q'(s', a')) Where Q' is lagging behind Q to stablize the learning. For example for Atari Q' is set to Q once every 10000 updates training steps. """ import tensorflow as tf import baselines.common.tf_util as U def scope_vars(scope, trainable_only=False): """ Get variables inside a scope The scope can be specified as a string Parameters ---------- scope: str or VariableScope scope in which the variables reside. trainable_only: bool whether or not to return only the variables that were marked as trainable. Returns ------- vars: [tf.Variable] list of variables in `scope`. """ return tf.compat.v1.get_collection( tf.compat.v1.GraphKeys.TRAINABLE_VARIABLES if trainable_only else tf.compat.v1.GraphKeys.GLOBAL_VARIABLES, scope=scope if isinstance(scope, str) else scope.name ) def scope_name(): """Returns the name of current scope as a string, e.g. deepq/q_func""" return tf.compat.v1.get_variable_scope().name def absolute_scope_name(relative_scope_name): """Appends parent scope name to `relative_scope_name`""" return scope_name() + "/" + relative_scope_name def default_param_noise_filter(var): if var not in tf.compat.v1.trainable_variables(): # We never perturb non-trainable vars. return False if "fully_connected" in var.name: # We perturb fully-connected layers. return True # The remaining layers are likely conv or layer norm layers, which we do not wish to # perturb (in the former case because they only extract features, in the latter case because # we use them for normalization purposes). If you change your network, you will likely want # to re-consider which layers to perturb and which to keep untouched. return False def build_act(make_obs_ph, q_func, num_actions, scope="deepq", reuse=None): """Creates the act function: Parameters ---------- make_obs_ph: str -> tf.compat.v1.placeholder or TfInput a function that take a name and creates a placeholder of input with that name q_func: (tf.Variable, int, str, bool) -> tf.Variable the model that takes the following inputs: observation_in: object the output of observation placeholder num_actions: int number of actions scope: str reuse: bool should be passed to outer variable scope and returns a tensor of shape (batch_size, num_actions) with values of every action. num_actions: int number of actions. scope: str or VariableScope optional scope for variable_scope. reuse: bool or None whether or not the variables should be reused. To be able to reuse the scope must be given. Returns ------- act: (tf.Variable, bool, float) -> tf.Variable function to select and action given observation. ` See the top of the file for details. """ with tf.compat.v1.variable_scope(scope, reuse=reuse): observations_ph = make_obs_ph("observation") stochastic_ph = tf.compat.v1.placeholder(tf.bool, (), name="stochastic") update_eps_ph = tf.compat.v1.placeholder(tf.float32, (), name="update_eps") eps = tf.compat.v1.get_variable("eps", (), initializer=tf.constant_initializer(0)) q_values = q_func(observations_ph.get(), num_actions, scope="q_func") deterministic_actions = tf.argmax(q_values, axis=1) batch_size = tf.shape(observations_ph.get())[0] random_actions = tf.compat.v1.random_uniform(tf.stack([batch_size]), minval=0, maxval=num_actions, dtype=tf.int64) chose_random = tf.compat.v1.random_uniform(tf.stack([batch_size]), minval=0, maxval=1, dtype=tf.float32) < eps stochastic_actions = tf.where(chose_random, random_actions, deterministic_actions) output_actions = tf.cond(stochastic_ph, lambda: stochastic_actions, lambda: deterministic_actions) update_eps_expr = eps.assign(tf.cond(update_eps_ph >= 0, lambda: update_eps_ph, lambda: eps)) _act = U.function(inputs=[observations_ph, stochastic_ph, update_eps_ph], outputs=output_actions, givens={update_eps_ph: -1.0, stochastic_ph: True}, updates=[update_eps_expr]) def act(ob, stochastic=True, update_eps=-1): return _act(ob, stochastic, update_eps) return act def build_act_with_param_noise(make_obs_ph, q_func, num_actions, scope="deepq", reuse=None, param_noise_filter_func=None): """Creates the act function with support for parameter space noise exploration (https://arxiv.org/abs/1706.01905): Parameters ---------- make_obs_ph: str -> tf.compat.v1.placeholder or TfInput a function that take a name and creates a placeholder of input with that name q_func: (tf.Variable, int, str, bool) -> tf.Variable the model that takes the following inputs: observation_in: object the output of observation placeholder num_actions: int number of actions scope: str reuse: bool should be passed to outer variable scope and returns a tensor of shape (batch_size, num_actions) with values of every action. num_actions: int number of actions. scope: str or VariableScope optional scope for variable_scope. reuse: bool or None whether or not the variables should be reused. To be able to reuse the scope must be given. param_noise_filter_func: tf.Variable -> bool function that decides whether or not a variable should be perturbed. Only applicable if param_noise is True. If set to None, default_param_noise_filter is used by default. Returns ------- act: (tf.Variable, bool, float, bool, float, bool) -> tf.Variable function to select and action given observation. ` See the top of the file for details. """ if param_noise_filter_func is None: param_noise_filter_func = default_param_noise_filter with tf.compat.v1.variable_scope(scope, reuse=reuse): observations_ph = make_obs_ph("observation") stochastic_ph = tf.compat.v1.placeholder(tf.bool, (), name="stochastic") update_eps_ph = tf.compat.v1.placeholder(tf.float32, (), name="update_eps") update_param_noise_threshold_ph = tf.compat.v1.placeholder(tf.float32, (), name="update_param_noise_threshold") update_param_noise_scale_ph = tf.compat.v1.placeholder(tf.bool, (), name="update_param_noise_scale") reset_ph = tf.compat.v1.placeholder(tf.bool, (), name="reset") eps = tf.compat.v1.get_variable("eps", (), initializer=tf.constant_initializer(0)) param_noise_scale = tf.compat.v1.get_variable("param_noise_scale", (), initializer=tf.constant_initializer(0.01), trainable=False) param_noise_threshold = tf.compat.v1.get_variable("param_noise_threshold", (), initializer=tf.constant_initializer(0.05), trainable=False) # Unmodified Q. q_values = q_func(observations_ph.get(), num_actions, scope="q_func") # Perturbable Q used for the actual rollout. q_values_perturbed = q_func(observations_ph.get(), num_actions, scope="perturbed_q_func") # We have to wrap this code into a function due to the way tf.cond() works. See # https://stackoverflow.com/questions/37063952/confused-by-the-behavior-of-tf-cond for # a more detailed discussion. def perturb_vars(original_scope, perturbed_scope): all_vars = scope_vars(absolute_scope_name(original_scope)) all_perturbed_vars = scope_vars(absolute_scope_name(perturbed_scope)) assert len(all_vars) == len(all_perturbed_vars) perturb_ops = [] for var, perturbed_var in zip(all_vars, all_perturbed_vars): if param_noise_filter_func(perturbed_var): # Perturb this variable. op = tf.compat.v1.assign(perturbed_var, var + tf.compat.v1.random_normal(shape=tf.shape(var), mean=0., stddev=param_noise_scale)) else: # Do not perturb, just assign. op = tf.assign(perturbed_var, var) perturb_ops.append(op) assert len(perturb_ops) == len(all_vars) return tf.group(*perturb_ops) # Set up functionality to re-compute `param_noise_scale`. This perturbs yet another copy # of the network and measures the effect of that perturbation in action space. If the perturbation # is too big, reduce scale of perturbation, otherwise increase. q_values_adaptive = q_func(observations_ph.get(), num_actions, scope="adaptive_q_func") perturb_for_adaption = perturb_vars(original_scope="q_func", perturbed_scope="adaptive_q_func") kl = tf.reduce_sum( tf.nn.softmax(q_values) * (tf.compat.v1.log(tf.nn.softmax(q_values)) - tf.compat.v1.log(tf.nn.softmax(q_values_adaptive))), axis=-1) mean_kl = tf.reduce_mean(kl) def update_scale(): with tf.control_dependencies([perturb_for_adaption]): update_scale_expr = tf.cond(mean_kl < param_noise_threshold, lambda: param_noise_scale.assign(param_noise_scale * 1.01), lambda: param_noise_scale.assign(param_noise_scale / 1.01), ) return update_scale_expr # Functionality to update the threshold for parameter space noise. update_param_noise_threshold_expr = param_noise_threshold.assign(tf.cond(update_param_noise_threshold_ph >= 0, lambda: update_param_noise_threshold_ph, lambda: param_noise_threshold)) # Put everything together. deterministic_actions = tf.argmax(q_values_perturbed, axis=1) batch_size = tf.shape(observations_ph.get())[0] random_actions = tf.compat.v1.random_uniform(tf.stack([batch_size]), minval=0, maxval=num_actions, dtype=tf.int64) chose_random = tf.compat.v1.random_uniform(tf.stack([batch_size]), minval=0, maxval=1, dtype=tf.float32) < eps stochastic_actions = tf.where(chose_random, random_actions, deterministic_actions) output_actions = tf.cond(stochastic_ph, lambda: stochastic_actions, lambda: deterministic_actions) update_eps_expr = eps.assign(tf.cond(update_eps_ph >= 0, lambda: update_eps_ph, lambda: eps)) updates = [ update_eps_expr, tf.cond(reset_ph, lambda: perturb_vars(original_scope="q_func", perturbed_scope="perturbed_q_func"), lambda: tf.group(*[])), tf.cond(update_param_noise_scale_ph, lambda: update_scale(), lambda: tf.Variable(0., trainable=False)), update_param_noise_threshold_expr, ] _act = U.function( inputs=[observations_ph, stochastic_ph, update_eps_ph, reset_ph, update_param_noise_threshold_ph, update_param_noise_scale_ph], outputs=output_actions, givens={update_eps_ph: -1.0, stochastic_ph: True, reset_ph: False, update_param_noise_threshold_ph: False, update_param_noise_scale_ph: False}, updates=updates) def act(ob, reset=False, update_param_noise_threshold=False, update_param_noise_scale=False, stochastic=True, update_eps=-1): return _act(ob, stochastic, update_eps, reset, update_param_noise_threshold, update_param_noise_scale) return act def build_train(make_obs_ph, q_func, num_actions, optimizer, grad_norm_clipping=None, gamma=1.0, double_q=True, scope="deepq", reuse=None, param_noise=False, param_noise_filter_func=None): """Creates the train function: Parameters ---------- make_obs_ph: str -> tf.compat.v1.placeholder or TfInput a function that takes a name and creates a placeholder of input with that name q_func: (tf.Variable, int, str, bool) -> tf.Variable the model that takes the following inputs: observation_in: object the output of observation placeholder num_actions: int number of actions scope: str reuse: bool should be passed to outer variable scope and returns a tensor of shape (batch_size, num_actions) with values of every action. num_actions: int number of actions reuse: bool whether or not to reuse the graph variables optimizer: tf.train.Optimizer optimizer to use for the Q-learning objective. grad_norm_clipping: float or None clip gradient norms to this value. If None no clipping is performed. gamma: float discount rate. double_q: bool if true will use Double Q Learning (https://arxiv.org/abs/1509.06461). In general it is a good idea to keep it enabled. scope: str or VariableScope optional scope for variable_scope. reuse: bool or None whether or not the variables should be reused. To be able to reuse the scope must be given. param_noise: bool whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905) param_noise_filter_func: tf.Variable -> bool function that decides whether or not a variable should be perturbed. Only applicable if param_noise is True. If set to None, default_param_noise_filter is used by default. Returns ------- act: (tf.Variable, bool, float) -> tf.Variable function to select and action given observation. ` See the top of the file for details. train: (object, np.array, np.array, object, np.array, np.array) -> np.array optimize the error in Bellman's equation. ` See the top of the file for details. update_target: () -> () copy the parameters from optimized Q function to the target Q function. ` See the top of the file for details. debug: {str: function} a bunch of functions to print debug data like q_values. """ if param_noise: act_f = build_act_with_param_noise(make_obs_ph, q_func, num_actions, scope=scope, reuse=reuse, param_noise_filter_func=param_noise_filter_func) else: act_f = build_act(make_obs_ph, q_func, num_actions, scope=scope, reuse=reuse) with tf.compat.v1.variable_scope(scope, reuse=reuse): # set up placeholders obs_t_input = make_obs_ph("obs_t") act_t_ph = tf.compat.v1.placeholder(tf.int32, [None], name="action") rew_t_ph = tf.compat.v1.placeholder(tf.float32, [None], name="reward") obs_tp1_input = make_obs_ph("obs_tp1") done_mask_ph = tf.compat.v1.placeholder(tf.float32, [None], name="done") importance_weights_ph = tf.compat.v1.placeholder(tf.float32, [None], name="weight") # q network evaluation q_t = q_func(obs_t_input.get(), num_actions, scope="q_func", reuse=True) # reuse parameters from act q_func_vars = tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.GLOBAL_VARIABLES, scope=tf.compat.v1.get_variable_scope().name + "/q_func") # target q network evalution q_tp1 = q_func(obs_tp1_input.get(), num_actions, scope="target_q_func") target_q_func_vars = tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.GLOBAL_VARIABLES, scope=tf.compat.v1.get_variable_scope().name + "/target_q_func") # q scores for actions which we know were selected in the given state. q_t_selected = tf.reduce_sum(q_t * tf.one_hot(act_t_ph, num_actions), 1) # compute estimate of best possible value starting from state at t + 1 if double_q: q_tp1_using_online_net = q_func(obs_tp1_input.get(), num_actions, scope="q_func", reuse=True) q_tp1_best_using_online_net = tf.argmax(q_tp1_using_online_net, 1) q_tp1_best = tf.reduce_sum(q_tp1 * tf.one_hot(q_tp1_best_using_online_net, num_actions), 1) else: q_tp1_best = tf.reduce_max(q_tp1, 1) q_tp1_best_masked = (1.0 - done_mask_ph) * q_tp1_best # compute RHS of bellman equation q_t_selected_target = rew_t_ph + gamma * q_tp1_best_masked # compute the error (potentially clipped) td_error = q_t_selected - tf.stop_gradient(q_t_selected_target) errors = U.huber_loss(td_error) weighted_error = tf.reduce_mean(importance_weights_ph * errors) # compute optimization op (potentially with gradient clipping) if grad_norm_clipping is not None: gradients = optimizer.compute_gradients(weighted_error, var_list=q_func_vars) for i, (grad, var) in enumerate(gradients): if grad is not None: gradients[i] = (tf.clip_by_norm(grad, grad_norm_clipping), var) optimize_expr = optimizer.apply_gradients(gradients) else: optimize_expr = optimizer.minimize(weighted_error, var_list=q_func_vars) # update_target_fn will be called periodically to copy Q network to target Q network update_target_expr = [] for var, var_target in zip(sorted(q_func_vars, key=lambda v: v.name), sorted(target_q_func_vars, key=lambda v: v.name)): update_target_expr.append(var_target.assign(var)) update_target_expr = tf.group(*update_target_expr) # Create callable functions train = U.function( inputs=[ obs_t_input, act_t_ph, rew_t_ph, obs_tp1_input, done_mask_ph, importance_weights_ph ], outputs=td_error, updates=[optimize_expr] ) update_target = U.function([], [], updates=[update_target_expr]) q_values = U.function([obs_t_input], q_t) return act_f, train, update_target, {'q_values': q_values}
46.17234
135
0.65232
[ "MIT" ]
rwill128/baselines
baselines/deepq/build_graph.py
21,701
Python
############################################################################### ## ## Copyright (C) 2014-2016, New York University. ## Copyright (C) 2011-2014, NYU-Poly. ## Copyright (C) 2006-2011, University of Utah. ## All rights reserved. ## Contact: [email protected] ## ## This file is part of VisTrails. ## ## "Redistribution and use in source and binary forms, with or without ## modification, are permitted provided that the following conditions are met: ## ## - Redistributions of source code must retain the above copyright notice, ## this list of conditions and the following disclaimer. ## - Redistributions in binary form must reproduce the above copyright ## notice, this list of conditions and the following disclaimer in the ## documentation and/or other materials provided with the distribution. ## - Neither the name of the New York University nor the names of its ## contributors may be used to endorse or promote products derived from ## this software without specific prior written permission. ## ## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" ## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, ## THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR ## PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ## CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ## EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ## PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; ## OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, ## WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR ## OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ## ADVISED OF THE POSSIBILITY OF SUCH DAMAGE." ## ############################################################################### from __future__ import division import copy from auto_gen import DBVistrail as _DBVistrail from auto_gen import DBAdd, DBChange, DBDelete, DBAbstraction, DBGroup, \ DBModule from id_scope import IdScope class DBVistrail(_DBVistrail): def __init__(self, *args, **kwargs): _DBVistrail.__init__(self, *args, **kwargs) self.idScope = IdScope(remap={DBAdd.vtType: 'operation', DBChange.vtType: 'operation', DBDelete.vtType: 'operation', DBAbstraction.vtType: DBModule.vtType, DBGroup.vtType: DBModule.vtType}) self.idScope.setBeginId('action', 1) self.db_objects = {} # keep a reference to the current logging information here self.log_filename = None self.log = None def __copy__(self): return DBVistrail.do_copy(self) def do_copy(self, new_ids=False, id_scope=None, id_remap=None): cp = _DBVistrail.do_copy(self, new_ids, id_scope, id_remap) cp.__class__ = DBVistrail cp.idScope = copy.copy(self.idScope) cp.db_objects = copy.copy(self.db_objects) cp.log_filename = self.log_filename if self.log is not None: cp.log = copy.copy(self.log) else: cp.log = None return cp @staticmethod def update_version(old_obj, trans_dict, new_obj=None): if new_obj is None: new_obj = DBVistrail() new_obj = _DBVistrail.update_version(old_obj, trans_dict, new_obj) new_obj.update_id_scope() if hasattr(old_obj, 'log_filename'): new_obj.log_filename = old_obj.log_filename if hasattr(old_obj, 'log'): new_obj.log = old_obj.log return new_obj def update_id_scope(self): def getOldObjId(operation): if operation.vtType == 'change': return operation.db_oldObjId return operation.db_objectId def getNewObjId(operation): if operation.vtType == 'change': return operation.db_newObjId return operation.db_objectId for action in self.db_actions: self.idScope.updateBeginId('action', action.db_id+1) if action.db_session is not None: self.idScope.updateBeginId('session', action.db_session + 1) for operation in action.db_operations: self.idScope.updateBeginId('operation', operation.db_id+1) if operation.vtType == 'add' or operation.vtType == 'change': # update ids of data self.idScope.updateBeginId(operation.db_what, getNewObjId(operation)+1) if operation.db_data is None: if operation.vtType == 'change': operation.db_objectId = operation.db_oldObjId self.db_add_object(operation.db_data) for annotation in action.db_annotations: self.idScope.updateBeginId('annotation', annotation.db_id+1) def db_add_object(self, obj): self.db_objects[(obj.vtType, obj.db_id)] = obj def db_get_object(self, type, id): return self.db_objects.get((type, id), None) def db_update_object(self, obj, **kwargs): # want to swap out old object with a new version # need this for updating aliases... # hack it using setattr... real_obj = self.db_objects[(obj.vtType, obj.db_id)] for (k, v) in kwargs.iteritems(): if hasattr(real_obj, k): setattr(real_obj, k, v)
43.244275
79
0.625243
[ "BSD-3-Clause" ]
MaritimeResearchInstituteNetherlands/VisTrails
vistrails/db/versions/v0_9_4/domain/vistrail.py
5,665
Python
import os import torch import tkdet.utils.comm as comm from tkdet.checkpoint import DetectionCheckpointer from tkdet.config import get_cfg from tkdet.data import MetadataCatalog from tkdet.engine import DefaultTrainer from tkdet.engine import default_argument_parser from tkdet.engine import default_setup from tkdet.engine import launch from tkdet.evaluation import CityscapesInstanceEvaluator from tkdet.evaluation import COCOEvaluator from tkdet.evaluation import DatasetEvaluators from tkdet.evaluation import LVISEvaluator from tkdet.evaluation import verify_results from point_rend import add_pointrend_config class Trainer(DefaultTrainer): @classmethod def build_evaluator(cls, cfg, dataset_name, output_folder=None): if output_folder is None: output_folder = os.path.join(cfg.OUTPUT_DIR, "inference") evaluator_list = [] evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type if evaluator_type == "lvis": return LVISEvaluator(dataset_name, cfg, True, output_folder) if evaluator_type == "coco": return COCOEvaluator(dataset_name, cfg, True, output_folder) if evaluator_type == "cityscapes": assert torch.cuda.device_count() >= comm.get_rank(), \ "CityscapesEvaluator currently do not work with multiple machines." return CityscapesInstanceEvaluator(dataset_name) if len(evaluator_list) == 0: raise NotImplementedError( f"no Evaluator for the dataset {dataset_name} with the type {evaluator_type}" ) if len(evaluator_list) == 1: return evaluator_list[0] return DatasetEvaluators(evaluator_list) def setup(args): cfg = get_cfg() add_pointrend_config(cfg) cfg.merge_from_file(args.config) cfg.merge_from_list(args.opts) cfg.freeze() default_setup(cfg, args) return cfg def main(args): cfg = setup(args) if args.eval_only: model = Trainer.build_model(cfg) DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load( cfg.MODEL.WEIGHTS, resume=args.resume ) res = Trainer.test(cfg, model) if comm.is_main_process(): verify_results(cfg, res) return res trainer = Trainer(cfg) trainer.resume_or_load(resume=args.resume) return trainer.train() if __name__ == "__main__": args = default_argument_parser().parse_args() print("Command Line Args:", args) launch( main, args.num_gpus, num_machines=args.num_machines, machine_rank=args.machine_rank, dist_url=args.dist_url, args=(args,), )
31.870588
93
0.695829
[ "MIT" ]
tkhe/tkdetection
projects/PointRend/train_net.py
2,709
Python
# Copyright (c) 2013, TeamPRO and contributors # For license information, please see license.txt from __future__ import unicode_literals from six.moves import range from six import string_types import frappe import json from frappe.utils import (getdate, cint, add_months, date_diff, add_days, nowdate, get_datetime_str, cstr, get_datetime, now_datetime, format_datetime) from datetime import datetime from calendar import monthrange from frappe import _, msgprint from frappe.utils import flt from frappe.utils import cstr, cint, getdate def execute(filters=None): if not filters: filters = {} columns = get_columns() data = [] row = [] conditions, filters = get_conditions(filters) attendance = get_attendance(conditions,filters) for att in attendance: data.append(att) return columns, data def get_columns(): columns = [ _("ID") + ":Data:200", _("Attendance Date") + ":Data:200", _("Employee") + ":Data:120", _("Employee Name") + ":Data:120", _("Department") + ":Data:120", _("Status") + ":Data:120", # _("Present Shift") + ":Data:120" ] return columns def get_attendance(conditions,filters): attendance = frappe.db.sql("""Select name,employee, employee_name, department,attendance_date, shift,status From `tabAttendance` Where status = "Absent" and docstatus = 1 and %s group by employee,attendance_date"""% conditions,filters, as_dict=1) employee = frappe.db.get_all("Employee",{"status":"Active"},["name"]) row = [] emp_count = 0 import pandas as pd mydates = pd.date_range(filters.from_date, filters.to_date).tolist() absent_date = [] for emp in employee: for date in mydates: for att in attendance: if emp.name == att.employee: if att.attendance_date == date.date(): att_date = date.date() absent_date += [(date.date())] emp_count += 1 if emp_count >= 3: for ab_date in absent_date: row += [(att.name,ab_date,att.employee,att.employee_name,att.department,att.status)] frappe.errprint(row) return row def get_conditions(filters): conditions = "" if filters.get("from_date"): conditions += " attendance_date >= %(from_date)s" if filters.get("to_date"): conditions += " and attendance_date <= %(to_date)s" if filters.get("company"): conditions += " and company = %(company)s" if filters.get("employee"): conditions += " and employee = %(employee)s" if filters.get("department"): conditions += " and department = %(department)s" return conditions, filters
35.763158
142
0.64496
[ "MIT" ]
thispl/tpl-hrpro
hrpro/hrpro/report/continuous_absent_report/continuous_absent_report.py
2,718
Python
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import DataMigration from django.db import models class Migration(DataMigration): def forwards(self, orm): from useradmin.models import HuePermission try: perm = HuePermission.objects.get(app='metastore', action='read_only_access') perm.delete() except HuePermission.DoesNotExist: pass def backwards(self, orm): perm, created = HuePermission.objects.get_or_create(app='metastore', action='read_only_access') models = { 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'ordering': "('content_type__app_label', 'content_type__model', 'codename')", 'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'useradmin.grouppermission': { 'Meta': {'object_name': 'GroupPermission'}, 'group': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.Group']"}), 'hue_permission': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['useradmin.HuePermission']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, 'useradmin.huepermission': { 'Meta': {'object_name': 'HuePermission'}, 'action': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'app': ('django.db.models.fields.CharField', [], {'max_length': '30'}), 'description': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'through': "orm['useradmin.GroupPermission']", 'symmetrical': 'False'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, 'useradmin.ldapgroup': { 'Meta': {'object_name': 'LdapGroup'}, 'group': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'group'", 'to': "orm['auth.Group']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, 'useradmin.userprofile': { 'Meta': {'object_name': 'UserProfile'}, 'creation_method': ('django.db.models.fields.CharField', [], {'default': "'HUE'", 'max_length': '64'}), 'home_directory': ('django.db.models.fields.CharField', [], {'max_length': '1024', 'null': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']", 'unique': 'True'}) } } complete_apps = ['useradmin'] symmetrical = True
64.597701
182
0.568149
[ "Apache-2.0" ]
10088/hue
apps/useradmin/src/useradmin/old_migrations/0003_remove_metastore_readonly_huepermission.py
5,620
Python
""" .. module: lemur.users.models :platform: unix :synopsis: This module contains all of the models need to create a user within lemur :copyright: (c) 2018 by Netflix Inc., see AUTHORS for more :license: Apache, see LICENSE for more details. .. moduleauthor:: Kevin Glisson <[email protected]> """ from sqlalchemy.orm import relationship from sqlalchemy import Integer, String, Column, Boolean from sqlalchemy.event import listen from sqlalchemy_utils.types.arrow import ArrowType from lemur.database import db from lemur.models import roles_users from lemur.extensions import bcrypt def hash_password(mapper, connect, target): """ Helper function that is a listener and hashes passwords before insertion into the database. :param mapper: :param connect: :param target: """ target.hash_password() class User(db.Model): __tablename__ = 'users' id = Column(Integer, primary_key=True) password = Column(String(128)) active = Column(Boolean()) confirmed_at = Column(ArrowType()) username = Column(String(255), nullable=False, unique=True) email = Column(String(128), unique=True) profile_picture = Column(String(255)) roles = relationship('Role', secondary=roles_users, passive_deletes=True, backref=db.backref('user'), lazy='dynamic') certificates = relationship('Certificate', backref=db.backref('user'), lazy='dynamic') pending_certificates = relationship('PendingCertificate', backref=db.backref('user'), lazy='dynamic') authorities = relationship('Authority', backref=db.backref('user'), lazy='dynamic') keys = relationship('ApiKey', backref=db.backref('user'), lazy='dynamic') logs = relationship('Log', backref=db.backref('user'), lazy='dynamic') sensitive_fields = ('password',) def check_password(self, password): """ Hash a given password and check it against the stored value to determine it's validity. :param password: :return: """ if self.password: return bcrypt.check_password_hash(self.password, password) def hash_password(self): """ Generate the secure hash for the password. :return: """ if self.password: self.password = bcrypt.generate_password_hash(self.password).decode('utf-8') @property def is_admin(self): """ Determine if the current user has the 'admin' role associated with it. :return: """ for role in self.roles: if role.name == 'admin': return True def __repr__(self): return "User(username={username})".format(username=self.username) listen(User, 'before_insert', hash_password)
30.733333
121
0.66992
[ "Apache-2.0" ]
Brett-Wood/lemur
lemur/users/models.py
2,766
Python
# SPDX-License-Identifier: MIT # (c) 2019 The TJHSST Director 4.0 Development Team & Contributors import asyncio import json from typing import Any, Dict import websockets from docker.models.services import Service from ..docker.services import get_director_service_name, get_service_by_name from ..docker.utils import create_client from ..logs import DirectorSiteLogFollower from .utils import mainloop_auto_cancel, wait_for_event async def logs_handler( websock: websockets.client.WebSocketClientProtocol, params: Dict[str, Any], stop_event: asyncio.Event, ) -> None: client = create_client() site_id = int(params["site_id"]) service: Service = get_service_by_name(client, get_director_service_name(site_id)) if service is None: await websock.close() return async def echo_loop() -> None: while True: try: msg = json.loads(await websock.recv()) except (websockets.exceptions.ConnectionClosed, asyncio.CancelledError): break if isinstance(msg, dict) and "heartbeat" in msg: try: await websock.send(json.dumps(msg)) except (websockets.exceptions.ConnectionClosed, asyncio.CancelledError): break async def log_loop(log_follower: DirectorSiteLogFollower) -> None: try: async for line in log_follower.iter_lines(): if not line: break await websock.send(json.dumps({"line": line})) except (websockets.exceptions.ConnectionClosed, asyncio.CancelledError): pass async with DirectorSiteLogFollower(client, site_id) as log_follower: await log_follower.start(last_n=10) await mainloop_auto_cancel( [echo_loop(), log_loop(log_follower), wait_for_event(stop_event)] ) await websock.close()
30.634921
88
0.661658
[ "MIT" ]
Rushilwiz/director4
orchestrator/orchestrator/consumers/logs.py
1,930
Python
from reqlist import * import random from catalog.models import Course def ceiling_thresh(progress, maximum): """Creates a progress object Ensures that 0 < progress < maximum""" effective_progress = max(0, progress) if maximum > 0: return Progress(min(effective_progress, maximum), maximum) else: return Progress(effective_progress, maximum) def total_units(courses): """Finds the total units in a list of Course objects""" total = 0 for course in courses: total += course.total_units return total def sum_progresses(progresses, criterion_type, maxFunc): """Adds together a list of Progress objects by combining them one by one criterion_type: either subjects or units maxFunc: describes how to combine the maximums of the Progress objects""" if criterion_type == CRITERION_SUBJECTS: mapfunc = lambda p: p.subject_fulfillment elif criterion_type == CRITERION_UNITS: mapfunc = lambda p: p.unit_fulfillment sum_progress = reduce(lambda p1, p2: p1.combine(p2, maxFunc), map(mapfunc, progresses)) return sum_progress def force_unfill_progresses(satisfied_by_category, current_distinct_threshold, current_threshold): """Adjusts the fulfillment and progress of RequirementsProgress object with both distinct thresholds and thresholds These requirements follow the form "X subjects/units from at least N categories" satisfied_by_category: list of lists of Courses for each category current_distinct_threshold: threshold object for distinct threshold current_threshold: threshold object for regular threshold""" subject_cutoff = current_threshold.cutoff_for_criterion(CRITERION_SUBJECTS) unit_cutoff = current_threshold.cutoff_for_criterion(CRITERION_UNITS) #list of subjects by category sorted by units max_unit_subjects = map(lambda sat_cat: sorted(sat_cat, key = lambda s: s.total_units), satisfied_by_category) #split subjects into two sections: fixed and free #fixed subjects: must have one subject from each category #free subjects: remaining subjects to fill requirement can come from any category #choose maximum-unit courses to fulfill requirement with least amount of courses possible fixed_subject_progress = 0 fixed_subject_max = current_distinct_threshold.get_actual_cutoff() fixed_unit_progress = 0 fixed_unit_max = 0 #fill fixed subjects with maximum-unit course in each category for category_subjects in max_unit_subjects: if len(category_subjects) > 0: subject_to_count = category_subjects.pop() fixed_subject_progress += 1 fixed_unit_progress += subject_to_count.total_units fixed_unit_max += subject_to_count.total_units else: fixed_unit_max += DEFAULT_UNIT_COUNT #remaining subjects/units to fill remaining_subject_progress = subject_cutoff - fixed_subject_max remaining_unit_progress = unit_cutoff - fixed_unit_max #choose free courses from all remaining courses free_courses = sorted([course for category in max_unit_subjects for course in category], key = lambda s: s.total_units, reverse = True) free_subject_max = subject_cutoff - fixed_subject_max free_unit_max = unit_cutoff - fixed_unit_max free_subject_progress = min(len(free_courses), free_subject_max) free_unit_progress = min(total_units(free_courses), free_unit_max) #add fixed and free courses to get total progress subject_progress = Progress(fixed_subject_progress + free_subject_progress, subject_cutoff) unit_progress = Progress(fixed_unit_progress + free_unit_progress, unit_cutoff) return (subject_progress, unit_progress) class JSONProgressConstants: """Each of these keys will be filled in a RequirementsStatement JSON representation decorated by a RequirementsProgress object.""" is_fulfilled = "fulfilled" progress = "progress" progress_max = "max" percent_fulfilled = "percent_fulfilled" satisfied_courses = "sat_courses" # Progress assertions is_bypassed = "is_bypassed" assertion = "assertion" class Progress(object): """An object describing simple progress towards a requirement Different from RequirementsProgress object as it only includes progress information, not nested RequirementsProgress objects, fulfillment status, title, and other information progress: number of units/subjects completed max: number of units/subjects needed to fulfill requirement""" def __init__(self, progress, max): self.progress = progress self.max = max def get_percent(self): if self.max > 0: return min(100, int(round((self.progress / float(self.max)) * 100))) else: return "N/A" def get_fraction(self): if self.max > 0: return self.progress / float(self.max) else: return "N/A" def get_raw_fraction(self, unit): denom = max(self.max, DEFAULT_UNIT_COUNT if unit == CRITERION_UNITS else 1) return self.progress/denom def combine(self, p2, maxFunc): if maxFunc is not None: return Progress(self.progress + p2.progress, self.max + maxFunc(p2.max)) return Progress(self.progress + p2.progress, self.max + p2.max) def __repr__(self): return str(self.progress) + " / " + str(self.max) class RequirementsProgress(object): """ Stores a user's progress towards a given requirements statement. This object wraps a requirements statement and has a to_json_object() method which returns the statement's own JSON dictionary representation with progress information added. Note: This class is maintained separately from the Django model so that persistent information can be stored in a database-friendly format, while information specific to a user's request is transient. """ def __init__(self, statement, list_path): """Initializes a progress object with the given requirements statement.""" self.statement = statement self.threshold = self.statement.get_threshold() self.distinct_threshold = self.statement.get_distinct_threshold() self.list_path = list_path self.children = [] if self.statement.requirement is None: for index, child in enumerate(self.statement.requirements.iterator()): self.children.append(RequirementsProgress(child, list_path + "." + str(index))) def courses_satisfying_req(self, courses): """ Returns the whole courses and the half courses satisfying this requirement separately. """ if self.statement.requirement is not None: req = self.statement.requirement if "GIR:" in req or "HASS" in req or "CI-" in req: # Separate whole and half courses whole_courses = [] half_courses = [] for c in courses: if not c.satisfies(req, courses): continue if c.is_half_class: half_courses.append(c) else: whole_courses.append(c) return whole_courses, half_courses else: return [c for c in courses if c.satisfies(req, courses)], [] return [], [] def override_requirement(self, manual_progress): """ Sets the progress fulfillment variables based on a manual progress value, which is expressed in either units or subjects depending on the requirement's threshold. """ self.is_fulfilled = manual_progress >= self.threshold.get_actual_cutoff() subjects = 0 units = 0 satisfied_courses = set() if self.threshold.criterion == CRITERION_UNITS: units = manual_progress subjects = manual_progress / DEFAULT_UNIT_COUNT else: units = manual_progress * DEFAULT_UNIT_COUNT subjects = manual_progress subject_progress = ceiling_thresh(subjects, self.threshold.cutoff_for_criterion(CRITERION_SUBJECTS)) unit_progress = ceiling_thresh(units, self.threshold.cutoff_for_criterion(CRITERION_UNITS)) #fill with dummy courses random_ids = random.sample(range(1000, max(10000, subject_progress.progress + 1000)), subject_progress.progress) for rand_id in random_ids: dummy_course = Course(id = self.list_path + "_" + str(rand_id), subject_id = "gen_course_" + self.list_path + "_" + str(rand_id), title = "Generated Course " + self.list_path + " " + str(rand_id)) satisfied_courses.add(dummy_course) self.subject_fulfillment = subject_progress self.subject_progress = subject_progress.progress self.subject_max = subject_progress.max self.unit_fulfillment = unit_progress self.unit_progress = unit_progress.progress self.unit_max = unit_progress.max progress = unit_progress if self.threshold is not None and self.threshold.criterion == CRITERION_UNITS else subject_progress self.progress = progress.progress self.progress_max = progress.max self.percent_fulfilled = progress.get_percent() self.fraction_fulfilled = progress.get_fraction() self.satisfied_courses = list(satisfied_courses) def compute_assertions(self, courses, progress_assertions): """ Computes the fulfillment of this requirement based on progress assertions, and returns True if the requirement has an assertion available or False otherwise. Assertions are in the format of a dictionary keyed by requirements list paths, where the values are dictionaries containing three possible keys: "substitutions", which should be a list of course IDs that combine to substitute for the requirement, "ignore", which indicates that the requirement is not to be used when satisfying later requirements, and "override", which is equivalent to the old manual progress value and indicates a progress toward the requirement in the unit specified by the requirement's threshold type (only used if the requirement is a plain string requirement and has a threshold). The order of precedence is override, ignore, substitutions. """ self.assertion = progress_assertions.get(self.list_path, None) self.is_bypassed = False if self.assertion is not None: substitutions = self.assertion.get("substitutions", None) #List of substitutions ignore = self.assertion.get("ignore", False) #Boolean override = self.assertion.get("override", 0) else: substitutions = None ignore = False override = 0 if self.statement.is_plain_string and self.threshold is not None and override: self.override_requirement(override) return True if ignore: self.is_fulfilled = False subject_progress = Progress(0, 0) self.subject_fulfillment = subject_progress self.subject_progress = subject_progress.progress self.subject_max = subject_progress.max unit_progress = Progress(0, 0) self.unit_fulfillment = unit_progress self.unit_progress = unit_progress.progress self.unit_max = unit_progress.max progress = Progress(0, 0) self.progress = progress.progress self.progress_max = progress.max self.percent_fulfilled = progress.get_percent() self.fraction_fulfilled = progress.get_fraction() self.satisfied_courses = [] return True if substitutions is not None: satisfied_courses = set() subs_satisfied = 0 units_satisfied = 0 for sub in substitutions: for course in courses: if course.satisfies(sub, courses): subs_satisfied += 1 units_satisfied += course.total_units satisfied_courses.add(course) break if self.statement.is_plain_string and self.threshold is not None: subject_progress = Progress(subs_satisfied, self.threshold.cutoff_for_criterion(CRITERION_SUBJECTS)) unit_progress = Progress(units_satisfied, self.threshold.cutoff_for_criterion(CRITERION_UNITS)) progress = subject_progress if self.threshold.criterion == CRITERION_SUBJECTS else unit_progress self.is_fulfilled = progress.progress == progress.max else: subject_progress = Progress(subs_satisfied, len(substitutions)) self.is_fulfilled = subs_satisfied == len(substitutions) unit_progress = Progress(subs_satisfied * DEFAULT_UNIT_COUNT, len(substitutions) * DEFAULT_UNIT_COUNT) progress = subject_progress self.subject_fulfillment = subject_progress self.subject_progress = subject_progress.progress self.subject_max = subject_progress.max self.unit_fulfillment = unit_progress self.unit_progress = unit_progress.progress self.unit_max = unit_progress.max self.progress = progress.progress self.progress_max = progress.max self.percent_fulfilled = progress.get_percent() self.fraction_fulfilled = progress.get_fraction() self.satisfied_courses = list(satisfied_courses) return True return False def bypass_children(self): """Sets the is_bypassed flag of the recursive children of this progress object to True.""" for child in self.children: child.is_bypassed = True child.is_fulfilled = False child.subject_fulfillment = Progress(0, 0) child.subject_progress = 0 child.subject_max = 0 child.unit_fulfillment = Progress(0, 0) child.unit_progress = 0 child.unit_max = 0 child.progress = 0 child.progress_max = 0 child.percent_fulfilled = 0 child.fraction_fulfilled = 0 child.satisfied_courses = [] child.assertion = None child.bypass_children() def compute(self, courses, progress_overrides, progress_assertions): """Computes and stores the status of the requirements statement using the given list of Course objects.""" # Compute status of children and then self, adapted from mobile apps' computeRequirementsStatus method satisfied_courses = set() if self.compute_assertions(courses, progress_assertions): self.bypass_children() return if self.list_path in progress_overrides: manual_progress = progress_overrides[self.list_path] else: manual_progress = 0 self.is_bypassed = False self.assertion = None if self.statement.requirement is not None: #it is a basic requirement if self.statement.is_plain_string and manual_progress != 0 and self.threshold is not None: #use manual progress self.override_requirement(manual_progress) return else: #Example: requirement CI-H, we want to show how many have been fulfilled whole_courses, half_courses = self.courses_satisfying_req(courses) satisfied_courses = whole_courses + half_courses if not self.threshold is None: #A specific number of courses is required subject_progress = ceiling_thresh(len(whole_courses) + len(half_courses) // 2, self.threshold.cutoff_for_criterion(CRITERION_SUBJECTS)) unit_progress = ceiling_thresh(total_units(satisfied_courses), self.threshold.cutoff_for_criterion(CRITERION_UNITS)) is_fulfilled = self.threshold.is_satisfied_by(subject_progress.progress, unit_progress.progress) else: #Only one is needed progress_subjects = min(len(satisfied_courses), 1) is_fulfilled = len(satisfied_courses) > 0 subject_progress = ceiling_thresh(progress_subjects, 1) if len(satisfied_courses) > 0: unit_progress = ceiling_thresh(list(satisfied_courses)[0].total_units, DEFAULT_UNIT_COUNT) else: unit_progress = ceiling_thresh(0, DEFAULT_UNIT_COUNT) progress = unit_progress if self.threshold is not None and self.threshold.criterion == CRITERION_UNITS else subject_progress if len(self.children) > 0: #It's a compound requirement num_reqs_satisfied = 0 satisfied_by_category = [] satisfied_courses = set() num_courses_satisfied = 0 open_children = [] for req_progress in self.children: req_progress.compute(courses, progress_overrides, progress_assertions) req_satisfied_courses = req_progress.satisfied_courses # Don't count anything from a requirement that is ignored if req_progress.assertion and req_progress.assertion.get("ignore", False): continue open_children.append(req_progress) if req_progress.is_fulfilled and len(req_progress.satisfied_courses) > 0: num_reqs_satisfied += 1 satisfied_courses.update(req_satisfied_courses) satisfied_by_category.append(list(req_satisfied_courses)) # For thresholded ANY statements, children that are ALL statements # count as a single satisfied course. ANY children count for # all of their satisfied courses. if req_progress.statement.connection_type == CONNECTION_TYPE_ALL and req_progress.children: num_courses_satisfied += req_progress.is_fulfilled and len(req_progress.satisfied_courses) > 0 else: num_courses_satisfied += len(req_satisfied_courses) satisfied_by_category = [sat for prog, sat in sorted(zip(open_children, satisfied_by_category), key = lambda z: z[0].raw_fraction_fulfilled, reverse = True)] sorted_progresses = sorted(open_children, key = lambda req: req.raw_fraction_fulfilled, reverse = True) if self.threshold is None and self.distinct_threshold is None: is_fulfilled = (num_reqs_satisfied > 0) if self.statement.connection_type == CONNECTION_TYPE_ANY: #Simple "any" statement if len(sorted_progresses) > 0: subject_progress = sorted_progresses[0].subject_fulfillment unit_progress = sorted_progresses[0].unit_fulfillment else: subject_progress = Progress(0, 0) unit_progress = Progress(0, 0) else: #"All" statement, will be finalized later subject_progress = sum_progresses(sorted_progresses, CRITERION_SUBJECTS, None) unit_progress = sum_progresses(sorted_progresses, CRITERION_UNITS, None) else: if self.distinct_threshold is not None: #Clip the progresses to the ones which the user is closest to completing num_progresses_to_count = min(self.distinct_threshold.get_actual_cutoff(), len(sorted_progresses)) sorted_progresses = sorted_progresses[:num_progresses_to_count] satisfied_by_category = satisfied_by_category[:num_progresses_to_count] satisfied_courses = set() num_courses_satisfied = 0 for i, child in zip(range(num_progresses_to_count), open_children): satisfied_courses.update(satisfied_by_category[i]) if child.statement.connection_type == CONNECTION_TYPE_ALL: num_courses_satisfied += (child.is_fulfilled and len(child.satisfied_courses) > 0) else: num_courses_satisfied += len(satisfied_by_category[i]) if self.threshold is None and self.distinct_threshold is not None: #Required number of statements if self.distinct_threshold == THRESHOLD_TYPE_GTE or self.distinct_threshold.type == THRESHOLD_TYPE_GT: is_fulfilled = num_reqs_satisfied >= self.distinct_threshold.get_actual_cutoff() else: is_fulfilled = True subject_progress = sum_progresses(sorted_progresses, CRITERION_SUBJECTS, lambda x: max(x, 1)) unit_progress = sum_progresses(sorted_progresses, CRITERION_UNITS, lambda x: (x, DEFAULT_UNIT_COUNT)[x == 0]) elif self.threshold is not None: #Required number of subjects or units subject_progress = Progress(num_courses_satisfied, self.threshold.cutoff_for_criterion(CRITERION_SUBJECTS)) unit_progress = Progress(total_units(satisfied_courses), self.threshold.cutoff_for_criterion(CRITERION_UNITS)) if self.distinct_threshold is not None and (self.distinct_threshold.type == THRESHOLD_TYPE_GT or self.distinct_threshold.type == THRESHOLD_TYPE_GTE): is_fulfilled = self.threshold.is_satisfied_by(subject_progress.progress, unit_progress.progress) and num_reqs_satisfied >= self.distinct_threshold.get_actual_cutoff() if num_reqs_satisfied < self.distinct_threshold.get_actual_cutoff(): (subject_progress, unit_progress) = force_unfill_progresses(satisfied_by_category, self.distinct_threshold, self.threshold) else: is_fulfilled = self.threshold.is_satisfied_by(subject_progress.progress, unit_progress.progress) if self.statement.connection_type == CONNECTION_TYPE_ALL: #"All" statement - make above progresses more stringent is_fulfilled = is_fulfilled and (num_reqs_satisfied == len(open_children)) if subject_progress.progress == subject_progress.max and len(open_children) > num_reqs_satisfied: subject_progress.max += len(open_children) - num_reqs_satisfied unit_progress.max += (len(open_children) - num_reqs_satisfied) * DEFAULT_UNIT_COUNT #Polish up values subject_progress = ceiling_thresh(subject_progress.progress, subject_progress.max) unit_progress = ceiling_thresh(unit_progress.progress, unit_progress.max) progress = unit_progress if self.threshold is not None and self.threshold.criterion == CRITERION_UNITS else subject_progress progress_units = CRITERION_SUBJECTS if self.threshold is None else self.threshold.criterion self.is_fulfilled = is_fulfilled self.subject_fulfillment = subject_progress self.subject_progress = subject_progress.progress self.subject_max = subject_progress.max self.unit_fulfillment = unit_progress self.unit_progress = unit_progress.progress self.unit_max = unit_progress.max self.progress = progress.progress self.progress_max = progress.max self.percent_fulfilled = progress.get_percent() self.fraction_fulfilled = progress.get_fraction() self.raw_fraction_fulfilled = progress.get_raw_fraction(progress_units) self.satisfied_courses = list(satisfied_courses) def to_json_object(self, full = True, child_fn = None): """Returns a JSON dictionary containing the dictionary representation of the enclosed requirements statement, as well as progress information.""" # Recursively decorate the JSON output of the children # Add custom keys indicating progress for this statement stmt_json = self.statement.to_json_object(full=False) stmt_json[JSONProgressConstants.is_fulfilled] = self.is_fulfilled stmt_json[JSONProgressConstants.progress] = self.progress stmt_json[JSONProgressConstants.progress_max] = self.progress_max stmt_json[JSONProgressConstants.percent_fulfilled] = self.percent_fulfilled stmt_json[JSONProgressConstants.satisfied_courses] = map(lambda c: c.subject_id, self.satisfied_courses) if self.is_bypassed: stmt_json[JSONProgressConstants.is_bypassed] = self.is_bypassed if self.assertion: stmt_json[JSONProgressConstants.assertion] = self.assertion if full: if self.children: if child_fn is None: child_fn = lambda c: c.to_json_object(full=full) stmt_json[JSONConstants.requirements] =[child_fn(child) for child in self.children] return stmt_json
49.898438
208
0.663144
[ "MIT" ]
georgiashay/fireroad-server2
requirements/progress.py
25,548
Python
"""Constants for the AVM FRITZ!SmartHome integration.""" from __future__ import annotations import logging from typing import Final from homeassistant.components.binary_sensor import DEVICE_CLASS_WINDOW from homeassistant.components.fritzbox.model import ( FritzBinarySensorEntityDescription, FritzSensorEntityDescription, ) from homeassistant.components.sensor import ( STATE_CLASS_MEASUREMENT, STATE_CLASS_TOTAL_INCREASING, ) from homeassistant.const import ( DEVICE_CLASS_BATTERY, DEVICE_CLASS_ENERGY, DEVICE_CLASS_POWER, DEVICE_CLASS_TEMPERATURE, ENERGY_KILO_WATT_HOUR, PERCENTAGE, POWER_WATT, TEMP_CELSIUS, ) ATTR_STATE_BATTERY_LOW: Final = "battery_low" ATTR_STATE_DEVICE_LOCKED: Final = "device_locked" ATTR_STATE_HOLIDAY_MODE: Final = "holiday_mode" ATTR_STATE_LOCKED: Final = "locked" ATTR_STATE_SUMMER_MODE: Final = "summer_mode" ATTR_STATE_WINDOW_OPEN: Final = "window_open" ATTR_TEMPERATURE_UNIT: Final = "temperature_unit" CONF_CONNECTIONS: Final = "connections" CONF_COORDINATOR: Final = "coordinator" DEFAULT_HOST: Final = "fritz.box" DEFAULT_USERNAME: Final = "admin" DOMAIN: Final = "fritzbox" LOGGER: Final[logging.Logger] = logging.getLogger(__package__) PLATFORMS: Final[list[str]] = ["binary_sensor", "climate", "switch", "sensor"] BINARY_SENSOR_TYPES: Final[tuple[FritzBinarySensorEntityDescription, ...]] = ( FritzBinarySensorEntityDescription( key="alarm", name="Alarm", device_class=DEVICE_CLASS_WINDOW, suitable=lambda device: device.has_alarm, # type: ignore[no-any-return] is_on=lambda device: device.alert_state, # type: ignore[no-any-return] ), ) SENSOR_TYPES: Final[tuple[FritzSensorEntityDescription, ...]] = ( FritzSensorEntityDescription( key="temperature", name="Temperature", native_unit_of_measurement=TEMP_CELSIUS, device_class=DEVICE_CLASS_TEMPERATURE, state_class=STATE_CLASS_MEASUREMENT, suitable=lambda device: ( device.has_temperature_sensor and not device.has_thermostat ), native_value=lambda device: device.temperature, # type: ignore[no-any-return] ), FritzSensorEntityDescription( key="battery", name="Battery", native_unit_of_measurement=PERCENTAGE, device_class=DEVICE_CLASS_BATTERY, suitable=lambda device: device.battery_level is not None, native_value=lambda device: device.battery_level, # type: ignore[no-any-return] ), FritzSensorEntityDescription( key="power_consumption", name="Power Consumption", native_unit_of_measurement=POWER_WATT, device_class=DEVICE_CLASS_POWER, state_class=STATE_CLASS_MEASUREMENT, suitable=lambda device: device.has_powermeter, # type: ignore[no-any-return] native_value=lambda device: device.power / 1000 if device.power else 0.0, ), FritzSensorEntityDescription( key="total_energy", name="Total Energy", native_unit_of_measurement=ENERGY_KILO_WATT_HOUR, device_class=DEVICE_CLASS_ENERGY, state_class=STATE_CLASS_TOTAL_INCREASING, suitable=lambda device: device.has_powermeter, # type: ignore[no-any-return] native_value=lambda device: device.energy / 1000 if device.energy else 0.0, ), )
34.587629
88
0.732042
[ "Apache-2.0" ]
WireFuCo/core
homeassistant/components/fritzbox/const.py
3,355
Python
#!/usr/bin/env python2 # Copyright (c) 2014-2015 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # # Test addressindex generation and fetching # import time from test_framework.test_framework import SagbitTestFramework from test_framework.util import * from test_framework.script import * from test_framework.mininode import * import binascii class AddressIndexTest(SagbitTestFramework): def setup_chain(self): print("Initializing test directory "+self.options.tmpdir) initialize_chain_clean(self.options.tmpdir, 4) def setup_network(self): self.nodes = [] # Nodes 0/1 are "wallet" nodes self.nodes.append(start_node(0, self.options.tmpdir, ["-debug", "-relaypriority=0"])) self.nodes.append(start_node(1, self.options.tmpdir, ["-debug", "-addressindex"])) # Nodes 2/3 are used for testing self.nodes.append(start_node(2, self.options.tmpdir, ["-debug", "-addressindex", "-relaypriority=0"])) self.nodes.append(start_node(3, self.options.tmpdir, ["-debug", "-addressindex"])) connect_nodes(self.nodes[0], 1) connect_nodes(self.nodes[0], 2) connect_nodes(self.nodes[0], 3) self.is_network_split = False self.sync_all() def run_test(self): print "Mining blocks..." self.nodes[0].generate(105) self.sync_all() chain_height = self.nodes[1].getblockcount() assert_equal(chain_height, 105) assert_equal(self.nodes[1].getbalance(), 0) assert_equal(self.nodes[2].getbalance(), 0) # Check that balances are correct balance0 = self.nodes[1].getaddressbalance("2N2JD6wb56AfK4tfmM6PwdVmoYk2dCKf4Br") assert_equal(balance0["balance"], 0) # Check p2pkh and p2sh address indexes print "Testing p2pkh and p2sh address index..." txid0 = self.nodes[0].sendtoaddress("mo9ncXisMeAoXwqcV5EWuyncbmCcQN4rVs", 10) self.nodes[0].generate(1) txidb0 = self.nodes[0].sendtoaddress("2N2JD6wb56AfK4tfmM6PwdVmoYk2dCKf4Br", 10) self.nodes[0].generate(1) txid1 = self.nodes[0].sendtoaddress("mo9ncXisMeAoXwqcV5EWuyncbmCcQN4rVs", 15) self.nodes[0].generate(1) txidb1 = self.nodes[0].sendtoaddress("2N2JD6wb56AfK4tfmM6PwdVmoYk2dCKf4Br", 15) self.nodes[0].generate(1) txid2 = self.nodes[0].sendtoaddress("mo9ncXisMeAoXwqcV5EWuyncbmCcQN4rVs", 20) self.nodes[0].generate(1) txidb2 = self.nodes[0].sendtoaddress("2N2JD6wb56AfK4tfmM6PwdVmoYk2dCKf4Br", 20) self.nodes[0].generate(1) self.sync_all() txids = self.nodes[1].getaddresstxids("mo9ncXisMeAoXwqcV5EWuyncbmCcQN4rVs") assert_equal(len(txids), 3) assert_equal(txids[0], txid0) assert_equal(txids[1], txid1) assert_equal(txids[2], txid2) txidsb = self.nodes[1].getaddresstxids("2N2JD6wb56AfK4tfmM6PwdVmoYk2dCKf4Br") assert_equal(len(txidsb), 3) assert_equal(txidsb[0], txidb0) assert_equal(txidsb[1], txidb1) assert_equal(txidsb[2], txidb2) # Check that limiting by height works print "Testing querying txids by range of block heights.." height_txids = self.nodes[1].getaddresstxids({ "addresses": ["2N2JD6wb56AfK4tfmM6PwdVmoYk2dCKf4Br"], "start": 105, "end": 110 }) assert_equal(len(height_txids), 2) assert_equal(height_txids[0], txidb0) assert_equal(height_txids[1], txidb1) # Check that multiple addresses works multitxids = self.nodes[1].getaddresstxids({"addresses": ["2N2JD6wb56AfK4tfmM6PwdVmoYk2dCKf4Br", "mo9ncXisMeAoXwqcV5EWuyncbmCcQN4rVs"]}) assert_equal(len(multitxids), 6) assert_equal(multitxids[0], txid0) assert_equal(multitxids[1], txidb0) assert_equal(multitxids[2], txid1) assert_equal(multitxids[3], txidb1) assert_equal(multitxids[4], txid2) assert_equal(multitxids[5], txidb2) # Check that balances are correct balance0 = self.nodes[1].getaddressbalance("2N2JD6wb56AfK4tfmM6PwdVmoYk2dCKf4Br") assert_equal(balance0["balance"], 45 * 100000000) # Check that outputs with the same address will only return one txid print "Testing for txid uniqueness..." addressHash = "6349a418fc4578d10a372b54b45c280cc8c4382f".decode("hex") scriptPubKey = CScript([OP_HASH160, addressHash, OP_EQUAL]) unspent = self.nodes[0].listunspent() tx = CTransaction() tx.vin = [CTxIn(COutPoint(int(unspent[0]["txid"], 16), unspent[0]["vout"]))] tx.vout = [CTxOut(10, scriptPubKey), CTxOut(11, scriptPubKey)] tx.rehash() signed_tx = self.nodes[0].signrawtransaction(binascii.hexlify(tx.serialize()).decode("utf-8")) sent_txid = self.nodes[0].sendrawtransaction(signed_tx["hex"], True) self.nodes[0].generate(1) self.sync_all() txidsmany = self.nodes[1].getaddresstxids("2N2JD6wb56AfK4tfmM6PwdVmoYk2dCKf4Br") assert_equal(len(txidsmany), 4) assert_equal(txidsmany[3], sent_txid) # Check that balances are correct print "Testing balances..." balance0 = self.nodes[1].getaddressbalance("2N2JD6wb56AfK4tfmM6PwdVmoYk2dCKf4Br") assert_equal(balance0["balance"], 45 * 100000000 + 21) # Check that balances are correct after spending print "Testing balances after spending..." privkey2 = "cSdkPxkAjA4HDr5VHgsebAPDEh9Gyub4HK8UJr2DFGGqKKy4K5sG" address2 = "mgY65WSfEmsyYaYPQaXhmXMeBhwp4EcsQW" addressHash2 = "0b2f0a0c31bfe0406b0ccc1381fdbe311946dadc".decode("hex") scriptPubKey2 = CScript([OP_DUP, OP_HASH160, addressHash2, OP_EQUALVERIFY, OP_CHECKSIG]) self.nodes[0].importprivkey(privkey2) unspent = self.nodes[0].listunspent() tx = CTransaction() tx.vin = [CTxIn(COutPoint(int(unspent[0]["txid"], 16), unspent[0]["vout"]))] amount = unspent[0]["amount"] * 100000000 tx.vout = [CTxOut(amount, scriptPubKey2)] tx.rehash() signed_tx = self.nodes[0].signrawtransaction(binascii.hexlify(tx.serialize()).decode("utf-8")) spending_txid = self.nodes[0].sendrawtransaction(signed_tx["hex"], True) self.nodes[0].generate(1) self.sync_all() balance1 = self.nodes[1].getaddressbalance(address2) assert_equal(balance1["balance"], amount) tx = CTransaction() tx.vin = [CTxIn(COutPoint(int(spending_txid, 16), 0))] send_amount = 1 * 100000000 + 12840 change_amount = amount - send_amount - 10000 tx.vout = [CTxOut(change_amount, scriptPubKey2), CTxOut(send_amount, scriptPubKey)] tx.rehash() signed_tx = self.nodes[0].signrawtransaction(binascii.hexlify(tx.serialize()).decode("utf-8")) sent_txid = self.nodes[0].sendrawtransaction(signed_tx["hex"], True) self.nodes[0].generate(1) self.sync_all() balance2 = self.nodes[1].getaddressbalance(address2) assert_equal(balance2["balance"], change_amount) # Check that deltas are returned correctly deltas = self.nodes[1].getaddressdeltas({"addresses": [address2], "start": 1, "end": 200}) balance3 = 0 for delta in deltas: balance3 += delta["satoshis"] assert_equal(balance3, change_amount) assert_equal(deltas[0]["address"], address2) assert_equal(deltas[0]["blockindex"], 1) # Check that entire range will be queried deltasAll = self.nodes[1].getaddressdeltas({"addresses": [address2]}) assert_equal(len(deltasAll), len(deltas)) # Check that deltas can be returned from range of block heights deltas = self.nodes[1].getaddressdeltas({"addresses": [address2], "start": 113, "end": 113}) assert_equal(len(deltas), 1) # Check that unspent outputs can be queried print "Testing utxos..." utxos = self.nodes[1].getaddressutxos({"addresses": [address2]}) assert_equal(len(utxos), 1) assert_equal(utxos[0]["satoshis"], change_amount) # Check that indexes will be updated with a reorg print "Testing reorg..." best_hash = self.nodes[0].getbestblockhash() self.nodes[0].invalidateblock(best_hash) self.nodes[1].invalidateblock(best_hash) self.nodes[2].invalidateblock(best_hash) self.nodes[3].invalidateblock(best_hash) self.sync_all() balance4 = self.nodes[1].getaddressbalance(address2) assert_equal(balance4, balance1) utxos2 = self.nodes[1].getaddressutxos({"addresses": [address2]}) assert_equal(len(utxos2), 1) assert_equal(utxos2[0]["satoshis"], amount) # Check sorting of utxos self.nodes[2].generate(150) txidsort1 = self.nodes[2].sendtoaddress(address2, 50) self.nodes[2].generate(1) txidsort2 = self.nodes[2].sendtoaddress(address2, 50) self.nodes[2].generate(1) self.sync_all() utxos3 = self.nodes[1].getaddressutxos({"addresses": [address2]}) assert_equal(len(utxos3), 3) assert_equal(utxos3[0]["height"], 114) assert_equal(utxos3[1]["height"], 264) assert_equal(utxos3[2]["height"], 265) # Check mempool indexing print "Testing mempool indexing..." privKey3 = "cVfUn53hAbRrDEuMexyfgDpZPhF7KqXpS8UZevsyTDaugB7HZ3CD" address3 = "mw4ynwhS7MmrQ27hr82kgqu7zryNDK26JB" addressHash3 = "aa9872b5bbcdb511d89e0e11aa27da73fd2c3f50".decode("hex") scriptPubKey3 = CScript([OP_DUP, OP_HASH160, addressHash3, OP_EQUALVERIFY, OP_CHECKSIG]) address4 = "2N8oFVB2vThAKury4vnLquW2zVjsYjjAkYQ" scriptPubKey4 = CScript([OP_HASH160, addressHash3, OP_EQUAL]) unspent = self.nodes[2].listunspent() tx = CTransaction() tx.vin = [CTxIn(COutPoint(int(unspent[0]["txid"], 16), unspent[0]["vout"]))] amount = unspent[0]["amount"] * 100000000 tx.vout = [CTxOut(amount, scriptPubKey3)] tx.rehash() signed_tx = self.nodes[2].signrawtransaction(binascii.hexlify(tx.serialize()).decode("utf-8")) memtxid1 = self.nodes[2].sendrawtransaction(signed_tx["hex"], True) time.sleep(2) tx2 = CTransaction() tx2.vin = [CTxIn(COutPoint(int(unspent[1]["txid"], 16), unspent[1]["vout"]))] amount = unspent[1]["amount"] * 100000000 tx2.vout = [ CTxOut(amount / 4, scriptPubKey3), CTxOut(amount / 4, scriptPubKey3), CTxOut(amount / 4, scriptPubKey4), CTxOut(amount / 4, scriptPubKey4) ] tx2.rehash() signed_tx2 = self.nodes[2].signrawtransaction(binascii.hexlify(tx2.serialize()).decode("utf-8")) memtxid2 = self.nodes[2].sendrawtransaction(signed_tx2["hex"], True) time.sleep(2) mempool = self.nodes[2].getaddressmempool({"addresses": [address3]}) assert_equal(len(mempool), 3) assert_equal(mempool[0]["txid"], memtxid1) assert_equal(mempool[0]["address"], address3) assert_equal(mempool[0]["index"], 0) assert_equal(mempool[1]["txid"], memtxid2) assert_equal(mempool[1]["index"], 0) assert_equal(mempool[2]["txid"], memtxid2) assert_equal(mempool[2]["index"], 1) self.nodes[2].generate(1); self.sync_all(); mempool2 = self.nodes[2].getaddressmempool({"addresses": [address3]}) assert_equal(len(mempool2), 0) tx = CTransaction() tx.vin = [ CTxIn(COutPoint(int(memtxid2, 16), 0)), CTxIn(COutPoint(int(memtxid2, 16), 1)) ] tx.vout = [CTxOut(amount / 2 - 10000, scriptPubKey2)] tx.rehash() self.nodes[2].importprivkey(privKey3) signed_tx3 = self.nodes[2].signrawtransaction(binascii.hexlify(tx.serialize()).decode("utf-8")) memtxid3 = self.nodes[2].sendrawtransaction(signed_tx3["hex"], True) time.sleep(2) mempool3 = self.nodes[2].getaddressmempool({"addresses": [address3]}) assert_equal(len(mempool3), 2) assert_equal(mempool3[0]["prevtxid"], memtxid2) assert_equal(mempool3[0]["prevout"], 0) assert_equal(mempool3[1]["prevtxid"], memtxid2) assert_equal(mempool3[1]["prevout"], 1) # sending and receiving to the same address privkey1 = "cQY2s58LhzUCmEXN8jtAp1Etnijx78YRZ466w4ikX1V4UpTpbsf8" address1 = "myAUWSHnwsQrhuMWv4Br6QsCnpB41vFwHn" address1hash = "c192bff751af8efec15135d42bfeedf91a6f3e34".decode("hex") address1script = CScript([OP_DUP, OP_HASH160, address1hash, OP_EQUALVERIFY, OP_CHECKSIG]) self.nodes[0].sendtoaddress(address1, 10) self.nodes[0].generate(1) self.sync_all() utxos = self.nodes[1].getaddressutxos({"addresses": [address1]}) assert_equal(len(utxos), 1) tx = CTransaction() tx.vin = [ CTxIn(COutPoint(int(utxos[0]["txid"], 16), utxos[0]["outputIndex"])) ] amount = utxos[0]["satoshis"] - 1000 tx.vout = [CTxOut(amount, address1script)] tx.rehash() self.nodes[0].importprivkey(privkey1) signed_tx = self.nodes[0].signrawtransaction(binascii.hexlify(tx.serialize()).decode("utf-8")) mem_txid = self.nodes[0].sendrawtransaction(signed_tx["hex"], True) self.sync_all() mempool_deltas = self.nodes[2].getaddressmempool({"addresses": [address1]}) assert_equal(len(mempool_deltas), 2) # Include chaininfo in results print "Testing results with chain info..." deltas_with_info = self.nodes[1].getaddressdeltas({ "addresses": [address2], "start": 1, "end": 200, "chainInfo": True }) start_block_hash = self.nodes[1].getblockhash(1); end_block_hash = self.nodes[1].getblockhash(200); assert_equal(deltas_with_info["start"]["height"], 1) assert_equal(deltas_with_info["start"]["hash"], start_block_hash) assert_equal(deltas_with_info["end"]["height"], 200) assert_equal(deltas_with_info["end"]["hash"], end_block_hash) utxos_with_info = self.nodes[1].getaddressutxos({"addresses": [address2], "chainInfo": True}) expected_tip_block_hash = self.nodes[1].getblockhash(267); assert_equal(utxos_with_info["height"], 267) assert_equal(utxos_with_info["hash"], expected_tip_block_hash) print "Passed\n" if __name__ == '__main__': AddressIndexTest().main()
42.145714
144
0.650736
[ "MIT" ]
mirzaei-ce/linux-sagbit
qa/rpc-tests/addressindex.py
14,751
Python
# Copyright (c) 2008-2013 Szczepan Faber, Serhiy Oplakanets, Herr Kaste # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from test_base import * from mockito import mock, when, verify, VerificationError, verifyNoMoreInteractions from mockito.verification import never class VerificationErrorsTest(TestBase): def testPrintsNicely(self): theMock = mock() try: verify(theMock).foo() except VerificationError, e: self.assertEquals('\nWanted but not invoked: foo()\nInstead got: []', str(e)) def testPrintsNicelyOneArgument(self): theMock = mock() try: verify(theMock).foo("bar") except VerificationError, e: self.assertEquals("\nWanted but not invoked: foo('bar')\nInstead got: []", str(e)) def testPrintsNicelyArguments(self): theMock = mock() try: verify(theMock).foo(1, 2) except VerificationError, e: self.assertEquals('\nWanted but not invoked: foo(1, 2)\nInstead got: []', str(e)) def testPrintsNicelyStringArguments(self): theMock = mock() try: verify(theMock).foo(1, 'foo') except VerificationError, e: self.assertEquals("\nWanted but not invoked: foo(1, 'foo')\nInstead got: []", str(e)) def testPrintsOutThatTheActualAndExpectedInvocationCountDiffers(self): theMock = mock() when(theMock).foo().thenReturn(0) theMock.foo() theMock.foo() try: verify(theMock).foo() except VerificationError, e: self.assertEquals("\nWanted times: 1, actual times: 2", str(e)) # TODO: implement def disabled_PrintsNicelyWhenArgumentsDifferent(self): theMock = mock() theMock.foo('foo', 1) try: verify(theMock).foo(1, 'foo') except VerificationError, e: self.assertEquals( """Arguments are different. Wanted: foo(1, 'foo') Actual: foo('foo', 1)""", str(e)) def testPrintsUnwantedInteraction(self): theMock = mock() theMock.foo(1, 'foo') try: verifyNoMoreInteractions(theMock) except VerificationError, e: self.assertEquals("\nUnwanted interaction: foo(1, 'foo')", str(e)) def testPrintsNeverWantedInteractionsNicely(self): theMock = mock() theMock.foo() self.assertRaisesMessage("\nUnwanted invocation of foo(), times: 1", verify(theMock, never).foo) if __name__ == '__main__': unittest.main()
36.852632
104
0.676378
[ "MIT" ]
mriehl/mockito-without-hardcoded-distribute-version
mockito-0.5.2/mockito_test/verification_errors_test.py
3,501
Python
# version 0.1 # by DrLecter import sys from com.l2jfrozen import Config from com.l2jfrozen.gameserver.model.quest import State from com.l2jfrozen.gameserver.model.quest import QuestState from com.l2jfrozen.gameserver.model.quest.jython import QuestJython as JQuest qn = "420_LittleWings" # variables section REQUIRED_EGGS = 20 #Drop rates in % BACK_DROP = 30 EGG_DROP = 50 #Quest items FRY_STN,FRY_STN_DLX,FSN_LIST,FSN_LIST_DLX,TD_BCK_SKN,JUICE,SCALE_1,EX_EGG,\ SCALE_2,ZW_EGG,SCALE_3,KA_EGG,SCALE_4,SU_EGG,SCALE_5,SH_EGG,FRY_DUST = range(3816,3832)+[3499] #NPCs PM_COOPER,SG_CRONOS,GD_BYRON,MC_MARIA,FR_MYMYU = 30829,30610,30711,30608,30747 DK_EXARION,DK_ZWOV,DK_KALIBRAN,WM_SUZET,WM_SHAMHAI = range(30748,30753) #mobs TD_LORD = 20231 #toad lord LO_LZRD_W = 20580 #exarion's MS_SPIDER = 20233 #zwov's RD_SCVNGR = 20551 #kalibran's BO_OVERLD = 20270 #suzet's DD_SEEKER = 20202 #shamhai's #Rewards FOOD = 4038 ARMOR = 3912 # helper functions section def check_level(st) : if st.getPlayer().getLevel() < 35 : st.exitQuest(True) return "420_low_level.htm" return "Start.htm" def check_stone(st,progress) : if st.getQuestItemsCount(FRY_STN) == 1 : st.set("cond","3") if progress == 1 : st.set("progress","3") return "420_cronos_8.htm" elif progress == 8 : st.set("progress","10") return "420_cronos_14.htm" elif st.getQuestItemsCount(FRY_STN_DLX) == 1 : if progress == 2 : st.set("progress","4") return "420_cronos_8.htm" elif progress == 9 : st.set("progress","11") return "420_cronos_14.htm" else : return "420_cronos_7.htm" def check_elements(st,progress) : coal = st.getQuestItemsCount(1870) char = st.getQuestItemsCount(1871) gemd = st.getQuestItemsCount(2130) gemc = st.getQuestItemsCount(2131) snug = st.getQuestItemsCount(1873) sofp = st.getQuestItemsCount(1875) tdbk = st.getQuestItemsCount(TD_BCK_SKN) if progress in [1,8] : if coal >= 10 and char >= 10 and gemd >= 1 and snug >= 3 and tdbk >= 10 : return "420_maria_2.htm" else : return "420_maria_1.htm" elif progress in [2,9] : if coal >= 10 and char >= 10 and gemc >= 1 and snug >= 5 and sofp >= 1 and tdbk >= 20 : return "420_maria_4.htm" else : return "420_maria_1.htm" def craft_stone(st,progress) : if progress in [1,8]: st.takeItems(1870,10) st.takeItems(1871,10) st.takeItems(2130,1) st.takeItems(1873,3) st.takeItems(TD_BCK_SKN,10) st.takeItems(FSN_LIST,1) st.giveItems(FRY_STN,1) st.playSound("ItemSound.quest_itemget") return "420_maria_3.htm" elif progress in [2,9]: st.takeItems(1870,10) st.takeItems(1871,10) st.takeItems(2131,1) st.takeItems(1873,5) st.takeItems(1875,1) st.takeItems(TD_BCK_SKN,20) st.takeItems(FSN_LIST_DLX,1) st.giveItems(FRY_STN_DLX,1) st.playSound("ItemSound.quest_itemget") return "420_maria_5.htm" def check_eggs(st, npc, progress) : whom = int(st.get("dragon")) if whom == 1 : eggs = EX_EGG elif whom == 2 : eggs = ZW_EGG elif whom == 3 : eggs = KA_EGG elif whom == 4 : eggs = SU_EGG elif whom == 5 : eggs = SH_EGG if npc == "mymyu" : if progress in [19,20] and st.getQuestItemsCount(eggs) == 1 : return "420_"+npc+"_10.htm" else : if st.getQuestItemsCount(eggs) >= 20 : return "420_"+npc+"_9.htm" else : return "420_"+npc+"_8.htm" elif npc == "exarion" and whom == 1 : if st.getQuestItemsCount(eggs) < 20 : return "420_"+npc+"_3.htm" else : st.takeItems(eggs,20) st.takeItems(SCALE_1,1) if progress in [14,21] : st.set("progress","19") elif progress in [15,22] : st.set("progress","20") st.giveItems(eggs,1) st.playSound("ItemSound.quest_itemget") st.set("cond","7") return "420_"+npc+"_4.htm" elif npc == "zwov" and whom == 2 : if st.getQuestItemsCount(eggs) < 20 : return "420_"+npc+"_3.htm" else : st.takeItems(eggs,20) st.takeItems(SCALE_2,1) if progress in [14,21] : st.set("progress","19") elif progress in [15,22] : st.set("progress","20") st.giveItems(eggs,1) st.set("cond","7") st.playSound("ItemSound.quest_itemget") return "420_"+npc+"_4.htm" elif npc == "kalibran" and whom == 3 : if st.getQuestItemsCount(eggs) < 20 : return "420_"+npc+"_3.htm" else : st.takeItems(eggs,20) # st.takeItems(SCALE_3,1) return "420_"+npc+"_4.htm" elif npc == "suzet" and whom == 4 : if st.getQuestItemsCount(eggs) < 20 : return "420_"+npc+"_4.htm" else : st.takeItems(eggs,20) st.takeItems(SCALE_4,1) if progress in [14,21] : st.set("progress","19") elif progress in [15,22] : st.set("progress","20") st.giveItems(eggs,1) st.set("cond","7") st.playSound("ItemSound.quest_itemget") return "420_"+npc+"_5.htm" elif npc == "shamhai" and whom == 5 : if st.getQuestItemsCount(eggs) < 20 : return "420_"+npc+"_3.htm" else : st.takeItems(eggs,20) st.takeItems(SCALE_5,1) if progress in [14,21] : st.set("progress","19") elif progress in [15,22] : st.set("progress","20") st.giveItems(eggs,1) st.set("cond","7") st.playSound("ItemSound.quest_itemget") return "420_"+npc+"_4.htm" return "check_eggs sux" # Main Quest Code class Quest (JQuest): def __init__(self,id,name,descr): JQuest.__init__(self,id,name,descr) def onEvent (self,event,st): id = st.getState() progress = st.getInt("progress") if id == CREATED : st.set("cond","0") if event == "ido" : st.setState(STARTING) st.set("progress","0") st.set("cond","1") st.set("dragon","0") st.playSound("ItemSound.quest_accept") return "Starting.htm" elif id == STARTING : if event == "wait" : return craft_stone(st,progress) elif event == "cronos_2" : return "420_cronos_2.htm" elif event == "cronos_3" : return "420_cronos_3.htm" elif event == "cronos_4" : return "420_cronos_4.htm" elif event == "fsn" : st.set("cond","2") if progress == 0: st.set("progress","1") st.giveItems(FSN_LIST,1) st.playSound("ItemSound.quest_itemget") return "420_cronos_5.htm" elif progress == 7: st.set("progress","8") st.giveItems(FSN_LIST,1) st.playSound("ItemSound.quest_itemget") return "420_cronos_12.htm" elif event == "fsn_dlx" : st.set("cond","2") if progress == 0: st.set("progress","2") st.giveItems(FSN_LIST_DLX,1) st.playSound("ItemSound.quest_itemget") return "420_cronos_6.htm" if progress == 7: st.set("progress","9") st.giveItems(FSN_LIST_DLX,1) st.playSound("ItemSound.quest_itemget") return "420_cronos_13.htm" elif event == "showfsn" : return "420_byron_2.htm" elif event == "askmore" : st.set("cond","4") if progress == 3 : st.set("progress","5") return "420_byron_3.htm" elif progress == 4 : st.set("progress","6") return "420_byron_4.htm" elif event == "give_fsn" : st.takeItems(FRY_STN,1) return "420_mymyu_2.htm" elif event == "give_fsn_dlx" : st.takeItems(FRY_STN_DLX,1) st.giveItems(FRY_DUST,1) st.playSound("ItemSound.quest_itemget") return "420_mymyu_4.htm" elif event == "fry_ask" : return "420_mymyu_5.htm" elif event == "ask_abt" : st.setState(STARTED) st.set("cond","5") st.giveItems(JUICE,1) st.playSound("ItemSound.quest_itemget") return "420_mymyu_6.htm" elif id == STARTED : if event == "exarion_1" : st.giveItems(SCALE_1,1) st.playSound("ItemSound.quest_itemget") st.set("dragon","1") st.set("cond","6") st.set("progress",str(progress+9)) return "420_exarion_2.htm" elif event == "kalibran_1" : st.set("dragon","3") st.set("cond","6") st.giveItems(SCALE_3,1) st.playSound("ItemSound.quest_itemget") st.set("progress",str(progress+9)) return "420_kalibran_2.htm" elif event == "kalibran_2" : if st.getQuestItemsCount(SCALE_3) : if progress in [14,21] : st.set("progress","19") elif progress in [15,22] : st.set("progress","20") st.takeItems(SCALE_3,1) st.giveItems(KA_EGG,1) st.set("cond","7") st.playSound("ItemSound.quest_itemget") return "420_kalibran_5.htm" elif event == "zwov_1" : st.set("dragon","2") st.set("cond","6") st.giveItems(SCALE_2,1) st.playSound("ItemSound.quest_itemget") st.set("progress",str(progress+9)) return "420_zwov_2.htm" elif event == "shamhai_1" : st.set("dragon","5") st.set("cond","6") st.giveItems(SCALE_5,1) st.playSound("ItemSound.quest_itemget") st.set("progress",str(progress+9)) return "420_shamhai_2.htm" elif event == "suzet_1" : return "420_suzet_2.htm" elif event == "suzet_2" : st.set("dragon","4") st.set("cond","6") st.giveItems(SCALE_4,1) st.playSound("ItemSound.quest_itemget") st.set("progress",str(progress+9)) return "420_suzet_3.htm" elif event == "hatch" : whom = int(st.get("dragon")) if whom == 1 : eggs = EX_EGG elif whom == 2 : eggs = ZW_EGG elif whom == 3 : eggs = KA_EGG elif whom == 4 : eggs = SU_EGG elif whom == 5 : eggs = SH_EGG if st.getQuestItemsCount(eggs) and progress in [19,20] : st.takeItems(eggs,1) st.set("cond","8") if progress == 19 : st.giveItems(3500+st.getRandom(3),1) st.exitQuest(True) st.playSound("ItemSound.quest_finish") return "420_mymyu_15.htm" elif progress == 20 : return "420_mymyu_11.htm" elif event == "give_dust" : if st.getQuestItemsCount(FRY_DUST): st.takeItems(FRY_DUST,1) luck = st.getRandom(2) if luck == 0 : extra = ARMOR qty = 1 htmltext = "420_mymyu_13.htm" else : extra = FOOD qty = 100 htmltext = "420_mymyu_14.htm" st.giveItems(3500+st.getRandom(3),1) st.giveItems(extra,qty) st.exitQuest(True) st.playSound("ItemSound.quest_finish") return htmltext elif event == "no_dust" : st.giveItems(3500+st.getRandom(3),1) st.exitQuest(True) st.playSound("ItemSound.quest_finish") return "420_mymyu_12.htm" def onTalk (self,npc,player): htmltext = "<html><body>You are either not carrying out your quest or don't meet the criteria.</body></html>" st = player.getQuestState(qn) if not st : return htmltext npcId = npc.getNpcId() id = st.getState() if id == COMPLETED: st.setState(CREATED) id = CREATED progress = st.getInt("progress") if npcId == PM_COOPER : if id == CREATED : return check_level(st) elif id == STARTING and progress == 0 : return "Starting.htm" else : return "Started.htm" elif npcId == SG_CRONOS : if id == STARTING : if progress == 0 : return "420_cronos_1.htm" elif progress in [ 1,2,8,9 ] : return check_stone(st,progress) elif progress in [ 3,4,10,11 ] : return "420_cronos_9.htm" elif progress in [5,6,12,13 ]: return "420_cronos_11.htm" elif progress == 7 : return "420_cronos_10.htm" elif npcId == MC_MARIA : if id == STARTING : if ((progress in [ 1,8 ] ) and st.getQuestItemsCount(FSN_LIST)==1) or ((progress in [ 2,9 ] ) and st.getQuestItemsCount(FSN_LIST_DLX)==1): return check_elements(st,progress) elif progress in [ 3,4,5,6,7,10,11 ] : return "420_maria_6.htm" elif npcId == GD_BYRON : if id == STARTING : if ((progress in [ 1,8 ] ) and st.getQuestItemsCount(FSN_LIST)==1) or ((progress in [ 2,9 ] ) and st.getQuestItemsCount(FSN_LIST_DLX)==1): return "420_byron_10.htm" elif progress == 7 : return "420_byron_9.htm" elif (progress == 3 and st.getQuestItemsCount(FRY_STN)==1) or (progress == 4 and st.getQuestItemsCount(FRY_STN_DLX)==1): return "420_byron_1.htm" elif progress == 10 and st.getQuestItemsCount(FRY_STN)==1 : st.set("progress","12") return "420_byron_5.htm" elif progress == 11 and st.getQuestItemsCount(FRY_STN_DLX)==1 : st.set("progress","13") return "420_byron_6.htm" elif progress in [5,12] : return "420_byron_7.htm" elif progress in [6,13] : return "420_byron_8.htm" elif npcId == FR_MYMYU : if id == STARTING : if ( progress in [5,12] ) and st.getQuestItemsCount(FRY_STN) == 1 : return "420_mymyu_1.htm" elif ( progress in [6,13] ) and st.getQuestItemsCount(FRY_STN_DLX) == 1 : return "420_mymyu_3.htm" elif id == STARTED : if progress < 14 and st.getQuestItemsCount(JUICE) == 1 : return "420_mymyu_7.htm" elif progress > 13 : return check_eggs(st,"mymyu",progress) elif npcId == DK_EXARION : if id == STARTED : if progress in [ 5,6,12,13 ] and st.getQuestItemsCount(JUICE) == 1: st.takeItems(JUICE,1) return "420_exarion_1.htm" elif progress > 13 and st.getQuestItemsCount(SCALE_1) == 1: return check_eggs(st,"exarion",progress) elif progress in [ 19,20 ] and st.getQuestItemsCount(EX_EGG) == 1 : return "420_exarion_5.htm" elif npcId == DK_ZWOV : if id == STARTED : if progress in [ 5,6,12,13 ] and st.getQuestItemsCount(JUICE) == 1: st.takeItems(JUICE,1) return "420_zwov_1.htm" elif progress > 13 and st.getQuestItemsCount(SCALE_2) == 1: return check_eggs(st,"zwov",progress) elif progress in [ 19,20 ] and st.getQuestItemsCount(ZW_EGG) == 1 : return "420_zwov_5.htm" elif npcId == DK_KALIBRAN : if id == STARTED : if progress in [ 5,6,12,13 ] and st.getQuestItemsCount(JUICE) == 1: st.takeItems(JUICE,1) return "420_kalibran_1.htm" elif progress > 13 and st.getQuestItemsCount(SCALE_3) == 1: return check_eggs(st,"kalibran",progress) elif progress in [ 19,20 ] and st.getQuestItemsCount(KA_EGG) == 1 : return "420_kalibran_6.htm" elif npcId == WM_SUZET : if id == STARTED : if progress in [ 5,6,12,13 ] and st.getQuestItemsCount(JUICE) == 1: st.takeItems(JUICE,1) return "420_suzet_1.htm" elif progress > 13 and st.getQuestItemsCount(SCALE_4) == 1: return check_eggs(st,"suzet",progress) elif progress in [ 19,20 ] and st.getQuestItemsCount(SU_EGG) == 1 : return "420_suzet_6.htm" elif npcId == WM_SHAMHAI : if id == STARTED : if progress in [ 5,6,12,13 ] and st.getQuestItemsCount(JUICE) == 1: st.takeItems(JUICE,1) return "420_shamhai_1.htm" elif progress > 13 and st.getQuestItemsCount(SCALE_5) == 1: return check_eggs(st,"shamhai",progress) elif progress in [ 19,20 ] and st.getQuestItemsCount(SH_EGG) == 1 : return "420_shamhai_5.htm" return "<html><body>I have nothing to say to you</body></html>" def onKill(self,npc,player,isPet): st = player.getQuestState(qn) if not st : return id = st.getState() npcId = npc.getNpcId() #incipios drop skins = st.getQuestItemsCount(TD_BCK_SKN) if id == STARTING and (st.getQuestItemsCount(FSN_LIST) == 1 and skins < 10) or (st.getQuestItemsCount(FSN_LIST_DLX) == 1 and skins < 20) : if npcId == TD_LORD : count = 0 if st.getQuestItemsCount(FSN_LIST) == 1 : count = 10 else : count = 20 numItems, chance = divmod(BACK_DROP*Config.RATE_DROP_QUEST,100) if st.getRandom(100) <= chance : numItems += 1 numItems = int(numItems) if numItems != 0 : if count <= (skins + numItems) : numItems = count - skins st.playSound("ItemSound.quest_middle") else : st.playSound("ItemSound.quest_itemget") st.giveItems(TD_BCK_SKN,numItems) #dragon detection elif id == STARTED and (st.get("progress") in [ "14","15","21","22" ]) : whom = int(st.get("dragon")) if whom == 1 : eggs = EX_EGG scale = SCALE_1 eggdropper = LO_LZRD_W elif whom == 2 : eggs = ZW_EGG scale = SCALE_2 eggdropper = MS_SPIDER elif whom == 3 : eggs = KA_EGG scale = SCALE_3 eggdropper = RD_SCVNGR elif whom == 4 : eggs = SU_EGG scale = SCALE_4 eggdropper = BO_OVERLD elif whom == 5 : eggs = SH_EGG scale = SCALE_5 eggdropper = DD_SEEKER prevItems = st.getQuestItemsCount(eggs) if st.getQuestItemsCount(scale) == 1 and prevItems < REQUIRED_EGGS : if npcId == eggdropper : chance = EGG_DROP*Config.RATE_DROP_QUEST numItems, chance = divmod(chance,100) if st.getRandom(100) <= chance : numItems += 1 numItems = int(numItems) if numItems != 0 : if REQUIRED_EGGS <= (prevItems + numItems) : numItems = REQUIRED_EGGS - prevItems st.playSound("ItemSound.quest_middle") else: st.playSound("ItemSound.quest_itemget") st.giveItems(eggs,numItems) #fairy stone destruction elif id == STARTING and st.getQuestItemsCount(FRY_STN_DLX) == 1 : if npcId in range(20589,20600)+[20719]: st.takeItems(FRY_STN_DLX,1) st.set("progress","7") return "you lost fairy stone deluxe!" # Quest class and state definition QUEST = Quest(420, qn, "Little Wings") CREATED = State('Start', QUEST) STARTING = State('Starting', QUEST) STARTED = State('Started', QUEST) COMPLETED = State('Completed', QUEST) # Quest initialization QUEST.setInitialState(CREATED) # Quest NPC starter initialization QUEST.addStartNpc(PM_COOPER) # Quest Item Drop initialization for i in [3499]+range(3816,3832): STARTING.addQuestDrop(PM_COOPER,i,1) # Quest mob initialization #back skins QUEST.addKillId(TD_LORD) #fairy stone dlx destroyers for i in range(20589,20600)+[21797]: QUEST.addKillId(i) #eggs QUEST.addKillId(LO_LZRD_W) QUEST.addKillId(RD_SCVNGR) QUEST.addKillId(MS_SPIDER) QUEST.addKillId(DD_SEEKER) QUEST.addKillId(BO_OVERLD) # Quest NPC initialization QUEST.addTalkId(PM_COOPER) QUEST.addTalkId(SG_CRONOS) QUEST.addTalkId(GD_BYRON) QUEST.addTalkId(MC_MARIA) QUEST.addTalkId(FR_MYMYU) for i in range(30748,30753): QUEST.addTalkId(i)
36.319372
149
0.557878
[ "Unlicense" ]
DigitalCoin1/L2SPERO
datapack/data/scripts/quests/420_LittleWings/__init__.py
20,811
Python
space1 = 'X' space2 = 'X' space3 = 'X' space4 = 'X' space5 = 'X' space6 = ' ' space7 = 'O' space8 = ' ' space9 = ' ' print(' | | ') print(' {} | {} | {} '.format(space1,space2,space3)) print(' | | ') print('-----------') print(' | | ') print(' {} | {} | {} '.format(space4,space5,space6)) print(' | | ') print('-----------') print(' | | ') print(' {} | {} | {} '.format(space7,space8,space9)) print(' | | ') #toplinewinning if (space1 == space2) and (space1 == space3): print('WIN') #do the other winning options
20.821429
53
0.4494
[ "MIT" ]
chriswright61/python_shorts
noughts_crosses.py
583
Python
from machine import Pin import utime led = Pin(28, Pin.OUT) onboard_led = Pin(25, Pin.OUT) led.low() onboard_led.high() while True: led.toggle() onboard_led.toggle() print("Toggle") utime.sleep(0.5)
18.25
30
0.666667
[ "MIT" ]
luisC62/RPi_Pico_Examples
blink_001.py
219
Python
"""Package exports.""" from .wrapper import Simulation from .handler import SimulationHandler from .parser import Parser from .strategy import Strategy, Sequence, Legacy, Matrix, Sobol from . import modules from ._version import __version__, __author__
28.222222
63
0.80315
[ "MIT" ]
ischoegl/ctwrap
ctwrap/__init__.py
254
Python
from django.test import TestCase from django.contrib.auth import get_user_model class ModelTests(TestCase): """ Test creating a new user with an email is successful """ def test_create_user_with_email_successful(self): payload = {'email': '[email protected]', 'password': '1111qqqq='} user = get_user_model().objects.create_user( email=payload['email'], password=payload['password'] ) self.assertEqual(user.email, payload['email']) self.assertTrue(user.check_password(payload['password'])) def test_create_user_with_lowercase_email(self): """ Test creating a new user with an lowercase email words """ payload = {'email': '[email protected]', 'password': '1111qqqq='} user = get_user_model().objects.create_user( email=payload['email'], password=payload['password'] ) self.assertEqual(user.email, payload['email'].lower()) def test_create_user_with_invalid_email(self): """ Test creating a new user with an invalid email address """ with self.assertRaises(ValueError): get_user_model().objects.create_user(None, "1234325") def test_create_superuser_is_successful(self): """ Test that create a new superuser """ user = get_user_model().objects.create_superuser("[email protected]", '1234') self.assertTrue(user.is_superuser) self.assertTrue(user.is_staff)
36.975
81
0.663962
[ "MIT" ]
pudka/recipe-app-api
app/core/tests/test_models.py
1,479
Python
from __future__ import print_function, division, absolute_import from fontTools.misc.py23 import * from fontTools.misc.textTools import safeEval, readHex from fontTools.misc.encodingTools import getEncoding from fontTools.ttLib import getSearchRange from fontTools.unicode import Unicode from . import DefaultTable import sys import struct import array import operator class table__c_m_a_p(DefaultTable.DefaultTable): def getcmap(self, platformID, platEncID): for subtable in self.tables: if (subtable.platformID == platformID and subtable.platEncID == platEncID): return subtable return None # not found def decompile(self, data, ttFont): tableVersion, numSubTables = struct.unpack(">HH", data[:4]) self.tableVersion = int(tableVersion) self.tables = tables = [] seenOffsets = {} for i in range(numSubTables): platformID, platEncID, offset = struct.unpack( ">HHl", data[4+i*8:4+(i+1)*8]) platformID, platEncID = int(platformID), int(platEncID) format, length = struct.unpack(">HH", data[offset:offset+4]) if format in [8,10,12,13]: format, reserved, length = struct.unpack(">HHL", data[offset:offset+8]) elif format in [14]: format, length = struct.unpack(">HL", data[offset:offset+6]) if not length: print("Error: cmap subtable is reported as having zero length: platformID %s, platEncID %s, format %s offset %s. Skipping table." % (platformID, platEncID,format, offset)) continue table = CmapSubtable.newSubtable(format) table.platformID = platformID table.platEncID = platEncID # Note that by default we decompile only the subtable header info; # any other data gets decompiled only when an attribute of the # subtable is referenced. table.decompileHeader(data[offset:offset+int(length)], ttFont) if offset in seenOffsets: table.cmap = tables[seenOffsets[offset]].cmap else: seenOffsets[offset] = i tables.append(table) def compile(self, ttFont): self.tables.sort() # sort according to the spec; see CmapSubtable.__lt__() numSubTables = len(self.tables) totalOffset = 4 + 8 * numSubTables data = struct.pack(">HH", self.tableVersion, numSubTables) tableData = b"" seen = {} # Some tables are the same object reference. Don't compile them twice. done = {} # Some tables are different objects, but compile to the same data chunk for table in self.tables: try: offset = seen[id(table.cmap)] except KeyError: chunk = table.compile(ttFont) if chunk in done: offset = done[chunk] else: offset = seen[id(table.cmap)] = done[chunk] = totalOffset + len(tableData) tableData = tableData + chunk data = data + struct.pack(">HHl", table.platformID, table.platEncID, offset) return data + tableData def toXML(self, writer, ttFont): writer.simpletag("tableVersion", version=self.tableVersion) writer.newline() for table in self.tables: table.toXML(writer, ttFont) def fromXML(self, name, attrs, content, ttFont): if name == "tableVersion": self.tableVersion = safeEval(attrs["version"]) return if name[:12] != "cmap_format_": return if not hasattr(self, "tables"): self.tables = [] format = safeEval(name[12:]) table = CmapSubtable.newSubtable(format) table.platformID = safeEval(attrs["platformID"]) table.platEncID = safeEval(attrs["platEncID"]) table.fromXML(name, attrs, content, ttFont) self.tables.append(table) class CmapSubtable(object): @staticmethod def getSubtableClass(format): """Return the subtable class for a format.""" return cmap_classes.get(format, cmap_format_unknown) @staticmethod def newSubtable(format): """Return a new instance of a subtable for format.""" subtableClass = CmapSubtable.getSubtableClass(format) return subtableClass(format) def __init__(self, format): self.format = format self.data = None self.ttFont = None def __getattr__(self, attr): # allow lazy decompilation of subtables. if attr[:2] == '__': # don't handle requests for member functions like '__lt__' raise AttributeError(attr) if self.data is None: raise AttributeError(attr) self.decompile(None, None) # use saved data. self.data = None # Once this table has been decompiled, make sure we don't # just return the original data. Also avoids recursion when # called with an attribute that the cmap subtable doesn't have. return getattr(self, attr) def decompileHeader(self, data, ttFont): format, length, language = struct.unpack(">HHH", data[:6]) assert len(data) == length, "corrupt cmap table format %d (data length: %d, header length: %d)" % (format, len(data), length) self.format = int(format) self.length = int(length) self.language = int(language) self.data = data[6:] self.ttFont = ttFont def toXML(self, writer, ttFont): writer.begintag(self.__class__.__name__, [ ("platformID", self.platformID), ("platEncID", self.platEncID), ("language", self.language), ]) writer.newline() codes = sorted(self.cmap.items()) self._writeCodes(codes, writer) writer.endtag(self.__class__.__name__) writer.newline() def getEncoding(self, default=None): """Returns the Python encoding name for this cmap subtable based on its platformID, platEncID, and language. If encoding for these values is not known, by default None is returned. That can be overriden by passing a value to the default argument. Note that if you want to choose a "preferred" cmap subtable, most of the time self.isUnicode() is what you want as that one only returns true for the modern, commonly used, Unicode-compatible triplets, not the legacy ones. """ return getEncoding(self.platformID, self.platEncID, self.language, default) def isUnicode(self): return (self.platformID == 0 or (self.platformID == 3 and self.platEncID in [0, 1, 10])) def isSymbol(self): return self.platformID == 3 and self.platEncID == 0 def _writeCodes(self, codes, writer): isUnicode = self.isUnicode() for code, name in codes: writer.simpletag("map", code=hex(code), name=name) if isUnicode: writer.comment(Unicode[code]) writer.newline() def __lt__(self, other): if not isinstance(other, CmapSubtable): return NotImplemented # implemented so that list.sort() sorts according to the spec. selfTuple = ( getattr(self, "platformID", None), getattr(self, "platEncID", None), getattr(self, "language", None), self.__dict__) otherTuple = ( getattr(other, "platformID", None), getattr(other, "platEncID", None), getattr(other, "language", None), other.__dict__) return selfTuple < otherTuple class cmap_format_0(CmapSubtable): def decompile(self, data, ttFont): # we usually get here indirectly from the subtable __getattr__ function, in which case both args must be None. # If not, someone is calling the subtable decompile() directly, and must provide both args. if data is not None and ttFont is not None: self.decompileHeader(data, ttFont) else: assert (data is None and ttFont is None), "Need both data and ttFont arguments" data = self.data # decompileHeader assigns the data after the header to self.data assert 262 == self.length, "Format 0 cmap subtable not 262 bytes" glyphIdArray = array.array("B") glyphIdArray.fromstring(self.data) self.cmap = cmap = {} lenArray = len(glyphIdArray) charCodes = list(range(lenArray)) names = map(self.ttFont.getGlyphName, glyphIdArray) list(map(operator.setitem, [cmap]*lenArray, charCodes, names)) def compile(self, ttFont): if self.data: return struct.pack(">HHH", 0, 262, self.language) + self.data charCodeList = sorted(self.cmap.items()) charCodes = [entry[0] for entry in charCodeList] valueList = [entry[1] for entry in charCodeList] assert charCodes == list(range(256)) valueList = map(ttFont.getGlyphID, valueList) glyphIdArray = array.array("B", valueList) data = struct.pack(">HHH", 0, 262, self.language) + glyphIdArray.tostring() assert len(data) == 262 return data def fromXML(self, name, attrs, content, ttFont): self.language = safeEval(attrs["language"]) if not hasattr(self, "cmap"): self.cmap = {} cmap = self.cmap for element in content: if not isinstance(element, tuple): continue name, attrs, content = element if name != "map": continue cmap[safeEval(attrs["code"])] = attrs["name"] subHeaderFormat = ">HHhH" class SubHeader(object): def __init__(self): self.firstCode = None self.entryCount = None self.idDelta = None self.idRangeOffset = None self.glyphIndexArray = [] class cmap_format_2(CmapSubtable): def setIDDelta(self, subHeader): subHeader.idDelta = 0 # find the minGI which is not zero. minGI = subHeader.glyphIndexArray[0] for gid in subHeader.glyphIndexArray: if (gid != 0) and (gid < minGI): minGI = gid # The lowest gid in glyphIndexArray, after subtracting idDelta, must be 1. # idDelta is a short, and must be between -32K and 32K. minGI can be between 1 and 64K. # We would like to pick an idDelta such that the first glyphArray GID is 1, # so that we are more likely to be able to combine glypharray GID subranges. # This means that we have a problem when minGI is > 32K # Since the final gi is reconstructed from the glyphArray GID by: # (short)finalGID = (gid + idDelta) % 0x10000), # we can get from a glypharray GID of 1 to a final GID of 65K by subtracting 2, and casting the # negative number to an unsigned short. if (minGI > 1): if minGI > 0x7FFF: subHeader.idDelta = -(0x10000 - minGI) -1 else: subHeader.idDelta = minGI -1 idDelta = subHeader.idDelta for i in range(subHeader.entryCount): gid = subHeader.glyphIndexArray[i] if gid > 0: subHeader.glyphIndexArray[i] = gid - idDelta def decompile(self, data, ttFont): # we usually get here indirectly from the subtable __getattr__ function, in which case both args must be None. # If not, someone is calling the subtable decompile() directly, and must provide both args. if data is not None and ttFont is not None: self.decompileHeader(data, ttFont) else: assert (data is None and ttFont is None), "Need both data and ttFont arguments" data = self.data # decompileHeader assigns the data after the header to self.data subHeaderKeys = [] maxSubHeaderindex = 0 # get the key array, and determine the number of subHeaders. allKeys = array.array("H") allKeys.fromstring(data[:512]) data = data[512:] if sys.byteorder != "big": allKeys.byteswap() subHeaderKeys = [ key//8 for key in allKeys] maxSubHeaderindex = max(subHeaderKeys) #Load subHeaders subHeaderList = [] pos = 0 for i in range(maxSubHeaderindex + 1): subHeader = SubHeader() (subHeader.firstCode, subHeader.entryCount, subHeader.idDelta, \ subHeader.idRangeOffset) = struct.unpack(subHeaderFormat, data[pos:pos + 8]) pos += 8 giDataPos = pos + subHeader.idRangeOffset-2 giList = array.array("H") giList.fromstring(data[giDataPos:giDataPos + subHeader.entryCount*2]) if sys.byteorder != "big": giList.byteswap() subHeader.glyphIndexArray = giList subHeaderList.append(subHeader) # How this gets processed. # Charcodes may be one or two bytes. # The first byte of a charcode is mapped through the subHeaderKeys, to select # a subHeader. For any subheader but 0, the next byte is then mapped through the # selected subheader. If subheader Index 0 is selected, then the byte itself is # mapped through the subheader, and there is no second byte. # Then assume that the subsequent byte is the first byte of the next charcode,and repeat. # # Each subheader references a range in the glyphIndexArray whose length is entryCount. # The range in glyphIndexArray referenced by a sunheader may overlap with the range in glyphIndexArray # referenced by another subheader. # The only subheader that will be referenced by more than one first-byte value is the subheader # that maps the entire range of glyphID values to glyphIndex 0, e.g notdef: # {firstChar 0, EntryCount 0,idDelta 0,idRangeOffset xx} # A byte being mapped though a subheader is treated as in index into a mapping of array index to font glyphIndex. # A subheader specifies a subrange within (0...256) by the # firstChar and EntryCount values. If the byte value is outside the subrange, then the glyphIndex is zero # (e.g. glyph not in font). # If the byte index is in the subrange, then an offset index is calculated as (byteIndex - firstChar). # The index to glyphIndex mapping is a subrange of the glyphIndexArray. You find the start of the subrange by # counting idRangeOffset bytes from the idRangeOffset word. The first value in this subrange is the # glyphIndex for the index firstChar. The offset index should then be used in this array to get the glyphIndex. # Example for Logocut-Medium # first byte of charcode = 129; selects subheader 1. # subheader 1 = {firstChar 64, EntryCount 108,idDelta 42,idRangeOffset 0252} # second byte of charCode = 66 # the index offset = 66-64 = 2. # The subrange of the glyphIndexArray starting at 0x0252 bytes from the idRangeOffset word is: # [glyphIndexArray index], [subrange array index] = glyphIndex # [256], [0]=1 from charcode [129, 64] # [257], [1]=2 from charcode [129, 65] # [258], [2]=3 from charcode [129, 66] # [259], [3]=4 from charcode [129, 67] # So, the glyphIndex = 3 from the array. Then if idDelta is not zero and the glyph ID is not zero, # add it to the glyphID to get the final glyphIndex # value. In this case the final glyph index = 3+ 42 -> 45 for the final glyphIndex. Whew! self.data = b"" self.cmap = cmap = {} notdefGI = 0 for firstByte in range(256): subHeadindex = subHeaderKeys[firstByte] subHeader = subHeaderList[subHeadindex] if subHeadindex == 0: if (firstByte < subHeader.firstCode) or (firstByte >= subHeader.firstCode + subHeader.entryCount): continue # gi is notdef. else: charCode = firstByte offsetIndex = firstByte - subHeader.firstCode gi = subHeader.glyphIndexArray[offsetIndex] if gi != 0: gi = (gi + subHeader.idDelta) % 0x10000 else: continue # gi is notdef. cmap[charCode] = gi else: if subHeader.entryCount: charCodeOffset = firstByte * 256 + subHeader.firstCode for offsetIndex in range(subHeader.entryCount): charCode = charCodeOffset + offsetIndex gi = subHeader.glyphIndexArray[offsetIndex] if gi != 0: gi = (gi + subHeader.idDelta) % 0x10000 else: continue cmap[charCode] = gi # If not subHeader.entryCount, then all char codes with this first byte are # mapped to .notdef. We can skip this subtable, and leave the glyphs un-encoded, which is the # same as mapping it to .notdef. # cmap values are GID's. glyphOrder = self.ttFont.getGlyphOrder() gids = list(cmap.values()) charCodes = list(cmap.keys()) lenCmap = len(gids) try: names = list(map(operator.getitem, [glyphOrder]*lenCmap, gids )) except IndexError: getGlyphName = self.ttFont.getGlyphName names = list(map(getGlyphName, gids )) list(map(operator.setitem, [cmap]*lenCmap, charCodes, names)) def compile(self, ttFont): if self.data: return struct.pack(">HHH", self.format, self.length, self.language) + self.data kEmptyTwoCharCodeRange = -1 notdefGI = 0 items = sorted(self.cmap.items()) charCodes = [item[0] for item in items] names = [item[1] for item in items] nameMap = ttFont.getReverseGlyphMap() lenCharCodes = len(charCodes) try: gids = list(map(operator.getitem, [nameMap]*lenCharCodes, names)) except KeyError: nameMap = ttFont.getReverseGlyphMap(rebuild=True) try: gids = list(map(operator.getitem, [nameMap]*lenCharCodes, names)) except KeyError: # allow virtual GIDs in format 2 tables gids = [] for name in names: try: gid = nameMap[name] except KeyError: try: if (name[:3] == 'gid'): gid = eval(name[3:]) else: gid = ttFont.getGlyphID(name) except: raise KeyError(name) gids.append(gid) # Process the (char code to gid) item list in char code order. # By definition, all one byte char codes map to subheader 0. # For all the two byte char codes, we assume that the first byte maps maps to the empty subhead (with an entry count of 0, # which defines all char codes in its range to map to notdef) unless proven otherwise. # Note that since the char code items are processed in char code order, all the char codes with the # same first byte are in sequential order. subHeaderKeys = [ kEmptyTwoCharCodeRange for x in range(256)] # list of indices into subHeaderList. subHeaderList = [] # We force this subheader entry 0 to exist in the subHeaderList in the case where some one comes up # with a cmap where all the one byte char codes map to notdef, # with the result that the subhead 0 would not get created just by processing the item list. charCode = charCodes[0] if charCode > 255: subHeader = SubHeader() subHeader.firstCode = 0 subHeader.entryCount = 0 subHeader.idDelta = 0 subHeader.idRangeOffset = 0 subHeaderList.append(subHeader) lastFirstByte = -1 items = zip(charCodes, gids) for charCode, gid in items: if gid == 0: continue firstbyte = charCode >> 8 secondByte = charCode & 0x00FF if firstbyte != lastFirstByte: # Need to update the current subhead, and start a new one. if lastFirstByte > -1: # fix GI's and iDelta of current subheader. self.setIDDelta(subHeader) # If it was sunheader 0 for one-byte charCodes, then we need to set the subHeaderKeys value to zero # for the indices matching the char codes. if lastFirstByte == 0: for index in range(subHeader.entryCount): charCode = subHeader.firstCode + index subHeaderKeys[charCode] = 0 assert (subHeader.entryCount == len(subHeader.glyphIndexArray)), "Error - subhead entry count does not match len of glyphID subrange." # init new subheader subHeader = SubHeader() subHeader.firstCode = secondByte subHeader.entryCount = 1 subHeader.glyphIndexArray.append(gid) subHeaderList.append(subHeader) subHeaderKeys[firstbyte] = len(subHeaderList) -1 lastFirstByte = firstbyte else: # need to fill in with notdefs all the code points between the last charCode and the current charCode. codeDiff = secondByte - (subHeader.firstCode + subHeader.entryCount) for i in range(codeDiff): subHeader.glyphIndexArray.append(notdefGI) subHeader.glyphIndexArray.append(gid) subHeader.entryCount = subHeader.entryCount + codeDiff + 1 # fix GI's and iDelta of last subheader that we we added to the subheader array. self.setIDDelta(subHeader) # Now we add a final subheader for the subHeaderKeys which maps to empty two byte charcode ranges. subHeader = SubHeader() subHeader.firstCode = 0 subHeader.entryCount = 0 subHeader.idDelta = 0 subHeader.idRangeOffset = 2 subHeaderList.append(subHeader) emptySubheadIndex = len(subHeaderList) - 1 for index in range(256): if subHeaderKeys[index] == kEmptyTwoCharCodeRange: subHeaderKeys[index] = emptySubheadIndex # Since this is the last subheader, the GlyphIndex Array starts two bytes after the start of the # idRangeOffset word of this subHeader. We can safely point to the first entry in the GlyphIndexArray, # since the first subrange of the GlyphIndexArray is for subHeader 0, which always starts with # charcode 0 and GID 0. idRangeOffset = (len(subHeaderList)-1)*8 + 2 # offset to beginning of glyphIDArray from first subheader idRangeOffset. subheadRangeLen = len(subHeaderList) -1 # skip last special empty-set subheader; we've already hardocodes its idRangeOffset to 2. for index in range(subheadRangeLen): subHeader = subHeaderList[index] subHeader.idRangeOffset = 0 for j in range(index): prevSubhead = subHeaderList[j] if prevSubhead.glyphIndexArray == subHeader.glyphIndexArray: # use the glyphIndexArray subarray subHeader.idRangeOffset = prevSubhead.idRangeOffset - (index-j)*8 subHeader.glyphIndexArray = [] break if subHeader.idRangeOffset == 0: # didn't find one. subHeader.idRangeOffset = idRangeOffset idRangeOffset = (idRangeOffset - 8) + subHeader.entryCount*2 # one less subheader, one more subArray. else: idRangeOffset = idRangeOffset - 8 # one less subheader # Now we can write out the data! length = 6 + 512 + 8*len(subHeaderList) # header, 256 subHeaderKeys, and subheader array. for subhead in subHeaderList[:-1]: length = length + len(subhead.glyphIndexArray)*2 # We can't use subhead.entryCount, as some of the subhead may share subArrays. dataList = [struct.pack(">HHH", 2, length, self.language)] for index in subHeaderKeys: dataList.append(struct.pack(">H", index*8)) for subhead in subHeaderList: dataList.append(struct.pack(subHeaderFormat, subhead.firstCode, subhead.entryCount, subhead.idDelta, subhead.idRangeOffset)) for subhead in subHeaderList[:-1]: for gi in subhead.glyphIndexArray: dataList.append(struct.pack(">H", gi)) data = bytesjoin(dataList) assert (len(data) == length), "Error: cmap format 2 is not same length as calculated! actual: " + str(len(data))+ " calc : " + str(length) return data def fromXML(self, name, attrs, content, ttFont): self.language = safeEval(attrs["language"]) if not hasattr(self, "cmap"): self.cmap = {} cmap = self.cmap for element in content: if not isinstance(element, tuple): continue name, attrs, content = element if name != "map": continue cmap[safeEval(attrs["code"])] = attrs["name"] cmap_format_4_format = ">7H" #uint16 endCode[segCount] # Ending character code for each segment, last = 0xFFFF. #uint16 reservedPad # This value should be zero #uint16 startCode[segCount] # Starting character code for each segment #uint16 idDelta[segCount] # Delta for all character codes in segment #uint16 idRangeOffset[segCount] # Offset in bytes to glyph indexArray, or 0 #uint16 glyphIndexArray[variable] # Glyph index array def splitRange(startCode, endCode, cmap): # Try to split a range of character codes into subranges with consecutive # glyph IDs in such a way that the cmap4 subtable can be stored "most" # efficiently. I can't prove I've got the optimal solution, but it seems # to do well with the fonts I tested: none became bigger, many became smaller. if startCode == endCode: return [], [endCode] lastID = cmap[startCode] lastCode = startCode inOrder = None orderedBegin = None subRanges = [] # Gather subranges in which the glyph IDs are consecutive. for code in range(startCode + 1, endCode + 1): glyphID = cmap[code] if glyphID - 1 == lastID: if inOrder is None or not inOrder: inOrder = 1 orderedBegin = lastCode else: if inOrder: inOrder = 0 subRanges.append((orderedBegin, lastCode)) orderedBegin = None lastID = glyphID lastCode = code if inOrder: subRanges.append((orderedBegin, lastCode)) assert lastCode == endCode # Now filter out those new subranges that would only make the data bigger. # A new segment cost 8 bytes, not using a new segment costs 2 bytes per # character. newRanges = [] for b, e in subRanges: if b == startCode and e == endCode: break # the whole range, we're fine if b == startCode or e == endCode: threshold = 4 # split costs one more segment else: threshold = 8 # split costs two more segments if (e - b + 1) > threshold: newRanges.append((b, e)) subRanges = newRanges if not subRanges: return [], [endCode] if subRanges[0][0] != startCode: subRanges.insert(0, (startCode, subRanges[0][0] - 1)) if subRanges[-1][1] != endCode: subRanges.append((subRanges[-1][1] + 1, endCode)) # Fill the "holes" in the segments list -- those are the segments in which # the glyph IDs are _not_ consecutive. i = 1 while i < len(subRanges): if subRanges[i-1][1] + 1 != subRanges[i][0]: subRanges.insert(i, (subRanges[i-1][1] + 1, subRanges[i][0] - 1)) i = i + 1 i = i + 1 # Transform the ranges into startCode/endCode lists. start = [] end = [] for b, e in subRanges: start.append(b) end.append(e) start.pop(0) assert len(start) + 1 == len(end) return start, end class cmap_format_4(CmapSubtable): def decompile(self, data, ttFont): # we usually get here indirectly from the subtable __getattr__ function, in which case both args must be None. # If not, someone is calling the subtable decompile() directly, and must provide both args. if data is not None and ttFont is not None: self.decompileHeader(data, ttFont) else: assert (data is None and ttFont is None), "Need both data and ttFont arguments" data = self.data # decompileHeader assigns the data after the header to self.data (segCountX2, searchRange, entrySelector, rangeShift) = \ struct.unpack(">4H", data[:8]) data = data[8:] segCount = segCountX2 // 2 allCodes = array.array("H") allCodes.fromstring(data) self.data = data = None if sys.byteorder != "big": allCodes.byteswap() # divide the data endCode = allCodes[:segCount] allCodes = allCodes[segCount+1:] # the +1 is skipping the reservedPad field startCode = allCodes[:segCount] allCodes = allCodes[segCount:] idDelta = allCodes[:segCount] allCodes = allCodes[segCount:] idRangeOffset = allCodes[:segCount] glyphIndexArray = allCodes[segCount:] lenGIArray = len(glyphIndexArray) # build 2-byte character mapping charCodes = [] gids = [] for i in range(len(startCode) - 1): # don't do 0xffff! start = startCode[i] delta = idDelta[i] rangeOffset = idRangeOffset[i] # *someone* needs to get killed. partial = rangeOffset // 2 - start + i - len(idRangeOffset) rangeCharCodes = list(range(startCode[i], endCode[i] + 1)) charCodes.extend(rangeCharCodes) if rangeOffset == 0: gids.extend([(charCode + delta) & 0xFFFF for charCode in rangeCharCodes]) else: for charCode in rangeCharCodes: index = charCode + partial assert (index < lenGIArray), "In format 4 cmap, range (%d), the calculated index (%d) into the glyph index array is not less than the length of the array (%d) !" % (i, index, lenGIArray) if glyphIndexArray[index] != 0: # if not missing glyph glyphID = glyphIndexArray[index] + delta else: glyphID = 0 # missing glyph gids.append(glyphID & 0xFFFF) self.cmap = cmap = {} lenCmap = len(gids) glyphOrder = self.ttFont.getGlyphOrder() try: names = list(map(operator.getitem, [glyphOrder]*lenCmap, gids )) except IndexError: getGlyphName = self.ttFont.getGlyphName names = list(map(getGlyphName, gids )) list(map(operator.setitem, [cmap]*lenCmap, charCodes, names)) def compile(self, ttFont): if self.data: return struct.pack(">HHH", self.format, self.length, self.language) + self.data charCodes = list(self.cmap.keys()) lenCharCodes = len(charCodes) if lenCharCodes == 0: startCode = [0xffff] endCode = [0xffff] else: charCodes.sort() names = list(map(operator.getitem, [self.cmap]*lenCharCodes, charCodes)) nameMap = ttFont.getReverseGlyphMap() try: gids = list(map(operator.getitem, [nameMap]*lenCharCodes, names)) except KeyError: nameMap = ttFont.getReverseGlyphMap(rebuild=True) try: gids = list(map(operator.getitem, [nameMap]*lenCharCodes, names)) except KeyError: # allow virtual GIDs in format 4 tables gids = [] for name in names: try: gid = nameMap[name] except KeyError: try: if (name[:3] == 'gid'): gid = eval(name[3:]) else: gid = ttFont.getGlyphID(name) except: raise KeyError(name) gids.append(gid) cmap = {} # code:glyphID mapping list(map(operator.setitem, [cmap]*len(charCodes), charCodes, gids)) # Build startCode and endCode lists. # Split the char codes in ranges of consecutive char codes, then split # each range in more ranges of consecutive/not consecutive glyph IDs. # See splitRange(). lastCode = charCodes[0] endCode = [] startCode = [lastCode] for charCode in charCodes[1:]: # skip the first code, it's the first start code if charCode == lastCode + 1: lastCode = charCode continue start, end = splitRange(startCode[-1], lastCode, cmap) startCode.extend(start) endCode.extend(end) startCode.append(charCode) lastCode = charCode start, end = splitRange(startCode[-1], lastCode, cmap) startCode.extend(start) endCode.extend(end) startCode.append(0xffff) endCode.append(0xffff) # build up rest of cruft idDelta = [] idRangeOffset = [] glyphIndexArray = [] for i in range(len(endCode)-1): # skip the closing codes (0xffff) indices = [] for charCode in range(startCode[i], endCode[i] + 1): indices.append(cmap[charCode]) if (indices == list(range(indices[0], indices[0] + len(indices)))): idDelta.append((indices[0] - startCode[i]) % 0x10000) idRangeOffset.append(0) else: # someone *definitely* needs to get killed. idDelta.append(0) idRangeOffset.append(2 * (len(endCode) + len(glyphIndexArray) - i)) glyphIndexArray.extend(indices) idDelta.append(1) # 0xffff + 1 == (tadaa!) 0. So this end code maps to .notdef idRangeOffset.append(0) # Insane. segCount = len(endCode) segCountX2 = segCount * 2 searchRange, entrySelector, rangeShift = getSearchRange(segCount, 2) charCodeArray = array.array("H", endCode + [0] + startCode) idDeltaArray = array.array("H", idDelta) restArray = array.array("H", idRangeOffset + glyphIndexArray) if sys.byteorder != "big": charCodeArray.byteswap() idDeltaArray.byteswap() restArray.byteswap() data = charCodeArray.tostring() + idDeltaArray.tostring() + restArray.tostring() length = struct.calcsize(cmap_format_4_format) + len(data) header = struct.pack(cmap_format_4_format, self.format, length, self.language, segCountX2, searchRange, entrySelector, rangeShift) return header + data def fromXML(self, name, attrs, content, ttFont): self.language = safeEval(attrs["language"]) if not hasattr(self, "cmap"): self.cmap = {} cmap = self.cmap for element in content: if not isinstance(element, tuple): continue nameMap, attrsMap, dummyContent = element if nameMap != "map": assert 0, "Unrecognized keyword in cmap subtable" cmap[safeEval(attrsMap["code"])] = attrsMap["name"] class cmap_format_6(CmapSubtable): def decompile(self, data, ttFont): # we usually get here indirectly from the subtable __getattr__ function, in which case both args must be None. # If not, someone is calling the subtable decompile() directly, and must provide both args. if data is not None and ttFont is not None: self.decompileHeader(data, ttFont) else: assert (data is None and ttFont is None), "Need both data and ttFont arguments" data = self.data # decompileHeader assigns the data after the header to self.data firstCode, entryCount = struct.unpack(">HH", data[:4]) firstCode = int(firstCode) data = data[4:] #assert len(data) == 2 * entryCount # XXX not true in Apple's Helvetica!!! glyphIndexArray = array.array("H") glyphIndexArray.fromstring(data[:2 * int(entryCount)]) if sys.byteorder != "big": glyphIndexArray.byteswap() self.data = data = None self.cmap = cmap = {} lenArray = len(glyphIndexArray) charCodes = list(range(firstCode, firstCode + lenArray)) glyphOrder = self.ttFont.getGlyphOrder() try: names = list(map(operator.getitem, [glyphOrder]*lenArray, glyphIndexArray )) except IndexError: getGlyphName = self.ttFont.getGlyphName names = list(map(getGlyphName, glyphIndexArray )) list(map(operator.setitem, [cmap]*lenArray, charCodes, names)) def compile(self, ttFont): if self.data: return struct.pack(">HHH", self.format, self.length, self.language) + self.data cmap = self.cmap codes = list(cmap.keys()) if codes: # yes, there are empty cmap tables. codes = list(range(codes[0], codes[-1] + 1)) firstCode = codes[0] valueList = [cmap.get(code, ".notdef") for code in codes] valueList = map(ttFont.getGlyphID, valueList) glyphIndexArray = array.array("H", valueList) if sys.byteorder != "big": glyphIndexArray.byteswap() data = glyphIndexArray.tostring() else: data = b"" firstCode = 0 header = struct.pack(">HHHHH", 6, len(data) + 10, self.language, firstCode, len(codes)) return header + data def fromXML(self, name, attrs, content, ttFont): self.language = safeEval(attrs["language"]) if not hasattr(self, "cmap"): self.cmap = {} cmap = self.cmap for element in content: if not isinstance(element, tuple): continue name, attrs, content = element if name != "map": continue cmap[safeEval(attrs["code"])] = attrs["name"] class cmap_format_12_or_13(CmapSubtable): def __init__(self, format): self.format = format self.reserved = 0 self.data = None self.ttFont = None def decompileHeader(self, data, ttFont): format, reserved, length, language, nGroups = struct.unpack(">HHLLL", data[:16]) assert len(data) == (16 + nGroups*12) == (length), "corrupt cmap table format %d (data length: %d, header length: %d)" % (self.format, len(data), length) self.format = format self.reserved = reserved self.length = length self.language = language self.nGroups = nGroups self.data = data[16:] self.ttFont = ttFont def decompile(self, data, ttFont): # we usually get here indirectly from the subtable __getattr__ function, in which case both args must be None. # If not, someone is calling the subtable decompile() directly, and must provide both args. if data is not None and ttFont is not None: self.decompileHeader(data, ttFont) else: assert (data is None and ttFont is None), "Need both data and ttFont arguments" data = self.data # decompileHeader assigns the data after the header to self.data charCodes = [] gids = [] pos = 0 for i in range(self.nGroups): startCharCode, endCharCode, glyphID = struct.unpack(">LLL",data[pos:pos+12] ) pos += 12 lenGroup = 1 + endCharCode - startCharCode charCodes.extend(list(range(startCharCode, endCharCode +1))) gids.extend(self._computeGIDs(glyphID, lenGroup)) self.data = data = None self.cmap = cmap = {} lenCmap = len(gids) glyphOrder = self.ttFont.getGlyphOrder() try: names = list(map(operator.getitem, [glyphOrder]*lenCmap, gids )) except IndexError: getGlyphName = self.ttFont.getGlyphName names = list(map(getGlyphName, gids )) list(map(operator.setitem, [cmap]*lenCmap, charCodes, names)) def compile(self, ttFont): if self.data: return struct.pack(">HHLLL", self.format, self.reserved, self.length, self.language, self.nGroups) + self.data charCodes = list(self.cmap.keys()) lenCharCodes = len(charCodes) names = list(self.cmap.values()) nameMap = ttFont.getReverseGlyphMap() try: gids = list(map(operator.getitem, [nameMap]*lenCharCodes, names)) except KeyError: nameMap = ttFont.getReverseGlyphMap(rebuild=True) try: gids = list(map(operator.getitem, [nameMap]*lenCharCodes, names)) except KeyError: # allow virtual GIDs in format 12 tables gids = [] for name in names: try: gid = nameMap[name] except KeyError: try: if (name[:3] == 'gid'): gid = eval(name[3:]) else: gid = ttFont.getGlyphID(name) except: raise KeyError(name) gids.append(gid) cmap = {} # code:glyphID mapping list(map(operator.setitem, [cmap]*len(charCodes), charCodes, gids)) charCodes.sort() index = 0 startCharCode = charCodes[0] startGlyphID = cmap[startCharCode] lastGlyphID = startGlyphID - self._format_step lastCharCode = startCharCode - 1 nGroups = 0 dataList = [] maxIndex = len(charCodes) for index in range(maxIndex): charCode = charCodes[index] glyphID = cmap[charCode] if not self._IsInSameRun(glyphID, lastGlyphID, charCode, lastCharCode): dataList.append(struct.pack(">LLL", startCharCode, lastCharCode, startGlyphID)) startCharCode = charCode startGlyphID = glyphID nGroups = nGroups + 1 lastGlyphID = glyphID lastCharCode = charCode dataList.append(struct.pack(">LLL", startCharCode, lastCharCode, startGlyphID)) nGroups = nGroups + 1 data = bytesjoin(dataList) lengthSubtable = len(data) +16 assert len(data) == (nGroups*12) == (lengthSubtable-16) return struct.pack(">HHLLL", self.format, self.reserved, lengthSubtable, self.language, nGroups) + data def toXML(self, writer, ttFont): writer.begintag(self.__class__.__name__, [ ("platformID", self.platformID), ("platEncID", self.platEncID), ("format", self.format), ("reserved", self.reserved), ("length", self.length), ("language", self.language), ("nGroups", self.nGroups), ]) writer.newline() codes = sorted(self.cmap.items()) self._writeCodes(codes, writer) writer.endtag(self.__class__.__name__) writer.newline() def fromXML(self, name, attrs, content, ttFont): self.format = safeEval(attrs["format"]) self.reserved = safeEval(attrs["reserved"]) self.length = safeEval(attrs["length"]) self.language = safeEval(attrs["language"]) self.nGroups = safeEval(attrs["nGroups"]) if not hasattr(self, "cmap"): self.cmap = {} cmap = self.cmap for element in content: if not isinstance(element, tuple): continue name, attrs, content = element if name != "map": continue cmap[safeEval(attrs["code"])] = attrs["name"] class cmap_format_12(cmap_format_12_or_13): _format_step = 1 def __init__(self, format=12): cmap_format_12_or_13.__init__(self, format) def _computeGIDs(self, startingGlyph, numberOfGlyphs): return list(range(startingGlyph, startingGlyph + numberOfGlyphs)) def _IsInSameRun(self, glyphID, lastGlyphID, charCode, lastCharCode): return (glyphID == 1 + lastGlyphID) and (charCode == 1 + lastCharCode) class cmap_format_13(cmap_format_12_or_13): _format_step = 0 def __init__(self, format=13): cmap_format_12_or_13.__init__(self, format) def _computeGIDs(self, startingGlyph, numberOfGlyphs): return [startingGlyph] * numberOfGlyphs def _IsInSameRun(self, glyphID, lastGlyphID, charCode, lastCharCode): return (glyphID == lastGlyphID) and (charCode == 1 + lastCharCode) def cvtToUVS(threeByteString): data = b"\0" + threeByteString val, = struct.unpack(">L", data) return val def cvtFromUVS(val): assert 0 <= val < 0x1000000 fourByteString = struct.pack(">L", val) return fourByteString[1:] class cmap_format_14(CmapSubtable): def decompileHeader(self, data, ttFont): format, length, numVarSelectorRecords = struct.unpack(">HLL", data[:10]) self.data = data[10:] self.length = length self.numVarSelectorRecords = numVarSelectorRecords self.ttFont = ttFont self.language = 0xFF # has no language. def decompile(self, data, ttFont): if data is not None and ttFont is not None: self.decompileHeader(data, ttFont) else: assert (data is None and ttFont is None), "Need both data and ttFont arguments" data = self.data self.cmap = {} # so that clients that expect this to exist in a cmap table won't fail. uvsDict = {} recOffset = 0 for n in range(self.numVarSelectorRecords): uvs, defOVSOffset, nonDefUVSOffset = struct.unpack(">3sLL", data[recOffset:recOffset +11]) recOffset += 11 varUVS = cvtToUVS(uvs) if defOVSOffset: startOffset = defOVSOffset - 10 numValues, = struct.unpack(">L", data[startOffset:startOffset+4]) startOffset +=4 for r in range(numValues): uv, addtlCnt = struct.unpack(">3sB", data[startOffset:startOffset+4]) startOffset += 4 firstBaseUV = cvtToUVS(uv) cnt = addtlCnt+1 baseUVList = list(range(firstBaseUV, firstBaseUV+cnt)) glyphList = [None]*cnt localUVList = zip(baseUVList, glyphList) try: uvsDict[varUVS].extend(localUVList) except KeyError: uvsDict[varUVS] = list(localUVList) if nonDefUVSOffset: startOffset = nonDefUVSOffset - 10 numRecs, = struct.unpack(">L", data[startOffset:startOffset+4]) startOffset +=4 localUVList = [] for r in range(numRecs): uv, gid = struct.unpack(">3sH", data[startOffset:startOffset+5]) startOffset += 5 uv = cvtToUVS(uv) glyphName = self.ttFont.getGlyphName(gid) localUVList.append( [uv, glyphName] ) try: uvsDict[varUVS].extend(localUVList) except KeyError: uvsDict[varUVS] = localUVList self.uvsDict = uvsDict def toXML(self, writer, ttFont): writer.begintag(self.__class__.__name__, [ ("platformID", self.platformID), ("platEncID", self.platEncID), ("format", self.format), ("length", self.length), ("numVarSelectorRecords", self.numVarSelectorRecords), ]) writer.newline() uvsDict = self.uvsDict uvsList = sorted(uvsDict.keys()) for uvs in uvsList: uvList = uvsDict[uvs] uvList.sort(key=lambda item: (item[1] is not None, item[0], item[1])) for uv, gname in uvList: if gname is None: gname = "None" # I use the arg rather than th keyword syntax in order to preserve the attribute order. writer.simpletag("map", [ ("uvs",hex(uvs)), ("uv",hex(uv)), ("name", gname)] ) writer.newline() writer.endtag(self.__class__.__name__) writer.newline() def fromXML(self, name, attrs, content, ttFont): self.format = safeEval(attrs["format"]) self.length = safeEval(attrs["length"]) self.numVarSelectorRecords = safeEval(attrs["numVarSelectorRecords"]) self.language = 0xFF # provide a value so that CmapSubtable.__lt__() won't fail if not hasattr(self, "cmap"): self.cmap = {} # so that clients that expect this to exist in a cmap table won't fail. if not hasattr(self, "uvsDict"): self.uvsDict = {} uvsDict = self.uvsDict for element in content: if not isinstance(element, tuple): continue name, attrs, content = element if name != "map": continue uvs = safeEval(attrs["uvs"]) uv = safeEval(attrs["uv"]) gname = attrs["name"] if gname == "None": gname = None try: uvsDict[uvs].append( [uv, gname]) except KeyError: uvsDict[uvs] = [ [uv, gname] ] def compile(self, ttFont): if self.data: return struct.pack(">HLL", self.format, self.length, self.numVarSelectorRecords) + self.data uvsDict = self.uvsDict uvsList = sorted(uvsDict.keys()) self.numVarSelectorRecords = len(uvsList) offset = 10 + self.numVarSelectorRecords*11 # current value is end of VarSelectorRecords block. data = [] varSelectorRecords =[] for uvs in uvsList: entryList = uvsDict[uvs] defList = [entry for entry in entryList if entry[1] is None] if defList: defList = [entry[0] for entry in defList] defOVSOffset = offset defList.sort() lastUV = defList[0] cnt = -1 defRecs = [] for defEntry in defList: cnt +=1 if (lastUV+cnt) != defEntry: rec = struct.pack(">3sB", cvtFromUVS(lastUV), cnt-1) lastUV = defEntry defRecs.append(rec) cnt = 0 rec = struct.pack(">3sB", cvtFromUVS(lastUV), cnt) defRecs.append(rec) numDefRecs = len(defRecs) data.append(struct.pack(">L", numDefRecs)) data.extend(defRecs) offset += 4 + numDefRecs*4 else: defOVSOffset = 0 ndefList = [entry for entry in entryList if entry[1] is not None] if ndefList: nonDefUVSOffset = offset ndefList.sort() numNonDefRecs = len(ndefList) data.append(struct.pack(">L", numNonDefRecs)) offset += 4 + numNonDefRecs*5 for uv, gname in ndefList: gid = ttFont.getGlyphID(gname) ndrec = struct.pack(">3sH", cvtFromUVS(uv), gid) data.append(ndrec) else: nonDefUVSOffset = 0 vrec = struct.pack(">3sLL", cvtFromUVS(uvs), defOVSOffset, nonDefUVSOffset) varSelectorRecords.append(vrec) data = bytesjoin(varSelectorRecords) + bytesjoin(data) self.length = 10 + len(data) headerdata = struct.pack(">HLL", self.format, self.length, self.numVarSelectorRecords) self.data = headerdata + data return self.data class cmap_format_unknown(CmapSubtable): def toXML(self, writer, ttFont): cmapName = self.__class__.__name__[:12] + str(self.format) writer.begintag(cmapName, [ ("platformID", self.platformID), ("platEncID", self.platEncID), ]) writer.newline() writer.dumphex(self.data) writer.endtag(cmapName) writer.newline() def fromXML(self, name, attrs, content, ttFont): self.data = readHex(content) self.cmap = {} def decompileHeader(self, data, ttFont): self.language = 0 # dummy value self.data = data def decompile(self, data, ttFont): # we usually get here indirectly from the subtable __getattr__ function, in which case both args must be None. # If not, someone is calling the subtable decompile() directly, and must provide both args. if data is not None and ttFont is not None: self.decompileHeader(data, ttFont) else: assert (data is None and ttFont is None), "Need both data and ttFont arguments" def compile(self, ttFont): if self.data: return self.data else: return None cmap_classes = { 0: cmap_format_0, 2: cmap_format_2, 4: cmap_format_4, 6: cmap_format_6, 12: cmap_format_12, 13: cmap_format_13, 14: cmap_format_14, }
35.289026
192
0.698888
[ "MIT" ]
johanoren/IncrementalNumbers
FontTools/fontTools/ttLib/tables/_c_m_a_p.py
45,664
Python
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """The Exponential distribution class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn from tensorflow.python.ops import random_ops from tensorflow.python.ops.distributions import gamma from tensorflow.python.util.tf_export import tf_export __all__ = [ "Exponential", "ExponentialWithSoftplusRate", ] @tf_export("distributions.Exponential") class Exponential(gamma.Gamma): """Exponential distribution. The Exponential distribution is parameterized by an event `rate` parameter. #### Mathematical Details The probability density function (pdf) is, ```none pdf(x; lambda, x > 0) = exp(-lambda x) / Z Z = 1 / lambda ``` where `rate = lambda` and `Z` is the normalizaing constant. The Exponential distribution is a special case of the Gamma distribution, i.e., ```python Exponential(rate) = Gamma(concentration=1., rate) ``` The Exponential distribution uses a `rate` parameter, or "inverse scale", which can be intuited as, ```none X ~ Exponential(rate=1) Y = X / rate ``` """ def __init__(self, rate, validate_args=False, allow_nan_stats=True, name="Exponential"): """Construct Exponential distribution with parameter `rate`. Args: rate: Floating point tensor, equivalent to `1 / mean`. Must contain only positive values. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. allow_nan_stats: Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value "`NaN`" to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined. name: Python `str` name prefixed to Ops created by this class. """ parameters = locals() # Even though all statistics of are defined for valid inputs, this is not # true in the parent class "Gamma." Therefore, passing # allow_nan_stats=True # through to the parent class results in unnecessary asserts. with ops.name_scope(name, values=[rate]): self._rate = ops.convert_to_tensor(rate, name="rate") super(Exponential, self).__init__( concentration=array_ops.ones([], dtype=self._rate.dtype), rate=self._rate, allow_nan_stats=allow_nan_stats, validate_args=validate_args, name=name) # While the Gamma distribution is not reparameterizable, the exponential # distribution is. self._reparameterization_type = True self._parameters = parameters self._graph_parents += [self._rate] @staticmethod def _param_shapes(sample_shape): return {"rate": ops.convert_to_tensor(sample_shape, dtype=dtypes.int32)} @property def rate(self): return self._rate def _sample_n(self, n, seed=None): shape = array_ops.concat([[n], array_ops.shape(self._rate)], 0) # Uniform variates must be sampled from the open-interval `(0, 1)` rather # than `[0, 1)`. To do so, we use `np.finfo(self.dtype.as_numpy_dtype).tiny` # because it is the smallest, positive, "normal" number. A "normal" number # is such that the mantissa has an implicit leading 1. Normal, positive # numbers x, y have the reasonable property that, `x + y >= max(x, y)`. In # this case, a subnormal number (i.e., np.nextafter) can cause us to sample # 0. sampled = random_ops.random_uniform( shape, minval=np.finfo(self.dtype.as_numpy_dtype).tiny, maxval=1., seed=seed, dtype=self.dtype) return -math_ops.log(sampled) / self._rate class ExponentialWithSoftplusRate(Exponential): """Exponential with softplus transform on `rate`.""" def __init__(self, rate, validate_args=False, allow_nan_stats=True, name="ExponentialWithSoftplusRate"): parameters = locals() with ops.name_scope(name, values=[rate]): super(ExponentialWithSoftplusRate, self).__init__( rate=nn.softplus(rate, name="softplus_rate"), validate_args=validate_args, allow_nan_stats=allow_nan_stats, name=name) self._parameters = parameters
35.88961
81
0.667451
[ "Apache-2.0", "MIT" ]
Soum-Soum/Tensorflow_Face_Finder
venv1/Lib/site-packages/tensorflow/python/ops/distributions/exponential.py
5,527
Python
#from numba import jit import numpy as np #from joblib import Parallel, delayed, parallel_backend #from joblib import load, dump #import tempfile #import shutil #import os # #import sys #sys.path.append('pyunicorn_timeseries') #from pyunicorn_timeseries.surrogates import Surrogates def set_model_constants(xx=50.E3,nx=100,va=10.,tmax=60*360*24*3600.,avep=24*3600.,dt=3600.,period=3600*24*360*1,B=2.,T0=273.15+6,dT=2.,Cs=1.E-3,Cp=1030.,ra=1.5,ro=1030.,ri=900.,Cpo=4.E3,Cpi=2.9E3,H=200.,vo=0.2,Hb=1.E3,Li=3.3E6,Tf=273.15-1.8,SW0=50.,SW_anom=100.,emissivity=0.99,Da=1.E6,Do=5.E2,tau_entrainment=30*24*3600.,**args): '''Setup model constants. All of the constants have fixed values, but one can pass in own values or even some arbitrary values via **args.''' # C={} C['xx'] = xx #grid size in [m] C['nx'] = nx #number of grid cell - the total width of the domain is xx*nx long C['va'] = va #wind in m/s # C['tmax'] = tmax #tmax seconds C['dt'] = dt #timestep # C['avep'] = avep #averaging period in seconds # C['period'] = period #period of boundary restoring C['Cs'] = Cs #exchange coefficient for bulk formula C['Cp'] = Cp #air heat capacity C['ra'] = ra #density of air [kg/m3] C['ro'] = ro #density of sea water [kg/m3] C['ri'] = ri #density of sea ice [kg/m3] C['Cpo'] = Cpo #sea water heat capacity C['T0'] = T0 #initial temp in degC C['dT'] = dT #initial temp perturbationHb=2E3 C['H'] = H #mixed layer depth in ocean [m] C['vo'] = vo #ocean current speed [m/s] C['Hb'] = Hb #boundary layer height in the atmosphere [m] C['Cpi'] = Cpi #sea ice heat capacity [J/ Kg K] C['Li'] = Li #Latent heat of fusion of sea water [J / kg K] C['Tf'] = Tf #Freezing point of sea water [C] C['B'] = B # long-wave radiation constant [W/m2] C['emissivity'] = emissivity #surface emissivity C['SW0'] = SW0 # background net downwelling SW radiation C['SW_anom']= SW_anom # amplitude of annual cycle in SW radiation C['Da'] = Da # atmospheric diffusion [m2/s] C['Do'] = Do # ocean diffusion [m2/s] C['tau_entrainment'] = tau_entrainment # ocean entrainment/damping timescale for var in args.keys(): C[var]=args[var] # return C def CoupledChannel(C,forcing, T_boundary=None, dt_f=30*24*3600, restoring=False,ice_model=True,atm_adv=True,spatial_pattern=None,atm_DA_tendencies=None,ocn_DA_tendencies=None, return_coupled_fluxes=False,random_amp=0.1): ''' This is the main function for the coupled ocean--atm channel model. ## INPUT VARIABLES ## tmax: running time in seconds avep: averaging period for the ouput T0: initial temperature forcing: dimensionless scaling for the heat flux forcing - default strength is 5 W/m2 dt_f: timestep of the forcing atm_adv: boolean, advective atmosphere atm_ocn: boolean, advective ocean ''' # # number of simulation timesteps and output timesteps nt = int(C['tmax']/C['dt']) #simulation nt1 = int(C['tmax']/C['avep']) #output # rtas = np.random.rand(C['nx']) # intitialize the model variables, first dimension is due to 2 timesteps deep scheme sst = C['T0']*np.ones((2,C['nx'])) tas = C['T0']*np.ones((2,C['nx'])) #+rtas hice = np.zeros((2,C['nx'])) # INCOMING SHORTWAVE RADIATION SW0 = np.tile(C['SW0'][:,np.newaxis],(1,nt)) naxis = np.tile(np.arange(nt)[np.newaxis,],(C['nx'],1)) SW_warming = np.max(np.concatenate([(SW0-C['SW_anom']*np.cos(2*np.pi*(naxis*C['dt'])/(360*24*3600)))[np.newaxis,],np.zeros((C['nx'],nt))[np.newaxis,]],axis=0),0) # If boundary conditions are not defined, then set initially to T0 if np.all(T_boundary==None): T_boundary=C['T0']*np.ones(nt) # sst_boundary=T_boundary[0]*np.ones((2)) #nt+1 # evolve_boundary=True #else: # sst_boundary=np.concatenate((sst_boundary[np.newaxis,],sst_boundary[np.newaxis,]),axis=0) # evolve_boundary=False # # interpolate forcing to the new timescale if np.all(forcing!=None): forcing = np.interp(np.arange(0,len(forcing)*dt_f,C['dt']),np.arange(0,len(forcing)*dt_f,dt_f),forcing) else: forcing = np.zeros(nt+1) # # initialize outputs sst_out = np.zeros((nt1,C['nx'])) tas_out = np.zeros((nt1,C['nx'])) hice_out = np.zeros((nt1,C['nx'])) sflx_f_out = np.zeros((nt1,C['nx'])) #forcing sflx_out = np.zeros((nt1,C['nx'])) # spatial pattern of the forcing - assume a sine wave if np.all(spatial_pattern==None): spatial_pattern=np.ones(C['nx']) # if np.all(atm_DA_tendencies!=None): use_atm_tendencies=True else: use_atm_tendencies=False if np.all(ocn_DA_tendencies!=None): use_ocn_tendencies=True else: use_ocn_tendencies=False # if return_coupled_fluxes: atm_DA_tendencies = np.zeros((nt,C['nx'])) ocn_DA_tendencies = np.zeros((nt,C['nx'])) # initialize counters c=0; c2=0; c3=0; n=1 ##################### # --- TIME LOOP --- ##################### for nn in range(nt): # # FORCING - WILL BE ZERO IF NOT SPECIFIED, no spatial pattern if not specified sflx=forcing[nn]*spatial_pattern #+ forcing[nn]*random_amp*np.random.rand(C['nx']) # # save the forcing component # sflx_f_out[c,:]=sflx_f_out[c,:]+sflx # # SURFACE HEAT FLUXES # Add sensible heat flux to the total surface flux in W/m**-2 sflx=sflx+C['ra']*C['Cp']*C['va']*C['Cs']*(sst[n-1,:]-tas[n-1,:]) # RADIATIVE FLUXES - LW will cool the atmosphere, SW will warm the ocean LW_cooling = C['emissivity']*5.67E-8*(tas[n-1,:]**4) # # OCEAN BOUNDARY CONDITION #if evolve_boundary: sst_boundary_tendency=SW_warming[0,nn]*C['dt']/(C['H']*C['Cpo']*C['ro'])-C['emissivity']*5.67E-8*(sst_boundary[n-1]**4)*C['dt']/(C['H']*C['Cpo']*C['ro'])+(T_boundary[nn]-sst_boundary[n-1])*C['dt']/C['period'] ############################################ # # ATMOSPHERE # ############################################ # # ADVECTION # # set atm_adv=False is no atmospheric advection - note that we still need to know the wind speed to resolve heat fluxes if atm_adv: a_adv = np.concatenate([sst_boundary[n-1]-tas[n-1,:1],tas[n-1,:-1]-tas[n-1,1:]],axis=0)*(C['va']*C['dt']/C['xx']) else: a_adv = 0 # # DIFFUSION # a_diff = (tas[n-1,2:]+tas[n-1,:-2]-2*tas[n-1,1:-1])*(C['Da']*C['dt']/(C['xx']**2)) a_diff0 = (tas[n-1,1]+sst_boundary[n-1]-2*tas[n-1,0])*(C['Da']*C['dt']/(C['xx']**2)) a_diff = np.concatenate([np.array([a_diff0]),a_diff,a_diff[-1:]],axis=0) # # SURFACE FLUXES # a_netsflx = (sflx*C['dt'])/(C['Hb']*C['Cp']*C['ra']) - LW_cooling*C['dt']/(C['Hb']*C['Cp']*C['ra']) # # if return_coupled_fluxes: atm_DA_tendencies[nn,:] = a_adv + a_diff # # ATM UPDATE # if use_atm_tendencies: tas[n,:] = tas[n-1,:] + a_netsflx + atm_DA_tendencies[c3,:] else: tas[n,:] = tas[n-1,:] + a_netsflx + a_adv + a_diff # ################################################ # # OCEAN # ################################################ # AND DIFFUSION + ENTRAINMENT # ocean advection # # ADVECTION set vo=0 for stagnant ocean (slab) # o_adv = np.concatenate([sst_boundary[n-1]-sst[n-1,:1],sst[n-1,:-1]-sst[n-1,1:]],axis=0)*(C['vo']*C['dt']/C['xx']) # # DIFFUSION # o_diff = (sst[n-1,2:]+sst[n-1,:-2]-2*sst[n-1,1:-1])*(C['Do']*C['dt']/(C['xx']**2)) o_diff0 = (sst[n-1,1]+sst_boundary[n-1]-2*sst[n-1,0])*(C['Do']*C['dt']/(C['xx']**2)) o_diff = np.concatenate([np.array([o_diff0]),o_diff,o_diff[-1:]],axis=0) # # ENTRAINMENT - RESTORING TO AN AMBIENT WATER MASS (CAN BE SEEN AS LATERAL OR VERTICAL MIXING) # set tau_entrainment=0 for no entrainment if C['tau_entrainment']>0: o_entrain = (C['T0']-sst[n-1,:])*C['dt']/C['tau_entrainment'] else: o_entrain = 0 # # SURFACE FLUXES # o_netsflx = -sflx*C['dt']/(C['H']*C['Cpo']*C['ro'])+SW_warming[:,nn]*C['dt']/(C['H']*C['Cpo']*C['ro']) # if return_coupled_fluxes: ocn_DA_tendencies[nn,:] = o_adv + o_diff + o_entrain # # OCN update if use_ocn_tendencies: sst[n,:] = sst[n-1,:] + o_netsflx + ocn_DA_tendencies[c3,:] else: sst[n,:] = sst[n-1,:] + o_netsflx + o_adv + o_diff + o_entrain # if ice_model: # THIS IS A DIAGNOSTIC SEA ICE MODEL # # SST is first allowed to cool below freezing and then we form sea ice from the excess_freeze # i.e the amount that heat that is used to cool SST below freezing is converted to ice instead. # Similarly, SST is allowed to warm above Tf even if there is ice, and then excess_melt, # i.e. the amount of heat that is used to warm the water is first used to melt ice, # and then the rest can warm the water. # # This scheme conserves energy - it simply switches it between ocean and ice storages # # advection #hice[n-1,1:]=hice[n-1,1:]-(hice[n-1,:-1]-hice[n-1,1:])*(C['vo']*C['dt']/C['xx']) #dhice = (hice[n-1,:-1]-hice[n-1,1:])*(C['vo']*C['dt']/C['xx']) #hice[n-1,:-1] = hice[n-1,:-1] -dhice #hice[n-1,-1] = hice[n-1,-1] + dhice[-1] # ice_mask = (hice[n-1,:]>0).astype(np.float) #cells where there is ice to melt freezing_mask = (sst[n,:]<C['Tf']).astype(np.float) #cells where freezing will happen # change in energy dEdt = C['H']*C['ro']*C['Cpo']*(sst[n,:]-sst[n-1,:])/C['dt'] # negative change in energy will produce ice whenver the water would otherwise cool below freezing excess_freeze = freezing_mask*np.max([-dEdt,np.zeros(C['nx'])],axis=0) # positive change will melt ice where there is ice excess_melt = ice_mask*np.max([dEdt,np.zeros(C['nx'])],axis=0) # note that freezing and melting will never happen at the same time in the same cell # freezing dhice_freeze = C['dt']*excess_freeze/(C['Li']*C['ri']) # melting dhice_melt= C['dt']*excess_melt/(C['Li']*C['ri']) # update hice[n,:] = hice[n-1,:] + dhice_freeze - dhice_melt # check how much energy was used for melting sea ice - remove this energy from ocean hice_melt = (dhice_melt>0).astype(np.float)*np.min([dhice_melt,hice[n-1,:]],axis=0) # Do not allow ice to be negative - that energy is kept in the ocean all the time. # The line above ensures that not more energy than is needed to melt the whole ice cover # is removed from the ocean at any given time hice[n,:] = np.max([hice[n,:],np.zeros(C['nx'])],axis=0) # # Update SST # Give back the energy that was used for freezing (will keep the water temperature above freezing) sst[n,:] = sst[n,:] + C['dt']*excess_freeze/(C['H']*C['Cpo']*C['ro']) # take out the heat that was used to melt ice # (need to cap to hice, the extra heat is never used and will stay in the ocean) sst[n,:] = sst[n,:] - hice_melt*(C['Li']*C['ri'])/(C['ro']*C['Cpo']*C['H']) # ############################# # --- PREPARE OUTPUT ---- ############################# # accumulate output tas_out[c,:] = tas_out[c,:]+tas[n,:] sst_out[c,:] = sst_out[c,:]+sst[n,:] hice_out[c,:] = hice_out[c,:]+hice[n,:] sflx_out[c,:] = sflx_out[c,:]+sflx # accumulate averaging counter c2=c2+1 c3=c3+1 if ((nn+1)*C['dt'])%(360*24*3600)==0: #print(nn) c3=0 #calculate the average for the output if (((nn+1)*C['dt'])%C['avep']==0 and nn>0): tas_out[c,:] = tas_out[c,:]/c2 sst_out[c,:] = sst_out[c,:]/c2 sflx_out[c,:] = sflx_out[c,:]/c2 sflx_f_out[c,:] = sflx_f_out[c,:]/c2 hice_out[c,:] = hice_out[c,:]/c2 # update counters c = c+1 c2 = 0 if ((nn+1)*C['dt'])%(360*24*3600)==0: print('Year ', (nn+1)*C['dt']/(360*24*3600), sst[1,int(C['nx']/4)], sst[1,int(3*C['nx']/4)]) #update the variables tas[0,:] = tas[1,:].copy() sst[0,:] = sst[1,:].copy() hice[0,:] = hice[1,:].copy() # SST at the boundary sst_boundary[n-1]=sst_boundary[n-1]+sst_boundary_tendency # # # if there is no ice, set to nan hice_out[np.where(hice_out==0)]=np.nan # if return_coupled_fluxes: return tas_out, sst_out, hice_out, sflx_out, sflx_f_out, nt1, nt, atm_DA_tendencies, ocn_DA_tendencies else: return tas_out, sst_out, hice_out, sflx_out, sflx_f_out, nt1, nt #@jit(nopython=True) def CoupledChannel_time(nt,nx,xx,dt,avep,sst,tas,hice,sst_boundary,sst_out,tas_out,hice_out,sflx_f_out,sflx_out,forcing,spatial_pattern,ra,Cp,va,vo,Da,Do,Cs,T0,Tf,emissivity,SW0,SW_anom,H,Hb,Cpo,ro,tau_entrainment,Li,ri,use_ocn_tendencies,use_atm_tendencies, atm_DA_tendencies, ocn_DA_tendencies,ice_model,atm_adv,return_coupled_fluxes): ''' Separate time loop to enable numba ''' #initialize counters c=0; c2=0; c3=0; n=1 ##################### # --- TIME LOOP --- ##################### for nn in range(nt): # # FORCING - WILL BE ZERO IF NOT SPECIFIED, no spatial pattern if not specified sflx=forcing[nn]*spatial_pattern #+ forcing[nn]*random_amp*np.random.rand(C['nx']) # # save the forcing component # sflx_f_out[c,:]=sflx_f_out[c,:]+sflx # # SURFACE HEAT FLUXES # Add sensible heat flux to the total surface flux in W/m**-2 sflx=sflx+ra*Cp*va*Cs*(sst[n-1,:]-tas[n-1,:]) # RADIATIVE FLUXES - LW will cool the atmosphere, SW will warm the ocean LW_cooling = emissivity*5.67E-8*(tas[n-1,:]**4) SW_warming = SW0+max(SW_anom*np.sin(2*float(nn)*dt*np.pi/(360*24*3600)),0.0) #net_radiation = SW_warming-LW_cooling net_radiation = -LW_cooling # # OCEAN BOUNDARY CONDITION - SET dT to zero to suppress the sin sst_boundary[n]=sst_boundary[n-1]+SW_warming[0]*dt/(H*Cpo*ro)-emissivity*5.67E-8*(sst_boundary[n-1]**4)*dt/(H*Cpo*ro)+(T0-sst_boundary[n-1])*dt/(360*24*3600) #C['T0']+C['dT']*np.sin(nn*C['dt']*np.pi/C['period']) + # # ATMOSPHERE - ADVECTION AND DIFFUSION # set atm_adv=False is no atmospheric advection - note that we need to know the wind speed to resolve heat fluxes if atm_adv: a_adv = np.concatenate((sst_boundary[n-1]-tas[n-1,:1],tas[n-1,:-1]-tas[n-1,1:]),axis=0)*(va*dt/xx) #tas[n,0]=tas[n-1,0]+(C['T0']-tas[n-1,0])*(C['va']*C['dt']/C['xx']) #always constant temperature blowing over the ocean from land #tas[n,0]=tas[n-1,0]+(sst[n,0]-tas[n-1,0])*(C['va']*C['dt']/C['xx']) #atmospheric temperature at the boundary is in equilibrium with the ocean #tas[n,1:]=tas[n-1,1:]+(tas[n-1,:-1]-tas[n-1,1:])*(C['va']*C['dt']/C['xx']) else: #tas[n,:] = tas[n-1,0] a_adv = np.zeros(nx) # # DIFFUSION # #tas[n,1:-1] = tas[n,1:-1] + (tas[n-1,2:]+tas[n-1,:-2]-2*tas[n-1,1:-1])*(C['Da']*C['dt']/(C['xx']**2)) a_diff = (tas[n-1,2:]+tas[n-1,:-2]-2*tas[n-1,1:-1])*(Da*dt/(xx**2)) a_diff0 = (tas[n-1,1]+sst_boundary[n-1]-2*tas[n-1,0])*(Da*dt/(xx**2)) a_diff = np.concatenate((np.array([a_diff0]),a_diff,a_diff[-1:]),axis=0) # # ATMOSPHERE - SURFACE FLUXES # a_netsflx = (sflx*dt)/(Hb*Cp*ra) + net_radiation*dt/(Hb*Cp*ra) # # full update # # if return_coupled_fluxes: atm_DA_tendencies[nn,:]=np.sum((a_adv,a_diff),axis=0) # if use_atm_tendencies: tas[n,:] = tas[n-1,:] + a_netsflx + atm_DA_tendencies[c3,:] else: tas[n,:] = tas[n-1,:] + a_netsflx + a_adv + a_diff # # OCEAN - ADVECTION AND DIFFUSION + ENTRAINMENT # ocean advection # set vo=0 for stagnant ocean (slab) # #sst[n,1:] = sst[n-1,1:]+(sst[n-1,:-1]-sst[n-1,1:])*(1-ocn_mixing_ratio)*(C['vo']*C['dt']/C['xx'])+(C['T0']-sst[n-1,1:])*ocn_mixing_ratio*(C['vo']*C['dt']/C['xx']) o_adv = np.concatenate((sst_boundary[n-1]-sst[n-1,:1],sst[n-1,:-1]-sst[n-1,1:]),axis=0)*(vo*dt/xx) # DIFFUSION #sst[n,1:-1] = sst[n,1:-1] + (sst[n-1,2:]+sst[n-1,:-2]-2*sst[n-1,1:-1])*(C['Do']*C['dt']/(C['xx']**2)) o_diff = (sst[n-1,2:]+sst[n-1,:-2]-2*sst[n-1,1:-1])*(Do*dt/(xx**2)) o_diff0 = (sst[n-1,1]+sst_boundary[n-1]-2*sst[n-1,0])*(Do*dt/(xx**2)) o_diff = np.concatenate((np.array([o_diff0]),o_diff,o_diff[-1:]),axis=0) # ENTRAINMENT (damping by a lower layer) o_entrain = (T0-sst[n-1,:])*dt/tau_entrainment #sst[n,1:]=sst[n,1:]+(C['T0']-sst[n-1,1:])*C['dt']/C['tau_entrainment'] # # OCEAN - SURFACE FLUXES # o_netsflx = -sflx*dt/(H*Cpo*ro)+SW_warming*dt/(H*Cpo*ro) #sst[n,:]=sst[n,:]-(sflx*C['dt'])/(C['H']*C['Cpo']*C['ro']) if return_coupled_fluxes: ocn_DA_tendencies[nn,:] = o_adv + o_diff + o_entrain # OCN update if use_ocn_tendencies: sst[n,:] = sst[n-1,:] + o_netsflx + ocn_DA_tendencies[c3,:] else: sst[n,:] = sst[n-1,:] + o_netsflx + o_adv + o_diff + o_entrain # if ice_model: # THIS IS A DIAGNOSTIC SEA ICE MODEL # # sst is first allowed to cool below freezing and then we forM sea ice from the excess_freeze # i.e the amount that heat that is used to cool sst below freezing is converted to ice instead # similarly sst is allowed to warm above Tf even if there is ice, and then excess_melt, # i.e. the amount of heat that is used to warm the water is first used to melt ice, # and then the rest can warm water. This scheme conserves energy - it simply switches it between ocean and ice # ice_mask = (hice[n-1,:]>0).astype(np.float) #cells where there is ice to melt freezing_mask = (sst[n,:]<Tf).astype(np.float) #cells where freezing will happen # change in energy dEdt = H*ro*Cpo*(sst[n,:]-sst[n-1,:])/dt # negative change in energy will produce ice whenver the water would otherwise cool below freezing excess_freeze = freezing_mask*np.max([-dEdt,np.zeros(nx)],axis=0) # positive change will melt ice where there is ice excess_melt = ice_mask*np.max([dEdt,np.zeros(nx)],axis=0) # note that freezing and melting will never happen at the same time in the same cell # freezing dhice_freeze = dt*excess_freeze/(Li*ri) # melting dhice_melt= dt*excess_melt/(Li*ri) # update hice[n,:] = hice[n-1,:] + dhice_freeze - dhice_melt # check how much energy was used for melting sea ice - remove this energy from ocean hice_melt = (dhice_melt>0).astype(np.float)*np.min([dhice_melt,hice[n-1,:]],axis=0) # Do not allow ice to be negative - that energy is kept in the ocean all the time. # The line above ensures that not more energy than is needed to melt the whole ice cover # is removed from the ocean at any given time hice[n,:] = np.max([hice[n,:],np.zeros(nx)],axis=0) # # Update SST # Give back the energy that was used for freezing (will keep the water temperature above freezing) sst[n,:] = sst[n,:] + dt*excess_freeze/(H*Cpo*ro) # take out the heat that was used to melt ice # (need to cap to hice, the extra heat is never used and will stay in the ocean) sst[n,:] = sst[n,:] - hice_melt*(Li*ri)/(ro*Cpo*H) # ############################# # --- PREPARE OUTPUT ---- ############################# #accumulate tas_out[c,:] = tas_out[c,:]+tas[n,:] sst_out[c,:] = sst_out[c,:]+sst[n,:] hice_out[c,:] = hice_out[c,:]+hice[n,:] sflx_out[c,:] = sflx_out[c,:]+sflx # accumulate averaging counter c2=c2+1 c3=c3+1 if ((nn+1)*dt)%(360*24*3600)==0: #print(nn) c3=0 #calculate the average for the output if (((nn+1)*dt)%avep==0 and nn>0): tas_out[c,:] = tas_out[c,:]/c2 sst_out[c,:] = sst_out[c,:]/c2 sflx_out[c,:] = sflx_out[c,:]/c2 sflx_f_out[c,:] = sflx_f_out[c,:]/c2 hice_out[c,:] = hice_out[c,:]/c2 # update counters c = c+1 c2 = 0 #if ((nn+1)*C['dt'])%(360*24*3600)==0: # print('Year ', (nn+1)*C['dt']/(360*24*3600), sst[1,int(C['nx']/4)], sst[1,int(3*C['nx']/4)]) #update the variables tas[0,:] = tas[1,:].copy() sst[0,:] = sst[1,:].copy() hice[0,:] = hice[1,:].copy() sst_boundary[0]=sst_boundary[1].copy() # hice_out[np.where(hice_out==0)]=np.nan # return tas_out, sst_out, hice_out, sflx_out, sflx_f_out, atm_DA_tendencies, ocn_DA_tendencies def CoupledChannel2(C,forcing, dt_f=30*24*3600, ocn_mixing_ratio=0, restoring=False,ice_model=True,atm_adv=True,spatial_pattern=None,atm_DA_tendencies=None,ocn_DA_tendencies=None, return_coupled_fluxes=False,random_amp=0.1): ''' This is the main function for the coupled ocean--atm channel model. ## INPUT VARIABLES ## tmax: running time in seconds avep: averaging period for the ouput T0: initial temperature forcing: dimensionless scaling for the heat flux forcing - default strength is 5 W/m2 dt_f: timestep of the forcing atm_adv: boolean, advective atmosphere atm_ocn: boolean, advective ocean ocn_mixing: add non-local mixing to ocean ocn_mixing_ratio: 0-1 ratio between advection and mixing (0 only advection; 1 only mixing) ''' # #print(C) #print(C['T0'],C['SW0'],C['Da'],C['xx']) # nt=int(C['tmax']/C['dt']) #steps nt1=int(C['tmax']/C['avep']) tau=float(C['period'])/float(C['dt']) #this is period/dt, previously nt/8 rtas=np.random.rand(C['nx']) #print(rtas.max()) #intitialize the model variables, only 2 timesteps deep scheme sst=C['T0']*np.ones((2,C['nx'])) tas=C['T0']*np.ones((2,C['nx']))+rtas hice=np.zeros((2,C['nx'])) sst_boundary=C['T0']*np.ones((2)) # #print(sst.max(),tas.max()) #interpolate forcing to the new timescale if np.all(forcing!=None): forcing = np.interp(np.arange(0,len(forcing)*dt_f,C['dt']),np.arange(0,len(forcing)*dt_f,dt_f),forcing) else: forcing = np.zeros(nt+1) # #initialize outputs sst_out = np.zeros((nt1,C['nx'])) tas_out = np.zeros((nt1,C['nx'])) hice_out = np.zeros((nt1,C['nx'])) sflx_f_out = np.zeros((nt1,C['nx'])) #forcing sflx_out = np.zeros((nt1,C['nx'])) #spatial pattern of the forcing - assume a sine wave if np.all(spatial_pattern==None): spatial_pattern=np.ones(C['nx']) # if np.all(atm_DA_tendencies!=None): use_atm_tendencies=True else: use_atm_tendencies=False if np.all(ocn_DA_tendencies!=None): use_ocn_tendencies=True else: use_ocn_tendencies=False # atm_DA_tendencies = np.zeros((nt,C['nx'])) ocn_DA_tendencies = np.zeros((nt,C['nx'])) # tas_out, sst_out, hice_out, sflx_out, sflx_f_out, atm_DA_tendencies, ocn_DA_tendencies=CoupledChannel_time(nt,C['nx'],C['xx'],C['dt'],C['avep'],sst,tas,hice,sst_boundary,sst_out,tas_out,hice_out,sflx_f_out,sflx_out,forcing,spatial_pattern,C['ra'],C['Cp'],C['va'],C['vo'],C['Da'],C['Do'],C['Cs'],C['T0'],C['Tf'],C['emissivity'],C['SW0'],C['SW_anom'],C['H'],C['Hb'],C['Cpo'],C['ro'],C['tau_entrainment'],C['Li'],C['ri'],use_ocn_tendencies,use_atm_tendencies, atm_DA_tendencies, ocn_DA_tendencies,ice_model,atm_adv,return_coupled_fluxes) # if return_coupled_fluxes: return tas_out, sst_out, hice_out, sflx_out, sflx_f_out, nt1, nt, atm_DA_tendencies, ocn_DA_tendencies else: return tas_out, sst_out, hice_out, sflx_out, sflx_f_out, nt1, nt
46.994434
538
0.557521
[ "MIT" ]
AleksiNummelin/coupled_channel
coupled_channel/cutils.py
25,330
Python
import cv2 import os import numpy as np import faceReacognition as fr test_img = cv2.imread('b.jpg') faces_detected,gray_img = fr.faceDetection(test_img) print("faces_detected ",faces_detected) for (x,y,w,h) in faces_detected: cv2.rectangle(test_img,(x,y),(x+w, y+h),(0,0,255),thickness=1) resized_img = cv2.resize(test_img,(1000,700)) cv2.imshow('faces',resized_img) cv2.waitKey(0) cv2.destroyAllWindows
22.944444
66
0.755448
[ "MIT" ]
BathiyaSeneviratne/OpenFace
tester.py
413
Python
""" Subdivide Cells ~~~~~~~~~~~~~~~ Increase the number of triangles in a single, connected triangular mesh. The :func:`pyvista.PolyDataFilters.subdivide` filter utilitizes three different subdivision algorithms to subdivide a mesh's cells: `butterfly`, `loop`, or `linear`. """ from pyvista import examples import pyvista as pv ############################################################################### # First, let's load a **triangulated** mesh to subdivide. We can use the # :func:`pyvista.DataSetFilters.triangulate` filter to ensure the mesh we are # using is purely triangles. mesh = examples.download_bunny_coarse().triangulate() cpos = [(-0.02788175062966399, 0.19293295656233056, 0.4334449972621349), (-0.053260899930287015, 0.08881197167521734, -9.016948161029588e-05), (-0.10170607813337212, 0.9686438023715356, -0.22668272496584665)] ############################################################################### # Now, lets do a few subdivisions with the mesh and compare the results. # Below is a helper function to make a comparison plot of thee different # subdivisions. def plot_subdivisions(mesh, a, b): display_args = dict(show_edges=True, color=True) p = pv.Plotter(shape=(3,3)) for i in range(3): p.subplot(i,0) p.add_mesh(mesh, **display_args) p.add_text("Original Mesh") def row_plot(row, subfilter): subs = [a, b] for i in range(2): p.subplot(row, i+1) p.add_mesh(mesh.subdivide(subs[i], subfilter=subfilter), **display_args) p.add_text(f"{subfilter} subdivision of {subs[i]}") row_plot(0, "linear") row_plot(1, "butterfly") row_plot(2, "loop") p.link_views() p.view_isometric() return p ############################################################################### # Run the subdivisions for 1 and 3 levels. plotter = plot_subdivisions(mesh, 1, 3) plotter.camera_position = cpos plotter.show()
33.741379
84
0.611139
[ "MIT" ]
Boorhin/pyvista
examples/01-filter/subdivide.py
1,957
Python
import argparse import boto3 import json from uuid import uuid4 import os S3_BUCKET = os.environ["S3_BUCKET"] S3_BUCKET_KEY_ID = os.environ["S3_BUCKET_KEY_ID"] S3_BUCKET_KEY = os.environ["S3_BUCKET_KEY"] AZ_PROCESSED_FILE = "/mnt/aws-things-azure-processed.json" if __name__ == '__main__': client = boto3.client( 'iot', region_name=os.environ["AWS_REGION"], aws_access_key_id=os.environ["AWS_KEY_ID"], aws_secret_access_key=os.environ["AWS_KEY"] ) with open (AZ_PROCESSED_FILE) as file: jsonJobDoc = json.load(file) for thing in jsonJobDoc['things']: print (thing['thingName']) print (thing['thingArn']) print (thing['azure']['iotconnstr']) response = client.create_job( jobId='upgrade-'+thing['thingName'] + "-" + str(uuid4()), targets=[ thing['thingArn'], ], document="{ \"operation\": \"upgradetoAzure\", \"fileBucket\": \""+S3_BUCKET+"\", \"ACCESS_KEY\": \""+S3_BUCKET_KEY_ID+ "\",\"SECRET_KEY\": \""+S3_BUCKET_KEY+ "\", \"AZURE_CONNECTION_STRING\": \""+thing['azure']['iotconnstr'] + "\" }", jobExecutionsRolloutConfig={ 'maximumPerMinute': 5, 'exponentialRate': { 'baseRatePerMinute': 5, 'incrementFactor': 1.1, 'rateIncreaseCriteria': { 'numberOfNotifiedThings': 1 } } }, abortConfig={ 'criteriaList': [ { 'failureType': 'FAILED', 'action': 'CANCEL', 'thresholdPercentage': 100, 'minNumberOfExecutedThings': 1 }, ] } )
33.945455
247
0.508838
[ "MIT" ]
drcrook1/AWS_IOT_MIGRATION_TOOL
STREAM_2/createawsupgradejob.py
1,867
Python
#!/usr/bin/env python # -*- coding: utf-8 -*- """ @package EFIT2D_Classes Support Library: efit2d-pyopencl Manuscript Title: Optimized OpenCL implementation of the Elastodynamic Finite Integration Technique for viscoelastic media Authors: M Molero, U Iturraran-Viveros, S Aparicio, M.G. Hernández Program title: EFIT2D-PyOpenCL Journal reference: Comput. Phys. Commun. Programming language: Python. External routines: numpy, scipy, matplotlib, glumpy, pyopencl Computer: computers having GPU or Multicore CPU with OpenCL drivers. All classes here defined are used to define: - The scenario, - Material objects, - Input sources, - Inspection setup, - Simulation parameters """ import numpy as np from math import sin, cos, sqrt, pi, exp import random import time from scipy import signal from scipy.fftpack import fftshift from skimage.transform import rotate try: from Image import Image except: from PIL import Image from matplotlib import cm import matplotlib.pyplot as plt def imresize(arr, size, **kwargs): from PIL import Image size_list = [int(arr.shape[0] * size), int(arr.shape[1] * size)] return np.array(Image.fromarray(arr).resize(size_list)) def imrotate(arr, angle, **kwargs): return rotate(arr, angle=angle) def RaisedCosinePulse(t, Freq, Amplitude): """ Raised-Cosine Pulse @param t time vector @param Freq Frequency in Hz @param Amplitude Real Value of Amplitude @return Output signal vector @retval P vector of length equals to the time vector t """ N = np.size(t,0) P = np.zeros((N,),dtype=np.float32) for m in range(0,N): if t[m] <= 2.0/Freq: P[m] = Amplitude *(1-cos(pi*Freq*t[m]))*cos(2*pi*Freq*t[m]) return P def ricker(t,ts,fsavg): """ Ricker Pulse @param t time vector @param ts temporal delay @param fsavg pulse width parameter @return Output signal vector """ a = fsavg*pi*(t-ts) a2 = a*a return ((1.0-2.0*a2)*np.exp(-a2)) ## class NewImage: """ Class NewImage: Definition of the Main Geometric Scenario. """ def __init__(self, Width=40, Height=40,Pixel_mm=10,label=0,SPML=False): """ Constructor of the Class NewImage @param Width Width of the Scenario @param Height Height of the Scenario @param Pixel_mm Ratio Pixel per mm @param label Label @param SPML Flag used to indicate the boundary conditions """ ## Width of the Scenario self.Width = Width ## Height of the Scenario self.Height = Height ## Ratio Pixel per mm self.Pixel_mm = Pixel_mm ## Label self.Label = label ## Flag used to indicate the boundary conditions self.SPML = SPML ## Dimension 1 of the Scenario Matrix self.M = int(self.Height * self.Pixel_mm) ## Dimension 2 od the Scenario Matrix self.N = int(self.Width * self.Pixel_mm) ## Scenarion Matrix (MxN) self.I = np.ones((self.M,self.N),dtype=np.uint8)*label self.Itemp = 0 ## Size of the Boundary Layer self.Tap = 0 ## Configure if boundary layers will be treated as absorbing layers or air layers. # # False: Absorbing layers # # True : Air boundaries self.AirBoundary = False def createLayer(self, centerW, centerH, Width, Height, label, Theta=0): """ Create a Layer @param centerW center in width-axis of the Layer @param centerH center in height-axis of the Layer @param Width Width of the Layer @param Height Height of the Layer @param label Label of the layer @param Theta Rotation Angle """ a = int(Height*self.Pixel_mm/2.0) b = int(Width*self.Pixel_mm/2.0) for x in range(-a,a): for y in range(-b,b): tempX = round (x + centerH*self.Pixel_mm) tempY = round (y + centerW*self.Pixel_mm) self.I[tempX,tempY] = label if Theta != 0: self.I = imrotate(self.I,Theta,interp='nearest') def createABS(self,Tap): """ Create the boundary layers depending on the boundary conditions required @param Tap Layer Size """ self.Tap = Tap self.SPML = True self.AirBoundary = False self.M, self.N = np.shape(self.I) TP = round(Tap* self.Pixel_mm ) M_pml = int( self.M + 2*TP ) N_pml = int( self.N + 2*TP ) self.Itemp = 255.0*np.ones((M_pml,N_pml),dtype=np.uint8) self.Itemp[TP : M_pml-TP, TP : N_pml-TP] = np.copy(self.I) class Material: """ Class Material: Definition of a material @param name Material Name @param rho Density (kg/m3) @param c11 C11 (Pa) @param c12 C12 (Pa) @param c22 C22 (Pa) @param c44 C44 (Pa) @param eta_v Bulk Viscosity Constant (Pa s) @param eta_s Shear Viscosity Constant (Pa s) @param label Material Label """ def __init__(self, name="Water",rho=1000,c11=2.19e9,c12=0.0,c22=0.0,c44=0.0,eta_v=0, eta_s=0,label=0): """ Constructor of the Material object """ ## Material Name self.name = name ##Density (kg/m3) self.rho = rho ## C11 (Pa) self.c11 = c11 ## C12 (Pa) self.c12 = c12 ## C22 (Pa) self.c22 = c22 ## C44 (Pa) self.c44 = c44 ## Longitudinal Velocity (m/s) self.VL = sqrt( c11/rho ) ## Shear Velocity (m/s) self.VT = sqrt( c44/rho ) ## Bulk Viscosity Constant (Pa s) self.eta_v = eta_v ## Shear Viscosity Constant (Pa s) self.eta_s = eta_s ## Material Label self.Label = label def __str__(self): return "Material:" def __repr__(self): return "Material:" class Source: """ Class Source: Define the Inspection Type @param TypeLaunch Type of Inspection: Transmission or PulseEcho """ def __init__(self,TypeLaunch = 'Transmission'): ## Type of Inspection: Transmission or PulseEcho self.TypeLaunch = TypeLaunch ## Define the location of the transducers in function of the type of the Inspection self.Theta = 0 if self.TypeLaunch == 'PulseEcho': self.pulseEcho() elif self.TypeLaunch == 'Transmission': self.transmission() def __str__(self): return "Source: " def __repr__(self): return "Source: " def pulseEcho(self): """ Define Theta for PulseEcho Inspection. PulseEcho Inspection uses the same transducer acting as emitter and as receiver """ self.Theta = [270*pi/180, 270*pi/180] def transmission(self): """ Define Theta for Transmission Inspection. Transmision uses two transducers, one used as emitter and another as receiver """ self.Theta = [270*pi/180, 90*pi/180] class Transducer: """ Class Transducer: Definition of the Transducer Object @param Size Transducer Size @param Offset Offset position of the Transducer. By default is set to zero @param BorderOffset Border offset position of the Transducer. By default is set to zero @param Location Location is set to zero that indicates Up location @param name Transducer Name """ def __init__(self, Size = 10, Offset=0, BorderOffset=0, Location=0, name = 'emisor'): """ Constructor of the Class Transducer """ # Location = 0 => Top ## Transducer Size self.Size = Size ## Offset position of the Transducer. By default is set to zero # # This offset is measured taking into account the center of the Scenario in the width-axis # # Positive Values indicate offsets toward the right # # Negative values indicate offsets toward the left self.Offset = Offset ## Border offset position of the Transducer. By default is set to zero # # This border offset takes into account the center od the Scenario in the width axis # but this offset is measured in direction of the height-axis # # Only Positive values must be defined. self.BorderOffset = BorderOffset ##Size of the trasnducer in Pixels self.SizePixel = 0 ## Location-> 0: Top. This version only works when the location=0 self.Location = Location ## Name of the transducer self.name = name def __str__(self): return "Transducer: " def __repr__(self): return "Transducer: " #################################################################################### class Signal: """ Class Signal: Signal Definition (Source Input for the Simulation) @param Amplitude Signal Amplitude @param Frequency Frequency Amplitude @param Name Name of the Signal: RaisedCosinePulse or RickerPulse @param ts Time Delay: used only for RickerPulse """ def __init__(self, Amplitude=1, Frequency=1e6, name ="RaisedCosinePulse", ts=1): ## Signal Amplitude self.Amplitude = Amplitude ## Frequency Amplitude self.Frequency = Frequency ## Name of the Signal: RaisedCosinePulse or RickerPulse self.name = name ## Time Delay: used only for RickerPulse if ts == 1: self.ts = 3.0/Frequency; def __str__(self): return "Signal: " def __repr__(self): return "Signal: " def generate(self,t): """ Generate the signal waveform @param t vector time @return signal vector with the same length as the vector time """ if self.name == "RaisedCosinePulse": return RaisedCosinePulse(t, self.Frequency, self.Amplitude) elif self.name == "RickerPulse": return ricker(t, self.ts, self.Frequency) def saveSignal(self,t): """ Save the signal waveform into the object @param t vector time """ self.time_signal = self.generate(t) ###################################### class Inspection: """ Class Inspection: used for the configuration of the inspections to be emulated """ def __init__(self): """ Constructor of the Class Inspection """ ## Position of the Transducer (Angle) self.Theta = 0 ## Vector x-axis Position of the Transducer self.XL = 0 ## Vector y-axis Position of the Transducer self.YL = 0 ## self.IR = 0 def __str__(self): return "Inspection: " def __repr__(self): return "Inspection: " def setTransmisor(self, source, transducer, x2, y2, X0, Y0): self.Theta = source.Theta Ntheta = np.size(self.Theta,0) NXL = int(2*transducer.SizePixel) xL = np.zeros((NXL,),dtype=np.float32) yL = np.zeros((NXL,),dtype=np.float32) for m in range(0,Ntheta): if np.abs(np.cos(self.Theta[m])) < 1e-5: yL = np.linspace(y2[m]-transducer.SizePixel,y2[m]+transducer.SizePixel,num=NXL, endpoint=True) xL[:] = x2[m]*np.ones((NXL,),dtype=np.float32) elif np.abs(np.cos(self.Theta[m])) == 1: xL[:] = np.linspace(x2[m]-transducer.SizePixel, x2[m]+transducer.SizePixel,num=NXL, endpoint=True) yL[:] = y2[m] - ( (x2[m]-X0 )/( y2[m]-Y0 ) )*( xL[:]-x2[m] ) else: xL[:] = np.linspace(x2[m]-(transducer.SizePixel*np.abs(np.cos(self.Theta[m]))),x2[m]+(transducer.SizePixel*np.abs(np.cos(self.Theta[m]))), num=NXL, endpoint=True ) yL[:] = y2[m] - ( (x2[m]-X0 )/( y2[m]-Y0 ) )*( xL[:]-x2[m] ) if m==0: self.XL = np.zeros((np.size(xL,0),Ntheta),dtype=np.float32) self.YL = np.zeros((np.size(xL,0),Ntheta),dtype=np.float32) self.XL[:,m] = (np.around(xL[:])) self.YL[:,m] = (np.around(yL[:])) def addOffset(self, image, transducer, NRI): """ Handle Offset """ NXL = np.size(self.XL,0) Ntheta = np.size(self.Theta,0) M_pml, N_pml = np.shape(image.Itemp) self.YL += (np.around(transducer.Offset * image.Pixel_mm * NRI / float(N_pml))) self.IR = np.zeros((Ntheta,Ntheta),dtype=np.float32) B = list(range(0,Ntheta)) self.IR[:,0] = np.int32(B[:]) for i in range(1,Ntheta): B = np.roll(B,-1) self.IR[:,i] = np.int32(B) def addBorderOffset(self, image, transducer, MRI): """ Handle Border Offset """ M_pml, N_pml = np.shape(image.Itemp) ratio = float(MRI) / float(M_pml) self.XL[:,0] += (np.around(transducer.BorderOffset * image.Pixel_mm * ratio) ) self.XL[:,1] -= (np.around(transducer.BorderOffset * image.Pixel_mm * ratio) ) def flip(self): self.XL = np.fliplr(self.XL) def SetReception(self,T): ReceptorX = (self.XL) ReceptorY = (self.YL) M,N = np.shape(ReceptorX) temp = np.zeros((M,N-1),dtype=np.float32) for mm in range(0,M): for ir in range(0,N-1): temp[mm,ir] = T[ int(ReceptorX[ mm,int(self.IR[0,ir+1]) ] ) , int(ReceptorY[ mm,int(self.IR[0,ir+1]) ]) ] if self.Field: return temp.transpose() else: return np.mean(temp,0) def SetReceptionVector(self, T, x, y): M = np.size(x) temp = np.zeros((M,),dtype=np.float32) for mm in range(0,M): temp[mm] = T[(int(x[mm])),(int(y[mm]))] return temp class SimulationModel: """ Class Simulation: setup the parameters for the numerical simulation Usage: - First Define an Instance of the SimulationModel Object - Execute the method class: jobParameters using as input the materials list - Execute the method class: createNumerical Model using as input the scenario - Execute the method class: initReceivers to initialize the receivers - Execute the mtehod class: save signal using as input the attribute simModel.t - Save the Device into the simModel.Device attribute @param TimeScale Scale Time Factor @param MaxFreq Maximum Frequency @param PointCycle Points per Cycle @param SimTime Time Simuation @param SpatialScale Spatial Scale: 1 -> meters, 1e-3 -> millimeters """ def __init__(self,TimeScale=1, MaxFreq=2e6, PointCycle=10, SimTime=50e6, SpatialScale=1e-3): ## Scale Time Factor self.TimeScale = TimeScale ## Maximum Frequency self.MaxFreq = MaxFreq # MHz ## Points per Cycle self.PointCycle = PointCycle ## Time Simuation self.SimTime = SimTime # microseconds ## Spatial Scale: 1 -> meters, 1e-3 -> millimeters self.SpatialScale = SpatialScale ## Spatial Discretization self.dx = 0 ## Temporal Discretization self.dt = 0 self.Rgrid = 0 self.TapG = 0 self.t = 0 self.Ntiempo = 0 self.MRI,self.NRI = (0,0) self.receiver_signals = 0 self.Device = 'CPU' self.XL = 0 self.YL = 0 def __str__(self): return "Simulation Model: " def __repr__(self): return "Simulation Model: " def jobParameters(self,materiales): """ Define Main Simulation Parameters @parm materiales Materials List """ indVL = [mat.VL for mat in materiales if mat.VL > 400] indVT = [mat.VT for mat in materiales if mat.VT > 400] VL = np.array(indVL) VT = np.array(indVT) V = np.hstack( (VL, VT) ) self.dx = np.float32( np.min([V]) / (self.PointCycle*self.MaxFreq) ) self.dt = self.TimeScale * np.float32( 0.7071 * self.dx / ( np.max([V]) ) ) self.Ntiempo = int(round(self.SimTime/self.dt)) self.t = self.dt*np.arange(0,self.Ntiempo) def createNumericalModel(self, image): """ Create the Numerical Model @param image The Scenario Object """ #Spatial Scale Mp = np.shape(image.Itemp)[0]*self.SpatialScale/image.Pixel_mm/self.dx self.Rgrid = Mp/np.shape(image.Itemp)[0] self.TapG = np.around(image.Tap * self.Rgrid * image.Pixel_mm) self.Im = imresize(image.Itemp, self.Rgrid, interp='nearest') self.MRI,self.NRI = np.shape(self.Im) print("dt: " + str(self.dt) + " dx: " + str(self.dx) + " Grid: " + str(self.MRI) + " x " + str(self.NRI)) def initReceivers(self): """ Initialize the receivers """ self.receiver_signals = 0 def setDevice(self,Device): """ Set the Computation Device @param Device Device to be used Define the device used to compute the simulations: - "CPU" : uses the global memory in th CPU - "GPU_Global" : uses the global memory in the GPU - "GPU_Local" : uses the local memory in the GPU """ if Device == 0: self.Device = 'CPU' elif Device ==1: self.Device = 'GPU_Global' elif Device ==2: self.Device = 'GPU_Local'
22.671388
167
0.642197
[ "MIT" ]
guillaumedavidphd/efit2d-pyopencl
EFIT2D_Classes.py
16,007
Python
import csv import enum class Usability(enum.Enum): UNKNOWN = 0 USER = 1 BOT = 2 BOTH = 4 class MethodInfo: def __init__(self, name, usability, errors): self.name = name self.errors = errors try: self.usability = { 'unknown': Usability.UNKNOWN, 'user': Usability.USER, 'bot': Usability.BOT, 'both': Usability.BOTH, }[usability.lower()] except KeyError: raise ValueError('Usability must be either user, bot, both or ' 'unknown, not {}'.format(usability)) from None def parse_methods(csv_file, errors_dict): """ Parses the input CSV file with columns (method, usability, errors) and yields `MethodInfo` instances as a result. """ with csv_file.open(newline='') as f: f = csv.reader(f) next(f, None) # header for line, (method, usability, errors) in enumerate(f, start=2): try: errors = [errors_dict[x] for x in errors.split()] except KeyError: raise ValueError('Method {} references unknown errors {}' .format(method, errors)) from None yield MethodInfo(method, usability, errors)
29.818182
75
0.548018
[ "MIT" ]
Thorbijoern/Telethon
telethon_generator/parsers/methods.py
1,312
Python
from math import pi import pandas as pd from bokeh.plotting import figure, output_file, show from bokeh.sampledata.stocks import MSFT df = pd.DataFrame(MSFT)[:50] df["date"] = pd.to_datetime(df["date"]) inc = df.close > df.open dec = df.open > df.close w = 12*60*60*1000 # half day in ms TOOLS = "pan,wheel_zoom,box_zoom,reset,save" p = figure(x_axis_type="datetime", tools=TOOLS, plot_width=1000, title = "MSFT Candlestick") p.xaxis.major_label_orientation = pi/4 p.grid.grid_line_alpha=0.3 p.segment(df.date, df.high, df.date, df.low, color="black") p.vbar(df.date[inc], w, df.open[inc], df.close[inc], fill_color="#D5E1DD", line_color="black") p.vbar(df.date[dec], w, df.open[dec], df.close[dec], fill_color="#F2583E", line_color="black") output_file("candlestick.html", title="candlestick.py example") show(p) # open a browser
30.035714
94
0.72176
[ "BSD-3-Clause" ]
AdityaJ7/bokeh
examples/plotting/file/candlestick.py
841
Python
from collections import namedtuple import json import os import unittest import context import ansi import comment class TestComment(unittest.TestCase): def setUp(self): self.maxDiff = None comments_path = os.path.abspath( os.path.join( os.path.dirname(__file__), 'comments.json' ) ) with open(comments_path) as f: self.comments_data = json.load(f) file_contents_path = os.path.abspath( os.path.join( os.path.dirname(__file__), 'file_contents.txt' ) ) with open(file_contents_path) as f: text = f.read() self.file_contents = text.split('\n') def test_create_comment_no_context(self): filename = 'file2' data = self.comments_data[filename][0] c = comment.Comment(data, filename) self.assertEqual('4', c.id) self.assertEqual('3', c.patch_set) self.assertEqual(None, c.parent) self.assertEqual('Name1', c.author) self.assertEqual('A file comment', c.message) self.assertEqual('2021-04-24', c.date) self.assertEqual(filename, c.file) self.assertEqual('', c.context[0]) self.assertEqual('', c.context[1]) self.assertEqual('', c.context[2]) def test_create_comment_line(self): filename = 'file1' data = self.comments_data[filename][2] c = comment.Comment(data, filename, self.file_contents) self.assertEqual('', c.context[0]) self.assertEqual('Some more content.', c.context[1]) self.assertEqual('', c.context[2]) def test_create_comment_range_one_line(self): filename = 'file2' data = self.comments_data[filename][1] c = comment.Comment(data, filename, self.file_contents) self.assertEqual('File ', c.context[0]) self.assertEqual('starts', c.context[1]) self.assertEqual(' here.', c.context[2]) def test_create_comment_range_four_lines(self): filename = 'file1' data = self.comments_data[filename][0] c = comment.Comment(data, filename, self.file_contents) self.assertEqual('File ', c.context[0]) self.assertEqual('starts here.\nSome content.\nSome more content.\nThis', c.context[1]) self.assertEqual(' is the end.', c.context[2]) def test_str(self): filename = 'file1' data = self.comments_data[filename][0] c = comment.Comment(data, filename, self.file_contents) actual = str(c) expected = ' '.join([ 'Name1', ansi.format('Can you update this, Name2?', [ansi.GREEN, ansi.ITALIC]) ]) self.assertEqual(expected, actual) if __name__ == '__main__': unittest.main(verbosity=2)
33.732558
95
0.590141
[ "MIT" ]
slarwise/gercli
tests/test_comment.py
2,901
Python
"""Classes for more complex applications that have tabbed or paged navigation.""" from collections import OrderedDict from copy import deepcopy import dash_bootstrap_components as dbc import dash_core_components as dcc import dash_html_components as html from implements import implements from .utils_app import AppBase, AppInterface TODO_CLIENT_CALLBACK = ''' TODO: Create clientside callbacks dynamically to update the title on navigation See: http://dash.plotly.com/external-resources ```py app.clientside_callback( """ function(tab_value) { if (tab_value === 'tab-1') { document.title = 'Tab 1' } else if (tab_value === 'tab-2') { document.title = 'Tab 2' } } """, Output('blank-output', 'children'), [Input('tabs-example', 'value')] ) ``` ''' # TODO: Try to see if I can resolve the interface differences or if I need make a subclass interface # @implements(AppInterface) # noqa: H601 class AppWithNavigation(AppBase): """Base class for building Dash Application with tabs or URL routing.""" app = None """Main Dash application to pass to all child tabs.""" nav_lookup = None """OrderedDict based on the list of tuples from `self.define_nav_elements()`.""" nav_layouts = None """Dictionary with nav_names as keys and corresponding layout as value.""" def define_nav_elements(self): """Return list of initialized pages or tabs accordingly. Should return, list: each item is an initialized app (ex `[AppBase(self.app)]` in the order each tab is rendered Raises: NotImplementedError: Child class must implement this method """ raise NotImplementedError('define_nav_elements must be implemented by child class') # pragma: no cover def create(self, **kwargs): """Create each navigation componet, storing the layout. Then parent class to create application. Args: kwargs: keyword arguments passed to `self.create` """ # Initialize the lookup for each tab then configure each tab self.nav_lookup = OrderedDict([(tab.name, tab) for tab in self.define_nav_elements()]) self.nav_layouts = {} for nav_name, nav in self.nav_lookup.items(): nav.create(assign_layout=False) self.nav_layouts[nav_name] = nav.return_layout() # Store validation_layout that is later used for callback verification in base class self.validation_layout = [*map(deepcopy, self.nav_layouts.values())] # Initialize parent application that handles navigation super().create(**kwargs) def initialization(self) -> None: """Initialize ids with `self.register_uniq_ids([...])` and other one-time actions.""" super().initialization() self.register_uniq_ids(self.app_ids) def create_elements(self) -> None: """Override method as not needed at navigation-level.""" ... # pragma: no cover def create_callbacks(self) -> None: """Override method as not needed at navigation-level.""" ... # pragma: no cover @implements(AppInterface) # noqa: H601 class StaticTab(AppBase): """Simple App without charts or callbacks.""" basic_style = { 'marginLeft': 'auto', 'marginRight': 'auto', 'maxWidth': '1000px', 'paddingTop': '10px', } def initialization(self) -> None: """Initialize ids with `self.register_uniq_ids([...])` and other one-time actions.""" super().initialization() self.register_uniq_ids(['N/A']) def create_elements(self) -> None: """Initialize the charts, tables, and other Dash elements..""" ... def create_callbacks(self) -> None: """Register callbacks necessary for this tab.""" ... class AppWithTabs(AppWithNavigation): """Base class for building Dash Application with tabs.""" # App ids id_tabs_content = 'tabs-wrapper' id_tabs_select = 'tabs-content' app_ids = [id_tabs_content, id_tabs_select] """List of all ids for the top-level tab view. Will be mapped to `self._il` for globally unique ids.""" def return_layout(self) -> dict: """Return Dash application layout. Returns: dict: Dash HTML object """ tabs = [dcc.Tab(label=name, value=name) for name, tab in self.nav_lookup.items()] return html.Div( children=[ dcc.Tabs( id=self._il[self.id_tabs_select], value=list(self.nav_lookup.keys())[0], children=tabs, ), html.Div(id=self._il[self.id_tabs_content]), ], ) def create_callbacks(self) -> None: """Register the navigation callback.""" outputs = [(self.id_tabs_content, 'children')] inputs = [(self.id_tabs_select, 'value')] @self.callback(outputs, inputs, []) def render_tab(tab_name): return [self.nav_layouts[tab_name]] # > PLANNED: Make the tabs and chart compact as well when the compact argument is set to True class FullScreenAppWithTabs(AppWithTabs): # noqa: H601 """Base class for building Dash Application with tabs that uses the full window.""" tabs_location = 'left' """Tab orientation setting. One of `(left, top, bottom, right)`.""" tabs_margin = '10%' """Adjust this setting based on the width or height of the tabs to prevent the content from overlapping the tabs.""" tabs_compact = False """Boolean setting to toggle between a padded tab layout if False and a minimal compact version if True.""" def verify_app_initialization(self): """Check that the app was properly initialized. Raises: RuntimeError: if child class has not called `self.register_uniq_ids` """ super().verify_app_initialization() allowed_locations = ('left', 'top', 'bottom', 'right') if self.tabs_location not in allowed_locations: # pragma: no cover raise RuntimeError(f'`self.tabs_location = {self.tabs_location}` is not in {allowed_locations}') def return_layout(self) -> dict: """Return Dash application layout. Returns: dict: Dash HTML object """ return html.Div( children=[ self.tab_menu(), html.Div( style={f'margin-{self.tabs_location}': self.tabs_margin}, children=[html.Div(id=self._il[self.id_tabs_content])], ), ], ) def generate_tab_kwargs(self): """Create the tab keyword arguments. Intended to be modified through inheritance. Returns: tuple: keyword arguments and styling for the dcc.Tab elements - tab_kwargs: with at minimum keys `(style, selected_style)` for dcc.Tab - tabs_kwargs: to be passed to dcc.Tabs - tabs_style: style for the dcc.Tabs HTML element """ # Unselected tab style if self.tabs_compact: tab_style = {'padding': '2px 4px 2px 4px'} tabs_padding = '6px 0 0 2px' else: tab_style = {'padding': '10px 20px 10px 20px'} tabs_padding = '15px 0 0 5px' # Extend tab style for selected case selected_style = deepcopy(tab_style) opposite_lookup = {'top': 'bottom', 'bottom': 'top', 'left': 'right', 'right': 'left'} tabs_style = { # noqa: ECE001 'backgroundColor': '#F9F9F9', 'padding': tabs_padding, 'position': 'fixed', 'zIndex': '999', f'border{opposite_lookup[self.tabs_location].title()}': '1px solid #d6d6d6', self.tabs_location: '0', } if self.tabs_location in ['left', 'right']: # Configure for vertical case selected_style['border-left'] = '3px solid #119DFF' tabs_kwargs = { 'vertical': True, 'style': {'width': '100%'}, 'parent_style': {'width': '100%'}, } tabs_style['top'] = '0' tabs_style['bottom'] = '0' tabs_style['width'] = 'auto' else: # Configure for horizontal case selected_style['border-top'] = '3px solid #119DFF' tabs_kwargs = {} tabs_style['height'] = 'auto' tabs_style['right'] = '0' tabs_style['left'] = '0' tab_kwargs = {'style': tab_style, 'selected_style': selected_style} return (tab_kwargs, tabs_kwargs, tabs_style) def tab_menu(self): """Return the HTML elements for the tab menu. Returns: dict: Dash HTML object """ tab_kwargs, tabs_kwargs, tabs_style = self.generate_tab_kwargs() tabs = [dcc.Tab(label=name, value=name, **tab_kwargs) for name, tab in self.nav_lookup.items()] return html.Div( children=[ dcc.Tabs( id=self._il[self.id_tabs_select], value=list(self.nav_lookup.keys())[0], children=tabs, **tabs_kwargs, ), ], style=tabs_style, ) class AppMultiPage(AppWithNavigation): # noqa: H601 """Base class for building Dash Application with multiple pages.""" navbar_links = None """Base class must create list of tuples `[('Link Name', '/link'), ]` to use default `self.nav_bar()`.""" dropdown_links = None """Base class must create list of tuples `[('Link Name', '/link'), ]` to use default `self.nav_bar()`.""" logo = None """Optional path to logo. If None, no logo will be shown in navbar.""" # App ids id_url = 'pages-url' id_pages_content = 'pages-wrapper' id_toggler = 'nav-toggle' id_collapse = 'nav-collapse' app_ids = [id_url, id_pages_content, id_toggler, id_collapse] """List of all ids for the top-level pages view. Will be mapped to `self._il` for globally unique ids.""" def return_layout(self) -> dict: """Return Dash application layout. Returns: dict: Dash HTML object """ return html.Div( children=[ dcc.Location(id=self._il[self.id_url], refresh=False), self.nav_bar(), html.Div(id=self._il[self.id_pages_content]), ], ) def nav_bar(self): """Return the HTML elements for the navigation menu. Returns: dict: Dash HTML object """ # Create brand icon and name where icon in optional brand = [] if self.logo: brand.append(dbc.Col(html.Img(src=self.logo, height='25px'))) brand.append(dbc.Col(dbc.NavbarBrand(self.name, className='ml-2'))) # Create links in navbar and dropdown. Both are optional links = [] if self.navbar_links: links.append( dbc.Nav( children=[dbc.NavItem(dbc.NavLink(name, href=link)) for name, link in self.navbar_links], fill=True, navbar=True, ), ) if self.dropdown_links: links.append( dbc.Nav( dbc.DropdownMenu( children=[dbc.DropdownMenuItem(name, href=link) for name, link in self.dropdown_links], in_navbar=True, label='Links', nav=True, ), navbar=True, ), ) # Layout default navbar return dbc.Navbar( children=[ dbc.NavLink( [ dbc.Row( children=brand, align='center', no_gutters=True, ), ], href='/', ), dbc.NavbarToggler(id=self._il[self.id_toggler]), dbc.Collapse( dbc.Row( children=links, no_gutters=True, className='flex-nowrap mt-3 mt-md-0', align='center', ), id=self._il[self.id_collapse], navbar=True, ), ], sticky='top', color='dark', dark=True, ) def create_callbacks(self) -> None: """Register the navigation callback.""" outputs = [(self.id_pages_content, 'children')] inputs = [(self.id_url, 'pathname')] @self.callback(outputs, inputs, []) def render_page(pathname): try: # TODO: Demo how pages could use parameters from pathname return [self.nav_layouts[self.select_page_name(pathname)]] except Exception as err: return [html.Div(children=[f'Error rendering "{pathname}":\n{err}'])] @self.callback( [(self.id_collapse, 'is_open')], [(self.id_toggler, 'n_clicks')], [(self.id_collapse, 'is_open')], ) def toggle_navbar_collapse(n_clicks, is_open): return [not is_open if n_clicks else is_open] def select_page_name(self, pathname): """Return the page name determined based on the pathname. Should return str: page name Args: pathname: relative pathname from URL Raises: NotImplementedError: Child class must implement this method """ raise NotImplementedError('nav_bar must be implemented by child class') # pragma: no cover
34.571072
120
0.572098
[ "Unlicense" ]
KyleKing/dash_charts
dash_charts/utils_app_with_navigation.py
13,863
Python
from test.test_json import PyTest, CTest # 2007-10-05 JSONDOCS = [ # http://json.org/JSON_checker/test/fail1.json '"A JSON payload should be an object or array, not a string."', # http://json.org/JSON_checker/test/fail2.json '["Unclosed array"', # http://json.org/JSON_checker/test/fail3.json '{unquoted_key: "keys must be quoted"}', # http://json.org/JSON_checker/test/fail4.json '["extra comma",]', # http://json.org/JSON_checker/test/fail5.json '["double extra comma",,]', # http://json.org/JSON_checker/test/fail6.json '[ , "<-- missing value"]', # http://json.org/JSON_checker/test/fail7.json '["Comma after the close"],', # http://json.org/JSON_checker/test/fail8.json '["Extra close"]]', # http://json.org/JSON_checker/test/fail9.json '{"Extra comma": true,}', # http://json.org/JSON_checker/test/fail10.json '{"Extra value after close": true} "misplaced quoted value"', # http://json.org/JSON_checker/test/fail11.json '{"Illegal expression": 1 + 2}', # http://json.org/JSON_checker/test/fail12.json '{"Illegal invocation": alert()}', # http://json.org/JSON_checker/test/fail13.json '{"Numbers cannot have leading zeroes": 013}', # http://json.org/JSON_checker/test/fail14.json '{"Numbers cannot be hex": 0x14}', # http://json.org/JSON_checker/test/fail15.json '["Illegal backslash escape: \\x15"]', # http://json.org/JSON_checker/test/fail16.json '[\\naked]', # http://json.org/JSON_checker/test/fail17.json '["Illegal backslash escape: \\017"]', # http://json.org/JSON_checker/test/fail18.json '[[[[[[[[[[[[[[[[[[[["Too deep"]]]]]]]]]]]]]]]]]]]]', # http://json.org/JSON_checker/test/fail19.json '{"Missing colon" null}', # http://json.org/JSON_checker/test/fail20.json '{"Double colon":: null}', # http://json.org/JSON_checker/test/fail21.json '{"Comma instead of colon", null}', # http://json.org/JSON_checker/test/fail22.json '["Colon instead of comma": false]', # http://json.org/JSON_checker/test/fail23.json '["Bad value", truth]', # http://json.org/JSON_checker/test/fail24.json "['single quote']", # http://json.org/JSON_checker/test/fail25.json '["\ttab\tcharacter\tin\tstring\t"]', # http://json.org/JSON_checker/test/fail26.json '["tab\\ character\\ in\\ string\\ "]', # http://json.org/JSON_checker/test/fail27.json '["line\nbreak"]', # http://json.org/JSON_checker/test/fail28.json '["line\\\nbreak"]', # http://json.org/JSON_checker/test/fail29.json '[0e]', # http://json.org/JSON_checker/test/fail30.json '[0e+]', # http://json.org/JSON_checker/test/fail31.json '[0e+-1]', # http://json.org/JSON_checker/test/fail32.json '{"Comma instead if closing brace": true,', # http://json.org/JSON_checker/test/fail33.json '["mismatch"}', # http://code.google.com/p/simplejson/issues/detail?id=3 '["A\u001FZ control characters in string"]', ] SKIPS = { 1: "why not have a string payload?", 18: "spec doesn't specify any nesting limitations", } class TestFail: def test_failures(self): for idx, doc in enumerate(JSONDOCS): idx = idx + 1 if idx in SKIPS: self.loads(doc) continue try: self.loads(doc) except self.JSONDecodeError: pass else: self.fail("Expected failure for fail{0}.json: {1!r}".format(idx, doc)) def test_non_string_keys_dict(self): data = {'a' : 1, (1, 2) : 2} #This is for c encoder self.assertRaises(TypeError, self.dumps, data) #This is for python encoder self.assertRaises(TypeError, self.dumps, data, indent=True) def test_truncated_input(self): test_cases = [ ('', 'Expecting value', 0), ('[', 'Expecting value', 1), ('[42', "Expecting ',' delimiter", 3), ('[42,', 'Expecting value', 4), ('["', 'Unterminated string starting at', 1), ('["spam', 'Unterminated string starting at', 1), ('["spam"', "Expecting ',' delimiter", 7), ('["spam",', 'Expecting value', 8), ('{', 'Expecting property name enclosed in double quotes', 1), ('{"', 'Unterminated string starting at', 1), ('{"spam', 'Unterminated string starting at', 1), ('{"spam"', "Expecting ':' delimiter", 7), ('{"spam":', 'Expecting value', 8), ('{"spam":42', "Expecting ',' delimiter", 10), ('{"spam":42,', 'Expecting property name enclosed in double quotes', 11), ] test_cases += [ ('"', 'Unterminated string starting at', 0), ('"spam', 'Unterminated string starting at', 0), ] for data, msg, idx in test_cases: with self.assertRaises(self.JSONDecodeError) as cm: self.loads(data) err = cm.exception self.assertEqual(err.msg, msg) self.assertEqual(err.pos, idx) self.assertEqual(err.lineno, 1) self.assertEqual(err.colno, idx + 1) self.assertEqual(str(err), '%s: line 1 column %d (char %d)' % (msg, idx + 1, idx)) def test_unexpected_data(self): test_cases = [ ('[,', 'Expecting value', 1), ('{"spam":[}', 'Expecting value', 9), ('[42:', "Expecting ',' delimiter", 3), ('[42 "spam"', "Expecting ',' delimiter", 4), ('[42,]', 'Expecting value', 4), ('{"spam":[42}', "Expecting ',' delimiter", 11), ('["]', 'Unterminated string starting at', 1), ('["spam":', "Expecting ',' delimiter", 7), ('["spam",]', 'Expecting value', 8), ('{:', 'Expecting property name enclosed in double quotes', 1), ('{,', 'Expecting property name enclosed in double quotes', 1), ('{42', 'Expecting property name enclosed in double quotes', 1), ('[{]', 'Expecting property name enclosed in double quotes', 2), ('{"spam",', "Expecting ':' delimiter", 7), ('{"spam"}', "Expecting ':' delimiter", 7), ('[{"spam"]', "Expecting ':' delimiter", 8), ('{"spam":}', 'Expecting value', 8), ('[{"spam":]', 'Expecting value', 9), ('{"spam":42 "ham"', "Expecting ',' delimiter", 11), ('[{"spam":42]', "Expecting ',' delimiter", 11), ('{"spam":42,}', 'Expecting property name enclosed in double quotes', 11), ] for data, msg, idx in test_cases: with self.assertRaises(self.JSONDecodeError) as cm: self.loads(data) err = cm.exception self.assertEqual(err.msg, msg) self.assertEqual(err.pos, idx) self.assertEqual(err.lineno, 1) self.assertEqual(err.colno, idx + 1) self.assertEqual(str(err), '%s: line 1 column %d (char %d)' % (msg, idx + 1, idx)) def test_extra_data(self): test_cases = [ ('[]]', 'Extra data', 2), ('{}}', 'Extra data', 2), ('[],[]', 'Extra data', 2), ('{},{}', 'Extra data', 2), ] test_cases += [ ('42,"spam"', 'Extra data', 2), ('"spam",42', 'Extra data', 6), ] for data, msg, idx in test_cases: with self.assertRaises(self.JSONDecodeError) as cm: self.loads(data) err = cm.exception self.assertEqual(err.msg, msg) self.assertEqual(err.pos, idx) self.assertEqual(err.lineno, 1) self.assertEqual(err.colno, idx + 1) self.assertEqual(str(err), '%s: line 1 column %d (char %d)' % (msg, idx + 1, idx)) def test_linecol(self): test_cases = [ ('!', 1, 1, 0), (' !', 1, 2, 1), ('\n!', 2, 1, 1), ('\n \n\n !', 4, 6, 10), ] for data, line, col, idx in test_cases: with self.assertRaises(self.JSONDecodeError) as cm: self.loads(data) err = cm.exception self.assertEqual(err.msg, 'Expecting value') self.assertEqual(err.pos, idx) self.assertEqual(err.lineno, line) self.assertEqual(err.colno, col) self.assertEqual(str(err), 'Expecting value: line %s column %d (char %d)' % (line, col, idx)) class TestPyFail(TestFail, PyTest): pass class TestCFail(TestFail, CTest): pass
40.940092
86
0.529941
[ "Apache-2.0" ]
4nkitd/pyAutomation
Mark_attandance_py_selenium/py/App/Python/Lib/test/test_json/test_fail.py
8,884
Python
import pytest from sanic import Sanic from sanic.response import json from sanic_jwt import Authentication, exceptions, Initialize class WrongAuthentication(Authentication): async def build_payload(self, user, *args, **kwargs): return {"not_user_id": 1} class AnotherWrongAuthentication(Authentication): async def build_payload(self, user, *args, **kwargs): return list(range(5)) class AuthenticationWithNoMethod(Authentication): authenticate = "foobar" class AuthenticationInClassBody(Authentication): async def authenticate(self, request, *args, **kwargs): return {"user_id": 1} async def authenticate(request, *args, **kwargs): return {"user_id": 1} def test_authentication_subclass_without_authenticate_parameter(): app = Sanic() with pytest.raises(exceptions.AuthenticateNotImplemented): Initialize(app, authentication_class=WrongAuthentication) def test_authentication_subclass_with_autenticate_not_as_method(): app = Sanic() with pytest.raises(exceptions.AuthenticateNotImplemented): Initialize(app, authentication_class=AuthenticationWithNoMethod) def test_authentication_subbclass_with_method_in_class(): app = Sanic() sanicjwt = Initialize(app, authentication_class=AuthenticationInClassBody) _, response = app.test_client.post( "/auth", json={"username": "user1", "password": "abcxyz"} ) assert response.status == 200 assert sanicjwt.config.access_token_name() in response.json def test_payload_without_correct_key(): app = Sanic() Initialize(app, authenticate=authenticate, authentication_class=WrongAuthentication) _, response = app.test_client.post( "/auth", json={"username": "user1", "password": "abcxyz"} ) assert response.status == 500 assert response.json.get("exception") == "InvalidPayload" def test_payload_not_a_dict(): app = Sanic() Initialize( app, authenticate=authenticate, authentication_class=AnotherWrongAuthentication ) _, response = app.test_client.post( "/auth", json={"username": "user1", "password": "abcxyz"} ) assert response.status == 500 assert response.json.get("exception") == "InvalidPayload" def test_wrong_header(app): sanic_app, sanic_jwt = app _, response = sanic_app.test_client.post( "/auth", json={"username": "user1", "password": "abcxyz"} ) access_token = response.json.get(sanic_jwt.config.access_token_name(), None) assert response.status == 200 assert access_token is not None _, response = sanic_app.test_client.get( "/protected", headers={"Authorization": "Foobar {}".format(access_token)} ) assert response.status == 401 assert response.json.get("exception") == "Unauthorized" assert "Authorization header is invalid." in response.json.get("reasons") # assert "Auth required." in response.json.get('reasons') def test_tricky_debug_option_true(app): sanic_app, sanic_jwt = app @sanic_app.route("/another_protected") @sanic_jwt.protected(debug=lambda: True) def another_protected(request): return json({"protected": True, "is_debug": request.app.auth.config.debug()}) # @sanic_app.exception(Exception) # def in_case_of_exception(request, exception): # exc_name = exception.args[0].__class__.__name__ # status_code = exception.args[0].status_code # return json({"exception": exc_name}, status=status_code) _, response = sanic_app.test_client.post( "/auth", json={"username": "user1", "password": "abcxyz"} ) access_token = response.json.get(sanic_jwt.config.access_token_name(), None) assert response.status == 200 assert access_token is not None _, response = sanic_app.test_client.get( "/protected", headers={"Authorization": "Bearer {}".format(access_token)} ) assert response.status == 200 _, response = sanic_app.test_client.get("/another_protected") assert response.json.get("exception") == "Unauthorized" assert response.status == 400 assert "Authorization header not present." in response.json.get("reasons") _, response = sanic_app.test_client.get( "/another_protected", headers={"Authorization": "Foobar {}".format(access_token)}, ) assert response.json.get("exception") == "Unauthorized" assert response.status == 400 assert "Authorization header is invalid." in response.json.get("reasons") def test_tricky_debug_option_false(app): sanic_app, sanic_jwt = app @sanic_app.route("/another_protected") @sanic_jwt.protected(debug=lambda: False) def another_protected(request): return json({"protected": True, "is_debug": request.app.auth.config.debug()}) # @sanic_app.exception(Exception) # def in_case_of_exception(request, exception): # exc_name = exception.args[0].__class__.__name__ # status_code = exception.args[0].status_code # return json({"exception": exc_name}, status=status_code) _, response = sanic_app.test_client.post( "/auth", json={"username": "user1", "password": "abcxyz"} ) access_token = response.json.get(sanic_jwt.config.access_token_name(), None) assert response.status == 200 assert access_token is not None _, response = sanic_app.test_client.get( "/protected", headers={"Authorization": "Bearer {}".format(access_token)} ) assert response.status == 200 _, response = sanic_app.test_client.get("/another_protected") assert response.json.get("exception") == "Unauthorized" assert response.status == 401 assert "Authorization header not present." in response.json.get("reasons") _, response = sanic_app.test_client.get( "/another_protected", headers={"Authorization": "Foobar {}".format(access_token)}, ) assert response.json.get("exception") == "Unauthorized" assert response.status == 401 assert "Authorization header is invalid." in response.json.get("reasons")
29.658537
88
0.697533
[ "MIT" ]
amor71/sanic-jwt
tests/test_authentication.py
6,080
Python
import os import copy import pytest import time import shutil import tempfile import logging from _pytest.logging import caplog as _caplog from contextlib import suppress from panoptes.utils.logging import logger from panoptes.utils.database import PanDB from panoptes.utils.config.client import get_config from panoptes.utils.config.client import set_config from panoptes.utils.config.server import config_server # Doctest modules import numpy as np from matplotlib import pyplot as plt _all_databases = ['file', 'memory'] logger.enable('panoptes') logger.level("testing", no=15, icon="🤖", color="<YELLOW><black>") log_file_path = os.path.join( os.getenv('PANLOG', '/var/panoptes/logs'), 'panoptes-testing.log' ) log_fmt = "<lvl>{level:.1s}</lvl> " \ "<light-blue>{time:MM-DD HH:mm:ss.ss!UTC}</>" \ "<blue>({time:HH:mm:ss.ss})</> " \ "| <c>{name} {function}:{line}</c> | " \ "<lvl>{message}</lvl>\n" startup_message = ' STARTING NEW PYTEST RUN ' logger.add(log_file_path, enqueue=True, # multiprocessing format=log_fmt, colorize=True, backtrace=True, diagnose=True, catch=True, # Start new log file for each testing run. rotation=lambda msg, _: startup_message in msg, level='TRACE') logger.log('testing', '*' * 25 + startup_message + '*' * 25) def pytest_addoption(parser): db_names = ",".join(_all_databases) + ' (or all for all databases)' group = parser.getgroup("PANOPTES pytest options") group.addoption( "--astrometry", action="store_true", default=False, help="If tests that require solving should be run") group.addoption( "--theskyx", action="store_true", default=False, help="If running tests alongside a running TheSkyX program.") group.addoption( "--test-databases", nargs="+", default=['file'], help=("Test databases in the list. List items can include: " + db_names + ". Note that travis-ci will test all of them by default.")) @pytest.fixture(scope='session') def db_name(): return 'panoptes_testing' @pytest.fixture(scope='session') def images_dir(tmpdir_factory): directory = tmpdir_factory.mktemp('images') return str(directory) @pytest.fixture(scope='session') def config_path(): return os.path.expandvars('${PANDIR}/panoptes-utils/tests/panoptes_utils_testing.yaml') @pytest.fixture(scope='session', autouse=True) def static_config_server(config_path, images_dir, db_name): logger.log('testing', f'Starting static_config_server for testing session') proc = config_server( config_file=config_path, ignore_local=True, auto_save=False ) logger.log('testing', f'static_config_server started with {proc.pid=}') # Give server time to start while get_config('name') is None: # pragma: no cover logger.log('testing', f'Waiting for static_config_server {proc.pid=}, sleeping 1 second.') time.sleep(1) logger.log('testing', f'Startup config_server name=[{get_config("name")}]') # Adjust various config items for testing unit_id = 'PAN000' logger.log('testing', f'Setting testing name and unit_id to {unit_id}') set_config('pan_id', unit_id) logger.log('testing', f'Setting testing database to {db_name}') set_config('db.name', db_name) fields_file = 'simulator.yaml' logger.log('testing', f'Setting testing scheduler fields_file to {fields_file}') set_config('scheduler.fields_file', fields_file) logger.log('testing', f'Setting temporary image directory for testing') set_config('directories.images', images_dir) yield logger.log('testing', f'Killing static_config_server started with PID={proc.pid}') proc.terminate() @pytest.fixture(scope='function', params=_all_databases) def db_type(request): db_list = request.config.option.test_databases if request.param not in db_list and 'all' not in db_list: # pragma: no cover pytest.skip(f"Skipping {request.param} DB, set --test-all-databases=True") PanDB.permanently_erase_database( request.param, 'panoptes_testing', really='Yes', dangerous='Totally') return request.param @pytest.fixture(scope='function') def db(db_type): return PanDB(db_type=db_type, db_name='panoptes_testing', connect=True) @pytest.fixture(scope='function') def save_environ(): old_env = copy.deepcopy(os.environ) yield os.environ = old_env @pytest.fixture(scope='session') def data_dir(): return os.path.expandvars('/var/panoptes/panoptes-utils/tests/data') @pytest.fixture(scope='function') def unsolved_fits_file(data_dir): orig_file = os.path.join(data_dir, 'unsolved.fits') with tempfile.TemporaryDirectory() as tmpdirname: copy_file = shutil.copy2(orig_file, tmpdirname) yield copy_file @pytest.fixture(scope='function') def solved_fits_file(data_dir): orig_file = os.path.join(data_dir, 'solved.fits.fz') with tempfile.TemporaryDirectory() as tmpdirname: copy_file = shutil.copy2(orig_file, tmpdirname) yield copy_file @pytest.fixture(scope='function') def tiny_fits_file(data_dir): orig_file = os.path.join(data_dir, 'tiny.fits') with tempfile.TemporaryDirectory() as tmpdirname: copy_file = shutil.copy2(orig_file, tmpdirname) yield copy_file @pytest.fixture(scope='function') def noheader_fits_file(data_dir): orig_file = os.path.join(data_dir, 'noheader.fits') with tempfile.TemporaryDirectory() as tmpdirname: copy_file = shutil.copy2(orig_file, tmpdirname) yield copy_file @pytest.fixture(scope='function') def cr2_file(data_dir): cr2_path = os.path.join(data_dir, 'canon.cr2') if not os.path.exists(cr2_path): pytest.skip("No CR2 file found, skipping test.") with tempfile.TemporaryDirectory() as tmpdirname: copy_file = shutil.copy2(cr2_path, tmpdirname) yield copy_file @pytest.fixture(autouse=True) def add_doctest_dependencies(doctest_namespace): doctest_namespace['np'] = np doctest_namespace['plt'] = plt @pytest.fixture def caplog(_caplog): class PropogateHandler(logging.Handler): def emit(self, record): logging.getLogger(record.name).handle(record) logger.enable('panoptes') handler_id = logger.add(PropogateHandler(), format="{message}") yield _caplog with suppress(ValueError): logger.remove(handler_id)
30.041096
98
0.689314
[ "MIT" ]
sarumanplaysguitar/panoptes-utils
conftest.py
6,582
Python
""" This is a setup.py script generated by py2applet Usage: python setup.py py2app """ from setuptools import setup APP = ['Patient Discharge System v2.0.py'] DATA_FILES = ['model.docx', 'logo.gif'] OPTIONS = {} setup( app=APP, data_files=DATA_FILES, options={'py2app': OPTIONS}, setup_requires=['py2app'], )
16.65
48
0.66967
[ "MIT" ]
dr-nandanpatel/patientdischargesystem-App-MacOS
setup.py
333
Python
import os from subprocess import call if os.path.isdir("bin/test"): call(["fusermount", "-u", "bin/test"]) os.rmdir("bin/test") os.mkdir("bin/test") call(["bin/simple", "-f", "bin/test"])
20.2
42
0.608911
[ "MIT" ]
gareth-ferneyhough/SierraFS
examples/postbuild.py
202
Python
# SPDX-License-Identifier: Apache-2.0 # # Copyright (C) 2015, ARM Limited and contributors. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import logging import os from test import LisaTest TESTS_DIRECTORY = os.path.dirname(os.path.realpath(__file__)) TESTS_CONF = os.path.join(TESTS_DIRECTORY, "rfc.config") class RFC(LisaTest): """Tests for the Energy-Aware Scheduler""" test_conf = TESTS_CONF experiments_conf = TESTS_CONF @classmethod def setUpClass(cls, *args, **kwargs): super(RFC, cls).runExperiments(args, kwargs) def test_run(self): """A dummy test just to run configured workloads""" pass # vim :set tabstop=4 shiftwidth=4 expandtab
29.170732
75
0.732441
[ "Apache-2.0" ]
ADVAN-ELAA-8QM-PRC1/platform-external-lisa
tests/eas/rfc.py
1,196
Python
# Copyright (c) 2016-present, Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from caffe2.python import schema from caffe2.python.layers.layers import ( get_categorical_limit, ModelLayer, IdList ) import numpy as np class MergeIdLists(ModelLayer): """Merge multiple ID_LISTs into a single ID_LIST Arguments: model: A layer model instance input_record: Tuple (Struct) of ID_LIST features to be merged Returns: the merged ID_LIST feature """ def __init__(self, model, input_record, name='merged'): super(MergeIdLists, self).__init__(model, name, input_record) assert all(schema.equal_schemas(x, IdList) for x in input_record), \ "Inputs to MergeIdLists should all be IdLists." assert all(record.items.metadata is not None for record in self.input_record), \ "Features without metadata are not supported" merge_dim = max(get_categorical_limit(record) for record in self.input_record) assert merge_dim is not None, "Unbounded features are not supported" self.output_schema = schema.NewRecord( model.net, schema.List( schema.Scalar( np.int64, blob=model.net.NextBlob(name), metadata=schema.Metadata(categorical_limit=merge_dim) ))) def add_ops(self, net): return net.MergeIdLists(self.input_record.field_blobs(), self.output_schema.field_blobs())
35.166667
78
0.652736
[ "Apache-2.0" ]
AIHGF/caffe2
caffe2/python/layers/merge_id_lists.py
2,321
Python
DEPTH_LIMIT = 2 FOLLOW_DOMAINS = {'livejournal.com'} RSS_TEMPLATES = { r'.*\.livejournal\.com/?.*': { 'http://%(netloc)s/data/rss': 100, 'https://%(netloc)s/data/rss': 200, 'http://%(netloc)s/data/atom': 300, 'https://%(netloc)s/data/atom': 400, }, }
22.538462
44
0.532423
[ "MIT" ]
monotony113/feedly-link-aggregator
presets/livejournal.py
293
Python
"""Test project for line_round_dot_setting. Command examples: $ python test_projects/line_round_dot_setting/main.py """ import sys sys.path.append('./') import os from types import ModuleType import apysc as ap from apysc._file import file_util this_module: ModuleType = sys.modules[__name__] _DEST_DIR_PATH: str = os.path.join( file_util.get_abs_module_dir_path(module=this_module), 'test_output/' ) def main() -> None: """ Entry point of this test project. """ ap.Stage( background_color='#333', stage_width=1000, stage_height=500) sprite: ap.Sprite = ap.Sprite() sprite.graphics.line_style( color='#0af', round_dot_setting=ap.LineRoundDotSetting( round_size=10, space_size=10)) sprite.graphics.move_to(x=50, y=30) sprite.graphics.line_to(x=450, y=30) sprite.graphics.line_style( color='#0af', round_dot_setting=ap.LineRoundDotSetting( round_size=10, space_size=20)) sprite.graphics.move_to(x=50, y=60) sprite.graphics.line_to(x=450, y=60) sprite.graphics.line_style( color='#0af', round_dot_setting=ap.LineRoundDotSetting( round_size=20, space_size=0)) sprite.graphics.move_to(x=50, y=90) sprite.graphics.line_to(x=450, y=90) sprite.graphics.line_style( color='#0af', thickness=3) sprite.graphics.move_to(x=40, y=120) sprite.graphics.line_to(x=460, y=120) sprite.graphics.line_style( color='#0af', round_dot_setting=ap.LineRoundDotSetting( round_size=10, space_size=10)) polyline: ap.Polyline = sprite.graphics.move_to(x=50, y=150) sprite.graphics.line_to(x=450, y=150) sprite.graphics.line_to(x=700, y=250) sprite.graphics.line_to(x=700, y=150) polyline.click(on_polyline_click) ap.save_overall_html(dest_dir_path=_DEST_DIR_PATH) def on_polyline_click( e: ap.MouseEvent[ap.Polyline], options: dict) -> None: """ Handler that called when polyline is clicked. Parameters ---------- e : MouseEvent Created MouseEvent instance. options : dict Optional parameters. """ polyline: ap.Polyline = e.this polyline.line_round_dot_setting = None if __name__ == '__main__': main()
26.21978
65
0.644174
[ "MIT" ]
simon-ritchie/action-py-script
test_projects/line_round_dot_setting/main.py
2,386
Python
""" This module descibes how to split a dataset into two parts A and B: A is for tuning the algorithm parameters, and B is for having an unbiased estimation of its performances. The tuning is done by Grid Search. """ from __future__ import (absolute_import, division, print_function, unicode_literals) import random from surprise import SVD from surprise import Dataset from surprise import accuracy from surprise import GridSearch # Load the full dataset. data = Dataset.load_builtin('ml-100k') raw_ratings = data.raw_ratings # shuffle ratings if you want random.shuffle(raw_ratings) # A = 90% of the data, B = 10% of the data threshold = int(.9 * len(raw_ratings)) A_raw_ratings = raw_ratings[:threshold] B_raw_ratings = raw_ratings[threshold:] data.raw_ratings = A_raw_ratings # data is now the set A data.split(n_folds=3) # Select your best algo with grid search. print('Grid Search...') param_grid = {'n_epochs': [5, 10], 'lr_all': [0.002, 0.005]} grid_search = GridSearch(SVD, param_grid, measures=['RMSE'], verbose=0) grid_search.evaluate(data) algo = grid_search.best_estimator['RMSE'] # retrain on the whole set A trainset = data.build_full_trainset() algo.train(trainset) # Compute biased accuracy on A predictions = algo.test(trainset.build_testset()) print('Biased accuracy on A,', end=' ') accuracy.rmse(predictions) # Compute unbiased accuracy on B testset = data.construct_testset(B_raw_ratings) # testset is now the set B predictions = algo.test(testset) print('Unbiased accuracy on B,', end=' ') accuracy.rmse(predictions)
28.745455
78
0.748893
[ "BSD-3-Clause" ]
wyjiang0930/dissertation_reference_3
examples/split_data_for_unbiased_estimation.py
1,581
Python
# -*- coding: utf-8 -*- # --------------------------------------------------------------------- # sla.slaprofile application # --------------------------------------------------------------------- # Copyright (C) 2007-2018 The NOC Project # See LICENSE for details # --------------------------------------------------------------------- # NOC modules from noc.lib.app.extdocapplication import ExtDocApplication from noc.sla.models.slaprofile import SLAProfile from noc.core.translation import ugettext as _ class SLAProfileApplication(ExtDocApplication): """ SLAProfile application """ title = "SLA Profile" menu = [_("Setup"), _("SLA Profiles")] model = SLAProfile def field_row_class(self, o): return o.style.css_class_name if o.style else ""
30.230769
71
0.516539
[ "BSD-3-Clause" ]
ewwwcha/noc
services/web/apps/sla/slaprofile/views.py
786
Python
from flask import Blueprint, request, jsonify import subprocess import json import yamale import yaml import app_conf import logging.handlers import mydb imageinfo = Blueprint('imageinfo', __name__) # set logger logger = logging.getLogger(__name__) path = f'./logs/{__name__}.log' fileHandler = logging.handlers.RotatingFileHandler(path, maxBytes=app_conf.Log.log_max_size, backupCount=app_conf.Log.log_backup_count) fileHandler.setFormatter(logging.Formatter('%(asctime)s %(levelname)s %(filename)s:%(lineno)s %(message)s')) logger.addHandler(fileHandler) logger.setLevel(app_conf.Log.log_level) # temp logger.addHandler(logging.StreamHandler()) db_path = "data/imageinfo.db" mydb.init(db_path) schema_create = yamale.make_schema(content=""" name: str(required=True) namespace: str(required=True) """) @imageinfo.route('/create', methods=['post']) def create(): msg = { 'err': None, 'res': None } try: # schema validation # yamale.validate(schema_create, yamale.make_data(content=request.data.decode('utf-8'))) # name body = yaml.load(request.data, Loader=yaml.Loader) k = f"{body['namespace']}/{body['name']}" v = json.dumps(body).encode() mydb.upsert(db_path, k, v) except Exception as e: logger.error(str(e)) msg['err'] = str(e) return jsonify(msg) schema_delete = yamale.make_schema(content=""" name: str(required=True) namespace: str(required=True) """) @imageinfo.route('/delete', methods=['delete']) def delete(): msg = { 'err': None, 'res': None } try: # schema validation yamale.validate(schema_delete, yamale.make_data(content=request.data.decode('utf-8'))) body = yaml.load(request.data, Loader=yaml.Loader) k = f"{body['namespace']}/{body['name']}" mydb.delete(db_path, k) except Exception as e: logger.error(str(e)) msg['err'] = str(e) return jsonify(msg) @imageinfo.route('/list', methods=['get']) def list_(): msg = { 'err': None, 'res': [] } try: namespace = request.args.get('namespace') temp = mydb.keys(db_path) for x in temp: term = x.split('/') if term[0] == namespace: msg['res'].append(term[1]) except Exception as e: logger.error(str(e)) msg['err'] = str(e) return jsonify(msg) @imageinfo.route('/get', methods=['get']) def get(): msg = { 'err': None, 'res': None } try: name = request.args.get('name') namespace = request.args.get('namespace') k = f"{namespace}/{name}" v = mydb.get(db_path, k) if v is not None: msg['res'] = json.loads(v.decode()) except Exception as e: logger.error(str(e)) msg['err'] = str(e) return jsonify(msg)
23.2
108
0.585212
[ "Apache-2.0" ]
cynpna/gedge-platform
gs-engine/gse_api_server/imageinfo.py
3,016
Python
def is_sha1(maybe_sha): if len(maybe_sha) != 40: return False try: sha_int = int(maybe_sha, 16) except ValueError: return False return True def validate(date_text): try: datetime.datetime.strptime(date_text, '%d-%m-%Y:%S-%M-%H') return True except ValueError: return False from flask_cors import CORS from flask import Flask, render_template, Response, request, jsonify import pandas as pd import os import json import shutil import datetime import base64 import binascii import datetime import requests as r LOGIN_FILE_NAME = "login.csv" DB = "templates/images" GLOBAL_LIST = "acts.csv" IP = "3.208.6.174:80" INSTANCE_IP = "34.226.230.93" count_requests = 0 #IP = "127.0.0.1:5000" app = Flask(__name__) CORS(app) @app.errorhandler(405) def method_not_allowed(e): global count_requests count_requests += 1 return jsonify({'error': 405}), 405 @app.route("/") def index(): return render_template('index.html') @app.route("/api/v1/categories", methods = ["GET", "POST"]) def list_categories(): global count_requests count_requests += 1 if not os.path.exists(DB): os.makedirs(DB, exist_ok = True) if request.method == 'GET': categories = os.listdir(DB) if not categories: return Response('{}', status=204, mimetype='application/json') response_data = {} for category in categories: response_data[category] = len(os.listdir(DB + "/" + category)) return jsonify(response_data) elif request.method == "POST": category = json.loads(request.data)[0] if category in os.listdir(DB): return Response('{}', status=400, mimetype='application/json') os.makedirs(DB + "/" + category, exist_ok = True) return Response('{}', status=201, mimetype='application/json') else: return Response('{}', status=405, mimetype='application/json') @app.route("/api/v1/categories/<category>", methods = ["DELETE"]) def delete_category(category = None): global count_requests count_requests += 1 if request.method == 'DELETE': categories = os.listdir(DB) if category in categories: if GLOBAL_LIST in os.listdir(): data = pd.read_csv(GLOBAL_LIST) data = data[data.category != category] data.to_csv(GLOBAL_LIST, index = False) shutil.rmtree(DB + "/" + category) return Response('{}', status=200, mimetype='application/json') else: return Response('{}', status=400, mimetype='application/json') else: return Response('{}', status=405, mimetype='application/json') @app.route("/api/v1/categories/<category>/acts", methods = ["GET"]) def list_acts(category = None): global count_requests count_requests += 1 if request.method == 'GET': temp_path = DB + "/" + category + "/" + GLOBAL_LIST if category not in os.listdir(DB): return Response('[]', status=400, mimetype='application/json') start = request.args.get('start') end = request.args.get("end") if start == None and end == None: #print("This part") if os.path.exists(temp_path): data = pd.read_csv(temp_path) rows = data.shape[0] if rows == 0: return Response('[]', status=204, mimetype='application/json') elif rows >= 100: return Response('[]', status=413, mimetype='application/json') else: response_data = data.to_json(orient = "records") return Response(response_data, status=200, mimetype='application/json') else: return Response('[]', status=204, mimetype='application/json') else: start = int(start) end = int(end) temp_path = DB + "/" + category + "/" + GLOBAL_LIST if category not in os.listdir(DB): return Response('[]', status=400, mimetype='application/json') if os.path.exists(temp_path): data = pd.read_csv(temp_path) data["timestamp"] = pd.to_datetime(data["timestamp"], format = '%d-%m-%Y:%S-%M-%H') data["actId"] = data["actId"].astype(int) sorted_data = data.sort_values(["timestamp", "actId"], ascending = [False, False], axis = 0) #print(data) #print(sorted_data) rows = data.shape[0] if start < 1 or end > rows: return Response('[]', status=400, mimetype='application/json') if rows == 0: return Response('[]', status=204, mimetype='application/json') else: required_data = pd.DataFrame(sorted_data.iloc[start-1: end, :]) #print(required_data) if required_data.shape[0] > 100: return Response("[]", status=413, mimetype='application/json') required_data["timestamp"] = pd.to_datetime(required_data["timestamp"], format = '%d-%m-%Y:%S-%M-%H') required_data["timestamp"] = required_data["timestamp"].astype(str) response_data = required_data.to_json(orient = "records") return Response(response_data, status=200, mimetype='application/json') else: return Response('[]', status=204, mimetype='application/json') else: return Response('{}', status=405, mimetype='application/json') @app.route("/api/v1/categories/<category>/acts/size", methods = ["GET"]) def count_acts(category = None): global count_requests count_requests += 1 if request.method == 'GET': temp_path = DB + "/" + category if category not in os.listdir(DB): return Response('[]', status=400, mimetype='application/json') if os.path.exists(temp_path): data = pd.read_csv(GLOBAL_LIST) count = data[data.category == category].shape[0] return Response('[{0}]'.format(str(count)), status=200, mimetype='application/json') else: return Response('[]', status=204, mimetype='application/json') else: return Response('{}', status=405, mimetype='application/json') @app.route("/api/v1/acts/upvote", methods = ["POST"]) def upvote(): global count_requests count_requests += 1 if request.method == 'POST': act_id = int(json.loads(request.data)[0]) data_id = pd.read_csv(GLOBAL_LIST) if act_id not in data_id["act_id"].tolist(): return Response('[]', status=400, mimetype='application/json') category = data_id[data_id["act_id"] == act_id]["category"].iloc[0] temp_path = DB + "/" + category + "/" + GLOBAL_LIST data = pd.read_csv(temp_path) data.set_index("actId", inplace = True) data.at[act_id, "upvotes"] += 1 data.reset_index(inplace = True) data.to_csv(temp_path,index = False) return Response("{}", status=200, mimetype='application/json') else: return Response('{}', status=405, mimetype='application/json') @app.route("/api/v1/acts/<actId>", methods = ["DELETE"]) def delete_act(actId = None): global count_requests count_requests += 1 if request.method == 'DELETE': act_id = int(actId) data_id = pd.read_csv(GLOBAL_LIST) if act_id not in data_id["act_id"].tolist(): return Response('[]', status=400, mimetype='application/json') category = data_id[data_id["act_id"] == act_id]["category"].iloc[0] temp_path = DB + "/" + category + "/" + GLOBAL_LIST data_id = data_id[data_id["act_id"] != act_id] data_id.to_csv(GLOBAL_LIST, index = False) data = pd.read_csv(temp_path) data = data[data["actId"] != act_id] data.to_csv(temp_path, index = False) os.remove(DB + "/" + category + "/" + str(act_id) + ".png") return Response("{}", status=200, mimetype='application/json') else: return Response('{}', status=405, mimetype='application/json') # @app.route("/api/v1/categories/<category>/acts?start=<startrange>&end=<endrange>", methods = ["GET"]) # def range_acts(category = None, startrange = 0, endrange = 0): # if request.method == 'GET': # temp_path = DB + "/" + category + "/" + GLOBAL_LIST # if category not in os.listdir(DB): # return Response('[]', status=400, mimetype='application/json') # if os.path.exists(temp_path): # data = pd.read_csv(temp_path) # sorted_data = data.sort(columns = ["timestamp"], ascending = False) # rows = data.shape[0] # if startrange < 1 or endrange > rows: # return Response('[]', status=400, mimetype='application/json') # if rows == 0: # return Response('[]', status=204, mimetype='application/json') # else: # required_data = sorted_data.ix[startrange-1: endrange-1, :] # print(required_data) # if required_data.shape[0] > 100: # return Response("[]", status=413, mimetype='application/json') # response_data = required_data.to_json(orient = "records") # return Response(response_data, status=200, mimetype='application/json') # else: # return Response('[]', status=204, mimetype='application/json') # else: # return Response('{}', status=405, mimetype='application/json') @app.route("/api/v1/acts", methods = ["POST"]) def upload_act(): global count_requests count_requests += 1 if request.method == 'POST': if not os.path.exists(DB): os.makedirs(DB, exist_ok = True) request_data = json.loads(request.data.decode('utf-8')) if not GLOBAL_LIST in os.listdir(): data = pd.DataFrame(columns = ['act_id', "category"]) data.to_csv(GLOBAL_LIST, index = False) if not LOGIN_FILE_NAME in os.listdir(): data = pd.DataFrame(columns = ['username', 'password']) data.to_csv(LOGIN_FILE_NAME, index = False) data_acts = pd.read_csv(GLOBAL_LIST) #data_users = pd.read_csv(LOGIN_FILE_NAME) # Username and actId header = {"origin": INSTANCE_IP} resp = r.get( "http://"+ IP + "/api/v1/users", "{}", headers = header) print("=============") print(resp.text) print("=============") data_users = eval(resp.text) if request_data['username'] not in data_users or request_data["actId"] in data_acts["act_id"].tolist(): return Response('{}', status=400, mimetype='application/json') # Upvotes field if "upvotes" in request_data.keys(): return Response('{}', status=400, mimetype='application/json') request_data['upvotes'] = 0 # category name if request_data["categoryName"] not in os.listdir(DB): return Response('{}', status=400, mimetype='application/json') # Date Validity if not validate(request_data["timestamp"]): return Response('{}', status=400, mimetype='application/json') # Base64 validity try: base64.b64decode(request_data["imgB64"]) except binascii.Error: return Response('{}', status=400, mimetype='application/json') data_acts = data_acts.append({"act_id": int(request_data["actId"]), "category": request_data["categoryName"] }, ignore_index = True) data_acts.to_csv(GLOBAL_LIST, index = False) with open(DB + "/" + request_data["categoryName"] + "/" +str(request_data["actId"]) + ".png", "wb") as fp: fp.write(base64.decodebytes(request_data["imgB64"].encode())) temp_path = DB + "/" + request_data["categoryName"] + "/" + GLOBAL_LIST if not GLOBAL_LIST in os.listdir(DB + "/" + request_data["categoryName"]): data = pd.DataFrame(columns = list(request_data.keys())) data.to_csv(temp_path, index = False) data = pd.read_csv(temp_path) data = data.append(request_data, ignore_index = True) data.to_csv(temp_path, index = False) return Response('{}', status=201, mimetype='application/json') else: return Response('{}', status=405, mimetype='application/json') @app.route("/api/v1/acts/count", methods = ["GET"]) def count_act(): global count_requests count_requests += 1 if request.method == 'GET': if not GLOBAL_LIST in os.listdir(): return Response('[0]', status=200, mimetype='application/json') else: data_acts = pd.read_csv(GLOBAL_LIST) count_acts = data_acts.shape[0] return Response('['+ str(count_acts) +']', status=200, mimetype='application/json') else: return Response('{}', status=405, mimetype='application/json') @app.route("/api/v1/_count", methods = ["GET", "DELETE"]) def count_request(): global count_requests if request.method == 'GET': return Response('['+ str(count_requests) +']', status=200, mimetype='application/json') elif request.method == 'DELETE': count_requests = 0 return Response('{}', status=200, mimetype='application/json') else: return Response('{}', status=405, mimetype='application/json') if __name__ == '__main__': app.run(host = '0.0.0.0', port = 80, threaded=True) #app.run(threaded = True, debug = True, port = 2000)
39.447293
140
0.584068
[ "MIT" ]
craterkamath/microservice
load_balancer/docker_acts/app.py
13,846
Python
"""Generated message classes for cloudasset version v1p2beta1. The cloud asset API manages the history and inventory of cloud resources. """ # NOTE: This file is autogenerated and should not be edited by hand. from __future__ import absolute_import from apitools.base.protorpclite import messages as _messages from apitools.base.py import encoding from apitools.base.py import extra_types package = 'cloudasset' class Asset(_messages.Message): r"""Cloud asset. This includes all Google Cloud Platform resources, Cloud IAM policies, and other non-GCP assets. Fields: ancestors: Asset's ancestry path in Cloud Resource Manager (CRM) hierarchy, represented as a list of relative resource names. Ancestry path starts with the closest CRM ancestor and ending at a visible root. If the asset is a CRM project/ folder/organization, this starts from the asset itself. Example: ["projects/123456789", "folders/5432", "organizations/1234"] assetType: Type of the asset. Example: "compute.googleapis.com/Disk". iamPolicy: Representation of the actual Cloud IAM policy set on a cloud resource. For each resource, there must be at most one Cloud IAM policy set on it. name: The full name of the asset. For example: `//compute.googleapis.com/p rojects/my_project_123/zones/zone1/instances/instance1`. See [Resource N ames](https://cloud.google.com/apis/design/resource_names#full_resource_ name) for more information. resource: Representation of the resource. """ ancestors = _messages.StringField(1, repeated=True) assetType = _messages.StringField(2) iamPolicy = _messages.MessageField('Policy', 3) name = _messages.StringField(4) resource = _messages.MessageField('Resource', 5) class AuditConfig(_messages.Message): r"""Specifies the audit configuration for a service. The configuration determines which permission types are logged, and what identities, if any, are exempted from logging. An AuditConfig must have one or more AuditLogConfigs. If there are AuditConfigs for both `allServices` and a specific service, the union of the two AuditConfigs is used for that service: the log_types specified in each AuditConfig are enabled, and the exempted_members in each AuditLogConfig are exempted. Example Policy with multiple AuditConfigs: { "audit_configs": [ { "service": "allServices" "audit_log_configs": [ { "log_type": "DATA_READ", "exempted_members": [ "user:[email protected]" ] }, { "log_type": "DATA_WRITE", }, { "log_type": "ADMIN_READ", } ] }, { "service": "sampleservice.googleapis.com" "audit_log_configs": [ { "log_type": "DATA_READ", }, { "log_type": "DATA_WRITE", "exempted_members": [ "user:[email protected]" ] } ] } ] } For sampleservice, this policy enables DATA_READ, DATA_WRITE and ADMIN_READ logging. It also exempts [email protected] from DATA_READ logging, and [email protected] from DATA_WRITE logging. Fields: auditLogConfigs: The configuration for logging of each type of permission. service: Specifies a service that will be enabled for audit logging. For example, `storage.googleapis.com`, `cloudsql.googleapis.com`. `allServices` is a special value that covers all services. """ auditLogConfigs = _messages.MessageField('AuditLogConfig', 1, repeated=True) service = _messages.StringField(2) class AuditLogConfig(_messages.Message): r"""Provides the configuration for logging a type of permissions. Example: { "audit_log_configs": [ { "log_type": "DATA_READ", "exempted_members": [ "user:[email protected]" ] }, { "log_type": "DATA_WRITE", } ] } This enables 'DATA_READ' and 'DATA_WRITE' logging, while exempting [email protected] from DATA_READ logging. Enums: LogTypeValueValuesEnum: The log type that this config enables. Fields: exemptedMembers: Specifies the identities that do not cause logging for this type of permission. Follows the same format of Binding.members. ignoreChildExemptions: Specifies whether principals can be exempted for the same LogType in lower-level resource policies. If true, any lower- level exemptions will be ignored. logType: The log type that this config enables. """ class LogTypeValueValuesEnum(_messages.Enum): r"""The log type that this config enables. Values: LOG_TYPE_UNSPECIFIED: Default case. Should never be this. ADMIN_READ: Admin reads. Example: CloudIAM getIamPolicy DATA_WRITE: Data writes. Example: CloudSQL Users create DATA_READ: Data reads. Example: CloudSQL Users list """ LOG_TYPE_UNSPECIFIED = 0 ADMIN_READ = 1 DATA_WRITE = 2 DATA_READ = 3 exemptedMembers = _messages.StringField(1, repeated=True) ignoreChildExemptions = _messages.BooleanField(2) logType = _messages.EnumField('LogTypeValueValuesEnum', 3) class BatchGetAssetsHistoryResponse(_messages.Message): r"""Batch get assets history response. Fields: assets: A list of assets with valid time windows. """ assets = _messages.MessageField('TemporalAsset', 1, repeated=True) class Binding(_messages.Message): r"""Associates `members` with a `role`. Fields: condition: The condition that is associated with this binding. NOTE: An unsatisfied condition will not allow user access via current binding. Different bindings, including their conditions, are examined independently. members: Specifies the identities requesting access for a Cloud Platform resource. `members` can have the following values: * `allUsers`: A special identifier that represents anyone who is on the internet; with or without a Google account. * `allAuthenticatedUsers`: A special identifier that represents anyone who is authenticated with a Google account or a service account. * `user:{emailid}`: An email address that represents a specific Google account. For example, `[email protected]` . * `serviceAccount:{emailid}`: An email address that represents a service account. For example, `my-other- [email protected]`. * `group:{emailid}`: An email address that represents a Google group. For example, `[email protected]`. * `domain:{domain}`: The G Suite domain (primary) that represents all the users of that domain. For example, `google.com` or `example.com`. role: Role that is assigned to `members`. For example, `roles/viewer`, `roles/editor`, or `roles/owner`. """ condition = _messages.MessageField('Expr', 1) members = _messages.StringField(2, repeated=True) role = _messages.StringField(3) class CloudassetBatchGetAssetsHistoryRequest(_messages.Message): r"""A CloudassetBatchGetAssetsHistoryRequest object. Enums: ContentTypeValueValuesEnum: Required. The content type. Fields: assetNames: A list of the full names of the assets. For example: `//comput e.googleapis.com/projects/my_project_123/zones/zone1/instances/instance1 `. See [Resource Names](https://cloud.google.com/apis/design/resource_na mes#full_resource_name) and [Resource Name Format](https://cloud.google.com/resource-manager/docs/cloud-asset- inventory/resource-name-format) for more info. The request becomes a no-op if the asset name list is empty, and the max size of the asset name list is 100 in one request. contentType: Required. The content type. parent: Required. The relative name of the root asset. It can only be an organization number (such as "organizations/123"), a project ID (such as "projects/my-project-id")", or a project number (such as "projects/12345"). readTimeWindow_endTime: End time of the time window (inclusive). Current timestamp if not specified. readTimeWindow_startTime: Start time of the time window (exclusive). """ class ContentTypeValueValuesEnum(_messages.Enum): r"""Required. The content type. Values: CONTENT_TYPE_UNSPECIFIED: <no description> RESOURCE: <no description> IAM_POLICY: <no description> """ CONTENT_TYPE_UNSPECIFIED = 0 RESOURCE = 1 IAM_POLICY = 2 assetNames = _messages.StringField(1, repeated=True) contentType = _messages.EnumField('ContentTypeValueValuesEnum', 2) parent = _messages.StringField(3, required=True) readTimeWindow_endTime = _messages.StringField(4) readTimeWindow_startTime = _messages.StringField(5) class CloudassetExportAssetsRequest(_messages.Message): r"""A CloudassetExportAssetsRequest object. Fields: exportAssetsRequest: A ExportAssetsRequest resource to be passed as the request body. parent: Required. The relative name of the root asset. This can only be an organization number (such as "organizations/123"), a project ID (such as "projects/my-project-id"), or a project number (such as "projects/12345"). """ exportAssetsRequest = _messages.MessageField('ExportAssetsRequest', 1) parent = _messages.StringField(2, required=True) class CloudassetFeedsCreateRequest(_messages.Message): r"""A CloudassetFeedsCreateRequest object. Fields: createFeedRequest: A CreateFeedRequest resource to be passed as the request body. parent: Required. The name of the project/folder/organization where this feed should be created in. It can only be an organization number (such as "organizations/123"), a folder number (such as "folders/123"), a project ID (such as "projects/my-project-id")", or a project number (such as "projects/12345"). """ createFeedRequest = _messages.MessageField('CreateFeedRequest', 1) parent = _messages.StringField(2, required=True) class CloudassetFeedsDeleteRequest(_messages.Message): r"""A CloudassetFeedsDeleteRequest object. Fields: name: The name of the feed and it must be in the format of: projects/project_number/feeds/feed_id folders/folder_number/feeds/feed_id organizations/organization_number/feeds/feed_id """ name = _messages.StringField(1, required=True) class CloudassetFeedsGetRequest(_messages.Message): r"""A CloudassetFeedsGetRequest object. Fields: name: The name of the Feed and it must be in the format of: projects/project_number/feeds/feed_id folders/folder_number/feeds/feed_id organizations/organization_number/feeds/feed_id """ name = _messages.StringField(1, required=True) class CloudassetFeedsListRequest(_messages.Message): r"""A CloudassetFeedsListRequest object. Fields: parent: Required. The parent project/folder/organization whose feeds are to be listed. It can only be using project/folder/organization number (such as "folders/12345")", or a project ID (such as "projects/my- project-id"). """ parent = _messages.StringField(1, required=True) class CloudassetFeedsPatchRequest(_messages.Message): r"""A CloudassetFeedsPatchRequest object. Fields: name: Required. The format will be projects/{project_number}/feeds/{client-assigned_feed_identifier} or folders/{folder_number}/feeds/{client-assigned_feed_identifier} or organizations/{organization_number}/feeds/{client- assigned_feed_identifier} The client-assigned feed identifier must be unique within the parent project/folder/organization. updateFeedRequest: A UpdateFeedRequest resource to be passed as the request body. """ name = _messages.StringField(1, required=True) updateFeedRequest = _messages.MessageField('UpdateFeedRequest', 2) class CreateFeedRequest(_messages.Message): r"""Create asset feed request. Fields: feed: The feed details. The field `name` must be empty and it will be generated in the format of: projects/project_number/feeds/feed_id folders/folder_number/feeds/feed_id organizations/organization_number/feeds/feed_id feedId: Required. This is the client-assigned asset feed identifier and it needs to be unique under a specific parent project/folder/organization. """ feed = _messages.MessageField('Feed', 1) feedId = _messages.StringField(2) class Empty(_messages.Message): r"""A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance: service Foo { rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty); } The JSON representation for `Empty` is empty JSON object `{}`. """ class ExportAssetsRequest(_messages.Message): r"""Export asset request. Enums: ContentTypeValueValuesEnum: Asset content type. If not specified, no content but the asset name will be returned. Fields: assetTypes: A list of asset types of which to take a snapshot for. For example: "compute.googleapis.com/Disk". If specified, only matching assets will be returned. See [Introduction to Cloud Asset Inventory](https://cloud.google.com/resource-manager/docs/cloud-asset- inventory/overview) for all supported asset types. contentType: Asset content type. If not specified, no content but the asset name will be returned. outputConfig: Required. Output configuration indicating where the results will be output to. All results will be in newline delimited JSON format. readTime: Timestamp to take an asset snapshot. This can only be set to a timestamp between 2018-10-02 UTC (inclusive) and the current time. If not specified, the current time will be used. Due to delays in resource data collection and indexing, there is a volatile window during which running the same query may get different results. """ class ContentTypeValueValuesEnum(_messages.Enum): r"""Asset content type. If not specified, no content but the asset name will be returned. Values: CONTENT_TYPE_UNSPECIFIED: Unspecified content type. RESOURCE: Resource metadata. IAM_POLICY: The actual IAM policy set on a resource. """ CONTENT_TYPE_UNSPECIFIED = 0 RESOURCE = 1 IAM_POLICY = 2 assetTypes = _messages.StringField(1, repeated=True) contentType = _messages.EnumField('ContentTypeValueValuesEnum', 2) outputConfig = _messages.MessageField('OutputConfig', 3) readTime = _messages.StringField(4) class Expr(_messages.Message): r"""Represents an expression text. Example: title: "User account presence" description: "Determines whether the request has a user account" expression: "size(request.user) > 0" Fields: description: An optional description of the expression. This is a longer text which describes the expression, e.g. when hovered over it in a UI. expression: Textual representation of an expression in Common Expression Language syntax. The application context of the containing message determines which well-known feature set of CEL is supported. location: An optional string indicating the location of the expression for error reporting, e.g. a file name and a position in the file. title: An optional title for the expression, i.e. a short string describing its purpose. This can be used e.g. in UIs which allow to enter the expression. """ description = _messages.StringField(1) expression = _messages.StringField(2) location = _messages.StringField(3) title = _messages.StringField(4) class Feed(_messages.Message): r"""An asset feed used to export asset updates to a destinations. An asset feed filter controls what updates are exported. The asset feed must be created within a project, organization, or folder. Supported destinations are: Cloud Pub/Sub topics. Enums: ContentTypeValueValuesEnum: Asset content type. If not specified, no content but the asset name and type will be returned. Fields: assetNames: A list of the full names of the assets to receive updates. You must specify either or both of asset_names and asset_types. Only asset updates matching specified asset_names and asset_types are exported to the feed. For example: `//compute.googleapis.com/projects/my_project_123 /zones/zone1/instances/instance1`. See [Resource Names](https://cloud.go ogle.com/apis/design/resource_names#full_resource_name) for more info. assetTypes: A list of types of the assets to receive updates. You must specify either or both of asset_names and asset_types. Only asset updates matching specified asset_names and asset_types are exported to the feed. For example: "compute.googleapis.com/Disk" See [Introduction to Cloud Asset Inventory](https://cloud.google.com/resource- manager/docs/cloud-asset-inventory/overview) for all supported asset types. contentType: Asset content type. If not specified, no content but the asset name and type will be returned. feedOutputConfig: Required. Feed output configuration defining where the asset updates are published to. name: Required. The format will be projects/{project_number}/feeds/{client-assigned_feed_identifier} or folders/{folder_number}/feeds/{client-assigned_feed_identifier} or organizations/{organization_number}/feeds/{client- assigned_feed_identifier} The client-assigned feed identifier must be unique within the parent project/folder/organization. """ class ContentTypeValueValuesEnum(_messages.Enum): r"""Asset content type. If not specified, no content but the asset name and type will be returned. Values: CONTENT_TYPE_UNSPECIFIED: Unspecified content type. RESOURCE: Resource metadata. IAM_POLICY: The actual IAM policy set on a resource. """ CONTENT_TYPE_UNSPECIFIED = 0 RESOURCE = 1 IAM_POLICY = 2 assetNames = _messages.StringField(1, repeated=True) assetTypes = _messages.StringField(2, repeated=True) contentType = _messages.EnumField('ContentTypeValueValuesEnum', 3) feedOutputConfig = _messages.MessageField('FeedOutputConfig', 4) name = _messages.StringField(5) class FeedOutputConfig(_messages.Message): r"""Output configuration for asset feed destination. Fields: pubsubDestination: Destination on Cloud Pubsub. """ pubsubDestination = _messages.MessageField('PubsubDestination', 1) class GcsDestination(_messages.Message): r"""A Cloud Storage location. Fields: uri: The uri of the Cloud Storage object. It's the same uri that is used by gsutil. For example: "gs://bucket_name/object_name". See [Viewing and Editing Object Metadata](https://cloud.google.com/storage/docs/viewing- editing-metadata) for more information. """ uri = _messages.StringField(1) class ListFeedsResponse(_messages.Message): r"""A ListFeedsResponse object. Fields: feeds: A list of feeds. """ feeds = _messages.MessageField('Feed', 1, repeated=True) class Operation(_messages.Message): r"""This resource represents a long-running operation that is the result of a network API call. Messages: MetadataValue: Service-specific metadata associated with the operation. It typically contains progress information and common metadata such as create time. Some services might not provide such metadata. Any method that returns a long-running operation should document the metadata type, if any. ResponseValue: The normal response of the operation in case of success. If the original method returns no data on success, such as `Delete`, the response is `google.protobuf.Empty`. If the original method is standard `Get`/`Create`/`Update`, the response should be the resource. For other methods, the response should have the type `XxxResponse`, where `Xxx` is the original method name. For example, if the original method name is `TakeSnapshot()`, the inferred response type is `TakeSnapshotResponse`. Fields: done: If the value is `false`, it means the operation is still in progress. If `true`, the operation is completed, and either `error` or `response` is available. error: The error result of the operation in case of failure or cancellation. metadata: Service-specific metadata associated with the operation. It typically contains progress information and common metadata such as create time. Some services might not provide such metadata. Any method that returns a long-running operation should document the metadata type, if any. name: The server-assigned name, which is only unique within the same service that originally returns it. If you use the default HTTP mapping, the `name` should be a resource name ending with `operations/{unique_id}`. response: The normal response of the operation in case of success. If the original method returns no data on success, such as `Delete`, the response is `google.protobuf.Empty`. If the original method is standard `Get`/`Create`/`Update`, the response should be the resource. For other methods, the response should have the type `XxxResponse`, where `Xxx` is the original method name. For example, if the original method name is `TakeSnapshot()`, the inferred response type is `TakeSnapshotResponse`. """ @encoding.MapUnrecognizedFields('additionalProperties') class MetadataValue(_messages.Message): r"""Service-specific metadata associated with the operation. It typically contains progress information and common metadata such as create time. Some services might not provide such metadata. Any method that returns a long-running operation should document the metadata type, if any. Messages: AdditionalProperty: An additional property for a MetadataValue object. Fields: additionalProperties: Properties of the object. Contains field @type with type URL. """ class AdditionalProperty(_messages.Message): r"""An additional property for a MetadataValue object. Fields: key: Name of the additional property. value: A extra_types.JsonValue attribute. """ key = _messages.StringField(1) value = _messages.MessageField('extra_types.JsonValue', 2) additionalProperties = _messages.MessageField('AdditionalProperty', 1, repeated=True) @encoding.MapUnrecognizedFields('additionalProperties') class ResponseValue(_messages.Message): r"""The normal response of the operation in case of success. If the original method returns no data on success, such as `Delete`, the response is `google.protobuf.Empty`. If the original method is standard `Get`/`Create`/`Update`, the response should be the resource. For other methods, the response should have the type `XxxResponse`, where `Xxx` is the original method name. For example, if the original method name is `TakeSnapshot()`, the inferred response type is `TakeSnapshotResponse`. Messages: AdditionalProperty: An additional property for a ResponseValue object. Fields: additionalProperties: Properties of the object. Contains field @type with type URL. """ class AdditionalProperty(_messages.Message): r"""An additional property for a ResponseValue object. Fields: key: Name of the additional property. value: A extra_types.JsonValue attribute. """ key = _messages.StringField(1) value = _messages.MessageField('extra_types.JsonValue', 2) additionalProperties = _messages.MessageField('AdditionalProperty', 1, repeated=True) done = _messages.BooleanField(1) error = _messages.MessageField('Status', 2) metadata = _messages.MessageField('MetadataValue', 3) name = _messages.StringField(4) response = _messages.MessageField('ResponseValue', 5) class OutputConfig(_messages.Message): r"""Output configuration for export assets destination. Fields: gcsDestination: Destination on Cloud Storage. """ gcsDestination = _messages.MessageField('GcsDestination', 1) class Policy(_messages.Message): r"""Defines an Identity and Access Management (IAM) policy. It is used to specify access control policies for Cloud Platform resources. A `Policy` consists of a list of `bindings`. A `binding` binds a list of `members` to a `role`, where the members can be user accounts, Google groups, Google domains, and service accounts. A `role` is a named list of permissions defined by IAM. **JSON Example** { "bindings": [ { "role": "roles/owner", "members": [ "user:[email protected]", "group:[email protected]", "domain:google.com", "serviceAccount:my-other- [email protected]" ] }, { "role": "roles/viewer", "members": ["user:[email protected]"] } ] } **YAML Example** bindings: - members: - user:[email protected] - group:[email protected] - domain:google.com - serviceAccount:my-other- [email protected] role: roles/owner - members: - user:[email protected] role: roles/viewer For a description of IAM and its features, see the [IAM developer's guide](https://cloud.google.com/iam/docs). Fields: auditConfigs: Specifies cloud audit logging configuration for this policy. bindings: Associates a list of `members` to a `role`. `bindings` with no members will result in an error. etag: `etag` is used for optimistic concurrency control as a way to help prevent simultaneous updates of a policy from overwriting each other. It is strongly suggested that systems make use of the `etag` in the read- modify-write cycle to perform policy updates in order to avoid race conditions: An `etag` is returned in the response to `getIamPolicy`, and systems are expected to put that etag in the request to `setIamPolicy` to ensure that their change will be applied to the same version of the policy. If no `etag` is provided in the call to `setIamPolicy`, then the existing policy is overwritten. version: Deprecated. """ auditConfigs = _messages.MessageField('AuditConfig', 1, repeated=True) bindings = _messages.MessageField('Binding', 2, repeated=True) etag = _messages.BytesField(3) version = _messages.IntegerField(4, variant=_messages.Variant.INT32) class PubsubDestination(_messages.Message): r"""A Cloud Pubsub destination. Fields: topic: The name of the Cloud Pub/Sub topic to publish to. For example: `projects/PROJECT_ID/topics/TOPIC_ID`. """ topic = _messages.StringField(1) class Resource(_messages.Message): r"""Representation of a cloud resource. Messages: DataValue: The content of the resource, in which some sensitive fields are scrubbed away and may not be present. Fields: data: The content of the resource, in which some sensitive fields are scrubbed away and may not be present. discoveryDocumentUri: The URL of the discovery document containing the resource's JSON schema. For example: `"https://www.googleapis.com/discovery/v1/apis/compute/v1/rest"`. It will be left unspecified for resources without a discovery-based API, such as Cloud Bigtable. discoveryName: The JSON schema name listed in the discovery document. Example: "Project". It will be left unspecified for resources (such as Cloud Bigtable) without a discovery-based API. parent: The full name of the immediate parent of this resource. See [Resource Names](https://cloud.google.com/apis/design/resource_names#ful l_resource_name) for more information. For GCP assets, it is the parent resource defined in the [Cloud IAM policy hierarchy](https://cloud.google.com/iam/docs/overview#policy_hierarchy). For example: `"//cloudresourcemanager.googleapis.com/projects/my_project_123"`. For third-party assets, it is up to the users to define. resourceUrl: The REST URL for accessing the resource. An HTTP GET operation using this URL returns the resource itself. Example: `https://cloudresourcemanager.googleapis.com/v1/projects/my- project-123`. It will be left unspecified for resources without a REST API. version: The API version. Example: "v1". """ @encoding.MapUnrecognizedFields('additionalProperties') class DataValue(_messages.Message): r"""The content of the resource, in which some sensitive fields are scrubbed away and may not be present. Messages: AdditionalProperty: An additional property for a DataValue object. Fields: additionalProperties: Properties of the object. """ class AdditionalProperty(_messages.Message): r"""An additional property for a DataValue object. Fields: key: Name of the additional property. value: A extra_types.JsonValue attribute. """ key = _messages.StringField(1) value = _messages.MessageField('extra_types.JsonValue', 2) additionalProperties = _messages.MessageField('AdditionalProperty', 1, repeated=True) data = _messages.MessageField('DataValue', 1) discoveryDocumentUri = _messages.StringField(2) discoveryName = _messages.StringField(3) parent = _messages.StringField(4) resourceUrl = _messages.StringField(5) version = _messages.StringField(6) class StandardQueryParameters(_messages.Message): r"""Query parameters accepted by all methods. Enums: FXgafvValueValuesEnum: V1 error format. AltValueValuesEnum: Data format for response. Fields: f__xgafv: V1 error format. access_token: OAuth access token. alt: Data format for response. callback: JSONP fields: Selector specifying which fields to include in a partial response. key: API key. Your API key identifies your project and provides you with API access, quota, and reports. Required unless you provide an OAuth 2.0 token. oauth_token: OAuth 2.0 token for the current user. prettyPrint: Returns response with indentations and line breaks. quotaUser: Available to use for quota purposes for server-side applications. Can be any arbitrary string assigned to a user, but should not exceed 40 characters. trace: A tracing token of the form "token:<tokenid>" to include in api requests. uploadType: Legacy upload protocol for media (e.g. "media", "multipart"). upload_protocol: Upload protocol for media (e.g. "raw", "multipart"). """ class AltValueValuesEnum(_messages.Enum): r"""Data format for response. Values: json: Responses with Content-Type of application/json media: Media download with context-dependent Content-Type proto: Responses with Content-Type of application/x-protobuf """ json = 0 media = 1 proto = 2 class FXgafvValueValuesEnum(_messages.Enum): r"""V1 error format. Values: _1: v1 error format _2: v2 error format """ _1 = 0 _2 = 1 f__xgafv = _messages.EnumField('FXgafvValueValuesEnum', 1) access_token = _messages.StringField(2) alt = _messages.EnumField('AltValueValuesEnum', 3, default='json') callback = _messages.StringField(4) fields = _messages.StringField(5) key = _messages.StringField(6) oauth_token = _messages.StringField(7) prettyPrint = _messages.BooleanField(8, default=True) quotaUser = _messages.StringField(9) trace = _messages.StringField(10) uploadType = _messages.StringField(11) upload_protocol = _messages.StringField(12) class Status(_messages.Message): r"""The `Status` type defines a logical error model that is suitable for different programming environments, including REST APIs and RPC APIs. It is used by [gRPC](https://github.com/grpc). Each `Status` message contains three pieces of data: error code, error message, and error details. You can find out more about this error model and how to work with it in the [API Design Guide](https://cloud.google.com/apis/design/errors). Messages: DetailsValueListEntry: A DetailsValueListEntry object. Fields: code: The status code, which should be an enum value of google.rpc.Code. details: A list of messages that carry the error details. There is a common set of message types for APIs to use. message: A developer-facing error message, which should be in English. Any user-facing error message should be localized and sent in the google.rpc.Status.details field, or localized by the client. """ @encoding.MapUnrecognizedFields('additionalProperties') class DetailsValueListEntry(_messages.Message): r"""A DetailsValueListEntry object. Messages: AdditionalProperty: An additional property for a DetailsValueListEntry object. Fields: additionalProperties: Properties of the object. Contains field @type with type URL. """ class AdditionalProperty(_messages.Message): r"""An additional property for a DetailsValueListEntry object. Fields: key: Name of the additional property. value: A extra_types.JsonValue attribute. """ key = _messages.StringField(1) value = _messages.MessageField('extra_types.JsonValue', 2) additionalProperties = _messages.MessageField('AdditionalProperty', 1, repeated=True) code = _messages.IntegerField(1, variant=_messages.Variant.INT32) details = _messages.MessageField('DetailsValueListEntry', 2, repeated=True) message = _messages.StringField(3) class TemporalAsset(_messages.Message): r"""Temporal asset. In addition to the asset, the temporal asset includes the status of the asset and valid from and to time of it. Fields: asset: Asset. deleted: If the asset is deleted or not. window: The time window when the asset data and state was observed. """ asset = _messages.MessageField('Asset', 1) deleted = _messages.BooleanField(2) window = _messages.MessageField('TimeWindow', 3) class TimeWindow(_messages.Message): r"""A time window of (start_time, end_time]. Fields: endTime: End time of the time window (inclusive). Current timestamp if not specified. startTime: Start time of the time window (exclusive). """ endTime = _messages.StringField(1) startTime = _messages.StringField(2) class UpdateFeedRequest(_messages.Message): r"""Update asset feed request. Fields: feed: The new values of feed details. It must match an existing feed and the field `name` must be in the format of: projects/project_number/feeds/feed_id or folders/folder_number/feeds/feed_id or organizations/organization_number/feeds/feed_id. updateMask: Only updates the `feed` fields indicated by this mask. The field mask must not be empty, and it must not contain fields that are immutable or only set by the server. """ feed = _messages.MessageField('Feed', 1) updateMask = _messages.StringField(2) encoding.AddCustomJsonFieldMapping( StandardQueryParameters, 'f__xgafv', '$.xgafv') encoding.AddCustomJsonEnumMapping( StandardQueryParameters.FXgafvValueValuesEnum, '_1', '1') encoding.AddCustomJsonEnumMapping( StandardQueryParameters.FXgafvValueValuesEnum, '_2', '2')
40.752847
89
0.721556
[ "Apache-2.0" ]
google-cloud-sdk-unofficial/google-cloud-sdk
lib/googlecloudsdk/third_party/apis/cloudasset/v1p2beta1/cloudasset_v1p2beta1_messages.py
35,781
Python
# -*- coding: utf-8 -*- """Django page CMS test suite module for page links""" from pages.tests.testcase import TestCase from pages.models import Content class LinkTestCase(TestCase): """Django page CMS link test suite class""" def test_01_set_body_pagelink(self): """Test the get_body_pagelink_ids and set_body_pagelink functions.""" self.set_setting("PAGE_LINK_FILTER", True) page1 = self.create_new_page() page2 = self.create_new_page() # page2 has a link on page1 content_string = 'test <a href="%s" class="page_%d">hello</a>' content = Content( page=page2, language='en-us', type='body', body=content_string % ('#', page1.id) ) content.save() self.assertEqual( Content.objects.get_content(page2, 'en-us', 'body'), content_string % (page1.get_url_path(), page1.id) ) self.assertFalse(page2.has_broken_link()) page1.delete() self.assertEqual( Content.objects.get_content(page2, 'en-us', 'body'), 'test <a href="#" class="pagelink_broken">hello</a>' ) self.assertTrue(page2.has_broken_link())
36.147059
77
0.602929
[ "BSD-3-Clause" ]
redsolution/django-page-cms
pages/tests/test_pages_link.py
1,229
Python
import nextcord from nextcord.ext import commands, menus bot = commands.Bot(command_prefix="$") class ButtonConfirm(menus.ButtonMenu): def __init__(self, text): super().__init__(timeout=15.0, delete_message_after=True) self.text = text self.result = None async def send_initial_message(self, ctx, channel): return await channel.send(self.text, view=self) @nextcord.ui.button(emoji='\N{WHITE HEAVY CHECK MARK}') async def do_confirm(self, button, interaction): self.result = True self.stop() @nextcord.ui.button(emoji='\N{CROSS MARK}') async def do_deny(self, button, interaction): self.result = False self.stop() async def prompt(self, ctx): await menus.Menu.start(self, ctx, wait=True) return self.result @bot.command() async def confirm(ctx): answer = await ButtonConfirm('Confirm?').prompt(ctx) await ctx.send(f'You said: {answer}') bot.run('token')
25.153846
65
0.66157
[ "MIT" ]
Brettanda/nextcord-ext-menus
examples/confirm.py
981
Python
from ParseHandler import ParseHandler from PathHandler import PathHandler import paths parser = ParseHandler() pather = PathHandler() # match subdirectories in both folders pather.build_matching_subdir(paths.TOY_RAW, paths.TOY_CLEAN) # get paths to folders in raw/ directory dir_names = pather.get_dir_names(paths.TOY_RAW) raw_dir_paths = pather.get_dir_paths(paths.TOY_RAW) clean_dir_paths = pather.get_dir_paths(paths.TOY_CLEAN) # iterate through the contents of each folder for raw_dir_path, clean_dir_path in zip(raw_dir_paths, clean_dir_paths): # get raw file paths from each subdir file_names = pather.get_file_names(raw_dir_path) raw_file_paths = pather.get_file_paths(raw_dir_path) clean_file_paths = [clean_dir_path + file_name for file_name in file_names] # parse each raw_file into the clean_file for raw_file_path, clean_file_path in zip(raw_file_paths, clean_file_paths): parser.parse(raw_file_path, clean_file_path)
33.862069
80
0.792261
[ "MIT" ]
richard-duong/GuessTheClass
old/src/integrationClean.py
982
Python
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.response.AlipayResponse import AlipayResponse class MybankCreditLoanapplyInsturlQueryResponse(AlipayResponse): def __init__(self): super(MybankCreditLoanapplyInsturlQueryResponse, self).__init__() self._target_url = None @property def target_url(self): return self._target_url @target_url.setter def target_url(self, value): self._target_url = value def parse_response_content(self, response_content): response = super(MybankCreditLoanapplyInsturlQueryResponse, self).parse_response_content(response_content) if 'target_url' in response: self.target_url = response['target_url']
28.769231
114
0.727273
[ "Apache-2.0" ]
Anning01/alipay-sdk-python-all
alipay/aop/api/response/MybankCreditLoanapplyInsturlQueryResponse.py
748
Python
""" This file defines the database models """ from .common import db, Field, auth from py4web import URL from pydal.validators import IS_NOT_EMPTY, IS_FILE, IS_EMPTY_OR import datetime from . import settings def get_time(): return datetime.datetime.utcnow() def get_download_url(picture): return f"images/{picture}" def get_user(): return auth.current_user.get("id") if auth.current_user else None db.define_table( "post", Field("title", "string", requires=IS_NOT_EMPTY()), Field("content", "text", requires=IS_NOT_EMPTY()), Field("date_posted", "datetime", default=get_time, readable=False, writable=False), Field( "author", "reference auth_user", default=get_user, readable=False, writable=False, ), ) db.define_table( "profile", Field("user", "reference auth_user", readable=False, writable=False), Field( "image", "upload", requires = IS_EMPTY_OR(IS_FILE()), default="", uploadfolder=settings.UPLOAD_PATH, download_url=get_download_url, label="Profile Picture", ), ) # We do not want these fields to appear in forms by default. db.post.id.readable = False db.post.id.writable = False db.profile.id.readable = False db.profile.id.writable = False db.commit()
22.655172
87
0.672755
[ "MIT" ]
Kkeller83/py4web_spa_blog
models.py
1,314
Python
import imageio import tensorflow as tf import numpy as np from PIL import Image, ImageDraw, ImageFont from tf_agents.replay_buffers import tf_uniform_replay_buffer from tf_agents.drivers import dynamic_step_driver from tf_agents.environments import tf_py_environment def load_policy(path): return tf.compat.v2.saved_model.load(path) def visualize_policy(environment, policy, output_filename, num_episodes=1, fps=5): rendering_environment = environment if isinstance(environment, tf_py_environment.TFPyEnvironment): # The inner env should be used for rendering rendering_environment = environment.pyenv.envs[0] with imageio.get_writer(output_filename, fps=fps) as video: font = ImageFont.load_default() total_reward = None def _add_environment_frame(): rendered_env = rendering_environment.render() image = Image.fromarray(rendered_env.astype(np.uint8), mode='RGB') draw = ImageDraw.Draw(image) draw.text((5, 5), 'TR: %.1f' % total_reward, font=font) image_as_numpy = np.array(image.getdata()).reshape(rendered_env.shape).astype(np.uint8) video.append_data(image_as_numpy) for _ in range(num_episodes): total_reward = 0.0 time_step = environment.reset() _add_environment_frame() while not time_step.is_last(): action_step = policy.action(time_step) time_step = environment.step(action_step.action) total_reward += time_step.reward.numpy()[0] _add_environment_frame() def evaluate_policy(env, policy, num_episodes): total_return = 0.0 total_num_steps = 0.0 for _ in range(num_episodes): time_step = env.reset() episode_return = 0.0 episode_num_steps = 0.0 while not time_step.is_last(): action_step = policy.action(time_step) time_step = env.step(action_step.action) episode_return += time_step.reward episode_num_steps += 1 total_return += episode_return total_num_steps += episode_num_steps return (total_return / num_episodes).numpy()[0], total_num_steps / num_episodes def as_tf_env(env): return tf_py_environment.TFPyEnvironment(env) def create_replay_buffer(agent, train_env, replay_buffer_size): return tf_uniform_replay_buffer.TFUniformReplayBuffer( data_spec=agent.collect_data_spec, batch_size=train_env.batch_size, max_length=replay_buffer_size, ) def create_collect_driver(train_env, agent, replay_buffer, collect_steps): return dynamic_step_driver.DynamicStepDriver( train_env, agent.collect_policy, observers=[replay_buffer.add_batch], num_steps=collect_steps, ) def cudnn_workaround(): gpus = tf.config.experimental.list_physical_devices('GPU') if gpus: for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True)
33.488889
99
0.69144
[ "MIT" ]
hr0nix/trackdays
trackdays/training/utils.py
3,014
Python
#!/usr/bin/env python import argparse import open3d as o3d import numpy as np import os import time from os.path import join, dirname, basename, splitext, exists, isdir, isfile from os import listdir from numpy import linalg as LA import math import cv2 from pathlib import Path def pcd_to_bin(pcd_path, outdir=None): pcd = o3d.io.read_point_cloud(pcd_path, format="pcd") pcd_arr = np.asarray(pcd.points) if len(pcd_arr) == 0: return None outpath = join(Path(pcd_path).parent if outdir is None else outdir, splitext(basename(pcd_path))[0] + ".bin") # binarize array and save to the same file path with .bin extension pcd_arr.tofile(outpath) return outpath def pcd_to_sphproj(pcd_path, nr_scans, width, outdir=None): pcd = o3d.io.read_point_cloud(pcd_path, format="pcd") pcd_arr = np.asarray(pcd.points) if len(pcd_arr) == 0: return None # https://towardsdatascience.com/spherical-projection-for-point-clouds-56a2fc258e6c # print(pcd_arr.shape) # print(pcd_arr[:, :3].shape) R = LA.norm(pcd_arr[:, :3], axis=1) print("R {} | {} -- {}".format(R.shape, np.amin(R), np.amax(R))) yaw = np.arctan2(pcd_arr[:, 1], pcd_arr[:, 0]) # print("yaw {} | {} -- {}".format(yaw.shape, np.amin(yaw), np.amax(yaw))) # print("y {} | {} -- {}".format(pcd_arr[:, 1].shape, np.amin(pcd_arr[:, 1]), np.amax(pcd_arr[:, 1]))) pitch = np.arcsin(np.divide(pcd_arr[:, 2], R)) # print("pitch {} | {} -- {}".format(pitch.shape, np.amin(pitch), np.amax(pitch))) # import matplotlib.pyplot as plt # plt.plot(yaw, pitch, 'b.') # plt.xlabel('yaw [rad]') # plt.ylabel('pitch [rad]') # plt.axis('equal') # plt.show() FOV_Down = np.amin(pitch) FOV_Up = np.amax(pitch) FOV = FOV_Up + abs(FOV_Down) u = np.around((nr_scans-1) * (1.0-(pitch-FOV_Down)/FOV)).astype(np.int16) # print("u {} | {} -- {} | {}".format(u.shape, np.amin(u), np.amax(u), u.dtype)) v = np.around((width-1) * (0.5 * ((yaw/math.pi) + 1))).astype(np.int16) # print("v {} | {} -- {} | {}".format(v.shape, np.amin(v), np.amax(v), v.dtype)) sph_proj = np.zeros((nr_scans, width)) R[R > 100.0] = 100.0 # cut off all values above 100m R = np.round((R / 100.0) * 255.0) # convert 0.0-100.0m into 0.0-255.0 for saving as byte8 image sph_proj[u, v] = R # print("sph_proj {} | {} -- {} | {}".format(sph_proj.shape, np.amin(sph_proj), np.amax(sph_proj), sph_proj.dtype)) outpath = join(Path(pcd_path).parent if outdir is None else outdir, splitext(basename(pcd_path))[0] + ".jpg") cv2.imwrite(outpath, sph_proj) print(outpath) return np.amin(R), np.amax(R) def bin_to_pcd(bin_path, outdir=None): print(bin_path) pcd_arr = np.fromfile(bin_path, dtype=np.float32) pcd_arr = pcd_arr.reshape((-1, 4)) # kitti has 4 values per point # print(type(pcd_arr), pcd_arr.shape, len(pcd_arr)) # print(pcd_arr[:, :3].shape) if len(pcd_arr) == 0: return None outpath = join(Path(bin_path).parent if outdir is None else outdir, splitext(basename(bin_path))[0] + ".pcd") print(outpath) # save array as .pcd pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(pcd_arr[:, :3]) # 3 dimensions o3d.io.write_point_cloud(outpath, pcd) return outpath def bin_to_sphproj(bin_path, outdir=None): pass if __name__ == '__main__': parser = argparse.ArgumentParser(description='Convert between .pcd and .bin point cloud formats') parser.add_argument("-t", type=str, required=True, help="Conversion to run (pcd2bin, pcd2sphproj, bin2pcd, bin2sphproj)") parser.add_argument("-p", type=str, required=True, help="Path to directory or file with point cloud") parser.add_argument("-nr_scans", type=int, help="Number of lidar scans (default 16)", default=16) parser.add_argument("-width", type=int, help="Spherical projection width (default 1024)", default=1024) args = parser.parse_args() if not exists(args.p): exit("{} does not exist".format(args.p)) if isfile(args.p): # check extension ext = splitext(args.p)[-1].lower() if args.t == "pcd2bin" and ext == ".pcd": pcd_to_bin(args.p) elif args.t == "bin2pcd" and ext == ".bin": bin_to_pcd(args.p) elif args.t == "pcd2sphproj" and ext == ".pcd": pcd_to_sphproj(args.p, args.nr_scans, args.width) elif args.t == "bin2sphproj" and ext == ".bin": bin_to_sphproj(args.p) else: print("Wrong conversion or extension incompatible with conversion") elif isdir(args.p): # go through all files and convert .pcd or .bin files encountered within the directory timestamp = time.strftime("%Y%m%d-%H%M%S") outdir = join(Path(args.p).parent, str(args.t) + "_" + timestamp) if not os.path.exists(outdir): os.makedirs(outdir) range_min = float('inf') range_max = float('-inf') for f in listdir(args.p): # check extension ext = splitext(f)[-1].lower() if args.t == "pcd2bin" and ext == ".pcd": pcd_to_bin(join(args.p, f), outdir) elif args.t == "bin2pcd" and ext == ".bin": bin_to_pcd(join(args.p, f), outdir) elif args.t == "pcd2sphproj" and ext == ".pcd": range_min1, range_max1 = pcd_to_sphproj(join(args.p, f), args.nr_scans, args.width, outdir) if range_min1 < range_min: range_min = range_min1 if range_max1 > range_max: range_max = range_max1 elif args.t == "bin2sphproj" and ext == ".bin": bin_to_sphproj(join(args.p, f), outdir) else: print("Wrong conversion or extension incompatible with conversion") print("range: {} - {}".format(range_min, range_max))
36.723926
119
0.607751
[ "MIT" ]
miroslavradojevic/python-snippets
pointcloud/pcl_conv.py
5,986
Python
import os import traceback import datetime class DuplicatePlotException(Exception): pass class ModelLogUtils(): ''' Collection of utility methods for logging and plotting of messages & metrics during training. ''' def __init__(self): # Add logging to stdout for local debugging self._logger = ModelLogUtilsLogger() def set_logger(self, logger): if not isinstance(logger, ModelLogUtilsLogger): raise Exception('`logger` should subclass `ModelLogUtilsLogger`') self._logger = logger def log(self, message): ''' Logs a message for analysis of model training. ''' self._logger.log(message) def define_loss_plot(self): ''' Convenience method of defining a plot of ``loss`` against ``epoch``. To be used with ``log_loss_metric()``. ''' self.define_plot('Loss Over Epochs', ['loss'], x_axis='epoch') def log_loss_metric(self, loss, epoch): ''' Convenience method for logging `loss` against `epoch`. To be used with ``define_loss_plot()``. ''' self.log_metrics(loss=loss, epoch=epoch) def define_plot(self, title, metrics, x_axis=None): ''' Defines a plot for a set of metrics for analysis of model training. By default, metrics will be plotted against time. ''' self._logger.define_plot(title, metrics, x_axis) def log_metrics(self, **kwargs): ''' Logs metrics for a single point in time { <metric>: <value> }. <value> should be a number. ''' self._logger.log_metrics(**kwargs) class ModelLogUtilsLogger(): def __init__(self): self._plots = set() def log(self, message): self._print(message) def define_plot(self, title, metrics, x_axis): if title in self._plots: raise DuplicatePlotException('Plot {} already defined'.format(title)) self._plots.add(title) self._print('Plot with title `{}` of {} against {} will be registered when this model is being trained on Rafiki' \ .format(title, ', '.join(metrics), x_axis or 'time')) def log_metrics(self, **kwargs): self._print(', '.join(['{}={}'.format(metric, value) for (metric, value) in kwargs.items()])) def _print(self, message): print(message)
32.808219
123
0.616284
[ "Apache-2.0" ]
Yirui-Wang/rafiki
rafiki/model/log.py
2,395
Python
# -*- coding: utf-8 -*- try: # Python 2.7 from collections import OrderedDict except: # Python 2.6 from gluon.contrib.simplejson.ordered_dict import OrderedDict from gluon import current from gluon.storage import Storage def config(settings): """ Template for WA-COP + CAD Cloud Integration """ T = current.T # ========================================================================= # System Settings # settings.base.system_name = T("Sahana: Washington Common Operating Picture (WA-COP)") settings.base.system_name_short = T("Sahana") # Prepop options settings.base.prepopulate_options = {"mandatory": "CAD", "default": ("default/users", "CAD/Demo", ), } # Prepop default settings.base.prepopulate = "template:default" # Theme (folder to use for views/layout.html) #settings.base.theme = "default" # ------------------------------------------------------------------------- # Self-Registration and User Profile # # Users can self-register #settings.security.self_registration = False # Users need to verify their email settings.auth.registration_requires_verification = True # Users need to be approved settings.auth.registration_requires_approval = True settings.auth.registration_requests_organisation = True settings.auth.registration_organisation_required = True # Approval emails get sent to all admins settings.mail.approver = "ADMIN" settings.auth.registration_link_user_to = {"staff": T("Staff")} settings.auth.registration_link_user_to_default = ["staff"] settings.auth.registration_roles = {"organisation_id": ["USER"], } settings.auth.show_utc_offset = False settings.auth.show_link = False # ------------------------------------------------------------------------- # Security Policy # settings.security.policy = 7 # Apply Controller, Function and Table ACLs settings.security.map = True # ------------------------------------------------------------------------- # L10n (Localization) settings # settings.L10n.languages = OrderedDict([ ("en", "English"), ]) # Default Language settings.L10n.default_language = "en" # Default timezone for users settings.L10n.utc_offset = "-0800" # Unsortable 'pretty' date format settings.L10n.date_format = "%b %d %Y" # Number formats (defaults to ISO 31-0) # Decimal separator for numbers (defaults to ,) settings.L10n.decimal_separator = "." # Thousands separator for numbers (defaults to space) settings.L10n.thousands_separator = "," # Default Country Code for telephone numbers settings.L10n.default_country_code = 1 # Enable this to change the label for 'Mobile Phone' settings.ui.label_mobile_phone = "Cell Phone" # Enable this to change the label for 'Postcode' settings.ui.label_postcode = "ZIP Code" settings.msg.require_international_phone_numbers = False # PDF to Letter settings.base.paper_size = T("Letter") # Uncomment this to Translate CMS Series Names # - we want this on when running s3translate but off in normal usage as we use the English names to lookup icons in render_posts #settings.L10n.translate_cms_series = True # Uncomment this to Translate Location Names #settings.L10n.translate_gis_location = True # ------------------------------------------------------------------------- # GIS settings # # Restrict the Location Selector to just certain countries settings.gis.countries = ("US",) # Levels for the LocationSelector levels = ("L1", "L2", "L3") # Uncomment to pass Addresses imported from CSV to a Geocoder to try and automate Lat/Lon #settings.gis.geocode_imported_addresses = "google" # Until we add support to S3LocationSelector to set dropdowns from LatLons settings.gis.check_within_parent_boundaries = False # GeoNames username settings.gis.geonames_username = "mcop" # Uncomment to hide Layer Properties tool #settings.gis.layer_properties = False # Uncomment to display the Map Legend as a floating DIV settings.gis.legend = "float" # Uncomment to prevent showing LatLon in Location Represents settings.gis.location_represent_address_only = "icon" # Resources which can be directly added to the main map settings.gis.poi_create_resources = None # ------------------------------------------------------------------------- # Event Management Settings # settings.event.incident_teams_tab = "Units" # ------------------------------------------------------------------------- # Modules # settings.modules = OrderedDict([ # Core modules which shouldn't be disabled ("default", Storage( name_nice = "Home", restricted = False, # Use ACLs to control access to this module access = None, # All Users (inc Anonymous) can see this module in the default menu & access the controller module_type = None # This item is not shown in the menu )), ("admin", Storage( name_nice = "Administration", #description = "Site Administration", restricted = True, access = "|1|", # Only Administrators can see this module in the default menu & access the controller module_type = None # This item is handled separately for the menu )), ("appadmin", Storage( name_nice = "Administration", #description = "Site Administration", restricted = True, module_type = None # No Menu )), # ("errors", Storage( # name_nice = "Ticket Viewer", # #description = "Needed for Breadcrumbs", # restricted = False, # module_type = None # No Menu # )), ("sync", Storage( name_nice = "Synchronization", #description = "Synchronization", restricted = True, access = "|1|", # Only Administrators can see this module in the default menu & access the controller module_type = None # This item is handled separately for the menu )), ("translate", Storage( name_nice = "Translation Functionality", #description = "Selective translation of strings based on module.", module_type = None, )), ("gis", Storage( name_nice = "Map", #description = "Situation Awareness & Geospatial Analysis", restricted = True, module_type = 1, # 1st item in the menu )), ("pr", Storage( name_nice = "Persons", description = "Central point to record details on People", restricted = True, access = "|1|", # Only Administrators can see this module in the default menu (access to controller is possible to all still) module_type = None )), ("org", Storage( name_nice = "Organizations", #description = 'Lists "who is doing what & where". Allows relief agencies to coordinate their activities', restricted = True, module_type = 10 )), # All modules below here should be possible to disable safely ("hrm", Storage( name_nice = "Contacts", #description = "Human Resources Management", restricted = True, module_type = None, )), ("cms", Storage( name_nice = "Content Management", restricted = True, module_type = 10, )), ("event", Storage( name_nice = "Event Management", restricted = True, module_type = 2, )), ("project", Storage( name_nice = "Project Management", restricted = True, module_type = None, )), ("doc", Storage( name_nice = "Documents", #description = "A library of digital resources, such as photos, documents and reports", restricted = True, module_type = None, )), ("stats", Storage( name_nice = "Statistics", restricted = True, module_type = None )), ]) # END =========================================================================
38.672566
141
0.559725
[ "MIT" ]
anurag-ks/eden
modules/templates/CAD/config.py
8,740
Python
from urllib.parse import quote import re def parse_equation(match): # Converts a latex expression into something the tex API can understand eq = match.group(0) # Curly brackets need to be escaped eq = eq.replace('{', '\{') eq = eq.replace('}', '\}') # Create the url using the quote method which converts special characters url = 'https://tex.s2cms.ru/svg/%s' % quote(eq) # Return the markdown SVG tag return '![](%s)' % url def parse_markdown(md): # Define a pattern for catching latex equations delimited by dollar signs eq_pattern = r'(\$.+?\$)' # Substitute any latex equations found return re.sub(eq_pattern, parse_equation, md) def markdown_texify(file_in, file_out): # Read input file markdown = open(file_in).read() # Parse markdown, take care of equations latex = parse_markdown(markdown) # Write to out-file result = open(file_out, 'w').write(latex) print('Finished, %i characters written to %s' % (result, file_out))
26.179487
77
0.666014
[ "Apache-2.0" ]
gigumbrajaguru/SlackTats
venv/lib/python3.7/site-packages/github_markdown.py
1,021
Python
import pandas as pd from oss_hugo.API_Hugo_OSS import API_Hugo_OSS class OSS_Schedule: def __init__(self): self.hugo = API_Hugo_OSS() def sessions_mapped_by_size(self): mapping = [] for path, session in self.hugo.sessions().items(): content = session.get('content') metadata = session.get('metadata') page_type = metadata.get('type') title = metadata.get('title') track = metadata.get('track') organizers = metadata.get('organizers') participants = metadata.get('participants') if not organizers: organizers = [] if not participants: participants = [] if type(organizers) is str: organizers = organizers.split(',') if type(participants) is str: participants = participants.split(',') if 'TBD' in organizers: organizers.remove('TBD') if 'Pending' in organizers: organizers.remove('Pending') if 'you ?' in participants: participants.remove('you ?') if title and page_type: item = { 'title': title, 'track': track, 'page_type': page_type, 'organizers': organizers, 'participants': participants, 'content': len(content), 'path': path } mapping.append(item) df_mappings = pd.DataFrame(mapping) df_mappings = df_mappings[['title', 'track', 'page_type', 'content', 'organizers', 'participants']] df_sessions = df_mappings[df_mappings['page_type'] != 'track'] df_sessions = df_sessions.sort_values(['content'], ascending=False).reset_index(drop=True) return df_sessions #todo get the result below using pandas def df_sessions_registered_participants(self): results = {} for key, value in self.hugo.df_participants().to_dict(orient='index').items(): title = value.get('title') sessions = value.get('sessions') for session in sessions: if results.get(session) is None: results[session] = [] results[session].append(title) mappings = [] for key, value in results.items(): mappings.append({'title': key, 'participants': value, 'participants_count': len(value)}) df_mappings = pd.DataFrame(mappings) df_mappings = df_mappings[['title', 'participants_count', 'participants']].sort_values(['participants_count'], ascending=False) return df_mappings
44.745763
136
0.580303
[ "CC0-1.0" ]
Alone2671/oss2020
notebooks/api/oss_hugo/OSS_Schedule.py
2,640
Python
# -------------- ##File path for the file file_path def read_file(path): file = open(file_path , 'r') sentence = file.readline() file.close() return sentence sample_message = read_file(file_path) print(sample_message) #Code starts here # -------------- #Code starts here file_path_1 file_path_2 def read_file(path): file = open(file_path_1 , 'r') sentence = file.readline() file.close() return str(sentence) message_1 = read_file(file_path_1) print(message_1) def read_file(path): file = open(file_path_2 , 'r') sentence = file.readline() file.close() return str(sentence) message_2 = read_file(file_path_2) print(message_2) def fuse_msg(message_a , message_b): quotient = int(message_b)//int(message_a) return str(quotient) secret_msg_1 = fuse_msg(message_1 , message_2) print(secret_msg_1) # -------------- #Code starts here file_path_3 def read_file(path): file = open(file_path_3 , 'r') sentence = file.readline() file.close() return str(sentence) message_3 = read_file(file_path_3) print(message_3) def substitute_msg(message_c): if message_c == 'Red': sub = 'Army General' if message_c == 'Green': sub = 'Data Scientist' if message_c == 'Blue' : sub = 'Marine Biologist' return sub secret_msg_2 = substitute_msg(message_3) print(secret_msg_2) # -------------- # File path for message 4 and message 5 file_path_4 file_path_5 #Code starts here def read_file(path): file = open(file_path_4 , 'r') sentence = file.readline() file.close() return sentence message_4 = read_file(file_path_4) print(message_4) def read_file(path): file = open(file_path_5 , 'r') sentence = file.readline() file.close() return sentence message_5 = read_file(file_path_5) print(message_5) def compare_msg(message_d , message_e): a_list = message_d.split() b_list = message_e.split() c_list = [x for x in a_list if x not in b_list] final_msg = " ".join(c_list) return final_msg secret_msg_3 = compare_msg(message_4 , message_5) print(secret_msg_3) # -------------- #Code starts here file_path_6 def read_file(path): file = open(file_path_6 , 'r') sentence = file.readline() file.close() return sentence message_6 = read_file(file_path) print(message_6) def extract_msg(message_f): a_list = message_f.split() even_word = lambda x : (len(x) % 2 == 0) b_list = filter(even_word , a_list) final_msg = " ".join(b_list) return final_msg secret_msg_4 = extract_msg(message_6) print(secret_msg_4) # -------------- #Secret message parts in the correct order message_parts=[secret_msg_3, secret_msg_1, secret_msg_4, secret_msg_2] final_path= user_data_dir + '/secret_message.txt' #Code starts here secret_msg = secret_msg_3 + ' '+ secret_msg_1 + ' ' + secret_msg_4 + ' '+ secret_msg_2 def write_file(secret_msg , path): file = open(final_path , 'a+') sentence = file.write(secret_msg) file.close() return sentence sample_message = write_file(secret_msg , final_path) print(sample_message)
19.226744
87
0.638645
[ "MIT" ]
umeshpal93/ga-learner-dsb-repo
Spy-Game/code.py
3,307
Python
# signals are for when a user modifies something in the db, example, creates a post from django.db.models.signals import post_save from django.contrib.auth.models import User from django.dispatch import receiver from .models import Profile # Creates a profile each time a new user is created @receiver(post_save, sender=User) def create_profile(sender, instance, created, **kwargs): if created: Profile.objects.create(user=instance) @receiver(post_save, sender=User) def save_profile(sender, instance, **kwargs): instance.profile.save()
30.944444
83
0.771993
[ "MIT" ]
afern247/BookStore-Web
bookStore/users/signals.py
557
Python
import os import numpy as np import torch import time import sys from collections import OrderedDict from torch.autograd import Variable from pathlib import Path import warnings warnings.filterwarnings('ignore') mainpath = os.getcwd() pix2pixhd_dir = Path(mainpath+'/src/pix2pixHD/') sys.path.append(str(pix2pixhd_dir)) from data.data_loader import CreateDataLoader from models.models import create_model import util.util as util from util.visualizer import Visualizer import src.config.train_opt as opt os.environ['CUDA_VISIBLE_DEVICES'] = "0" torch.multiprocessing.set_sharing_strategy('file_system') torch.backends.cudnn.benchmark = True def main(): iter_path = os.path.join(opt.checkpoints_dir, opt.name, 'iter.txt') data_loader = CreateDataLoader(opt) dataset = data_loader.load_data() dataset_size = len(data_loader) print('#training images = %d' % dataset_size) start_epoch, epoch_iter = 1, 0 total_steps = (start_epoch - 1) * dataset_size + epoch_iter display_delta = total_steps % opt.display_freq print_delta = total_steps % opt.print_freq save_delta = total_steps % opt.save_latest_freq model = create_model(opt) model = model.cuda() visualizer = Visualizer(opt) for epoch in range(start_epoch, opt.niter + opt.niter_decay + 1): epoch_start_time = time.time() if epoch != start_epoch: epoch_iter = epoch_iter % dataset_size for i, data in enumerate(dataset, start=epoch_iter): iter_start_time = time.time() total_steps += opt.batchSize epoch_iter += opt.batchSize # whether to collect output images save_fake = total_steps % opt.display_freq == display_delta ############## Forward Pass ###################### losses, generated = model(Variable(data['label']), Variable(data['inst']), Variable(data['image']), Variable(data['feat']), infer=save_fake) # sum per device losses losses = [torch.mean(x) if not isinstance(x, int) else x for x in losses] loss_dict = dict(zip(model.loss_names, losses)) # calculate final loss scalar loss_D = (loss_dict['D_fake'] + loss_dict['D_real']) * 0.5 loss_G = loss_dict['G_GAN'] + loss_dict.get('G_GAN_Feat', 0) + loss_dict.get('G_VGG', 0) ############### Backward Pass #################### # update generator weights model.optimizer_G.zero_grad() loss_G.backward() model.optimizer_G.step() # update discriminator weights model.optimizer_D.zero_grad() loss_D.backward() model.optimizer_D.step() ############## Display results and errors ########## ### print out errors if total_steps % opt.print_freq == print_delta: errors = {k: v.data if not isinstance(v, int) else v for k, v in loss_dict.items()} # CHANGE: removed [0] after v.data t = (time.time() - iter_start_time) / opt.batchSize visualizer.print_current_errors(epoch, epoch_iter, errors, t) visualizer.plot_current_errors(errors, total_steps) ### display output images if save_fake: visuals = OrderedDict([('input_label', util.tensor2label(data['label'][0], opt.label_nc)), ('synthesized_image', util.tensor2im(generated.data[0])), ('real_image', util.tensor2im(data['image'][0]))]) visualizer.display_current_results(visuals, epoch, total_steps) ### save latest model if total_steps % opt.save_latest_freq == save_delta: print('saving the latest model (epoch %d, total_steps %d)' % (epoch, total_steps)) model.save('latest') np.savetxt(iter_path, (epoch, epoch_iter), delimiter=',', fmt='%d') if epoch_iter >= dataset_size: break # end of epoch print('End of epoch %d / %d \t Time Taken: %d sec' % (epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time)) ### save model for this epoch if epoch % opt.save_epoch_freq == 0: print('saving the model at the end of epoch %d, iters %d' % (epoch, total_steps)) model.save('latest') model.save(epoch) np.savetxt(iter_path, (epoch + 1, 0), delimiter=',', fmt='%d') ### instead of only training the local enhancer, train the entire network after certain iterations if (opt.niter_fix_global != 0) and (epoch == opt.niter_fix_global): model.update_fixed_params() ### linearly decay learning rate after certain iterations if epoch > opt.niter: model.update_learning_rate() torch.cuda.empty_cache() if __name__ == '__main__': main()
39.070313
135
0.607678
[ "MIT" ]
michellefli/EverybodyDanceNow_reproduce_pytorch
train_pose2vid.py
5,001
Python
# MIT License # # Copyright (C) The Adversarial Robustness Toolbox (ART) Authors 2018 # # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated # documentation files (the "Software"), to deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit # persons to whom the Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all copies or substantial portions of the # Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, # TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """ This module implements classes to evaluate the performance of poison detection methods. """ from __future__ import absolute_import, division, print_function, unicode_literals import json import logging from typing import Tuple, Union, List import numpy as np logger = logging.getLogger(__name__) class GroundTruthEvaluator: """ Class to evaluate the performance of the poison detection method. """ def __init__(self): """ Evaluates ground truth constructor """ def analyze_correctness( self, assigned_clean_by_class: Union[np.ndarray, List[np.ndarray]], is_clean_by_class: list ) -> Tuple[np.ndarray, str]: """ For each training sample, determine whether the activation clustering method was correct. :param assigned_clean_by_class: Result of clustering. :param is_clean_by_class: is clean separated by class. :return: Two variables are returned: 1) all_errors_by_class[i]: an array indicating the correctness of each assignment in the ith class. Such that: all_errors_by_class[i] = 0 if marked poison, is poison all_errors_by_class[i] = 1 if marked clean, is clean all_errors_by_class[i] = 2 if marked poison, is clean all_errors_by_class[i] = 3 marked clean, is poison 2) Json object with confusion matrix per-class. """ all_errors_by_class = [] poison = 0 clean = 1 dic_json = {} logger.debug("Error rates per class:") for class_i, (assigned_clean, is_clean) in enumerate(zip(assigned_clean_by_class, is_clean_by_class)): errors = [] for assignment, bl_var in zip(assigned_clean, is_clean): bl_var = int(bl_var) # marked poison, is poison = 0 # true positive if assignment == poison and bl_var == poison: errors.append(0) # marked clean, is clean = 1 # true negative elif assignment == clean and bl_var == clean: errors.append(1) # marked poison, is clean = 2 # false positive elif assignment == poison and bl_var == clean: errors.append(2) # marked clean, is poison = 3 # false negative elif assignment == clean and bl_var == poison: errors.append(3) else: raise Exception("Analyze_correctness entered wrong class") errors = np.asarray(errors) logger.debug("-------------------%d---------------", class_i) key_i = "class_" + str(class_i) matrix_i = self.get_confusion_matrix(errors) dic_json.update({key_i: matrix_i}) all_errors_by_class.append(errors) all_errors_by_class = np.asarray(all_errors_by_class) conf_matrix_json = json.dumps(dic_json) return all_errors_by_class, conf_matrix_json def get_confusion_matrix(self, values: np.ndarray) -> dict: """ Computes and returns a json object that contains the confusion matrix for each class. :param values: Array indicating the correctness of each assignment in the ith class. :return: Json object with confusion matrix per-class. """ dic_class = {} true_positive = np.where(values == 0)[0].shape[0] true_negative = np.where(values == 1)[0].shape[0] false_positive = np.where(values == 2)[0].shape[0] false_negative = np.where(values == 3)[0].shape[0] tp_rate = self.calculate_and_print(true_positive, true_positive + false_negative, "true-positive rate") tn_rate = self.calculate_and_print(true_negative, false_positive + true_negative, "true-negative rate") fp_rate = self.calculate_and_print(false_positive, false_positive + true_negative, "false-positive rate") fn_rate = self.calculate_and_print(false_negative, true_positive + false_negative, "false-negative rate") dic_tp = dict( rate=round(tp_rate, 2), numerator=true_positive, denominator=(true_positive + false_negative), ) if (true_positive + false_negative) == 0: dic_tp = dict( rate="N/A", numerator=true_positive, denominator=(true_positive + false_negative), ) dic_tn = dict( rate=round(tn_rate, 2), numerator=true_negative, denominator=(false_positive + true_negative), ) if (false_positive + true_negative) == 0: dic_tn = dict( rate="N/A", numerator=true_negative, denominator=(false_positive + true_negative), ) dic_fp = dict( rate=round(fp_rate, 2), numerator=false_positive, denominator=(false_positive + true_negative), ) if (false_positive + true_negative) == 0: dic_fp = dict( rate="N/A", numerator=false_positive, denominator=(false_positive + true_negative), ) dic_fn = dict( rate=round(fn_rate, 2), numerator=false_negative, denominator=(true_positive + false_negative), ) if (true_positive + false_negative) == 0: dic_fn = dict( rate="N/A", numerator=false_negative, denominator=(true_positive + false_negative), ) dic_class.update(dict(TruePositive=dic_tp)) dic_class.update(dict(TrueNegative=dic_tn)) dic_class.update(dict(FalsePositive=dic_fp)) dic_class.update(dict(FalseNegative=dic_fn)) return dic_class @staticmethod def calculate_and_print(numerator: int, denominator: int, name: str) -> float: """ Computes and prints the rates based on the denominator provided. :param numerator: number used to compute the rate. :param denominator: number used to compute the rate. :param name: Rate name being computed e.g., false-positive rate. :return: Computed rate """ try: res = 100 * (numerator / float(denominator)) logger.debug("%s: %d/%d=%.3g", name, numerator, denominator, res) return res except ZeroDivisionError: logger.debug("%s: couldn't calculate %d/%d", name, numerator, denominator) return 0.0
40.632124
120
0.618082
[ "MIT" ]
SecantZhang/adversarial-robustness-toolbox
art/defences/detector/poison/ground_truth_evaluator.py
7,842
Python
import logging; log = logging.getLogger(__name__) from .Menu import Menu class HitboxMenu(Menu): """A menu for examining a hitbox.""" def __init__(self, parent): super().__init__(parent) self.title = "Hitboxes" self.refresh() def refresh(self): if self.parent.model is None: self.items = ["No Model"] self.cursorPos = 0 return self.items = ["Box Bone 02 14 1617 Radius X Y Z"] for i, box in enumerate(self.parent.model.hitboxes): self.items.append("%3d %04X %04X %04X %02X%02X %+7.2f %+7.2f %+7.2f %+7.2f" % ( i, box.bone, box.unk02, box.unk14, box.unk16, box.unk17, box.radius, box.pos[0], box.pos[1], box.pos[2], )) self.cursorPos = 0 #def activate(self): # selPoly = self.cursorPos - 1 # if selPoly >= 0: # poly = self.dlist.polys[selPoly] # menu = PolyMenu(self.parent, poly, # "Display List %d Poly %d: %s" % (poly['list'], selPoly, # self.drawModes[poly['mode']], # )) # self.parent.enterMenu(menu) def render(self): super().render() #selPoly = self.cursorPos - 1 #if selPoly >= 0: # poly = self.dlist.polys[selPoly] # log.dprint("\x1B[16,400HPoly %d: %s, %d vtxs", selPoly, # self.drawModes[poly['mode']], # len(poly['vtxs'])) def _onChange(self): sel = self.cursorPos - 1 self.parent.highlightedHitbox = sel
29.888889
91
0.513631
[ "MIT" ]
RenaKunisaki/StarFoxAdventures
modelviewer/programs/SfaModel/Menu/HitboxMenu.py
1,614
Python
import pandas as pd import pprint all_client_diagnoses = pd.read_csv('2021_encounters_with_diagnoses.csv') print(all_client_diagnoses.columns) nora_clients = all_client_diagnoses.drop_duplicates('Pid').drop(columns=['Date Of Service', 'Encounter', 'Age', 'Service Code']) nora_gender = nora_clients[nora_clients.Facility == 'Northern Ohio Recovery Association'].groupby('Gender').count() lorain_gender = nora_clients[nora_clients.Facility == 'Lorain'].groupby('Gender').count() print('------------------------------------') print('NORA All Client Gender Breakdown') print('-------------------------------------') pprint.pprint(nora_gender) print('------------------------------------') print('Lorain All Client Gender Breakdown') print('-------------------------------------') pprint.pprint(lorain_gender) print('------------------------------------')
42.75
128
0.610526
[ "Apache-2.0" ]
thomps9012/noraML
demographics.py
855
Python
from __future__ import unicode_literals from .responses import OrganizationsResponse url_bases = [ "https?://organizations.(.+).amazonaws.com", ] url_paths = { '{0}/$': OrganizationsResponse.dispatch, }
19.363636
48
0.723005
[ "Apache-2.0" ]
7minus2/moto
moto/organizations/urls.py
213
Python
# -*- coding: utf-8 -*- # Copyright 2017 Openstack Foundation. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import os from oslo_config import cfg PATH_OPTS = [ cfg.StrOpt('pybasedir', default=os.path.abspath(os.path.join(os.path.dirname(__file__), '../')), help='Directory where the shadowfiend' 'python module is installed.'), cfg.StrOpt('bindir', default='$pybasedir/bin', help='Directory where shadowfiend' 'binaries are installed.'), cfg.StrOpt('state_path', default='$pybasedir', help="Top-level directory for maintainings" "shadowfiend's state."), ] CONF = cfg.CONF CONF.register_opts(PATH_OPTS) def basedir_def(*args): """Return an uninterpolated path relative to $pybasedir.""" return os.path.join('$pybasedir', *args) def bindir_def(*args): """Return an uninterpolated path relative to $bindir.""" return os.path.join('$bindir', *args) def state_path_def(*args): """Return an uninterpolated path relative to $state_path.""" return os.path.join('$state_path', *args) def basedir_rel(*args): """Return a path relative to $pybasedir.""" return os.path.join(CONF.pybasedir, *args) def bindir_rel(*args): """Return a path relative to $bindir.""" return os.path.join(CONF.bindir, *args) def state_path_rel(*args): """Return a path relative to $state_path.""" return os.path.join(CONF.state_path, *args)
31.073529
78
0.637009
[ "Apache-2.0" ]
RogerYuQian/shadowfiend
shadowfiend/common/paths.py
2,113
Python
import csv def save2csv(dst_fh, row): """ Appends a list with data to a dst_fh csv args: dst_fh: str, output file row: list, list of values to write in a row """ with open(dst_fh, "a", encoding="utf-8") as csvfile: out = csv.writer( csvfile, delimiter=",", lineterminator="\n", quotechar='"', quoting=csv.QUOTE_MINIMAL, ) try: out.writerow(row) except UnicodeEncodeError: pass
22.166667
56
0.511278
[ "MIT" ]
BookOps-CAT/CBH-migration
src/utils.py
532
Python
import re from chatterbot.conversation import Statement from chatbot.const import const from chatbot.vocabulary import Word class Detector(object): def __init__(self): self.vocabulary = Word() self.enum_type_key_word = ('类型', '等级', '方式', '分类', '模式', 'type', 'class', '系列') self.brand_type_key_word = ('品牌', '产品') self.text_type_key_word = ('简介', '描述', '简称', '备注', '说明',) self.date_type_key_word = ('日期', '时间', '日', '年', '月',) self.person_type_key_word = ('创办人', '负责人', '经理', '经手人', '经办人') self.org_type_key_word = ('托管方', '保管方',) self.price_type_key_word = ('价格', '金额', '价', '额度', '利润', '收益', '成本', '支出') self.mass_type_key_word = ('重量', '毛重', '净重', '毛重量', '净重',) self.volume_type_key_word = ('体积', '容量', '大小') self.length_type_key_word = ('长度', '宽度', '高度', '长', '宽', '高') self.operation_pattern = const.COMPARISON_PATTERN def detect_type_column(self, col_name) -> str: seg_words = self.vocabulary.get_seg_words(col_name) last_word = str(seg_words[-1]).lower() if last_word in self.enum_type_key_word: return const.ENUM if last_word in self.brand_type_key_word: return const.BRAND if last_word in self.date_type_key_word: return const.DATE if last_word in self.person_type_key_word: return const.PERSON if last_word in self.org_type_key_word: return const.ORG if last_word in self.price_type_key_word: return const.PRICE return const.TEXT def detect_operation(self, statement: Statement): query_text = statement.text seg_word = statement.search_text.split(const.SEG_SEPARATOR) operation = {} phrase = [] for op in self.operation_pattern.keys(): for pattern, slot_type, word, unit in self.operation_pattern[op]: match = re.search(pattern, query_text) if match: operation['op'] = op operation['slot_type'] = slot_type words = match.groups()[0] for w in seg_word: if w in words: phrase.append(w) operation['phrase'] = phrase operation['word'] = word operation['unit'] = unit return operation return operation
33.093333
87
0.560435
[ "Apache-2.0" ]
zgj0607/ChatBot
chatbot/logic/table/detect_column_type.py
2,670
Python
import unittest from conans.client.conf import get_default_settings_yml from conans.client.generators.b2 import B2Generator from conans.model.build_info import CppInfo from conans.model.conan_file import ConanFile from conans.model.env_info import EnvValues from conans.model.ref import ConanFileReference from conans.model.settings import Settings from conans.test.utils.tools import TestBufferConanOutput class B2GeneratorTest(unittest.TestCase): def b2_test(self): settings = Settings.loads(get_default_settings_yml()) settings.os = "Linux" settings.compiler = "gcc" settings.compiler.version = "6.3" settings.arch = "x86" settings.build_type = "Release" settings.cppstd = "gnu17" conanfile = ConanFile(TestBufferConanOutput(), None) conanfile.initialize(Settings({}), EnvValues()) conanfile.settings = settings ref = ConanFileReference.loads("MyPkg/0.1@lasote/stables") cpp_info = CppInfo("dummy_root_folder1") cpp_info.defines = ["MYDEFINE1"] cpp_info.cflags.append("-Flag1=23") cpp_info.version = "1.3" cpp_info.description = "My cool description" cpp_info.libs = ["MyLib1"] conanfile.deps_cpp_info.update(cpp_info, ref.name) ref = ConanFileReference.loads("MyPkg2/0.1@lasote/stables") cpp_info = CppInfo("dummy_root_folder2") cpp_info.libs = ["MyLib2"] cpp_info.defines = ["MYDEFINE2"] cpp_info.version = "2.3" cpp_info.exelinkflags = ["-exelinkflag"] cpp_info.sharedlinkflags = ["-sharedlinkflag"] cpp_info.cxxflags = ["-cxxflag"] cpp_info.public_deps = ["MyPkg"] cpp_info.lib_paths.extend(["Path\\with\\slashes", "regular/path/to/dir"]) cpp_info.include_paths.extend(["other\\Path\\with\\slashes", "other/regular/path/to/dir"]) conanfile.deps_cpp_info.update(cpp_info, ref.name) generator = B2Generator(conanfile) content = { 'conanbuildinfo.jam': _main_buildinfo_full, 'conanbuildinfo-316f2f0b155dc874a672d40d98d93f95.jam': _variation_full, } for ck, cv in generator.content.items(): self.assertEqual(cv, content[ck]) def b2_empty_settings_test(self): conanfile = ConanFile(TestBufferConanOutput(), None) conanfile.initialize(Settings({}), EnvValues()) generator = B2Generator(conanfile) content = { 'conanbuildinfo.jam': _main_buildinfo_empty, 'conanbuildinfo-d41d8cd98f00b204e9800998ecf8427e.jam': _variation_empty, } for ck, cv in generator.content.items(): self.assertEqual(cv, content[ck]) _main_buildinfo_full = '''\ #| B2 definitions for Conan packages. This is a generated file. Edit the corresponding conanfile.txt instead. |# import path ; import project ; import modules ; import feature ; local base-project = [ project.current ] ; local base-project-mod = [ $(base-project).project-module ] ; local base-project-location = [ project.attribute $(base-project-mod) location ] ; rule project-define ( id ) { id = $(id:L) ; local saved-project = [ modules.peek project : .base-project ] ; local id-location = [ path.join $(base-project-location) $(id) ] ; local id-mod = [ project.load $(id-location) : synthesize ] ; project.initialize $(id-mod) : $(id-location) ; project.inherit-attributes $(id-mod) : $(base-project-mod) ; local attributes = [ project.attributes $(id-mod) ] ; $(attributes).set parent-module : $(base-project-mod) : exact ; modules.poke $(base-project-mod) : $(id)-mod : $(id-mod) ; modules.poke [ CALLER_MODULE ] : $(id)-mod : $(id-mod) ; modules.poke project : .base-project : $(saved-project) ; IMPORT $(__name__) : constant-if call-in-project : $(id-mod) : constant-if call-in-project ; if [ project.is-jamroot-module $(base-project-mod) ] { use-project /$(id) : $(id) ; } return $(id-mod) ; } rule constant-if ( name : value * ) { if $(__define_constants__) && $(value) { call-in-project : constant $(name) : $(value) ; modules.poke $(__name__) : $(name) : [ modules.peek $(base-project-mod) : $(name) ] ; } } rule call-in-project ( project-mod ? : rule-name args * : * ) { project-mod ?= $(base-project-mod) ; project.push-current [ project.target $(project-mod) ] ; local result = [ modules.call-in $(project-mod) : $(2) : $(3) : $(4) : $(5) : $(6) : $(7) : $(8) : $(9) : $(10) : $(11) : $(12) : $(13) : $(14) : $(15) : $(16) : $(17) : $(18) : $(19) ] ; project.pop-current ; return $(result) ; } rule include-conanbuildinfo ( cbi ) { include $(cbi) ; } IMPORT $(__name__) : project-define constant-if call-in-project include-conanbuildinfo : $(base-project-mod) : project-define constant-if call-in-project include-conanbuildinfo ; if ! ( relwithdebinfo in [ feature.values variant ] ) { variant relwithdebinfo : : <optimization>speed <debug-symbols>on <inlining>full <runtime-debugging>off ; } if ! ( minsizerel in [ feature.values variant ] ) { variant minsizerel : : <optimization>space <debug-symbols>off <inlining>full <runtime-debugging>off ; } local __conanbuildinfo__ = [ GLOB $(__file__:D) : conanbuildinfo-*.jam : downcase ] ; { local __define_constants__ = yes ; for local __cbi__ in $(__conanbuildinfo__) { call-in-project : include-conanbuildinfo $(__cbi__) ; } } # mypkg project-define mypkg ; # mypkg2 project-define mypkg2 ; { local __define_targets__ = yes ; for local __cbi__ in $(__conanbuildinfo__) { call-in-project : include-conanbuildinfo $(__cbi__) ; } } ''' _variation_full = '''\ #| B2 definitions for Conan packages. This is a generated file. Edit the corresponding conanfile.txt instead. |# # global constant-if rootpath(conan,32,x86,17,gnu,linux,gcc-6.3,release) : "" ; constant-if includedirs(conan,32,x86,17,gnu,linux,gcc-6.3,release) : "other/Path/with/slashes" "other/regular/path/to/dir" ; constant-if libdirs(conan,32,x86,17,gnu,linux,gcc-6.3,release) : "Path/with/slashes" "regular/path/to/dir" ; constant-if defines(conan,32,x86,17,gnu,linux,gcc-6.3,release) : "MYDEFINE2" "MYDEFINE1" ; constant-if cppflags(conan,32,x86,17,gnu,linux,gcc-6.3,release) : "-cxxflag" ; constant-if cflags(conan,32,x86,17,gnu,linux,gcc-6.3,release) : "-Flag1=23" ; constant-if sharedlinkflags(conan,32,x86,17,gnu,linux,gcc-6.3,release) : "-sharedlinkflag" ; constant-if exelinkflags(conan,32,x86,17,gnu,linux,gcc-6.3,release) : "-exelinkflag" ; constant-if requirements(conan,32,x86,17,gnu,linux,gcc-6.3,release) : <address-model>32 <architecture>x86 <cxxstd>17 <cxxstd:dialect>gnu <target-os>linux <toolset>gcc-6.3 <variant>release ; constant-if usage-requirements(conan,32,x86,17,gnu,linux,gcc-6.3,release) : <include>$(includedirs(conan,32,x86,17,gnu,linux,gcc-6.3,release)) <define>$(defines(conan,32,x86,17,gnu,linux,gcc-6.3,release)) <cflags>$(cflags(conan,32,x86,17,gnu,linux,gcc-6.3,release)) <cxxflags>$(cppflags(conan,32,x86,17,gnu,linux,gcc-6.3,release)) <link>shared:<linkflags>$(sharedlinkflags(conan,32,x86,17,gnu,linux,gcc-6.3,release)) ; # mypkg constant-if rootpath(mypkg,32,x86,17,gnu,linux,gcc-6.3,release) : "dummy_root_folder1" ; constant-if defines(mypkg,32,x86,17,gnu,linux,gcc-6.3,release) : "MYDEFINE1" ; constant-if cflags(mypkg,32,x86,17,gnu,linux,gcc-6.3,release) : "-Flag1=23" ; constant-if requirements(mypkg,32,x86,17,gnu,linux,gcc-6.3,release) : <address-model>32 <architecture>x86 <cxxstd>17 <cxxstd:dialect>gnu <target-os>linux <toolset>gcc-6.3 <variant>release ; constant-if usage-requirements(mypkg,32,x86,17,gnu,linux,gcc-6.3,release) : <include>$(includedirs(mypkg,32,x86,17,gnu,linux,gcc-6.3,release)) <define>$(defines(mypkg,32,x86,17,gnu,linux,gcc-6.3,release)) <cflags>$(cflags(mypkg,32,x86,17,gnu,linux,gcc-6.3,release)) <cxxflags>$(cppflags(mypkg,32,x86,17,gnu,linux,gcc-6.3,release)) <link>shared:<linkflags>$(sharedlinkflags(mypkg,32,x86,17,gnu,linux,gcc-6.3,release)) ; # mypkg2 constant-if rootpath(mypkg2,32,x86,17,gnu,linux,gcc-6.3,release) : "dummy_root_folder2" ; constant-if includedirs(mypkg2,32,x86,17,gnu,linux,gcc-6.3,release) : "other/Path/with/slashes" "other/regular/path/to/dir" ; constant-if libdirs(mypkg2,32,x86,17,gnu,linux,gcc-6.3,release) : "Path/with/slashes" "regular/path/to/dir" ; constant-if defines(mypkg2,32,x86,17,gnu,linux,gcc-6.3,release) : "MYDEFINE2" ; constant-if cppflags(mypkg2,32,x86,17,gnu,linux,gcc-6.3,release) : "-cxxflag" ; constant-if sharedlinkflags(mypkg2,32,x86,17,gnu,linux,gcc-6.3,release) : "-sharedlinkflag" ; constant-if exelinkflags(mypkg2,32,x86,17,gnu,linux,gcc-6.3,release) : "-exelinkflag" ; constant-if requirements(mypkg2,32,x86,17,gnu,linux,gcc-6.3,release) : <address-model>32 <architecture>x86 <cxxstd>17 <cxxstd:dialect>gnu <target-os>linux <toolset>gcc-6.3 <variant>release ; constant-if usage-requirements(mypkg2,32,x86,17,gnu,linux,gcc-6.3,release) : <include>$(includedirs(mypkg2,32,x86,17,gnu,linux,gcc-6.3,release)) <define>$(defines(mypkg2,32,x86,17,gnu,linux,gcc-6.3,release)) <cflags>$(cflags(mypkg2,32,x86,17,gnu,linux,gcc-6.3,release)) <cxxflags>$(cppflags(mypkg2,32,x86,17,gnu,linux,gcc-6.3,release)) <link>shared:<linkflags>$(sharedlinkflags(mypkg2,32,x86,17,gnu,linux,gcc-6.3,release)) ; # mypkg if $(__define_targets__) { call-in-project $(mypkg-mod) : lib MyLib1 : ''' + ''' : <name>MyLib1 <search>$(libdirs(mypkg,32,x86,17,gnu,linux,gcc-6.3,release)) $(requirements(mypkg,32,x86,17,gnu,linux,gcc-6.3,release)) : : $(usage-requirements(mypkg,32,x86,17,gnu,linux,gcc-6.3,release)) ; call-in-project $(mypkg-mod) : explicit MyLib1 ; } if $(__define_targets__) { call-in-project $(mypkg-mod) : alias libs : MyLib1 : $(requirements(mypkg,32,x86,17,gnu,linux,gcc-6.3,release)) : : $(usage-requirements(mypkg,32,x86,17,gnu,linux,gcc-6.3,release)) ; call-in-project $(mypkg-mod) : explicit libs ; } # mypkg2 if $(__define_targets__) { call-in-project $(mypkg2-mod) : lib MyLib2 : /MyPkg//libs : <name>MyLib2 <search>$(libdirs(mypkg2,32,x86,17,gnu,linux,gcc-6.3,release)) $(requirements(mypkg2,32,x86,17,gnu,linux,gcc-6.3,release)) : : $(usage-requirements(mypkg2,32,x86,17,gnu,linux,gcc-6.3,release)) ; call-in-project $(mypkg2-mod) : explicit MyLib2 ; } if $(__define_targets__) { call-in-project $(mypkg2-mod) : alias libs : /MyPkg//libs MyLib2 : $(requirements(mypkg2,32,x86,17,gnu,linux,gcc-6.3,release)) : : $(usage-requirements(mypkg2,32,x86,17,gnu,linux,gcc-6.3,release)) ; call-in-project $(mypkg2-mod) : explicit libs ; } ''' _main_buildinfo_empty = '''\ #| B2 definitions for Conan packages. This is a generated file. Edit the corresponding conanfile.txt instead. |# import path ; import project ; import modules ; import feature ; local base-project = [ project.current ] ; local base-project-mod = [ $(base-project).project-module ] ; local base-project-location = [ project.attribute $(base-project-mod) location ] ; rule project-define ( id ) { id = $(id:L) ; local saved-project = [ modules.peek project : .base-project ] ; local id-location = [ path.join $(base-project-location) $(id) ] ; local id-mod = [ project.load $(id-location) : synthesize ] ; project.initialize $(id-mod) : $(id-location) ; project.inherit-attributes $(id-mod) : $(base-project-mod) ; local attributes = [ project.attributes $(id-mod) ] ; $(attributes).set parent-module : $(base-project-mod) : exact ; modules.poke $(base-project-mod) : $(id)-mod : $(id-mod) ; modules.poke [ CALLER_MODULE ] : $(id)-mod : $(id-mod) ; modules.poke project : .base-project : $(saved-project) ; IMPORT $(__name__) : constant-if call-in-project : $(id-mod) : constant-if call-in-project ; if [ project.is-jamroot-module $(base-project-mod) ] { use-project /$(id) : $(id) ; } return $(id-mod) ; } rule constant-if ( name : value * ) { if $(__define_constants__) && $(value) { call-in-project : constant $(name) : $(value) ; modules.poke $(__name__) : $(name) : [ modules.peek $(base-project-mod) : $(name) ] ; } } rule call-in-project ( project-mod ? : rule-name args * : * ) { project-mod ?= $(base-project-mod) ; project.push-current [ project.target $(project-mod) ] ; local result = [ modules.call-in $(project-mod) : $(2) : $(3) : $(4) : $(5) : $(6) : $(7) : $(8) : $(9) : $(10) : $(11) : $(12) : $(13) : $(14) : $(15) : $(16) : $(17) : $(18) : $(19) ] ; project.pop-current ; return $(result) ; } rule include-conanbuildinfo ( cbi ) { include $(cbi) ; } IMPORT $(__name__) : project-define constant-if call-in-project include-conanbuildinfo : $(base-project-mod) : project-define constant-if call-in-project include-conanbuildinfo ; if ! ( relwithdebinfo in [ feature.values variant ] ) { variant relwithdebinfo : : <optimization>speed <debug-symbols>on <inlining>full <runtime-debugging>off ; } if ! ( minsizerel in [ feature.values variant ] ) { variant minsizerel : : <optimization>space <debug-symbols>off <inlining>full <runtime-debugging>off ; } local __conanbuildinfo__ = [ GLOB $(__file__:D) : conanbuildinfo-*.jam : downcase ] ; { local __define_constants__ = yes ; for local __cbi__ in $(__conanbuildinfo__) { call-in-project : include-conanbuildinfo $(__cbi__) ; } } { local __define_targets__ = yes ; for local __cbi__ in $(__conanbuildinfo__) { call-in-project : include-conanbuildinfo $(__cbi__) ; } } ''' _variation_empty = '''\ #| B2 definitions for Conan packages. This is a generated file. Edit the corresponding conanfile.txt instead. |# # global constant-if rootpath(conan,) : "" ; constant-if usage-requirements(conan,) : <include>$(includedirs(conan,)) <define>$(defines(conan,)) <cflags>$(cflags(conan,)) <cxxflags>$(cppflags(conan,)) <link>shared:<linkflags>$(sharedlinkflags(conan,)) ; '''
31.237792
145
0.642425
[ "MIT" ]
FalkorX/conan
conans/test/unittests/client/generators/b2_test.py
14,713
Python